
Logical Properties of

Nonmonotonic Causal Theories
and the Action Language C+

Marek Sergot and Robert Craven

Department of Computing,
Imperial College London,
180 Queen’s Gate,
London SW7 2BZ

{mjs,rac101}@doc.ic.ac.uk

Abstract

The formalism of nonmonotonic causal theories (Giunchiglia, Lee, Lifs-
chitz, McCain, Turner, 2004) provides a general-purpose formalism for non-
monotonic reasoning and knowledge representation, as well as a higher level,
special-purpose notation, the action language C+, for specifying and rea-
soning about the effects of actions and the persistence (‘inertia’) of facts
over time. In this paper we investigate some logical properties of these for-
malisms. There are two motivations. From the technical point of view, we
seek to gain additional insights into the properties of the languages when
viewed as a species of conditional logic. From the practical point of view,
we are seeking to find conditions under which two different causal theories,
or two different action descriptions in C+, can be said to be equivalent, with
the further aim of helping to decide between alternative formulations when
constructing practical applications.
A condensed version of this paper appeared as ‘Some logical properties of
nonmonotonic causal theories’, Proc. Eighth International Conference on

Logic Programming and Non-Monotonic Reasoning, LNCS, Springer.

1 Introduction

The formalism of nonmonotonic causal theories, presented by Giunchiglia, Lee,
Lifschitz, McCain and Turner [GLL+04], is a general-purpose language for knowl-
edge representation and nonmonotonic reasoning. A causal theory is a set of causal
rules each of which is an expression of the form

F ⇐ G

where F and G are formulas of an underlying propositional language and F ⇐ G

corresponds to the statement ‘if G, then F has a cause’ (which is not the same as
saying that G is a cause for F).

Associated with causal theories is the action language C+, also presented in
[GLL+04]. This may be viewed as a higher-level formalism for defining classes
of causal theories in a concise and natural way, for the purposes of specifying
and reasoning about the effects of actions and the persistence, or ‘inertia’, of
facts through time, with support for indirect effects, non-deterministic actions
and concurrency. The two closely-related formalisms have been used to represent
standard domains from the knowledge representation literature.

1

In this paper, we investigate some logical properties of these formalisms. There
are two motivations. The first is technical, to gain new insights into the languages
when they are viewed as species of conditional logic. For example, Turner [Tur99]
presents a more general formalism called the ‘logic of universal causation’. A rule
F ⇐ G of a causal theory can be expressed equivalently in this logic by the formula

G → CF

where C is a modal operator standing for ‘there is a cause for’ (and → is truth-
functional, ‘material’ implication). Since C is a normal modal operator whose
logic is at least as strong as S5, some logical properties of F ⇐ G are immediately
obvious. For example, we can see from G → CF `S5 G → C (F ∨ H) that the
logic of causal theories will exhibit the property of ‘weakening of the consequent’:
F ⇐ G implies (in a sense to be made more precise) (F∨H) ⇐ G. Other properties
of F ⇐ G will be straightforwardly propositional, such as ‘strengthening of the
antecedent’: F ⇐ G implies F ⇐ G∧H . This last property is intriguing, since it
is often seen as a characteristic feature of monotonic conditionals, yet the logic of
causal theories is nonmonotonic.

In this paper, we will not rely on the translation to Turner’s modal logic
but prove properties directly from the semantics of causal theories. Although
many of the properties can be derived quite straightforwardly in S5, there is some
additional preliminary notation and terminology that would be needed, and we
wish to give a succinct account. Moreover, there are some fundamental properties
of causal theories that are not inherited from S5.

The second motivation is a practical one. Causal theories and C+ are very
expressive languages. One purpose of the technical investigation is to find con-
ditions under which which two different causal theories, or two different action
descriptions in C+, can be said to be equivalent, with the further aim of helping
to decide between alternative formulations when constructing applications.

2 Causal theories

A multi-valued propositional signature σ [GLLT01, GLL+04] is a set of symbols
called constants. For each constant c in σ, there is a non-empty set dom(c) of
values called the domain of c. An atom of a signature σ is an expression of the
form c=v, where c is a constant in σ and v ∈ dom(c). A formula ϕ of signature σ

is any propositional compound of atoms of σ.
A Boolean constant is one whose domain is the set of truth values {t, f}. If p

is a Boolean constant, p is shorthand for the atom p=t and ¬p for the atom p=f.
Notice that, as defined here, ¬p is an atom when p is a Boolean constant.

An interpretation of σ is a function that maps every constant in σ to an element
of its domain. An interpretation I satisfies an atom c=v, written I |= c=v,
if I(c) = v. The satisfaction relation |= is extended from atoms to formulas in
accordance with the standard truth tables for the propositional connectives. When
X is a set of formulas we also write I |= X to signify that I |= ϕ for all formulas
ϕ ∈ X . I is then a model for the set of formulas X . The set of interpretations of
a signature σ will be denoted by I(σ).

We write |=σ ϕ to mean that I |=σ ϕ for all interpretations I of σ. Where X is a
set of formulas of signature σ, X |=σ ϕ denotes that I |=σ ϕ for all interpretations
I of σ such that I |=σ X . When X ′ is a set of formulas of signature σ, X |=σ X ′

2

is shorthand for X |=σ ϕ for all formulas ϕ ∈ X ′. In addition, where A and B

are sets of formulas of a multi-valued propositional signature, we define A ≡σ B

to mean that A |=σ B and B |=σ A. A causal rule is an expression of the form
F ⇐ G, where F and G are formulas of signature σ. A causal theory is a set of
causal rules.

Semantics Let Γ be a causal theory, and let X be an interpretation of its under-
lying propositional signature. Then the reduct of Γ, written ΓX , is

{F | F ⇐ G ∈ Γ and X |= G}

X is a model of Γ, written X |=C Γ, iff X is the unique model of the reduct ΓX .
By models(Γ) we denote the set of all models of the causal theory Γ.

ΓX is the set of all formulas which have a cause to be true, according to the
rules of Γ, under the interpretation X . If ΓX has no models, or has more than
one model, or if it has a unique model different from X , then X is not considered
to be a model of Γ. Γ is consistent or satisfiable iff it has a model.

For an illustration of the preceding definitions, consider the causal theory T1,
with underlying Boolean signature {p, q}:

p ⇐ q

q ⇐ q

¬q ⇐ ¬q

There are clearly four possible interpretations of the signature:

X1 : p 7→ t, q 7→ t

X2 : p 7→ t, q 7→ f

X3 : p 7→ f, q 7→ t

X4 : p 7→ f, q 7→ f

and it is clear that

T X1

1 = {p, q} whose only model is X1

T X2

1 = {¬q} which has two models

T X3

1 = {p, q} whose only model is X1 6= X3

T X4

1 = {¬q} which has two models

In only one of these cases—that of X1—is it true that the reduct of the causal
theory with respect to the interpretation has that interpretation as its unique
model. Thus X1 |=C T1 and models(T1) = {X1}.

Suppose we add another law to T1: for example, T2 = T1 ∪ {¬p ⇐ ¬p}. Now
we have:

T X1

2 = {p, q} whose only model is X1

T X2

2 = {¬q} which has two models

T X3

2 = {p,¬p, q} which has no models

T X4

2 = {¬p,¬q} whose only model is X4.

3

Thus, models(T2) = {X1, X4}; in this example, augmenting the causal theory
increases the set of models. It is clear that in general, for causal theories Γ and
∆, models(Γ∪∆) 6⊆ models(Γ). This is the sense in which the causal theories are
nonmonotonic. In the following, one of our purposes will be to invesigate under
which conditions Γ ∪ ∆ has the same models as Γ.

3 A consequence relation between causal theories

In this section, we frequently omit set-theoretic brackets from causal theories where
doing so does not create confusion. In particular, causal theories which are single-
tons are often represented by the sole law they contain.

Proposition 1 X |=C Γ iff, for every formula F , X |= F iff ΓX |=σ F .

Proof: This is Proposition 1 of [GLL+04].

Observation 2 (Γ1 ∪ Γ2)
X = ΓX

1 ∪ ΓX
2 .

Proposition 3 X |= {F ⇐ G}X iff X |= G → F .

Proof: Assume X |= {F ⇐ G}X . If X |= G, then {F ⇐ G}X = {F}, so X |= F .
For the other direction, suppose X |= G → F . If X |= G then X |= F . But then
{F ⇐ G}X = {F} and we have X |= {F ⇐ G}X . If X 6|= G then {F ⇐ G}X = ∅,
and X |= {F ⇐ G}X , trivially.

It follows from the above that X |= {F1 ⇐ G1, . . . , Fn ⇐ Gn}X iff X |= (G1 →
F1)∧ · · · ∧ (Gn → Fn). Moreover, if a causal theory Γ contains a rule F ⇐ G then
every model of Γ satisfies G → F , i.e., X |=C Γ implies X |= G → F . This last
remark is Proposition 2 of [GLL+04].

Where Γ is a causal theory, we will denote by mat(Γ) the set of formulas
obtained by replacing every rule F ⇐ G of Γ by the corresponding material
implication, G → F . The remarks above can thus be summarised as follows.

Proposition 4

(i) X |= ΓX iff X |= mat(Γ) (ii) X |=C Γ implies X |= mat(Γ)

Proof: In the preceding discussion.

We now define a notion of consequence between causal theories. This will allow
us to say under which conditions two causal theories are equivalent, to simplify
causal theories by removing causal laws that are implied by the causal theory, and
to identify (in the following section) general properties of causal laws.

We will say that causal theories Γ1 and Γ2 of signature σ are equivalent, written
Γ1 ≡ Γ2, when ∆∪Γ1 and ∆∪Γ2 have the same models for all causal theories ∆ of
signature σ. We will say that Γ1 implies Γ2, written Γ1 ` Γ2, when (Γ1∪Γ2) ≡ Γ1,
that is, when ∆∪Γ1 ∪Γ2 and ∆∪Γ1 have the same models for all causal theories
∆ of signature σ.

Proposition 5 Γ1 ≡ Γ2 iff Γ1 ` Γ2 and Γ2 ` Γ1

4

Proof: First, suppose Γ1 ≡ Γ2, which by definition gives models(Γ ∪ Γ1) =
models(Γ ∪ Γ2), for all causal theories Γ. Thus clearly models((Γ ∪ Γ1) ∪ Γ1) =
models((Γ ∪ Γ1) ∪ Γ2), which is the definition of Γ1 ` Γ2. We can show Γ2 ` Γ1

by similar means.
For the other direction, suppose Γ1 ` Γ2 and Γ2 ` Γ1. By their definition, these
equate both models(Γ∪ Γ1) and models(Γ∪ Γ2) to models(Γ∪ Γ1 ∪ Γ2). So they
are themselves equal, and this equality defines Γ1 ≡ Γ2.

Proposition 6 Γ ` Γ1 and Γ ` Γ2 iff Γ ` (Γ1 ∪ Γ2)

Proof: Immediate from the definitions.

Proposition 7 For all causal theories Γ, Γ1, Γ2, ∆ of signature σ we have:

(i) If Γ1 ≡ Γ2, then (Γ1 ∪ ∆) ` Γ iff (Γ2 ∪ ∆) ` Γ.

(ii) If Γ1 ≡ Γ2, then Γ ` (∆ ∪ Γ1) iff Γ ` (∆ ∪ Γ2).

(iii) If Γ1 ≡ Γ2, then (Γ1 ∪ ∆) ≡ (Γ2 ∪ ∆).

Proof: Part (ii): suppose Γ1 ≡ Γ2 and (Γ1∪∆) ` Γ. That models(∆′∪(Γ2∪∆)∪Γ)
is equal to models(∆′ ∪ (Γ2 ∪ ∆)) follows easily using basic set theory. The other
parts can be proved in similar fashion.

Proposition 8 The relation ` between causal theories of a given signature σ is
a classical consequence relation (also known as a closure operator), that is, it
satisfies the following three properties, for all causal theories Γ, Γ1, and Γ2:

• inclusion: Γ ` Γ

• cut: (Γ1 ∪ Γ2) ` Γ and Γ1 ` Γ2 implies Γ1 ` Γ

• monotony: Γ1 ` Γ implies (Γ1 ∪ Γ2) ` Γ

Proof: ‘Inclusion’ is trivial. For ‘cut’, first suppose (Γ1 ∪ Γ2) ` Γ and Γ1 ` Γ2.
By definition, these mean that

(i) (Γ1 ∪ Γ2) ∪ Γ ∪ ∆′ ≡ (Γ1 ∪ Γ2) ∪ ∆′ (ii) Γ1 ∪ Γ2 ∪ ∆′′ ≡ Γ1 ∪ ∆′′

So clearly,

Γ1 ∪ Γ ∪ ∆ ≡ Γ1 ∪ (Γ ∪ ∆)

≡ Γ1 ∪ Γ2 ∪ (Γ ∪ ∆) by (ii)

≡ Γ1 ∪ Γ2 ∪ ∆ by (i)

≡ Γ1 ∪ ∆ by (ii)

For ‘monotony’, suppose Γ1 ` Γ. Then (Γ1 ∪ Γ) ≡ Γ1. We show (Γ1 ∪ Γ2 ∪ Γ) ≡
(Γ1 ∪ Γ2) for any causal theory Γ2. Clearly (Γ1 ∪ Γ2 ∪ Γ) ≡ ((Γ1 ∪ Γ) ∪ Γ2). And
((Γ1 ∪ Γ) ∪ Γ2) ≡ (Γ1 ∪ Γ2) because (Γ1 ∪ Γ) ≡ Γ1.

Corollary 9 If Γ1 ` Γ2 and Γ2 ` Γ3 then Γ1 ` Γ3.

Proof: If Γ2 ` Γ3 then by monotony, we have Γ1 ∪ Γ2 ` Γ3. If Γ1 ` Γ2 and
Γ1 ∪ Γ2 ` Γ3 then Γ1 ` Γ3 by cut.

5

Corollary 10 Let Γ1, Γ2, Γ′
1 and Γ′

2 be causal theories of signature σ. Then if
Γ1 ` Γ2 and Γ′

1 ` Γ′
2, then Γ1 ∪ Γ′

1 ` Γ2 ∪ Γ′
2.

Proof: Assume Γ1 ` Γ2 and Γ′
1 ` Γ′

2. From the latter, by monotony, we have
(Γ1 ∪ Γ′

1) ∪ Γ2 ` Γ′
2; from the former, also by monotony, we have (Γ1 ∪ Γ′

1) `
Γ2. Now, by inclusion we have that Γ2 ∪ Γ′

2 ` Γ2 ∪ Γ′
2, and so by monotony,

(Γ1∪Γ′
1)∪Γ2∪Γ′

2 ` Γ2∪Γ′
2. We now apply cut twice, using the results established

by monotony at the beginning.

(Γ1 ∪ Γ′
1) ∪ Γ2 ∪ Γ′

2 ` Γ2 ∪ Γ′
2, (Γ1 ∪ Γ′

1) ∪ Γ2 ` Γ′
2

(Γ1 ∪ Γ′
1) ∪ Γ2 ` Γ2 ∪ Γ′

2

;

and for the second application of cut,

(Γ1 ∪ Γ′
1) ∪ Γ2 ` Γ2 ∪ Γ′

2, (Γ1 ∪ Γ′
1) ` Γ2

Γ1 ∪ Γ′
1 ` Γ2 ∪ Γ′

2

Notice that although the formalism of causal theories is nonmonotonic, in the
sense that in general models(Γ ∪ ∆) 6⊆ models(Γ), the consequence relation `
between causal theories is monotonic.

We now establish some simple sufficient conditions under which ` holds.

Proposition 11 models(Γ1) ⊆ models(Γ2) iff, for all X ∈ models(Γ1), we have
ΓX

1 ≡σ ΓX
2 .

Proof: Suppose models(Γ1) ⊆ models(Γ2) and X ∈ models(Γ1). Then X ∈
models(Γ2) also. Now consider any interpretation Y . X |=C Γ1, so Y |= ΓX

1 iff
Y = X . X |=C Γ2 so Y |= ΓX

2 iff Y = X . It follows that Y |= ΓX
1 iff Y |= ΓX

2 , as
required.
For the other half, suppose ΓX

1 ≡σ ΓX
2 for all X ∈ models(Γ1). Further suppose

Y ∈ models(Γ1). Let Z be any interpretation. Since Y is a model of Γ1, Z |= ΓY
1

iff Z = Y . But Y ∈ models(Γ1), so ΓY
1 ≡σ ΓY

2 , and hence Z |= ΓY
1 iff Z |= ΓY

2 .
So we have Z |= ΓY

2 iff Z = Y , i.e. Y ∈ models(Γ2), as required.

Corollary 12 models(Γ1) = models(Γ2) iff we have ΓX
1 ≡σ ΓX

2 , for all X ∈
models(Γ1) ∪ models(Γ2).

Proposition 13

(i) Γ1 ` Γ2 if ΓX
1 |=σ ΓX

2 , for all X |= mat(Γ1 ∪ Γ2).

(ii) Γ1 ` Γ2 if ΓX
1 |=σ ΓX

2 , for all X |= mat(Γ1).

(iii) Γ ` (F ⇐ G) if ΓX |=σ F , for all X |= mat(Γ1) ∪ {G}.

Proof: Part (i) follows from considering Proposition 11 and Corollary 12; the de-
tails of this have been omitted. Part (ii) is obtained from Part (i) by strengthening
the condition. Part (iii) follows from Part (ii): if X |= G then {F ⇐ G}X = {F}.
If X 6|= G then {F ⇐ G}X = ∅, and so ΓX |=σ {F ⇐ G}X , trivially.

We record one further property for future reference. A causal rule of the form
F ⇐ F expresses that F holds by default. Adding F ⇐ F to a causal theory Γ
cannot eliminate models, though it can add to them.

6

Proposition 14 models(Γ) ⊆ models(Γ ∪ {F ⇐ F})

Proof: Suppose X |=C Γ, i.e., X |= ΓX and Y |= ΓX implies Y = X . We show
(i) X |= (Γ ∪ {F ⇐ F})X , and (ii) if Y |= (Γ ∪ {F ⇐ F})X then Y = X . For
(i): if X |= F then (Γ ∪ {F ⇐ F})X = ΓX ∪ {F}; we have both X |= ΓX and
X |= F . If X 6|= F , then (Γ ∪ {F ⇐ F})X = ΓX ; we have X |= ΓX . For (ii),
suppose Y |= (Γ ∪ {F ⇐ F})X . Then Y |= ΓX , and X |=C Γ implies Y = X .

4 Properties of ⇐

We can now prove properties about the logic of causal theories, using the prelimi-
nary results and definitions given in the previous section. We have chosen to name
the results after Chellas’s [Che80] taxonomy of rules of inference from modal logic,
as this scheme is well-known and seems natural to us. The reader may care to
check that the propositions and corollaries presented here are all reasonable given
a reading of F ⇐ G as ‘if G, then there is a cause for F ’, though not reasonable
for the stronger interpretation, ‘G causes F ’.

In the following, we will frequently use the notational convenience of writing
A
B

instead of A ` B, where A and B are causal rules or sets of such.

Proposition 15 [RCM] If F1 |=σ F2, then F1 ⇐ G ` F2 ⇐ G

Proof: From Proposition 13(iii), a sufficient condition for F1 ⇐ G ` F2 ⇐ G is
{F1 ⇐ G}X |=σ F2 for all X |=σ G, which is just F1 |=σ F2, which was given.

Proposition 16 [RAug] If G1 |=σ G2, then F ⇐ G2 ` F ⇐ G1

Proof: Similar to that for Proposition 15, and also using Proposition 13(ii).

Given the preceding two propositions and Proposition 5, we have the following
corollary. Naming conventions again follow [Che80].

Corollary 17

[RCEC] (i) If F1 ≡σ F2, then F1 ⇐ G ≡ F2 ⇐ G

[RCEA] (ii) If G1 ≡σ G2, then F ⇐ G1 ≡ F ⇐ G2

Proposition 18

[RCK] If F1, . . . , Fn |=σ F , then
F1 ⇐ G, . . . , Fn ⇐ G

F ⇐ G
(n > 0)

Proof: For the case n = 0, a sufficient condition for ` F ⇐ G is ∅X |=σ F for all
X , which holds, since |=σ F was given.
For the general case, a sufficient condition for F1 ⇐ G, . . . , Fn ⇐ G ` F ⇐ G is
{F1 ⇐ G, . . . , Fn ⇐ G}X |=σ F for all X such that X |= G, which is F1, . . . , Fn |=σ

F , which was given.

The above are properties characteristic of ‘normal conditional logics’ [Che80].
We now move on to consider some distribution laws.

7

Proposition 19

[CC]
F1 ⇐ G, . . . , Fn ⇐ G

(F1 ∧ · · · ∧ Fn) ⇐ G
[CM]

(F1 ∧ · · · ∧ Fn) ⇐ G

F1 ⇐ G, . . . , Fn ⇐ G

[DIL]
F ⇐ G1, . . . , F ⇐ Gn

F ⇐ (G1 ∨ · · · ∨ Gn)
[cDIL]

F ⇐ (G1 ∨ · · · ∨ Gn)

F ⇐ G1, . . . , F ⇐ Gn

Proof: [CC]. We have {F1 ⇐ G, . . . , Fn ⇐ G}X |=σ (F1∧· · ·∧Fn), for all X |= G,
as a sufficient condition. This clearly holds.
[CM]. From an easy generalization of Proposition 13(ii) a sufficient condition is
that {(F1 ∧ · · · ∧ Fn) ⇐ G}X |=σ {F1 ⇐ G, . . . , Fn ⇐ G}X for all interpretations
X . If X |= G, our condition reduces to (F1 ∧ · · · ∧Fn) |=σ {F1, . . . , Fn}, which we
clearly have. Otherwise, if X 6|= G, then it reduces to ∅ |=σ ∅.
[DIL]. A sufficient condition is {F ⇐ G1, . . . , F ⇐ Gn}X |=σ F for all X |=
(G1 ∨ · · · ∨ Gn). Yet if X |= (G1 ∨ · · · ∨ Gn) then X |= Gi for some 1 6 i 6 n.
Hence {F ⇐ G1, . . . F ⇐ Gn}X = {F}, so we require only F |=σ F , which holds.
[cDIL]. A sufficient condition for F ⇐ (G1 ∨ · · · ∨ Gn) ` F ⇐ Gi, for every
1 6 i 6 n, is {F ⇐ (G1 ∨ · · · ∨Gn)}X |=σ F for all X |= Gi. But if X |= Gi, then
{F ⇐ (G1 ∨ · · · ∨ Gn)}X = {F}, and again we merely require F |=σ F .

There follows a network of interrelated properties which all express a form of
monotonicity of the conditional ⇐.

Proposition 20 [Aug] F ⇐ G ` F ⇐ G ∧ H

Proof: This is clearly a specific instance of [RAug]. For a direct proof: a sufficient
condition for [Aug] is {F ⇐ G}X |=σ F for all X |= (G∧H). But if X |= (G∧H),
then the condition reduces to F |=σ F , which holds.

In fact, it can be shown that in the presence of the rule [RCEA], which we
proved as Corollary 17(ii), the schema [Aug] is equivalent to the distribution law
[cDIL]:

Proposition 21 If a conditional logic contains the rule [RCEA], then it contains
the schema [Aug] iff it contains the schema [cDIL].

Proof: First, a derivation of Aug from RCEA and cDIL:

1. F ⇐ G ass.
2. F ⇐ G ∧ (H ∨ ¬H) (1, PL, RCEA)
3. F ⇐ (G ∧ H) ∨ (G ∧ ¬H) (2, PL, RCEA)
4. F ⇐ G ∧ H (3, cDIL)

For the other direction, a derivation of cDIL from RCEA and Aug (it is sufficient,
without loss of generality, to deal with the case n = 2):

1. F ⇐ G1 ∨ G2 ass.
2. F ⇐ (G1 ∨ G2) ∧ (G1 ∨ ¬G2) (1, Aug)
3. (G1 ∨ G2) ∧ (G1 ∨ ¬G2) ≡PL G1 (PL)
4. F ⇐ G1 (2, 3, RCEA)

8

Proposition 22 [Contra] ` F ⇐ ⊥

Proof: A sufficient condition for this is ∅X ` F for all X |= ⊥, which holds
trivially, since there is no such X .

Proposition 23 F ⇐ G ` ⊥ ⇐ ¬F ∧ G

Proof: By Proposition 13(iii), a sufficient condition is that {F ⇐ G}X |=σ ⊥, for
all X with X |= (¬F ∧ G) ∧ (G → F), which obtains: there is no such X .

The converse of this proposition does not hold: ⊥ ⇐ ¬F ∧ G 6` F ⇐ G.
Now, since G |=σ ⊥ iff G ≡σ ⊥, the schema [Contra] is equivalent to the rule:

if G |=σ ⊥ then ` F ⇐ G. This is the case n = 0 for the following generalization
of [RAug].

Proposition 24

[RDIL] If G |=σ (G1 ∨ · · · ∨ Gn), then
F ⇐ G1, . . . , F ⇐ Gn

F ⇐ G
(n > 0)

Proof: The case for n = 0 is covered by the schema [Contra].
For n > 0, first suppose G |=σ (G1 ∨ · · · ∨ Gn). A sufficient condition for F ⇐
G1, . . . , F ⇐ Gn ` F ⇐ G is {F ⇐ G1, . . . , F ⇐ Gn}

X |=σ F for all X |= G.
But X |= G implies X |= Gi for some 1 6 i 6 n, by our hypothesis. Thus
{F ⇐ G1, . . . , F ⇐ Gn}X = {F}, and we now only require F |=σ F .

We can show an equivalence between RDIL and rules already proven.

Proposition 25 [DIL] and [Aug] (equivalently, [DIL] and [cDIL]) are equivalent
to the rule [RDIL] for n > 1.

Proof: [RAug] is the special case of [RDIL] where n = 1. The distribution law
[DIL] follows from [RDIL] and (G1 ∨ · · · ∨ Gn) |=σ (G1 ∨ · · · ∨ Gn).
For the other direction, [RDIL] (n > 1) can be derived from [Aug] and [DIL] as
follows:

1. G |=σ (G1 ∨ · · · ∨ Gn) ass.
2. F ⇐ G1, . . . , F ⇐ Gn ass.
3. F ⇐ (G1 ∧ G), . . . , F ⇐ (Gn ∧ G) (2, Aug)
4. F ⇐ (G1 ∧ G) ∨ · · · ∨ (Gn ∧ G) (3, DIL)
5. (G1 ∧ G) ∨ · · · ∨ (Gn ∧ G) ≡σ G (1, PL)
6. F ⇐ G (3, 5, RCEA)

Proposition 26 [S] F ⇐ G, G ⇐ H ` F ⇐ H

Proof: By Proposition 13(iii), we have that a sufficient condition for this is
{F ⇐ G, G ⇐ H}X |=σ F , for all X such that X |= H ∧ (G → F) ∧ (H → G).
But every such X has X |= G ∧ H , so that {F ⇐ G, G ⇐ H}X = {F, G}, and we
require only {F, G} |=σ F .

A statement of the propogation of constraints, and a rule of Modus Ponens,
are obvious instances of [S]:

9

Corollary 27

[Constr]
F ⇐ G, ⊥ ⇐ F

⊥ ⇐ G
, [MP]

F ⇐ G, G ⇐ >

F ⇐ >

The following is a generalization of [Contra].

Proposition 28 G ⇐ > ` F ⇐ ¬G

Proof: From G ⇐ >, we get ⊥ ⇐ ¬G∧> using Proposition 23; an application of
[RCEA] then gives us ⊥ ⇐ ¬G. Using [Contra] and [S] we then derive F ⇐ ¬G:

The rule describing propogation of constraints may be generalised to a weak
resolution law for Horn-like rules:

Proposition 29 F ⇐ G ∧ H, G ⇐ K ` F ⇐ H ∧ K

Proof: We have G ⇐ K ` ⊥ ⇐ K ∧ ¬G, from Proposition 23, and so using
[Contra] and [S] we have also F ⇐ K ∧ ¬G; from the latter using [Aug] we get
F ⇐ ¬G ∧H ∧K. From F ⇐ G ∧H , also using [Aug], we have F ⇐ G ∧H ∧K.
Applying [Dil], we get

F ⇐ (¬G ∧ H ∧ K) ∨ (G ∧ H ∧ K),

which using [RCEA] gives us the desired F ⇐ K ∧ H .

We mention resolution here as the following is clearly a special case:

Corollary 30
⊥ ⇐ G ∧ H, G ⇐ K

⊥ ⇐ K ∧ H

The logic of causal theories does not contain the two equivalent rules

[I] ` F ⇐ F ; [RI] If G |=σ F , then ` F ⇐ G

To see this, use ¬p ⇐ ¬p for F and consider the causal theory with the single
rule p ⇐ p; models({p ⇐ p}) 6= models({p ⇐ p,¬p ⇐ ¬p}) which means that we
do not have models(Γ ∪ ∅) = models(Γ ∪ ∅ ∪ {¬p ⇐ ¬p}) for all causal theories
Γ, and so 6` ¬p ⇐ ¬p. Although we do not have [I], it has already been shown
(Proposition 14) that models(Γ) ⊆ models(Γ ∪ {F ⇐ F}).

Using the same example, it can easily be seen that the logic of ⇐ does not
contain a contrapositive law: we have that, in general, F ⇐ G 6` ¬G ⇐ ¬F . This
is exactly what we would expect given the intended informal reading of F ⇐ G.

Example As one example of an application of these properties consider the
following common patterns of causal rules:

{F ⇐ F ∧ G ∧ ¬R, ¬F ⇐ R } and { F ⇐ F ∧ G, ¬F ⇐ R }

In each case the first law expresses that F holds by default if G holds, and the
second that R is an exception to the default rule. These pairs of laws are equivalent
in causal theories. One direction is straightforward: F ⇐ F ∧G∧¬R follows from
F ⇐ F ∧ G by [Aug].

10

For the other direction, notice first that ¬F ⇐ R implies ⊥ ⇐ F ∧ G ∧ R

(because ¬F ⇐ R implies ⊥ ⇐ F ∧ R and the rest follows by [Aug]). Now
` F ⇐ ⊥ [Contra], and by [S] we derive F ⇐ F ∧ G ∧ R. For the final step

F ⇐ F ∧ G ∧ R, F ⇐ F ∧ G ∧ ¬R

F ⇐ F ∧ G ∧ (R ∨ ¬R)

from which F ⇐ F ∧ G follows.

5 The action language C+

5.1 Syntax

As with the logic of causal theories, the language C+ is based on a multi-valued
propositional signature σ, with σ partitioned into a set σf of fluent constants and a
set σa of action constants. Further, the fluent constants are partitioned into those
which are simple and those which are statically determined. A fluent formula is
a formula whose constants all belong to σf ; an action formula has at least one
action constant and no fluent constants.

A static law is an expression of the form

caused F if G,

where F and G are fluent formulas. An action dynamic law is an expression of the
same form in which F is an action formula and G is a formula. A fluent dynamic
law has the form

caused F if G after H,

where F and G are fluent formulas and H is a formula, with the restriction that
F must not contain statically determined fluents. Causal laws are static laws or
dynamic laws, and an action description is a set of causal laws.

In the following section we will make use of several of the many abbreviations
afforded in C+. In particular:

α causes F if G abbreviates the fluent dynamic law caused F if > after α ∧ G;

nonexecutable α if G expresses that there is no transition of type α from a state
satisfying fluent formula G. It is shorthand for the fluent dynamic law
caused ⊥ if > after α ∧ G;

inertial f where f is a simple fluent constant, states that the values of f persist by
default—they are subject to inertia—from one state to the next. It stands
for the collection of fluent dynamic laws caused f=v if f=v after f=v for
every v ∈ dom(f).

exogenous a where a is an action constant, stands for the set of action dynamic
laws caused a=v if a=v for every v ∈ dom(a).

5.2 Semantics

The language C+ can be viewed as a useful shorthand for the logic of causal
theories, for to every action description D of C+ and non-negative integer m,
there corresponds a causal theory ΓD

m.
The signature of ΓD

m contains constants c[i], such that

11

• i ∈ {0, . . . , m} and c is a fluent constant of the signature of D, or

• i ∈ {0, . . . , m−1} and c is an action constant of the signature of D,

and the domains of such constants c[i] are kept identical to those of their con-
stituents c. Where σ is the signature of D, we let σm denote the signature of ΓD

m.
The expression F [i], where F is a formula, denotes the result of suffixing [i] to
every occurrence of a constant in F .

Proposition 31 Let D be an action description of C+ with signature σ. Let m

and i be non-negative integers such that 0 6 i 6 m. For any formulas F and G

such that F [i] and G[i] are well defined, we have F |=σ G iff F [i] |=σm
G[i].

Proof: (The ‘if’ part.) Assume F [i] |=σm
G[i], so that for all interpretations

I∗ ∈ I(σm), we have that if I∗ |=σm
F [i], then I∗ |=σm

G[i]. We must show
F |=σ G, i.e. that for I ∈ I(σ), if I |=σ F then I |=σ G. Assume for some I

that I |=σ F . We choose an interpretation I∗ ∈ I(σm) such that I∗(c[i]) = v iff
I(c) = v, and where I∗(c[j]) (where j 6= i) maps to any v ∈ dom(c[j]). Clearly,
by structural induction, we have that for all formulas H of signature σ, I |=σ H

iff I∗ |=σm
H [i]. Thus I∗ |=σm

F [i], and so by assumption, I∗ |=σm
G[i]. Then

clearly I |=σ G, and the ‘if’ part is done.
The ‘only if’ part is similar.

The causal rules of ΓD
m are:

F [i] ⇐ G[i],

for every static law in D and every i ∈ {0, . . . , m}, and for every action dynamic
law in D and every i ∈ {0, . . . , m−1};

F [i + 1] ⇐ G[i + 1] ∧ H [i],

for every fluent dynamic law in D and every i ∈ {0, . . . , m−1}; and

f [0]=v ⇐ f [0]=v,

for every simple fluent constant f and v ∈ dom(c).
Each action description of C+ defines a labelled transition system; the def-

inition uses the translation of action descriptions into causal theories described
above. Let us suppose we have an action description D, with signature composed
of σf∪σa. Interpretations of the underlying propositional signature of D are identi-
fied with the sets of atoms they satisfy. Thus, where i is a non-negative integer and
s an interpretation, we can write s[i] for the result of suffixing [i] to the constant in
every atom satisfied by the interpretation (in symbols, s[i] = {c[i] = v | s |= c=v}.

The vertices of the transition system defined by D are states: interpretations
s of σf , such that s[0] is a model of ΓD

0 . The edges of the transition system are
triples (s, e, s′), where s and s′ are interpretations of σf and e is an interpretation
of σa, and such that s[0] ∪ e[0] ∪ s′[1] is a model of ΓD

1 . These triples are known
as transitions, and the component e will sometimes be called a transition label or
an event. Further, when α is a formula of signature σa, we say that a transition
label/event e is of type α when e |= α.

Let ΓD
m be the causal theory generated from the action description D and

non-negative integer m as described above. Let s0, . . . , sm be interpretations of

12

σf and e0, . . . , em−1 be interpretations of σa. Then using the notation above,
interpretations of the signature of ΓD

m can be represented in the form

s0[0] ∪ e0[0] ∪ s1[1] ∪ e1[1] ∪ · · · ∪ em−1[m − 1] ∪ sm[m]. (1)

Proposition 32 An interpretation of the signature of ΓD
m is a model of ΓD

m iff
each triple (si, ei, si+1), for 0 6 i < m, is a transition.

Proof: Proposition 8 of [GLL+04].

Let D be an action description of C+. A run of length m through this transition
system is defined to be a sequence

(s0, e0, s1, e1, . . . , em−1, sm) (2)

such that all triples (si, ei, si+1), for 0 6 i < m, are members of the transition
system.

Proposition 33 Let D be an action description and m any non-negative integer.
Then the sequence (2) is a run of the transition system iff the interpretation (1)
is a model of the causal theory ΓD

m.

Proof: First, assume we have a run of the transition system of length m. Then
every triple (si, ei, si+1), for 0 6 i < m, is a transition, and so by Proposition 32
the interpretation (1) is a model of ΓD

m.
Alternately, suppose that (1) is a model of the causal theory ΓD

m. Then clearly,
each triple (si, ei, si+1), for 0 6 i < m, is a transition, and so the sequence (2) is
a run of the transition system defined by D.

5.3 A consequence relation between C+ action descriptions

As we did for the logic of causal theories, we now define a consequence relation be-
tween action descriptions of C+ having the same signature. Further, since action
descriptions of C+ may be viewed as shorthand for families of causal theories, the
definition of this conequence relation supervenes directly on that defined earlier
(Section 3) for causal theories. Again, our objective is to see under which condi-
tions causal laws are redundant, when one theory includes another, and when given
laws are implied (according to our consequence relation) by an action description.

Let D1 and D2 be two action descriptions of C+, with the same signature σ.
Then, D1 `C+ D2 is defined to hold when ΓD1

m ` ΓD2

m for all non-negative integers
m. Similarly, we define that D1 ≡C+ D2 shall mean ΓD1

m ≡ ΓD2

m .

Proposition 34 Let D1, D2 and D be action descriptions of C+ with the same
signature σ. Then

(i) If D1 `C+ D2, then the labelled transition system defined by D ∪ D1 is the
same as that defined by D ∪ D1 ∪ D2.

(ii) If D1 ≡C+ D2, then the transition system defined by D ∪ D1 is the same as
that defined by D ∪ D2.

Proof: For part (i): assume D1 `C+ D2. Then by definition ΓD1

m ` ΓD2

m , for all
non-negative integers m. This implies, by further definitions, that

models(ΓD∪D1∪D2

m) = models(ΓD∪D1

m)

13

for all non-negative m and action descriptions D with signature σ. Substituting 0
for m here immediately gives us that the states of the transition systems defined
by D ∪D1 are the same to those defined by D ∪D1 ∪D2, by definition. That the
edges of the labelled transition systems are identical easily follows by substituting
1 for m and again considering the definitions.
For (ii): assume D1 ≡C+ D2. Then ΓD1

m ≡ ΓD2

m for all non-negative m, by
definition. By Proposition 5 we have that ΓD1

m ` ΓD2

m and ΓD2

m ` ΓD1

m , for all
m > 0. Using part (i), this means that the transition systems defined by D ∪D1,
D ∪ D1 ∪ D2 and D ∪ D2 are all equal, which gives us the desired result.

6 Logical properties of C+

As was the case for the logic of causal theories, we will in this section often
write A

B
instead of A `C+ B. We will also often omit the brackets around action

descriptions, and sometimes omit the word caused from the beginning of causal
laws for typographic convenience.

The proofs for theorems in this section follow the same pattern, which involves
moving from the action descriptions of C+ to the underlying representation of
causal theories, then using one of the rules of inference established in Section 4,
and finally moving back to action descriptions and C+. We give the first proof in
detail to show how this strategy works, but details for the later propositions are
omitted.

Proposition 35 If F1 |=σ F2, then

(i)
caused F1 if G

caused F2 if G
(ii)

caused F1 if G after H

caused F2 if G after H

Proof: (Part (i).) Assume F1 |=σ F2. Thus by Proposition 31 we have that for
all non-negative integers m and i such that i 6 m, if F1[i] and F2[i] are defined,
then F1[i] |=σm

F2[i]. Thus where G is a formula of σ such that G[i] is a formula
of signature σm, we have using [RCM] that F1[i] ⇐ G[i] ` F2[i] ⇐ G[i], for all
i as assumed. Using Corollary 10 we then have that {F1[i] ⇐ G[i] | 0 6 i 6

m} ` {F2[i] ⇐ G[i] | 0 6 i 6 m}, which gives us Γ
{F1 if G}
m ` Γ

{F2 if G}
m , for all

non-negative m.
(Part (ii).) The proof for this part is similar, also using [RCM].

Proposition 36 If G1 |=σ G2 and H1 |=σ H2, then

(i)
caused F if G2

caused F if G1

(ii)
caused F if G2 after H

caused F if G1 after H

(iii)
caused F if G after H2

caused F if G after H1

Proof: (Part (i).) Use [RAug], Proposition 31 and Corollary 10, according to the
pattern illustrated in Proposition 35.
(Part (ii).) Assume G1 |=σ G2. Then using Proposition 31, for all non-negative
integers m and all i such that 0 6 i < m, we have G1[i + 1] |=σm

G2[i + 1], and
so too G1[i + 1] ∧ H [i] |=σm

G2[i + 1] ∧ H [i]. Thus using [RAug], we have for m

14

and i as constrained, F [i + 1] ⇐ G1[i + 1]∧H [i] |=σm
F [i + 1] ⇐ G2[i + 1]∧H [i].

Using Corollary 10 as before, we have our result.
(Part (iii).) The proof for this part is similar.

Proposition 37 If F1 ≡σ F2, then

(i) caused F1 if G ≡C+ caused F2 if G

(ii) caused F1 if G after H ≡C+ caused F2 if G after H

Proof: From [RCEC], according to the pattern established.

Proposition 38 If G1 ≡σ G2 and H1 ≡σ H2, then

(i) caused F if G1 ≡C+ caused F if G2

(ii) caused F if G1 after H1 ≡C+ caused F if G2 after H2

Proof: From [RCEA], Proposition 31, Corollary 10, and the definition of the
translation into causal theories as before.

Proposition 39 If F1, . . . , Fn |=σ F , then

(i)
caused F1 if G, . . . , caused Fn if G

caused F if G

(ii)
caused F1 if G after H, . . . , caused Fn if G after H

caused F if G after H

Proof: Using [RCK].

Proposition 40

(i) F1 if G, . . . , Fn if G ≡C+ F1 ∧ · · · ∧ Fn if G

(ii) F1 if G after H, . . . , Fn if G after H ≡C+ F1 ∧ · · · ∧ Fn if G after H

Proof: From [CC] and [CM].

Proposition 41

(i) F if G1, . . . , F if Gn ≡C+ F if G1 ∨ · · · ∨ Gn

(ii) F if G1 after H, . . . , F if Gn after H ≡C+ F if G1 ∨ · · · ∨ Gn after H

(iii) F if G after H1, . . . , F if G after Hn ≡C+ F if G after H1 ∨ · · · ∨ Hn

Proof: Using [DIL] and [cDIL].

Proposition 42

(i)
caused F if G

caused F if G ∧ G′
(ii)

caused F if G after H

caused F if G ∧ G′ after H ∧ H ′

Proof: Use [Aug]. Note that either G′ or H ′ may be >.

Proposition 43 If G |=σ G1 ∨ · · · ∨ Gn, then

(i)
caused F if G1, . . . , caused F if Gn

caused F if G

(ii)
caused F if G1 after H, . . . , caused F if Gn after H

caused F if G after H

15

Proof: The derivation of (i) using [RDIL] is entirely straightforward.
For (ii), assume G |=σ G1∨· · ·∨Gn. Then clearly by Proposition 31, we have that
for any m and i such that 0 6 i < m, G[i+1] |=σm

G1[i+1]∨· · ·∨Gn[i+1]. Thus
also, for similar m and i, G[i+1]∧H [i] |=σm

(G1[i+1]∨· · ·∨Gn[i+1])∧H [i], so by
propositional logic, G[i+1]∧H [i] |=σm

(G1[i+1]∧H [i])∨ · · ·∨ (Gn[i+1])∧H [i]).
Using [RDIL], we have that (for all i such that 0 6 i < m)

F [i + 1] ⇐ G1[i + 1] ∧ H [i], . . . , F [i + 1] ⇐ Gn[i + 1] ∧ H [i]

F [i + 1] ⇐ G[i + 1] ∧ H [i]

Using Corollary 10, and translating back into C+ as usual, we have our result.

Proposition 44 If H |=σ H1 ∨ · · · ∨ Hn, then

caused F if G after H1, . . . , caused F if G after Hn

caused F if G after H

Proof: Using [RDIL], in the manner of the proof of Proposition 43.

Proposition 45

(i)
caused F ′ if F, caused F if G

caused F ′ if G

(ii)
caused F ′ if F, caused F if G after H

caused F ′ if G after H

(iii)
caused F ′ if F after H, caused F if G after H

caused F ′ if G after H

Proof: Uses [MP] and details of the translation from action descriptions to causal
theories.

Other properties of C+ may be established in similar fashion.

7 Example (Winning the lottery)

We now introduce an extended example, to demonstrate how the logical proper-
ties we have proved in preceding sections are useful in deciding between different
formulations of the same domain. The example is constructed partly to show how
C+ deals with indirect effects of actions (ramifications). It also illustrates some
issues in the representation of concurrent actions, actions with defeasible effects,
and non-deterministic actions. Naturally it is not possible to illustrate everything
with one simple example, but the example is indicative of the issues that are
encountered when formulating applications in a language as expressive as C+.

Our example may be summarised in this way: winning the lottery causes one
to become (or remain) rich; losing one’s wallet causes one to become (or remain)
not rich; a person who is rich is happy; a person who is not alive is neither rich
nor happy.

The signature has the Boolean simple fluent constants alive, rich, happy, and
the Boolean action constants birth, death, win, lose:

σf = {alive, rich, happy}

σa = {birth, death,win, lose}

16

The action description and transition system are as follows:

inertial alive , rich , happy

exogenous birth , death , win , lose

birth causes alive
nonexecutable birth if alive

death causes ¬alive
nonexecutable death if ¬alive

win causes rich
nonexecutable win if ¬alive

lose causes ¬rich
nonexecutable lose if ¬alive

caused happy if rich
caused ¬rich if ¬alive
caused ¬happy if ¬alive

nonexecutable birth ∧ death
nonexecutable birth ∧ win
nonexecutable birth ∧ lose
nonexecutable win ∧ lose

¬alive

¬rich

¬happy

alive

¬rich

¬happy

alive

rich

happy

alive

¬rich

happy

null ‘lose’

‘death’

‘win’

null

‘birth’

‘win’

null

‘death’

‘lose’

null ‘lose’

‘win’

‘death’

States and transition labels/events are interpretations of the fluent constants and
action constants, respectively. Here, each state and each transition label/event
is represented by the set of atoms that it satisfies. Because of the static laws,
there are only four states in the transition system and not 23 = 8. The dia-
gram label ‘birth ’ is shorthand for the label/event {birth ,¬death ,¬win ,¬lose},
and likewise for the labels ‘death ’, ‘win’ and ‘lose ’. The label null is shorthand
for {¬birth,¬death ,¬win ,¬lose}. The diagram does not show transitions of type
death ∧ lose , win ∧ death , and so on. We will discuss those presently.

Notice that happy is declared inertial, and so still persists even if one becomes
not rich. That is why the ‘lose ’ transition from state {alive , rich , happy} results in
the state {alive ,¬rich , happy}. We could of course modify the action description
so that happy is no longer inertial but defined to be true if and only if rich is true.
Or we might prefer to make happy non-inertial and let the ‘lose ’ transition be
non-deterministic. The interactions between these various adjustments are rather
subtle, however, and are not always immediately obvious.

We will restrict attention to the following two questions. First, there are
alternative ways of formulating the constraints that a person cannot be rich or
happy when not alive, and these alternatives have different interactions with the
other causal laws. Second, as it turns out, the last group of four nonexecutable

statements are all redundant, in that they are already implied by the other causal
laws. There are some remaining questions about the effects of concurrent actions
in the example which we will seek to identify.

First, let us look at some effects of individual actions. With the static con-
straints as formulated above, we have the following implied laws. (Henceforth we
omit the keyword caused to conserve space.) death causes ¬alive (in other words,
¬alive if > after death) together with ¬rich if ¬alive imply death causes ¬rich .

17

And in general
α causes F if G, F ′ if F

α causes F ′ if G

as is easily checked. By a similar argument we also have the implied causal law
death causes ¬happy (¬happy if > after death) and win causes happy . We do not
get the law lose causes ¬happy because as formulated here, we do not have the
static law (explicit or implied) ¬happy if ¬rich .

Suppose that instead of the static laws ¬rich if ¬alive and ¬happy if ¬alive , we
had included only the weaker constraints ⊥ if rich∧¬alive and ⊥ if happy∧¬alive .
These constraints eliminate the unwanted states, but are too weak to give the
implied effects (ramifications). We also lose transitions: if ¬happy if ¬alive is
replaced by either of alive if happy or ⊥ if happy∧¬alive , the only way that ¬happy
can be ‘caused’ is by inertia. Consequently, we eliminate all the death transitions
from states in which happy holds: we get the implied law nonexecutable death if

happy . (We omit the formal derivation of this implied law for lack of space. It is
rather involved since it also requires to taking into account the presence of other
causal laws in the example.) Similarly, if we replace ¬rich if ¬alive by either of
alive if rich or ⊥ if rich ∧ ¬alive , the only way that ¬rich can be ‘caused’ is by
a lose transition or by inertia. Consequently, transitions of type death ∧ ¬lose
become non-executable in the states {alive , rich ,¬happy} and {alive , rich , happy}
whether or not we also make the earlier adjustment to the alive/happy constraint.
In addition, we have the implied law nonexecutable death ∧ ¬lose if rich : a rich
person cannot die unless he simultaneously loses his wallet.

There is one way in which we can use constraints ⊥ if rich ∧ ¬alive and
⊥ if happy ∧ ¬alive (or alive if rich and alive if happy) without losing transi-
tions. That is by adding a pair of extra fluent dynamic laws: either

death causes ¬rich and death causes ¬happy

or the weaker pair death may cause ¬rich and death may cause ¬happy . (In C+,
α may cause F is an abbreviation for the fluent dynamic law F if F after α.)
We leave out the (straightforward) derivation that demonstrates both these pairs
have the claimed effect. Neither is entirely satisfactory since they require all
ramifications of death to be identified in advance and then modelled explictly
using causal laws.

We turn now to examine the effects of concurrent actions. First, notice that
the law nonexecutable birth ∧ death is implied by the other causal laws. Because:
alive if > after birth and ¬alive if > after death imply by [Aug] alive if > after

birth ∧ death and ¬alive if > after birth ∧ death , which in turn together imply by
[CC] alive ∧ ¬alive if > after birth ∧ death (which is equivalent to nonexecutable

birth ∧ death). And in general

α causes A if F, β causes B if G, C if A ∧ B

α ∧ β causes C if F ∧ G

There is another derivation of nonexecutable birth ∧ death from the causal
laws of the example. We have the causal laws nonexecutable birth if alive and
nonexecutable death if ¬alive . ⊥ if > after birth ∧ alive and ⊥ if > after death ∧
¬alive imply by [Aug]: ⊥ if > after birth ∧ death ∧ alive and ⊥ if > after birth ∧
death ∧¬alive , which in turn together imply by [DIL] ⊥ if > after (birth ∧ death ∧

18

alive) ∨ (birth ∧ death ∧ ¬alive), whose antecedent can be simplified by [RCEA]:
⊥ if > after birth ∧ death .

In general we have:

nonexecutable α if F, nonexecutable β if G

nonexecutable α ∧ β if (F ∨ G)

What of birth ∧ win and birth ∧ lose? We have

nonexecutable birth if alive , nonexecutable win if ¬alive

nonexecutable birth ∧ win

from which nonexecutable birth ∧ lose follows by a similar argument.
This leaves transitions of type death ∧ lose and death ∧ win . death ∧ lose is

not problematic. We have the implied causal laws death ∧ lose causes ¬alive (by
[Aug] from death causes ¬alive) and death∧lose causes ¬rich (either by [Aug] from
lose causes ¬rich or from the implied law death causes ¬rich). In this example, the
effects of death∧ lose transitions are the same as those of death∧¬lose transitions.

Consider now death ∧ win. Here we need some adjustment to the example’s
formulation. We have the implied law nonexecutable win ∧ death because (one of
several possible derivations): we have the implied law (win ∧ death) causes (rich ∧
¬alive), the static law ¬rich if ¬alive implies ⊥ if rich ∧ ¬alive , and so (win ∧
death) causes ⊥, which is equivalent to nonexecutable win ∧ death .

But it seems unreasonable to insist that win∧death transitions cannot occur—
that was not the intention when the example was originally formulated. We can
admit the possibility of win ∧ death transitions by re-formulating the relevant
causes statement for win so that it reads instead win causes rich if ¬death ,
or equivalently win ∧ ¬death causes rich . The effects of the ‘win ’ transitions are
unchanged, but the transition system now contains transitions of type win∧death :
their effects are exactly the same as those of ‘death ’ and death ∧ lose transitions.

But note that after this adjustment, we have to re-examine other combinations
of possible concurrent actions. win ∧ birth is still non-executable (it depended on
the pre-conditions of the two actions, not their effects) but we no longer have
nonexecutable win ∧ lose . We have only the implied law (win ∧ lose) causes (rich ∧
¬rich) if ¬death , or equivalently, nonexecutable win ∧ lose ∧ ¬death . So now a
person can win the lottery and lose his wallet simultaneously, but only if he dies
at the same time.

But suppose win ∧ lose ∧ ¬death is intended to be executable. What should
its effects be? One possibility is that the effects of win override those of lose .
We replace the lose causes ¬rich law by the weaker lose causes ¬rich if ¬win . A
second possibility is that the effects of lose override those of win . We replace the
win causes rich if ¬death law by the weaker win causes rich if ¬death ∧ ¬lose .
(And we may prefer to introduce an ‘abnormality’ action constant (see [GLL+04,
Section 4.3]) to express the defeasibility of winning more concisely.) The third
possibility is to say that win ∧ lose transitions are non-deterministic:

win ∧ lose may cause rich , win ∧ lose may cause ¬rich

What of the interactions between non-deterministic win ∧ lose actions and
death? We still have the implied law win ∧ lose ∧ death causes ¬rich . But perhaps
the non-deterministic effects of the other win ∧ lose transitions should have been
formulated thus:

win ∧ lose ∧ ¬death may cause rich , win ∧ lose ∧ ¬death may cause ¬rich

19

This is unnecessary. In C+ {α may cause F, α may cause ¬F, β causes ¬F}
and {α ∧ ¬β may cause F, α ∧ ¬β may cause ¬F, β causes ¬F} are equiva-
lent. Left-to-right is just an instance of [Aug]. For right-to-left, notice that
α∧¬β may cause F, β causes ¬F is an instance of the general pattern of causal rules
{P ⇐ P ∧ Q ∧ ¬R, ¬P ⇐ R}, discussed at the end of Section 4. It is equivalent
to {P ⇐ P ∧ Q, ¬P ⇐ R}. For the other part, notice that β causes ¬F implies
α∧ β may cause ¬F by [Aug], and α∧¬β may cause ¬F and α∧ β may cause ¬F

together imply α may cause ¬F by [DIL] and [RCEA].
There are other variations of the example that we might consider. We might

remove the declaration that happy is inertial. Or we might choose to make the
fluent constant happy statically determined instead of ‘simple’. These changes
have a further set of interactions with the other causal laws. Their effects can be
analysed in similar fashion.

References

[Che80] B. F. Chellas. Modal Logic—An Introduction. Cambridge University
Press, 1980.

[GLL+04] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-
Cain, and Hudson Turner. Nonmonotonic causal theories. Artificial
Intelligence, 153:49–104, 2004.

[GLLT01] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, and Hudson
Turner. Causal laws and multi-valued fluents. In Proc. of the Fourth
Workshop on Nonmonotonic Reasoning, Action, and Change, Seattle,
August 2001.

[Tur99] Hudson Turner. A logic of universal causation. Artificial Intelligence,
113:87–123, 1999.

20

