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ABSTRACT
We present a field-based approach to the analysis of cosmic shear data to infer jointly cosmological parameters and the dark
matter distribution. This forward modelling approach samples the cosmological parameters and the initial matter fluctuations,
using a physical gravity model to link the primordial fluctuations to the non-linear matter distribution. Cosmological parameters
are sampled and updated consistently through the forward model, varying (1) the initial matter power spectrum, (2) the geometry
through the distance-redshift relationship, and (3) the growth of structure and light-cone effects. Our approach extracts more
information from the data than methods based on two-point statistics. We find that this field-based approach lifts the strong
degeneracy between the cosmological matter density, �m, and the fluctuation amplitude, σ 8, providing tight constraints on
these parameters from weak lensing data alone. In the simulated four-bin tomographic experiment we consider, the field-based
likelihood yields marginal uncertainties on σ 8 and �m that are, respectively, a factor of 3 and 5 smaller than those from a
two-point power spectrum analysis applied to the same underlying data.
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1 IN T RO D U C T I O N

Weak gravitational lensing by large scale structure modifies the shape
of galaxy images through a process known as cosmic shear. It is a
powerful probe of cosmology as it is sensitive to the geometry of the
Universe and the growth of cosmic structures, and is not dependent on
a knowledge of galaxy bias. Cosmic shear data have provided useful
constraints on the key cosmological parameters that describe the dark
sector of the Universe (Troxel et al. 2018; Hikage et al. 2019; Hamana
et al. 2020; Amon et al. 2021; Asgari et al. 2021; Secco et al. 2021),
especially the amplitude of matter fluctuations. These cosmological
constraints are usually inferred from the analysis of two-point statis-
tics, either the lensing power spectrum (Hikage et al. 2019; Asgari
et al. 2021) or the shear two-point correlation functions (Hildebrandt
et al. 2017; Troxel et al. 2018; Hamana et al. 2020; Amon et al.
2021; Asgari et al. 2021; Secco et al. 2021). These standard methods
based on the two-point summary statistics are sub-optimal for the
non-Gaussian shear field and discard phase information. This has led
to the development of several alternative inference techniques such
as third- and higher-order statistics (Takada & Jain 2002; Pen et al.
2003; Jarvis, Bernstein & Jain 2004; Bernardeau 2005; Kilbinger &
Schneider 2005; Semboloni et al. 2011; van Waerbeke et al. 2013;
Fu et al. 2014; Jung et al. 2021), lensing peak count statistics (Jain &
van Waerbeke 2000; Dietrich & Hartlap 2010; Maturi, Fedeli &
Moscardini 2011; Petri et al. 2013; Lin & Kilbinger 2015; Liu et al.
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2015; Kacprzak et al. 2016; Peel et al. 2017; Fluri et al. 2018b;
Martinet et al. 2018; Shan et al. 2018; Harnois-Déraps et al. 2021) the
lensing probability distribution function (Boyle et al. 2021; Martinet
et al. 2021), shear clipping (Giblin et al. 2018), and machine learning
approaches (Fluri et al. 2018a; Gupta et al. 2018; Ribli et al. 2019;
Jeffrey, Alsing & Lanusse 2021). All these methods have the potential
to improve the cosmology constraints, but they still rely on summary
statistics that require an assumption of their sampling distribution,
usually assumed to be Gaussian, which in turn requires a covariance
matrix, which is difficult to compute reliably. One way to avoid the
use of summary statistics and the problems associated with them
is through data assimilation methods, in which the observations
are incorporated into a forward model. Some forward modelling
approaches have been developed for cosmic shear analysis (Alsing
et al. 2016; Alsing, Heavens & Jaffe 2017; Böhm et al. 2017;
Fiedorowicz et al. 2021; Porqueres et al. 2021). These methods
differ in the quantities they sample and their prior assumptions.
We have developed one such method by extending the Bayesian
Origin Reconstruction from Galaxies (BORG, Jasche & Wandelt
2013; Lavaux, Jasche & Leclercq 2019) formalism to incorporate
weak lensing as BORG-WL (Porqueres et al. 2021). BORG-WL
differs from other forward modelling approaches in using a physical
model of structure formation to link the primordial fluctuations to
the evolved matter distribution, allowing us to sample the initial
conditions, which follow simple Gaussian statistics. This data model,
more complex and more complete, provides a better link between
theory and data than using Gaussian (lognormal) priors for the shear
(density) field.
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Here, we present an extended version of BORG-WL in which the
cosmological parameters are sampled and updated consistently in
the forward model. We vary the primordial matter power spectrum,
the geometry of the universe (through the distance-redshift relation)
and the growth rate of structures (through the dynamical model
and its light-cone). We compared the results of BORG-WL to a
standard analysis based on lensing power spectra applied to the
same simulated data.

This paper is organised as follows. In Section 2, we describe the
data model. In Section 3, we present the inference method used in this
work, BORG-WL. Section 4 describes the simulated data employed
to test and validate the method. The results are presented in Section 5,
which includes the cosmology constraints from BORG-WL and a
comparison to the standard analysis based on lensing power spectra.
We also discuss the efficiency and convergence of the method and
present the results of the validation tests. Section 6 summarises the
results.

2 DATA MO D EL

The effect of weak gravitational lensing on a source can be described
by the shear, γ , which indicates the distortion in the shape of the
image, and the convergence field, κ , which describes the variation
in angular size. In the flat-sky approximation, which we assume
throughout, the Fourier transforms of these two fields, γ̃ and κ̃ , are
related by

γ̃ (�) = (�1 + i�2)2

�2
κ̃(�), (1)

where � = (�1, �2) is the wavevector and the shear is written as a
complex quantity. The convergence field is connected to the dark
matter distribution by integrating the fractional overdensity along
the line-of-sight using the lensing weights to give (Kilbinger 2015)

κ(ϑ) = 3H 2
0 �m

2c2

∫ rlim

0

rdr

a(r)
q(r)δf (rϑ, r), (2)

where ϑ is the coordinate on the sky, r is the comoving distance, rlim

is the limiting comoving distance of the galaxy sample, δf is the dark
matter overdensity at a scale factor a and

q(r) =
∫ rlim

r

dr ′n(r ′)
r ′ − r

r ′ , (3)

with n(r) being the redshift distribution of galaxy sources. We assume
a spatially flat universe throughout.

These fields can be seen as latent parameters of a Bayesian
hierarchical model as represented in Fig. 1. The starting point is
the cosmological parameters θ . Given a cosmology, we generate pri-
mordial fluctuations, δic, as Gaussian random fields in a rectangular
cuboid of voxels, with a covariance matrix corresponding to the initial
matter power spectrum. To compute the initial power spectrum, we
used the prescription of Eisenstein & Hu (1998), Eisenstein & Hu
(1999), which includes baryonic acoustic oscillations. The primordial
fluctuations are linked to the evolved large-scale structures by the
non-linear gravity model δf = G(δic), which describes the growth of
cosmic structures and accounts for light-cone effects. We then use
the evolved density field, δf, to generate the convergence field κ . In
our discrete implementation and using the Born approximation, the
radial line-of-sight integral in equation (2) is approximated by a sum
over voxels as

κb
mn = 3H 2

0 �m

2c2

N∑
j=0

δf
mnj

⎡
⎣ N∑

s=j

(rs − rj )

rs

nb(rs)	rs

⎤
⎦ rj	rj

aj

, (4)

Figure 1. Representation of the Bayesian hierarchical model. Blue boxes
indicate deterministic functions and green boxes represent probability distri-
butions. θ are the cosmological parameters, g is a Gaussian field with zero
mean and unit variance, M(g, θ ) is the forward model, which consists of a
convolution of the Gaussian field with the initial matter power spectrum P(k)
to obtain the initial conditions δic, a gravity and structure formation model
G(δic) and the data model to obtain the shear γ b for each tomographic bin b.
P (d|γ b

1 , γ b
2 ) is the likelihood with d being the data.

where the index b indicates the tomographic bin, and the sub-indices
m and n label the pixel on the sky, which is chosen to be large
enough to contain many sources. The index j labels the voxels along
the line-of-sight at a comoving distance rj. N is the total number of
voxels along the line of sight, which are found using a ray tracer.
	rj is the length of the line-of-sight segment inside the voxel j, and
δf is the three-dimensional dark matter distribution. The comoving
radial distance rs indicates the distance to the source. The redshift
distribution of sources is given by nb(zs) for each tomographic bin.
Having evaluated κb

mn in this way, we then use equation (1) to obtain
the predicted shear field.

In this work, we do not include the important effects of intrinsic
alignments or baryon feedback in our forward model, and we leave
these to future work, where we will also include the uncertainty in the
redshift distributions of the sources. These effects can be included in
the inference as associated nuisance parameters.

3 M E T H O D

In this work, we extend the Bayesian hierarchical model presented
in Porqueres et al. (2021), BORG-WL, to infer the cosmological
parameters jointly with the density field. Here, we briefly describe
the method and indicate the changes we have implemented to
simultaneously constrain the cosmology and density field. A more
detailed description of the general BORG framework can be found
in Jasche & Kitaura (2010), Jasche & Wandelt (2013), Lavaux et al.
(2019).

The BORG-WL method is a Bayesian framework to infer jointly
the cosmology and the linear and non-linear matter distributions from
pixelated tomographic shear fields. The underlying idea is to infer
the initial conditions and the cosmological parameters from the data,
using a full gravitational structure formation model. For that, the
BORG framework employs a non-linear gravity model for structure
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growth, either based on perturbation theory or N-body simulations.
This dynamical model connects the primordial fluctuations to the
evolved large-scale structures, allowing us to sample the primordial
fluctuations, which follow simple Gaussian statistics. The BORG
framework, therefore, uses a Gaussian prior for the initial conditions
at an initial scale factor a ≈ 10−3. This Gaussian prior has zero
mean and a covariance matrix corresponding to the initial matter
power spectrum. In this extension of BORG-WL for cosmology
inference, we vary the initial matter power spectrum according to
the value of the cosmological parameters given by the sample, using
the transfer function of Eisenstein & Hu (1998), Eisenstein & Hu
(1999).

We have implemented a ray tracer to identify the voxels cor-
responding to each line of sight. With this ray tracer, we drop the
distant observer approximation from our previous work and integrate
radially from an observation point using the Born approximation.
The line-of-sight integration depends on the cosmology through
the distance-redshift relation, which we vary when sampling the
cosmological parameters. The cosmology sampler, therefore, varies
the geometry of the universe consistently with the cosmology.

Another element of the model that is sensitive to cosmology is the
structure formation prescription. The dynamics and light-cone effects
also vary consistently with the cosmological parameters. BORG-
WL, therefore, samples and updates the cosmology consistently
throughout the forward model by changing all the quantities that
depend on the cosmological parameters. This consistent cosmology
sampler is a powerful new addition to the BORG framework.
Previously, Ramanah et al. (2019) presented a proof-of-concept to
sample cosmological parameters with BORG from galaxy clustering
data. However, their cosmology sampler did not update the forward
model consistently, and the initial power spectrum was fixed. In
contrast, our model is consistent, and its sensitivity to the cosmology
is three-fold: Through the geometry of the problem, the growth of
structures, and the initial matter power spectrum. This allows us to
provide joint constraints on the cosmological parameters and the
density field.

Our method proceeds as follows. Given values for the cosmo-
logical parameters, we generate a random realisation of the three-
dimensional primordial fluctuations as a Gaussian field with a
covariance matrix corresponding to the initial matter power spectrum.
The structure formation model then evolves these initial conditions
to a non-linear realisation of the dark matter distribution, correctly
accounting for light-cone effects. By integrating the 3D dark matter
field along the lines of sight and applying the lensing data model
described in Section 2, BORG-WL predicts the two components of
the pixelated tomographic shear fields on the flat sky, γ b

1,mn, and
γ b

2,mn, where b denotes the tomographic bin and m and n are the sky
pixel indices.

The measured shear in each pixel and bin, γ̂ b
1,mn and γ̂ b

2,mn, will
differ from the predicted values due to a combination of the galaxy
shape measurement errors and range of intrinsic source shapes
of the galaxies in the voxel. This is encoded in a likelihood of
the form P (γ̂ b

1,mn, γ̂
b
2,mn|γ b

1,mn, γ
b
2,mn). Our numerical implementation

does not rely on this likelihood having any specific mathematical
form, and in particular can handle shear noise that varies with
both sky pixel and tomographic bin. For the simulations used here,
we assume that the observations are characterised by shape noise
with variance σ 2

ε , and that the associated shear uncertainty is hence
given by σb = σε/

√
Nb, where Nb is number of sources per pixel in

tomographic bin b (assumed here to be independent of sky pixel).
For sufficiently high Nb the voxel likelihood can be approximated as
being Gaussian with variance σ 2

b , which leads to a full log-likelihood

of the form

logL =
∑

b

∑
mn

log
[
P (γ̂ b

1,mn, γ̂
b
2,mn|γ b

1,mn, γ
b
2,mn)

]

= −
∑

b

∑
mn

(
γ̂ b

1,mn − γ b
1,mn

)2 + (
γ̂ b

2,mn − γ b
2,mn

)2

2σ 2
b

, (5)

where normalising constants have been ignored and the depen-
dence of the predicted shears on the underlying parameters is left
implicit. This simple Gaussian likelihood is sufficient in this first
demonstration of this method, but a more realistic form could
be used when analysing a real dataset, or the hierarchical model
could be extended to sample the shear as well (Schneider et al.
2015).

3.1 Sampling scheme

Sampling the density field implies that the amplitude of the density
fluctuations in each voxel is a target parameter of the problem. This
results in a high-dimensional problem, with typically 107 parameters,
that requires advanced statistical techniques to sample from the
posterior distribution. We have split the problem in two sampling
blocks following a Gibbs sampling scheme, with the density and the
cosmological parameters sampled alternately according to

δic
� P (δic|θ , d), (6)

θ � P (θ |δic, d). (7)

To deal with the high number of parameters in the density field,
BORG employs a Hamiltonian Monte Carlo sampler (Neal 2011),
which uses the information in the gradients to navigate the parameter
space. To sample the cosmology, we use a slice sampler. In both steps
of the Gibbs sampling, the cosmology is consistent throughout the
forward model.

In a follow-up work, we intend to include systematics modelling
in our forward model and add the associated nuisance parameters to
the inference. Sampling these few additional parameters will have
a minimal extra cost and allow us to propagate their uncertainties
automatically.

3.2 Setup for this work

In this work, we used Lagrangian perturbation theory (LPT) as
our model of gravitational clustering and structure formation. At
the resolution we use (14 h−1 Mpc), the LPT model does not
show significant deviations from particle-mesh simulations (Tassev,
Zaldarriaga & Eisenstein 2013). For future applications of this
method at high resolution, we will use a fully non-linear particle-
mesh such as the one described in Jasche & Lavaux (2019) to have
an accurate description of the matter density at smaller scales.

Here, we focus on constraining three cosmological parameters
�m, h, and σ 8, jointly with the density. We consider a flat universe,
so �� = 1 − �m can be treated as a derived parameter. We use the
following uniform priors for the cosmological parameters: �m; h;
and σ8. To improve the efficiency of the sampler, we perform a coor-
dinate transformation and sample θ ′ = (�m, h, S8 ≡ σ8 (�m/0.3)0.5)
instead of θ = (�m, h, σ8). This coordinate transformation reduces
the correlation length of the sampler by a factor of 4, making the
inference more efficient.
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Figure 2. Redshift distributions of sources for each tomographic bin in this
analysis.

4 MO C K DATA

To test our method, we generated mock data using the forward model
illustrated in Fig. 1.

To generate the mock data, we assumed a standard �CDM
cosmology with the following parameters: �m = 0.3175, �� =
0.6825, �b = 0.049, h = 0.677, σ8 = 0.8, ns = 0.9624 with H0 =
100 h km s−1 Mpc−1. Then, we generated Gaussian initial conditions
on a Cartesian grid of size (1 × 1 × 4) h−1 Gpc, with 64 × 64 × 128
voxels. We evolved the primordial fluctuations via LPT, accounting
for light-cone effects. To obtain the evolved density fields, we used
a cloud-in-cell scheme to estimate the density on the Cartesian grid
from simulated particles. We generated tomographic shear fields by
applying the lensing data model in Section 2 and using the redshift
distribution of sources shown in Fig. 2. The angular scale of the
voxels for the different tomographic bins is 40, 23, 17, and 15
arcmin. Finally, we added Gaussian pixel noise with a variance that
corresponds to 30 galaxies per square arcmin, as expected for the
Euclid survey (Laureijs et al. 2011), and with an uncertainty on
intrinsic ellipticity σ ε = 0.3 (Kilbinger 2015). In this experiment,
we set σ ε as the variance of a single component of ellipticity. The
sources are then distributed uniformly over the four tomographic
bins. The resulting noise level for the farthest tomographic bin is
N = 0.013, and the data are noise-dominated at all scales.

5 R ESULTS

5.1 Cosmology constraints and comparison to standard
analysis

Here, we present the mock-constraints on cosmology obtained by
applying BORG-WL to the simulated data described in Section 4.
We also compare our results to one of the common techniques for
analysing shear data, i.e. an analysis of the lensing power spectra
assuming a Gaussian likelihood with a fixed covariance matrix.

To compare the results of BORG-WL to the standard 2-point
statistics approach, we focus on the angular power spectra Cab

� ,
defined implicitly by

〈κa(�)κb∗(�′)〉 = (2π )2δD(� − �′)Cab
� , (8)

where a and b label the tomographic bins. Following the common ap-
proach in lensing analyses, we assume that the sampling distribution

Figure 3. Comparison of �m-σ 8 constraints from our method BORG-WL
(blue) and the standard analysis based on lensing tomographic power spectra
(orange). The contours correspond to the 68.3% and 95.5 % highest posterior
density credible regions. Both posteriors are obtained by applying both
methods to the same simulated shear data, with 4 tomographic bins and
30 galaxies per square arcmin. The dashed lines indicate the true values of
the parameters.

of the Cab
� is Gaussian,

logL = −1

2
[d − m(θ )]T C−1 [d − m(θ )] + constant, (9)

where the data vector d contains the auto- and cross-power spectra of
the tomographic bins. C is the covariance matrix, which is assumed
to be fixed and computed at a fiducial cosmology (�f

m, σ
f

8 , hf ) =
(0.3, 0.8, 0.67). To compute the covariance matrix, we used the
Gaussian approximation in Kilbinger (2015),

Cov(C�, C
′
�) = 1

fsky �	�
(C� + Nε)2 δ��′ , (10)

where fsky is the fraction of the sky observed by the survey, 	� is
the width of the �-bin, δ��′ is a Kronecker delta, which makes the
covariance diagonal, and Nε is the noise power given by σ 2

ε /2ng ,
with σ ε being the intrinsic dispersion of galaxy ellipticities and ng

being the mean number density of source galaxies on the sky. For
this analysis, we use broad uniform priors for �m, σ 8, and h on the
intervals [0.05, 1.45], [0.3, 1.45], and [0.4, 0.9], sufficiently broad
that the posterior is unaffected. To compute the model prediction
m(θ ), we use the Core Cosmology Library (Chisari et al. 2019).

Fig. 3 shows the 68.3% and 95.5 % credible regions for � m and σ 8

obtained with BORG-WL. For comparison, we added the constraints
from the standard power spectra analysis on the same underlying
data, showing that BORG-WL lifts the weak lensing degeneracy and
yields much tighter constraints on these parameters than the standard
analysis based on two-point summary statistics. We note that the size
of the posterior distribution is significantly smaller than the adopted
size for the prior distributions for �m and σ 8. We conclude that the
constraints on these parameters should not be affected by the specific
choice of prior. Fig. 3 is the main result of this paper.

Fig. 4 shows the full corner plot including h and the marginal
distributions. We computed the BORG-WL posteriors from 10 000
samples after the burn-in phase, which is determined by examining
the trace plots of the parameters in Fig. 5. These results show that
BORG-WL recovers the correct value of �m and σ 8. Since the lensing
data is not informative about the value of h (Hall 2021), this parameter
is not well constrained, and the marginal distribution corresponds
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3198 N. Porqueres et al.

Figure 4. Posterior distribution of the sampled cosmological parameters from the BORG-WL analysis (blue) and the standard analysis based on the lensing
power spectra (orange). The dashed lines indicate the ground truth.

Figure 5. Trace plot for the cosmology sampler. The burn-in phase can be identified as the drift of the parameters in the first ∼2500 samples, in particular S8.
The dashed lines indicate the true value of the parameters.

closely to the prior. For comparison, we added the constraints
from the standard analysis based on the lensing power spectra.
The corresponding posterior distributions are evaluated in grids of
50 × 50 points. The comparison of the marginal distributions shows
that BORG-WL provides far more precise cosmology constraints
than the standard method, improving the error bars of �m by a factor
5 and σ 8 by a factor 3 (see Table 1). The ratio of the constraints

on S8 from C� versus BORG-WL is 1.2. The improvement on the
constraints of S8 is small compared to �m and σ 8 because S8 is
a combination of cosmological parameters found to be optimally
constrained by the standard analysis with power spectra.

By building this Bayesian field-based approach, we can extract
information from the data beyond the two-point statistics and lift the
�m-σ 8 degeneracy that results from using the standard approach in
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Lifting weak lensing degeneracies 3199

Table 1. Mean of the posterior, and 68.3% credible intervals for �m and σ 8

from tomographic power spectra Cab
� and BORG-WL.

Power spectra BORG-WL

�m 0.3+0.5
−0.2 0.34+0.07

−0.05

σ 8 0.6+0.4
−0.3 0.79+0.11

−0.11

S8 0.80+0.15
−0.10 0.83+0.10

−0.10

Figure 6. Auto-correlation of the cosmological parameters as a function of
the sample number in the Markov chain. The correlation length of the sampler
can be estimated as the point when the correlation drops below 0.1.

weak lensing analysis to date. This demonstrates that the high-order
statistics, which are overlooked by the standard methods, contain
significant cosmological information.

The spectacular improvement is in line with the results of
Leclercq & Heavens (2021), who showed for a simplified lognormal
model that data assimilation approaches can lift degeneracies that
are present in analyses based on two-point summary statistics, even
for nearly Gaussian fields.

5.2 Efficiency of the cosmology sampler

By construction, subsequent samples in Markov chains are corre-
lated. The statistical efficiency of an MCMC is determined by the
number of independent samples that can be drawn from a chain
of a certain length. To estimate the efficiency of the sampler, we
measure the correlation length of the cosmological parameters along
the Markov chain. We typically define the correlation length as the lag
at which the auto-correlation drops below 0.1 (Gregory 2010) Fig. 6
presents the results of this test, showing that the correlation length
for the parameters �m and σ 8 are 600 and 200 samples, respectively.
The parameter h shows a very short correlation length because the
data is not constraining.

5.3 Convergence tests

To assess whether the Markov chain has fully explored the target
posterior distribution or more samples are required, we consider the
convergence of the Markov chain. A common approach to assess the
convergence is based on comparing multiple chains with different
starting points. One way to compare the chains is through a Gelman–
Rubin diagnostic (Gelman & Rubin 1992), where the convergence
is assessed by comparing the intra-chains and inter-chains variances

Figure 7. Contours of 68.3% and 95.5 % highest posterior density credible
regions for two chains with different starting points. As can be noted here,
both chains converge qualitatively to the same distribution.

for each model parameter. If the difference between these variances
is large, the chains have not converged.

In this work, we run two chains with starting points (�m, h, σ 8) =
(0.31, 0.677, 0.8) and (�m, h, σ 8) = (0.4, 0.7, 0.55), respectively.
The initial conditions are also randomised. After 3000 samples
(discarding the burn-in phase), the Gelman–Rubin diagnostic is R
< 1.03 for all the cosmological parameters. This indicates that the
chains have converged reasonably well. Fig. 7 presents the �m-σ 8

constraints from both chains, showing that they converge to the same
results.

5.4 Inferred density fields

Jointly with the cosmology results presented in the previous sections,
BORG-WL also infers the 3D matter density field. Since we have
shown that the method correctly recovers the underlying cosmology,
here, we focus on testing and validating the field results. To do so, we
compare the inferred density fields to the truth and test whether the
inferred cosmology and densities can explain the data. Although the
tests presented here are the same as in our previous work Porqueres
et al. (2021), there is a significant difference: Here, we sample the
cosmology and the density field jointly, while in our previous work,
we used a fixed cosmology. Therefore, it is important to validate
this extension of the method by running a similar set of consistency
tests to confirm that BORG-WL recovers the density fields when the
cosmology is sampled.

Since BORG-WL uses MCMC to explore the parameter space,
we have access to the full posterior distribution, and we can draw
posterior samples of the primordial matter fluctuations and the
matter distribution. We use these samples to compute the mean and
uncertainty of the inferred fields. Fig. 8 shows the projection on
the sky of the true density fields and the mean and variance of the
posterior samples. Since the lensing data are not very informative in
the radial direction, we projected the three-dimensional fields on the
sky, weighting the planes of the density field with the distribution
of sources. A visual comparison between the true and inferred fields
shows that the method correctly recovers the structures from the truth.
As expected, the estimated mean of the fields shows some degree of
smoothing, a feature familiar from Wiener filtering (Gregory 2010).
This smoothing is an effect of averaging several samples, but the
individual posterior samples have the correct amplitude and power
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Figure 8. Projection of the initial (upper panels) and evolved (bottom panels) density fields. The first column shows the true fields that we used to generate
the data, the second column shows the ensemble mean, and the third column shows the standard deviation of the fields. The mean and standard deviation are
estimated from 500 MCMC samples.

Figure 9. Posterior initial matter power spectrum, measured from the
posterior samples of the three-dimensional initial conditions. The input power
spectrum is shown as the dashed curve.

spectrum. Fig. 9 shows the matter power spectrum of the initial
conditions. The power spectrum is directly measured from the three-
dimensional samples and agrees with the truth, indicating that the
posterior samples have the correct clustering properties.

To test whether the inferred cosmology and densities provide
accurate explanations of the data, we do a posterior predictive test
(Gelman et al. 2004). This consists of applying the data model to the

inferred quantities and checking whether we recover the structures
in the data. Fig. 10 shows the results of this test for one tomographic
bin, showing that the posterior-predicted shear field has the features
of the true shear, and, therefore, the model can explain the data. At the
resolution of this work, we are in the weakly non-Gaussian regime.
We can expect a further improvement of the cosmology constraints
when going to a higher resolution, but at smaller scales the baryon
effects will be important. In a follow-up work, we will incorporate
baryon feedback into the data model and increase the resolution of
the analysis.

6 SU M M A RY A N D C O N C L U S I O N S

We have presented a field-based approach to infer jointly cosmologi-
cal parameters and the dark matter distribution, extending our earlier
BORG-WL implementation (Porqueres et al. 2021), by sampling cos-
mological parameters and upgrading the line-of-sight integrations.
The forward model consists of uniform priors for the cosmological
parameters, a Gaussian prior for the primordial fluctuations, and a
physical gravity model for the non-linear dynamics that link the
initial conditions and the evolved density field. The cosmological
parameters are sampled and updated consistently throughout the
forward model by varying the initial matter power spectrum, the
geometry of the lines of sight (through the distance-redshift relation)
and the growth of cosmic structures (through the dynamical model
and light-cone). This allows us to constrain the cosmology and the
matter distribution simultaneously.

We demonstrated the application of this method on simulated
shear data with four tomographic bins and the number of sources
per square-arcmin expected for Euclid. We sampled �m, h, and σ 8

and compared the constraints from our field-based approach to the
standard analysis based on the power spectra, with the same simulated
data. The results showed that BORG-WL lifts the �m-σ 8 degeneracy
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Figure 10. Posterior predicted maps for one tomographic bin. The first column shows the noisy shear mock data, the second column shows the true shear, and
convergence fields, and the third and fourth columns are the mean and standard deviation computed from 500 posterior-predicted fields.

and provides far more precise constraints from the same underlying
data: The uncertainties in �m and σ 8 are decreased enormously, by
a factor of 5 and 3, respectively. This demonstrates the advantage of
using data assimilation techniques and applying the likelihood to the
shear fields themselves, rather than to summary two-point statistics.

In future work, we will extend our forward model to include
systematic effects such as intrinsic alignments, baryon feedback,
and uncertain redshift distributions, and apply this method to real
data to constrain jointly cosmological parameters and the underlying
matter distribution.
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