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A B S T R A C T 

The Enthalpy Based Thermal Evolution of Loops approximate model for static and dynamic coronal loops is developed to 

include the effect of a loop cross-sectional area which increases from the base of the transition region (TR) to the corona. The 
TR is defined as the part of a loop between the top of the chromosphere and the location where thermal conduction changes 
from an energy loss to an energy gain. There are significant differences from constant area loops due to the manner in which 

the reduced volume of the TR responds to conductive and enthalpy fluxes from the corona. For static loops with modest area 
variation the standard picture of loop energy balance is retained, with the corona and TR being primarily a balance between 

heating and conductive losses in the corona, and downward conduction and radiation to space in the TR. As the area at the 
loop apex increases, the TR becomes thicker and the density in TR and corona lar ger. For lar ge apex areas, the coronal energy 

balance changes to one primarily between heating and radiation, with conduction playing an increasingly unimportant role, and 

the TR thickness becoming a significant fraction of the loop length. Approximate scaling laws are derived that give agreement 
with full numerical solutions for the density, but not the temperature. For non-uniform areas, dynamic loops have a higher peak 

temperature and are denser in the radiative cooling phase by of order 50 per cent than the constant area case for the examples 
considered. They also show a final rapid cooling and draining once the temperature approaches 1 MK. Although the magnitude 
of the emission measure will be enhanced in the radiative phase, there is little change in the important observational diagnostic 
of its temperature dependence. 
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 I N T RO D U C T I O N  

he magnetically closed solar corona has been the subject of mod-
lling efforts for almost five decades. The structures observed there,
oth the easily distinguished loops and the more diffuse background,
ave a wide range of temperature and brightness, depending on
hether they are in the quiet sun or active regions. (For simplicity we

efer to all such magnetically closed structures as loops.) In active
egions, spatially averaged fairly steady emission with temperatures
f up to 3 MK is detected (e.g. Warren, Winebarger & Brooks 2012 ).
uch structures are assumed to be heated by an as-yet-undetermined
rocess, but almost certainly related to the coronal magnetic field
e.g. Reale 2014 ; Klimchuk 2015 ). Whether this heating is highly
mpulsive, or close to being steady, is as yet unknown, but there
s in reality almost certainly a continuum of the quantity of energy
eleased in such events (e.g. De Moortel & Browning 2015 ). Note
hat the averaged steady emission from active regions is likely to be
he integrated signature of many impulsive heating events (Cargill,

arren & Bradshaw 2015 ). 
 E-mail: p.cargill@imperial.ac.uk 
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One common approach to modelling steady and impulsive coronal
eating involves solving numerically the one-dimensional (1D)
ydrodynamic equations along a magnetic field line in response to
n imposed heating function (e.g. Reale 2014 ). The outputs of such
odels are the density, temperature, and velocity as a function of

osition and time. In fact, this is very challenging, especially for
ynamic models, since the heat flux from the heated corona to the
ransition region (TR) and upper chromosphere leads to very steep
emperature gradients in these lower regions: the temperature scale
eight, defined as L T = T / | d T /d s | , can be as small as 100 m while the
oop can have a length of 100 Mm (e.g. Bradshaw & Cargill 2013 ).
n turn, this requires a very fine numerical grid which imposes a
evere limit on the time-step in order to ensure stability of the heat
onduction solver. A coarse grid leads to major errors in the coronal
ensity arising from the heating (Bradshaw & Cargill 2013 ), although
pproximate ways of treating the TR (Lionello, Linker & Miki ́c 2009 ;
iki ́c et al. 2013 ; Johnston et al. 2017 , 2020 ) can mitigate this. 
An alternative approach is to use approximate methods for solving

he coronal hydrodynamic equations: early w ork w as re vie wed by
argill, Bradshaw & Klimchuk ( 2012b ) and over the last 15 yr, our
nthalpy Based Thermal Evolution of Loops (EBTEL) approach has
een dev eloped (Klimchuk, P atsourakos & Car gill 2008 ; Car gill,
radshaw & Klimchuk 2012a ; Cargill et al. 2015 ; Barnes, Cargill &
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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1 Note that Klimchuk et al. ( 2008 ) did not distinguish between L and L c . 
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radshaw 2016a , b ). The essence of EBTEL is that an impulsively
eated loop proceeds through three phases: first, in response to 
ncreasing coronal heating, an enhanced heat flux enters the TR, 
hich responds by an upward mass flow into the corona, commonly 

eferred to as ‘e v aporation’. Secondly, once enough plasma has 
 v aporated, coronal radiati ve losses increase to a time when the
adiative and conductive losses are roughly equal. Finally, as radiative 
osses become dominant, the corona drains through an enthalpy flux 
o the TR (Cargill et al. 2015 ). EBTEL is a zero-dimensional model
hat solves for coronal averages of the temperature and density, with 
he TR responding to heat and enthalpy fluxes to and from the corona.
n general, it gives good agreement with a full 1D solution on a
ariety of problems (Cargill et al. 2012a , 2015 ); one exception being
he early evolution of very impulsive (10 s) electron heating bursts
Barnes et al. 2016a ). 

In this paper, we enhance the EBTEL model to include a variation
n the cross-sectional area of a loop. While some studies (e.g. 
limchuk 2000 ) argue that there are also strong suggestions that the

ross-sections of observationally distinct loops are roughly constant, 
t is clear that the magnetic field must diverge with height on average
n the corona. The cross-sections of observed loops may expand 
referentially in the line-of-sight direction, in which case it would 
ot be detected (Malanushenko & Schrijver 2013 ), though this idea 
as recently been questioned (Klimchuk & DeForest 2020 ). Further, 
xtrapolation of photospheric magnetograms sometimes gives large 
rea changes as one goes from chromosphere to corona (e.g. Mok
t al. 2008 ; Asgari-Targhi et al. 2013 ). In developing the EBTEL
odel to include this area change, it became apparent that the 

nowledge of the physics of non-uniform area in static loops was 
ncomplete despite being discussed by a number of authors (e.g. 
esecky, Antiochos & Underwood 1979 ; Levine & Pye 1980 ; Rabin
991 ; Dud ́ık et al. 2009 ; Martens 2010 ). Thus, a major part of this
aper will address static loops, and in turn this defines the range of
pplicability for the EBTEL model. 

In Section 2, we derive the EBTEL equations for a non-uniform 

rea. Section 3 discusses static loop models, and Section 4 presents
he new dynamic EBTEL results. Appendix A addresses an addi- 
ional approximation in EBTEL due to the non-uniform area and 
ppendix B discusses the useful analytic approach to static loops of
evine & Pye ( 1980 ) and Martens ( 2010 ). 

 T H E  EBTEL  E QUAT I O N S  WITH  A N  A R E A  

A R I AT I O N  

he 1D (along a field line with a coordinate s ) energy equation with
 variation in the cross-sectional area A ( s ) is 

∂E 

∂t 
= − 1 

A ( s) 

∂ 

∂s 

(
A ( s ) v [ E + p ] + A ( s ) F c 

)
+ Q − n 2 � ( T ) (1) 

n the usual notation with E = p /( γ − 1) + 1/2 ρv 2 , F c = −κ0 T 

5/2 d T /d s
s the heat flux with κ0 = 8.12 × 10 −7 in c.g.s. units, � ( T ) an optically
hin radiative loss function (e.g. Klimchuk et al. 2008 ) and Q ( s , t ) an
mposed heating function. There is also the equation of state for a
ully ionized electron–proton plasma: p = 2 nkT . 

The EBTEL method assumes that the upper solar atmosphere can 
e split into two parts: a corona and a TR. The length of the combined
orona and TR (usually referred to as the loop half-length) is defined
s L , with s = 0 at the base of the TR and s = L at the apex. The
op of the TR (defined as s = s 0 , with quantities there denoted by
ubscript ‘0’) is defined as the location where energy transport by 
hermal conduction changes from a loss to a gain. Assuming subsonic
o ws, we follo w Klimchuk et al. ( 2008 ) and Cargill et al. ( 2012a )
nd integrate equation (1) over the corona to obtain 

A c L c 

γ − 1 

d p c 

d t 
= A 0 

[
γ

γ − 1 
v 0 p 0 + F c0 

]
+ A c L c [ Q c − R c /L c ] , (2) 

here subscript ‘c’ denotes a coronal quantity so that L c is the
istance from the top of the TR to the loop apex, and A c the average
f the area in the coronal segment. p c is the average coronal pressure,
ith the pressure at the loop apex ( p a ) calculated in a way that

ncludes gravitational stratification (Cargill et al. 2012a ). The heating 
 is assumed to be spatially uniform. At the loop apex we impose

ymmetry conditions such that v = F c = 0 there. The integral of the
adiative losses can be written formally as R c = 1/ A c 

∫ 
A ( s ) n 2 � ( T )d s

Klimchuk & Luna 2019 ), the spatial integral is from s 0 to the loop
pex. Note that it has been assumed that the spatial integral of the left-
and side of equation (1) can be written as the product of the average
oronal area and pressure. This is discussed further in Appendix A. 

Similarly, integrating over the TR gives 

A TR L TR 

γ − 1 

d p TR 

d t 
= −A 0 

[
γ

γ − 1 
v 0 p 0 + F c0 

]

+ A TR L TR [ Q TR − R TR /L TR ] (3) 

ith v = F c = 0 imposed at the base of the TR, subscript TR
enotes a TR quantity and R TR is now an integral over the TR: R TR =
/ A TR 

∫ 
A ( s ) n 2 � ( T )d s . 

We now set p c = p TR = p and add these two equations to get 

[ A c L c + A TR L TR ] 

γ − 1 

d p 

d t 
= A c L c Q c + A TR L TR Q TR 

− [ A c R c + A TR R TR ] . (4) 

etting Q TR = Q c = Q and defining L 

∗ = L c + A TR L TR / A c , we obtain

L 

∗

γ − 1 

d p 

d t 
= L 

∗Q − R c (1 + C 1 A TR /A c ) , (5) 

here C 1 = R TR / R c , as in our earlier work. If we set A c = A TR then
e reco v er 

L 

γ − 1 

d p 

d t 
= LQ − R c (1 + C 1 ) (6) 

ith L = L c + L TR , the EBTEL pressure equation from our earlier
apers. 1 

The equation for the coronal density is given by 

∂n 

∂t 
= − 1 

A ( s) 

∂ 

∂s 
( nvA ( s)) , (7) 

hich inte grating o v er the corona and using the equation of state
ives 

 c L c 
d n 

d t 
= n 0 v 0 A 0 = 

pv 0 A 0 

2 kT 0 
, (8) 

here n is now the coronal average. Again we have written the
ntegral of the left-hand side of equation (7) as the product of the
verage area and average density, as discussed in Appendix A. We
hen use the TR energy equation (3) to solve for pv 0 A 0 such that 

γ

γ − 1 
A 0 pv 0 = −

[
A 0 F c0 + 

A TR R c L c 

L 

∗ ( C 1 − L TR /L c ) 

]
, (9) 

here equation (5) is also used: The same result arises from using
quations (2) and (5). This then gives 

 c L c 
d n 

d t 
= − γ − 1 

2 kγ T 0 

[
A 0 F c0 + A TR R c 

L c 

L 

∗

(
C 1 − L TR 

L c 

)]
. (10) 
MNRAS 509, 4420–4429 (2022) 
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Figure 1. The normalized area profile given by equation (17) as s a increases 
from 0.05 L (left-most curve) to 0.95 L (right most). 
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etting A c = A 0 = A TR gives 

d n 

d t 
= − γ − 1 

2 kγ T 0 L c 

[
F c0 + R c 

L c 

L 

(
C 1 − L TR 

L c 

)]
, (11) 

hich is the same as in the earlier papers except for the correction
 TR / L c on the right-hand side due to the change in the TR pressure.
or uniform area loops, L TR / L c is of order 0.1–0.2, so is a small
orrection during most phases of e volution. Ho we ver during radiati ve
ooling C 1 may be < 1 (Cargill et al. 2012a ), so it could be significant
nd is retained in the modelling. Note also the presence of L c instead
f L in the leading rhs coefficient and also in the definition of F 0 =
2 / 7 κ0 T 

7 / 2 
a /L c , where T a is the apex temperature. 

To solve these equations, we remove T 0 by defining two constants:
 2 = T / T a and C 3 = T 0 / T a , where T is now the coronal average, so

hat EBTEL solves 

1 

γ − 1 

d p 

d t 
= Q − ( L c /L 

∗) n 2 � (1 + C 1 A TR /A c ) (12) 

nd 

d n 

d t 
= − C 2 ( γ − 1) 

2 kγ T L c C 3 

[
A 0 

A c 
F c0 + 

A TR 

A c 
n 2 � 

L 

2 
c 

L 

∗

(
C 1 − L TR 

L c 

)]
. (13) 

wo area ratios arise and the three constants C 1 , C 2 , and C 3 are
iscussed fully in our earlier work. For constant area, C 2 = 0.9
nd C 3 = 0.6 at all times. C 1 is allowed to vary with time such
hat C 1 = 2 when the loop density reaches its maximum, C 1 > 2
hen conduction dominates radiation (Barnes et al. 2016a ), and C 1 

 2 when radiation dominates (Cargill et al. 2012a ). C 1 is further
odified when gravitational stratification is included (Cargill et al.

012a ). 

 STATIC  L O O P  RESULTS  

tatic loop models are of interest because (i) EBTEL relies on
hem for the determination of C 1 and (ii) with the exception of
esecky et al. ( 1979 ), previous work has not addressed the changes

n the physics due to area variations. Two approaches are used. One
ev elops scaling la ws based on the EBTEL equations and the second
onsiders solutions to the static energy balance equation. 

.1 Scaling laws 

e can write approximate scaling laws using equations (12) and (13)
n the static limit: 

 

2 = ( L 

∗/L c ) Q/ [ � (1 + C 1 A TR /A c )] , (14) 

 

7 / 2 
a = 

(
7 L 

2 
c Q/ 2 κ0 

)
( A TR /A 0 ) 

[
C 1 − L TR /L c 

1 + C 1 ( A TR /A c ) 

]
(15) 

r 

 = 

(
2 κ0 T 

7 / 2 
a / 7 L 

2 
c 

)
( A 0 /A TR ) 

[
(1 + C 1 A TR /A c ) 

C 1 − ( L TR /L c ) 

]
. (16) 

he recent scaling laws of Klimchuk & Luna ( 2019 ) who also
onsidered an area variation (equations 5 and 11 of that paper), can
e obtained by setting L TR = 0 and L c = L . It is assumed implicitly
hat A TR ≤ A 0 ≤ A c . 

We return to the scaling laws in Section 3.5 but it is important to
ote that they are only approximate solutions to the energy equation.
his should be contrasted with those presented by Martens ( 2010 )
nd discussed in Appendix B which are an exact analytic solution,
rovided a single power-law radiative loss function, and a cross-
ectional area satisfying equation (B1) are used. The difference lies
NRAS 509, 4420–4429 (2022) 
rimarily in the numerical coefficients rather than the relationship
etween quantities such as T a , Q , and L . The exact solution represents
he role of the entire atmospheric structure in balancing heating and
adiation throughout the loop. 

.2 Example with small and moderate area variations 

e consider the following normalized area profile [ A ( s )] in terms of
he function f ( s ): 

 ( s) = f ( s) , f ( s) = 1 + f 1 sin 2 ( πs/ 2 s a ) , s < s a , 

f ( s) = 1 + f 1 , s ≥ s a . (17) 

 a = L is a loop with a smooth area change along its entire length and
y decreasing s a from L to small values, we force the area change to
e more localized at the loop base. Fig. 1 shows A ( s ) as s a increases
rom 0.05 L to 0.95 L for f 1 = 4. 

We solve equation (1) numerically using a high-order Runge–
utta scheme with ∂ / ∂ t and v set to zero and a prescribed cross-

ectional area of the loop subject to a fixed chromospheric temper-
ture at a point s = 0 (taken as 3 × 10 4 K), and a vanishing heat
ux at the loop apex ( s = L ). The heat flux at the base also vanishes.
olution of equation (1) then requires specification of two of the
ollowing: L , Q , T ( s = L ) = T a , and n ( s = L ) = n a so that this is
n eigenvalue problem (Martens 2010 ), with the other two quantities
etermined by the need to satisfy the boundary conditions. The Sun
ill specify Q and L , so that an iterative solution of equation (1) gives
 a and n a once the boundary condition at the loop apex is satisfied.
lternatively, it is sometimes convenient to specify T a and L and
etermine Q and n a . We specify L and Q and calculate T a and n a . 2 

The energy equation can be written in the following form 

d 

d s 

(
κ0 T 

5 / 2 d T 

d s 

)
+ κ0 T 

5 / 2 d T 

d s 

1 

A ( s) 

d A 

d s 
+ Q − n 2 � ( T ) = 0 . (18) 

or a loop with a monotonically increasing temperature and an area
hat increases from base to apex, the second term is al w ays positive
nd so can be viewed as an effective ‘heating’, as was noted by
esecky et al. ( 1979 ). What this means is that all else being equal,

art/stab3163_f1.eps
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Figure 2. Loop properties showing the effect of increasing the cross-section 
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 loop with an area divergence will have a higher ‘pressure’ than
ne with uniform area: more ‘heating’ does not necessarily imply a 
igher apex temperature. 
We begin by considering a loop of half-length 50 Mm, s a = L , and

ary the parameter f 1 between 0 and 5 so that the maximum apex area
s six times larger than the base. Q = 3.67 × 10 −4 erg cm 

−3 s −1 which
ives T a of order 2 MK. Gravity is neglected for the moment and a
ingle power-law loss function of the form � ( T ) = 1.95 × 10 −18 T 

−2/3 

s used. 3 Other loss functions are discussed later. 
Figs 2 and 3 show the results. The six panels of Fig. 2 show: n a 

n panel 1, A c (plus sign) and A 0 (circle) in panel 2, T a (star) and T 0 

circle) in panel 3, the ratio C 1 in panel 4, the ratio of conductive to
adiative losses at s = L in panel 5, and L TR / L in panel 6. For clarity
 TR is not shown but increases from 1 to 1.2. T 0 is the temperature
t the top of the TR and the averages A c and A TR are obtained a
osteriori once the location of the top of the TR is determined. In
anels 1, 3, 4, and 5, the black stars denote results when gravity
s excluded. The upper two panels of Fig. 3 show the conductive,
adiative, and heating terms in the energy equation as a function of
istance for f 1 = 0 (left) and 1 + f 1 = 6 (right). As the cross-sectional
rea at the apex increases we find (i) larger n a , (ii) slightly larger T a ,
iii) a thicker TR, and (iv) a slightly enhanced ratio of TR to coronal
adiation per unit area, as represented by C 1 . The first of these was
lso found by Vesecky et al. ( 1979 ). 

In the ‘standard’ picture of loops, the role of the TR is to radiate
way the total downward coronal heat flux (i.e. the sum of the heat
ux o v er the loop cross-section). The TR is thin with L TR / L c ∼
.1 −0.15, and is the origin of 2/3 of the loop’s radiation (Cargill
t al. 2012a ). When gravitational stratification is included, the TR
adiation predominates more. As the loop becomes constricted, the 
 The choice of a -2/3 power as opposed to the more usual -1/2 one is for 
onsistency with our earlier work. Dif ferent coef ficients lead to changes to 
he numerical values presented below, not to the underlying physics. 

g  

L  

t  

C  

t

 olume a vailable in the TR to radiate away the total coronal heat flux
iminishes. Thus, to obtain equilibrium, the TR and coronal density 
ust both increase and/or the TR volume also increase. Fig. 2 shows

hat both occur. This simple picture of an increase in coronal density
nd pressure and a thicker TR holds for all cases we consider. The
oop temperature profile adjusts so that the higher density leads to
he same radiative loss summed o v er the entire loop. Since the loss
unction decreases with temperature, more of the loop is at higher
emperatures, and the profile T ( s ) becomes flatter (e.g. Vesecky et al.
979 ; Martens 2010 ). 
Ho we ver, panel 5 of Figs 2 and 3 shows that the ‘standard’ picture

f loops begins to break down as f 1 increases. Considering Fig. 3
rst, the upper left panel shows a loop with constant cross-sectional
rea with conduction roughly equal to heating in the corona and
onduction roughly equal to radiation in the TR. Increasing f 1 leads
o a situation when conduction ceases to dominate the coronal energy
alance, as seen in the upper right panel. The cause is the increase in
he loop density such that coronal radiation becomes more important 
han conduction to the TR. This arises at roughly f 1 = 3.5. In terms
f the temperature profile, the loop has become more ‘isothermal’ in
he corona, a well-kno wn ef fect of area constriction (Martens 2010 ).
lso, the ‘ef fecti ve heating’ (as defined earlier) is maximized at the

op of the TR (top-right panel of Fig. 3 ) and dominates radiation
here. 

Fixing T a and varying Q leads to similar results, with differences in
he exact numbers. Adopting the generalized radiative loss function 
f Klimchuk et al. ( 2008 ) leads to the C / R ( s = L ) ratio falling below
nity at f 1 = 4.5. Finally, the red stars in Fig. 2 show results when
ravitational stratification is included. This keeps the apex C / R ( s =
 ) ratio abo v e unity for all the f 1 considered here, but it falls from 6

o 2 as f 1 increases. Other quantities show expected variations (e.g.
 1 and n a ) or little change ( T a ): The ratio L TR / L is not shown because

he two plots o v erlap. 
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We can also compare these results, especially the increase in loop
ressure with f 1 , with the TR studies of Rabin ( 1991 ) who prescribe
 = A ( T ) (see Appendix B). This differs from the present work

n that Rabin does not solve for the thermal structure of the entire
tmosphere, but instead imposes a lower boundary condition on the
eat flux, and iterate on the loop pressure until a fixed temperature
s reached at a given height. The heat flux at that height is thus an
utput of the model. Rabin ( 1991 ), see his fig. 1, considers three
R area models that he calls ‘tee’, ‘cone’, and ‘bowl’. 4 The volume
ssociated with each increases so that, based on our arguments abo v e,
or identical area profiles and heat fluxes at the top of the model, one
ould expect the tee to have a higher pressure than a cone which in

urn has a higher pressure than a bowl. Further, larger area factors
hould have higher pressure than small ones. Comparison with the tee
odels is rendered difficult by the heat fluxes at the upper boundary

iffering by half an order of magnitude as the area factor changes.
his implies that the coronal part of the loop differs between the
ases. Ho we ver, more constricted loops do show higher pressure.
he bowl and cone cases do permit the desired comparison. As the
rea constriction increases in both, so does the pressure. And the cone
oes have higher pressures than the bowl. Thus, this work agrees with
ur premise that what controls the loop conditions is the volume in
he TR able to radiate away a downward heat flux. 

.3 Large area variations 

odelling of coronal magnetic fields based on photospheric magne-
ograms suggests that large area variations can arise. For example,

iki ́c et al. ( 2013 ) and Froment et al. ( 2018 ) considered a factor of 10
rom chromosphere to apex, while Asgari-Targhi & van Ballegooijen
 2012 ) and Asgari-Targhi et al. ( 2013 ) consider factors in excess of
00 in longer loops. Here, we consider much larger values of f 1 .
ig. 4 and the lower left panel of Fig. 3 show the same quantities
s Fig. 2 and the upper panels of Fig. 3 , with the black (red) stars
howing the results without (with) gravity. Without (with) gravity
he ratio C / R ( s = L ) falls below unity for f 1 > 3(7) and the TR
ncreases to between 40 and 50 per cent of the loop. Fig. 3 shows
 The ‘tee’ geometry resembles the object used to ele v ate a ball in golf prior 
o hitting it into the water. 

b  

t
n  

t  

NRAS 509, 4420–4429 (2022) 
ow inconsequential conduction has become in the coronal part of
he loop. This in turn implies that the coronal density should change
ittle as f 1 becomes large because the coronal energy balance between
eating and radiation is independent of the cross-sectional area. Fig. 4
hows that this is indeed the case. 

Thus, the ‘standard’ loop picture has entirely broken down for
hese large area variations. Further, in the no-gravity case, we see
hat C 1 approaches unity when f 1 exceeds 20. In these cases, the
oops are isothermal o v er most of their length and with the upper
oundary of the TR located at 0.4 L or greater, the distinction between
R and corona becomes unclear, and the formal definition of the top
f the TR given earlier is probably meaningless. A thin layer of
teep temperature gradient still exists, but it is confined to near the
ootpoint, far below L TR . It deviates substantially from our formal
efinition of TR. 

.4 Differ ent ar ea pr ofiles 

e now consider what happens when s a is varied for the same range
f f 1 with s a varying between 0.05 and 0.95 L . Small values of s a 
ocalize the area variation to the lower part of the loop so that there
s a larger volume in the TR available to radiate away the downward
eat flux. Fig. 5 shows the results for f 1 = 5 (stars) and f 1 = 50
circles) in the same format as Fig. 2 . The lower right panel of Fig. 3
hows the results for s a = 0.2 L and f 1 = 5 so that the entire TR
s constricted. There are relatively small changes in n a and T a , and
he area-associated ‘heating’ now becomes strongly localized. In
ig. 5 , we see that the density increases with s a , as expected when

he loop becomes constricted o v er a greater part of its length. With
he exception of the ratio C 1 , there is relatively little change in the
oop properties as s a increases. 

.5 Comparison with scaling laws 

e now compare the scaling laws described in Section 3.1 with
xact solutions of the energy equation. Fig. 6 shows the difference
etween the exact and scaling law solutions, normalized with respect
o the exact solutions, so that for example � n = [ n ( exact ) −
 ( scaling )]/ n ( exact ). The top two ro ws sho w � n and � T , respec-
ively, with s a = L and 0 ≤ f 1 ≤ 5 and 0 ≤ f 1 ≤ 50 in the left and
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ight columns. The third and fourth rows show 0.05 L ≤ s a ≤ L for
 1 = 5 and f 1 = 50 (left and right columns). 

The exact solutions and scaling laws can be compared in a number
f ways. The black stars use scaling law values calculated with the
umerical values of C 1 , L c , L TR , and the various area factors obtained
y the numerical solution of the energy equation. Ho we ver, there are
nstances where a simpler approach is desirable when the scaling 
aws are implemented without knowledge of the detailed energy 
quation solution, as done in equations (5) and (11) of Klimchuk &
una ( 2019 ). To do this, we set L c = L , C 1 = 2. These are the red
tars in the panels of Fig. 6 . Finally, we use our scaling laws, with
 c and L TR from the exact solutions, but with C 1 = 2, shown as the
lue stars in Fig. 6 . 
We see that o v er all parameter ranges, the difference between

he actual and scaling law densities is relatively small, at most of
rder 20 per cent. This arises because the density scaling law is a
imple statement that the energy deposited must equal that radiated. 
he temperature that comes in via the loss function is a modest
orrection. Indeed, the largest errors in the density arise for loops
ith uniform area. 
The temperature scaling law(s) perform less well. We see that the 

greement for small f 1 is good given the assumptions used in obtain-
ng the scaling laws. Indeed, if we increase the 2/7 factor to 3.25/7
n the approximation of the heat flux, the agreement between the 
emperatures becomes excellent. 5 Ho we ver, as f 1 increases further, 
he discrepancies in the apex temperature become more marked. In 
articular the Klimchuk and Luna model shows significant deviation 
 It is instructive to compare the expression (2 A 0 κ0 / 7) T 7 / 2 a /L c with the 
umerical value at the top of the TR. They differ by a factor of 2. 

u  

f  

a
t

ince the assumption of a thin TR clearly breaks down. This could
e attributed to the reduction of the heat flux to the TR. On the
ther hand, the premise of the scaling laws is violated for large f 1 ,
amely that one cannot equate conduction and radiation in the loop.
t seems as though the scaling laws should not be used once the
oronal conductive losses fall much below the radiative ones. The 
arlier figures suggest that this is for f 1 > 5. This is also when L TR 

ecomes a significant fraction of L . 

 TI ME-DEPENDENT  S O L U T I O N S  

e now solve the time-dependent EBTEL equations (12) and (13) for
 simple heating model. The results of the previous section suggest
hat we can retain C 1 = 2, with the modifications of Cargill et al.
 2012a ) provided the variation in area between base and apex is
mall enough, of order 5. This in turn implies that the ratio L TR / L
s small and conduction is the dominant coronal loss mechanism up
o the start of the radiative phase. These are essential assumptions
f the time-dependent EBTEL model. Thus, the parameters C 1 , C 2 ,
nd C 3 are as in the earlier papers and the Klimchuk et al. ( 2008 )
adiative losses are used. It is assumed that L TR / L = 0.15. Fig. 7
hows a case where the loop has 2 L = 80, with a triangular pulse
f duration 200 s and peak 0.1 erg cm 

−3 s −1 . There is a background
eating of 3 × 10 −5 erg cm 

−3 s −1 to ensure that (i) the loop starts
rom an equilibrium and (ii) during the cooling phase, ne gativ e
emperatures and densities do not arise. The four panels show the
emperature, density, pressure, and T − n phase plane. The solid 
ines are the results for a constant area. We consider two extremes
n area variation: one where A 0 = A TR (dashed), and one where
 0 is comparable to the coronal scale, A 0 = 2 A TR (dotted). These
re specified at t = 0, and remain unchanged as the loop evolves.
e consider a factor 3 total divergence (i.e. A c = 3 A TR ). The case
ith A 0 = A TR is probably the most realistic for a loop (i.e thin TR

nd mostly coronal field change), as discussed in Guarrasi et al. 
 2014 ). 

Even with such a relatively modest area change, the changes from
niform area are significant. In general terms, the rate of energy loss
rom the corona by either thermal conduction or enthalpy is less for
 constricted loop than if there were no constriction. Consequently, 
he coronal temperature increases more quickly during the heating 
MNRAS 509, 4420–4429 (2022) 
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Figure 8. A comparison of Hydrad and EBTEL solutions of an impulsively 
heated loop with an area profile given by the tan h distributions. The red 
(black) lines are the average and apex values, with solid (dashed) being 
Hydrad (EBTEL), as summarized in the embedded box in the upper right 
panel. Temperature and density are shown as a function of time. The 
two upper (lower) panels show q = 1 and 4, respectively. In EBTEL, 
the upper panels have A TR = 1.72, A 0 = 2.38, and A c = 2.93 and the 
lower ones A TR = 1.12, A 0 = 1.48, and A c = 2.80. The subpanel in the 
temperature plots shows the various temperatures for the first 400 s of the 
simulation. 
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hase and decreases more slowly during the initial cooling phase.
hile the time of this peak temperature is similar for all cases,

orresponding approximately to the peak of the heating, the highest
emperatures arise when the area variation lies entirely abo v e the TR.
ere the heat flux into the TR is constricted by a factor 3 ( A 0 / A c )

ompared to a factor of 2 when some area variation in the TR is
llowed. 

The maximum density is similar in all cases, of order 4 × 10 9 cm 

−3 ,
ut the subsequent evolution differs considerably. The rise in density
s determined by a competition between the downward heat flux
nd the (lack of) ability of the TR to radiate this away. Thus, the
ongest delay in the maximum density with respect to temperature
rises for the smallest TR volume, the dashed curve. The decline in
ensity arises due to two effects: in situ radiation from the corona
hat reduces the gravitational scale height, and TR radiation powered
y the downward enthalpy flux. The latter is limited by the TR
olume, so this density decline is (initially) slower for the dashed
urve. Ho we ver, in both cases there is a significant difference from
he uniform area case at large times. For uniform area, there is a
mooth decline to small density. For the non-uniform area cases,
here is a catastrophic decline, occurring after 3500 s for A 0 = 2 A TR 

nd after 4500 s for A 0 = A TR . This arises because in both cases the
oronal density is held higher than is the case with constant area
y the relative inefficiency of the downw ard enthalp y flux. This is
 stronger effect for the narrow TR. Eventually as the temperature
alls, the high coronal density leads to o v erwhelming radiativ e losses
nd the loop cools catastrophically. 
NRAS 509, 4420–4429 (2022) 
.1 Comparison between EBTEL and 1D hydrodynamic 
imulations 

e no w sho w a comparison of EBTEL simulations with results from
he adaptive mesh 1D hydrodynamic Hydrad code (Bradshaw &
argill 2013 ; Reep et al. 2019 ). The loop parameters and heating

unctions are as in Fig. 7 . In the Hydrad models, the loop has a total
ength of 80 Mm (so that the half-length L = 40 Mm) to which is
ttached a stratified chromosphere at each footpoint with thickness
 Mm. Note that L does not include the chromosphere. Both Hydrad
nd EBTEL use the radiative losses of Klimchuk et al. ( 2008 ). Two
normalized) area models are considered: 

 ( s) = (1 + tan h 

q ( πs/L s )) 
log 3 / log 2 (19) 

 ( s) = (1 + sin q ( πs/ 2 L )) log 3 / log 2 , (20) 

hich localize the area variation in the TR and corona, respectively.
n the tan h profile, L s = 20 Mm. The area at the loop apex is three
imes that at the top of the chromosphere. A TR and A 0 are calculated
sing these assumed profiles with L TR = 0.15 L and are held constant
n EBTEL as the loop evolv es. F or the tan h profile, the ratios A TR / A c 

nd A 0 / A c decrease markedly as q increases while the sin profiles
how little variation with q . The exact values in each simulation
re stated in the figure captions but equations (19) and (20) present
iffering challenges for a comparison between Hydrad and EBTEL.
n terms of Fig. 7 , the sin profile is closest to the dashed lines and the
an h profile to the dotted lies, though the precise values of the areas
re different. 

Cases with q = 0–4 have been run for both area profiles. Figs 8
nd 9 show results for the tan h and sin profiles, respectively, for q
 1 (upper panels) and 4 (lower panels). The cases with q = 2

nd 3 give results that are intermediate between those shown. The
olid (dashed) lines show Hydrad (EBTEL) solutions. The red lines
ho w v alues av eraged o v er the coronal portion of the loop and the
lack lines those at the ape x. F or EBTEL, the coronal averages
re as defined in equations (12) and (13). For Hydrad the coronal
verages are e v aluated o v er the upper 85 per cent of the loop abo v e
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he top of the initial model chromosphere (i.e. the top 34 Mm), as
s the case with EBTEL under the assumption L TR / L = 0.15. This
nsures that we compare like-with like. Note also that the Hydrad 
verages are computed over the same spatial domain throughout 
he simulations. F or ape x values, we av erage the Hydrad solutions
 v er the top 20 per cent of the loop since past experience suggests
hat using precise apex values are overly noisy. For EBTEL, the 
pex temperature is related to the average by T a = T / C 2 , where
 2 = 0.89 (Klimchuk et al., 2008 , Cargill et al., 2012a ). The apex
ensity is related to the average using the formalism in Section 3.1 of
argill et al. ( 2012a ) which accounts for gravitational stratification. 

For reference, the Hydrad solutions for uniform area have a peak 
verage temperature and density of 9.4 MK and 4 . 4 × 10 9 cm 

−3 ,
espectively. The temperature falls below 1 MK at 2300 s and the
ensity to 2 . 5 × 10 8 cm 

−3 at 3600 s. The density falls linearly as a
unction of time between its peak and this value.) 

In general, the Hydrad solutions for non-uniform area have the 
ame generic properties as the EBTEL ones shown in the previous 
gure, namely a higher peak temperature, delay in the time of the
aximum density, and an enhanced density throughout the radiative 

ooling phase when compared with the uniform area cases. Also, the 
omparison of the Hydrad and EBTEL temperatures (both apex and 
verage) shows a level of agreement comparable with our previous 
tudies (see Cargill et al. 2012a , 2015 ; Barnes et al. 2016a ). As
he area constriction increases, the peak temperatures obtained by 
oth EBTEL and Hydrad increase, as expected from Fig. 7 . The
eak EBTEL values exceed the peak Hydrad ones by 1–2 MK, a
ercentage difference that is of the same order as we found for
niform area (Cargill et al. 2012a ). This higher peak then leads to
lightly higher values of the EBTEL temperatures throughout the 
ecay phase, though the rate of temperature decline is very similar
n EBTEL and Hydrad. 

As noted in Cargill et al. ( 2012b ), obtaining good agreement
etween the density evolution in approximate and exact numerical 
odels is more challenging. For uniform area, there is a tendency 

or the EBTEL density to exceed the Hydrad one, the value differing
rom case-to-case. In all cases shown here, the Hydrad peak density 
ow exceeds the EBTEL one, though in all but the tan h area profile
ith q = 1, by a small amount. Even in this case, the excess is of
rder a few per cent. In the draining phase, in all cases Hydrad and
BTEL show sustained higher densities than for uniform area. This 
eneral agreement of the densities between the two methods indicates 
hat EBTEL is getting the important process of the TR response to
 strong downward heat flux correct for these non-uniform areas. 
t is the difficulty of modelling this process with 1D hydrodynamic 
odes without adequate numerical resolution that has been a primary 
oti v ation for our development of EBTEL. 
Looking at the tan h cases, we expect q = 4 to have a more sustained

igh density than q = 1 since the TR is more constricted and this
s what we find. For the sin cases, this effect is still present but
ess noticeable since the change in constriction as q increases is
maller. We also note that in the final stages Hydrad does not see
s dramatic a catastrophic draining as EBTEL. One possible cause 
s that Hydrad may be better equipped to sustain a low-temperature 
ydrostatic equilibrium than EBTEL due to a pile-up of plasma at 
he footpoints, or a different form of cooling such as that discussed
n Cargill & Bradshaw ( 2013 ), and not modelled by EBTEL, is
perating. 
An important observational diagnostic of the heating in the core 

f active region loops is the temperature dependence of the emission
easure [ EM ( T )] which scales in the range T 

2 –T 

4 for temperatures
elow 3 MK (Warren et al. 2012 ; Cargill 2014 ; Barnes, Bradshaw &
iall 2019 ). For a single impulsive heating event, or a nanoflare train
ith well-separated heating bursts, at such temperatures, the core 
f the active region loop is in the radiative cooling phase. In this
egime, Cargill ( 1994 ) and Cargill & Klimchuk ( 2004 ) showed that
M ( T ) � n 2 τ rad where τ rad is the radiative cooling time at a given

nstant, defined as τ rad � 3 kT 

1 − α/ χn for a power-law radiative loss
unction of the form � ( T ) = χT 

α . Thus, EM ( T ) � nT 

1 − α which for
he commonly used value α = −1/2 gives EM ( T ) � nT 

3/2 . When
he loop area is uniform, the radiative/enthalpy cooling phase has 
 � n 2 (Cargill, Mariska & Antiochos 1995 ) so that EM ( T ) � T 

2 

e.g. Cargill 2014 ). With an area variation, Figs 7 –9 suggest that
he density remains higher in this cooling phase than for constant
rea. Taking the extreme case of constant-density cooling, setting n 
s a constant in the abo v e e xpressions giv es EM ( T ) � T 

3/2 . Thus,
espite the different behaviour of the density in the radiative cooling
hase, the temperature dependence of EM ( T ) shows little change in
he presence of the modest area variations we consider, and is almost
ertainly not observable (Guennou et al. 2013 ). Note also that for
oops with non-uniform area, the enhanced density in the radiative 
hase implies a higher value of the coronal emission measure EM ( T )
t a given temperature. 

 C O N C L U S I O N S  

e have presented models that discuss the role of a non-uniform
ross-sectional area in static and dynamic coronal loops. The results 
n all stages can be understood in simple terms that consider the
esponse of the radiative losses from a constricted TR to heat and
nthalpy fluxes from the corona. For static loops, the smaller TR
rea leads to a higher coronal densities and a broader TR so that the
ownward heat flux may be radiated a way. F or impulsiv ely heated
oops, the constricted TR leads to higher coronal temperatures during 
he heating phase and a sustained high density followed by rapid
ooling in the radiative phase when the TR is unable to radiate the
ownw ard enthalp y flux. 
For large area variations, the standard picture of a static loop breaks 

own, with the coronal energy balance being primarily between 
eating and radiation as opposed to between primarily heating and 
ownward conduction. These results suggest that caution is needed in 
odelling such loops with conventional concepts of loop energetics, 

s shown by the failure of the temperature scaling laws. 
Since the EBTEL model makes use of some results from static

oop models, we are able to set constraints on when area variations
an be included in EBTEL. If we require L TR to be small compared
ith L and conductive losses dominate during the heating and initial

ooling phase, then EBTEL is limited to quite modest area variations,
ypically a factor 4 between base and apex. Nonetheless, the EBTEL
esults, and the comparison with Hydrad, indicate clearly the different 
hysics to be expected in loops with non-uniform areas, although full
and computationally e xpensiv e) 1D simulations will be required to
erify this for large area variations. 
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ATA  AVA ILA BILITY  

he EBTEL IDL code, including the modifications for non-constant
ross-sections, is freely available and can be downloaded at: https:
/github.com/rice- solar- physics/EBTEL . 
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PPENDIX  A :  A  N OT E  O N  T H E  AV ER AG E  

ENSITY  A N D  PRESSURE  IN  A  L O O P  WIT H  

O N - U N I F O R M  CROSS-SECTION  

hile the average coronal density is clearly defined for a loop with
niform cross-section, a more detailed investigation is required for
on-uniform area. For the mass equation (7), integrating the left-hand
ide o v er the coronal loop portion formally giv es 

 c A c 
d n w 
d t 

= n 0 A 0 v 0 , (A1) 
NRAS 509, 4420–4429 (2022) 
here 

 w = 

1 

A c L c 

∫ 

A ( s ) n ( s )d s (A2) 

s the area-weighted average density. For constant area, n and n w are
he same, but for non-uniform area n w requires spatial information
bout the density and area profiles. In EBTEL, we assume that n w =
 , where n is the average density, (1/ L c ) 

∫ 
n d s . 

Justification for this can be addressed by comparing n w and n
n hydrostatic loops: Hydrostatic loop models underpin much of
BTEL due to the assumption of subsonic flows (Klimchuk et al.
008 ; Cargill et al. 2012a ). We have calculated n and n w for all the
tatic loop models considered in Section 3. We find that the ratio
 / n w satisfies 1 < n / n w < 1.05 in all cases. The maximum of this
atio does not arise for the maximum f 1 . As f 1 increases two effects
rise. The coronal portion of the loop becomes more isothermal (see
ig. 3 ), so that the density profile is also flatter. Secondly, the actual
xtent of the corona decreases as the ratio L c / L decreases, as seen
n Figs 2 –5 . In both cases, the difference between n w and n will
hen decrease. Thus, the small discrepancy between n w and n for
arge f 1 is somewhat artificial since the basic assumptions needed
or EBTEL (in particular a narrow TR) are violated, as discussed
lsewhere. 

We also examined a much longer loop with 2 L = 400 Mm and
 peak temperature of order 1.5 MK sustained by a heating of
0 −5 erg cm 

−3 s −1 . Such lengths are the longest used in contemporary
odels (e.g. Asgari-Targhi et al. 2013 ; Froment et al. 2018 ). In this

ase, the ratio n / n w rises to 1.14 for some values of f 1 . As with the
horter loops, the maximum value of the ratio does not occur for
he largest f 1 , but for an intermediate value, f 1 = 5. So caution is
arranted using EBTEL during evolution of long loops with non-
niform cross-sections at low temperatures. 
We can also define an area-weighted pressure in the same way.

he ratio p / p w , where p is now the average pressure is closer to unity
han n / n w , of order 1.03 for the shorter loops and 1.1 for the longer. 

Two further points should be made. One is that EBTEL assumes a
mooth variation of the plasma parameters throughout the loop, with
he temperature and density being not far remo v ed from that expected
n a hydrostatic state: This is equi v alent to our assumption of subsonic
ows. Thus, EBTEL cannot model cases involving localized plasma
lumping or cooling when n w and n may differ considerably.
econdly, as the temperature increases during impulsive heating
nd subsequent cooling, gravitational stratification becomes less
mportant and the ratio n / n w decreases towards unity. 

PPENDI X  B:  A NA LY T I C  SOLUTI ONS  F O R  

TATIC  L O O P S  

t was pointed out by Levine & Pye ( 1980 ) and Martens ( 2010 ) that
he assumption 

 ( s ) /A a = ( T ( s ) /T a ) 
δ (B1) 

ermitted analytic solutions of the energy equation for a static loop
ithout gravity and with a radiative loss function that is a single
ower law over all temperatures: � ( T ) = χT 

α , where subscript ‘a’
orresponds to a quantity at the loop apex. We discuss the limitations
f the assumption in equation (B1) later, but the analytic solutions
rovide valuable guidance for more general and realistic area profiles
iscussed in Section 3. We follow the analysis of Martens ( 2010 ), see
lso Kuin & Martens ( 1982 ), and define the variable η = ( T / T a ) 7/2 + δ .
or a static loop and spatially constant heating, retaining the notation
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f Martens, the static energy equation is then 

d 2 η

d s 2 
= ημ − ξην, μ = − (2 − α − δ) 

7 + 2 δ
, ν = 

2 δ

7 + 2 δ
, 

ξ = QT 2 −α
a / 

(
p 

2 χ
)
, ε = 

κ0 T 
11 / 2 −α

a 

(7 / 2 + δ) p 

2 L 

2 χ
, (B2) 

here the pressure is constant. Defining the parameter λ = (3/2 + 

)/(2(2 − α)), the energy equation is solved for a variable u = ην − μ

s 

/L = βr ( u, λ + 1 , 1 / 2) , (B3) 

here β r is the normalized incomplete beta function and μ − ν = 

(2 − α)/(7/2 + δ). Applying appropriate boundary conditions at 
oop base and apex eliminates ξ and ε from equation (A2) and gives 
he scaling laws 

Q = 

p 

2 χ (7 / 2 + 2 δ) 

T 2 −α
a (3 / 2 + 2 δ + α) 

, 

L = T (11 −2 α) / 4 
a 

(
κ0 

χ

)1 / 2 (3 + 4 δ + 2 α) 1 / 2 B( λ + 1 , 1 / 2) 

4 − 2 α
, (B4) 

here B ( a , b ) is the beta function. 6 Removing the pressure, these
an be rewritten to give an expression for n a and T a , analogous to
quations (14) and (15): 

 

7 / 2 
a = 

(
7 L 

2 / 2 κ0 

)
Q 

2(2 − α) 2 

(1 + 4 δ/ 7) B( λ + 1 , 1 / 2) 2 
, 

n 2 = 

Q (3 / 2 + 2 δ + α) 

� ( T )(7 / 2 + δ) 
. (B5) 

nverting u to obtain T , we find T ∼ 1/ u (7/2 + δ)( ν − μ) ∼ u (2 − α) , so
hat, given the prescription equation (B1), the spatial structure of 
he temperature for a given value of T a is independent of δ. This is
onfirmed by numerical solutions of the energy equation. 7 Following 
argill et al. ( 2012a ) we can also e v aluate the temperature at the top
f the TR ( T 0 ). This occurs when the right-hand side of equation

 Equations (48)–(50) of Martens have a number of typos, corrected here for
niform heating. Bray et al. ( 1991 ) also provide the correct scalings. 
 Note that while fig. 4 of Martens ( 2010 ) shows T(s) differing between
niform and variable loop cross-section, a heating function scaling as T −3/2 ,
s given by classical Ohmic heating, is used. 
B2) vanishes 

T 0 

T a 
= 

[
7 / 2 + δ

3 / 2 + 2 δ + α

]−1 / (2 −α) 

(B6) 

o that as δ increases, T 0 / T a also increases. [The analytic solution for
 1 , defined earlier, and discussed by Cargill et al. ( 2012a ) cannot be

epeated when δ > 0.] 
We have solved equation (B2) for a range of area profiles, defining
as δ = log 10 ( A max )/log 10 ( T a /10 5 ). A max = A a / A ( T = 10 5 ) ranges

rom 1 to 10 so that δ varies between 0 and 0.77. A comparison
f the solution of equation (B2) with that of equation (1) shows
 xcellent agreement. 8 F or a loop with α = −1/2, L = 50 Mm,
nd T a = 2 MK, we find that as δ increases, C 1 increases from
.72 to 2.69, T 0 / T a from 0.61 to 0.76, and L TR / L from 0.11 to
.24. These analytic solutions reproduce the trends shown in 
ection 3. 
In closing, we note that despite permitting analytic solutions, the 

rea–temperature relationship is highly artificial, even in the more 
eneral formalism introduced by Rabin ( 1991 ). A credible scenario
or coronal plasma structure is that the large-scale magnetic field of,
or example, an active region is determined by the (global) dynamo
rocess, within which smaller scale processes provide the heating. 
ithin this active region are many flux elements with cross-sectional 

reas A ( s ) given by the large-scale magnetic field. For a static loop,
 ( s ) is determined by the solution of the energy equation for this
rescribed A ( s ), and T ( s ) will not satisfy equation (B1) for any
ut the most serendipitous situations. It might be argued that the
rea in equation (B1) adjusts to the calculated temperature profile, 
ut in a low-beta coronal plasma such a scenario is not credible,
s was demonstrated in the simulations of Guarrasi et al. ( 2014 ).
hese problems become more severe in dynamic loops discussed in 
ection 4. 

 In order to obtain agreement with C 1 , a base temperature of almost zero
100 K) is required in the numerical solution. 
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