
Computational study of the GDPO dual phase-1 algorithmIstván Maros∗Department of Computing, Imperial College, LondonEmail: i.maros�i.a.ukDepartmental Tehnial Report 2006/6ISSN 1469�4174July 2006AbstratMaros's GDPO algorithm for phase-1 of the dual simplex method possesses some theoretialfeatures that have potentially huge omputational advantages. This paper gives aount of aomputational analysis of GDPO. Experiene of a systemati study involving 48 problems showsthat the predited performane advantages an materialize to a large extent making GDPO anindispensable tool for dual phase-1.1 IntrodutionThe simplex method has two main versions: the primal and the dual simplex algorithm. Sine Dantzig'sseminal work [1℄ in 1951, the primal version reeived far more attention than Lemke's dual [6℄ from1954. As a result of this �bias� primal based simplex implementations have evolved ontinuously andan solve large linear programming (LP) problems reliable and e�iently. The dual simplex did notfollow suit and its use was limited to ases where a dual feasible basis was available, like a simpleBranh and Bound (B&B) type solution of mixed integer linear programming (MILP) problems usingdual phase-2. Reently, dual phase-2 has undergone a substantial progress so that it an handle alltypes of variables algorithmially [7; 9; 4℄ and it is very e�etive in pratie.The newly emerging methods for MILP use loal tehniques at the nodes of the searh tree likelogial testing, implied bounds, added uts. In suh ases it is not true anymore that the optimalbasis of a parent node is dual feasible for the hild nodes. Therefore, dual must start in phase-1. Thisneessitates the development of an e�ient dual phase-1 algorithm. Another motivation for a new dualphase-1 algorithm was to make dual a ompetitive alternative to the primal for general LP problems.The result of the author's ensuing work was the reation of the GDPO (Generalized Dual Phase One)algorithm [8; 9℄. This algorithm possesses some interesting theoretial features that have potentiallyhuge omputational advantages. The extent of the advantages has not been known. Therefore, to seehow the algorithm works in pratie the author has onduted a systemati omputational study ofGDPO. Experiene on 48 problems shows that the theoretially proven advantages of the algorithm(disussed in detail in [8℄ and [9℄) an materialize in pratie to a really large extent. This paper givesaount of the study.
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Maros Study of Dual Phase-1 2 of 17The rest of the paper is organized in the following way. Setion 2 gives the general form of the LPproblem followed by setion 3 with the brief theoretial desription of GDPO. Setion 4 is devoted tothe omputational analysis of GDPO, while setion 5 gives a summary of our �ndings.2 Problem statementConsider the following primal linear programming (LP) problem:minimize cTx,subjet to Ax = b,
ℓ ≤ x ≤ u,

(1)where A ∈ R
m×n, c, x, ℓ and u ∈ R

n and b ∈ R
m. Some or all of the omponents of ℓ and u an be

−∞ or +∞, respetively. A itself is assumed to ontain a unit matrix I, that is, A = [I, Ā], so it isof full row rank. Variables whih multiply olumns of I transform every onstraint to an equation andare often referred to as logial variables. Variables whih multiply olumns of Ā are alled struturalvariables.By some elementary transformations it an be ahieved that all variables (whether logial or stru-tural) fall into four ategories as shown in Table 1. Note, type-1 logial variables orrespond to rangeonstraints. More details of problem statement an be found in [9℄.Table 1: Types of variablesFeasibility range Type Referene
xj = 0 0 Fixed variable0 ≤ xj ≤ uj < +∞ 1 Bounded variable0 ≤ xj ≤ +∞ 2 Non-negative variable

−∞ ≤ xj ≤ +∞ 3 Free variable2.1 The dual problemFirst, we restate the primal problem to ontain bounded variables only.
(P1) minimize cTx,subjet to Ax = b,

0 ≤ x ≤ u,where all omponents of u are �nite.A basis to (P1) is denoted by B and is assumed (without loss of generality) to be the �rst molumns. Thus, A is partitioned as A = [B,R], with R denoting the nonbasi part of A. Theomponents of x and c are partitioned aordingly. Column j of A is denoted by aj. A basi solutionto (P1) is
xB = B−1



b−
∑

j∈U

ujaj



 ,where U is the index set of nonbasi variables at upper bound. The ith basi variable is denoted by
xBi. The dj redued ost of variable j is de�ned as dj = cj − πTaj = cj − cT

B
B−1aj whih is furtherequal to cj − cT

Bαj if the notation αj = B−1aj is used. d is the vetor of redued osts.



Maros Study of Dual Phase-1 3 of 17The dual of (P1) is:
(D1) maximize bTy − uTw,subjet to ATy − w ≤ c,

w ≥ 0,where y ∈ R
m and w ∈ R

n are the dual variables. It is to be noted that the y variables are unrestritedin sign (free variables).If only type-2 variables are present in (P1) then we obtain(P2) min cTxs.t. Ax = b,

x ≥ 0,and its dual is (D2) max bTys.t. ATy ≤ c.Let us onsider the (P2)−(D2) pair. Note, A ontains a unit matrix and m < n. With theintrodution of vetor w = [w1, . . . , wn]T of dual logial variables (D2) an be rewritten as
max bTy (2)s.t. ATy + w = c, (3)

w ≥ 0. (4)Let B be a basis to A. It need not be primal feasible. Rearranging (3), we get wT = cT − yT A, or inpartitioned form
wT

B = cT
B − yT B, (5)

wT
R = cT

R − yTR. (6)The nonnegativity (and, in this ase, the feasibility) requirement (4) of w in partitioned form is
[wT

B
,wT

R
]T ≥ 0. Choosing yT = cT

B
B−1 we obtain

wT
B = cT

B − cT
BB−1B = 0, (7)

wT
R = cT

R − cT
BB−1R = dT

R ≥ 0, (8)where dR denotes the vetor formed by the primal redued osts of the nonbasi variables. Sine (7)is satis�ed with any basis and y is unrestrited in sign, a basis B is dual feasible if it satis�es (8). Thisis, however, nothing but the primal optimality ondition. Therefore, we an onlude that the dualfeasibility ondition is equivalent to the primal optimality ondition. Additionally, the dual logialsare equal to the primal redued osts. Therefore, wj and dj an be used interhangeably.Stating the dual when the primal has all types of variables is umbersome. However, we an thinkof the redued osts of the primal problem as the logial variables of the dual, .f. [9℄. In this way dualfeasibility an be expressed quite simply as shown in the next setion.In pratie, dual algorithms work on the primal problem using the omputational tools of the sparseprimal simplex method (SSX) but perform basis hanges aording to the rules of the dual.The reation of the updated pivot row p, i.e., the omputation of αp
j for all nonbasi indies j isan expensive operation in SSX (.f. [10℄). Traditional dual methods based on the Dantzig type pivotseletion make one iteration with the pivot row and disard it. The possible multiple use of this row



Maros Study of Dual Phase-1 4 of 17has motivated the author to develop a new algorithm alled GDPO [8℄. GDPO makes one step withthe pivot row whih, however, an orrespond to many iterations of the traditional method with verylittle extra work. As GDPO is monotone only in the sum of infeasibilities it has an inreased �exibility.It also has some additional favorable features that enhane its e�etiveness and e�ieny.3 The GDPO algorithmThis setion gives a brief desription of GDPO. A more detailed disussion an be found in the originalpaper by Maros [8℄.3.1 Theoretial bakgroundIt is known that the primal redued osts are the same as the dual logial variables, denoted by dj (.f.[9, pages 261�262℄). Therefore, the feasible solutions of the dual of (1) satisfy the following onditions.Type(xj) Value dj Remark
0 xj = 0 Immaterial
1 xj = 0 ≥ 0

1 xj = uj ≤ 0 j ∈ U

2 xj = 0 ≥ 0

3 xj = 0 = 0

(9)
In other words, a dual solution de�ned by sets (B,U) is feasible if the orresponding dj values satisfy(9).Sine dj of a type-0 variable is always feasible suh variables an be, and in fat are, ignored indual phase-1. Furthermore, dual logials of type-1 (bounded) variables an easily be made feasibleby moving the orresponding primal variables to their opposite bound. It an be done without basishange by simply updating the primal basi solution. For details, see [8℄ where this operation is alledfeasibility orretion.It an be onluded that only type-2 and type-3 variables need to be onsidered in an algorithmfor dual feasibility. We de�ne two infeasibility sets for them as follows.

P = {j : dj > 0 and type(xj) = 3}, (10)and
M = {j : dj < 0 and type(xj) ≥ 2}. (11)If all variables are of type-1 any basis an be made dual feasible by feasibility orretion.Using infeasibility sets of (10) and (11), the sum of dual infeasibilities is de�ned as

f =
∑

j∈M

dj −
∑

j∈P

dj, (12)where any of the sums is zero if the orresponding index set is empty. It is always true that f ≤ 0. Indual phase-1 the objetive is to maximize f subjet to the dual feasibility onstraints. When f = 0is reahed the solution beomes dual feasible (maybe after a feasibility orretion). If it annot beahieved the dual is infeasible.In an iteration of the dual simplex method �rst the outgoing basi variable is seleted whih de�nesthe pivot row. Let us assume row p is seleted somehow (i.e., the pth basi variable xBp will leave the



Maros Study of Dual Phase-1 5 of 17basis). The elimination step of the simplex transformation subtrats some multiple of row p from dR.If this multiplier is denoted by t the transformed value of eah dj an be written as a funtion of t:
dj(t) = dj − tαp

j , j ∈ R. (13)With this notation, dj(0) = dj and the sum of infeasibilities as a funtion of t an be expressed(assuming t is small enough suh that M and P remain unhanged) as:
f(t) =

∑

j∈M

dj(t) −
∑

j∈P

dj(t) = f(0) − t





∑

j∈M

αp
j −

∑

j∈P

αp
j



 . (14)Clearly, f of (12) an be obtained as f = f(0).The hange in the sum of dual infeasibilities, if t moves away from 0, is:
∆f = f(t) − f(0) = −t





∑

j∈M

αp
j −

∑

j∈P

αp
j



 . (15)Introduing notation
vp =

∑

j∈M

αp
j −

∑

j∈P

αp
j (16)(15) an be written as ∆f = −tvp. Therefore, requesting an improvement in the sum of dual infeasi-bilities (∆f > 0) is equivalent to requesting

−tvp > 0 (17)whih an be ahieved in two ways:If vp > 0 then t < 0 must hold, (18)if vp < 0 then t > 0 must hold. (19)As long as there is a vi 6= 0 with type(xBi) 6= 3 (type-3 variables are not andidates to leave the basis)there is a hane to improve the dual objetive funtion. The preise onditions will be worked out inthe sequel. From among the andidates we an selet vp using some simple or sophistiated (steepestedge type) rule.Let k denote the original index of the pth basi variable xBp, i.e., xk = xBp (whih is seleted toleave the basis). At this point we stipulate that after the basis hange dk of the outgoing variable takea feasible value. This is not neessary but it gives a better ontrol of dual infeasibilities.If t moves away from zero (inreasing or dereasing as needed) some of the djs move toward zero(the boundary of their feasibility domain) either from the feasible or infeasible side and at a spei�value of t they reah it. Suh values of t are determined by:
tj =

dj

αp
j

, for some nonbasi j indiesand they enable a basis hange sine dj(t) beomes zero at this value of t, see (13). It also means thatthe j-th dual onstraint beomes tight at this point. Let us assume the inoming variable xq has beenseleted. Currently, dk of the outgoing basi variable is zero. After the basis hange its new value isdetermined by the transformation formula of the simplex method giving
d̄k = −

dq

αpq

= −tq,



Maros Study of Dual Phase-1 6 of 17whih we want to be dual feasible. The proper sign of d̄k is determined by the way the outgoingvariable leaves the basis. This immediately gives rules how an inoming variable an be determinedone an outgoing variable (pivot row) has been hosen. Below is a verbal desription of these rules.1. If vp > 0 then tq < 0 is needed for (18) whih implies that the pth basi variable must leave thebasis at lower bound (beause d̄k must be nonnegative for feasibility). In the absene of dualdegeneray this means that dq and αp
q must be of opposite sign. In other words, the potentialpivot positions in the seleted row are those that satisfy this requirement.2. If vp < 0 then tq > 0 is needed whih is only possible if the outgoing variable xBp (alias xk) is oftype-1 leaving at upper bound. In the absene of degeneray this means that dq and αp

q must beof the same sign.3. If vp 6= 0 and the outgoing variable is of type-0 then the sign of dq is immaterial. Therefore, tosatisfy (17), if vp > 0 we look for tq < 0 and if vp < 0 hoose from the positive t values.It remains to see how vetor v = [v1, . . . , vm]T an be omputed for row seletion. In vetor form,(16) an be written as
v =

∑

j∈M

αj −
∑

j∈P

αj = B−1





∑

j∈M

aj −
∑

j∈P

aj



 = B−1ã (20)with obvious interpretation of auxiliary vetor ã. The latter is an inexpensive operation in terms ofthe revised simplex method.3.2 Analysis of the dual infeasibility funtion f(t)A detailed analysis is given in [8℄. Here we give the onlusions of it.It an be investigated how the sum of dual infeasibilities, f(t), hanges as t moves away from 0(t ≥ 0 or t ≤ 0). It an be shown that, in either ase, f(t) is a pieewise linear onave funtion withbreak points orresponding to di�erent hoies of the entering variable. The global maximum of thisfuntion is ahieved when its slope hanges sign. It gives the maximum improvement in the sum ofdual infeasibilities that an be ahieved with the seleted outgoing variable by making multiple use ofthe updated pivot row.The following ases are distinguished.1. If t ≥ 0 is required then the dual feasibility status of dj (and set M or P, thus the ompositionof f(t)) hanges for values of t de�ned by positions where
dj < 0 and αp

j < 0 or
dj ≥ 0 and αp

j > 02. If t ≤ 0 is required then the ritial values are de�ned by
dj < 0 and αp

j > 0 or
dj ≥ 0 and αp

j < 0.The seond ase an diretly be obtained from the �rst one by using −αp
j in plae of αp

j . In both asesthere is a further possibility. Namely, if type(xj) = 3 (free variable) and dj 6= 0 then at the ritialpoint the feasibility status of dj hanges twie (thus two ratios are de�ned). First when it beomeszero (feasible), and seond, when it beomes nonzero again. Both ases de�ne idential values of dj/α
p
jfor t.



Maros Study of Dual Phase-1 7 of 17Let the ritial values de�ned above for t ≥ 0 be arranged in an asending order: 0 ≤ t1 ≤ · · · ≤ tQ,where Q denotes the total number of them. For t ≤ 0 we make a reverse ordering: tQ ≤ · · · ≤ t1 ≤ 0,or equivalently, 0 ≤ −t1 ≤ · · · ≤ −tQ. Now we are ready to investigate how f(t) haraterizes thehange of dual infeasibility.Clearly, Q annot be zero, i.e., if row p has been seleted as a andidate it de�nes at least oneritial value, see (16). Assuming vp < 0 the initial slope of f(t), aording to (15), is
s0

p = −vp =
∑

j∈P

αp
j −

∑

j∈M

αp
j . (21)Now t ≥ 0 is required, so we try to move away from t = 0 in the positive diretion. f(t) keeps improvingat the rate of s0

p until t1. At this point dj1(t1) = 0, j1 denoting the position that de�ned the smallestratio t1 =
dj1(0)

αp
j 1

. At t1 the feasibility status of dj1 hanges. Either it beomes feasible at this pointor it beomes infeasible after t1.If t1 ≥ 0 then either (a) dj1 ≥ 0 and αp
j 1

> 0 or (b) dj1 ≤ 0 and αp
j 1

< 0. In these ases:(a) dj1(t) is dereasing.(i) If dj1 was feasible it beomes infeasible and j1 joins M. At his point s0
p dereases by αp

j 1
,see (21).(ii) If dj1 was infeasible (j1 ∈ P) it beomes feasible and j1 leaves P. Consequently, s0

p dereasesby αp
j 1
.If dj1 = 0 then we only have (i).(b) dj1(t) is inreasing.(i) If dj1 was feasible it beomes infeasible and j1 joins P. At his point s0

p dereases by −αp
j 1
,see (21).(ii) If dj1 was infeasible (j1 ∈ M) it beomes feasible and j1 leaves M. Consequently, s0
pdereases by −αp

j1
.If dj1 = 0 then we only have (i).Cases (a) and (b) an be summarized by saying that at t1 the slope of f(t) dereases by |αp

j 1
| giving

s1
p = s0

p − |αp
j 1
|. If s1

p is still positive we arry on with the next point (t2), and so on. The aboveanalysis is valid at eah point. Clearly, f(t) is linear between two neighboring threshold values. Forobvious reasons, these values are alled breakpoints. The distane between two points an be zero if abreakpoint has a multipliity > 1. Sine the slope dereases at breakpoints f(t) is a pieewise linearonave funtion as illustrated in Figure 1. It ahieves its maximum when the slope hanges sign. Thisis a global maximum. After this point the dual objetive starts deteriorating.
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f(t)

tt1 t2 t3 t4

Figure 1: The sum of dual infeasibilities as a funtion of t.If vp > 0 then t ≤ 0 is required. In this ase the above analysis remains valid if αp
j is substitutedby −αp

j . It is easy to see that both ases are overed if we take s0
p = |vp| and

sk
p = sk−1

p − |αp
j k
|, for k = 1, . . . , Q.3.3 A GDPO iteration step by stepLet t0 = 0 and fk = f(tk). Obviously, the sum of dual infeasibilities in the breakpoints an beomputed reursively as fk = fk−1 + sk−1

p (tk − tk−1), for k = 1, . . . , Q.Below, we give the desription of one iteration of the algorithm alled GDPO (for Generalized DualPhase One).An iteration of the Generalized Dual Phase-1 (GDPO) algorithm:1. Identify sets P and M as de�ned in (10) and (11). If both are empty, perform feasibilityorretion. After that the solution is dual feasible, algorithm terminates.2. Form auxiliary vetor ã =
∑

j∈M

aj −
∑

j∈P

aj.3. Compute the vetor of dual phase-1 redued osts: v = B−1ã, as in (20).4. Selet an improving andidate row aording to some rule (e.g., Dantzig [2℄ or a normalizedpriing [3; 5℄), denote its basi position by p. This will be the pivot row.If none exists, terminate: The dual problem is infeasible.



Maros Study of Dual Phase-1 9 of 175. Compute the p-th row of B−1: βT = eT
p B−1 and determine nonbasi omponents of the updatedpivot row by αp

j = βTaj for j ∈ R.6. Compute dual ratios for eligible positions following rules disussed in setion 3.2, aording to
vp < 0, or vp > 0. Store their absolute values in a sorted order: 0 ≤ |t1| ≤ · · · ≤ |tQ|.7. Set k = 0, t0 = 0, f0 = f(0), s0

p = |vp|.While k < Q and sk
p ≥ 0 do

k := k + 1
jk: the olumn index of the variable that de�ned the k-th smallest ratio, |tk|.Compute fk = fk−1 + sk−1

p (tk − tk−1), sk
p = sk−1

p − |αp
j k
|.end whileLet q denote the index of the last breakpoint for whih the slope sk

p was still nonnegative, q = jk.The maximum of f(t) is ahieved at this break point. The inoming variable is xq.8. Compute αq = B−1aq.Update basis inverse: B̄−1 = EB−1, E denoting the elementary transformation matrix reatedfrom αq using pivot position p.Update the basi/nonbasi index sets.Update solution: Interestingly, in dual phase-1 there is no need to arry the values of the primalbasi variables. They will only be needed in dual phase-2. Therefore the updating step belowan be omitted whih slightly speeds up the iterations. However, for ompleteness, the updatingoperations are presented below for ases when GDPO is used in onjuntion with some othermethods that require the updated primal basi variables.Update xB by x̄B = ExB, and set x̄Bp = xq + θP , where θP = xBp/α
p
q if vp > 0 or θP =

(xBp − uBp)/α
p
q if vp < 0.4 Computational study of GDPO algorithmDuring the theoretial analysis of the favorable features of GDPO in [8℄ it was often quoted that theyshow up more strikingly if several breakpoints are de�ned per iteration and the maximum of f(t) is notahieved at the �rst one, beause in this ase the large �exibility of the algorithm an well be utilized.Whether it ours in reality, one only an say if it is heked through a omputational study.In the sequel we give aount of a omparative study of GDPO with the �rst breakpoint methodwhih will be referred as the �traditional� dual phase-1 algorithm (TD).4.1 Charateristis of the test problemsThe purpose of the study was to investigate the e�etiveness of GDPO. The test environment wasthe simplex based experimental ode HIPLEX developed by the author. Though HIPLEX is �primaloriented� it ontains most of the omputational tools required by an implementation of the dual.HIPLEX has been designed to serve as a test environment of new algorithms and algorithmielements for the e�ient solution of large sale linear programming problems. As suh, it is an ex-perimental ode full of statements that gather information on the performane of the implementedalgorithms. In this way it is very suitable to study the e�etiveness of new elements.In the evaluation of GDPO, e�etiveness is de�ned in terms of the number of dual phase-1 iterations.As handling type-0 and type-1 variables in dual phase-1 is trivial (see dual feasibility orretion [8; 9℄),we have hosen problems whih are dominated by type-2 (nonnegative) and type-3 (free) variables.



Maros Study of Dual Phase-1 10 of 17To make the �ndings reproduible only widely aepted (and aessible) problems were used. Amongthem there were smaller, medium and large sale ones.Table 2 gives the main harateristis of the test problems used, namely, the number of onstraints(m), number of strutural variables (n̄), number of nonzeros in A, and the break-down of the numberof strutural variables by type. The problems are listed in alphabetial order of their names.



Maros Study of Dual Phase-1 11 of 17Table 2: # of variables by typeProblem Rows Columns Nonzeros Type-0 Type-1 Type-2 Type-325fv47 822 1571 11127 0 0 1571 080bau3b 2262 9799 29063 498 2986 6315 0agg 488 163 2541 0 0 163 0agg2 516 302 4515 0 0 302 0agg3 516 302 4531 0 0 302 0baxter 27441 15128 109823 0 1122 14006 0bnl1 643 1175 6129 0 0 1175 0bnl2 2325 3489 16124 0 0 3489 0boeing1 351 384 3865 0 228 156 0re_a 3516 4067 19054 0 0 4067 0re_b 9648 72447 328542 0 0 72447 0re_ 3068 3678 16922 0 0 3678 0re_d 8926 69980 312626 0 0 69980 0zprob 929 3523 14173 229 0 3294 0d6ube 415 6184 43888 0 0 6184 0dbir2 18906 27355 1148847 0 0 27355 0degen2 444 534 4449 0 0 534 0degen3 1504 1818 26230 0 0 1818 0degen4 4420 6711 107375 0 0 6711 0grow07 140 301 2633 0 280 21 0grow15 300 645 5665 0 600 45 0grow22 440 946 8318 0 880 66 0israel 174 142 2358 0 0 142 0maros 847 1443 10006 35 0 1408 0mod011 4481 10958 37425 1 1596 9361 0nst2 23003 14981 686396 0 0 14981 0osa-07 1118 23949 167643 0 0 23949 0osa-14 2337 52460 367220 0 0 52460 0osa-30 4350 100024 700160 0 0 100024 0perold 625 1376 6026 64 266 958 88pilot_we 723 2789 9218 78 294 2337 80rentaar 6804 9557 42019 650 179 8728 0sagr_2 32847 34580 141757 0 0 34580 0srs_3 16545 17420 71401 0 0 17420 0ssd6 147 1350 5666 0 0 1350 0ssd8 397 2750 11334 0 0 2750 0stap2 1090 1880 8124 0 0 1880 0stap3 1480 2480 19734 0 0 2480 0ship08l 778 4283 17085 0 0 4283 0ship12l 1151 5427 21597 0 0 5427 0stair 357 467 3857 82 6 373 6sto27 14441 34114 114973 0 0 34114 0stofor2 2157 2031 9492 0 0 2031 0stofor3 16676 15695 74004 0 0 15695 0sws 14310 12465 105480 0 0 12465 0uniolns 5421 45569 168220 2 1449 44118 0wood1p 244 2594 70216 0 0 2594 0woodw 1098 8405 37478 0 0 8405 0



Maros Study of Dual Phase-1 12 of 174.2 Evaluation of the test runsFirst, the results are shown in a �raw� tabular form in Table 3 followed by further tables that re�etthe onlusions obtained from the raw version.Table 3 shows the number of dual phase-1 iterations required by GDPO and TD, respetively. Thesolution strategy for eah omparative run is also inluded to identify saling, the seletion of startingbasis (logial or rash [11℄), and whether Devex priing was used.Partiularly interesting are the olumns giving the ratio of the iteration ounts. T/G means howmany times more iterations were made with the traditional method than with GDPO. Column G/Tis the reiproal of it.It an be seen that run strategies were not idential for all problems. There are several reasonsfor that. First, we had to hoose dual infeasible starting bases. When the all-logial did not satisfythis a rash basis was used. Seond, in ase of larger problems dual Devex was used to obtain morereasonable run times. Third, to avoid numerial di�ulties, several problems were saled prior tosolution. Presolve was not applied to any of the problems. It is important to note that for any givenproblem both GDPO and TD was run with idential settings whih is inluded in the table.The basis of the expeted e�etive operation of GDPO is the multiple use of the updated pivot rowwhih is measured by the number of breakpoints used for the maximization of f(t). In some sense wean view this measure as an algorithmi steplength. Table 4 demonstrates this feature of GDPO. Asthere is a huge variation in the �gures some aggregation was neessary to be able display the �ndings.Any row in the table shows how many times was the �rst, seond, . . . , 5th breakpoint the maximizerof the f(t) of an iteration, how many times was the maximizing breakpoint in the intervals 6 − 10,
11− 20, 21− 50 and how many times were used more than 50 breakpoints (50+). The total number ofphase-1 iterations is shown in the last olumn. The aggregate part of the table hides many interestingases, in partiular the 50+ olumn. To somewhat relieve this problem we introdued a olumn headedby �Max� whih shows the maximum number of breakpoints used in one iteration. For instane, in therow of mod011 we an see that from the 602 iterations in phase-1 (last olumn) it happened 31 timesthat the maximum of f(t) was ahieved at the 5th breakpoint. Furthermore, there was an iteration(Max) when 917 breakpoints were needed to obtain the maximum of f(t).The starting point for the assessment of the e�etiveness of GDPO is Table 3. It an be seen thatGDPO is more e�etive than TD in all but three ases. Column T/G shows how many times moreiterations were needed by TD in dual phase-1. Entries greater than 1 show ases when GDPO wasbetter. At the same time, this number an also be viewed as the measure of e�etiveness. In three asesthe number was slightly smaller than 1 indiating that in these ases TD was slightly more e�etive.For a better overview a summary table 5 is provided to show in how many ases and how many timeswas GDPO more e�etive than TD.



Maros Study of Dual Phase-1 13 of 17Table 3:Initial # Solution strategyProblem of dual # of dual ph-1 itns Ratios Saling Start bas. Devexinfeasibilities GDPO TD (k = 1) T/G G/T Y/N CB/LB Y/N25fv47 41 238 1033 4.34 0.23 Y LB N80bau3b 208 736 997 1.35 0.74 Y LB Yagg 95 11 107 9.73 0.10 Y LB Nagg2 171 13 109 8.38 0.12 Y LB Nagg3 171 13 109 8.38 0.12 Y LB Nbaxter 3259 2687 4482 1.67 0.60 Y CB Ybnl1 57 4 27 6.75 0.15 Y LB Ybnl2 156 49 134 2.73 0.36 Y LB Yboeing1 164 9 102 11.33 0.09 Y LB Nre_a 1156 476 1655 3.48 0.29 N CB Yre_b 14503 4604 12281 2.67 0.37 N CB Yre_ 1056 532 1559 2.93 0.34 N CB Yre_d 10409 3479 14798 4.25 0.23 N CB Yzprob 1521 191 1959 10.26 0.10 Y LB Nd6ube 2637 1209 6500 5.38 0.19 Y CB Ydbir2 9210 9631 9848 1.02 0.98 Y LB Ydegen2 425 143 574 4.01 0.25 Y LB Ydegen3 1249 571 1945 3.41 0.29 Y LB Ydegen4 2697 1177 6792 5.77 0.17 Y LB Ygrow07 21 1 14 14.00 0.07 Y CB Ngrow15 45 1 14 14.00 0.07 Y CB Ngrow22 66 1 14 14.00 0.07 Y CB Nisrael 24 1 24 24.00 0.04 Y LB Nmaros 162 666 799 1.20 0.83 Y LB Nmod011 4343 602 3753 6.23 0.16 Y CB Ynst2 11240 11507 11636 1.01 0.99 Y LB Yosa-07 9201 114 3456 30.32 0.03 Y CB Yosa-14 19695 141 3616 25.65 0.04 Y CB Yosa-30 37495 68 7785 114.49 0.01 Y CB Yperold 7 725 587 0.81 1.24 Y LB Npilot_we 91 580 1065 1.84 0.54 Y LB Nrentaar 2 1778 1629 0.92 1.09 Y LB Nsagr_2 8645 16676 27473 1.65 0.61 Y LB Ysrs_3 4355 11635 12765 1.10 0.91 Y LB Yssd6 218 46 147 3.20 0.31 Y CB Nssd8 353 6 30 5.00 0.20 Y CB Nstap2 238 442 578 1.31 0.76 Y CB Ystap3 315 532 714 1.34 0.75 Y CB Yship08l 581 39 587 15.05 0.07 Y CB Nship12l 708 51 958 18.78 0.05 Y CB Nstair 1 180 152 0.84 1.18 Y LB Nsto27 11541 4879 6844 1.40 0.71 Y CB Ystofor2 639 1366 1552 1.14 0.88 Y LB Nstofor3 5077 10620 11848 1.12 0.90 Y LB Nsws 2190 988 1694 1.71 0.58 Y CB Yuniolns 43914 4975 50841 10.22 0.10 Y CB Ywood1p 1057 30 1288 42.93 0.02 Y CB Nwoodw 1738 60 2520 42.00 0.02 Y CB N



Maros Study of Dual Phase-1 14 of 17Table 4:Number of breakpoints used # of itnsProblem 1 2 3 4 5 6�10 11�20 21�50 50+ Max in ph-125fv47 80 76 38 16 7 17 4 � � 18 23880bau3b 389 165 66 41 29 41 5 � � 14 736agg � 1 � 2 � 6 2 � � 18 11agg2 1 1 � 3 1 4 � 3 � 48 13agg3 1 1 � 3 1 4 � 3 � 48 13baxter 1381 331 157 142 74 201 188 178 35 194 2687bnl1 � � � � � � 4 � � 17 4bnl2 17 18 4 � � � 10 � � 19 49boeing1 1 � � � 2 3 2 � 1 136 9re_a 79 62 39 27 30 67 79 57 36 474 476re_b 103 179 169 203 171 702 287 875 1915 3538 4604re_ 102 93 62 49 20 89 49 47 21 397 532re_d 108 105 151 109 133 548 656 733 936 3948 3479zprob 46 71 32 12 8 5 2 4 11 172 191d6ube 103 90 83 81 92 300 231 139 90 821 1209dbir2 8851 587 130 34 22 6 1 � � 13 9631degen2 19 34 64 7 5 11 � 1 2 58 143degen3 128 131 247 23 11 14 11 3 3 91 571degen4 312 165 189 109 111 185 90 10 6 162 1177grow07 � � � � � � � 1 � 21 1grow15 � � � � � � � 1 � 45 1grow22 � � � � � � � � 1 66 1israel � � � � � � � 1 � 24 1maros 258 200 97 44 24 34 8 1 � 32 666mod011 260 107 64 46 31 52 17 10 15 917 602nst2 10974 298 85 35 19 59 31 6 � 26 11507osa-07 37 24 3 6 1 2 4 5 32 4503 114osa-14 70 18 4 2 1 2 3 6 39 9454 145osa-30 18 3 4 4 2 2 1 6 39 3654 79perold 414 156 47 18 21 38 15 14 2 154 725pilot_we 341 84 39 16 11 42 36 9 2 103 580rentaar 1737 33 6 � � 1 1 � � 11 1778sagr_2 10625 5186 � 865 � � � � � 4 16676srs_3 8311 2995 298 23 8 � � � � 5 11635ssd6 2 2 4 2 2 6 14 10 4 100 46ssd8 � � � 1 � 1 � 1 3 260 6stap2 65 98 58 64 26 83 28 17 3 55 442stap3 103 124 46 59 39 87 39 32 3 90 532ship08 16 2 � 1 12 � � � 8 73 39ship12 13 6 9 9 1 1 � � 12 62 51stair 147 30 1 � 1 � 1 � � 14 180sto27 612 725 916 520 484 1006 424 191 1 56 4879stofor2 583 450 179 99 30 25 � � � 10 1366stofor3 3730 3491 1604 761 443 546 44 1 � 21 10620sws 367 332 12 85 31 71 70 � � 17 988uniolns 441 627 225 359 96 348 2659 220 � 34 4975wood1p � � � � � � 5 8 17 588 30woodw � 2 � 2 4 7 7 15 23 801 60



Maros Study of Dual Phase-1 15 of 17In general, a 25% improvement of an optimization algorithm is viewed remarkable. If we raise it to50% than it an be seen that GDPO ahieves this improvement in 35 ases out of the total of 48, seeTable 5. In partiular, in 13 ases the e�etiveness improved more than 10 times. The performane ofGDPO on the osa family of problems proved to be quite outstanding where, in the best ase (osa-30),the improvement was 114×.Algorithms that use the �rst breakpoint (like TD) an redue the number of dual infeasibilities onlyone by one (exept when degeneray helps ahieve more). Though GDPO is monotone only in the sumof infeasibilities it is able to redue the number of infeasibilities in one iteration quite dramatially.The best examples of this situation are shown in Table 6 (altogether 20 problems).Table 4 demonstrates that GDPO atively uses the breakpoints of f(t). Even more an be seen.The theoretially best ase is to eliminate all dual infeasibilities in a single iteration. This tableshows that this best performane is atually ahieved on real life problems. They are the grow family(grow07, grow15, grow22), and israel. In the grow problems there are relatively few type-2 variables(21, 45 and 66, resp.). However, if we start with a rash basis all dual logials orresponding to thesepositions are dual infeasible. The f(t) funtion de�ned in the �rst iteration of these problems ahievesits maximum by using up all breakpoints (21, 45 and 66 [the same as the number of type-2 variables℄)and it makes all dual logials feasible in one iteration. In israel all variables are type-2 but GDPOwas able to ahieve the theoretially best possible e�etiveness even in this ase.Table 5: E�ieny of GDPO measured in the number of iterationsImprovement Number of times
1.0 − 1.5× 10
1.6 − 3.0× 7
3.1 − 5.0× 7
5.1 − 10.0× 8More than 10× 13Deterioration
0.8 − 1.0× 3Total 48



Maros Study of Dual Phase-1 16 of 17Table 6: Partiularly fast redution of the number of dual infeasibilities to ahieving dual feasibilityInitial # of GDPOProblem dual inf. iterationsagg 95 11agg2 171 13agg3 171 13bnl1 57 4boeing1 164 9grow07 21 1grow15 45 1grow22 66 1israel 24 1mod011 4343 602osa-07 9201 114osa-14 19695 141osa-30 37495 68ssd6 218 46ssd8 353 6ship08l 581 39ship12l 708 51uniolns 43914 4975wood1p 1057 30woodw 1738 605 ConlusionsThe purpose of this paper was to study the omputational performane of the GDPO dual phase-1algorithm [8; 9℄.Experiene obtained through the theoretial and omputational investigations of GDPO an beinterpreted and summarized as follows.1. GDPO ontains the ��rst breakpoint� algorithms as speial ases thus it is a generalization ofthem.2. GDPO is apable of multiply utilizing the updated pivot row and thus making a progress thatorresponds to several traditional iterations.3. GDPO is monotone only in the sum of infeasibilities whih opens up a huge �exibility enablingthe hoie of a properly sized pivot whih results in substantially better numerial harateristis.4. In ase of dual degeneray GDPO has a muh better hane to make a non-degenerate iteration.5. GDPO an be implemented easily and the iteration speed hardly deteriorates ompared to TDif some advaned tehniques of omputer siene are used.6. The theoretially favorable features of GDPO do materialize in pratie to a large extent.



Maros Study of Dual Phase-1 17 of 177. Regarding e�etiveness, GDPO supersedes the traditional ��rst breakpoint� method nearly al-ways. In several real problems it an work with maximum e�etiveness, i.e., an make the solutiondual feasible in one non-trivial iteration.8. The main reason for the favorable performane of GDPO is that it makes the maximum progresstowards dual feasibility that an be ahieved with a given outgoing variable whih otherwisewould be possible only by many traditional dual iterations. If many breakpoints are used thedi�erene an be very substantial.Based on the above we an onlude that GDPO is both theoretially and omputationally animportant algorithm that is well positioned to be inluded in the toolbox of modern simplex imple-mentations.Referenes[1℄ G.B. Dantzig. Maximization of a linear funtion of variables subjet to linear inequalities. InT.C. Koopmans, editor, Ativity analysis of prodution and alloation, pages 339�347. Wiley, NewYork, 1951.[2℄ G.B. Dantzig. Linear Programming and Extensions. Prineton University Press, Prineton, 1963.[3℄ J.J.H. Forrest and D. Goldfarb. Steepest edge simplex algorithms for linear programming. Math-ematial Programming, 57(3):341�374, 1992.[4℄ R. Fourer. Notes on the dual simplex method. Unpublished, Marh 1994.[5℄ P.M.J. Harris. Pivot Seletion Method of the Devex LP Code. Mathematial Programming, 5:1�28,1973.[6℄ C.E. Lemke. The Dual Method of Solving the Linear Programming Problem. Naval ResearhLogistis Quarterly, 1:36�47, 1954.[7℄ I. Maros. A Pieewise Linear Dual Proedure in Mixed Integer Programming. In F. Giannesi,S. Komlósi, and T. Rapsák, editors, New Trends in Mathematial Programming, pages 159�170.Kluwer Aademi Publishers, 1998.[8℄ I. Maros. A Pieewise Linear Dual Phase-1 Algorithm for the Simplex Method. ComputationalOptimization and Appliations, 26:63�81, 2003.[9℄ I. Maros. Computational Tehniques of the Simplex Method, volume 61 of International Seriesin Operations Researh and Management. Kluwer Aademi Publishers, Boston, 2003. 325+xxpages, Researh monograph.[10℄ I. Maros and G. Mitra. Simplex Algorithms. In J. Beasley, editor, Advanes in Linear and IntegerProgramming, pages 1�46. Oxford University Press, 1996.[11℄ I. Maros and G. Mitra. Strategies for Creating Advaned Bases for Large-Sale Linear Program-ming Problems. INFORMS Journal on Computing, 10(2):248�260, Spring 1998.


