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Abstract

Synthetic gene drive constructs are being developed to control disease vectors,
invasive species, and other pest species. In a well-mixed random mating population
a sufficiently strong gene drive is expected to eliminate a target population, but it
is not clear whether the same is true when spatial processes play a role. In species
with an appropriate biology it is possible that drive-induced reductions in density
might lead to increased inbreeding, reducing the efficacy of drive, eventually
leading to suppression rather than elimination, regardless of how strong the
drive is. To investigate this question we analyse a series of explicitly solvable
stochastic models considering a range of scenarios for the relative timing of mating,
reproduction, and dispersal and analyse the impact of two different types of gene
drive, a Driving Y chromosome and a homing construct targeting an essential
gene. We find in all cases a sufficiently strong Driving Y will go to fixation and the
population will be eliminated, except in the one life history scenario (reproduction
and mating in patches followed by dispersal) where low density leads to increased
inbreeding, in which case the population persists indefinitely, tending to either
a stable equilibrium or a limit cycle. These dynamics arise because Driving Y
males have reduced mating success, particularly at low densities, due to having
fewer sisters to mate with. Increased inbreeding at low densities can also prevent
a homing construct from eliminating a population. For both types of drive, if
there is strong inbreeding depression, then the population cannot be rescued by
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inbreeding and it is eliminated. These results highlight the potentially critical role
that low-density-induced inbreeding and inbreeding depression (and, by extension,
other sources of Allee effects) can have on the eventual impact of a gene drive on
a target population.

eywords: Genetic biocontrol / Population dynamic model / Difference equations
iscrete time dynamical systems / Local mate competition / Neimark-Sacker bifurcation

Introduction
ene drive is a process of biased inheritance whereby a genetic element can be transmit
d from parents to offspring at a greater-than-Mendelian rate and thereby increase in
equency in a population (Burt & Crisanti, 2018). Many naturally-occurring gene driv
stems have been described (Burt & Trivers, 2006; Lindholm et al., 2016; Fishman
McIntosh, 2019; Burga et al., 2020), and there is increasing interest in potentiall

sing synthetic drivers to control disease vectors, harmful invasive species, and othe
ests (Bier, 2021; Hay et al., 2021; Nolan, 2021). This interest derives in part from th
ct that driving elements can spread in populations even if they cause some harm t
e organisms carrying them, even disrupting reproduction to such an extent that th
opulation could be substantially suppressed or eliminated (Burt, 2003; Godfray et al
17). Potential strategies for population suppression include the use of gene driv
nstructs to produce a male-biased sex ratio, or to knock-out genes needed for surviva
reproduction, or both (Galizi et al., 2014; Kyrou et al., 2018; Simoni et al., 2020).

ecause drive depends on a deviation from Mendelian transmission it cannot operat
wholly asexual populations, and, moreover, it will tend to be less effective in inbred

opulations (i.e., with mating of close relatives), where the frequency of heterozygotes i
duced relative to outcrossed populations (Burt & Trivers, 2006; Agren & Clark, 2018
he extent of inbreeding in a population can be affected by many factors, including
otentially, population density. In particular, in some species, when densities are low, th
ly mates available may be relatives, and the frequency of inbreeding correspondingl
igh. In such a species, release of a gene drive could lead to a reduction in population
ensity, which in turn leads to increased inbreeding, reducing the effectiveness of th
rive and the ultimate impact on population density (relative to what would hav
curred had there been no change in inbreeding), potentially even making the differenc
etween the target population persisting or being eliminated (Bull et al., 2019).

revious modelling has investigated some aspects of this problem. The reduced efficac
drive in the face of inbreeding has been analysed in numerous contexts, including th
tosomal killers (Petras, 1967), B-chromosomes (Burt & Trivers, 1998), transposabl
ements (Wright & Schoen, 1999), MEDEA-like elements (Noble et al., 2021), and
gineered gene drive constructs for population suppression (Drury et al., 2017). In
ch case the breeding system was treated as an exogenously determined variable
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amilton (1967) demonstrated that, in species whose biology is such that low densit
ads to increased inbreeding, low density could be a barrier to the spread of a Driving Y
romosome. Again, population density in his model was an exogenous variable, rathe
an an endogenous one responding to the presence of the Driving Y. In the closes
recedent for the modelling presented here, Bull et al. (2019) analysed the impact o
o different types of gene drives on a population when the frequency of sib mating i
sumed to increase as population mean fitness declines, and found that population
imination could be prevented, even with perfect drives. However, they did not mode
opulation density explicitly. Finally, while deterministic spatial models using partia
ifferential equations can show population elimination by sufficiently strong drive
eaghton et al., 2016), stochastic individual-based models often lead to suppression
ut not elimination (North et al., 2013, 2019, 2020; Eckhoff et al., 2017), potentiall
nsistent with a role for low density inbreeding, though inbreeding was not monitored
manipulated in these models. More recently, Champer et al. (2021) analysed an
dividual-based model of gene drives in continuous space, and observed that preventin
breeding promoted elimination, consistent with expectations, but did not study thi
sult in detail.

o more fully investigate the potential role of low-density-induced inbreeding in prevent
g population elimination, we have analysed a series of explicitly solvable stochasti
odels that include spatial structure, gene drive, and alternative life history scenario
mating, dispersal, and reproduction. We first focus on Driving Y chromosomes, and
nsider seven life history scenarios. In all of them a sufficiently strong Driving Y wil
iminate a population, except the one scenario in which low population density leads t
creased inbreeding, in which case there is suppression but not elimination, no matte
ow strong the drive. We then show that the same life history also prevents population
imination by a gene drive that uses the homing reaction. In both cases population
ersist because inbreeding gives a fitness advantage to the wildtype chromosome ove
e driver; incorporating strong inbreeding depression into the models removes thi
tness advantage, and the population is then eliminated. These results highlight th
y role that low-density-induced inbreeding can have on the fate of a population faced
ith a gene drive, and emphasize the importance of incorporating inbreeding depression
nd, by extension, other negative effects of low density on population growth rates) in
odels of suppressive gene drives.

Driving Y
e model an infinite sized population with discrete generations. Two key events in
species’ life history are mating of males and females, and offspring production b
ated females to make the (unmated) males and females of the next generation. Each
these activities can occur either in an infinite well-mixed population (“in the cloud”
after individuals have settled randomly into an infinite array of “patches”, so in
dition to mating and reproduction there is also movement. Mating is random, so tha

3



Journal Pre-proof

if s108

in s109

in r110

su t111

m112

is113

is e114

d s115

oc116

W e117

tr118

ch s,119

th120

fe s121

p122

fe123

W124

or125

F126

2127

A128

b129

co y130

at y131

th132

133

134

135

136

)137

w138

F -139

ti s140

a t141

w142

B .143

S g144
Jo
ur

na
l P

re
-p

ro
of

mating occurs in the cloud then it is according to the proportion of the different type
the cloud, whereas if it occurs in patches, then it is according to the different type
the particular patch. Females mate only once in their life, and store the sperm fo
bsequent reproduction, whereas a male may mate multiple times, and all females ge
ated as long as there is at least one male in the cloud or patch. Offspring production
density-dependent, according to the Beverton & Holt (1957) model; if reproduction
occurring in the cloud then the average number of offspring produced per femal
epends on the density (of mated females) in the cloud, whereas if reproduction i
curring in patches then it is the local density that counts.

e first consider the release of males carrying a Driving Y chromosome engineered to b
ansmitted to more than 50% of the offspring (e.g., by disrupting transmission of the X
romosome (Galizi et al., 2014; Fasulo et al., 2020)). There are thus two types of male
ose with Wildtype (W) and Driving (D) Y chromosomes and two types of mated
males, those mated to a W-male and those mated to a D-male. W-mated female
roduce on average equal numbers of female and W-male offspring, whereas D-mated
males produce on average female and D-male offspring at a ratio (1−m) : m.

e now consider a range of scenarios for the location of mating and reproduction (cloud
patches) and the timing of movement between them. Results are summarised in

igure 1.

.1 Scenario 1: A well-mixed population
ssumptions and derivation. Our starting point is a non-spatial model in which
oth mating and offspring production occur in the cloud, which is of infinite size and
ntains individuals at a finite density. The Driving Y is introduced at a given densit
t = 0 into a wildtype (W) population at equilibrium. The (finite) population densit
en evolves from generation to generation as

(Total density of offspring)t+1

= 2 (Total density of mated females)t
R

1 + β(Total density of mated females)t

⇒ F ′U +M′
W +M′

D = 2R (FW + FD)
1 + β (FW + FD) (1

here FW,FD are the densities of W- and D-mated females in generation t and
′
U,M′

W,M′
D are the densities of female, W-male and D-male offspring in genera

on t+ 1, R is the intrinsic (or low density) rate of increase of the population, and β i
parameter describing the strength of density dependence, where 1/β is the density a
hich the population growth rate is half its maximum value.

efore the release of the Driving Y and at equilibrium, we have F eq
U +Meq

W = 2RFeq
W

(1+β Feq
W )

ince W-mated females produce on average equal number of female and W-male offsprin
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for inbreeding? z’/z Outcome 

(Y)
Outcome 

(Pop)

1 No 2m Fix Elimination

2 No 2m Fix Elimination

3 No 2m Fix Elimination

4 No 2m Fix Elimination

5 Yes See 

Eq 21b Variable Persistence

6 No 2m Fix Elimination

7 No See SI

Eq 31b Fix Elimination

Reproduction

Mating

Reproduction

Mating

ReproductionMating

Reproduction Mating

ReproductionMating

Cloud activities

Patch activities

Reproduction
♀

Mating

♂
Reproduction Mating

igure 1: Consequences of alternative life histories for the fate of a Driving Y and th
opulation. z′/z: Odds ratio for a male carrying a Driving Y in one generation to tha
the previous generation. Outcome (Y): Outcome for the proportion of males carryin
e Driving Y. Fix: Driving Y goes to fixation; Variable: Driving Y may go to fixation
main polymorphic, or be lost. Outcome (Pop): Outcome for the population assumin
sufficiently strong drive (e.g., m = 1).
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d since all the female offspring turn into W-mated females, we have F eq
U =Meq

W =
eq
W . The prerelease equilibrium equation becomes

2F eq
W = 2RF eq

W
1 + β F eq

W

⇒ F eq
W = (R− 1)/β.

-mated females produce female offspring and W-male offspring in equal number
veraged over the entire cloud) whereas D-mated females produce a skewed ratio o
−m) : m female offspring vs D-male offspring, so

{F ′U,M′
W,M′

D} = R{(FW + 2 (1−m)FD) ,FW, 2mFD}
1 + β (FW + FD) (2

s mating is random, the probability that a female offspring becomes a W-mated femal
M′

W/(M′
W +M′

D) = FW/(FW + 2mFD) whereas the probability that she become
D-mated female isM′

D/(M′
W +M′

D) = 2mFD/(FW + 2mFD). So, the densities o
- and D-mated females in generation t+ 1 are

{F ′W,F ′D} = R {FW (FW + 2 (1−m)FD) , 2mFD (FW + 2 (1−m)FD)}
(FW + 2mFD) (1 + β (FW + FD)) (3

esults. We now introduce a change of variables S = FW + FD and z = FD/FW and
e equations above become

{S ′, z′} =
{
RS (1 + 2 (1−m) z)

(1 + β S) (1 + z) , 2mz

}
(4

he recurrence equations (4) for {S, z} are sufficient to update the system from genera
on t to generation t+ 1. Note that as long as m > 0.5, z will increase without bound
plying that the Driving Y tends to fixation and, if m is sufficiently large, then th

opulation will tend to elimination – most obviously if m = 1, then the population wil
nd to be all male.

.2 Scenario 2: Local mating
ssumptions and derivation. Now suppose male and female offspring settle ran
omly into patches, there is local competition within each patch among males to mat
ith the females, and then the mated females return to the cloud and reproduce in
density-dependent manner as described in Scenario 1. In Scenario 1, the prereleas
uilibrium density of W-mated females was shown to be F eq

W = (R− 1)/β.

this model, the total density of offspring is again given by (1). We allocate th
ell-mixed offspring population in the cloud into (an infinite number of) patches o

6
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lume V . The actual (integer) number of offspring in each patch is Poisson distributed
ith a mean

V (F ′U +M′
W +M′

D) = 2RV (FW + FD)
1 + β (FW + FD)

d ranges from zero to infinity. We restrict mating only among members of the sam
atch and all females mate if there is at least one male in the patch. Due to stochasticity
fraction of patches will contain zero males and as a result a fraction of the female
ill not mate (the lower the population density in the cloud, the larger the fraction o
males that will be unsuccessful in mating due to a lack of males in their patch).

quation (2) that gives the number of offspring in the next generation hold
ere too, so a patch of males and females of volume V consists (on average) o

W + 2 (1−m)FD)RV/(1 + β (FW + FD)) females, FW RV/(1 + β (FW + FD)) W
ales and 2mFD RV/(1 + β (FW + FD)) D-males. The probabilities of having
oisson-distributed set of {FU,MW,MD} offspring in a patch are thus

pF =
e
− (FW+2(1−m)FD)RV

1+β (FW+FD)
(

(FW+2(1−m)FD)RV
1+β (FW+FD)

)FU

FU!

pW =
e
− FWRV

1+β (FW+FD)
(

FWRV
1+β (FW+FD)

)MW

MW!

pD =
e
− 2mFD RV

1+β (FW+FD)
(

2mFD RV
1+β (FW+FD)

)MD

MD!

he probability that a patch contains MW = MD = 0 males is (pW × pD) |MW=MD=0=
(FW+2mFD)RV

1+β (FW+FD) , which goes to 0 when V →∞ and goes to 1 when V → 0 (i.e. when
e volume V is so infinitesimally small that it is certain that any patch with a femal
ill contain no males).

he probability of k females, out of the FU females in a patch, becoming W-mated
males is ( MW

MW+MD
)k ( MD

MW+MD
)FU−k FU!

k!(FU−k)! since every female undergoes a Bernoull
ial in picking a male out of the MW W-males and MD D-males in her patch. Th
pected number of W-mated females in a patch, conditional on {FU,MW,MD}, is thu

FU∑

k=0
k

(
MW

MW + MD

)k ( MD

MW + MD

)FU−k FU!
k! (FU − k)! = FU MW

MW + MD
= FU gW

here gW = MW
MW+MD

is the fraction of W-males in the patch. Similarly, the expected
umber of D-mated females in a patch, conditional on {FU,MW,MD}, is FU gD =
U

MD
MW+MD

.

e introduce M = MW + MD and use Wolfram Mathematica to evaluate the densities o
-mated and D-mated females arising from the two types of pairings, averaged over al

7
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e mating cohorts (the division by V converts the expected number of mated female
the mating cohorts to a density):

F ′W = 1
V

∞∑

M=1

M∑

MW=1

∞∑

FU=1
FU gW pF pW pD =

=

(
1− e−

(FW+2mFD)RV
1+ β(FW+FD)

)
(FW + 2 (1−m)FD) RFW

(FW + 2mFD) (1 + β(FW + FD)) (5a

F ′D = 1
V

∞∑

M=1

M∑

MD=1

∞∑

FU=1
FU gD pF pW pD =

=
2
(

1− e−
(FW+2mFD)RV

1+β (FW+FD)

)
(FW + 2 (1−m)FD)mRFD

(FW + 2mFD) (1 + β(FW + FD)) (5b

esults. We introduce the change of variables S = V (FW + FD), z = FD/FW and
= β/V ; equations (5a)-(5b) now become:

{S ′, z′} =





(
1− e−

S(1+2mz)R
(1+αS)(1+z)

)
RS (1 + 2 (1−m) z)

(1 + αS) (1 + z) , 2mz





(6

he recurrence equations (6) are again sufficient to update this system from generation
to generation t + 1. The transition equation for z is the same as in Scenario 1
dicating, again, that the Driving Y will go to fixation, and, if m is sufficiently large
e population will be eliminated.

.3 Scenario 3: Local density-dependent reproduction
ssumptions and derivation. We now reverse the location of events, so matin
curs in the cloud and reproduction occurs in patches (subject to local density depen
ence). The cloud densities of W- and D-mated females in generation t are {FW,FD}
d a Poisson-distributed random sample of {FW,FD} W- and D-mated females with
eans {V FW, V FD}, is drawn from the cloud and settles in each patch. The probabil
es of having FW and FD mated females in a patch are

{P (FW | V FW) ,P (FD | V FD)} =
{
e−V FW(V FW)FW

FW! ,
e−V FD(V FD)FD

FD!

}
(7

this model the reproduction rate of mated females depends on the number of th
ated females in the local patch. We assume the number of surviving offspring that each

8
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ated female produces is Poisson-distributed with a mean λ = 2R/ (1 + α (FW + FD)
here α > 0 is a density dependence parameter appropriate for patches instead of th
oud. Note that the maximum low-density rate of increase is now R/ (1 + α). Th
robability that the FW + FD mated females generate j offspring in total in a given
atch is then

(j | FW,FD) = e−λ(FW+FD)λj (FW + FD)j

j! =
2je−

2(FW+FD)R
1+α (FW+FD)

(
(FW+FD)R

1+α (FW+FD)

)j

j!
(8

hese j offspring are made up of iF females, iW W-males and j − iF− iW D-males. Th
robability of a {iF, iW, j − iF − iW} triplet is derived from a multinomial distribution
ith j trials and normalised weights

{
FW/2+FD(1−m)

FW+FD
, FW/2

FW+FD
, mFD

FW+FD

}
, since, on average

actions of 1/2 and 1−m of W-mated and D-mated females’ offspring are female, with
e rest of the offspring being W- and D-males, respectively.

ence, the probability P (iF, iW, j − iF − iW | j,FW,FD) of having {iF, iW, j − iF − iW
male, W-male and D-male offspring in the patch (conditional on j total offspring from

W,FD} mated females) using the weights above is

P (iF, iW, j − iF − iW | j,FW,FD) = 2−iWFW
iW (mFD)−iF−iW

(
mFD

FW + FD

)j

×
(

FW

2 + FD (1−m)
)iF j!

iF! iW! (j − iF − iW)! (9

d the expected numbers of female, W-male and D-male offspring in the patch
onditional on j total offspring from {FW,FD} mated females) is obtained by summin
er all possible values of iF and iW:

E[females | j,FW,FD] =
j∑

iF=0

j−iF∑

iW=0
iF P (iF, iW, j − iF − iW | j,FW,FD)

= j (FW + 2 (1−m) FD)
2 (FW + FD)

E [W - males | j,FW,FD] =
j∑

iF=0

j−iF∑

iW=0
iW P (iF, iW, j − iF − iW | j,FW,FD)

= j FW

2 (FW + FD) (10

E[D - males | j,FW,FD] =
j∑

iF=0

j−iF∑

iW=0
(j − iF − iW)P (iF, iW, j − iF − iW | j,FW,FD)

= j mFD

FW + FD
.

9
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e use (7), (8) and (10) to evaluate the densities of the offspring that will aggregat
ack in the cloud, {F ′U,M′

W,M′
D}, by summing the respective products over all possibl

lues of FW, FD and j from 0 to infinity and dividing by V :

he cloud density F ′U of female offspring before mating is:

′
U = 1

V

∞∑

FW=0

∞∑

FD=0

∞∑

j=0
E[females | j,FW,FD]P (j | FW,FD)P (FW | V FW)P (FD | V FD)

= R

α
e−V (FW+FD)(FW + 2 (1−m)FD)(−V (FW + FD))−

1+α
α γ

[
1 + 1

α
,−V (FW + FD)

]

(11

here γ is the lower incomplete gamma function.

he cloud densityM′
W of W-male offspring is:

′
W = 1

V

∞∑

FW=0

∞∑

FD=0

∞∑

j=0
E[W - males | j,FW,FD]P (j | FW,FD) P (FW | V FW) P (FD | V FD)

= R

α
e−V (FW+FD)FW (−V (FW + FD))−

1+α
α γ

[
1 + 1

α
,−V (FW + FD)

]
(12

he cloud densityM′
D of D-male offspring is:

M′
D = 1

V

∞∑

FW=0

∞∑

FD=0

∞∑

j=0
E[D - males | j,FW,FD]P (j | FW,FD) P (FW | V FW) P (FD | V FD)

= 2mR

α
e−V (FW+FD)FD(−V (FW + FD))− 1+α

α γ
[
1 + 1

α
,−V (FW + FD)

]
(13

ll the aggregated offspring in the cloud form a single mating pool, with each femal
oosing a random mate. Given that there will always be at least one male in th
nfinite) mating pool, all unmated females become mated females (i.e. F ′W +F ′D = F ′U
d the fractions of the resulting W- and D-mated females are simply equal to th
actions of W- and D-males in the cloud, i.e. M′W

M′W+M′D
and M′D

M′W+M′D
. From (11),(12

d (13) it follows that the fractions of W- and D-males in the cloud mating pool reduc
M′W

M′W+M′D
= FW
FW+2mFD

and MD
MW+MD

= 2mFD
FW+2mFD

, respectively. Thus, the densities o

10
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ated females in the cloud in generation t+ 1 are

{F ′W,F ′D} =
{
F ′U

FW

FW + 2mFD
,F ′U

FW

FW + 2mFD

}

⇒ F ′W = F ′U
FW

FW + 2mFD

= R

α
e−V (FW+FD)FW (FW + 2 (1−m)FD)

FW + 2mFD
(−FW −FD)−

1+α
α γ

[
1 + 1

α
,−FW −FD

]
,

(14a

F ′D = F ′U
2mFD

FW + 2mFD

= 2mR

α
e−V (FW+FD)FD (FW + 2 (1−m)FD)

FW + 2mFD
(−FW −FD)−

1+α
α γ

[
1 + 1

α
,−FW −FD

]

(14b

esults. The change of variables used in previous models, S = V (FW + FD) and
= FD/FW, gives the recurrence equations that update the state variables from
neration t to generation t+ 1:

{S ′, z′} =


−

e−SR (−S)−1
α (1 + 2 (1−m) z) γ

[
1 + 1

α
,−S

]

α (1 + z) , 2mz



 (15

gain, the Driving Y tends to fixation, and, for sufficiently large m, the population wil
nd to elimination.

.4 Scenario 4: Local mating followed by local reproduction
ssumptions and derivation. In this scenario males and unmated females settl
ndomly into patches, mate locally, reproduce in a (locally) density-dependent manne
en males and unmated females rise back again to the cloud to be re-assorted back t
atches. It is convenient to derive the recurrence equations for this model by startin
ith the stage in generation t at which all the female and male offspring find themselve
ell-mixed in a cloud, which contains an (infinite) number of (unmated) females, W- and
-males with (finite) densities {FU,MW,MD}. All the cloud inhabitants then settl
to patches, with each patch containing on average V (FU +MW +MD) individual
s in Scenario 2, the actual number of individuals in a patch is Poisson-distributed
ith means {V FU, V MW, V MD}, for the females, W-males and D-males, respectivel
he probabilities {pF, pW, pD} of having a set of {FU,MW,MD} individuals in a patch
e

{pF, pW, pD} =
{
e−V FU (V FU)FU

FU! ,
e−V MW (V MW)MW

MW! ,
e−V MD (V MD)MD

MD!

}
(16

11
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ach of the FU unmated females settling in a patch will randomly chose a single W-mal
D-male partner from within her patch. The probability of the FU unmated female
a patch becoming {FW,FU − FW} W- and D-mated females, respectively, is thus

P(FW,FU − FW | FU,MW,MD)

=




( MW
MW+MD

)FW( MD
MW+MD

)FU−FW FU!
FW! (FU−FW)! if FU (MW + MD) 6= 0

0 if FU (MW + MD) = 0
(17

e set FD = FU−FW and then use (8) for the probability P (j | FW,FU − FW) that th
U mated females in a given patch generate j offspring in total and (9) for the probabi
y P (j − iM, iW, iM − iW | j,FW,FU − FW) of having {iF = j − iM, iW, iD = iM − iW
male, W-male and D-male offspring in the patch (conditional on j total offspring from

W,FU − FW} mated females).

e can now derive the new cloud densities {F ′U,M′
W,M′

D}, havin
arted from {FU,MW,MD} in the previous generation. We start with
F = j − iM, iW, iD = iM − iW} new female, W-male and D-male offspring in
atch, conditional on {FU,MW,MD = M−MW} offspring from the previous generation
aving settled in the patch and having produced {FW,FU − FW} mated females wh
turn have produced j = iF + iW + iD offspring in total. We then combine the variou

robabilities in (8), (9), (16) and (17), introduce iF = j − iM and MD + MW = M
d sum over all possible values of {iW, iM, j,FW,MW,M,FU} to evaluate the averag
mbers of female, W-male and D-male offspring (across all patches) and then divid
em by V to convert them into the densities {F ′U,M′

W,M′
D} in the next generation

e use Wolfram Mathematica to evaluate each of the 7-deep nested sums):

F ′U,M′
W,M′

D} = 1
V

∞∑

FU=1

∞∑

M=1

M∑

MW=0

FU∑

FW=0

∞∑

j=0

j∑

iM=0

iM∑

iW=0
{j − iM, iW, iM − iW} pF pW pD

× P (j | FW,FU − FW) P (j − iM, iW, iM − iW | j,FW,FU − FW)
× P (FW,FU − FW | FU,MW,MD)





F ′U = e−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FU (MW + 2MD (1−m))R (−FU V )−

1+α
α γ

[
1 + 1

α
,−FU V

]

(MW +MD)α

M′
W =

e−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FUMW R (−FUV )−

1+α
α γ

[
1 + 1

α
,−FU V

]

(MW +MD)α

M′
D =

2me−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FUMD R (−FUV )−

1+α
α γ

[
1 + 1

α
,−FU V

]

(MW +MD)α
(18

esults. The ratio z′ =M′
D/M′

W of D-male density to W-male density in the cloud
n be obtained by dividing the two male densities in (18):

z′ = M
′
D

M′
W

= 2m MD

MW
= 2mz.

12
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s in earlier scenarios, given that 2m > 1, z → ∞ as t → ∞ and the Driving Y
ymptotically fixes in the population with MW∞ → 0 and MD∞

FU∞
→ m

1−m , and, fo
fficiently large m, the population will be eliminated.

.5 Scenario 5: Local reproduction followed by local mating
ssumptions and derivation. Now suppose both mating and reproduction are again
cal, but the order of events is changed, such that it is mated females that disperse
ther than unmated males and females. Note that in this scenario where reproduction
local and there is no pre-mating dispersal there is the opportunity for inbreeding t
ccur (i.e., a female to mate with her brother), and the probability of this occurrin
ill tend to increase as the population density decreases.

imilarly to previous scenarios, the cloud densities of W- and D-mated females in
neration t are {FW,FD}, and the numbers {FW,FD} of W- and D-mated female
ttling in a patch is Poisson-distributed with means {V FW, V FD}.
he j offspring of the {FW,FD} mated females in each patch mate locally, and to obtain
e expected number of new W-mated females in the patch, conditional on {j,FW,FD}
e use (9) from Scenario 3 for the probability P (iF, iW, j − iF − iW | j,FW,FD) of havin
F, iW, j− iF− iW} female, W-male and D-male offspring in the patch and sum over al
ossible iF and iW, noting that iF = 0 and iF = j are excluded from the iF-summation
they both result in no mated females (because of either no female offspring, i.e
= 0, or all female offspring, iF = j, and thus no males to mate with):

E[W-mated | j,FW,FD] =
j−1∑

iF=1

j−iF∑

iW=1
iF

iW
j − iF

P (iF, iW, j − iF − iW | j,FW,FD)

=
j FW

(
FW+2 FD−2mFD

FW+FD
− 21−j

(
FW+2 FD−2mFD

FW+FD

)j)

2 (FW + 2mFD) (19a

imilar analysis gives the expected number of D-mated females in each patch, conditiona
j total offspring from {FW,FD} mated females:

E[D-mated | j,FW,FD]

=
j mFD

(
(FW − 2 (−1 +m) FD)− 21−j (FW + FD)1−j (FW − 2 (−1 +m) FD)j

)

(FW + FD) (FW + 2mFD)
(19b

t this stage, the mated females in each patch migrate to the cloud. In order to calculat
e density of W-mated females in the cloud, we combine (7) for the probabilitie
(FW | V FW) and P (FD | V FD) of having FW and FD mated females in a patch, (8
r the probability P (j | FW,FD) that the FW + FD mated females generate j offsprin
total in the patch (since scenario 3 and 5 share the same (local) density dependen

13
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production mechanism) and (19a) for the expected number of W-mated females
nditional on j offspring from FW and FD mated females in the patch. Their produc
then summed over all possible values of FW,FD and j to give the average number o
-mated females across all patches, and is then divided by V , to give the expression
r F ′W, the density of W-mated females in the cloud in generation t+ 1:

F ′W = e−V (FW+FD)

V

∞∑

FW=1

∞∑

FD=0

V FW+FDe
− 2 (FW+FD)R

1+α (FW+FD)FW
FWFD

FDFW

2 (FW + FD)(FW + 2mFD)FW!FD!

×
∞∑

j=2

1
j! j (2j(FW + 2 (1−m) FD)− 2 (FW + FD)1−j(FW + 2 (1−m) FD)j)

×
(

R (FW + FD)
1 + α (FW + FD)

)j

he innermost summation over j can be calculated analytically so the expression abov
duces to a double infinite sum over FW and FD:
′
W = Re−V (FW+FD)

×
∞∑

FW=1

∞∑

FD=0

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FWFD
FDFW(FW + 2 (1−m) FD

(FW + 2mFD) (1 + α (FW + FD)) FW!FD!
(20a

imilar analysis gives F ′D, the density of D-mated females in the cloud:
′
D = 2mRe−V (FW+FD)

×
∞∑

FW=0

∞∑

FD=1

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FWFD
FDFD(FW + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(20b

esults. The change of variables S = V (FW + FD) and z = FD/FW gives:

S ′ = Re−S
∞∑

FW=0

∞∑

FD=0
(FW + 2mFD)C(FW,FD, S, z, R,m, α) (21a

z′ = 2m
∑∞

FW=0
∑∞

FD=1 FD C (FW,FD, S, z, R,m, α)
∑∞

FW=1
∑∞

FD=0 FW C (FW,FD, S, z, R,m, α) (21b

here

(FW,FD, S, z, R,m, α) =

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
zFD

(
S

1+z

)FW+FD (FW + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!

14
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igure 2: Dynamics and impact of a Driving Y chromosome in a spatial model with
cal reproduction followed by local mating (Scenario 5). Example dynamics fo
different strengths of drive (m), shown as time-courses (top; population densit
blue, proportion females mated to Driving Y males in red) and as phase plane
ottom), illustrating fixation of the Driving Y (left), an oscillatory approach to a stabl
termediate fixed point (middle), and an approach to a stable limit cycle (right). In
ch case R = 6, α = 0.01.

he double infinite sums in (21a) and (21b) can be calculated numerically in an efficien
ay by noting that the maximum value of the summands occurs at {FWmax,FDmax}=
IntegerPart

[
S

1+z

]
± 1, IntegerPart

[
Sz

1+z

]
± 1

}
and they decay rapidly for values of FW

d FD below and above FWmax and FDmax, respectively, with the infinite sums thu
nverging quickly without needing to calculate a prohibitively large number of th
efficients C.

all the scenarios analysed thus far we have seen that the Driving Y tends to fixation
d therefore, if m is sufficiently high, the population is eliminated. Numerical analysi
(21a) and (21b) shows that is not the case for this scenario. Instead, there is a rang
possible outcomes. For most combinations of R and α, the Driving Y will invad
d establish in a population, and then there are three possible outcomes, according t
e strength of drive. If m is low, then the Driving Y will go to fixation and suppres
ut not eliminate) the population. If m is somewhat higher, then Driving Y doe
ot eliminate the Wildtype Y, but instead goes to a stable intermediate equilibrium
equency; again, the population is suppressed but not eliminated. Finally, for som
lues of R and α, if m is higher still, then the frequency of the Driving Y and th
opulation size tend to a limit cycle, oscillating forever. These different behaviour
e illustrated in Figure 2, and Figure 3a shows, for a specific value of m(= 0.95) th
ynamics for different values of R and α.
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igure 3: Numerical analysis of Driving Y dynamics with local reproduction followed
y local mating (Scenario 5). (a) Blue lines show critical values of R and α wher
e dynamics change from the Driving Y going to fixation, to a stable intermediat
xed point, and to a stable limit cycle, for m = 0.95. The red shaded area at th
ottom shows the region where the wildtype population exhibits an invasion threshold
.e., Allee effect), and the effect of a Driving Y can depend on the initial conditions
otentially including population elimination due to the population being driven below
s invasion threshold. (b) Closed invariant curves for m = 0.95 to 1.00; in each cas
= 6, α = 0.01. (c) Contour plot showing the change across generations in the log-odd
at a female has mated a Driving Y male (calculated as Ln[z′/z], where z is the rati
D- to W-mated females) as a function of the initial log-odds and population density
r R = 6, α = 0.01 and m = 0.95. Solid line shows the 0 contour (no change); contour
the left show negative values (reductions in the D/W ratio), while contours to th

ght show positive values. Note that all the contours are less than Ln[2m] ≈ 0.642
hich is the change in the D/W ratio due to drive, indicating that throughout th
vestigated parameter space the effect of mating selection is to reduce this ratio.
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here is also a region of parameter space in which R is sufficiently low that the wildtyp
opulation is not able to establish from rare, but instead there needs to be a critica
ensity of females for the population to establish (i.e., it shows a strong Allee effect
ourchamp et al. (2008)). Within this region, it seems a population can be eliminated i
Driving Y suppresses it below its invasion threshold, though we have not investigated
is phenomenon in detail as it occurs only with relatively small R.

or parameter values in which the Driving Y is neither fixed nor lost, linear stabilit
alysis of the fixed point corroborates the simulations. We set S = S∞, z = z∞ in (21a
d (21b), solve (numerically) for the fixed point {S∞, z∞} that corresponds to a given
arameter set {R,m, α} and then evaluate the 2x2 Jacobian matrix J (S, z;R,m, α) o
e RHS of (21a) and (21b) at the fixed point to obtain J∗ = J (S∞, z∞;R,m, α). Fo
extensive range of parameters {R,m, α}, the matrix J∗ has a conjugate pair of com

lex eigenvalues λ which indicates the presence of oscillatory dynamics around the fixed
oint {S∞, z∞}. When the modulus |λ| < 1, the fixed point is linearly stable and th
riables exhibit dampened oscillations and asymptotically converge to it. When |λ| > 1
e variables oscillate on a unique and stable closed invariant curve that bifurcates from
e (unstable) fixed point. The interface between these two regions, i.e., where |λ| = 1
presents surfaces of Neimark-Sacker bifurcation points in the three-dimensional param
er space {R,m, α}. We have also shown numerically that the various nondegenerac
nditions associated with Neimark-Sacker bifurcations hold (Kuznetsov, 2004; Khan
16) and that the Neimark-Sacker bifurcation is supercritical. For example, one such
eimark-Sacker bifurcation triplet is {R,m, α} = {6.0, 0.01, 0.946389}; keeping R and
constant, we have |λ| > 1 for m > 0.946389 and a unique closed invariant curv
ists for every value of 1 ≥ m > 0.946389. The size/area of the closed invariant curv
nd correspondingly the amplitude of the oscillations in the state variables) increase
onotonically from zero at m = 0.946389 to a maximum at m = 1 (Figure 3b). Th
eriod of the oscillations in the vicinity of the bifurcation point, i.e. at m ' 0.946389
' 2π/Im[λm=0.946389] = 14.03 and decreases monotonically to 10.30 generations a
e amplitude increases as m increases from m = 0.946389 to 1. There is also a rang
parameters {R,m, α} (generally for lower values of m) where the eigenvalues are rea
d with modulus < 1; the variables decay monotonically to a stable fixed point and
riving Y fixation.

urther insight can be gotten by considering the ratio z = FD/FW, and how tha
anges from one generation to the next (i.e., z′/z). In all previously considered
enarios this ratio is equal to 2m, but here it is more complex, and is a function o
oth the frequency of the Driving Y and, notably, population density, with low densitie
sociated with reductions in the frequency of the Driving Y (Figure 3c). This tota
ange in the frequency of the Driving Y across a generation can be partitioned between
e two relevant events in the life cycle, mating and reproduction. The change in
ue to reproduction (which isolates the effect of drive) can be quantified by comparin
′
D/M′

W, i.e., the ratio of D-males to W-males, to FD/FW, i.e. the ratio of th
ated females that gave rise to them. Equations (12) and (13) from Scenario 3 hold
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ere too and show that the quantity (M′
D/M′

W) / (FD/FW) is always 2m, regardles
frequency or density. The change in z due to mating is derived from the D/W
tio in mated females to that in the males they had the opportunity to mate with
.e., (F ′D/F ′W) / (M′

D/M′
W), all in the same generation), which isolates the effect o

ifferential mating success or sexual selection. In all cases investigated this ratio is les
an 1, indicating a reduction in the D/W ratio, and particularly so at low densitie
his is because D-males typically have fewer females to mate with than W-males
ecause they have fewer sisters, and the difference is greatest at low densities, when
sters are a greater proportion of the potential mates. At the low-density limit, wher
atches receive at most one female and mating in the next generation will necessaril
e between siblings, patches settled by W-mated females will produce more daughter
d therefore more W-mated females, than patches settled by D-mated females wil
roduce D-mated females, and so the frequency of W increases. By contrast, when
opulation density is high and many females settle in each patch, the difference in
ating success is much reduced, and the advantage of the Driving Y due to its biased
heritance predominates.

summary, the one life history scenario we have analyzed in which reductions in
ensity lead to an increased probability of inbreeding shows population persistenc
gardless of how strong the drive is. This is because Driving Y males have reduced
ating success, particularly at low densities, because they have fewer sisters. T
rther test the hypothesis that it is inbreeding which is protecting the population from
imination, we considered two additional scenarios, in which there is an additiona
age of either males or females dispersing before mating (Scenarios 6 and 7, Figure 1
either case sib-mating is prevented, and the result, as expected, is the Driving Y goe
fixation, and, for sufficiently high m, the population is eliminated (Supplementar
formation). Finally, patches in Scenario 5 are arenas for both local density-dependen
production and local mating, but it can be shown that only the latter role is needed
r the persistence of the Wildtype Y and the population: if reproduction depends on
obal rather than local density (as if females competed in the cloud for resources tha
etermined their fecundity after settling in patches), the same qualitative outcomes ar
tained.

Homing
o investigate the generality of these results we now consider the same life histor
enario (local reproduction followed by local mating, then dispersal) and a completel
ifferent form of population suppression gene drive that is autosomal, is transmitted t
2 < d ≤ 1 of progeny of both male and female heterozygotes, has no effect on th
tness of heterozygotes, and causes homozygotes to die as embryos. Such a gene driv
as no effect on the sex ratio, and in non-spatial models (with d < 1) it does not tend
fixation in a population, but instead to an intermediate equilibrium frequency, bu
ill can impose a sufficient load on a population to eliminate it.
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e consider two types of alleles, the wild type allele W and the drive allele D, that ar
und in 3 female genotypes, FWW, FWD, FDD, and 3 male genotypes, MWW, MWD
DD. In this model we assume that both FDD and MDD die as embryos so the onl
ated females that are possible are WW/WW, WW/WD, WD/WW and WD/WD
sing the notation female genotype / male genotype). WW/WW females only produc
W offspring, WW/WD and WD/WW females give WW and WD offspring with
roportions (1− d) : d, and WD/WD females give WW, WD and DD offspring with
roportions (1− d)2 : 2 d (1− d) : d2 and, as noted, the DD offspring die early. In thi
odel there is no sex bias so male and female offspring are produced, on average, in
ual numbers.

erivation. Because transmission rates are equal in the two sexes and there are n
eterozygous fitness effects, WW/WD and WD/WW mated females behave identicall
d can be grouped together so we define {D0,D1,D2} as the cloud densities o
W/WW, (WW/WD + WD/WW) and WD/WD mated females in generation
he number of WW/WW, (WW/WD + WD/WW) and WD/WD mated female
ttling in a patch is Poisson-distributed with means {VD0,VD1,VD2}, and therefor
e probability of having {D0, D1, D2} mated females in a patch is

P (D0, D1, D2 | VD0, V D1, V D2) = e−V (D0+D1+D2) VD0+D1+D2 DD0
0 DD1

1 DD2
2

D0!D1!D2!
(22

he probability P (iFWW, jF − iFWW, iMWW, j − iMWW − jF | j,D0, D1, D2) that th
0, D1, D2} mated females generate {jF , j − jF} female and male offspring, spli
{iFWW, jF − iFWW, iMWW, j − iMWW − jF}, is:

(iFWW, jF − iFWW, iMWW, j − jF − iMWW | j,D0, D1, D2)
2−j j! (d(D1 + 2 (1− d)D2))j−iFWW−iMWW

(
D0 +D1 (1− d) + (1− d)2D2

)iFWW+iMWW(D0 +D1 + (1− d2)D2)−

iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)!

here {iFWW, jF − iFWW, iMWW, j − jF − iMWW} are the numbers of FWW, FWD
WW and MWD (viable) offspring, respectively (FDD and MDD offspring die a
bryos and we only focus on viable offspring).

emale and male offspring in the patch are paired randomly to generate mated female
WW/WW, (WW/WD + WD/WW) and WD/WD types. By averaging over al

ossible probability-weighted values of iFWW, iMWW and jF , we obtain the expected
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mbers of mated females in the patches, conditional on {j,D0, D1, D2}:

[{WW/WW, (WW/WD + WD/WW),WD/WD} | j,D0, D1, D2]
j−1∑

jF=1
P (jF | j)

jF∑

iFWW=0

j−jF∑

iMWW=0
P (iFWW, jF − iFWW, iMWW, j − iMWW − jF | j,D0, D1, D2



iFWW

iMWW

j − jF
, iFWW

(j − jF − iMWW)
j − jF

+ (jF − iFWW) iMWW

j − jF
, (jF − iFWW)(j − jF − iMWW)

j − jF





(1− 21−j) j
(D0 +D1 + (1− d2)D2)2





(D0 + (1− d) (D1 + (1− d)D2))2

2 ,

d (D1 + 2 (1− d)D2) (D0 + (1− d) (D1 + (1− d)D2)) ,
d2(D1 + 2 (1− d)D2)2

2





here P (jF | j) = 2−j j!
(j−jF )! jF ! is the probability of having jF female offspring out of

tal offspring.

this model all types of mated females generate offspring, but the D2 WD/WD
males in a patch only generate, on average, a fraction of (1− d2) viable offspring (th
mainder of the offspring, namely FDD and MDD, die as embryos and thus do no
mpete with other genotypes). The total number of offspring produced in a patch i
oisson-distributed and the probability of having generated j viable offspring in tota
a given patch is then

P (j | D0, D1, D2) =
e
−

2R(D0+D1+(1−d2)D2)
1+α (D0+D1+(1−d2)D2)

(
2R (D0+D1+(1−d2)D2)
1+α (D0+D1+(1−d2)D2)

)j

j!

d the expected numbers of mated females in the patches, conditional on {D0, D1, D2}
obtained by averaging over all probability-weighted values of j from 2 to infinity:

[{WW/WW, (WW/WD + WD/WW),WD/WD} | D0, D1, D2]
∞∑

j=2
P (j | D0, D1, D2)E[{WW/WW, (WW/WD + WD/WW),WD/WD} | j,D0, D1, D2

R

(
1− e−

R (D0+D1+(1−d2)D2)
1+α (D0+D1+(1−d2)D2)

)

(D0 +D1 + (1− d2) D2) (1 + α (D0 +D1 + (1− d2)D2))
×
{

(D0 + (1− d)D1 + (1− d)2 D2)
2
, 2 d (D1 + 2 (1− d)D2) (D0 + (1− d)D1 + (1− d)2 D2)

d2 (D1 + 2 (1− d)D2)2
}

(23

t this stage the mated females in each patch migrate to the cloud. In order to calculat
e densities {D′0,D′1,D′2} of the newly mated females in the cloud for generation t+ 1
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e average the expected numbers of newly mated females in a patch, calculated in
3), over all values {D0, D1, D2} of mated females that arrived in the patches from th
oud during generation t, weighted by P (D0, D1, D2 | V D0, V D1, V D2) in (22).
′
0,D′1,D′2}
∞∑

Dtot=0

Dtot∑

D2=0

Dtot−D2∑

D1=0
P (Dtot −D1 −D2, D1, D2 | V D0, V D1, V D2)

E[{WW/WW, (WW/WD + WD/WW),WD/WD} | Dtot −D1 −D2, D1, D2]

e−V (D0+D1+D2)R

V

∞∑

Dtot=0
V Dtot DDtot

0

Dtot∑

D2=0

(1− e−
R (Dtot−d2 D2)

1+α (Dtot−d2 D2) ) (D2
D0

)D2

D2! (Dtot − d2 D2) (1 + α (Dtot − d2 D2)

×
Dtot−D2∑

D1=0

(D1
D0

)D1

D1!

{
(Dtot − dD1 + (d− 2) dD2)2,

2 d (D1 + 2 (1− d)D2) (Dtot − dD1 − (2− d) dD2), d2 (D1 + 2 (1− d)D2)2
}

(24

here Dtot = D0 +D1 +D2.

esults. The innermost sum in D1 can be calculated analytically so (24) fo
′
0,D′1,D′2} reduces to an outer infinite sum in Dtot and an inner finite sum in

2:

′
0,D′1,D′2} = Re−V (D0+D1+D2)

∞∑

Dtot=0
V Dtot−1(D0 +D1)Dtot−2

Dtot∑

D2=0

(
1− e−

R (Dtot−d2 D2)
1+α (Dtot−d2 D2)

) (
D2

D0+D1

)D2

D2! (Dtot −D2)! (Dtot − d2 D2) (1 + α (Dtot − d2 D2))

{
d2 D2

2 ((2− d)D0 + (1− d)D1)

Dtot (d2D0D1 +Dtot (D0 + (1− d)D1)2)− dD2 (dD0D1 + 2Dtot ((2− d)D2
0 − (3− d) (1− d)D0D

(1− d)2D2
1)),−2 d2 D2

2 ((2− d)D0 + (1− d)D1) (2 (1− d)D0 + (1− 2d)D1)− 2 dDtotD1 ((d−Dtot)D
(−1 + d)DtotD1)− 2 dD2 (−dD0D1 +Dtot (2 (−1 + d)D2

0

(−3 + (8− 3 d) d)D0D1 + (−1 + (4− 3 d) d)D2
1)), d2 D2

2 (2 (−1 + d)D0 + (−1 + 2 d)D1)

d2 DtotD1 (D0 +DtotD1) + d2 D2D1 ((−1− 4 (−1 + d)Dtot)D0 + 2 (1− 2d)DtotD1)
}

(25

he recurrence vector equation (25) is sufficient to describe the dynamics of this system
d is used to calculate the densities of mated females in the cloud from one generation
the next.

o aid understanding, we present the results of the model in terms of S =
(D0 +D1 +D2), the (global) average number of mated females per patch, p =
1/2 + D2)/ (D0 +D1 +D2), the frequency of D heterozygotes that participated
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the matings (and twice the frequency of the D allele itself), and f = 1 −
1/ (D0 +D1 +D2))/ (2 p(1− p)), analogous to the standard inbreeding coefficient
cept it measures the correlation of mates rather than of fusing gametes. If we iterat
e transition equations using different parameter values and initial conditions then
suming the pure wildtype population does not have an invasion threshold, the drive
pically either goes to a stable fixed point or, for stronger drive, to a stable limi
cle, and in either case the population persists, regardless of how strong the drive i
xample dynamics are shown in Figure 4a.

gain, we can partition the total change in frequency of the construct due to the variou
rocesses occurring through the life cycle. In this case, it is more convenient to measur
anges in raw frequencies. There is no differential mating success, so the two relevan
rocesses are drive and differential survival due to the death of DD embryos. It can
e shown that if p and f are defined for the adults of one generation, then the rati
the frequency of the D allele in the zygotes they produced to that in the adult
), which isolates the effect of drive, is 2 d, and the ratio of the frequency in the nex
neration of adults to the zygotes from which they were derived, which isolates th
ect of differential mortality, is (1− d p− d (1− p) f)/(1− d2 p (p+ (1− p) f)). A
pected, it is always <1.

ote that population size does not have an immediate impact on the change in construc
equency due to drive or mortality selection (it does not appear in the above expressions
ut it does have a delayed effect. In particular, a smaller population density in generation
leads to a larger correlation between mates (f) in generation t+ 1, because there is an
creased frequency of mating between siblings. This larger correlation in generation
+ 1 leads to a larger reduction in the frequency of the driver from generation t+ 1 t
neration t+ 2, because of the lower productivity of WD/WD mated females, which
turn is due to the differential embryonic mortality – the death of DD embryos – in
neration t+ 2. This delayed inverse density-dependent selection against the driver i
lustrated in Figure 4b.

hus, though the details differ from the case of Driving Y, the overall result remain
e same: an increased frequency of inbreeding at low population densities leads t
creased selection against the driver, reducing its frequency and allowing the population
persist, regardless of how strong the drive is.

Inbreeding depression
ur analyses have demonstrated that when reductions in population density lead to an
crease in inbreeding, that can increase the natural or sexual selection against the drive
d allow the population to persist. However, inbreeding can only rescue a population
the extent that the inbred progeny are themselves fit enough to contribute. Thus fa

e have assumed no difference in fitness between inbred and outcrossed progeny. T
rther test the hypothesis that inbreeding plays a central role in the observed dynamic
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igure 4: Population persistence in spatial models of a homing construct with loca
production followed by local mating (same as in Scenario 5 for the Driving Y). (a
xample time courses and phase plots for R = 6, α = 0.005 and three different strength
drive d. For ease of viewing the time courses, the heterozygote frequency has been
ultiplied by 100 and the correlation of mates by 1000. (b) Contour plot showin
ow the natural log of the ratio of construct frequency in generation t+ 2 to that o
neration t + 1 depends on the population size and frequency of heterozygotes in
neration t. Changes calculated for an initial correlation of mates of f = 0.2; othe
lues of f give comparable results. Calculations are for d = 0.995, R = 6, α = 0.005
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e now allow for inbreeding depression, in which inbred progeny have reduced fitnes
t the limit of inbred progeny being completely inviable or sterile, we might expect th
ynamics to revert to population elimination.

.1 Driving Y
his scenario involves the same local mating, global mixing of mated females, and loca
production steps as Scenario 5. However, in this model some or all of the female
ated by sibling males are sterile and are thus removed from the mated females tha
isperse to new patches for local reproduction. We define the inbreeding depression
efficient 0 ≤ δ ≤ 1 as the probability a sibling-mated female is sterile; δ also represent
e fraction of sibling-mated females that is removed from the ensemble of mated female
at travel to the cloud and then disperse into patches (mathematically, there is n
ifference between removing the sterile mated females before or after they travel to th
oud).

erivation. As in Scenario 5, the FW + FD mated females generate j offspring in tota
the patch. However in this scenario, the j offspring are made up of iFW females from
-mated mothers, j− iFW − iM females from D-mated mothers, i2 W-males and iM− i
-males (where iM = i2 + i3 is the total number of male offspring). The probability o
{iFW , j − iFW − iM, i2, iM − i2} quadruplet is derived from a multinomial distribution
ith j trials and normalised weights { FW/2

FW+FD
, FD(1−m)

FW+FD
, FW/2

FW+FD
, mFD

FW+FD
}, since, on average

actions of 1/2 and 1−m of W-mated and D-mated females’ offspring are female, with
e rest of the offspring being W- and D-males, respectively.

ence, the probability P(iFW , j−iFW−iM, i2, iM−i2 | j,FW,FD) of having {iFW , j−iFW−
, i2, iM − i2} offspring in the patch (conditional on j total offspring from {FW,FD
ated females) using the weights above is
(
iFW , j − iFW − iM, i2, iM − i2 | j,FW,FD

)
=

(FW
2 )iFW +i2 (mFD)−i2+iM (FD(1−m))−iFW−iM+j j

iFW ! i2! (iM − i2)! (j − iFW − iM)! (FW + FD)j
(26

order to remove, on average, a fraction 0 ≤ δ ≤ 1 of sibling-mated females from th
tal number of new mated females in the patch, we present a proof by induction in
e Supplement (Section 7.3) that the expected number of new sibling-mated W-mated
males in the patch, conditional on {iFW , j−iFW−iM, i2, iM−i2} offspring from {FW,FD

ated females, is iFW i2
iM FW

. A similar proof, not shown, gives the expected number of new
bling-mated D-mated females in a patch, conditional on {iFW , j− iFW− iM, i2, iM− i2
spring from {FW,FD} mated females, as (j−iM−iFW ) (iM−i2)

iM FD
.

s a result, the expected number of new fertile W-mated females in a patch, conditiona
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{iFW , j − iFW − iM, i2, iM − i2} offspring from {FW,FD} mated females is:
E[fertile W-mated females | iFW , j − iFW − iM, i2, iM − i2,FW,FD]

= i2 ((j − iM) FW − δ iFW)
iM FW

(27

he probability that each new sibling-mated female is sterile is δ, so we removed
action δ of the sibling-mated females’ contribution to the total number of expected
mber of fertile mated females in the patch).

o obtain the expected number of W-mated females in the patch, conditional on
,FW,FD}, we now sum over all possible iFW , iM and i2, noting that iM ≥ i2 ≥ 1 t
sure the presence of at least one W-male and j − 1 ≥ iM to ensure the presence of a
ast one female:
[fertile W-mated females | j,FW,FD]
j−1∑

iM=1

iM∑

i2=1

j−iM∑

iFW =0
E[fertile W-mated females | {iFW , j − iFW − iM, i2, iM − i2},FW,FD

× P (iFW , j − iFW − iM, i2, iM − i2 | j,FW,FD)

====⇒
(26),(27)

E[fertile W-mated females | j,FW,FD]

= FW

FW + 2mFD
2−1−j j (FW + FD)−1−j (FW − δ + 2 (1−m) FD)(FW + 2 (1−m) FD)−1+

× (−2 (FW + FD) + 2j (FW + FD)j(FW + 2 (1−m) FD)1−j) (28
t this stage the fertile mated females in each patch migrate to the cloud. In orde
calculate the density of W-mated females in the cloud, we combine (7) for th

robabilities P (FW | V FW) and P (FD | V FD) of having FW and FD mated females in
atch, (8) for the probability P (j | FW,FD) that the FW + FD mated females generat
offspring in total in the patch and (28) for the expected number of W-mated female
nditional on j offspring from FW and FD mated females in the patch. Their produc
then summed over all possible values of FW,FD and j to give the average number o
-mated females across all patches, and is then divided by V , to give the expression
r F ′W, the density of W-mated females in the cloud in generation t+ 1 (the innermos
mmation over j is calculated analytically so the result below is in terms of a doubl
finite sum over FW and FD):
′
W = 1

V

∞∑

FW=1

∞∑

FD=0
P(FW | V FW)P (FD | V FD)

∞∑

j=0
P (j | FW,FD)E[fertile W-mated females | j,FW,FD

=⇒ F ′W =

e−V (FW+FD)
∞∑

FW=1

∞∑

FD=0

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FW FD
FD FW (FW − δ + 2 (1−m) FD

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(29a
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imilar analysis gives F ′D, the density of D-mated females in the cloud:

F ′D =

mRe−V (FW+FD)
∞∑

FW=0

∞∑

FD=1

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FW FD
FD FD (FW + 2 (1−m) (FD − δ)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(29b

he RHSs of (29a) and (29b) contain a negative term, proportional to δ, which
presents the population suppression effect due to inbreeding. When δ = 0, i.e. when
e sibling-mated females are all fertile, (29a) and (29b) reduce to (20a) and (20b).

esults. We focus on the extreme case of δ = 1 (i.e., females mated to their brother
roduce no viable offspring) and introduce the change of variables S = V (FW + FD)
= FD/FW and FW = F − FD. We will show that the drive always goes to fixation
showing that the quantity X = z′

z
− 1, derived from the equations above, is alway

ositive:

= z′
z
− 1 =

∑∞
F=1 S

FAF[m,R,α,z]

∑∞
F=1

( S
z+1)F

1+αF
∑F

FD=0

((1−2m)FD+F−1)zFD

(
1−e−

R ((2m−1)FD+F)
1+αF

)

(F−FD)!FD!((2m−1)FD+F)

here the F-th coefficient AF = AF [m,R, α, z] is

= ∑F
FD=0

(
1− e−

R((2m−1)FD+F)
1+αF

)

(FD
2 (2m+z)(1−2m)+FD (2m(F(z+1)−2(1−m))−z)+(1−F)F z)zFD−1

(z+1)F(1+αF)(F−FD)!FD!((2m−1)FD+F) =

(2m+z)


e

(2m−1)R
1+αF +z−(z+1)e−

FR
1+αF

(
ze
− (2m−1)R

1+αF +1
z+1

)F



(z+1)(F−1)!(1+αF)
(
e

(2m−1)R
1+αF +z

) +

(2Fm+F−1)+4m(F+m−1))

(
1−e−

FR
1+αF

(
z e

R−2mR
1+αF +1
z+1

)F)

(2m−1)zF!(1+αF) −
((2F−1)z+2F+2m−2)

(
2F1(−F, F

2m−1 ; F+2m−1
2m−1 ;−z)−e− FR

1+αF 2F1

(
−F, F

2m−1 ; F+2m−1
2m−1 ;−e

R−2mR
Fα+1 z

))

(2m−1)z F!(1+αF)(z+1)F

here 2F1 (−F, a; a+ 1;x), F ∈ N, is a polynomial of order F in x and is a special cas
the Gauss Hypergeometric Function.

he denominator of X above is the transformed expression for F ′W, so it is alway
ositive and can be ignored. We postulate that all the coefficients AF in the numerato
e positive so that X is always positive. For a given set of parameters m,R, α, A onl
epends on z ∈ [0,∞), i.e. it does not depend on S. At z = 0,

F [m,R, α, 0] =
(2m−1)

(
e
− FR

1+αF−1
)

+F
(
e
− FR

1+αF

(
1−e−

(2m−1)R
1+αF

)
+(2m−1)

(
1−e−

R(F+2m−1)
1+αF

))

F (F−2)! (1+αF) (F+2m−1)
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igure 5: Time courses for population density after the release of a gene drive, demon
rating that strong inbreeding depression (δ = 1) can lead to population elimination
op: A Driving Y (R = 6, α = 0.01,m = 0.95). Bottom: A homing construc

= 6, α = 0.005, d = 1).

hich is clearly positive for all m, R, and α. It can also be shown analytically tha
F [m,R, α, z →∞] → 0 for all m, R, and α. We have evaluated AF [m,R, α, z] fo
large set of m, R, and α and we always find that it decreases monotonically from
F [m,R, α, z = 0] to 0 asymptotically as z →∞. Based on our analysis, we postulat
at AF [m,R, α, z] > 0 for all values of m, R, α and z. If so, it also means tha
= z′

z
− 1 > 0 for all values of m, R, α, i.e. the ratio z = FD/FW is always greate

the next generation, irrespectively of the values of S and z (or FW and FD) in th
rrent generation. This can only result in fixation of the Driving Y as t→∞, and, i
is sufficiently large, population elimination (Figure 5a). Numerical analysis suggest
at z does not go to infinity for δ < 1, but still there is a large parameter range in
hich the population is eliminated.

.2 Homing
e now investigate the effect of inbreeding depression on the dynamics of a homin
nstruct. For the sake of simplicity, we will focus on the case of d = 1, i.e. wher
l the progeny of WW/WD and WD/WW mated females are WD males and female
d all the progeny of WD/WD mated females are DD males and females, while, a
efore, all the progeny of WW/WW mated females are WW males and females. A
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e assume that DD males and females die as embryos, in this limit case of d =
e can ignore WD/WD mated females as they do not produce viable offspring. W
erefore consider 3 types of mated females: non-sibling-mated WW/WW females
bling-mated WW/WW females and (WW/WD + WD/WW) mated females. Th
tter are all non-sibling-mated as they represent pairings between a WW male or femal
.e. an offspring of WW/WW mother) and a WD female or male (i.e. an offspring of
W/WD + WD/WW) mother), which cannot ever be siblings as they are produced

om two different types of mother.

erivation. We define as {D0,D0S,D1} the cloud densities of non-sibling-mated
W/WW, sibling-mated WW/WW, and (WW/WD + WD/WW) mated females in
neration t. Any volume V in the cloud contains on average {V D0, V D0S, V D1
mbers of individuals. In this model, the mated females in the cloud settle into patche
ith average numbers of individuals equal to {V D0, V (1− δ)D0S,VD1}. The cloud
ensity D0S of sibling-mated females is derived from the entirety of the sibling-mated
males in the patches. We then only allow a fraction 1− δ of these females to dispers
to patches.

e have assumed that the sibling-mated females that settle in the patches are th
ully) fertile portion of the sibling-mated WW/WW females in the cloud, so onc
ttled in patches, they are indistinguishable from the non-sibling-mated WW/WW
males. They can therefore be combined inside each patch into a single cohort o
W/WW mated females. A random sample of {D0, D1} WW/WW and (WW/WD +
D/WW) mated females, different for each patch and Poisson-distributed with mean
(D0+(1− δ)D0S), V D1}, is drawn from the cloud and settles in each patch (th

ean number of WW/WW females that settle in a patch is the sum of non-sibling mated
d fertile sibling mated females in the cloud). The probability of having {D0, D1
ated females settle in a patch is

(D0, D1 | {V (D0+(1− δ)D0S), V D1}) = e−V (D0+(1−δ)D0S+D1)V D0+D1DD1
1 (D0 + (1− δ)D0S)D

D0!D1!
he mated females produce on aggregate j offspring. The number of successful offsprin
at each mated female produces is Poisson-distributed with a mean λ = 2R

1+α (D0+D1
he probability that the D0 +D1 mated females generate j offspring in total in a given
atch is then

P (j | D0, D1) = e−λ (D0+D1) λj (D0 +D1)j
j! =

e
− 2R (D0+D1)

1+α (D0+D1)
(

2R (D0+D1)
1+α (D0+D1)

)j

j! .

f the j offspring, jF are female and j − jF are male. The WW/WW females produc
FWW, iMWW}WW female and male offspring and the (WW/WD + WD/WW) female
roduce {jF − iFWW, j − jF − iMWW} WD female and male offspring. The conditiona
robability of having {{iFWW, iMWW}, {jF − iFWW, j − jF − iMWW}} offspring is:

(jF , iFWW, iMWW | j,D0, D1) = 2−j j!DiFWW+iMWW
0 Dj−iFWW−iMWW

1 (D0 +D1)−

iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)!

28



Journal Pre-proof

E -777

su -778

m779

in -780

m s781

(a e782

iM e783

p -784

m l785

on g786

{ y787

w788

E789

=790

791

=792

793

= ]794

=795
796

A e797

th ,798

w ,799

ov e800
Jo
ur

na
l P

re
-p

ro
of

ach female offspring in the patch chooses a random male partner and the re
lting mated females fall into 3 categories: non-sibling-mated WW/WW, sibling
ated WW/WW and (non-sibling) (WW/WD + WD/WW) females. As shown
the Supplement for the Driving Y case, the expected fraction of new sibling

ated females from offspring of n mothers is 1/n of the total new mated female
nd, as a result, the fraction of non-sibling mated females is (n − 1)/n). Th
WW WW male and iFWW WW female offspring of D0 WW/WW females in th
atch produce, on average, { (D0−1) iFWW iMWW

D0(j−jF ) , iFWW iMWW
D0 (j−jF ) } non-sibling- and sibling

ated WW/WW females. The expected number of each category, conditiona
{D0, D1} mated females settling in the patch, is thus derived by averagin

(D0−1) iFWW iMWW
D0(j−jF ) , iFWW iMWW

D0(j−jF ) ,
iFWW(j−iMWW−jF )+iMWW(jF−iFWW)

j−jF } over all the probabilit
eighted values of j, jF , iFWW, and iMWW:

[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1]
∞∑

j=2
P (j | D0, D1)

j−1∑

jF=1

jF∑

iFWW=0

j−jF∑

iMWW=0
P (jF , iFWW, iMWW | j,D0, D1)

{(D0 − 1) iFWW iMWW

D0(j − jF ) ,
iFWW iMWW

D0(j − jF ) ,
iFWW(j − iMWW − jF ) + iMWW(jF − iFWW)

j − jF

}

∞∑

j=2

j−1∑

jF=1

jF∑

iFWW=0

j−jF∑

iMWW=0

e
− 2R (D0+D1)

1+α (D0+D1)
(
D0
D1

)iFWW+iMWW (
RD1

1+α (D0+D1)

)j

iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)! (j − jF )
{(D0 − 1)iFWW iMWW

D0
,
iFWW iMWW

D0
, iFWW(j − 2 iMWW − jF ) + iMWW jF

}

⇒ E[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1(
1− e−

R (D0+D1)
1+α (D0+D1)

)
RD0

(D0 +D1)(1 + α (D0 +D1))
{D0 − 1, 1, 2D1}

t this stage, the mated females in each patch migrate to the cloud. In order to calculat
e densities {D′0,D′1,D′2} of the newly mated females in the cloud for generation t+ 1
e average the expected numbers of newly mated females in a patch, calculated above
er all probability-weighted values {D0, D1} of mated females that arrived in th
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atches from the cloud during generation t (and divide by V ):

D′0,D
′
0S,D′1}

1
V

∞∑

D1=0

∞∑

D0=0
P (D0, D1 | V (D0+(1− δ)D0S), V D1)

× E[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1

1
V

∞∑

D1=0

∞∑

D0=0

e−V (D0+(1−δ)D0S+D1)V D0+D1 DD1
1 (D0 + (1− δ)D0S)D0

D0!D1!

× (1− e−
R (D0+D1)

1+α (D0+D1) )RD0

(D0 +D1) (1 + α (D0 +D1))
{D0 − 1, 1, 2D1}

=======⇒
D0=Dtot−D1

{D′0,D
′
0S,D′1}

e−V (D0+(1−δ)D0S+D1)(D0 + (1− δ)D0S)R
∞∑

Dtot=1

V Dtot−1 (D0 + (1− δ)D0S +D1)Dtot−2

Dtot! (1 + αDtot)

× (1− e−
RDtot

1+αDtot ){(Dtot − 1) (D0 + (1− δ)D0S), (D0 + (1− δ)D0S +D1), 2 (Dtot − 1)D1

here the variable change D0 = Dtot −D1 turns one of the infinite summations into
nite one which is computed analytically, leaving only a single infinite summation in
≤ Dtot <∞.

esults. We now focus on the case of δ = 1, i.e. where none of the offspring from
bling matings survive. Sibling-mated females can thus be ignored and the equation
ove simplifies to

{D′0,D′1} = {D0, 2D1} e−V (D0+D1)D0 R
∞∑

Dtot=1

V Dtot−1 (D0 +D1)Dtot−2

Dtot! (1 + αDtot)

× (1− e−
RDtot

1+αDtot )(Dtot − 1) ==⇒ D′1
D′0

= 2 D1

D0

he result above, i.e. the doubling of the ratio D1/D0 with every generation, mean
at as t → ∞ the cloud will only contain (WW/WD + WD/WW) mated female
hich in turn only produce non-viable DD offspring (given that d = 1). The population
ill thus asymptotically go to 0 (Figure 5b).

Discussion
he key role of sex and breeding system in the strength and consequences of gene driv
well established, having been studied from theoretical, experimental and comparativ
erspectives (Burt & Trivers, 2006; Agren & Clark, 2018). It is therefore reasonable t
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pect that if a driver suppresses a population and that leads to an increased frequenc
inbreeding, then there may be a limit to how far the suppression can go, regardles
e strength of the drive (Bull et al., 2019). Here we have presented modelling in
pport of this reasoning.

irst, we considered the fate of a Driving Y under different life history scenarios. In
on-spatial model in which both mating and reproduction occur in a well-mixed cloud
cenario 1), a Driving Y will gradually replace the Wildtype Y and go to fixation
d, if drive (m) is high enough, the population will be eliminated. If reproduction

ccurs in the cloud and mating in patches (scenario 2), or vice versa (scenario 3)
if individuals mate and reproduce in a patch followed by the offspring dispersin

cenario 4), then there is no qualitative difference in the dynamics: the Driving Y goe
fixation and, if m is sufficiently high, the population is eliminated. However, if th
der of activities within patches is reversed, so that mated females settle in patche
d reproduce and then the offspring mate before returning to the cloud (scenario 5
en there is a qualitative difference: the Driving Y will only fix for m below a threshold
lue, and otherwise the population remains polymorphic, and is suppressed but no
iminated regardless of how high m is. Conversely, if this scenario is modified b
terposing another round of dispersal of either males or females between reproduction
d mating (scenarios 6 and 7, see SI), then again the Driving Y goes to fixation and, i
is sufficiently high, the population is eliminated. Thus, the only life history scenari
which the probability of inbreeding increases at low densities is the one at which
lows indefinite persistence of both the wild type Y chromosome and the population
his scenario has the same life cycle as Hamilton’s (1967) much studied local mat
mpetition model of sex ratio evolution, the difference being in the ecology, where h
nsidered the population size (number of females per patch) to be exogenously fixed
e consider it a dynamic variable responding to the presence of the Driving Y.

hese results can be interpreted in terms of altruism: a Wildtype Y is altruisti
ompared to a Driving Y) in the sense of foregoing transmission to allow the production
more females. That can be a useful thing to do if those extra females mate with
e W-males, but otherwise not. When population sizes are large, with many mated
males settling in a patch, the extra females produced by a W-male’s forbearance ar
ared out equally among all the males in the patch, and so the W gains relatively little
ot enough to compensate for the reduced transmission. However, if population size
e very low, with at most a single mated female settling in a patch, then the extr
aughters produced by the W-male all go to his W-bearing sons, and the frequency o
increases.

econd, we have shown that the same life history scenario leads to the same qualitativ
tcome (population persistence regardless of the strength of drive) for a gene driv
nstruct using the homing reaction to knock out an essential gene, though the precis
etails differ. For a Driving Y, increased inbreeding means that the number of sisters
ale has is an important component of his fitness, and, unavoidably, Driving Y male
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ill have fewer sisters than wildtype males. For autosomal drivers causing recessiv
thality, increased inbreeding means wildtype (WW) individuals are mating with
ildtypes, and drivers (WD) with drivers. In the absence of inbreeding depression
ating with a sibling is more productive for wildtypes, producing a full complement o
spring, than for drivers, who will be at increased risk of mating with another drive
which case only a fraction (1− d2) of their progeny will be viable.

hird, we have shown for both types of drive that if inbred progeny are prevented from
ntributing to the population (by imposing strong inbreeding depression), then th
revious advantage of the wildtype at low density disappears and the results chang
ain, with sufficiently strong drive once more able to eliminate the population. Fo
Driving Y, population persistence relies on the wildtypes having an advantage a
w densities because they can mate with their sisters, but if those matings do no
roduce viable offspring, the advantage disappears. Similarly, for a homing construc
e wildtype can have an advantage at low densities because mating between relative
oes not carry the risk of producing lethal DD offspring, but if the offspring are letha
st by being inbred then again the advantage disappears.

hus our modelling suggests that populations can persist in the face of strong gene drive
en in the absence of resistance, if three requirements are met: the target population
ows spatial structure; reductions in population density lead to an increased probabilit
inbreeding; and inbred progeny have sufficiently high fitness. The extent to which th
ree criteria exist in a particular target species will need to be assessed on a case-by-cas
asis. If the population is not eliminated, then it can still be significantly suppressed
d this may be sufficient by itself for the purposes, or may be a useful component of
ulti-pronged elimination programme. In principle, populations may also be rescued
selection for genetic variants that increase the frequency of inbreeding independentl
density, though, again, strong inbreeding depression will militate against such an
ect (Bull, 2016; Bull et al., 2019).

breeding depression in our model reduces the population growth rate at low densitie
d therefore acts as an Allee effect (Luque et al., 2016). Even in our baseline mode
ithout inbreeding depression, there is a small region of low population growth rate
here the wildtype population shows a strong Allee effect, requiring a threshold densit
establish. This effect arises because at low densities, and low values of R, a singl

male may not produce any sons to mate her daughters. Within this region of paramete
ace it is possible for a Driving Y to suppress the population below the threshold densit
d thereby eliminate it. The effect of including inbreeding depression is to increas
e region of parameter space in which a wildtype invasion threshold density exist
d elimination is possible. Most or all species show inbreeding depression, primaril

ue to the unmasking of deleterious recessive mutations, and, all else being equal, th
agnitude of the effect is expected to be greater in populations that previously wer
rge and outcrossed (Tanaka, 2000; Frankham, 2005; Charlesworth & Willis, 2009
edrick & Garcia-Dorado, 2016). Inbreeding depression is not the only possible sourc
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an Allee effect: for example, low densities can also lead to difficulties in finding
ate (Courchamp et al., 2008). In our model we have assumed that if there is a singl
ale in the patch, then all females will get mated, but for many species this assumption
ay not be valid. We would expect that Allee effects due to difficulties in finding
ate (or any other source) could also tip the balance from population persistence t
imination (see also Dhole et al. (2020)). Interestingly, there will often be synergisti
teractions between genetic and ecological Allee effects (Wittmann et al., 2018). Th
ossibility of exploiting Allee effects for pest control more generally has been previousl
iscussed (Liebhold & Bascompte, 2003; Blackwood et al., 2018).

he interaction of gene drive and spatial processes have been modelled in many ways
vealing a diverse array of effects (Dhole et al., 2020). In deterministic partial differentia
uation models with local diffusion, sufficiently strong drive leads to population
imination, though it takes longer than in a panmictic population (Beaghton et al
16; Girardin & Debarre, 2021). On the other hand, stochastic spatial models hav
own that populations can persist even with arbitrarily strong drive, and identified
ree types of effect protecting the population from elimination. First, in some case
may be that the connectedness of populations across the landscape is such tha
drive, released in one part of the landscape, does not reach some specific refugi
opulations before it itself goes extinct (North et al., 2013; Eckhoff et al., 2017). Thi
ect can be particularly acute in highly seasonal environments, where a prolonged
d severe dry season can lead to (transient) population isolation, and a driver migh
ach a locale during the wet season, but not attain a sufficiently high frequency t
rvive through a dramatic dry season bottleneck (Eckhoff et al., 2017; North et al
19, 2020). In principle, the issue of refugia can be addressed by more widespread
leases, appropriately timed for the beginning of the wet season (Lambert et al
18), ensuring the drive is introduced into all parts of the landscape. Second, even i
opulations are sufficiently connected that the gene drive eventually gets to all parts o
e landscape, the population may nonetheless persist because the wildtype is able t
lonize previously cleared areas, and grow in abundance, it taking some time for th
river to get there and suppress the population, by which time the wild type has spread
another previously cleared location, resulting in a phenomenon which has variousl

een referred to as “dynamic metapopulations” (North et al., 2019), “colonization
tinction” dynamics (North et al., 2020), and “chasing” dynamics (Godfray et al
17; Champer et al., 2021). Finally, in the model presented in this paper we have seen
at even with 100% global dispersal every generation, spatial processes can protect
opulation from elimination if low densities lead to increased inbreeding and inbred
rogeny are sufficiently fit, because it leads to selection against the driver.

each of these three cases there is something that keeps the wildtype and drive
leles from direct maximal competition, be it refugia on an insufficiently connected
ndscape, or a small spatial separation between colonizing wildtypes and chasin
rivers, or the random assortment of females into patches at low densities. We hav
emonstrated that the last mechanism relies on inbreeding – the ability of brother
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d sisters to successfully mate and reproduce – and suspect the same is true of th
cond mechanism – that it depends on (or is greatly augmented by) the ability of
ngle mated wildtype female to give rise to brothers and sisters that can mate and
tablish a new population. This issue could be investigated by modifying our mode
have local (as opposed to global) dispersal. In the continuous-space local-dispersa
odels of Champer et al. (2021), incorporating inbreeding depression appears to hav
e expected effect of increasing the likelihood of elimination.

he models presented here incorporate the stochastic effects that necessarily aris
dealing with discrete individuals, particularly at low densities, but nevertheles
e explicitly solvable, requiring no stochastic simulations or generation of random
umbers. They are also relatively simple, with only three parameters (R, α, m or d)
d are not intended to give precise quantitative predictions about the consequence
a specific release in a specific species. Some of the previous simulation models tha

ave shown population persistence have been substantially more complex, aiming t
pture more faithfully the biology of one potential target species, Anopheles gambiae
e main vector of malaria in Africa (North et al., 2013, 2019, 2020; Eckhoff et al., 2017
hether population persistence in these models is due solely to refugia and low densit
breeding, or whether some other features of the models (e.g., spatial and tempora
eterogeneity, overlapping generations, etc) also promote population persistence remain
be determined. It would be interesting to include inbreeding depression or othe

rong Allee effects in these models to see how they affect the dynamics. There is good
idence of inbreeding depression in mosquitoes including An. gambiae (Armbruste
al., 2000; Baeshen et al., 2014; Turissini et al., 2014; Ross et al., 2019). We hav
so modelled inbreeding depression in a simple way, with only a single fixed fitnes
st for females that have mated to a sibling, whereas it would be more realistic t
ave the costs increase with successive generations of inbreeding, or to explicitly mode
e deleterious recessive mutations that underlie inbreeding depression (Tanaka, 2000
ittmann et al., 2018). Over longer time periods these deleterious recessive mutation
ight get purged (Bundgaard et al., 2021; Perez-Pereira et al., 2021), though only i
e population is not eliminated first.
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