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Abstract—This paper proposes a completely non-centralized
Volt/VAr control (VVC) algorithm for active distribution net-
works which are faced with voltage magnitude violations due to
the high penetration of solar photovoltaics (PVs). The proposed
VVC algorithm employs a two-stage architecture where the
settings of the classical voltage control devices (VCDs) are
decided in the first stage through a distributed optimization
engine powered by the alternating direction method of multipliers
(ADMM). In contrast, the PV smart inverters are instructed in
the second stage through linear Q(P) decision rules - which are
computed in a decentralized manner by leveraging robust opti-
mization theory. The key to this non-centralized VVC routine is
a proposed network partition methodology (NPM) which uses an
electrical distance metric based on node Q−|V |2 sensitivities for
computing an intermediate reduced graph of the network, which
is subsequently divided into the final partitions using the spectral
clustering technique. As a result, the final network partitions are
connected, stable, close in cardinality, contain at least one PV
inverter for zonal reactive power support, and are sufficiently
decoupled from each other. Numerical results on the UKGDS-
95 and IEEE-123 bus systems show that the non-centralized
solutions match closely with the centralized robust VVC schemes,
thereby significantly reducing the voltage violations compared to
the traditional deterministic VVC routines.

Index Terms—Network partitioning, Reactive power decision
rules, Robust Optimization, Second order conic relaxation,
Volt/VAr control (VVC).

I. INTRODUCTION

THE Volt/VAr control, as part of the distribution man-
agement systems, primarily aims at maintaining an ac-

ceptable voltage profile throughout the electricity network. In
most cases, the node voltage magnitudes should stay between
the upper and lower thresholds of 0.95 pu and 1.05 pu. The
VVC decides settings for voltage control devices (VCDs)
installed on the network through an optimization framework,
which requires information about load consumption, PV power
generation, network topology, and electrical parameters. The
classical VCDs include transformers, on-load tap changers
(OLTCs), voltage regulators (VRs), and capacitor banks (CBs),
whereas smart PV inverters are also recently being employed
in some advanced voltage control routines.

Nowadays, the main challenge the traditional deterministic
VVC algorithms face is the uncertainty of the PV real power
generation. This is because the VVC solutions are dispatched
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with a typical periodicity of 15-30 minutes, during which
the PV real power generation may exhibit enough variations
to give rise to significant voltage violations [1]. However,
simply dispatching the VVC solutions more often is not
practically possible owing to the fact that the classical VCDs
are switched-type devices which means these are inherently
slow in operation, and frequent switching will reduce their life
expectancy. In such a situation, reactive power support from
PV inverters has been identified as the potential solution by the
researchers [2]–[4], given the power electronic nature of the
inverters, which enables them to respond almost instantly with
negligible wear and tear issues. This fact is also acknowledged
by the IEEE 1547-2018 standard, which serves as a specific
modification to the original IEEE 1547-2003 standard, to
allow dynamic reactive power-based voltage support from
the smart inverters [5]. This leads to the problem of the
coordinated voltage control between the legacy VCDs and the
PV inverters, which has been a subject of recent research.
Many research works adopt a control law for adjusting the
smart inverter reactive power in response to fluctuations in
either the voltage magnitude [6]–[8] or active power [1], [9]–
[12] at their terminals, thereby effectively allowing the legacy
VCDs to run at a slower time scale.

In practice, both the parameters of the control law and the
settings of the legacy VCDs are computed simultaneously
at the beginning of the optimization horizon. The Q(V )
control law, adopted in [6] - [8], suffers from the main
problem of restrictive convergence conditions and can lead to
undesirable oscillatory behaviour, whereas the Q(P ) control
law has shown stable performance to maintain the voltages in
an acceptable region [1], [9]–[12]. Furthermore, the German
Grid Code also proposes such Q(P ) characteristics to support
the network voltage profile [13]. These Q(P ) characteristics
are mostly decided based on affine policies [1], [11], [12],
[14] whereas quadratic decision rules have been used in [9],
[10]. Such affine policies efficiently capture the relationship
between different variables through first degree polynomials.
The affine arithmetic based dependence between the input
and output variables is also used to quantify the impacts of
data uncertainties on the steady state solutions in advanced
power flow techniques [15], [16]. Although the quadratic
decision rules allow finer control, their use is limited by
tractability of the underlying optimization problem. As an
example, the robust optimization framework of [1], [12], [14]
only admits a tractable deterministic counterpart when the
control law is determined by affine policies [17]. Such an
affinely adjustable robust optimization framework has superior
performance over other techniques like the chance-constrained
optimization, used by [10], [11], in that it guarantees that
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the voltage violations are completely removed provided the
reactive power demanded by the optimized control law does
not violate the inverter apparent power limits and the network
model is linear. However, one of the main limitations for
practical implementation of these robust optimization-based
frameworks is that their optimization engine is powered by
centralized solvers and thus relies heavily on network ob-
servability, remote monitoring, and strong communication in-
frastructure. Moreover, these robust optimization frameworks
fail to admit a distributed solution as their decomposability
is limited by the presence of many cross-coupling terms,
and they require access to the network-wide Newton-Raphson
load flow based Jacobian matrix [1]. A recent attempt to
achieve distributed solutions for the robust optimization VVC
problem was by solving the worst-case realization through a
column-and-constraint generation algorithm [18]. The whole
network was initially divided into sub-networks using an
affinity propagation clustering algorithm to minimize the infor-
mation exchange during distributed computation. However, the
solutions are too conservative in this case because the second
stage decisions are based on fixed recourse, which is optimized
after every 15 minutes. This paper proposes a novel algorithm
to obtain an affinely adjustable robust optimization solution
for the VVC problem without any centralized computations.

The key to our method is identifying neighbourhoods or
zones around groups of PVs, such that the node voltage
magnitudes within a particular group are much more strongly
influenced by the reactive power injections from the PVs
of the same zone only. To this end, we propose a novel
network partition algorithm based on the spectral clustering
technique discussed in the next section. Network partition-
based zonal voltage control is a powerful tool and has been
around for more than three decades owing to its ease of
implementation [19]. Recently, distributed generation sources
were grouped for voltage control in a typical microgrid in [20],
whereas in [21] and [22], a community detection algorithm
was used to partition the distribution network for zonal voltage
control. Furthermore, the k-means partitioning algorithm was
used for steady-state voltage control in a distribution network
[23]. In contrast, a power flow tracing and an agglomerative
algorithm were proposed in [24] for voltage control of large
power systems. A decentralized zonal voltage control realized
through multi-agent fuzzy logic systems is presented in [25].
However, all these partition-based methods focus on deter-
ministic voltage control strategies, thereby meaning that opti-
mization models relevant to data uncertainty, like stochastic,
chance constrained or robust optimization programming, are
not used. Our proposed NPM, for the first time to the best
of our knowledge, attempts to solve the affinely adjustable
robust optimization version of the voltage control problem.
Furthermore, the final partitions obtained through our proposed
NPM are insensitive to the network operating state. This
means the partitions are considered permanent until a network
reinforcement is needed or a major network reconfiguration
event occurs. The NPM technique is powered by the spectral
clustering algorithm, which is highly efficient in revealing the
underlying connectivity of the power networks [26]. Further,
the spectral clustering algorithm has been successfully applied

to the VVC problem [27]. It was found that this algorithm
maintains the reactive power balance in each identified net-
work zone and minimizes the need for reactive power flow
across boundaries of these identified zones.

To realize the complete voltage control without any type
of centralized computations, we employ a two-stage VVC
optimization framework, in which the first stage is solved
through a distributed solver via the consensus-based ADMM
algorithm [28], while the second stage is solved in a decentral-
ized fashion. The distributed solvers achieve solutions as good
as the centralized ones with a bit of information exchange
at the boundary of the partitions [29]. In this way, optimal
deterministic set points of the classical VCDs and the PV
smart inverters are decided in the first stage. Assuming that
the first stage deterministic reactive power setpoint for a solar
PV inverter at bus j is denoted by Q̂s

j , then the control law
for the smart inverter is of the form Qs

j = Q̂s
j + αj∆P s

j . The
slope (αj) of this affine Q(P) control law is then decided in
the second stage through decentralized optimization solvers
employing a robust optimization framework to minimize the
voltage magnitude deviation due to the active power variations
(∆P s

j ). To facilitate the decentralized second stage computa-
tions, the node P − Q − |V | sensitivities are needed, which
are also computed in a distributed fashion by solving second-
order cone programming based load flow routines [30] and
subsequently using the perturb and observe based sensitivity
concept [31], [32]. Thus, the benefits of the combined central
and local control concept, viz global optimality for the first
stage decisions and the rapid response of the second stage
decisions [33], are efficiently preserved by our proposed
voltage control strategy. Finally, our approach is immune to
the typical problems of the model-free data driven techniques
[34], [35], like data overload and misinterpretation due to bad-
data, owing to its rigorous mathematical structure.

The main contributions of this research are summarised
below:

• The network partition-based zonal voltage control has
proven to be a convenient method for network level
VVC functionalities, and has been extensively used for
deterministic cases, where the nodal injection forecasts
are considered perfect. With the increasing integration
of highly intermittent generation sources, like the PVs,
uncertainty in nodal power injections is crucial for decid-
ing the schedules of the VCDs. We propose a novel net-
work partition methodology which is able to effectively
perform voltage control under data uncertainty, besides
identifying connected, stable and similar size network
partitions.

• The main novelty of this research is to come up with
affinely adjustable robust optimization solutions for the
VVC problem of distribution networks without the need
of a centralized controller. Thereby, challenges pertaining
to sparsity of communication infrastructure, privacy con-
cerns on data exchange and non-determinstic solutions
are effectively handled in a single optimization frame-
work.

• Like many advanced voltage control strategies [1], node
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Nomenclature
I. Notation
N (B) Set of nodes (branches) of the network
P (C) Set of nodes hosting Solar PVs (Capacitors)
N ∗ (P∗) Set of nodes (PV nodes) belonging to a particular zone

T Set of branches hosting on-load tap changers or voltage
regulators

X (X) Upper (lower) limits of a quantity X
II. Parameters
bcj Susceptance of the capacitor hosted at the node j

gj (bj ) Shunt conductance (susceptance) at node j in the line
equivalent π model

P l
j (Ql

j ) Active (reactive) power injection of the load at node j

P s
j Active power injection of the solar PV unit at node j

rij (xij ) Series resistance/ (reactance) of the line (ij)
III. Variables

αj
Slope of the affine P(Q) control law for the PV inverter
connected at node j

∆P s
j

Active power fluctuations for the PV inverter connected
at node j

K
P |V |
ij

Sensitivity of the node i voltage magnitude with respect
to change in active power injection at node j

K
Q|V |
ij

Sensitivity of the node i voltage magnitude with respect
to change in reactive power injection at node j

lij
Square of the branch current magnitude flowing on the
branch (ij)

P̂ s
j

Deterministic (mean) value of the active power forecast
for the PV connected at node j

Pj (Qj ) Net active (reactive) power injection at node j

Pij (Qij ) Active (reactive) power flowing on the line (ij) which
starts from node i towards node j

Q̂s
j

First stage deterministic reactive power set point for the
PV connected at node j

Qs
j (Qc

j ) Reactive power injected by the solar PV inverter
(shunt capacitor) connected at node j

Ss
j Apparent power injection from the PV unit at node j

tij Tap setting of the transformer on the branch (ij)

uj (u
j

)
Square of the node voltage magnitude for the node j
(fictitious node j )

voltage magnitude sensitivities to the active and reactive
power injections are important for the proposed solution
framework. Traditionally, the computation of these sensi-
tivity values requires a centralized computational agent.
This research proposes a novel way of computing these
sensitivity coefficients in a distributed fashion by using
conic load flow based solvers which are powered by the
ADMM algorithm.

The rest of this paper is organised as follows. Section II
presents the proposed network partition methodology, a novel
electric distance metric is introduced, suitable for zonal voltage
control based paradigms for distribution networks. Section III
discusses the proposed two-stage voltage control framework
for achieving non-centralized robust voltage control settings.
Numerical results on the UKGDS-95 and IEEE-123 bus sys-
tems are given in Section IV, which shows that the non-
centralized solutions are very similar to the centralized ones.
Finally, the paper is concluded in Section V.

II. NETWORK PARTITION METHODOLOGY

The huge impact of PV reactive power on the nearby nodes
than the furthest ones, and the increase in complexity of a
centralized control scheme owing to a high penetration level
of PVs makes it reasonable to group strongly coupled nodes
together for voltage control. Apart from the key fact that the
nodes associated together in a cluster are closely related than

Fig. 1. Typical Radial Distribution Network Section

the remaining nodes of the network, a meaningful NPM for
VVC must produce clusters which are a) connected, in the
sense that any pair of nodes within a cluster are traceable
through a series of edges; b) stable, so that the clusters remain
unchanged for different loading and generation patterns of the
network; and c) approximately similar size, which implies that
the number of nodes in other clusters is not widely different.
Furthermore, each cluster must have at least one PV for
supplying the leading or lagging VARs required for its voltage
control.

A. Electrical Distances for Voltage Control

The concept of electrical distances is used to quantify the
proximity between any two nodes of the network. For a
voltage control scheme, the electrical distance between two
nodes needs to consider a suitable parameter, representing the
reactive power to node voltage sensitivity between them. Thus,
we use the linearised DisFlow model [36] and extend it to
include the transformers present in the network. Consider a
radial distribution network, as shown in Fig. 1, the extended
linear DistFlow model is given as:

Pj =
∑
k

Pjk − Pij (1a)

Qj =
∑
k

Qjk −Qij (1b)

u
i
− uj = 2(rijPij + xijQij) (1c)

u
i

= t2ijui (1d)

In order to eliminate the fictitious node variable, u
i

, (1c) and
(1d) can be combined as follows:

t2ijui − uj = 2(rijPij + xijQij) (2)

(2) is generalized for all the branches of the network, by
allowing tij = 1 for the branch (ij) which does not host a
transformer. Let G(N ,B) represent the directed graph of the
network with incidence matrix denoted by În×(n−1), such that
if branch b is sandwiched between nodes i and j, then

Î(i, b) = −1

Î(j, b) = 1

Î(k, b) = 0 ∀k ̸= i, j
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The first row of the incidence matrix denotes the transmission
system feed-in point of the network. If we partition the
incidence matrix along this row and denote the sub-matrix
corresponding to the remaining network as I(n−1)×(n−1), then
(1a) and (1b) can be written as:

p = I−→p (3a)
q = I−→q (3b)

Here, p/q denote the vector of real/reactive power injections
at all the nodes except the transmission system feed-in node,
and −→p /−→q represents the vector of active/reactive power flows
on the branches of the network. Also, let us define a matrix
T̂(n−1)×n from the set of branches B to the set of nodes N
such that:

T̂(b, i) = t2ij

T̂(b, j) = −1

T̂(b, k) = 0 ∀k ̸= i, j

Thus we can write (2) as follows:

T̂û = 2diag(r)−→p + 2diag(x)−→q (4)

The first column of T̂ corresponds to the transmission system
feed-in point. Denote this column vector by t1 and the rest of
the matrix as T. Then (4) is written as:[

t1 T
] [u1

u

]
= 2diag(r)−→p + 2diag(x)−→q (5)

Thus the squared node voltage magnitudes for all but the
substation node can be obtained by the closed-form solution
as follows:

u = 2T−1diag(r)I−1p+2T−1diag(x)I−1q−T−1t1u1 (6)

If voltage control is done through reactive power modulation,
assume that the vector δq gives the change in nodal reactive
power injections, then the corresponding change in squared
node voltage magnitudes is given by:

δu = 2T−1diag(x)I−1︸ ︷︷ ︸
Λ

δq (7)

The matrix Λ represents a matrix of Q−|V |2 sensitivities. For
easy analysis, Λ is normalized so that the diagonal entries are
unity, thereby revealing the strength of cross-sensitivities or
off-diagonal entries. Let the normalized matrix be denoted by
Ξ, such that

Λ = ΓΞ (8)

Where, Γ = diag(Λ), is positive definite and invertible for
a network with stable voltages, meaning that voltage collapse
condition does not exist. Since Γ is invertible, we can combine
(7) and (8) in the following manner:

Γ−1δu︸ ︷︷ ︸
δu∗

= Ξδq (9)

The vector δu∗ represents a scaled squared voltage magnitude
deviation vector. Each entry represents the corresponding
squared node voltage deviation being scaled down by the self
Q−|V |2 sensitivity of that node. Since these scaled deviations

are linked to the reactive power modulations through Ξ, we
define the electrical distances through the operation given
below:

D = − ln(Ξ ◦ΞT ) (10)

◦ denotes the Hadamard (element-by-element) product, and
this operation ensures that for any two nodes, i and j, the
distance values, D(i.j) and D(j, i), are the same. Moreover,
the matrix defined by this product, Ξ◦ΞT , has all the leading
diagonal entries equal to 1 and off-diagonal entries smaller
than 1, as is clear from (8). Therefore, taking a negative
logarithm in (10) naturally assigns a zero value for the self
distances and a smaller positive value for the distance of nodes
whose Q − |V |2 sensitivities are greater. Thus, the matrix D
is always hollow, symmetric, and nonnegative. Furthermore,
for a network that is not over-compensated, in the sense that
the inductive terms are not eliminated but only attenuated by
the capacitive devices, the triangular inequality for any three
nodes with respect to D will also hold [19]. Thus the matrix
D represents a true distance matrix. It is important to note that
these electrical distances do not change with generation and
loading patterns. Furthermore, our simulation studies reveal
that the effect of transformer/OLTC taps as captured by the
matrix T is negligible for practical load curves. Thus, using
distance matrix D for carrying out the network partitioning
results in stable clusters.

B. Reduced Graph

The distance matrix D can assign each node of the network
to its nearest PV node. This assignment exercise, therefore,
identifies the nearest neighbours around each PV node. De-
noting each such neighbourhood by a fictional node and later
connecting them through branches that correspond to actual
branches on the network results in a much smaller graph
known as the reduced graph. More specifically, two fictional
nodes in the reduced graph would be connected if there is a
branch between any pair of nodes in the original graph, which
has been assigned to these fictional nodes. In this way, the
number of nodes in the reduced graph is equal to the number
of PV buses. For the assignment exercise, we initially define
an orthonormal standard basis matrix, Ψ ∈ IRm×n−1, with
each row representing a basis vector of the vector space in
IRn−1. Here m represents the number of PVs and n represents
the number of nodes in the network. Thus each row of Ψ
corresponds to a particular PV in the network and will have
exactly one non-zero entry whose value is 1 with indices
decided by the location of the specific PV in the network. Let
us say that the ith PV is connected at bus j in the network,
then:

Ψ(i, k) = 1 : i ≤ m, k = j − 1, j ≤ n (11)

The basis matrix Ψ is used to extract a reduced distance
matrix, denoted by Dr, whose columns correspond to the PV
nodes, as follows:

Dr = ΨD (12)

We use the proposed reduced distance matrix Dr to complete
the assignment exercise by computing the linear index of the
least value entry in each row. The vector of such indices,
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denoted by θ, therefore represents a direct mapping of the
original network nodes to the reduced graph and is mathemat-
ically computed as:

θi = argmin
j

Dr(i, j), i = 1, ..., n− 1 (13)

It is evident from (13) that the value of a particular entry
directly gives the fictitious node of the reduced graph to which
the corresponding node of the original network belongs. In
this way, m connected clusters are identified, which represent
nodes of the reduced graph.

C. Spectral Clustering on the Reduced Graph

The final clustering of the original network is achieved by
performing spectral clustering on the reduced graph. Spectral
clustering gives a control on the required number of partitions.
The essence of spectral clustering is to map the network
nodes into a low dimensional space, characterized by the
lower eigenvalues of the graph Laplacian matrix L, that can
be easily segregated into clusters. We build the Laplacian by
initially computing the graph similarity matrix, W, for which
we propose the following procedure:

• Associate each node of the reduced graph with a weight
equal to the cardinality of the subnetwork represented by
that fictional node. Let Wi be the weight of the node i.

• Construct the similarity matrix W, as given:

Wij =

{ 1
Wi

+ 1
Wj

if nodes i and j are connected
0 Otherwise

(14)
The proposed similarity matrix is a modified adjacency matrix
of the reduced graph. Furthermore, it gives lower weights
to the edges connecting the nodes that represent bigger sub-
networks of the original graph. These edge weights measure
the connection strength between two nodes, as weakly con-
nected nodes are more likely to separate when clustering.
The procedure ensures that the final clusters have a relatively
equal number of nodes. Thus, there is an established power
engineering interpretation of the proposed similarity matrix.
Finally the Laplacian matrix is computed with the help of the
proposed similarity matrix as:

L = D−W (15)

Here, D is the degree matrix, a diagonal matrix with entries
equal to the sum of the corresponding row of the similarity
matrix [37]. Thus, degree matrix D : Dii =

∑
j Wij . Given

the Laplacian matrix L and the number of clusters needed,
we partition the network by employing the spectral clustering
methodology [26] on the reduced graph. The final partitions
reveal the different clusters of the original network, and the
cut edges along which the partitions are made.

III. NON-CENTRALIZED VOLT/VAR CONTROL

Once the distribution network has been partitioned into
optimal zones by the NPM as described above, the voltage
control of the network is achieved without the need for a
centralized controller. Instead, each revealed zone is controlled

by its local controller. The proposed non-centralized robust
voltage control settings are achieved by solving two separate
VVC frameworks in sequence together with an intermediate
sensitivity analysis routine, as shown in Fig. 2. It is clear from
this figure that the second stage decisions are only computed
once the first stage decisions are available. The three important
blocks in Fig. 2 are discussed in detail below.

A. Stage 1: Deterministic VVC

The deterministic VVC seeks to minimize the total active
power loss of the network by optimizing settings for the
classical VCDs and the deterministic reactive powers for PV
inverters based on the forecast values of the PV active power
generations. The voltage magnitudes are held within the VVC
thresholds using strict box constraints, while the load flow
model of the system is convexified through second-order
cone relaxations. These second-order cone relaxations are
guaranteed to be exact under milder and practical assumptions
for radial distribution networks [38]. Thus, in the first stage,
the following second-order cone program is solved.

min
∑

(ij)∈B/T

rij lij +
∑

(ij)∈T

rij l i j
(16a)

s.t. P l
j + P s

j =
∑

k:j→k

Pjk −
∑
i:i→j

(Pij − rij lij) + gjuj ,

∀j ∈ N (16b)

Ql
j +Qc

j + Q̂s
j + bjuj =

∑
k:j→k

Qjk

−
∑
i:i→j

(Qij − xij lij), ∀j ∈ N (16c)

uj = ui − 2(rijPij + xijQij) + (r2ij + x2
ij)lij ,

∀(ij) ∈ B/T (16d)

uj = u
i
− 2(rijPij + xijQij) + (r2ij + x2

ij)l i j
,

∀(ij) ∈ T (16e)∣∣∣∣∣∣
∣∣∣∣∣∣

2Pij

2Qij

lij − ui

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ lij + ui, ∀(ij) ∈ B (16f)

∣∣∣∣∣∣
∣∣∣∣∣∣

2Pij

2Qij

l
i j

− u
i

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ l
i j

+ u
i
, ∀(ij) ∈ T (16g)

t2ijui ≤ u
i

≤ t2ijui, ∀i ∈ T (16h)

bcjuj ≤ Qc
j ≤ bcjuj , ∀j ∈ C (16i)

−
√
(Ss

j )
2 − (P s

j ) ≤ Q̂s
j ≤

√
(Ss

j )
2 − (P s

j ),

∀j ∈ P (16j)

lij ≤ lij , ∀(ij) ∈ B (16k)
uj ≤ uj ≤ uj , ∀j ∈ N/1 (16l)

u0 = 1, Substation bus (16m)

The objective of the above optimization problem, as de-
fined in (16a), minimizes the branch active power losses
over the entire network. The feasible convex region for
this optimization problem is demarcated by the constraints
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Fig. 2. Two Stage VVC Implementation

defined through (16b) - (16m). This feasible region is
defined by the vector of optimization variables, O =
[uj , u j

, lij , l i j
, Pij , Qij , Q

c
j , Q̂

s
j ]. The real power and re-

active power balance of a particular node are respectively
denoted by (16b) and (16c); it is obvious that these power
balances are determined by the type of devices connected at
that node. Also, if the incoming branch hosts a transformer,
the appropriate value of lij , which is l

i j
, is used in these

equations. The Ohms law governing the voltage drop in the
branches without and with a transformer is represented by
(16d) and (16e). The actual load flow model needs the branch
flow quantities to follow the non-convex quadratic relation
given by P 2

ij + Q2
ij = lijui, which is relaxed to an exact

second-order conic (SOC) constraints through (16f). Further-
more, it is clear that (16g) enforces additional SOC constraints
on branches that host transformers. However, this extra cone
features the same active (Pij) and reactive power flows (Qij),
implying that the transformers are considered lossless. Finally,
(16h) - (16m) hold various optimization variables within their
permissible bounds. Note that continuous relaxations are used
through (16h) and (16i) to retain the model’s convexity. (16j)
limits the reactive power supplied by a PV inverter inside
its PQ capability curve as dictated by the maximum apparent
power capacity and the forecasted real power.

The deterministic optimization framework set up in (16) is
separable with respect to any splitting in the objective function
as all the constraints feature only immediately local variables
and parameters. This is to say that a constraint defined for
the network nodes, e.g. (16b), only depends on quantities
related to either the devices or branches connected to the
particular node. Similarly, a constraint defined for a particular
branch, e.g. (16d), only depends on quantities related to that
branch and the corresponding end nodes. Thus we can write
separate deterministic VVC subproblems for all the partitions
obtained by the NPM in the previous section. In order to
achieve a global optimum solution for the framework of (16),
we use a consensus-based ADMM algorithm to solve these
subproblems in a distributed fashion [9]. However, the ADMM
algorithm requires the adjacent zones to overlap to allow more
than one local controller to compute the decision variables

belonging to these overlapping regions. Subsequently, the
ADMM algorithm pushes the different local controllers to
agree on the values for such decision variables. Once this
consensus is achieved, the algorithm stops and the solutions
are mathematically guaranteed to be the same as those of a
centralized solver, given that the optimization framework is
convex [29]. We effectively use the cut edges or branches,
along which the NPM partitions the network into various
zones, for providing the ADMM with required overlap regions.
In this work, all the adjacent zones share any such cut branches
along and end nodes to achieve the required consensus. Once
the deterministic VVC converges, the optimum schedule of
the classical VCDs is available in an implicit way. For a
transformer hosted in the branch (ij) the tap ratio is obtained

from

√
u
i

ui
after rounding off to the nearest discrete value.

Similarly, the capacitor susceptance value at node j is given
by

Qc
j

uj
. Moreover, the deterministic value of the PV reactive

power is directly available from the optimizer.

B. Distributed Sensitivity Analysis Approach

Once the dispatches are available from the deterministic
VVC routine, the sensitivity coefficients (P − Q − |V |) for
network nodes corresponding to this operating state need
to be computed for use in the second stage robust VVC.
Mainly these sensitivities are obtained through the inversion
of the Jacobian matrix available from the Newton-Raphson
load flow routine [39]. However, this method can not be used
without a centralized computing agent. Thus we adopt the
perturb and observe (P&O) based sensitivity analysis method
[31] and show that it can obtain the node sensitivities in
a distributed manner. In the P&O method, the sensitivity
coefficients are approximated by injecting a small amount of
additional active/reactive power at a node and measuring the
impact on the network voltage magnitude with respect to the
actual operating state. Assuming that the change in voltage
magnitude for node i is ∆|Vi| when the active (reactive) power
injection at node j changes by ∆Pj (∆Qj), then the P − |V |
(Q−|V |) sensitivity of node i with respect to node j is given
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as:

K
P |V |
ij =

∆|Vi|
∆Pj

(17)

K
Q|V |
ij =

∆|Vi|
∆Qj

(18)

In this work, an injection equalling 1% of the connected P/Q
load value has been used. In addition, an injection equal to 1%
of the smallest non-zero P/Q load value was used for the buses
with zero connected load. This process is repeated for all nodes
of the network. Thus, this method requires solving 2n+1 load
flows, when n is the number of nodes in the network. To solve
the load flow in a distributed manner, [30] has proved that a
SOCP, which is very similar to the framework in (16) albeit
much simpler, needs to be solved. The load flow optimizer
uses fixed values for the VCDs given by the dispatches from
the deterministic VVC in stage 1. Specifically, the lower and
upper bounds in (16h) - (16j) become equal as determined by
these dispatches. Further, constraints on the node voltage and
branch current magnitudes as defined in (16k) - (16l) are not
needed.

C. Stage 2: Decentralized Robust VVC

The main advantage of using the sensitivity analysis is that
it allows linearly quantifying the change in voltage magnitude
at a node when the PV real power fluctuates. Assume that
the PV real power at bus j fluctuates by ∆P s

j in response
of which the second stage robust VVC routine adjusts the
corresponding reactive power by ∆Qs

j = αj∆P s
j , then the

deviation in voltage magnitude at bus i is given by:

∆|Vi| =
∑
j∈P

(K
P |V |
ij +K

Q|V |
ij αj)∆P s

j (19)

The second stage of control strives to minimize these voltage
deviations due to the changing PV active power injection by
optimally adjusting the reactive power feed locally. This is
mathematically denoted as:

min
∑
i∈N∗

∑
j∈P∗

(K
P |V |
ij +K

Q|V |
ij αj)∆P s

j (20a)

s.t.Qs
j = Q̂s

j + αj∆P s
j ∀j ∈ P∗ (20b)

P s
j = P̂ s

j +∆P s
j ∀j ∈ P∗ (20c)

∆P s
j ∈ [∆P s

j , ∆P s
j ] ∀j ∈ P∗ (20d)

It is important to note that the above optimization framework
is set up separately for each zone which is identified by
the NPM. This implies that the effect of the reactive power
modulation for a PV from one zone is negligible to the node
voltage magnitudes of all other zones. This assumption is
in line with the basic premise of the NPM. (20d) shows
that the PV real power deviation varies in an uncertainty
interval with known upper and lower bounds. This allows us
to write the affinely adjustable robust counterpart of the above
optimization framework by employing the concept of epigraph

programming and using positive/negative slack variables [1],
[40] as follows:

min
∑
i∈N∗

ti (21a)

s.t.
∑
j∈P∗

[z+ji∆P g
j + z−ji∆P g

j ] ≤ ti, ∀i ∈ N ∗

(21b)∑
j∈P∗

[z+ji(−∆P g
j ) + z−ji(−∆P g

j )] ≤ ti, ∀i ∈ N ∗ (21c)

z+ji ≥ 0, ∀i ∈ N ∗, j ∈ P∗ (21d)

z+ji ≥ K
P |V |
ij +K

Q|V |
ij αj , ∀i ∈ N ∗, j ∈ P∗ (21e)

z−ji ≤ 0, ∀i ∈ N ∗, j ∈ P∗ (21f)

z−ji ≤ K
P |V |
ij +K

Q|V |
ij αj , ∀i ∈ N ∗, j ∈ P∗ (21g)

Here, ti denotes the ith scalar epigraph variable and z+ji/z
−
ji

represent the positive/negative slack variables. The above prob-
lem is a linear programming problem that can be efficiently
solved to compute the optimal value of the slope (αj) for the
PV inverter’s affine control law. It is important to note that the
choice of an affine control law in (19) is motivated by the fact
that it results in a tractable linear robust counterpart of (21),
whereas a non-affine control law is bound to be NP-hard [41].

IV. NUMERICAL RESULTS

The numerical computations have been performed on a 3.5
GHz Intel Xeon E5 processor with 64 GB of RAM, where
the proposed NPM was implemented in MATLAB, and the
proposed non-centralized VVC framework was programmed
in Julia with Gurobi 9.1 [42] employed as the optimizer. The
algorithm was tested on the UKGDS-95 bus system shown
in Fig. 3, fed by a 33/11 kV substation OLTC transformer.
The base voltage of 11kV and a base power of 10 MVA are
used. The network has two VRs - VR1 between buses 15-62
and VR2 between buses 37-38. The OLTC and the VRs have
an operating range of 0.9 to 1.1, spanned by 33 equal steps.
There are also two capacitor banks - C1 hosted at bus 58 and
C2 at bus 73. Both C1 and C2 can supply a maximum of 300
kvar, each having a step size of 50 kvar. The network has 12
solar PV units installed at various nodes, whose generation
forecast for the scenario under study is shown in Fig 4. This
forecast represents a PV penetration level of 44.16% of the
forecasted network active power load. For each PV unit, the
lower bound of its active power uncertain interval, as given
by (20d), is taken as -0.4 times the corresponding forecasted
value, whereas the upper bound of this interval is set at 0.4
times the forecast. This effectively means that the maximum
and minimum generation levels for the PV are 61.82% and
26.49% of the load forecast. Moreover, the apparent power
capacity of the PV inverters is assumed to be 10% above the
connected active power capacity [4].

A. Performance of the partitioning algorithm

The proposed partitioning algorithm reveals four zones for
the UKGDS-95 bus network. After calculating the reduced
distance matrix of the network via (12) and subsequently
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Fig. 3. UKGDS-95 bus system

Fig. 4. Generation capacity forecast for the PVs in the UKGDS-95 bus system

applying the mapping suggested by (13), twelve clusters are
obtained. These intermediate clusters are shown by solid boxes
in Fig. (3) and contain precisely one PV node. These clusters
define the reduced graph of the network, where each cluster
represents the fictional node of the reduced graph. Given the
number of nodes in each cluster, the 12×12 similarity matrix
is computed using (14). Finally, the whole network is divided
into four zones, demarcated by the dashed line boxes in Fig. 3.
It is clear that the obtained zones are connected. Furthermore,
to check the stability of the partitions with respect to changing

TABLE I
COMPARISON BETWEEN PROPOSED NPM AND TRADITIONAL SCA BASED

PARTITIONING

Zone 1 2 3 4

Number of PVs Proposed NPM 3 4 2 3
Traditional SCA 4 4 0 3

TABLE II
NUMBER OF NODES IN EACH ZONE FOR THE UKGDS-95 BUS SYSTEM

Zone 1 2 3 4
Number of Nodes 20 40 16 19

the operating state of the network, the NPM is applied for
an entire year with half-hourly data resolution. To this end,
optimum values of the OLTC and VRs for the selected year
are obtained through a deterministic VVC routine. The half-
hourly data for the UKGDS-95 bus network is available from
[43]. Fig. 5 shows these optimum tap positions, indicating
that the OLTC and VR taps have a small variance around
their median values. Based on these tap values, the proposed
network partition methodology revealed the exact same zones
for all the operating states. Moreover, Table II shows that the
number of nodes in zones 1, 3, and 4 is comparable. However,
zone 2 is much bigger. This is because the location of the
PVs allows the intermediate clusters around PV6 and PV7 to
coalesce with either the best possible zone (zone 2) or zone
4 only. In either case one of the final zones is going to be
bigger than the other three. Thus the proposed partitioning
methodology can identify zones that, in most cases, are equal
in size.

In order to further show the superiority of our proposed
NPM algorithm, we compare its performance with the tra-
ditional spectral clustering algorithm (SCA) [27] for the
UKGDS-95 bus system, which is shown in Fig. (3). The only
difference is that the PV at node 78 is removed. Table I shows
the number of PVs in each of the final four partitions using the
two schemes. It is clear that our proposed NPM results in more
uniform partitions with respect to PV inverters in each zone.
However, the traditional SCA results in non-uniform partitions,
with zone 3 devoid of any reactive power source for the second
stage control. Such a network partitioning scheme is bound to
perform badly in the second stage control as the deviations
of the voltage magnitudes in the uncompensated zone are not
accounted for by any PV inverter. Hence, it is evident that our
proposed NPM is better suited to two-stage VVC problems.

B. Performance of the non-centralized Volt/VAr control

To test the comparative performance of the non-centralized
voltage control methodology, the UKGDS-95 bus network is
operated under the following three voltage control schemes:

• Base Case represents the traditional single-stage VVC,
where the PV inverters do not engage in voltage ancillary
services.

• Cent AARO represents the centralized affinely adjustable
robust optimization-based VVC [1].

• Ncent AARO denotes the proposed non-centralized
counterpart.
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Fig. 5. Optimal transformer tap positions for an entire year for the UKGDS-95
bus system

Fig. 6. Slope deviation factor for the UKGDS-95 bus system

In the first set of voltage control performance-related tests,
the PV inverter slopes (α) for the control law were com-
puted through the ‘Cent AARO’ [1] and our proposed ‘Ncent
AARO’ as discussed in (21). For quantification purposes, we
introduce a metric known as slope deviation factor, denoted
by SDF , and is defined as:

SDFj = |
αc
j − αd

j

αc
j

| (22)

Here, αc
j and αd

j respectively give the value of the control law
slope computed through the ‘Cent AARO’ and ‘Ncent AARO’
VVC routines for the jth inverter, and SDFj is the value of
the slope deviation factor for this inverter. The lesser the value
of SDF , the better agreement between the centralized and
decentralized dispatches - and a value of zero implies complete
agreement. The slope deviation factors for all the PVs are
shown in Fig. 6, and it is clear from this figure that the robust
decentralized dispatches are very close to the centralized ones
with the same values for four inverters.

Table III shows the percentage of the nodes whose voltage
magnitudes violate either the upper (1.05 pu) or the lower
(0.95 pu) thresholds when the network is operated under
the three different voltage control schemes. One set of tests
is performed when all the PVs are allowed to generate the

TABLE III
PERCENTAGE NODE VOLTAGE VIOLATIONS FOR THE UKGDS-95 BUS

SYSTEM

PV at max MC trials average
Base Case 69.79 5.15

Cent AARO 1.04 0.14
Ncent AARO 3.12 0.14

Fig. 7. Comparison of voltage violations for the maximum PV generation
scenario under different VVC routines for the UKGDS-95 bus system

maximum active power determined by the upper bound of
the uncertain interval (∆P s

j ), while another set of tests is
carried on 500 randomly generated Monte-Carlo trials from the
uncertainty interval of the PV active powers ([∆P s

j , ∆P s
j ]).

Node voltage magnitudes in all the scenarios are obtained
through the current injection-based load flow technique [44]. It
is clear from Table III that the base case VVC has appreciable
voltage violations while the robust optimization-based VVC
manages to reduce these voltage magnitude violations sig-
nificantly. Also, the non-centralized robust VVC can perform
almost as effectively as the centralized one. Note that the small
voltage violation values in the robust VVC cases result from
PV inverters not being able to supply the requested reactive
power because the maximum inverter apparent power limits
(Ss) become active. In such cases, the inverter limits the
reactive power at the boundary of its PQ capability curve [1].

Fig. 7 shows the voltage profile of the network under
the considered voltage control schemes for the scenario of
maximum PV real power generation. The traditional VVC
scheme represented as ‘Base Case’ has many nodes with
severe voltage violations. The most severely violated node
reaches a voltage magnitude close to 1.06 pu, with even the
median of the voltage profile around 1.055 pu. It is clear from
this figure that both the robust optimization routines (Cent
AARO and Ncent AARO) effectively push the voltage profile
to stay within the permissible limits, with the most severe
violations slightly above 1.05 pu.

The secondary aim of the network VVC is active power
loss minimization. However, the tradeoff for achieving a robust
solution is a slight increase in such losses. Fig. 8 shows the
conservative index metric, defined as the per unit increase
in the active power loss for the robust optimization frame-
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Fig. 8. Conservative index of the robust VVC schemes for the UKGDS-95
bus system

TABLE IV
COMPUTING TIME OF THE CODES IN CASE OF THE UKGDS-95 BUS

SYSTEM

Partitioning Voltage control

26.58 (ms) Sage 1: VVC Sensitivity analysis Stage 2: VVC
4.89 (s) 98.46 (s) 0.59 (s)

Total 103.94 (s)

work compared with the traditional ‘Base Case’ VVC. The
percentage conservative index is around 4.75% when the PV
operates at maximum active power generation capacity, while
an average percentage increase for MC trials is around 2.2%.
The reason for the higher conservative index for the scenario
when the PV operates at the maximum as opposed to any other
scenario is clear from the fact that it defines the most stressed
condition of the network in terms of voltage violations, as
is apparent from Table III. In other words, the scenario with
the PV operating at maximum capacity corresponds to the
extreme case of the network’s voltage profile against the
’Base Case’ scenario. Further, the non-centralized robust VVC
framework performs slightly better than the centralized robust
optimization scheme when it comes to increase in the active
power loss. This is expected as the centralized optimization
scheme is somewhat more robust than the non-centralized one.

Finally, the computational overhead required for the parti-
tioning algorithm of Section II and the voltage control scheme
of Section III is given in Table IV. The Stage 1 VVC and the
sensitivity analysis routines use the ADMM algorithm, which
is an iterative process and thus inherently slow. However,
the reported times are on a serial implementation of the
algorithm. In practice the ADMM is implemented through
parallel processors, which means that the actual time needed
will be decided by the slowest of these processors; a rough
estimate can be put at a quarter of the reported times for
these ADMM based frameworks owing to four partitions of
the network. Also, note that 191 load flow solutions need to
be calculated for the sensitivity analysis routine compared to
only one solution of the Stage 1 VVC, which implies that each
run of the sensitivity analysis algorithm is approximately ten
times as fast as the Stage 1 VVC algorithm.

TABLE V
PERCENTAGE NODE VOLTAGE VIOLATIONS FOR THE IEEE-123 BUS

SYSTEM

PV at max MC trials average
Base Case 42.02 8.38

Cent AARO 1.26 1.23
Ncent AARO 2.52 1.24

Fig. 9. Comparison for voltage violations for the maximum PV generation
scenario for different VVC schemes for the IEEE-123 bus system.

C. Voltage control results for the modified IEEE-123 bus
system

The effectiveness of the proposed voltage control algorithm
has been further verified by carrying out numerical studies
on the balanced positive sequence equivalent of the IEEE-
123 bus system. The data for this system is obtained from
[22]. Moreover, 12 PV units are placed at different nodes and
their location and forecasts are also available from [22]. The
NPM is applied to obtain the optimal zones for non-centralized
voltage control. This methodology initially identifies a 12 node
reduced graph of the network, where the original network
nodes coalesce around the 12 PV nodes. This reduced graph
is finally used to divide the network into three distinct zones
for voltage control.

The IEEE-123 bus system is operated under all the three
voltage control schemes of Section IV-B, viz. ‘Base Case’,
‘Cent AARO’ and ‘Ncent AARO’. The highest value of the
slope deviation factor, obtained through the relation (22), is
0.15, and 7 out of the 12 PV inverters show a complete
agreement between the computed slope factors for the ‘Cent
AARO’ and ‘Ncent AARO’ schemes. Thus, it is clear that the
proposed non-centralized algorithm closely conforms with the
centralized solvers. This is because of the fact that the reactive
power does not travel very far in a distribution system.

The performance of the three voltage control schemes for
the modified IEEE-123 bus network is given in Table V. It
is evident that the network exhibits voltage violations for
significant number of nodes in the ‘Base Case’ when the PV
fluctuations are not accounted for. These voltage excursions
outside the permissible limits are hugely reduced by the robust
optimization schemes, both in the case of maximum PV gen-
eration and Monte-Carlo trials with 500 randomly generated
samples from the uncertainty interval. Further, our proposed
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algorithm implemented in the ‘Ncent AARO’ scheme performs
almost as good as the centralized one implemented in the
‘Cent AARO’. Finally, the voltage profile of the network for
the maximum PV generation scenarios is shown in Fig. 9.
It is clear, that the robust optimization based voltage control
(‘Cent AARO’ and ‘Ncent AARO’) is necessary to maintain
the network voltages within the permissible limits, and the
‘Base Case’ schedules suffer severe voltage limit violations.

V. CONCLUSION

This paper presented a completely non-centralized approach
for achieving affinely adjustable robust voltage control deci-
sions on distribution networks with significant PV penetration.
The proposed voltage control algorithm is implemented in
two stages: the first stage solves a deterministic VVC frame-
work in a distributed manner, while the second stage uses a
decentralized approach to solve a robust VVC optimization
program. For effective voltage control, the network is di-
vided into various zones through a proposed network partition
methodology based on node Q − |V | sensitivities. Owing
to this zonal voltage control strategy, the communication
overhead is reduced. At the same time, the data privacy of
the different utilities, which are in charge of various parts
of the network, is guaranteed. The results on the UKGDS-
95 and the positive sequence IEEE-123 bus networks show
that the voltage violations due to fluctuating PV active powers
are significantly reduced when the proposed voltage control
is used. Furthermore, these non-centralized decisions match
closely to those of the centralized solvers.
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[13] A. Samadi, R. Eriksson, L. Söder, B. G. Rawn, and J. C. Boemer,
“Coordinated active power-dependent voltage regulation in distribution
grids with pv systems,” IEEE Transactions on Power Delivery, vol. 29,
no. 3, pp. 1454–1464, 2014.

[14] S. M. N. R. Abadi, A. Attarha, P. M. Scott, and S. Thiébaux, “Affinely
adjustable robust volt/var control for distribution systems with high pv
penetration,” IEEE Transactions on Power Systems, 2020.

[15] A. Vaccaro, C. A. Canizares, and D. Villacci, “An affine arithmetic-
based methodology for reliable power flow analysis in the presence of
data uncertainty,” IEEE Transactions on Power Systems, vol. 25, no. 2,
pp. 624–632, 2009.

[16] S. Wang, L. Han, and L. Wu, “Uncertainty tracing of distributed
generations via complex affine arithmetic based unbalanced three-phase
power flow,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp.
3053–3062, 2014.

[17] V. Guigues, “Robust production management,” Optimization and Engi-
neering, vol. 10, no. 4, pp. 505–532, 2009.

[18] P. Li, C. Zhang, Z. Wu, Y. Xu, M. Hu, and Z. Dong, “Distributed
adaptive robust voltage/var control with network partition in active
distribution networks,” IEEE Transactions on Smart Grid, vol. 11, no. 3,
pp. 2245–2256, 2019.

[19] P. Lagonotte, J. Sabonnadiere, J.-Y. Leost, and J.-P. Paul, “Structural
analysis of the electrical system: application to secondary voltage control
in france,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 479–
486, 1989.

[20] A. Maknouninejad, Z. Qu, J. Enslin, and N. Kutkut, “Clustering and
cooperative control of distributed generators for maintaining microgrid
unified voltage profile and complex power control,” in PES T&D 2012.
IEEE, 2012, pp. 1–8.

[21] B. Zhao, Z. Xu, C. Xu, C. Wang, and F. Lin, “Network partition-
based zonal voltage control for distribution networks with distributed
pv systems,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4087–
4098, 2017.

[22] Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du, and J. Pan, “Network
partition and voltage coordination control for distribution networks with
high penetration of distributed pv units,” IEEE Transactions on Power
Systems, vol. 33, no. 3, pp. 3396–3407, 2018.

[23] M. Biserica, G. Foggia, E. Chanzy, and J. Passelergue, “Network
partition for coordinated control in active distribution networks,” in 2013
IEEE Grenoble Conference. IEEE, 2013, pp. 1–5.

[24] Y. Kenan, “A network partition method for power system reactive power
control based on power flow tracing,” Automation of electric power
systems, 2013.

[25] H. Shahbazi and F. Karbalaei, “Decentralized voltage control of power
systems using multi-agent systems,” Journal of Modern Power Systems
and Clean Energy, vol. 8, no. 2, pp. 249–259, 2020.

[26] R. J. Sánchez-Garcı́a, M. Fennelly, S. Norris, N. Wright, G. Niblo,
J. Brodzki, and J. W. Bialek, “Hierarchical spectral clustering of power
grids,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2229–
2237, 2014.

[27] T. Jiang, L. Bai, H. Jia, and F. Li, “Spectral clustering-based partitioning
of volt/var control areas in bulk power systems,” IET Generation,
Transmission & Distribution, vol. 11, no. 5, pp. 1126–1133, 2017.

[28] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[29] D. Han and X. Yuan, “A note on the alternating direction method of
multipliers,” Journal of Optimization Theory and Applications, vol. 155,
no. 1, pp. 227–238, 2012.

[30] F. U. Nazir and B. C. Pal, “ADMM based distributed load flow for radial
power networks,” in 2020 IEEE International Conference on Power
Systems Technology (POWERCON). IEEE, 2020, pp. 1–6.

[31] F. Tamp and P. Ciufo, “A sensitivity analysis toolkit for the simplification
of mv distribution network voltage management,” IEEE Transactions on
Smart Grid, vol. 5, no. 2, pp. 559–568, 2014.

[32] K. Christakou, J.-Y. LeBoudec, M. Paolone, and D.-C. Tomozei, “Effi-
cient computation of sensitivity coefficients of node voltages and line
currents in unbalanced radial electrical distribution networks,” IEEE
Transactions on Smart Grid, vol. 4, no. 2, pp. 741–750, 2013.

[33] P. Li, H. Ji, G. Song, M. Yao, C. Wang, and J. Wu, “A combined
central and local voltage control strategy of soft open points in active
distribution networks,” Energy Procedia, vol. 158, pp. 2524–2529, 2019.



IEEE TRANSACTIONS ON POWER SYSTEMS 12

[34] P. Bagheri and W. Xu, “Model-free volt-var control based on measure-
ment data analytics,” IEEE Transactions on Power Systems, vol. 34,
no. 2, pp. 1471–1482, 2018.

[35] B. Zhang, H. Liu, G. Zhuang, L. Liu, and W. Wu, “Data-driven wind
farm volt/var control based on deep reinforcement learning,” in 2020
IEEE 4th Conference on Energy Internet and Energy System Integration
(EI2). IEEE, pp. 2758–2763.

[36] M. Baran and F. Wu, “Network reconfiguration in distribution systems
for loss reduction and load balancing,” IEEE Transactions on Power
Delivery, vol. 4, no. 2, pp. 1401–1407, 1989.

[37] H. Gu, X. Chu, and Y. Liu, “Partitioning active distribution networks by
using spectral clustering,” in 2020 IEEE Sustainable Power and Energy
Conference (iSPEC), 2020, pp. 510–515.

[38] M. Farivar and S. H. Low, “Branch flow model: Relaxations and
convexification—part i,” IEEE Transactions on Power Systems, vol. 28,
no. 3, pp. 2554–2564, 2013.

[39] R. Aghatehrani and A. Golnas, “Reactive power control of photovoltaic
systems based on the voltage sensitivity analysis,” in 2012 IEEE Power
and Energy Society General Meeting. IEEE, 2012, pp. 1–5.

[40] R. A. Jabr, “Adjustable robust opf with renewable energy sources,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4742–4751, 2013.

[41] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable
robust solutions of uncertain linear programs,” Mathematical program-
ming, vol. 99, no. 2, pp. 351–376, 2004.

[42] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[43] R. Singh, B. C. Pal, and R. A. Jabr, “Statistical representation of distri-
bution system loads using gaussian mixture model,” IEEE Transactions
on Power Systems, vol. 25, no. 1, pp. 29–37, 2009.
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