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Abstract. This paper addresses the problem of constructing subjective imprecise
probabilities using qualitative and conflicting pieces of information (arguments) as
evidence. We propose formulae for the calculus of imprecise probabilities and show
that the probabilities obtained reflect the indeterminacy of the subject, faithfully
quantify the support offered by the arguments and constitute previsions that are
mathematically coherent in the sense of [Walley, 1991].
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1. INTRODUCTION

Coherent previsions (imprecise probabilities) have recently been proposed as a general
way of representing subjective uncertainty [Walley, 1991; 1996; 2000]. Subjective proba-
bilities serve to measure the confidence of a subject in the truth of a particular proposition
[Savage, 1972]. They allow to model the complete spectrum of epistemic states about a
given situation or domain, from total ignorance to absolute certainty and therefore mea-
sure not only the uncertainty of a subject, but also his indeterminacy. Imprecise prob-
abilities have a fundamental role to play in Artificial Intelligence as they may be used
for measuring the strength of beliefs [Shafer, 1976], assess risk [Pelessoni and Vicig,
2001], for statistical inference and robust decision making or optimisation [Walley, 1991;
1996; Jaffray, 1999; Bertsimas and Brown, 2005; Natarajan et al., 2005; Aughenbaugh
and Paredis, 2006]. To the best of our knowledge, this paper introduces the first method
for constructing imprecise probabilities using qualitative pieces of information. We will
refer to such pieces of information as arguments.

Arguments may be seen as first class objects that have the form of proofs but
whose conclusions are not certain [Krause et al., 1995; Fox, 2003]. In practical do-
mains of human knowledge such as e.g. Law, Medicine, Biology or Psychology, ev-
idence takes most often the form of arguments. In general, arguments may be bor-
rowed from empirical theories, elicited from experts or trusted people, extracted from
databases and built from information provided by physical devices such as instru-
ments, captors, sensors, etc. To reduce indeterminacy, one usually seeks to collect ar-
guments from more than one source. Unfortunately, the people or systems consulted
may provide various arguments with contradictory conclusions [Finkelstein et al., 1994;
Amgoud and Cayrol, 2002] and one is then confronted with the difficulty of combining
inconsistent pieces of evidence.



Let us for instance consider the domain of auctions. There is no established theory
that allows auctioneers to predetermine their chances at an auction of making a sale nor
of selling their item at a high price. However, auction specialists have experience and
valuable knowledge that you can exploit to make a rough assessment of your chance of
success in an auction. According to them, the most important things for being successful
in an auction are the following three: the auctioned item should be popular, its market
availability should be low and it should also be in good material condition. The item
popularity is essential for making a sale. In order to sell the item at a high price, there
must be some competition between the bidders. Either of the two other criteria (a low
market availability and a good material condition) are usually sufficient to foster com-
petition. Your chances of success thus boil down to the extent to which each one of the
three criteria is met. To assess this, suppose you decide to consult two friends experi-
enced in on-line auctions. After discussion, suppose you have elicited the four following
arguments

• Argument A1: "This type of item is not available on the market because it is not
manufactured anymore."

• Argument A2: "I know many people who collect items of this kind, and I therefore
believe that the item is popular."

• Argument A3: "This item hasn’t lost the functionality that makes it so popular; it
can be said to be in good material condition and can be expected to be still popular
nowadays."

• Argument A4: "The problem with the item is that it has several scratches and
anyway, it is not really considered a rare item insofar as counterfeits can be found
easily."

According to A1, the item should have a low availability on the market. A2 strongly
suggests that the item is popular. A3 corroborates this and besides shows that the item
can be considered as being in good condition. All this should make us quite confident
in the success of the auction. However, A4 casts major doubt on the auction’s success.
It basically contradicts both claims that the item is in good condition and that its market
availability is low. Given these conflicting arguments as evidence, how would you now
assess your chances of making a sale and of selling the item at a good price ?

This paper proposes formulae for the calculus of imprecise probabilities in situations
that are especially of this kind, viz. situations in which no or little probabilistic informa-
tion is available, but in which a few qualitative and unfortunately conflicting arguments
can be obtained from common sense or expert knowledge. Basically, the paper offers
mathematical guidance on how to come up with probability values in the light of qual-
itative information. We will show that the probabilities obtained with the proposed for-
mulae adequately reflect the subject’s overall indeterminacy, faithfully quantify the sup-
port offered by the arguments and also constitute previsions which are mathematically
coherent in the sense of [Walley, 1991].

The remainder of the paper is organised as follows. Section 2 introduces all the nec-
essary background concerning the theory of imprecise probabilities and coherent previ-
sions. In section 3, we propose two new formulae for calculating lower and upper proba-
bilities from a set of weighted arguments. For convenience, we will refer to such proba-
bilities as argumentative probabilities throughout the paper. Section 4 presents a detailed
mathematical study of the properties satisfied by argumentative probabilities. In section
5, we provide a short survey of related work and then conclude in section 6.



2. IMPRECISE PROBABILITIES

Probability and possibility are the two classical theories of uncertainty [Klir, 2006]. It
has been established in [Walley, 2000] that all possibility measures are coherent upper
probabilities, so that in fact, the theory of imprecise probabilities constitutes a possible
generalisation of the two classical theories of uncertainty. In order to define imprecise
probabilities, one first needs to introduce mathematically several notions, which are those
of universe, event, gamble, lower and upper previsions and coherence. Coherence is the
most important and difficult one, so it will be explained separately in the next subsec-
tion. In the last subsection, we will finally show how to use imprecise probabilities for
statistical inference and decision making, although these concerns fall outside the scope
of this paper.

Uncertainty is always relative to a system or object of interest for a subject. The
term uncertain means that the subject does not know in exactly which state this system
or object will be. For simplicity of presentation, let us assume that the there exists a fi-
nite number of possible states of the system or object and let us denote these w1, ..., wn .
These possible states are commonly referred to as scenarios and are assumed to be mu-
tually exclusive and exhaustive. The set of scenarios � = {w1, ..., wn} is called the uni-
verse. Only one of the scenarios of � will occur, but the subject is not certain which one
it will be. We call this scenario the true scenario. Subsets E ⊆ � are referred to as events
and we say that E occurs when the true scenario belongs to E . The powerset 2� of �
is the set of all events. We are basically interested in the probability of events, i.e. in the
likelihood of their occurrence. In the auction problem for instance, the events of interest
correspond informally to making a sale and selling the item for a good price.

A gamble is any function X : � → R. It mathematically represents a ticket for a
lottery where the true scenario w is revealed and a price of X (w) (in units of money or
utility) is won. The true scenario is not known in advance so the outcome of the lottery
is uncertain, hence the name gamble. Each event E can be seen as gamble with a price
equal to 1 if E occurs and 0 if E does not occur. Formally, it is easy to understand that the
gamble corresponding to an event E is the indicator function IE : � → {0, 1} of the set
E , defined ∀w ∈ � as IE (w) = 1 if w ∈ E and IE (w) = 0 otherwise. By convenience,
we use de Finetti’s notation and systematically write E instead of IE . For any gambles
X and Y , we write X ≤ Y if and only if ∀w ∈ � we have X (w) ≤ Y (w), define
sup X = max{X (w) | w ∈ �} and the operations of addition +, substraction − and
multiplication ∗ of gambles in exactly the same way as done for real-valued functions in
general, e.g. (X + Y )(w) = X (w) + Y (w).

Given a nonempty set X of gambles of interest1, a lower prevision is a function
P : X → R and an upper prevision a function P : X → R. For any gamble X ∈ X , the
value P(X) is interpreted as the subject’s maximum buying price for the lottery ticket
X and P(X) as its minimum selling price. If the only gambles of interest X are events,
then lower and upper previsions are called lower and upper probabilities. The lower
probability P(E) is interpreted as a maximum betting rate for betting on event E and
the upper probability P(E) as a minimum rate for betting against it. Intuitively, the more
arguments we have that support an event, the higher the price a subject (which trusts
these arguments) would be willing to bet in favour of the event. In the auction problem

1In this paper, X is the set of all events 2�.



for instance, the first three arguments A1, A2, A3 indicate that you are likely to make a
sale (this event is denoted Esale) and thus should all contribute to increasing your betting
rate P(Esale). But the last argument A4 is in conflict with the first three one and shall
thus have the opposite effect on this betting rate.

Intuitively, P(E) and P(E) represent lower and upper bounds for our fair price for
E . Thus, the less we know about the likelihood of E , the more indeterminate we are
regarding its fair price and the larger the gap between P(E) and P(E). In other terms,
the imprecision of probabilities reveals how indeterminate the subject is and should in-
tuitively be directly related to the amount of information or arguments available. In case
of complete ignorance, one should normally have P(E) = 0 and P(E) = 1. At the other
extreme, when a large sample of statistical trials have been undertaken on E or more
generally, when the subject has a huge amount of information concerning the occurrence
of event E , his indeterminacy shall be very low and the betting rates / probabilities ap-
proximately equal P(E) ≈ P(E). The common value of these two probabilities may
then be in practise taken as equal to the past frequency of occurrence of E (if the sub-
ject is a Bayesian which has chosen to adopt the frequentist approach). Thus, Bayesian
probabilities simply correspond to maximally precise probabilities and frequency based
probabilities can in turn be seen as a special type of precise probabilities.

2.1. Rationality principles

Walley proposes two fundamental principles of rationality to characterise mathemati-
cally the "coherence" of previsions. The first principle states that the subject should avoid
sure losses, i.e. never be sure to lose money by engaging in any number of lotteries. We
can formalise this principle using the notion of marginal gamble. For any gamble X ,
we define the marginal gamble G(X) = X − P(X). G(X) corresponds to a transac-
tion in which we pay P(X) to obtain X . Since P(X) is our maximal price for X , this
transaction is acceptable. Formally, we may say that P avoids sure loss if and only if
sup

∑n
j=1G(X j ) ≥ 0 whenever the gambles X1, ..., Xn are in X and n ≥ 1. The most

basic previsions that avoid sure loss are vacuous previsions, defined for all X ∈ X as
P(X) = inf X and P(X) = sup X and serve to model the state of complete ignorance
about the gambles in X .

The second principle states in essence that the subject’s prices should be consistent
as a whole and not contradict one another. If for some α ∈ R, the gamble X −α is greater
or equal to a positive combination of acceptable/marginal gambles, then X − α should
also be acceptable, that is to say P(X) ≥ α. This should hold for any such α, which
means that, to make sense, P(X) should be greater or equal to the quantity

E(X) = sup{α ∈ R | ∃n ≥ 1, X j ∈ X , λ j ≥ 0 : X − α ≥

n∑
j=1

λ j G(X j )}

The function E is called the natural extension2 of P . The natural extension E(X) of
the gamble X depends on the previsions of the other gambles in X . Since E remarkably
dominates P on X (take n = 1, X1 = X and α = P(X) in the formula given above), we
may conclude that the lower prevision of a fully rational gambler should not only avoid

2The actual computation of natural extension generally requires linear programming [Dantzig et al., 1955].



sure loss, but also always coincide with its natural extension. We therefore say that a
lower prevision is coherent if and only if it avoids sure loss and coincides with its natural
extension on X . When P is a coherent lower prevision, the upper prevision P defined for
all gambles X ∈ X as P(X) = −E(−X) is called its conjugate and an upper previsions
is said to be coherent when it is the conjugate of some coherent lower prevision.

Imprecise probabilities are the name given to coherent lower and upper probabilities.
Vacuous probabilities which are defined as P(E) = 0 (∀E ⊂ �), P(�) = 1, P(E) = 1
(∀E ⊃ ∅) and P(∅) = 0 are coherent. Thus a subject that is totally ignorant and whose
previsions or probabilities are vacuous is still deemed rational in the Walleysian sense.
Other important examples of probabilities that are known to be coherent [Walley, 2000]
are naturally all the Bayesian probabilities, but also possibility and necessity measures
[Dubois and Prade, 1988; 1995], the Dempster-Shafer belief and plausibility functions
[Shafer, 1976] and all Choquet capacities of order 2 [Klir, 2006].

2.2. Statistical inference and decision making

This short subsection discusses the role of natural extension in the theory of coherent
previsions. This discussion is not essential to the presentation of the results of this pa-
per and may be skipped by the reader. It is however presented for the sake of complete-
ness and to give an idea of how to make statistical inference and decisions when using
imprecise probabilities or coherent previsions.

Natural extension allows to extend coherent lower and upper previsions from their
original domain of definition X to the entire set of gambles. When P is a coherent lower
prevision on X and P is the conjugate upper prevision, the natural extension E(X) exists
for any gamble X and E defines a coherent lower prevision on the set of all real-valued
gambles. The conjugate of E is defined for every gamble X as −E(−X). Natural exten-
sion can also be used for comparing the likelihood of events, for computing conditional
probabilities and comparing decisions. For two events A and B, we say that A is more
likely than B if E(A − B) ≥ 0, A is at least twice as likely as B if E(A − 2B) ≥ 0,
etc. The conditional lower probability P(A|B) of A given B is the solution z ∈ R of the
equation E(B ∗ A − z) = 0 called generalised Bayes rule. When all probabilities are
precise, the generalised Bayes rule collapses to the standard Bayes rules of conditioning.

Finally, let us assume that D is a set of possible decisions and U : D × � → R a
utility function (i.e. U (d, w) measures the utility of the consequence of d under scenario
w ∈ � for the subject). The gamble Xd defined ∀w ∈ � as Xd(w) = U (d, w) models
the decision d . We say that d is preferred to d ′ whenever E(Xd − Xd ′) ≥ 0. This means
that the transaction where the subject gets Xd in exchange of Xd ′ is judged acceptable.
One may also say that d is twice as much preferred as d ′ whenever E(Xd − 2Xd ′), etc.
Intuitively, E(Xd − Xd ′) and −E(Xd − Xd ′) provide a robust and imprecise estimation
of the expected value of d in comparison to d ′. When P = P = P is a Bayesian proba-
bility, the expression of E(Xd) collapses to the classical criterion of expected utility, i.e.
E(Xd) =

∑n
i=1 P(wi )U (d, wi ). Thus, the function of natural extension generalises the

one of expected utility to the case of imprecise probabilities.



3. FORMULAE FOR ARGUMENTATIVE PROBABILITIES

Let us consider a subject (typically a real person or an artificially intelligent agent) and
assume given a universe �, a set of arguments Arg and a mapping f : Arg → 2� such
that for all ∀A ∈ Arg, f (A) = X A represents the event (set of scenarios) supported by
argument A. We may assume that for all A ∈ Arg it holds that ∅ ⊂ X A ⊂ �. Indeed,
an argument A for which X A = ∅ directly contradicts the fact that one of the scenarios
in � is the true one, and an argument such that X A = � brings no new information (we
already know that the true scenario belongs to � by exhaustiveness of the universe).

The auction universe describes your uncertainty concerning the item to sell. Each
one of the three factors used to describe its status (popularity, low availability and good
physical condition) can be either true of false and may be modelled by a Boolean vari-
able. Let us then represent by the notation si jk the scenario in which the truth value of
the first (respectively second and third) factor is i (respectively j and k) where i = 0
(respectively j = 0 and k = 0) means false and i = 1 (respectively j = 1 and k = 1)
means true. For example s100 is the scenario in which the item is popular but does not
have a low availability and is not in good condition. Remark that s000 is the worst case
scenario for an auctioneer whilst s111 is the best case scenario. The universe used to
model your uncertainty in the auction problem is thus � = {s000, s001, s010, ..., s111} and
contains eight scenarios in total.

We are interested in two events, namely, making a sale and selling the item for a
good price. In order to make a sale, the item should be popular and in order to sell
the item for a good price, the item should on top of that be either in good condition
or have a low availability on the market. Using the previously introduced notations for
the scenarios, the events of interest can be formalised as Esale = {s100, s101, s110, s111}

and Egood price = {s101, s110, s111}. Let us now examine the events supported by each
argument. A1 supports the event containing all the scenarios of the form si1k where i
and k take the value 0 or 1, which implies that X A1 = {s010, s011, s110, s111}. This event
contains 4 scenarios. Similarly, A2 supports the events containing all the scenarios of the
form s1 jk and thus corresponds to X A2 = {s100, s101, s110, s111}. By proceeding in the
same fashion for the remaining two arguments, we would obtain X A3 = {s101, s111} and
X A4 = {s000, s010}.

Arguments provide information and this information must be quantified by the sub-
ject. Indeed, the total amount of information collected should be used to determine his
overall indeterminacy. Thus, for every A ∈ Arg, let w(A) ≥ 0 denote the amount of
information of A from his/her viewpoint. Intuitively, w(A) may be thought of as the
strength of argument A. If all arguments are of equal importance to the subject, then
he may choose to assign a strength of 1 to all arguments. If the subject however wishes
to ignore or minimise the importance of certain arguments, then he may assign them a
strength of zero or a small value close to zero. In general, the subject is free to specify and
assess the strength of arguments in whichever way that suits him/her, as long as w(A)
can be interpreted as the amount of information of argument A from his/her viewpoint.
Then, the value of the sum W =

∑
A∈Arg w(A) represents the total amount of informa-

tion available to the subject. It is this very quantity which will essentially determine the
subject’s overall indeterminacy and the precision with which he/she will eventually as-
sesses the probability of events. For the auction, you may for instance choose w(Ai ) = 1
∀i ∈ {1, 2, 3} and assign to the last argument the strength w(A4) = 2 if for example the
argument has been repeated by both of your friends.



Intuitively, when W is big the indeterminacy of the subject should be small. But the
term big does not mean anything without a comparison value. Let us then introduce a
constant K > 0 called fair amount of information to make comparisons on the subjective
information scale. We shall see later that the adjective fair means that K is the amount of
information required to reduce the indeterminacy of an initially totally ignorant subject
by one half, that is to say, to reduce the imprecision of the probability of events from
1 to 1/2. To make good probability estimates and decisions, one would need to exper-
iment on the (ideally long-term) performance of the decisions made by the subject de-
pending on his value of K . Sceptical and risk-averse subjects shall use high values of K
and credulous and risk-neutral subjects shall on the opposite use small value for the con-
stant K . The optimal value of K obviously completely depends on the type of situation
confronted by the subject or domain of application. In the auction problem however we
choose (completely arbitrarily) to set K as equal to 1.

We may now explain how we intend to construct imprecise probabilities from a set
of scenarios �, a set of arguments Arg, a measure of their strength w : Arg → R+, a
mapping from arguments A to the events f (A) = X A they support and a value for the
fair amount of information K . The lower and upper argumentative probabilities are given
by the following expressions.

Definition 1 (lower argumentative probability) P(�) = 1 and ∀E ⊂ � :

P(E) =
1

W + K

∑
A∈Arg

w(A).
|X A ∩ E |

|X A|

Definition 2 (upper argumentative probability) P(∅) = 0 and ∀E 6= ∅ :

P(E) =
1

W + K
(K +

∑
A∈Arg

w(A).
|X A ∩ E |

|X A|
)

where |S| denotes the cardinality of S ⊆ �. Figure 1 below shows how each one of the
four arguments given by the experts successively impacts on the subject’s estimation of
the probabilities. As we can observe, argumentative probabilities are initially vacuous be-

Arguments considered Esale Egood price
{} (total ignorance) [0.000, 1.000] [0.000, 1.000]
{A1} [0.250, 0.750] [0.250, 0.750]
{A1, A2} [0.500, 0.833] [0.417, 0.750]
{A1, A2, A3} [0.625, 0.875] [0.562, 0.812]
{A1, A2, A3, A4} [0.417, 0.583] [0.375, 0.542]

Figure 1. Lower and upper probabilities of Esale and Egood price depending on the evidence at hand.

cause the subject is completely ignorant and then progressively become more precise as
new arguments are obtained from the sources. The more arguments are given in support
of (respectively against) an event, the more its lower probability increases (respectively
decreases).



4. PROPERTIES OF ARGUMENTATIVE PROBABILITIES

In this section, we study the substantive and normative goodness of argumentative prob-
abilities [Winkler and Murphy, 1968]. The expression substantive goodness is used to
express the fact that the probabilities estimated really reflect the substance of the problem
and the expression normative goodness instead relates to the mathematical correctness
of these estimations. Both types of goodness are obviously quite crucial in the elicita-
tion/assessment and application of probabilities.

4.1. Substantive goodness

We shall first make sure that the imprecision of argumentative probabilities reflect the
subject’s indeterminacy. As we will show, the difference between the upper and lower
probability of an event varies as K/W . This is a desirable substantive property, as more
information should reduce indeterminacy, but also, the speed at which indeterminacy is
reduced should decrease as the fair amount of information K for the subject gets larger.
Formally, we prove that

Property 1 (indeterminacy varies as K/W ) For the extreme cases in which E = ∅ or
E = �, the subject’s indeterminacy is null: P(E)− P(E) = 0. Otherwise, for any event
∅ ⊂ E ⊂ �, the indeterminacy P(E) − P(E) is strictly positive, inferior or equal to
K/W and equivalent to K/W as W diverges towards infinity.

Proof 1 P(∅) = P(∅) = 0 and P(�) = P(�) = 1 (by definition). For all E such that
∅ ⊂ E ⊂ �, we have P(E)− P(E) =

K
W+K > 0 and since K ≥ 0, K

W+K ≤
K
W . Finally,

we have K
W+K ∼W→∞

K
W .

Remarkably, the imprecision is reduced to 1/n when W = (n −1)K . Thus, if the subject
accumulates information and W increases according to the sequence W = 0, K , 2K ,
3K ,...,(n−1)K his/her indeterminacy decreases as the sequence 1, 1/2, 1/3, 1/4,..., 1/n.
As mentioned earlier, K is fair in that it represents the amount of information required
to reduce the subject’s initial indeterminacy from 1 to 1/2. Also note that the subject can
force argumentative probabilities to become precise (or Bayesian) by making K converge
to zero. It can be proved that when doing so, the Bayesian probability obtained is the
same 3 as the one that one would obtain by application of Smets’ pignistic transform
[Smets, 1991].

The second substantive property of argumentative probabilities is that these are pro-
portionate to the (even partial) support offered by arguments. The exact meaning of the
expression "support" is provided in body of the proof of the next property. Essentially, the
support of an argument A in favour of an event E corresponds to the degree of relevance
of the argument multiplied by the strength of the argument.

Property 2 (evidential support) P(E) and P(E) vary as the fraction of the evidence
that supports E.

3
∀w ∈ � : P({w}) =

∑
A∈Arg,w∈X A

1
|X A |

∗ m(X A), where m(X A) =
w(A)

W .



Proof 2 Let us introduce the relevance function r : 2�
× 2�

→ [0, 1] defined for all
pairs of events (X A, E) as

r(X A, E) =
|X A ∩ E |

|X A|

The value r(X A, E) is always positive and takes a maximal value of one when the
supported set of scenarios X A is equal to the event E. The ratio r(X A, E) is inter-
preted as the degree of relevance of the argument A with respect to the event E. A
possible Bayesian justification of this interpretation is the following. By using Johann
Bernoulli’s insufficient-reason principle, in the only light of argument A, all scenarios
w ∈ X A are equally likely to occur and this probability pA(w) shall thus be equal to
1/|X A|. Thus, the probability for E to occur according to argument A only is equal to
pA(E) = |X A ∩ E |/|X A| = r(X A, E).

Let us now also formalise the notion of support. Let the function s : 2�
→ R be

defined for every event E as the weighted sum

s(E) =

∑
A∈Arg

w(A).r(X A, E)

s(E) shall be interpreted as the total support that the corpus of arguments Arg provides
in favour of the occurrence of event E. The substantive property of evidential support
becomes now clear. Since s(E) is the weighted sum of the relevance of all X A with respect
to E, s(E) is a measure of the subjective amount of evidence supporting E. Remarkably
s(�) = W and s(∅) = 0. When E = �, we have P(E) = P(E) = 1 =

s(E)
W .

When E ⊂ � we have P(E) =
s(E)

W+K ≤
s(E)

W and s(E)
W+K ∼W→∞

s(E)
W . Similarly,

P(E) =
s(E)+K
s(�)+K ≥

s(E)
s(�) since s(�) ≥ s(E) and s(E)+K

s(�)+K ∼W→∞
s(E)

W .

The two properties exposed in this subsection justify why, or at least clarify the extent in
which argumentative probabilities can be said to have substantive goodness.

4.2. Normative goodness

It is without surprise the notion of coherence that we choose to use in order to guarantee
the normative goodness of argumentative probabilities, as this rich notion encapsulates
by construction the principles of rationality that are essential for a subject betting on
beliefs or decisions. Coherence is not a simple notion and to establish this property,
we will need to proceed in three steps. We shall first prove that lower argumentative
probabilities avoid sure loss, then show that they coincide with their natural extension
(as explained in section 2.1) and finally prove that upper argumentative probabilities are
conjugate of the lower ones.

Theorem 1 (P avoids sure loss) Lower argumentative probabilities avoid sure loss.

Proof 3 Let n ≥ 1 and X1, ..., Xn ∈ 2�. Since G(�) = � − P(�) = 1 − 1 = 0, we
may assume without loss of generality that ∀i ∈ {1, ..., n}: X i ⊂ �. By definition of a
lower argumentative probability



n∑
j=1

G(X j ) =

n∑
j=1

(X j −
1

W + K

∑
A∈Arg

w(A).
|X A ∩ X j |

|X A|
)

Let us then consider the functions g : � → R and f : � → R defined ∀w ∈ � as

g(w) =

n∑
j=1

(X j (w) −
1

W + K

∑
A∈Arg

w(A).
|X A ∩ X j |

|X A|
)

f (w) =

n∑
j=1

(X j (w) −
1
W

∑
A∈Arg

w(A).
|X A ∩ X j |

|X A|
)

To prove that P avoids sure loss, we must prove that supw∈� g(w) ≥ 0. Remark that g ≥

f , so it is sufficient to prove that supw∈� f (w) ≥ 0. This obviously holds if w(A) = 0
for all A ∈ Arg. Otherwise there exists some A ∈ Arg such that w(A) > 0. Then, let us
denote xA, j =

|X A∩X j |

|X A|
, λA =

w(A)
W and compute the value of

∑
w∈X A

1
|X A|

. f (w) =

∑
w∈X A

1
|X A|

n∑
j=1

X j (w) −

∑
w∈X A

1
|X A|

n∑
j=1

1
W

∑
A′∈Arg

w(A′)xA′, j =

n∑
j=1

1
|X A|

.|X A ∩ X j | −

n∑
j=1

1
W

∑
A′∈Arg

w(A′)xA′, j =

n∑
j=1

(xA, j −

∑
A∈Arg

λAxA, j )

By summing over A ∈ Arg with weights λA we obtain

∑
A∈Arg

λA
∑

w∈X A

1
|X A|

. f (w) =

∑
A∈Arg

n∑
j=1

λAxA, j −

∑
A∈Arg

λA

n∑
j=1

∑
A′∈Arg

λA′ xA′, j =

∑
A∈Arg

n∑
j=1

λAxA, j −

∑
A′∈Arg

n∑
j=1

λA′ xA′, j = 0

We thus have found a non-trivial positive combination of some values of f that is null.
This implies that all the values of f cannot be strictly negative, or in other words, that
sup f is indeed positive.

Theorem 2 (coherence of P) Every lower argumentative probability is coherent.

Proof 4 Since lower argumentative probabilities avoid sure loss, they admit a natural
extension E. We shall now prove to establish the result of the theorem, that every lower
argumentative probability coincides with its natural extension. E(X) is defined as the
solution of the linear optimisation problem of maximising the variable α subject to the
positivity constraints λ j ≥ 0 and ∀w ∈ �:

X (w) − α ≥

∑
X j ⊆�

λ j .(X j (w) −
s(X j )

W + K
)



where s is the support function introduced in proof 2. Gambles X are now seen as vectors
of dimension n = |�| with components X i = X (wi ), 〈X, Y 〉 denotes the scalar product
X T .Y and ‖X‖

2
= 〈X, X〉 the squared Euclidean norm of X. With these new notations,

the support s(X j ) can be rewritten under the form

s(X j ) =

∑
A∈Arg

w(A).
〈X A, X j 〉

‖X A‖2

Let us then introduce the linear form defined on the vector space Rn as

σ(•) =
1

W + K

∑
A∈Arg

w(A).
〈X A, •〉

‖X A‖2

By linearity, the above inequality constraint is equivalent to

X − α ≥

∑
X j ∈�

λ j X j − σ(
∑

X j ⊆�

λ j X j )

The problem is to maximise α such that for some Y ∈ Rn with positive components
X − α ≥ Y − σ(Y ). So, we need to compute

α∗
= max

yi ≥0
min

i∈{1,...,n}

xi − (yi −

n∑
j=1

σ j y j ) = max
yi ≥0

n∑
j=1

σ j y j + min
i∈{1,...,n}

(xi − yi )

Clearly, the value of α∗ is unchanged if we add the further contraint that the values of
xi − yi should all be equal to the same value m. The value of m would then be such that
m = xi − yi for all i and since yi are positive, m must satisfy m ≤ mini∈{1,...,n} xi . Now,
we also have yi = xi − m, so

α∗
= max

m≤mini∈{1,...,n} xi

n∑
j=1

σ j (x j − m) + m =

n∑
j=1

σ j x j + max
m≤mini∈{1,...,n} xi

m(1 −

n∑
j=1

σ j )

=

n∑
j=1

σ j x j + ( min
i∈{1,...,n}

xi ).(1 −

n∑
j=1

σ j )

∀X ⊆ �, mini∈{1,...,n} xi = 1 if X = � and 0 otherwise. Therefore, α∗
= 1 = P(�) if

X = �, and otherwise

α∗
=

n∑
j=1

σ j x j =

∑
w∈X

σ({w}) =

∑
w∈X

1
W + K

∑
A∈Arg

w(A).
|X A ∩ {w}|

|X A|

=
1

W + K

∑
A∈Arg

w(A).
∑
w∈X

|X A ∩ {w}|

|X A|
=

1
W + K

∑
A∈Arg

w(A).
|X A ∩ X |

|X A|

= P(X)



Since by definition of natural extension α∗
= E(X), it holds that P(X) = E(X) for any

arbitrarily chosen X.

Theorem 3 (conjugacy of P) Upper argumentative probabilities are the conjugate of
the lower ones.

Proof 5 We must prove that ∀X ⊆ �, P(X) = −E(−X). For any event X, we can
rewrite −E(−X) as −E((� − X) − �). By coherence of E and the property that for
any coherent lower prevision and constant µ: P(X +µ) = P(X)+µ, we also have that
−E(−X) = 1 − E(� − X). This means that the conjugate of the lower prevision P is
given for every event X as 1 − P(� − X). Note here that � − X is the complement or
"contrary" of the event X. It can be checked easily from the definition formula of P that
for any event X we indeed have P(X) = 1 − P(� − X).

Argumentative probabilities are thus coherent no matter what the arguments and their
strength are. All the techniques discussed in subsection 2.2 for statistical inference and
decision making can be employed when working with argumentative probabilities. Up-
per probabilities and previsions are also useful for assessing financial risk and construct-
ing coherent risk measures. The reader interested in this topic may refer to the ref-
erences [Pelessoni and Vicig, 2001; Artzner et al., 1999]. The role and use of coher-
ent risk measures for robust optimisation is discussed in [Bertsimas and Brown, 2005;
Natarajan et al., 2005].

5. DISCUSSION OF RELATED WORK

This section discusses the relationship existing between our approach and statistical
methods based either on objective or subjective probability as well as some of the work
that has been done in the areas of Logic, Artificial Intelligence and Decision Theory.

Frequency probability [Neyman, 1950; Fishburn, 1964] is the interpretation of prob-
ability that defines an event’s probability as the limit of its relative frequency in a large
number ofobservationss. Argumentative and frequency probability match in the follow-
ing sense. Assume that each observation i in a sample 1, ..., N is modelled as an argu-
ment Ai , and the outcome {wi } of the i-thobservationn corresponds to the support of
Ai , that all arguments in Ai are assigned the same strength and that K > 0. Then, for
any event E ⊆ �, the lower and upper argumentative probabilities P N (E) and P N (E)

bound below and above the frequency estimator F̂N (E) =
1
N

∑N
i=1 IE (wi ) (IE is the

indicator function of the set E), and if limN→∞ F̂N (E) exists and represents the true
probability p(E) of E , then the argumentative probabilities also converge to the same
limit, i.e. limN→∞ P N (E) = limN→∞ P N (E) = p(E).

Frequentists talk about probabilities only when dealing with well-defined random
experiments. Different approaches are used though when no random experiment can be
defined or when no or few trials can be undertaken as was the case in the auction prob-
lem considered throughout the paper. These approaches rely on the more general concept
of subjective probability. Subjective probabilities measure the confidence of a subject
in the truth of a particular proposition [Savage, 1972]. The intuitive comparative school
(Koopman and Good) exploits the concept of ordering relation – not more probable than
– to derive an empirical probability measure. The second school is based on Ramsey and



Savage utility decision making approach, whereby the choices of a decision maker (mod-
elled as an expected utility maximiser) are used to reveal a set of probabilities. Subjective
probabilities, when elicited by such means, are referred to as psychological probabilities
to recognise the lack of total rationality and coherence expected from human responses
[Chesley, 1975]. Psychological probabilities are descriptive of human beliefs and may
not conform to the basic axioms of probability theory. Instead, this paper has provided
an approach that always guarantees the normative goodness of probabilities.

A general procedure for eliciting imprecise probabilities from a subject is proposed
in [Walley, 1991]. The idea is to obtain a number of qualitative or quantitative probability
judgements and model them as marginally acceptable gambles. If this set of marginal
gambles avoids sure loss, then one can use natural extension to assess the probability of
any event. This method is not easily applicable. The first problem is that the method fails
whenever conflicting judgements are employed. The second problem is that checking
that the property of avoiding sure loss holds and computing natural extension is compu-
tationally expensive. Argumentative probabilities avoid sure loss and are coherent even
when arguments conflict. Moreover, we dispose of simple formulae to compute them di-
rectly so we notably avoid the use of optimisation. Finally, the design of artificial agents
using arguments seems conceptually simpler than the one of agents making probabilistic
judgements autonomously.

In Artificial Intelligence, the theory of evidence, originally exposed in [Shafer, 1976]
and later developed by other authors – refer to [Sentz and Scott, 2002] for a survey on
this topic – provides a number of rules for combining numerical representations of be-
liefs called belief functions. Belief functions are computed by summing evidence mass
functions over 2� (whose size is exponential unlike Arg). This theory essentially focuses
on the problem of combining the belief functions of several sources and offers a general
way of constructing imprecise probabilities from numerical pieces of evidence. Belief
functions are known to be coherent [Walley, 2000] and have been used for the design
of many expert systems [Biswas et al., 1988; Hsia and Shenoy, 1989; Kak et al., 1990;
Krause and Clark, 1993; Saffiotti and Umkehrer, 1991]. The construction of belief func-
tions requires the user to input quantitative information whilst in this paper we have
focused on qualitative pieces of information.

In Logic, argumentation theory (surveyed in [Chesñevar et al., 2000; Bench-Capon
and Dunne, 2007] is fundamentally concerned with the characterisation and compu-
tation of rationally acceptable sets of arguments [Dung, 1995] or assumptions [Bon-
darenko et al., 1997; Dung et al., 2006]. The primal goal of this theory is not to as-
sess uncertainty but rather to study what a rational subject may believe. Argumenta-
tion can be seen essentially as a qualitative and logical approach to uncertainty. Prob-
ability is therefore not considered as essential to argumentation theory. However, a
few researchers in Logic and Artificial Intelligence have advanced the idea of esti-
mating both objective [Poole, 1993] and subjective probabilities [Krause et al., 1995;
Ambler, 1996] by means of argument aggregation. The basic idea behind Poole’s
probabilistic calculus is to estimate the probability of a claim being true by sum-
ming the probability of statistically independent, logically derived arguments that sup-
port that same claim. In other words, Poole uses argumentation aggregation for sta-
tistical inference, i.e. the inference of probabilistic information from an initial set of
probabilistic judgements. On the opposite, we focus on problems in which no prob-
abilistic information is available to the subject. The authors of [Krause et al., 1995;



Ambler, 1996] embrace a more general and abstract view on argument aggregation than
Poole and interestingly propose the use of algebraic calculus to assess (symbolically or
numerically) the strength of arguments depending on their internal structure. The method
used in this paper also involves a notion of argument strength, which may be assessed
from the arguments internal structure, but which may as well be derived from an analysis
of the dialectical relationships existing between the arguments.

Finally, textbooks on Decision Theory say little about the actual construction of
probabilities [French, 1987]. In fact, standard Decision Theory does not try to answer
how probabilities should be constructed but considers them as given a priori. The authors
of [Tan and Pearl, 1994], amongst others, indicate that the specification of complete
sets of probabilities and utilities makes decision theory impractical in complex tasks
involving common sense knowledge. This important issue has favoured the emergence of
qualitative approaches to decision making [Tan and Pearl, 1994; Boutilier, 1994; Dubois
and Prade, 1995; Bonet and Geffner, 1996; Amgoud and Prade, 2004]. These works rely
on mathematical models of uncertainty that not only differ from probability but as for
Decision Theory, do not seek to explain how to measure uncertainty. Instead, we have
provided a concrete recipe for constructing robust probability estimates, given empirical
and practical arguments.

6. SUMMARY AND DISCUSSION OF FUTURE WORK

We have proposed formulae showing that a set of arguments and a measure of their
strength allow to estimate the lower and upper probability of any event. The constructed
probabilities are "good" in both a substantive and normative sense because they truly
reflect the indeterminacy of the subject, relate clearly to the support offered by arguments
and constitute coherent previsions. The property of coherence alone implies that these
probabilities may be used for assessing risks [Pelessoni and Vicig, 2001], for statistical
inference and rational decision making [Walley, 1991; 1996; 2000] in decision-theoretic
settings.

In future work, we will prove that argumentative probabilities fall within the class
of belief functions [Shafer, 1976] and show that the corresponding combination operator
satisfies the algebraic properties of commutativity, continuity and associativity. We will
provide a general closed form formula for the natural extension E(X) of any real-valued
gamble X and show how to use it for comparing decisions or constructing coherent risk
measures [Artzner et al., 1999; Pelessoni and Vicig, 2001]. We will provide an additional
formula for estimating lower and upper conditional argumentative probabilities or previ-
sions and variances. We intend to demonstrate the applicability and usefulness of these
results in the domain of quantitative Finance [Lhabitant, 2001].

We have used arguments as evidence to construct probabilities but have so far as-
sumed given a measure of their strength. In the restricted context of this paper, all argu-
ments have been envisaged to be put forward and justified by some sources playing the
role of their proponents, but in real life, nothing would prevent other sources of evidence
to act as opponents and undermine such arguments. These attacks should intuitively re-
duce the strength of arguments and in our framework automatically augment the subject’s
indeterminacy. We believe that by looking at the dialectical structure of arguments in con-
troversial debates – as done in abstract argumentation theory [Dung, 1995] – it is possible



to analyse the status of arguments, notably by looking at the acceptability [Dung, 1995;
Bondarenko et al., 1997; Dung et al., 2006] of the opinions embracing them, but also by
studying the game-theoretical equilibrium resulting from the interactions with the other
opinions that do not embrace them and eventually define a purely dialectical measure
argument strength. This topic is the object of another working paper.
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