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Abstract. Hotspot is the part of a program where most execution time
is spent. Detecting the hotspot enables the optimization of the program.
The performance event counters embedded in modern processors provide
the hardware support for the hotspot detection. By sampling the instruc-
tion addresses of the running program with performance event counters,
hotspot of the program can be statistically detected. This technical re-
port describes our tool to find the sections of the code that are detected
as the hotspot of the program with performance event counters. SPEC
CPU 2006 benchmarks are tested with our tool and the results show the
hotspot sections and overhead of the hotspot detection tool.
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1 Introduction

Performance engineering of software programs has been an active research topic
for years. The goal of performance engineering is to adapt the program to the
architecture on which the program is executed in order to satisfy the performance
requirement at an acceptable cost[1]. To achieve the performance engineering
goal, an insightful understanding of the dynamic characteristics of the original
program is needed. One of the dynamic characteristics is the hotspot of the
program in execution, which is always the first thing one wants to know about
a program, since the hotspot is the part of the program where most of the
execution time is spent.

With the progress of the integrated circuits technology, most modern proces-
sors are equipped with performance event counters which provide a low overhead
facility to investigate running programs[2][3][4][5][6]. The basic functionality pro-
vided by the performance event counters is to count the events occured in the
hardware microarchitecture, and if configured appropriately, they can issue an
interrupt when the count reaches some preset value or in another word, over-
flow. In the interrupt handler of the performance event counter overflow, one can
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record the microarchitecture information available at the moment, such as the
Instruction Pointer (IP) address, and other register or performance counter val-
ues interested. With the information recorded in the performance event counter
overflow interrupts, we can get a statistical profile of the program’s execution be-
havior. For instance, if we let the performance event counters count the unhalted
CPU clock cycles and issue an interrupt every ten million cycles, by analyzing
the collected IP addresses in the interrupts we can figure out which part in the
program is most time-consuming, in a statistical manner. Nowadays most tools
utilizing the performance event couters support the IP recording or sampling
functionality and are able to aggregate the counts of different IP addresses or
to attribute the number of recorded IP addresses to the corresponding functions
and modules, resulting in a histogram of the IP addresses distributed among the
program constructs[7][8][9][10][11].

The IP address histogram gives the performance engineers a hint to the
hotspot of the program. However, relating the recorded IP addresses to the orig-
inal program is a tedious work. Aggregating the counts of recorded IP addresses
to corresponding functions or modules does help, but requires more processing
and sometimes is not easy to carry out if the executalbe was built with little
source information, which is the common case of operational programs. Since
the hotspot of the program includes sequences of instructions instead of solitary
instructions, it is not necessary to record each IP address in the statistical sam-
pling. In this technical report, we propose to record the sections of the address
space while smapling the IP addresses of the program. That is to say, we at-
tribute the number of sampled IP addresses to the sections of the code in the
program rather than split the number among different IP addresses or functions
and modules. By counting the number of IP addresses hitting in each section,
we need not save all the IP addresses encountered in the sampling process as in
the IP address histogram case, nor we need demangle the function or module
address regions as in the function or module histogram case, which we believe
would be helpful to ease the workload of hotspot detection of the program. Main
contributions of our work are outlined as follows:

1. A method to record IP address sections when sampling the IP addresses of
the running program.

2. A tool implementing the proposed method for Linux on X86-64 architecture.
3. Preliminary experiments of the tool on SPEC CPU 2006 benchmarks.

The rest of the paper is organized to four sections. The next section describes
the method. Section 3 introduces the tool and its design, as well as a brief of
the related framework for dynamic software acceleration. Section 4 shows the
results of the experiments on SPEC CPU 2006 benchmarks. Section 5 concludes
the paper with the brief of future plan.

2 Method

Our idea is to start from relative large sections of instruction addresses. If the hit
count of IP addresses in one section reaches some preset threshold in sampling
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process, we split the section into smaller ones and continue the process recursively
until the size of the section is small enough for post-processing.

2.1 Section Tree

The splitting operation mentioned in above generates a tree of sections. Each
section is a node in the tree. If a section is to be splitted, the resultant smaller
sections are regarded as the children of the original section, hence forming a tree.

Since the entire range of the possible address space is too big to begin with,
especially for the AMD 64-bit platforms where the virtual address space can
span to 256 tera bytes, we start the splitting from a certain size smaller than
the entire address space. From the orignal section, a tree will be built during
the sampling process. These original sections are collected in a list as the roots
of the section trees. Each time an IP address is sampled, the section trees in
the list are searched to locate the section in which the IP address hits. Then
the corresponding section tree will be updated to increase the hit count of the
section or split the section further if the hit count is over preset limit. After that,
the updated section tree will be swapped to the beginning of the section tree
list, hoping that the next sampled IP address will hit in this section tree again,
hence reducing the search time.

2.2 Splitting Mechnism

Splitting is controlled by a preset threshold of the count that the sampled IP ad-
dresses hit in the given section. If the hit count of a section exceeds the threshold,
the section will be splitted. Each child section will have the same threshold of the
splitted section. But the hit count of the original section is divided evenly among
the child sections, meaning that the hits are treated distributing uniformly in
the whole section.

Since the threshold is the same for the section and its child sections, the
hit density of the splitting section increases with the growth of the section tree.
Suppose the threshold is T , the size of the section is S, and the section will be
spltted to m child sections if the hit count exceeds T . So S/m is the size of each
child section. Obviously, the maximal density of the section before splitting is
dsection = T/S . Similarly the maximal density of one child section before the
hit count saturates is dchildsection = T/(S/m) = m ∗ (T/S) = m ∗ dsection .

This gives a zoom-in effect when we follow the hits to the hotspot sections
of the program. The denser the hits are, the smaller the size of the section is.
Generally, the section that recieves more hits is more likely the hotspot. At the
same time, this section may have a small size resulting from a series of splitting,
hence is easier for us to locate where the hotspot is. In addition, to locate the
hotspot more accurately, the minimal and maximal IP addresses hitting in the
given section are also reocrded, giving a possibility to narrow down the focus
even below the smallest section size.

As mentioned before, the section will be splitted until small enough for anal-
ysis. The minimal size is determined at a balance of accuracy and performance.
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Similarly, the starting size of the original section is determined at a balance of
performance and memory space efficiency. These parameters are chosen with
some tests.

3 Tool

We developed a tool to detect the hotspot of the program based on the method
described in section 2.

3.1 Design

The tool utilizes the infratructure of pfmon[11] from HP for the manipulation
of performance event counters. A kernel module, a user module and a wrapper
script are developed and integrated with other tools in our dynamic software
acceleration framework. The kernel module is in charge of handling the interrupts
generated by the performance event counters during the sampling process. It
stores the IP addresses and if instructed, the return addresses in the stack, in a
kernel buffer. When the buffer is about to be full, the kernel module notifies the
user module to read and process the IP addresses saved in the buffer.

The user module is in charge of building the section tree with the IP addresses
passed from the kernel buffer. It checks each address, finds which section the
address falls in, then increases the hit count of that section. If the section’s hit
count exceeds the threshold, the section will be splitted and child sections are
inserted into the section tree.

If instructed by the user, the user module can print out the current hotspot
section list at a specified period during the sampling. The hotspot section list
is generated from the leaf sections in the section tree which have the minimal
section size and a hit count above the given threshold. The period is specified
in terms of second. The minimum is one second, allowing enough time for the
module to process the IP addresses.

At the end of the execution, the user module will print out the resultant
hotspot section list by order of hit count. Each section is printed with its starting
address and size. The minimal and maximal addresses ever encountered in each
section are also printed, in order to give a starting point in post-processing.

The kernel and user modules are programmed in C and built within the
pfmon infrastructure. They can be used as the other smapling modules provided
in pfmon. However, to ease the user’s experience, a wrapper script by Python
is also developed. It encapsulates the usage of pfmon with our custom sampling
module. The user can specify the options in command line supported by the
kernel and user modules we developed. Other options and commands required
to launch the pfmon are coded in the script without the need of user intervention.
With the wrapper script, the user can specify the program he wants to monitor,
and the options such as the period of section tree print-out. The script parses
the input information, find the program and its arguments, then lauches the
pfmon to monitor and sample the program’s execution, printing out the hotspot
section list detected during the execution.
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3.2 Framework

The hotspot detection tool is part of our dynamic software acceleration frame-
work. After detecting the hotspot of the program, the post-processing tools will
analyze the hotspot section, figure out the control and data flow of the code,
extract acceleratable sequences of instructions, and convert them to appropri-
ate form for acceleration. The details of the post-processing tools are beyond
the scope of this paper. We will report the design and implementation of these
post-processing tools in future publications.

4 Experiment

We perform some experiments on SPEC CPU 2006[12] benchmarks with the tool
we developed. All the benchmarks in SPEC CPU 2006 has been tested. Runtimes
are recorded and compared with those of SPEC CPU 2006 benchmarks without
sampling. Memory size occupied by the section trees are caculated also to figure
out the memory consumption of the tool.

4.1 Test Platform

The test platform is a desktop computer with 2 AMD opteron dual core proces-
sors running at 2210 MHz. The CPU family number is 15, model number is 33,
stepping is 2. The processor cache size is 1024 KB. The size of the system RAM
is 2 GB.

Operating system is Ubuntu Linux 7.10 with kernel 2.6.24.3, configured to
run in 64-bit mode. The kernel is patched with perfmon[11] interface to the
performance event counters. The version of perfmon kernel patch is 2.8 which is
required for pfmlib[11] and pfmon[11] tool version 3.3.

SPEC CPU 2006 benchmarks are installed on the system, and are built with
GCC and GFortran 4.1.2. Optimization switch for the GCC and GFortran is
-O2, and the debug information switch is -gdwarf-2. It should be noted the
debug information is embedded for the post-processing tools, not for the hotspot
detection tool. The hotspot detection tool does not use the debug information
in the experiments.

4.2 Test Parameters

The starting and stopping section sizes are set to be 1M bytes and 1K bytes
respectively. The preliminary tests reveal that most programs occupy a memory
space ranging from dozens of kilobytes to several megabytes. So we choose the
starting and stopping section sizes as one megabytes and one kilobytes.

The hit count threshold is selected to be 128. The reason is as follows. We
expect the hotspot section to be hit once at each word in average during the
execution. Since the stopping section size is chosen as 1 kilobytes, or 128 words
for a 64-bit platform, the number 128 means each word in the section will get one
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hit in average. Higher thresholds can assure more hits per word in the section,
but may lead to slower splitting, hence are not selected.

The number of child sections split from the original section is set to be 4. This
means the section tree is a four-ary tree. Before choosing 4 as the splitting num-
ber, we initially used the binary tree to hold the sections. However, the binary
tree needs up to 10 splittings from the original section size of one megabytes to
the stopping section size of one kilobytes. So we changed to four-ary tree, which
has less hierarchies when split from 1M bytes section to 1K bytes section than
the binary tree does. Higher child section numbers are not selected because we
find in practice, splitting by 4 is efficient both in execution speed and memory
space. A higher child section number requires a larger node size of the section
tree. Therefore it is preferrable to use a fair child section number rather than a
large one.

4.3 Test Results

We set the period of printing out the intermediate hotspot sections detected
during the execution to be 10 seconds, then we launch the SPEC CPU 2006
benchmarks with our hotspot detection tool. The graphs depicting the hotspot
sections of the SPEC CPU 2006 benchmarks in the test can be found in the
Appendix.

Fig. 1 shows the maximal memory ever occupied by the section tree of each
benchmark during the execution. The X axis lines the name of the benchmarks.
Since each SPEC CPU 2006 may have several different input data sets, a input
number is attached to each benchmark name. The Y axis gives the size of the
maximal memory space occupied in bytes. It can be seen in the Fig. 1, that the
maximal memory overhead is around 35 KB. For most benchmarks, the hotspot
section tree consumes about 5 to 15 KB memory, some of them occupy only less
than 5 KB of the memory.

To find out the runtime overhead introduced by the hotspot detection, we add
intructions to read time stamp counter values at the start and end of the hotspot
detection procedure. The additional run time for hotspot detection is calculated
with Tdetection = (tsend − tsstart)/cpu clock rate. The original run times of the
SPEC CPU 2006 benchmarks are obtained by the time command. We run each
benchmark without hotspot detection 5 times repeatedly. For each execution we
use time command to get the User mode run time, System mode run time and
Wall clock real time. Since the wall clock real time may be influenced much by
the dynamic environment of the system, we choose the sum of the User mode
and System mode run time as final run time of each execution.

Table 1 lists the minimal, maximal and average runtimes of SPEC CPU
2006 benchmarks without hotspot detection, as well as the hotspot detection
time of each benchmark. Fig. 2 shows the runtime overhead percentage of the
hotspot detecion on the SPEC CPU 2006 benchmarks. The X axis lines the
name and input number of each benchmark. The Y axis represents the run-
time overhead in percent of the benchmark. The percentage is calculated by
Poverhead = Tdetection/MinT imebenchmark ∗ 100. We choose the minimal run
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time of each execution in consideration that the minimal run time should have
least influence from the dynamic environment of the system. From the figure,
we can find that the runtime overheads are less than 0.04%, with some of them
are close to 0.01%.

5 Conclusion

In this technical report, we introduce a hotspot detection tool to record hotspot
sections instead of each IP addresses. One advantage of recording hotspot sec-
tions rather than IP addresses is to save memory space required for storing
the different IP addresses encountered during the execution. Another advantage
is that by collecting the IP addresses in sections, we obtain some information
about the relations among the encountered IP addresses, such as concurrencies
of different IP addresses, which is believed to be helpful in post-process of the
performance monitoring data. We have seen from the periodical hotspot sec-
tion graphs in Appendix that different sections of the program can be active at
different times during the execution. Thus the hotspot sections with periodical
sampling reveal the program’s dynamic characteristics statistically in both the
IP space and the time frame.

Meanwhile, the memory cost of the hotspot section storage is relatively low.
In our experiments with SPEC CPU 2006 benchmarks, the maximal memory
ever consumed by the hotspot section is about 35 KB, while for most bench-
marks this consumption is around 5 to 15 KB. So we can have the hotspot
sections resident in the main memory and reference the hotspot section infor-
mation during the execution. In our future work, we plan to utilize the hotspot
section information for dynamic acceleration of the program.

From the experiments, we also find that the run time overheads of the hotspot
section detection are not high. Run time overheads of the SPEC CPU 2006
benchmarks with hotspot detection are within 0.04% of the minimal run time
ever recorded for the original programs. For some benchmarks, the run time
overheads are close to 0.01% of the original run time.

In a word, the preliminary experiments so far show that the hotspot detection
based on IP sections is a promising approach to study the dynamic characteristics
of the program. Our next step is to extend it with post-processing and analysis
techniques, such as binary code extraction and transformation for the dynamic
accleration of the programs.
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Fig. 1. Memory consumption of the hotspot detection tool for the benchmarks

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04
perlbench-input1
perlbench-input2
perlbench-input3
bzip2-input1
bzip2-input2
bzip2-input3
bzip2-input4
bzip2-input5
bzip2-input6
gcc-input1
gcc-input2
gcc-input3
gcc-input4
gcc-input5
gcc-input6
gcc-input7
gcc-input8
gcc-input9
m

cf-input1
gobm

k-input1
gobm

k-input2
gobm

k-input3
gobm

k-input4
gobm

k-input5
hm

m
er-input1

hm
m

er-input2
sjeng-input1
libquantum

-input1
h264ref-input1
h264ref-input2
h264ref-input3
om

netpp-input1
astar-input1
astar-input2
X

alan-input1
bw

aves-input1
gam

ess-input1
gam

ess-input2
gam

ess-input3
m

ilc-input1
zeusm

p-input1
grom

acs-input1
cactusA

D
M

-input1
leslie3d-input1
nam

d-input1
dealII-input1
soplex-input1
soplex-input2
povray-input1
calculix-input1
G

em
sF

D
T

D
-input1

tonto-input1
lbm

-input1
w

rf-input1

R
un

 ti
m

e 
ov

er
he

ad
 in

 p
er

ce
nt

SPEC CPU 2006 benchmarks

Fig. 2. Run times difference between SPEC CPU 2006 benchmarks with and without
hotspot detection



10 Qiang Wu, Oskar Mencer, Carlos Tavares and Kubilay Atasu

Table 1. The run times of SPEC CPU 2006 benchmarks and the hotspot
detection overhead

Benchmark Min time Max time Avg time Overhead
perlbench-input1 456.36 460.71 458.094 0.116070893
perlbench-input2 146.08 147.41 146.63 0.017976389
perlbench-input3 222.46 226.74 224.97 0.04022204
bzip2-input1 229.79 232.64 231.926 0.05408798
bzip2-input2 92.72 95.24 93.986 0.021223212
bzip2-input3 190.49 197.33 195.174 0.045197416
bzip2-input4 229.77 247.61 234.092 0.078738794
bzip2-input5 273.72 307.53 300.206 0.067435971
bzip2-input6 187.88 189.07 188.634 0.042314554
gcc-input1 77.04 77.73 77.374 0.017633632
gcc-input2 103.73 104.28 103.984 0.025511858
gcc-input3 128.6 138.38 134.34 0.029095956
gcc-input4 88.66 95.92 92.972 0.019924354
gcc-input5 103.28 122.7 114.81 0.025456447
gcc-input6 176.63 178.43 177.858 0.037593003
gcc-input7 193.94 219.72 214.156 0.057549938
gcc-input8 199.47 201.24 200.308 0.047485616
gcc-input9 34.88 35.07 34.992 0.008635035
mcf-input1 1463.15 1586.59 1536.656 0.481510989
gobmk-input1 110.33 111.07 110.732 0.020758631
gobmk-input2 285.7 286.5 286.156 0.048490138
gobmk-input3 156.15 156.54 156.264 0.02663531
gobmk-input4 109.16 109.59 109.34 0.018703295
gobmk-input5 149.23 151.87 149.816 0.02440289
hmmer-input1 374.19 381.77 377.024 0.099132176
hmmer-input2 763.15 769.78 766.818 0.132229487
sjeng-input1 1114.34 1118.02 1116.944 0.212317577
libquantum-input1 1700.45 1710.69 1706.968 0.439062569
h264ref-input1 200.58 202.27 201.178 0.049523845
h264ref-input2 142.03 143.59 142.664 0.031402884
h264ref-input3 1292.58 1296.0 1294.398 0.272224459
omnetpp-input1 894.17 906.47 901.702 0.227561194
astar-input1 444.53 459.04 453.264 0.125284414
astar-input2 610.28 629.12 619.49 0.138127209
Xalan-input1 825.98 831.5 829.996 0.093072355
bwaves-input1 2748.42 2883.87 2855.558 0.721040153
gamess-input1 361.18 373.97 369.702 0.047064231
gamess-input2 233.55 235.43 234.402 0.030591559
gamess-input3 1135.73 1148.15 1140.946 0.155524513
milc-input1 973.3 1056.62 1007.206 0.307592858
zeusmp-input1 1215.1 1216.6 1216.138 0.325735739
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Table 1. The run times of SPEC CPU 2006 benchmarks and the hotspot
detection overhead (continue)

Benchmark Min time Max time Avg time Overhead
gromacs-input1 1005.35 1006.01 1005.518 0.158280145
cactusADM-input1 2054.36 2272.86 2152.436 0.526251359
leslie3d-input1 1236.48 1244.11 1240.926 0.348669861
namd-input1 817.66 819.18 818.288 0.106409637
dealII-input1 968.15 1014.94 984.902 0.192005753
soplex-input1 507.06 513.27 509.828 0.148307147
soplex-input2 469.7 598.06 521.178 0.185700659
povray-input1 430.51 436.39 434.136 0.04940989
calculix-input1 3063.97 3085.22 3080.148 0.435295182
GemsFDTD-input1 1424.7 1696.13 1585.128 0.516489503
tonto-input1 1209.26 1221.78 1215.696 0.243500487
lbm-input1 1522.18 1766.4 1668.792 0.533738552
wrf-input1 1600.49 1690.94 1636.66 0.409940721
sphinx-input1 1641.51 1872.27 1734.18 0.588052983
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Appendix: Graphs of Hotspot Sections Detected in SPEC

CPU 2006 Benchmarks

The graphs in the following show the hotspot sections detected at each interval
of time during the execution of SPEC CPU 2006 benchmarks. The X axis of
each graph represents the time in seconds. Each tic along the X axis separates
the sampling period of the hotspot sections. Currently the period is set to be 10
seconds long. Since the benchmarks do not have an execution time as the times
of 10 seconds, the last period on the X axis of each graph is not necessarily 10
seconds. The Y axis represents the sections of IP addresses. Each pair of tics
along the Y axis indicates one section and one separating space alternatively. The
colored boxes in the graphs indicates the hit density of the section at the given
time interval. If a section has more IP addresses falling in during the specific
time interval, the color of the corresponding box is darker. The hit density is
calculated by dividing the number of IP addresses falling in the section at the
given time interval with the size of the section and the length of the time interval.

Form the graphs, we can see that most SPEC CPU 2006 benchmarks have
several hotspot sections, but not active all the way of the execution, probably
due to the dynamic characteristics of the benchmarks, or due to the incomplete
coverage of the statistical sampling. Exceptional cases are the graphs of 470.lbm
and 481.wrf benchmarks. 470.lbm seems to have steadly active hotspot sections
during the execution, while 481.wrf seems to have no easily visuable hotspot
sections in its graph. We may make more specific experiments for the 470.lbm
and 481.wrf in the future to find out the detailed reasons.



Hotspot Detection of SPEC CPU 2006 Benchmarks 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

H
it 

D
en

si
ty

0.0 458.872

Time (second)

0x400000

0x4fffff
In

st
ru

ct
io

n 
S

ec
tio

ns

Fig. 3. Hotspot sections of 400.perlbench with input set 1
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Fig. 4. Hotspot sections of 400.perlbench with input set 2



14 Qiang Wu, Oskar Mencer, Carlos Tavares and Kubilay Atasu

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

H
it 

D
en

si
ty

0.0 224.475

Time (second)

0x400000

0x4fffff
In

st
ru

ct
io

n 
S

ec
tio

ns

Fig. 5. Hotspot sections of 400.perlbench with input set 3
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Fig. 6. Hotspot sections of 401.bzip2 with input set 1
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Fig. 7. Hotspot sections of 401.bzip2 with input set 2
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Fig. 8. Hotspot sections of 401.bzip2 with input set 3
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Fig. 9. Hotspot sections of 401.bzip2 with input set 4
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Fig. 10. Hotspot sections of 401.bzip2 with input set 5
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Fig. 11. Hotspot sections of 401.bzip2 with input set 6
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Fig. 12. Hotspot sections of 403.gcc with input set 1
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Fig. 13. Hotspot sections of 403.gcc with input set 2

 0

 0.5

 1

 1.5

 2

 2.5

H
it 

D
en

si
ty

0.0 138.589

Time (second)

0x400000

0x6fffff

In
st

ru
ct

io
n 

S
ec

tio
ns

Fig. 14. Hotspot sections of 403.gcc with input set 3
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Fig. 15. Hotspot sections of 403.gcc with input set 4
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Fig. 16. Hotspot sections of 403.gcc with input set 5
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Fig. 17. Hotspot sections of 403.gcc with input set 6
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Fig. 18. Hotspot sections of 403.gcc with input set 7
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Fig. 19. Hotspot sections of 403.gcc with input set 8
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Fig. 20. Hotspot sections of 403.gcc with input set 9
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Fig. 21. Hotspot sections of 410.bwaves with input set 1
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Fig. 22. Hotspot sections of 416.gamess with input set 1
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Fig. 23. Hotspot sections of 416.gamess with input set 2
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Fig. 24. Hotspot sections of 416.gamess with input set 3
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Fig. 25. Hotspot sections of 429.mcf with input set 1
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Fig. 26. Hotspot sections of 433.milc with input set 1
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Fig. 27. Hotspot sections of 434.zeusmp with input set 1
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Fig. 28. Hotspot sections of 435.gromacs with input set 1
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Fig. 29. Hotspot sections of 436.cactusADM with input set 1
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Fig. 30. Hotspot sections of 437.leslie3d with input set 1
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Fig. 31. Hotspot sections of 444.namd with input set 1
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Fig. 32. Hotspot sections of 445.gobmk with input set 1
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Fig. 33. Hotspot sections of 445.gobmk with input set 2
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Fig. 34. Hotspot sections of 445.gobmk with input set 3



Hotspot Detection of SPEC CPU 2006 Benchmarks 29

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

H
it 

D
en

si
ty

0.0 109.752

Time (second)

0x400000

0x4fffff
In

st
ru

ct
io

n 
S

ec
tio

ns

Fig. 35. Hotspot sections of 445.gobmk with input set 4
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Fig. 36. Hotspot sections of 445.gobmk with input set 5
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Fig. 37. Hotspot sections of 447.dealII with input set 1
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Fig. 38. Hotspot sections of 450.soplex with input set 1
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Fig. 39. Hotspot sections of 450.soplex with input set 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

H
it 

D
en

si
ty

0.0 433.771

Time (second)

0x400000

0x4fffff

In
st

ru
ct

io
n 

S
ec

tio
ns

Fig. 40. Hotspot sections of 453.povray with input set 1
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Fig. 41. Hotspot sections of 454.calculix with input set 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

H
it 

D
en

si
ty

0.0 381.304

Time (second)

0x400000

0x42ffff

In
st

ru
ct

io
n 

S
ec

tio
ns

Fig. 42. Hotspot sections of 456.hmmer with input set 1
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Fig. 43. Hotspot sections of 456.hmmer with input set 2
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Fig. 44. Hotspot sections of 458.sjeng with input set 1
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Fig. 45. Hotspot sections of 459.GemsFDTD with input set 1
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Fig. 46. Hotspot sections of 462.libquantum with input set 1
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Fig. 47. Hotspot sections of 464.h264ref with input set 1
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Fig. 48. Hotspot sections of 464.h264ref with input set 2
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Fig. 49. Hotspot sections of 464.h264ref with input set 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

H
it 

D
en

si
ty

0.0 1234.238

Time (second)

0x400000

0x7fffff

In
st

ru
ct

io
n 

S
ec

tio
ns

Fig. 50. Hotspot sections of 465.tonto with input set 1
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Fig. 51. Hotspot sections of 470.lbm with input set 1
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Fig. 52. Hotspot sections of 471.omnetpp with input set 1
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Fig. 53. Hotspot sections of 473.astar with input set 1
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Fig. 54. Hotspot sections of 473.astar with input set 2
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Fig. 55. Hotspot sections of 481.wrf with input set 1
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Fig. 56. Hotspot sections of 482.sphinx3 with input set 1
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Fig. 57. Hotspot sections of 483.xalancbmk with input set 1


