
A Pathway Towards Net-Zero
Emissions in Oil Refineries
Nixon Sunny1,2, Andrea Bernardi 1*, David Danaci 3, Mai Bui 1,2, Andres Gonzalez-Garay1 and
Benoît Chachuat1*

1The Sargent Centre for Process Systems Engineering, Imperial College London, London, United Kingdom, 2Centre for
Environmental Policy, Imperial College London, London, United Kingdom, 3Barrer Centre, Department of Chemical Engineering,
Imperial College London, London, United Kingdom

Rapid industrialization and urbanization have increased the demand for both energy and
mobility services across the globe, with accompanying increases in greenhouse gas
emissions. This short paper analyzes strategic measures for the abatement of CO2

emissions from oil refinery operations. A case study involving a large conversion
refinery shows that the use of post-combustion carbon capture and storage (CCS)
may only be practical for large combined emission point sources, leaving about 30%
of site-wide emissions unaddressed. A combination of post-combustion CCS with a CO2

capture rate well above 90% and other mitigation measures such as fuel substitution and
emission offsets is needed to transition towards carbon-neutral refinery operations. All of
these technologies must be configured to minimize environmental burden shifting and
scope 2 emissions, whilst doing so cost-effectively to improve energy access and
affordability. In the long run, scope 3 emissions from the combustion of refinery
products and flaring must also be addressed. The use of synthetic fuels and
alternative feedstocks such as liquefied plastic waste, instead of crude oil, could
present a growth opportunity in a circular carbon economy.
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1 INTRODUCTION

The Sixth Assessment report from the Intergovernmental Panel on Climate Change (IPCC) finds
that limiting global average temperature rise to 1.5–2°C from 1850 is unlikely without material
reductions in greenhouse gas (GHG) emissions (IPCC, 2021). This sets an imperative to drastically
reduce emissions from economic activities globally, whilst improving access to energy and ensuring
its affordability.

Owing to its role as a provider of transport fuels and chemicals, the global refining sector has
increased its capacity by 13% over the period from 2000 to 2018, with a corresponding increase in
total GHG emissions by 24% (Lei et al., 2021). In total, oil refineries contributed 4% to global CO2

emissions in the year 2018, equating to approximately 1.3 Gt CO2. Although the demand for refined
petroleum products has been declining in Europe and Latin America, a significant growth is seen in
India and China, in part driven by rapid industrialization and an increasing demand for mobility
services (Australian Institute of Petroleum, 2020; Marschinski et al., 2020). By 2025, over 150
additional refineries are planned to be operational across Asia, the Middle East, and Africa (Lei et al.,
2021), thereby posing an inherent challenge to carbon-neutrality (Carbon Tracker Initiative, 2021).

A cost-effective emission mitigation strategy needs to be developed for refineries to be operable in
a net-zero society. The nub of the argument in this paper is that a combination of post-combustion
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FIGURE 1 | Simplified refinery block flow diagram (A), and example refinery plan (B) adapted from case 3 in IEAGHG (2017). The emission point sources in the
refinery are overlaid in (B) to illustrate the distributed nature of these emissions.
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CO2 capture and storage (CCS) with fuel switching could provide
the basis for such a strategy, considering both economic and
environmental trade-offs. This ensures that scarcer greenhouse
gas removal services (e.g., afforestation, direct air capture of CO2)
are utilized to offset the most challenging sources of emissions in
the economy, and not as the principal means to mitigation (Scott
and Geden, 2018). A key consideration is that CO2 capture rates
well above 90% are necessary to achieve a sufficiently high CO2

avoidance using post-combustion CCS because of upstream
impacts from the fuel supply chains. Furthermore, it is
important to minimize environmental burden shifting for any
net-zero strategy to achieve sustainable deployment.

2 EMISSION SOURCES IN A LARGE
CONVERSION REFINERY

There are more than a thousand oil refineries worldwide today,
categorized broadly as hydroskimming or larger conversion
refineries. Hydroskimming refineries comprise distillation
units, and a series of process units to produce petrol, jet fuel,
and middle distillates. By contrast, larger conversion refineries
include hydrocrackers and catalytic cracking units to further
reduce heavier crude fractions into lighter products (Jing et al.,
2020). These constitute over 70% of all refineries in Europe and
the United States, and emit around four times as much CO2 per
barrel of oil as the simpler conversion refineries (Lei et al., 2021).

The main emission sources in larger conversion refineries are,
in order of importance, the power station (29% of total emissions
in an average refinery), fluid catalytic cracking unit (19%),
atmospheric distillation units (19%), and steam methane
reformer for hydrogen production (11%) (IEAGHG, 2017).
The refinery flow diagram in Figure 1A shows the key
conversion processes and outputs. Nowadays, the power
station often consists of a natural gas combined cycle (NGCC)
plant with additional gas-fired boilers to cover the overall power
requirements of the refinery. Similarly, the heat requirements of
the atmospheric and vacuum distillation units are met by burning
the fuel oil and gases. The steam methane reformer uses natural
gas both as a feedstock and a fuel, producing two separate CO2

point sources that add up to about 10 kgCO2,eq for each kg of
hydrogen produced.

Smaller units such as heaters, boilers, and gas turbines are also
commonly powered by fuel gases, fuel oil, or natural gas. These
heterogeneous emission point sources have a relatively low CO2

concentration (around 8%vol), but may emit large quantities of
CO2 altogether. They are often distributed across a refinery’s site,
as illustrated in Figure 1B, forming clusters that are separated
over distances of several hundred meters or more (Simmonds
et al., 2003; van Straelen et al., 2010).

A breakdown of emission point sources in a typical larger
conversion refinery (Figure 1B) is provided in Supplementary
Table S1 of the Electronic Supplementary Material (ESI),
including an estimated CO2 concentration for each stream.
Given these characteristics, the next section reviews the
principal CO2 abatement measures, either approaches or
technologies for reducing the CO2 footprint of assets, followed

by an assessment of their suitability for deployment in this sector
to meet net-zero targets in the final section.

3 CARBON MITIGATION IN REFINERIES

This section summarizes the main strategic measures to drive
down direct CO2 emissions in oil refineries.

3.1 Energy Efficiency
Energy efficiency improvements are regarded by many as a cost-
effective mitigation strategy (Szklo and Schaeffer, 2007; Morrow
et al., 2015; Comodi et al., 2016; Malinauskaite et al., 2019),
although they may only allow a modest reduction in emissions of
5–10% (Talaei et al., 2020; Lei et al., 2021). It has also been argued
that a higher energy efficiency afforded by technology
development could lead to an increase in refining throughput
across the world (Lutz et al., 2021), a phenomenon known as
rebound effect and one that would partially negate the benefits.
Clearly, energy efficiency improvements cannot be the sole driver
for decarbonization of the refining sector.

3.2 Carbon Capture and Storage
The oil and gas sector was an early adopter of CCS technology
since the 1970s for enhanced oil recovery (EOR), which has
provided a foundation of experience for deployment in other CO2

mitigation applications. A large body of research thereof has
examined the use of CCS technology for mitigating emissions in
refineries (Simmonds et al., 2003; van Straelen et al., 2010;
Kuramochi et al., 2012; Johansson et al., 2013). The consensus
is that CO2 capture from larger combined emission stacks is
feasible (van Straelen et al., 2010). A recent analysis by the
International Energy Agency Greenhouse Gas R&D
Programme (IEAGHG, 2017) places the cost of CO2 avoidance
using post-combustion CCS in refineries at US$166–185 per ton
of CO2, with an overall direct emission avoidance share of
17–48%. These projections consider CO2 capture from larger
emission sources, including the power plant stacks, fluid catalytic
cracker, crude atmospheric and vacuum distillation units, and
steam methane reformer. They identify the utilities plant fuelled
by natural gas as the main contributor to the overall cost of CO2

avoidance (47%), followed by the CO2 capture and compression
system (38%), and the interconnectors and retrofits (15%). By
contrast, other emissions from boilers, heaters, or furnaces
scattered across a refining site are more costly to abate due to
their lower CO2 concentrations and flow rates, and the possible
presence of impurities (van Straelen et al., 2010; Element Energy
et al., 2014). However, the economics of CO2 capture from these
heterogeneous point sources remains poorly understood and
requires site-specific appraisals for a more accurate assessment
(Element Energy et al., 2014).

3.3 Fuel Switching
Since around 70% of a refinery’s emissions are the result of fuel
combustion (IEAGHG, 2017), fuel switching constitutes another
key mitigation strategy. The corresponding CO2 abatement cost
varies widely with the replacement fuel, with estimates in the UK
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in the order of US$30 t−1CO2
for biomass, US$110 t−1CO2

for hydrogen,
and US$430 t−1CO2

for electricity (Element Energy and Jacobs,
2018). Although attractive in terms of CO2 abatement and cost,
fuel switching to biomass could nevertheless generate a large
environmental burden, in addition to being potentially disruptive
to the biomass market. Furthermore, direct-fired heaters and
boilers using solid biomass are considered impractical in oil
refineries because of logistical and safety constraints
(Progressive Energy, 2020). Conversely, gaseous fuels such as
biomethane and hydrogen could serve as drop-in fuels without
the need for significant restructuring of refinery operations,
especially for the combined heat and power (CHP) plant. But
there are concerns related to the nature of heat transfer and the
level of NOx emissions with hydrogen-fired boilers; and even if
their operation is expected to be as reliable as their natural gas
counterparts, such boilers have not yet been demonstrated in an
industrial environment (Progressive Energy, 2020). Similarly,
electric heating could become a suitable alternative, subject to
a significant reduction in production cost and demonstration of
operational reliability.

4 DISCUSSION

4.1 Why Use a Multipronged Approach?
The net-zero paradigm entails balancing any residual CO2

emissions with an equivalent amount of permanent CO2

removal from the atmosphere. Because of large uncertainties
in the cost of technologies such as direct air capture (DAC)
(Dods et al., 2021), a recent focus in CCS development has been to
achieve CO2 capture rates well above 90% (Feron et al., 2019; Gao
et al., 2019; Hirata et al., 2020; Brandl et al., 2021; Danaci et al.,
2021). But regardless of the ability to achieve high capture rates,
upwards of 30% of a refinery’s emissions may remain
unaddressed by post-combustion CCS alone. The treatment of
flared gases using post-combustion CCS is furthermore
considered impractical, mainly because of the uncertainty in
unplanned flaring (equipment failures, blow downs, or
emergency shutdowns) (Emam, 2015; Calel and Mahdavi,
2020). This is where a multipronged approach becomes
necessary. In particular, a system combining post-combustion
CCS to tackle the largest emission point sources with fuel
switching for smaller distributed emission sources may curtail
refining emissions cost-effectively (Element Energy and Jacobs,
2018). Fuel switching is also relevant when the CCS installation
and auxiliary on-site equipment are constrained by space. Further
analysis is needed, however, to better understand the trade-offs
between both post-combustion CCS and fuel switching,
considering both economic and environmental impacts as well
as technology readiness.

The CO2 avoidance is defined as the quantity of CO2 emissions
avoided using abatement measures relative to a reference plant
which uses a given mix of fuels and technologies. It is clear that
both scope 1 (direct emissions from owned or controlled assets)
and scope 2 emissions (indirect emissions from utilities,
electricity, heating and cooling) need to be an integral part of
any CO2 avoidance assessment in order for strategic decisions to

be fully aligned with net-zero ambitions. An increase in the CO2

capture rate of the CCS plant generally goes in hand with an
increase in overall (absolute) energy consumption and thus
indirect environmental impacts (Feron et al., 2019). Similarly,
the overall benefit of fuel switching to hydrogen, electricity, or
biomass is largely dependent on indirect emissions associated
with upstream processes used for their production. An archetypal
example would be switching to hydrogen fuel produced from
high-carbon electricity, which may not reduce the overall carbon
footprint of a refinery, albeit reducing its direct CO2 emissions.

Here, we discuss the merits and caveats of post-combustion
CCS in a highly optimistic case where all point-source emissions
of themodel refinery from Figure 1Bwould be captured. The case
study assumes that the CCS unit would be powered by a dedicated
CHP plant, any CO2 emissions of which would also be directed to
the CCS unit—a realistic scenario insofar as installing CCS in
existing refineries would entail retrofits, yet excess utilities (steam
and electricity) might not be available on-site in most refineries.
Further details about the case study assumptions and calculation
procedure are reported in Section 3 of the ESI for completeness.

The first scenario in Figure 2A considers a natural gas-fired
CHP plant. Notice how achieving 90% CO2 avoidance requires a
capture rate in the CCS unit greater than 96% when natural gas
from Great Britain fuels the CHP—a discrepancy attributed to
upstream emissions from the natural gas supply chain as
aforementioned. Conversely, a 99% capture rate in the CCS
unit delivers 86% and 79% CO2 avoidance when the CHP fuel
corresponds to natural gas and LNG, respectively, both at the
global average emissions intensity. To put it in perspective, for
our model refinery where post-combustion CCS covers 72% of
the direct CO2 emissions (Figure 1B and Supplementary Table
S1), the CO2 avoidance with a CHP plant fired by natural-gas at
the global average emissions intensity and a 99% CO2 capture rate
is no more than 62%. This reinforces the need for complementary
measures such as fuel switching and negative emissions
technologies, in addition to reducing scope 2 emissions.
Another important consideration is that the post-combustion
CCS unit consumes around 0.13 tonnes of natural gas per tonne
of CO2 at capture rates of 90% and above, thus significantly
increasing the primary energy requirements of a refinery.

For comparison, the second scenario in Figure 2B considers a
hydrogen-fired CHP plant. Observe how scope 2 emissions (y-axis)
attributed to blue (methane-derived with CCS) hydrogen increase
compared to those of natural gas. Under the assumption of a 90%
CO2 capture rate in the blue hydrogen production process, they are
predicted to triple in the case of natural gas from Great Britain and
almost double in the case of LNG at the global average emissions
intensity. This supports the conclusion that burning natural gas in
the CHP plant and capturing the resulting CO2 emissions would be
more effective than switching to hydrogen fuel, unless this
substitution fuel has a low indirect emission intensity as for
instance with green (electrolytically-derived using renewable
power) hydrogen. If blue hydrogen (generated from a global
average supply of natural gas with a 90% CO2 capture rate) was
used to address the remaining 28% of the direct emissions from the
model refinery, the overall CO2 avoidance would increase from 62%
to 75%; this would further increase to 87% if green hydrogen was
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used instead. To achieve net-zero, around 13–25% of the refinery’s
direct emissions would still need to be offset through CO2 removal
technologies.

The broader implications of producing green hydrogen to fuel
the CHP plant of a refinery should also be considered carefully. In
particular, guaranteeing a continuous supply of green hydrogen
would require hydrogen storage, increasing cost. Moreover, green
hydrogen suffers higher conversion losses compared to renewable
electricity, and switching to renewable electricity could thus allow
for greater CO2 avoidance rates. This cursory analysis points to
the need for a detailed techno-economic analysis and life-cycle
assessment between renewable electricity, green hydrogen, and
blue hydrogen as future energy vectors in refineries.

4.2 Future Prospects
The previous discussion has underlined the need for a combination
of emission mitigation strategies to effectively decarbonize existing
oil refineries, taking the best of post-combustion CCS and fuel
switching and complementing with CO2 removal technologies.
Newer refinery installations could benefit further from the use of
low-carbon power sources, such as solar or wind electricity, as the
power plant typically is the single largest point-source emitter.
Concentrated solar power (CSP) systems can already operate at
steam temperatures between 60 and 250°C and have the ability to
reach temperatures beyond 400°C (González-Garay et al., 2021). Not
only could such CSP systems curb CO2 emissions from the utility
system, but they might also be directly coupled with the CCS unit in
the future (Wang et al., 2017). Of course, a key challenge in practice
is integrating such technologies efficiently within a refinery.

Incorporating CCS in any application causes some degree of
environmental burden shifting. The additional energy and
infrastructure requirements, along with the consumption of
additional resources (e.g., MEA solvent), increase water
consumption and smog formation among other environmental
impacts (Giordano et al., 2018). These environmental trade-offs are
driven primarily by scope 1 and 2 emissions from the extra fuel needed
for capturing the CO2 (Young et al., 2019). However, the relevance of
burden shifting is unclear, as potential risks associated with increased
impacts on indicators other than global warming potential are poorly
understood, except perhaps for water scarcity due to its importance in
arid regions (Zhu et al., 2021). More research is needed to understand
the wider environmental implications of post-combustion CCS, fuel
switching, and CO2 removal. In particular, the environmental burden
shifting caused by decarbonizing refineries could be analyzed
through the framework of planetary boundaries (Rockström
et al., 2009; Ryberg et al., 2018a,b), which has already been used
to compare a range of CCU applications (González-Garay et al.,
2019; Galán-Martín et al., 2021). This would allow for the nexus
between carbon emissions, water use, and primary energy
consumption to be considered as a whole (Wang et al., 2021),
even opening up opportunities for expanding the scope to material
flows (Elshkaki, 2019) and resource availability (Chamas et al., 2021).

A major focus herein has been on addressing scope 1 and 2
emissions from refineries, in themanner of a well-to-tank analysis. Yet
these activities may only account for 10–20% of emissions from oil
products, while the remaining 80–90% is associated with fuel use
(Total, 2020; Bieker, 2021)—these so-called scope 3 emissions cover
fuel combustion by consumers (tank-to-wheel) as well as flaring along

FIGURE 2 | Interplay between CO2 avoidance rate (color map and contour lines), CO2 capture rate (x-axis), and scope 2 emissions intensity (y-axis) in post-
combustion CCS. (A): Scenario of a CCS unit powered by a natural gas-fired CHP plant, with all its exhaust gases directed to the CCS unit. The dashed horizontal line
labelled GB indicates natural gas from Great Britain; those labelled Global average and LNG depict natural gas and liquefied natural gas mix, respectively, at the global
average emissions intensity. (B): Alternative scenario of a CCS unit powered by a hydrogen-fired CHP plant. The two dashed lines labelled Blue correspond to
hydrogen produced via steam reforming of natural gas from Great Britain or LNG at the global average emissions intensity, both assuming a 90% CO2 capture rate from
the reformer flue gas; the line labelled Green considers water electrolysis powered by wind electricity. Refer to Section 3 of the ESI for details about the underlying
assumptions and the calculation procedure.
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with other activities in a company’s value chain. To comply with the
net-zero vision, scope 3 emissionswill eventually need to be eliminated
or offset alongside scope 1 and 2 emissions.

Besides DAC, engineered CO2 removal technologies include the
use of biogenic carbon feedstock with CCS for bioenergy
production, also known as BECCS (Fajardy and Mac Dowell,
2017). Higher penetration of CO2 capture and utilization
technology combined with the development of green hydrogen
could also enable synthetic fuels, which have the potential to deliver
near-zero emissions over the entire well-to-wheel life-cycle, so long
as their production processes are carbon-neutral. Although the
economics of synthetic fuels is currently hindered by high energy
consumption, production costs are expected to fall as the
technology scales up (E4tech, 2021; Gudde et al., 2019; Daggash
et al., 2018). Furthermore, various chemical feedstocks and
products could be displaced through plastic waste recycling,
thereby lowering scope 3 emissions and enabling a circular
carbon economy. For example, the pyrolysis of plastic waste
could displace virgin naptha and lower the total impact by
approximately 400 kgCO2,eq for each tonne of plastic (Jeswani
et al., 2021).

More generally, CO2 utilization may be financially viable in a
supportive market environment but commercially available
utilization technologies are still lacking the scale and
permanence of CO2 removal required to be relevant for long-
term climate stabilization (Mac Dowell et al., 2017). CO2

utilization has a role in the portfolio of CO2 mitigation
approaches in the near-term, albeit likely a small one, as it is
highly dependent on supportive regional policies (such as the 45Q
tax credits for enhanced oil recovery in the United States) and
coordinated market development for a diverse set of CO2-based
products. This is in contrast with CCS technologies, which offer
the opportunity to use existing technologies and infrastructure
without a significant reshaping of the industry, whilst
permanently removing CO2 from the atmosphere (Gabrielli
et al., 2020).

Finally, the sustainability of CO2 mitigation strategies in
refineries ought to consider the social dimension alongside
economic and environmental trade-offs. This could follow a triple
helix approach, as recently advocated for CO2 utilization assessment

(McCord et al., 2021). Furthermore, the costs associated with the
transition to net-zero should be managed in a socially equitable
manner (GCCSI, 2020). The development of regulatory and policy
frameworks that facilitate such a sustainable transition to net-zero
for the refining sector will be a crucial milestone in this endeavour.
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