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1 Abstract 9 

Introduction: Optimise:MS is an observational pharmacovigilance study aimed at characterising the 10 

safety profile of disease-modifying therapies (DMTs) for multiple sclerosis (MS) in a real world 11 

population.  The study will categorise and quantify the occurrence of serious adverse events (SAEs) 12 

in a cohort of MS patients recruited from clinical sites around the UK. 13 

The study was motivated particularly by a need to establish the safety profile of newer DMTs, but 14 

will also gather data on outcomes among treatment-eligible but untreated patients and those receiving 15 

established DMTs (interferons and glatiramer acetate),. It will also explore the impact of treatment 16 

switching. 17 

Methods: Causal pathway confounding between treatment selection and outcomes, together with the 18 

variety and complexity of treatment and disease patterns observed among MS patients in the real 19 

world, present statistical challenges to be addressed in the analysis plan. We developed an approach 20 

for analysis of the OPTIMISE:MS data that will include disproportionality-based signal detection 21 

methods adapted to the longitudinal structure of the data and a longitudinal time-series analysis of a 22 

cohort of participants receiving second-generation DMT for the first time.  The time-series analyses 23 

will use a number of exposure definitions in order to identify temporal patterns, carryover effects and 24 

interactions with prior treatments. Time-dependent confounding will be allowed for via inverse-25 

probability-of-treatment weighting (IPTW).  Additional analyses will examine rates and outcomes of 26 

pregnancies and explore interactions of these with treatment type and duration. 27 

Results: To date 13 hospitals have joined the study and over 2000 participants have been recruited.  28 

A statistical analysis plan has been developed and is described here. 29 

Conclusion: Optimise:MS is expected to be a rich source of data on the outcomes of DMTs in real-30 

world conditions over several years of follow-up in an inclusive sample of UK MS patients.  31 

Analysis is complicated by the influence of confounding factors including complex treatment 32 

histories and a highly variable disease course, but the statistical analysis plan includes measures to 33 
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mitigate the biases such factors can introduce. It will enable us to address key questions that are 34 

beyond the reach of randomised controlled trials.  35 
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2 Introduction 36 

OPTIMISE:MS is a prospective observational cohort study lasting at least 7 years (with the 37 

possibility of extension depending on funding), focused on evaluating the safety profile of MS DMTs 38 

in the real-world setting.  A sample size of around 4,000 multiple sclerosis (MS) patients is 39 

anticipated, to be recruited from several sites (MS treatment centres) around the UK.  This sample 40 

size is based on the recruitment level that is expected to be achievable in practice, rather than on 41 

considerations relating to statistical power.  The study is open to all MS patients (as defined by the 42 

2017 McDonald criteria(1)), of any MS subtype, attending a participating site and eligible for 43 

treatment based on current UK guidelines(2) , regardless of their actual treatment history.  The study 44 

has been recruiting since May 2019, and as of 2022 remains open to new recruits.  The length of the 45 

recruitment window, coupled with the introduction of remote consenting, should ensure that the 46 

sample is not heavily skewed towards those attending clinics most frequently.   Details of the study 47 

design and protocol have already been published (3).  The study is academically initiated and led, but 48 

is guided by a public-private partnership between academic clinical investigators and pharmaceutical 49 

companies with marketing authorisations for DMTs.  50 

Subjects taking second-generation DMTs will be the main focus of investigation, and controls will 51 

include those eligible but not receiving treatment and those receiving first-generation DMTs (see 52 

Table 1 for a current list of first- and second-generation DMTs; any new DMTs becoming available 53 

for use by patients in the UK during the course of the study will be classed as second-generation). 54 

The primary objective of the study is to establish the incidence of serious adverse events (SAEs) 55 

among MS patients receiving any second-generation DMT, and compare it with that observed in 56 

untreated but treatment-eligible patients and those receiving first-generation DMT. 57 

Secondary objectives are: 58 

• to measure and compare SAE rates for individual DMTs; 59 

• to assess associations between second-generation DMT therapy and incidence of 60 

lymphopaenia; 61 

• to assess associations between second-generation DMT therapy and moderately and severely 62 

abnormal liver function, as indicated by blood tests for alanine transaminase or aspartate 63 

transaminase; 64 

• to assess the impact of sequential DMT therapy on the incidence of SAEs; 65 

• to assess the relative efficacy of DMT classes with regard to suppression of relapses, 66 

disability progression and new lesion formation on MRI; and 67 

• to measure the frequencies of pregnancies and their outcomes. 68 

 69 

SAEs are defined as adverse events resulting in death, persistent or significant disability/incapacity, 70 

or hospitalisation (or extension of a hospital stay for an inpatient).  These are classified according to 71 

the following categories: Opportunistic infections, infections requiring hospitalization, MS relapses, 72 

deaths, COVID-19 infections, other SAEs deemed to be related to treatment (eg malignancies), and 73 

other SAEs. 74 

3 Methods and Analysis 75 

3.1 Study sites, data entry and storage 76 
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Participants are recruited at participating MS clinics at hospitals around the UK.  Currently there are 77 

13 participating hospital sites and over 2000 individuals have been enrolled in the study. 78 

At each site, study data is entered onto a local secure database held on a dedicated PC.  These 79 

machines connect securely to the Optimise:MS server (hosted by the Data Science Institute at 80 

Imperial College London) and automatically upload (“push”) the data to the central database at 81 

regular intervals.  Regular quality checks on the data central data are performed centrally through 82 

monitoring data completeness, internal consistency, concordance with expected ranges, and 83 

harmonization of units; queries are fed back to the site staff for resolution.   84 

Participants’ data is managed in line with the requirements of the General Data Protection 85 

Regulation, Imperial College London’s policies and the study’s own Standard Operating Procedures.  86 

Personally identifiable data is kept to a minimum; names and contact details are accessible only by 87 

local site staff and are not stored on the central study database. 88 

3.2 Longitudinal cohort structure and outcome assessment 89 

MS patients may join the study if they are eligible for treatment with DMT, regardless of whether or 90 

not they actually receive DMT.  Upon enrolment the patient’s basic demographic and clinical data 91 

(including their MS diagnosis and any comorbidities) are entered onto the study database by site 92 

staff.  Retrospective data is also collected at enrolment, including disability assessments and relapses, 93 

lab test results, a full history of DMT use, and any past serious infections or malignancies. 94 

Whenever a participant attends a clinic visit while under observation in the study, the database is 95 

updated with the reason for the visit, date of the visit, and details of any other changes in the 96 

participant’s data (such as disease progression, new comorbidities, any treatment changes, SAEs, test 97 

results, or MRI scan results) since the previous visit.   Exact dates for all such events are recorded 98 

whenever possible.  No additional clinic visits or procedures are required as part of the study.  99 

Participants are under observation from their enrolment visit until they withdraw consent, leave a 100 

participating clinic, die, or until the end of the study, whichever is the earliest. 101 

SAEs (including MS relapses), pregnancies and their outcomes, and any new/enlarging lesions 102 

revealed by clinically indicated interval MRI are recorded on the Optimise database by local site staff 103 

accessing medical records.   Disability is assessed by local clinical staff using the Expanded 104 

Disability Status Scale (EDSS) (4) and the total score is recorded on the database; a disability 105 

progression outcome is defined as an EDSS measurement scoring at least 1 point higher than the 106 

most recent measurement at or after baseline.  Laboratory test results (eg blood cell and liver enzyme 107 

counts) also are recorded on the database.  Abnormal liver function is assessed using blood alanine 108 

aminotransferase (ALT) or aspartate aminotransferase (AST) levels.  For each, moderate and severe 109 

elevation are respectively defined as exceeding 2.5x and 5x , respectively, of the upper limit of the 110 

normal ranges established by Imperial North West London Pathology. Lymphopaenia is defined 111 

based on absolute lymphocyte count (ALC) according to the following grades: 112 

o Grade 1: Lower limit of normal range ≥ ALC ≥ 800/mm3 113 

o Grade 2: 800/mm3 ≥ ALC ≥ 500/mm3 114 

o Grade 3: 500/mm3 > ALC ≥ 200/mm3 115 

o Grade 4: 200/mm3 > ALC  116 

 117 

3.3 Statistical principles 118 
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Due to selection effects, MS patients receiving different treatments are likely to have different 119 

underlying characteristics and to experience outcomes at different rates even before allowing for the 120 

effects of treatment.  Thus, confounding is expected between treatment selection and outcomes, 121 

leading to biased treatment effect estimates.  Confounding variables may include demographics, 122 

disease and treatment history, and time variables representing period and cohort effects (5).   123 

Controlling for the effects of confounders can be particularly difficult in longitudinal studies where 124 

past treatment exposures and covariates may influence future exposures and/or covariates as well as 125 

future outcomes.  This is known as time-varying causal pathway confounding, and the bias it 126 

introduces may not be adequately controlled by the standard multivariate covariate adjustment 127 

approach (6, 7) (8).  This type of confounding is expected to occur in the Optimise:MS cohort, given 128 

the nature of MS as a chronic progressive disease and the factors that are suspected to influence 129 

treatment decisions.  Methods for controlling confounders have been chosen to mitigate this problem 130 

(further details below).  131 

The statistical analyses fall into three classes: cohort analyses, signal detection analyses, and 132 

pregnancy analyses.  These are described under the headings below. 133 

3.4 Cohort analyses 134 

A “new user” cohort of those study subjects who have never received second-generation DMT prior 135 

to study enrolment will be the subject of longitudinal analyses.  These will examine the effects of 136 

DMTs on relapse, disability progression, abnormal liver function, lymphopenia, new lesion 137 

formation and SAE rates.  The temporal relationship between exposures and outcomes will also be 138 

explored. 139 

The primary cohort analysis aims to investigate the effectiveness and safety of DMTs using a 140 

relatively simple model.  Participants will be separated into two strata according to whether or not 141 

they have ever received first-generation DMT prior to second-generation DMT initiation (or prior to 142 

the end of follow-up, if second-generation DMT is never initiated).  Within each stratum, outcomes 143 

occurring while exposed to second-generation DMT will be compared to outcomes occurring while 144 

unexposed.  Follow-up is censored upon cessation of second-generation DMT.  Subjects who 145 

commence second-generation DMT while under observation will contribute an initial unexposed 146 

episode and a subsequent exposed episode of follow-up time to the analysis, as illustrated for two 147 

hypothetical patients in Figure 1. 148 

To control for confounding in the primary analysis, propensity score weighting will be used; each 149 

exposure episode will be weighted in inverse proportion to the estimated propensity (probability) of 150 

the observed treatment exposure.  The propensity score is based on time-varying covariates measured 151 

at the start of the exposure episode (7). The effect of the weighting is to construct a pseudo-152 

population which is effectively “randomised” in the sense that the covariates at the start of exposure 153 

episodes are balanced across exposure categories.  The propensities are estimated using a pooled 154 

logistic regression model. 155 

The secondary cohort analyses are aimed at exploring the temporal relationship between DMT use 156 

and outcomes, including whether the effects of DMTs persist after treatment cessation/switch.  157 

Follow-up is not censored upon cessation of second-generation DMT; instead, participants can 158 

contribute multiple periods of exposure to the analysis as they move between treatment classes.  This 159 

is illustrated in Figure 2 for the two hypothetical patients described in Figure 1. The secondary 160 

analyses thus make use of all observed data for the new user cohort and, owing to the more complex 161 
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longitudinal exposure patterns involved, observations will be weighted using time-varying inverse 162 

probability weights (IPTW) to estimate a marginal structural model (MSM) (9).  This is similar to the 163 

propensity score method described above, but the weights are updated at regular (6-month) intervals 164 

based on the latest covariate values and reflect the probability of observing the participant’s full 165 

treatment history up until that timepoint (6).  For details of how these probabilities are modelled, and 166 

the formulae for the weights, see the Supplementary Material. This method aims to create a 167 

dynamically weighted pseudo-population that is longitudinally balanced, i.e. with covariates equally 168 

balanced across all possible treatment histories at every 6-month timepoint.   This construction relies 169 

on an assumption that the probabilities lie strictly between 0 and 1 for each possible level of the 170 

covariates (the positivity assumption).  Provided that this condition is met and all confounders are 171 

measured at sufficiently frequent intervals, this method can fully control for time-varying causal 172 

pathway confounding and generate unbiased estimates of the marginal treatment effects.  A three-173 

category treatment variable will be used (no treatment, first-generation DMT or second-generation 174 

DMT) instead of the stratified approach of the primary analysis.  Parallel analyses will use different 175 

exposure models to examine the temporal patterns of treatment effects:  176 

(a) Outcomes associated with current treatment class (categorical exposure variable) 177 

(b) Outcomes associated with current treatment class plus carryover effect of any other treatment 178 

class in the past 6 months (categorical exposure variables) 179 

(c) Outcomes associated with cumulative exposures (continuous exposure variable for each 180 

treatment category) 181 

(d) Outcomes associated with time-weighted cumulative exposure, i.e. historic exposures 182 

downweighted relative to recent exposures (continuous exposure variable for each treatment 183 

category) 184 

The tertiary cohort analysis extends exposure model (b) to examine whether there is an interaction 185 

effect associated with treatment switching, i.e. whether the carryover effect of previous treatment is 186 

dependent on current treatment exposure.  187 

Further cohort analyses will examine the effects of second-generation DMTs individually rather than 188 

as a collective treatment class.  The principle analysis method for all cohort analyses will be time-189 

varying Cox proportional hazards regression (10).  190 

3.5 Signal detection analyses 191 

The signal detection analyses will examine whether the rate of SAEs (excluding MS relapses) 192 

occurring for any individual DMT is disproportionate to the overall rate of SAEs in the study sample.   193 

SAEs will be analysed according to their classification sin the Optimise database as: 194 

• Infections 195 

• Opportunistic Infections 196 

• Malignancies and other SAEs likely related to treatment 197 

• Deaths (all causes) 198 

• Covid-19 199 

• Other SAEs 200 

 201 

Infections, opportunistic infections and Covid-19 will be further analysed according to the subtypes 202 

recorded on the database, currently including the following categories: 203 
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• Infections: urinary tract infections, bronchitis, sinusitis, gastroenteritis, thinea, sepsis, 204 

bacterial, viral, abscess, other 205 

• Opportunistic Infections: progressive multifocal leukencephalopathy, herpes zoster, 206 

herpes simplex, varicella,viral hepatitis, listeria, mycosis, abscess, other  207 

• Covid-19: suspected, confirmed by test, hospitalised, ventilated 208 

Classifications based on MedDRA codings or free-text descriptions may also be used. 209 

Patient-months will be assigned to treatments according to three different definitions of exposure: 210 

• Exposure within the month of interest or the previous month 211 

• Exposure within the preceding 6 months 212 

• Exposure at any prior time in the patient’s treatment history 213 

Only incident events (i.e. the first recorded occurrence in a given study participant) will be analysed; 214 

follow-up is censored upon occurrence of the event of interest. 215 

A minimum report criterion is also imposed in order to avoid statistical noise in the 216 

disproportionality statistics when event counts are too low.  For a signal to be triggered, an event 217 

must be reported in at least 3 study participants for second-generation DMTs and 5 participants for 218 

first-generation DMTs.  The higher threshold in the latter case results in fewer false positives and 219 

more precise risk estimates, but with reduced sensitivity (11), reflecting the fact that the safety profile 220 

of first-generation DMTs is relatively well understood and early detection of signals is less of a 221 

priority than for the newer treatments. 222 

3.5.1 Signal detection methodologies/measures 223 

The key disproportionality methods used in this study, the Reporting Odds Ratio and Bayesian 224 

Confidence Propagation Neural Network, were originally developed in the context of spontaneous 225 

report databases. In this original context the methods would be used to evaluate whether an event is 226 

cited more frequently in AE reports for the treatment of interest than in reports for other treatments. 227 

Longitudinal cohort data also covers periods when no adverse events occur, which provides 228 

additional information regarding the relative frequencies of exposures and outcomes. When applying 229 

the disproportionality approach in the longitudinal setting it is appropriate to make use of this 230 

additional data by  altering the methods so that they do not simply count AE reports occurring on 231 

treatments, but also take into account periods with no exposure and/or no events(12). This is 232 

achieved by treating each patient-month of follow-up as a unit of observation and evaluating whether 233 

events occur more frequently during patient-months exposed to the treatment of interest than during 234 

all other patient-months.  The methods are described under the headings below in accordance with 235 

this longitudinal formulation. 236 

3.5.1.1 Simple disproportionality measures 237 

The reporting odds ratio (ROR) (13) compares the odds of an adverse event occurring during 238 

exposed patient-months to the odds of occurrence during unexposed patient-months.   For a given 239 

drug-event combination the ROR is calculated as follows: 240 

𝑅𝑂𝑅 =
𝑛11𝑛00
𝑛01𝑛10

 241 
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where 𝑛00 = number of patient-months without exposure to drug or occurrence of event 242 

𝑛01 = number of patient-months without exposure to drug but with occurrence of event 243 

𝑛10 = number of patient-months with exposure to drug but without occurrence of event 244 

𝑛11 = number of patient-months with exposure to drug and occurrence of event 245 

 246 

Another simple disproportionality measure is the proportional reporting ratio (PRR), which is 247 

calculated not as an odds ratio, but rather a relative risk in exposed vs unexposed months:  248 

𝑃𝑅𝑅 =
𝑛11𝑛0.
𝑛01𝑛1.

 249 

where the dot symbol ⋅ indicates summation over the index values 0 and 1 (14). A third measure is 250 

the relative reporting ratio (RRR),  a relative risk in exposed vs all months: 251 

𝑅𝑅𝑅 =
𝑛11𝑛..
𝑛.1𝑛1.

 252 

 In practice the PRR, RRR and ROR give near-identical results when used for signal detection (15) 253 

(12). 254 

The incidence rate ratio (IRR) is a standard relative measure of incidence in epidemiology and 255 

medical statistics, often estimated by Poisson regression.  It is calculated as the incidence of an event 256 

among treated participants divided by its incidence among untreated participants, where the incidence 257 

is the number of events divided by the total amount of follow-up time.  It can easily be seen that the 258 

IRR is equivalent to the longitudinal formulation of the PRR described above.  This observation 259 

allows us to calculate a confounder-controlled estimate of the PRR via weighted Poisson regression, 260 

using the marginal structural approach described under “Cohort Analyses” above.  Indeed, the same 261 

weighted PRR estimate can be obtained by directly substituting weighted equivalents of 𝑛01, 𝑛11, 𝑛00 262 

and 𝑛10 in the formula above (for details see the Supplementary Material).  The latter approach can 263 

be extended to calculate a weighted version of the RRR, which will be used in the “weighted analysis 264 

pathway” (see “Signal Generation Procedure” section below).  265 

3.5.1.2 Shrinkage (Bayesian Confidence Propagation Neural Network) 266 

Owing to the discrete nature of count data, simple disproportionality measures are very unstable 267 

when event rates are low.  Chance occurrences of a rare event can easily generate spurious false 268 

positive signals. 269 

The Bayesian Confidence Propagation Neural Network (BCPNN) method (16) is designed to reduce 270 

the rate of false positives by using a Bayesian model to express the joint distribution of the 271 

probabilities of drug exposure and event occurrence, with conjugate beta priors that favour an 272 

independent relationship (i.e. no association between drug and event).  This achieves a “shrinkage” 273 

effect that pulls the disproportionality estimates back towards the null when event counts are low.   274 

The model’s key measure of disproportionality is the Information Component, which is the base-2  275 

logarithm of the RRR.  A posterior estimate of the False Discovery Rate (FDR) for each signal, i.e. 276 

the probability of no association between drug and event, can also be obtained (17).   277 
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3.5.1.3 Controlling for protopathic bias (LEOPARD) 278 

Signal detection methods are often prone to generating false positives due to protopathic bias, which 279 

occurs if an event is mistakenly ascribed to initiation of a new treatment when both shared a common 280 

cause such as an underlying disease exacerbation(18).  LEOPARD is a signal filtering method aimed 281 

at eliminating this bias.   The method works by examining the rate of treatment initiations before and 282 

after adverse event incidence; protopathic bias is inferred if treatment follows the event more often 283 

than it precedes it (15).  To address this, we will employ a one-sided binomial test of the distribution 284 

of treatment initiation events, with the null hypothesis that treatment initiation is equally likely before 285 

an AE as after it, and the alternative hypothesis that the probability is higher after the AE. This test 286 

will be carried out at the 50% significance level (19); signals where the null hypothesis is rejected 287 

will be discarded. 288 

3.5.2 Signal generation procedure 289 

For each treatment of interest and exposure definition, the analysis will follow the process set out 290 

Figure 3. As the first step in the analysis, a list of events fulfilling the minimum report criterion is 291 

generated (the Level 1 list).   Thereafter, three parallel analysis pathways are used: a crude 292 

(unadjusted) disproportionality analysis, and two analyses aimed at controlling for potential 293 

confounding covariates: a subgrouped analysis and a weighted analysis (IPTW).  294 

Within each pathway, a Level 2 list is produced containing all signals identified by the Reporting 295 

Odds Ratio or, equivalently, the incidence rate ratio.  Signals are triggered when the lower 95% 296 

confidence bound for the disproportionality measure exceeds 1 (for the subgrouped analysis, this 297 

must be observed in at least one subgroup; this approach has been reported to provide better 298 

performance than using a pooled odds ratio (11)). 299 

The Level 2 list is expected to contain some false positives due to (i) volatility of disproportionality 300 

measures associated with low event counts, and (ii) protopathic bias.  The Level 3 list tackles these 301 

problems by (i) applying Bayesian shrinkage to pull disproportionality estimates back towards the 302 

null (the Bayesian Confidence Propagation Neural Network Method) and (ii) verifying that 303 

prescriptions tend to precede rather than follow events (the LEOPARD filter).  Signals with an FDR 304 

estimate below 5% which are not rejected by the LEOPARD filter will be included on the Level 3 305 

list.  In the subgrouped- analysis, these conditions must be achieved in at least one sub-group; in the 306 

weighted analysis, the BCPNN calculations are based on the weighted event counts described in the 307 

Supplementary Material. 308 

Pooled lists at levels 2 and 3 will be produced in which signals will be ranked according to the 309 

number of pathways in which the signal was observed and the associated disproportionality statistics 310 

(level 2) or estimated false discovery rates (level 3) (17).   311 

Sensitivity analyses may explore the use of alternative decision rules, such as varying the minimum 312 

report or FDR thresholds, and alternative methodologies, such as replacing BCPNN with the 313 

Gamma-Poisson Shrinker (15, 20) or Information Component Temporal Pattern Discovery (21)). 314 

After drug-event signals have been identified, the data will be further examined for evidence of drug-315 

drug-event signals, i.e. adverse events associated with treatment interactions.  These analyses will 316 

also proceed using the procedure set out in Figure 3, with different exposure definitions and 317 

background rates depending on the context (these are set out in the full Statistical Analysis Plan). 318 
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An additional paediatric signal detection analysis be carried out in participants under 18 years old.  319 

For this purpose the threshold for the minimum report criterion will be reduced to 2 cases, and only 320 

the crude analysis pathway will be used. 321 

3.6 Pregnancy analyses 322 

The average rate of pregnancy per person-year of follow-up will be estimated, both among all 323 

females aged 18 to 50 in the study population and according to DMT class and specific DMT being 324 

received at the date of conception. 325 

Multinomial or binomial logistic regression will be used to estimate the effect of the treatment 326 

received at conception on the eventual outcome of pregnancy. 327 

3.7 Planned interim analyses 328 

The study is in a position to reveal previously unobserved adverse drug reactions, particularly in 329 

connection with the more novel second-generation DMTs.  To facilitate timely detection of such 330 

signals, a simplified set of analyses will be performed on an annual basis while data is being accrued.  331 

These will consist of the signal detection analyses (crude analysis pathway and single-drug-event 332 

associations only), and simple (constant-hazard) unadjusted Poisson regressions of the occurrence of 333 

any SAE according to current treatment received. 334 

4 Discussion 335 

Optimise:MS is being carried out in a routine sub-specialty referral care setting, and will thus provide 336 

“real-world” data on outcomes occurring under the sort of treatment and clinical monitoring regimes 337 

that patients typically experience, rather than the idealised conditions of a randomised controlled trial 338 

(RCT) (22).  The study participants should be more representative of the general population of MS 339 

patients in the UK than would be the case in a typical RCT, since the inclusion criteria are less 340 

restrictive and the study does not burden the participants with additional procedures or impose any 341 

new treatment regimes.  This also facilitates recruitment, and over a long period of follow-up, despite 342 

the lack of additional investigations or procedures, enables a comprehensive set of clinical data to be 343 

gathered.  The use of electronic consent forms and remote/virtual clinic visits has also helped in this 344 

regard, particularly during the COVID-19 pandemic. 345 

The sample size and length of follow-up thus exceed most RCTs and, together with the detailed data 346 

gathered on participants’ DMT and disease histories, will enable the estimation of washout, 347 

switching and subgroup effects that often lie beyond the scope and capabilities of trials. 348 

Of course, observational studies have well-known drawbacks compared to RCTs - chiefly the 349 

absence of randomisation, which leaves treatment selection potentially subject to the influence of 350 

prognostic factors and therefore vulnerable to confounding with outcomes.  The likely existence of 351 

time-varying causal pathway confounding in the MS context makes this problem particularly 352 

challenging to address analytically, but the marginal stuctural modelling approach (IPTW) has shown 353 

that it has the capability to produce unbiased estimates - at least under ideal conditions when 354 

positivity is satisfied, probability models are specified correctly and there are few extreme weights(8, 355 

23, 24).  The comprehensive longitudinal data collection in Optimise should facilitate MSM 356 

estimation, which will be particularly important for the secondary cohort analyses investigating the 357 

effect of longitudinal treatment trajectories.  The estimation of probability weights in itself may 358 
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provide useful insight into the prevalence of DMT use in particular subgroups, and other factors 359 

influencing treatment decisions. 360 

We have also specified a simpler cross-sectional propensity-score weighting approach, as this 361 

improves the chances of positivity and reduces the potential for extreme weights.  Although this 362 

model may not fully control for the influence of prior treatment history on outcomes, this is less 363 

likely to be a major concern in the primary cohort analysis since exposure histories are relatively 364 

simple (Figure 1) compared to the more complex exposure histories in the secondary analysis (Figure 365 

2). 366 

The use of weighted event counts in the disproportionality-based signal detection methods is, to our 367 

knowledge, novel, but is well-founded (see the Supplementary Material).  This is the only method we 368 

are aware of that can control for time-varying causal pathway confounding when using 369 

disproportionality methods such as the ROR, BCPNN or GPS.  However, it can only be used when 370 

these methods are applied to longitudinal cohort data, rather than to the spontaneous report data for 371 

which such methods were originally developed.  Linking cases to their treatment histories, and hence 372 

examining drug-drug-event signals involving washout effects of prior treatments, is also more 373 

straightforward in the longitudinal setting.   These considerations favour the Optimise cohort-based 374 

design for future signal detection databases.  Another reason, of course, is the additional data gained 375 

from periods with no treatment exposure or adverse events, which may improve the performance of 376 

disproportionality methods (15).  Without this additional data, disproportionality analyses of 377 

spontaneous reports can unfairly penalise drugs with low overall AE rates if any one AE occurs more 378 

often than others (an example is shown in the Supplementary Material).  Alongside the novel 379 

weighted analysis, a parallel subgrouped- analysis provides another means of controlling for 380 

confounders and is better established in signal detection (11, 20) - although this method may still be 381 

vulnerable to time-varying causal pathway confounding. since the subgroups are based on cross-382 

sectional covariate values rather than full exposure and covariate histories. 383 

A disadvantage of using the Optimise study for signal detection purposes, as opposed to a 384 

spontaneous report registry, is the relatively small sample size.  This exacerbates the known problem 385 

of volatility in disproportionality statistics when event counts are low - hence the importance of using 386 

a shrinkage methodology such as BCPNN.   Protopathic bias presents another significant problem for 387 

pharmacovigilance in MS patients, as false signals may easily be generated by both the 388 

relapsing/remitting and progressive aspects of the disease, and the wide range of symptoms it can 389 

produce.  Direct comparisons between safety profiles of different DMTs - in particular between first- 390 

and second-generation DMTs - may also be biased due to the fact that exposure and follow-up time 391 

are more limited for newer drugs, and so treatment effects that manifest over the longer term cannot 392 

be observed.  Finally, the potential for differences in the intensity of follow up on different treatments 393 

to bias event detection is not specifically accounted for in the analysis. The impact of this varies 394 

greatly by outcome; for example, it would be expected to be greater for imaging measures of disease 395 

activity such as new or enlarging lesions than for SAEs. Although imaging results may also be 396 

affected by the use of different scanners, acquisition protocols and schedules, this is not expected to 397 

be strongly related to treatment. 398 

In summary, OPTIMISE is observational, inclusive, and does not impose any fixed timelines on 399 

those taking part.  Participants can be enrolled at any stage of their MS or treatment history; there is 400 

no unifying milestone marking for the start of follow-up, and no set course of treatment to be 401 

followed thereafter.   This inclusivity makes recruitment easier, enhances data collection and may 402 

increase the population representativeness and generalisability of results, but it presents major 403 
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challenges from a statistical perspective.  We have tried to address these and realise opportunities 404 

arising from the design.  Our approach to signal detection analyses will ensure a healthy mix of data 405 

from as wide a population as possible, although care has been needed to plan the analysis in a way 406 

that controls for treatment selection and protopathic bias.  For longitudinal cohort analyses, the lack 407 

of fixed timelines for participants is a complicating factor, but also creates the potential for a wealth 408 

of useful data if handled appropriately.   Our cohort analyses simplify the structure of the data by 409 

focusing on a sub-population of participants initiating second-generation DMT for the first time, as it 410 

is the safety profile of these drugs that is the primary outcome of interest.  Further analytical choices 411 

have been made to either mitigate the confounding influence of variability in patient 412 

characteristics/histories (eg marginal structural modelling) or exploit this variability to gain 413 

additional insights (eg the analyses of washout/cumulative/switch effects). 414 
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9 Contribution to the Field 451 

Observational data gathered during routine clinical care has the potential to improve our 452 

understanding of the effects of treatments in “real-world” populations rather than the idealised 453 

conditions of randomised controlled trials.  The Optimise:MS pharmacovigilance study seeks to 454 

make use of routine care data on multiple sclerosis patients, recruited from clinical sites around the 455 

UK, to examine the safety and effectiveness of disease-modifying therapies over a period of 7 years.  456 

The study may provide important information to support patients’ and clinicians’ treatment decisions.   457 

The use of real-world data will enable the study to explore factors that clinical trials frequently 458 

cannot, such as the impact of prior treatment history. This type of data also presents statistical 459 

challenges, however, not least due to the extensive confounding that is expected.  A robust analysis 460 

plan is therefore critical to interpretation of the study results. This manuscript describes the statistical 461 

analysis plan that has been developed for Optimise:MS. The plan aims to ensure that the study meets 462 

its objectives using methods that minimise problems relating to the observational nature of the data, 463 

while exploiting the insights such data may provide. 464 
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 532 

Tables 533 

Table 1 – Classification of DMTs in the Optimise:MS study 534 

FIRST-GENERATION DMTs 
Drug Product name(s) Mode and frequency of delivery 

Glatiramer acetate Brabio, Copaxone Subcutaneous, 3-7x weekly 
Interferon beta-1a Avonex Intramuscular, weekly 
Interferon beta-1a Rebif Subcutaneous, 3x weekly 
Pegylated interferon beta-1a  Plegridy Subcutaneous or intramuscular, every 2 weeks 
Interferon beta-1b Betaferon, Extavia Subcutaneous, every 2 days 

 
SECOND-GENERATION DMTs 

Drug Product name(s) Mode and frequency of delivery 
Alemtuzumab 
 

 
Lemtrada 

Intravenous infusion, 5 consecutive days 
followed by 3 consecutive days 1 year later 

Cladribine 
 

 
Mavenclad 

Oral, up to 5 consecutive days per month for 2 
months, repeated 1 year later 

Daclizumab Zinbryta Subcutaneous, monthly 
Dimethyl fumarate  Tecfidera Oral, 2x daily 
Fingolimod  Gilenya Oral, daily 
Natalizumab  Tysabri Intravenous infusion, monthly 
Ocrelizumab  Ocrevus Intravenous infusion, 2x yearly 
Ofatumumab Kesimpta Subcutaneous, monthly 
Rituximab Mabthera, Truxima Intravenous infusion, up to 2x yearly 
Siponimod Mayzent Oral, daily 
Teriflunomide Aubagio Oral, daily 

 535 

 536 

Figure Captions 537 

Figure 1 – Illustrations of the determination of exposure and control periods in the primary cohort 538 

analysis for two hypothetical patients, one in each stratum.  The filled blocks represent the treatment 539 

received by the patient; the labels below indicate the periods of follow-up that contribute to the 540 

analysis. 541 

Figure 2. Illustration of the determination of exposure and control periods in the secondary and 542 

tertiary cohort analysis for the two hypothetical patients shown in Figure 1.  The filled blocks 543 

represent the treatment being received by the patient; the labels below indicate the periods of follow-544 

up that contribute to the analysis. 545 

Figure 3 – signal generation procedure. ROR = Reporting Odds Ratio; IRR = Incidence Rate Ratio; 546 

BCPNN = Bayesian Confidence Propagation Neural Network 547 


