
Session TypedParameterised Communication Patterns

Andi Bejleri

Department of Computing, Imperial College London

Abstract. Communication patterns describe simple and elegant structured interactions
in communication based applications. They are used in many parallel computing ar-
chitectures of parallel algorithms, data exchange protocols and web-services. Commu-
nication patterns help programmers to design more efficient, structured, modular and
understandable architectures, but they do not provide any automatic code validation.
We study this problem usingglobal session types, a type theory that describes structured
interactions from a global point of view. We then augment thesyntax of global types
with parameters that abstract the number of participants and an iterative construct that
builds instances of parameterised communication patterns. Our formal system allows
programmers to represent parameterised communication patterns by global types and
then validate the code by type-checking.

1 Introduction
Communication patterns describe simple and elegant structured interactions in commu-
nication based applications. They are used in many parallelcomputing architectures of
parallel algorithms [11], data exchange protocols [2] and web-services [1]. Commu-
nication patterns, as design patterns, help programmers todesign more modular and
more understandable system architectures. In parallel algorithms, communication pat-
terns define the assignment of processes to regions of the problem domain. Hence, the
choice of the pattern affects the performance of the algorithm. Common communication
patterns are Ring, Tree, Mesh and Hypercube.

This paper studies communication patterns in the context ofglobal session types, a
type theory that addresses at static time the problem of type-safe, deadlock-free inter-
actions among processes. Global session types [13] describe the interaction structure of
several processes, that is defined by the “sending-receiving” actions in the presence of
conditionals and recursion, from a global point of view. Processes are then validated by
type-checking, through the projection of global types ontoeach participant.

Both communication patterns and global types describe structured interactions, and
the latter provide not only a blue-print of the system architecture but also a type system
that guarantees type-safe and deadlock-free interactionsin the system’s implementa-
tion. At this point, a question arises how to specify all instances of a communication
pattern in a single global type, so that programmers can benefit from the type theory.

For example, the Ring pattern of two participants is specified in the global type
syntax as0 → 1:〈U〉.1 → 0:〈U〉.end, where the causalityp → p′:〈U〉 represents a
message exchange, of typeU , between a senderp and a recipientp′ andend signi-
fies the end of a conversation, while for three participants as 0 → 1:〈U〉.1 → 2:〈U〉.2
→ 0:〈U〉.end. Building global types of other instances given the number of participants
is rather easy. Unfortunately, in parallel algorithms and other communication-based ap-
plications the number of participants is known only at run-time; e.g. in parallel algo-
rithms, the number of processes assigned to compute the answer of a problem instance

is in proportion to its size. We would like a type theory of global types that answers this
research question:

How can programmers specify a single global type that captures all the instances
of a communication pattern that has a different number of participants?

The solution to this problem is to parameterise participants, to iterate over param-
eterised causalities that abstract the repetitive behavior of a pattern, and to compose
sequentially global types. We use theR operator from Gödel’s theoryT of primitive
recursive functionals to formalise the three idioms. In theRing pattern,

0 // 1 // . . . // ncc

the causality that abstracts the communications from0 to n is i → i+1:〈U〉, where
0≤i≤n−1 andn≥1. Given the number of participants, theR operator will iterate over
the parameterised causality, and then the global type created will be composed with the
causalityn→ 0 : 〈U〉 to complete an instance of the Ring.

Another problem is the design of processes that implement the behavior of each
participant. The behavior of1 in the Ring pattern of two participants is: receive from0
and then send to0; of three participants: receive from0 and then send to2. Our formal
model needs to address also a second research question:

How can programmers specify a single program that captures all the instances of
a communication pattern that has a different number of participants?

There are three kinds of participants in the ring pattern: the first one is0 which
sends to the participant on his left (1) and then receives from the last participant (n), the
second one isi for 1≤i≤n−1 that receives from the participants on his right (i−1) and
then sends to the one on his left (i+1) and finally, the last participantn, which receives
from the participant on his right (n−1) and then sends to the first participant (0). Before
giving a summary of the solution to this problem, we provide the definition ofrole:

Definition 1 (Role) Role is aparameterised processat implementation-time, which
represents a design to create run-time processes that are ready to participate in a session.
This design describes the behavior that all run-time processes of that role will share.

The solution proposed in this paper introduces the syntax ofroles that includes the
R operator, to parameterise participants, to iterate over roles and to compose in parallel
roles. In the Ring, for each kind of participant correspondsa role. TheR operator will
iterate over the role ofi, returning on each iteration processes that share the same
behavior, and then will compose them in parallel with the processes of roles of0 andn.

In this paper, we extend the syntax of global types introduced by Honda et al. [13], to
describe parameterised communication patterns and propose a programming paradigm
of roles. Programmers first define the global type of the intended pattern and then de-
fine each role of it. Roles are validated through projection of the global type onto the
principals by type-checking. At run-time, roles are instantiated into processes that will
generate correct sessions. More specifically, contributions of this work include:

2

– Notion of role, and a different definition of principal and global type are introduced
to address the above questions, in coherence with our designchoices (Sections 2.1
and 2.2).

– Examples that illustrate how the formal model of this work can represent various
communication patterns (Section 2.3).

– Typing mechanisms for kinding of global types, projection of global types onto
parameterised principals, and ordering andR-elimination of actions, and also a
static type-system that validates the specification against the description through
role types (Section 3).

– Examples from parallel algorithms and key distribution protocols illustrating the
practical utility of our system (Section 4).

– Auxiliary definitions of the formal system and proof of type-preservation (Ap-
pendix).

2 Formalising Parameterised Communication Patterns

Our system is modelled after that of Bettini et al. [4], wherechannels are omitted from
the syntax of roles and global types, serving a simpler type system than the one intro-
duced by Honda et al. [13]. The model is based on small-step operational semantics,
which allows to use standard proofs techniques.

2.1 Roles

Syntax Figure 1 provides the syntax of our calculus. The metavariable a ranges over
shared channels;p ranges of principals;s ranges over session channels;y ranges over
channel variables;x ranges over variables;l ranges over labels;I ranges over index sets;
X ranges over process names;w ranges over session- and shared-channels;i ranges over
index variables. A program in our calculus is a function fromnaturals (the number of
participants) to roles composed in parallel. Roles in our calculus are second-class con-
structs; they can not be computed by functions. Each role defines a scope that includes
the subsequent behaviors. The role with the overbarū prefix represents the behavior of
the first principal in the list (possibly parameterised) of all principals present in a session
p0, p1, p and the process of that role initiates a session with the acceptor processes of
principalsp1 andp. In sending and receiving constructs, the principal denotes the other
end-point of the communication; the same notation is used inselection-branching of a
label where the former selects one of the labels enumerated in I and sends it to the later.
νa.R restrictsa to R. Parallel composition and conditional are standard. Recursion and
process call define infinite behavior.

To this core, we add theR operator from SystemT to parameterise principals, to
iterate and compose in parallel roles. The recursive operator can be used also inside
the definition of a role to iterate over a particular end-point behavior and to sequen-
tially compose behaviors. Iteration takes place when a natural is applied to a primitive
recursion term.

The message queue is part of the runtime syntax of the calculus. Identifiersu can
be variables or shared names. A list of principals (see Section 2.2) can be constant
or parameterised using theR operator. Expressions include parametric mathematical
expressions (see Section 2.2), values and operations such ase = e′, e and e′ andnot e.

3

E :: = λn.E | E t | R General expressions

R ::= Roles

| ū[p0, p1, p](y).R Multicast request

| u[p](y).R Accept

| c!〈p, e〉; R Value sending

| c?〈p, x〉;R Value reception

| c ⊕ 〈p, l〉; R Selection

| c&〈p, {li : Ri}i∈I〉 Branching

| def X(x) = S in R Recursive definition

| (νw)R Hiding

| X〈e〉 Process call

| 0 Inaction

| R | S Parallel

| if e then S else R Conditional

| R S λi.λX.R Primitive recursion

| X Process variable

| R t Application

| s:h Queues

u ::= x | a Identifiers
p ::= p1..pn | R p λi.λX.p′

t | X List of prin.
e ::= t | v | e op e′ Expressions
v ::= a | s[p̂] | n | true | false Values

c ::= y | s[p̂] Channels
h ::= ǫ | m · h Queues
m ::= (q̂,p̂,v) | (q̂,p̂,l) Msgs. in transit

p̂, q̂ ::= p̂[n] | N Value principals

Fig. 1. Syntax for roles and run-time processes

Values are defined over shared names, session channels (higher-order communication
is obtained through the value send-receive constructs), naturals and boolean values.
Channels denote channel variables or session channels. Messages in queues are defined
as triples, sender, receiver and data (value or label). Messages are run-time entities,
therefore they are defined over value principals. Value principals include participants
(Bob, Alice, ...) or indexed principals over naturals (W[3], W[2][4], ...).

Operational SemanticsFigure 2 gives the operational semantics via the reduction re-
lation−→ where the state of the machine is defined only by terms of the calculus. The
interesting features of the rules are how they invoke a program, start a session, instanti-
ate roles, iterate over end-point behavior and exchange messages.

The rule [App] invokes a program by replacing the parametern with the argument
n. Also, it instantiates roles which are parameterised only by n. Rule [Zero] returns the
behaviorS and defines the last iteration of theR operator. Rule [Succ] replaces each
occurrence of the indexi in R with a predecessor ofn+1 and replacesX with instances
of R returned by the other iterations. WhenR denotes roles, [Succ] instantiates them
in each iteration and composes them in parallel. OtherwiseR denotes an end-point
behavior that [Succ] iterates when the session has been established.

A session is established among processes via shared channels, that denote public
points of communication. At this point, every role has been instantiated into processes
and the computation follows over value principals. The rule[Link] invokes a session
betweenn peers by generating a session channel and substitutes it in the processes
scope. The identity of each principal within a session is represented by the label attached
to the session channel. The [Send] and [Label] rules insert amessage in the queue of the
session. The receiving rule [Recv] removes a value message of the same sender, as the
one specified in the receiving construct, from the queue, andsubstitutes it in the process.
The [Branch] rule removes a label message of the same sender,as the ones specified in
the branching construct, from the queue. The result of the rule is the process following

4

(λn.E) n −→ E{n/n} [App]

R S λi.λX.R 0 −→ S [Zero]

R S λi.λX.R n + 1 −→ R{n/i}{R S λi.λX.R n/X} [Succ]

ā[p̂0..p̂n](y0).R0 | a[p̂1](y1).R1 | ...a[p̂n](yn).Rn

−→ (νs)(R0{s[p̂0]/y0} | ... | Rn{s[p̂n]/yn} | s : ∅) [Link]

s[p̂]!〈q̂, v〉; R | s : h −→ R | s : h · (p̂, q̂, v) [Send]

s[p̂] ⊕ 〈q̂, l〉; R | s : h −→ R | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);R | s : (q̂, p̂, v) · h −→ R{v/x} | s : h [Recv]

s[p̂]&(q̂, {li : Ri}i∈I) | s : (q̂, p̂, li0) · h −→ Ri0 | s : h (i0 ∈ I) [Branch]

if true then R else S −→ R if false then R else S −→ S [If-T, If-F]

def X(x) = S in (X〈v〉 | R) −→ def X(x) = S in (S{v/x} | R) [Def]

R −→ R′ ⇒ (νr)R −→ (νr)R′ R −→ R′ ⇒ R | S −→ R′ | S [Scop,Par]

R −→ R′ ⇒ def D in R −→ def D in R′ [Defin]

R ≡ R′ andR′ −→ S′ andS ≡ S′ ⇒ R −→ S [Str]

ii −→ i
′

i ⇒ N [i0]...[ii]...[in] −→ N [i0]...[i
′

i]...[in] [Princ]

pi −→ p
′

i ⇒ R[p0, ..., pi, ..., pn] −→ R[p0, ..., p
′

i, ..., pn] [ContextP]

p −→ p’ ⇒ R[..., p] −→ R[..., p’] [Request]

ei −→ e′i ⇒ E [e0, ..., ei, ..., en] −→ E [e0, ..., e
′

i, ..., en] [ContextE]

Fig. 2.Reduction rules

the label. [If-T] and [If-F] action the evaluation of e; if e evaluates to true then rule
[If-T] is applied otherwise rule [If-F]. [Def] invokes the behaviour (P) identified by
Xby binding the parameterxto argumentv. [Scop] actions the reduction of the process
inside the scope of theν operator. [Par] actions the reduction of a process parallely
composed with other processes. [Str] states that the reduction relation is defined on
structural congruent terms, given in Figure 3. The [Context] rule define the order of
execution of expressions within a process. Definition of thecontext is given in Figure
10. The list of parameterised principals reduces followingthe rules shown in Figure 4.

2.2 Global Types

Figure 5 gives the syntax of global types where the metavariable T ranges over role
types. (see Section 3.3). A message of typeU is exchanged between two principals.
Branching is defined over labels which identify the paths of aconversation; i.e. par-
ticipant p internally chooses one of the labelsli enumerated byI and then sends it
to participantp′ and the conversation followsGi. Infinite behavior is represented by
recursively defined global typesµt.G. end signifies the end of a conversation.

TheR operator is added to the syntax of global types to describe communication
patterns of an arbitrary number of principals. The parameters that abstract the number

5

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νr) P | Q ≡ (νr) (P | Q) if r /∈ fn(Q)

(νrr′) P ≡ (νr′r) P (νr) 0 ≡ 0 def D in 0 ≡ 0

def D in (νr) P ≡ (νr) def D in P if r /∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅

s : (q, p, z) · (q′, p′, z′) · h ≡ s : (q′, p′, z′) · (q, p, z) · h
if p 6= p′ or q 6= q′

Fig. 3. Structural equivalence

R p λi.λX.p′ 0 −→ p [Zero]

R p λi.λX.p′ n + 1 −→ p′{n/i}{R p λi.λX.p′ n/X} [Succ]

Fig. 4. Reduction rules for parameterised list of principals

of participants are bound by the binders in the lambda expressions of roles, as both
global type and roles are part of the program definition. TheR operator is defined over
the tail recursion case of recursion and index variablei. Thus the operator preserves the
existing declarative nature of global types, helping to ensure that the system developed
in our model can be extended with additional features. Throughout the paper, we will
refer to primitive recursive global types asproduct global types, as they abstract all
instances of the parameterised global type. The infinite setof instances generated from
theR operator can be understood through the two reduction rules:

R G λi.λx.G′ 0−→G
R G λi.λx.G′ n + 1−→G′{n/i}{(R G λi.λx.G′ n)/x}

For each natural, we obtain a global type by applying the two rules. In each iteration,
the index variable inG′ is substituted by a predecessor ofn+1 andx is replaced by
instances of the parameterised causalities present inG′, except 0 whenx is replaced by
instances ofG.

Principalsp, p′, q, .. include primitive participantsAlice, Bob, ... and indexed
principals defined over one or multiple index expressionsW[i], W[i+1][j+1],.... Index
expressions are represented by parametric linear functions, wheren ranges over natu-
rals,i ranges over index variables andt ranges over parametric expressions. Parametric
expressions range over variables, naturals, arithmeticaloperations (t+n, t−n, t∗n)
and exponentiation of base natural. The design of index expressions as parametric lin-
ear functions comes from our observation that the information flow follows a line in the
patterns/virtual-topologies we have studied so far [2, 11,14]. For simplicity and without

6

G ::= Global types
| p → p

′ : 〈U〉.G Message
| p → p

′ : {li : Gi}i∈I Branching
| µt.G Recursion
| t Rec. type var.

| R G λi.λx.G′ Primitive recursion
| x Primitive rec. type var.
| G t Application
| end End

p ::= p[i] | N Principals
i ::= t | i | n ∗ i | t± i Index expr.
t ::= n | n | t op n | nt Par. expr.

N ::= Alice | Worker | . . . Participants
U ::= S | T Message type
S ::= bool | nat | .. | 〈G〉 Value type

Fig. 5.Global types

reducing the practical expressiveness of our system, we have designed index expression
to have at most one parametern. A typeU ranges over primitive (bool, nat) and global
types (〈G〉), and role types (T); global types〈G〉 type shared channels and role types
(T) type session channels.

2.3 Ring and Tree Communication Patterns

We illustrate how the formal model of this work can representvarious communication
patterns such as Ring and Tree.

Ring pattern - figure 6(a) The Ring pattern consists ofn+1 workers (named byW)
where each has exactly two neighbours: the workerW[j] communicates with the workers
W[j−1] andW[j+1] (1≤j≤n−1), with the exception ofW[0] andW[n] who communicate
via a direct link. Due to the enumeration of workers in a non-modular arithmetic, the
Ring has three distinct roles:Starter, represented byW[0], Middle, represented byW[j],
andLast, represented byW[n]. The global type specifies that the first message is sent by
W[0] to W[1] for j=n−1, and the last one is sent byW[n] back toW[0] for n=0. To ensure
the presence of all three roles in a session, we set the numberof participants ton≥2.
Below, we provide the main program and roles of the Ring:

def W = R W[n] λi.λX.(W[i + 2], X) n − 2

Starter, ā[W[0], W[1], W](y).y!〈W[1], v〉; y?(W[n], z); R

Middle(i) , a[W[i + 1]](y).y?(W[i], z); y!〈W[i + 2], z〉; R′

Last, a[W[n]](y).y?(W[n − 1], z); y!〈W[0], z〉; S

Ring, λn.(R Starter| Lastλi.λX.(Middle(i) | X) n − 1)

whereW denotes the parameterised list of principalsW[2], ...,W[n], represented math-
ematically through theR operator, andStarter andLast are parameterised byn and
Middle by i. Middle is composed in parallel with the process variableX that is used as
a placeholder of processes generated in each iteration; in the last iteration forn=0, X

will be replaced with processes ofStarterandLast. The reduction steps of the Ring for
n=2 are given in Appendix A.1.

Tree pattern - figure 6(b) The Tree pattern consists of2n+1−1 workers organized in a
binary tree. The global type specifies a message exchange between a parent node and
its children, numbered in the Ahnentafel system. A tree has three kinds of nodes: root,
internal and leaf. The principal running on the root sends a message to its children; the

7

(a) Ring pattern (b) Tree pattern

0 // 1 // . . . // ncc

R W[n] → W[0] : 〈U〉.end
λj.λy.W[n−j−1] → W[n − j] : 〈U〉.y

n

0

����
��

�

��<
<<

<<

1

����
��

�

��

2

��<
<<

<<

��
3 4 5 6

.

R end λj.λy.W[j] → W[2∗j+1] : 〈U〉.
W[j] → W[2∗j+2] : 〈U〉.y

2n − 1

Fig. 6. Diagram and global type of the Ring and Tree communication patterns

ones on internal nodes send a message to their children and receive a message from
their parents; the ones on leaf nodes receive a message from their parents. The three
kind of nodes define three distinct roles of the Tree. An internal or leaf node is enumer-
ated by an even or odd number, and thus the mathematical expressions that identify the
parent and children of each of these nodes are different. Forthis reason, even and odd
nodes define two distinct roles in the same kind of node, internal/leaf. Thus, we have
distinguished five roles in the Tree:Root represented byW[0], OddInt andEvenIntby
W[2∗i+1] andW[2∗i+2] (0≤i≤2n−1−2), and,OddLeafandEvenLeafby W[2∗i+1] and
W[2∗i+2] (2n−1−1≤i≤2n−2). To ensure the presence of all five roles in a session, we
setn ≥ 2. Below, we provide the Tree’s roles and the main program:

def W = R W[2n+1 − 2] λi.λX.(W[i + 2], X) 2n+1 − 4

Root, ā[W[0], W[1], W](y).y!〈W[1], f(1)〉; y!〈W[2], f(2)〉; R

OddInt(i) , a[W[2∗i+1]](y).y!〈W[4∗i+3], f(4∗i+3)〉; y!〈W[4∗i+4], f(4∗i+4)〉; y?(W[i], z); R′

EvenInt(i) , a[W[2∗i+2]](y).y!〈W[4∗i+5], v2∗i+2〉; y!〈W[4∗i+6], v′

2∗i+2〉; y?(W[i], z);Q′

OddLeaf(i) , a[W[2n−1+2∗i]](y).y?(W[2n−1−1+i], z);S

EvenLeaf(i) , a[W[2 ∗ (2n−1 + i − 1) + 2]](y).y?(W[2n−1 + i − 1], z); R

Tree , λn.(R (R Rootλi.λX.(OddLeaf(i) | EvenLeaf(i) | X) 2n−1)
λi.λX.(OddInt(i) | EvenInt(i) | X)2n−1−1)

wheref is a function from naturals toU . It is interesting to note that index calculation
in the principals of the global type is less complex than in the ones of the roles. This is a
direct advantage of the global representation of interactions. The problem of index cal-
culation in parallel computing architectures of parallel algorithms has been recognized
also by the MPI community [11] as a source of program errors.

3 Typing

This section introduces the typing mechanisms for kinding,projection, ordering and
R-elimination, and also rules of typing.

8

C ⊢ p, p′ Θ; C ⊢ G′ ◮ Type

Θ; C ⊢ U ◮ Type fprtv(U) = ∅
⌊KI O⌋

Θ; C ⊢ p → p
′ : 〈U〉.G′ ◮ Type

C ⊢ p, p′

∀i ∈ I, Θ; C ⊢ Gi ◮ Type
⌊KBRA⌋

Θ; C ⊢ p → p
′ : {li : Gi}i∈I ◮ Type

Θ; C ⊢ G ◮ Type

Θ,x : Type; C, i : I ⊢ G′ ◮ Type
⌊KPR⌋

Θ; C ⊢ R G λi.λx.G′ ◮ Πi :I.Type

C ⊢ t Θ; C ⊢ G ◮

Πi:{i|i∈nat, 0≤i≤t−1}.Type
⌊KA PP⌋

Θ; C ⊢ G t ◮ Type

⌊KRVAR⌋
Θ, t : Type; C ⊢ t ◮ Type

⌊KPRVAR⌋
Θ,x : Type; C ⊢ x ◮ Type

Θ, t : Type; C ⊢ G ◮ Type
⌊KREC⌋

Θ; C ⊢ µt.G ◮ Type
⌊KEND⌋

Θ; C ⊢ end ◮ Type

Fig. 7. Kinding rules for global types

3.1 Kinding of Global Types

Primitive recursion forms a new kind of global type–product kind. Kinding rules, shown
in Figure 7, ensure that in a global type the indexed principals are well-formed and
parametric expressions are applied only to product global types. They are of the form
Θ; C ⊢ G ◮ κ. read, “In the variable typingΘ and parameter-index typingC, global
typeG has kindκ”. Variable and parameter-index context typingΘ andC, and kindκ
are defined as:

Θ ::= ∅ | x : Type, Θ | t : Type, Θ C ::= ∅ | n : T, C | i : I, C κ ::= Type | Πi : I.Type
T ::= {n |n ∈ nat, n≥n} I ::= {i |i ∈ nat, 0≤i≤t}

The⌊KI O⌋ rule ensures that the principals of a causality are well-formed, the message
type is kinded and that there are no free primitive recursivetype variables, and that
the inductive part isType kinded. A well-formed principal is either a participant or
an indexed principal where the set of values of each index expression is defined over
naturals. We have defined a set of rules that ensure when subtraction can be used safely
in expressions (see Appendix B.3). The⌊KBRA⌋ rule checks that the principals of label
causality are well-formed and that the inductive parts areType kinded. The⌊KPR⌋ rule
ensures that the inductive parts areType kinded, returning the kind of a product global
type. The⌊KA PP⌋ rule checks that the argument is applied to a product global type
and that it is a successor of the biggest index value, returning a Type kind. Other rules
ensure that the inductive global types are Type kinded and look up for type variables in
the contextΘ.

3.2 Role Types

The role types, given in Figure 8, are used to type-check the roles of parameterised
communication patterns.

The role types prefixed by the output, input, selection and branching types capture
the same capabilities. Infinite behavior is captured by the recursion type. The primitive
recursion with application are used to capture repetitive end-point behaviors.

9

T ::= !〈p, U〉; T Output
| ?〈p, U〉; T Input
| ⊕〈p, {li : Ti}i∈I〉 Selection
| &〈p, {li : Ti}i∈I〉 Branching
| µt.T Recursion

| R T λi.λx.T ′ Primitive Recursion
| T t Application
| x Primitive Recursion Variable
| t Recursion Variable
| end Null

Fig. 8.Role types

3.3 Projection, Ordering andR-elimination

Projection A global type’s projection onto the principals of roles produces types that
capture the behavior of roles.

Definition 3.1 Given global typeG, principalq, and the contextC of parameter vari-
ables present inG andq, and index variables present inq, if ∅; C ⊢ G ◮ κ andC ⊢ q

then the projection ofG ontoq, denotedG↾ q, is defined inductively onG:

p → p
′ : 〈U〉.G↾ q =

8

>

>

>

<

>

>

>

:

!〈p′{p = q}, U〉(p); ?〈p{p′ = q}, U〉(p′); (G↾ q) if C⊢p=q andC⊢p′=q,

!〈p′{p = q}, U〉(p); (G ↾ q) if C⊢p=q,

?〈p{p′ = q}, U〉(p′); (G ↾ q) if C⊢p′=q,

G ↾ q otherwise

p → p
′ : {li : Gi}i∈I↾ q =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

⊕〈p′{p = q}, {li : &〈p{p′ = q}, {li : Gi ↾ q}i∈I〉(p
′)

}i∈I〉(p) if C⊢p=q andC⊢p′=q,

⊕〈p′{p = q}, {li : Gi ↾ q}i∈I〉 if C⊢p=q,

&〈p{p′ = q}, {li : Gi ↾ q}i∈I〉 if C⊢p′=q,

⊔i∈IGi ↾ q if C0p=q, C0p′=q

∀i, j∈I.Gi ↾ q⋊⋉Gj ↾ q

µt.G↾ q = µt.(G↾ q) t↾ q = t end↾ q = end

R G λi.λx.G′↾ q = R (G ↾ q) λi.λx.(G′ ↾ q) x↾ q = x G t↾ q = (G ↾ q) t

Projection is intuitive and holds some of the technical challenges of this system,
which we discuss in the following paragraphs. In the role types returned, the principal
in brackets, attached to an action, denotes the principal that performs that action, and
is used to sort actions and eliminate theR operator from role types as we shall see
later. The equality between a global type principalp and role principalq is defined as
a relation⊢p=q over the contextC (see Appendix B.4), which ensures that the set of
values ofp is a subset of the set of values ofq. The intuition underlying this design
originates from the knowledge that an action performed by every process of the same
role is captured by the same causality in the global type.

In product global types, for different values of the index variable, an indexed princi-
pal can be present in both sides of a parameterised causality. This occurrence is covered
by the first case of projection for message exchange and branching.

The index variables of principals in global types are different from the ones in roles,
as they are bound by different binders. For this reason, we need to translate the role

10

types being expressed from global type indexes to role ones.Thep′{p = q} operation
(see Appendix B.5) substitutes the index variables inp′ with expressions in terms of
indexes ofq, obtained by the relationp = q wherep andp′ have the same index
variables.

In branching, in the case whenq is not equal neither top nor to p′, all inductive
projections ofq should return an identical role type up to mergeability⋊⋉. The notion of
mergeability is introduced in [9] as an equivalence relation over role types. Intuitively,
two different& role types are mergeable if the labels, they are denoted by, are different;
e.g. the projection of global type:

W[1] → W[2] :

{

true : W[2] → W[3] : {true : G,

false : W[2] → W[3] : {false : G′

ontoW[3] returns&〈W[2], {true:G ↾ W[3], false:G ↾ W[3]}〉 whereG ↾ W[3]6= G′↾ W[3].

Definition 3.2 (Mergebility) If ∀i ∈ (I∩J).Ti ⋊⋉ T ′
i and∀i ∈ I \J.∀j ∈ J \I.li 6= lj

then&〈p, {li : Ti}i∈I〉 ⋊⋉ &〈p, {lj : T ′
j}j∈J 〉.

&〈p, {li : Ti}〉⊔&〈p, {lj : T ′
j}j∈J〉 = &〈p, {li : Ti⊔T ′

i}i∈I∩J ∪{li : Ti}i∈I\J ∪{li :
T ′

i}i∈J\I〉.

Proposition 3.3 The relationC ⊢ p = q is decidable.

Theorem 3.4 The projection of a global type onto principals is decidable.

Proof. Straightforward from Proposition 3.3.

Ordering and R-elimination Actions in the role types, returned by projection, are
sorted to preserve the order of appearance in all instances of a parameterised global
type. We can note from the first case of projection in the message global type, that
the order of actions is not preserved; i.e., the sending action is always placed before
the receiving one. However, the appearance order of actionsis not broken only in the
projection of a causality, but also in the sequential composition of other actions returned
by projection. The reason behind this is that the order of actions depends on the order
of principals performing those actions.

Definition 3.5 The appearance order relation between two actions (order) is defined
as the appearance order of the principals performing those actions:

order(!/?1〈p1, U〉(p′1), !/?〈p2, U
′〉(p′2)) if and only if order(p′1, p

′

2) and
order(⊕/&〈p1, {li:Ti}i∈I〉(p

′

1),⊕/&〈p2, {li:T
′

i}i∈I′〉(p′2)) if and only if order(p′1, p
′

2).

Definition 3.6 The appearance order between principals is defined as a lexicographi-
cal order over the index expressions that define them:

order(N [i1]...[ii]...[in],N [i′1]...[i
′

i]...[i
′

n]) if and only if order(ii, i
′

i) for 1 ≤ i ≤

n and∀j.1 ≤ j ≤ i − 1. C⊢ ij = i
′

j and C 0 ii = i
′

i,
where the appearance order between index expressions in their canonical form is de-
fined as:

order(t−n∗i, t′−n′∗i) if and only if C ⊢ t−n∗i ≥ t
′−n′∗i and

order(t+n∗i, t′+n′∗i) if and only ifC⊢ t+n∗i ≤ t′+n′∗i.

1 !/? denotes either! or ?.

11

The order of index expression is defined on the basis that the value ofi decreases in
each iteration of theR global type, resulting in the increase of values for expressions
t−n∗i and the decrease fort+n∗i. Thus, in two expressions of the formt−n∗i, a value
will appear first in the bigger expression for bigger value ofi and then in the smaller
one for smaller value ofi. And, in two expressions of the formt+n∗i, a value will
appear first in the smaller expression for bigger value ofi and then in the bigger one for
smaller value ofi. No ordering can be defined for expressions of opposite monotonicity,
e.g.t−n∗i andt′+n′∗i, as some values will appear first in the former and second in
latter, whilst some others vice versa.

TheR operator in global types iterates over parameterised causalities and defines
a repetitive behavior for non index-parameterised principals. For these principals, we
keep theR operator and the argument applied in the role types, otherwise we eliminate
it by composing the two sub-types, and then later the argument. fivr denotes the free
index variables in the bracket-principals of role types.

Definition 3.7 Sorting of actions, defined overorder relation, andR-elimination are
introduced in the functionξ, that also removes the principals in brackets, defined as:

• ξ(!〈p, U〉(p′); T)) =!〈p, U〉; ξ(T) ξ(?〈p, U〉(p′); T) =?〈p, U〉; ξ(T)
• ξ(⊕〈p, {li : Ti}i∈I〉(p

′)) = ⊕〈p, {li : ξ(Ti)}i∈I〉
• ξ(&〈p, {li : Ti}i∈I〉(p

′)) = &〈p, {li : ξ(Ti)}i∈I〉

• ξ(R T λi.λx.T ′) =

(

R ξ(sort(T)) λi.λx.ξ(sort(T ′)) i /∈ fivr(T ′)

ξ(sort(T ′)){ξ(sort(T))/x} otherwise

• ξ(T t) =

(

ξ(T) t if Θ; C ⊢ ξ(T) ◮ Πi:I.Type

ξ(T) otherwise
• ξ(µt.T) = µt.ξ(T) ξ(t) = t ξ(x) = x ξ(end) = end

whereΘ; C ⊢ T ◮ κ is the kinding judgment of role types (see Appendix B.1).

3.4 Type System

Figure 9 describes the program typing rules. The typing judgment is of the formΓ ; C ⊢
E⊲τ , read, “In the contextΓ andC programE has typeτ ”. Γ maps shared names, pro-
cess names and type variables to types, whileτ represents channel and product types,
defined as:

τ ::= ∆ | Πn :T.τ | Πi :I.τ ∆::= ∅ | ∆, c:T Γ ::= ∅ | Γ, u:S | Γ, X:S T | Γ, X:∆

The rules of appealing interest are those for program and session initiation. Rule⌊TFUN⌋
augments the contextC with mapping for parameter variables and ensures that the sub-
term is typed. Rule⌊TAPPF⌋ checks if the argument applied to the lambda abstraction
falls in the set of valuesT, wheremin(T) represents the minimum valuen. For primitive
recursion, we ensure that the sub-terms are well-typed in the augmented contextsΓ and
C. If primitive recursion, specifies a repetitive behavior ofa role, then∆ 0 and∆ i+1
return the sub-role type for type-checking of the respective sub-terms. Otherwise,∆ 0
and∆ i+1 return∆.

Definition 3.8 Given∆= ∆’, c:T . We define

∆ i=

{

∆′ i, c : T i if ∅; C ⊢ T ◮ Πj : I.Type

∆′ i, c : T otherwise

12

Γ ; C, n : T ⊢ E ⊲ τ
⌊TFUN⌋

Γ ; C ⊢ λn.E ⊲ Πn :T.τ

Γ ; C ⊢ E ⊲ Πn :T.τ C ⊢ t ≥ min(T)
⌊TAPPF⌋

Γ ; C ⊢ E t ⊲ τ

Γ ; C ⊢ S ⊲ ∆ 0

Γ, X : ∆ i; C, i : I ⊢ R ⊲ ∆ i + 1
⌊TPREC⌋

Γ ; C ⊢ R S λi.λX.R ⊲ Πi:I.∆

C ⊢ t Γ ;C ⊢ R⊲
Πi:{i |i∈nat, 0≤i≤t−1}.∆

⌊TAPPR⌋
Γ ; C ⊢ R t ⊲ ∆ t

Γ ⊢ u : 〈G〉 ∅; C ⊢ G ◮ Type

C ⊢ p0, p1, p C ⊢ pid(G) = {p0, p1, p}

Γ ;C ⊢ R ⊲ ∆, y : ξ(G ↾ p0)
⌊TACC⌋

Γ ;C ⊢ ū[p0, p1, p](y).R ⊲ ∆

∅; C ⊢ G ◮ Type

Γ ⊢ u : 〈G〉 C ⊢ p

Γ ; C ⊢ R ⊲ ∆, y : ξ(G ↾ p)
⌊TREQ⌋

Γ ; C ⊢ u[p](y).R ⊲ ∆

Γ ; C ⊢ e ⊲ S Γ ⊢ R ⊲ ∆, c : T
⌊TOUT⌋

Γ ;C ⊢ c!〈p, e〉; R ⊲ ∆, c :!〈p, S〉; T

Γ, x : S; C ⊢ R ⊲ ∆, c : T
⌊TIN⌋

Γ ; C ⊢ c?〈p, x〉; R ⊲ ∆, c :?〈p, S〉; T

Γ ; C ⊢ R ⊲ ∆, c : Tj j ∈ K
⌊TSEL⌋

Γ ;C ⊢ c ⊕ 〈p, lj〉; R ⊲ ∆, c : ⊕〈p, {li : Tk}i∈I〉

∀k ∈ K, Γ ; C ⊢ Rk ⊲ ∆, c : Tk

⌊TBRA⌋
Γ ; C ⊢ c&〈p, {li : Ri}i∈I〉 ⊲ ∆, c : &〈p, {li : Tk}i∈I〉

Γ, a : U ; C ⊢ R ⊲ ∆
⌊TNU⌋

Γ ; C ⊢ (νa)R ⊲ ∆

Γ ; C ⊢ R ⊲ ∆ Γ ⊢ S ⊲ ∆′

⌊TPAR⌋
Γ ;C ⊢ R | S ⊲ ∆, ∆′

Γ, X : ∆; C ⊢ Env
⌊TVAR⌋

Γ, X : ∆; C ⊢ X ⊲ ∆

Γ ; C ⊢ ∆ ∆ end only
⌊TNULL⌋

Γ ; C ⊢ 0 ⊲ ∆

Fig. 9. Program and role typing

Definition 3.9 A structural congruence of an application of an index variable to a
primitive recursive end-point type is defined as:

R T λj.λx.T ′ i+1 ≡ T ’{i/j}{R T λj.λx.T ′ i/x}

The rule of applying a parametric expression to primitive recursion is similar to
⌊TAPPF⌋, but it also ensures that the argument applied is a successorof the biggest
index value. Roles are type-checked by the role types, returned by projection, sorting
andR-elimination. All the conditions to invoke projection are ensured by⌊TACC⌋ and
⌊TREQ⌋. Rule⌊TACC⌋ checks also if the set of principals, present in the session,is the
same as the one of global type (see Appendix B.6).

Rules⌊TOUT⌋ and⌊TIN⌋ ensure that the sub-terms are typed and check if the prin-
cipal in the primitives is the same as the one in the role-types. Other standard rules
lookup for type variables inΓ , and type primitives such as branching, delegation, hid-
ing, inaction and parallel composition. Typing rules for the run-time are the ones in
[4].

13

Properties. In this paragraph, we state type preservation for the formalsystem pre-
sented in this paper, i.e. if a term is well-typed and it reduces to a new term, then the
new term is also well-typed. The full proof is given in Appendix C.

Theorem 3.10 (Type Preservation)If Γ ; C ⊢ E ⊲ τ , andE →⋆ E′, then there exists
τ ′ whereτ ⇒ τ ′, such thatΓ ; C ⊢ E′ ⊲ τ ′.

Proof. By induction over the derivation ofE →⋆ E′. The proof relies on standard
substitution lemmas.

Although, we do not have a formal proof, we believe the systemholds progress,
defined as in [13]. We leave the prove of progress for future work.

3.5 Typing Parameterised Communication Patterns

We type the programs of the Ring and Tree, given in Section 2.3, with focus on sorting
andR-elimination in the former, and projection and principals set equality in the latter.

Ring - figure 6(a) The main program is typed byΠn:{n |n∈nat, n≥2}.∆, application
by ∆, where∆ n−1 equals∆, and the primitive recursion is typed byΠi:{i |i∈nat,
0≤i≤n−2}.∆. Projection of the global type onto the principalsW[0], W[i+1] andW[n]

returns the following role-types:

R ?〈W[n], U〉(W[0]); end λj.λy.!〈W[1], U〉(W[n − j − 1]); y n,
R end λj.λy.!〈W[i + 2], U〉(W[n − j − 1]); ?〈W[i], U〉(W[n − j]); y n and
R !〈W[0], U〉(W[n]); end λj.λy.?〈W[n − 1], U〉(W[n − j − 1]); y n.

W[0] andW[n] contain one action in each sub-type and so, no sorting is performed on
them. TheR operator carried from the global type is eliminated, as it does not define
a repetitive behavior for any principal; i.e. all participant in the lambda global type are
parameterised by the index variable. Thus, the role types returned for type-checking
of W[0] andW[n] are !〈W[1], U〉; ?〈W[n], U〉; end and?〈W[n−1], U〉; !〈W[0], U〉; end, respec-
tively. The role type ofW[j+1] has a more sophisticated structure thanW[0] andW[n]. It
has two actions in the lambda role type, that are sorted to preserve the order of appear-
ance in all the instances of the global type. The order of actions is defined over the or-
der of the principals that perform them. The action?〈W[i], U〉 comes before!〈W[i+2], U〉

(?〈W[i], U〉; !〈W[i+2], U〉; end), asW[n−j] comes beforeW[n−j−1], as a participant in
W[n−j] will appear first for bigger value ofj and then inW[n−j−1] for a smaller one.
Type-checking of the roles with the role types is straightforward.

Tree - figure 6(b) For space’s sake, we limit the description of typing in the roles of
W[0] andW[2∗i+1]. Type-checking of role ofW[0] by the type!〈W[1], U〉; !〈W[2], U〉; end
is straightforward. The interesting part of typing is checking if the relationC ⊢ {W[j],

W[2∗j+1], W[2∗j+2]} = {W[0], W[1], W[2n+1−2], W[i+2]} holds or not, in the rule⌊TACC⌋.
Two principal sets are equal if each set is a subset of the other. The subset relationC ⊢

A⊆B holds if each element ofA is an element ofB. The membership relation of a prin-
cipalp in a setA holds if the set of values of the principal is contained in thesets of val-
ues of all the members ofA. The set of values ofW[j] (0≤j≤2n−1) is contained in the sets
of values of{W[0], W[1], W[i+2]} (0≤i≤ 2n+1−5), W[2*j+1] in {W[1], W[i+2]} andW[2*j+2]

14

in {W[i+2], W[2n+1−2]}. The check ofC⊢{W[0], W[1], W[i+2], W[2n+1−2]}⊆{W[j], W[2∗j+1],

W[2∗j+2]} is similar but tedious so we leave it to the curious reader.
Projection of the global type ontoW[2∗i+1] checks on each causality if any principal

is equal toW[2∗i+1]. For example,C⊢W[j]=W[2∗i+1] holds becausej can be represented
as an index expression in terms ofi andC⊢max(2∗i+1)≤max(j) holds, which in turn
holds becauseC⊢2∗(2n−1−2)+1≤2n−2 holds, wheremax(i)=2n−1−2 andmax(j)=2n−

2. Thus, the action obtained is!〈W[2∗j+1], U〉{W[j]=W[2∗i+1]} which is translated in
terms ofi by substitutingj in 2∗j+1 with 2∗i+1, returning!〈W[4∗i+3], U〉. Principal
W[2∗j+2] is not equal toW[2∗i+1] asj cannot be represented as an index expressions
in terms ofi (j=i−1/2 is not an index expressioni). The role type returned following
projection, sorting andR-elimination is!〈W[4∗i+3], U〉; !〈W[4∗i+4], U〉; ?〈W[i], U〉; end.

4 Real-World Examples

Jacobi Solution of the Discrete Poisson Equation [11]Poisson’s equation is widely
used in many areas of the natural sciences, including electrostatics and climate compu-
tations. The discrete two-dimensional Poisson equation(∇2u)ij for a n × m grid can
be written

uij =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − dx2gi,j)

where2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1, anddx = 1/(n+1). Jacobi’s method converges
on a solution by repeatedly replacing each element of the input grid by an adjusted
average of its four neighbouring values. The grid can be divided up and the algorithm
is performed on each subgrid in separate processes. Neighbouring processes must ex-
change their subgrid boundary values (ghost-points) as they are updated. We illustrate a
two-dimensional (mesh) decomposition of the grid inton∗m processes, wheren, m≥2.
The process on the (n, m) subgrid, top right corner, controls the termination condition
for all processes and sends the first message in the mesh. The global type for the said
interactions is:

Jacobi , µt.W[n][m] → W[n][m − 1], W[n − 1][m] : {true : iterate,false : return}.
The stopping condition is propagated in the processes following the pattern of the dia-
gram below. Next to it, the global type (iterate) for propagating thetrue label.

//

��

// . . . //

//

��

// . . . //

:

��

. . .

// // . . . //

1. R
2. R (R ghst–pnts λk:I′.λz.W[0][k+1] → W[0][k]:{true:z} m)
3. λi : I.λx.
4. (R W[i+1][m] → W[i][m]:{true:x}
5. λj:I′.λy.W[i+1][j+1] → W[i+1][j]:{true:y}
6. m)
7. n−1
8. λl:I.λw.W[n][l+1] → W[n][l]:{true:w} m−1

Propagation of the label in the top row, is described in the causality of line 8, in all the
rows, except top and bottom, line 5, in the leftmost column inline 4 and in the bottom
row, line 2.

Each process maintains a copy of the boundary values of its neighbours and ex-
changes them on each iteration of the algorithm. The diagrambelow portrays how these

15

values are exchanged between the processes, followed by theglobal type (ghst–pnts).

//

��

oo //

��

. . . //oo

��

oo

//

��

OO

//

��

OO

oo . . . //oo

��

oo

OO

:

��

OO

:

��

OO

. . . :

��

OO

//

OO

//oo

OO

oo . . . //oo

OO

oo

1. R (R conv–data λk:I′.λz.W[0][k + 1] ↔ W[0][k]:〈U〉 m)
2. λi:I.λx.
3. (R W[i + 1][0] ↔ W[i][0]:〈U〉.x
4. λj:I′.λy.W[i + 1][j + 1] ↔ W[i][j + 1]:〈U〉.
5. W[i + 1][j + 1] ↔ W[i + 1][j]:〈U〉.y
6. m)
7. n

p ↔ p
′:〈U〉 is a shortcut forp → p

′:〈U〉.p′ → p:〈U〉. The exchange of ghost-points in
all the rows and columns, except the leftmost column line 3 and bottom row line 1, is
described in the causalities of line 4 and 5.

The convergence data are gathered at the root processes following the pattern of the
diagram below and next to it, the global type (conv–data).

oo . . .oo ooOO

oo . . .oo oo

:

OO

:oo . . . :ooOO

oo . . .oo oo

R

(R t λk : I′.λz.W[n][m − k − 1] → W[n][m − k] : 〈U ′〉.z m)

λi : I.λx.

(R (W[n − i − 1][m] → W[n − i][m] : 〈U ′〉.x)

λj : I′.λy.

W[n − i − 1][m − j − 1] → W[n − i − 1][m − j] : 〈U ′〉.y

m)

n

The stopping condition is propagated in the processes following the pattern of the dia-
gram below. Next to it, the global type (return) for propagating thefalse label.

//

��

// . . . //

//

��

// . . . //

:

��

. . .

// // . . . //

1. R
2. R (R result λk:I′.λz.W[0][k+1] → W[0][k]:{false:z} m)
3. λi : I.λx.
4. (R W[i+1][m] → W[i][m]:{false:x}
5. λj:I′.λy.W[i+1][j+1] → W[i+1][j]:{false:y}
6. m)
7. n−1
8. λl:I.λw.W[n][l+1] → W[n][l]:{false:w} m−1

The final result is gathered at the root processes following the pattern of the diagram
below and next to it, the global type (result).

16

oo . . .oo ooOO

oo . . .oo oo

:

OO

:oo . . . :ooOO

oo . . .oo oo

R

(R end λk : I′.λz.W[n][m − k − 1] → W[n][m − k] : 〈Grid〉.z m)

λi : I.λx.

(R (W[n − i − 1][m] → W[n − i][m] : 〈Grid〉.x)

λj : I′.λy.

W[n − i − 1][m − j − 1] → W[n − i − 1][m − j] : 〈Grid〉.y

m)

n

The definition roles is given in Appendix D.2.

Group Diffie-Hellman with Complete Key Authentication Prot ocol [2]. The Diffie-
Hellman protocol is used in password-authentication key agreement and public key in-
frastructure. Every groupMi (0<i<n) generates and encrypts a random exponent, that
together with the data received fromMi−1 is then sent toMi+1. Lastly,Mn receives
the data fromMn−1, computes the group key and broadcasts it to all other parties. The
global type of the protocol is defined as:

R (R end λk : I.λz.M[n] → M[k] : 〈key〉.z n) //Broadcasting the group key
λi : I.λx.M[n − i − 1] → M[n − i] : 〈data〉.x n //Exchanging data on a line pattern

This protocol is modelled in a system of contracts [10]. In that model, an extra pri-
vate channel is used by the last groupMn to send the key to every other group. The
private channel is forwarded between the groups through delegation. A condition is
added to the protocol description to check whether the key issent to every group or not.
In our model, we do not need an extra private channel to send the key, as communica-
tions between parties of a session are always defined over private channels. Also, we do
not need to add a condition that checks whether the key is sentto every group as this is
granted by the semantics of theR operator.

5 Related Work

The idea of parameterised session types originated from ourprevious research on in-
vestigating the expressivity of session types for parallelalgorithms [3]. This idea has
been modelled recently in our work [17]. The systems share the similarity of using
theR operator in the syntax of global types and processes/roles,and differ in the pro-
gramming paradigm and typing mechanisms. Principals in [17] are more theoretical
expressive than in this work as they allow more than one parameter per index expres-
sion. In [17] there is no notion of role programming, i.e., both processes and functions
are first-class constructs. The programming burden is increased at the type level in [17],
as programmers have to specify processes local types, making the same errors when
writing principals for processes, in addition to global type. In this work, programmers
specify only the global type. In [17], the coherence of the local types with respect to
the global type is ensured by a type-equivalence relation for every instance of a param-
eterised global type; to compute all instances, the system is restricted to finite sets of

17

values for parameters. In this system, the coherence is ensured by an efficient projection
algorithm, sorting andR-elimination that allow infinite sets of values for parameters.

Our formal system is modelled after [4], a simpler version of[13], which differ-
ence was discussed at the beginning of Section 2; none of these systems are expressive
enough to model parameterised communication patterns. TheR operator used in this
work, is introduced by Gödel in SystemT. The idea of using theR operator comes from
Nelson’s work on adding primitive recursion to the lambda calculus [15]. As a result,
his system can type functions previously untyped in ML. Our use of theR operator
models parameterised communication patterns.

Session types have been first introduced by Honda et al. [12, 16] to capture the in-
teraction structure of two processes. Their type system checks whether for each “send”
on one process corresponds a “receive” on the other and vice versa. In [13], Honda et
al. have extended their system from two-parties ton-parties. With an intuitive syntax,
they have introduced a notion of global type to describe the interaction structure ofn
processes from a global viewpoint. Multiparty session types have been studied also by
Bonelli and Compagnoni [5]. Their type system is defined overbinary session types,
obtained by projecting processes local types onto principals. Session types have been
used to type service-oriented multiparty communications [6]. The calculus proposed
permits communications inside and outside a session to model merging of two running
sessions. Type safety and progress properties are not provided for the formal model.

Contracts [10] are another typing model of mobile processes, defined over processes
as behavioral types and not over channels as session types. Consequently, they can well-
type more correct programs than session types. However, theexpressiveness of the type
system comes at a practical cost. Contracts have no intuitive syntax as global types and
no iterative construct as our system. Thus, they do not provide a practical model to
design a programming language that supports communicationand elegantly expresses
parameterised communication patterns; e.g. the key exchange protocol in Section 4 has
been augmented with additional communications to check theend of a send-iteration.

The conversation calculus presented in [8] is based on boxedambients [7] and not in
theπ-calculus as session types. Typing is similar with the one ofcontracts and thus, the
system carries the same disadvantages when compared to session types. The calculus
models dynamic joining and leaving of participants within asession. We plan to add
such features to our system, as the next step, after adding parameters.

AcknowledgementsI thank Nobuko Yoshida for technical discussions on this material,
and Iain Phillips and Raymond Hu for comments on a previous version of this paper.

References

1. Web Services Choreography Description Language: Primer1.0. http://www.w3.org/TR/ws-
cdl-10-primer/.

2. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and friends. In
CCS, pages 17–26. ACM, 1998.

3. A. Bejleri, R. Hu, and N. Yoshida. Session-based programming for parallel algorithms:
Expressiveness and performance. InPLACES’09.

4. L. Bettini and al. Global progress in dynamically interleaved multiparty sessions. InCON-
CUR, volume 5201 ofLNCS, pages 418–433, 2008.

18

5. E. Bonelli and A. Compagnoni. Multipoint session types for a distributed calculus. In
TGC’07, volume 4912 ofLNCS, 2008.

6. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty Sessions in SOC. InCOORDI-
NATION’08, volume 5052 ofLNCS, pages 67–82. Springer, 2008.

7. M. Bugliesi, G. Castagna, and S. Crafa. Access control formobile agents: The calculus of
boxed ambients.ACM Trans. Program. Lang. Syst., 26(1):57–124, 2004.

8. L. Caires and H. T. Vieira. Conversation types. InESOP, volume 5502 ofLNCS, pages
285–300. Springer, 2009.

9. M. Carbone, N. Yoshida, and K. Honda. Asynchronous session types: Exceptions and mul-
tiparty interactions. InSFM’09, volume 5569 ofLNCS, pages 187–212. Springer, 2009.

10. G. Castagna and L. Padovani. Contracts for mobile processes. InCONCUR, volume 5710
of LNCS, pages 211–228. Springer, 2009.

11. W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1999.

12. K. Honda and al. Language primitives and type disciplines for structured communication-
based programming. InESOP’98, volume 1381 ofLNCS, pages 22–138. Springer, 1998.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

14. F. T. Leighton.Introduction to parallel algorithms and architectures: arrays, trees, hyper-
cubes. Morgan Kaufmann, 1991.

15. N. Nelson. Primitive recursive functionals with dependent types. InMFPS, volume 598 of
LNCS, pages 125–143, 1991.

16. K. Takeuchi, K. Honda, and M. Kubo. An interaction-basedlanguage and its typing system.
In PARLE’94, volume 817 ofLNCS, pages 398–413. Springer, 1994.

17. N. Yoshida, P.-M. Denielou, A. Bejleri, and R. Hu. Parameterised multiparty session types.
In FOSSACS, LNCS, 2010. To appear.

A Evaluation Context

Definition of the context is given in Figure 10.

R[, . . . ,] ::= Principals evaluation contexts
| ā[, ...,](y).R Request
| a[](y).R Accept
| s[p̂]!〈 , e〉; R Send
| s[p̂] ⊕ 〈 , l〉; R Selection
| s[p̂]?(, x); R Receive
| s[p̂]&(, {li : Ri}i∈I) Branching

E [, . . . ,] ::= Expressions evaluation contexts
| op Expression
| (R) Application
| c!〈p, 〉; R Send
| (E) Applicaiton Expr.

Fig. 10.Evaluation contexts

19

A.1 Reduction of a Ring instance

The reduction steps of the Ring forn = 2 are given below, where on the reduction
relation−→ is attached the name of the rule applied.

Ring 2 →App

R ā[W[0],W[1],W{2/n}](y).y!〈W[1], v〉; y?(W[2], z); P | a[W[2]](y).y?(W[1], z); y!〈W[0], z〉; Q
λi.λX.(Middle(i) | X) 1 →Context

R ā[W[0],W[1],W[2]](y).y!〈W[1], v〉; y?(W[2], z); P | a[W[2]](y).y?(W[1], z); y!〈W[0], z〉; Q
λi.λX.(Middle(i) | X) 1 →Succ

a[W[1]](y).y?(W[0], z); y!〈W[2], z〉;
| X{R ā[W[0],W[1],W[2]](y).y!〈W[1], v〉; y?(W[2], z); P | a[W[2]](y).y?(W[1], z); y!〈W[0], z〉; Q
λi.λX.(Middle(i) | X) 0/X} →Zero

a[W[1]](y).y?(W[0], z); y!〈W[2], z〉; | ā[W[0],W[1],W[2]](y).y!〈W[1], v〉; y?(W[2], z); P
| a[W[2]](y).y?(W[1], z); y!〈W[0], z〉; Q →Link

(νs)(s[W[1]]?(W[0], z); s[W[1]]!〈W[2], z〉; | s[W[0]]!〈W[1], v〉; s[W[0]]?(W[2], z); P
| s[W[2]?(W[1], z); s[W[2]!〈W[0], z〉; Q | s : ∅) →Scop,Send

(νs)(s[W[1]]?(W[0], z); s[W[1]]!〈W[2], z〉; | s[W[0]]?(W[2], z); P
| s[W[2]?(W[1], z); s[W[2]!〈W[0], z〉; Q | s : 〈W[0],W[1], v〉) →Scop,Recv

(νs)(s[W[1]]!〈W[2], v〉; | s[W[0]]?(W[2], z); P | s[W[2]?(W[1], z); s[W[2]!〈W[0], z〉; Q | s : ∅) →Scop,Send

(νs)(s[W[0]]?(W[2], z); P | s[W[2]?(W[1], z); s[W[2]!〈W[0], z〉; Q | s : 〈W[1],W[2], v〉) →Scop,Recv

(νs)(s[W[0]]?(W[2], z); P | s[W[2]!〈W[0], v〉; Q | s : ∅) →Scop,Send

(νs)(s[W[0]]?(W[2], z); P | Q | s : 〈W[2],W[0], v〉) →Scop,Recv

(νs)(P{v/z} | Q | s : ∅)

20

B Typing

B.1 Kinding of Global Types

In Figure 11 and 12 are given the auxiliary definitions for kinding of value-types and
role-types.

In [17], the kinding system allows kinded subterms in the primitive recursive global
types. We do not allow kinded subterms in primtive recursiveterm as it breaks the
soundness of the system. We illustrate the problem with a global type which is kinded
by Type in the system of [17] and which after two reductions is not kinded.
R R end λi.λx.W[i] → W[i + 1] : 〈U〉.x

j.λy.R end λk.λz.W[j] → W[j + 1] : {true : y, false : z} 1 1 −→
R end λk.λz.W[1] → W[2] : {true : R end λi.λx.W[i] → W[i + 1] : 〈U〉.x, false : z} 1 −→
W[1] → W[2] : {true : R end λi.λx.W[i] → W[i + 1] : 〈U〉.x, false : end}

⌊KBOOL⌋
Θ; C ⊢ bool ◮ Type

⌊KNAT⌋
Θ; C ⊢ nat ◮ Type

Θ; C ⊢ G ◮ Type
⌊KM AR⌋

Θ; C ⊢ 〈G〉 ◮ Type

Fig. 11.Kinding rules for value types

21

C ⊢ p Θ; C ⊢ U ◮ Type fprtv(U) = ∅ Θ; C ⊢ T ◮ Type
⌊KROUT⌋

Θ; C ⊢!〈p, U〉; T ◮ Type

C ⊢ p Θ; C ⊢ U ◮ Type fprtv(U) = ∅ Θ; C ⊢ T ◮ Type
⌊KRIN⌋

Θ; C ⊢?〈p, U〉; T ◮ Type

C ⊢ p ∀i ∈ I.Θ; C ⊢ Ti ◮ Type
⌊KRSEL⌋

Θ; C ⊢ ⊕〈p, {li : Ti}i∈I〉 ◮ Type

C ⊢ p ∀i ∈ I.Θ; C ⊢ Ti ◮ Type
⌊KRBRA⌋

Θ; C ⊢ &〈p, {li : Ti}i∈I〉 ◮ Type

Θ, t : Type; C ⊢ T ◮ Type
⌊KRREC⌋

Θ; C ⊢ µt.T ◮ Type
⌊KRVAR⌋

Θ, t : Type; C ⊢ t ◮ Type

Θ; C ⊢ T ◮ Type Θ, x : Type; C, i : I ⊢ T ′ ◮ Type
⌊KRPREC⌋

Θ; C ⊢ R T λi.λx.T ′ ◮ Πi : I.Type

⌊KRTVAR⌋
Θ, t : Type; C ⊢ x ◮ Type

⌊KREND⌋
Θ; C ⊢ end ◮ Type

C ⊢ t Θ; C ⊢ T ◮ Πi :{i|i ∈ nat, 0 ≤ i ≤ t− 1}.Type
⌊KA PP⌋

Θ; C ⊢ T t ◮ Type

Fig. 12.Kinding rules for role types

22

B.2 Auxiliary Definitions

In this section, we give the definition of free primitive recursion variables in global
types, Figure 13, principals in a global type Figure 14, freeindex variable of the prin-
cipal that performs each action on role types, Figure 15 and free index variables in
principals, Figure 16. The⌊KREC⌋ rule checks only that the inductive part is not aR

global type. The⌊KRVAR⌋ and⌊KPRVAR⌋ looks up for type variables in the context
of variable typing. The⌊KEND⌋ rule cheks if the typing context is well-formed.

fprtv(p → p
′ : 〈U〉.G) = fprtv(G) ∪ fprtv(U)

fprtv(p → p′ : {li : Gi}i∈I) =
S

i∈I
fprtv(Gi)

fprtv(µt.G) = fprtv(G) fprtv(t) = ∅
fprtv(R G λi.λx.G′) = fprtv(G) ∪ fprtv(G′) \ {x}

fprtv(G t) = fprtv(G) fprtv(x) = {x} fprtv(end) = ∅

fprtv(bool) = ∅ fprtv(〈G〉) = fprtv(G)

fprtv(!〈p, U〉; T) = fprtv(T) ∪ fprtv(U)
fprtv(?〈p, U〉; T) = fprtv(T) ∪ fprtv(U)

fprtv(⊕〈p, {li : Ti}i∈I〉) =
S

i∈I
fprtv(Ti)

fprtv(&〈p, {li : Ti}i∈I〉) =
S

i∈I
fprtv(Ti)

fprtv(µt.T) = fprtv(T) fprtv(t) = ∅
fprtv(R T λi.λx.T ′) = fprtv(T) ∪ fprtv(T ′) \ {x}

fprtv(T i) = fprtv(T) fprtv(x) = {x} fprtv(end) = ∅

Fig. 13.Free primitive recursive type variables

pid(p → p
′ : 〈U〉.G) = {p, p’} ∪ pid(G)

pid(p → p′ : {li : Gi}i∈I) = {p, p’} ∪
S

i∈I
pid(Gi)

pid(µt.G) = pid(G) pid(t) = ∅
pid(R G λi.λx.G′) = pid(G) ∪ pid(G′)

pid(G t) = pid(G) pid(end) = ∅ pid(x) = ∅

Fig. 14.Principal identifiers of a global type

fivr(!〈p, U〉(p′); T) = fiv(p′) ∪ fivr(T)
fivr(?〈p, U〉(p′); T) = fiv(p′) ∪ fivr(T)

fivr(⊕〈p, {li : Ti}ı∈I〉(p
′)) = fiv(p′)

S

i∈I
fivr(Ti)

fivr(&〈p, {li : Ti}ı∈I〉(p
′)) = fiv(p′)

S

i∈Ifivr(Ti)
fivr(µt.T) = fivr(T) fivr(t) = ∅

fivr(R T λi.λx.T ′) = fivr(T) ∪ fivr(T ′) \ {i}
fivr(T t) = fivr(T) fivr(x) = ∅ fivr(end) = ∅

Fig. 15.Free index variables of the principal that perform each action of roles

23

fiv(N) = ∅
fiv(p[i]) = fiv(i) ∪ fiv(p)

fiv(t) = ∅
fiv(i) = {i}

fiv(n ∗ i) = fiv(i)
fiv(t± i) = fiv(i)

Fig. 16.Free index variables of principals

B.3 Well-formedness of Principals

A well-formed principal is either a participant or an indexed principal where the set of
values of each index expression is defined over naturals.We have defined a set of rules
that ensure when subtraction can be used safely in expressions. Auxiliary definition of
max I andmin T are given below. Figure 19 defines well-formedness of principal lists.

Definition B.1 The minimum value of a parameter range is defined as:

min({n |n ∈ nat, n ≥ n}) = n

Definition B.2 The maximum value of an index range is defined as:

max({i |i ∈ nat, 0 ≤ i ≤ t}) = t

C ⊢ Alice

C ⊢ i C ⊢ p

C ⊢ p[i]

Fig. 17.Well-formedness of principals

i ∈ dom(C)

C ⊢ i

C ⊢ i

C ⊢ n ∗ i

C ⊢ t C ⊢ i

C ⊢ t + i

C ⊢ t ≥ max(i)

C ⊢ t− i

C ⊢ n

n ∈ dom(C)

C ⊢ n

C ⊢ t

C ⊢ t ∗ n

C ⊢ t

C ⊢ t + n

C ⊢ t ≥ n

C ⊢ t− n

C ⊢ t

C ⊢ nt

Fig. 18.Well-formedness of index expressions

24

C ⊢ p1....C ⊢ pn

C ⊢ p1, ..., pn

C ⊢ p C ⊢ t C, i : {i|0 ≤ i ≤ t− 1} ⊢ p′

C ⊢ R p λi.λX.p′
t

Fig. 19.Well-formedness of principals list

B.4 Principals Equality

Figure 20 defines the equality relation between a global typeand a role type princi-
pal. Following, in Figure 24 equality between index expressions, Figure 21 equality
between parametric expressions, Figure 22 minimum and maximum values of an index
expression, Figure 23 inequality between parametric expressions.

C ⊢ Alice = Alice

C ⊢ p = p
′ C ⊢ i = i

′

C ⊢ p[i] = p
′[i′]

Fig. 20.Equality between principals

C ⊢ n = n

C ⊢ n : T

C ⊢ n = n

C ⊢ t = t
′

C ⊢ t op n = t
′ op n

C ⊢ t = t
′

C ⊢ nt = nt
′

Fig. 21.Equality between parameters

25

C ⊢ min (t) = t C ⊢ min (i) = 0
C ⊢ min (n ∗ i) = n ∗ C ⊢ min (i)

C ⊢ min (t± i) = t± C ⊢ min (i)

C ⊢ max (t) = t C ⊢ max (i) = max (C(i))
C ⊢ max (n ∗ i) = n ∗ C ⊢ max (i)
C ⊢ max (t± i) = t± C ⊢ max (i)

Fig. 22.Minimum and maximum value of an index expression

C ⊢ n ≥ 0

C ⊢ n : {n|n ≥ n}

C ⊢ n ≥ 0

C ⊢ t ≥ 0

C ⊢ t ∗ n ≥ 0

C ⊢ t ≥ n

C ⊢ t− n ≥ 0

C ⊢ t ≥ 0

C ⊢ t + n ≥ 0

C ⊢ t ≥ 0

C ⊢ nt ≥ 0

n ≥ n′

C ⊢ n ≥ n′

C ⊢ n : {n|n ≥ n′} n′ ≥ n

C ⊢ n ≥ n

C ⊢ t ≥ n′/ n n′%n = 0

C ⊢ t ∗ n ≥ n′

C ⊢ t ≥ n′ − n

C ⊢ t + n ≥ n′

C ⊢ t ≥ n′ + n

C ⊢ t− n ≥ n′

C ⊢ t ≥ lgn n′ n′ = nn
′′

C ⊢ nt ≥ n′

C ⊢ t
′ − t ≥ 0

C ⊢ t ≤ t
′

Fig. 23. Inequality between parameters

26

C ⊢ i : {i|0 ≤ i ≤ t
′} C ⊢ t ≤ t

′

C ⊢ t = i

C ⊢ t = i

C ⊢ t ∗ n = i ∗ n

C ⊢ t− t
′ = i

C ⊢ t = t
′ + i

C ⊢ t
′ − t = i

C ⊢ t = t
′ − i

C ⊢ i : {i|0 ≤ i ≤ t
′} C ⊢ t ≤ t

′

C ⊢ i = t

C ⊢ i : {i|0 ≤ i ≤ t} C ⊢ max (j) ≤ t

C ⊢ i = j

C ⊢ i : {i|0 ≤ i ≤ t
′} C ⊢ min (t + j) ≥ 0 C ⊢ max (t + j) ≤ t

′

C ⊢ i = t + j

C ⊢ i : {i|0 ≤ i ≤ t
′} C ⊢ min (t− j) ≥ 0 C ⊢ max (t− j) ≤ t

′

C ⊢ i = t− j

C ⊢ i = t

C ⊢ n ∗ i = n ∗ t

C ⊢ i = t + j

C ⊢ n ∗ i = n ∗ t + n ∗ j

C ⊢ i = t− j

C ⊢ n ∗ i = n ∗ t− n ∗ j

C ⊢ i = i
′ − t

C ⊢ t + i = i
′

C ⊢ i = j − t

C ⊢ t + i = j

C ⊢ t + i = j

C ⊢ n ∗ t + n ∗ i = n ∗ j

C ⊢ i = t
′ − t + j

C ⊢ t + i = t
′ + j

C ⊢ i = t
′ − t− j

C ⊢ t + i = t
′ − j

C ⊢ i = t− i
′

C ⊢ t− i = i
′

C ⊢ i = t− j

C ⊢ t− i = j

C ⊢ t− i = j

C ⊢ n ∗ t− n ∗ i = n ∗ j

C ⊢ i = t− t
′ − j

C ⊢ t− i = t
′ + j

C ⊢ i = t− t
′ + j

C ⊢ t− i = t
′ − j

Fig. 24.Equality between indexes

27

B.5 Substitution of Principals

W{W=W} = W

p[i]{p’[i’]=q[j]} = p{p’=q}[i{i’=j}]

Fig. 25.Substitution on principals

i{i’=j} =

(

i{j′/i} if i ∈ fiv(i) andi′ = j →⋆ i = j
′

i otherwise

Fig. 26.Substitution on indexes

i= j

n*i= n*j→ i= j

t+ i= j→ i= j- t
t- i= j→ i= t- j

Fig. 27.Transformation on index expressions equalities

B.6 Principal Set Equality

Definition B.3 C ⊢ pid(G) = {p0, p1, p} if C ⊢ pid(G) ⊆ {p0, p1, p} andC ⊢
{p0, p1, p} ⊆ pid(G).

Definition B.4 C ⊢ {p′0, p
′
1, ..., p

′
n} ⊆ {p0, p1, p} if ∀p ∈ {p′0, p

′
1, ..., p

′
n}.C; range(p) ⊢

p ∈ {p0, p1, p}.

Definition B.5 C ⊢ {p0, p1, p} ⊆ {p′0, p
′
1, ..., p

′
n} if C ⊢ p0, p1, p ∈ {p′0, p

′
1, ..., p

′
n}.

Definition B.6 C ⊢ R p λi.λx.p′ t ∈ {p′0, p
′
1, ..., p

′
n} if C, i : {i|0 ≤ i ≤ t − 1} ⊢

{p, p′} ⊆ {p′0, p
′
1, ..., p

′
n}.

Definition B.7 intersection(C, [a1..b1]..[aj ..bj], p, p
′) = [a1..b1]..[aj ..bj]\[a′

1..b
′
1]...[a

′
k..b′k]

if C ⊢ p = p′ whererange(p′) = [a′′..b′′] and[a′
1..b

′
1]...[a

′
k..b′k] = [a1..b1]..[aj ..bj] ∩

[a′′..b′′].

28

intersection(C, [a..b], p, p1) = [a..b]

C; [a..b] ⊢ p ∈ {p1, ..., pn}

intersection(C, [a1..b1]..[aj ..bj], p, p1) = [a′

1..b
′

1]..[a
′

i..b
′

i] C; [a′

1..b
′

1]..[a
′

i..b
′

i] ⊢ p ∈ {..., pn}

C; [a1..b1]..[aj ..bj] ⊢ p ∈ {p1, ..., pn}

C, i : {i|0 ≤ i ≤ t− 1}; [a1..b1]..[aj ..bj] ⊢ p ∈ {p, p′}

C; [a1..b1]..[aj ..bj] ⊢ p ∈ {R p λi.λx.p′
t}

Fig. 28.Membership of a set

29

C Proofs
In this section, we give the full proof of type preservation for the formal system pre-
sented in this paper; i.e. if a term is well-typed and it reduces to a new term, then the
new term is also well-typed. The proof relies on standard substitution lemmas.

Lemma C.1 (Type Preservation Under Substitution) 1. If Γ ; C, n : T ⊢ E⊲τ and
C ⊢ n ≥ min(T), thenΓ ; C{n/n} ⊢ E{n/n} ⊢ τ{n/n},

2. If Γ ; C, i : I ⊢ R ⊲ ∆ andn ≤ max (I), thenΓ{n/i}; C ⊢ R{n/i}⊲ ∆{n/i},

3. If Γ, X : ∆; C ⊢ R ⊲ ∆′ andΓ ; C ⊢ S ⊲ ∆, thenΓ ; C ⊢ R{S/X}⊲ ∆′.

4. If Γ, C ⊢ R ⊲ ∆, y : T thenΓ ; C ⊢ R{s[p̂]/y} ⊲ ∆, s[p̂] : T .

Proof. (1) is by induction on the typing judgementΓ ; C, n : T ⊢ E ⊲ τ . We present the
cases appealing to the contributions to this work.

Γ ; C, n : T ⊢ λm.E ⊲ Πm : T′.τ andC ⊢ n ≥ min(T) By assumption
Γ ; C, n : T, m : T′ ⊢ λE ⊲ τ C ⊢ n ≥ min(T) By inversion
Γ ; C{n/n}, m : T′ ⊢ E{n/n} ⊢ τ{n/n} By i.h.
Γ ; C{n/n},⊢ λm.E{n/n} ⊢ Pim : T.τ{n/n} By rule

where(Πm : T.τ){n/n} = Πm : T.(τ{n/n}).

Γ ; C, n : T ⊢ λE t ⊲ τ andC ⊢ n ≥ min(T) By assumption
Γ ; C, n : T ⊢ λE ⊲ Πm : T′ : τ , C ⊢ t ≥ min(T′), C ⊢ n ≥ min(T) By inversion
Γ ; C{n/n} ⊢ E{n/n} ⊢ Πm : T′.τ{n/n}, C ⊢ t ≥ min(T′) By i.h.
Γ ; C{n/n},⊢ E{n/n} t ⊢ τ{n/n} By rule

where(Πm : T.τ){n/n} = Πm : T.(τ{n/n}).

Γ ; C, n : T ⊢ R Sλi.λX.R ⊲ Πi : I.∆ andC ⊢ n ≥ min(T) By assumption
Γ ; C, n : T ⊢ S ⊲ ∆ 0, Γ, X : ∆ i; C, n : T, i : I ⊢ R ⊲ ∆ i + 1,
C ⊢ n ≥ min(T) By inversion
Γ ; C{n/n} ⊢ S{n/n} ⊲ ∆{n/n} 0, Γ, X : ∆ i; C{n/n}i : I ⊢ R{n/n}⊲
∆{n/n} i + 1) By i.h.
Γ ; C{n/n} ⊢ R S{n/n}λi.λX.R{n/n}⊲ Πi : I.(∆{n/n}) By rule

The remaining rules are similar. The proof of (2) is similar to (1). The proofs of (3)
and (4) are the same as in [4] as for the rules of our contributions they do not apply.

Definition C.2 We generate∆ ⇒ ∆′ by the following rules:
{s[p̂] :!〈q̂, U〉; T, s[q̂] :?〈p̂, U〉; T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}

{s[p̂] : ⊕〈q̂, {lj : Tj}j∈I〉, s[q̂] : &〈p̂, {lk : T ′
k}k∈J 〉} ⇒ {s[p̂] : Ti, s[q̂] : T ′

i}
{s[p̂] : T, ...} ⇒ {s[p̂] : T {n/n}, ..., }

∆ ⇒ ∆′ if {s[p̂] : T1, s[q̂] : T2} ⇒ {s[p̂] : T ′
1, s[q̂] : T ′

2} where{s[p̂] : T1, s[q̂] : T2} ⊆ ∆

Theorem C.3 (Type Preservation)If Γ ; C ⊢ E ⊲ τ , andE →⋆ E′, then there exists
τ ′ whereτ ⇒ τ ′, such thatΓ ; C ⊢ E′ ⊲ τ ′.

Proof. By induction over the derivation ofE →⋆ E′.

30

Case
(λn.E) n −→ E{n/n}

Γ ; C ⊢ (λn.E) n ⊲ τ Assumption
Γ ; C ⊢ λn.E ⊲ Πn : T.τ andC ⊢ n ≥ min (T) By inversion
Γ ; C, n : T ⊢ E ⊲ τ andC ⊢ n ≥ min (T) By inversion
Γ ; C{n/n} ⊢ E{n/n} ⊲ τ{n/n} By substitution lemma (1)

Case
R S λi.λX.R 0 −→ S

Γ ; C ⊢ R S λi.λX.R 0 ⊲ ∆ 0 Assumption
Γ ; C ⊢ R S λi.λX.R ⊲ Πi : I.∆ andC ⊢ 0 By inversion
Γ ; C ⊢ S ⊲ ∆ 0 By inversion

Case
R S λi.λX.R n + 1 −→ R{n/i}{R S λi.λX.R n/X}

Γ ; C ⊢ R S λi.λX.R n + 1 ⊲ ∆ n + 1 Assumption
Γ ; C ⊢ R S λi.λX.R ⊲ Πi : I.∆ andC ⊢ n + 1 n+1 =max(I) By inversion
Γ ; C ⊢ S ⊲ ∆ 0 andΓ, X : ∆ i; C, i : I ⊢ R ⊲ ∆ i + 1 By inversion
Γ, X : ∆ n; C ⊢ Q{n/i} ⊲ ∆n + 1 By substitution lemma (2)
Γ ; C ⊢ R S λi.λX.R n ⊲ ∆ n By induction hyp.
Γ ; C ⊢ R{n/i}{R S λi.λX.R n/X} ⊲ ∆n + 1 By substitution lemma (3)

Case
ā[p̂0..p̂n](y0).R0 | a[p̂1](y1).R1 | ...a[p̂n](yn).Rn

−→ (νs)(R0{s[p̂0]/y0} | ... | Rn{s[p̂n]/yn} | s : ∅)

Γ ; C ⊢ ā[p̂0..p̂n](y0).R0 | a[p̂1](y1).R1 | ...a[p̂n](yn).Rn ⊲ ∆ Assumption
Γ ; C ⊢ ā[p̂0..p̂n](y0).R0 ⊲ ∆1, ...,Γ ; C ⊢ a[p̂n](yn).Rn ⊲ ∆n+1,
where∆ = ∆1, ..., ∆n+1 By inversion
Γ ; C ⊢ R0 ⊲ ∆1, y : ξ(G ↾ p̂0) By inversion
Γ ; C ⊢ R0{s[p̂0]/y0} ⊲ ∆1, s[p̂0] : ξ(G ↾ p̂0) By substitution lemma (4)
...
Γ ; C ⊢ Rn{s[p̂n]/yn} ⊲ ∆n+1, s[p̂0] : ξ(G ↾ p̂0) By substitution lemma (4)
Γ ; C ⊢ R0{s[p̂0]/y0} | ... | Rn{s[p̂n]/yn}⊲
∆1, ..., ∆n+1, s[p̂0] : ξ(G ↾ p̂0), ..., s[p̂0] : ξ(G ↾ p̂0) By rule
Γ ; C ⊢ (νs)(R0{s[p̂0]/y0} | ... | Rn{s[p̂n]/yn} | s : ∅) ⊲ ∆ By rule

Other cases are the same as in [4].

31

D Examples

D.1 Star Communication Pattern

The Star pattern consists of n+1 workers (named by W) and thatevery workerW[i]
(1 ≤ i ≤ n) is connected toW[0]. The Start has two distinct roles: Center, represented by
W[0] and Worker, represented by W[i]. The global type specifies that the first message
for j=n?1 is sent by W[n] to W[0], and the last one for n=0 is sent by W[1] to W[0].
In this pattern, we observe the use of theR operator to define also repetitive end-point
behavior, in the Center role. Below, we provide the main program and roles of the Star:

Star

//oo

OO

��

__???
??���

����
�

��?
??

R end
λj.λy.W[0] → W[j + 1] : 〈U〉.y

n + 1

def W = R W[n] λi.λX.(W[i + 2], X) n − 2

Center, ā[W[0], W[1], W](y).R end λj.λY.y!〈W[j + 1], f(j + 1)〉; Y n

Worker(i) , a[W[i + 1]](y).y?(W[0], z); P

Start, λn.(R Centerλi.λX.(Worker(i) | X) n)

D.2 Jacobi Solution of the Poisson Equation

λn.λm.R Pstart(n, m) | PRBC(n) | PLTC(m) | PLBC

λi.λX.R (PLC(i) | PRC(i) | X)λj.λY.(Pcentre(i, j) | PTR(j) | PBR(j) | Y) n m

Pcentre(i, j) = a[W[i][j]](y).µt.y&〈W[i][j + 1], {true : y ⊕ 〈W[i][j − 1]{true :
y?(W[i + 1][j], z1); y!〈W[i + 1][j], f(i + 1, j)〉;
y?(W[i][j + 1], z2); y!〈W[i][j + 1], f(i, j + 1)〉;
y?(W[i][j − 1], z3); y!〈W[i][j − 1], f(i, j − 1)〉;
y?(W[i − 1][j], z4); y!〈W[i − 1][j], f(i − 1, j)〉;
y?(W[i][j − 1], z5); y!〈W[i][j + 1], f ′(z5)〉; t}〉,

false : y ⊕ 〈W[i][j − 1], {false :
y?(W[i][j − 1], z6); y!〈W[i][j + 1], f ′′(z6)〉;0}〉}〉

Pstart(n, m) = ā[W[0][0]..W[n][m]](y).µt.y ⊕ 〈W[n][m − 1],W[n − 1][m]{true :
y!〈W[n][m − 1], f(n, m− 1)〉; y?(W[n][m − 1], z);
y!〈W[n − 1][m], f(n− 1, m)〉; y?(W[n − 1][m], z2);
y?(W[n − 1][m], z3); y?(W[n][m − 1], z4)); t,

false : y?(W[n − 1][m], z5); y?(W[n][m − 1], z6);0}〉
PLBC(m) = a[W[0][m]](y).µt.y&〈W[1][m], {true : y ⊕ 〈W[0][m − 1]{true :

y?(W[1][m], z1); y!〈W[1][m], f(i + 1, j)〉;
y!〈W[0][m − 1], f(0, 1)〉; y?(W[0][m − 1], z2);
y?(W[0][m − 1], z5); y!〈W[1][m], f ′(z5)〉; t}〉,

false : y ⊕ 〈W[1][m], {false :
y?(W[0]m − 1], z6); y!〈W[1][m], f ′′(z6)〉;0}〉}〉

32

PTR(j) = a[W[n][j]](y).µt.y&〈W[n][j + 1], {true : y ⊕ 〈W[n][j − 1]{true :
y?(W[n][j + 1], z2); y!〈W[n][j + 1], f(i, j + 1)〉;
y?(W[n][j − 1], z3); y!〈W[n][j − 1], f(i, j − 1)〉;
y?(W[n − 1][j], z4); y!〈W[n − 1][j], f(i − 1, j)〉;
y?(W[n][j − 1], z5); y!〈W[n][j + 1], f ′(z5)〉; t}〉,

false : y ⊕ 〈W[n][j − 1], {false :
y?(W[n][j − 1], z6); y!〈W[n][j + 1], f ′′(z6)〉;0}〉}〉

The implementation of the other roles is similar and can be easily created from the
definition ofPcenter.

33

