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Abstract. Communication patterns describe simple and elegant etedtinteractions
in communication based applications. They are used in mangllpl computing ar-
chitectures of parallel algorithms, data exchange prdsoand web-services. Commu-
nication patterns help programmers to design more efficenictured, modular and
understandable architectures, but they do not provide atyratic code validation.
We study this problem usingjobal session types type theory that describes structured
interactions from a global point of view. We then augment siietax of global types
with parameters that abstract the number of participardsaaniterative construct that
builds instances of parameterised communication patt€uos formal system allows
programmers to represent parameterised communicatioerpstby global types and
then validate the code by type-checking.

1 Introduction

Communication patterns describe simple and elegant stedttnteractions in commu-
nication based applications. They are used in many parataputing architectures of
parallel algorithms [11], data exchange protocols [2] arebwgervices [1]. Commu-
nication patterns, as design patterns, help programmetegsign more modular and
more understandable system architectures. In paralletitigns, communication pat-
terns define the assignment of processes to regions of théepralomain. Hence, the
choice of the pattern affects the performance of the algariCommon communication
patterns are Ring, Tree, Mesh and Hypercube.

This paper studies communication patterns in the conteglotifal session types, a
type theory that addresses at static time the problem of$gfe, deadlock-free inter-
actions among processes. Global session types [13] deshgelinteraction structure of
several processes, that is defined by the “sending-recgigations in the presence of
conditionals and recursion, from a global point of view. ¢&reses are then validated by
type-checking, through the projection of global types ardoh participant.

Both communication patterns and global types describetstred interactions, and
the latter provide not only a blue-print of the system asttitire but also a type system
that guarantees type-safe and deadlock-free interaciiotie system’s implementa-
tion. At this point, a question arises how to specify all amtes of a communication
pattern in a single global type, so that programmers canftbémen the type theory.

For example, the Ring pattern of two participants is spetifiethe global type
syntax a0 — 1:(U).1 — 0:(U).end, where the causalitp — p’:(U) represents a
message exchange, of type between a senderand a recipienp’ andend signi-
fies the end of a conversation, while for three participag a 1:(U).1 — 2:(U).2
— 0:(U).end. Building global types of other instances given the numibeasticipants
is rather easy. Unfortunately, in parallel algorithms atiteocommunication-based ap-
plications the number of participants is known only at rimet, e.g. in parallel algo-
rithms, the number of processes assigned to compute theean$a problem instance



is in proportion to its size. We would like a type theory oflgdd types that answers this
research question:

How can programmers specify a single global type that castail the instances
of a communication pattern that has a different number ofipgrants?

The solution to this problem is to parameterise participaitt iterate over param-
eterised causalities that abstract the repetitive behafia pattern, and to compose
sequentially global types. We use tReoperator from Godel’s theory of primitive
recursive functionals to formalise the three idioms. InRieg pattern,

the causality that abstracts the communications feoon is i — i+1:(U), where
0<i<n—1 andn>1. Given the number of participants, tReoperator will iterate over
the parameterised causality, and then the global typeezieetl be composed with the
causalityn — 0 : (U) to complete an instance of the Ring.

Another problem is the design of processes that implemenbé#havior of each
participant. The behavior dfin the Ring pattern of two participants is: receive from
and then send to; of three participants: receive frotnand then send to. Our formal
model needs to address also a second research question:

How can programmers specify a single program that captulietha instances of
a communication pattern that has a different number of pgréints?

There are three kinds of participants in the ring pattera:fttst one isoO which
sends to the participant on his leff)@nd then receives from the last participat)t the
second one is for 1<i<n—1 that receives from the participants on his right-() and
then sends to the one on his lefti{1) and finally, the last participant which receives
from the participant on his righh{1) and then sends to the first participadt Before
giving a summary of the solution to this problem, we provide definition ofrole:

Definition 1 (Role) Role is aparameterised processt implementation-time, which
represents a design to create run-time processes thatalietoeparticipate in a session.
This design describes the behavior that all run-time peesf that role will share.

The solution proposed in this paper introduces the syntamle$ that includes the
R operator, to parameterise participants, to iterate ovesrand to compose in parallel
roles. In the Ring, for each kind of participant correspoadsle. TheR operator will
iterate over the role of, returning on each iteration processes that share the same
behavior, and then will compose them in parallel with thecpsses of roles @f andn.

In this paper, we extend the syntax of global types introdigeHonda et al. [13], to
describe parameterised communication patterns and pEa@ppsgramming paradigm
of roles. Programmers first define the global type of the i¢enpattern and then de-
fine each role of it. Roles are validated through projectibthe global type onto the
principals by type-checking. At run-time, roles are insi@ed into processes that will
generate correct sessions. More specifically, contribstaf this work include:



— Notion of role, and a different definition of principal anabhl type are introduced
to address the above questions, in coherence with our delsajces (Sections 2.1
and 2.2).

— Examples that illustrate how the formal model of this work capresent various
communication patterns (Section 2.3).

— Typing mechanisms for kinding of global types, projectidngtobal types onto
parameterised principals, and ordering &eklimination of actions, and also a
static type-system that validates the specification ag#iesdescription through
role types (Section 3).

— Examples from parallel algorithms and key distributiontpools illustrating the
practical utility of our system (Section 4).

— Auxiliary definitions of the formal system and proof of typeeservation (Ap-
pendix).

2 Formalising Parameterised Communication Patterns

Our system is modelled after that of Bettini et al. [4], whelh@annels are omitted from
the syntax of roles and global types, serving a simpler tygées than the one intro-
duced by Honda et al. [13]. The model is based on small-stepatipnal semantics,
which allows to use standard proofs techniques.

2.1 Roles

Syntax Figure 1 provides the syntax of our calculus. The metavigialvanges over
shared channelg; ranges of principalss ranges over session channelsanges over
channel variableg; ranges over variablesranges over labelg;ranges over index sets;
X ranges over process names;anges over session- and shared-chanhrsiges over
index variables. A program in our calculus is a function froaturals (the number of
participants) to roles composed in parallel. Roles in olouas are second-class con-
structs; they can not be computed by functions. Each rolaelefi scope that includes
the subsequent behaviors. The role with the ovetiljanefix represents the behavior of
the first principal in the list (possibly parameterised)lbpeancipals presentin a session
Po, 1, p and the process of that role initiates a session with thepaocerocesses of
principalsp; andp. In sending and receiving constructs, the principal desibte other
end-point of the communication; the same notation is uselection-branching of a
label where the former selects one of the labels enumenatedrid sends it to the later.
va.R restrictsa to R. Parallel composition and conditional are standard. Récarand
process call define infinite behavior.

To this core, we add thR operator from Systerii to parameterise principals, to
iterate and compose in parallel roles. The recursive opecain be used also inside
the definition of a role to iterate over a particular end-pdiehavior and to sequen-
tially compose behaviors. Iteration takes place when arabisiapplied to a primitive
recursion term.

The message queue is part of the runtime syntax of the calcldantifiersu can
be variables or shared names. A list of principals (see &e&i2) can be constant
or parameterised using ti& operator. Expressions include parametric mathematical
expressions (see Section 2.2), values and operations such @, e and ¢’ andnot e.
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Fig. 1. Syntax for roles and run-time processes

Values are defined over shared names, session channelsrtbigler communication
is obtained through the value send-receive construct$jirala and boolean values.
Channels denote channel variables or session channelsalyessin queues are defined
as triples, sender, receiver and data (value or label). Mgssare run-time entities,
therefore they are defined over value principals. Valueqgpals include participants
(Bob, Al'i ce, ...) orindexed principals over natura\§8], W2][4], ...).

Operational SemanticsFigure 2 gives the operational semantics via the reducéen r
lation — where the state of the machine is defined only by terms of tloellces. The
interesting features of the rules are how they invoke a piogstart a session, instanti-
ate roles, iterate over end-point behavior and exchangeages.

The rule [App] invokes a program by replacing the parametesth the argument
n. Also, it instantiates roles which are parameterised oply tRule [Zero] returns the
behaviorS and defines the last iteration of tiie operator. Rule [Succ] replaces each
occurrence of the indexin R with a predecessor af+1 and replaceX with instances
of R returned by the other iterations. Whéhdenotes roles, [Succ] instantiates them
in each iteration and composes them in parallel. Othen&isgenotes an end-point
behavior that [Succ] iterates when the session has bedrliskeal.

A session is established among processes via shared chatiratldenote public
points of communication. At this point, every role has baestantiated into processes
and the computation follows over value principals. The fuliek] invokes a session
betweenn peers by generating a session channel and substituteshie iprocesses
scope. The identity of each principal within a session isgspnted by the label attached
to the session channel. The [Send] and [Label] rules ingedssage in the queue of the
session. The receiving rule [Recv] removes a value mesdabe same sender, as the
one specified in the receiving construct, from the queuesabdtitutes it in the process.
The [Branch] rule removes a label message of the same sesdbe ones specified in
the branching construct, from the queue. The result of theeisithe process following



(An.E) n — E{n/n} [App]

RSMNAX.R0O— S [zero]
RSXNAX.Rn+1— R{n/i}{R S Ai.AX.Rn/X} [Succ]
a[po--bn](yo)-Ro | a[p1](y1).R1 | ...a[pn](yn). Bn

— (vs)(Ro{s[ol/yo} | .- | Ru{s[Bul/yn} | 5:0) [Link]
s[pl{q,v); R|s:h— R|s:h-(p,q,v) [Send]

slpl@ (@, );R|s:h— R|s:h-(p,q,1) [Label]
s[p]?(a,z); R|s:(q,p,v) - h— R{v/a}[s:h [Recv]
s[p)&(q,{li : Ri}ier) |s: (@, D,liy) - h —> Riy | s:h (i0 €1) [Branch]

iftruethen Relse S — R if false then Relse S — S [If-T, If-F]
def X(z) = S in (X(v) | R) — def X(z) = S'in (S{v/z} | R) [Def]
R—R = (r)R— wr)R¥ R— R = R|S— R'|S [Scop,Par]
R— R = defDinR-—defDinR [Defin]

R=R andR' — S’andS=8 = R-— S [Str]

i, — i, = N[io]...[i:].-.[in] — Nio]...[1]]---[in] [Princ]
Pi—Pi = R[P0;s-yPis-ey Prn] — R[POs e, Pis -+, Prr) [ContextP]
p—p = R[..,p — R[.,p] [Request]

ei— € = E[e0, . Ciyenyn] — E[€0, ey €5, oy En) [ContextE]

Fig. 2. Reduction rules

the label. [If-T] and [If-F] action the evaluation of e; if esauates to true then rule
[If-T] is applied otherwise rule [If-F]. [Def] invokes thedhaviour @) identified by
Xby binding the parametatto argument. [Scop] actions the reduction of the process
inside the scope of the operator. [Par] actions the reduction of a process payallel
composed with other processes. [Str] states that the lieduetlation is defined on
structural congruent terms, given in Figure 3. The [CoitaxXe define the order of
execution of expressions within a process. Definition ofdbetext is given in Figure
10. The list of parameterised principals reduces follovthgrules shown in Figure 4.

2.2 Global Types

Figure 5 gives the syntax of global types where the metaviari& ranges over role
types. (see Section 3.3). A message of t§pés exchanged between two principals.
Branching is defined over labels which identify the paths ebaversation; i.e. par-
ticipant p internally chooses one of the labédlsenumerated by and then sends it
to participantp’ and the conversation follow§;. Infinite behavior is represented by
recursively defined global typed.G. end signifies the end of a conversation.
The R operator is added to the syntax of global types to describ@manication

patterns of an arbitrary number of principals. The paramsdteat abstract the number
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def Din (vr) P = (vr)def Din P if r ¢ fn(D)
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ifp#p orq#q

Fig. 3. Structural equivalence

RpliAX.pg0—p [Zero]
RpAiAX.pPn+1— p{n/il{R pAi.A\X.p n/X} [Succ]

Fig. 4. Reduction rules for parameterised list of principals

of participants are bound by the binders in the lambda expes of roles, as both
global type and roles are part of the program definition. Rheperator is defined over
the tail recursion case of recursion and index variabldus the operator preserves the
existing declarative nature of global types, helping taueashat the system developed
in our model can be extended with additional features. Tginout the paper, we will
refer to primitive recursive global types asoduct global typesas they abstract all
instances of the parameterised global type. The infinitefdastances generated from
theR operator can be understood through the two reduction rules:

R G Nixx.G' 0—G
RGN x.G' n+1—G'{n/i}{(R G \i.)x.G' n)/x}

For each natural, we obtain a global type by applying the mes: In each iteration,
the index variable inG’ is substituted by a predecessormef1 andx is replaced by
instances of the parameterised causalities preséift, iaxcept 0 whek is replaced by
instances of;.

Principalsp, p/, q, .. include primitive participant®\ i ce, Bob, ... and indexed
principals defined over one or multiple index expressidfi§ Wi+1][j+1],.... Index
expressions are represented by parametric linear furs;taimeren ranges over natu-
rals,: ranges over index variables andanges over parametric expressions. Parametric
expressions range over variables, naturals, arithmetigatations €+n, t—n, tx*n)
and exponentiation of base natural. The design of indexesgmns as parametric lin-
ear functions comes from our observation that the inforometow follows a line in the
patterns/virtual-topologies we have studied so far [214].,For simplicity and without
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Fig. 5. Global types

reducing the practical expressiveness of our system, wedesigned index expression
to have at most one parameterA type U ranges over primitivet{ool, nat) and global
types (G)), and role types®); global types(G) type shared channels and role types
(T) type session channels.

2.3 Ring and Tree Communication Patterns

We illustrate how the formal model of this work can represemtous communication
patterns such as Ring and Tree.

Ring pattern - figure 6(a) The Ring pattern consists af+1 workers (named by
where each has exactly two neighbours: the wowggrcommunicates with the workers
W;—1] andWj+1] (1<j<n-1), with the exception o¥jo] andWn] who communicate

via a direct link. Due to the enumeration of workers in a nooduiar arithmetic, the
Ring has three distinct roleStarter, represented bwo], Middle, represented bwj],
andLast represented bwn]. The global type specifies that the first message is sent by
Wo] to W1] for j=n—1, and the last one is sent W] back towo] for n=0. To ensure

the presence of all three roles in a session, we set the nushiparticipants ta,>2.
Below, we provide the main program and roles of the Ring:

det W= R Wn] Mi.AX.(Wi + 2], X) n — 2

Starter= a[Wo], W1], W(y).y(WL], v); y?(Wnl, 2); R
Middle@) £ a[Wi + 1]](y).y?(Wil, 2); y!" (Wi + 2], 2); R
Last= a[Wn]](y).y?(Wn — 1], 2); yW0J, 2); S

Ring£ \n.(R Starter| Last\i. \X.(Middle@) | X) n —1)

whereW denotes the parameterised list of principalg], ..., Wr|, represented math-
ematically through th& operator, andstarter and Last are parameterised by and
Middle by i. Middleis composed in parallel with the process variakl¢hat is used as
a placeholder of processes generated in each iteratioheilast iteration fon=0, X
will be replaced with processes 8farterandLast The reduction steps of the Ring for
n=2 are given in Appendix A.1.

Tree pattern - figure 6(b) The Tree pattern consists &f"* —1 workers organized in a
binary tree. The global type specifies a message exchangedren parent node and
its children, numbered in the Ahnentafel system. A tree heeetkinds of nodes: root,
internal and leaf. The principal running on the root sendsasage to its children; the



(a) Ring pattern (b) Tree pattern

E

R Wn] — WO]: (U).end
Aj Xy Wn—j—1] — Wn — j]: (U).y
R end \j.\y.Wj] — W2xj+41]: (U).
W] — W2xj+2]: (U).y

n

2" —1

Fig. 6. Diagram and global type of the Ring and Tree communicatidtepzs

ones on internal nodes send a message to their children aereea message from
their parents; the ones on leaf nodes receive a messagelisnparents. The three
kind of nodes define three distinct roles of the Tree. An imakor leaf node is enumer-
ated by an even or odd number, and thus the mathematicalssipns that identify the
parent and children of each of these nodes are differenthioreason, even and odd
nodes define two distinct roles in the same kind of node, matdeaf. Thus, we have
distinguished five roles in the TreRootrepresented bwo], Oddintand Evenintby
W2xi4-1] and W2xi+-2] (0<i<2"~!'-2), and,OddLeafand EvenLeafby W2xi+1] and
W2xi4-2] (2"~ ' —1<i<2"—2). To ensure the presence of all five roles in a session, we
setn > 2. Below, we provide the Tree’s roles and the main program:

def W= R W2 — 2] Xi AX.(Wi + 2], X) 2" — 4

Root= a[WoJ, W1], W(y).y (WL, f(1)); y!(W2], f(2)); R
oddint@) £ a[W2i-+1]](y).y (Wdxi+3], f(4xi+3)); y! (Waxi+4], f(4xi+4)); y? (Wi, 2); R
Evenintf) £ a[W2xi+2]](y).y!(Wdxi+5], vawita); y! (Waxi+6], vh.;40); y?(Wil, 2); Q'
OddLeaf) £ a[W2" —1+2xi]](y).y?(W2" 1 —1+i], 2); S
EvenLeaf{) £ a[W2 * (2"~ +4 — 1) + 2])(v).y?(W2" " +i — 1], 2); R
Tree 2 An.(R (R RootAi. A X.(OddLeaff) | EvenLeaf{) | X) 2"%)

Ai.AX.(0ddInt@) | Evenintg) | X)2"~'—1)

wheref is a function from naturals t&'. It is interesting to note that index calculation
in the principals of the global type is less complex than endhes of the roles. This is a
direct advantage of the global representation of intevastiThe problem of index cal-

culation in parallel computing architectures of parallgbaithms has been recognized
also by the MPI community [11] as a source of program errors.

3 Typing

This section introduces the typing mechanisms for kindprgjection, ordering and
R-elimination, and also rules of typing.
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|KREC]| ]
0;C F ut.G » Type ©;C Fend » Type

|KEND|

Fig. 7. Kinding rules for global types

3.1 Kinding of Global Types

Primitive recursion forms a new kind of global tyg@oduct kind. Kinding rules, shown
in Figure 7, ensure that in a global type the indexed pririsipae well-formed and
parametric expressions are applied only to product glohg. They are of the form
©;C + G » k.read, “In the variable typin@ and parameter-index typing, global
typeG has kindx". Variable and parameter-index context typi@gndC', and kindx
are defined as:
O:=0|x:Type,O|t:Type,® C:=0|n:T,C|i:I1,C k:=Type|lli: I.Type
T:={n|n€nat,n>n} I:={i|icnat0<i<t}
The | Kl o] rule ensures that the principals of a causality are welkfed, the message
type is kinded and that there are no free primitive recurgipe variables, and that
the inductive part isType kinded. A well-formed principal is either a participant or
an indexed principal where the set of values of each indexessfon is defined over
naturals. We have defined a set of rules that ensure wherastibtr can be used safely
in expressions (see Appendix B.3). THEBRA | rule checks that the principals of label
causality are well-formed and that the inductive partstgpe kinded. Thel KPR] rule
ensures that the inductive parts dgge kinded, returning the kind of a product global
type. The| KAPP| rule checks that the argument is applied to a product glokps t
and that it is a successor of the biggest index value, retgraiType kind. Other rules
ensure that the inductive global types are Type kinded amkiup for type variables in
the contex®.

3.2 Role Types

The role types, given in Figure 8, are used to type-check dhes rof parameterised
communication patterns.

The role types prefixed by the output, input, selection aehding types capture
the same capabilities. Infinite behavior is captured by ¢teirsion type. The primitive
recursion with application are used to capture repetitiakpoint behaviors.



Output i x. T’ Primitive Recursion

n=l | RT

| 7{p, U); Input | Tt Application

| ®(p,{li : T;}ic1) Selection | x Primitive Recursion Variable
| &{p,{l; : T: }icr) Branching | t Recursion Variable

| wt.T Recursion | end Null

Fig. 8. Role types

3.3 Projection, Ordering and R-elimination

Projection A global type’s projection onto the principals of roles pucds types that
capture the behavior of roles.

Definition 3.1 Given global type&, principal q, and the context’ of parameter vari-
ables present idi? andg, and index variables presentipif §; C = G » xandC F q
then the projection off ontoq, denoted>| q, is defined inductively o6’

p—p:(U).Glq=

Hp'{p = a}, U)(p); 2(p{p’ = a}, U)(¢'); (GT q) if Ckp=qandCtp'=q,
p'{p = a},U)(p); (G [ q) if Ct-p=q,
2p{p' =a}, U)(P); (G 1 q) if Ckp'=q,
Glq otherwise
p—p:{li:Giticil q=
S {p = a}, {li : &(p{p’ = a}, {li : Gi | q}ier)(p')

Yier)(p) if C-p=q andChtp'=q,
@@ {p=a}, {li : Gi | q}ier) if Ckp=q,
&(p{p’ = a},{li : Gi | q}ier) if Ckp'=q,
UierGi | q if C¥p=q, C¥p'=q

Vi, jel.G; [ quGj [ q
ut.Gl q=pt. (Gl q) tlgq=t endfq=end
RGANAG[q=R (G MNA.(G' 1q) xlq=x Gtlq=(Glqt

Projection is intuitive and holds some of the technical idmgles of this system,
which we discuss in the following paragraphs. In the roleet/peturned, the principal
in brackets, attached to an action, denotes the principalgrforms that action, and
is used to sort actions and eliminate fReoperator from role types as we shall see
later. The equality between a global type principaind role principay is defined as
a relation-p=q over the contex€ (see Appendix B.4), which ensures that the set of
values ofp is a subset of the set of values @f The intuition underlying this design
originates from the knowledge that an action performed ®ryeprocess of the same
role is captured by the same causality in the global type.

In product global types, for different values of the indexiahle, an indexed princi-
pal can be present in both sides of a parameterised cau3#lisyoccurrence is covered
by the first case of projection for message exchange and tiranc

The index variables of principals in global types are défgrfrom the ones in roles,
as they are bound by different binders. For this reason, vee e translate the role

10



types being expressed from global type indexes to role drtesp’{p = q} operation
(see Appendix B.5) substitutes the index variablep’iwith expressions in terms of
indexes ofq, obtained by the relatiop = q wherep andp’ have the same index
variables.

In branching, in the case whenis not equal neither tp nor top’, all inductive
projections of should return an identical role type up to mergeabikityThe notion of
mergeability is introduced in [9] as an equivalence relatwer role types. Intuitively,
two different& role types are mergeable if the labels, they are denoteddyjfferent;
e.g. the projection of global type:

. [ true : W2] — W3] : {true : G,
Wi — w2 : {false :W2] — W3] : {false: G’
onto W3] returns& (W2|, {true:G | W3], false:G | W3]}) whereG | W3]#£ G’ | W3].

Definition 3.2 (Mergebility) If Vi € (INJ).T; » T] andVi € I\ JVj € J\IL.l; #;
then&e(p, {l; : T;}ier) ™ &(p, {1 : Tj}jer)-

&(p, {li  Ti}) U&(p, {lj : T }jes) = &p, {li : TiUT; Yierns Ul : Titiern g U{li :
T} Yiena)-

Proposition 3.3 The relationC F p = q is decidable.
Theorem 3.4 The projection of a global type onto principals is decidable
Proof. Straightforward from Proposition 3.3.

Ordering and R-elimination Actions in the role types, returned by projection, are
sorted to preserve the order of appearance in all instarfcegparameterised global
type. We can note from the first case of projection in the mgesggobal type, that
the order of actions is not preserved; i.e., the sendingadsi always placed before
the receiving one. However, the appearance order of acisomst broken only in the
projection of a causality, but also in the sequential coritjposof other actions returned
by projection. The reason behind this is that the order dbastdepends on the order
of principals performing those actions.

Definition 3.5 The appearance order relation between two actiarsder ) is defined
as the appearance order of the principals performing thag@as:

order (1/7 (p1, U)(p}),!/?(p2, U')(ph)) if and only if or der (p;,p5) and
order (&/&(p1, {li:Ti}ier) (1), ®/&(p2, {li:T} }ier) (p2)) if and only if or der (pi, p).

Definition 3.6 The appearance order between principals is defined as adgraphi-
cal order over the index expressions that define them:

order (M[i1]...[is]...[in], N[11]...[1]]-.-[i%]) if and only if or der (i;,17) for 1 <i <
n andvj1<j <:—1.Cki; =i} and C¥ i, = ij,
where the appearance order between index expressionsimctngnical form is de-
fined as:

or der (t—nxi,t'—n'xi) if and only if C+ t—nxi > t'—n'xi and

or der (t+nx*i, t'4+n'xi) if and only ifC - t+n*i < t'+n'xi.

11/? denotes eitheror ?.
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The order of index expression is defined on the basis thatalue vfi decreases in
each iteration of th&® global type, resulting in the increase of values for exposss
t—nxi and the decrease for-nx*i. Thus, in two expressions of the forr-nx*i, a value
will appear first in the bigger expression for bigger valug ahd then in the smaller
one for smaller value of. And, in two expressions of the formynx*i, a value will
appear first in the smaller expression for bigger valugasfd then in the bigger one for
smaller value of. No ordering can be defined for expressions of opposite nooingity,
e.g.t—nx*i andt’+n’xz, as some values will appear first in the former and second in
latter, whilst some others vice versa.

TheR operator in global types iterates over parameterised ttesand defines
a repetitive behavior for non index-parameterised prialsipFor these principals, we
keep theR operator and the argument applied in the role types, otkserwe eliminate
it by composing the two sub-types, and then later the argurfiendenotes the free
index variables in the bracket-principals of role types.

Definition 3.7 Sorting of actions, defined over der relation, andR-elimination are
introduced in the functiog, that also removes the principals in brackets, defined as:

o (({p, U)(@');T)) =Up, U);&(T) &(Np, U)(@');T) =p,U); £(T)

o {(®(p,{li : Ti}ier)(p')) = &(p, {li : §(T3) }ier)

o {(&(p, {li : Titier)(p') = &(p, {li : §(T3) }ier)

. SRT AT = d RESOTLT) Nidx(sort (1) ¢ fvr(T”)
&(sort (T7){&(sort (T))/x} otherwise

(T)t ifE;CFLT) » ITi:1.Type

(T')  otherwise

o {(utT)=putd(T) &)=t &(x)=x ¢(end)=end

where®; C - T » « is the kinding judgment of role types (see Appendix B.1).

_ )¢
§(Tt)= ¢

3.4 Type System

Figure 9 describes the program typing rules. The typingrjoeigt is of the form™; C' +
E>T,read, “In the context’ andC programk has typer”. I' maps shared names, pro-
cess names and type variables to types, whilepresents channel and product types,
defined as:

Ti= A On:Tor |ITi: I An=0 | AT =0 ILwS | LXST|IX:A
The rules of appealing interest are those for program arsitsemitiation. Rule| TFUN |
augments the context with mapping for parameter variables and ensures that the su
term is typed. Rulé TAPPF| checks if the argument applied to the lambda abstraction
falls in the set of values, wheremin(T) represents the minimum valueFor primitive
recursion, we ensure that the sub-terms are well-typediatigmented contextsand
C. If primitive recursion, specifies a repetitive behavioaable, thenA 0 and A i+1
return the sub-role type for type-checking of the respedivb-terms. Otherwise\ 0
andA i+1 return A.

Definition 3.8 GivenA= A’, c:T. We define
A= Ade:Te if0;CHT » IIj:1.Type
7/_
A'i,c: T  otherwise

12



Ir;Cn:THE>T I'CHE>In:Tr CFt>min(T)

| TFUN] | TAPPF|
ICFHME> IIn:T.1 ICHEt>T
ICHES>AQ CkHt I';CHR>
. ;. ;. i ITi:{i i t,0<i<t—1}.A
F,X.Az,C,z.II—R|>A2+1LTPRECJ i:{i [ienat,0<i<t—1} I TAPFR]
ICHEFRSMAX.R> ITi:I.A I'NCFRt> At
'u:(G) 0;CFG » Type 0;C =G » Type
CFpo,pl,p C’Fpid(G):{po,pl,p} FFU:<G> CFp
I''CFRp> Ay: &G I''CFRp> Ay: &G
y:&§(G 1 po) I TAcc y:&§(G 1 p) | TREQ)
I';C & afpo, p1, pl(y).Ri> A I';CFulpl(y) R A
Ir';Ckrex>S I'bER>Ac:T Iz:S;CFR>Ac:T
| TOUT| [ TIN|
I';CFcp,e); R> Aye:Np, S); T I;CFce?p,z); R> Aye 2 {p, S); T

I''CHFRp> A c:T; jeEK
I;CEc®(p,lj); R> A e @(p, {li : Th}ier)

| TSEL]

Vke K, I';C+F Rp>A,c: Ty
I';CF c&(p,{li : Ri}icr) > A,c: &{p,{li : Tk}icr)

| TBRA|

Ia:U;CFR> A I''CFR>A T'FSp> A
| TNuU| | TPAR|
I';CF (va)R> A I';CFR|S> A A

X :A;Ck Env I';CH-A Aendonly
| TVAR] [ TNULL ]
NxX:ACHEXp> A r;cror A

Fig. 9. Program and role typing

Definition 3.9 A structural congruence of an application of an index val&abo a
primitive recursive end-point type is defined as:
RT N e T i+l =T {i/jH{R T Nj. e T i/x}

The rule of applying a parametric expression to primitiveursion is similar to
| TAPPF|, but it also ensures that the argument applied is a succefsbe biggest
index value. Roles are type-checked by the role types,metliby projection, sorting
andR-elimination. All the conditions to invoke projection areseired by| TAcc| and
| TREQ]. Rule| TAcc| checks also if the set of principals, present in the ses&idhe
same as the one of global type (see Appendix B.6).

Rules| TOuT] and| TIN| ensure that the sub-terms are typed and check if the prin-
cipal in the primitives is the same as the one in the roledy@#her standard rules
lookup for type variables id”, and type primitives such as branching, delegation, hid-
ing, inaction and parallel composition. Typing rules foe ttun-time are the ones in

[4].
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Properties. In this paragraph, we state type preservation for the foisysiem pre-
sented in this paper, i.e. if a term is well-typed and it redfuto a new term, then the
new term is also well-typed. The full proof is given in Appéng@.

Theorem 3.10 (Type Preservation)if I'; C + E > 7, andE —* E’, then there exists
7' wherer = 7/, suchthatl;C ~ E' > 7.

Proof. By induction over the derivation off —* E’. The proof relies on standard
substitution lemmas.

Although, we do not have a formal proof, we believe the syshatas progress,
defined as in [13]. We leave the prove of progress for futurekwo

3.5 Typing Parameterised Communication Patterns

We type the programs of the Ring and Tree, given in SectionwdtB focus on sorting
andR-elimination in the former, and projection and principads equality in the latter.

Ring - figure 6(a) The main program is typed bin:{n |nenat,n>2}.A, application
by A, whereA n—1 equalsA, and the primitive recursion is typed hyi:{i |icnat,
0<i<n—2}.A. Projection of the global type onto the principap], Wi+1] and Wn]
returns the following role-types:

R ?(Wn], U)(Wo]); end \j.\y. W], U)(Win — j — 1]);y n,
R end \j. Ay (Wi + 2], UY(Wn — j — 1]); 2(Wi], U)(Wn — j]); y n and
R (W0], U) (Wn]); end Aj.Ay.?(Wn — 1], U) (Wn — j — 1]); y n.

Wo] andWr] contain one action in each sub-type and so, no sorting i®pe&d on
them. TheR operator carried from the global type is eliminated, as &sloot define
a repetitive behavior for any principal; i.e. all particippan the lambda global type are
parameterised by the index variable. Thus, the role typesmed for type-checking
of WO] andWn] are!{W1], U); ?(Wn], U); end and?(Wn—1], U); {Wo0], U); end, respec-
tively. The role type ofNjj+1] has a more sophisticated structure tkig0] andwWn]. It
has two actions in the lambda role type, that are sorted &epve the order of appear-
ance in all the instances of the global type. The order obastis defined over the or-
der of the principals that perform them. The acti@wi], U) comes befor&Wi+2], U)
(7(Wi], U); {Wi+2], U); end), asWn—j] comes befora\\n—;—1], as a participant in
Wn—j] will appear first for bigger value of and then inWn—;—1] for a smaller one.
Type-checking of the roles with the role types is straigivfard.

Tree - figure 6(b) For space’s sake, we limit the description of typing in thiesoof
Wo] andWz2+i+1]. Type-checking of role oWo] by the typel{W1], U); {W?2], U); end

is straightforward. The interesting part of typing is chieckif the relationC + {Wj],
W25 +1], W2s5+2]} = {WO0], W1], W2 ! —2], Wi+2]} holds or not, in the ruléTAcc].
Two principal sets are equal if each set is a subset of the.dthe subset relatioq
ACB holds if each element of is an element ofs. The membership relation of a prin-
cipalp in a setA holds if the set of values of the principal is contained inghts of val-
ues of all the members of. The set of values offj] (0<;j<2"—1)is contained in the sets
of values of{Wo], W1], Wi+2]} (0<i< 27T —5), W2*j+1] in {W1], Wi+2]} andW2*j+2]
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in {Wi+2], W2"*1—2]}. The check of>-{Wo], W1], Wi+2], W2" ! —2] }C {Wj], W2x5+1],
W2xj+2]} is similar but tedious so we leave it to the curious reader.

Projection of the global type ontgj2xi+1] checks on each causality if any principal
is equal ton2xi+1]. For exampleCW;j]=W2xi+1] holds becausgcan be represented
as an index expression in termsi@ndCt max(2+i+1)< max(j) holds, which in turn
holds becaus€r2x (2"~ —2)+1<2"—2 holds, wherenax(i)=2""' -2 andmax(j)=2"—

2. Thus, the action obtained I$wW2xj+1], U){Wj]=W2x*i+1]} which is translated in
terms ofi by substitutingj in 2xj-+1 with 2«i+1, returning!{W4xi+3], U). Principal
W2xj+2] is not equal ton2«i+1] as;j cannot be represented as an index expressions
in terms ofi (j=i—1/2 is not an index expressiar). The role type returned following
projection, sorting antR-elimination is!(W4xi+3], U); (W4xi+4], U); ?(Wi], U); end.

4 Real-World Examples

Jacobi Solution of the Discrete Poisson Equation [11Poisson’s equation is widely
used in many areas of the natural sciences, including ektatics and climate compu-
tations. The discrete two-dimensional Poisson equdfittu);; for an x m grid can
be written )
Ujj = Z(ui—l,j Ui, + Uigo1 + Uije1 — dTg; ;)

where2 <i<m-1,2<j <n-—1,anddz = 1/(n+ 1). Jacobi’s method converges
on a solution by repeatedly replacing each element of thatigdd by an adjusted
average of its four neighbouring values. The grid can bedétiup and the algorithm
is performed on each subgrid in separate processes. Neighbg@rocesses must ex-
change their subgrid boundary values (ghost-points) asdteeupdated. We illustrate a
two-dimensional (mesh) decomposition of the grid inton. processes, wherg m>2.
The process on they(m) subgrid, top right corner, controls the termination caiodi
for all processes and sends the first message in the meshldtied type for the said
interactions is:

Jacobi = pt Wn][m] — Wn][m — 1], Wn — 1][m] : {t r ue : iterate,f al se : return}.
The stopping condition is propagated in the processesioitpthe pattern of the dia-
gram below. Next to it, the global typédrate) for propagating ther ue label.

1.R
..o 2. R (R ghst-pnts \k:I" . Az.WO0][k+1] — WO][k]:{t r ue:z} m)
3. At LX.
%:DD: ey (R Wi+1][m] — Wi][m]:{t rue:x}
. 5. /\)j:I’.Ay.V\[iH][jH] — Wi+1][j]:{t rue:y}
: 6. m
7 n—1
=00 80 ALIAW.WR][I4+1] — Wnr][l]:{t rue:w} m—1

Propagation of the label in the top row, is described in thesalty of line 8, in all the
rows, except top and bottom, line 5, in the leftmost columlinia 4 and in the bottom
row, line 2.

Each process maintains a copy of the boundary values of ighbeurs and ex-
changes them on each iteration of the algorithm. The diagelow portrays how these
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values are exchanged between the processes, followed biotha type ghst-pnts.

R (R conv-data \e:I' Az.W0][k + 1] < WO][k]:(U) m)
AL:TAX.
(R Wi + 1][0] < Wi][0]:(U).x
AT Ay Wi + 1[5 + 1] < Wil [j + 1]-(U).
: Wi+ 1)[ + 1] « Wi + 1][j]:(U).y

N Ot WD

p < p':(U) is a shortcut fop — p":(U).p’ — p:(U). The exchange of ghost-points in
all the rows and columns, except the leftmost column line @ laottom row line 1, is

described in the causalities of line 4 and 5.

The convergence data are gathered at the root processmgifgithe pattern of the
diagram below and next to it, the global tymm(v-data).

(Rt Ak : ' 2zWn][m — k — 1] — Wn][m — k]: (U').z m)
Al TAX.

; g R (Wn — i — 1][m] — Wn —4][m]: (U").x)
Aj Iy

Wi — i — 1[m — j — 1] — Wn — i — 1][m — j: (U").y
‘Lge m)

H

%

The stopping condition is propagated in the processesioitpthe pattern of the dia-
gram below. Next to it, the global typesturn) for propagating théal se label.

%:;:ﬁ
L

The final resultis gathered at the root processes followiagattern of the diagram
below and next to it, the global types§uli).

R
R (R result \k:I' . Az.WO0][k+1] — WO][£]:{f al se:z} m)

Al LX.

(R Wi+1][m] — Wi][m]:{f al se:x}
AJ: I Ay Wi+1][5+1] — Wi+1][5]:{f al se:y}
m)

n—1

AT AW Wn][14-1] — Wn][l]:{f al se:w} m—1

PN W

!
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R
(Rend Ak : I' Az Wn][m — k — 1] — Wn][m — k]: (Grid).z m)
HE D'

%i';: (R (Wn — i — 1][m] — Wn — i][m]: (Grid).x)
Aj: Iy

Wn—i—1][m—j—1] = Wn —i—1][m — j]: (Grid).y
éege o

The definition roles is given in Appendix D.2.

H

%

Group Diffie-Hellman with Complete Key Authentication Prot ocol [2]. The Diffie-
Hellman protocol is used in password-authentication kegement and public key in-
frastructure. Every group/; (0<i<n) generates and encrypts a random exponent, that
together with the data received froid;_; is then sent ta\/; . Lastly, M,, receives

the data fromM,,_1, computes the group key and broadcasts it to all other gaifiee
global type of the protocol is defined as:

R (Rend )Xk : I.\z.Mn] — Mk]: (key).z n) //Broadcasting the group key
i IAxMn — i — 1] — Mn — i]: {(data).x n [/[Exchanging data on a line pattern

This protocol is modelled in a system of contracts [10]. lattmodel, an extra pri-
vate channel is used by the last gralify, to send the key to every other group. The
private channel is forwarded between the groups througbgdébn. A condition is
added to the protocol description to check whether the kegristo every group or not.
In our model, we do not need an extra private channel to semkdfjy as communica-
tions between parties of a session are always defined ovat@ohannels. Also, we do
not need to add a condition that checks whether the key idsenery group as this is
granted by the semantics of tlReoperator.

5 Related Work

The idea of parameterised session types originated fronpr@wous research on in-
vestigating the expressivity of session types for parallgbrithms [3]. This idea has
been modelled recently in our work [17]. The systems shagesthilarity of using
the R operator in the syntax of global types and processes/ratesdiffer in the pro-
gramming paradigm and typing mechanisms. Principals i §&& more theoretical
expressive than in this work as they allow more than one petemper index expres-
sion. In [17] there is no notion of role programming, i.e.ttbprocesses and functions
are first-class constructs. The programming burden is asee at the type level in [17],
as programmers have to specify processes local types, qntkinsame errors when
writing principals for processes, in addition to globalaypn this work, programmers
specify only the global type. In [17], the coherence of thealdypes with respect to
the global type is ensured by a type-equivalence relatioavfery instance of a param-
eterised global type; to compute all instances, the sysserestricted to finite sets of
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values for parameters. In this system, the coherence isexhby an efficient projection
algorithm, sorting andR-elimination that allow infinite sets of values for paraniste

Our formal system is modelled after [4], a simpler versiorj1#], which differ-
ence was discussed at the beginning of Section 2; none & ystems are expressive
enough to model parameterised communication patternsRTbperator used in this
work, is introduced by Godel in SystemThe idea of using thR operator comes from
Nelson’s work on adding primitive recursion to the lambdkghs [15]. As a result,
his system can type functions previously untyped in ML. Ose of theR operator
models parameterised communication patterns.

Session types have been first introduced by Honda et al. §] 20 capture the in-
teraction structure of two processes. Their type systerokswhether for each “send”
on one process corresponds a “receive” on the other and gisavin [13], Honda et
al. have extended their system from two-parties4parties. With an intuitive syntax,
they have introduced a notion of global type to describe miteraction structure af
processes from a global viewpoint. Multiparty session $yjpave been studied also by
Bonelli and Compagnoni [5]. Their type system is defined dieary session types,
obtained by projecting processes local types onto prififgession types have been
used to type service-oriented multiparty communicatiddjs The calculus proposed
permits communications inside and outside a session to Imoelging of two running
sessions. Type safety and progress properties are notpfar the formal model.

Contracts [10] are another typing model of mobile procesteftned over processes
as behavioral types and not over channels as session tymesequently, they can well-
type more correct programs than session types. Howevesxfiressiveness of the type
system comes at a practical cost. Contracts have no irdisjiatax as global types and
no iterative construct as our system. Thus, they do not geosi practical model to
design a programming language that supports communicatidrelegantly expresses
parameterised communication patterns; e.g. the key egehanmotocol in Section 4 has
been augmented with additional communications to checktideof a send-iteration.

The conversation calculus presented in [8] is based on baxdients [7] and notin
ther-calculus as session types. Typing is similar with the onsootracts and thus, the
system carries the same disadvantages when compared itmsgges. The calculus
models dynamic joining and leaving of participants withisession. We plan to add
such features to our system, as the next step, after addiagpters.

Acknowledgementd thank Nobuko Yoshida for technical discussions on thisamal,
and lain Phillips and Raymond Hu for comments on a previousior of this paper.
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Evaluation Context

Definition of the context is given in Figure 10.

7 I Principals evaluation contexts
| d[—7 () —](y)R ReqUESt
| a[-](y).R Accept
| sB]!(e);R Send
| sl @ (1R Selection
| s[p]?(-2); R Receive
| s[pl&(-,{li : Ri}ier) Branching
El, . ]u= Expressions evaluation contexts
| -op- Expression
| (R)) Application
| cNp, s R Send
| (E ) Applicaiton Expr.

Fig. 10.Evaluation contexts
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A.1 Reduction of a Ring instance

The reduction steps of the Ring far = 2 are given below, where on the reduction
relation— is attached the name of the rule applied.

R’i?’bg 2 — App

R a[Wo], W1, W2/n}](y).y (W1, v); y?(W2], 2); P | a[W2]](y).y?(W1], 2); y(WO], 2); Q
AAX.(MiddleG) | X) 1 —contest

R a[WoJ, W], W] (y)-y W1, v); y?(W2], 2); P | a[W2])(y)-y? (W1], 2); y!{(WOJ, 2); Q
AiAX.(MiddleG) | X) 1T — guce

a[WL]](y).y?(WOJ, 2); y|(W2], 2);
| X{R a[Wo], W1], W2]](y).y W], v); y?(W2], 2); P | a[W2]] (y).y?(W1], 2); y(WO], 2); Q
AiAX.(MiddleG) | X) 0/X} — zero

alW1(y)-y?(WOJ, 2); y(W2], 2); | alWo], W], W2]](y).y (W1], v); y?(W2], 2); P
| a[W2]](y).y?(W1], 2); y(WOJ, 2); Q = Link

(v5)(s[WA]]7(WOJ, 2); s[W1]]}(W2], 2); | s[WOJ]'(W1], v); s[Wo]|?(W2], 2); P
| s[W2]7(W1], 2); s[W2]/(W0J, 2); @ | 5 : ) = Scop,Send

(vs) (s[W1]]?(WOJ, 2); s[\WA]]HW2], 2); | s[Wo]]?7(W2], 2); P

| s[W2]7(W1], 2); s[W2]!(W0], 2); @ | s - (WO], W1], v)) = scop, Recv

(vs) (s W]JH(W2], v); | s[WOJ?(W2], 2); P | s[W2]7(W1], 2); s[W2]H(WO], 2); @ | s : ) —scop, send
(vs)(s[WOIJ?(W2], 2); P | s[W2]7(WL1], 2); s[W2]!(WO], 2); Q | s = (WL], W2],v)) = 5cop, Reco

(vs) (s[WOJJ?(W2], 2); P | s[W2]{(WO], v); @ | 5 : ) —5cop, send
(vs)(s[WO?(W2], 2); P [ Q | s = (W2], WO, v)) = scop, Recu

(vs)(P{v/2} | Q| s:0)
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B Typing
B.1 Kinding of Global Types

In Figure 11 and 12 are given the auxiliary definitions fordiig of value-types and
role-types.

In [17], the kinding system allows kinded subterms in thenjtive recursive global
types. We do not allow kinded subterms in primtive recurdeamen as it breaks the
soundness of the system. We illustrate the problem with baglype which is kinded
by Type in the system of [17] and which after two reductions is nodied.

R Rend Mi xxWi] - Wi + 1] : (U).x

jAy.Rend Me Az W5 — Wi + 1] : {true : y, false: 2} 11 —
R end Ak Az W1 — W2] : {¢true : R end Mi xx.Wi] — Wi + 1] : (U).x, false: z} 1 —
W1] — W2] : {true : R end Mi.Axx.Wi] — Wi + 1] : (U).x, false : end}

|KBooL|
©;C F bool » Type

| KNAT |
©;C F nat » Type

6;C+ G » Type
6;CF (G) » Type

|[KMAR]|

Fig. 11.Kinding rules for value types
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Ckp ©;CHU » Type fprtv(U)=0 ©;C+T » Type

|[KROUT|
6;C F{p,U);T » Type

Ckp 6;CHU » Type fprtv(U)=0 ©O;CHT » Type

|KRIN]
6;C 1 (p,U); T » Type
Ckp VielO;CFT; » Type Ckp VielO;CFHT; » Type
|KRSEL] |KRBRA]
e;C+H @(p, {l, : Ti}ie]> » Type CHOA= &(p7 {lz : Ti}ie]> » Type
O,t:Type;C =T » Type |KRVAR|

KRREC
O;CF ut.T » Type L J O,t: Type;C Ht » Type

O;CFT » Type O,x:Type;C,i:I+T » Type

|KRPREC]|
6;CFRT N Ax.T' » IIi: 1.Type

|KRTVAR] | KREND|
O,t: Type; C F x » Type ©;C +end » Type

Ckt ©;CHT » Hi:{ilicnat,0<i<t—1}.Type

|KAPP|
O;C+HTt » Type

Fig. 12.Kinding rules for role types
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B.2 Auxiliary Definitions

In this section, we give the definition of free primitive resion variables in global
types, Figure 13, principals in a global type Figure 14, frekex variable of the prin-
cipal that performs each action on role types, Figure 15 amel index variables in
principals, Figure 16. TheKREC]| rule checks only that the inductive part is naRa
global type. Thg KRVAR| and | KPRVAR | looks up for type variables in the context
of variable typing. Thé KEND| rule cheks if the typing context is well-formed.

fprtv(p — p’: (U).G) = fprtv(G) U fprtv(U)
fprtv(p — p/ : {lz : Gi}ie]) = Uie] fprtv(Gi)
fortv(ut.G) = fprtv(G)  fpriv(t) =0
fprtv(R G Xi.dx.G") = fprtv(G) U fprtv(G”) x}
fprtv(G t) =fprtv(G) fprtv(x) = {x} fprtv(end) =

fprtv(bool) =0 fprtv((G)) = fprtv(G)

fpriv(!(p, U); T') = fprtv(T) U fprtv(U)
fprtv(?(p, U); T) = fprtv(T") U fprtv(U)
fprtv(@(p, {li : Ti}icr)) = U;e; fortv(Th)
fortv(&(p, {li : Ti}ier)) = U, fortv(T3)
fprtv(ut. T) = fprtv(T) fpriv(t) =0
fortv(R T i Ax.T") = fprtv(T) U fprtv(T') \ {x}
fprtv(T 1) =fprtv(T) fprtv(x) = {x} fprtv(end) =0
Fig. 13.Free primitive recursive type variables

pid(p — p": (U).G) = {p, p'} U pid(G)
pid(p — p": {li : Gitier) = {p. P’} U U;c; PIA(GY)
pid(put.G) = pid(G) pid(t) =0
pid(R G \i.Ax.G") = pid(G) U pid(G’)
pid(G t) =pid(G) pid(end) =0 pid(x)=0
Fig. 14.Principal identifiers of a global type

fivr (1(p, U (p); T) = fiv(p') U fivr (T)

five (?{p, U)(p"); T) = fiv(p’) U fivr (T")
five(&(p, {li : Tiher)(p') =fiv(p') Use,fivr(Ti)
fivr (& (p, {li : Tsher) (p))

= fiv(p') Use, fivr(T3)
fivr(ut.T) = fivr(T) fivr(t) =0
fivr (R T Ai.Ax. T") = fivr(T) U fivr (T") \ {z}
fivr(T t) =fivr(T) fivr(x) =0 fivr(end) =0
Fig. 15.Free index variables of the principal that perform eachoaotif roles
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fiv(N) =0
fiv(p[i]) = fiv(i) U fiv(p)
fiv(t) =0
fiv(i) = {i}
fiv(n =+ i) =fiv(i)
fiv(t £ 1) =fiv(i)

Fig. 16.Free index variables of principals

B.3 Well-formedness of Principals

A well-formed principal is either a participant or an inddx@incipal where the set of
values of each index expression is defined over naturalsawe thefined a set of rules
that ensure when subtraction can be used safely in expnssgiaxiliary definition of
max I andmin T are given below. Figure 19 defines well-formedness of ppialdists.

Definition B.1 The minimum value of a parameter range is defined as:
min({n |n € nat,n >n}) =n
Definition B.2 The maximum value of an index range is defined as:

max({i|ienat,0 <i<t})=t

CkHi CFp
CFAice C + pli]

Fig. 17. Well-formedness of principals

i € dom(C) CkFi Ckt CFi
Cki Chknx*i CHt+1i

CF t > max(i)

CkHt—1i
ne€dom(C) Ckt Chkt

Chkn Ckn Ckt*n Ckt+n

CkHt>n Chkt
CFt—n CFk1n®

Fig. 18. Well-formedness of index expressions
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Ckp1...Ckpy, CFp Ckt Ci:{il0<i<t—1}Fp
CFopi,.pn CFRPMNAXP t

Fig. 19. Well-formedness of principals list

B.4 Principals Equality

Figure 20 defines the equality relation between a global g a role type princi-
pal. Following, in Figure 24 equality between index expi@ss, Figure 21 equality
between parametric expressions, Figure 22 minimum andmuanrivalues of an index
expression, Figure 23 inequality between parametric esoas.

CHAice=Aice

Ckp=p CFri=i’
Crpli] =p'[i']

Fig. 20. Equality between principals

CkEn:T
Crn=n Ckn=n

CHt=t' Crt=t'

Crtopn=topn CFnt=n"

Fig. 21.Equality between parameters
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Chmin(t)=t CFmin(i) =0
Crmin(n*i) =n*CF min (i)
Crmin(t+i)=t+CF min (i)

CFmax(t) =t CF max (i) = max (C(z))
CFmax(nxi) =nxCF max (i)
CFmax(t+i)=t+CF max(i)

Fig. 22. Minimum and maximum value of an index expression

CEn:{nn>n} CkFt >0

CrFn>0 Crkn>0 Cktsn>0

CkFt>n CFHt>0 CHt>0

Ctt—n>0 CFt+n>0 CFn*>0

n>n' Crkn:{nn>n} n'>n CFt>n'/n n'%n=0

Ckn>n' CkFn>n CFtxn>n’'

Crt>n"—n Ckt>n"+n Crt>lg.n’ n =n"

Ctt+n>n CkHt—n>n Ckn*>n'

CHt' —=t>0
CHt<t

Fig. 23.Inequality between parameters
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Crhi:{il0<i<t} Crt<t Crt=i

CHt=1 Cht*xn=1i%n

Crt—t'=i CHt —t=1

Ctt=t'41 Crt=t—1i
Cri:{i0<i<t} Crt<t
ChHi=t

Cri:{il0<i<t} Crmax(j)<t
Cri=3j

Cri:{il0<i<t’} CFmin(t+3j)>0 Crmax(t+j) <t

Cri=t+]

Cri:{i0<i<t’} Ckmin(t—j)>0 CrFmax(t—j) <t

Chi=t—j

Cri=t Cri=t+] Cri=t—j

Chknsxi=nxt Crknxi=n*xt4+nxj Cknxi=nxt—nxj

Cri=i'—-t CkHi=j—1t CHt+i=j

Crt4+i=i Crt+i=j Chknxt+nsi=nxj

Chi=t—t+j CFi=t —t—j

Crt4+i=t+j Cht+i=t"—j

Cti=t—i CFi=t—j CHt—i=j

Crt—i=i CkFt—i=j Chknxt—nxi=nxj

Cri=t—-t —3j Cri=t—t'+j

Cht—i=t'+j Crt—i=1t"—j

Fig. 24.Equality between indexes
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B.5 Substitution of Principals

WVEW =W
plil{p[i1=qalj]} = p{p'=a}[i{i'=3j}]

Fig. 25. Substitution on principals

{i=j) = i{j’/i} ifiefiv(i)andi’ =j —"i=7j
111 — -
J i otherwise

Fig. 26. Substitution on indexes

=j
n*i=n*j— i=j
t+i= j—i=j-t
t-i= j— iz t-j

Fig. 27. Transformation on index expressions equalities

B.6 Principal Set Equality

Definition B.3 C' + pid(G) = {po,p1,p} if C + pid(G) C {po,p1,p} andC +
{po,p1, P} C Pid(G).

Definition B.4 C'+ {p{, p}, .-, P} € {po,p1, P} if ¥p € {p, P}, .-, P, }-C; range(p)
p € {pOaplap}'

Definition B.5 C + {po,p1, P} C {ph, D}, - P} if C'F po,p1, P E {Phs Pl - Pla)-
Definition B.6 C' - R pAi.\z.p t € {p{,ph,-Pptif Ci: {ij0 <i<t-—-1}F
{p.P'} € {p6,PL, - D0}

Definition B.7 intersection(C, [a1..b1]..[a;..b;], p,p’) = [a1..b1]..[a;..b;]\[a]..b]]...[a}--D}]
if C'F p =p’ whererange(p’) = [a”..b"] and[a}..b]]...[a}..b)] = [a1..b1]..]a;..b;] N
[@”..0"].
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intersection(C, [a..b], p,p1) = [a..b]
C;la..b]Fp e {p1,...Pn}

intersection(C, [a1..b1]..[a;..b;],p,p1) = [a}..b1]..[a;..bi]] C;[a}..bi]..[a;..b;] Fp € {....;pn}
C; [al.lb1].4[aj..bj] [ p e {Pl, ~-,Pn}

C,i:{i|0 <i<t—1};[ai..bi].[a;..b;] Fp < {pp}
C;lai..bi]..[a;..b;] Fp € {R pAidz.p t}

Fig. 28. Membership of a set
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C Proofs

In this section, we give the full proof of type preservatian the formal system pre-
sented in this paper; i.e. if a term is well-typed and it rezhuio a new term, then the
new term is also well-typed. The proof relies on standardstuttion lemmas.

Lemma C.1 (Type Preservation Under Substitution) 1. If I';C,n: T+ Er>7and
C' Fn > min(T), thenl"; C{n/n} - E{n/n} F 7{n/n},

2. fI';Ci: I R> Aandn < max (I),then'{n/i}; C+ R{n/i} > A{n/i},
3.0 X:A;CHR>Aandl;CHS> A thenl; CFH R{S/X} > A,

4. fICHR> Ay : Tthenl';C+ R{s[p]/y} > A,s[p]: T.

Proof. (1) is by induction on the typing judgemeht C,n : T - E > 7. We present the
cases appealing to the contributions to this work.

I';Con:THAm.E > II'm : T.7 andC F n > min(T) By assumption
IiCn:T,m:TFAED>TCEDn > min(T) By inversion
r;C{n/n},m: T F E{n/n}F r{n/n} By i.h.
I';C{n/n},F Am.E{n/n} F Pim : T.7{n/n} By rule
where(ITm : T.7){n/n} = Im : T.(t{n/n}).

I';Con:THAE t>7andC Fn > min(T) By assumption
IiCon:TEAE>IImM:T :7,CFt > min(T’), C F n > min(T) By inversion
I';C{n/n}F E{n/n} - Im: T.7{n/n},CF t > min(T) By i.h.
I';C{n/n},F E{n/n} t+ 7{n/n} By rule
where(ITm : T.7){n/n} = Im : T.(t{n/n}).

I';Con:TERSNAX.Rr> ITi: I.AandC + n > min(T) By assumption
I;Cn:THES>A0IX:A4;Cn:T,i:IFR>AiI+1,

C'F n > min(T) By inversion
I;C{n/n}+ S{n/n} > A{n/n} 0,IX : Ai;C{n/n}i: I+ R{n/n}>
A{n/n}i+1) By i.h.
I';C{n/n}F R S{n/n}Xi\X.R{n/n} > IIi: I.(A{n/n}) By rule

The remaining rules are similar. The proof of (2) is simita(1). The proofs of (3)
and (4) are the same as in [4] as for the rules of our contadbatihey do not apply.

Definition C.2 We generatel = A’ by the following rules:
{s[p] :Ka, U); T, s[q) :2(p, U); T"} = {s[p] : T’ s[q] : T"}
{slp] : ®(a, {lj : Tj}jer), slal : &(p. {lx : Tytres)} = {s[p]: Ti,sla : 77}
. {slp]: T, ...} = {s[p] : T{n/n}, ..., }
A= A {s[p]: T, s[q] : To} = {s[p] : 11, s[q] : T5} where{s[p] : T1,s[d] : To} C A

Theorem C.3 (Type Preservation)If I'; C + E > 7, andE —* E’, then there exists
7' wherer = 7/, suchthatl’;C + E' > 7/.

Proof. By induction over the derivation dff —* FE’.
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Case
(M.E)n — E{n/n}

r;Cr(nmE)n>T Assumption

I';CrM.EwIIn: T.randC Fn > min (T) By inversion

I'C,n:TFE>7andC Fn > min (T) By inversion

I';C{n/n}+ E{n/n} > r{n/n} By substitution lemma (1)
Case

RSXNAX.RO— S

I'CFRSAMAX.RO>AOQ Assumption
I'CHFRSMAX.R>ITi: I.AandC F 0 By inversion
ICHS> A0 By inversion
Case

R SAAX.Rn+1— R{n/it{R S Xi.\X.Rn/X}

ICEFRSAMAX.Rn+1>An+1 Assumption

I''CFRSNAX.R>IIi: I.AandC F n + 1 n+1 =max(I) By inversion

r;CES>AQandl X : Aq;Cli:IFR> AT+ 1 By inversion

INX:An;CFQ{n/i}>An+1 By substitution lemma (2)
CFRSANAX.Rn>An By induction hyp.

I'iCrFR{n/i}{R S MAX.Rn/X} > An+1 By substitution lemma (3)
Case

alpo-pn(y0)-Ro | alpr](y1)-Bu | -..a[pn](yn)-Fin
— (vs)(Ro{s[Pol/yo} | .- | Rn{s[pul/yn} | s : 0)

I'; CF alpo..pal(yo)-Ro | a[p1](y1).Ra | -..a[pn](yn).Bn > A Assumption
I'; C F afpo..pnl(yo)-Ro > Av,y ooy I C F alpn) (Yn) - Ro > Anga,

whereA = Ay, ..., Apig By inversion
I'iCFRo> A,y E(G T po) By inversion
I'; CF Ro{s[po]/yo} > A1, s[po] : £&(G | po) By substitution lemma (4)
I';CF Ro{s[pn]/yn} > Ant1, s[po] : €(G | po) By substitution lemma (4)
I';C = Ro{s[pol/yo} | .- | Ru{s[Bn]/yn}r>

Al, ceny AnJrl, S[f)o] : f(G r f)o), ceny S[f)o] : f(G r f)o) By rule
;0 F (vs)(Ro{s[bol/yo} | - | Ra{s[Bu]/yn} | s:0) > A By rule

Other cases are the same as in [4].
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D Examples

D.1 Star Communication Pattern

The Star pattern consists of n+1 workers (named by W) andethety worker\Wi]

(1 < < n)isconnected t&{0]. The Start has two distinct roles: Center, represenyed b
WI[0] and Worker, represented by WI[i]. The global type spesithat the first message
for j=n?1 is sent by W[n] to W[0], and the last one for n=0 is tsey W[1] to W][O].

In this pattern, we observe the use of Reperator to define also repetitive end-point
behavior, in the Center role. Below, we provide the main peiogand roles of the Star:

Star

R end
% Aj Ay WOl — W5 + 1]: (U).y
n+1

def W=RWn] AiAX.(Wi+2],X)n—2
Center2 a[Wo], W1], W(y).R end A\jAY.y!(Wj + 1], f(G +1)); Y n

Workerg) = a[Wi + 1]](y).y?(W0], 2); P
Start2 \n.(R Centerhi. AX.(Workerg) | X) n)

D.2 Jacobi Solution of the Poisson Equation

An.Am.R Psa(n, m) | Prec(n) | Pore(m) | Peac
MAXR (Pic(i) | Pre(i) | X)AJAY . (Peentred, 5) | Prr(7) | Per(5) | Y) nm

Feentrei; 7) = alWi[5]](y)-pt-y8e (Wil [j + 1], {true : y © (Wil[j — 1]{true :

y? (Wi + 1][7], z10); y* (Wi + 1][5], f (i + 1,5));

y?(Wil[j + 1, z0); y (Wi [j + 1], £ (2,5 + 1));

y?(Wil[j — 1, z3); y! (Wil [j — 1], £ (2,5 = 1));

y"(V\(@—ll[J], a);yt Wi = 1][j], £ (i = 1, 7));

y?(Wil[7 — 1], 25); " (Wil [j + 10, f'(25)); t}),
false :y @ (Wi][j — 1], { false :

y?(Wil[j — 1], 26); y '(V\['@][J +1], f"(26)); 01 })
Pstar(n, m) = a]WOJ[0]..Wn][m]](y).ut.y © (Wn][m — 1], Wn — 1][m]{true :
y!Wn|[m — 1], f(n,m — 1)); y?(Wn][m — 1], 2);
y!<Wn - 1][ ], f(n—1,m));y?(Wn — 1][m], 22);
y?(Wn — 1][m], 23); y?(Wn][m — 1], 24));t,
false : y?(Wn — 1][m], 25); y7(V\['n][ — 1], 26); 0})
Pec(m) = a[W0|[m]](y).ut.y&(W1][m], {true : y & (WO][m — 1[{true :
y?(W1][m], z1); y W1 [m], f(i + 1,5));
Yy WO][m — 1], £(0,1)); y?(WO|[m — 1], 22);
y?(WOJ[m — 1], 25); y\W1][m], f'(z5)); t}),
false : y & (W1][m], {false :
y?(WoJm — 1], z6); y (W] [m], f"(26)); 0})})
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Pre(j) = aWn][j]](y)-pt-y&(Wn][j + 1], {true : y & (Wn][j — 1[{true :
y?(Wn][j + 1], 22); y (Win[j + 1], f(i,5 + 1));
y?(Wnl[j — 1], 23); y W] [j — 1], f(4,5 — 1));
y?(Wn — 1][j], 24); yX(Wn — 1] [5], f(i — 1, 7));
y7(V\['n][J — 1], 25); yWR] [ + 1], f'(25)); t}),
false : y ® (Wn][j — 1],{false:

y?(Wnl[j — 1], 26); (Wl [j + 11, /" (26)); 0}) })
The implementation of the other roles is similar and can Isdyeereated from the
defln'tlon Ochentep
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