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From Scene Flow to Visual Odometry through
Local and Global Regularisation in

Markov Random Fields
Raluca Scona, Hidenobu Matsuki and Andrew Davison

Abstract—We revisit pairwise Markov Random Field (MRF)
formulations for RGB-D scene flow and leverage novel advances
in processor design for real-time implementations. We consider
scene flow approaches which consist of data terms enforcing
intensity consistency between consecutive images, together with
regularisation terms which impose smoothness over the flow
field. To achieve real-time operation, previous systems leveraged
GPUs and implemented regularisation only between variables
corresponding to neighbouring pixels. Such systems could esti-
mate continuously deforming flow fields but the lack of global
regularisation over the whole field made them ineffective for
visual odometry. We leverage the GraphCore Intelligence Pro-
cessing Unit (IPU) graph processor chip, which consists of 1216
independent cores called tiles, each with 256kB local memory.
The tiles are connected to an ultrafast all-to-all communication
fabric which enables efficient data transmission between the
tiles in an arbitrary communication pattern. We propose a
distributed formulation for dense RGB-D scene flow based on
Gaussian Belief Propagation which leverages the architecture of
this processor to implement both local and global regularisation.
Local regularisation is enforced for pairs of flow estimates whose
corresponding pixels are neighbours, while global regularisation
is defined for flow estimate pairs whose corresponding pixels
are far from each other on the image plane. Using both types
of regularisation allows our algorithm to handle a variety of
in-scene motion and makes it suitable for estimating deforming
scene flow, piece-wise rigid scene flow and visual odometry within
the same system.

Index Terms—RGB-D Perception; Visual Tracking; Hardware-
Software Integration in Robotics

I. INTRODUCTION

SCENE flow estimates the 3D non-rigid motion field of
a scene between consecutive images. Its potential uses

include helping robots navigate while avoiding moving obsta-
cles, enabling SLAM (simultaneous localisation and mapping)
in dynamic environments or as input to motion segmentation.

Scene flow received significant research interest thanks to
commodity 3D cameras and improvements in deep learning
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Fig. 1: Top left: Scene flow factor graph, with per-pixel flow vari-
ables (orange), local regularisation (green) and global regularisation
(blue). Top right: Non-rigid scene flow, with flow vectors coloured
by magnitude (large in red, small in blue). Bottom left: Visual odom-
etry, showing our estimated trajectory (blue), ground truth trajectory
(red) and 100 reprojected RGB-D frames from fr1/floor [1]. Visual
odometry is sampled from the rigid flow field. Bottom right: Varying
rigidity scene flow: continuously deforming on the foreground and
nearly constant on the background, where a segmentation mask of
the foreground is assumed to be provided.

(DL). While DL-based methods demonstrate compelling re-
sults, variational formulations remain relevant. They readily
generalise and are low cost to develop, not requiring training
data or large computational resources for training.

However, variational formulations for scene flow are ill-
posed and require regularisation to be solved. Although scene
flow measures the motion of every 3D point, it cannot directly
be used as visual odometry even in static scenes. This lead
to different types of motion estimation algorithms to support
different kinds of regularisation, from fully non-rigid scene
flow to piece-wise rigidity and visual odometry.

We propose a pairwise Markov Random Field (MRF)-
type method to bridge the gap between non-rigid scene flow
and rigid visual odometry by leveraging novel advances in
processor design. While GPUs have traditionally been used to
solve scene flow, real-time variational approaches mainly im-
plemented local regularisation between neighboring pixels by
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leveraging fast shared memory access [2]. Recently, unconven-
tional architectures have been developed for computer vision
applications, and an important example is the GraphCore IPU
[3]. With its distributed per-tile memory and ultrafast all-to-all
communication fabric, the IPU can support greater flexibility
in the communication patterns of algorithms and we leverage
this to implement local as well as global regularisation.

We formulate scene flow as a factor graph where the
variables are per-pixel 6D motion estimates and with two
types of factors: 1. unary photometric factors which warp a
pixel between consecutive frames to minimise the photometric
error and 2. pairwise smoothness factors which penalise the
difference between specified pairs of motion estimates.
To support both local and global regularisation, we implement
two kinds of smoothing factors:

• Local smoothing between neighbouring variables under
the assumption of local rigidity.

• Global smoothing between pairs of variables that are
located far from each other on the image plane, to
synchronise the motion estimate across the image and
simulate visual odometry.

Regarding global regularisation, we observe that sampling
N (4 to 8) smoothing connections uniformly at random on the
image plane for each pixel causes the scene flow distribution to
become very tight and consistent with the camera motion. We
interpret this as a ’small world’ property, where flow vectors
receive information from different image regions, converging
to a globally consistent solution.

We propose that a combination of these smoothing factors
enables our algorithm to tackle a continuous range of problems
from pure scene flow to pure rigid visual odometry (Fig. 1).
To summarise, our contributions are:

1) A factor graph formulation for RGB-D scene flow,
solved using the Gaussian Belief Propagation message
passing algorithm which runs in real-time on the IPU.

2) We implement both local and global regularisation and
show that depending on how this is set, the behaviour of
the algorithm changes significantly, such that the same
method is used to estimate deforming scene flow, piece-
wise rigid scene flow and visual odometry.

3) To the best of our knowledge, ours is the first approach
for decentralised visual odometry, where the global
motion of the camera is computed through purely local
computations using the global smoothing factors.

II. RELATED WORKS

a) Local regularisation: Scene flow is the 3D extension
of the optical flow problem and was pioneered for multi-view
stereo systems through formulations solving optical and range
flow constraints [4], [5]. Following works explored variational
formulations and methods for regularising the flow field,
where notably TV (Total Variation) worked well in enforcing
discontinuities between moving objects [6], [7]. Herbst et
al. [8] proposed one of the first RGB-D scene flow techniques
combining optical, range flow and TV regularisation weighted
by depth, surface normals and colour. Jaimez et al. [2]
proposed the first real-time RGB-D scene flow system with a

primal-dual formulation. The solver was designed with pixel-
wise computation in mind which made it suitable for the GPU.

Although belief propagation has been applied to optical flow
[9], [10], the computational cost of this algorithm for standard
processors was significant for real-time applications and we
are not aware of further studies applied to scene flow.

b) Piece-wise rigidity: Further research has explored
different types of regularisation over the flow field. Some
techniques extract superpixels assuming they correspond to
rigid planar regions [11], [12] Sun et al. [13] focus on robust
occlusion handling by decomposing the scene into moving
layers ordered by depth. In these methods, motion estimation
can be coupled with a labeling task, where each pixel is
assigned an estimated motion and a patch or layer.

Jaimez et al. [14] decompose depth images into clusters and
estimate whether each cluster is static or dynamic. Dynamic
clusters are assigned independent rigid motions while static
clusters are used for visual odometry. Quiroga et al. [15]
represent flow estimates using 6D twists and simultaneously
estimate the camera motion and scene flow. They formulate
separate cost functions for both quantities which are solved
iteratively and in alternation. The difference between our
method and these contributions is that we use the same
formulation for both scene flow and visual odometry and
also support deforming objects whose motion cannot be well
captured through rigid decompositions.

c) Learned Features: GPUs have enabled many DL
techniques for scene flow. These can be more robust to large
motions by relying on complex features extracted through deep
convolutional layers [16]. DL methods have also been explored
for point clouds, such as FlowNet3D [17] which extracts deep
features from point clouds to estimate per-point 3D motion
vectors. Tishchenko et al. [18] first learn a rigid transformation
between a pair of point clouds followed by non-rigid flow after
registering the point clouds.

While not directly related, techniques like DynamicFusion
[19] and VolumeDeform [20] focus on reconstructing a single
deforming foreground object which is tracked using sparser
deformation graphs. A dense flow field is computed from
the deformation graphs through motion interpolation. Novel
directions include learning dense non-rigid correspondences
[21] and improving real-time efficiency [22].

III. SCENE FLOW FACTOR GRAPH

The variables in the factor graph are the per-pixel scene
flow estimates V = {vi}i∈Ω, where Ω is the image plane. We
formulate: 1. unary measurement factors m which compute the
photometric error of a pixel between consecutive images given
the estimated flow and 2. pairwise smoothing factors s defined
over a set of pairs N , which penalise the difference between
these motion estimates. Smoothing factors are implemented
between neighboring variables and also variables that are far
from each other on the image plane. The structure of this factor
graph is shown in Fig. 2.

We maximise the posterior of the flow estimates given the
measurements and smoothness constraints:

V ∗ = argmax
V

∏
vi∈V

mi(vi)
∏

(j,k)∈N

sj,k(vj ,vk). (1)
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Fig. 2: The structure of the scene flow factor graph. Per-pixel
variables vi are each associated a measurement factor mi. Smoothing
factors si,j are implemented between neighbouring variables (green)
as well as variables that are far from each other (blue).

We formulate each factor as a least-squares error term
with zero mean Gaussian noise. Next, we describe the state
parametrisation and the factors.

A. State Parametrisation

Many RGB-D scene flow methods represent the motion of
a point using a 3D vector which is the translation of this point
between consecutive frames. This parametrisation works well
in scenarios where local smoothing is enforced and where
rotation estimation is not required [2]. However, our system
tackles both scene flow and visual odometry. This requires the
estimation of full 3D motion, so we represent each flow value
as a column vector v = [t,ω] ∈ R6 composed of a stacked
translation vector t ∈ R3 and a rotation twist ω ∈ R3. A point
p ∈ R3 is warped from frame i to frame i+ 1 as follows:

pi+1 = expM (ω×)pi + t, (2)

where ω× is the 3× 3 skew-symmetric matrix representation
of ω and expM : so(3) → SO(3) maps an element of Lie
Algebra to a rotation matrix.

B. Gaussian Photometric Factor

This factor computes the likelihood of a scene flow estimate
given the photometric error of its corresponding pixel as it is
warped between the current and previous intensity images (I1
and I0 respectively). For every pixel i with 2D coordinates
xi ∈ Ω and corresponding flow estimate vi = [ti,ωi]

T , we
formulate a Gaussian photometric factor:

mi(vi) ∝ exp

(
−1

2
||zmi − hmi(vi)||2Σm

)
, (3)

where zmi
= I0[xi] and with the measurement function:

hmi
(vi) = I1

[
π
(
expM (ωi)π

−1 (xi, D0 [xi]) + ti
)]

, (4)

where D0 is the depth image corresponding to I0 and π :
R3 → R2 projects a 3D point onto a 2D plane using the
pinhole camera model. We minimise this photometric error
(Eq. (4)) to compute flow fields which represent the scene
motion between consecutive images.

The measurement function hmi
is non-linear due to the

rotational component of vi and in Section IV-A2 we describe

how this factor is relinearised during optimisation to be
expressed as a Gaussian distribution.

C. Gaussian Smoothness Factor

Gaussian smoothing factors constrain that pairs of flow
vectors should have a similar value:

sj,k(vj ,vk) ∝ exp

(
−1

2

∣∣∣∣∣∣∣∣ [ tkωk

]
−
[
tj
ωj

]∣∣∣∣∣∣∣∣2
Σs

)
. (5)

These factors reduce the influence of outlier flow estimates
and induce smoothness in the flow field.

D. MAP Estimation

Given the Gaussian forms of the factors specified above, we
reformulate the problem as least-squares minimisation:

V ∗ = argmin
V

[ ∑
vi∈V

||zmi
− hmi

(vi)||2Σm
+

∑
(j,k)∈N

∣∣∣∣∣∣∣∣ [ tkωk

]
−
[
tj
ωj

]∣∣∣∣∣∣∣∣2
Σs

]
. (6)

Where Σm and Σs are the covariance matrices of the photo-
metric and smoothing factors respectively.

IV. GAUSSIAN BELIEF PROPAGATION

We optimise the factor graph formulation in Eq. 6 using
Gaussian Belief Propagation, a message-passing-based solver
which can be efficiently implemented on the IPU [23] [24].

A. Message Passing

We represent Gaussian distributions in information form
[25], using information vector η and precision matrix Λ:

N (v,µ,Σ) ∝ N−1(v,η,Λ), with (7)

Λ = Σ−1 ; η = Λµ. (8)

This aids implementation as multiplication of distributions is
equivalent to adding information vectors and matrices. Next,
we describe variable and factor message computations [26].

1) Variable to Factor Message: A variable belief at time
t is represented in Gaussian information form: tbi(vi) =
N−1(vi;

tηbi ,
tΛbi) and is computed by taking the product

of incoming messages from the photometric and smoothing
factors, which is equivalent to summing the information vec-
tors and precision matrices respectively:

t+1ηbi =
tηmi→i +

∑
(i,j)∈N

tηsi,j→i

t+1Λbi =
tΛmi→i +

∑
(i,j)∈N

tΛsi,j→i

(9)

Variables send messages only to smoothing factors, as pho-
tometric factors are unary. A message from a variable i to
a factor si,j is computed by multiplying incoming messages
from all factors except for the message from factor si,j :

tηi→si,j = t+1ηbi − tηsi,j→i,
tΛi→si,j = t+1Λbi − tΛsi,j→i.

(10)
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2) Factor to Variable Message:
a) Photometric Factor: To compute the information form

of the photometric factor (Sec. III-B), the measurement func-
tion hmi

must first be linearised around a state variable vi,0.
The information vector and precision matrix of a linearised
factor take the form [23], [27]:

tηmi→i = JTΣ−1
m (Jvi,0 + zmi − hmi(vi,0)) ,

tΛmi→i = JTΣ−1
m J ,

(11)

with the 1 × 6 Jacobian J =
[
∂hmi

∂ti
,
∂hmi

∂ωi

]∣∣∣∣
ti=ti,0,ωi=ωi,0

.

The measurement nodes are leaf nodes and at every time step
t they are relinearised around the current state estimate and
send the message: N−1(vi;

tηmi→i,
tΛmi→i).

b) Smoothness Factor: This is a linear factor and com-
puting its information vector and precision matrix following
Eq. 11 needs only to be done once. The structure of the factor,
partitioned according to state, is as follows:

sj,k(vj ,vk) = N−1

([
vj

vk

]
;

[
ηj

ηk

]
,

[
Λjj Λjk

Λkj Λkk

])
. (12)

For multi-variate factors, computing the message for a variable
requires first multiplying the factor distribution with all other
incoming variable messages and then marginalising out these
other variables. For example, to compute the message from
factor sj,k to variable j, we first add the incoming message
from variable k:

ηsj,k =

[
ηj

ηk + tηk→sj,k

]
;Λsj,k =

[
Λjj Λjk

Λkj Λkk + tΛk→sj,k

]
.

(13)
We apply the Schur complement as proposed in [25] to the
upper part of the system to marginalise out variables dependent
on k and obtain a message for variable j:
t+1ηsj,k→j = ηj −Λjk

(
Λkk + tΛk→sj,k

)−1
(ηk + tηk→sj,k),

t+1Λsj,k→j = Λjj −Λjk

(
Λkk + tΛk→sj,k

)−1
Λkj .

(14)
The same procedure is used to send messages to variable
k, however the information vector and precision matrix are
reordered before marginalisation so the output variable is
located at the top.

B. Implementation

1) Robust Factors: To reduce the influence of large resid-
uals which could originate from outliers, it is common in
practice to use M-estimators instead of Gaussian distributions
to model the factor measurement functions. We replicate the
behaviour of the Huber loss, which is quadratic around the
minimum and grows linearly beyond a specified threshold
Niσ . It is possible to replicate this behaviour using Gaussian
distributions by rescaling the noise covariance of the Gaussian
measurement models for residuals larger than Niσ [28]. This
reduces the information of messages from these factors in a
manner equivalent to the Huber norm [23], [27]:

fi(xi) =

{
exp

(
− 1

2M
2
i

)
, Mi ≤ Niσ

exp
(
− 1

2M
2
i

[
2Nσ

Mi
− N2

σ

M2
i

])
, Mi > Niσ

,

(15)

where Mi is the Mahalanobis distance for the measurement
and smoothing factors: Mmi(vi) = ||zmi − hmi(vi)||Σm and
Msj,k(vj ,vk) = ||vk − vj ||Σs respectively. We set different
thresholds Nmσ

and Nsσ for the two types of factors.
2) Image Pyramid: To improve the robustness of our sys-

tem to larger motions, we implement scene flow estimation
using a coarse-to-fine pyramid scheme. We use 4 levels in the
pyramid with the resolutions: 30×40, 60×80, 120×160 and
240 × 320. We formulate separate factor graph optimisation
problems for each level and use the solution from a coarser
level of a pyramid to initialise the optimisation at the following
finer level.

V. FACTOR GRAPH DESIGN AND IMPLEMENTATION

The IPU chip is massively parallel, consisting of 1216 tiles
that are connected to an ultrafast all-to-all communication
fabric which enables them to send data between each other
at high speed. Each tile has 256kB local memory with a total
of 300MB memory for the whole chip. Each tile can run 6
threads and execute different programs independently.
A. Factor Graph Design

Graph programs must be compiled before they can be run
on the IPU. Compiled graphs can be saved to disk and reused
when necessary. To make best use of the IPU, we design
the structure of the factor graph to fit the problem and keep
this structure fixed. We focus on three configurations for
our system which differ in terms of the distribution of their
smoothing factors (Fig. 3):

1) Non-Rigid Scene Flow (BP-Flow): each variable is
connected via 4 local smoothing factors to its direct
neighbours in the directions: up, down, left and right.
This configuration estimates non-rigid scene flow.

2) Rigid Scene Flow (BP-VO): each variable is connected
through global smoothing factors to 6 other variables
that are sampled uniformly at random on the image
plane. This is used to estimate rigid scene flow, which
in static scenes is equivalent to visual odometry.

3) Scene Flow with Varying Rigidity (BP-VRFlow):
combines both formulations described above: each vari-
able is connected to its 4 immediate neighbors and 6
other variables sampled from the image plane. This con-
figuration supports estimating both rigid and deforming
motion in a single image and can also replicate the
behaviour of the other two configurations at increased
computational cost (Table III).

Regarding BP-VRFlow, to disable regularisation in a par-
ticular region of the graph, we ’disable‘ unwanted smoothing
factors by sending empty smoothing messages between the
variables in that region. BP-VRFlow can simulate both BP-
Flow and BP-VO by sending empty messages through global
or local smoothing factors respectively. BP-VRFlow requires
as input a segmentation mask to distinguish between non-
rigidly moving objects and the rigid background.

In BP-VO, we experimented with other types of global
smoothing factor configurations, such as hand-designed pat-
terns. However, we found that these designs induce bias in
the optimisation which results in unwanted symmetries in the
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BP-Flow BP-VO

BP-VRFlow

Rigid Flow / Visual OdometryNon-rigid Flow

Varying Rigidity Flow

● Non-rigid on foreground
● Rigid/constant on background

BP-VO
Ground truth

Fig. 3: The factor graph configurations we consider (with variables in orange, local smoothing in green, long range smoothing in blue):
BP-Flow tackles non-rigid scene flow by implementing smoothing between neighbouring variables; BP-VO tackles visual odometry using
smoothing factors between variables which are far from each other on the image plane. This constrains the flow field to be rigid, which
in static scenes is equivalent to the camera motion. BP-VRFlow combines both local and global smoothing factors to estimate both rigid
background motion and non-rigid foreground flow. BP-VRFlow requires a segmentation mask to control where regularisation is disabled (eg.
between pixels belonging to the person and to the background). For illustration purposes, factor graphs are shown here to only consist of
4× 4 variables. We implement multi-resolution factor graphs with a maximum resolution of 240× 320 (Sec. IV-B2).

flow field. Ideally, we would implement smoothing factors
between one ’anchor’ variable and all the others. However,
this produces an all-to-one communication pattern which is
not feasible for real-time operation. Instead, uniform random
sampling of smoothing factors is a practical solution which
produces a smooth and uniform flow field.

To handle pixels with missing depth, we compute a validity
mask representing variables with valid depth and who are
connected to at least two other variables with valid depth.
We then ’disable’ smoothing factors with at least one invalid
variable by sending empty messages.

B. IPU Implementation

When mapping the problem to the IPU, we minimise inter-
tile communication by splitting the variables into small patches
and mapping each patch to a different tile. Factor graphs
in Fig. 3 show this, where the underlying grid represents a
processor with 2 × 2 tiles, and patches of 2 × 2 variables
are mapped to each tile. This way, smoothing factors between
variables within the same patch perform all computation on
the same tile. To compute the image warping required in
the photometric factor (Eq. 4), we use a multislice function
provided in the PopLibs™library which splits an input image
and coordinates of warped pixels evenly across the tiles to
retrieve the warped image efficiently.

Our scene flow estimation problem is significant, consisting
of 6D variables for each pixel at every level of the pyramid.
Most memory is spent on smoothing factors that invert two
6 × 6 matrices (Eq. 14). We use two IPU chips, as they are
both located on the same board supporting fast data exchange.
The new IPU MK2 has 900MB total memory, compared to the
two MK1 IPUs we use which have 600MB in total, and we
are confident that the next generation of this processor will
enable us to run our method on a single chip.

VI. RESULTS

We evaluate the scene flow configurations discussed in
Section V-A: BP-Flow, BP-VO and BP-VRFlow. We evaluate
each method on its capability: 1. BP-Flow on non-rigid scene
flow, 2. BP-VO on visual odometry and 3. we demonstrate that
BP-VRFlow supports both rigid and non-rigid motions in the
same image assuming a segmentation mask of the non-rigidly
moving objects in the scene is provided.

A. Non-Rigid Scene Flow (BP-Flow)

We compare BP-Flow to PD-Flow [2], a primal-dual scene
flow method which is real-time on the GPU. PD-Flow is
similar to our approach: it minimises the photometric error and
uses local regularisation. Some differences are: 1. PD-Flow
estimates one 3D motion vector per pixel, neglecting rotation;
2. both photometric and geometric errors are minimised.

We evaluate both approaches on the DeepDeform training
set [21] which provides dense scene flow fields for a selection
of RGB-D pairs of foreground objects undergoing deforma-
tions. Scene flow was computed through a combination of
crowd sourcing of sparse correspondences and dense non-
rigid flow estimation which is consistent with the sparse
annotations. While this flow field is not perfect ground truth,
it is of high accuracy and valuable for real data evaluation.

The dataset targets generic scene flow, including small and
large inter-frame motion. We focus on real-time performance
and make the assumption of small motion between consecutive
frames. Both BP-Flow and PD-Flow implement the photomet-
ric error which has a small basin of convergence and requires
small inter-frame motion to work well.

To support this, we process the DeepDeform training set
and select RGB-D pairs with maximum scene flow values
of 0.05, 0.1, 0.15, 0.2 and 0.25m. We then compute the
average per-point difference between the estimated flow field
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Fig. 4: Sample motion estimates of BP-Flow and PD-Flow on two
DeepDeform sequences. BP-Flow and PD-Flow well recover the
deformation fields of the foreground objects and produce motion
fields which are consistent to the DeepDeform training data.
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Fig. 5: Average per-point scene flow errors on DeepDeform se-
quences as a function of inter-frame motion. PD-Flow and BP-Flow
perform similarly and are accurate for small inter-frame motions.

and the training set flow field for each image and report the
performance of these two systems as a function of the inter-
frame motion in Tab. I and in more detail in Fig. 5.

The two approaches achieve similar accuracy on this dataset,
with best performance being achieved for small inter-frame
motions. This means that our factor graph formulation is a
viable alternative to similar variational methods for scene flow
which use the photometric error and local regularisation.

Fig. 4 shows example flow fields from PD-Flow and BP-
Flow. The methods provide similar flow fields which are
consistent to reference flow fields from DeepDeform.

B. Rigid Scene Flow (BP-VO)

We first qualitatively compare BP-Flow and BP-VO to show
the effect of the long range smoothing factors on the resulting
flow field. In Fig. 6 we warp an RGB-D image pair with
known −0.02m motion on the X axis and plot histograms of
the flow fields from BP-Flow and BP-VO for the translational
degrees of freedom. The long range factors induce a much
tighter distribution in the flow field from BP-VO, which is
desirable for applying this method to rigid scenes. The motion

Average per-point error (m)
< 0.05m < 0.1m < 0.15m < 0.2m < 0.25m

PD-Flow 0.024 0.050 0.078 0.112 0.147
BP-Flow 0.015 0.034 0.062 0.101 0.133
Imgs. no. 113 439 690 841 862

TABLE I: Average per-point scene flow errors for image pairs with
increasing inter-frame motion. We also state the number of RGB-D
pairs within the DeepDeform training set identified for each category
of inter-frame motion and used during evaluation.

estimate from BP-VO is also more accurate as the median
translational quantity on the X axis is −0.015m. This is
due to the global information exchange enabled by the long
range smoothing factors, which aids the solver in achieving a
consistent estimate.

We quantitatively evaluate BP-VO on the TUM dataset
[1]. We report results for: 1. the mean scene flow estimate
by taking the average of all estimated flow vectors (BP-VO
(mean)) and 2. a single estimate from the central pixel (BP-VO
(sample)). The second evaluation shows that our method can
be used as visual odometry, without further post-processing.

We compare the accuracy of our method against related
approaches: 1. DVO [29], a visual odometry method designed
for static scenes.; 2. VO-SF [14] an odometry method designed
for dynamic scenes which rigidly tracks moving objects; 3.
StaticFusion [30], a visual SLAM method which segments
moving objects and reconstructs the background, 4. FlowFu-
sion [31], a visual SLAM method which segments moving
objects using optical flow and reconstructs the background.

We report the translational relative pose error RMS over
static scenes in Table II. Although our method is slightly
less accurate compared to dedicated visual odometry, this is a
significant result, as we are not aware of any other scene flow
method that is comparable to dedicated visual odometry.

The accuracy of BP-VO could be improved through a better
rotation parametrisation similar to visual odometry formula-
tions. While we estimate the full rotation, visual odometry
methods repeatedly warp one image towards the other and
relinearise the solver around zero motion. Replicating this in
Belief Propagation is left for future work.

C. Scene Flow with Varying Rigidity (BP-VRFlow)

BP-VRFlow has a flexible structure that supports both rigid
and deforming motions in the same image. It requires a seg-
mentation mask to disable regularisation between foreground
and background. Fig. 7 shows motion estimates from BP-
VRFlow in a scene with a moving person. We simulate a
change in the smoothing factors by sending empty smoothing
messages through all global factors connected to foreground
variables. As a result, motion estimates on the wall are much
smoother than those produced by PD-Flow and BP-Flow, while
foreground objects maintain non-rigidity.

We evaluate BP-VRFlow quantitatively on the TUM dataset
(Tab. II). In static environments, BP-VRFlow simulates BP-
VO by disabling all local regularisation factors. In dynamic
environments, we use MaskRCNN [32] to segment the moving
people and chairs which enables BP-VRflow to estimate visual
odometry using background variables and also non-rigid flow
for the foreground. Segmentations are computed offline for
each frame and read during run-time with the RGB-D input.
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Fig. 6: Qualitative example of the impact of long range smoothing factors on the distribution of the flow field. Left: we warp an RGB-D
image with a known motion of −0.02m in the lateral X direction and display the overlaid original and warped image. Right: a histogram
of the distribution of the flow fields from BP-Flow and BP-VO for the translational degrees of freedom, where red marks the ground truth
motion estimate. The distribution from BP-VO is tighter and closer to the actual solution. This is because long distance smoothing messages
increase the information that each pixel has access to and allow the method to converge to a solution which is globally consistent.

Trans. RPE RMSE (m/s)
IPU CPU/GPU

Seq. BP-VO (mean) BP-VO (sample) BP-VRFlow (sample) DVO [29] VO-SF [14] StaticFusion [30] FlowFusion [31]
fr1/desk 0.077 0.077 0.077 0.04 0.021 0.03 -
fr1/floor 0.073 0.075 0.075 0.09 0.058 0.08 -

Static fr1/plant 0.065 0.068 0.068 0.036 0.06 0.104 -
Env. fr1/room 0.076 0.076 0.076 0.058 0.052 0.072 -

fr1/teddy 0.08 0.083 0.083 0.096 0.065 0.10 -
fr1/xyz 0.056 0.056 0.056 0.026 0.021 0.023 0.023
fr2/desk 0.031 0.035 0.035 0.018 0.02 0.018 -

Dyn. fr3/w static 0.32 0.34 0.015 0.31 0.11 0.013 0.03
Env. fr3/w xyz 0.46 0.46 0.079 0.48 0.27 0.121 0.21

TABLE II: Translational RMSE. BP-VO is slightly less accurate compared to dedicated visual odometry approaches, however the results
are significant given the distributed nature of the approach. BP-VRFlow can simulate BP-VO in static scenes, while in dynamic scenes it
can estimate both visual odometry and scene flow assuming it is provided a segmentation of the foreground.

  

Segmentation Mask 
(used in BP-VRFlow)

PD-Flow

Overlaid images BP-Flow

BP-VRFlow

Input Output

Fig. 7: Qualitative results of our flow system running with varying rigidity. Top left: overlaid input images, segmentation mask from
DeepDeform, flow fields estimated using BP-Flow and PD-Flow. Top right: The flow estimated by BP-VRFlow is smooth in the background
and non-rigid on the foreground. This is enabled by our flexible factor graph structure, where global smoothing messages are only sent
for variables belonging to the background. Bottom: Flow distribution histogram for BP-Flow and BP-VRFlow for each degree of freedom
(rotation is expressed in degrees). While BP-Flow has a broad distribution, BP-VRFlow shows a clear peak corresponding to the camera
motion and smaller broad distributions representing the motions of the people.
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Run-time
IPU GPU CPU

BP-Flow BP-VO BP-VRFlow PD-Flow SF VO-SF

Hz 17 14 10 30 30 12

TABLE III: Run-time of our system and related approaches.

D. Timing Analysis

Table III states the runtimes of the different configurations
of our system compared to related approaches. The BP-
VRFlow processing times do not include the MaskRCNN
segmentation computation. The graph program must be re-
compiled if its structure is changed during run-time. We
maintain the structures of our graphs fixed, but also state their
compilation timings for completeness: ∼ 2mins for BP-Flow,
∼ 3mins for BP-VO and ∼ 5mins for BP-VRFlow. After
compilation, programs are written to file and read once at the
start of the application, which takes around 1 second.

VII. DISCUSSION AND CONCLUSION

We demonstrated that a simple MRF-type formulation with
only unary measurement and pairwise smoothing factors can
be used to estimate non-rigid, rigid and piece-wise rigid
scene flow. The behaviour of the algorithm can be altered
by changing the configuration of the smoothing factors and
global properties such as the camera motion can be estimated
through purely local computations. This is an important step
in the direction of distributed motion estimation and in future
work we will improve the accuracy of BP-VO through better
rotation parametrisaion.

Our method is appealing due to its simplicity. Other smooth-
ing factor configurations could also be considered, for ex-
ample if the scene is known to contain mostly piece-wise
rigid objects, local smoothing could be extended to a larger
neighbourhood beyond the immediate four neighbours. We
also aim to integrate motion segmentation into the method
to explicitly segment differently moving objects in the scene
based on similarities in the flow field and use this information
to enable or disable global smoothing factors as required.
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[21] A. Božič, M. Zollhofer, C. Theobalt, and M. Nießner, “DeepDeform:
Learning non-rigid RGB-D reconstruction with semi-supervised data,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.
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