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Abstract

Morning-preference chronotype has been found to be protective against breast and prostate

cancer. Sex hormones have been implicated in relation to chronotype and the development

of both cancers. This study aimed to assess whether sex hormones confound or mediate

the effect of chronotype on breast and prostate cancer using a Mendelian Randomization

(MR) framework. Genetic variants associated with chronotype and sex hormones (total tes-

tosterone, bioavailable testosterone, sex hormone binding globulin, and oestradiol)

(p<5×10−8) were obtained from published genome-wide association studies (n�244,207

females and n�205,527 males). These variants were used to investigate causal relation-

ships with breast (nCases/nControls = 133,384/113,789) and prostate (nCases/nControls =

79,148/61,106) cancer using univariable, bidirectional and multivariable MR. In females, we

found evidence for: I) Reduced risk of breast cancer per category increase in morning-pref-

erence (OR = 0.93, 95% CI:0. 88, 1.00); II) Increased risk of breast cancer per SD increase

in bioavailable testosterone (OR = 1.10, 95% CI: 1.01, 1.19) and total testosterone (OR =

1.15, 95% CI:1.07, 1.23); III) Bidirectional effects between morning-preference and both bio-

available and total testosterone (e.g. mean SD difference in bioavailable testosterone =

-0.08, 95% CI:-0.12, -0.05 per category increase in morning-preference vs difference in

morning-preference category = -0.04, 95% CI: -0.08, 0.00 per SD increase in bioavailable

testosterone). In males, we found evidence for: I) Reduced risk of prostate cancer per cate-

gory increase in morning-preference (OR = 0.90, 95% CI: 0.83, 0.97) and II) Increased risk

of prostate cancer per SD increase in bioavailable testosterone (OR = 1.22, 95% CI: 1.08,

1.37). No bidirectional effects were found between morning-preference and testosterone in

males. While testosterone levels were causally implicated with both chronotype and cancer,

there was inconsistent evidence for testosterone as a mediator of the relationship. The pro-

tective effect of morning-preference on both breast and prostate cancer is clinically
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interesting, although it may be difficult to effectively modify chronotype. Further studies are

needed to investigate other potentially modifiable intermediates.

Author summary

Although previous studies have demonstrated that morning-preference chronotype is

associated with reduced breast and prostate cancer risk, the role of sex hormones in this

relationship has yet to be elucidated. In this study we use genetic variants strongly associ-

ated with morning-preference chronotype, total testosterone, bioavailable testosterone,

sex-hormone binding globulin and oestradiol to explore the potential of these sex hor-

mones to act as either mediators or confounders of this relationship. The findings of this

study implicate testosterone as a potential mediator of the relationship between chrono-

type and both prostate and breast cancer risk, although results were inconsistent between

methods. As such, further studies are warranted to better understand the mechanisms

underlying this relationship in order to inform the development of sleep-based interven-

tion studies that may help to reduce breast and prostate cancer risk in high-risk

populations.

Introduction

Breast and prostate cancers are hormonally related tumours with a significant burden of mor-

bidity and mortality: an estimated 2.1 million women and 1.3 million men were diagnosed

with these conditions in 2018, with age-standardised mortality rates of 13.0 and 7.6 per

100,000 respectively [1]. Despite improvements in cancer screening, treatment [2, 3]and moni-

toring [4, 5], they remain the most common cancers in women and men, respectively, and

their incidence is increasing [6]. Improved understanding of the aetiology of these cancers is

an important step towards the development of effective primary prevention strategies.

Circadian rhythms underlying the sleep-wake cycle are implicated in cancer development,

particularly in breast and prostate cancers [7, 8]. Variation in sleep-wake cycles between indi-

viduals [9] can manifest as circadian preference (chronotype), with most people fitting into

one of three broad categories: morning-preference; evening-preference; or no preference.

Using multivariable regression, we showed that over five categories a per category increase

from extreme evening preference to extreme morning-preference chronotype was associated

with a reduction (OR = 0.95; 95% CI: 0.93, 0.98) in breast cancer incidence in the UK Biobank

prospective cohort study (n = 151,421; 2,732 incident cases [10]), and this result was consistent

when triangulated across different methods, including Mendelian randomization (MR) (see

below). A prostate case-control study (1095 cases and 1388 controls) found limited evidence

for a difference in chronotype between cases and controls. However, among men with an

evening preference, overall risk was higher among night shift workers compared with non-

shift workers (OR 1.50; 95% CI 0.85, 2.66), whereas among men with no preference chrono-

types, there was no difference in risk between night shift workers and non-shift workers (OR

1.02; 95% CI: 0.72, 1.44) [11]. More recently, an MR study found morning preference to be

associated with a reduced risk of prostate cancer (OR = 0.71; 95% CI: 0.54, 0.94) [12].

An individual’s chronotype is largely determined by genetic variants [13], external environ-

mental cues (e.g. light exposure [14]), and age [15]. Typically, children exhibit morning-prefer-

ence, which becomes progressively later during adolescence, then as adults age there is a

gradual shift back towards morning preference [16]. Generally, females reach these markers
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earlier than males, and males are more likely to retain their adolescent evening-preference into

adulthood [9]. However, sex differences reduce around 50 years of age, coinciding with the

onset of menopause [16]. This variability over time and by sex suggests that an individual’s

chronotype may, in part, be hormonally driven.

Hormones, such as cortisol, melatonin and some sex steroids, have previously been studied

in relation to chronotype [17–21] and shift work, which is another circadian trait [22, 23]. In

particular, evening chronotype has been associated with higher levels of testosterone in males,

even after adjusting for age [20], with little evidence of an association of progesterone, dehy-

droepiandrosterone (DHEA) or testosterone with chronotype in females [21]. However, in

cross-sectional studies such as these, it is difficult to fully account for unobserved confounding

and the direction of effect between chronotype and hormone levels is difficult to resolve.

MR is an approach which uses genetic variants robustly associated with exposures to esti-

mate potential causal effects on outcomes. It attempts to overcome some potential limitations

of conventional analyses used in observational studies, including confounding and reverse

causation, though has additional potential biases [24–26]. Using genetic variants related to

chronotype and sex hormones, this approach may be used to investigate the bi-directional rela-

tionship between these traits and also to provide additional evidence regarding their effects on

breast and prostate cancer. The statistical power and precision of MR analyses can be increased

by using two-sample MR, in which summary genetic association data from independent sam-

ples representing genetic variant-exposure and genetic variant-outcome associations are com-

bined in order to estimate causal effects [27].

Using two-sample MR, recent studies have reported a 7% reduction in breast cancer risk

[28] and a 9% reduction in prostate cancer risk [29] per 1 SD (25 and 30nmol/L) increase in

SHBG, respectively. A 15% increase in breast cancer risk and 22% increase in prostate cancer

risk per 1 SD (4nmol/L) increase in bioavailable testosterone has also been reported [29]. While

MR studies for the effects of oestrogen on cancer risk in males and premenopausal females is

lacking, a recent randomised control trial found that postmenopausal females undergoing oes-

trogen-only hormone replacement therapy (HRT) for 1–14 years experienced a 17–33%

increase in breast cancer risk compared to never-users [30]. A retrospective cohort study in

post-menopausal females compared oestradiol levels from highest fifth to lowest (measured by

immunoassay) and found an increased risk of breast cancer (OR = 2.66; 95% CI: 1.99–3.54),

with similar results reported across different oestradiol-measurement methods [31].

Regarding the effect of chronotype on breast cancer, in our previous study, we used results

from both one-sample and two-sample MR analysis to support the multivariable regression

result of a protective causal effect of morning chronotype on breast cancer risk (OR = 0.85;

95% CI: 0.70, 1.03 and OR = 0.88; 95% CI: 0.82, 0.93 per increased category towards morning

preference, for one- and two-sample MR, respectively) [10].

The aims of this study were to use two-sample MR to explore whether: (i) the causal effect

of chronotype on breast cancer risk found previously [10] remains consistent using newly

available breast cancer data, including data on subtypes [32]; (ii) chronotype exerts a causal

effect on prostate cancer risk; and (iii) the effect of chronotype on breast, and any effect on

prostate cancer risk, is mediated or confounded by sex hormones (total testosterone, bioavail-

able testosterone, sex hormone binding globulin (SHBG) and oestradiol).

Methods

Overall study design strategy

Our overall strategy was to perform a series of two-sample MR analyses. First, univariable MR

(uvMR) was used to estimate the effects of: chronotype on breast and prostate cancer risk (step
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1, Fig 1A); and sex hormone levels on cancer risk (step 2, Fig 1B). In step 3, bidirectional MR

(bdMR) was used to determine the direction of associations between sleep traits and sex hor-

mones (Fig 1C) [25]. In step 4, multivariable MR (mvMR) was used to further explore whether

the chronotype effect on breast or prostate cancer is mediated by any of the hormones (Fig

1D) [33, 34]. Only those sex hormones with a potential role in mediating the effect of chrono-

type on cancer risk in step 3 were used in subsequent mvMR. A potential mediating role was

determined based on the following criteria: (i) evidence of a causal effect of chronotype on a

specific cancer; (ii) evidence of a causal effect of chronotype on the specific sex hormone; (iii)

evidence of a causal effect of the specific sex hormone on the specific cancer, and (iv) no evi-

dence of a strong bidirectional effect. For further information regarding study design see Fig 2

and Text A in S1 Methods.

Genome-wide association study populations

UK Biobank. Summary genetic data for chronotype and sex hormones were obtained

from GWAS conducted in the UK Biobank (UKB). UKB identified the chronotype of each

participant with the question “do you consider yourself to be” and six possible options: defi-

nitely an ‘evening’ person; more an ‘evening’ than a ‘morning’ person; neither (do not know);

more a ‘morning’ person than ‘evening’ person; definitely a ‘morning’ person and prefer not

to answer. Participants who chose ‘prefer not to answer’ were excluded and the remaining cat-

egories were treated as a score to give per category outcomes from definitely an ‘evening’ per-

son to definitely a ‘morning’ person. More details on the study, the genotyping procedure, and

the data sources for chronotype and the sex hormones are described in S1 Methods.

While GWAS summary statistics for both chronotype and sex hormones using data from

UK Biobank currently exist [29, 35], we conducted our own GWAS for chronotype and sex

hormones separately in men and women, given the sex-specific nature of the cancers we were

investigating. For this, we used a linear mixed model (LMM) association method to account

for relatedness and population stratification, as implemented in BOLT-LMM (v2.3) [36].

More details of this approach can be found in Text B in S1 Methods.

Breast Cancer Association Consortium and Prostate Cancer Association Group. For

breast and prostate cancer outcomes, genome-wide association studies (GWAS) summary

data were obtained from the Breast Cancer Association Consortium (BCAC) [32, 37]; and the

Elucidating Loci Involved in Prostate Cancer (ELLIPSE) and Prostate Cancer Association

Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortia

[38, 39] (PRACTICAL/ELLIPSE). Sample sizes for these GWAS are shown in Table 1.

The GWAS of overall breast cancer included 133,384 cases and 113,789 controls from 67

studies, using data from OncoArray and iCOGS arrays which were meta-analysed [37]. Sum-

mary statistics were also obtained on 106,491 cases on whom breast cancer subtype data was

available: Luminal A (oestrogen receptor positive (ER+)/progesterone receptor positive (PR+),

human epidermal growth factor receptor 2 Negative (HER2-)); Luminal B (ER+/PR+/-, HER2

+); Luminal B HER2 negative (ER+/PR+/-, HER2-, Ki-67> 14%); HER2 (ER-, PR-, HER2+);

and Triple Negative (ER-, PR-, HER2-), as well as 94,407 controls [32]. All participants were

females of European ancestry [32, 37]. Details of genotyping and imputation for BCAC can be

found in Text C in S1 Methods.

The GWAS for prostate cancer included data from the PRACTICAL (46,939 cases and 27,910

controls from 52 studies) and ELLIPSE (34,379 cases, 33,164 controls from 78 studies) consortia

[38, 39]. The resulting overall meta-analysis included 79,148 cases and 61,106 disease free controls.

All participants included in these analyses were males of European ancestry. Details of genotyping

and imputation for ELLIPSE/PRACTICAL can be found in Text D in S1 Methods.
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Fig 1. Schematics of MR analyses performed in this study. Participant datasets used to conduct GWAS’ given in

parenthesis. A) Two-sample MR to determine the effect of morning-preference on breast/prostate cancer. B) Two-

sample MR to identify potential mediators. Step 1 determines causal relationships between morning-preference and

hormone trait, depicted by the red dashed arrow. Step 2 determines causal relationships between the hormone trait

and outcome, depicted by the red dashed arrow. C) Bidirectional MR, used to identify directionality of relationship

between morning-preference and hormone traits. D) Multivariable MR to determine the direct effect of each exposure
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Constructing genetic instruments

We next identified genetic instruments for chronotype and sex hormones, for which single

nucleotide polymorphism (SNP)-exposure estimates were obtained from the sex-specific

GWAS for chronotype and sex hormones in UK Biobank.

For chronotype, we identified two genetic instruments. The first comprised SNPs identified

in the largest published GWAS of meta-analysed women and men combined from UKB and

23andme (N = 697,828) [35]. Of the 351 genetic variants that were genome-wide significant in

that study, 341 SNPs were present in the imputed UKB-only GWAS. For these 341 SNPs we

then extracted association summary results (SNP, effect allele, other allele, beta (increase in

chronotype category per effect allele), SE and p-value) separately in females and males, regard-

less of their genome-wide significance (GWS). Those statistics were then used in our two-sam-

ple MR (irrespective of whether they reached genome-wide significance within the sex-specific

GWAS). This approach maximises statistical power but might lack specificity for each sex. In

the second approach we only used summary results (as above) for SNPs that reached GWAS

significance (p< 5×10−8) in the sex specific GWAS within UKB. This will have less statistical

on breast/prostate cancer risk. The blue dashed arrow in this schematic depicts adjustment of one exposure effect in

the presence of another.

https://doi.org/10.1371/journal.pgen.1009887.g001

Fig 2. Overview of instruments and all main and supplementary analyses.

https://doi.org/10.1371/journal.pgen.1009887.g002
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power and may be more prone to weak instrument bias but may be a more relevant sex-spe-

cific instrument. Following LD-clumping, to obtain independent SNP-associations for our

genetic instrument (using a threshold of R2 = 0.001), there were 190 and 195 SNPs for chrono-

type in females and males, respectively for the first approach and 54 and 32 SNPs, respectively

in the second approach. Tables A and B in S1 Data provide details of the 341 SNPs identified

in the published GWAS that were present in our UKB GWAS, the 190 and 195 used as genetic

instruments in our first approach and the 54 and 32 used in our second approach.

Sex specific genetic instruments for total testosterone, bioavailable testosterone and SHBG

were obtained from the previously published GWAS’ conducted in UKB [29]. The GWAS for

total testosterone for women (N = 230,454) and men (N = 194,453) identified 254 and 231

SNP-associations respectively that were statistically independent, which LD-clumping then

restricted to 130 and 119 SNPs, respectively. The GWAS for bioavailable testosterone for

women (N = 188,507) and men (N = 178,782) identified 180 and 125 SNP-associations respec-

tively that were statistically independent, which LD-clumping then restricted to 89 and 64

SNPs, respectively. The GWAS for SHBG for women (N = 189,473) and men (N = 180,726)

identified 359 and 357 SNP-associations respectively that were statistically independent, which

LD-clumping then restricted to 192 and 177 SNPs, respectively. Instruments for oestradiol

were obtained from GWAS we undertook in UKB separately for females (N = 53,391) and

males (N = 17,134), which identified 40 and 378 SNP-associations respectively that were GWS,

resulting in 1 and 2 SNPs following LD-clumping for females and males, respectively. A high

proportion of the oestradiol assay results had values below the limit of detection (80%) and

were excluded from the GWAS [40].

The number of SNPs used to instrument chronotype and each of the sex hormone measures

can be found in Table 1. The summary statistics for all instruments used in this study are avail-

able in Tables A and B in S1 Data.

Statistical analyses

Two-sample Mendelian randomization. For uvMR, bdMR and mvMR analysis, the

TwoSampleMR package was used to combine and harmonize genetic summary data for

chronotype, sex hormones and breast and prostate cancer. The inverse variance weighted

(IVW) approach was used for the main analysis, whereby a causal effect is estimated from the

slope of a regression line through the weighted SNP-mean exposure vs SNP-mean outcome

associations (orientated to be positive) with the line constrained to have an intercept of zero.

Since only 1 SNP contributed to the female oestradiol instrument, MR results were instead cal-

culated using a Wald ratio [41].

Table 1. Sample sizes for exposure and outcome GWAS’ used in this study for male and female analyses. Number of SNPs (nSNP) given for clumped instruments

from uvMR analyses.

Exposures Female Male nSNP (F/M) Study

Morning-preference 244,207 205,527 190 / 195 UKB

Total testosterone 199,569 200,159 130 / 119

Bioavailable testosterone 180,386 184,205 89 / 64

SHBG 214,989 185,221 174 / 162

Oestradiol 53,391 17,134 1 / 2

Outcomes Cases Controls Study

Breast cancer (overall) 133,384 113,789 - BCAC

Breast cancer (subtypes) 106,491 94,407 -

Prostate cancer (overall) 79,148 61,106 - ELLIPSE/PRACTICAL

https://doi.org/10.1371/journal.pgen.1009887.t001
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Assessment of MR assumptions. MR analysis relies on three key assumptions: i) IVs

must be robustly associated with the exposure of interest; ii) IVs must be independent of con-

founders of the exposure-outcome association; iii) IVs must only influence the outcome

through the exposure of interest [26].

We conducted sensitivity analyses to test MR assumptions. Univariable and conditional F-

statistics were calculated to assess the strength of the relationship between the IVs and pheno-

type, and thus to indicate potential bias in the MR estimate due to weak instruments [42–44].

To test the assumption of no unbalanced horizontal pleiotropy we conducted MR-Egger [45],

weighted median [46] and weighted mode [47] MR (see Text E in S1 Methods). Scatter plots

were used to visualise consistency between IVW, MR-Egger, median and mode effect esti-

mates. To further test the assumption of no horizontal pleiotropy, we explored between SNP

heterogeneity using Cochran’s Q and leave one out analyses, as presence of heterogeneity may

be due to pleiotropy of one or more SNPs [25, 48]. I2 statistics were used to estimate the pro-

portion of the variance between IV estimates that is due to heterogeneity [49]. Radial-MR was

also conducted to identify IVs with the largest contribution to heterogeneity (alpha = 0.05/

nSNP) and thus identify potential outliers [50]. To assess their impact, these outliers were

removed from the instrument and the data were then reanalysed. Radial-MR was also used to

assess violation of both the independence and exclusion restriction assumptions. Steiger filter-

ing was applied to instruments in the bdMR analysis of chronotype and sex hormones to

reduce the likelihood of erroneous results due to pleiotropy (here where the SNP has a primary

influence on the outcome rather than the exposure) [51]. Steiger sensitivity ratios (R) were cal-

culated to ensure the likelihood that the observed direction of association was correct [52].

Since only 1 and 2 SNPs contributed to female and male oestradiol instruments, it was not pos-

sible to conduct any sensitivity analyses for oestradiol.

To accommodate additional two-sample MR assumptions, we restricted analysis to Euro-

pean-only individuals in all datasets and ensured sex-specific GWAS were used to meet the

assumption that the exposure and outcome samples come from the same underlying popula-

tion. We also performed harmonization of the direction of effects between the SNPs in the

exposure and outcome GWAS. Palindromic SNPs were harmonized if they were aligned and

the minor allele was <0.3, otherwise they were excluded.

While sample overlap between UKB, BCAC and PRACTICAL/ELLIPSE is negligible, for the

bdMR analysis, genetic estimates for both chronotype and sex hormones were determined in the

same sample (UKB), violating the assumption of independent samples in two-sample MR. A sup-

plementary analysis was carried out to investigate the magnitude of bias caused by overlapping

samples [53]. To evaluate this, we performed split-sample MR analyses, where we randomly split

UKB participants into two halves and performed additional GWAS for chronotype and the sex

hormones in each of the subgroups. We used SNP-chronotype effect estimates obtained from the

first subgroup (sample 1) and SNP-hormone effect estimates obtained from the second indepen-

dent subgroup (sample 2), and performed IVW analysis. This method was repeated for the SNP-

chronotype effect estimates obtained from sample 2 and SNP-hormone estimates from sample 1.

The two MR estimates were then meta-analysed under a fixed-effects model to obtain an effect of

chronotype on sex hormones. This approach was conducted separately for males and females.

Supplementary analyses. Supplementary analyses were conducted to evaluate the effects

of chronotype and sex hormones on breast cancer stratified by subtype: Luminal A (ER+/PR+,

HER2-); Luminal B (ER+/PR+/-, HER2+); Luminal B (ER+/PR+/-, HER2-, Ki 67 > 14%);

HER2 (ER-, PR-, HER2+); and Triple Negative (ER-, PR-, HER2-). An I2 statistic was calcu-

lated to assess variability in causal estimates between breast cancer subtypes [54].

In addition, evidence from previous research suggests that adiposity is intrinsically linked

with certain sleep traits [55, 56], sex hormones [57–59], and both breast and prostate cancer

PLOS GENETICS Sex hormones and the effect of chronotype on breast and prostate cancer. A Mendelian randomization study

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009887 January 21, 2022 8 / 21

https://doi.org/10.1371/journal.pgen.1009887


[60]. As such, supplementary mvMR analyses were conducted in which we adjusted the effect

of chronotype on cancers for both body mass index (BMI) and sex hormone(s). For this,

instrumental SNPs for BMI were obtained from a GIANT GWAS of males and females

(N = 681,275) [61] and sex-specific association summary results for these SNPs (nSNP = 458)

were obtained from female (N = 171,977) and male (N = 152,893) GIANT consortia GWAS’

[62], which LD-clumping then restricted to 336 and 334 SNPs, respectively.

MR analyses used the R packages “Two SampleMR” [61] and “MVMR” [34], R version 4.0.2.

Results

Univariable MR: Effect of chronotype on breast and prostate cancer risk

The correlation (r) of the effect estimates for the 341 SNPs for chronotype in males and females

was 0.60 (S1 Fig). The genetic variants (190 SNPs) contributing to the main chronotype instru-

ment in females had a combined r2 of 1.8% and an F-statistic of 22.75, and in males (190

SNPs) had an r2 of 1.7% and an F-statistic of 17.18 (Table C in S1 Data). There was low to

moderate heterogeneity between SNPs used within the instruments: the I2 for MR of overall

breast cancer was 41% (Qstat = 317; Qpval = 1.44 x 10−8) and for overall prostate cancer was

26% (Qstat = 262; Qpval = 8.75 x 10−4) (Table C in S1 Data). Weighted and unweighted I2
GX

[63] was also calculated for chronotype effect on both breast and prostate cancer and found to

be between 50–72%. SIMEX corrections [64] were conducted to account for this and found to

be consistent with MR Egger results reported in the main analyses (Table C in S1 Data).

We observed a reduction in risk of breast cancer per category increase in chronotype from

extreme evening preference to extreme morning preference (OR = 0.93, 95% CI:0.88, 1.00)

(Fig 3A). There was also evidence of a protective effect of morning preference on prostate can-

cer (OR = 0.90, 95% CI:0.83, 0.97) (Fig 3B). Results from MR-Egger, weighted median and

Fig 3. Forest plot of morning-preference and hormone trait effects on breast (3A) and prostate (3B) cancer risk. All

estimates calculated IVW, except for oestradiol in females, which was calculated using Wald ratio analysis.

https://doi.org/10.1371/journal.pgen.1009887.g003
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weighted mode methods were similar to IVW estimates (Fig 3 and Table D in S1 Data). In

Radial MR, three SNPs were identified as potential influencing outliers in the main IVW anal-

yses of chronotype on breast cancer. When removed, the results were unchanged (OR = 0.94,

95% CI:0.89, 1.00) (Table E in S1 Data). There were no outliers identified in the analysis of

chronotype on prostate cancer.

The effect of chronotype on breast cancer was broadly similar between breast cancer sub-

types, and heterogeneity for MR analyses between breast cancer subtypes was low (I2 = 26%)

(S2 Fig).

Using UKB-only sex-specific instruments for chronotype, the results for chronotype on

breast (OR = 0.92, 95% CI: 0.83, 1.01) and prostate (OR = 0.95, 95% CI: 0.81, 1.12) cancer were

consistent with those in the main analysis, although less precisely estimated (Table F in

S1 Data).

Univariable MR: Effect of sex hormones on breast and prostate cancer risk

The genetic variants contributing to the instruments for total testosterone, bioavailable testos-

terone, SHBG and oestradiol in females had a combined r2 of 3.4%, 5.5%, 6.4% and 0.1%,

respectively. F-statistics for these instruments are 44.5–83.6 (Table G in S1 Data). The genetic

variants contributing to the instruments for total testosterone, bioavailable testosterone, SHBG

and oestradiol in males had a combined r2 of 4.8%, 2.5%, 10.9% and 0.4%, respectively. F-sta-

tistics for these instruments are 36.8–143.4 (Table G in S1 Data). I2
GX was also calculated for

sex hormone effect on both breast and prostate cancer and found to be between 45–98%.

SIMEX corrections were conducted for SHBG effect on breast cancer which were found to be

consistent with MR Egger results reported in the main analyses (Table G in S1 Data).

Amongst females, an increased risk of breast cancer was observed with increasing total

(OR = 1.15, 95% CI: 1.07, 1.23 per SD) and bioavailable (OR = 1.10, 95% CI: 1.01, 1.19 per SD)

testosterone, but not in relation to SHBG (OR = 0.99, 95% CI: 0.89, 1.11 per SD) (Fig 3A).

Amongst males, an increased risk of prostate cancer was observed for bioavailable testosterone

(OR = 1.22, 95% CI: 1.08, 1.37) but not in relation to total testosterone (OR = 0.97, 95% CI:

0.86, 1.07), or SHBG (OR = 0.91, 95% CI: 0.76, 1.09) (Fig 3B). The effect of oestradiol on both

breast (OR = 0.96, 95% CI: 0.72, 1.27) and prostate (OR = 1.05, 95% CI: 0.83, 1.33) cancers was

imprecisely estimated due to insufficient SNPs, and therefore oestradiol has been excluded

from subsequent bdMR and mvMR analyses. Given the lack of evidence for a causal effect on

breast or prostate cancer risk, SHBG has been excluded from all further analyses, and total tes-

tosterone has been excluded from analyses of prostate cancer.

There was moderate to high heterogeneity between SNPs used within the sex hormone

instruments (excluding oestradiol): the I2 for MR of sex hormones on overall breast cancer

was 62–69% and for overall prostate cancer was 58–74% (Table G in S1 Data). However,

results from MR-Egger, weighted median and weighted mode methods were similar to IVW

estimates (Fig 3 and Table H in S1 Data). In Radial MR there were five, three and three SNPs

identified as potential influential outliers in the main IVW analyses of total testosterone, bio-

available testosterone and SHBG on breast cancer, respectively. There were also eight, four and

eight SNPs identified in the main IVW analyses of total testosterone, bioavailable testosterone

and SHBG on prostate cancer, respectively. In all radial MR analyses, when outliers were

removed the results were unchanged (Table I in S1 Data).

For MR of sex hormones stratified by breast cancer subtype (S3 Fig and Table J in S1 Data),

the increased risk reported for total and bioavailable testosterone on overall breast cancer was

consistent with all luminal-type breast cancers. However, for total testosterone on triple negative

breast cancer, estimates were consistent with a reduced risk (OR = 0.91, 95% CI:0.81, 1.03) while
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there was little evidence for an effect on HER2-Enriched breast cancer (OR = 0.98, 95% CI:0.81,

1.18). Findings were similar with respect to bioavailable testosterone and breast cancer subtypes.

Although little evidence was found for an effect of SHBG on overall breast cancer, subtype-spe-

cific analyses found reduced risk of luminal-A (OR = 0.90, 95% CI:0.78, 1.04) and luminal-B

HER2-negative (OR = 0.90, 95% CI:0.74, 1.11) breast cancers, and increased risk of luminal-B

(OR = 1.09, 95% CI:0.88, 1.35), HER2-Enriched (OR = 1.28, 95% CI:0.95, 1.71) and triple negative

(OR = 1.19, 95% CI:0.99, 1.44) breast cancers, but these were imprecisely estimated.

Bidirectional MR: Reciprocal effects between chronotype and sex hormones

The exposures used in the bdMR analyses underwent Steiger filtering. The removal of SNPs

more strongly associated with the outcome were removed, resulting in greater confidence in

the direction of association as determined by corresponding sensitivity ratios (Table K in S1

Data). In females, the variance (r2) explained by the Steiger-filtered chronotype instrument

was 1.9% compared to 3.9%, and 3.8% for total testosterone and bioavailable testosterone

respectively (Table K in S1 Data). This is comparable to the variance explained in males, where

r2 for chronotype was 1.7%, compared with 3.0% for bioavailable testosterone (Table K in S1

Data). I2
GX was also calculated for all bdMR analyses and found to be between 34–96%.

SIMEX corrections were conducted for all analyses with I2
GX < 90% which were found to be

consistent with MR Egger results reported in the main analyses (Table K in S1 Data).

Amongst females (Fig 4A), bidirectional relationships were observed for chronotype and

the testosterone measures. Morning preference was found to lower total testosterone (mean

SD difference = -0.07, 95% CI:-0.10, -0.03 per category increase), and total testosterone in turn

was inversely related to morning preference (difference in category = -0.06, 95% CI:-0.10,

-0.03 per SD increase). Similarly, morning preference was found to lower bioavailable testos-

terone (mean SD difference = -0.08, 95% CI:-0.12, -0.05 per category increase), and bioavail-

able testosterone was inversely related to morning preference (difference in category = -0.04,

95% CI: -0.08, 0.00 per SD increase).

Fig 4. Forest plot of bdMR results for morning-preference and hormone traits in female (4A) and male (4B) datasets.

All instruments in these analyses have been subjected to Steiger-filtering.

https://doi.org/10.1371/journal.pgen.1009887.g004

PLOS GENETICS Sex hormones and the effect of chronotype on breast and prostate cancer. A Mendelian randomization study

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009887 January 21, 2022 11 / 21

https://doi.org/10.1371/journal.pgen.1009887.g004
https://doi.org/10.1371/journal.pgen.1009887


Amongst males (Fig 4B), morning preference was found to lower bioavailable testosterone

(mean SD difference = -0.06, 95% CI:-0.09, -0.03 per category increase), but there was lack of

corresponding evidence for an effect in the reverse direction (difference in mean cate-

gory = 0.02, 95% CI:-0.03, -0.06 per SD increase).

Overall, the bdMR analyses suggest that the relationship between chronotype and testoster-

one may be bidirectional for females, but with a prevailing effect from chronotype to testoster-

one in males (Fig 4). Radial MR was performed for main analyses and bdMR was then

repeated. The results of these analyses were consistent with the main results (Table L in S1

Data). Bidirectional MR was also repeated using split-sample MR analysis and the results were

largely consistent with those reported in the main analyses (S4 Fig).

Multivariable MR: Direct effects of chronotype and sex hormones on

cancer risk

Conditional F-statistics were calculated for all main mvMR analyses and varied from 7.1 to

18.4 (Table M in S1 Data). The MVMR package function qhet_mvmr() was used to test for

weak instruments and horizontal pleiotropy, the results of which were consistent with those

found in the main mvMR analyses (Table N in S1 Data).

In females (Fig 5A), the reduced risk of breast cancer per category increase in chronotype

observed with uvMR (OR = 0.93, 95% CI: 0.88, 1.00) was largely unchanged when accounting

Fig 5. Forest plot of mvMR results for morning-preference and hormone traits in female (5A) and male (5B) datasets.

uvMR results provided for comparison.

https://doi.org/10.1371/journal.pgen.1009887.g005
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for total testosterone (OR = 0.93, 95% CI: 0.85–1.02) or bioavailable testosterone (OR = 0.95,

95% CI: 0.88, 1.03). When accounting for chronotype, the increased risk of breast cancer

observed per SD increase in total testosterone was consistent between uvMR (OR = 1.15, 95%

CI: 1.07, 1.23) and mvMR (OR = 1.15, 95% CI: 1.04, 1.27) results. The increased risk of breast

cancer observed per SD increase in bioavailable testosterone was also broadly consistent

between uvMR (OR = 1.10, 95% CI: 1.01, 1.19) and mvMR (OR = 1.15, 95% CI: 1.03–1.28).

In males (Fig 5B), the reduced risk of prostate cancer per category increase in chronotype

observed with uvMR (OR = 0.90, 95% CI:0.83, 0.97) was broadly consistent when accounting

for bioavailable testosterone (OR = 0.95, 95% CI: 0.86, 1.05). Bioavailable testosterone also

remained largely consistent between uvMR (OR = 1.22, 95% CI: 1.08, 137) and mvMR results

(OR = 1.23, 95% CI: 1.08, 1.40) when accounting for chronotype.

Supplementary mvMR analyses were conducted to adjust for the effects of BMI (Table O in

S1 Data). In females, (S5 Fig) the reduced risk of breast cancer per category increase in chrono-

type observed for uvMR was directionally consistent when adjusting for bioavailable testoster-

one and BMI (OR = 0.96, 95% CI:0.79, 1.17), and for total testosterone and BMI (OR = 0.91,

95% CI:0.73, 1.14). However, in all cases the results were imprecisely estimated. In males (S6

Fig), the direct effects obtained for chronotype and bioavailable testosterone were largely con-

sistent with those found for uvMR.

Discussion

This study has assessed the evidence for the role of sex hormones in mediating or confounding

the effect of chronotype on risk of breast and prostate cancer using a series of MR analyses.

Overall, we found evidence for a protective effect of genetically predicted tendency towards

morning preference on both breast and prostate cancer risk. There was evidence that morning

preference reduces both total and bioavailable testosterone levels in males and females. We

also found evidence to support higher testosterone increasing the risk of both breast and pros-

tate cancer risk. The effect of testosterone on prostate cancer was more prominent when

assessing bioavailable rather than total testosterone. While findings from univariable and bidi-

rectional MR analyses indicated that testosterone may lie on the causal pathway between

chronotype and cancer risk, there was evidence for a bidirectional association between chron-

otype and testosterone in females, suggesting that these sex hormones may have the capacity to

both confound and mediate the chronotype effect on breast cancer risk. However, the effects

of chronotype remained largely unchanged when accounting for testosterone in multivariable

MR suggesting that any mediating (or confounding) effect is likely to be minimal. The effect of

oestradiol on breast and prostate cancer was very imprecisely estimated and may have been

influenced by weak instrument bias as we only had one SNP to instrument for oestradiol in

females, and two SNPs in males. Having so few SNPs meant that we could not explore poten-

tial bias due to unbalanced horizontal pleiotropy and therefore we did not explore this sex hor-

mone further.

The effect of morning-preference on breast cancer risk is consistent, although more conser-

vative, than our previously reported two-sample MR findings (current OR = 0.93, 95% CI:0.88,

1.00 vs previous OR 0.88, 95% CI:0.82, 0.93 per category increase in chronotype) [10]. This

may be attributed to differences in the genetic instruments used in the two analyses, with a

more stringent threshold for obtaining independent SNP-associations in the current analysis

(LD r2 = 0.001 vs 0.01) and the larger sample size of the breast cancer GWAS [32] (n = 247,173

vs n = 228,951). The chronotype effect on prostate cancer risk (OR = 0.90, 95% CI:0.83, 0.97)

was more pronounced in the current study than previously reported results obtained from

observational multivariable logistic regression analyses, where there was a lack of association
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between morning and no preference (OR = 0.98, 95% CI:0.79, 1.21) and a slightly higher risk

for evening vs no preference (OR = 1.10, 95% CI:0.82, 1.46), although confidence intervals are

overlapping [11]. Our results were also consistent with the recent MR study of morning prefer-

ence effect on prostate cancer risk (OR = 0.71; 95% CI: 0.54, 0.94), although morning prefer-

ence was scaled differently so effect estimates are not directly comparable [12].

Our findings of increased testosterone increasing breast and prostate cancer risk are com-

parable to a previously published study [29] which also utilised MR to estimate effects of total

(OR = 1.14, 95% CI:1.08, 1.20) and bioavailable testosterone (OR = 1.15, 95% CI: 1.05, 1.25) on

breast cancer, and an effect of bioavailable testosterone on prostate cancer risk (OR = 1.23,

95% CI: 1.13, 1.33), consistent with those reported in this study. Similarly, our findings that

increasing SHBG reduces both breast and prostate cancer were consistent with previously

reported MR results [28, 29].

That morning-preference chronotype was associated with lower testosterone levels in males

is in-keeping with previous cross-sectional studies [20, 21]. However, the finding that morning

preference chronotype lowers testosterone levels in females is in contrast to previous null find-

ings [21]. This is likely due to the very small number of female participants (N = 47) as many

were excluded for testosterone levels below the limit of sensitivity. Furthermore, both prior

studies inferred from association analyses that chronotype is dependent on testosterone levels,

whereas bidirectional MR analyses in the currently study enabled us to orient the causal direc-

tion of this association, suggesting that testosterone levels are dependent on chronotype in

males, and that there is a bidirectional relationship between chronotype with testosterone in

females. A bidirectional relationship between these traits in females indicates that these hor-

mones may serve as both confounders and mediators of the chronotype effect on breast cancer.

However, results of the mvMR analyses did not support evidence for total testosterone or bio-

available testosterone acting as a mediator in males or females, since the effect of chronotype

on breast and prostate cancer was found to be largely independent of these sex hormones, and

vice versa.

In line with the findings regarding the role of chronotype in breast cancer, network-based

GWAS studies conducted to identify genetic determinants of breast cancer survival have

reported circadian enrichment [65], but only in oestrogen-receptor (ER) negative breast can-

cers. However, in our previous study, the effect of chronotype on breast cancer risk

(OR = 0.88, 95% CI:0.82, 0.93) was largely unchanged when stratified into ER-positive

(OR = 0.86, 95% CI:0.80, 0.92) or ER-negative breast cancer (OR = 0.88, 95% CI:0.80, 0.97)

[10]. We have extended this to also investigate the effect of chronotype on five subtypes of

breast cancer: three luminal-type cancers which are ER-positive, and HER2-enriched and tri-

ple negative cancers which are ER-negative. While these results are largely consistent with our

findings for a chronotype effect on all breast cancer subtypes (S2 Fig), there was some indica-

tion for an increased risk of luminal B HER2-negative breast cancer in relation to morning

preference, although this was imprecisely estimated.

The effect of both testosterone and SHBG on ER-stratified breast cancer has been previ-

ously studied [29], in which both total (OR = 1.19, 95% CI:1.12, 1.26) and bioavailable testos-

terone (OR = 1.23, 95% CI:1.12, 1.34) were associated with increased risk of ER-positive breast

cancers. This is consistent with our subtype-specific analyses for luminal-type breast cancers

(S3A and S3B Fig). In the previous study, there was limited evidence for an association for

either total (OR = 0.99, 95% CI:0.93, 1.06) or bioavailable testosterone (OR = 0.94, 95%

CI:0.83, 1.07) on ER-negative breast cancer. While this is consistent with our finding for total

testosterone and HER2-enriched breast cancer risk (OR = 0.98, 95% CI:0.81, 1.18), there was

an indication that bioavailable testosterone reduced risk of HER2-enriched breast cancer

(OR = 0.86, 95% CI:0.69, 1.07) although this was imprecisely estimated. Similarly, a reduction
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in risk of triple negative breast cancer was found for both total (OR = 0.91, 95% CI:0.81, 1.03)

and bioavailable testosterone (OR = 0.89, 95% CI:0.77, 1.04). The previous study also reported

reduced risk of ER-positive (OR = 0.91, 95% CI: 0.82, 1.01) and increased risk of ER-negative

(OR = 1.14, 95% CI: 1.01, 1.28) breast cancer per SD increase in SHBG. These are consistent

with findings from our present study, except for luminal-B HER2-negative breast cancer (ER-

positive), for which we found increased risk per SD increase in SHBG, although imprecisely

estimated (S3C Fig). The modal age group for all breast cancer subtypes was >60 (Table P in

S1 Data), suggesting that the subtype effects observed are unlikely to be related to age at

diagnosis.

Strengths & limitations

A key strength of this study is the use of MR to appraise the causal effect of chronotype on

both sex and prostate cancer, as well as additional MR analyses to assess the role of sex hor-

mones underlying these effects. Furthermore, the sensitivity analyses conducted in tandem to

the main analyses served to test the assumptions of MR and provide evidence for the robust-

ness of the results. The genetic summary data used for both breast and prostate cancer in this

study were obtained from the largest available GWAS available to date and for breast cancer

enabled the stratification of breast cancer outcomes into five distinct subtypes, thus improving

the clinical relevance of these findings.

While we were careful to use genetic variants from sex-specific GWAS when evaluating the

sex-hormones in relation to breast and prostate cancer, the SNPs used to instrument chrono-

type in the main analyses were extracted from a sex-combined GWAS including data from

UKB and 23andMe [35]. We used male and female effect estimates for the SNPs derived from

UK Biobank in the MR analyses, although the correlation in effect estimates of the SNPs

between males and females was only moderate (0.60), suggesting some heterogeneity in the

genetic contribution to chronotype between sexes. Given this, we also derived sex-specific

instruments and compared results of MR using the combined- and sex-specific chronotype

instruments, with the effect estimates obtained being largely consistent with respect to both

breast and prostate cancer.

While we conducted a series of sensitivity analyses to assess MR and two-sample MR

assumptions, we did not directly test the assumption of independence (IVs must be indepen-

dent of confounders of the exposure-outcome association). However, germline genetic vari-

ants used in MR should not plausibly be influenced by confounding factors, and as such,

concerns about violation of the second MR assumption usually focus on confounding by pop-

ulation stratification or as a result of selection bias [66]. Steps were taken to minimise popula-

tion stratification in the GWAS performed although this assumption is difficult to test,

particularly in a two-sample setting. Other assumptions for causal effect estimation also exist,

such as the causal estimates being homogeneous in the population [67], which we were also

not able to explicitly assess.

In terms of two-sample MR specific assumptions, the use of overlapping sample popula-

tions between exposures and outcomes may also introduce bias [53]. For analyses where expo-

sures were generated from UKB data and outcomes from BCAC or ELLIPSE/PRACTICAL

there was no known overlap between participants. However, for bidirectional MR analyses,

both exposure and outcomes were from UKB and as such had a 100% overlap. This has been

addressed with the use of split-sample MR analysis. Comparison between whole- and split-

sample analyses served as an indicator of the extent to which the main analyses are influenced

by this bias. Overall, the results were consistent between these analyses, suggesting that the

influence of bias from using overlapping datasets is minimal. Data from UKB may also be
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influenced by selection bias, however this is a more general issue underlying all UKB data due

to low participation rates (5.5% of those invited). Specific to our analyses, recruitment clinics

had appointments from early morning to the evening, meaning that selection on chronotype

may be minimal and to our knowledge circulating levels of sex hormones are unlikely to be

importantly influenced by socioeconomic position (participants recruited to UK Biobank

tended to be from more affluent areas and more educated than those who were not) and

related characteristics. Thus, our results may not be importantly biased by selection into UKB.

Another potential concern is the overlap in the UKB sample used for both conducting the

discovery GWAS for chronotype and sex hormones and for obtaining the effect estimates for

the genetic instruments in MR analysis, given the potential for Winner’s curse bias. For chron-

otype, this was addressed previously [10] whereby sensitivity analyses using only the SNPs that

replicated in 23andMe were found to give similar results. However, in the absence of a large

independent genetic study with hormone measures, this was not possible for the hormone

instruments used in this study.

Further work

The analyses presented here demonstrate inconsistent evidence for the role of testosterone as a

mediator for the effect of chronotype on cancer, therefore further investigation is required.

For example, to improve the robustness of the findings in this study, it would be interesting to

investigate the effect of morning-preference on breast cancer subtypes using more objective

measures of chronotype, such as L5 timing [68]. We believe further work investigating testos-

terone in relation to other sleep traits (e.g. sleep duration and insomnia) would also be valuable

in understanding the nuanced relationship between sleep and cancer risk. Due to the lack of

SNPs reaching genome-wide significance, we were unable to sufficiently explore the mediating

effect of oestradiol in this study. As such, should a large-scale genetic study of oestradiol data

become available, further investigation is warranted. While our study focused on the putative

role of sex hormones in the link between chronotype and cancer risk, other hormones such as

cortisol and melatonin, have been strongly linked with circadian traits and may lay on the

causal pathway to breast cancer. MR analysis using genetic instruments for these hormones is

therefore required.

Conclusion

In conclusion, this study has extended previous findings regarding the protective effect of

chronotype on breast cancer and has found evidence to support recent findings that morning-

preference also reduces prostate cancer risk in men. While testosterone levels were found to be

closely linked with both chronotype and cancer risk, there was inconsistent evidence for the

role of testosterone in mediating the effect of morning preference chronotype on both breast

and prostate cancer. Findings regarding the potential protective effect of chronotype on both

breast and prostate cancer risk are clinically interesting although this may not serve as a direct

target for intervention, since it is difficult to modify someone’s morning/evening preference.

However, a personalised breast cancer screening that considers chronotype as a causal risk fac-

tor may help to improve prevention in the future. Given this, further studies are needed to

investigate the mechanisms underlying this effect and to identify potential modifiable

intermediates.
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