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We obtain an analytical bound on the non-dimensional mean vertical convective heat
flux 〈wT 〉 between two parallel boundaries driven by uniform internal heating. We
consider two configurations. In the first one, both boundaries are held at the same
constant temperature and 〈wT 〉 measures the asymmetry of the heat fluxes escaping
the layer through the top and bottom boundaries. In the second configuration, the top
boundary is held at constant temperature, the bottom one is perfectly insulating, and
〈wT 〉 is related to the difference between the horizontally-averaged temperatures of the
two boundaries. For the first configuration, Arslan et al. (J. Fluid Mech. 919:A15, 2021)
recently provided numerical evidence that Rayleigh-number-dependent corrections to the
only known rigorous bound 〈wT 〉 6 1/2 may be provable if the classical background
method is augmented with a minimum principle stating that the fluid’s temperature is
no smaller than that of the top boundary. Here, we confirm this fact rigorously for both
configurations by proving bounds on 〈wT 〉 that approach 1/2 exponentially from below as
the Rayleigh number is increased. The key to obtaining these bounds are inner boundary
layers in the background fields with a particular inverse-power scaling, which can be
controlled in the spectral constraint using Hardy and Rellich inequalities. These allow
for qualitative improvements in the analysis not available to standard constructions.
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1. Introduction

Convection driven by buoyancy is abundant in geophysical and astrophysical flows,
from atmospheric convection driving ocean currents to solar convection transporting
heat in stars. The prototypical setup for studying these flows is that of Rayleigh–Bénard
convection, where flow in a layer of fluid is driven by the temperature differential across
the boundaries. In reality, convection in many natural or engineering situations is at
least partially driven by an internal heating source. Examples include convection in
the Earth’s mantle due to radiogenic heat (Davies & Richards 1992; Schubert et al.
2001; Mulyukova & Bercovici 2020), convection in radiative planet atmospheres (Seager
2010; Pierrehumbert 2010; Guervilly et al. 2019), and engineering flows where exothermic
chemical or nuclear reactions drive the convection (Tran & Dinh 2009). Gaining insights
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(a) (b)

Figure 1: The two configurations considered in this paper. (a) IH1: Isothermal
boundaries, (b) IH3: Isothermal top boundary and insulating bottom boundary. In both
configurations the heating is uniform, so the non-dimensional thermal source term is
H = 1. Dashed lines show the temperature profiles in the pure conduction state, while
solid lines sketch the temporally- and horizontally-averaged temperature profiles in a
typical turbulent state (also shown using the color plot).

into these physical and practical scenarios requires a thorough understanding of internally
heated (IH) convection, and yet studies in this direction are relatively few.

Following the early investigations by Roberts (1967) and Tritton (1975), research
into IH convection has recently gained renewed momentum through computational
analysis (Goluskin & Spiegel 2012; Goluskin 2015; Goluskin & van der Poel 2016) and
experiments (Lepot et al. 2018; Bouillaut et al. 2019; Limare et al. 2019, 2021). However, a
comprehensive understanding of flows driven by internal heating is far from complete and
the behaviour of such flows in the limiting regime of extreme heating remains unknown.

Here, we probe this regime using rigorous upper bounding theory. Specifically, we
bound the mean vertical convective heat flux in two configurations of IH convection, one
where the fluid is bounded between horizontal plates held at the same temperature and
one where the bottom plate is replaced by a perfect insulator. These two configurations,
which we refer to as IH1 and IH3 following the terminology introduced by Goluskin
(2016), are illustrated schematically in panels (a) and (b) of figure 1.

The mean vertical convective heat flux 〈wT 〉, where w and T are the nondimensional
vertical velocity and temperature and angled brackets denote space-time averages, has
a slightly different physical interpretation in the two configurations. For the IH1 case,
〈wT 〉 is related to the asymmetry in the heat fluxes FT and FB through the top and
the bottom boundaries. Specifically, space-time averaging the dimensionless transport
equation for temperature (see (2.1c) in §2) multiplied by the wall-normal coordinate z
yields

FT =
1

2
+ 〈wT 〉, FB =

1

2
− 〈wT 〉. (1.1)

In the purely conductive state, the heat generated inside the domain leaves equally
between the two boundaries, hence FT = FB = 1/2. In the convective state, instead,
the asymmetry of buoyancy combines with the uniform heat source to create boundary
layers with different characteristics near the top and bottom boundaries, as illustrated
in figure 1(a). The bottom boundary layer is stably stratified, whereas the top boundary
layer is unstably stratified. Convective heat transport (〈wT 〉 > 0) makes the top boundary
layer thinner than the bottom one, so in any convective state one has FT > FB . Since
the boundary temperature is fixed and the fluid is internally heated, one also expects
the boundary flux FB to remain non-negative, meaning that heat can escape from the
bottom boundary but not enter through it. This fact can be proved rigorously (Goluskin
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& Spiegel 2012, Appendix A.1; Arslan et al. 2021b, Appendix A) and translates into the
following upper bounds on the vertical heat transport (Goluskin & Spiegel 2012):

〈wT 〉 6 1

2
in IH1. (1.2)

For the IH3 configuration, instead, the mean vertical flux 〈wT 〉 is related to the differ-
ence of the horizontally-averaged temperature between the top TT and the bottom wall
TB . Indeed, upon multiplying the dimensionless evolution equation for the temperature
(see (2.1c) in §2) with the wall-normal coordinate z and space-time averaging one obtains

〈wT 〉 = TT − TB +
1

2
. (1.3)

The isothermal boundary condition implies that the temperature TT at the top boundary
is in fact constant, so TT = TT , and we take it be zero without loss of generality in our
nondimensionalization. Since the nondimensional internal heating rate is positive, one
expects the mean bottom temperature TB to be non-negative. As before, this fact can
be proved rigorously and results in the upper bound (Goluskin 2016, Chapter 1)

〈wT 〉 6 1

2
in IH3. (1.4)

For the IH1 configuration, Arslan et al. (2021b) recently proved that 〈wT 〉 6
2−21/5R1/5, where R is a nondimensional parameter that measures the strength of the
internal heating and may be interpreted as a Rayleigh number. This result, which is
independent of the Prandtl number Pr , fails to improve the uniform bound in (1.2)
for R > 216 = 65536. However, numerical evidence by the same authors suggests that
an upper bound on 〈wT 〉 approaching 1/2 from below monotonically as R is increased
may be provable when the background method by Doering & Constantin (Doering
& Constantin 1992, 1994, 1996; Constantin & Doering 1995) is augmented with a
minimum principle stating that the fluid’s temperature cannot be smaller than that the
top boundary. Unfortunately, they also provided a rather tantalizing proof that such a
bound cannot be obtained using typical analytical constructions.

In this paper we overcome this barrier and show that R-dependent bounds on 〈wT 〉
strictly smaller than 1/2 can be obtained analytically not only in the IH1 case, but also
for the IH3 configuration. Precisely, we prove that

〈wT 〉 6 1

2
− c1R

1
5 exp

(
−c2R

3
5

)
in IH1, (1.5a)

〈wT 〉 6 1

2
− c3

R
1
5

exp
(
−c4R

3
5

)
in IH3, (1.5b)

where c1, c2, c3 and c4 are constants (independent of both R and Pr). To establish these
results, we formulate a bounding principle for 〈wT 〉 using the auxiliary functional method
(Chernyshenko et al. 2014; Fantuzzi et al. 2016; Tobasco et al. 2018; Chernyshenko 2017).
This method is a generalization of the background method of Doering and Constantin,
which has successfully been applied to several fluid dynamical problems (Doering &
Constantin 1992; Constantin & Doering 1995; Doering & Constantin 1996; Caulfield &
Kerswell 2001; Tang et al. 2004; Whitehead & Doering 2011b; Goluskin & Doering 2016;
Fantuzzi et al. 2018; Fantuzzi 2018; Kumar & Garaud 2020; Kumar 2020; Fan et al. 2021;
Arslan et al. 2021a,b; Kumar 2022). The auxiliary functional method, as implemented
in this paper, also has an equivalent formulation using the background method.

The novelty aspects in our arguments are the use of a background temperature field
with a lower boundary layer growing as z−1, motivated by the numerical results by Arslan
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et al. (2021b), and the application of Hardy inequalities (IH1) and Rellich inequalities
(IH3). Such inequalities have already been employed to prove bounds on convective flows
at infinite Prandtl number (Doering et al. 2006; Whitehead & Doering 2011a) but, to
the best of our knowledge, their use at finite Prandtl number is new.

The rest of this work is organized as follows. We start by describing the problem setup
in §2. In §3, we apply the auxiliary function method formulate upper bounding principles
for 〈wT 〉 in both IH1 and IH3 configurations. We then prove the upper bound (1.5a) in
§4 and the upper bound (1.5b) in §5. Finally, §6, discusses our method of proof, compares
our results with available phenomenological theories, and offers concluding remarks.

2. Problem setup

We consider the flow of a Newtonian fluid of density ρ, viscosity ν, thermal diffusivity
κ and specific heat capacity cp driven by buoyancy forces resulting from internal heating.
The fluid is confined between two horizontal no-slip plates with a gap of width d
and the heat is produced at a constant volumetric rate of H∗ (with units W/m3 =
kg/ms3). We consider the two configurations sketched in figure 1, one where both plates
are kept at constant temperature T ∗0 (IH1) and one where the top plate is kept at
a constant temperature T ∗0 while the bottom plate is insulating (IH3). We assume
that the fluid properties are a weak function of the temperature and use the Naiver–
Stokes equations under the Boussinesq approximation to model the problem. Various
justifications have been put forward for the Boussinesq approximation; see, for example,
Spiegel & Veronis (1960) and Rajagopal et al. (1996). In their non-dimensional form, the
governing equations are

∇ · u = 0, (2.1a)

∂tu + u · ∇u +∇p = Pr∇2u + PrRTez, (2.1b)

∂tT + u · ∇T =∇2T + 1, (2.1c)

where we have used the following non-dimensionalization for the variables:

x =
x∗

d
, t =

t∗

d2/κ
, u =

u∗

κ/d
, p =

p∗ − p0
ρκ2/d2

, T =
T ∗ − T ∗0

d2H∗/(κρcp)
. (2.2)

Here, x, t, u, p and T denote the non-dimensional position, time, velocity, pressure and
temperature, respectively, whereas p0 is the dimensional hydrostatic ambient pressure.
The quantities with a star in superscript are dimensional. The non-dimensional governing
parameters of the flow are the Prandtl number and the Rayleigh number, given by

Pr =
ν

κ
and R =

gαd5H∗

ρcpνκ2
, (2.3)

where α is the coefficient of thermal expansion. Our choice of nondimensionalization
implies that the heating source appears as a unit force in (2.1c).

We use the Cartesian coordinates x = (x, y, z) and place the origin of the coordinate
system at the bottom plate. The z-direction points vertically upward and the x and
y directions are horizontal. In this coordinate system, we write the velocity vector as
u = (u, v, w) where u, v and w are the velocity components in the x, y and z directions
respectively. In this coordinate system, the boundary conditions at the top and bottom
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plates for velocity and temperature can be written as

u(x, y, 0, t) = u(x, y, 1, t) = 0, (2.4a)

T (x, y, 0, t) = T (x, y, 1, t) = 0 for IH1, (2.4b)

∂zT (x, y, 0, t) = T (x, y, 1, t) = 0 for IH3. (2.4c)

We further assume that the fluid layer is periodic in the horizontal directions x and y with
length Lx and Ly, meaning that the domain of interest is Ω = T[0,Lx] × T[0,Ly ] × [0, 1].

Throughout the paper, spatial averages, long-time horizontal averages and long-time
volume averages will be denoted, respectively, by

−
ˆ
Ω

[ · ] dx =
1

LxLy

ˆ 1

0

ˆ Ly

0

ˆ Lx

0

[ · ] dxdydz, (2.5a)

[ · ] = lim
τ→∞

1

τLxLy

ˆ τ

0

ˆ Ly

0

ˆ Lx

0

[ · ] dxdydt, (2.5b)

〈[ · ]〉 = lim
τ→∞

1

τ

ˆ τ

0

−
ˆ
Ω

[ · ] dxdt. (2.5c)

3. The auxiliary functional method

A bound on the mean vertical heat flux can be derived using the auxiliary function
method. The formulation of the method given here is very similar to the one given by
Arslan et al. (2021b) for isothermal boundaries, but we repeat it to make the paper
self-contained and highlight the changes required when the lower boundary is insulating.

Let V{u, T} be a functional that is uniformly bounded in time along solutions u(t)
and T (t) of the governing equations (2.1a-c). Further, let L{u, T} be the Lie derivative
of V{u, T}, meaning a functional such that

L{u(t), T (t)} =
d

dt
V{u(t), T (t)} (3.1)

when u(t) and T (t) solve the governing equations. Then, a simple calculation shows that
the long-time average of L{u(t), T (t)} vanishes and, given any constant B, we can rewrite
the mean vertical heat flux as

〈wT 〉 = lim
τ→∞

1

τ

ˆ τ

0

[
−
ˆ
Ω

wT dx + L{u(t), T (t)}
]

dt,

= B + lim
τ→∞

1

τ

ˆ τ

0

[
−
ˆ
Ω

wT dx + L{u(t), T (t)} −B
]

dt. (3.2)

If the functional V can be chosen such that

S∗{u, T} := −
ˆ
Ω

wT dx + L{u, T} −B 6 0 (3.3)

for any solution of the governing equations, then it follows that 〈wT 〉 6 B. Of course,
it is intractable to impose (3.3) only over the set of solutions of the governing equation,
because they are not known explicitly. However, to obtain a (possibly conservative) bound
it suffices to enforce the stronger condition that (3.3) holds for all pairs of divergence-free
velocity fields u and temperature fields T that satisfy the boundary conditions (2.4a-c).
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Following Arslan et al. (2021b), we choose the functional V to be

V{u, T} = −
ˆ
Ω

[
a

2PrR
|u|2 +

b

2
|T |2 − (ψ(z) + z − 1)T

]
dx, (3.4)

where the function ψ(z) and the nonnegative scalars a and b are to be optimised to
obtain the best possible bound. The profile [ψ(z) + z − 1]/b corresponds exactly to the
background temperature field. Differentiating this functional in time along solutions of
the governing equations, followed by standard integrations by parts using the divergence-
free and boundary conditions, yields an expression for L{u, T} that can be substituted
into (3.3) to obtain

S∗{u, T} = −
ˆ
Ω

[
a

R
|∇u|2 + b|∇T |2 − (a− ψ′)wT + (bz − ψ′)∂T

∂z
+ ψ

]
dx

+ T (0)− T (1) + ψ(1)
∂T

∂z

∣∣∣∣
z=1

− (ψ(0)− 1)
∂T

∂z

∣∣∣∣
z=0

+B − 1

2
> 0. (3.5)

This inequality needs to be satisfied for all u and T satisfying (2.1a), (2.4a) and either
(2.4b) for IH1 or (2.4c) for IH3.

A crucial improvement to the best upper bound B implied by (3.5) can be achieved by
imposing the minimum principle, which says that T > 0 at all times if it is so initially,
and that any negative component decays exponentially quickly (Arslan et al. 2021b). We
may therefore restrict the attention to nonnegative temperature fields, thereby relaxing
inequality (3.5). As explained by Arslan et al. (2021b), the constraint can be enforced
with the help of a nondecreasing Lagrange multiplier function q(z) by adding the term

−
ˆ
Ω

q′(z)Tdx (3.6)

to the right-hand side of (3.5). Integrating by parts and rearranging leads to the weaker
constraint

S{u, T} := S∗{u, T}+−
ˆ
Ω

q(z)
∂T

∂z
dx + q(0)T (0)− q(1)T (1) > 0, (3.7)

and the best upper bound on 〈wT 〉 implied by this inequality is

〈wT 〉 6 inf
B,ψ(z),q(z),a,b

{
B : q(z) non-decreasing,

S{u, T} > 0 ∀(u, T ) satisfying (2.1a) and (2.4)

}
. (3.8)

Moreover, since no derivatives of the Lagrange multiplier q(z) appear in inequality (3.7),
one can perform the optimization over nondecreasing Lagrange multipliers that are
not necessarily differentiable everywhere and may even be discontinuous. A rigorous
justification of this statement is given by Arslan et al. (2021b).

To prove an explicit rigorous bound on 〈wT 〉, it is convenient to replace inequality (3.7)
with a stronger condition that is more amenable to analytical treatment. To achieve this,
we introduce the following Fourier series decomposition of the variables in the x and y
directions: [

u(x)
T (x)

]
=
∑
k∈K

[
ûk(z)

T̂k(z)

]
eikxx+ikyy, (3.9)
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where

K ≡
{

(kx, ky) =

(
2mπ

Lx
,

2nπ

Ly

) ∣∣∣∣ (m,n) ∈ Z2

}
. (3.10)

Since u and T in (3.9) are real-valued, the Fourier expansion coefficients satisfy ŵ∗k = ŵ−k
and T̂ ∗k = T̂−k for all k ∈ K, subject to the boundary conditions

ŵk(0) = ŵ′k(0) = ŵk(1) = ŵ′k(1) = 0, (3.11a)

T̂k(0) = T̂k(1) = 0, IH1, (3.11b)

T̂ ′k(0) = T̂k(1) = 0, IH3. (3.11c)

Substituting (3.9) in (3.7), using the incompressiblity condition on u, applying the in-
equality of arithmetic and geometric means (AM–GM inequality), and dropping positive
terms in ûk and v̂k, we can estimate

S{u, T} > S0{T̂0}+
∑
k 6=0

Sk{ŵk, T̂k}, (3.12)

where

S0{T̂0} :=

ˆ 1

0

[
b|T̂ ′0|2 + (bz − ψ′ + q)T̂ ′0 + ψ

]
dz + (q(0) + 1)T̂0(0)

− (q(1) + 1)T̂0(1) + ψ(1)T̂ ′0(1)− (ψ(0)− 1)T̂ ′0(0) +B − 1

2
, (3.13)

and

Sk{ŵk, T̂k} :=

ˆ 1

0

[
a

R

(
1

k2
|ŵ′′k|2 + 2|ŵ′k|2 + k2|ŵk|2

)
+b|T̂ ′k|2 + bk2|T̂k|2 − (a− ψ′)ŵkT̂

∗
k

]
dz. (3.14)

In the last expression, k =
√
k2x + k2y.

To establish inequality (3.7), therefore, it suffices to check the nonnegativity of the
right-hand side of (3.12). As all the different Fourier modes ŵk and T̂k can be cho-
sen independently, this requires Sk{ŵk, T̂k} + S−k{ŵ−k, T̂−k} > 0 for all wavevec-
tors k ∈ K, which in turn holds true if and only if Sk{Re{ŵk},Re{T̂k}} > 0 and
Sk{Im{ŵk}, Im{T̂k}} > 0 for all wavevectors k ∈ K. This, combined with the fact that
the real and imaginary parts of ŵk and T̂k can be chosen independently, implies that we
may take ŵk and T̂k to be real-valued without loss of generality and impose

S0{T̂0} > 0, (3.15a)

Sk{ŵk, T̂k} > 0 ∀k ∈ K, k 6= 0. (3.15b)

From the nonnegativity condition on S0{T̂0}, it is possible to extract the bound B
explicitly. First of all, the nonnegativity of S0{T̂0} requires

ψ(0) = 1, ψ(1) = 0 for IH1, (3.16a)

q(0) = −1, ψ(1) = 0 for IH3, (3.16b)

otherwise it is possible to choose a profile T̂0(z) that is non-zero only near the boundaries
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and for which S0{T̂0} 6 0. With these simplifications, one can write

S0{T̂0} =

ˆ 1

0

[√
bT̂ ′0 +

(bz − ψ′ + q)

2
√
b

]2
dz +B − 1

4b

ˆ 1

0

(bz − ψ′ + q)2dz

+

ˆ 1

0

ψ(z)dz − 1

2
. (3.17)

Therefore, S0{T̂0} is nonnegative if we choose B to cancel the negative and sign-indefinite
terms. After gathering (3.8), (3.9), (3.11), (3.15b) and (3.16) we conclude that

〈wT 〉 6 inf
a,b,ψ(z),q(z)

{
1

2
+

1

4b

ˆ 1

0

(bz − ψ′ + q)2dz −
ˆ 1

0

ψ(z)dz

}
, (3.18)

provided

q(z) is a nondecreasing function, (3.19a)

ψ(0) = 1, ψ(1) = 0 for IH1, (3.19b)

q(0) = −1, ψ(1) = 0 for IH3, (3.19c)

Sk{ŵk, T̂k} > 0 ∀ŵk, T̂k : (3.11), ∀k 6= 0 (3.19d)

Explicit constructions for which the right-hand side of (3.18) is strictly less than 1/2
at all Rayleigh numbers are given in §4 and §5 for the IH1 and IH3 configurations,
respectively. First, however, we summarize our proof strategy to explain the intuition
behind our constructions. From (3.18), we see that the competition between the second
term (which is always positive) and the third term will decide if 〈wT 〉 can be less than
1/2 as long as we are able to enforce that Sk{ŵk, T̂k} > 0. For previous studies using
the background method, the standard approach has been to choose a profile ψ(z) that
is linear in boundary layers near the walls, whereas in the bulk region ψ(z) is chosen
such that the sign indefinite term in Sk is zero. Unfortunately, in the present case, for
a profile of ψ(z) which is linear in the boundary layers, we are unable to show that
the magnitude of the second term in (3.18) is smaller than the third term unless we
violate the constraint (3.15b). However, if we use a z−1 profile in ψ(z) in the outer
layer of a two-layer lower boundary layer we gain an extra factor of a logarithm in the
integral of ψ. Such a boundary layer structure, along with the choice q(z) = ψ′(z) in
the bottom boundary layer to cancel the otherwise large contribution of this layer to the
quadratic term in (3.18), matches the numerically optimal profiles computed by Arslan
et al. (2021b, Fig. 7). This makes it possible to show that sum of the last two terms in
(3.18) is negative without violating Sk{ŵk, T̂k} > 0. To establish this nontrivial result
we rely on the following Hardy and Rellich inequalities, proofs of which are provided for
completeness in Appendix A.

Lemma 1 (Hardy inequality). Let f : [0,∞)→ R be a function such that f, f ′ ∈
L2(0,∞) and such that f(0) = 0. Then, for any ε > 0 and any α > 0,

ˆ α

0

|f |2

(z + ε)2
dz 6 4

ˆ α

0

|f ′|2dz. (3.20)

Lemma 2 (Rellich inequality). Let f : [0,∞) → R be function such that
f, f ′, f ′′ ∈ L2(0,∞) and such that f(0) = f ′(0) = 0. Then, for any ε > 0 and any
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(a) (b)

Figure 2: Sketch of the functions ψ(z) and q(z) from (4.1), used to obtain a bound on
the heat flux 〈wT 〉 in the IH1 configuration.

α > 0, ˆ α

0

|f |2

(z + ε)4
dz 6

16

9

ˆ α

0

|f ′′|2dz. (3.21)

We now present detailed proofs of the main results. Our emphasis is on the steps
necessary to obtain an R-dependent bound on 〈wT 〉, and we do not attempt to optimize
the constants appearing in our estimates.

4. Bound on heat flux in IH1 configuration

To prove the bound in (1.5a), we start by setting

ψ(z) =



1− z
4σδ 0 6 z 6 2σδ,

σδ
z 2σδ 6 z 6 δ,

σ + a(z − δ) δ 6 z 6 1− γ,

(1− z)σ+a(1−γ−δ)γ 1− γ 6 z 6 1,

q(z) =


− 1

4σδ 0 6 z 6 2σδ,

−σδz2 2σδ 6 z 6 δ,

0 δ 6 z 6 1.

(4.1)

These functions are sketched in figure 2. In the definition of ψ, the parameter δ denotes
the thickness of the boundary layer near the bottom plate. The parameter σ is the value
of ψ taken at the edge of lower boundary layer (z = δ). The lower boundary layer itself is
divided into two parts, an inner sublayer where ψ is linear and an outer sublayer where
ψ ∼ z−1. These sublayers meet at an intermediate point (z = 2σδ) where both the
value and slope of ψ are equal. The inverse-z scaling of ψ in the outer part of the lower
boundary layer is one of the key ingredients in proving (1.5a). The linear inner sublayer,
instead, is used to satisfy the boundary condition ψ(0) = 1 from (3.19b). In the bulk
of the layer (δ 6 z 6 1 − γ) we have ψ′ = a, so the indefinite sign term in (3.14) is
zero. Thus, we only need to control the indefinite sign term in the boundary layers. The
parameter γ is the thickness of the boundary layer near the upper boundary in which
the profile of ψ is linear.

The sole purpose behind the choice of the function q(z) is to ensure ψ′ − q = 0 in the
lower boundary layer, thereby making the positive contribution from the second term in
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the bound (3.18) small in this layer. All parameters are taken to satisfy

a, b, σ, δ, γ 6 1 (4.2)

and this assumption will be implicit in the proof below.
The goal now is to adjust the free parameters a, b, σ, δ and γ such that the spectral

constraint (3.19d) is satisfied and, at the same time, the bound (3.18) is as small as
possible. We begin by estimating from above the second term in the bound (3.18):

1

4b

ˆ 1

0

(bz − ψ′ + q)2dz 6
1

2b

ˆ 1

0

b2z2 dz +
1

2b
‖ψ′(z)− q(z)‖22

=
b

6
+

1

2b

ˆ 1

δ

|ψ′(z)− q(z)|2 dz

6
b

6
+

1

b

ˆ 1

δ

|ψ′(z)|2 dz +
1

b

ˆ 1

δ

|q(z)|2 dz

6
b

6
+

(σ + a)2

bγ
+
a2

b

6
b

6
+

2(σ + a)2

bγ
. (4.3)

Next, we estimate from below the last term in the bound (3.18):
ˆ 1

0

ψ dz =
3σδ

2
− σδ log(2σ) +

(2σ + a(1− γ − δ))
2

+
(σ + a(1− γ − δ))γ

2

> −σδ log(σ). (4.4)

Combining (4.3) and (4.4) with (3.18), we obtain

〈wT 〉 6 1

2
+
b

6
+

2(σ + a)2

bγ
+ σδ log(σ). (4.5)

Assuming that

b

6
6 −1

4
σδ log(σ),

2(σ + a)2

bγ
6 −1

4
σδ log(σ), (4.6a,b)

which will be the case for the choices of a, b, σ, δ, γ made below, the right-hand side
of (4.5) can be further estimated from above to obtain

〈wT 〉 6 1

2
+

1

2
σδ log(σ). (4.7)

We now shift our focus to the constraint (3.19d). Dropping the positive terms propor-
tional to |ŵk|2, |ŵ′′k|2 and |T̂k|2, it is enough to verify that

S̃(ŵ, T̂ ) :=

ˆ 1

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − (a− ψ′)ŵT̂

]
dz > 0. (4.8)

Here, ŵ and T̂ satisfy the boundary conditions

ŵ(0) = ŵ′(0) = T̂ (0) = 0, (4.9a)

ŵ(1) = ŵ′(1) = T̂ (1) = 0, (4.9b)

where ŵ′(0) = ŵ′(1) = 0 is a result of the no-slip boundary condition and the incom-
pressibility of the flow field. For brevity, we have dropped k from the subscript. The
positive terms we have dropped could be retained, at the expense of a more complicated
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algebra, in order to improve various prefactors in the eventual bounds. Since this is not
our primary goal and the functional form of the bound one obtains does not change, we
work with the stronger constraint (4.8) to ease the presentation.

Substituting the expression of ψ from (4.1) into (4.8) gives

S̃(ŵ, T̂ ) =

ˆ 2σδ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
a+

1

4σδ

)
ŵT̂

]
dz

+

ˆ δ

2σδ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
a+

σδ

z2

)
ŵT̂

]
dz

+

ˆ 1

1−γ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 −

(
σ + a(1− δ)

γ

)
ŵT̂

]
dz. (4.10)

Since S̃(ŵ, T̂ ) > S̃(|ŵ|, |T̂ |) with equality when w and T are nonnegative, we shall assume
without loss of generality that ŵ, T̂ > 0. We further observe that, if

8aδ 6 σ, (4.11)

then

9

2

σδ

(z + σδ)2
> a+

1

4σδ
when 0 6 z 6 2σδ,

9

2

σδ

(z + σδ)2
> a+

σδ

z2
when 2σδ 6 z 6 δ. (4.12)

Assuming that 8aδ 6 σ, therefore, we can combine the first two terms in (4.10) to
conclude

S̃(ŵ, T̂ ) > S̃B(ŵ, T̂ ) + S̃T (ŵ, T̂ ) (4.13)

where

S̃B(ŵ, T̂ ) =

ˆ δ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − 9

2

σδ

(z + σδ)2
ŵT̂

]
dz, (4.14a)

S̃T (ŵ, T̂ ) =

ˆ 1

1−γ

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − (σ + a)

γ
ŵT̂

]
dz. (4.14b)

Next, we derive conditions that ensure S̃B(ŵ, T̂ ) and S̃T (ŵ, T̂ ) are individually nonneg-

ative, thereby implying the nonnegativity of S̃(ŵ, T̂ ).

First, we deal with S̃T (ŵ, T̂ ). Using the boundary conditions (4.9b) along with the
fundamental theorem of calculus and the Cauchy–Schwarz inequality leads to

|ŵ|2 6 (1− z)
ˆ 1

1−γ
|ŵ′|2dz, |T̂ |2 6 (1− z)

ˆ 1

1−γ
|T̂ ′|2dz. (4.15a,b)

Using (4.15a,b) in the expression (4.14b) of S̃T , along with the AM–GM inequality,

implies that S̃T > 0 if

γ(σ + a) 6 4

√
2ab

R
. (4.16)

A condition for the nonnegativity of S̃B(ŵ, T̂ ), instead, can be derived using the Hardy
inequality given in Lemma 1. First, using the AM-GM inequality, we write

S̃B(ŵ, T̂ ) >
ˆ δ

0

[
2a

R
|ŵ′|2 + b|T̂ ′|2 − 9

4

σδβ

(z + σδ)2
|ŵ|2 − 9

4

σδ

(z + σδ)2β
|T̂ |2

]
dz (4.17)
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for some constant β > 0 to be specified later. Then, we can apply Lemma 1 to estimate

ˆ δ

0

|ŵ|2

(z + σδ)2
dz 6 4

ˆ δ

0

|ŵ′|2dz,

ˆ δ

0

|T̂ |2

(z + σδ)2
dz 6 4

ˆ δ

0

|T̂ ′|2dz. (4.17a,b)

Using (4.17a,b), (4.17), and choosing

β =

√
2a

bR
, (4.18)

we conclude that S̃B(ŵ, T̂ ) is nonnegative if

σδ 6
1

9

√
2ab

R
. (4.19)

Given (4.16) and (4.19), and the functional forms of (4.6a,b) with respect to the
variables, one can show that the bound (4.7) is optimized when a is proportional to
σ and δ is proportional to γ. For simplicity, therefore, we take a = σ and δ = γ; we
expect that different choices affect only the value of various prefactors appearing in
the final bound, but not its functional form or the powers of R. With these additional
simplifications, the constraints (4.16), (4.19) and (4.6a,b) are satisfied if we take

a = σ = exp
(
−2

8
5 3

8
5R

3
5

)
, (4.20a)

b = 2
7
5 3

6
5R

1
5 exp

(
−2

8
5 3

8
5R

3
5

)
, (4.20b)

δ = γ = 2
6
5 3−

7
5R−

2
5 . (4.20c)

These choices satisfy the inequalities (4.2) and (4.11) assumed in our derivation provided

that R > 2
21
2 3−

7
2 ≈ 30.97. We therefore conclude from (4.7) that

〈wT 〉 6 1

2
− 2

7
5 3

1
5R

1
5 exp

(
−2

8
5 3

8
5R

3
5

)
∀R > 2

21
2 3−

7
2 . (4.21)

We end this section with two remarks. First, the scaling of the upper boundary layer
thickness given by (4.20c) is stronger (i.e. the boundary layer is thinner) than the scalings
γ ∼ R−1/4 and γ ∼ R−1/3 implied by classical (Malkus 1954; Priestley 1954) and
ultimate (Spiegel 1963) scaling arguments for Rayleigh-Bérnard convection, respectively
(for further details see §3 in Arslan et al. 2021b). Second, if instead of using the Hardy
inequality in (4.14) we had used the Cauchy–Schwarz and AM–GM inequalities, as we
did in the upper boundary layer, then we would have obtained the condition

−9

2
σδ

(
1

1 + σ
+ log

(
σ

1 + σ

))
6

1

2

√
2ab

R
, (4.22)

and therefore σδ log σ .
√
ab/R. This is worse than condition (4.19) by a factor of log σ−1

and, as a result, no bound on 〈wT 〉 strictly smaller than 1/2 can be obtained beyond a
certain Rayleigh number.

5. Bound on heat flux in IH3

We now prove the bound (1.5b) for the IH3 configuration. Similar to the previous
section, the key ingredients of the proof are (i) a profile of ψ proportional to 1/z near
the bottom boundary, and (ii) the use of a nonstandard Rellich inequality.
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(a) (b)

Figure 3: Sketch of the functions ψ(z) and q(z) from (5.1), used to obtain bound on the
heat flux 〈wT 〉 in the IH3 configuration.

We start by choosing the functions ψ(z) and q(z):

ψ(z) =



2
√
σδ − z 0 6 z 6

√
σδ,

σδ
z

√
σδ 6 z 6 δ,

σ + a(z − δ) δ 6 z 6 1− γ,

(1− z)σ+a(1−γ−δ)γ 1− γ 6 z 6 1.

q(z) =


−1 0 6 z 6

√
σδ,

−σδz2
√
σδ 6 z 6 δ,

0 δ 6 z 6 1.

(5.1)

These choices are sketched in figure 3 and the parameters σ, δ and γ have the same
purpose as in the last section. The difference between these profiles and those used for
the IH1 configuration in §4 is in the bottom boundary layer (0 6 z 6 δ). Here, we
require q(0) = −1 and at the same time want q − ψ′ = 0 in the lower boundary. To
satisfy these requirements we take the linear boundary sublayer of ψ near the bottom
boundary (0 6 z 6

√
σδ) to have slope equal to −1. As before, in the outer part of

bottom boundary layer (
√
σδ 6 z 6 δ), ψ behaves like z−1 and matches smoothly with

inner part up to the first derivative. At the edge of the bottom boundary layer (z = δ),
the value of ψ is σ. In the proof below, we assume

a, b, σ, δ, γ 6 1 (5.2)

Estimating the second term in the bound (3.18) from above gives

1

4b

ˆ 1

0

(bz − ψ′ + q)2dz 6
b

6
+

2(σ + a)2

bγ
, (5.3)

while the last term can be estimated from below asˆ 1

0

ψ dz > −1

2
σδ log

(σ
δ

)
. (5.4)

Combining (5.3) and (5.4) with (3.18), we obtain

〈wT 〉 6 1

2
+
b

6
+

2(σ + a)2

bγ
+

1

2
σδ log

(σ
δ

)
. (5.5)

Finally, we assume that

b

6
6 −1

8
σδ log

(σ
δ

)
,

2(σ + a)2

bγ
6 −1

8
σδ log

(σ
δ

)
(5.6)

(these constraints will be verified later) and estimate the right-hand side of (5.5) to arrive
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at the simpler bound

〈wT 〉 6 1

2
+

1

4
σδ log

(σ
δ

)
. (5.7)

For this bound to be valid, we need to adjust the parameters a, b, δ, γ and σ such that
the spectral condition (3.19d) is satisfied. Dropping the positive terms proportional to
|ŵk|2, |ŵ′k|2 and |T̂ ′k|2, we will verify the stronger inequality

S̃(ŵ, T̂ ) :=

ˆ 1

0

[ a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − (a− ψ′)ŵT̂

]
dz > 0 (5.8)

for all z-dependent functions ŵ and T̂ satisfying the boundary conditions

ŵ(0) = ŵ′(0) = T̂ ′(0) = 0, (5.9a)

ŵ(1) = ŵ′(1) = T̂ (1) = 0. (5.9b)

Again, we have dropped the subscript k to lighten the notation.
Using arguments similar to those used in §4 and noticing that if

8aδ 6 σ (5.10)

then

9

2

σδ

(z +
√
σδ)2

> a+ 1 when 0 6 z 6
√
σδ, (5.11)

9

2

σδ

(z +
√
σδ)2

> a+
σδ

z2
when

√
σδ 6 z 6 δ, (5.12)

we can write

S̃(ŵ, T̂ ) > S̃B(ŵ, T̂ ) + S̃T (ŵ, T̂ ), (5.13)

where

S̃B(ŵ, T̂ ) =

ˆ δ

0

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − 9

2

σδ

(z +
√
σδ)2

ŵT̂

]
dz, (5.14a)

S̃T (ŵ, T̂ ) =

ˆ 1

1−γ

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − (σ + a)

γ
ŵT̂

]
dz. (5.14b)

Finding a condition under which S̃T (ŵ, T̂ ) > 0 is straightforward. Using the fundamental
theorem of calculus, the boundary conditions on ŵ and Cauchy–Schwarz inequality, we
obtain

|ŵ|2 6 4(1− z)3

9

ˆ 1

1−γ
|ŵ′′|2dz. (5.15)

Then, substituting (5.15) in (5.14b) and using the AM-GM inequality shows that

S̃T (ŵ, T̂ ) is nonnegative as long as

(σ + a)γ 6 6

√
ab

R
. (5.16)

To show that S̃B(ŵ, T̂ ) is nonnegative, instead, we rely on the Rellich inequality stated
in Lemma 2. First, using the AM-GM inequality we estimate

S̃B(ŵ, T̂ ) >
ˆ δ

0

[
a

Rk2
|ŵ′′|2 + bk2|T̂ |2 − 9

4

σδβ

(z +
√
σδ)4

|ŵ|2 − 9

4

σδ

β
|T̂ |2

]
dz, (5.17)
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for a the positive constant β to be specified below. Next, using Lemma 2 we obtain
ˆ δ

0

|ŵ|2

(z +
√
σδ)4

dz 6
16

9

ˆ δ

0

|ŵ′′|2dz. (5.18)

Combining (5.18) in (5.17) and setting

β =
3

4k2

√
a

bR
(5.19)

we conclude that S̃B(ŵ, T̂ ) is nonnegative if

σδ 6
1

3

√
ab

R
. (5.20)

At this stage, all that remains is to choose values for a, b, δ, γ and σ such that (5.6),
(5.16) and (5.20) hold, at least for sufficiently large Rayleigh numbers, while minimizing
the right-hand side of (5.7). For the same reasons explained at the end of §4, we simplify
the algebra by choosing a = σ and δ = γ. Then, optimizing the bound (5.7) subject to
(5.16) and (5.20) leads to

a = σ =
2

4
5

3
3
5

1

R
2
5

exp
(
−2

14
5 3

2
5R

3
5

)
, (5.21a)

b =
2

12
5 3

1
5

R
1
5

exp
(
−2

14
5 3

2
5R

3
5

)
, (5.21b)

δ = γ =
2

4
5

3
3
5

1

R
2
5

. (5.21c)

These choices satisfy the constraints in(5.6) assumed in our proof for all R > 2
19
2 3−

3
2 ≈

139.35. Thus, from (5.7) we obtain

〈wT 〉 6 1

2
− 2

12
5

3
4
5

1

R
1
5

exp
(
−2

14
5 3

2
5R

3
5

)
∀R > 2

19
2 3−

3
2 . (5.22)

It is interesting to note that only the boundary layer thicknesses δ and γ have the same
O(R−

2
5 ) scaling as for the IH1 configuration. The parameters σ, a, b and the correction to

1/2 in the bound (5.22), instead, are all O(R
2
5 ) smaller than their corresponding values

for the IH1 case.

6. Discussion and concluding remarks

We considered the problem of uniform internally heated convection between two
parallel boundaries where either both the boundaries are held at the same constant
temperature (IH1 configuration) or the temperature at the top boundary is fixed and
the bottom boundary is insulating (IH3 configuration). For both configurations we
obtained rigorous R-dependent bounds on the heat flux using the background method,
which we formulated in terms of a quadratic auxiliary function and augmented with a
minimum principle that enables one to consider only nonnegative temperature fields in
the optimization problem for the bound. In each configuration, we were able to prove
that 〈wT 〉 < 1/2 with exponentially decaying corrections. The two essential ingredients
in our proofs were a boundary layer with inverse-z scaling in the background field and the
use of Hardy and Rellich inequalities, which allow for a refined analysis of the spectral
constraint compared to standard Cauchy–Schwarz inequalities. Without any of these two
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(a) (b)

Figure 4: Bottom boundary layer structure of the numerically optimal functions ψ(z)
and q(z) computed by Arslan et al. (2021b) for the IH1 configuration. The results shown
are for R = 2.67 × 105 but are typical of the behaviour observed at all sufficiently
large R values. The boundary layer in ψ(z) has an approximately linear inner sublayer
(0 6 z / 0.001) followed by an outer sublayer where ψ(z) ∼ z−1 (0.001 6 z / 0.002).
The transition between the two is nonsmooth. The optimal q approximately satisfies
q(z) = ψ′(z) in the boundary layer. This boundary layer structure is modelled similar to
the analytical ψ and q sketched in Figure 2.

components, the proof breaks down and it appears impossible to obtain R-dependent
corrections to the uniform 〈wT 〉 6 1/2 at arbitrarily large Rayleigh numbers.

The exponential rate at which our analytical bounds (4.21) and (5.22) approach 1/2 is
not inconsistent with the numerically optimal bounds computed by Arslan et al. (2021b)
for the IH1 configuration. These numerical bounds also approach 1/2 from below rapidly
as R → ∞ and appear to do so faster than any power law, suggesting that the best
possible bounds provable with the background method may indeed have the functional
form

〈wT 〉 6 1

2
− c1Rα exp

(
−c2Rβ

)
in IH1, (6.1a)

〈wT 〉 6 1

2
− c3
Rα

exp
(
−c4Rβ

)
in IH3 (6.1b)

for some positive exponents α, β and positive constants c1, c2, c3, c4. Unfortunately, the
limited range of Rayleigh numbers spanned by the available numerical results does
not permit a confident estimation of these parameters, so we cannot say whether the
exponents α = 1/5 and β = 3/5 of our analytical bounds are optimal or not. Nevertheless,
as illustrated in figure 4, the numerically optimal profiles for the functions ψ(z) and q(z)
computed by Arslan et al. (2021a) in the IH1 case exhibit the same inverse-z behaviour
in the outer part of the bottom boundary layer as the suboptimal profiles used in our
analysis. We expect the same to be true for the IH3 configuration even though we have
not optimized ψ and q numerically in this case due to the computational challenges of
accurately resolving the nonsmooth bottom boundary layers, which our present analysis
suggest will be much thinner that those observed in the IH1 computations by Arslan
et al. (2021a). If the exponents α and β can be improved at all, such improvements must
come either from improved estimates, or from different choices for ψ and q in other parts
of the fluid layer.

In the case of IH3, if (6.1b) is the correct scaling of the optimal bound in the framework
of quadratic auxiliary functions, then we note that it will not be trivial to prove the
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conjecture (Goluskin 2016, p. 17)

〈wT 〉 6 1

2
− C

R1/3
. (6.2)

It seems reasonable to expect that progress can be made by considering further con-
straints derived from the governing equations, which go beyond the energy balances
encoded by the auxiliary function V in (3.4) and the minimum principle. However, it is
presently unclear if this can be done within an analytically tractable framework.

For the IH3 configuration, moreover, any bound on 〈wT 〉 can be translated into a
bound on the Nusselt number—defined as the ratio of the mean total heat flux to the
conductive heat flux—via the identity

Nu =
1

1− 2〈wT 〉
. (6.3)

In particular, (5.22) implies

Nu 6
3

4
5

2
17
5

R
1
5 exp

(
2

14
5 3

2
5R

3
5

)
. (6.4)

The exponential growth of this bound is in stark contrast with the power-law bounds
available for Raleigh-Bénard convection, most of which can be obtained with much
simpler arguments that those used here for IH3.

In the case of IH1, we can compare our bound on 〈wT 〉 with 3D direct numerical
simulations by (Goluskin & van der Poel 2016), which suggest

〈wT 〉 ∼ 1

2
− 0.8

R0.055
. (6.5)

Again, this slow power-law correction to the asymptotic value of 1/2 contrasts the
exponential behaviour of our bound (6.1a). It remains to be seen if this result is truly
overly conservative, as one may expect based on phenomenological arguments (Arslan
et al. 2021b), or if there exist solutions of the governing equations (2.1) that saturate it. In
that regard, there are two approaches generally used in the Rayleigh–Bénard convection.
The first one is the study of bulk properties of steady-state solutions bifurcating from the
pure conduction state has attracted growing interest in recent years (Waleffe et al. 2015;
Sondak et al. 2015; Miquel et al. 2019; Wen et al. 2020, 2022; Kooloth et al. 2021; Motoki
et al. 2021), and it has been shown that they can transport more heat than turbulence
(Wen et al. 2022). The second one is the optimal wall-to-wall approach (Hassanzadeh
et al. 2014; Tobasco & Doering 2017; Motoki et al. 2018; Doering & Tobasco 2019;
Souza et al. 2020; Tobasco 2021), which concerns designing incompressible flows with
a constraint on the kinetic energy or enstrophy that leads to optimal heat transfer. It
would be interesting to conduct similar studies for the two cases of internally heated
convection studied in this work.
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Appendix A. Proof of Hardy and Rellich inequalities

A.1. Proof of the Hardy inequality in Lemma 1

Set f(z) = g(z)
√
z + ε for a suitable function g(z) satisfying g(0) = 0, and estimate

|f ′|2 = (z + ε)|g′|2 +

(
1

2
g2
)′

+
1

4
(z + ε)−1|g|2

= (z + ε)|g′|2 +

(
1

2
g2
)′

+
1

4
(z + ε)−2|f |2

>

(
1

2
g2
)′

+
1

4
(z + ε)−2|f |2. (A 1)

Upon integrating this inequality in z from 0 to α and using the boundary condition
g(0) = 0, we find

ˆ α

0

|f ′(z)|2 dz >
1

2
g(α)2 +

1

4

ˆ α

0

(z + ε)−2|f(z)|2 dz

>
1

4

ˆ α

0

(z + ε)−2|f(z)|2 dz, (A 2)

which is the desired inequality.

A.2. Proof of the Rellich inequality in Lemma 2

Write f ′(z) =
√
z + εg(z) and f(z) = (z + ε)3/2h(z) for suitable functions g and h

satisfying g(0) = 0 = h(0). Then,

|f ′′|2 = (z + ε)|g′|2 +
g2

4(z + ε)
+

(
1

2
g2
)′

= (z + ε)|g′|2 +
|f ′|2

4(z + ε)2
+

(
1

2
g2
)′

>
|f ′|2

4(z + ε)2
+

(
1

2
g2
)′

(A 3a)

and

|f ′|2 = (z + ε)3|h′|2 +
9

4
(z + ε)h2 + (z + ε)2

(
3

2
h2
)′

= (z + ε)3|h′|2 +
9

4

|f |2

(z + ε)2
+ (z + ε)2

(
3

2
h2
)′

>
9

4

|f |2

(z + ε)2
+ (z + ε)2

(
3

2
h2
)′

(A 3b)
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Combining (A 3b) and (A 3a) and then integrating in z from 0 to α yields
ˆ α

0

|f ′′|2dz >
ˆ α

0

9|f |2

16(z + ε)4
+

(
3

8
h2
)′

+

(
1

2
g2
)′

dz

=

ˆ α

0

9|f |2

16(z + ε)4
dz +

3

8
h(α)2 +

1

2
g(α)2

>
ˆ α

0

9|f |2

16(z + ε)4
dz, (A 4)

which completes the proof. �
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