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Abstract 
A key difficulty that arises from real event data is imprecision in the recording of event time-
stamps. In many cases, retaining event times with a high precision is expensive due to the 
sheer volume of activity. Combined with practical limits on the accuracy of measurements, 
binned data is common. In order to use point processes to model such event data, tools for 
handling parameter estimation are essential. Here we consider parameter estimation of the 
Hawkes process, a type of self-exciting point process that has found application in the 
modeling of financial stock markets, earthquakes and social media cascades. We develop a 
novel optimization approach to parameter estimation of binned Hawkes processes using a 
modified Expectation-Maximization algorithm, referred to as Binned Hawkes Expectation 
Maximization (BH-EM). Through a detailed simulation study, we demonstrate that existing 
methods are capable of producing severely biased and highly variable parameter estimates 
and that our novel BH-EM method significantly outperforms them in all studied circumstances. 
We further illustrate the performance on network flow (NetFlow) data between devices in a real 
large-scale computer network, to characterize triggering behavior. These results highlight the 
importance of correct handling of binned data. 
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1 Introduction 

Point processes on the real line are extensively used to model event data and 

have found wide applications in many fields including seismology Ogata (1999) 

and cyber-security Price-Williams and Heard (2020). Let N(A) be a random 

integer that denotes the number of events in set , one representation of a 

point process is via the counting process , where  for 

 for  and  Daley and Vere-Jones (2003). Due to 

limited recording capabilities and storage capacities, retaining event times with a 

high precision is expensive and often infeasible. Therefore, in much real-world 

data, it is common to instead observe a times series of the binned process. Here 

we use ‘binned’ to mean an aggregation of the latent continuous time process 

into a series of counts per interval of time. That is, 

 

for some interval length,  which we refer to as the bin width and  is 

now a discrete index. Note that in this paper we will use N(t) to denote a 

continuous time process and Nt for a discrete process where , and we use ‘

binning’ synonymously with ‘aggregating’. Here we assume observations of the 

infinite length process are made on a finite window . This binned process 

may arise from a predetermined aggregation of the data into counts, or 

equivalently from the rounding of event times. In the context of network traffic 

data, for example, the resolution of the recorded times can be anywhere from 

milliseconds to seconds (as is the case with the Los Alamos National Laboratory 

(LANL) NetFlow data Turcotte et al. (2018)), or even coarser. In this setting the 

value of this binned process at each time point is the number of events with that 

rounded time-stamp. When analysing the data, we cannot retroactively reduce 

A

{ ( ), }N t t  ( ) ((0, ])N t N t

0, (( ,0])t N t  0t  (0) 0N 
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the aggregation levels chosen, and therefore to apply continuous-time models to 

count data we require some consideration of the effect of this binning. 

Intuitively, when binning data we lose information and essentially ‘blur’ our view 

of the continuous time point process, making it potentially problematic to apply 

methods which assume a continuous time framework. Thus, the problem we 

consider here is to infer upon the underlying continuous process, which often has 

interpretable parameters, from the observed aggregated data. 

The Hawkes process is a type of ‘self-exciting’ process which provides us with a 

model for contagious event data. Their flexibility and real-world relevancy has 

resulted in a host of applications. In the case of financial data for example, this 

allows propagation of stock crashes and surges to be modeled Bacry 

et al. (2012); Bowsher (2007); Filimonov and Sornette (2012); Fonseca and 

Zaatour (2014); Embrechts et al. (2011) and insurance claim times estimated 

Chen and Hall (2016). Propagation of social media events has also been 

modeled using Hawkes processes, in particular ‘twitter cascades’ are considered 

in Rizoiu et al. (2017); Kobayashi and Lambiotte (2016). Further applications 

include the modeling of civilian deaths due to insurgent activity in Iraq Lewis and 

Mohler (2011), and predicting origin times and magnitudes of earthquakes 

Ogata (1988); Chen and Stindl (2018). There is also potential for Hawkes 

processes to be used in the modeling of COVID-19 infections Flaxman 

et al. (2020). 

Formally, the Hawkes process is a class of stochastic process with the property 

that 

 (1) 
Pr{d ( ) 1| ( ) ( )} ( )d (d ),

Pr{d ( ) 1| ( ) ( )} (d ),

N t N s s t t t o t

N t N s s t o t

   
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where . It is characterized via its conditional intensity 

function (CIF)  which, combined with (1), defines the Hawkes process. In 

particular, the CIF of a Hawkes proces is given by 

 

where  is called the background intensity and  is the nonnegative 

excitation kernel such that g(u) = 0 for u < 0. This means the intensity at an 

arbitrary time-point is dependent on the history of the process, producing self-

exciting behavior. Depending on the kernel , the excitation may be quite 

local, or have longer term effects Hawkes (1971). 

We can also consider a Hawkes process as a branching process of time-

stamped events. From this viewpoint, formalised in Hawkes and Oakes (1974), 

events can be seen to arrive either via immigration or birth. That is, an event can 

be triggered by the background intensity rate ν, in which case the event is seen 

as an immigrant. Alternatively, an event which is cause by self-excitation can be 

considered a descendant, referred to as being generated ‘endogenously’. Unlike 

a homogeneous Poisson point process, where events happen independently and 

at a constant rate, self-exciting processes are such that each event can have an 

effect on the likelihood of further events happening in the future, provided the 

excitation kernel is non-zero Rizoiu et al. (2017). Note that in the case that g(u) = 

0 everywhere, the Hawkes process reduces to a homogenous Poisson process. 

The expected number descendants from each event is given by the branching 

ratio of a Hawkes process, defined as 

 (2) 

The inequality above ensures that the process is stationary and results from the 

form of the CIF. 

d ( ) ( d ) ( )N t N t t N t  
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As introduced in Hawkes’ original paper, exponential decay is a common choice 

for the excitation kernel due to the simplifications it provides for the theoretical 

derivations Hawkes (1971); Laub et al. (2015). In this case we can write the 

excitation kernel as a sum of L exponential decays, 

 (3) 

Here, and as is most common, we let L = 1 when considering the exponential 

kernel. In this case, the branching ratio defined in (2) becomes 

 

Given this model, we wish to estimate the parameter set . Other 

kernels can be used, including a power-law function of form 

, in which case . In the continuous time 

setting, parameter estimation for any of these kernels is straightforward. 

1.1 Estimation from Continuous Data 

Typically, maximum likelihood estimation (MLE) is used to estimate parameters 

of a point process from a set of exact event times . As 

shown in Proposition 7.2.III of Daley and Vere-Jones (2003), the log-likelihood is 

given by 

 (4) 

If specifically considering a Hawkes process with exponential excitation kernel of 

form  this log-likelihood can be simplified and expressed recursively 

as shown in Laub et al. (2015). In this paper we consider methods that are 

required when we instead observe a binned sequence of event counts. An 

1
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alternative but equivalent representation of this is a discretization or rounding of 

the latent time-stamps, but here we will consider the observed data as the 

aggregation of  to bins. 

1.2 Estimation from Binned Data 

In the literature, the issue of binned data is handled in many ways, from uniformly 

redistributing events across the bin Bowsher (2007), to only retaining unique 

time-stamps and discarding the rest Lorenzen (2012). Here we propose a novel 

method referred to as Binned Hawkes Expectation Maximization (BH-EM), an 

approach which is related to the MC-EM algorithm. We additionally compare it to 

two existing approaches, evaluating the performance of parameter estimation for 

each. The methods compared are: 

1. Approximating a binned Hawkes process as an integer-valued auto-

regressive (INAR) process, a method developed in Kirchner (2016, 2017) 

and described in Section 1.3. 

2. Formulating a binned log-likelihood which assumes a piecewise constant 

CIF within each interval as described in Section 1.4. 

3. A novel BH-EM approach detailed in Section 2. 

There are other methods which have been covered in the literature, but are not 

considered here due to lack of applicability to this problem. As an example, a 

significant amount of the literature which aims to work with aggregated data 

considers binning the time-points such that the process contains at most one 

event per bin as in Obral (2016). This is inappropriate here as we do not have 

access to the latent event times and so cannot select an appropriate 

discretization level, Δ. Likewise, in Brillinger (1988) the binned behavior was 

modeled as a Bernoulli process. Again, this is invalid here as it fails to account 

for the number of events in a bin and thus will heavily bias results. There exist 

methods that handle missing data when we observe continuous time-points with 

gaps in the recording windows Le (2018). That is, when the data considered 

Acc
ep

te
d 

M
an

us
cr

ipt



contains precise but intermittent recordings. This is a closely related issue, 

however differs in the fact that when handling binned data, we do not have any 

precise times to work with. 

We now outline the two methods against which we will compare our novel BH-

EM approach. 

1.3 Hawkes INAR(p) Approximation 

It is shown in Kirchner (2016, 2017) that the distribution of the bin-count 

sequence of Hawkes processes can be approximated by an integer-valued 

autoregressive model, known as the INAR(p) model, further details of which can 

be found in Kirchner (2016). By representing the binned Hawkes counting 

process as an INAR(p) process, a non-parametric estimator for kernel g(u) is 

then formulated in terms of conditional least squares (CLS). 

Let  be the bin width, the univariate Hawkes process bin-count sequence is 

denoted , for  and Ni denotes the counts in the  bin. 

Then, defining some support , the CLS-operator is used on the bin 

counts , with maximal lag . Thus, 

 

where the design matrix  is given as 

 

and  is the lagged bin-count sequence, being . Then the entries of 

, 
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are estimates for the excitation kernel at the corresponding time-points. Kernel 

parameters α and β are then estimated by fitting an exponential function to these 

points. 

Simulation studies examining the effect of bin width Δ and parameter s are 

presented in Kirchner (2016); Kirchner and Bercher (2018), where they 

determine Δ to have the greatest bearing on the quality of the estimates. There 

are however several points to note with this method. First, CLS requires the 

inversion of . In this case, this matrix contains the event counts per bin, and 

so it is possible to have cases where this matrix is singular, specifically when the 

counting process contains K – p consecutive zeros. Second, as it is currently 

presented, this method does not constrain the parameter estimates to be those 

of a stationary Hawkes process, that is such that the estimates satisfy Equation 

(2). Therefore it is possible to yield infeasible estimates. Infeasible estimates can 

suggest a poor choice of model for the data, however depending on the use case 

it can be preferable to constrain the parameter estimates and separately consider 

applicability of the model. 

It is also important to note that the methodology outlined in Kirchner (2016) is 

intended for choosing parametric models given continuous-time point process 

data, and not specifically as a method for binned Hawkes process parameter 

estimation. The method is still of interest as a comparator, being one of the only 

known methods available that can model binned data. 

1.4 Binned Likelihood 

An alternative method, briefly mentioned in Mark et al. (2019) and developed 

here, considers sampling  at each discrete time-point  (  with 

), thus representing  as a piecewise constant function within each 

bin. Letting Nj be the number of events occurring in the sampling interval 

 ( , ) ( , ) ( , ) ( , )

1
ˆˆ ˆ ˆ: , , , ,s s s s
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 and using (4) we have that the log-likelihood of the data under this 

model is 

 (5) 

where  and  denotes the history of the process until time 

. 

The assumption of a piecewise constant CIF is equivalent to assuming  

Poisson . However, it is important to note that this assumption 

does not comply with the Hawkes process statistics as it ignores the excitation 

within each bin and therefore will be biased, especially in cases where the 

intensity is high relative to the bin width, Δ. Nevertheless it provides us with a 

simple approximation. To estimate the process parameters we maximize (5) with 

constraints ensuring stationarity, as expressed by (2). In the case of an 

exponential excitation kernel, explicitly this implies  and . 

We will now propose an alternative method of parameter estimation which 

iteratively uses ‘consistent’ sets of continuous candidate time-points and 

therefore does not assume a piecewise constant CIF. 

2 BH-EM Algorithm for Binned Data 

The EM algorithm Dempster et al. (1977) is an iterative method for the 

computation of the maximizer of a likelihood. The idea of this algorithm is to 

augment the observed data by a latent quantity Wei and Tanner (1990). In the 

case considered here, the observed data are the event counts per unit time. We 

denote this by , where Nj denotes the counts in the  bin (

). The latent data, denoted  are the unobserved, true event times 

which are rounded on recording and the set of parameters to be estimated is 

denoted . The algorithm proceeds as follows: 

(( 1) , ]j j  
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1. In the E (Expectation) step, we evaluate 

 (6) 

where  denotes the sample space for . That is, we compute the 

expectation  of the log-posterior  with respect to 

the conditional predictive distribution , where  is the current, 

 approximation. Note that in the context presented here,  is 

the probability density function (PDF) of latent, continuous Hawkes times, 

conditional on the binned count process and current estimated parameters 

of the process. 

2. In the M (Maximization) step, we update the value of the parameter vector 

with , being the value which maximises the conditional expectation. 

When (6) is analytically intractable we require Monte Carlo methods for 

numerical computation. This is known as MC-EM Wei and Tanner (1990). If we 

are able to sample  directly from , then we can approximate the 

integral in (6) with 

 

where  is the  Monte Carlo sample of . However, no such sampling 

regime is possible in the Hawkes process setting. We therefore use importance 

sampling to simulate a consistent proposal for  (that is, a set of event times 

that match the binned counts) from an alternative distribution  (see 

Section 2.1 for details). Each of these proposals is then weighted depending on 

the probability it came from the desired distribution. That is, given a set of r 

simulated proposals , we assign weights 
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 (7) 

and approximate (6) with 

 (8) 

We note that the numerator of (7) can be expressed as 

 

where we let  denote the binned count process derived from the kth 

simulated proposals,  and the known bin width Δ. Further,  is the 

Kronecker delta, equal to 1 if a = b and 0 otherwise. In this way the product term 

is 1 if the proposed time stamps are consistent. Therefore, if only proposing 

consistent event times, we have that 

 

where,  is given by (4). 

However, the question remains of how to best sample the latent times with 

consistent bin counts. Ideally, the distribution we would like to sample from is that 

of the missing event times given the bin counts and the model parameters 

. For this method to be most efficient and to ensure meaningful 

weights, the alternative distribution  should be as close as possible to 

the true distribution of the time-stamps. 

2.1 Method for Simulating Proposals 
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It is possible to uniformly redistribute the events across a bin in order to generate 

a consistent set of event times and this could be incorporated into an MC-EM 

framework by sampling points within each bin from a uniform distribution. 

However, especially for Hawkes processes with high activity, this is not ideal as it 

leads to weights that are too small to compute (8). This is due to the uniform 

distribution not being close enough to . We will show that we can 

derive an alternative distribution which is closer, in that it captures the inter-bin 

excitation, however we cannot sample from it. Therefore we propose an 

alternative method which uses a modified construction of the MC-EM algorithm, 

referred to as Binned Hawkes Expectation Maximization (BH-EM). As opposed to 

the stochastic Monte Carlo approximation, we create a theoretically deterministic 

approximation of the expectation given in 6 by sequentially finding modes of the 

alternative distribution and using these as the ‘samples.’ In particular, these ‘

samples’ are obtained by maximising the joint truncated density over each bin, 

using the known boundaries. Maximizing the joint density yields consistent times 

for each bin, and repeating this process sequentially for all observed bins 

generates a continuous time version of the binned Hawkes process. In theory, if 

the joint density for all bins has a unique maximum then each of the r realisations 

generated will be identical. In practice, and particularly when handling cases with 

more than one event per bin, there is not necessarily a unique maximum and 

randomness is introduced by initializing the numerical maximizer at uniformly 

distributed time-points within each bin. 

In this way, the BH-EM algorithm allows us to more easily utilise a distribution 

closer to the true distribution , as the constraint of having to directly 

sample from it is removed. In the case of Hawkes processes this is important as 

it is particularly difficult to sample consistent proposals whilst capturing the inter-

bin excitation effect in a tractable way. Note that to assess ‘closeness’, we 

consider the empirical variance of the weights wk from (7), resulting from the 

uniform sampling method and the sequential method outlined in this section. 

Across all of the simulations explored in Section 3 we find that the variance is 
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consistently lower, often by several orders of magnitude, for the proposed 

method. Furthermore the value of r can also be lower than would be the case in a 

traditional MC-EM setting. This aids with computational efficiency. 

We now outline the proposed approach. Without loss of generality, consider 

having already simulated until time-point . Then, suppose we 

know that there are exactly m time-points in the next non-empty bin, being 

. The joint density of these events can be expressed using 

factorization. That is 

 

For brevity, we refer to  as . Note that for the 

simplest case of an exponential kernel, we can express this as 

 

where 

 

As we wish to simulate possible realizations of the events given observed counts, 

we should account for the the fact that each time-point is known to have occurred 

within a given interval. That is, we account for the observed interval range 

 for events in a given bin by considering the truncated joint density. For 

this we consider the CDF of the event times. Specifically, we require that 
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. Therefore, we can express the conditional CDF over 

this region as 

 

Even in the simplest case of an exponential decay kernel, this appears 

intractable due to the form of the conditional intensity function for a Hawkes 

process. Therefore we truncate the PDF by considering the joint CDF. As with 

the joint PDF, we can use factorization to express the joint CDF as 

 

where we can use the known form for the CDF of each successive time-point 

given the history of the process. That is, the joint CDF of time-points  

is given by 

 

In the case of an exponential decay kernel, this is 

 

Thus the joint truncated PDF of m time-points given the history,  can be 

expressed as 

 (9) 

where 
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Note that the inverse of the joint truncated density given in Equation (9) is 

intractable for m > 1 and therefore we assign the set of m proposed time-stamps 

for the given bin  to be those that maximize (9). In this way we can 

sequentially simulate a continuous version of the observed binned Hawkes 

process by progressively handling each bin such that we jointly maximize this 

likelihood. The proposed BH-EM full algorithm is given in Appendix C. Here the 

sequential simulation method is developed for the exponential kernel but it is 

easily extendible to other kernels (see Appendices A and B for details regarding 

power-law and rectangular kernels, respectively). 

3 Simulation Studies 

Given parameters  and some maximum simulation time T, we can simulate 

realizations of a Hawkes process. The generated events are those which form 

the latent space , and aggregating these to different Δ allows us to simulate 

the count data N. We can then apply each of the three methods detailed: the 

binned log-likelihood, INAR(p) approximation, and the BH-EM method. We note 

that for the INAR(p) method, we have used the AIC minimizing approach detailed 

in Kirchner (2017) to select the choice of support for each simulation. In cases 

where the optimal p has been found to be 1, we use the value of p that generates 

the next smallest value of the AIC, typically found to be p = 2 or 3. This is so that 

estimates of the parameters under an exponential model may be obtained for 

comparison with the other methods. Figures 1-7 show boxplots for the estimates 

of each of  and β for 20 realizations of a Hawkes process with the ground 

truth parameters specified. The mean value of each parameter estimate is 

presented on the vertical axis. We clearly see that the INAR(p) and binned log 

likelihood methods can yield variable results with the INAR(p) approximation also 

yielding negative estimates. In Figures 1, 5 and 7, the boxplots for both the 

excitation rate, α have been presented on a log-scale in order to show the results 

on one axis. In these instances the INAR(p) method has resulted in outliers that 
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are factors of 10 away from the ground truth. In particular, Figure 7 clearly 

highlights the effect a larger bin width can have on the INAR(p) approximation. 

The remaining figures all likewise show the BH-EM method to perform better 

than either of the two alternative approaches considered for a range of different 

parameter sets. The binned log-likelihood method, also appears biased and 

performs less well than the BH-EM method in all cases. We note that when 

implementing the INAR(p) approximation, ideally Δ is selected such that there is ‘

about one event on an average per bin’ Kirchner (2016). Our application involves 

handling cases where no such choice is possible, and so this approach 

expectedly yields highly variable results if Δ is large relative to the effective 

support of the excitation kernel. 

In Figure 8, we show an example for a power law kernel using the BH-EM 

method and the INAR(p) approximation. We see that again the BH-EM method 

has less variable and less biased results. In Figure 9 we also consider the bias 

across different levels of aggregation. That is, for each of the realizations of a 

self-exciting process for a given parameter set, we can bin the data to different 

levels and compare the bias in the parameter estimates. The right hand plot in 

Figure 9 presents the bias on a log-scale. It is evident that the INAR(p) method is 

more biased for larger bin widths. The binned log-likelihood performs better, 

however, still not as well as the BH-EM method which most consistently exhibits 

a low bias. 

4 Case Study 

NetFlow is a protocol operating on routers that assembles records of 

communications between devices in an enterprise computer network. Originally 

designed for accounting for network usage, it has potential applications in 

detecting a variety of malicious network activities Turcotte et al. (2018). 

Specifically, here it is of interest to detect self-exciting behavior within the 

communication channel between a pair of network devices. In this section, we 

apply the proposed methodology to NetFlow data from Los Alamos National Lab 
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(LANL). These data are collected from core routers in the LANL enterprise 

network Turcotte et al. (2018) and recorded at a 1 second resolution meaning 

multiple events frequently occur at the same time point. We have isolated inter-

edge communication channels (edges) in the LANL network, which show non-

regular behavior in the communications. In particular, we have chosen three 

cases with different lengths, intensities and behaviors. Case 1 covers a lower 

intensity process over 20 hour window, Case 2 shows a shorter window with 

highly variable counts whilst Case 3 is a shorter window but with a lower average 

count than observed in Case 2. Figure 10 shows their activity. Note that we have 

calibrated the Hawkes process with respect to three time-windows of different 

sizes. 

We estimate the parameters using each of the three methods for binned Hawkes 

processes, assuming the exponential kernel given in Equation (3) for L = 1. 

Performance of the methods is explored via goodness of fit. This is an important 

practical consideration and allows us to check the quality of the estimates given 

the data. In literature, it is typical to use the random time change theorem given 

in Daley and Vere-Jones (2003), Laub et al. (2015). This states that given an 

unbounded, increasing set of time points  and compensator 

function 

 

the transformed sequence  is a realization of a unit 

rate Poisson process if and only if the original sequence  is a realization from 

the point process defined by . Therefore, with the estimated conditional 

intensity function, obtained via the parameter estimates , it is possible to 

transform the observed interarrival times and compare them with the theoretical 

Exp(1) distribution for a unit rate Poisson process via a QQ-plot. In the case of 

binned data, the observed time-points are typically not unique and therefore the 

interarrival times of the the transformed points will be zero-inflated and hence not 
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Exp(1). This raises the question of how to apply the time rescaling theorem when 

the true location of the event times is unknown. A discrete version of the time 

rescaling theorem is presented in Haslinger et al. (2010) and is used to counter 

the biases introduced by naively treating the discrete events as continuous. 

However this method relies on the count process being binary, making it 

inapplicable here. To the best of our knowledge, the only approach which has 

shown to work well in the case of more than one event per bin is given in 

Gerhard and Gerstner (2010), where it is suggested that observed event times 

are uniformly distributed within each interval to create a surrogate process. It is 

then possible to proceed as if working with continuous time-points. Figure 11 

shows the QQ-plots corresponding to the count processes shown in Figure 10. 

The parameter estimates produced by the BH-EM algorithm have a better fit 

across all three examples and therefore describe a more viable Hawkes process 

for each data set. In particular, we note the difference in vertical scale in the QQ-

plots, particularly for cases 1 and 2, highlighting that both the INAR(p) and 

binned log-likelihood methods do not provide viable parameter estimates, whilst 

the BH-EM method does. In case 3, we omit the qq-plot generated by using the 

parameter estimates from the INAR(p) method as it yielded a negative value for 

. This issue of infeasible estimates when using the INAR(p) method was also 

found in our simulation study and is mentioned in Section 1.3. 

5 Conclusion 

Here we presented a new technique for handling binned data using a BH-EM 

algorithm. By simulating times using a distribution close to that of the latent event 

times given the observed times and current parameter estimate, we have 

proposed a surrogate consistent set of modal time-points. This allows estimation 

of parameters using methods for continuous time-points. We further compared 

this to the INAR(p) approximation proposed in Kirchner (2016) and a binned log-

likelihood method which assumes a piecewise constant CIF within each interval. 

For the parameter sets considered, the BH-EM method has appeared to out-

perform both alternatives. Applying the BH-EM algorithm to NetFlow data has 
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also demonstrated superior model fitting to existing methods. The BH-EM 

approach further provides us with additional flexibility in that the level of 

aggregation does not need to be consistent across the dataset. That is, provided 

the interval bounds are known, Δ can vary. The issues arising from binned data 

could also be handled via a Markov Chain Monte Carlo (MCMC) algorithm and 

exploring this is the subject of future work. 

Appendices 

A Power-Law Kernel 

The proposed BH-EM method can still be applied if intending to consider a 

regularized power-law kernel of the form 

 

for . In this case, to ensure a stationary Hawkes process, we have that 

 

Therefore the stationarity condition is met for  Bacry et al. (2015). 

We also need to consider the proposed method for simulating candidate times 

and thus the complete log-likelihood of proposed time-points. Both of these 

points fundamentally rely on expressing the conditional PDF and CDF. Firstly, for 

the simulation method introduced in Section 2.1, we now have that 
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Similarly, the joint conditional CDF is given by 

 

In the case of regularized power-law kernel, this is 

 

Then, (9) gives the form for the truncated PDF, as previously. All that remains is 

to adjust the log-likelihood for the CIF with regularized power-law function when 

implementing the BH-EM algorithm. Using (4) that is, 

 

B Rectangular Kernel 

We can also consider a rectangular kernel of the form 
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for . In this case, stationarity holds if 

 

Note that α here represents a small shift of the excitation effect. Therefore, if α = 

0, there is an increase in the process intensity immediately after an arbitrary 

event. In the case of a rectangular kernel, 

 

The remaining equations follow as previously by substituting the above CIF. 

C The BH-EM algorithm 

Here we provide detailed algorithms for the BH-EM approach. Code has been 

developed in MATLAB and is available at https://github.com/lshlomovich/MCEM-

Univariate-Hawkes. 

Algorithm 1 Simulation of times using alternative distribution  

1: 

function SAMPLE FROM Q( ) 

2: 

 

3: 
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4: 

 (9) for m = Nl 

5: 

 

6: 

end for 

7: 

end function 

 

 

Algorithm 2 BH-EM 

1: 

function MCEM( ) 

2: 

 

3: 

 

4: 

while tolerance  do 
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5: 

for j = 1 to r do 

6: 

, provided in Algorithm 1 

7: 

 

8: 

end for 

9: 

 

10: 

 

11: 

tolerance  

12: 

 

13: 

end while 
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14: 

return  ⊳ Set of parameter estimates 

15: 

end function 

 

D Algorithmic Details 

The simulated datasets are generated until a fixed end time T. The stationary 

intensity of a Hawkes process is given in 151971Hawkes by 

 

Thus the expected number events is given by λT and here T is selected to yield 

between 500 and 1000 events. For the simulations considered here, the run time 

of the BH-EM algorithm is a factor of 103 times longer than that of the INAR(p) 

and binned log-likelihood methods, and this is predominantly due to the 

simulation method used, which optimises the position of time stamps within each 

bin via the truncated conditional PDF. In contrast, the INAR(p) method does not 

involve any optimisation steps. The simulation study presented has been timed 

on a 2020 MacBookPro 32GB RAM, 2.3 GHz Quad-Core Intel Core i7, Intel Iris 

Plus Graphics 1536 MB. The BH-EM algorithm takes an average of 464 seconds 

per realisation, INAR(p) takes 0.0707 seconds per realisation, where this 

includes the optimal selection of p and exponential fit. The binned log-likelihood 

0.0282 seconds per realisation. While we have endeavored to code efficiently, 

we are not claiming this is an optimal implementation of the BH-EM algorithm. 

Due to the nature of the BH-EM algorithm, volume of events is less of 

consideration than the average intensity. Having many events in each bin will 

slow the algorithm more. In the simulations presented here, r, is 20. The L2 norm 

{ }i

.
1









Acc
ep

te
d 

M
an

us
cr

ipt



of the difference between successive parameter estimates is used in the BH-EM 

algorithm for assessing convergence up to a user selected tolerance level. The 

mean number of iterations is approximately 25, with standard deviation of 

approximately 15. Further, the memory requirement is O(n), where n is the total 

number of events. 
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Fig. 1 Parameter set: , Δ = 1. The mean optimal p was 2.05 

with variance 3.73 and 60% equal to 1. 

[ , , ] [0.5,0.9,2.0]   

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 2 , Δ = 1. The mean optimal p was 3.59 with variance 

6.29 and 10% are found as 1. 
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Fig. 3 , Δ = 1. The mean optimal p was 3.65 with variance 

5.61 and 20% equal to 1. 
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Fig. 4 , Δ = 1. The mean optimal p was 2.85 with variance 

4.03 and 10% equal to 1. 
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Fig. 5 , Δ = 1. The mean optimal p was 3.25, variance 3.78 

and 5% equal to 1. 
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Fig. 6 , Δ = 1. The mean optimal p was 3.00 with variance 

1.68 and none equal to 1. 
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Fig. 7 Parameter set: , Δ = 2. The mean optimal p was 1.55, 

variance 1.31 and 75% being 1. 
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Fig. 8 Power-law kernel with , Δ = 1. The form for this 

kernel is given in Appendix A. 
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Fig. 9 Parameter set: . Left figure 

shows the results on a linear scale, whilst the right shows a log scale. 
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Fig. 10 Time-stamps of NetFlow data on an edge in the LANL network. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 11 QQ-plots of transformed time-points using parameters estimated from 

each of the three methods considered for an edge in the LANL network. The 

missing figure in case 3 is due to infeasible parameter estimates generated by 

the INAR(p) method. 
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