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Abstract

This technical report introduces a closed multi-class queueing network (QN) model with
class-switching, where the service rates are defined to represent multi-processor stations with
a processor-sharing (PS) allocation policy. These transition rates are also able to consider
traditional delay nodes, and therefore a QN model with these transition rates is well-suited
for multi-threaded software applications. In this report, we define the QN model and use
the results in [1] to show that the transient sample paths of the QN model converge to the
solution of a system of ordinary differential equations (ODEs). As the size of the ODE
system grows linearly with the number of stations and job classes in the QN model, solving
the ODE system becomes a scalable alternative to Markov chain representations.

1 The QN model

In our context, a fluid model is a continuous-time dynamical system described by a set of ordinary
differential equations (ODEs) that approximates the evolution of a stochastic system with a
Markovian description. Here the stochastic system is a closed class-switching QN with M stations
and R job classes. In this type of QN the jobs can switch among the R classes, and therefore
the total number of jobs in each class is not fixed. The state of the QN at time t is given by the
vector X(t) = {Xi,r(t), 1 ≤ i ≤ M, 1 ≤ r ≤ R}, where Xi,r(t) is the number of class-r jobs in
station i at time t. We make use of the double index (i, r) for any vector to refer to its (i−1)K+r
entry, i.e., the one corresponding to station i and class-r jobs. We assume an initial population
of Nr class-r jobs in the QN, and a total of N =

∑R
r=1Nr jobs. The system state is modified by

events, which in our closed QN are limited to service completions. Once the service of a class-r
job terminates in station i, the job proceeds to station j as a class-s job with probability P r,s

i,j ,
triggering a transition from state x to state x+ ej,s − ei,r, where ei,r is a vector of zeros with a
one in entry (i, r).

We assume the service centers in the QN follow a PS scheduling policy. That is, the service
rate is equally divided between all the jobs present at the station, which for station i is xi =∑R

l=1 xi,l. Assuming that class-r jobs are served at station i with rate µi,r by a single PS server,
the transition rate associated to a jump ej,s − ei,r would be

g(x, ej,s − ei,r) = µi,rP
r,s
i,j

xi,r
xi

1 {xi > 0} . (1)

This transition rate however poses both numerical and analytical issues, due to the discontinuity
at xi,k = 0 when

∑K
l=1,l 6=k xi,l = 0. Instead, we assume mi servers in station i, and adopt the
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rate function

f(x, ej,s − ei,r) = µi,rP
r,s
i,j

xi,r
xi

min {mi, xi} . (2)

This rate function is such that, when the number of jobs is less than the number of servers
(xi ≤ mi), each of the jobs is assumed to be assigned to a different processor, such that each
job class receives an effective processing rate proportional to the number of jobs in process,
i.e., µi,rP

r,s
i,j xi,r. On the other hand, if there are more jobs than servers (xi ≥ mi), the effec-

tive processing rate becomes that of a PS “super-processor” with processing rate miµi,r, i.e.,
miµi,rP

r,s
i,j

xi,r

xi
. Notice that, in addition to representing PS nodes, this transition rate also cap-

tures the dynamics of delay nodes. This is achieved by assigning N servers (as many as jobs in
the QN) to the delay node, such that the service completion rate for class-r jobs in this station is
µi,rP

r,s
i,j xi,r, and never adopts the PS form. Therefore, the result in the next section holds for a

QN with delay and PS service centers. For later reference, we will use f(x, i, j, r, s) as shorthand
for f(x, ej,s − ei,r).

2 The fluid model

Up to this point we have described traditional closed class-switching QNs with a slight modifi-
cation in the transition rates to account for both multi-server PS and delay stations. We now
introduce a sequence of QN models, indexed by v, such that when v →∞, the sample paths of
the QN models tend to that of an ODE system, which can be used to approximate the transient
behavior of the QN. Let {Xv(t)}v∈N+

be a sequence of QN models such that X1(t) = X(t)
(the QN model defined in the previous section), and Xv(t) for v ≥ 2 is defined as X1(t) with
an initial population of vNr class-r jobs (vN jobs in total), and vmi servers in station i. The

state space of Xv(t) is {x ∈ NMR :
∑M

i=1

∑R
r=1 xi,r = vN}. With this definition, we can spec-

ify the number of servers in station i, for any QN model Xv(t), as a fraction 0 < ci ≤ 1 of
the total number of jobs. Thus, the number of servers in station i in the QN model Xv(t) is

vmi = civN = ci
∑M

h=1

∑R
r=1 xh,r, for any state x in the state space of Xv(t). The transition

rates of Xv(t) in state x are thus given by

fv(x, i, j, r, s) = µi,rP
r,s
i,j

xi,r
xi

min

{
ci

M∑
h=1

R∑
r=1

xh,r, xi

}
, (3)

and can be written as

fv(x, i, j, r, s)=vµi,rP
r,s
i,j

xi,r

v
xi

v

min

{
ci
v

M∑
h=1

R∑
r=1

xh,r,
xi
v

}
=vf1(x/v, i, j, r, s) = vf(x/v, i, j, r, s).

This property, that the rates of Xv(t) in state x can be written as v times the rates of X1(t) in
state x/v, and the fact that the functions f(x, i, j, r, s) are continuous for all x ∈ RMR, makes
the sequence {Xv(t)}v∈N+

a density-dependent family of processes [1].
Theorem 3.1 in [1] shows that, under certain conditions, the sample paths of the normal-

ized sequence {Xv(t)/v}v∈N+ converge in probability to a deterministic ODE system. For any
x ∈ RMR, let F (x) be the drift of X(t) in state x, that is

F (x) =

M∑
i=1

M∑
j=1

R∑
r=1

R∑
s=1

(ej,s − ei,r)f(x, i, j, r, s), (4)
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and let x(t) ∈ RMR be the state of a deterministic system that evolves according to the ODE

dx(t)

dt
= F (x(t)), t ≥ 0, (5)

and has initial state x0. Theorem 3.1 in [1] states that the sample paths of the sequence
{Xv(t)/v}v∈N+

converge to the deterministic limit x(t) as v →∞, i.e., that limv→∞Xv(0)/v =
x0 implies that for every δ > 0

lim
v→∞

P

(
sup
s≤t

∣∣∣∣1vXv(s)− x(s)

∣∣∣∣ > δ

)
= 0.

This holds for every finite t if x(s) ∈ E for 0 ≤ s ≤ t, where E is an open set E ⊂ RMR such
that

|F (x)− F (y)| < ME |x− y| , x,y ∈ E, (6)

sup
x∈E

M∑
i=1

M∑
j=1

R∑
r=1

R∑
s=1

|ej,s − ei,r| f(x, i, j, r, s) <∞, (7)

lim
d→∞

sup
x∈E

∑
(i,j,r,s)∈S(d)

|ej,s − ei,r| f(x, i, j, r, s) = 0, (8)

where S(d) is the set {(i, j, r, s) : |ej,s − ei,r| > d}, and ME is a constant. Notice that condition
(6) implies the Lipschitz continuity of F (·) which ensures the existence of a unique solution to
the ODE (5).

Theorem 1. The sequence of QNs {Xv(t)}v∈N+ verifies conditions (6), (7), and (8).

Proof. As the QN model X(t) is closed, the entries Xi,r(t) are bounded above by N , a condition
that also holds for every Xv(t)/v as well as for x(t). As a result the set E can be chosen as the

smallest open set that contains the set {x ∈ RMR : x ≥ 0,
∑M

i=1

∑R
r=1 xi,r = N}, as the sample

paths of x(t) never leave this set.
To verify condition (6) we consider x,y ∈ E and the 1-norm to write

|F (x)− F (y)|

=

∣∣∣∣∣∣
M∑
i=1

M∑
j=1

R∑
r=1

R∑
s=1

(ej,s − ei,r)f(x, i, j, r, s) −
M∑
i=1

M∑
j=1

R∑
r=1

R∑
s=1

(ej,s − ei,r)f(y, i, j, r, s)

∣∣∣∣∣∣
≤ 2

M∑
i=1

M∑
j=1

R∑
r=1

R∑
s=1

|f(x, i, j, r, s)− f(y, i, j, r, s)| ,

since |ej,s − ei,r| ≤ 2. We can therefore focus on each of the terms within the sum, for which we

have four cases depending of whether
∑R

r=1 xi,r and
∑R

r=1 yi,r are greater or less than mi.
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Case 1:
∑R

r=1 xi,r > mi and
∑R

r=1 yi,r > mi.

|f(x, i, j, r, s)− f(y, i, j, r, s)| =
∣∣µi,rP

r,s
i,j mi

∣∣ ∣∣∣∣∣ xi,r∑R
l=1 xi,l

− yi,r∑R
l=1 yi,l

∣∣∣∣∣
<
µi,rP

r,s
i,j

mi

∣∣∣∣∣xi,r
R∑
l=1

yi,l − yi,r
R∑
l=1

xi,l

∣∣∣∣∣
=
µi,rP

r,s
i,j

mi

∣∣∣∣∣xi,r
(

R∑
l=1

yi,l −
R∑
l=1

xi,l

)
− (yi,r − xi,r)

R∑
l=1

xi,l

∣∣∣∣∣
≤
Nµi,rP

r,s
i,j

mi

R∑
l=1

|xi,l − yi,l| .

Case 2:
∑R

r=1 xi,r > mi and
∑R

r=1 yi,r ≤ mi.

|f(x, i, j, r, s)− f(y, i, j, r, s)| =
∣∣µi,rP

r,s
i,j

∣∣ ∣∣∣∣∣ xi,r∑R
l=1 xi,l

mi − yi,r

∣∣∣∣∣
= µi,rP

r,s
i,j

∣∣∣∣∣mixi,r − yi,r
∑R

l=1 xi,l∑R
l=1 xi,l

∣∣∣∣∣
<
µi,rP

r,s
i,j

mi

∣∣∣∣∣mixi,r − yi,r
R∑
l=1

xi,l

∣∣∣∣∣
<
µi,rP

r,s
i,j

mi
|mixi,r −miyi,r|

= µi,rP
r,s
i,j |xi,r − yi,r| .

Case 3:
∑R

r=1 xi,r ≤ mi and
∑R

r=1 yi,r > mi.

|f(x, i, j, r, s)− f(y, i, j, r, s)| =
∣∣µi,rP

r,s
i,j

∣∣ ∣∣∣∣∣xi,r − yi,r∑R
l=1 yi,l

mi

∣∣∣∣∣
= µi,rP

r,s
i,j

∣∣∣∣∣xi,r
∑R

l=1 yi,l −miyi,r∑R
l=1 yi,l

∣∣∣∣∣
<
µi,rP

r,s
i,j

mi

∣∣∣∣∣xi,r
R∑
l=1

yi,l −miyi,r

∣∣∣∣∣
=
µi,rP

r,s
i,j

mi

∣∣∣∣∣xi,r
(

R∑
l=1

yi,l −
R∑
l=1

xi,l

)
+xi,r

R∑
l=1

xi,l −miyi,r

∣∣∣∣∣
≤
µi,rP

r,s
i,j

mi

∣∣∣∣∣mi

(
R∑
l=1

yi,l −
R∑
l=1

xi,l

)
+mi(xi,r − yi,r)

∣∣∣∣∣
≤ µi,rP

r,s
i,j

R∑
l=1

|xi,l − yi,l| .

Case 4:
∑R

r=1 xi,r ≤ mi and
∑R

r=1 yi,r ≤ mi.

|f(x, i, j, r, s)−f(y, i, j, r, s)|=µi,rP
r,s
i,j |xi,r − yi,r| .
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We therefore have that, using the 1-norm, |f(x, i, j, r, s)− f(y, i, j, r, s)| ≤ µi,rP
r,s
i,j N/mi|x− y|,

as mi ≤ N , and therefore condition (6) is satisfied.
Condition (7) can be readily verified by noticing that |ej,r − ei,r| ≤ 2 and

f(x, i, j, r, s) ≤ µi,rP
r,s
i,j xi,r ≤ µi,rP

r,s
i,j N.

Finally, condition (8) is verified by observing that the set S(d) is empty for every d > 2.
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