
Quantitative threat analysis via a logical service 1

Michael Huth and Jim Huan-Pu Kuo
Department of Computing, Imperial College London

London, SW7 2AZ, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk

29 September 2014

Abstract

It is increasingly important to analyze system security quantitatively using concepts such
as trust, reputation, cost, and risk. This requires a thorough understanding of how such
concepts should interact so that we can validate the assessment of threats, the choice of
adopted risk management, etc.. To this end, we propose a declarative language Peal+ in
which the interaction of such concepts can be rigorously described and analyzed. Peal+ has
been implemented in PEALT using the SMT solver Z3 as analysis back-end. PEALT ’s code
generators target complex back-ends and evolve with optimizations or new back-ends. Thus
we can neither trust the tool chain nor feasibly prove correctness of all involved artefacts.
We eliminate the need to trust that tool chain by independently certifying scenarios found
by back-ends in a manner agnostic of code generation and choice of back-end. This scenario
validation is compositional, courtesy of Kleene’s 3-valued logic and potential refinement of
scenarios. We prove the correctness of this validation, discuss how PEALT presents scenarios
to further users’ understanding, and demonstrate the utility of this approach by showing how
it can express attack-countermeasure trees so that the interaction of attack success probability,
attack cost, and attack impact can be analyzed.

1 Introduction

It is well recognized that the analysis of threats to system security goes beyond the exposure
and fix of vulnerabilities and that it also has to take account of contextual influences such as
risks, trust assumptions, the reputation of domains, etc. However, it is often not clear how such
different concepts interact in the threat space (which the attacker controls) or how they should
interact in a system design space (which the designer thinks he controls). For example, when
the Heartbleed vulnerability became known even security experts could not uniformly agree on
whether users should immediately change their passwords on web accounts that used versions of
OpenSSL vulnerable to this attack [19]: e.g., it was difficult to know whether the account was
compromised, and renewing a password in a compromised account might leak that password to an
attacker.

In general, threat analysts have a host of techniques and models at their disposal that allow
them to assess security threats, let us mention here attack trees [18, 13, 12] and Stackelberg
games for security (see e.g. [10]) as two prominent examples. Also, probabilistic risk analysis [2]
offers a rich set of tools that threat analysts may use to study the interaction of factors that
influence security. Alas, tools from risk analysis view attackers as passive environments (e.g. a
random process modeling life expectancy of a light bulb) and not as active agents (e.g. a cyber

1Please cite this research note as Michael Huth and Jim Kuo. Quantitative threat analysis via a logical service:
usability, service certification, and case study. Technical Report 2014/10, Department of Computing, Imperial
College London, ISSN 1469-4174, 2014.

1

Figure 1: Overview of PEALT and our contributions: extension of PEALT to richer input
language Peal+, certification of scenarios, and computation of usable feedback

terrorist who seeks access to programmable logic controllers in a SCADA system). We therefore
would like support for modeling the interaction of concepts such as protection cost, impact of
successful attacks, perception of risk, reputation of agents, etc., in a system exposed to active
attacks. The active nature of attackers suggests to model action and reaction with AND/OR
structures, e.g. as present in two-person games or first-order logic. The desire to study interaction
of quantitative concepts suggests use of an expressive logical language with appropriate theories for
reals; expressiveness means we can easily extend studies to new concepts or interaction modes, and
theories enable us to do correct quantitative reasoning. We cannot assume, though, that threat
analysts are trained logicians, so we require automated reasoning support for such logics to build
auto-interactive verifiers. SMT solvers, e.g. Z3 [14], thus look like apt vehicles for expressing and
analyzing such interaction in this manner.

Chosing an SMT solver as back-end also poses problems. Its input language is too complex
and universal, since security analysts prefer languages specific to their modeling domain. For code
generators from domain-specific languages into SMT back-ends we need assurance that results
computed by back-ends are correct and sensible in the modeled domain. Security analysts want
results communicated in forms appreciable to them. Finally, users may formulate conditions that
are vacuously true, or vacuously false in the modeled domain. This may identify a specification
error or it may instead validate that an analyst has realized an important invariant – e.g. that the
risk is always below an acceptable threshold. Our paper presents results that directly address this
set of problems.

Figure 1 shows how our contributions presented in this paper are realized in the tool PEALT .
Users specify Peal+ conditions to be analyzed, and domain-specific knowledge or assumptions;
PEALT converts these specifications into Z3 code which the SMT solver Z3 solves; the raw
output of Z3 results is then post-processed and analyzed over the Peal+ conditions; and feedback
is reported so that all scenarios are certified. The user may then inspect that feedback and either
be satisfied or edit conditions or domain specifics for further analysis.

Outline of paper. In Section 2, we present language Peal+ in which threats can be mod-
eled and analyzed when quantitative information contains non-deterministic uncertainty; and we
discuss automated vacuity checking. In Section 3, we present an algorithm which independently
certifies that scenarios computed from analyses by back-ends such as Z3 are correct for the modeled
problem – eliminating the need to trust our code generation methods or back-ends. In Section 4,
we discuss how the implementation of Peal+, its analyses, and certification are supported by the
use of partial evaluation to render certified scenarios to users in compact ways that should facil-
itate users’ comprehension. In Section 5, we show Peal+’s utility as intermediate language for

2

Ee(op(pS1, pS2)) = op(Ee(pS1), Ee(pS2))

Ee(op((q1 s1) . . . (qn sn)) default s) = op(Z) (if Z 6= ∅)
Ee(op((q1 s1) . . . (qn sn)) default s) = Ee(s) (if Z = ∅)

Ee(a) = a (constant a)

Ee(x) = e(x) (x not of form p.sc)

Ee(a ∗ x) = a · e(x) (x not of form p.sc)

Ee(p.sc) = Ee(p) (evaluate policy p)

Ee(a ∗ p.sc) = a · Ee(p) (evaluate policy p)

Ee(r [l, u]) = Ee(r) + e(p, qi, [l, u]) ([l, u] declared in p for predicate qi)

Ee(r [l, u]) = Ee(r) + e(p, default, [l, u]) ([l, u] declared in default score s of p)

Figure 2: Semantics Ee(pSet) of policy sets (acyclic as in Def. 1), given an environment e that
maps predicates to truth values, scores to reals, and resolves non-deterministic choice of uncertainty
intervals. Scores r range over raw scores, a over constants, x over variables, and p.sc over policy
scores. Set Z equals {Ee(si) | 1 ≤ i ≤ n, e(qi) = true}

analyzing the interaction of threat concepts in tree-like models. In Section 6, we further discuss
and evaluate language Peal+ and its implementation in tool PEALT . Section 7 features related
work, and Section 8 concludes the paper.

2 Language and its vacuity checks

Figure 3 shows a formal grammar for our language Peal+ that can express interaction of security
aspects as well as the logical/quantitative analysis of such interaction. Peal+ shares the coarse
structure of its predecessor Peal [4, 7]: rules condition a score on a predicate, policies are built
from rules, policy sets are built out of policies, conditions are formed out of policy set comparisons;
and analyses have conditions as arguments. The meaning of analysis types is the intuitive one of
their names seen in Figure 3. The meaning of conditions is given by that of propositional logic
and of comparison operators over reals. Thus it suffices to define how policy sets evaluate to reals
in an environment in which all predicates have truth values, all real variables have a real value,
and all non-deterministic uncertainties are resolved – so all scores evaluate to a real number.

We state this semantics informally here, and formally in Figure 2. A rule rule returns its
declared score when its declared predicate is true; otherwise, it has no effect. The meaning of a
policy is then given as follows: if none of its rules has a true predicate, its meaning is that of its
default score; otherwise, its meaning is obtained by first computing the meaning of all scores from
its rules with true predicates, and then applying operator op to that set of computed reals.

The grammar for scores allows us to write expressions such as 0.45, −124.5, 0.67 ∗x, 0.5 ∗ p.sc,
0.4 ∗ x [−0.1, 0.1], or 0.5 ∗ p.sc [−0.05, 0.05] where x is a real-valued identifier and p is a policy.
In a given environment, the meaning of scores without intervals [l, u] is that of normal arithmetic
with variable values given by the environment. The meaning of expressions s [l, u] is x + y where

3

alys ::= always true? cond | equivalent? cond cond | different? cond cond |
implies? cond cond | always false? cond | satisfiable? cond

cond ::= q | ¬cond | cond || cond | cond&& cond | pSet ≤ pSet | pSet < pSet

op ::= min | max | + | ∗
pSet ::= pol | op (pSet, pSet)

pol ::= op (rule∗) default score

rule ::= (q score)

score ::= rawScore | rawScore [realConst , realConst]

rawScore ::= realConst | realV ar | realConst ∗ realV ar

realV ar ::= identifier | pSet.sc

Figure 3: Syntax of Peal+ where q ranges over some language of predicates, constants and variables
occurring in score expressions range over real numbers, and [realConst , realConst] ranges over
closed real intervals. For sake of clarity, keywords of Peal+ are written in boldface here, e.g.,
pSet.sc denotes the score of pSet

x is the meaning of s in the environment, and y from [l, u] is the non-deterministic choice of the
environment from interval [l, u]. To ensure consistency, we require l ≤ 0.0 ≤ u. For example, u < l
would be logically inconsistent and l > 0 would suggest to change s [l, u] to the equivalent but
more comprehensible (s + l) [0.0, u − l] when l ≤ u. The meaning of variable pSet.sc is that of
pSet computed by the operational semantics just described. For this to be well-defined, the set of
declared policy sets must not create cyclic dependencies in Peal+:

Definition 1 Let p1 and p2 be in a set P of Peal+ policy sets. Then p1 depends on p2 (written
p2 ≺ p1) if there is a score s in p1 that contains or equals variable p2.sc. Set P is acyclic if the
transitive closure of ≺ over P × P is acyclic.

Peal+ extends Peal is important ways: scores may have variables and non-deterministic un-
certainty, policy sets have the same composition operators as policies, conditions subsume propo-
sitional logic and may compare policy sets, and the result of a policy set can be referred to as
variable within a score expression. With these extensions, Peal+ is expressive enough to capture
metrics, tree-like models, cost functions, and basic probabilistic computations.

Let us illustrate the use of Peal+ with an example modeling risks that a car rental company
may face when renting out cars to clients. Figure 4 shows how rules, policies, policy sets, and
conditions for this example are declared in the input language of our tool PEALT . Declarations
are divided into blocks by keywords such as POLICIES and lines that begin with % are used for
comments.

A notable feature of the tool input language is the declaration block DOMAIN SPECIFICS in
which specifiers can enter code from the input language of the SMT solver Z3 [14] to further
constrain the model. This would typically be used to express assumptions or knowledge of the

4

modeled domain, and uses Z3 syntax since Z3 is the current back-end of our tool. For example,
the model in Figure 4 uses this to express that luxury cars must not be rented out for off-road
driving. It represents risk and trust as values in [0, 1], and uses f(x) = 1−x to convert one into the
other. More sophisticated relationships between trust and risk may be captured in Peal+ as well.
This Peal+ model is conceptually similar to the use of score cards that assess risks in mortgage
applications [16]. Next, we discuss vacuity checking and how our analyses support this.

Vacuity checking. The analyses always true? and always false? reduce to satisfiability
checks but their intent is to check for so called vacuities [11]: a condition that is always true
or always false may be a specification error (as in temporal logic verification of hardware [11]),
evidence for a desired invariant or may desire further scrutiny of the specifier. Our tool automat-
ically enforces both types of vacuity check on all declared conditions. The reason is that declared
conditions are likely to contribute to input of a declared analysis, and so we want to alert users to
those conditions that are vacuously true, or vacuously false.

For example, condition c1 of the Car Rental Risks example in Figure 4 is reported to be always
true, so the “insurance risk” which multiplies monetary loss with its associates risk is never above
50,000. If Z3 can’t decide a vacuity check (output UNKNOWN), PEALT reports checked conditions
as “may be” vacuities. PEALT only reports names of vacuously true or false conditions. Users
who want more detailed feedback as described below need to “promote” such a vacuity analysis
into the ANALYSES section, where more detailed feedback is provided. Users may turn automated
vacuity checking on or off under “Settings”. We recommend vacuity checks to be done at least
once for model validation.

3 Scenario certification

Users from high assurance domains need compelling evidence that scenarios computed by back-
ends from code PEALT generates are valid for analyzed Peal+ conditions, and they want to be
able to relate scenarios to conditions in a comprehensible manner. We report additional support
for the latter below. As for the former, what if our Z3 code generation method contains logical
mistakes? What if we make wrong assumptions about the operation of the tool Z3? What if
some Z3 features we use contain implementation flaws? What if (perish the thought) the inference
techniques used in Z3 were to contain mistakes? We think these questions make a compelling case
for independently certifying the validity of a scenario discovered for a Peal+ condition. Back-ends
such as Z3 compute scenarios that are very compact in that they don’t define values for some
variables. Certification therefore needs to be able to reason that these are indeed “don’t care”
variables, making certification non-trivial.

Such a certification should be comprehensible to non-experts and efficient – giving it the flavor of
an NP problem although the underlying decision problems may be undecidable. Our compositional
certification of don’t care variables may lose precision and so may have an inconclusive output.
In the latter case, one of the predicates of the scenario may not have a specified truth value. We
then set that value to false and repeat the certification algorithm on this refined scenario. This
process is efficient as it examines conditions compositionally and greedily refines scenarios until it
succeeds or not. Refined predicates are set to false and not to true: users want to see as few trees
in the forest as possible, and false predicates only have an effect in a policy when all its predicates
are false.

This certification process represents a scenario, a model returned by Z3, as a function I that

5

POLICIES

% policy capturing risk of financial loss dependent on type of rented car

b1 = max ((isLuxuryCar 150000) (isSedan 60000) (isCompact 30000)) default 50000

% policy capturing trust in rentee dependent on type of his or her driving license

b2 = min ((hasUSLicense 0.9) (hasUKLicense 0.6) (hasEULicense 0.7)

(hasOtherLicense 0.4 [-0.1,0.1])) default 0

% policy that captures potential risk dependent on type of intended car usage

% this policy happens not to be used in the conditions below

b3 = max ((someOffRoadDriving 0.8) (onlyCityUsage 0.4) (onlyLongDistanceUsage 0.2)

(mixedUsage 0.25)) default 0.3

% policy that accumulates some signals that may serve as additional trust indicators

b4 = + ((accidentFreeForYears 0.05*x) (speaksEnglish 0.05) (travelsAlone -0.2)

(femaleDriver 0.1)) default 0

% convert trust b2 into risk b2 using f(x) = 1-x

b2_risk = +((True 1.0) (True -1*b2_score)) default 0.0

POLICY_SETS

% casting b2_risk into policy set

pSet0 = b2_risk

% policy set that multiplies risk with potential financial loss

pSet1 = *(b1,pSet0)

% casting policy p4 into a policy set

pSet_b4 = b4

CONDITIONS

% condition that the risk aware potential financial loss is below a certain bound

c1 = pSet1 <= 50000

% condition that the accumulated trust is above a certain threshold

c2 = 0.4 < pSet_b4

% condition that insists that two previous conditions have to hold

c3 = c1 && c2

DOMAIN_SPECIFICS

% real x models accident-free years of driving, ’truncated’ at value 10

(assert (and (<= 0 x) (<= x 10)))

% capturing a company policy: luxury cars must not be used for off road driving

(assert (or (not isLuxuryCar) (not someOffRoadDriving)))

% capturing that the different types of rental cars are mutually exclusive

(assert (and (implies isLuxuryCar (and (not isSedan) (not isCompact)))

(implies isSedan (and (not isLuxuryCar) (not isCompact)))

(implies isCompact (and (not isSedan) (not isLuxuryCar)))))

% capturing that cars that are only used in cities are not used in a mixed sense

(assert (implies onlyCityUsage (not mixedUsage)))

% capturing that cars used only for longdistance driving are not used in a mixed sense

(assert (implies onlyLongDistanceUsage (not mixedUsage)))

% capturing domain constraints (or company policy?) that city driving cannot happen off road

(assert (implies onlyCityUsage (not someOffRoadDriving)))

% capturing that cars used only for longdistance driving must drive off road

(assert (implies onlyLongDistanceUsage (not someOffRoadDriving)))

ANALYSES

% is condition c1 always true? this would suggest an invariant

name1 = always_true? c1

% is condition c3 always true? this would suggest a specification error

name2 = always_true? c3

Figure 4: Peal+ model of Car Rental Risks
6

maps real variables to real numbers or ⊥, and predicates to true, false or ⊥. Symbol ⊥models that
the scenario did not specify a value for the variable in question. For predicates, ⊥ (“unknown”)
is also the third truth value of Kleene’s 3-valued logic [9]. Figure 8 shows how PEALT reports
a scenario for analysis name2 from Figure 4. To explain our certification, we need to define the
refinement of environments, which are all well typed in that they map any variable either to value
⊥ or a value of its declared data type – Real or Boolean.

Definition 2 Let env1, env2 be environments over the same set of variables V. Then env2 refines
env1 if for all x in V, env1(x) 6= ⊥ implies env1(x) = env2(x).

This means that refinements can change ⊥ values of variables to any value of their declared
data type, but they cannot change non ⊥ values.

Function recursivelyCertify(c, I, v, ∅), seen in Figure 5, checks whether condition c has truth
value v in the scenario/Z3 model I. It outputs true if this claim could be certified, false if a logical
flaw in the claim was detected, and outputs ⊥ otherwise. Wrapper function certifyWrapper(c, I, v)
in Figure 5 converts true, false and ⊥ into certification success, failure, and inconclusive, re-
spectively.

The truth value v used in recursivelyCertify(c, I, v, ∅) is determined by the type of analysis.
For example, if always false? c returns SAT, it means the found scenario should be evidence for
c being true, and so v equals true. The treatment of analyses with two arguments is similar. For
example, for a SAT outcome of implies? c1 c2, the scenario should be evidence for c1 being true
and c2 being false. So we need to achieve two certifications, recursivelyCertify(c1, I, true, ∅) and
recursivelyCertify(c2, I, false, ∅) for this.

Function recursivelyCertify refines I into an environment env′ by setting predicates to false
or adding a statically inferred score to a policy. The latter means that environments are not
only defined on predicates and real variables but may also map policy names to their inferred
scores. At program point l2, such static inference of policy scores is delegated to function
collectCertifiablePolicyScores in Figure 6. In this extended environment env′, function certCond,
shown in Figure 7, determines the truth value of the condition in that environment under Kleene’s
3-valued logic [9]. If that value is ⊥, we call recursivelyCertify again but with a refined environ-
ment that either inferred at least one new policy score or set a predicate to false. If the truth value
of the condition is 6= ⊥, function recursivelyCertify outputs that value.

The need for parameter cp and for checking its “progress” comes from construct pol.sc, where
static inference of a policy score may then enable more such inferences for other policies. Function
collectCertifiablePolicyScores(env) initializes in cp an empty hash map. For each declared policy
pol it stores in score the output of function certPolicy(pol, env) depicted in Figure 6. Thus we
statically infer the score of pol (rather than consulting env(p score) if that were 6= ⊥), so that
policy scores are certified before their use in certification of policy scores they depend on. Then
either an equality check of certPolicy(pol, env) and env(p score) is performed – whose failure will
fail certification – or we check whether the static analysis returns a real value (i.e. not ⊥), in which
case we extend the hash map so that pol has key score. Finally, the hash map is returned.

Function certPolicy(pol, env) first checks whether some predicate q within policy pol has un-
specified truth value in environment env. If so, it returns ⊥ since the score of pol cannot be
determined. Otherwise, if all predicates in pol are false in environment env, the default case ap-
plies and the evaluation of the default score s in environment env is returned. Finally, if some
predicates in pol are true (and none are then false), we return the application of op to the evaluation
eval(si, env) of all “true” score expressions si in environment env.

7

certifyWrapper(c, I, v) { % condition c, scenario I, and v in {false, true}
if (recursivelyCertify(c, I, v, ∅) == true) { return success; }
if (recursivelyCertify(c, I, v, ∅) == false) { return failure; }
elseif { return inconclusive; }

}

recursivelyCertify(c, env, v, cp) { % returns true, false or ⊥
cp′ = collectCertifiablePolicyScores(env);
env′ = env + cp′; % program point l2
o = certCond(c, env′, v);
if (o == ⊥) {

if (cp 6= cp′) {
return recursivelyCertify(c, env′, v, cp′);

} elsif (∃q: env′(q) = ⊥) {
pick one q with env′(q) = ⊥;
env′ = env′ + [q 7→ false];
return recursivelyCertify(c, env′, v, cp′);

} else {return o; } % triggers exception upstream (not shown here)
} else { % program point l1

return o; % output true means success, false means failure
}

}

Figure 5: Function recursivelyCertify(c, I, v, ∅) checks whether condition c has truth value v in
empty hash map cp and scenario I where it may refine the latter. Function certifyWrapper wraps
this into success, failure, or inconclusive result

8

collectCertifiablePolicyScores(env) {
% returns hash map of some policies, with their statically inferred scores as keys

cp = ∅;
for (all declared policies pol) {

score = certPolicy(pol, env);
if (env(pol score) 6= ⊥){

if (score 6= env(pol score)){
report certification exception; break;

}
}
if (score 6= ⊥) {cp = cp + [pol 7→ score]; }

}
return cp;

}

certPolicy(pol, env) { % returns statically inferred policy score or ⊥
if (∃(qi si) ∈ pol: env(qi) = ⊥) { return ⊥; }
elseif (Xpol

env == ∅) { return eval(s, env); }
else { return op(Xpol

env); }
}

eval(s, env) {
% s = t1 or s = t1 + t2 with t1 being constant a, variable x or product a ∗ x
% and t2 being variable x not of form p.sc (modeling uncertainty)

if (t1 of form a) {acc = a; }
elseif (t1 of form p.sc) {if (env(p) 6= ⊥) {acc = env(p); } else {return ⊥; }}
elseif (t1 of form x) {if (env(x) 6= ⊥) {acc = env(x); } else {return ⊥; }}
elseif (t1 of form a ∗ p.sc) {

if (a == 0.0) {acc = 0.0; }
elseif (env(p) 6= ⊥) {acc = a ∗ env(p); }
else {return ⊥; } % here a non-zero but env(p) equals ⊥

}
elseif (t1 of form a ∗ x) { % here x is not of form p.sc

if (a == 0.0) {acc = 0.0; }
elseif (env(x) 6= ⊥) {acc = a ∗ env(x); }
else {return ⊥; } % here a non-zero but env(x) equals ⊥

}
if (s of form t1 + t2) {

if (env(t2) 6= ⊥) {acc = acc + env(t2); }
else {return ⊥; } % here env(t2) equals ⊥, strict for +

}
return acc;

}

Figure 6: Function collectCertifiablePolicyScores(env) returns hash map for policies pol with
keys score statically inferred as result of pol in env. Function certPolicy certifies whether the
score of policy pol of form op ((q1 s1) . . . (qn sn)) default s or op () default s in environment env
is inferrable. Set Xpol

env denotes {eval(si, env) | env(qi) = true} and function eval(s, env) statically
infers the value of score s in environment env

9

certCond(c, env, v) { % returns true, false or ⊥; comparisons to ⊥ return ⊥
if (c of form q) { return (v == env(q)); }
elseif (c of form ¬c1) { return certCond(c1, env,¬v); }
elseif (c of form (c1 ∧ c2)) { if (v == true) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (c1 ∨ c2)) { { if (v == false) {lop = ∧; } else {lop = ∨; }

return certCond(c1, env, v) lop certCond(c2, env, v); }
} elseif (c of form (pS1 ≤ pS2)) {

if(v == true) { return certPSet(pS1, env) ≤ certPSet(pS2, env); }
else { return certPSet(pS2, env) < certPSet(pS1, env); }

} elseif (c of form (pS1 < pS2)) {
if(v == true) { return certPSet(pS1, env) < certPSet(pS2, env); }
else { return certPSet(pS2, env) ≤ certPSet(pS1, env); }

}
}

certPSet(pSet, env) { % returns true, false or ⊥; if env(pol) not found, returns ⊥
if (pSet of form pol) {return env(pol); }
} elseif (pSet of form op(pS1, pS2)) { return op(certPSet(pS1, env), certPSet(pS2, env)); }

}

Figure 7: Function certCond(c, env, v) decides whether condition c has truth value v in environ-
ment env, and certPSet(pSet, env) covers this for policies and their composition

Function eval(s, env) has two types of input for s depending on whether s is a raw score t1
or contains an uncertainty interval [l, u] that we translate into Z3 code as a real variable t2. This
function does a static analysis that consults env(p) when evaluating variables of form p.sc and
consults env(x) for all other variables x. This consults env(p) and not env(p.sc) so that policy
scores get certified based on certified scores of policies that they depend upon. Although ⊥ is
strict for +, we relax its strictness for ∗ in expressions a ∗ x when a evaluates to 0.0, in which case
a ∗ x also evaluates to 0.0.

Last, but not least, we turn to function certCond(c, env, v) in Figure 7. It compositionally
evaluates over the structure of c whether this condition computes to truth value v in environment
env. This makes use of 3-valued propositional logic of Kleene [9], where for example ⊥∨x = x and
¬⊥ = ⊥. The intuition is that ⊥ stands for either true or false and that equations are valid under
this interpretation. This is an abstraction as q ∨ ¬q evaluates to ⊥ in this logic whenever q has
value ⊥. We note that ⊥ is strict for comparison operators ==, ≤, and < in function certCond. If
the condition c is atomic q, we check whether claimed truth value v matches what the environment
says about q. If c is ¬c1, we reduce this to the certification that c1 has the negated truth value ¬v
in the same environment. The cases of conjunction and disjunction are dual and need to consider
whether v equals true or false. This structure is also seen in comparing policy sets in a condition,
which compares their scores as computed by the environment in function certPSet (⊥ indicates
no score is present).

The correctness theorem for certification refers to the meaning of Peal+ in environments where
all variables have a value from their declared data type Real or Boolean. This operational semantics
was given in Section 2 and Figure 2.

10

Theorem 1 Let c be a Peal+ condition such that the set of policy sets occurring in c is acyclic.
Let v be a truth value true or false. Let I be a scenario produced for c from a back-end. Let
function recursivelyCertify(c, I, v, ∅) return true and let env′ be the value of this environment at
program point l1. Let env′′ refine env′ such that env′′ maps no variable to ⊥. Then condition c
evaluates to true in environment env′′ under the operational semantics of Peal+.

Proof Sketch: We only have to show the claim for function certCond, given the code struture
of recursivelyCertify. The claim is proved using structural induction over the condition c, noting
that sub-conditions also have acyclic sets of policy sets. The cases rely on that fact that ⊥ is strict
for all algebraic operators with noted exception of eval(0.0 ∗ ⊥, env) = 0.0.

The cases that compare two policy sets require proof of an auxiliary lemma: “Whenever the
output of certPSet(pS, env′) is not equal to ⊥, then that output is the score of policy set pS in all
environments that refine environment env′.” This is shown for policies and composed policy sets
by structural induction.

For the first case of a policy set being a policy, we require a second auxiliary lemma: “Let pol
be a policy and env′ an environment such that env′(pol) is not equal to ⊥. Then env′(pol) is the
score of policy pol in all environments that refine environment env′.” The proof of this lemma
appeals to the linear order in which statically inferred scores of policies are added as hash keys,
where env′ is of form env + cp′ as seen at program point l2 in function recursivelyCertify. Since
the set of policies occurring in condition c is acyclic, this order is indeed well founded and so we
can use well founded induction to prove this lemma. QED

The above theorem (proven in an appendix) says that successful certification of the computed
environment env′ means that all “completions” of env′ that resolve ⊥ values with any legal value
of the respective data type will compute the claimed truth value for the condition in question.
In particular, variables x with env′(x) = ⊥ are genuine “don’t care” variables for this successful
certification.

Certification runs in polynomial time in its input: the number of recursions is bounded by
m + n where m is the number of declared policies and n the number of predicates occurring in
rules. The static analysis of conditions evaluates their parsetree over 3-valued logic, where truth
values of leaves are computed by static analyses that are linear in the size of the respective policy
sets.

4 Feedback for users

As described in [7], we extract raw Z3 output and render it in pretty printed form, as seen in the
initial part of Figure 8. But for larger case studies, it became hard to digest even pretty printed
information: one often could not see the forest for all the trees. So we now also output for each
analysis a summary of the scenario, its certification, and supporting information. Figure 8 shows
typical such output for the Car Rental Risks example. Scenarios also report any non-deterministic
choices of uncertainty as seen for variable b2 hasOtherLicense U in that figure. PEALT reports
the certification outcome and refinements of predicates and real variables that certification may
have brought about (when applicable), lists scores of all policies that certification could statically
infer, and then partially evaluates only relevant policies (not for b3 in Figure 8) over the successfully
certified scenario to then display them in this more compact and meaningful manner. For the
latter, true predicates are grouped within square brackets and reported with aggregated score
in red (colors not shown in figure), as this is the score for the policy as well. Rules with false

11

Result of analysis [name2 = always_true? c3]

c3 is (pSet1 <= 50000.0) && (pSet_b4 > 0.4)

c3 is NOT always true, for example, in the scenario in which:

accidentFreeForYears is True, femaleDriver is True, isLuxuryCar is True,

mixedUsage is True, speaksEnglish is True, travelsAlone is True, ...

hasEULicense is False, hasOtherLicense is False, hasUKLicense is False, ...,

b1_score is 150000, b2_hasOtherLicense_U is 0, b2_risk_score is 1, ...

Certification of analysis [name2] succeeded.

Additional predicates set to false for certification: Set(hasUSLicense, hasEULicense)

Policy scores statically inferred in this certification process:

b1 has score 150000, b2 has score 0.6, b2_risk has score 0.4,

b3 has score 0.25, b4 has score 0.55

Policies in analysis [name2] partially evaluated in certified scenario:

b1 = max (([isLuxuryCar] 150000)) default 50000 ...

b4 = + (([accidentFreeForYears speaksEnglish] 0.55)) default 0

Figure 8: Output format of analyses (handedited to save space): scenario (if applicable), cer-
tification status and possible refinements, policy scores inferred during certification, and poli-
cies partially evaluated in certified scenario. Variable b2 hasOtherLicense U functions as t2 in
eval(0.4 [−0.1, 0.1], env) and models choice of value from [−0.1, 0.1]

predicates aren’t shown; in particular, if all predicates are false, an empty policy with default
score in red is shown. Rules whose predicates have truth value ⊥ are shown individually (in green)
where predicates end in “?” to mark that they signify don’t care rules.

PEALT uses Z3’s push and pop constructs for incremental solving of more than one analysis.
The efficiency may also raise usability issues: the output in Figure 8 was obtained after all other
analyses were commented out. If we run all these analyses in their declared sequence, however, the
scenario reported for name2 will be different. Similar effects may happen when automated vacuity
checking changes its OFF/ON status. On the other hand, this seems at best to make the user
temporarily confused and so we don’t think this issue is serious enough to give up the efficiency
gains of using the push and pop constructs.

5 Case study: attack-countermeasure trees

Peal+ and its tool PEALT can be used as an intermediate language into which domain-specific
languages can be translated and analyzed. Such use has two benefits: analysis results can be
certified, and PEALT may perform analyzes that are not supported within the frameworks of
those domain-specific languages.

We illustrate these benefits for attack-countermeasure trees (ACTs) [17] by means of an example
ACT for a BGP reset of a session as discussed in [17]. The PEALT input code for this example
would not really be meant for human consumption, as it would just be an intermediate syntax for
facilitating analyses. Our translation extends the semantics of ACTs in that we may turn attack
leaves, detection mechanisms, and mitigation mechanisms “on” or “off” – without compromising

12

Goal: reset a BGP session

Or1

a1: Send
message to

router causing
reset

Not1

And1
And2

And3

Or2

a111: Send
RST message
to TCP stack
0.08, 50, 200

a112: Send
BGP message

Or3

a1121: Notify
0.1, 60, 130

a1122: Open
0.15, 70, 100

a1123: Keep alive
0.2,100, 300

And4

d1: Trace-route
check 0.5

m1: Randomize
Seq. Num. 0.6

And6

a12: TCP seq.
num. attack
0.1, 150, 250

Not3

And7

d12: TCP seq.
num. check 0.8

m12: MD5
authentication

0.5

a2: Alter conf. via
compromised

router
 0.4, 190, 275

d2: Router
firewall alert 0.7

Not2

And5

m2: Secure
router 0.5

Figure 9: ACT from [17] for reset of a BGP session, with detection/mitigation leaves’ probability
of working and attack leaves’ success probability, cost, and impact (resp.)

the computation of attack success probabilities, attack impact or attack cost. This, combined
with the expressive conditions in PEALT , gives us richer analysis capabilities, discussed in detail
below. The full PEALT code for this case study is built into the PEALT tool as an example case
study.

Figure 9 shows the ACT taken from [17] where we merely annotated some of its nodes with
policy names that we will use in our translation. This tree contains AND and OR nodes as familiar
from attack trees [12]. But it also contains three NOT nodes that all feed into parent AND nodes
the possible effects of a pair of detection and mitigation mechanisms. Qualitatively, this means
that such a pair of working detection and mitigation mechanisms will feed false into the parent
AND node. The probabilistic interpretation in [17] is that both mechanisms have a probability
of working, and so NOT nodes take as probability the complement of the product of these two
probabilities of working mechanisms [17].

The probability of attack success and impact cost are computed over the structure of the ACT
[17], whereas attack cost is computed by first producing the set of all min-cuts (as used in fault
tree analysis [2]) of the ACT [17]. This makes it hard to reason about the interaction of success
probabilities, impact, and cost. Also, it faces scalability issues as the number of min-cuts may be
exponential in the size of the ACT. We here want to demonstrate that the use of SMT solvers,

13

facilitated with Peal+ and PEALT as intermediate language and tool, allows us to reason about
such interactions and avoids the need to enumerate all min-cuts.

The declaration of policies for the probability of attack success, the result of policy goal, is
shown in Figure 10. A predicate True, asserted to always be true, is used to compose results of
children in the ACT. The probability at an OR node with n children xi is 1−

∏n
k=1(1− prob(xk)),

and we expand this arithmetic term in stages using policy scores for stage composition, as seen for
policy or1. The probability at an AND node with m children yj is

∏m
k=1 prob(xk), and we similarly

encode this arithmetic expression, as seen for policy and1.
For the encoding of attack leaves, their success probability is the score of a sole rule that

captures that attack event. Since attack leaves are not under the scope of a NOT node, their
default score is 0.0. The encoding of a NOT node is simply 1 − x where x is the result of its
child AND node. For that AND node, the staged computation checks whether both detection
and mitigation are present, in which case it computes the product of the probabilities of both
mechanisms working; otherwise, it returns 0.0. This default score is sound as it makes the NOT
node default to 1.0 which has no effect on its predecessors in the ACT (there is no NOT node
in the scope of another NOT node). Thus this translation works for ACTs since they don’t have
nested NOT nodes.

In Figure 11, cost of attacks to an attacker and overall attack cost are specified. Default scores
capture cost in the absence of attacks and so equal 0.0. In contrast to [17], overall cost is here
the sum of all occurring, i.e. true, attacks since analyses ask whether attacks succeed within cost
budgets and Z3 will search for such solutions by turning attack leaves “on” or “off” as desired.

The specification of attack impact (given in an appendix) reflects that the impact of an OR
node is the maximum of the impact of all its children – modeling a worst-case scenario for the
system [17]; and that the impact of an AND node is the sum of the impact of all its children. As
in [17], NOT nodes don’t contribute to impact of attack success, although it is noted in [17] that
detection and mitigation mechanisms can reduce risk.

Finally, we may specify questions about this ACT in Peal+. Using basic conditions such as
549.0 < impact overall and binary conjunction, we express condition c6 which asks whether the
attack impact can be strictly above 549.0, the attack cost can be less than or equal to 440.0,
and the probability of attack success can be strictly above 0.41199 – all in the same scenario.
PEALT reports that this is possible in a scenario in which attacks a1123, a2, and a12 occur (i.e.
are true), as well as detection mechanisms d1 and mitigation mechanism m2. The latter two may
be unexpected. But in the scenario neither the mitigation mechanism m1 of d1 nor the detection
mechanism d2 of m2 occur (i.e. are false). Therefore, none of the two respective NOT nodes
contribute to the probability of attack success; and NOT nodes contribute neither to impact not
to cost.

Threshold values chosen in condition c6 are co-dependent: we can’t decrease 440.0 by 1 or more,
increase 549.0 by 1 or more, or increase 0.41199 by 0.00001 or more without making condition c6

unsatisfiable. These values were determined by repeated analysis that adjusted these values with
bisection search using SAT/UNSAT results to drive the bisection method. It would be of interest
to automate such search over objective functions within PEALT in future work. If we add to
condition c6 a conjunct, saying that the detection/mitigation pair d2 and m2 also has to occur,
PEALT informs us that this is now impossible.

We can also approximate maxima of security metrics, for example a measure of expected system
damage f(p, i, c) = p·max (0, 2i−c) for attack success probability p, attack cost c, and attack impact
i – exploiting that p, i, and c are expressed as policies. For example, 271.919999999999 < f(p, i, c)
is satisfiable for this ACT wheras 271.92 < f(p, i, c) is not. All scenarios found in this case study

14

goal = +((True or1_score)) default 1.0

or1 = +((True 1.0) (True -1.0*or1_aux_score)) default 1.0

or1_aux = *((True or1_aux1_score) (True or1_aux2_score)) default 1.0

or1_aux1 = +((True 1.0) (True -1.0*and1_score)) default 1.0

or1_aux2 = +((True 1.0) (True -1.0*and2_score)) default 1.0

and1 = *((True and3_score) (True not1_score)) default 1.0

and3 = *((True or2_score) (True and6_score)) default 1.0

or2 = +((True 1.0) (True -1.0*or2_aux_score)) default 1.0

or2_aux = *((True or2_aux1_score) (True or2_aux2_score)) default 1.0

or2_aux1 = +((True 1.0) (True -1.0*a111_score)) default 1.0

or2_aux2 = +((True 1.0) (True -1.0*or3_score)) default 1.0

a111 = +((sendRSTmessageToTCPStack 0.08)) default 0.0

or3 = +((True 1.0) (True -1.0*or3_aux_score)) default 1.0

or3_aux = *((True or3_aux1_score) (True or3_aux2_score)

(True or3_aux3_score)) default 1.0

or3_aux1 = +((True 1.0) (True -1.0*a1121_score)) default 1.0

or3_aux2 = +((True 1.0) (True -1.0*a1122_score)) default 1.0

or3_aux3 = +((True 1.0) (True -1.0*a1123_score)) default 1.0

a1121 = +((notify 0.1)) default 0.0

a1122 = +((open 0.15)) default 0.0

a1123 = +((keepAlive 0.2)) default 0.0

not1 = +((True 1.0) (True -1.0*and4_score)) default 1.0

and4 = +((traceRouteCheck and4_aux1_score)) default 0.0

and4_aux1 = +((randomizeSequenceNumbers and4_aux2_score)) default 0.0

and4_aux2 = *((True 0.5) (True 0.6)) default 1.0

Figure 10: Policies that compute probability of attack success, even when certain attacks, detection
mechanisms or mitigation mechanisms may be absent. Policies for sub-ACTs And2 and And6 are
similar to those for And1 and now shown

cost_a111 = +((sendRSTmessageToTCPStack 50.0)) default 0.0

cost_a1121 = +((notify 60.0)) default 0.0

cost_a1122 = +((open 70.0)) default 0.0

cost_a1123 = +((keepAlive 100.0)) default 0.0

cost_a12 = +((TCPsequenceNumberAttack 150.0)) default 0.0

cost_a2 = +((alterConfigurationViaCompromisedRouter 190.0)) default 0.0

cost_overall = +((True cost_a111_score) (True cost_a1121_score)

(True cost_a1122_score) (True cost_a1123_score)

(True cost_a2_score) (True cost_a12_score)) default 0.0

Figure 11: Computing cost of attack leaves and overall cost of occurring attacks

15

certified successfully without refining any predicates.

6 Discussion and Evaluation

We analyzed and certified about 20, 000 random conditions with uncertainties but a few of these
conditions failed to certify. We isolated the source of these failures to be an anomaly of the Z3
push command. With help of Arie Gurfinkel, Nikolaj Bjorner was able to attribute this to Z3
work item 108 (see http://z3.codeplex.com/workitem/108): if some constraints are non-linear ,
use of push invokes a legacy solver that may report incorrect models for SAT outcomes. Since
PEALT won’t use push when a sole analysis executes, we can eliminate this Z3 bug as source of
certification failure by turning off vacuity checking and commenting out all other analyses. We
think PEALT therefore strikes a good balance between performance (which use of push on more
than one analysis greatly improves) and correctness (since failed certifications are rare and caused
by this bug or by typos as discussed next).

If a user declares a policy p but also writes p in a score instead of p score, the SMT solver
may find a real value for real variable p (implicitly declared in that rule!) and so env(p) would
have that value. If this is not the value one would statically infer for policy p, such aliasing
will fail certification. Also, spelling mistakes in variable names may declare new variables that
can result in inconclusive certification. Anecdotal evidence suggests that almost all failed or
inconclusive certifications are results of such typos, which won’t occur whenever PEALT is used
as intermediate language by code generators.

The certification process in PEALT only works for scenarios (whose reported values for policy
scores are ignored in certification), not for a claim that no scenario exists. We first focused our
efforts on scenarios as they are likely to be more useful to specifiers, and since certification of
non-existence of scenarios involves formal proofs extracted from back-ends (e.g. [3]), but general
specifiers cannot be expected to understand complex proofs.

The scope of certification does not expand into section DOMAIN SPECIFICS. For example,
assume that a predicate occurs in no rule but is cast to a condition and declared in section
DOMAIN SPECIFICS, which also defines its meaning. Our certification will not inspect this defini-
tion of meaning as it is expressed outside of Peal+ in an expressive logic. We did not find this to be
limiting when writing and certifying PEALT models, but it means that certification is a relative
notion in PEALT . On the other hand, it seems feasible to extend our 3-valued certification to
cover DOMAIN SPECIFICS as well for fragments of Z3’s input language.

Our implementation of Peal+ requires that policies be cast into policy sets (when needed),
predicates be cast into conditions (when needed), and operators for policies, policy sets, and
conditions be unary or binary (not n-ary). The latter is a good thing, since it means that all sub-
conditions of conditions are explicitly declared and so subject to vacuity checking. PEALT does
not check whether predicates within a policy occur more than once. The latter is an issue when
two or more such occurrences have scores with uncertainty as this “binds” the non-deterministic
choice made for these expressions to the same value. Our BGP case study with uncertainties in
PEALT addresses this be using True1, True2, etc. to disambiguate this.

PEALT has no explicit ability to model state spaces and their transition; one may see this as
a weakness and opportunity for future work, or as a strength as it avoids state space explosions.

16

7 Related work

We are not aware of much publicly accessible literature on the independent certification of formal
methods results and report two results of that type here. For model checking, Namjoshi developed
deductive techniques in [15] that can independently verify the results of model checks for formulas
of the modal mu-calculus and where these proofs can be extracted from an (instrumented) model
checking run. For theorem proving, Gonthier [5] simplified the proof of the famous 4-color theorem,
and proved it in the theorem prover Coq in such a manner that the proof itself could be certified
as well.

Jha et al. [8] use model checking to automatically generate attack graphs with nodes repre-
senting network states, develop techniques for choosing minimal number of security measures and
for trading off attack likelihood and attack probability. Attack graphs that express dependencies
of vulnerabilities instead, such as those of Albanese et al. [1], have more scalable analyses than
state-based ones. Attack graph models in the literature appear to have a fixed model signature,
whereas PEALT can extend modeling domains as and when needed.

Language Peal+ extends Peal [4] and the tool PEALT over its version in [7]: PEALT now
supports the richer language Peal+, automated vacuity checking of all declared analyses, the
automated certification of all scenarios generated by Z3 for analyses, and the partial evaluation
of policies over scenarios so that users can comprehend scenario information directly on relevant
policies.

In [6], we sketched Peal+ and illustrated it with mock-up syntax for a “score card” model very
similar to that from Figure 4. Although that paper discussed usability issues, it focussed on the
design of Peal+ and did not cover usability issues of a supporting tool and its user feedback.

8 Conclusions and future work

In this paper we presented a language Peal+ in which the interaction of concepts that inform secu-
rity and threat analysis can be formally expressed and analyzed. We reported its implementation
in tool PEALT that statically analyzes such conditions with two principal aims: to determine
whether specified conditions meet expectations of how security-related concepts influence decision
making; and to validate that the expectations that users have do not have unintended consequences
when expressed and enforced in such conditions.

PEALT reflects the methodology of auto-interactive verification (see Fig. 1). This means users
can rely on automated verification tools that provide easily comprehended feedback which may
trigger subsequent modeling and automated verification. And this process would be repeated until
users are satisfied to have captured conditions as desired. This paper developed foundations for
language Peal+ and implemented them in tool PEALT , using the SMT solver Z3 as back-end for
automated reasoning and scenario generation to realize this methodology.

We created support for validating scenarios computed for conditions expressed in Peal+: an
independent certification of the correctness of scenarios with respect to the domain and policies
in which they should be interpreted. We stress that our certification is agnostic to the manner in
which code for analysis in back-ends is generated (since certification operates on Peal+ expressions
directly) and agnostic to the choice of back-end (apart from an interface for the scenario to be
certified and for variables modelling uncertainty). All policies that certification seems to rely upon,
PEALT partially evaluates with respect to the certified scenario and provides this as auxilliary
feedback, so that modelers may more easily assess the impact of policies certified in possibly refined

17

scenarios.
We illustrated the utility of Peal+ and these support mechanisms by first discussing a Car

Rental Risks example and then attack-countermeasure trees. We showed how ACTs can be trans-
lated into Peal+ so that we can reason about interaction of the probability of attack success,
attack cost, and attack impact whilst at the same time allow the model to turn attack, detection,
and mitigation leaves “on” or “off” at will. Therefore, our ACTs actually represent an entire set
of ACTs and we can verify invariants of such interaction over that set of ACTs.

It will be of interest to extend Peal+ with judicious support for integer variables (a potential
performance bottleneck for SMT solvers) and optimization with respect to non-linear objective
functions. We also mean to develop auxiliary tools that can translate other threat modeling
formalisms into PEALT for richer analysis, as illustrated for ACTs in this paper. Finally, we
mean to research how we can extend Peal+, PEALT , and our certification to state transitions
and to conditions that analyse state changes through operators of temporal logic.

Acknowledgements

We are grateful that this work was supported by funding from Intel R© Corporation within its
Trust Evidence research project. Charles Morriset and Jason Crampton suggested some of the
terminology of Peal and helped with designing some early versions of code generators for Peal.
Jason is also thanked for suggesting to improve the presentation of this paper.

References

[1] Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hardening using
attack graphs. In: Proc. of the 42nd Ann. IEEE/IFIP Int’l Conf. on Dependable Systems and
Networks (DSN). pp. 1–12. IEEE Computer Society (2012)

[2] Bedford, T., Cooke, R.: Probabilistic Risk Analysis: Foundations and Methods. Cambridge
University Press (2001)

[3] Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: ITP. pp. 179–194
(2010)

[4] Crampton, J., Huth, M., Morisset, C.: Policy-based access control from numerical evidence.
Tech. Rep. 2013/6, Imperial College London, Department of Computing (October 2013), ISSN
1469-4166 (Print), ISSN 1469-4174 (Online)

[5] Gonthier, G.: The four colour theorem: Engineering of a formal proof. In: 8th Asian Symp.
on Computer Mathematics. p. 333. LNCS 5081, Springer (2007)

[6] Huth, M., Kuo, J.H.P.: On designing usable policy languages for declarative trust aggregation.
In: HCI (24). pp. 45–56 (2014)

[7] Huth, M., Kuo, J.H.P.: PEALT: An automated reasoning tool for numerical aggregation of
trust evidence. In: Proc. of TACAS 2014. Lecture Notes in Computer Science, vol. 8413, pp.
109–123. Springer (2014)

18

[8] Jha, S., Sheyner, O., Wing, J.: Two formal analys s of attack graphs. In: Proc. of 15th IEEE
Workshop on Comp. Sec. Found. pp. 49–63. IEEE Comp. Soc. (2002)

[9] Kleene, S.C.: Introduction to Metamathematics. North Holland (1952)

[10] Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs. nash in
security games: An extended investigation of interchangeability, equivalence, and uniqueness.
J. Artif. Int. Res. 41(2), 297–327 (May 2011)

[11] Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In: 10th
IFIP WG 10.5 Advanced Research Working Conference (CHARME’99). pp. 82–96.
LNCS 1703, Springer (1999)

[12] Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Proc. of 8th Int’l Conf. on Informa-
tion Security and Cryptology. pp. 186–198. LNCS 3935, Springer (2006)

[13] Moore, A., Ellison, R., Linger, R.: Attack modeling for information security and survivability.
Tech. Rep. Technical Note CMU/SEI-2001-TN-00, Software Engineering Institute, Carnegie
Mellon University (2000)

[14] de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340 (2008)

[15] Namjoshi, K.S.: Certifying model checkers. In: 13th Int’l Conf. on Computer Aided Verifica-
tion. pp. 2–13. LNCS 2102, Springer (2001)

[16] Pavlidis, N.G., Tasoulis, D.K., Adams, N.M., Hand, D.J.: Adaptive consumer credit classifi-
cation. Journal of the Operational Research Society 63(12), 1645–1654 (2012)

[17] Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (act): towards unifying the
constructs of attack and defense trees. Security and Communication Networks 5(8), 929–943
(2012)

[18] Schneier, B.: Secrets and Lies: Digital Security in a Networked World. John Wiley and Sons
Inc. (2000)

[19] Wood, M.: Flaw calls for altering passwords, experts say. The New York Times (Technology)
(9 April 2014)

A PEALT source code and installation

Tool PEALT is written in the Scala programming lanugage. The latest version of tool PEALT
and its installation instructions are found at

http://www.doc.ic.ac.uk/~hk2109/PEALT/

19

B Formal semantics of policy sets

We here discuss the operational semantics given in Figure 2 in more detail. Let e be an environment
for the evaluation of a set of policy sets P . Then e is a function that maps predicates qi to truth
values false or true (written e(x)), variables x not of form p.sc to a real number (e(x)), and
declared uncertainty intervals [l, u] to some element of [l, u]. It should be noted that intervals are
uniquely identified by their policy and predicate (or by their policy if the interval is declared in
the default score). So formally, we write e(pol, qi, [l, u]) respectively e(pol, default, [l, u]) to also
identify the respective location of these intervals.

The operational semantics Ee for policy sets in P in environment e is then given in Figure 2.
At the top of that figure, we see the computation of the meaning of policy sets using structural in-
duction (policies as base case, and composed policies as other case). For policies, this distinguishes
between the case in which no predicate is true in the environment e (the default cause in which
Z is empty) and the case when Z is non-empty. The former case also gives meaning to policies
that contain no rules. At the bottom of the figure, we see a definition of how score expressions
evaluate in environment e. This makes use of the contextual information that maps intervals to
their declared locations.

It should be clear that this is a well defined semantics whenever the set of policy sets if acyclic.

C Proof of Theorem 1

It suffices to prove the claim for environment env′, provided that the argument made never has to
appeal to ⊥ outputs of env′. Given the structure of the code body for recursivelyCertify, we only
have to show the respective claim for function certCond. That is to say, we need to show that
condition c has truth value v in environment env′ whenever certCond(c, env′, v) outputs true. We
proceed by structural induction over the condition c.

• Let c be a predicate q. Then certCond(q, env′, v) outputs v == env′(q) which is true. Since
⊥ is strict for such equality checks, we infer from this that env′(q) 6= ⊥ and so this is a truth
value that must therefore equal v, which is either true or false. This shows that condition
q has truth value v in environment env′, as claimed.

• Let c be ¬c1. Then function certCond(¬c1, env′, v) returns whatever certCond(c1, env
′,¬v)

returns, which is true. By induction on c, we infer from this that condition c1 has truth
value ¬v in environment env′. Therefore, ¬c1 has truth value ¬¬v = v in environment env′,
as claimed.

• Let c be c1 ∧ c2. There are two cases, one for each value of v:

– Let v be true. Then the value of function certCond(c1 ∧ c2, env
′, true) equals

certCond(c1, env
′, true) ∧ certCond(c2, env

′, true) which outputs true. Therefore, we
know that both certCond(c1, env

′, true) and certCond(c2, env
′, true) output true. By

induction, we infer from this that c1 has truth value true in environment env′, and that
c2 has truth value true in environment env′. Therefore, c1 ∧ c2 has truth value true in
environment env′, as claimed.

– Let v be false. Then the value of function certCond(c1 ∧ c2, env
′, false) equals

certCond(c1, env
′, false) ∨ certCond(c2, env

′, false) which outputs true. Therefore,

20

there is some j in {1, 2} such that certCond(cj, env
′, false) outputs true. By induction,

we infer from this that cj has truth value false in environment env′. Therefore, c1 ∧ c2
has truth value false in environment env′, as claimed.

• Let c be c1 ∨ c2. There are two cases, one for each value of v:

– Let v be true. Then the value of function certCond(c1 ∨ c2, env
′, true) equals

certCond(c1, env
′, true) ∨ certCond(c2, env

′, true) which outputs true. Therefore, we
know that there is some j in {1, 2} such that certCond(cj, env

′, true) outputs true.
By induction, we infer from this that cj has truth value true in environment env′.
Therefore, c1 ∨ c2 has also truth value true in environment env′, as claimed.

– Let v be false. Then the value of function certCond(c1 ∨ c2, env
′, false) equals

certCond(c1, env
′, false) ∧ certCond(c2, env

′, false) which outputs true. Therefore, we
know that both certCond(c1, env

′, false) and certCond(c2, env
′, false) output true. By

induction, we infer from this that c1 has truth value false in environment env′, and
that c2 has truth value false in environment env′. Therefore, c1 ∨ c2 has truth value
false in environment env′, as claimed.

• Let c be pS1 ≤ pS2. There are two cases, one for each value of v:

– Let v be true. Then the value of certCond(pS1 ≤ pS2, env
′, true) equals

certPSet(pS1, env
′) ≤ certPSet(pS2, env

′) which outputs true. Since ⊥ is strict for
≤, we infer from this that both certPSet(pS1, env

′) and certPSet(pS2, env
′) are dif-

ferent from ⊥. By Lemma 1, this implies that certPSet(pSj, env
′) is the score of

policy set pSj in environment env′ for all j in {1, 2}. Therefore, it follows that con-
dition pS1 ≤ pS2 has truth value true in environment env′, as claimed, given that
certPSet(pS1, env

′) ≤ certPSet(pS2, env
′) outputs true.

– Let v be false. Then the value of certCond(pS1 ≤ pS2, env
′, false) equals

certPSet(pS2, env
′) < certPSet(pS1, env

′) which outputs true. Since ⊥ is strict for
<, we infer from this that both certPSet(pS1, env

′) and certPSet(pS2, env
′) are dif-

ferent from ⊥. By Lemma 1, this implies that certPSet(pSj, env
′) is the score of

policy set pSj in environment env′ for all j in {1, 2}. Therefore, it follows that con-
dition pS1 ≤ pS2 has truth value false in environment env′, as claimed, given that
certPSet(pS2, env

′) < certPSet(pS1, env
′) outputs true.

• Let c be pS1 < pS2. There are two cases, one for each value of v:

– Let v be true. Then the value of certCond(pS1 < pS2, env
′, true) equals

certPSet(pS1, env
′) < certPSet(pS2, env

′) which outputs true. Since ⊥ is strict for
≤, we infer from this that both certPSet(pS1, env

′) and certPSet(pS2, env
′) are dif-

ferent from ⊥. By Lemma 1, this implies that certPSet(pSj, env
′) is the score of

policy set pSj in environment env′ for all j in {1, 2}. Therefore, it follows that con-
dition pS1 < pS2 has truth value true in environment env′, as claimed, given that
certPSet(pS1, env

′) < certPSet(pS2, env
′) outputs true.

– Let v be false. Then the value of certCond(pS1 < pS2, env
′, false) equals

certPSet(pS2, env
′) ≤ certPSet(pS1, env

′) which outputs true. Since ⊥ is strict for

21

<, we infer from this that both certPSet(pS1, env
′) and certPSet(pS2, env

′) are dif-
ferent from ⊥. By Lemma 1, this implies that certPSet(pSj, env

′) is the score of
policy set pSj in environment env′ for all j in {1, 2}. Therefore, it follows that con-
dition pS1 < pS2 has truth value false in environment env′, as claimed, given that
certPSet(pS2, env

′) ≤ certPSet(pS1, env
′) outputs true. QED

We state and prove the first auxiliary lemma needed in the proof of Theorem 1 above.

Lemma 1 Let pS be a policy set and env′ an environment such that the output of
certPSet(pS, env′) is not equal to ⊥. Then that output is the score of policy set pS in all en-
vironments that refine environment env′.

Proof: Again, it suffices to prove this for environment env′, provided that the argument made
never appeals to ⊥ outputs of env′. We do structural induction of the policy set pS. There are
two cases to consider:

• Let pS be a policy pol. Then the output of certPSet(pS, env′) is the output of
certPolicy(pol, env′) which is env′(pol), and so the latter output is not equal to ⊥. By
Lemma 2, this implies that the score of policy pol is the outout of certPolicy(pol, env′), as
claimed, as this is the output of certPSet(pS, env′).

• Let pS be of form op(pS1, pS2) for op in {min,max ,+, ∗} and policy sets pS1

and pS2. Then the output of certPSet(op(pS1.pS2), env
′) is the output of

op(certPSet(pS1, env
′), certPSet(pS2, env

′), which is therefore not equal to ⊥. Since
⊥ is strict for all operators op, we infer from this that both certPSet(pS1, env

′) and
certPSet(pS2, env

′) are not equal to ⊥. By induction, this implies that for all j in {1, 2}
the output of certPSet(pSj, env

′) is the score of policy set pSj. Therefore, the opera-
tional semantics of Peal+ implies that the score of policy set op(pS1, pS2) is the output
of op(certPSet(pS1, env

′), certPSet(pS2, env
′), as claimed. QED

We state and prove the second auxiliary lemma needed in the proof of Lemma 1 above.

Lemma 2 Let pol be a policy and env′ an environment such that env′(pol) is not equal to ⊥.
Then env′(pol) is the score of policy pol in all environments that refine environment env′.

Proof: Again, it suffices to prove this for environment env′, provided that the argument made
never appeals to ⊥ outputs of env′. Let us write env′ in the form env + cp′, as seen in program
point l2 for function recursivelyCertify. Then env′(pol) equals cp′(pol) which in turn equals
certPolicy(pol, env) as computed in function collectCertifiablePolicyScores(env). So we know
that certPolicy(pol, env) is different from ⊥, meaning that we have only two cases to consider in
its body. In these cases, we apply well founded induction on the (linear) order in which hash keys
env′(p) 6= ⊥ were added to env′ for declared policies p. Since there are no circular dependencies
in the use of score variables for policies, this order is indeed well founded.

• First case: Let Xpol
env be empty. Then env′(pol) equals eval(s, env) where s is the default

score of policy pol. In particular, eval(s, env) is different from ⊥. We do a case analysis over
the structure of score s:

22

– Let s be a constant real a. Then eval(a, env) is defined to be a and this is the score of
pol as all rules in that policy have false predicates in environment env, and so also in
its refinement env′.

– Let s be a policy score variable p score for some declared policy p. Then
eval(p score, env) is not ⊥ and so it is defined as env(p). In particular, env(p) is
not equal to ⊥. So this key must have been added to env prior to the key for pol.
We can therefore appeal to well founded induction on the order in which such keys are
added to conclude that env(p) is the score of policy p in environment env, and so in its
refinement env′ as well. But then this is also the score of pol in these environments.

– Let s be a real variable x not of form p score. Then eval(x, env) is not equal to ⊥ and
so it equals env(x). The latter then is the score of pol as all rules in that policy have
false predicates in environment env, and so also in its refinement env′.

– Let s be of form a ∗ p score for a constant a and some declared policy p. Then eval(a ∗
p score, env) is not equal to ⊥. This implies that env(p) is not equal to ⊥ or that a
equals 0.0. In the latter case, it is clear that 0.0 is the score of policy pol in env and so
in all of its refinements. It remains to consider the case when a is non-zero and env(p)
is not ⊥. Then eval(a ∗ p score, env) equals a ∗ env(p). Since env(p) is not equal to ⊥,
this key env(p) must have been added to env prior to the key for pol. We can therefore
appeal to well founded induction on the order in which such keys are added to conclude
that env(p) is the score of policy p in environment env. Thus, a ∗ env(p) is the score of
policy pol in these environments.

– Let s be of form a ∗ x. Then eval(a ∗ x, env) is not equal to ⊥. In particular, env(x)
is not equal to ⊥ or a equals 0.0. In the latter case, it is clear that 0.0 is the score of
policy pol in env and so in all of its refinements. It remains to consider the case when
a is non-zero and env(x) is not ⊥. Then a ∗ env(x) is the default score of policy pol in
environment env and all its refinements, as claimed.

– Let s be of form t1 [l, u] where t1 is one of the raw score expressions of the previous items
and variable t2 models the non-deterministic value from interval [l, u]. Since eval(s, env)
is not equal to ⊥, we know that env(t2) is not equal to ⊥ and that eval(s, env) equals
eval(t1, env) + env(t2). In particular, eval(t1, env) is not equal to ⊥ as ⊥ is strict for
+. And we already reasoned that in this case eval(t1, env) is the default score of the
version of pol that won’t contain interval [l, u] in its default score. Thus, adding env(t2)
to this yields the default score of policy pol as claimed.

• Second case: Let Xpol
env be non-empty. Then certPolicy(pol, env) outputs op(Xpol

env). As the
latter is not equal to ⊥ and ⊥ is strict for op, we infer from this that eval(si, env) is not
equal to ⊥ for all si with env(qi) = true. As in the first case when Xpol

env is empty, we can
analyze the structure of each score si to show that eval(si, env) is the score of rule (qi si) in
policy pol in environment env′. Thus, op(Xpol

env) equals the score of policy pol in environment
env, and so it its refinement env′. QED

D Example of certification failure due to push Z3 bug

Figure 12 shows PEALT input that, when run with option “General scores”, will successfully
certify the first analysis but where certification fails for the second analysis. If we then turn

23

automated vacuity checking OFF under “Settings”, comment out the first analysis, and run this
again, PEALT will now successfully verify the second analysis. The reason is that only one
analysis in total then executes, which PEALT will realize and so it will avoid the use of the push

construct in this case.

E Termination of certification

The criterion that policies within conditions are acyclic is sufficient but not necessary. For example,
the condition in Figure 13 is cyclic but our tool will find and successfully certify a scenario for its
analysis – PEALT does not do any dependency analysis. But adding as domain-specific constraint
that q1 and q3 are true makes the certification not terminate, and so no output will be reported
unless users instead generate Z3 code and raw Z3 output without certification.

F Computation of attack impact for our case study

Figure 14 shows how our PEALT input models the computation of the impact of an attack.

24

POLICIES

b0 = min ((q14 0*vl) (q0 0.7850)) default 0.8919

b1 = * ((q6 0.6819) (q7 0.7271)) default 0.5390

b2 = * ((q12 0.3504) (q0 0.4032)) default 3*vp

b3 = + ((q3 0.3078) (q7 0.1332)) default 0.7163

b4 = max ((q3 0.0948 [-0.1435,0.4347]) (q11 0.1327)) default 0.8418

b5 = * ((q3 0.3235) (q9 2*v0 [-0.3561,0.7747])) default 0*vy

b6 = max ((q14 0.5613) (q4 0.6564)) default 0.6351

b7 = + ((q8 vx) (q2 0.9709)) default 0.5696 [-0.8854,0.0560]

b8 = * ((q14 0.7031) (q5 0.6469)) default 0.3753

b9 = min ((q11 0.3598) (q7 0.4311)) default 0.0868

b10 = * ((q10 0.1041) (q12 0.6119)) default 0.8983

b11 = + ((q1 0.4650) (q4 0.6019)) default 0.3478

b12 = min ((q3 3*vu [-0.2797,0.6717]) (q9 2*vu)) default 0.0223

b13 = max ((q5 0.9802) (q2 0.9236)) default 0.8039

b14 = min ((q6 2*vk) (q13 0.4516)) default 2*vl

b15 = max ((q13 0.3230) (q12 0.9485)) default 0.6186

b16 = + ((q1 0.8562 [-0.9047,0.6472]) (q11 3*vb)) default 0.6468

b17 = + ((q4 2*vl) (q11 0.8956)) default 0.5290

b18 = min ((q6 0.0261) (q4 0.8287)) default 0.9865

b19 = max ((q0 0.0663) (q10 0.5418)) default 0.7368

POLICY_SETS

p0_1 = min(b0,b1)

p2_3 = min(b2,b3)

p4_5 = min(b4,b5)

p6_7 = min(b6,b7)

p8_9 = min(b8,b9)

p10_11 = min(b10,b11)

p12_13 = min(b12,b13)

p14_15 = min(b14,b15)

p0_3 = max(p0_1,p2_3)

p4_7 = max(p4_5,p6_7)

p8_11 = max(p8_9,p10_11)

p12_15 = max(p12_13,p14_15)

p0_7 = +(p0_3,p4_7)

p8_15 = +(p8_11,p12_15)

p0_15 = *(p0_7,p8_15)

p16_17 = min(b16, b17)

p18_19 = +(b18, b19)

p0_15_0 = min(p0_15,p16_17)

p0_15_1 = max(p0_15_0,p18_19)

CONDITIONS

cond1 = 0.50 < p0_15_1

cond2 = 0.60 < p0_15_1

ANALYSES

analysis2 = always_false? cond2

analysis3 = always_false? cond2

Figure 12: PEALT input for which the second analysis fails certification

25

POLICIES

b1 = +((q1 b2_score) (q2 0.5)) default 0.0

b2 = max((q3 b1_score) (q4 0.4)) default 1.0

POLICY_SETS

pSet1 = min(b1,b2)

CONDITIONS

c1 = 0.0 < pSet1

ANALYSES

name1 = satisfiable? c1

Figure 13: Two policies with cyclic dependencies but where the condition generates a successfully
certified scenario by making q1 or q3 false. However, the above won’t terminate in PEALT if we
add (assert (and q1 q3)) in DOMAIN SPECIFICS

impact_or2 = max((sendRSTmessageToTCPStack 200.0) (notify 130.0) (open 100.0)

(keepAlive 300.0)) default 0.0

impact_and3 = +((True impact_or2_score) (TCPsequenceNumberAttack 250.0))

default 0.0

impact_and1 = +((True impact_and3_score)) default 0.0

impact_and2 = +((alterConfigurationViaCompromisedRouter 275.0)) default 0.0

impact_overall = max((True impact_and1_score)

(True impact_and2_score)) default 0.0

Figure 14: Computing impact of attack leaves and overall impact of occurring attacks

26

