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GRAPHICAL ABSTRACT
Background: Results from recent clinical studies suggest
potential efficacy of immune training (IT)-based approaches
for protection against severe lower respiratory tract
infections in infants, but underlying mechanisms are
unclear.
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Objective: We used systems-level analyses to elucidate IT
mechanisms in infants in a clinical trial setting.
Methods: Pre- and posttreatment peripheral blood
mononuclear cells from a placebo-controlled trial in which
winter treatment with the IT agent OM85 reduced infant
Disclosure of potential conflict of interest: The authors declare that they have no relevant

conflicts of interest.

Received for publication May 4, 2021; revised December 23, 2021; accepted for publi-

cation January 10, 2022.

Corresponding author: Patrick G. Holt, DSc, Telethon Kids Institute, Northern Entrance,

Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Perth, Australia.

E-mail: patrick.holt@telethonkids.org.au.

0091-6749/$36.00

� 2022 Published by Elsevier Inc. on behalf of the American Academy of Allergy,

Asthma & Immunology

https://doi.org/10.1016/j.jaci.2022.01.001

1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:patrick.holt@telethonkids.org.au
https://doi.org/10.1016/j.jaci.2022.01.001


Abbreviations used

DEG: Differentially expressed genes

DGCA: Differential gene correlation analysis

IT: Immune training

LPS: Lipopolysaccharide

PBMC: Peripheral blood mononuclear cells

PIC: Polyinosinic:polycytidylic acid

sLRI: Severe lower respiratory tract infections

TLR: Toll-like receptor

URA: Upstream regulator analysis
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respiratory infection frequency and/or duration were stimulated
for 24 hours with the virus/bacteria mimics
polyinosinic:polycytidylic acid/lipopolysaccharide.
Transcriptomic profiling via RNA sequencing, pathway and
upstream regulator analyses, and systems-level gene
coexpression network analyses were used sequentially to
elucidate and compare responses in treatment and placebo
groups.
Results: In contrast to subtle changes in antivirus-associated
polyinosinic:polycytidylic acid response profiles, the bacterial
lipopolysaccharide-triggered gene coexpression network
responses exhibited OM85 treatment–associated upregulation of
IFN signaling. This was accompanied by network rewiring
resulting in increased coordination of TLR4 expression with IFN
pathway–associated genes (especially master regulator IRF7);
segregation of TNF and IFN-g (which potentially synergize to
exaggerate inflammatory sequelae) into separate expression
modules; and reduced size/complexity of the main
proinflammatory network module (containing, eg, IL-1, IL-6,
and CCL3). Finally, we observed a reduced capacity for
lipopolysaccharide-induced inflammatory cytokine (eg, IL-6
and TNF) production in the OM85 group.
Conclusion: These changes are consistent with treatment-
induced enhancement of bacterial pathogen detection/clearance
capabilities concomitant with enhanced capacity to regulate
ensuing inflammatory response intensity and duration. We posit
that IT agents exemplified by OM85 potentially protect against
severe lower respiratory tract infections in infants principally
by effects on innate immune responses targeting the bacterial
components of the mixed respiratory viral/bacterial infections
that are characteristic of this age group. (J Allergy Clin
Immunol 2022;nnn:nnn-nnn.)

Key words: Severe lower respiratory tract infections, immune
training, transcriptomics, infants, peripheral blood mononuclear
cells, gene coexpression networks

Development of effective therapeutic strategies for protection
against severe lower respiratory tract infections (sLRI) during
the high-risk infant period remains a crucial unmet need in pe-
diatrics. A number of interacting factors complicate this
challenge, in particular the broad spectrum of pathogens
involved;1-3 the restricted coverage of these provided by
currently available vaccines;4 and developmental constraints
that limit the capacity of the infant immune system to respond
efficiently to conventional vaccines that target T- or B-cell
memory.4 Adding further complexity, while developmentally
compromised IFN-dependent innate immunity during this
period is also recognized as an important risk factor predispos-
ing to sLRI,5 the most severe manifestations of this disease in
infants are associated with hyperexpression of IFN responses
in the airways.6,7

This window of susceptibility in early life has implications
beyond direct infection-associated morbidity and mortality, given
the growing understanding that episodic infant sLRI can also
enhance risk for later development of complex diseases, including
chronic asthma8 and chronic obstructive pulmonary disease.9 The
emerging concept of immune training (IT) provides an potential
avenue for addressing this challenge. IT involves stimulation of
long-lasting augmented innate immune function after controlled
exposure to microbe-derived stimuli, manifesting in enhanced
resistance to pathogens unrelated to the original stimulus.10,11

Maintenance of this broad-spectrum ‘‘innate immune memory’’
state appears to involve both epigenetic mechanisms and changes
in the phenotypes/population size of key myeloid precursors.11

The neonatal and infant periods appear to represent life phases
during which the immune system is particularly susceptible to
microbe-associated IT effects.10-12

Opportunities for clinical studies evaluating this concept and
elucidating underlying mechanisms are currently limited as a
result of the restricted range of IT treatment agents with proven
safety in this age group. The present study focuses on one such
available agent, OM85, which comprises a polybacterial extract
from a mixture of respiratory pathogens that have been in
clinical use since the 1980s. A number of clinical studies on
OM85 have reported protection against early-life lower respi-
ratory tract infections,13,14 and these have provided the impetus
for more recent randomized controlled trials supported by fund-
ing agencies, including the US National Institutes of Health15

and the Australian National Health and Medical Research
Council.16 Data from experimental animal models data suggest
that OM85 treatment may operate via effects on immunoregula-
tory myeloid/lymphoid cell populations that calibrate innate
immune responses to microbial stimuli.17-20 However, corre-
sponding IT mechanisms in human infants remain to be eluci-
dated, and this represented the aim of the present study on the
immunomodulatory effects of OM85 treatment across the first
winter.

We used an experimental design and analytic strategy to assess
viral/bacterial responses on the basis of previous findings on
patterns of episodic upper or lower respiratory tract infections in
birth cohorts followed throughout infancy to age 5 years.1-3 These
studies demonstrated that nasopharyngeal bacteriomes/viromes
collected during symptom episodes typically contained not only
a viral pathogen or pathogens, but also 1 or more common bacte-
rial pathogens.1-3 Moreover, the presence of bacterial pathogens
enhanced risk for infection spread to the lower airways, with
accompanying symptom intensification.1We reasoned that under-
lying host innate immunoinflammatory responses during early
sLRIs would thus be directed against both pathogen classes. We
accordingly developed a 2-tiered analytic approach to elucidate
transcriptomic profiles in peripheral blood mononuclear cells
(PBMC) from OM85-treated and placebo groups triggered by
the virus mimic polyinosinic:polycytidylic acid (PIC), also
known as Poly(I:C), and the bacteria mimic lipopolysaccharide
(LPS) to test the hypothesis that treatment would alter the struc-
ture of underlying group-specific gene coexpression networks.
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FIG 1. sLRIs in subjects with available PBMC. A, Time to first sLRI during treatment period; Kaplan-Meier

survival analysis performed by Gehan-Breslow test. B and C, Cumulative frequency of sLRI per number

of days with sLRI during the first year; 2-way ANOVA. Shaded areas in (B) and (C) indicate treatment period.

Dashed line, OM85 group (n 5 21); solid line, placebo group (n 5 18).
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METHODS

Subjects
Subjects comprised infants at high risk for asthma development who

participated in a placebo-controlled clinical trial that demonstrated significant

reduction in susceptibility to sLRI resulting from daily OM85 (3.5 mg; OM

Pharma, Geneva, Switzerland) treatment throughout their first winter.16 The

present investigation was restricted to a subset of this cohort from whom

PBMC was collected in year 1 for mechanistic studies (see Fig E1 in this ar-

ticle’s Online Repository available at www.jacionline.org) and who were

representative of the overall cohort (see Table E1 in this article’s Online Re-

pository). Ethical approval was provided by Children’s Health Queensland

and the University of Queensland (reference HREC/12/QRCH/119), and at

least 1 parent or guardian provided written consent.

PBMC processing
Peripheral blood was collected before and after OM85 treatment or

placebo. PBMC were isolated and cryobanked as previously described.21

In vitro investigations
PBMCwere cultured inRPMI (Gibco,Waltham,Mass) 1640with 10% fetal

calf serum alone (control) or with the addition of PIC (50 mg/mL, InvivoGen,

San Diego, Calif) or LPS (25 pg/mL; Enzo Life Sciences, Farmingdale, NY)

for 24 hours. Supernatants were collected after culture and stored at 2808C
for cytokine quantification by Luminex (R&D Systems, Minneapolis, Minn).
Flow cytometry
Immunostaining of 13 106 viable PBMC was performed using a panel of

monoclonal antibodies,22 as detailed in the Online Repository available at

www.jacionline.org.
Transcriptomics
Total RNAwas extracted fromPBMCafter culture using TRIzol (Invitrogen,

Waltham, Mass) and purified using the RNEasy MinElute Kit (Qiagen, Hilden,

Germany). Sequencing libraries were prepared using TruSeq Stranded mRNA

Sample Prep Kit (Illumina, San Diego, Calif) following the manufacturer’s

instructions. Data before processing and quality control are provided in the

Online Repository available at www.jacionline.org. RNA sequencing data are

available from the National Center for Biotechnology Information (NCBI)

Gene Expression Omnibus repository (accession no. GSE184487).

Differential expression analysis
Differentially expressed genes (DEG) were identified by EdgeR,23 which

uses a negative binomial distribution model, with Benjamini-Hochberg–

adjusted false discovery rate. Unwanted variation was modeled and adjusted

for by RUVSeq, as shown in the Online Repository available at www.

jacionline.org. DEGs were identified in response to PIC or LPS versus paired

unstimulated controls at time points before and after treatment. Genes with an

absolute log fold change of >1.5 and a false discovery rate of <0.05 were

considered to be differentially expressed.

Network analysis
Network analysis was performed using WGCNA,24 and network recon-

struction was performed by Ingenuity Systems,25 as described in previous

publications.17,21,25,26 Methods are provided in the Online Repository avail-

able at www.jacionline.org.
Pathway analysis
Pathway analysis was performed on differentially DEG using InnateDB,27

which utilizes the public databases INOH, KEGG, NETPATH, PID,

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 2. PBMC cytokine responses to LPS (left) and PIC (right) measured by Luminex multiplex assay in

24-hour culture supernatants from placebo (n 5 16 pairs) and OM85 (n 5 18 pairs). White boxes, before
treatment; vertical stripes, after treatment. Within-group comparisons, Wilcoxon test; between-group

comparisons, Mann-Whitney test. *P < .05, **P < .005. The Ddata was baseline corrected (PIC/LPS2 Control)

for each subject.
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FIG 3. Group responses to PIC and LPS at time of recruitment. DEGwere identified in response to PIC/LPS in

placebo (blue, n 5 16/15) and OM85 (yellow, n 5 16/15). A and B, Venn diagrams showing the overlap of

DEGs between groups. C and D, Top 10 significant pathways enriched in upregulated (red) and downregu-

lated (pink) DEGs using InnateDB. Benjamini-Hochberg–adjusted P < .05 was considered statistically signif-

icant. E and F, Predicted upstream regulators of PIC/LPS responses and their correlations between groups.

Absolute activation z scores >2.0 and Benjamini-Hochberg–adjusted P < .05 were deemed significant.
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FIG 4. Group responses to PIC/LPS after treatment in placebo (blue, n 5 15/16) and OM85 (yellow, n 5 17/

16).A and B, Venn diagrams showing the overlap of DEGs between groups. C andD, Top 10 significant path-

ways enriched in upregulated (red) and downregulated (pink) DEGs using InnateDB. F and G, Predicted up-

stream regulators of PIC/LPS responses and their correlations between groups. Statistics applied are

consistent with Fig 3.
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BIOCARTA, and REACTOME. Up- and downregulated genes were analyzed

separately; we discuss the 10 most significant pathways. The ReactomePA

package inR28 was utilized to identify/visualize pathways enriched in network

modules, and were confirmed using InnateDB.
Upstream regulator analysis
For upstream regulator analysis (URA), Ingenuity Systems29 was used to

identify putative drivers of gene expression changes and network module ac-

tivity (see the Online Repository available at www.jacionline.org).
Differential gene correlation analysis
The differential gene correlation analysis (DGCA)R package30 was used to

discover gene pairs in the network that were differentially correlated in OM85

treatment compared to placebo in LPS and PIC responses separately. Permu-

tation testing was performed to determine significance between groups;

adjusted P < .05 was considered statistically significant.
RESULTS

Clinical responses of study subjects to OM85

treatment
As noted in the Methods, study subjects comprised a subgroup

from a clinical trial comparing sLRI susceptibility of OM85-
versus placebo-treated infants across their first winter (Fig E1),
the results of which have been published elsewhere.16 OM85-
treated subjects in this subgroup demonstrated a longer time to
first sLRI during the treatment period compared to their placebo
counterparts (P 5 .03, Fig 1, A). This was accompanied by
reduced cumulative frequency of sLRI events (P 5 .003, Fig 1,
B) and fewer days of sLRI symptoms (P5 .008, Fig 1,C), closely
mirroring the clinical findings from the whole cohort.16
Cytokine responses
The OM85 group produced significantly lower levels of

proinflammatory cytokines (TNF P 5 .03; IL-6 P 5 .01; IL-10
P 5 .03), and trended lower for IL-1b (P 5 .07) and CCL3/
MIP1a (P5 .06) in the LPS response. Furthermore, OM85 treat-
ment constrained the age-related increase in LPS-associated in-
flammatory cytokine response capacity that was evident in the
placebo group (Fig 2, B-E). IL-18 and IP10 were produced in
response to PIC but were unaffected by OM85 treatment (Fig 2,
F and G).
Transcriptional responses to PIC and LPS in placebo

and OM85 treatment groups before versus after

treatment
PIC and LPS induced strong perturbations to the gene

expression program (see Fig E2, A, in the Online Repository
available at www.jacionline.org), as reflected in DEG signatures
in both groups at the start of the study (before treatment), with
comparably strong overlap between respective response profiles

http://www.jacionline.org
http://www.jacionline.org


J ALLERGY CLIN IMMUNOL

nnn 2022

6 TROY ET AL
(Fig 3, A and B). The observed transcriptional responses were
clustered by stimulus (Fig E2, B and C) and include known anti-
viral genes (eg,MX1, IFNa1, CXCL10) upregulated in response to
PIC and inflammatory genes (IL-6, IL-1b, CSF3) in response to
LPS (see Tables E2-E5 in the Online Repository). Pathway anal-
ysis revealed that the most prominent DEG signatures in PIC and
LPS responses in both groups were associated with IFN and cyto-
kine signaling (Fig 3, C and D), reflecting the overlap in Fig 3, A
and B. Using URA to infer master regulators operating upstream
of the transcriptional changes suggested that the top 20 drivers of
PIC responses were identical in the 2 groups and differed
only subtly in z scores. The identified drivers of the PIC
response were dominated by genes associated with type
1/2/3 IFN responses (Fig 3, E), with a slightly more diverse array
in the LPS responses that included proinflammatory cytokines
(OSM, IL-1b) and those associated with Toll-like receptor
(TLR) functions including the regulator TSC231 (Fig 3, F).
Furthermore, the top 150 drivers of both responses correlated
strongly between groups (PIC stimulation r2 5 0.91; LPS stimu-
lation r2 5 0.55; Fig 3, E and F).

Posttreatment transcriptomic responses to PIC/LPS were not
superficially different between OM85 and placebo groups (Fig 4,
A and B; and see Fig E2, A, and Tables E6-E9 in the Online Re-
pository at www.jacionline.org), and principal component anal-
ysis/hierarchical clustering confirmed that samples cluster
primarily by stimulus and not by treatment group (Fig E2, B
and D). Pathway analysis indicated that gene signatures associ-
ated with IFN/cytokine signaling remained dominant in the
response profiles (Fig 4, C and D). However, the LPS profile
included a secondary tier of signatures (including AP-1 transcrip-
tion factor pathway, GPCR, Jak-STAT, and IL-27 signaling),
which were distributed differently between groups (Fig 4, D).

Consistent with the prominence of cytokine/IFN signaling in
PIC responses (Fig 4,D), URA demonstrated that upstream driver
profiles were dominated by type 1/2/3 IFN-associated genes (Fig
4, E), which overall correlated strongly between groups (r2 5
0.95). The intragroup variations in LPS-responsive pathways
(Fig 4, D) were mirrored by some notable differences in respec-
tive ranked lists of upstream drivers, in particular the increased
prominence of TLR signaling in the treatment group and the pres-
ence of TNF (the principal AP-1 driver) among themain drivers in
the placebo group (Fig 4, F). These variations were reflected by
much weaker correlation between respective driver profiles
(r2 5 0.13).
Coexpression network analysis
Transcriptional responses to PIC and LPS included multiple

shared DEGs equating to >50% overlap (see Fig E3 in the Online
Repository available at www.jacionline.org), consistent with pre-
vious reports.32 Therefore, to characterize OM85 treatment ef-
fects at the systems level, we combined respective group-
specific PIC, LPS, and control data to construct separate posttreat-
ment gene networks for each group using WGCNA. First, to
determine if there were broad treatment-associated changes in
global gene network topology, we calculated ranked gene expres-
sion and gene connectivity (coexpression) across network genes
before and after treatment. PIC network connectivity patterns
correlated strongly between groups at each time point (before/af-
ter r2 5 0.63/0.66; see Fig E4 in the Online Repository), indi-
cating conservation of antivirus-specific network patterns over
time with or without OM85 treatment. In contrast, in the LPS
response, gene connectivity was more variable after treatment
(r2 5 0.4) relative to before treatment (r2 5 0.62; Fig E4), sug-
gesting that treatment-induced changes to the network structure
focused primarily on the antibacterial arm of the innate response.
Next, we looked at the global topology and connectivity structure
of the coexpression networks underlying innate immune re-
sponses using WGCNA. The placebo network was organized
into 5 coexpression modules, versus 8 modules in the OM85
group, suggesting increased network architecture complexity
with treatment (see Fig E5, A, and Tables E10 and E11 in the On-
line Repository). We used ReactomePA to annotate the modules,
and the 5 most significant pathways in each are shown in Table
E12 in the Online Repository.

As shown in Fig 4, the response profiles in both groups were
driven primarily by IFN-related and cytokine/chemokine
signaling, and the majority of genes that regulate these processes
fit into 1 of 3 of coexpression modules A, B, and C (Table E12);
we focus in detail on these in Fig 5. In both groups, module Awas
enriched with type 1/2/3 IFN, and module C was enriched with
cytokine signaling pathways. Module B was unique to the
OM85 group and showed some overlapping functions with mod-
ule A (Fig 5, A). Of note, 147 of the 211 genes making up module
B in the OM85 groupwere present inmodule A in the correspond-
ing placebo network (Fig 5, B), and similar levels of treatment-
associated gene translocation were observed between modules
C and D.

To determine how the network modules were expressed within
the 2 groups after LPS/PIC stimulation, we plotted module
eigengene values (which summarize the overall activity of each
coexpression module) for each response and compared them with
paired unstimulated controls (Fig E5, D). Findings related to
modules A through C (Fig 5, C) are discussed below, while those
relating to modules D through H are shown in Fig E5, B, but are
not considered further. Module A (blue) was upregulated in
response to PIC relative to paired controls in both groups, but in
the LPS response upregulation was restricted to the OM85 group
(Fig 5, C). The upstream drivers of module A/PIC response dis-
played a high degree of overlap and comparable activation z
scores in the 2 groups, and the driver profile was dominated by
IFN-associated genes (Fig 5, D). In contrast, the top drivers of
module A/LPS response differed markedly between placebo
and treatment groups, most notably by the absence of classical
innate immunity/IFN-related drivers of the LPS response in the
placebo group (Fig 5, D). This finding is further highlighted in
Fig E6 (available in the Online Repository available at www.
jacionline.org), which compares activation z scores for a broad
list of IFN/TLR-related and associated immunomodulatory genes
that are significant drivers of module A/LPS responses in the
treatment, but not placebo, group. Reconstruction of a representa-
tive wiring diagram (using Ingenuity Pathway Analysis29) of so-
called interferon module A revealed that IFN-g, STAT1, IRF7,
and IRF1 were hubs in both placebo and OM85 response net-
works. However, the placebo network module A also included
TNF and MYD88 hubs, which were absent from the correspond-
ing OM85 module (see Fig E7, A, in the Online Repository).
A subset of genes in module A in the placebo group were parti-
tioned into a separate small (n 5 211) module B (pink) in the
OM85 group, and reconstruction of this module showed that
TNF andMYD88 had translocated from module A to B, in which
they were present as hubs (Fig E7,A). In addition to uncoupling of

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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FIG 5. A-C, Genemodules of interest in placebo/OM85 gene networks underlying innate immune responses

to PIC/LPS in PBMC. Gene coexpression networks that were constructed separately for placebo (blue) and

OM85 (yellow) groups by combining PIC/LPS and control (CTR) data (placebo n5 47, OM85 n5 51).A, Top 5

significant (adjusted P < .05) pathways enriched in gene modules A, B, and C derived using ReactomePA. B,
Road map demonstrating changes in gene distribution patterns with OM85 treatment. C, Network module

responses were determined by plotting module eigengenes for PIC/LPS (top/bottom, solid boxes) and were

compared to paired controls (striped boxes) for placebo (left) and OM85 (right). **P < .005, ***P < .0005, #P <

.0001, Wilcoxon test. D-F, Top 10 predicted drivers of module A (placebo/OM85 to PIC [left] and LPS [right]),

module B (only in OM85 network), and module C in LPS response. Red and blue indicate, respectively, acti-

vated and inhibited drivers. Absolute activation z score >2.0 and Benjamini-Hochberg–adjusted P < .05 were

deemed significant.
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TNF from interferon module A, LPS-induced production of TNF
protein was reduced in the OM85 group after treatment (P5 .03),
as previously noted (Fig 2, A). In contrast, URA, which identifies
upstream driver genes, suggested that production of TNF played
an active role earlier in the responses of both groups (Fig 5, D).

In the OM85 network only, module B was upregulated in the
PIC response versus equivalently downregulated in the LPS
response (Fig 5, C). Upstream drivers for module B (Fig 5, E)
overlap strongly with those for module A (Fig 5, D). Moreover,
consistent with the reciprocal module activation patterns in
Fig 5, C, the top drivers of this module display positive activation
z scores in the PIC response versus negative scores for LPS (Fig 5,
E). Finally, module C (brown) was upregulated in the LPS
response in both groups (Fig 5, C) and was driven by proinflam-
matory cytokines including TNF, IL-1b, and IL-6 (Fig 5, F).
Reconstruction of module C demonstrated major reduction in
module size and/or complexity in the OM85 treatment group,
which included translocation of a large block of genes (n 5
355) from OM85 treatment modules C to D (Fig 5, B). Proinflam-
matory genes IL-6, IL-1b, and CSF2 and immunoregulatory gene



A
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FIG 6. Expression correlation patterns for IRF7 after OM85 treatment (turquoise) or placebo (red). For each
comparison, IRF7 is on the y-axis, and known key signaling genes in the innate response are on the x-axis for
LPS/PIC (A and B). A linear model was fit to the data in each comparison, with the gray lines representing

95% confidence intervals and r2, Pearson correlation. P < .05 was deemed significant for gene-pair correla-

tions within group; ns, not significant. Significance of the different correlation patterns between groups was

assigned using 100 permutations of the data. Adjusted *P < .05, **P < .005. C, Pathways enriched in genes

that had a significant increase (n5 412, red) and decrease (n5 329, pink) in expression correlation with IRF7

using InnateDB.
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IL10 were central module C hubs in both groups. However, in the
treatment group, these hubs had a reduced number of connections,
and at the protein expression level, top hubs (IL-6, IL-1b, CCL3,
IL-10) trended lower in the treatment group (Fig 2). Additionally,
there were a number of genes that served as module C hubs in the
placebo network that were either completely absent from the cor-
responding OM85 network (eg, NFKBIA, VEGFA, CEBPB,
CD44) (see Fig E8 in the Online Repository available at www.
jacionline.org).
Differential gene correlation analysis
The WGCNA analyses above characterized global gene

network patterns underlying innate immune responses in the
placebo and OM85 groups. To elucidate differential network
wiring between the respective responses more locally at the level
of individual gene pairs, we performed DGCA using the R
package DGCA.We focused these analyses on keymolecules that
orchestrate TLR4 signaling (eg, TLR4, MYD88) and their down-
stream effectors (transcription factors, proinflammatory cyto-
kines, IFN-stimulated genes). In the posttreatment LPS
response network of the OM85 group but not in placebo, TLR4
correlated positively with downstream adaptors (MYD88 and
TRIF), the master IFN pathway regulator IRF7, and numerous
IFN-stimulated genes (exemplified by LY6E, ISG15, and
IFNb1; see Fig E9, A, in the Online Repository available at
www.jacionline.org). Of additional note, MYD88 correlated
inversely with downstream inflammatory cytokine genes (IL-1,
IL-6, IL-18R; Fig E9, B). We ran 100 permutations of the data
to compare median changes in correlation between groups, which
confirmed that the correlation of TLR4 with IRF7 was signifi-
cantly increased in the OM85 group compared to placebo (P <
.05). Strikingly, IRF7 itself was differentially correlated with
741 genes across the OM85 LPS responses (Fig 6, A, and see
Table E13 in the Online Repository). To demonstrate that the dif-
ferences in network structure were robust, we repeated the anal-
ysis across 10 folds by removing 10% of the data for each fold,
and we found that the data were unchanged (see Tables E13 and
E14 in the Online Repository). These included multiple inflam-
matory genes (CXCR6, IFNg, IL-6, PTGS2) and negative regula-
tors of type 1/2/3 IFN and cytokine signaling (SOCS1, SOCS3)
showing reduced correlation, and a number of additional path-
ogen/pattern recognition receptors (CLEC7A, CLEC4A), which
showed increased correlation. Notably,CLEC7Awas earlier iden-
tified as an upstream driver of the LPS response in the OM85
groups (Fig 4,F). In contrast, therewere no significant differences
in TLR3 or IRF7 gene-pair correlations in the corresponding PIC
responses (Fig 6, B, and Table E13). These findings are suggestive

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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of heightened pathogen sensing capability and reduced inflamma-
tory responses to LPS in the OM85 group. Consistent with this,
pathway analysis of the 741 IRF7-associated genes revealed
reciprocal patterns of change in relevant pathways (Fig 6, C).

As mentioned earlier, the coexpression network in the OM85
treatment group contained a module (module B) that appeared to
have arisen via relocation of a subset of genes from module A.
Using DGCA, we demonstrated that TNF and MYD88 (and a
number of key genes in module B) do not correlate with IFNg,
the top hub gene in module A, in the OM85 treatment group as
they do in placebo (see Fig E7, B, and Table E15 in the Online
Repository at www.jacionline.org).
Treatment effects on Treg levels
A consistent observation from previous preclinical studies has

been upregulation of baseline Treg levels after OM85 treat-
ment,17,19,20 and flow cytometric screening demonstrated that this
was also a component of the OM85 treatment–associated pheno-
type in our study group (see Fig E10 in the Online Repository
available at www.jacionline.org).
DISCUSSION
The core aim of this study was to elucidate IT-associated

mechanisms underlying the protective effects of OM85 treatment
in infants across the high-infection-risk winter period. We
focused on PBMC cytokine and transcriptomic responses to the
virus/bacteria mimics PIC/LPS. Cytokine responses indicated
that OM85 treatment reduced proinflammatory responses to LPS.
Conventional transcriptomic analyses to identify differentially
expressed genes or pathways, and URA to identify upstream
molecular drivers, indicated treatment-associated effects that
mainly influenced LPS responses. To characterize the nature of
these changes in more detail, we used comparative WGCNA
analyses to characterize the global topology and connectivity
structure of the gene networks underlying PIC/LPS responses in
treatment and placebo groups. This was followed by DGCA to
provide a finer-grained picture that focuses on differential
network wiring at the level of individual gene pairs. This revealed
that at 24 hours after stimulation, the global architecture of the
innate antimicrobial response network differed between the
placebo and OM85 treatment groups, as evidenced by disparities
in the number and complexity of respective coexpression
modules, as well as their expression within LPS and PIC
responses (Fig 5, A and D).

The most highly responsive module across the networks was
interferon module A, the expression profiles of which were
dominated in both groups by genes associated with type 1/2/3
IFN-related functions (Fig 5, C). Upregulation of this module in
the PIC response was common to both groups. However, for the
LPS response, this was restricted to the OM85 treatment group,
consistent with treatment-associated enhancement of their innate
antibacterial defenses. A further notable difference was the rewir-
ing ofmodule A in theOM85 treatment group. This involved relo-
cation of the TNF component of the so-called interleukin
signaling signature, which is evident within the module
A expression profiles (Fig 5, A and B) into a separate module B,
together with a number of other genes associated with induction
of antiviral defense/IFN signaling and cell trafficking. In biolog-
ical terms, this suggests that while the production of IFNs
(in particular IFN-g) and TNF are highly correlated within the
innate immune response network in infants in the placebo group
wherein they function as the 2most highly connected hub genes in
the module A subnetwork, these activities are uncoupled in the
corresponding treatment group response network (Fig E7).

This has important implications in relation to understanding
intergroup differences in innate immune responses to mixed viral/
bacterial infections after treatment, given the well-recognized
effects of TNF/IFN-g interactions on antimicrobial immunity. In
this regard, IFN-g–mediated priming of key macrophage effector
functions, including phagocytosis, pathogen killing, and cytokine
production/secretion, plays a key role in mobilizing host defenses
during the early stages of infection.33-36 TNF-a been shown to
synergize with IFN-g to amplify this priming effect if these cyto-
kines are coproduced in synchrony.34,36,37 This can accelerate
development of peak pathogen killing capacity in macrophages,
but it carries the added risk of exaggerating ensuing inflammatory
responses,36,38,39 particularly secretion of proinflammatory cyto-
kines, including TNF itself.33 The coexpression of these 2 cyto-
kines, as per the placebo group, would thus set the stage for
these interactions to occur. In this regard, we have reported else-
where that exaggerated IFN signaling is a defining feature of in-
flammatory responses in PBMC and airway tissues of infants
manifesting severe lower respiratory symptoms associated with
lower respiratory tract infections, and further that IFN-g and
TNF were prominent among the upstream drivers of these
response.6,7

Synergy between IFN-g/TNF-a in the context of bacterial
infections has also been reported to mediate disruption of
airway epithelial barrier function,40 which is among the recog-
nized sequelae of severe respiratory infections. Similar obser-
vations have been reported in relation to gastrointestinal tract
inflammation,41 where the mechanism appears to involve
IFN-g–mediated upregulation of TNF-a R1/R2 on target
epithelial cells. Moreover, localization of TNF within network
module A in placebo subjects could also compromise the type
1 IFN component of their responses, given that TNF can both
inhibit the generation of plasmacytoid dendritic cells (the prin-
cipal source of type 1 IFNs)42,43 from their CD341 progeni-
tors,44 and can also blockade the virus-triggered release of
these IFNs from preactivated plasmacytoid dendritic cells.44

In contrast, in the OM85 treatment group response in which
TNF is localized within a separate coexpression subnetwork
B, the likelihood of these interactions occurring would logi-
cally be reduced.

Module B is downregulated in the LPS response network in the
treatment group, whichmay thus result in lowering these patients’
risk of proinflammatory sequelae during bacterial clearancewhile
being reciprocally upregulated within the corresponding response
to the virus mimic PIC. The coexpressed genes within PIC
response module B include many associated with IFN signaling,
cell trafficking, and/or TLR function, which are presumably
complementary to others mediating similar functions that are
activated within the parallel network module A. In principle, this
provides a framework to explain how OM85 treatment may
achieve amore balanced type 1/2 IFN-dependent response to both
types of pathogen in which excessive proinflammatory IFN-
g/TNF priming interactions and TNF-mediated interference with
type 1 IFN functions are minimized. However the treatment-
mediated network rewiring process, as illustrated in Fig 5, B,
also involved remodeling of a number of other coexpression
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modules. The most important of these is module C, which is up-
regulated in the LPS response in both groups and encompasses a
broad range of genes other than TNF that are recognized as proin-
flammatory. In this case, rewiring of the treatment group response
involved relocation of >50% of the genes present in this subnet in
the placebo group to other modules that are downregulated within
the network, and more importantly resulted in uncoupling expres-
sion of a range of proinflammatory genes (exemplified by IL-1,
IL-6) from the key nuclear factor kappa–light-chain enhancer of
activated B cells pathway (Fig E8) through which they signal to
mediate their effects.45 These inflammatory genemodule changes
are consistent with the reduced capacity for LPS-induced inflam-
matory cytokine production in the OM85 group, mirroring find-
ings from animal model studies.17 It is additionally noteworthy
that asthma protection resulting from early-life exposure to
microbe-rich traditional farming environments, a process that
could be considered a natural form of IT,12 has also been associ-
ated with reduced proinflammatory responses to LPS in vitro.46-48

In conclusion, this study suggests that the main target for the
IT-associated effects of OM85 treatment may be innate immune
pathways that primarily regulate host responses to bacterial as
opposed to viral pathogens. However, this is unlikely to limit the
potential effectiveness of IT for sLRI control, given that the
nasopharyngeal microbial milieu during sLRIs almost invariably
comprises a mixture of both pathogen classes, which appear to
interact synergistically to drive infection spread and symptom
severity.1-3

This study has several limitations, including sample size, lack
of information on the presence and/or identity of bacterial
pathogens, and single time point assessment of innate immune
responses. Stratification of groups on the basis of infection
susceptibility was not possible because of the sample size and
requires addressing in future studies. Additionally, the study
involved a high-risk cohort and needs to be repeated in an
unselected population. Moreover, while there are an expanding
number of precedents for suggesting a key role49 in immunemod-
ulation for gene network rewiring in the absence of overt changes
in differential expression profiles,49-51 the contribution of
different cell populations in such processes remains obscure. In
this regard, animal model studies suggest that myeloid
precursor cells may be key targets for OM85-mediated IT
effects,18,19 and this possibility merits follow-up that uses
recently developed single-cell RNA sequencing technologies.52

We thank the parents and study participants.

Key messages

d OM85 treatment in infancy induced immune changes
indicative of innate IT.

d Treatment primarily modulates gene networks triggered
during innate immune responses to bacterial pathogens
that typically accompany viral pathogens during sLRI.

d IT treatment effects include upregulation of IRF7-
dependent IFN signaling and increased coordination
with innate pathogen-sensing functions, accompanied by
attenuation of potentially pathogenic inflammation.
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