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Abstract

It is well understood that solving parity games is equivalent, up to polynomial time, to
model checking of the modal mu-calculus. It is a long-standing open problem whether solving
parity games (or model checking modal mu-calculus formulas) can be done in polynomial time.
A recent approach to studying this problem has been the design of partial solvers, algorithms
that run in polynomial time and that may only solve parts of a parity game. Although it was
shown that such partial solvers can completely solve many practical benchmarks, the design of
such partial solvers was somewhat ad hoc, limiting a deeper understanding of the potential of
that approach. We here mean to provide such robust foundations for deeper analysis through
a new form of game, alternating reachability under parity. We prove the determinacy of these
games and use this determinacy to define, for each player, a monotone fixed point over an
ordered domain of height linear in the size of the parity game such that all nodes in its
greatest fixed point are won by said player in the parity game. We show, through theoretical
and experimental work, that such greatest fixed points and their computation leads to partial
solvers that run in polynomial time. These partial solvers are based on established principles
of static analysis and are more effective than partial solvers studied in extant work.

1 Introduction
Model checking [9, 24] is an approach to formal methods in which a system is represented as a
model M , system behavior of interest is represented as a formula φ of a suitable temporal logic,
and the question of whether the model satisfies that property (written M |= φ) is decided using
an algorithm parametric in M and φ. For infinite models, this question often is undecidable and
may therefore require the abstraction of models to finite ones [2].

Program analyses (see e.g. [23]) consider programs P and aim to answer questions such as “Are
there portions of code in P that can never be reached during execution?”. Since exact answers may
be undecidable, abstraction is often used to under-approximate or over-approximate such answers,
for example, the set of program points that can never be reached. Many program analyses can
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parity games: alternating reachability under parity. Technical Report 2015/4, Department of Computing, Imperial
College London, ISSN 1469-4174, August 2015.
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be computed by a static analysis that computes a least fixed point of a monotone function over
a complete lattice; see for example Chapter 6 in [23] for more details on this approach based on
worklist algorithms.

These two approaches, model checking and static analysis, appear to be quite different even
though they share the need for abstraction. For example, it is not immediately clear whether each
program analysis might correspond to a property φ of some suitable logic. But there is a body
of research that points out a close relationship and connections between these approaches. For
example, in [26] it is shown how data-flow analyses can be seen as instances of model checking:
if programs are represented as models of a modal logic, one can capture a data-flow analysis as a
formula in that modal logic, and then partially evaluate the model checker for that logic to thus
implement the data-flow analyzer. This insight led to an actual methodology: in [25] one converts a
program into a transition system as program model – using its operational semantics, then applies
abstraction [3, 4] to eliminate details of that model that are irrelevant to the analysis/formula in
question, and finally one can do model checking on the abstract model using formulas that capture
the analysis in question.

These contributions furthered the understanding of how program analysis can be seen within
the framework of model checking. Conversely, it turns out that the central question of model
checking, whether M |= φ holds, can be computed with techniques from static analysis. In [22],
an alternation-free fixed-point logic was defined and it was shown how static analysis over the
resulting flow logic can decide model-checking instances for modal logics such as computation tree
logic (CTL) [9]. The flow logic in [22] was also demonstrated to have applications in data-flow
analysis and constraint solving [11]. In later work [28], this alternation-free least fixed-point logic
was extended so that one could capture model checking of the modal mu-calculus [18] (not just of
CTL) in this manner, and a Moore family result was proved for this logic; Moore families are the
set of closed sets of a closure operator.

The temporal logic CTL and the linear-time temporal logic LTL can be seen as subsets of the
temporal logic CTL* (see e.g. [15]). The logic CTL* can in turn be embedded into the modal
mu-calculus [5], although at an exponential cost [19]. LTL and CTL capture many practically
important property patterns [7] and are therefore very useful. But some have argued that these
logics are mathematically somewhat ad hoc. The modal mu-calculus, on the other hand, is more
canonical since it does not limit the manner in which fixed-point patterns can be composed (apart
from syntactic restrictions that ensure monotonicity of meaning). It is therefore apt to understand
the connections between static analysis and model checking over the modal mu-calculus as well,
and the work reported in [28] shows how static analysis in the form of flow logics can capture
model checking of the modal mu-calculus.

There is another important aspect to the study of such conections though. It is well understood
[8, 10, 27] that model checking of the modal mu-calculus is equivalent (within polynomial time)
to the solving of parity games. These are directed graphs whose nodes are owned by one of two
players and colored by a natural number. In this chapter, we assume that such graphs are finite.
Plays between these players generate infinite paths in these graphs whose winners are decided by
minimal colors of cycles generated by these paths. A player wins a node if she can play such that
all plays beginning in that node are won by her in this manner. A central result for parity games
states that these games are determined [21, 8, 29]: each node is won by exactly one of the two
players. Deciding which player wins which nodes, and how they can achieve these wins is what
one means by solving parity games.

Using the aforementioned results in [8, 10, 27], we can therefore understand how to use static
analysis for model checking by understanding how static analyses may solve parity games. Known
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approaches of solving parity games in this manner, for example the ones based on small progress
measures [17], all suffer from the fact that the height of the ordered domain derived from the parity
game may be exponentially larger than that game – leading to exponential worst-case running
times of least fixed-point computations in the resulting worklist algorithm that implements a
static analysis. In fact, the decision problem of whether a given node in a parity game is won by
a given player is in UP ∩ coUP [16], and its exact complexity has been an open problem for over
twenty years now.

The work that we report here means to combine static analysis with abstraction. The analyses
we design below run in polynomial time by construction. But this efficiency is gained by possibly
under-approximating the solution of a parity game: the used static analysis may not decide the
winners of all (or indeed some) nodes although they often solve games completely. Furthermore,
in local modal checking (see e.g. [27]) it suffices to know whether one or several designated states
satisfy a property. In the setting of parity games, this means that it may suffice to statically decide
the winner of one or several nodes – which the static analyses we present here may often achieve.
Outline of chapter: In Section 2, we recall background on parity games. Our new type of
alternating reachability game is defined and studied in Section 3. In Section 4, we show how this
game induces monotone functions for each player of a parity game, and that we can use these
functions to build static analyses of parity games that repeatedly compute greatest fixed points of
such functions on (residual) games. We discuss, in Section 5, how this approach generalizes our
earlier work on fatal attractors in [13]. Our experimental results are reported in Section 6, related
work not discussed above already is presented in Section 7, and the chapter concludes in Section 8.

2 Background
In this section, we define key concepts of parity games, and fix technical notation used in this
chapter. We write N for the set {0, 1, . . . } of natural numbers. A parity game G is a tuple
(V, V0, V1, E, c), where V is a set of nodes partitioned into possibly empty node sets V0 and V1,
with an edge relation E ⊆ V × V (where for all v in V there is a w in V with (v, w) in E), and a
coloring function c : V → N. In figures, c(v) is written within nodes v, nodes in V0 are depicted as
circles and nodes in V1 as squares. For v in V , we write v.E for node set {w ∈ V | (v, w) ∈ E} of
successors of v. Below we write C(G) for the set of colors in game G, i.e. C(G) = {c(v) | v ∈ V },
and C(G)⊥ for set C(G) ∪ {⊥}.

Throughout, we write p (or sometimes p′) for one of 0 or 1 and 1− p for the other player. In a
parity game, player p owns the nodes in Vp. A play from some node v0 results in an infinite play
π = v0v1 . . . in (V,E) where the player who owns vi chooses the successor vi+1 such that (vi, vi+1)
is in E. Let Inf(π) be the set of colors that occur in π infinitely often:

Inf(π) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)}

Player 0 wins play π iff min Inf(π) is even; otherwise player 1 wins play r.
A strategy for player p is a total function σp : V ∗ · Vp → V where the pair (v, σp(w · v)) is in E

for all v in Vp and w in V ∗. A play π conforms with σp if for every finite prefix v0 . . . vi of π with
vi in Vp we have vi+1 = σp(v0 . . . vi). A strategy σp is memoryless if for all w,w′ in V ∗ and v in Vp

we have σp(w · v) = σp(w′ · v) and such a σp can be seen to have type Vp → V .
It is well known that each parity game is determined [21, 8, 29]: (i) node set V is the disjoint

union of two, possibly empty, sets W0 and W1, the winning regions of players 0 and 1 (respec-
tively); and (ii) there are memoryless strategies σ0 and σ1 such that all plays beginning in W0 and
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Figure 1: A parity game: circles denote nodes in V0, squares denote nodes in V1.

conforming with σ0 are won by player 0, and all plays beginning in W1 and conforming with σ1
are won by player 1. Solving a parity game means computing such data (W0,W1, σ0, σ1).

Throughout this chapter, we write G for a parity game (V, V0, V1, E, c), denote by p one of its
players, and let X be a non-empty set of nodes of G. We write x%2 for x modulo 2 for an integer
x, and Attrp[G,X] to denote the attractor of node set X for player p, which computes the standard
alternating reachability of X for that player in the game graph of G (see e.g. Definition 1 in [13]).

Example 1 In the parity game G depicted in Figure 1, the winning regions are W1 = {} and
W0 = V . The memoryless strategy σ0, defined by σ0(v1) = v2, is a winning strategy for player 0
on W0.

3 Alternating reachability under parity
In this section, we generalize alternating reachability in parity game graphs, so that this reachability
is aware of minimal colors encountered en route:

Definition 1 Given parity game G, player p, and non-empty node set X, let π = v0v1 . . . be an
infinite play in G.

1. Player p wins play π in the reachability game for (X, p) under parity iff there is some j > 0
such that vj is in X and min({c(vi) | 0 ≤ i ≤ j}%2 = p. Dually, player 1 − p wins play π
in that reachability game iff she detracts from (X, p) under parity, that is to say iff for all
j > 0 we have that vj in X implies that min({c(vi) | 0 ≤ i ≤ j}%2 = 1− p.

2. A strategy for player p′ in this game is defined like a strategy for that player in the parity
game G. Also, the definition of when plays conform with strategies in this game is the same
as for parity game G.

3. Player p′ wins a node v for reachability of (X, p) under parity iff she has a strategy σp′

such that all plays starting from v and conforming to σp′ are winning for player p′ in the
reachability game for (X, p) under parity.

4. We write Wp
r(G,X) for the set of nodes that player p wins in this manner (we won’t need

notation for the set of nodes won by player 1− p).

This acceptance condition binds p to X: it is player p who wants to reach (X, p) under parity.
Also, starting from X in a play does not yet mean that X has been reached. In particular, player
1 − p wins all plays that don’t visit X after the initial node. An immediate question is whether
such games are determined and how complex it is to solve them. We answer these questions next.
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Figure 2: Game graph Gp
X for G from Figure 1 and X being {v0}; only nodes and edges reachable

(in non-alternating sense) from X ×{⊥} in Gp
X are shown, as this is all needed for deciding which

nodes in X are contained in Wp
r(G,X). The winning strategy for player 0 requires her to make

different choices from the same nodes of G when they are combined with different colors: player 0
needs to move from (v1, 3) to (v2, 2) and from (v1, 2) to (v0, 2) in Gp

X

Lemma 1 For all parity games G, players p, and non-empty node sets X, the derived game in G
of reaching (X, p) under parity is determined.

Proof: For a color i in C(G) and node set S ⊆ V let Si = {v ∈ S | c(v) = i} and S≥i = {v ∈
S | c(v) ≥ i}. Also, let C = {c ∈ C(G) | c%2 = p}. The set of winning plays for player p in the
reachability game for (X, p) under parity is the union of (V ∗≥i ·Vi ·V ∗≥i ·X≥i ·V ω)∪(V +

≥i ·Xi ·V ω) over
all i in C. Note that, for each such i, both expressions in this union capture the non-deterministic
choice of reaching X in Definition 1. The difference in these expressions is merely that the minimal
color i may be witnessed before that non-deterministic choice of reaching X. The set of winning
plays for player p is thus a Borel definable set of paths. From the Borel determinacy of turn-based
games [20] it therefore follows that the game is determined. QED.

Next, we derive from parity game G and node set X a game graph that reduces reachability of
(X, p) under parity to (the usual alternating) reachability in the derived game graph. This derived
game has nodes of form (v, l) where l records the history of the minimal color encountered so far.
In particular, we use l = ⊥ to model that a play is just beginning.

Definition 2 For parity game G = (V, V0, V1, E, c), player p, and non-empty node set X, game
graph Gp

X = (V × C(G)⊥, E ′) is defined as follows: For c in C(G)⊥, player 0 owns all nodes
(v, c) with v ∈ V0. Player 1 owns all nodes (v, c) with v ∈ V1. And the edge relation E ′ ⊆
(V × C(G)⊥)× (V × C(G)⊥) is defined as

E ′ = {((v,⊥), (v′,min(c(v), c(v′)))) | (v, v′) ∈ E} ∪ (1)
{((v, c), (v′,min(c, c(v′)))) | (v, v′) ∈ E, c ∈ C(G), (v 6∈ X or c%2 6= p)}

Note that relation E ′ is even contained in (V × C(G)⊥)× (V × C(G)) and contains dead ends
(nodes that don’t have outgoing edges in the game graph). The latter is not an issue since all dead
ends in Gp

X are target nodes for the alternating reachability in Gp
X . Figure 2 shows an example of

this construction.
The intuition of game graph Gp

X is that player p can win node v in G for reaching (X, p) under
parity iff player p can win the (alternating) reachability game in Gp

X for target set X×{c ∈ C(G) |
c%2 = p}. We state this formally:
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Figure 3: Game graph Gp
X for G from Figure 1 and X being {v0, v2}. As in Fig. 2, only nodes and

edges reachable (in non-alternating sense) from X × {⊥} in Gp
X are shown. The winning strategy

for player 0 allows her to make choices that do not depend on the color annotating the states. She
can move from (v1, c) to (v2, 2) regardless of the value of c.

Theorem 1 For G and Gp
X as above, let Z be X × {c ∈ C(G), c%2 = p} and W be {v ∈ V |

(v,⊥) ∈ Attrp(Gp
X , Z)}. Then W is the winning region of player p in G for reachability of (X, p)

under parity.

Proof: First, let Wp = Wp
r(G,X) be the winning region of player p in G for reachability of

(X, p) under parity. Since this game has a Borel defined winning condition, there exists a strategy
τ : V ∗ × Vp → V such that all plays conforming with τ and starting in Wp are won by player p for
reachability of (X, p) under parity.

We write τ ′ for the same strategy but applied to Gp
X whilst ignoring the second component of

nodes in Gp
X . (We note that E ′ updates the second component of nodes in Gp

X deterministically.)
Consider a play π in Gp

X that starts in Wp × {⊥} and conforms with τ ′. The projection of π onto
the first components of its nodes is a play in G that starts in Wp and conforms with τ . Therefore,
that play is won by player p in G, and so it is also won by player p in Gp

X .
Second, it remains to show that {v | (v,⊥) ∈ Attrp(Gp

X , Z)} is contained in Wp. Let δ′ be a
winning (attractor) strategy for player p in Gp

X for the attractor Attrp(Gp
X , Z). As an attractor

strategy, δ′ is memoryless. That is, for every node (v, c) ∈ V × C(G)⊥ we can write δ′(v, c) and
this is in V ×C(G). For a sequence of nodes π = v0, . . . , vn, let c(π) denote min{c(vi) | 0 ≤ i ≤ n}.
Let δ : V ∗ · Vp → V be the strategy obtained from δ′ by setting δ(π · v) = δ′(v, c(π · v)). Then δ is
a strategy in G. Every play that begins in W = {v | (v,⊥) ∈ Attrp(Gp

X , Z)} and conforms with δ
in G can be extended to a play in Gp

X that begins in Attrp(Gp
X , Z) and conforms with δ′ by adding

the deterministic second components. Therefore, this play is winning for player p in Gp
X . It follows

from the construction of E ′ that player p reaches X from W = {v | (v,⊥) ∈ Attrp(Gp
X , Z)} such

that the minimal color encountered on the way in G has parity p. QED.

This theorem also gives us an upper bound on the complexity of solving games for reachability
of (X, p) under parity, noting that alternating reachability is linear in the number of edges of the
game graph, and that Gp

X has at most |E | · |C(G) | many edges.

Corollary 1 For G, p, and X as above, the reachability game in G for (X, p) under parity can be
solved in time O(|E | · |C(G) |).

We later consider the issue of whether memoryless strategies suffice for winning in G for reach-
ability of (X, p) under parity (they do not). However, from the proof of Theorem 1 it follows that
the size of memory required is bounded by the number of colors in the game (plus 1).
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4 Monotone functions for a partial solver
Let player p win node v for reaching (X, p) under parity in G. Then player p can make sure that
X is reached from v, and that X can be reached from v such that the minimal color encountered
so far has color parity p. If all nodes in X are won by player p, node set X is then won by player
p in the parity game G:

Lemma 2 For all G, X, and p such that X is contained in Wp
r(G,X), player p wins all nodes

from X in parity game G.

Proof: For each v in X, player p has a strategy σv with finite memory such that all plays beginning
at node v and conform with σv will reach again some node in X such that the minimal color of
that finite play has parity p. Because X is contained in Wp

r(G,X), player p can compose all these
strategies to a strategy σp with finite memory as follows:

From v0 in X, she plays conform with σv0 until a finite play v0 . . . vk is generated such that vk

is in X and min{c(vj) | 0 ≤ j ≤ k} has color parity p. We know that such a finite subplay will be
generated by σv0 as it is a winning strategy for player p witnessing that v is in Wp

r(G,X). At node
vk, player p now continues to play conform with strategy σvk

. She can continue this composition
pattern to generate an infinite play π = v0 · · · vk · · · that is partioned into infinitely many finite
sub-plays (πi)i≥0 that begin and end in X (and may contain other nodes in X) and that each have
some minimal color ci with parity p.

Since G has only finitely many nodes, this means that all colors that occur infinitely often in π
are greater than or equal to some color that occurs as minimal color in infinitely many sub-plays
πi (and so has parity p and also occurs infinitely often in π). Therefore, player p wins π in the
parity game G and so the described strategy is also winning for player p on node set X in parity
game G. QED.

We now put this lemma to use by characterizing such winning node sets as fixed points of a
monotone function. For that, let V p be the (possibly emtpy) set of nodes of G that have color
parity p, that is V p equals {v ∈ V | c(v)%2 = p}. Let us consider the function F p

G, defined by

F p
G : P(V p)→ P(V p), F p

G(X) = X ∩Wp
r(G,X) (2)

Lemma 2 then says, in particular, that all non-empty fixed points of F p
G are node sets won by

player p in parity game G. That function is monotone:

Lemma 3 For all G and p, function F p
G defined in (2) is monotone.

Proof: Let X and Y be subsets of V p such that X is contained in Y . We need to show that F p
G(X)

is contained in F p
G(Y ) as well. By definition of F p

G, monotonicity follows if X or Y is empty. So
let X and Y be non-empty. Since X ⊆ Y and since intersection is monotone, it suffices to show
that Wp

r(G,X) is contained in Wp
r(G, Y ). So let v be in Wp

r(G,X). Then player p has a winning
strategy that ensures that all plays from node v reach X such that the minimal color encountered
thus far has parity p. Since X is contained in Y , this means that all such plays will also reach
Y with minimal color encountered en route. Therefore, the winning strategy for v ∈ Wp

r(G,X) is
also a winning strategy for v ∈ Wp

r(G, Y ), and so v is in Wp
r(G, Y ) as claimed. QED.

Neither the monotonicity of F p
G nor the result of Lemma 2 depend on the fact that all nodes in

X have color parity p, nor that anything is known about colors in X; for Lemma 2, it only matters
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Figure 4: Function F 0
G is no longer always monotone when Wp

r(G,X) has acceptance condition
that looks at the minimal color of the prefix for the first reached element of X instead of a non-
deterministally chosen first or future element of X. For G above and X = {v3, v5} and Y = V 0,
we would then have X ⊆ Y but F 0

G(X) = {v3, v5} would not be contained in F 0
G(Y ) = {v0, v1}

under that modified acceptance condition

that all nodes in X are also in Wp
r(G,X). It is of interest to note that function F p

G would not be
monotone if we were to change the acceptance condition for reaching (X, p) under parity to mean
that player p has to get minimal color parity p at the first time she reaches X after the first node
in the play. Formally, player p would win a play π iff there were some j > 0 with πj in X such
that min{c(πi) | 0 ≤ i ≤ j}%2 equals p and there were no k with 0 < k < j such that πk would
be in X. The resulting non-monotonicity of this modified acceptance condition is illustrated in
Figure 4.

Monotonicity of F p
G means that either all its fixed points are empty or its greatest fixed point

is non-empty. This suggests an algorithm that recursively computes such greatest fixed points for
each player p, and removes non-empty ones as being recognized winning regions for player p from
parity game G until either G is solved completely or both F 0

G and F 1
G have only empty fixed points.

The pseudo-code for this algorithm psolC is shown in Figure 5.
When a greatest fixed point is discovered for player p, the partial solver removes the p attractor

of that fixed point in parity game G from G, not just the fixed point. This is sound since winning
node sets for players in parity games are closed under attractors for those players. The pseudo-
code does not show the accumulation of the removed node sets into winning regions, as these are
routine administrative matters that only detract from the essence of this partial solver.

We show soundness and upper bounds on the complexity of psolC:

Theorem 2 Let G be a parity game as above. Then psolC(G) runs in time O(|E | · |C(G) | · |V |2),
space O(|E | · (1 + |C(G) |)), and all node sets Attrp[G,X] it removes from (residual instances of)
G are won by player p in the parity game G.

Proof: Since Wp
r(G,X) can be computed in O(|E | · |C(G) |), each fixed-point computation in

psolC(G) runs in O(|E | · |C(G) | · |V |) as it can have at most |V | iterations. But there can also be
at most 2 · |V | many such fixed-point computations in total as each subsequent such computation
requires that at least one node has been removed from G beforehand.

8



psolC(G = (V , V0, V1,E, c)) {
W = tryPlayer(G, 0);
if (W 6= ∅) {
return psolC(G \W);

} else {
W = tryPlayer(G, 1);
if (W 6= ∅) {

return psolC(G \W);
} else {

return G;
}

}
}

tryPlayer(G, p) {
X = fixedpoint(G, { v in V | c(v)%2 = p }, p);
if (X 6= {}) { return Attrp[G, X]; }
else { return ∅; }

}

fixedpoint(G, X, p) {
W = V ;
repeat { X = X ∩ W; W = X ∩ W p

r (G, X); } until (X ⊆ W)
return X;

}

Figure 5: Partial solver psolC: in game Gp
X , only X ∩Wp

r(G,X) needs to be computed. So this is
implemented by only constructing nodes and edges in Gp

X that are reachable from X ×{⊥} in the
non-alternating sense

The upper bound on the space complexity follows since the size of Gp
X is the dominating factor

for space requirements of psolC – larger than the size of G, since there are at most |E |·(1+|C(G) |))
many edges in Gp

X , and since there is no need to keep copies of Gp
X once X ∩Wp

r(G,X) has been
computed in psolC.

The remaining soundness claim for partial solver psolC directly follows from Lemma 2 and
from the aforementioned fact that winning regions of players in parity games are closed under
attractors of those players. The latter also ensures that winning regions of recursive instances of
G are winning regions of G. QED.

It turns out that reachability of (X, p) under parity cannot be done with memoryless strategies
in general, in contrast to the solving of parity games:

Theorem 3 Solving alternating reachability under parity requires finite memory in general.

Proof: It suffices to give an example where this is the case. Recall the simple parity game G from
Figure 1. Let p be 0 and X be {v0}. Then W0

r(G,X) equals V and so player 0 wins all nodes
for reachability of (X, 0) under parity. But she cannot realize this with a memoryless strategy
σ0, for either σ0(v1) would equal v2 (and then player 1 can detract from X by moving from v2

9



back to v1) or σ0(v1) would have to equal v0 (in which case player 1 can move from v0 to v1 to
generate an infinite play in which all prefixes that reach X have odd color 3). Let the strategy
σ′0 : V ∗ · {v1} → V be defined by σ′0(w · v1) = v0 if v2 is in w; and σ′0(w · v1) = v2 otherwise.
Strategy σ′0 has finite memory and is winning on all nodes for reachability of (X, 0) under parity:
σ′0 ensures that v0 is reached, and that v0 is reached only after v2 has been reached. This means
that the minimal color encountered until X is reached equals 2, a win for player 0. QED.

The implication of Theorem 3 is that even though psolC identifies winning regions in the parity
game the strategies that it allows us to construct, in general, require memory. At the same time,
we know that there exist memoryless strategies for both players from their respective winning
regions in the parity game.

Although finite memory is required in general, we note that Y = V 0 is the greatest fixed point of
FG

0 for G from Figure 1, and that the memoryless strategy σ0 above is winning for W0
r(G, Y ) = V .

This raises the question of whether non-empty greatest fixed points of F p
G ever require correspond-

ing winning strategies with finite memory or whether they always can be memoryless. This is also
apparent in the derived games G0

X and X0
Y depicted in Figures 2 and 3, respectively. We formulate

this problem as a research question:

Question 1 Is there a parity game G and player p where the greatest fixed point X of F p
G is

non-empty and player p does not have memoryless strategies for witnessing that X is contained in
Wp

r(G,X)?

We leave this question for future work. If no finite memory is needed for greatest fixed points
of F p

G, then psolC might be able to compute memoryless winning strategies for parity game G.
Let us next give an example of how psolC may solve games completely:

Example 2 Let us consider the execution of psolC(G) for parity game G in Figure 4 (for the
acceptance condition as in Definition 1). Initially, p = 0 and X = {v0, v1, v3, v5} = G0. Then
psolC detects in fixedPoint that X is the greatest fixed point of F 0

G and removes its 0 attractor
in G (which is all of V ) from G. Thus psolC completely solves G and recognizes that all nodes
are won by player 0. Note that X is a fixed point of F 0

G since W0
r(G,X) equals V : (i) player 0

wins node v0 as player 1 can only move to v3 or v5 from there and so reach X with minimal color
0; (ii) player 0 wins node v1 since player 1 can only move to v0 from there and so reach X with
minimal color 0; (iii) player 0 wins node v2 since player 1 can only generate the prefix v2v1v0 from
there and so get minimal color 0 for this second reach of X; (iv) player 0 wins v3 since player 1
can either move from there to v2 and so generate a prefix v3v2v1v0 with minimal color 0 for his
second reach of X or player 1 can move to v4 from where she can only move to X with minimal
color 2 for the first reach of X; (v) player 0 wins v5 for symmetric reasons; and (vi) player 0 wins
v4 because player 1 can only reach X from here with minimal color 2 on the first reach of X.

Solver psolC is partial in that it may not solve even a single node in a parity game. We
illustrate this with an example:

Example 3 Figure 6 shows a parity game G for which psolC solves no nodes at all. For p = 0,
set X is initially V \ {v1}. (i) Node v0 is lost by player 0 since player 1 can move from there into
the cycle (v2v6)ω with minimal color 1. Player 0 wins all other nodes in X. Therefore, the next
value of X equals {v2, v3, v4, v5, v6}. (ii) Now, nodes v4 and v5 are lost by player 0, as player 1
can move from them to node v0 (which is no longer in X) and then play as for the initial X to
get minimal color 1. Player 0 wins all other nodes in X. Therefore, the next value of X equals
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Figure 6: Parity game G, owned by player 1, won by player 0, and where psolC cannot solve even
a single node

{v2, v3, v6}. (iii) Next, node v3 is lost by player 0, as player 1 can move from there directly to node
v4 (which is no longer in X) and then enter the cycle (v0v5)ω and so avoid X altogether. Player
0 wins nodes v2 and v6 though. Therefore, the next value of X equals {v2, v6}. (iv) Now, player 0
loses v2 as player 1 can avoid reaching that node again from v2. Player 0 still wins node v6. Thus,
the next value of X equals {v6}. (v) Finally, player 1 can avoid reaching X again from node v6
and so wins v6, making X empty.

Clearly, F 1
G computes an empty fixed point as all nodes in parity game G are won by player

0. The inability of psolC to solve even a single node in G seems to stem from the fact that the
acceptance condition for W0

r(G,X) captures a weak parity acceptance condition [1] and not a parity
acceptance condition.

We could extend the types of F p
G to be P(V ) → P(V ). The proofs for monotonicity and for

fixed points being won by player p in the parity game G would still carry through then. It may be
of interest to compare a variant of psolC based on greatest fixed points for this extended type of
F p

G to psolC: that variant may run slower in practice but may solve more nodes in G. However, it
will still be a partial solver as can be seen from Example 3: for the version of psolC based on this
extended type, both v0 and v1 would be removed from initial X = V in the first iteration and so
this still would compute empty fixed points only.

5 Fatal attractors
Our work in [13] defined and studied monotone attractors and built partial solvers out of them. Let
X be a non-empty node set of G where all nodes in X have color c, and set p to be c%2. Monotone
attractors MA(X) were defined in [13]. For X as above, and subsets A of V this definition is as
follows:

mprep(A,X, c) = {v ∈ Vp | c(v) ≥ c ∧ v.E ∩ (A ∪X) 6= ∅} ∪
{v ∈ V1−p | c(v) ≥ c ∧ v.E ⊆ A ∪X}

MA(X) = µZ.mprep(Z,X, c) (3)

where µZ.f(Z) denotes the least fixed point of a monotone function f : P(V ) → P(V ). It follows
that MA(X) is the set of nodes in G from which player p can attract to X whilst avoiding nodes
of color less than c. In [13], we called such an X fatal if all of X is in that attractor (i.e. when
X ⊆ MA(X)). In Theorem 2 in [13], we showed that all such fatal attractors are won by player p.

To relate this to our work in this chapter, an infinite play π would be won in this monotone
attractor game by player p iff there is some j > 0 with πj in X and c(πi) ≥ c for all i with
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psolB(G = (V , V0, V1,E, c)) {
for (colors d in descending ordering) {

X = { v in V | c(v) = d };
cache = {};
while (X 6= {} && X 6= cache) {

cache = X;
if (X ⊆ MA(X)) { return psolB(G \ Attrd%2[G, MA(X)])
} else { X = X ∩ MA(X); }

}
}
return G

}

Figure 7: Partial solver psolB from [13] (figure is a reproduction of Fig. 3 in [13])
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Figure 8: A 1-player parity game that psolC solves completely (as {v0, v4, v7} is greatest fixed
point of F 0

G) but for which psolQ in [13] solves no nodes (figure is Fig. 5 in [13])

0 ≤ i < j; so X can be reached on π with minimal color c at πj. This implies that all such fatal
attractors X with node color c are fixed points of F p

G and are therefore contained in the greatest
fixed point of F p

G. We can use this to prove that psolC is more effective than the partial solver
psolB defined in [13]:

Theorem 4 Let psolB be the partial solver defined in Figure 7 and let G be a parity game. The
call psolC(G) decides the winner of all nodes for which call psolB(G) decides a winner.

Proof: For all players p, the acceptance condition for monotone attractors as discussed above
implies that all fatal attractors for that player in G (node sets X of some color c with parity p
such that X ⊆ MA(X)) are contained in the greatest fixed point Z of F p

G. By Theorem 5 in [13],
the order of fatal attractor detection does not affect the output of partial solver psolB. Therefore,
we can assume that all fatal attractors X for player p are contained in the greatest fixed point Z
of F p

G. But by monotonicy, their p-attractors Attrp[G,X] are then also contained in the p-attractor
Attrp[G,Z] of Z. Thus, it follows that all nodes that are decided by psolB(G) are also decided by
psolC(G). QED.

In [13], we also studied a more precise but more complex partial solver psolQ. Although the
design of psolQ has superficial similarities to that of psolC, the latter is more precise: at noted
in [13], psolQ does not solve even a single node for the parity game in Figure 8. But psolC solves
this game completely.
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6 Experimental results
By Theorem 4, we know that psolC will solve completely all games that psolB solves completely.
From [13], we know that psolB completely solves many structured benchmarks. Therefore, there
is little value in running psolC over these structured benchmarks again. This is why we focused
our experimental effort here an random parity games.

We now report our experiments we did on randomly generated games. The aims of these
experiments are

1. to experimentally confirm that psolC solves all nodes that psolB solves, as proved in Theo-
rem 4

2. to compare running times of psolC and psolB over a large set of random games

3. to determine game configurations for which psolC does not really solve more than psolB
does.

All our experiments were conducted on a test server that has two Intel R© E5 CPUs, with 6-core
each running at 2.5GHz and 48G of RAM. Experiments were grouped into game configurations,
where we generated 100,000 games for each such configuration and ran psolB and psolC against
these games. We also used Zielonka’s solver [29] for regression tests to ensure that psolB and
psolC correctly under-approximate winning regions, all of these tests passed.

The game configurations used are shown in the “Game Mode” column of Figure 9. Each such
mode is denoted by xx-yy-aa-bb. The xx is the number of nodes in a game, and the owners (player
0 or 1) of the nodes are chosen independently at random. The color of each node is also uniformly
chosen from set {0, 1, . . . , yy}, and has between aa and bb out-going edges to randomly selected
successors in the game.

We now summarize key facts that we can observe from the experimental results shown in
Figure 9:

• psolB has never solved more nodes than psolC, experimentally confirming Theorem 4 (col-
umn #10).

• For games with low edge density (i.e., when aa-bb equals 1-5), psolC solves more than psolB
for around 10% of games (#9).

• For games with higher edge density (i.e., when aa-bb is different from 1-5), psolC doesn’t
appear to have an effect over psolB (#9).

• psolC takes significantly more time to execute than psolB for high edge density games (#2).

• Our experimental results suggest that the psolC lapse time increases as the color cap in-
creases, whereas we don’t observe a similar increase for psolB (#2 and #3).

We note that these experiments took quite some time to complete. For example, the total
running time of psolC for these 800,000 random games was more than 28 days (if converted to
calendar time). The experimental data we collected suggest that the comparison between psolB
and psolC is bimodal on random games: either psolC is no more effective than psolB on a given
game mode, or it appears to be more effective on about 10% of games for a given game mode.
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Game Mode #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
500-5-1-5 100000 384.17 15.64 18.63 18545 19590 18406 80410 1184 0
500-5-1-100 100000 724.14 17.91 51.76 1016 1016 1016 98984 0 0
500-5-5-10 100000 203.67 8.71 14.44 0 0 0 100000 0 0
500-5-50-250 100000 1157.37 31.06 119.10 0 0 0 100000 0 0
500-50-1-5 100000 2522.47 14.30 20.86 18166 19066 17962 80934 1104 0
500-50-1-100 100000 6807.46 18.57 54.58 992 992 992 99008 0 0
500-50-5-10 100000 2155.34 8.35 14.38 0 2 0 99998 2 0
500-50-50-250 100000 10282.66 34.36 135.29 0 0 0 100000 0 0

Figure 9: Our experimental results for the partial solver psolC. The legend for the 10 data columns
above is given in Table 1.

#1. Total number of games. #6. How often G’B is not 0.
#2. Average psolC lapse time (ms). #7. How often G’C = G’B and G’C is not 0.
#3. Average psolB lapse time (ms). #8. How often G’C = G’B and G’C is 0.
#4. Average zlka lapse time (ms). #9. How often psolC solves more than psolB.
#5. How often G’C is not 0. #10. How often psolB solves more than psolC.

Table 1: Legend for experimental data shown in Figure 9: G’B represents the number of games
not completely solved by psolB. Similarly, G’C represents the number of games not completely
solved by psolC.
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The partial solver psolC may therefore have more theoretical than practical value. However,
a staging of psolB and psolC may work reasonably well in practice: on input game G, first run
psolB to obtain residual game G′; and then run psolC only on G′ and only when G′ is not empty.
We leave it to future work to evaluate such an approach.

7 Other related work
Some easy static analyses for parity games have become part of the folklore of how to preprocess
parity games. For example, the tool PGSolver can eliminate self-loops (nodes v with (v, v) in E)
and dead ends (nodes v for which there is no w with (v, w) in E) [12]. The latter can be seen as
justification for defining parity games not to have dead ends, as we have done in this chapter.

In [17], progress measures are defined and recognized as representations of winning strategies.
A monotone function over a complete lattice is then defined such that pre-fixed points of that
function capture progress measures. A least fixed-point computation therefore can compute the
winning region and a winning strategy for a chosen player. This algorithm has exponential running
time, since the complete lattice may be exponentially larger than the parity game. However, the
algorithm runs on polynomial space, unlike some other known algorithms for solving parity games.

Our work relates to research on the descriptive complexity of parity games. In [6], it is inves-
tigated whether the winning regions of players in parity games can be defined in suitable logics.
We mention two results from this paper: it is shown that this is indeed possible for guarded
second-order logic (even for infinite game graphs with an unbounded number of colors); and for an
arbitrary finite game graph G (the setting of our chapter), it is proved that least fixed-point logic
can define the winning regions of G iff these winning regions are computable in polynomial time.

In [14], a transformation is studied that can map a partial solver ρ for parity games to another
partial solver lift(ρ) that first applies ρ until it has no effect on the residual game. Then, lift(ρ)
searches for some node v in Vp with more than one outgoing edge such that the commitment to
one such edge (i.e. the removal of all other edges outgoing from v) would make partial solver ρ
discover that node v is won by player 1 − p in that modified game. If so, it is sound to remove
edge (v, w) from G and then try lift(ρ) again until no such effect can be observed for both p. It
was proved in [14] that lift(ρ) is sound if ρ is sound, idempotent, and satisfies a locality principle;
and it was shown that psolB satisfies these properties.

8 Conclusions
In this chapter, we studied how one may define static analyses of parity games that run in polyno-
mial time and space and compute parts of the games’ winning regions. In particular, the quality
of such a static analysis could then be measured by how often it computes winning regions com-
pletely, or by what percentage of the winning region it computes across a range of random and
structured benchmarks. We developed firm foundations for designing such static analyses, using a
novel kind of game derived from parity games: reachability under parity. The intuition of such a
game is that player p can reach a node set X whilst ensuring that the minimal color encountered
en route has parity p.

We showed that such new reachability games are determined, demonstrated how one can im-
plement their solution efficiently, and used this notion of game to define monotone functions over
parity games – one for each player of the parity game. The greatest fixed-points of these functions
were proved to be contained in the winning region of the corresponding player in the parity game.
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This insight led us to design a partial solver psolC and its experimental evaluation demonstrated
that it is a powerful static analysis of parity games that can solve completely many types of ran-
dom and structured benchmarks. Theoretical analysis also showed that these monotone functions
generalize, in a more canonical and less ad hoc manner, work on fatal attractors that we had
conducted previously [13]. In particular, we proved that psolC is more effective that the partial
solver psolB in [13] that performed best in practice.

The decision problem for parity games, whether a given node is won by a given player, is in
UP∩coUP [16] and so contained in NP∩coNP. It is therefore no surprise that all known algorithms
that completely compute such winning regions run in worst-case exponential or sub-exponential
time in the size of these games. One may therefore think of our chapter as taking a complementary
approach to attempting to answer the longstanding open problem of the exact complexity of said
decision problem for parity games: how to design static analyses that run in polynomial time
(relatively easy to do) and that are provably computing the exact winning regions of all parity
games (likely very hard to do under these constraints of efficient static analysis). We hope that
the reader may find this approach to be of genuine interest so that he or she may pursue it further.

We conclude by discussing future work. Since psolC is sound and idempotent, it would be
of interest to determine whether it satisfies Locality as defined in Definition 7.2 in [14]; if so, we
could derive more powerful static analysis through lift(psolC). Finally, we also want to better
understand whether psolC can be adjusted to compute memoryless winning strategies on the fly.
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