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Abstract

Computer-Aided Molecular Design (CAMD) has been put forward as a powerful

and systematic technique that can accelerate the identification of new candidate

molecules. Given the benefits of CAMD, the concept has been extended to integrated

molecular and process design, usually referred to as Computer-Aided Molecular and

Process Design (CAMPD). In CAMPD approaches, not only is the interdependence

between the properties of the molecules and the process performance captured, but

it is also possible to assess the optimal overall performance of a given fluid using an

objective function that may be based on process economics, energy efficiency, or en-

vironmental criteria. Despite the significant advances made in the field of CAM(P)D,

there are remaining challenges in handling the complexities arising from the large

mixed-integer nonlinear structure-property and process models and the presence

of conflicting performance criteria that cannot be easily merged into a single met-

ric. Many of the algorithms proposed to date, however, resort to single-objective

decomposition-based approaches.

To overcome these challenges, a novel CAMPD optimisation framework is pro-

posed, in the first part of thesis, in the context of identifying optimal amine solvents

for carbon dioxide (CO2) chemical absorption. This requires development and vali-

dation of a model that enables the prediction of process performance metrics for a

wide range of solvents for which no experimental data exist. An equilibrium-stage

model that incorporates the SAFT-γ Mie group contribution approach is proposed

to provide an appropriate balance between accuracy and predictive capability with

varying molecular design spaces. In order to facilitate the convergence behaviour of

the process-molecular model, a tailored initialisation strategy is established based on

the inside-out algorithm. Novel feasibility tests that are capable of recognising infea-

sible regions of molecular and process domains are developed and incorporated into

an outer-approximation framework to increase solution robustness. The efficiency of



the proposed algorithm is demonstrated by applying it to the design of CO2 chemical

absorption processes. The algorithm is found to converge successfully in all 150 runs

carried out.

To derive greater insights into the interplay between solvent and process perfor-

mance, it is desirable to consider multiple objectives. In the second part of the

thesis, we thus explore the relative performance of five multi-objective optimisa-

tions (MOO) solution techniques, modified from the literature to address nonconvex

MINLPs, on CAM(P)D problems to gain a better understanding of the performance

of different algorithms in identifying the Pareto front efficiently. The combination

of the sandwich algorithm with a multi-level single-linkage algorithm to solve non-

convex subproblems is found to perform best on average. Next, a robust algorithm

for bi-objective optimisation (BOO), the SDNBI algorithm, is designed to address

the theoretical and numerical challenges associated with the solution of general

nonconvex and discrete BOO problems. The main improvements in the develop-

ment of the algorithm are focused on the effective exploration of the nonconvex

regions of the Pareto front and the early identification of regions where no addi-

tional Pareto solutions exist. The performance of the algorithm is compared to that

of the sandwich algorithm and the modified normal boundary intersection method

(mNBI) over a set of literature benchmark problems and molecular design prob-

lems. The SDNBI found to provide the most evenly distributed approximation of

the Pareto front as well as useful information on regions of the objective space that

do not contain a nondominated point. The advances in this thesis can accelerate

the discovery of novel solvents for CO2 capture that can achieve improved process

performance. More broadly, the modelling and algorithmic development presented

extend the applicability of CAMPD and MOO based CAMD/CAMPD to a wider range

of applications.
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CHAPTER 1

Introduction

“If I have ever made any valuable discoveries, it has been due more to patient atten-
tion, than to any other talent.”

– Issac Newton

1.1 Motivation and objectives

Carbon dioxide (CO2) is one of the primary anthropogenic greenhouse gases that

directly contributes to a negative impact on environmental and human lives. A sig-

nificant reduction in total CO2 emissions is essential to limit the rise in the global

average temperature to 2°C (IPCC, 2007). In December 2015, the 21st conference

of the parties (COP21) agreement set out the highly ambitious aspiration of limit-

ing the temperature increase to 1.5 °C by 2050 (UNFCCC, 2015). In response to

this, there have been growing efforts to develop and adopt low-carbon technolo-

gies to reduce the release of CO2 to the atmosphere. Carbon Capture and Storage

(CCS) technologies are widely accepted as having a vital role to play in a portfolio of

net-zero emissions, expecting to contribute approximately 20% of the reduction in

greenhouse gas emissions by 2035. Among the variety of available CCS technologies,

1
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post-combustion capture based on the chemical absorption processes with amine sol-

vents is regarded as one of the most promising technologies in terms of technological

maturity, applicability and capability of handling exhaust streams from large point

industrial sources (Rochelle, 2009). A typical amine-based solvent that has been

widely used for the process is an aqueous monoethnaolamine (MEA) solution due

to its high reaction rate with CO2, moderate absorption capacity and low solvent

cos. However, the main disadvantages of using this conventional solvent include

intensive energy requirements associated the solvent regeneration, which takes up

to 50% of the total energy use of the process; harmful environmental and health

impacts; and high operational costs resulting from limited CO2 solubility. To counter

these shortcomings, considerable efforts have been expended on the search for alter-

native amine-based solvents that have better thermal, economic and environmental

performance.

The identification of potential solvents is very challenging due to the combinato-

rial complexity derived from both solvent parameters and the significant influence

of the choice of solvent on the process objectives, meaning that optimal solvents

that are best in overall process performance can only be realised by capturing the

interactions between the molecular- and process-level decisions simultaneously. One

possible research direction is to investigate the solvent candidates based on extensive

experimental program at a laboratory or pilot plant scale. However, experimental

investigation often involves the deployment of significant resources, and it is often

difficult to translate experimental results to the scale of process performance, hin-

dering the exploration of the space of potentially superior amine-based solvents.

Therefore, it is essential to develop systematic methodologies to explore many pos-

sibilities efficiently and evaluate the overall performance of the process as a function

of solvent choice.

In this context, Computer-aided molecular and process design (CAMPD) has emerged

as a promising route that offers a systematic framework to evaluate a very wide
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range of molecular structures in terms of system metrics, given a desirable set of

physicochemical properties and process performance criteria (Adjiman et al., 2014).

A variety of solution strategies have been developed for CAMPD problems, focus-

ing on handling the numerical complexity arising from the inherent non-convexity

of structure-property and process models. Yet, most algorithms encounter compu-

tational difficulties with a large-scale mixed-integer nonlinear formulations. This

is mainly because 1) the relationship between the process and molecular property

models exhibits a highly nonlinear behaviour and thus it is usually prohibitively

expensive to solve such models simultaneously; 2) the integrated solvent-process

model is characterised by the number of infeasible regions in the search space, as it

is not possible to generate a feasible solution for particular solvent structures. Thus,

developing a novel CAMPD algorithm that allows one to avoid infeasibilities during

the exploration of a large design space is significantly important.

Another important consideration in the formulation of CAMPD problems is the

treatment of the inherent trade-offs between conflicting performance criteria that

cannot be easily placed on the same quantitative footing. For example, the econom-

ical, safety, and environmental impacts of the solvents cannot be easily merged into

a single metric or objective function. In view of the pressing need to capture mul-

tiple objective functions, multi-objective optimisation (MOO) techniques have been

applied to a range of process design problems and are increasingly being deployed

on molecular design problems (CAM(P)D). In practice, it is not possible to construct

the entire set of trade-offs known as the “Pareto front” or to derive an analytical

expression of this front (Deb et al., 2000b) and thus most MOO algorithms focus

on generating an accurate approximation of the Pareto front such that the set of

Pareto optimal solutions are well-spaced and close to the true Pareto front assuming

that the Pareto front is continuous. However, the true Pareto front may consist of

many disconnected parts or entirely isolated points for which the well-distributed

Pareto points cannot be attained. Some of the most widely used MOO algorithms in
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the area of CAM(P)D are the weighted-sum approach, epsilon-constraints method,

multi-objective genetic algorithm and sandwich algorithm. Each method, however,

have limited applicability because molecular design problems are very difficult to

solve given that they are usually formulated as mixed-integer nonlinear problems

(MINLPs) and the algorithms often suffer from limitations that prevent them from

reliably producing optimal solutions along the nonconvex or discrete regions of the

Pareto front. Despite the fact that significant efforts have been devoted to addressing

such challenges, there is a lack of systematic studies that assess the performance of

MOO algorithms for CAM(P)D, and hence a lack of guidance on which approach is

particularly suited for this class of problems. The improvement of MOO algorithms

in terms of on the exploration of nonconvex regions is also an important task to

ensure diverse the solutions are obtained without compromising the quality of the

Pareto front or incurring significant additional computational cost.

This thesis is therefore organised around into two main aims: developing a robust1

optimisation framework for the integrated design of optimal aqueous solvent and

CO2 chemical absorption processes and developing a MOO optimisation framework

for mixed-integer nonlinear programming that is suited for application to general

CAM(P)D problems. The specific objectives of this thesis are:

• To establish a process modelling approach that offers broad predictive capabili-

ties of overall process performance as a function of molecular structure without

exhaustive reliance on experimental data and pilot plant data.

• To study the reliability and applicability of the developed model over a set of

process specifications and solvent types.

• To develop a robust CAMPD algorithm that can simultaneously optimise molec-

ular and process variables by incorporating tailored feasibility tests such that

1Note that ‘robust’ or ‘robustness’ is used to describe the ability of an algorithm to converge to a
solution regardless of the initial point provided by the user but not to indicate the research field of
robust optimisation.



CHAPTER 1. INTRODUCTION 5

infeasible process conditions and solvent properties are automatically detected.

• To demonstrate the efficiency of the proposed algorithm on case studies of CO2

chemical absorption-desorption process.

• To investigate the relative performance of a variety of MOO algorithms on

molecular design problems to provide insights of their reliability and computa-

tional efficiency in generating Pareto-optimal solutions over the MINLP search

space.

• To develop a novel bi-objective optimisation (BOO) algorithm design to ad-

dress the numerical challenges associated with the solution of general noncon-

vex and discrete BOO problems.

• To access the effectiveness of the proposed BOO algorithm by applying it to

benchmark problems that span general nonlinear programming and MINLPs,

and extend the validation study to CAM(P)D problems.

1.2 Thesis overview

In chapter 2, we provide a review of solution approaches to CAMPD, with a brief

mention of a predictive thermodynamic model, the statistical associating fluid theory

(SAFT)-γ Mie equation of state (EOS), that is needed throughout this work. The

physical treatment of the chemical reactions between CO2 and the aqueous amine

solvent is described in the context of the application of the SAFT-γ Mie model to the

molecular design problem. We also set out the fundamentals of MOO theories and

relevant definitions that will be used throughout this thesis.

In chapter 3, we present an equilibrium-based CO2 absorption-desorption process

and cost model. A process model is developed with the SAFT-γ Mie group contribu-

tion EOS to facilitate the reliable prediction of physical properties and fluid phase
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behaviour of the water-amine-CO2 mixtures. The accuracy of the process model is

demonstrated using a specific set of pilot plant data. A robust initialisation strategy

that incorporates the inside-out algorithm is developed to overcome the numerical

complexities arising from the complex mass– and heat–balance equations and the

highly non-ideal behaviour of water-solvent-CO2 mixtures. Next, we identify the

relative influence of operating parameters on key performance indicators through a

comprehensive parametric study, with the aim to formulate a process optimisation

problem that can be integrated into the CAMPD framework.

After establishing the process modelling approach, in Chapter 4, we present a

robust CAMPD technique for the design of optimal amine solvents for CO2 chemical

absorption. The study focuses on the development of feasibility tests based on an

outer-approximation algorithm (Duran & Grossmann, 1986), with which feasible

process and molecular domains are recognised prior to evaluating the molecule in

the process. The efficiency of the proposed algorithm is highlighted through three

case studies of CO2 chemical absorption processes. The robustness of the approach is

further demonstrated by comparing it to conventional molecular design approaches:

CAMD and decomposition-based CAMPD method.

Due to the conflicting nature of performance criteria, we take a closer look at

the application of the MOO algorithms within the area of the molecular design in

Chapter 5. In order to understand the suitability of different MOO algorithms for

CAM(P)D problems, we present a systematic comparison of the performance of five

MINLP MOO algorithms on the selection of CAM(P)D problems. The five methods

are designed to address the discrete and nonlinear nature of the problem, with the

aim of generating an accurate approximation of the Pareto front. They include: a

weighted-sum approach without global search phases (SWS), a weighted-sum ap-

proach with simulated annealing (SA), a weighted-sum approach with multi-level

single-linkage (MLSL), the sandwich algorithm (SD) with MLSL and the non domi-

nated sorting genetic algorithm-II (NSGA-II). In order to test these five optimisation
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techniques, two CAMD and one CAMPD problems of varying dimensionality are for-

mulated as case studies.

In Chapter 6, we present a novel algorithm (SDNBI) that combines the SD and

modified normal boundary intersection (mNBI) method to tackle the numerical chal-

lenges associated with the solution of bi-objective mixed-integer nonlinear program-

ming. The main improvements we introduce are the identification of regions where

no nondominated solution exist and the exploration of nonconvex parts of the Pareto

front. The performance of the algorithm in terms of its ability to construct an ac-

curate approximation of the Pareto front is compared to two MOO approaches: the

SD algorithm and mNBI method. The features of the MOO algorithms are evaluated

using a published benchmark model.

Following the work presented in Chapter 6, in Chapter 7 the effectiveness of the

proposed algorithm is investigated through the CAM(P)D problems in an attempt to

examine the applicability and reliability of the method in the practical mixed-integer

nonlinear problem domain. Several modifications of the SDNBI method are intro-

duced to adapt it to a mNBI subproblem. The resulting algorithm is first applied to

computer-aided solvent design for CO2 capture, where two molecular properties are

optimised simultaneously. The SDNBI algorithm is then tested on the integrated de-

sign of pure-component working fluids and Organic Rankine Cycle processes, where

thermal performance and economic value are taken as two objective functions. Fi-

nally, we compare the performance of the algorithm with SD algorithm and mNBI

method.

We conclude the thesis in Chapter 8 by summarising the key results and contri-

butions, which also provide some avenues for future research and model improve-

ment.



CHAPTER 2

Background

The goal of this thesis is to develop optimisation frameworks for the study of the

integrated solvent and CO2 chemical absorption process design and multi-objective

optimisation algorithms that can accurately approximate the Pareto front in the so-

lution of molecular design problems. In this chapter the fundamentals of solution

approaches of computer-aided molecular and process design (CAMPD) in relation to

the objectives of this work are summarised.

2.1 Predictive thermodynamic models for the formu-

lation of molecular design

In the search for new molecules, it is imperative to develop thermodynamic method-

ologies capable of calculating the physical properties and describing the phase be-

haviour of fluids from molecular structural information, without the need for ex-

tensive experimental data. Given the importance of the predictive capability of the

thermodynamic model to describe wide ranges of molecules, we use the SAFT-γ Mie

(Papaioannou et al., 2014) equation of state (EOS) in this work. SAFT-γ approach is

8



CHAPTER 2. BACKGROUND 9

a well-established group contribution (GC) (Lydersen, 1955; Joback, 1984; Joback

& Reid, 1987; Constantinou & Gani, 1994) EOS initially derived by Lymperiadis

et al. (2007, 2008) from earlier SAFT-VR (Gil-Villegas et al., 1997) and SAFT-VR Mie

(Lafitte et al., 2013). The underlying assumption of GC-based approaches is that a

given chemical compound can be broken down into chemically distinct functional

groups such that the thermodynamic properties of a given molecule can be deter-

mined from contributions of each functional group to the molecular properties. The

main advantage of this concept is that it can significantly reduce the number of pa-

rameters required to represent the thermodynamic behaviours and the properties

of new molecules are readily assessed by means of the parameters assigned to the

functional groups even in the absence of the experimental data. GC approaches are

thus well suited to molecular design problems where the exploration of the physical

properties as a function of molecular structures are essential part of the problems.

Within the SAFT-γ Mie approach, molecules are represented as associating het-

eronuclear chain of fused spherical segments. These segments interact via inter-

molecular potentials that determine the force between segments and between as-

sociation sites. The total Helmholtz free energy A of a fluid system is written in

dimensionless form as the sum of different perturbative contributions to a reference

free energy,
A

kBT
=

Aideal

NkBT
+

Amono.

NkBT
+

Achain

NkBT
+

Aassoc.

NkBT
(2.1)

where N is the total number of molecules, kB is the Boltzmann constant, and T is

the absolute temperature. Aideal is the free energy of an ideal gas, Amono. is the term

accounting for the Mie segment-segment interactions derived by perturbing from a

reference hard-sphere fluid, Achain represents the free energy for the formation of

molecules from Mie segments. Aassoc. is the term accounting for the free energy

contribution due to interactions between association sites. A complete review of

literature covering this area is beyond the scope of the thesis. The reader is referred
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to Papaioannou et al. (2014); Dufal et al. (2014) for the description of the SAFT-γ

Mie EOS for more details and McCabe & Galindo (2010); Haslam et al. (2020) for

an overview of SAFT.

Of particular interest in the context of the chemical absorption of carbon dioxide

(CO2) is that treatment of the reactions between CO2 and aqueous amine solutions

within a group-contribution framework. A key concept used within the SAFT-γ Mie

EOS is that the reactions involved in a mixture of CO2 and aqueous amines are mod-

elled by a physical association scheme (Rodriguez et al., 2012), rather than treating

the chemical reactions explicitly. In the physical association scheme, the reaction

products are treated as aggregates physically bounded due to strong intermolecular

forces exerted between the molecular segments. Such aggregation process is me-

diated by incorporating a number of short-range “sticky” association sties in appro-

priate functional groups, by which the main reaction pathway of CO2 can be posed

effectively. The type and concentration of the bonded products are determined by

choosing the number of association sites, the strength of their interactions and as-

sociation ranges. One important aspect of the physical approach is that it does not

require explicit specification of a reaction scheme and ionic species. In Figure 2.1,

an example of implicit reactions used to describe the formation of carbamate and

bicarbonate products resulting from the reactions occurring when CO2 is absorbed

in an aqueous monoethanolamine (MEA) solution is illustrated. The MEA is repre-

sented as two spherical segments (NH2 and CH2OH) with 3 e sites, e H sites. Note

that the superscript ∗ of e and H site as shown in Figure 2.1 is used to distinguish the

association cites of NH2 segment from those of CH2OH. The CO2 model comprises

two fused (heteronuclear) segments and has 1 α1 site and 1 α2 site (acceptor sites)

that interact only with the e∗ sites of the nitrogen atom in MEA. The α1−e∗ and

α2−e∗ characterises two types of chemical association. A carbamate pair is formed

when both α1 and α2 on CO2 are bonded to two molecules of MEA, whereas the

bicarbonate pair is formed when α1−e∗ or α2−e∗ are associated. The concentration
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of bicarbonate can be calculated as the probability that α1 is bonded and not α2, plus

the probability that α2 is bonded and not α1, while the concentration of bicarbonate

is a probability that α1 or α2 is bonded (Rodriguez et al. (2012) and Chremos et al.

(2016)).

The effectiveness and validity of this approach within the SAFT formalism have

been highlighted across the research area including process modelling (Mac Dowell

et al., 2013; Bui et al., 2018; Brand et al., 2016), molecular design (Papadopoulos

et al., 2016, 2019; Mac Dowell et al., 2010; Lee et al., 2021). Here, we do not aim

to provide a detailed discussion on the modelling approaches and advancement of

the SAFT models. Instead, we make use of the same version of the SAFT formalism

and physical association scheme described in Papaioannou et al. (2014); Rodriguez

et al. (2012); Khalit (2019) and all of the data of the parameters used in the current

work can be found in Haslam et al. (2020)

Figure 2.1: Schematic representation of the physical association scheme between MEA
and CO2 in aqueous solution within SAFT-γ Mie showing two reaction products: the
bicarbonate pair [HO(CH2)2NH+

3 + HCO−
3 ] and carbamate pair [HO(CH2)2NHCOO– +

HO(CH2)2NH+
3 ]. The large spheres represent the monomeric segments which interact

via Mie potential. The smaller spheres are association sites: e represents a lone pair
of electrons, H represents a hydrogen atom and the superscript ∗ is used to distinguish
between the different association site types assigned to MEA. This figure is an adaptation
of Figure 57 in Graham (2020).
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2.2 Computer-aided molecular and process design

The discovery of new molecules, such as solvents, refrigerants, and pharmaceutical

products is important in achieving high performance, including greater efficiency,

favourable process economics, and low environmental impact (Adjiman et al., 2014).

For example, the selection on appropriate solvent has a critical effect on separation

efficiency (Pretel et al., 1994; Odele & Macchietto, 1993; Pereira et al., 2011; Folić

et al., 2008), and that of an appropriate working fluid facilitates the design of power

cycles to extract work from a range of heat sources (Papadopoulos et al., 2010a;

Linke et al., 2015; Cignitti et al., 2017; Schilling et al., 2017; White et al., 2017;

Bowskill et al., 2020). Computer-aided molecular design (CAMD) has emerged as

a powerful and systematic technique that can accelerate the identification of such

molecule candidates by making it possible to explore in silico a very large space of

possibilities (Harper & Gani, 2000; Gani et al., 2006). Given the benefits of CAMD,

the concept has been extended to integrated molecular and process design, usually

referred to as Computer-aided molecular and process design (CAMPD). In CAMPD

approaches, not only is the inter-dependency between the properties of the molecule

and the process performance captured, but it is also possible to assess the optimal

overall performance of a given fluid using an objective function that may be based

on economics (Pereira et al., 2011; Gopinath et al., 2016; Ahmad et al., 2018),

process performance (Bardow et al., 2010; Eden et al., 2004; Bowskill et al., 2020),

or environmental criteria (Hostrup et al., 1999; Pistikopoulos & Stefanis, 1998).

The CAMD and CAMPD problem is often posed as Mixed-integer nonlinear pro-

gramming (MINLP) due to the presence of discrete decisions and a large number

of nonlinear equations that involve the molecular property prediction model and

the representation of process units. Here, we denote the CAMD or CAMPD problem

as CAM(P)D. The generic mathematical formulation of the design problem can be
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defined by:

min
x,n

f(x, n)

s.t. g(x, n) ≤ 0

h(x, n) = 0

Cn ≤ d

x ∈ Rn, n ∈N ⊂ Zq

(MINLP)

where x is a n-dimensional vector of continuous variables, n is a q-dimensional vec-

tor of integer variables that define a molecular space, g(x, n) is a vector of inequality

constraints that represent design constraints and feasibility constraints, h(x, n) is a

vector of equality constraints that include structure-property models, process models

and a set of linear equations Cn ≤ d represent molecular constraints such as the

octet rule (Odele & Macchietto, 1993) and bounds on vector n.

In general it is well-known that MINLP CAM(P)D problems are NP-hard and re-

main very challenging to solve due to the difficulties of optimising over the combina-

torial explosion of the decision space coupled with the handling of (highly) nonlinear

functions. Furthermore, when the design of optimal processes and molecular struc-

tures is considered simultaneously, the feasible domains with respect to the process

constraints varies for each combination of discrete variables and it may involve many

infeasible operating regions, leading to numerical failure in the absence of a good

initial guess.

One strategy that can handle the complexities inherent in the MINLP formula-

tion is to reformulate the problem as continuous Nonlinear programming (NLP) or

Mixed-integer linear programming (MILP) to render the problem more tractable.

Maranas (1996) presented a systematic CAMD framework that reformulates the

MINLP problem into an equivalent MILP problem by substituting the linearised

structure-property constraint function for the bilinear term. The proposed approach

was applied to the design of polymers where thermo-physical properties were calcu-
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lated using the group contribution method proposed by Gani et al. (1991). Siddhaye

et al. (2000) used the similar approach for the design of pharmaceutical products, by

which the molecular representation model was linearised using the Glover transfor-

mation (Glover, 1975). Hamad & El-Halwagi (1998) introduced a simplified model

in the solution of simultaneous design of synthesising solvents and separation net-

works. The original MINLP formulation was reduced to MILP by linearising the ther-

modynamic properties model and the overall material balance equations. Struebing

et al. (2013) also formulated a reactive solvent design problem as MILP by employ-

ing a linear surrogate model for reaction kinetics. Such reformulation approach is

advantageous as existing MILP solvers are readily available and a global solution

to the MILP is guaranteed within a practical computational time. The linearisation

approach however maybe cumbersome when the transformation involves a large

number of additional variables or when the original problem is highly nonconvex

and thus the linearised functions cut off the original feasible domain.

With a view to maintain a problem more tractable compared to MINLP problems,

Pereira et al. (2011) solved a simplified version of the CAMPD problem for the de-

sign of solvents for the physical CO2 absorption processes. The problem was posed

as a continuous optimisation problem in which solvent mixtures of n-alkanes were

represented with their average chain length. The need for binary variables for the

representation of molecules was avoided by choosing the thermodynamic parame-

ters as optimisation variables and restricting the solvent design space. Bardow et al.

(2010) proposed the continuous molecular targeting CAMD (CoMT-CAMD) method

to solve the integrated process and fluid design problem for CO2 capture. The ap-

proach employed the perturbed-chain statistical associating fluid theory (PC-SAFT)

model (Gross & Sadowski, 2001) in which each molecule was characterised by a set

of continuous parameters. The key idea of the method was the decomposition of

the design into two steps: a continuous targeting step, in which the process variable

and the molecular parameters are optimised in a continuous fashion; and a struc-
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ture mapping step, in which the optimal properties of the hypothetical molecule are

mapped onto the discrete molecular design space. The method has been extended

to incorporate an integer optimisation in the structure mapping step and it has been

applied to the design of working fluids for the organic Rankine cycle (ORC) pro-

cesses (Schilling et al., 2017) and in solvent design for the physical absorption of

CO2 (Lampe et al., 2015). The main advantage of the NLP reformulation is that it is

much easier to solve compared to the MINLP problem and it can significantly reduce

computational time. However, the relaxation of integer variables may lead to a loss

of detail on the molecular information and therefore the optimal molecular proper-

ties or group parameters may not necessarily translate into a physically meaningful

molecule. Furthermore, the representation of a molecule with continuous variables

is not always justified and specific to particular type of structure-property models.

Due to the advancement made in the development of MINLP algorithms that can

explore large and complex search spaces, several methodologies have been put for-

ward to solve CAM(P)D problems in the presence of both discrete and continuous

variables. The solution strategies can be categorised as deterministic optimisation

approaches, stochastic optimisation approaches, and hybrid of those. Within the de-

terministic approaches, the application of the outer approximation (Duran & Gross-

mann, 1986) has been widely recognised in the design of refrigerant blends for a

single evaporator cycle (Duvedi & Achenie, 1997), working fluids for ORC processes

(White et al., 2017), extractive fermentation solvents (Wang & Achenie, 2002), sol-

vents for a physical absorption of CO2 (Gopinath et al., 2016), optimal solvents

that enhance the solubility of solutes (Sheldon et al., 2006), solvent mixture for

liquid-liquid extraction (Karunanithi et al., 2005) and many others. As alternatives

to the deterministic method, various stochastic methods such as genetic algorithm

(GA) and simulated annealing (SA) method have been adopted in order to solve a

complex set of highly nonlinear equations efficiently by avoiding the necessities of

calculating first-order and second-order derivatives. Diwekar & Xu (2005) devel-
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oped a solution approach based on GA to identify the optimal solvents that encoded

a molecular structure based on functional group identities. A similar approach was

employed in the study of liquid-liquid extraction (Scheffczyk et al., 2017) based on

COSMO-RS thermodynamics. An SA-based CAMD approach was proposed by Mar-

coulaki & Kokossis (2000) and its performance was demonstrated to the design of

solvents and refrigerants. The proposed approach was extended to the design of

working fluids (Papadopoulos et al., 2010b) and environmentally friendly solvents

for separation processes (Song & Song, 2008). For an overview of these methods

and their applications to the molecular-design domain, the reader is referred to Ng

et al. (2015), Papadopoulos et al. (2018), and references therein.

Although the algorithms developed up to date are useful to solve the MINLP

CAM(P)D problems, the solution of the full MINLP remains prone to failing, in par-

ticular in the application to the simultaneous design of molecular and process design

problems. A Key challenge of the application of such algorithms is the difficulty to

postulate feasible bounds of the process domain as they vary from each combina-

tion of molecular variables. Therefore, many algorithms resort to the decomposition

of the problem where a series of “less difficult” subproblems are solved. Note that

the term “decomposition” in this chapter does not refer to the numerical solution

approach of mixed-integer nonlinear problems (MINLPs) but to the overall strategy

for solving molecular design problem. For example, potential molecular candidates

are identified as a first step and then the performance of the process for the reduced

feasible set of molecular candidates is explored (Papadopoulos & Linke, 2006a,b).

Alternatively, a simplified process model that approximates the strong interactions

between the process performance and molecule choice can be introduced in order

to avoid the inclusion of significant numerical difficulties. The main disadvantage

of using such decomposition or simplification approaches is that they may result in

sub-optimal solutions. The goal is thus to develop a robust framework that can solve

the original CAMPD formulation without limiting the level of details in the repre-
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sentation of molecular structures, thermodynamic models, and process models. The

motivation of this study is based on Buxton et al. (1999); Gopinath et al. (2016);

Bowskill et al. (2020), which we will discuss in Chapter 4.

2.3 Multi-objective optimisation

One other focus of this thesis lies on the development of a multi-objective optimisa-

tion (MOO) algorithm to capture the conflicting nature of objective functions within

the molecular design problem. In this section, basic concepts, definitions, and the

notation used throughout this thesis, particularly focusing on the general NLP MOO

problems, are outlined. We refer the reader to Chapter 5 for a detailed insight with

an eye towards MOO applications in the area of CAM(P)D and to Chapter 6 for a

general review of scalarisation-based MOO methods.

The generic mathematical formulation of MOO is defined as follows:

minimize (f1(x), . . . , fm(x))
⊤

subject to x ∈ X := {x ∈ Rn1 × Nn2 | g(x) ≤ 0,h(x) = 0},
(MOP)

where objective functions fj : Rn → R, j = 1, 2, ...,m, x is an n-dimensional vector

of variables (n = n1 + n2), which consists of n1 continuous variables and n2 integer

variables, X ̸= ∅ is an nonempty feasible set, g(x) is a p-dimensional vector of

inequality constraints and h(x) is a q-dimensional vector of equality constraints,

q ≤ n. we assume that all fj(x), j = 1, 2, ...,m are bounded by some upper bound

U ∈ R and lower bound L ∈ R for any instance of an MOO problem. Note that,

we use R to denote the set of real numbers, R+ to denote the set of nonnegative

real numbers, and R++ to denote the set of positive real numbers. The set of real n-

vectors is denoted Rn. For the special cases m = 2, MOP is also called a bi-objective

optimisation (BOO) problem.

In contrast to single-objective optimisation, when the objective functions conflict
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with each other, no single solution can simultaneously minimise all scalar objective

functions. Hence, it is necessary to introduce a new notion of optimality or Pareto

efficiency (Ehrgott, 2005a).

Definition 1. The objective space is defined as the set of all feasible combinations of

the objective function values, i.e., Z = {f(x) | x ∈ X}

Definition 2. A point x∗ ∈ X is called weakly efficient (weakly Pareto-optimal) if

there exists no feasible point x ∈ X such that fj(x) < fj(x
∗) for all j = 1, ...,m. A

point x∗ ∈ X is called an efficient solution (Pareto-optimal) if there exists no feasible

point x ∈ X such that fj(x) ≤ fj(x
∗) for all j = 1, ...,m and fj′(x) < fj′(x

∗) for at

least one j′ ∈ {1, ...,m}. If x∗ is an efficient solution, the point in objective space

z = f(x∗) is referred to as a nondominated solution or Pareto point in the objective

space Z. The set of efficient solutions x∗ ∈ X is the Pareto set and is denoted by XE.

Figure 2.2: Schematic representation of bi-objective space and Pareto optimal set. The
area Z enclosed by a solid black line represents feasible region of the problem (MOP).
The thick black solid line represents a complete set of the Pareto front Ψ∗. Points A, B
and C are different Pareto (nondominated) points.

All Pareto optimal points lie on the boundary of the feasible objective space Z as

shown in Figure 2.2. Each Pareto optimal solution cannot be improved (see points

A, B, C in Figure 2.2) in one objective without a sacrifice in the other objectives.

Focusing on a posteriori method where the Pareto optimal set is generated first then,
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a decision-maker selects the most preferred, the Pareto front approach provides use-

ful information about the trade-offs by accounting for the varying importance of the

objectives simultaneously. It is desirable to generate a set of Pareto optimal solutions

as accurate as possible such that the alternatives are not biased towards certain cri-

teria. The complete set of the Pareto optimal solutions is known as the (true) Pareto

front and the definition is as follows:

Definition 3. (Marler & Arora, 2004) The set of efficient solutions Ω∗ is the com-

plete set of efficient solutions if it contains all possible efficient solutions x∗. The

set Ψ∗ is the efficient frontier (or Pareto front) formed by all nondominated solu-

tions f(x∗) ∈ Ψ∗ which have corresponding feasible solutions x∗ ∈ Ω∗. We denote

an approximation of the efficient frontier by ZE ⊆ Ψ∗ where the kth row of ZE

corresponds to the kth nondominated point zk = f(xk,∗). The corresponding ap-

proximation of efficient solutions of ZE, x∗ is denoted as XE ⊆ Ω∗.

Definition 4. The ideal objective vector or utopia point f id is defined as the objective

vector whose components are the optimal objective function values of each single-

objective problem, i.e., f id
j = min

x∈Ω∗
fj(x), j = 1, ...,m. The objective vector fnd is

defined as the nadir objective vector and is such that fnd
j = max

x∈Ω∗
fj(x), j = 1, ...,m

Definition 5. Let x∗ ∈ XE. If there is a λ ∈ Rm
++ such that x∗ is an optimal solution

to min
x∈X

λ⊤z, then x∗ is called a supported efficient solution and z = f(x∗) is called a

supported nondominated objective vector.

Definition 6. A set of Pareto points is said to be convex, if all nondominated point

z ∈ Ψ∗ is on the boundary of the convex envelope of Z, which is the smallest convex

set that contains z. Note this does not imply that the Pareto front is continuous,

but rather it is a relaxed concept of convex introduced to distinguish between a sup-

ported and unsupported nondominated objective vector where only supported non-

dominated point is attainable by means of a weighted-sum scalarisation approach.
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Definition 7. A true Pareto front is said to be disconnected or discrete, if there exist

empty regions of the boundary of the Pareto front or if the Pareto front consists of

disjoint nondominated points. Note that disconnected or discrete Pareto is defined as

convex Pareto front if all nondominated Pareto points is z ∈ Ψ∗ is on the boundary

of the convex envelope of Z according to Definition 6.

In practice, an analytical expression of the true Pareto front is not available and

it is hard to establish a complete set of Pareto solutions given the complexities of

underlying engineering problems (Ehrgott, 2005a), as for example in the work of

Marler (2005) and Rangaiah & Bonilla-Petriciolet (2013). In the solution of MOO

problems, the numerical complexities arises not only from the number of evalua-

tions of the original problem (or single-objective optimisation if the scalarisation

approach is introduced), but also from the additional equations derived from the

MOO algorithm. Consequently, critical to MOO approaches is that the computation

of the approximation of the Pareto front with “good” quality guarantees within a

reasonable computational time. The quality of this approximation depends upon:

1) the proximity of the approximation to the true Pareto front, i.e., the convergence

of the approximation, and 2) the diversity (or spreadness) of the solutions over the

approximated Pareto front. A key motivation of this thesis study is the evaluation

of the performance of existing MOO algorithms in application to the molecular de-

sign domain. From the conclusions derived by the comparative study presented in

Chapter 5, we will also develop improved MOO algorithms that may be used in a

CAM(P)D context.

2.4 Conclusions

In this chapter a brief review of the SAFT-γ Mie framework has been provided to

describe the physical association concept in the context of CO2 chemical absorption.

After presenting the SAFT-γ Mie approach, the formulation of general CAMPD prob-
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lems, i.e., MINLPs and the difficulties encountered in the solution of these problems

has discussed. The basic concepts and notation used for the development of MOO

techniques have been also defined to provide an consistency thorough out the thesis.



CHAPTER 3

Modelling a CO2 chemical absorption process

In Chapters 1 and 2, we set out the context for the importance of developing a

robust optimisation framework that can provide a systematic way of identifying op-

timal solvent candidates to enhance the economic and environmental performance

of CO2 capture processes. One of challenges in developing such a framework is to

establish a process modelling approach that can capture the interactions between

process performance and solvent properties without significantly increasing numer-

ical complexity. Our focus in this chapter is to develop an equilibrium-stage model

of the absorption-desorption of CO2 with the aim of being as predictive as possi-

ble in terms of the properties of the solvents involved in the process, such that the

performance of various solvents can be assessed without the need for extensive ex-

perimental data. We also investigate initialisation strategies for the solution of the

process model in order to facilitate the evaluation of the complex phase behaviour

of many solvents within the process. A detailed parametric study is then carried out

for the key process variables, leading to the development of an optimisation oriented

model that can be integrated into the solvent design problem is then be developed

after carrying out a detailed parametric study for key process variables.

The main contributions of this work include: 1) the introduction of the SAFT-

22
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γ Mie (Papaioannou et al., 2014) equation of state (EOS) in the development of

CO2 chemical absorption-desorption process models such that the economic, ther-

mal, and environmental performance of the process can be assessed as a function of

amine solvent structures; 2) validation of the process model developed focusing on

whether it can provide a quantitative agreement in the behaviour of the process us-

ing the SAFT-γ Mie EOS; 3) the development of an tailored initialisation algorithm to

handle increased numerical complexities arising from the complex thermodynamic

model equations and the many combinations of process conditions and solvent struc-

tures; 4) the development of an optimisation model that is suited for integrating into

CAMPD frameworks.

3.1 Introduction

Carbon capture and storage (CCS) technologies are set to play a central role in

responding to the growing demand for carbon dioxide (CO2) removal in the miti-

gation of anthropogenic climate change. Currently, chemical absorption-desorption

processes using amine-based solvents have been regarded as one of the most ef-

fective and mature technologies for some time, due to the versatility of the imple-

mentation of the process across a wide range of industrial applications (Rochelle,

2009). In an absorption process unit, the amine solvent reacts with CO2 in the

feed gas stream, forming weakly bonded intermediate compounds. The CO2 cap-

tured is reclaimed from the solvent solution usually by heating the solvent to ele-

vated temperature, thereby regenerating the solvent by reducing the concentration

of CO2. A relatively high selectivity towards CO2 can be achieved with appropriate

selection of the amine solvent, making it possible to remove the CO2 from diluted

sources with high separation efficiency (Bui et al., 2018). Conventional amine-based

solvents used for these processes are monoethanolamine (MEA), diethanolamine

(DEA), and methyldiethanolamine (MDEA). There remain, however, a number of
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challenges to the use of such solvents in CO2 capture processes that limit their per-

formance. Among these are the high energy requirements associated with solvent

regeneration; the low cyclic capacity of many solvents; the high environmental and

health impacts associated with solvent degradation, corrosivity, and solvent loss. To

overcome these drawbacks, substantial research efforts (Singh et al., 2007, 2009;

Oexmann & Kather, 2010; Chemmangattuvalappil & Eden, 2013; Liang et al., 2015;

Papadopoulos et al., 2016; Singto et al., 2016; Zhang et al., 2017) have been un-

dertaken to develop new solvents that may improve the overall performance of the

process.

A promising research direction in the identification of new solvents is the applica-

tion of computer-aided molecular and process design (CAMPD) techniques. CAMPD

offers systematic methodologies to explore a very large molecular design space in

which the overall performance of a process is evaluated by capturing interactions

between molecular properties and process performance. In any CAMPD framework,

essential elements are: the development of thermodynamic methodologies that can

provide predictions of fluid phase behaviours and physical properties of solvents;

and the development of accurate and robust mathematical models for describing the

performance of the absorption-desorption process as a function the thermophysical

properties and the phase behaviour of the (unknown) amine solvents. Owing to the

recent advances in group contribution version of SAFT, in particular SAFT-γ Mie (Pa-

paioannou et al., 2014) and its predictive capabilities, it becomes possible to reliably

predict physical properties and fluid phase behaviour of a wide ranges of molecular

structures and their mixtures. The adoption of the SAFT-γ Mie EOS has been in-

creasingly recognised in the area of CAMPD (Gopinath et al., 2016; Bowskill et al.,

2020; Watson et al., 2021). The use of SAFT-γ Mie EOS in the context of CAMPD

however may present specific challenges due to the increased complexities inher-

ent in the model equations compared to conventional cubic EOSs. Moreover, the

simulation and optimisation of the CO2 chemical absorption-desorption process can
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be prohibitively expensive when it needs to solve the process models under a wide

ranges of operating conditions and solvent candidates due to the the highly nonlin-

ear nature of the process and physical property equations. There is, however, limited

understanding of the suitability of process modelling approaches for the solution of

the CAMPD problems using the SAFT γ Mie EOS.

For the modelling and simulation of the chemical absorption process, two ap-

proaches are typically used to describe the phenomena of simultaneous heat and

mass transfer in the presence of chemical reactions: equilibrium-stage and rate-

based approaches. Equilibrium-stage models assume that each theoretical stage is

composed of well-mixed vapour and liquid phases, and that these phases are at

phase equilibrium (Taylor & Krishna, 1993). The equilibrium-stage model may be

inaccurate when mass and heat transfer are kinetically-limited due to the presence of

chemical potential and temperature gradients (Henley & Seader, 1981). Rate-based

models account for heat and mass transfer limitations by considering mass and heat

mass balances for each phase (Seader, 1989) separately.

For CO2 chemical absorption processes, the application of a rate-based model

has been shown to provide better predictions of the temperature and composition

profiles of the column than the equilibrium-stage approach (Lawal et al., 2009;

Mac Dowell et al., 2013; Afkhamipour & Mofarahi, 2013; Oko et al., 2015; Sher-

man et al., 2016; Norouzbahari et al., 2016; Dutta et al., 2017). However, the

results of the rate-based model strongly depend on the choice of approaches to

treat heat and mass transfer phenomena, and on the availability of model param-

eters such as transport properties, kinetic models and mass transfer correlations. To

avoid such difficulties, equilibrium-stage models have been chosen over the rigor-

ous rate-based models in simulation or optimisation studies (Alhajaj et al., 2016b;

Soltani et al., 2017) owing to their relative simplicity, flexibility and fast conver-

gence. The equilibrium-stage models proposed by Abu-Zahra et al. (2007b); Alhajaj

et al. (2016a,b); Soltani et al. (2017) have been shown to provide useful insights
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into the viability of solvent candidates within the CO2 capture process.

Given a robust and systematic approach for describing the CO2 capture process,

modelling studies can play a vital role in identifying the optimal operating condi-

tions that yield the best techno-economic performance for a specific amine solvent.

However, this remains a difficult task since the complex relationship between opti-

mal process variables and molecular properties affects the overall performance of

the absorption process. In this regard, there have been research efforts to develop

approaches for process design and techno-economic analysis to arrive at optimal pro-

cess conditions. A number of authors (Mariz, 1998; Rao & Rubin, 2002; Abu-Zahra

et al., 2007b; Mofarahi et al., 2008; Qiu et al., 2014; Soltani et al., 2017) have

carried out parametric studies of the process variables with the aim to maximise ab-

sorption efficiency, while process optimisation was employed to capture the effect

of the process operating conditions on energy demand (Dave et al., 2011; Karimi

et al., 2011) and economic performance (Nuchitprasittichai & Cremaschi, 2011; Lee

et al., 2013; Sharifzadeh et al., 2016; Mores et al., 2012; Schach et al., 2010). Al-

though parametric studies provide invaluable insights into the effect of key operating

parameters on performance criteria such as energy requirement, environmental im-

pact, and the overall cost, optimisation-based approaches enable the evaluation of

the performance of the absorption process using the operating conditions best suited

for the amine solvent examined. This results in a more realistic assessment of the

suitability of novel solvents.

Here, we focus on the development of detailed mathematical models of the CO2

chemical absorption process and economic models using the SAFT-γ Mie EOS that

are sufficiently accurate and robust over a wide range of operating conditions for

various types of amine solvents. Given the advantages of equilibrium-stage mod-

els in section 3.2, we first describe the model equations, and validated the model

using pilot-plant data (CASTOR, 2004). In section 3.3, an initialisation strategy is

presented to improve the convergence behaviour during the solution of the com-



CHAPTER 3. MODELLING A CO2 CHEMICAL ABSORPTION PROCESS 27

plex nonlinear process model. The initialisation method presented in this chap-

ter includes several modifications over the traditional inside-out algorithm (Boston,

1980), leading to enhanced convergence as well as model reliability. To formulate

the process optimisation problem to be integrated into the CAMPD framework, a

parametric study is conducted in Section 3.4 motivated by the work of Alhajaj et al.

(2016a) and Abu-Zahra et al. (2007b). The aim is to investigate the effect of the

key operating parameters on overall process performance, such that suitable process

variables and constraints are introduced in the optimisation problem. The suitabil-

ity of the formulation is studied by performing the process optimisation for selected

amine solvents.

3.2 Development of the chemical process model

Figure 3.1: Process overview of the CO2 absorption-desorption

The process model developed in this work is based on a standard regenerative

absorption-desorption concept as shown in the process flow diagram in Figure 3.1.

The flue gas coming out from a direct contact cooler is fed into the bottom of the

absorber. The gas stream flows upward through the packing bed inside the absorber,
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against a countercurrent stream of a selected aqueous amine solvent. The gaseous

CO2 is chemically absorbed into the amine solution and the clean gas stream leaving

the top of the absorber is emitted to the atmosphere. The CO2 rich solution leav-

ing the bottom of the absorber passes thorough the rich-lean heat exchanger (HE)

where the rich amine solution is heated by the hot CO2 lean amine solution. It then

enters the top of the desorber for solvent regeneration. The rich amine solution

flows downward against a counter-current flow of water-rich vapour generated in

the reboiler until CO2 concentration in the solvent solution is reduced to the tar-

get level. Finally, the lean amine solution passes through the rich-lean HE and lean

amine cooler to achieve a pre-defined operating temperature and then returns to the

top of the absorber.

The CO2 loading indicates the absorption capacity of a solvent, i.e., how many

moles of CO2 can be dissolved into 1 mole of solvent at given conditions of pressure

and temperature. The lean loading is calculated based on the liquid composition

of the lean solvent stream going into the top of the absorber, while rich loading is

measured at the liquid composition of the rich solvent stream coming out of the

bottom of the absorber.

In the modelling of the CO2 capture processes with amine solutions, there have

been several efforts to describe the phenomena of simultaneous heat and mass trans-

fer in the presence of chemical reactions. Although rate-based process simulations

may provide a more precise representation of the absorption process, we adopt here

an equilibrium-stage model, as discussed in the previous section. The following as-

sumptions are made in the modelling of the process.

• The model is steady state.

• Each tray of the column is considered as having complete mixing, with ther-

modynamic equilibrium is reached. Thus, there are no concentration and tem-

perature gradients.
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• Pressure drops across the process units are neglected.

• The isentropic efficiency for the pump is assumed to be ηpump= 0.8

• The minimum approach temperature in the heat exchanger is set to 10 K to

ensure feasible heat transfer.

3.2.1 Model equations

Figure 3.2: Schematic of an equilibrium stage of the absorber or desorber

The absorption/desorption column comprises N theoretical stages, with N = Na

for the absorber and N = Nd for the desorber, respectively. As an initial assumption,

the absorber and desorber are modelled with ten theoretical stages. In Figure 3.2

the general model of a stage j in a counter-current cascade of N equilibrium stages

is represented, where Fj is the feed molar flowrate to stage j, zi,j is the mole fraction

of component i in the feed, Lj and Vj are the total liquid and vapour molar flowrates

(mol s−1) coming out of the jth theoretical stage, respectively, xi,j and yi,j are the

liquid and vapour mole fractions of component i on stage j, Uj and Wj are the liquid

and vapour sidestream molar flowrates leaving stage j, hL
j , and hV

j (J mol−1) are the

molar enthalpies of streams Lj and Vj, respectively, Qj is the total heat rate (J s−1)



CHAPTER 3. MODELLING A CO2 CHEMICAL ABSORPTION PROCESS 30

transferred from stage j, and Tj and Pj are the temperature and pressure of stage

j, respectively. The resulting MESH (mass balance, equilibrium, summation of mole

fractions, energy balance) equations for each equilibrium stage for the absorber and

desorber are outlined below:

Lj−1xi,j−1 + Vj+1yi,j+1 + Fjzi,j

− (Lj + Uj)xi,j − (Vj +Wj) yi,j = 0, i = 1, . . . , NC, j = 1, . . . N

(3.1)

Lj−1h
L
j−1(Tj−1, Pj−1,xj−1) + Vj+1h

V
j+1(Tj+1, Pj+1,yj+1)

+ Fjh
F
j (Tj, Pj, zj)− (Lj + Uj)h

L
j (Tj, Pj,xj)

− (Vj +Wj)h
V
j (Tj, Pj,yj)−Qj = 0, j = 1, . . . N

(3.2)

where xj and yj (in bold) are vectors of the liquid and vapour component mole

fractions in the streams leaving stage j. The mole fractions in the stream leaving

each stage must sum to unity:

NC∑
i=1

xi,j = 1 and
NC∑
i=1

yi,j = 1; j = 1, 2, . . . , N (3.3)

The phase equilibrium relation for each component can be expressed as:

yi,j −Ki,jxi,j = 0 , i = 1, . . . , NC, j = 1, . . . N (3.4)

where Ki,j = Ki,j(Tj, Pj,xj,yj) is a partition coefficient for component i on stage j.

All other process units such as the cooler, pump, reboiler, heat exchanger and

condenser are modelled as equilibrium stages in which the mass and heat balance

equations in conjunction with the phase equilibria are solved simultaneously.
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3.2.2 Sizing and cost model

A key objective of this work is to link the cost of the CO2 capture process to the prop-

erties of the solvent. The cost model herein is based on the method developed in

Alhajaj et al. (2016a,b). For the techno-economic evaluation of the integrated pro-

cess and solvent model, the total annualised cost (TAC) is considered as an objective

function of Problem (MINLP), where,

TAC =
(TCI)CRF + FOM

CF
+ VC+ CPṁven

CO2
. (3.5)

Here, FOM is the fixed operation and maintenance cost ($million year−1), VC is

the variable cost, the sum of the utility cost and the solvent makeup cost, CP is the

carbon price ($million per ton of CO2 emitted), ṁven
CO2

is the amount of CO2 emitted

to the atmosphere (ton year−1), i.e., the amount of CO2 in the clean gas stream, CRF

is the capital recovery factor that takes into account the depreciation of the plant and

interest rate through the plant lifetime and CF is the capacity factor. We choose CRF,

CF, CP to be 0.15, 0.7 and 4, respectively. TCI is the total capital cost of investment

($million year−1), which is calculated by summing the purchased equipment cost

of the individual process units, after a sequence of multipliers have been applied to

represent various indirect and direct costs such as engineering, taxes, and labour.

The economic lifetime of the process for the costing is assumed to be 25 years. The

cost of MEA is chosen as $1.2/kg (Alhajaj et al., 2016b). Note that we assume the

cost for all amine-based solvents is same as that of MEA throughout the thesis. As

discussed in Mores et al. (2012), once the solvent is loaded into the system, the most

solvent is regenerated in the desorber and the impact of MEA make-up cost is indeed

insignificant taking up to 5.8 % of the total utility cost.

The first step of the cost evaluation, given the results of the process simulation, is

to estimate the equipment size so that the purchased equipment cost can be calcu-

lated, and followed by other elements of the cost. The purchased equipment cost of
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Table 3.1: Equipment type and materials used for each process unit of the absorption-
desorption process modelled in the current work. SS and CS denote stainless steel and
carbon steel, respectively.

Equipment Type Material
Column Vertical vessel SS
Column internal Plate - Sieve SS
Rich-Lean HE Shell and tube, 20 ft tube length shell: SS / tube: SS
Condenser Shell and tube, 20 ft tube length shell: CS / tube: SS
Reboiler Shell and tube, 20 ft tube length shell: SS / tube: CS
Lean amine cooler Shell and tube, 20 ft tube length shell: CS / tube: SS
Pump Centrifugal, 3600rpm shaft SS

Table 3.2: Types and overall heat transfer coefficient (U) for the heat exchangers

Heat exchanger Type U (W m−2K−1)
Rich-lean HE Floating head 710
Condenser Fixed-head 425
Reboiler Kettle vaporiser 850
Lean amine cooler Fixed head 425

each process unit is calculated using the method described in Seider et al. (2009).

The size factors and parameters that are used for the cost evaluation are listed in

Table 3.1. The overall heat transfer coefficients used for each heat exchanger are

listed in Table 3.2.

Columns

We assume that the absorber and desorber are designed as tray columns to avoid

having to prediction additional properties, such as diffusivity and mass transfer co-

efficients, associated with packing design. We employ the approach described by

Pereira et al. (2011) for the calculation of the column diameter and the empirical

correlation proposed by O’Connell (1946) for the column height. Here, we sum-

marise key aspects of each method. The calculation of the diameter of the absorber

and desorber is performed based on 80% flooding, which is typical for a gas absorber

(Kister et al., 1992). The minimum velocity at which entrainment flooding occurs,

i.e., flooding velocity, Un,flood (m s−1), is obtained from the balance between droplet
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weight and drag force defined by:

Un,flood = Csb,flood ·
(σL

20

)0.2
·
√

ρL − ρV
ρV

, (3.6)

where σL is the liquid surface tension (mN m−1), ρL is the liquid density (kg m−3),

and ρV is the gas density (kg m−3). Csb,flood is the ultimate capacity parameter. It can

be obtained from a correlation established by Lygeros & Magoulas (1986), and is

expressed as a function of the tray spacing TS (inches) and ratio of liquid to vapour

kinetic energy FLV :

Csb,flood = 0.0105 + 8.127× 10−4(25.4 TS)0.755 exp
(
−1.463F 0.842

LV

)
, (3.7)

where Csb,flood has units of (m s−1), and FLV is dimensionless and defined as:

FLV =

√
ρL
ρV

qL
qV

. (3.8)

The gas velocity Un (m s−1) through the net column area An is obtained at a flowrate

of about 80% of the maximum, i.e.,

Un = 0.8Un,flood. (3.9)

Finally, the column diameter, D (m), is calculated based on the total cross section of

the column At:

D = 2

√
At

π
, At = 1.2An. (3.10)

The column height is deduced from the actual number of trays Nactual, provided

that a tray spacing TS has been chosen. We take 24 inches as tray spacing. Some

additional space at the top and at the bottom of the column is required for the flow,

equivalent to 15% of the total height of tray stack. The column height H (m) is given
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by

H = 1.15NactualTS = 1.15
N

η0
TS, (3.11)

where N is the calculated number of theoretical stages taken from the simulation

and η0 is an overall stage efficiency, usually less than 1.0, which is determined by the

following empirical equation proposed by O’Connell (1946):

log ηo =1.597− 0.199

[
log

(
KMLµL

ρL

)]
−0.0896

[
log

(
KMLµL

ρL

)]2
, (3.12)

where µL is the liquid viscosity (cP), ML is the average molecular weight of the liq-

uid mixture, ρL is the density of the liquid (lb ft−3) and K is a partition coefficient

of a species being absorbed or stripped, i.e., CO2. The values of µL, ML, and ρL are

calculated to be an average over all stages of the column. Note that the efficiency cal-

culated is known to deviate from operational data about 15% for water-hydrocarbon

system (Seader, 1989 and Seider et al., 2009).

The purchase cost of the column is obtained by summing the cost of column vessel

and column internals. The cost of the vessel depends on the type of materials and

their weight. For our case, stainless steel is selected for all process units due to the

highly corrosive nature of aqueous solutions of amines. The base cost for a vertical

column, CP , is given by:

CP = FMCV + CPL, (3.13)

where FM is a material factor, CV is the empty vessel cost and CPL is the added cost

for the column such as ladders and a nominal number of nozzles. CV is determined

by the weight, W (lb), of the column as

CV = exp
{
7.2756 + 0.18255[ln(W )] + 0.02297[ln(W )]2

}
. (3.14)

The correlation for CPL is given by:
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CPL = 300.9 (Dft)
0.63316 (Hft)

0.80161, (3.15)

where Dft and Hft are column diameter and height in ft. The purchase cost of the

internals is given by

CT = NactualFNTFTTFTMCBT , (3.16)

where FTT is a factor accounting for the type of tray and taken as 1.0 for a sieve

tray, FNT is a factor accounting for the total number of trays and taken as 1 for

Nactual < 20, FTM is a material correction factor calculated by

FTM = 1.401 + 0.0724Dft, (3.17)

and CBT is the base cost of the trays expressed as

CBT = 468 exp(0.1739Dft). (3.18)

Heat exchangers

The cooler, condenser, reboiler and rich-lean HE are modelled as shell and tube type

heat exchangers with countercurrent flow. The required heat transfer area for a heat

duty Q can be calculated as:

Aheat =
Q

U × LMTD
, LMTD =

(Thot,in − Tcold,out)− (Thot,out − Tcold,in)

ln(
Thot,in−Tcold,out

Thot,out−Tcold,in
)

, (3.19)

where Aheat is the heat transfer area (m2), U is the overall heat transfer coefficient

(Wm−2K−1) and LMTD is the log mean temperature calculated using the tem-

peratures of the inlet and outlet streams of the HE. Tm,p, where m denotes a hot

(m = “hot”) or cold (m = “cold”) stream and p denotes an inlet (p = “in”) or outlet

(p = “out”) stream. The overall heat transfer coefficient depends on the properties

of the fluid, the configuration of the HE and the flow regime inside of the HE. An
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alternative to the rigorous calculation of the U -value is to make use of typical values

published in literature (Green & Perry, 2008; Association et al., 2012) either based

on the type of the fluids or the type of HE, assuming that the design of the HEs is

optimised such that commonly known U -values can be achieved, as shown in Table

3.2.

The cost correlations of the HEs differ based on the type of application. The

condenser (cd) and cooler (cl) are chosen as shell and tube type equipped with a

fixed head, the rich-lean heat HEs (rl) as shell and tube type with a floating head,

and the reboiler (r) as a kettle vaporiser. The base cost CB,u for each HE, u, is given

by:

• Floating head

CB,rl = exp {11.667− 0.8709[ln(Aheat)] + 0.09005[ln(Aheat)]
2} (3.20)

• Fixed head

CB,u = exp {11.0545− 0.9228[ln(Aheat)] + 0.09861[ln(Aheat)]
2} , u = cd, cl (3.21)

• Kettle vaporiser

CB,r = exp {11.967− 0.8709[ln(Aheat)] + 0.09005[ln(Aheat)]
2} (3.22)

The purchase cost of each of these three types of HE is determined from:

CP,u = FPFM,uFLCB,u, , u ∈ {rl, cd, cl, r} (3.23)

where FL is a correction factor that accounts for tube-length. This is taken as 1.00,

assuming that typical tube length, 20 ft. FM is a material factor for various combi-
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nations of shell and tube materials given as function of surface area, Aheat, i.e.,

FM,u = au +

(
0.0929Aheat

100

)bu

u ∈ {rl, cd, cl, r}. (3.24)

The exponents au and bu are determined by the shell-and-tube material and are

given by au=1.75 and bu=0.13 for condenser and lean amine cooler (u = cd, cl),

and au=2.70 ad bu=0.07 for rich-lean HE and reboiler (u = r, rl) (Seider et al.,

2009). FP is a pressure correction factor given by

FP = 0.9803 + 0.018

(
P

100

)
+ 0.0017

(
P

100

)2

, (3.25)

where P is operating pressure (psig).

Pumps

The pump is modelled as a centrifugal pump. The cost of the pump is a function of

the size parameter, S, given as

S = Qpump(Hhead)
0.5, (3.26)

where Qpump denotes the volume flow rate through the pump (gallons per minute)

and Hhead is the pump head (ft). The purchase cost of a centrifugal pump is then

given by

CP = FTFMCB, (3.27)

where FM is a material factor and FT is a pump-type factor and the values are taken

as 1.5 and 2.0, respectively, based on the selected material and equipment type (see

Table 3.1).
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Table 3.3: Main specification of CASTOR pilot plant (CASTOR, 2004) used for the vali-
dation study

Specification Units Value
Lean solvent flow rate m3 h−1 23
MEA concentration in lean solvent wt% 30.4
Lean solvent temperature K 331.9
Absorber inlet flue gas rate Nm3 h−1 4915
Absorber inlet flue gas CO2 molar composition mol% 11.86
Absorber inlet flue gas H2O molar composition mol% 11.00
Absorber inlet flue gas N2 molar composition mol% 77.14
Absorber inlet flue gas temperature K 320.4
Absorber operating pressure MPa 0.101
Stripper and Reboiler pressure MPa 0.181
Rich solvent temperature coming out of Rich-lean HE K 373.1
Degree of capture % 90

3.2.3 Model validation

Following the modelling of the process, the simulation results are compared against

published pilot plant data (Alhajaj et al., 2016a) in order to assess whether the

process model, in which SAFT-γ Mie thermodynamic treatment and an equilibrium-

stage column models are integrated, can provide a quantitative agreement with the

pilot plant data. The performance of the process model is validated for a 30.4 wt%

concentration of MEA using the CASTOR pilot plant data (CASTOR, 2004). Note

that the concentration of the solvent is calculated only based on water and solvent

contents in a liquid stream. This data set is chosen as it has been independently

reproduced in previous works (Alhajaj et al., 2016a; Abu-Zahra et al., 2007b). The

data used in the simulations of CO2 absorption is presented in Table 3.3. The water

content in the flue gas is taken from Abu-Zahra et al. (2007a) as it is not reported

along with the pilot plant data (CASTOR, 2004). The process model is implemented

in the gPROMS modelling environment using a SAFT-γ Mie Foreign Object for the

physical properties. As a performance criterion, a percentage relative error, δerror, is

used to compare the results of the model with plant data:
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Table 3.4: Comparison between the predictions of the performance of CO2 absorption-
desorption process model and plant data of CASTOR (2004).

Item, g Units Plant Simulation δerror,g
Absorber height m 18.0 17.9 0.56
Absorber diameter m 1.10 0.94 14.38
CO2 mass flowrate in inlet flue gas kg h−1 1145 1136 0.78
CO2 mass flowrate captured in absorber kg h−1 1045 1026 1.31
Degree of CO2 captured % 90.00 90.35 0.38
Clean gas outlet temperature K 331.95 343.03 3.34
Rich solvent CO2 loading mol mol−1 0.46 0.50 8.39
Rich solvent temperature at the outlet of the absorber K 327.15 325.98 0.36
Max. solvent temperature in the absorber K 348.15 344.14 1.15
Desorber height m 10.00 16.44 64.43
Desorber Diameter m 1.10 0.75 32.19
Reboiler heat duty GJ ton-CO−1

2 3.897 4.777 22.58
Reboiler temperature K 391.65 394.01 0.06
Cooling water requirement GJ ton-CO−1

2 3.434 2.229 35.00
Lean loading mol mol−1 0.28 0.28 0

δerror,g =

(
|Y Sim

g − Y Plt
g |

Y Plt
g

)
× 100, (3.28)

where Y Plt
g and Y Sim

g are the values taken from the plant data and the simulation

results, respectively, for process parameter g.

As can be seen in Table 3.4, the equilibrium stage model delivers an overall good

agreement with the pilot plant data available in terms of the amount of CO2 cap-

tured, the composition and temperature of the rich solvent stream and the operating

conditions of the lean stream leaving the reboiler. The predicted diameters of the

absorber and desorber are slightly underestimated compared to the experimental

data. This is because the lumped hydrodynamic model used in the current study

cannot account for the effect of heat- and mass-transfer limitations. The prediction

for the height of the desorber column deviates significantly the experimental data

by 64.43%. This error is attributed to the fact that each theoretical stage is inter-

preted as a tray, which often results in a larger column size than in a packed bed

column, which is the type of column used in the pilot plant. The purchased cost

of the desorber accounts for 24.04% of the total purchased cost. However, the TCI

only contributes 3.43 % on TAC and therefore the impact of the purchased cost of
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the desorber is much less significant. Similar discussion can be found in Mores et al.

(2012) in which a detailed comparison of the distribution of the cost-items on overall

cost was studied for the different CO2 capture levels. Although the reboiler temper-

ature is accurately described, there is an overprediction of approximately 0.9 GJ

ton-CO−1
2 in the reboiler duty. This difference may be attributed to the sensitive na-

ture of the SAFT-γ Mie parameters to the prediction of second-order thermodynamic

derivative properties such as heat capacity, that have not been taken into account

in the model development. It has been shown previously that heat of absorption

accuracy can be improved by incorporating caloric properties in model development

(Graham, 2020). Nonetheless, the predicted reboiler duty represents well a typ-

ical reboiler duty of 3.9-4.2 GJ ton-CO−1
2 for coal-fired power plants and 4-5 GJ

ton-CO−1
2 for combined cycle gas turbine (CCGT) plants as reported in Singh et al.

(2003); Kehlhofer et al. (2009); Mac Dowell et al. (2013); Soltani et al. (2017);

Bui et al. (2018). The CO2 loading of the rich solvent stream is overestimated by

approximately 8% although a similar amount of CO2 is removed from the flue gas.

This discrepancy may be associated with the assumption made on the water compo-

sition in the flue gas stream, as the value is not reported in the pilot plant data. It

can also be postulated from the higher flue gas outlet temperature that the evapo-

rative loss of the water content from the lean solvent stream may lead to a higher

solvent mole fraction in the rich solvent stream, consequently resulting in a higher

CO2 loading. Additionally, the equilibrium stage model exhibits higher CO2 capture

capacity in the absorber (i.e., a higher degree of CO2 captured is predicted by the

model), allowing more gaseous CO2 to be dissolved in the liquid solvent solution.

The relative difference is however marginal.

In summary, the validation of the model with the use of the SAFT-γ Mie EOS has

shown the ability of the equilibrium stage model to predict the overall process perfor-

mance. It is thus suitable for providing useful insight into the economic performance

and energy efficiency of the process for a given solvent. A more refined description
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of the absorption process could be obtained by using a rate-based process model,

but the equilibrium-stage model allows us to focus on system trends as opposed to

the detailed behaviour at the individual unit level while achieving computational ef-

ficiency and greater flexibility in the choice of process operating conditions and the

types of solvents.

3.3 Initialisation strategy

One difficulty in solving the model of the CO2 chemical absorption process is that it

involves the calculation of the highly nonlinear MESH equations coupled with com-

plex thermodynamic property models. Convergence to a solution for such systems

strongly depends on the quality of the initial guesses. However, it is notoriously dif-

ficult to provide good initial guesses that are universal for all solvent candidates and

cover a wide range of operating conditions. Furthermore, equation-oriented solvers

that are based on the simultaneous update of all variables can encounter numerical

difficulties even with the good initial guesses. It is therefore of interest to develop a

robust initialisation algorithm that is capable of accommodating a variety of process

specifications and solvent molecular structures as well as one that is insensitive to

the initial user-provided estimates.

In this section, we investigate a column solution method that can be adapted to

the CO2 chemical absorption process. An extension of the “inside-out” algorithm is

then introduced to provide a reliable way of handling the a highly non-ideal systems

under consideration.

3.3.1 Inside-out method

There have been advances made in solution approaches for multistage equilibrium

separation processes — for example, the bubble-point method (Wang, 1966), the

sum-rates method (Sujata, 1961; Friday & Smith, 1964), the simultaneous correc-
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tion techniques (Naphtali, 1965; Naphtali & Sandholm, 1971), which employ the

Newton–Raphson method, and the inside-out algorithm (Boston & Sullivan, 1974;

Boston, 1980). These methods are based on an equation-decoupling technique to

avoid the necessity of enumerating a large matrix of partial derivatives in which

the predominant variables in the calculation of heat and mass balances may dif-

fer from these in the equilibrium stages and also in the phase equilibrium model.

The techniques also allow one to deal with the large variations in the magnitude of

the variables, round-off errors, and the sparsity of the Jacobian matrices effectively

(Boston, 1980). The solution approaches that have been proposed to date differ in

the choice of independent variables, the grouping and arrangement of the equations,

and the convergence path.

One of the most widely used methods in practice is the inside-out method (IOM),

first proposed by Boston & Sullivan (1974) and further extended by many others

(Boston, 1980; Russell, 1983; Jelinek, 1988) to make it applicable to highly non-

ideal systems as well as ones with extremely narrow or wide boiling ranges. It has

also been modified to account for reactive systems (Simandl & Svrcek, 1991; Wang

et al., 2020) so that robust convergence behaviour can be achieved in the simulta-

neous calculation of phase and chemical equilibrium. The IOM has not only been

demonstrated to converge rapidly into a solution and to be flexible in the choice of

specified variables, but also not to require accurate initial estimates. One important

feature of the IOM is that the calculation procedure is divided into two stages: (1) an

inner-loop where an approximate (simplified) thermodynamic model is employed to

solve the MESH equations, and (2) an outer-loop where the parameters of the ap-

proximate thermodynamic model are updated using rigorous thermodynamic calcu-

lations for given temperatures, pressure, vapour and liquid compositions, which are

obtained from the inner-loop. Another distinctive feature of the IOM is the choice of

iteration variables. The iteration variables for the inner-loop are related to stripping

factors defined by Sb,j, for each stage j, and the iteration variables for the outer-loop
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are a set of simplified thermodynamic model parameters. Details of each parameter

are discussed in later sections. Here, we implement the inside-out methods of Wang

et al. (2020) and Jelinek (1988) for the absorber and that of Russell (1983) for the

desorber calculation.

3.3.2 Inner-loop property model and MESH equations

The description of the inside-out method begins by defining approximate property

models that are designed to facilitate the calculation of stage temperatures and phase

equilibrium during execution of the inner-loop. First the stripping factors are defined

in terms of an approximate K-value, Kb,j, as follows:

Sb,j = Kb,jVj/Lj, j = 1, .., N. (3.29)

An approximate K-value model, the a Kb model (Holland, 1963; Boston & Sullivan,

1974), is adopted to capture the temperature dependence of the most significant

component equilibrium ratio (Ki,j, i = 1, ..., NC) values for each stage j, while

removing the explicit dependence on component identities:

lnKb,j = Aj −Bj/Tj, j = 1, ..., N, (3.30)

where the coefficients Aj and Bj are model parameters calculated at each outer-

loop using the rigorous thermodynamic model. To aid subsequent calculations in

the outer-loop, it is useful to define, a base K-value Kb,j, as a weighted average:

Kb,j = exp

(
NC∑
i=1

wi,j lnKi,j

)
, j = 1, ..., N, (3.31)

where wi,j are weighting factors used to reflect the temperature sensitivity of the

individual components in Kb,j. The definition of theses factors varies depending
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on how to make ∂(lnKb,j)/∂Tj an appropriate weighted average of the individual

∂(lnKi,j)/∂Tj. In our study, we make use two different heuristic definitions of the

weighting factors proposed by Boston & Britt (1978) and Russell (1983) for the

absorber and Wang et al. (2020) for the desorber, respectively. The equations for

each column are as follows:

wi,j =
yi,j [∂ lnKi,j/∂(1/Tj)]∑
i yi,j [∂ lnKi,j/∂(1/Tj)]

i = 1, ..., NC, j = 1, ..., N, for the absorber.

(3.32)

wi,j =
yi,j/Ki,j∑
yi,j/Ki,j

i = 1, ..., NC, j = 1, ..., N, for the desorber. (3.33)

The derivatives in Equation (3.32) are obtained either numerically or analytically

by using the rigorous thermodynamic model in the outer-loop iteration. As the Ki,j

are strongly dependent on the temperature (as well as the compositions for highly

nonideal systems), the Kb,j values also exhibit a strong dependence on those vari-

ables. In the Kb model, however, the coefficients Aj and Bj are much less sensitive

to temperature, therefore their use as independent variables leads to improved con-

vergence behaviour. An important aspect of the IOM is the separating temperature

and composition effects by partitioning the Ki,j values:

Ki,j = αi,jKb,j i = 1, ..., NC, j = 1, ...N, (3.34)

where αi,j is a relative volatility of component i on stage j. The value of αi,j is much

less sensitive to the temperature than that of Ki,j because temperature dependence

is included in the Kb,j parameter. As a result, the iteration procedure with the αi,j ’s

as independent variables presents much better convergence characteristics than a

procedure using the Ki,j ’s.

When the system exhibits large nonidealities in the liquid phase, the composition ef-

fects become as dominant as to the temperature. For an absorber where a highly non-

ideal liquid system is present, the performance of the IOM with the simple K-value
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model described in Equation (3.34) may be impaired in the absence of factors that

can account for nonideality. To overcome the difficulties associated with nonideal

multi-stage systems, i.e., the absorber in our study, we apply the model developed

by Boston (1980) in which the K-values are partitioned further into three factors:

Kb,j, αi,j and γ∗
i,j, where γ∗

i,j is a pseudo-activity coefficient for each component i on

stage, j, i.e.,

Ki,j = Kb,jαi,jγ
∗
i,j, i = 1, ..., NC, j = 1, ..., N. (3.35)

The pseudo-activity coefficient γ∗
i,j is expressed as a function of additional parame-

ters ai,j and bi,j and the resulting formulation is given as

ln γ∗
i,j = ai,j + bi,jxi,j, i = 1, ..., NC, j = 1, ..., N. (3.36)

Similarly, an approximate enthalpy model replaces the enthalpy departure function

with the simple linear functions, i.e.,

∆hV
j = cj − dj

(
Tj − T ∗

j

)
,

∆hL
j = ej − fj

(
Tj − T ∗

j

)
,

(3.37)

where T ∗
j is a reference temperature. ∆hV

j is the vapour phase enthalpy departure

for stage j, defined as hV
j −h

V,o
j , where hV,o

j is the ideal-gas mixture enthalpy for stage

j, and ∆hL
j is the liquid phase enthalpy departure for stage j, defined as hL

j − hV,o
j .

The parameters dj and fj represent the mean residual heat capacities for the vapour

and liquid phases, respectively, cj represents the vapour enthalpy departure at T ∗
j ,

and ej accounts for the heat of vaporisation relative to that of the the ideal gas. The

parameters cj, dj, ej and fj are evaluated at every outer-loop iteration. Note that we

employ the approximate enthalpy model only when calculation with the rigorous

thermodynamic model fail to achieve convergence. This is because the additional

complexity involved in the use of two enthalpy models may not always be justified
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(Jelinek, 1988).

Once all the parameters for the approximate thermodynamic model are specified

in the outer-loop iteration, the original MESH equations can be reformulated with

the following iteration (or independent) variables:

Sb,j = Kb,jVj/Lj , j = 1, ..., N

RL
j = 1 + Uj/Lj , j = 1, ..., N

RV
j = 1 +Wj/Vj , j = 1, ..., N

, (3.38)

where Sb,j is a stripping factor for the base component, RL
j and RV

j are liquid-phase

and vapour-phase withdrawal factors, respectively. In our study, there are no side

streams resulting in the RL
j = RV

j = 1.

The calculation in the inside-loop is based on the vapour and liquid phase compo-

nent flowrates rather than the mole fractions. Their relationships with the vapour

and liquid phase compositions and the total molar flowrate are as follows:

yi,j = vi,j/Vj, xi,j = li,j/Lj, zi,j = fi,j/Fj

Vj =
NC∑
i=1

vi,j, Lj =
NC∑
i=1

li,j, Fj =
NC∑
i=1

fi,j, i = 1, .., NC, j = 1, .., N
. (3.39)

By incorporating the iteration variables and component flowrates, the MESH equa-

tions (Equation (3.1) to (3.4)) can be rewritten as:

li,j−1 −
(
RL

j + αi,jSb,jR
V
j

)
li,j + (αi,j+1Sb,j+1) li,j+1

− fi,j = 0, i = 1, ..., NC, j = 1, ..., N

(3.40)

hL
j R

L
j Lj + hV

j R
V
j Vj − hL

j−1Lj−1 − hV
j+1Vj+1

− hF
j Fj −Qj = 0, j = 1, ..., N

(3.41)

vi,j = αi,jSb,jli,j, i = 1, ..., NC, j = 1, ..., N (3.42)
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3.3.3 Outer-loop property models

Given the set of primitive values for vi,j, li,j, Vj, Lj and Tj obtained from the inner-

loop calculation, the parameters of the approximate thermodynamic model are up-

dated using the rigorous thermodynamic model. All parameters in the approxi-

mate thermodynamic models are generated using the SAFT-γ Mie EOS (Papaioannou

et al., 2014) model. To obtain values for Aj and Bj in Equation (3.30), two temper-

atures must be selected for each stage. Here, the estimated or current temperatures

of the two adjacent stages, j − 1 and j + 1, are selected as T1 and T2, respectively, in

the following equations:

and

Bj =
∂ lnKb,j

∂(1/Tj)
=

ln (Kb,T1/Kb,T2)

(1/T1 − 1/T2)
,

Aj = lnKb,j −Bj

(
1

Tj

− 1

T ∗
j

) (3.43)

Note that Kb,j is calculated based on Equations (3.31)-(3.33). Then, the relative

volatilities are calculated based on the new Kb,j. Analogous to the Kb,j calculation,

the coefficients ai,j and bi,j for the nonideal system are updated by the evaluating

of the activity coefficients for two compositions of xi,j, separated by a difference δx,

with the relative sizes of all other liquid-phase mole fractions kept constant:

where,

ai,j = ln γi,j (Tj, Pj,xi)− bi,jxi,j bi,j =
ln γi,j

(
Tj, Pj,x

′
γ

)
− ln γi,j (Tj, Pj,xγ)

δx
,

x′
γ =

(
x′
1,j, . . . , x

′
i,j, . . . , x

′
NC,j

)
,

x′
i,j = xi,j + δx, x′

i,k, k ̸=i =
xk,j(1− xi,j − δx)

(1− xi,j)
, i = 1, ...NC, j = 1., , , N,

(3.44)

where γi,j is the liquid activity coefficient of component i for a given temperature Tj,

pressure Pj and composition xj, δx is an infinitesimal perturbation in the composi-

tion xi,j. In practice, δx is chosen as 10−4.
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3.3.4 Implementation

All process models for the initialisation step are implemented in the gPROMS Mod-

elBuilder 7.0.7 using a gSAFT Foreign Object interface. The convergence criterion

used for the IOM is based on the relative change in of the relative volatility values

between two successive iterations of the outer-loop (Jelinek, 1988):

error =
N∑
j=1

NC∑
i=1

∣∣αk+1
i,j − αk

i,j

∣∣ / (αk
i,j

)2 ≤ ϵ (3.45)

where k is an iteration number, ϵ is a user-specified convergence tolerance. A tight

tolerance of ϵ = 0.002×N was initially recommended by Russell (1983) and has been

used in the literature (Jelinek, 1988; Wang et al., 2020). When a good quality of ini-

tial guesses is provided, fast convergence can be achieved with an equation-oriented

(EO) process simulation framework in which a large set of algebraic equations is

solved simultaneously without simplifying an thermodynamic model. One strategy

to accelerate the of convergence of the calculations is therefore to make use of EO

numerical solvers combined with the IOM. Owing to the robustness of the EO nu-

merical solver embedded in the gPROMS, specifically “BDNLSOL” numerical solver,

more practical and relaxed convergence tolerances of ϵ = 1 for the absorber and

ϵ = 5 for desorber are used for the simulation. Once the convergence tolerance is

reached, the solution procedure for the IOM is switched to “BDNLSOL” solver pro-

vided that the sufficiently good initial guess on Vj, Lj, xj, yj, and Tj is obtained

from the last outer-loop calculation of the IOM.

When simulating the entire process, the IOM is used in a sequential manner: the

absorber model is solved first for the initial lean solvent conditions using the IOM;

Once the convergence achieved, the tighter convergence tolerance is achieved by

solving the absorber model using the EO solver; then the absorber model is solved

for the user-provided process specifications such as the purity of the clean gas and
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the composition, temperature, pressure of the lean solvent; Having the properties

of the liquid outlet stream conditions from the absorber model, the temperature of

the rich solvent stream entering the desorber is estimated; Then, the solution on the

desorber model is obtained in same manner. An overview of the algorithm is given

in Figure 3.3.

3.3.5 Results

In order to investigate the proposed initialisation strategy and assess whether it can

be used to provide a reliable way to achieve convergence for various molecules,

we test its numerical behaviour for three chemically-different solvent structures:

30 wt% of 2-aminoethanol (MEA), 1,3-Diamino-2-propanol (DAP) and N’-methyl-

2,2’-diaminodiethylamine (MDAEA). The process specifications, namely, the degree

of CO2 captured, lean solvent loading and desorber operating pressure, are varied

within physically realistic ranges to analyse performance, as summarised in Table

3.5. The initial estimates of Lj, Vj, xi,j, yi,j are given by solving flash calculations for

the global composition zj and Tj, Pj. The zj for the absorber is are assumed to be the

same for all stages and are initially estimated from the sum of the flue gas and lean

solvent component molar flowrates. The temperature, Tj for the absorber is given

Table 3.5: Process specifications used for the evaluation of IOM. MEA, DAP, and MDAEA
are shortened names of 2-aminoethanol, 1,3-Diamino-2-propanol, and N’-methyl-2,2’-
diaminodiethylamine, respectively.

Design specification Units MEA DAP MDAEA
Degree of CO2 captured % 85 90 90
Absorber operating pressure MPa 0.101 0.101 0.101
No. of ideal stages in the absorber 10 10 10
Desorber operating pressure MPa 0.200 0.108 0.102
No. of ideal stages in the desorber 10 10 10
Condenser temperature K 333 333 333
Minimum temperature approach K 10 10 10
Lean solvent circulation temperature K 313 313 313
Lean loading mol mol−1 0.1 0.2 0.7
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Figure 3.4: Column convergence profiles (error vs iteration number) for (a) absorber
for MEA (–▲–), DAP (–•–), MDAEA (–×–) and (b) desorber with 30 wt% MEA (–▲–),
30 wt% DAP (–•–), 30 wt% MDAEA (–×–)
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Figure 3.5: Column temperature profiles for the (a) absorber with 30 wt% MEA (–▲–
), 30 wt% DAP (–•–), 30 wt% MDAEA (–×–) and (b) desorber with MEA (–▲–), DAP
(–•–), MDAEA (–×–) at the convergence of IOM. The dashed lines represent the initial
estimates of the equilibrium stage temperatures. In the desorber, the condenser stage
is omitted since the temperature is fixed at 333 K and the stage 12 corresponds to the
reboiler
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as an average of the flue gas and lean solvent stream temperatures. The pressure

Pj is fixed at the absorber operating pressure. In the case of the desorber, the initial

global composition profile is set to be equal to the rich solvent composition coming

in to desorber inlet. The temperatures of the top and bottom stages of the desorber

are initially assigned via bubble point calculations at the expected composition and

desorber pressure. Given the two temperature estimates, the temperature profile of

the desorber is established as a linear temperature gradient.

In Figure 3.4, it can be seen that, when applied to the absorber, the IOM exhibits

asymptotic convergence behaviour, successfully reaching to desired convergence tol-

erance of ϵ = 1 within a few iterations for all cases. The IOM converges to the

solution at a much slower rate when applied to the desorber with DAP and MDAEA.

As can be seen in Figure 3.5, the initial estimates of the stage temperatures for the

desorber with DAP and MDAEA are within a few degrees of the final values and are

much closer than those of MEA. Nevertheless, the solution of the desorber column

with DAP and MDAEA requires a large number of iterations. This is attributed to

the large discrepancy between the initial estimates given for the liquid and vapour

molar flowrates and the final solution, as reflected in the large initial error values,

of magnitude of 104 (see Figure 3.4(b)). The slow convergence is also likely caused

by a lack of parameters that take into account the compositional dependence in the

Kb model. However, the use of the local compositional dependence model that is

applied to the absorber introduces four additional parameters for each equilibrium

stage and requires the calculation of activity coefficients for the 2NC × N set of

liquid compositions at every outer-loop iteration. Given that the desorber column

operates at a higher temperature, where the compositional effects (or nonideality in

the liquid phase) are expected to be less significant, the original Kb model may be

significant as it can reduce the computational cost of the outer-loop.

It can also be seen that error in the desorber cases with DAP and MDEAE decreases

rapidly in the few iterations but then progresses slowly towards the convergence tol-
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erance. This suggests that applying an adaptive damping factor would be desirable

to control the step size when updating the simple thermodynamic parameters, such

that quicker convergence may be achieved by avoiding oscillations or overshoots in

iteration variables. However, this additional complexity would not be in keeping

with our objective to develop an initialisation procedure to support process optimi-

sation. In summary, a sufficiently good overall convergence is achieved with the

IOM, indicating that the proposed initialisation procedure can be applied prior to

the process optimisation at different operating conditions, process specifications and

solvent types.

3.4 Parametric study and process optimisation

In this section, a parametric study is carried out aiming at developing an optimisation

formulation for the process by investigating the relative impact of selected process

parameters on key performance indicators (KPIs).

3.4.1 Model input

The process model and cost model previously developed are applied to a 400 MWe

combined CCGT power plant (Bailey & Feron, 2005) using 30 wt% MEA (mass of

MEA/(mass of MEA + mass of H2O)) as the solvent. The flue gas flowrate and

composition taken from the power plant data and the process specifications defined

as the base case are presented in Table 3.6. Note that the original data are modified

so that the of oxygen mole fraction (10%) is lumped into the nitrogen mole fraction.

The following process operating parameters are varied, starting from the baseline

defined in Table 3.6: amount of CO2 captured (%), lean solvent temperature T0 (K)

at the absorber inlet, desorber operating pressure PNd
(MPa), lean loading θ0 (mol

mol−1) and condenser temperature Tcond (K). The following criteria are employed as

KPIs:
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• Solvent circulation rate per ton of CO2 removed (kg ton-CO−1
2 ), which is in-

dicative of equipment size and absorption/desorption efficiency of the solvent

for given operating conditions. Note that the solvent circulation rate is defined

as the total flowrate of the lean solvent stream recycling back to the top of the

absorber.

• Four energy metrics in GJ ton-CO−1
2 : (i) the total thermal energy, (ii) the cool-

ing duty in the lean amine cooler, (iii) the cooling duty in condenser, and (iv)

the energy requirement in the reboiler per ton of CO2 captured. These repre-

sent the energy efficiency of the CO2 capture plant. The total thermal energy is

calculated as the sum of the lean amine cooler, reboiler, and condenser duties.

• Three economic metrics in $ millions year−1: The total annualised cost, TAC,

total cost of investment, TCI, and total operating expenditures, OPEX. Note

that OPEX is calculated as the sum of VC and FOM/CF as can be seen in Equa-

tion (3.5).

• Solvent loss (or slippage) per ton of CO2 removal (kg ton-CO−1
2 ), which repre-

sents the potential risk of environmental impact associated with emissions of

the amine solvent and its side products. The total solvent loss is calculated by

summing the amount of MEA in the clean gas stream coming out from the top

of the absorber and that in the CO2 gas stream leaving the condenser.

3.4.2 Results and discussion

Effect of target CO2 removal

The sensitivity of the KPIs is considered as a function of the amount of CO2 removed

from the flue gas while other parameters are fixed at the base case. The costs, energy

requirements, solvent loss and solvent circulation rate are calculated, and the results

are shown in Figure 3.6. As can be seen from Figure 3.6(a), there is a decrease in
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Table 3.6: Input values and baseline process specification of a CO2 capture process
model for a 400MW CCGT power plant (Bailey & Feron, 2005).

Base line process specification Units Value
Lean solvent flow rate m3 h−1 23
MEA concentration in lean solvent wt % 30.4
Absorber inlet flue gas rate Nm3 h−1 1,800,000
Absorber inlet flue gas CO2 molar composition mol% 5
Absorber inlet flue gas H2O molar composition mol% 12
Absorber inlet flue gas N2 molar composition mol% 83
Absorber inlet flue gas temperature K 323.15
Absorber operating pressure MPa 0.101
Temperature approach in heat exchangers K 10
Lean solvent temperature, T0 K 313.15
Desorber operating pressure, PNd

MPa 0.181
Lean loading, θ0 mol mol−1 0.25
Condenser temperature, Tcond K 333.15
Degree of CO2 captured % 90

solvent circulation rate as the proportions of CO2 removed is increased, although

small scale of the axis should be noted. The solvent circulation rate decreases until

it reaches a global minimum near 92% of CO2 captured and starts to increase after-

wards. This adverse effect of the target removal on the solvent circulation rate is

due to the amount of CO2 captured becoming a dominating factor at the lower CO2

removal target, whereas the impact of the absolute solvent flowrates (in kg h−1)

in the system is predominant at the higher target values, yielding a higher solvent

circulation rate for every ton of CO2 removed. This is indeed in consistent with

the trends in energy requirement as shown in Figure 3.6(b), making the changes in

the specific thermal energy requirement marginal within a range between 46-82%

of CO2 removal. Although the energy requirements appear almost constant on first

inspection, they increase slightly as the removal target increases (by 2.7% at 98%

removal, relative to the base case) at the higher target range, whereas they decrease

slightly at the lower target range. In Figure 3.6(c) the influence of the CO2 removal

target on the TAC and how it is distributed across TCI and OPEX can be seen. It is

clear that the TAC, TCI and OPEX increase rapidly with increasing removal target.



CHAPTER 3. MODELLING A CO2 CHEMICAL ABSORPTION PROCESS 57

Although not shown here, it is worth noting that the absolute solvent circulation

rate (in kg h−1) increases monotonically as the CO2 capture target increases. This

is therefore leads to larger sizes of the process units and higher operating costs. In

Figure 3.6(d), it can be seen that there is a reduction in the specific amount of amine

loss in the vapour phase as the CO2 removal target increases. This can be explained

by the higher amount of solvent circulation entering the absorber (i.e., more non-

volatile solute is presents in the absorber) thus leading to a lower vapour pressure

of the solvent in the liquid mixture.

Effect of solvent lean loading

The lean solvent loading of the MEA solution is varied between 0.05 and 0.42 mol-

CO2 mol-MEA−1 for 80, 90 and 95% CO2 removal and the results are displayed in

Figure 3.7. As shown in Figure 3.7(a), the solvent circulation rate increases as the

lean loading increases. As can be seen from the scale, the impact is much more

pronounced than when varying the target CO2 captured. At high values of the lean

loading, the lower CO2 cyclic capacity of the solvent, defined as the difference of the

CO2 loading in the rich solvent stream coming out of the bottom of the absorber and

lean loading, leads to a higher solvent circulation rate in order to remove the target

CO2 amount. The variation of the lean loading is found to have a significant impact

on the the thermal energy requirement and cost criteria as shown in Figure 3.7(b)

and (c). The trend profiles have global optimal points near a lean amine loading of

0.33 for the total required energy and 0.34 for the TAC. At low lean loadings (0.05-

0.30 mol mol−1), the total required energy decreases with increasing lean loading

despite the accompanying increase in the solvent circulation rates. This is because

the energy requirement for the solvent regeneration dominates over the effect of in-

creasing the solvent circulation rates. As a result, the greater ease in meeting solvent

purity targets in the desorber leads to a net reduction in total energy consumption.
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Figure 3.6: Results of the sensitivity analysis obtained by varying the degree of CO2 cap-
tured from the flue gas using MEA: (a) The solvent circulation rate (103 kg ton-CO−1

2 );
(b) Energy requirement profiles in GJ ton-CO−1

2 , including the total required energy for
the CO2 absorption-desorption process (—-), a reboiler duty (—-), the condenser duty
(—-) and the cooling duty(—-); (c) Cost profiles in $million year−1 including TAC (—-),
the annualised OPEX (—-), and the TCI (—-); and (d) the solvent loss (kg ton-CO−1

2 ).
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Figure 3.7: Results of the sensitivity analysis obtained by varying the lean loading
(moles of CO2 dissolved in 1 mole of MEA of a lean amine solvent stream) at 90%
of CO2 removal using MEA: (a) The solvent circulation rate (103 kg ton-CO−1

2 ); (b) En-
ergy requirement profiles in GJ ton-CO−1

2 , including the total required energy for the
CO2 absorption-desorption process (—-), a reboiler duty (—-), the condenser duty (—-)
and the cooling duty(—-); (c) Cost profiles in $million year−1 including TAC (—-), the
annualised OPEX (—-), and the TCI (—-); (d) The effect of the lean loading on the TAC
at different degrees of CO2 removed ( —- : 85%, - - - : 90%, and —- : 95%); and (e) the
solvent loss (kg ton-CO−1

2 ).
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Figure 3.8: Results of the sensitivity analysis obtained by varying the lean solvent tem-
perature at 90% of CO2 removal using MEA: (a) The solvent circulation rate (103 kg
ton-CO−1

2 ); (b) Energy requirement profiles in GJ ton-CO−1
2 , including the total required

energy for the CO2 absorption-desorption process (—-), a reboiler duty (—-), the con-
denser duty (—-) and the cooling duty(—-); (c) Cost profiles in $million year−1 includ-
ing TAC (—-), the annualised OPEX (—-), and the TCI (—-); and (d) the solvent loss
(kg ton-CO−1

2 ).
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Figure 3.9: Results of the sensitivity analysis obtained by varying the desorber operat-
ing pressure at 90% of CO2 removal using MEA: (a) The solvent circulation rate (103

kg ton-CO−1
2 ); (b) Energy requirement profiles in GJ ton-CO−1

2 , including the total re-
quired energy for the CO2 absorption-desorption process (—-), a reboiler duty (—-),
the condenser duty (—-) and the cooling duty(—-); (c) Cost profiles in $million year−1

including TAC (—-), the annualised OPEX (—-), and the TCI (—-); and (d) the solvent
loss (kg ton-CO−1

2 ).
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Figure 3.10: Results of the sensitivity analysis obtained by varying the condenser tem-
perature at 90% of CO2 removal using MEA: (a) The solvent circulation rate (103 kg
ton-CO−1

2 ); (b) Energy requirement profiles in GJ ton-CO−1
2 , including the total required

energy for the CO2 absorption-desorption process (—-), a reboiler duty (—-), the con-
denser duty (—-) and the cooling duty(—-); (c) Cost profiles in $million year−1 includ-
ing TAC (—-), the annualised OPEX (—-), and the TCI (—-); and (d) the solvent loss
(kg ton-CO−1

2 ).
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One other possible explanation for the decrease in reboiler and condenser duties at

higher lean loading is the lower liquid traffic in the desorber, i.e., the lower reflux or

boiling ratios required to achieve the solvent purity target; therefore, both the TAC

and the total thermal energy requirement decrease as the value of lean loading in-

crease. The higher partial pressure of CO2 (i.e., higher CO2 content) in the reboiler,

which is linked to the heat of vaporisation, can also explain the low heat duty, as

less steam generation is required to maintain the driving force. The decrease in TAC,

OPEX, and TCI seen for lean loading of 0.05-0.30 mol mol−1 (see Figure 3.7(c)) can

be explained in the same manner.

A similar trend is observed for all degrees of CO2 captured considered as shown

in Figure 3.7(d). Note that the lean loading for the 95% removal target was varied

up to 0.4 due to the limits on the minimum driving force for the CO2 chemical

absorption. The value of the optimal lean loading differs depending on the degree

of CO2 captured. The higher removal target results in a lower optimal lean loading at

which a higher CO2 absorption capacity is achieved and thus this effectively reduces

the solvent circulation rate and the corresponding energy requirement for solvent

regeneration. It should be noted that the differences in the optimal lean loading

and the corresponding TAC value for each degree of CO2 removal considered are

insignificant.

It can also be seen from Figure 3.7(e) that the solvent loss decreases with increas-

ing amine loading due to the increase in the solvent circulation rate, as also observed

when varying the CO2 removal target.

Effect of lean solvent temperature

In Figure 3.8 calculations for changes in the lean solvent temperature at the inlet of

the absorber between 313K and 334K are shown. The impact of this variation on the

KPIs is generally much smaller than that of varying the lean loading. As shown in
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Figure 3.8(a), the solvent circulation rate decreases slightly as the lean solvent tem-

perature increases within the ranges of interest, owing to the higher CO2 solubility

in the amine solution in the absorber, potentially induced by higher (average) CO2

partial pressures. As can be observed from Figure 3.8(b), varying the lean solvent

temperature at the absorber inlet has no significant effect on the reboiler and con-

denser duties; the duties are seen to increase slightly as the lean solvent temperature

increases. This may be explained by the increases in the solvent concentration in the

rich solvent stream caused by a higher loss of water in the absorber at higher lean

solvent temperatures, leading to a higher reboiler temperature. Although not shown

here, the reboiler operating temperature indeed increases as the lean solvent tem-

perature increases. In contrast, the cooling duty of the lean cooler decreases by 31%

when the lean solvent temperature is raised by 5K, resulting in a gradual decrease in

the total thermal energy requirement. As shown in Figure 3.8(c) the TAC increases

with higher lean solvent temperatures, while a large reduction in the overall heat

duty is seen. Such trends are attributed to the absorber being at a higher operating

temperature, at which more MEA evaporates at the top of the absorber. As a result,

the solvent loss is found to increase (see Figure 3.8(d)) and thus there is a corre-

spondingly higher demand for the solvent make-up. The potential discharge of the

solvent can be reduced by adding a wash section in order to mitigate the environ-

mental impact; however, this will require a higher utility cost for wash water.

Effect of stripper operating pressure

Figure 3.9 shows how the KPIs are influenced by the desorber operating pressure.

As shown in Figure 3.9(a), the solvent circulation rates does not change over the

ranges of desorber operating pressure considered since the pressure is not involved

in the calculation of the solvent circulation rate required to achieve a specific CO2

removal target. In Figure 3.9(b) it can be observed that the increase in pressure
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lead to a reduction in the reboiler duty and condenser duty, leading to a reduction in

the total thermal energy consumption. This may be explained by the higher desor-

ber temperature induced by the higher operating pressure. At the higher pressures

considered, an increase in desorber operating temperature plays a dominant role

in decreasing the CO2 solubility and increasing relative volatility, making it possible

to purify solvent at lower energy consumption. Interestingly the positive impact of

having a higher temperature on the thermal performance of the process is reduced

in the high operating pressure region. One of several possible explanations is that

the increase in the total pressure of the desorber results in a rise of the CO2 partial

pressure making the gaseous CO2 more soluble in the amine solution and competing

with the effect of higher temperature. A similar trend is observed in Figure 3.9(c)

in which TAC and OPEX decreases as the pressure decreases. This is attributed to

the decreased energy requirement achieved. It can be seen that the changes in TCI

are almost negligible, although it decreases slightly between 0.14-0.22 MPa. This is

due to the fact that the purchased equipment cost is a function of operating temper-

ature and pressure, in addition to size. As a result, the benefit of the cost reduction

achieved by having smaller sizes of process units is counter-balanced due to the neg-

ative impact of increases in pressure and temperatures. As can be seen in Figure

3.9(d), it appears that operating the desorber at the highest pressure is preferable in

order to improve the environmental aspects, as the lowest solvent loss is achieved.

Despite the benefits of higher pressures, it is not desirable to operate the desorber

at higher than 393-403 K, which corresponds to the 0.175-0.24 MPa, because the

corrosion and amine degradation rates can be accelerated at these elevated pressures

and temperatures.
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Effect of condenser temperature

The effects of varying the condenser operating temperature on the KPIs is shown

in Figure 3.10. As can bee seen in Figure 3.10(a)-(c), the variation of the con-

denser operating temperature has no visible effect on the solvent circulation rate,

energy consumption, and cost criteria, although there is a slight reduction in the

condenser duty. As can bee seen in Figure 3.10(d), the amine loss increases as the

condenser temperature increases due to the higher solvent content in the CO2 gas

stream leaving the condenser. The cost reduction associated with the energy penalty

in the condenser is therefore balanced with the cost increase in the amine make-up,

making the changes in the total cost and energy consumption insignificant.

3.4.3 Process optimisation for MEA and AMPD

Table 3.7: Process constraints used in the optimisation study

Parameters Units Bounds
Lean loading, θ0 mol mol−1 [0.02,1.5]
Desorber pressure, Pd MPa [0.102, 0.8]
Lean solvent temperature, T0 K [313, 333]
Lean solvent stream flowrate, ṁsol mol s−1 [10,106]

The parametric study showed that each key operating parameter has a different

level of contribution on the cost and energy penalty criteria, meaning that an optimal

design of CO2 chemical absorption-desorption processes can be realised by selecting

the appropriate combination of the process variables. Given the importance of choos-

ing suitable operating conditions to achieve an optimal performance of the process,

the mathematical model of the absorption-desorption process is used in formulat-

ing and solving an process optimisation problem. In view of the parametric study,

the optimisation problem is formulated with degrees of freedom: the lean solvent

loading (θ0), the lean solvent temperature (T0), and the desorber operating pressure

(PNd
), in order to identify the optimal combination of the process conditions that
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minimise the TAC. The target CO2 removal, condenser temperature, and minimum

approach temperature in the heat exchangers are fixed at the base case shown in

Table 3.6. In Table 3.7 the bounds on the decision variables and constraints used in

the optimisation problem are shown. In order to limit the negative environmental

impact, the following operating conditions are constrained with suitable upper and

lower bounds:

Treboiler ≤ TU
op, (3.46)

where Treboiler is the reboiler operating temperature and TU
op is the maximum allow-

able operating temperature introduced to avoid the thermal degradation of amine

solvents. The TU
op is set to 413 K for the optimisation.

Additional constraints to keep the size of the equipment reasonable are provided

as:
D ≤ DU

column,

H ≤ HU
column,

(3.47)

where DU
column and DU

column is an upper bound of the column diameter and height, re-

spectively. The same bounds are applied to both the absorber and desorber columns.

The values are specified as DU
column = 25 m and HU

column = 35 m.

The optimisation study is carried out for two solvents: MEA and 2-Amino-2-

methyl-1,3-propanediol (AMPD), to investigate the significance of choosing the sol-

Table 3.8: Results of the optimisation of the process model for MEA and AMPD.

Results MEA AMPD
Initial Optimal Initial Optimal

TAC($million year−1) 33.77 29.81 28.45 25.73
TCI($million year−1 6.752 8.047 9.065 8.951
OPEX ($million year−1) 26.40 21.15 18.77 16.17
Total energy consumption (GJ ton-CO−1

2 ) 12.74 9.32 11.23 7.93
Reboiler temperature (K) 394.1 397.1 393.2 399.0
Amine cyclic capacity (mol mol−1) 0.2272 0.1597 0.2251 0.2134
Lean amine loading, θ0 (mol mol−1) 0.2500 0.3167 0.2500 0.2610
Lean solvent temperature, T0 (K) 313.1 313.2 313.2 335.4
Desorber operating pressure, PNd

(MPa) 0.180 0.206 0.180 0.216
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vent in conjunction with the optimal process conditions. The optimisation problem

is solved by making use of the sequential quadratic programming algorithm embed-

ded in gPROMS ModelBuilder 7.0.7 for multivariate nonlinear programming with

the gSAFT Foreign Object interface for the SAFT-γ Mie calculations. The optimi-

sation parameters used for gPROMS NLP solver are as follows: “InitialLineSearch-

StepLength”= 0.1; “MaxLineSearchStepLength”= 0.4; “NoImprovementTolerance”

= 10−15; “OptimisationTolerance” = 5−5.

The results of the optimisation are shown in Table 3.8. For both MEA and AMPD,

the TAC is reduced by 11.7% and 9.5%, respectively, compared to the performance

of the process at the initial guess. The initial guess provided is same as the base case

used for the parametric study. In the case of MEA, the reboiler duty associated with

the solvent regeneration is reduced significantly by decreasing the purity require-

ment in the desorber (the lean loading is increased by 26.7%). The increase in the

TCI caused by the higher solvent circulation rate is compensated by the significant

reduction in the energy penalty. By contrast, the optimal performance is achieved

at a slightly higher lean loading and increased lean solvent temperature for the case

of AMPD, leading to decreases both in TCI and in OPEX. As can be seen in compar-

ing of the results with the two solvents, the dominant factors that drive the optimal

combination of process conditions clearly differ between the solvents, highlighting

the important role played by the molecular properties within the process.

3.5 Conclusions

In this chapter, a techno-economic model for CO2 absorption-desorption processes

using an equilibrium-based approach has been developed with the aim of integrat-

ing it into a CAMPD framework in which a variety of operating conditions can be

evaluated. A distinctive feature of the model presented here is that both vapour-

liquid equilibrium and reactions are treated with the SAFT-γ Mie (Papaioannou et al.,



CHAPTER 3. MODELLING A CO2 CHEMICAL ABSORPTION PROCESS 69

2014) thermodynamic framework, by which the performance of new solvents within

the process can be assessed even when the available data is limited or non-existent.

Simulation of the process model with MEA as a solvent has been shown to deliver

quantitative agreement with the pilot-plant data of CASTOR (2004). Accurate pre-

dictions are obtained for the gas and liquid streams leaving of the absorber, with a

moderate discrepancy (22.58%) in a reboiler duty.

In order to make the solution of the process model more robust, an initialisation

strategy has been developed for the process simulations. The approach is derived

from the inside-out algorithm in order to handle the numerical complexities inher-

ent in the large number of mass- and heat-balance equations coupled with the com-

plex thermodynamic model used here. The performance tests conducted for several

solvents using the proposed initialisation strategy has shown it provides reliable con-

vergence behaviour for a diverse set of process specifications without requiring good

initial guesses.

Following the successful calculation of the process performance, a sensitivity study

has been carried out to identify the contributions of the key operating parame-

ters to the economic, environmental and thermal performance of the reactive CO2

absorption-desorption process using an aqueous MEA solutions. The lean loading,

lean solvent temperature and the desorber operating pressure are found to have the

greatest impact on the total annual cost and the total energy consumption. A large

reduction in the reboiler duty, which is the main contributor to the TAC, and in the

total energy requirement, is observed by controlling the key operating parameters.

The results of the parametric study has demonstrated that the process modelling

approach developed can capture the trends of the overall process performance.

In order to balance the conflicting effects of the key operating parameters on pro-

cess performance, an optimisation study has been carried out for two types of sol-

vents, MEA and AMPD. The overall total annual cost in terms of capital investment

and energy cost was minimised, while the degree of CO2 captured and the condenser
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temperature were fixed at specified values. The results indicate that a reduced cost

can be achieved by varying combinations of the optimal process conditions that are

tailored to the type of solvent, highlighting the importance of accounting for the sol-

vent performance within the context of the process as opposed to focusing solely on

solvent properties.



CHAPTER 4

Computer-aided molecular and process design: optimal solvent

design for CO2 chemical absorption processes

Following the development of the CO2 chemical absorption process model in the pre-

vious chapter, we present a robust CAMPD algorithm to solve the integrated design of

optimal aqueous amine solvents and associated CO2 chemical absorption processes.

The focus is on improving an outer-approximation (OA)-based framework such that

numerical difficulties caused by incompatible combinations of process and molecular

variables are avoided. In order to achieve this, new feasibility tests are introduced as

an extension of the approach proposed by Gopinath et al. (2016) in order to ensure

its applicability to the more complex setting of CO2 chemical absorption.

4.1 Introduction

Given the importance of computer-aided molecular and process design (CAMPD)

techniques, a variety of solution methods have been developed to handle the com-

plexities that arise from the large number of possible molecules and from the inher-

ent non-linearity and non-convexity of structure-property relationships and process

71
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models. However, most algorithms are prone to failing in generating a feasible solu-

tion when the integrated solvent-process model entails a large-scale mixed-integer

nonlinear formulation, and more importantly, when a significant portion of the

search space is infeasible. Identifying feasible ranges of process variables that make

it possible to avoid infeasibilities is difficult because it requires a priori knowledge of

the properties of the solvents and their phase behaviour at process conditions.

In addition, it may be entirely infeasible to satisfy the separation requirements

with particular solvent candidates. One class of methods suited for overcoming the

infeasibilities aforementioned are decomposition-based approaches. In these, the

process and molecular design are decoupled and treated as a series of separate sub-

problems. Each subproblem is often formulated with a different level of complexity

and a reduced size of the design space in order to make the problem tractable.

Hostrup et al. (1999) proposed a hybrid method for the integrated design of

solvents and environmentally-benign separation processes. In their method, they

first used thermodynamic insights and knowledge of the system to eliminate less at-

tractive solvents and process flowsheet options. The remaining candidate solvents

and flowsheet structures were then optimised to find the best objectives. A similar

CAMPD solution approach was adopted by Roughton et al. (2012) for the identi-

fication of new liquid entainers for extractive distillation processes to improve en-

ergy efficiency. Karunanithi et al. (2006) developed a decomposition-based CAMPD

framework for the design of optimal solvents and solvent mixtures for the crystalli-

sation of ibuprofen. The framework consists of several subproblems: the first sub-

problem was formulated as a computer-aided molecular design (CAMD) problem

aiming to reduce the discrete solvent search space by evaluating molecular struc-

tural constraints, pure component properties, mixture properties and miscibility of

compounds. Subsequently, a MINLP CAMPD problem was solved for the reduced

search domain. Alternatively, the process optimisations were solved by enumerat-

ing all possible solvents if the number of remaining feasible molecular candidates
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was very small. Papadopoulos & Linke (2006b,a) developed a CAMPD framework

that decouples the original MINLP problem into two subproblems: a multi-objective

optimisation (MOO) method was employed to screen Pareto-optimal solvents with

respect to key molecular properties, without considering their interdependence with

the relevant process; and a molecular clustering approach that integrates the pro-

cess and molecular design was then applied to select solvents from the set of iden-

tified Pareto-optimal solvents. This method has been extended by Papadopoulos

et al. (2010a, 2013) for the design of optimal working fluids and working fluid mix-

tures for Organic Rankine Cycle (ORC) processes. A more recent development in

decomposition-based methods is outlined by Eden et al. (2004) and Eljack et al.

(2007). In their studies, molecular properties were optimised to maximise process

performance, such as an economic value of the process, without considering dis-

crete decisions on molecular structures. Subsequently, molecular structures that can

match the identified property targets were explored by solving a property-matching

CAMD problem (Maranas, 1997). Bommareddy et al. (2010) incorporated a similar

strategy using a group contribution method (Marrero & Gani, 2001) for the repre-

sentation of molecular property operators. Within the family of property-targeting

approaches, Bardow et al. (2010) and Oyarzún et al. (2011) proposed a two-stage

method for integrated molecular and process design using the perturbed-chain sta-

tistical associating fluid theory (PC-SAFT) as the property model. In the first stage,

continuous parameters characterising the molecules within the PC-SAFT equation

of state were optimised together with process variables. The hypothetical optimal

molecule obtained in the first step was then mapped onto an existing molecule in

the second stage. The performance of the proposed method has been demonstrated

for the design of solvents for pre-combustion CO2 capture (Stavrou et al., 2014), and

the design of solvents for the pre-combustion carbon capture in the work of Lampe

et al. (2015).

While there have been encouraging advances in decomposition-based CAMPD
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techniques that allow for the generation of optimal molecular candidates, some

drawbacks of these methods have been discussed in Ng et al. (2015); Gopinath

et al. (2016); Austin et al. (2016); Schilling et al. (2020). A major disadvantage

of decomposition-based methods is that they can result in suboptimal solutions if

the heuristic or expert judgement made in the initial step (introduced to reduce the

search space) does not capture all process options. Therefore, the quality of the

solutions is often highly dependent on the formulation of the subproblems. Unfor-

tunately, it is not always straightforward to decompose the original problem into

several steps. In order to overcome the limitations arising from solving the process

and molecular design problem separately, direct solution approaches that aim to

solve the full CAMPD problem have been receiving increasing attention.

Burger et al. (2015) proposed a hierarchical approach to address the numerical

difficulties in the solution of direct CAMPD problems. Good initial guesses for an

integrated solvent and CO2 physical absorption process design problem were gen-

erated using an MOO technique applied to a simplified thermodynamic-based de-

sign problem. Once the Pareto-optimal set of solvent candidates has been gener-

ated based on the simplified process model, a MINLP problem with the full process

model integrated was solved, taking the Pareto-optimal solvents as starting points.

One difficulty in applying this method is that there is no guarantee that the Pareto-

optimal solvents represent solutions that are near-optimal or even feasible in the

full CAMPD model. Furthermore, simplified design problem that involve highly non-

ideal phase behaviour and nonlinear structure-property model equations might be

very challenging, implying that identifying each Pareto-optimal solution can become

computationally very expensive.

Several attempts have been made to solve the full MINLPs directly. Zhou et al.

(2017) adopted a direct solution approach for the MINLP arising from the formula-

tion of the computer-aided solvent and process design problem. In their contribu-

tion, a hybrid stochastic-deterministic optimisation approach was proposed where a
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genetic algorithm (GA) was applied to generate molecular candidates and a gradient-

based nonlinear programming (NLP) algorithm was used to optimise the process for

a given set of molecular candidates. The effectiveness of the method was tested on

a CO2 physical absorption process model. Although the results demonstrated the

robustness of the algorithm, there were several difficulties when applying it to more

complex systems. Firstly, the decisions made on the discrete variables which are

handled by the GA are not the only concern when solving the CAMPD problem. In

the optimisation of the process model, one needs to make sure that the molecules

are feasible with respect to the specified process configurations such that the over-

all performance is correctly evaluated as a function of molecules. When generating

a new set (population) of molecules with the GA, in the presence of strong non-

linear relationships between the molecule and process, the selection of feasible or

high-performance molecules becomes very difficult if many of molecules violate the

process constraints. Moreover, increases in the population size of the GA greatly

increases the computational cost. Other authors have also focused on solving the

full MINLP model directly. Schilling et al. (2017) extended the two-stage continu-

ous molecular targeting (CoMT) to a 1-stage CoMT-CAMD approach (Bardow et al.,

2010). The MINLP problem was solved using an outer approximation (OA) algo-

rithm to identify optimal hypothetical working fluids, with the use of PC-SAFT, and

associated ORC process conditions. The same approach was applied to the design

of working fluid mixtures for the ORC process (Schilling et al., 2020). While the

applicability of the method seems promising, the formulation of the problem was

developed based on the reverse approach which requires the molecular mapping of

the hypothetical molecular structure to a real molecule in a final step. The actual

performance of the molecules found by reverse mapping deviated from the optimal

value with the hypothetical working fluids as reported in Table 4 and 5 of the original

paper (Schilling et al., 2017).

An alternative strategy for the simultaneous approach is outlined by Gopinath
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(2017). Motivated by the work of Buxton et al. (1999), the authors developed a set

of feasibility tests and incorporated them into the OA algorithm, with very promis-

ing results, as this approach provides excellent performance for complex CAMPD

problems and it can capture the interactions between the full process model and

molecular behaviour without the addition of great computational burden. The feasi-

bility tests could served as precursors to the solution of the primal problem, through

which infeasible molecules and process operating conditions could be eliminated

from the search space before tackling the process optimisation problem. By auto-

matically detecting the infeasibilities as a function of molecular structure, not only

was convergence of the problem achieved regardless of user-provided initial guesses,

but computational efficiency was also improved without making significant model

simplifications or introducing any approximations of the process and molecular do-

mains. The robustness of the algorithm was validated in the design of solvent and

processes for the physical absorption of CO2 from high pressure natural gas. The

concept of physical reduction of the domain was also implemented in integrated

working fluid and ORC process design (Bowskill et al., 2020).

The goal of the current study is to develop a robust optimisation framework for the

integrated design of an optimal aqueous amine solvent and CO2 chemical absorption

process. The algorithm incorporates tailored feasibility tests into the OA algorithm

(Duran & Grossmann, 1986) for the solution of CAMPD problems such that large

molecular and process design spaces are explored simultaneously without difficulty.

The design of the feasibility tests focuses on recognising the feasible domain based

on: (1) the physicochemical properties of the pure solvent and aqueous solvent mix-

ture; (2) an analysis of the phase behaviour of mixtures of the solvent, water and

CO2 carried out using the Helmholtz free Energy Lagrangian Dual (HELD) algorithm

(Pereira et al., 2012), which provides reliable phase equilibrium calculation; (3)

ability of the solvent mixture to meet a target degree of separation. The efficiency

of the proposed algorithm is highlighted through case studies of CO2 chemical ab-
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sorption processes. An optimisation formulated is developed based on the process

model introduced in Chapter 3 and the SAFT-γ Mie group contribution equation of

state (EOS) (Papaioannou et al., 2014) is applied to facilitate the reliable prediction

of the physical properties and phase behaviour of the water-solvent-CO2 mixtures.

For each case study, an economic criterion is used to evaluate the performance of the

solvent/process and to identify optimal designs.

4.2 Problem formulation

4.2.1 Solvent design space

The molecular design space is constructed by selecting groups that are present in

typical CO2 capture solvents, taking into account the availability of group contri-

bution parameters within the various group contribution methods used. The 13

functional groups are included: NH2CH2, NH2CH, NH2C, NHCH3, NHCH2, NHCH,

NCH3, NCH2, CH3, CH2, CH, C, OH. The property prediction methods of Hukkerikar

et al. (2012b) are used for the normal melting temperature (Tmp), the auto-ignition

temperature (TAIT), the flash point (Tfp), and the LC50 toxicity of the solvents se-

lected (LC50,mgL). The method of Hsu et al. (2002) is used to predict surface tension

(σ) and viscosity (µ). The SAFT-γ Mie group contribution EOS (Papaioannou et al.,

2014; Khalit, 2019) is used to predict the fluid-phase behaviour of water, solvent and

CO2 mixtures. To make use of this thermodynamic model, the original functional

groups are translated into the following SAFT-γ Mie groups: NH2, NH, N, CH2, CH,

C, CH2OH, CH2OHShort. The larger groups CH2OH and CH2OHShort are introduced to

provide improved accuracy relative to adopting simple groups such as CH2 and OH

(Haslam et al., 2020) by accounting for the polarisation of the CH2 when close to

a functional group. The CH2OHShort is introduced when the alkanolamine includes

less than three carbon along the carbon backbone to account for proximity effects
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between the amine and hydroxyl groups. For example, MEA, defined as nNH2CH2 = 1,

nCH2 = 1, nOH = 1, can be translated into an equivalent solvent structure for use in

the SAFT-γ Mie EOS, i.e., nS,NH2=1, nS,CH2=1, nS,CH2OHShort
=1, where the subscript

S denotes the SAFT-based description of the molecule.

An equality constraint introduced to ensure molecular feasibility of the acyclic

compounds (Odele & Macchietto, 1993) is defined as
N∑
i=1

(2− vi)ni − 2 = 0, where

vi is the valence of group i. The total number of functional groups in the molecule

is limited by an upper bound, nU
t . The total number of groups with amine and

hydroxyl functionality are constrained by lower and upper bounds [nL
GA

, nU
GA

] and

upper bound nU
OH, respectively.

The use of the two sets of functional groups requires additional constraints to en-

sure the equivalence of the structures. The choice of groups means, for instance, that

OH can only appear in the designed solvent when connected to CH2. An additional

constraint,
∑

j∈GCH2

nCH2 ≥ nOH, is imposed to enforce this. With GC-based approaches,

the molecular structure is defined by the number of groups of each type appearing

in the molecule without taking into account the connectivity, meaning that it is not

possible to distinguish some isomers. As a result, it is assumed that molecular iso-

mers represented by the same functional groups exhibit identical properties. With

this mind, constraint that limits the total number of CH and C groups appearing in

a solvent to an upper bound nU
iso is introduced in order to reduce degeneracy as a

consequence of having many isomers. The resulting formulation of the molecular

feasibility constraints is as follows:
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N∑
i=1

(2− vi)ni − 2 = 0,

nL
GA
≤
∑
j∈GA

nj ≤ nU
GA

,

N∑
i=1

ni − nU
t ≤ 0

N∑
i=1

nOH −
∑

j∈GCH2

nj ≤ 0

∑
j∈Giso

nj − nU
iso ≤ 0

ni ∈ {nl,i, nu,i} , i = 1, ..., q

(4.1)

where GA is the set of amine groups given by GA={NH2CH2, NH2CH, NH2C, NHCH3,

NHCH2, NHCH, NCH3, NCH2}, GCH2 is the set of functional groups that include CH2

given by GCH2={NCH2, NHCH2, CH2, NH2CH2}, Giso is a set of functional groups

that include CH or C given by Giso={NHCH, NH2CH, NH2C, CH, C}.

4.2.2 Overall problem statement

For the formulation of the integrated design problem that encompasses solvent and

chemical absorption process optimisation, we make use of the process and cost mod-

els that were developed and validated in Chapter 3, and the process configuration

is shown in Figure 3.1. As for the process optimisation problem of Section 3.4.3,

the total annualised cost (TAC) is selected as objective function to measure the over-

all economic performance and we consider three key process design variables: the

temperature of the solvent entering the absorber (T0), the lean solvent loading (θ0)

defined as moles of CO2 absorbed in 1 mole of amine solvent, and the desorber pres-

sure (PNd
). The set of design variables is expanded to include the solvent structure

as defined by n. This results in a MINLP problem (MINLP), as given in Section 2.2.

The model input and process specification used in this study are listed in Table 3.6.
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The main contribution of the presented CAMPD framework in this chapter is to

solve the solvent and CO2 chemical absorption process optimisation simultaneously

without making significant model simplifications or introducing any approximations

of the process and molecular domains. A key concept used in the proposed CAMPD

approach is the introduction of feasibility tests within an OA framework (Duran &

Grossmann, 1986; Fletcher & Leyffer, 1994) aiming to eliminate infeasible process

conditions and solvent structures from the search space before solving the highly

nonlinear process optimisation problems. In the original OA algorithm, the prob-

lem is decomposed into a nonlinear programming (NLP) subproblem, the primal

problem, and a mixed-integer linear programming (MILP) subproblem, the master

problem. The algorithm procedure begins by solving the first primal problem either

for the fixed discrete variables, n or for relaxed NLP. The master problem is then

solved for the approximated design space obtained by linearising objective functions

and active constraints around the NLP solution. The solution of the master problem

is used as input variables for the subsequent primal problem. The iterative proce-

dure of NLP and MILP continues until the algorithm converges. In the proposed

CAMPD framework, feasibility tests are used to determine if the current set of dis-

crete variables can derive desired process behaviour without solving the full process

optimisation problem. If the molecule is found to be infeasible, it is discarded from

consideration in subsequent iterations, and the procedure is returned to the master

problem to generate a new molecule. If tests are passed, the overall process perfor-

mance of the molecule is evaluated by solving the primal problem. This process is

repeated until the termination criteria have been satisfied. The overall procedure of

the standard OA algorithm and with the feasibility tests are displayed in Figure 4.1

and elements of the proposed algorithm are discussed in more detail in the remain-

der of this chapter.
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Figure 4.1: Schematic illustrating of (a) a standard outer-approximation algorithm and
(b) the proposed outer approximation algorithm framework with feasibility tests. Red
boxes represents feasibility tests introduced with modifications. This figure is an adap-
tation of Figure 2 in Bowskill et al. (2020)

4.3 Feasibility tests

In this section, we describe four feasibility tests that are applied to the solvent design

formulation for the CO2 chemical absorption processes. The aims of these tests are

to determine whether a given solvent is infeasible, to eliminate process conditions

that are incompatible with the chemical solvent, and to identify good starting points

for NLP problem optimisation.

In order to adapt the feasibility tests proposed by Gopinath et al. (2016) to more

complex setting of the CO2 chemical absorption-desorption process, several signifi-

cant modifications are made, such that the OA algorithm reinforced with new fea-

sibility tests can reliably generate solutions. Key differences are at: the formulation

of an optimisation problem to consider liquid immisibilities (Test 2); the reformula-
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tion of the separation feasibility test accounting for vapour-liquid-liquid equilibrium

(VLLE) and chemical reactions (Test3 and 4); the application of feasibility tests to a

quaternary system (Test3 and 4); and the derivation of new constraints to consider

the desorber (Test 3 and 4). In addition, the performance of different flash calcula-

tion approaches for the solution of the tests are systematically compared to improve

their convergence behaviour.

4.3.1 Test 1: Solvent property feasibility

Test 1 is employed to evaluate whether the properties of the pure candidate solvent

or those of the aqueous solution are within suitable ranges. In Test 1, seven essential

properties (Schilling et al., 2020; Harper et al., 1999); five pure solvent proper-

ties, namely the normal boiling temperature (Tbp), the normal melting point (Tmp),

toxicity as measured by the lethal dose concentration (LC50,mgL), the auto-ignition

temperature (TAIT) and the flash point (Tfp) and two mixture properties, namely the

dew point temperature (Tdew), and the viscosity (µ). The thermodynamic property

models used for the prediction of these properties and their sources are summarised

in Table 4.1. The properties that are not specified in Table 4.1 are predicted using

the SAFT-γ Mie EOS (Papaioannou et al., 2014).

For solvent handling to be feasible, the normal boiling point Tbp and the normal

melting point Tmp of the solvent are constrained by the lower and upper bound on

the solvent handling temperature i.e., TL
sh and TU

sh , respectively. This is to ensure

the solvent is in the liquid state when it is transported or stored. The safety of the

solvent is evaluated using LC50,mgL, Tfp and TAIT and each property is compared with

desired ranges as defined in Table 4.1, where TU
op is an upper bound on the operat-

ing temperature chosen to avoid solvent degradation. The viscosity of the aqueous

solvent is limited by µU in order to make sure that the maximum permissible limit

for a centrifugal pump is not exceeded. The viscosity is calculated at the minimum



CHAPTER 4. CAMPD: OPTIMAL SOLVENT DESIGN FOR CO2 CHEMICAL
ABSORPTION PROCESSES 83

Table 4.1: Property prediction methods and bounds on the properties used in Test 1,
(TL

sh= 298.15K, TU
sh= 308.15 K, TU

op=413.15 K, µU = 0.1 × 103 cP (Gopinath et al.,
2016) and LCU

50,mgL=10)

Physical property Bounds Reference
Tmp (K) at 1 atm [−1020,TL

sh] Hukkerikar et al. (2012b)
LC50,mgL (mg/L) [−1020,LCU

50] Hukkerikar et al. (2012a)
TAIT (K) [TU

op,1020] Hukkerikar et al. (2012b)
Tfp (K) [TU

sh ,1020] Hukkerikar et al. (2012b)
µ (cP) at TL

sh and 1 atm [0, µU] Hsu et al. (2002)

solvent handling temperature TL
sh. Finally, a lower bound on the process operating

temperature TL
op is imposed on the dew point temperature Tdew to ensure that the

lean solvent is in the liquid phase at the absorber inlet. Here, we set TL
op as to be

equal to the cooling medium temperature. These low and upper bounds are listed

in the caption of Table 4.1. The resulting formulation of Test1 is as follows:

TU
sh − Tbp(P = 1atm,n) ≤ 0 Tmp(P = 1atm,n)− TL

sh ≤ 0

LC50,mgL(n)− LCU
50,mgL ≤ 0 µ(TL

sh, P = 1atm, z(n))− µU ≤ 0

TU
sh − Tfp(P = 1atm,n) ≤ 0 TL

op − Tdew(P = 1atm, z(n)) ≤ 0

TU
op − TAIT(P = 1atm,n) ≤ 0

(4.2)

where z(n) is the composition of the aqueous solvent mixture, which is fixed at 0.3

weight fraction of amine solvent. We denote the set of inequality constraints in Test

1 as g1(n).

It can be seen from the constraints that solvent candidate can be examined re-

gardless of the process design since the properties in Test 1 are independent of the

optimal process conditions. The property constraints expressed linearly with respect

to n, specifically Tmp and Tfp, are included in the master problem to increase the

likelihood of generating feasible solvent candidate and omitted from Test 1 after the

first iteration.
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4.3.2 Test 2: Separation feasibility

Test 2 is designed to examine whether there exist operating conditions in the ab-

sorber such that the solvent mixture remain in a homogeneous liquid phase. Many

amine-water and amine-water-CO2 mixtures exhibit partial miscibility and this has

in fact enabled the consideration of biphasic solvents (also known as phase-change

solvents), that are receiving increasing attention as alternatives to conventional sol-

vents. They undergo liquid-liquid phase separation upon heating or CO2 absorption,

so that the solvent mixture split into an amine-rich phase with a high concentration

of CO2 and a water-rich phase with a low concentration of CO2. Because only the

CO2-rich liquid phase is sent to the desorber for solvent regeneration, this reduces

the energy requirements and equipment costs (Zhang et al., 2019). Nevertheless,

it is necessary for the aqueous solvent to form a homogeneous liquid phase at the

absorber operating conditions for successful operation.

Although the process configuration combined here does not allow for phase change

solvents, Test 2 can be applied equally to standard and phase change solvents. It con-

sist in determining whether the highest solvent mass fraction W ∗
solvent(z(n)) at which

only one liquid phase can form for the given absorber pressure, PNa= 1atm is above

a certain threshold. For a mixture of amine, water and CO2, W ∗
solvent(z(n)) can be

calculated by maximising the solvent mass fraction at which an isobaric-isothermal

flash (PT flash) calculation returns a single liquid and an vapour phase. The PT

flash is carried out at PNa and any allowable absorber temperature. We make use of

the general PT flash calculation framework embedded in the gPROMS ModelBuilder

7.0.7 software package.



CHAPTER 4. CAMPD: OPTIMAL SOLVENT DESIGN FOR CO2 CHEMICAL
ABSORPTION PROCESSES 85

This is expressed as the following optimisation:

W ∗
solvent (xu;PNa ,n) =max

xu
Wsolvent

s.t. flext (z, T,y,x,xb, α, β, γ;PNa ,n) = 0

α ≤ ϵph

β ≥ ϵph

γ ≤ ϵph

Wsolvent =
zsolventmwsolvent

zH2OmwH2O + zsolventmwsolvent

0 ≤ zi ≤ 1 ∀i ∈ NC ′

NC′∑
i=1

zi = 1

max
(
Tmp (n) + 10, TL

op

)
≤ T ≤ TU

op

(4.3)

where W ∗
solvent is an optimal solvent concentration obtained for a fixed molecule n

and absorber pressure PNa, xu is a vector of variables defined as xu = [z, T,y,x,

xb, α, β, γ,Wsolvent]
⊤, z is a global composition, y,x and xb are vapour, first liquid

and second liquid mole fractions at equilibrium, respectively, α, β and γ are the

phase fractions of the vapour, first liquid and second liquid at equilibrium state, NC ′

is the set of components considered in Test 2, i.e., NC ′ ∈ {H2O, CO2, solvent}, and

mwH2O and mwsolvent are molecular weights of H2O and solvent, respectively. flext

is an external function that computes the PT flash for a given global composition z,

temperature T , pressure, PNa and molecule n. ϵph is a small strictly positive scalar

value introduced to ensure a homogeneous liquid phase is present. Specifically, the

phase fraction of the first (most plentiful) liquid phase is set to be greater than ϵph,

while the phase fractions of the second liquid phase and vapour phase are set to be

so small as to be negligible. A value of ϵph = 10−3 is used typically.

If the optimal solvent mass fraction obtained is less than the upper bound of the

solvent concentration, i.e.,
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W ∗
solvent ≤ WU

solvent, (4.4)

the molecule is discarded from the search space. The upper bound of the solvent

concentration in weight fraction is usually determined considering corrosion and

foaming tendency. Here, the upper bound is set to 0.5 kg kg−1.

4.3.3 Test 3: Absorption capacity

Test 3 is introduced to eliminate operating conditions or solvents that cannot achieve

the required absorption capacity. In the design of a solvent for CO2 removal, one of

the most important properties is cyclic capacity, defined as the difference between

CO2 solubility in the rich solvent and that in the lean solvent. A cyclic capacity

determines the solvent circulation rate in the process; a high cyclic capacity often

leads to a smaller solvent circulation rate, consequently reducing the equipment size

and heat requirement for regeneration. For a given solvent, the cyclic capacity is

described as a function of the design variables, i.e., the lean loading, the temper-

ature of the recycled solvent, and the absorber and desorber operating conditions.

The optimal values of these variables can be determined by optimising for the entire

process. However, the feasible ranges of these design variables change depending

on the solvent structure, making it difficult to provide a good initial guess and even

causing failure of the solver to converge. For example, MEA exhibits higher CO2

solubility than MDEA for fixed CO2 partial pressure, solvent concentration and tem-

perature. As can be seen in Figure 4.2, if the initial guesses and bounds on the lean

solvent conditions used for MEA are adopted for MDEA, this may lead to algorithmic

failure during the optimisation search because the choice of some combinations of

operating conditions violates the maximum solubility of the solvent. To avoid such

unnecessary difficulties in the course of the optimisation, Test 3 is used to identify an

upper bound on the lean solvent loading (θ0) based on the thermodynamic feasibility
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in the bottom stage of the absorber and desorber.

Figure 4.2: Predicted solubility of CO2, expressed as the partial vapour pressure of CO2

(PCO2) as a function of the CO2 loading, in aqueous solutions of MEA (blue solid line)
and MDEA (red solid line) at 30 wt% and 323.15 K. The magenta marker (×) represents
the initial guesses of the process conditions that corresponds to (a) T0 = 323.15 K and
θ0 =0.25 mol mol−1, at which the maximum solubility CO2 for MDEA is violated and
(b) T0 = 323.15 K and θ0 =0.1 mol mol−1, at which both MEA and MDEA can achieve
positive cyclic capacity. The black dashed line indicates the maximum possible CO2

partial pressure of 5000 Pa, which corresponds to PCO2 in the flue gas stream. The grey
shaded area represents the region of the possible PCO2 and CO2 loading of liquid stream
xj in the absorber given based on the initial guess (θ0). To have feasible cyclic capacity,
the predicted solubility line must intersect the grey rectangular area.

Absorber

The first evaluation of Test 3 employs the formulation suggested by Gopinath (2017)

in the context of physical gas absorption. The formulation of Gopinath (2017) was

developed for ternary mixtures to determine whether target CO2 removal can be

achieved for a given solvent by maximising the absorber pressures with respect to

the global composition, temperature and pressure on the last stage of the absorber.

Here, it is adapted to take into account the quaternary mixture and their VLLE of

N2, CO2, amine solvent, and water by assuming that the ratio of water to solvent

remains unchanged, allowing the aqueous solvent mixture (water+solvent) to be

lumped into one hypothetical component, CS.

The coexistence of a vapour phase and a homogeneous liquid phase on stage Na

of the absorber must be ensured to avoid any discontinuity caused by having either
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only liquid or vapour phases during the process optimisation. This condition are

expressed by following constraints:

flext (zNa , TNa ,yNa ,xNa ,xbNa , α, β, γ;PNa ,n) = 0

α ≥ ϵph

β ≥ ϵph

γ ≤ ϵph

(4.5)

where subscript Na represents the last stage of the absorber.

In order to guides the separation in the desired direction, it is necessary to derive

a constraint that can ensure the separation feasibility. Here, we expose the formu-

lation in Gopinath (2017) in the context of CO2 chemical absorption process. Let

consider the compositions and flowrates entering and leaving the absorber envelope

as described in Figure 4.3(a).

The assumptions used for the derivation are as follows:

1. The mole of solvent losses to the vapour stream over length of column is less

than the mole of transferred from the gas stream to the liquid stream, i.e.,

LNa > L0.

2. The concentrations of at least two of the components C1 and C2 in the vapour

are greater than those in the lean solvent stream entering the top of the col-

umn. That is, yNa+1,C1 ≥ x0,C1 and yNa+1,C2 ≥ x0,C2 for C1, C2 ̸= CS, where

the index CS denotes the amine solvent.

3. Since the column operation aims at separating the impurity (CO2) from the

feed stream so that the treated clean gas stream leaving the top of the column

must be enriched in one of the feed-components, i.e., y1,C1 > yNa+1,C1

A ternary diagram in Figure 4.3(b) shows the feasible regions for the separation.

The region AED represents the target compositions y1, while region BEFG indicates
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all possible compositions xNa of the rich solvent. It can be observed that the sepa-

ration is feasible when the vapour-liquid boundary (black dashed curve) at TNa , PNa

intersects the region BEFG. Given the feed mixing line [yNa+1, x0], the line segment

[y1, xNa ] (blue dashed line) must intersect the mixing line to satisfy the overall ma-

terial balance.

An analytical equation can be derived to represent this condition using the equa-

tions of the line segments [yNa+1, x0] and [y1, xNa ] and their slopes, in addition to

the overall and component material balances. The resulting constraint is given by:

xNa,C2 − yNa+1,C2 −
(yNa+1,C2 − x0,C2)

(yNa+1,C1 − x0,C1)
(xNa,C1 − yNa+1,C1) ≥ ϵsp, (4.6)

where xNa,C1 and xNa,C2 are the liquid mole fractions of components C1 and C2 in

the stream leaving the last (bottom) stage of the absorber, x0,C1 and x0,C2 are the

liquid mole fractions of components C1 and C2 of the lean solvent stream entering

the top of the absorber and yNa+1,C1 and yNa+1,C2 are the gas mole fractions of com-

ponents C1 and C2 of the stream entering the bottom of absorber, i.e, the flue gas.

For a comprehensive description of the derivation and assumptions used, the reader

is referred to Gopinath (2017) and section 3.2.3.2 therein.

In addition, a feasible solvent must have a positive cyclic capacity, which restricts

the allowable lean loading. A new upper bound on the cyclic capacity can then be

formulated as:
xNa,CO2

xNa,solvent
− θ′0,≥ ϵcyclic (4.7)

where θ′0 is the lean loading at the inlet of top of the absorber, xNa,solvent, and xNa,CO2

are liquid molar compositions of amine solvent and CO2 in the rich solvent stream,

and ϵcyclic is a strictly positive number need to ensure the positive cyclic capacity of

the solvent is positive. The resulting optimisation problem is given as follows.
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θU0 (xu;PNa ,n) =max
xu

θ′0

s.t. flext (zNa , TNa ,yNa ,xNa ,xbNa , α, β, γ;PNa ,n) = 0

α ≥ ϵph

β ≥ ϵph

γ ≤ ϵph

xNa,CO2

xNa,solvent
− θ′0 ≥ ϵcyclic

xNa,CO2 − yNa+1,CO2 −
(yNa+1,CO2 − x0,CO2)

(yNa+1,N2 − x0,N2)
(xNa,N2 − yNa+1,N2) ≥ ϵsp

0 ≤ zNa,i ≤ 1 ∀i ∈ NC

NC∑
i=1

zNa,i = 1

max
(
Tmp (n) + 10, TL

op

)
≤ TNa ≤ TU

op

(4.8)

where xu is a vector of variables defined as xu = [zNa , TNa , θ
′
0,yNa ,xNa ,xbNa , α, β, γ]

⊤

and NC is a set of components in the system, i.e., NC ∈ {N2, CO2, H2O,solvent}.

Desorber

Equivalently, a lower bound on the lean loading θ0 is obtained by investigating the

minimum loading achievable at the bottom stage of the desorber with respect to

global composition zNd
and temperature TNd

at the minimum allowable operating

pressure PL
Nd

. Since a lower content of solvent in the system leads to lower amount of

CO2 absorbed, the following constraint is used to prevent the search from converging

to a trivial solution.

xNd,solvent

xNd,solvent + xNd,H2O
− xNa,solvent

xNa,solvent + xNa,H2O
≥ ϵsol, (4.9)
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where xNd,solvent, xNd,H2O are the liquid solvent and H2O molar fractions of the lean

solvent stream leaving the desorber, and ϵsol is a strictly positive number.

The resulting optimisation problem for the desorber is given as follows:

θL0 (xu;PNd
,n) =min

xu
θ0

s.t. flext (zNd
, TNd

,yNd
,xNd

,xbNd
, α, β, γ;PNd

,n) = 0

α ≥ ϵph

β ≥ ϵph

γ ≤ ϵph

θ0 =
xNd,CO2

xNd,solvent

xNd,solvent

xNd,solvent + xNd,H2O
− xNa,solvent

xNa,solvent + xNa,H2O
≥ ϵsol

0 ≤ zNd,i ≤ 1 ∀i ∈ NC

NC∑
i=1

zNd,i = 1

max
(
Tmp (n) + 10, TL

op

)
≤ TNd

≤ TU
op

(4.10)

where xu is a vector of variables xu = [zNd
, TNd

, θ0,y,xNd
,xbNd

, α, β, γ]⊤.

If the new lower bound on the lean loading is larger than the upper bound (i.e.,

θU0 < θL0 ) or no feasible upper or lower bound is identified, it is clear that no process

conditions will be feasible for CO2 absorption, and the current solvent structure n is

eliminated from the search space. If it is feasible, the solution of Test 3 is used to

provide reduced feasible ranges for the loading [θL0 , θ
U
0 ] for use in the primal problem.

4.3.4 Test 4: Desorber operating pressure range

Given the lean loading range [θL0 , θ
U
0 ] generated from Test 3, Test 4 is designed to

provide tighter bounds on the desorber pressure, PNd
. This is done by finding the

highest pressure at which: 1) a vapour-liquid phase split occurs in the bottom stage
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of the desorber, and 2) there exists a lean solvent composition that satisfies the target

lean loading range. An additional constraint on the solvent weight fraction in the

stream leaving the bottom stage of the absorber (WNd
) is imposed in order to prevent

the optimisation algorithm from converging to a trivial solution. Here, we assume

that only trace amounts of N2 can be present so that presence of N2 can be neglected.

The resulting formulation is as follows:

PU
Nd
(xu;n) =max

xu
PNd

s.t. flext (zNd
, TNd

, PNd
,yNd

,xNd
,xbNd

, α, β, γ;n) = 0

α ≥ ϵph

β ≥ ϵph

γ ≤ ϵph

xNd,solvent

xNd,solvent + xNd,H2O
− xNa,solvent

xNa,solvent + xNa,H2O
≥ ϵsol

θL0 ≤ θ0 ≤ θU0

θ0 =
xNd,CO2

xNd,solvent

WNd
≥ Wsolvent

WNd
=

xNd,solventmwsolvent

xNdH2OmwH2O + xNd,solventmwsolvent

0 ≤ zNd,i ≤ 1 ∀i ∈ NC

NC∑
i=1

zNd,i = 1

max
(
Tmp (n) + 10, TL

Nd

)
≤ TNd

≤ TU
op

(4.11)

xu is a vector of variables defined as xu = [zNd
, TNd

, θ0,yNd
,xNd

,xbNd
, α, β, γ]⊤

and Wsolvent is a pre-defined solvent concentration in the aqueous mixture of water

and solvent.
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Figure 4.3: Schematic of (a) the absorber envelope, (b) the last equilibrium stage of
the absorber and (c) a ternary phase diagram of C1 (N2), C2 (CO2), and CS (aqueous
solvent solution) at TNa , PNa .The region of a acceptable clean gas mole fractions y1 is
denoted by green shaded triangle EAD and the region of desirable rich solvent mole
fractions xNa is denoted by blue shaded area BEFG. The solid line [(yNa+1), x0] rep-
resents the mixing line of the feed streams on the ternary diagram. The thick dashed
curve represents a vapour-liquid phase boundary.

4.3.5 Performance of the feasibility tests

CO2 capture from an exhaust gas from a 400 MW CCGT power plant (Alhajaj et al.,

2016a), described in section 3.4.1, is considered as a case study to assess the per-

formance of the proposed feasibility tests. The key input parameters and the pre-

specified bounds on the design variables that are used throughout the study are

provided in Table 4.2. An automated implementation of the sequence of tests and

of the solution of the primal problem (process optimisation with fixed solvent struc-

ture) is developed in C++. Individual tests and the primal problem are implemented

in gPROMS ModelBuilder 7.0.7 (Process Systems Engineering, 1997-2022) with the

gSAFT Foreign Object interface for the SAFT-γ Mie calculations. The gO:RUN func-

tionality of ModelBuilder is used to launch the solution of each test problem. The

solution files of each tests are read and the required information extracted and trans-

ferred within the C++.
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Table 4.2: Key input parameters and specifications for the CO2 capture case study

Parameter Symbol Value
Degree of CO2 captured (%) - 90
Condenser temperature (K) TL

Nd
333

Min. approach temperature (K) ∆Tmin 10
Initial bounds on desorber pressure (MPa) [PL

Nd
, PU

Nd
] [0.1, 5]

Initial bounds on handling temperature (K) [TL
sh, T

U
sh] [303, 333]

Initial bounds on lean solvent temperature (K) [TL
0 , T

U
0 ] [313, 353]

Initial bounds on lean loading (mol mol−1) [θL0 , θ
U
0 ] [0.02, 2]

Minimum operating temperature (K) TL
op 313

Phase fraction parameter ϵph 1×10−3

Separation feasibility parameter ϵsp 1×10−3

Minimum allowable cyclic capacity ϵcyclic 1×10−1

Minimum allowable solvent loss ϵsol 5×10−2

For testing purposes, the set of all possible combinations of solvent candidates

is generated in accordance with the molecular feasibility constraints provided in

Equation (4.1) with the bounds of nU
OH = 2, nU

GA
= 2, nL

GA
= 1 and nU

iso = 5. These

give a molecular design space of 4,179 possible combinations of solvent structures.

The investigation of the effectiveness of the feasibility tests is carried out by a brute-

force search on the entire design space.

The overall results of applying the feasibility tests to the specifications are sum-

marised in Table 4.3. Within the 4,179 candidate molecules, only 1,449 solvents

pass all feasibility tests. As can be seen in Table 4.3, the majority of the alkylamines

are found to be infeasible in Test 1 and Test 2, mainly due to their low water mis-

cibility as well as their low safety and environmental performance. For example,

the maximum solvent mass fraction (W ∗
solvent) of triethylamine (TEA) that can en-

sure a homogeneous liquid phase at absorber operating condition is identified as

0.019 in mass fraction (0.0015 in mole fraction). This indicates that the constraint

WU
solvent(= 0.5) ≤ W ∗

solvent is violated and TEA should be eliminated from the molecu-

lar design space. The predicted regions of liquid-liquid immiscibility at 0.1 MPa for

the aqueous solutions of TEA are shown in Figure 4.4 together with the available

experimental data. At average absorber operating conditions (313 K-333 K), the sys-

tem exhibits a large LLE region and a very small region of the homogeneous liquid
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Figure 4.4: The temperature-mole fraction T-zTEA fluid phase behaviour of a binary
mixture of water and TEA at P=0.1 MPa. The continuous curves correspond to SAFT-γ
Mie predictions and the symbols to experimental data. The liquid-liquid equilibrium re-
gion (L1+L2), vapour-liquid equilibrium regions (V+L1 or V+L2) are shown and phase
boundaries are by continuous curve. The range of absorber temperatures is shown by
the grey shaded area. This figure is an adaptation of Figure 11(b) in (Perdomo et al.,
2021)

phase, at low TEA mole fractions. Such behaviour is not desirable for successful

absorber operation. It is important to note that the starting point for the solution of

Test 2 is at the lowest allowable temperature and nearly pure water. This is to start

the optimisation algorithm from a feasible point, i.e., one liquid phase, setting up to

the optimiser to remain in the one-liquid phase region until it reaches the boundary

of the multi-phase envelope. This approach is particularly useful when the flash cal-

culation flext encounters discontinuities across the transition between the different

regions of the phase diagram.

The performance of Tests 3 and 4 is examined for these solvents that pass Tests

1 and 2. Tests 3 and 4 lead to tighter bounds on the lean loading and desorber

pressure, the percentage deviation, and the average values of the updated bounds

are presented in the Table 4.3. The large deviation in the maximum lean loading

and desorber pressure indicates that providing an initial guess that is feasible to all

solvent molecular structures is very difficult. It is therefore important to provide
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Table 4.3: Overall results of feasibility tests over the complete list of 4179 candi-
date molecules, broken down by molecular class. The initial values of the bounds are
θL0 =0.02 mol mol−1, θU0 =2 mol mol−1, PU

Nd
=5 MPa.

Total
Mono Amine Diamine

Alkanol- Alkyl- Alkanol- Alkyl-
Number of molecules tested 4179 765 416 1918 1080
Number of molecules eliminated by Test 1 793 64 292 31 406
Number of molecules eliminated by Test 2 889 292 124 371 102
Number of molecules eliminated by Test 3 1040 124 0 400 516
Number of molecules eliminated by Test 4 12 0 0 10 2
Number of feasible molecules 1445 285 0 1106 54
Percentage deviation of θL0 1.12 1.17 - 1.08 0.12
Percentage deviation of θU0 22.52 7.81 - 13.36 3.44
Percentage deviation of PU

Nd
9.50 3.41 - 10.05 0.95

Average value of updated bound, θL0 (mol mol−1) 0.0401 0.0330 - 0.0391 0.0484
Average value of updated bound, θU0 (mol mol−1) 0.7302 0.3268 - 0.7973 0.9855
Average value of updated bound, PU

Nd
(MPa) 0.3279 0.3601 - 0.2812 0.3424

a systematic way to recognise the feasible combinations of process conditions and

solvents. As can be seen, there is a significant improvement in the average updated

bounds, suggesting that many infeasible process conditions can be removed by the

feasibility tests. For the case of MDEA, for example, the minimum requirement on

lean solvent purity, θU0 = 0.237, is calculated as a result of Test 3. This implies that

if the initial guess on the lean loading were set to be greater than 0.237, the initiali-

sation of the process model would lead to numerical failure, making it impossible to

evaluate the performance of this solvent. It is worth mentioning that some conver-

gence failures are encountered during the optimisation mainly due to the numerical

complexities arising from the prediction of complex VLLE fluid phase behaviour for

specific operating conditions and solvent types. For the case where the optimisation

run for the tests is not successful, the associated solvent is treated as infeasible in

the test failed.

To exemplify the impact of the feasibility tests and of the updated bounds on the

solution of the primal problem, the specific case of MEA and 2-amino-2-methyl-1,3-

propanediol (AMPD) are investigated. The solution of primal problem is run from

five starting points randomly chosen from the initial bounds of the design variables in
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order to investigate the impact of the choice of initial guesses and also to increase the

likelihood of identifying a global solution. The five starting points are given in Table

4.4. The values of the starting points can be updated automatically if the feasibility

tests identify these initial guesses to be infeasible for the specified solvent. Two

algorithmic options, with feasibility and without feasibility tests, are considered for

each solvent and the usefulness of the feasibility tests is assessed based on the ability

to converge to a solution from each starting point and on the average computational

time.

The results of the optimisation runs carried out are summarised in Table 4.5. The

average computational cost is calculated only over the CPU time of the successful

runs for the both algorithmic options thereby neglecting the cost of failed runs, which

can often be large. It can be seen that all 10 runs with feasibility tests converge

successfully, while only 5 of 10 runs converge in the absence of feasibility tests.

For MEA, the average computational cost slightly higher (by 9%) for the runs with

feasibility tests. The algorithm without feasibility tests fails to converge for runs

S4 and S5 due to the infeasible lean loading conditions at the initial conditions for

these run. The algorithm with the feasibility tests converges for all runs by updating

the initial guesses on the lean loading through Test 3; while the original initial lean

loading of 0.4 used in run S4 is only slightly outside the feasible region, but the

solver fails to find a feasible point nonetheless, the new initial lean loading is given

by 0.3995 for both S4 and S5.

The effectiveness of the introduction of the feasibility tests is further highlighted

in the AMPD case. As reported in Table 4.5, equivalent solutions are obtained using

Table 4.4: Five starting points used for the solution of the primal problem MEA and
AMPD. Each starting point is denoted as S1-S5

Optimisation variables S1 S2 S3 S4 S5
Lean loading, θ0 (mol mol−1) 0.10 0.20 0.30 0.40 0.50
Lean solvent temperature, T0 (K) 313.15 333.15 323.15 323.15 313.15
Desorber pressure, PNd

(MPa) 0.180 0.250 0.150 0.200 0.180
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Table 4.5: Outcome of the tests and of the solutions of the primal problems for MEA
and AMPD over five runs. Only the run with the smallest objective function is presented
as an optimal solution.

MEA AMPD
no tests with tests no tests with tests

Min. lean loading θL0 (mol mol−1) 0.02 0.02 0.02 0.0420
Max. lean loading θU0 (mol mol−1) 2.0 0.3995 2.0 0.3418
Max. desorber pressure PU

Nd
(MPa) 0.80 0.305 0.80 0.340

TAC ($million year−1) 29.808 29.805 25.735 25.735
Total energy consumption (GJ ton-CO−1

2 ) 9.322 9.321 7.921 7.928
Reboiler temperature (K) 397.18 397.15 398.94 398.94
Cyclic capacity (mol mol−1) 0.1597 0.1595 0.2132 0.2134
Rich amine loading (mol mol−1) 0.4764 0.4764 0.4744 0.4744
Lean amine loading, θ0 (mol mol−1) 0.3168 0.3169 0.2611 0.2610
Lean solvent temperature, T0 (K) 313.16 313.15 335.44 335.43
Desorber pressure, PNd

(MPa) 0.206 0.206 0.216 0.216
No. of successful runs 3 5 2 5
Avg. CPU time (s) 251.76 273.91 328.56 294.31

the algorithm with and without feasibility tests for AMPD. Importantly, we observe

that the optimisations without the tests encounter numerical failures either during

the course of the algorithm (S1) or at the start of the algorithm (S4 and S5). This

demonstrates the importance of identifying feasible process conditions for a given

solvents to avoid the algorithmic failure. In the context of solving MINLP CAMPD

problems, one possible approach to resolve numerical failures that occur during the

evaluation of process performance in the absence of the tests is to add an integer

cut to the master problem in order to eliminate the solvent in question, so that the

algorithm focuses the search on other solvent candidates. However, this is not only

computationally expensive, but also it may lead to the unnecessary elimination of a

promising solvent candidate (see the TAC for AMPD is lower than that of MEA) and

the introduction of an integer cut does not guarantee that a feasible solution can

be identified in a subsequent iteration. Indeed, successful convergence to an solu-

tion of the primal problem for AMPD is obtained with the introduction of feasibility

tests, regardless of the initial guesses. The average computational time is slightly de-

creased (by 10%) potentially as a consequence of the reduction in the ranges of the

design variables achieved in Test 3 and 4. The robustness achieved through the in-
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troduction of the feasibility tests is likely to be critically important in molecular and

process design problems where many candidates solvents are infeasible or where the

evaluation of the primal problems is computationally expensive.

4.4 Improving the robustness of feasibility tests

As is apparent from Table 4.5, the implementation of the feasibility tests provides

a more reliable way of solving the process optimisation problem by avoiding the

numerical difficulties derived from infeasibilities of the process conditions. How-

ever, there are remaining challenges in the solutions of the tests; for some solvent

candidates, convergence to a solution was not achieved for all tests. This is mainly

because the constraints used to ensure the coexistence of vapour-liquid phases or

the existence of a homogeneous liquid phase are subject to failure when the initial

guesses for the degrees of freedom (or the number of phases) significantly differ

from the solution of the solution of PT flash calculation. One widely used approach

for the solution of the PT flash is based on a two-stage (Michelsen, 1982b) proce-

dure alternating stability analysis and phase-split calculation for a fixed number of

phases until a pre-defined stopping criterion is met (Liang, 2018). Within the proce-

dure, the stability analysis is used for checking if the postulated equilibrium phases

are stable, while the phase-split calculation determines the phase types, phase com-

positions, and phase fractions that correspond to the (local) minimum of the Gibbs

free energy for a given number of phases. The phase-split calculation within the PT

flash procedure employed, flext, is therefore differentiable in the interior of multi-

phase or single-phase regions but not at the boundaries between these regions. The

success of the feasibility tests critically depends on providing good initial guesses

such that the flash calculation at the initial compositions, temperature, and pres-

sure results in the desired number and types of phases. However, it is not always

straightforward to provide such initial guesses, particularly when there are many
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components involved in the mixture or when the mixture exhibits highly non-ideal

behaviour. To address this, Gopinath (2017) initially modelled the phase equilib-

rium as equality of the chemical potentials of each species across all phases, taking

advantage of the fact that this is continuous and differentiable across all phases, al-

though additional constraints are required to avoid a trivial solution and one may

converge to a local solution of the minimisation of the Gibbs free energy. Further-

more, even with this formulations, the solution of the phase equilibrium problem

can be very challenging when the interactions between CO2-water-solvent lead to

complex phase behaviour such as vapour-liquid-liquid equilibrium (VLLE). In such

cases, more sophisticated methods are needed to ensure that the results correspond

to stable equilibria. Here, we aim to improve the feasibility tests by employing a

robust approach for the flash calculation that is relatively less sensitive to the ini-

tial guesses and can reliably identify the equilibrium state. In the remainder of this

section, we investigate several methods to establish a general strategy of solving the

feasibility tests: two approaches to stability analysis, that is proposed by Michelsen

(1993) and Castier (2014) and that of Nichita (2019), as well as a global solution

approach to the minimisation of the Gibbs energy, hereafter referred to as Helmholtz

free energy Lagrangian Dual (HELD) algorithm (Pereira et al., 2012).

we begin by briefly describing these methods.

4.4.1 HELD algorithm

Consider a system at constant temperature (T 0), pressure (P 0) and total mole num-

bers over all components (n0). The total Gibbs free energy of the mixture (GT ) is

defined as:

GT
(
n0, P 0, T 0

)
=

NP∑
j=1

NC∑
i=1

ni,jµi,j

(
n0

j , P
0, T 0

)
, (4.12)

where NP is the number of phases present, NC is the number of components, n0
j is

a matrix representing the number of moles of each component i in each phase j and
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µi,j(n
0
j , P

0, T 0) is the chemical potential of component i in phase j at the specified

composition, pressure and temperature. The solution of the PT flash corresponds to

the global minimum in the total Gibbs free energy function, GT , over all phases at

the specified conditions. Equivalently, problem (4.12) can be written in terms of the

mole fraction vectors, wj=1,...,NP , in which only NC− 1 independent mole fractions

(variables) are considered, w = [w1, w2, ..., wNC−1]
⊤ ∈ [0, 1]NC−1. This is because one

of the component mole fractions can be calculated from wNC = 1 −
∑NC−1

i=1 wi. The

resulting phase equilibrium problem is as follows:

min
w,NP

GT (w, P 0, T 0)

s.t.
∑NP

j=1 wi,j − zi = 0, i = 1, . . . , NC − 1

where GT (w, P 0, T 0)

=
(∑NP

j=1

∑NC−1
i=1 wi,jµi,j (wj , P

0, T 0)
)

+
∑NP

j=1

(
1−

∑NC−1
i=1 wi,j

)
µNC,j (wj , P

0, T 0)

(4.13)

where zi is the overall composition of component i, w is a (NC − 1) × NP matrix

representing the mole fractions of NC − 1 components in NP phase.

Three factors make the solution of Problem (4.13) challenging: first, the number

of phases at equilibrium is unknown a priori; secondly the functions introduced are

highly nonconvex; and finally the evaluation of the chemical potential at fixed P, T

and w with the SAFT-γ Mie EOS necessitates the solution of a nonlinear problem as

the natural variables of the equation T,w and the molar volume V . To overcome

these difficulties, Pereira et al. (2012) developed the HELD algorithm to facilitate

the phase equilibrium calculations by reformulating the problem as a minimisation

of the Helmholtz free energy in the volume-composition space and solving through

the application of duality theory, building on ideas by Nagarajan et al. (1991); Mitsos

& Barton (2007). This method is of particular interest since no user-supplied initial

guesses are required for any aspect of the algorithm and the algorithm is applicable
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to the calculation of a variety of challenging phase behaviours such as azeotropy,

liquid-liquid and vapour-liquid-liquid equilibria. The HELD algorithm consists of

1) a stability test and initialisation stage, where a tangent plane stability test is

solved using a tunnelling algorithm (Nichita et al., 2002) aiming to locate a negative

tangent plane distance as early as possible; 2) a stage to identifying candidate stable

phases, where the algorithm iterates between inner and outer problems derived from

a dual formulation of the Helmholtz free energy minimisation for a trial phase; 3)

a stage for algorithm acceleration and convergence tests, where the free energy is

minimised further for the given number of phases identified in the previous stage

and the feasibility of the mass balance is tested.

To take advantage of the performance of the HELD algorithm in the context of the

feasibility tests, the algorithm is implemented for Test 2, in which the PT flash cal-

culation is solved for a given system state (z, T , and P ). For this investigation, Test

2 is reduced by considering a binary mixture of water and amine solvent at a fixed

temperature. Note that solvents that undergo CO2-induced liquid-liquid demixing

will be eliminated in Test 3, where a range of temperatures and molar compositions

of the N2-CO2-aqueous amine mixture is explored. The modified formulation of Test

2 is as follows:

W ∗
solvent (xu;TNa , PNa ,n) =max

xu
Wsolvent (4.14a)

s.t. flext (z,y,x,xb, α, β, γ;TNa , PNa ,n) = 0 (4.14b)

β ≥ ϵph (4.14c)

γ ≤ ϵph (4.14d)

Wsolvent =
zsolventmwsolvent

zH2OmwH2O + zsolventmwsolvent

(4.14e)

0 ≤ zi ≤ 1 ∀i ∈ NC ′′ = {solvent, H2O} (4.14f)

NC′′∑
i=1

zi = 1 (4.14g)
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where xu is a variable vector defined as xu = [z,y,x,xb, α, β, γ,Wsolvent]
⊤ and z

is the total composition of the binary mixture of solvent and H2O. The temperature

and pressure for the test are fixed at the average operating conditions of the absorber,

T=323K, P=1atm (Papadopoulos et al., 2019). The choice of this higher absorber

operating temperature that TL
op = 313 K would results in tighter on the feasible

regions where a homogeneous liquid phase is present.

4.4.2 Stability analysis

In the original feasibility tests, the phase fractions obtained as solutions of the PT

flash calculation are constrained to ensure either a single liquid phase or vapour-

liquid phase equilibrium. As an alternative treatment of such constraints, it is useful

to adopt the phase stability analysis to decide whether the phase at given z, T 0, P 0

is thermodynamically stable or if a phase-split occurs. The most widely-used general

concept in phase stability analysis to date is based on the analysis of the tangent

plane to the Gibbs free energy surface and the surface itself (Baker et al., 1982;

Michelsen, 1982a). For a given total composition z, temperature T 0 and pressure

P 0, the tangent plane distance (TPD) criterion is given by the following problem:

TPD
(
w, P 0, T 0; z

)
= G

(
w, P 0, T 0

)
−G

(
z, P 0, T 0

)
+

NC−1∑
i=1

g0i (zi−wi) ≥ 0, ∀w ∈ [0, 1]NC−1,

(4.15)

where w is a trial phase composition, z is the vector of the total molar composi-

tion, and g0i = (∂G/∂zi)zk ̸=i,k=1,...,NC−1,P 0,T 0, the gradient of the Gibbs free energy with

respect to mole fraction at the specified conditions.

In the volume-composition space, the TPD function can be written as (Castier,

2014; Nichita, 2019):

TPD
(
w, P 0, T 0; z

)
= A

(
w, V (P 0), T 0

)
+ P 0V +

NC−1∑
i=1

g0i (zi − wi) , (4.16)
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Figure 4.5: Schematic of a reduced Gibbs free energy surface of a water-hexylamine
mixture, as a function of water mole fraction of a trial phase composition (wH2O), pre-
dicted using the SAFT-γ Mie EOS at T=323 K, P=1 atm (black dashed curve) and a
tangent plane on the free energy surface at wH2O=0.34 (black solid line).

where V is the molar volume of the system and A is the Helmholtz free energy at

constant temperature T 0.

Geometrically speaking, the TPD function represents the vertical distance from

the Gibbs free energy surface to the supporting hyperplane tangential to the surface

at the trial composition w, as shown in Figure 4.5. The necessary and sufficient

condition for the stability of the mixture z at the specified condition P 0, T 0 is that

the TPD is non-negative for any trial phase composition w. In practice, the TPD

criterion is often formulated as an optimisation problem given by:

TPD∗(z,P0) = min
w∈W,V ∈[V ,V ]

TPDV
(
w, V, T 0; z, P 0

)
= A

(
w, V, T 0

)
+ P 0V +

NC−1∑
i=1

g0i (zi − wi) ,

(4.17)

where V and V are lower and upper bounds on molar volume, respectively. The

problem is parametric in P 0 and z and where the function TPDV has been used with

independent variables w, V, T 0 and parameters P 0 and z. It can be shown that at

the solution of the minimisation of (4.17), V ∗ = V (P 0) (Pereira et al., 2012). If the
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global solution w∗ of problem (4.17) is found to be identical to the total composition

z, one can guarantee that the postulated phase is stable. We denote the optimal

objective function value by TPD∗. A negative value of TPD∗ implies that formation

of a small amount of new phase of this composition w∗ leads to a reduction in

the total Gibbs free energy, therefore, a phase-split occurs. Under these conditions

constraints (4.14b)-(4.14d) in problem (4.14) can be replaced by TPD∗ ≥ 0. Given

the TPD criterion, Test 2 is rewritten as:

W ∗
solvent =max

z
Wsolvent (4.18a)

s.t. TPD∗(z, P 0) = min
w∈W,V ∈[V ,V ]

TPDV
(
w, V, T 0; z, P 0

)
≥ 0 (4.18b)

β ≥ ϵph (4.18c)

γ ≤ ϵph (4.18d)

Wsolvent =
zsolventmwsolvent

zH2OmwH2O + zsolventmwsolvent

(4.18e)

0 ≤ zi ≤ 1 ∀i ∈ NC ′′ = {solvent, H2O} (4.18f)

NC′′∑
i=1

zi = 1 (4.18g)

A multi-start approach is employed to solve the nonconvex problem (4.17) to in-

crease the likelihood of converging to a global solution, using different initial guesses

for (w, V ). The starting points are randomly generated from a uniformly distributed

function. We also consider an alternative formulation (Michelsen, 1982a) derived

based on the first-order optimality conditions of problem (4.17) to improve compu-

tational efficiency in terms of molar composition and fugacity coefficients. Here, the

reformulation of an Gibbs energy to Helmholtz energy is not considered, meaning

that the correct volume root is calculated explicitly at the constant pressure. The

alternative formulation is given as:
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TPD(w, P 0, T 0; z) =
NC∑
i=1

wi

(
lnwi + lnφi(w, P 0, T 0)− ln zi − lnφi(z, P

0, T 0)
)

NC∑
i=1

wi = 1

,

(4.19)

where φi is the fugacity coefficient of component i at P 0, T 0. All stationary points,

wSP of problem (4.19) must satisfy the following conditions:

∇wi
L = lnwi + lnφi(w

SP )− ln zi − lnφi(z) + 1− λ = 0,

for i = 1, . . . , NC

∇λL = −
NC∑
i=1

wSP
i + 1 = 0

, (4.20)

where L is the Lagrangian function corresponding to Equation (4.19) and λ is the

Lagrangian multiplier of the mass balance equality constraint
∑NC

i=1 w
SP
i = 1. By solv-

ing the equations above, we can obtain the value of the TPD function at a stationary

point:

TPDSP(wSP , P 0, T 0; z) =
NC∑
i=1

wSP
i

(
lnwSP

i + lnφi(w
SP , P 0, T 0)− ln zi − lnφi(z), P

0, T 0
)

= λ− 1,

(4.21)

Therefore, Test 2 with the use of the first-order approach can be formulated as fol-

lows:

W ∗
solvent =max

z
Wsolvent (4.22a)

s.t. TPDSP(wSP , P 0, T 0; z) = λ− 1 ≥ 0 (4.22b)

β ≥ ϵph (4.22c)

γ ≤ ϵph (4.22d)
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Wsolvent =
zsolventmwsolvent

zH2OmwH2O + zsolventmwsolvent

(4.22e)

0 ≤ zi ≤ 1 ∀i ∈ NC ′′ = {solvent, H2O} (4.22f)

NC′′∑
i=1

zi = 1 (4.22g)

where λ is calculated from Equation (4.20) for a specified (z, T 0, P 0).

4.4.3 Results and discussion

To evaluate the performance of the proposed approaches using the HELD algorithm,

TPD analysis and TPD analysis with the use of the first-order optimality condition,

each method is applied to Test 2 for a number of solvent candidates: N-methylpentyl-

1-amine (MP1A) and pentyl-1-amine (P1A), and N-Methyldiethanolamine (MDEA).

The optimisation algorithm is initialised with two types of initial compositions z,

one for which the system exhibits either liquid-liquid phase equilibrium and one for

single-liquid phase. This is to investigate how the algorithm can overcome potential

difficulties near the phase boundaries and accurately predict the phase behaviour

regardless of the initial guesses. All runs are performed on a single Intel(R) Xeon(R)

Gold 5122 CPU @ 3.60GHz processor with 384 GB of RAM. Tests with the formu-

lation (4.14) and (4.18) are implemented in FORTRAN and we make use of the

Numerical Algorithms Group (NAG) NAG E04UFF algorithm, which is a sequential

quadratic programming method (SQP). Problem (4.22) is implemented in gPROMS

ModelBuilder 7.0.7 and the internal SQP solver is used to perform the optimisation

of the problem. We will use the notation T2O, T2HELD, T2TPD and T2KKT to refer

to each formulation (4.14) solved with the original PT flash,(4.14) solved with the

HELD algorithm, (4.18) and (4.22) solved with TPD-based methods, respectively.

The results obtained using a homogeneous liquid state as a starting point for aque-

ous mixtures of MP1A, P1A, and MDEA are detailed in Table 4.6. In Figure 4.6, we

display the reduced free energy surface with respect to the mole fraction of water
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and its convex hull for visual inspection. The Gibbs free energy of the aqueous solu-

tion of amine is modelled using the SAFT-γ Mie EOS.

It can be seen that T2O, T2HELD and T2TPD converge to the same mole fraction of

the water, z∗H2O
(0.9606 for M1PA, 0.9670 for P1A, 0.8687 for MDEA), correspond-

ing to the highest possible solvent weight concentration that ensures a homogeneous

liquid phase in the system. In the case of T2KKT, the optimal solvent concentration

in weight fraction is found to be higher in all three cases. In this method, the so-

lution of the TPD function is based on the first-order optimality conditions and this

results in the inaccurate prediction of stability as a consequence of converging to

a local or trivial solution. Despite fewer iterations being required for T2TPD, the

computational cost of the optimisation is approximately equivalent to that of T2O or

slightly higher across the test cases. A potential source of this higher computational

cost is that the quasi-Newton optimisation, in which the calculation of first-order and

second-order derivatives is required, is solved for multiple starting points to increase

the likelihood of obtaining the global solution. Implementing the HELD algorithm

reduces the computational time required to find the optimal solution of Test 2. It

should note that, in the HELD algorithm, a stability test is conducted prior to solving

the phase-split calculation. However, this only focuses on locating a negative TPD

value using a derivative-free method, rather than obtaining a local optimal solution.

In Table 4.7, the results generated from each formulation using an initial guess in

the liquid-liquid region are summarised. The result for MDEA is not described here

since this amine solvent exhibits full miscibility with water. The results show similar

trends in terms of the ability to obtain an accurate solution of Test 2. Interestingly

the solution with T2KKT converges to a globally minimum point at z∗H2O
=0.9606 for

M1PA and 0.9670 for P1A. This is due to the inclusion of the initial trial composition

located in the unstable regions of the Gibbs surface, which prevents the TPD minimi-

sation from converging to the trivial solution. Although there are possible strategies

(Michelsen & Mollerup, 2004; Qiu et al., 2014; Li & Firoozabadi, 2012) for gener-
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Figure 4.6: Schematic of the Gibbs free energy surface as a function of water mole
fractions for binary mixtures of (a) water-MP1A, (b) water-P1A, and (3) water-MDEA,
obtained using the SAFT-γ Mie EOS at T=313 K, P=1 atm (black dashed curve). The
convex hull of the free energy surface in nonconvex is shown by a continuous blue line.
Blue markers (◦) represent the solvent-rich and water-rich liquid phase compositions at
equilibrium. The solid blue lines thus represent the compositions at which the mixture
exhibits liquid-liquid immiscibility. The red and amber straight lines represent the initial
guesses for the total composition of water, i.e., zinitial

H2O
=0.95 and 0.98, respectively.
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ating initial estimates of the trial phase composition, these cannot guarantee global

optimality and such strategies may not be efficient when the system involves many

components or a high degree of non-ideality. As can be seen in Figure 4.6(a) and

(b) the results for M1PA and P1A are in agreement with the global solution, but the

solutions are obtained at higher computational cost for T2TPD. Overall, the use of

the HELD algorithm (T2HELD) shows more reliable optimisation results without a

significant increase in the CPU time.

From the analysis of the results of Test 2 obtained with a variety of PT flash ap-

proaches, it appears that the HELD algorithm is particularly useful for the analysis

of systems with complex phase behaviour; the algorithm is found to be robust and

reliable in the identification of the best-known solution within a practical computa-

tional time. Another advantage of employing the HELD algorithm is that it identifies

all stable phases, amounts and phase compositions. Therefore, the results of the

phase equilibrium for Test 3 and 4 can be used to calculate other constraints that

needs the vapour and liquid compositions at equilibrium (see Equation 4.6), allow-

ing one to eliminate the requirement of the explicit PT flash function. In contrast,

if the feasibility test is formulated with the TPD function, an external procedure for

the phase equilibrium calculation is required, which may result in inconsistencies in

the calculations and increases in computational cost.

One potential improvement that could be made in the TPD analysis is to use a

stochastic methods, such as using a tunnelling algorithm (Nichita et al., 2002) com-

bined with a deterministic optimisation method, in the exploration of the minimum

TPD value with the aim of reducing the computational burden. In addition, the re-

sults from the stability test could be used as initial estimates in the flash calculation

to improve performance, although this is beyond the objectives of the current study.

Here, the final formulations of the feasibility tests are based on the introduction of

the HELD algorithm for the calculation of the PT flash. This means that the same

mathematical formulations (4.8), (4.10), (4.11) are used for Test 3 and 4. The prob-
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Table 4.7: Performance of T2O, T2KKT, T2TPD and T2HELD in the optimisation of Test
2 for aqueous M1PA and P1A mixtures. The initial guess for the total composition of
water, zinitial

H2O , is in the region of the liquid-liquid equilibrium.

M1PA P1A
T2O T2KKT T2TPD T2HELD T2O T2KKT T2TPD T2HELD

zinitial
H2O 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
z∗H2O 0.9606 0.9606 0.9606 0.9606 0.9670 0.9670 0.9670 0.9670
W ∗

solvent (kg kg−1) 0.1817 0.1817 0.1817 0.1871 0.1417 0.1417 0.1417 0.1417
No. of iterations taken 137 59 185 6 139 32 34 4
CPU time (s) 32.82 7.51 41.16 19.93 52.76 7.75 58.05 23.41

lem of Test 2 is reduced to evaluating separation feasibility at the specified average

absorber temperature and pressure as expressed in Problem (4.14).

4.5 Proposed CAMPD algorithm

4.5.1 Primal and master problem

As discussed in Section 4.2.2, the proposed CAMPD algorithm is based on the outer

approximation (OA) algorithm (Duran & Grossmann, 1986), in which an alternating

finite sequence of NLP subproblems and MINLP subproblems are solved. In present-

ing the formulation of primal and master problem in conjunction with feasibility

tests, we adopt the same notation introduced in the work of Gopinath et al. (2016)

and Bowskill et al. (2020). Given the feasible domain defined with tightened bounds

on the operating conditions from Test 3 and 4, the primal problem (P) of the OA al-

gorithm is formulated as a nonlinear process optimisation problem over continuous

variables with fixed solvent structure n(k) where k is an iteration counter. Since we

solve the NLP in gPROMS, we recognise explicitly that a feasible path approach is

used, so that the set of continuous variables x is partitioned into a set of indepen-

dent variables u and a set of dependent variables xd with x = (u,xd). The set of

dependent variables xd is calculated using process and physical property models, as

represented by the equalities. Note that nS is included in xd as it is fully specified

once n is given. A set of inequality constraints g ≤ 0 in problem (MINLP) is reduced
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to gp ≤ 0, where gp ⊂ g, by removing the constraints used in Test 1. The resulting

formulation of the primal problem is given by:

f (k) = min
u

f
(
u,n(k)

)
s.t. gp

(
u,xd

(
u,n(k)

)
,n(k)

)
≤ 0

xd,L(k) ≤ xd
(
u,n(k)

)
≤ xd,U(k)

uL(k) ≤ u ≤ uU(k)

, (P)

where f (k) is the optimal objective value at iteration k, and superscripts L and U

denote lower and upper bounds, respectively. The variable bounds at each iteration

may be specified by the user or derived from the tests. The solution of the primal

problem yields an upper bound, on the objective function to be minimised.

The master problem is formulated by deriving a set of the linearised constraints

and objective functions (hyperplanes) from the solution of each primal problem,

such that the original problem domain is approximated via a polyhedral representa-

tion. As iterations proceed, the approximation is improved by accumulating the lin-

earised equations and tightening the outer bounds on the solution region of the given

problem. The final form of the master problem differs depending on the outcome

of the feasibility tests and the primal problem. In a formulation, we define several

sets in order to distinguish the equations generated from different outcomes such

as failing or passing the feasibility tests, or the convergence of the primal problems.

The set F (k) contains the index l of all previous major iterations, i.e., l ∈ {1, . . . , k}

where the primal problem is feasible. For each index l ∈ F (k), the set A(k) is used

to store the pairs of indices (l,m), where m is the index of an active constraints,

gm ∈ gp in gp at the solution of the primal problem. If the evaluation of a molecule

in Test 1 violates at least one constraint, the indices of all violated constraints are

stored in set A1(k). The set A1(k) contains indices (l, j), where j denotes the index of

active or violated constraints gj ∈ g1. Finally, set IC(k) is used to store the indices of
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all molecules for which an integer cut is introduced in the master problem to remove

infeasible molecules from the design space. A molecule is deemed infeasible when

the molecule fails to pass the feasibility tests, when the primal problem is infeasible

(l ≤ k), or when the solution to the master problem n(l+1) yields a repetition of

a previously generated combination. The integer cuts employed are based on the

“big-M” approach suggested by Samudra & Sahinidis (2013) as follows:

ML(1− yl) + εic ≤
NG∑
i=1

(ln(pi)(ni − n
(l)
i )) ≤MUyl − εic, (4.23)

where pi is a prime number, NG is the number of infeasible molecules identified,

n with elements ni denotes the solvent being sought in the master problem, ML

and MU are large negative and positive numbers, respectively, ϵic is a small positive

number, and yl is a binary variable introduced for iteration l to ensure the central

term is strictly positive or negative, but not equal to zero.

Within the algorithm, the linearisation of the constraints and objective function

to formulate the master problem requires a convexity assumption to provide valid

bounds of the problem. However, in many cases, problem (MINLP) is nonconvex and

thus the linearisations can cut off the candidate integer points from feasible region,

which may result in convergence to suboptimal solutions. To overcome this, the

augmented penalty version of the outer approximation (OA/AP), which is a mod-

ification of OA proposed by Viswanathan & Grossmann (1990), is implemented in

our study. The OA/AP algorithm makes use of a relaxation of the linearisations in

the master problem, in that the feasible region is expanded with slack variables by

allowing some violation of the constraints. The violations of the linearisation are

penalised via a weighted-sum in the objective function. The resulting formulation of

the master problem is as follows:



CHAPTER 4. CAMPD: OPTIMAL SOLVENT DESIGN FOR CO2 CHEMICAL
ABSORPTION PROCESSES 115

min
u,n,η

η + 1000(e1 + e2)

s.t. f(u(l),n(l)) +∇T
nf(u

(l),n(l))
[
n− n(l)

]
+∇T

uf(u
(l),n(l))

[
u− u(l)

]
≤ η + e1, ∀l ∈ F (k)

gp,m(u
(l),n(l)) +∇⊤

ngp,m(u
(l),n(l))

[
n− n(l)

]
+∇T

ugp,m(u
(l),n(l))

[
u− u(l)

]
≤ e2, ∀(l,m) ∈ A(k)

g1,j(u
(l),n(l)) +∇⊤

ng1,j(u
(l),n(l))

[
n− n(l)

]
≤ e2, ∀(l, j) ∈ A1(k)

ML(1− yu) + εic ≤
NG∑
i=1

(ln(pi)(ni − n
(l)
i )) ≤MUyl − εic, ∀l ∈ IC(k)

yu ∈ {0, 1}, ∀l ∈ IC(k)

uL ≤ u ≤ uU

Cn ≤ d

η ≤ fU

(M)

where yu is the best own upper bound on the solution of (MINLP), given by yu =

max
l∈F (k)

= {y(l)}. The parameter value of ϵic is given as 10−2 in our study.

4.5.2 Algorithm overview and implementation

An automated implementation of the proposed CAMPD algorithm is developed in

C++ in Visual Studio 2019, with an interface to gPROMS ModelBuilder 7.0.7 using

gO:RUN functionality and an interface to Gurobi 8.1 MILP solver. The feasibility tests

are implemented in FORTRAN and gPROMS ModelBuilder, and the results, such as

the updated bounds and infeasibility of the molecule, are transferred to the primal

problem via the gO:RUN interface. The default continuous nonlinear optimiser in

gPROMS, which makes use of a sequential quadratic programming (SQP) method, is

applied to solve the primal problems. The gradients of the objective function and ac-

tive inequality constraints are calculated using first-order forward finite differences

with respect to integer variables and central differences for the continuous variables.
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An overview of the algorithm is provided in Figure 4.7.

Figure 4.7: An overview of the proposed CAMPD algorithm

When using the OA/AP framework to overcome the nonconvexities of the prob-

lem, care must be taken in choosing a termination criterion to prevent the algorithm

from converging to a solution prematurely. For a convex MINLP, the master problem

produces a valid lower bound on the objective function of the primal problem and

this lower bound increases monotonically as iterations proceed, while updates of the

upper bound on the problem are generated through the primal problem. Hence, it

can guarantee that the best NLP solution found is global optimal when the lower

bound exceeds or is close to the upper bound for the convex MINLP. However, using
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such a criterion as a stopping rule for nonconvex MINLP problems may result in pre-

mature convergence, particularly when the set of linear approximations leads to part

of the feasible region being cut off, possibly eliminating a global solution (Floudas,

1995). It therefore becomes necessary to employ heuristics to improve the quality of

the solutions. Generally good convergence behaviour has been observed using the

stopping criteria presented in Bowskill et al. (2020). Hence, we resort to termination

based on the same heuristics by which the algorithm is stopped when: 1) the num-

ber of iterations at which the augmented penalty term becomes nonzero exceeds a

pre-defined limit, Nmax,slack, 2) the number of unique molecules that has been eval-

uated either in the feasibility tests or the primal problem exceeds a pre-defined limit

Nmax,unq, and 3) when the MILP master problem becomes infeasible.

4.6 Results of the CAMPD problem

The proposed algorithm is applied to three design cases to identify the best-performing

solvents. Each design case (DS) is different in that the maximum allowed number

of amine groups is specified as nU
GA

=1, 2 or 3 in an attempt to consider different

amine functionalities in the solvent molecule. The information on the molecular

design space, process parameters and bounds on process variables, and algorithmic

parameters is given in Tables 4.2 and 4.8.

Given the nonconvex nature of the problem, the CAMPD algorithm is run from

ten starting points for each case study to explore more diverse search directions thus

increasing the likelihood of obtaining globally optimal solvents. The starting points

are chosen from the studies of Bernhardsen & Knuutila (2017) and Papadopoulos

et al. (2016) which yield chemically feasible molecular structures and also pass the

feasibility tests. The list of starting points is given in Table A.1 in the appendix,

where the groups are given in the following order: NH2CH2, NH2CH, NH2C, NHCH3,

NHCH2, NHCH, NCH3, NCH2, CH3, CH2, C, and OH. Following the termination of
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Table 4.8: Molecular design space defined for each design case. DS denotes a design
case.

Parameter nU
t nU

GA
nL
GA

nU
OH nU

iso Nmax,slack Nmax,unq

DS1 12 1 1 3 2 5 50
DS2 12 2 1 3 4 8 100
DS2 12 3 1 3 4 8 100

the algorithm from all starting points, the solvent that presents the lowest TAC value

is reported as an optimal solution. Although multiple initial guesses are used, this

does not guarantee the global optimality of the solution. Furthermore, the solution

generated is specific to the process specifications and modelling assumptions, and

thus it is desirable to generate a list of candidate solvents by which high-performing

solvents can be evaluated further by means of other simulation settings or exper-

iments. Once the best-known solvent is obtained by solving the problem from ten

starting points, the solvent structure is added to an integer cut in the master problem

and then restart the algorithm to generate the next-best solvent from the multiple

starting points.

4.6.1 Overall performance

The computational performance of the proposed algorithm is reported in Table 4.9

and the detailed results are summarised in Tables 4.10-4.13. Throughout the dis-

cussion, the performance for each DS is calculated as an average over 50 simula-

tions corresponding to the five top-ranked solvents generated from the ten starting

points (molecules). All 150 runs converge successfully to locally optimal solutions

regardless of the starting points. From Table 4.9, it can be seen that different tests

are active in each of the DSs. It is evident that the introduction of feasibility tests

successfully eliminates infeasible molecules and process conditions from the design

space, making it possible to evaluate feasible molecules in the primal problem with-

out encountering numerical difficulties. The infeasibilities are more prominent for
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Table 4.9: Computational performance of the algorithm with feasibility tests for all three
design cases, averaged over 50 runs for each design case.

DS1 DS2 DS3
Average number of molecules failing in the tests 2.56 1.50 0.30
Percentage of molecules failing in Test 1 (%) 12.63 2.42 0.20
Percentage of of molecules failing in Test 2 (%) 9.47 9.68 0.00
Percentage of of molecules failing in Test 3 (%) 0.00 0.00 0.00
Percentage of of molecules failing in Test 4 (%) 2.11 0.00 0.10
Average number of iterations 16.67 20.90 20.10
Average CPU time (s) 3186.6 6628.9 5846.3

DS1 and DS2, as some of molecules such as mono-alkylamines are found to undergo

an undesirable liquid-liquid phase split at the absorber operating conditions.

It is clear from Table 4.9 that the computational cost is high even for the smaller

design space (3186 s for DS1, 6628 s for DS2, and 5846 s and for DS3), suggest-

ing that the computational cost would be significantly increased if many infeasible

combinations of molecular structures and process conditions were explored in the

absence of feasibility tests. User-provided initial guesses are found to be infeasible

for some molecular candidates – for example, the initial value of lean loading for

MDEA is automatically updated to 0.05 mol mol−1 from 0.15 mol mol−1 by the al-

gorithm, allowing the algorithm to assess the overall process performance though

the solution of the primal problem. Without the feasibility tests, the initialisation of

the process model may fail and incorrectly result in being considered an infeasible

molecule. The overall statistics indicate that the feasibility tests prior to the primal

problem are particularly important when the solution of the process optimisation in-

curs a high computational cost and that providing a feasible combination of process

conditions is critical to the convergence of the problem. This reliable convergence

achieved the whole CAMPD algorithm in the exploration of a large set of solvent

structures and associated process performance highlights the effectiveness of each

step of the algorithm developed and discussed in Section 3.3.5, 4.3.5 and 4.4.3.
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4.6.2 Optimal solvents identified using the proposed approach

The top five solvents identified and their corresponding performance indicators are

summarised in Tables 4.10-4.12. Detailed information including optimal solvents

and process conditions are presented in Table 4.13.

Design case 1

In DS1, DEA is identified as the best solvent with a TAC of 17.577 $million year−1,

while other top-ranked solvent candidates exhibit relatively higher TAC values (31-

46 % higher than that of DEA). The heat requirement and the total cost with DEA

are decreased by 41.03 % and 46.70 %, respectively, when compared to those with

MEA. Such reduction in cost is achieved through higher cyclic capacity and lower

reboiler duty in the desorber, thereby decreasing the total energy requirement of the

system significantly. It is noteworthy that a high cyclic capacity is obtained with DEA

in spite of the low solubility of CO2 in aqueous mixtures of DEA. In Figure 4.8, the

CO2 partial pressures is predicted as a function of CO2 loading at two different tem-

peratures (313 K and 383 K) using the SAFT-γ Mie EOS. At a fixed partial pressure of

CO2, it can be seen that DEA exhibits very low CO2 loading at 313K. However, a high

purity of the regenerated solvent, i.e., a low lean loading, is attainable with a low

reboiler duty, resulting in a high cyclic capacity (0.321 mol mol−1 for DEA and 0.160

mol mol−1 for MEA at the optimal process conditions, see Table 4.13). As a result,

the solvent circulation rate, equipment size, and total energy consumption are de-

creased. As reported in Ramachandran et al. (2006), the process with MEA is indeed

known to use a large amount of energy for solvent regeneration due to the formation

of a highly stable carbamate in the absorber. Interestingly, no tertiary amine is iden-

tified in the list of the optimal solvents although low regeneration energy and high

theoretical absorption capacity are usually expected for these molecules (Chowd-

hury et al., 2013). This is likely due to the higher molecular weight associated with

the bulky alkylgroup, CH3, attached to the nitrogen atom resulting in a lower molar
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Table 4.10: The candidate list of top five molecular structures for DS1 identified by
minimising the total annualised cost using the proposed CAMPD approach with integer-
cuts. The total annualised cost (TAC), total cost of investment (TCI) and operating cost
(OPEX) are in units of US million dollar per year ($million year−1 ). The total energy
consumption of the process (Qtotal) is presented in units of GJ ton-CO−1

2 . MEA is added
in the last row as a benchmark solvent.

Rank Solvent name or molecular code (short code) TAC TCI OPEX Qtotal

1 2-(2-hydroxyethylamino)ethanol (DEA) 17.577 5.818 11.144 4.969
2 2-aminopropane-1,3-diol (2APD) 23.108 7.735 14.758 7.261
3 3-(3-hydroxypropylamino)propan-1-ol (3HPAP) 24.799 9.000 15.183 8.160
4 2-(aminomethyl)propane-1,3-diol (2AMPD) 24.996 8.541 15.840 7.800
5 2-amino-2-methyl-1,3-propanediol (AMPD) 25.735 8.952 16.167 7.926
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323

concentration of the tertiary amine in the mixture. The absence of tertiary amines

from the list of top five solvent may also be explained by the fact that the absorp-

tion capacity of these solvents is greatly influenced by the CO2 partial pressure. For

example, the CO2 solubility of MDEA at low partial pressures (P ≤ 10kPa) is similar

or significantly less than that of MEA and DEA. It is worth mentioning that the high-

est achievable CO2 partial pressure in the absorber for given process specifications

is approximately 5 kPa, which is estimated by multiplying the absorber operating

pressure and the mole fraction in CO2 of the flue gas stream. Similar discussions

can be found in the study of Bernhardsen & Knuutila (2017) in which absorption

capacity, cyclic capacity and basicity (pKa) of 132 aqueous amine solvents available

in the literature were compared. The authors reported that the cyclic capacity of the

best primary and secondary amines is higher than that of any tertiary amines.

Design case 2

In DS2, solvent molecules can contain upto two amine groups, so that the design

space of DS1 is a subset of that for DS2. With the exception of DEA, all highly-ranked

solvents are diamines, which comprise two amino groups that participate in the CO2

removal reactions and thus enable higher CO2 loadings to be achieved. According to

the work of Choi et al. (2014), where the performance of aqueous blends of MDEA

and multiamine (alkyl-) solvents with primary and secondary amino groups was in-
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Figure 4.8: Predicted partial pressure of CO2 as a function of CO2 loading for a 30 wt%
(mass) aqueous solution of MEA (dark grey), DEA (yellow) and MDEA (green). The
solid line and dotted lines are the predictions of the SAFT-γ Mie EOS for 313 K and 383
K, respectively.

vestigated, the stability of the carbamate ions decreases in the following order: pri-

mary carbamate > primary-primary dicarbamate > primary-secondary dicarbamate.

This means that the heat required to break the bonds of a dicarbamate is lower than

that required for a carbamate. This is one possible explanation as to why a lower

heat of regeneration is observed with diamine solvents. The higher cyclic capacity at

the optimal process conditions shown in Table 4.13 corresponds to a lower solvent

circulation rate, allowing one to reduce the equipment and operating costs.

The molecular weights of all high-performing solvents are within a range of 104-

118 g mol−1, i.e., the molecular size is kept as small as possible, while including two

amino groups. This trend may be due to the use of a fixed weight concentration of

solvent in the problem formulation and to the large impact of the circulation rates

on both the cost and energy consumption. As a result, the algorithm moves towards

smaller molecular structures in order to decrease the amount of solvent, while max-

imising the number of amino groups. The use of large molecules can lead to an

increase in the reboiler operating temperature and also manifest as a larger solvent

viscosity, resulting in the relatively large process units and a greater risk of thermal
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degradation. It is also noticeable that no alkylamine is included in the list of Table

4.11. Many of the alkylamines are found to be immiscible with water at the absorber

operating conditions (see Table 4.3) and hence they are removed from consideration

in the feasibility tests. Although not shown here, the feasible dialkylamines that are

explored in the course of the algorithm lead to a slightly higher TAC at the optimal

solution of the problem, whilst their cyclic capacity and energy consumption are sim-

ilar to or less than those of some of the highly-ranked solvents. The increase in TAC

with alkylamines is caused by the larger amine losses to the atmosphere at the top

of the absorber and desorber, which increase the operating costs for amine make-

up. For example, the TCI and total energy consumption for 1,3-propanediamine

(CAS registry number: 109-76-2), which is one of the solvents evaluated during the

search, are reduced by 4.9 and 7.0%, respectively, when compared to 1,3-diamino-

2-propanol (CAS registry number: 616-29-5). However, the cost for amine make-up

increases by 98.7%, which outweighs the reduction in the TCI and required energy.

This is because the addition of hydroxyl groups in the amine facilitates the forma-

tion of hydrogen bonds with water, making the amine more soluble in water and

less volatile. Care must be taken, however, when considering the introduction of hy-

droxyl groups in the molecular structure, as the increase in the number of hydroxyl

groups has an adverse effect on the heat duty for regeneration and CO2 solubility, as

demonstrated in the experimental study of Muchan et al. (2017).

Design case 3

In DS3, the larger molecular design space of molecules with up to three amine

groups is explored. As can be seen in Table 4.12, only triamines that have mul-

tiple reaction sites and can form various species of carbamate or bicarbonate with

CO2 appear in the list of high-performance solvents. Molecules with a higher number

of amine groups lead to a high CO2 loading in the rich solvent and low regeneration

energy is attained, leading two lower steam costs for regeneration, which constitute

a major component of the TAC with a share of 40-45%. A significant reduction in
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Table 4.11: The candidate list of top five molecular structures for DS2 identified by
minimising the total annualised cost using the proposed CAMPD approach with integer-
cuts. The total annualised cost (TAC), total cost of investment (TCI) and operating cost
(OPEX) are in units of US million dollar per year ($million year−1 ). The total energy
consumption of the process (Qtotal) is presented in units of GJ ton-CO−1

2 . MEA is added
in the last row as a benchmark solvent.

Rank Solvent name or molecular code (short code) TAC TCI OPEX Qtotal

1 [0-0-1-0-1-0-0-0-2-0-0-0-1] (SOL01) 17.144 5.327 11.202 4.785
2 2-(2-hydroxyethylamino)ethanol (DEA) 17.577 5.818 11.144 4.969
3 2-(2-Aminoethylamino)ethanol (AEEA) 17.991 5.544 11.832 5.356
4 [2-0-0-0-0-0-0-0-0-0-0-1-2] (SOL02) 19.599 6.186 12.799 6.390
5 1,3-Diamino-2-propanol (DAP) 19.754 6.091 13.048 6.645
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323

the TAC of the top-ranked solvents is achieved due to the increased cyclic capacity.

The TAC with SOL03 is decreased by 50.1% compared to MEA and 13.2% compared

to the top ranked solvent (SOL01) in DS2. The cyclic capacity with SOL03 at the

optimal process operating conditions is increased by 333.7% compared to MEA and

37.5% compared to SOL01. As discussed for DS2, the formation of dicarbamates

entails a lower heat of reaction than that of the carbamate formed from MEA. In ad-

dition, the combined effect of the higher prevalence of weak binding between CO2

and amino groups and the high cyclic capacity results in a relatively low regeneration

energy. It can be observed that the solvent structures in the list comprise primary

and secondary amines, which may be explained by the fact that the effect of cyclic

capacity on the cost dominates compared to the low heat of regeneration that can

be derived from the introduction of a tertiary amine group in the molecule.

4.6.3 Comparison between CAMPD and CAMD formulations

Having developed a robust CAMPD algorithm, we now discuss the significance of

evaluating the molecular properties within the process context. In Figure 4.9, we

compare the key molecular properties of the top-ranked optimal solvents identified

from each DS, in addition to MEA. The properties are selected based on the studies

of Papadopoulos et al. (2016) and Lee et al. (2020), where the CAMD was formu-
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Table 4.12: The candidate list of top five molecular structures for DS3 identified by
minimising the total annualised cost using the proposed CAMPD approach with integer-
cuts. The total annualised cost (TAC), total cost of investment (TCI) and operating cost
(OPEX) are in units of US million dollar per year ($million year−1 ). The total energy
consumption of the process (Qtotal) is presented in units of GJ ton-CO−1

2 . MEA is added
in the last row as a benchmark solvent

Rank Solvent name or molecular code (short name) TAC TCI OPEX Qtotal

1 [2-0-0-0-0-1-0-0-0-0-1-0-2] (SOL03) 14.872 4.509 9.748 4.492
2 [2-0-0-0-0-1-0-0-0-0-0-0-1] (SOL04) 15.041 4.597 9.829 4.571
3 propane-1,2,3-triamine (PTA) 15.148 4.875 9.658 4.458
4 N’-(aminomethyl)-N’-methylmethanediamine (NAMDA) 15.278 4.859 9.804 4.569
5 [2-0-0-0-1-0-0-0-0-0-0-1-2] (SOL05) 15.288 4.720 9.953 4.577
Ref. 2-aminoethanol (MEA) 29.806 8.047 21.144 9.323

lated as a multi-objective optimisation (MOO) problem to identify the trade-offs (a

set of Pareto-optimal solvents) between the desired properties; these are: saturated

vapour pressure (Pvap), liquid density (ρ), heat capacity (Cp) and relative energy

difference (RED) of a pure solvent. Each property is normalised based on its mini-

mum and maximum values so that the values are rescaled to lie in the a range of 0

to 1. The liquid density is scaled based on −ρ so that smaller values of these objec-

tive functions are indicative of better performing solvents in terms of each property

criterion. Additionally, the heat of absorption (-∆Habs), which is an indicator of the

heat requirement for regeneration, and the CO2 loading, which is an important pa-

rameter associated with the absorption capacity of the solvents, are presented for

the optimal solvents identified. The heat of absorption is calculated based the simu-

lation approach proposed by Graham (2020) who aimed to mimic the experimental

setting of Arcis et al. (2012), rather than applying the Gibbs-Helmholtz equation.

As can be seen in Figure 4.9, it is not possible to correlate the performance of the

solvents in terms of property targets with their overall performance when evaluated

within the relevant process. SOL03, identified as the most cost effective solvent in

the solution of the CAMPD problem, appears as the best solvent only with respect to

density and CO2 loading. SOL03 is also the third best molecule in terms of energy

efficiency when assessed through the heat of absorption within the range of 0-1 mol



CHAPTER 4. CAMPD: OPTIMAL SOLVENT DESIGN FOR CO2 CHEMICAL
ABSORPTION PROCESSES 126

Table
4.13:

R
esults

ofthe
solution

ofthe
integrated

solvent
and

chem
icalabsorption

process
design

for
each

case
study.

The
m

olecules
are

presented
in

the
order

ofhigh
to

low
rank

w
ith

their
short

nam
e.

D
S1

D
S2

D
S3

O
ptim

alValue
M

EA
(ref.)

D
EA

3PA
P1

2A
M

PD
A

M
PD

SO
L01

D
EA

A
EEA

SO
L02

D
A

P
SO

L3
SO

L4
PTA

N
A

EM
D

A
SO

L05
TA

C
($m

illion
year −

1)
29.806

17.577
24.799

24.996
25.735

17.144
17.577

17.991
19.599

19.754
14.872

15.041
15.148

15.278
15.288

C
A

PEX
($m

illion
year −

1)
8.048

5.818
9.000

8.541
8.952

5.327
5.818

5.544
6.186

6.091
4.509

4.597
4.875

4.859
4.720

O
PEX

($m
illion

year −
1)

21.144
11.144

15.183
15.840

16.167
11.202

11.144
11.832

12.799
13.048

9.748
9.829

9.658
9.804

9.953
Q

to
ta
l (G

J
ton-C

O
−
1

2
)

9.323
4.969

8.160
7.800

7.926
4.785

4.969
5.356

6.390
6.645

4.492
4.571

4.458
4.569

4.577
Solcirc.

rate
(kg

h
−
1)

0.3731
0.2992

0.4816
0.4658

0.4637
0.1990

0.2992
0.2272

0.3299
0.3055

0.1902
0.1759

0.1698
0.1547

0.1937
R

eboiler
tem

perature
(K

)
397.18

386.95
385.87

398.81
398.98

400.99
386.95

402.15
398.69

398.60
401.12

401.64
401.81

401.28
401.12

C
yclic

capacity
(m

olm
ol −

1)
0.160

0.321
0.254

0.212
0.213

0.503
0.321

0.446
0.316

0.294
0.692

0.600
0.538

0.571
0.681

R
ich

loading
(m

olm
ol −

1)
0.476

0.341
0.345

0.475
0.474

0.936
0.341

0.979
0.929

0.932
1.394

1.410
1.378

1.154
1.402

Lean
loading,

θ
0

(m
olm

ol −
1)

0.317
0.020

0.090
0.262

0.261
0.432

0.020
0.533

0.613
0.638

0.702
0.810

0.839
0.583

0.721
Lean

tem
perature,T

0
(K

)
313.15

334.54
316.86

335.07
335.43

333.76
334.54

333.67
335.84

335.33
334.98

335.12
338.66

337.95
334.85

P
N

d
(M

Pa)
0.206

0.153
0.166

0.218
0.216

0.246
0.153

0.253
0.211

0.216
0.235

0.241
0.221

0.215
0.236

Q
reb

(M
J)

209.332
168.348

194.078
231.462

234.193
163.522

168.348
180.248

191.296
194.422

152.380
152.164

145.071
146.623

154.624
Q

co
n
d

(M
J)

-99.585
-49.603

-52.745
-110.698

-113.509
-46.344

-49.603
-54.675

-89.000
-97.081

-44.668
-48.330

-50.455
-53.808

-46.154
Solvent

loss
(kg

tonC
O

−
1

2
)

3.10
6.92×

10
−
2

2.37×
10

−
2

4.00×
10

−
3

6.78×
10

−
3

3.70E×
10

−
1

6.92×
10

−
2

1.75×
10

−
1

7.86×
10

6
1.61×

10
−
2

2.32×
10

−
7

6.31×
10

−
4

3.67×
10

−
3

2.52×
10

−
2

2.74×
10

−
7



CHAPTER 4. CAMPD: OPTIMAL SOLVENT DESIGN FOR CO2 CHEMICAL
ABSORPTION PROCESSES 127

mol−1 of CO2 loading. However, the results of the CAMPD formulation uncover that

the SOL3 leads to the most energy efficient process (lowest value of Qtotal).

Another aspect of interest in the design of the solvent is the value of the vapour

pressure of the solvent, Pvap, at 323 K which can be used as an indicator of solvent

losses and which should be as low as possible to minimise the environmental im-

pact. Clearly, DEA exhibits the lowest vapour pressure in Figure 4.9(a). However,

the solvent losses which are calculated as the sum of the amount of the solvent in

kg ton-CO−1
2 in the clean gas and in the CO2 gas stream at the optimal process con-

ditions, suggests that SOL03 leads to the lowest value (3.10 for MEA, 6.92×10−2 for

DEA, 3.70×10−1 for SOL1 and 2.32×10−7 for SOL3 in units of kg ton-CO−1
2 ). The

discrepancies in the CAMD and CAMPD approaches demonstrate that the best over-

all performance of the processing materials can only be realised when the molecular

properties are evaluated within integrated molecular-process models. As has been

shown, the proposed CAMPD algorithm provides a systematic way of identifying

promising solvents in a process that is economically or environmentally favourable,

allowing one to quantify the performance of the solvent in the process domain and

to embed the trade-offs between properties in the decision-making.

4.6.4 Comparison between direct and decomposition-based so-

lution approaches

An important aspect of the proposed CAMPD algorithm is that it considers the pro-

cess and molecular-level decisions simultaneously. As discussed, alternatives to the

direct solution approach that can avoid the numerical difficulties of solving a large

MINLP process-molecular model are decomposition-based approaches, also known

as two-stage approaches, in which a set of feasible molecular candidates is generated

and selected first and subsequently, the candidate molecules are further investigated

using a detailed process model. In order to compare the performance of the two ap-
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Figure 4.9: A comparison of the molecular properties of DEA (amber), SOL01 (blue)
and SOL03 (red) which are identified as the top solvents in each design case. The
properties of MEA (dark grey) are provided as a reference. In (a), normalised value
of properties, Pvap, ρ, Cp and RED are shown. (b) the heat of absorption (-∆Habs) at
323 K, as a function of CO2 loading and (c) partial pressure of CO2 (PCO2) at 313 K, as
a function of CO2 loading predicted using the SAFT-γ Mie EOS for 30 wt% (mass) of
amine in the aqueous mixture.
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proaches, the list of potential solvents candidates from the study of Lee et al. (2020),

presented here in Chapter 5, in which 40 optimal solvents are generated by solving

the multi-objective CAMD problem using the sandwich algorithm (Rennen et al.,

2011), are considered. The total CPU time taken to generate the set of 40 optimal

amine solvents and the average CPU time taken to generate one optimal solution

were reported as 353 s and 8.38 s, respectively, in Table 12 of Lee et al. (2020).

Among the 40 optimal solvents, the 19 solvents that satisfy the molecular structure

constraints of problem (P) for DS3 are further evaluated in the primal problem, i.e.,

process optimisation. The set of structurally feasible molecules and the result of the

application of in the feasibility tests to these molecules are given in Table A.2 of Ap-

pendix. As can be seen in Table A.2, many of the solvents are found to be infeasible

for the given process specifications, mainly due to high melting points, high flash

points, and immiscibility with water. The best solvent among the evaluated solvent

candidates is identified as M26, with a corresponding TAC of 16.0 $million year−1

(See Table 4.14). It is interesting to note that of the optimal TAC value with M26

is higher than that of the top five solvents from DS3. This suggests that the use

of the decomposition-based approach can lead to sub-optimal solutions by forcing

the exploration toward limited or biased molecular domains. Nevertheless the TAC

value for M26 is larger than any of DS2/DS1 solutions, indicating that the CAMD

methodology identifies good solvents. Decomposition may also give rise to high

computational cost, as a large number of molecules needs to be enumerated to iden-

tify optimal or near optimal solutions. The CPU time taken to evaluate the feasibility

tests and primal problem for the 19 solvents is 3422 s, which is less than that of

DS3. However, this saving results in part from the presence of infeasible molecules

that fail to pass the feasibility tests in the course of the algorithm. It also does not

account for the cost of generating the set of Pareto-optimal solvents. In summary,

there is clear evidence that the proposed algorithm offers a more reliable way to

identify promising solvents with the desired overall performance.
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Table 4.14: Optimal solvent identified by enumerating the list of 19 molecules gen-
erated by solving MOO CAMD problem (Lee et al., 2020) that satisfy the molecular
feasibility constraints in problem (MINLP).

Parameters Value
Optimal solvent M26
Molecular code of M26 [0-0-0-0-0-1-1-1-3-0-0-0-1]
TAC ($million year−1) 16.007
TCI ($million year−1) 4.851
OPEX ($million year−1) 10.541
Qtotal (GJ ton-CO−1

2 4.676
Solvent circ. rate (kg h−1) 0.166
Cyclic capacity (mol mol−1) 0.806
lean loading, θ0 (mol mol−1) 0.204
Lean solvent temperature, T0 (K) 333.59
Desorber pressure, PNd

(MPa) 0.234
Total CPU time (s) 3422

4.6.5 Conflicting nature of key performance indicators

In Figure 4.10, the top solvents identified are plotted on two-dimensional projection

of the space of KPIs, including TCI vs. total energy consumption per ton of CO2

removed and TAC vs. total energy consumption per ton of CO2 removed. As can be

gleaned from the figure for each design case, the ranking of the five amine solvents

determined based on the TAC is not in the same order as when the overall perfor-

mance is measured using one of the other two KPIs metric. For instance, the top

solvent based on the minimisation of TAC for DS3 (SOL03) ranks second in terms of

the total energy requirement. This suggests that there exist trade-offs between the

performance criteria, and it may be useful to deploy a MOO technique to explore the

set of optimal solvents that capture the multiple conflicting criteria.

4.7 Conclusions

In this work, a robust CAMPD framework has been proposed for the simultaneous de-

sign of optimal aqueous solvents and CO2 chemical absorption processes. The focus

of the development has been to overcome the numerical challenges that arise due to

the complex nonlinear interactions between process models and molecule-structure
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Figure 4.10: Plots of the TAC and TCI values vs. to total energy consumption for the
top 5 solvents for DS1 (•), DS2 (•) and DS3 (•)
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property models. New feasibility tests have been combined with the primal problem

of the OA algorithm to provide a reliable way to converge to an optimal solution

by removing infeasible process conditions and molecular structures from the search

space before attempting to solve the process optimisation problem. The efficiency

and robustness of the proposed algorithm has been demonstrated on a CO2 chemi-

cal absorption process for a 400 MW combined CCGT power plant (Bailey & Feron,

2005) where solvent molecular structure and process operating conditions have been

simultaneously optimised to maximise the overall economic performance of the pro-

cess. A systematic investigation of the performance of the proposed CAMPD algo-

rithm over 150 runs has shown that the feasibility tests combined with the improved

initialisation strategy of Chapter 3 enhance robustness and increase the likelihood

of identifying high performance solutions. By identifying infeasible regions within

molecular and process domains, numerical errors are prevented over the course of

the exploration, which leads to a reduction in the computational cost.

Furthermore, we have also shown how the proposed algorithm is an improve-

ment over the traditional decomposition-based approaches used in the determina-

tion of the best performing solvents. The comparison of the results obtained with

two versions of the algorithm exemplifies that despite the complexities of solving a

large nonconvex MINLP problem, the simultaneous consideration of molecular and

process-level decisions provides a useful way of generating better solution without

resorting to problem decomposition or over-simplification of the models.

Future work involves the investigation of the effect of various choices of process

specifications, such as high or low concentration of CO2 in the flue gas. Given the

high predictive capabilities of the SAFT-γ Mie EOS, it would be useful to extend the

molecular search domain to a more diverse set of functional groups, for example,

cyclic amines, which have been applied widely as rate promoting additives.

Finally, the comparison of other key performance criteria for the optimal solvents,

such as TCI and total energy consumption for the optimal solvents, has exemplified
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that there exist trade-offs between the performance metrics. Therefore, it would be

particularly useful to optimise the solvent structures and process conditions against

conflicting objectives. To embed the inherently conflicting nature of the objectives in

molecular design, we focus on the development of MOO algorithms in the remainder

of the thesis.



CHAPTER 5

A Comparative Study of Multi-objective Optimisation

Methodologies for Molecular and Process Design

Following the development of the CAMPD framework in the previous chapter, it was

found that it is beneficial in many cases to consider multiple conflicting objectives

in molecular design – for example, property targets, sustainability targets, societal

impact, and economic performance – that cannot easily be combined together in

a single metric. Multi-objective Optimisation (MOO) is thus receiving increasing

attention in the area of CAM(P)D. In principle, for a problem with continuous de-

cision variables, the presence of conflicting objectives results in an infinite number

of optimal solutions, commonly known as Pareto-frontier solutions. Usually, it is

not possible to derive an analytical description of the Pareto frontier (Deb, 2001).

Hence, in practical applications, the Pareto frontier is approximated by a finite num-

ber of Pareto-optimal solutions (Marler & Arora, 2004). As has been discussed,

the CAM(P)D problems are usually formulated as mixed-integer nonlinear problems

(MINLPs) and present a significant challenge for MOO algorithm. In view of these

challenges, there is a need to gain a better understanding of the the suitability of dif-

ferent multi-objective optimisation (MOO) algorithm for the solution of such design

134



CHAPTER 5. A COMPARATIVE STUDY OF MOO METHODOLOGIES FOR
MOLECULAR AND PROCESS DESIGN 135

problems. In this chapter, we present a systematic comparison of the performance of

a variety of mixed-integer non-linear programming (MINLP) multi-objective optimi-

sation algorithms on the selection of computer-aided molecular design (CAMD) and

computer-aided molecular and process design (CAMPD) problems.

Please note that this chapter is an edited version of a paper (Lee et al., 2020),

previously published.

5.1 Introduction

In a nutshell, the main idea in the development of MOO algorithms is to (1) find

non-dominated points that can represent the Pareto-frontier in reasonable computa-

tional time; and (2) generate these points so that they are distributed evenly along

the Pareto front. The main MOO methods that have been used in molecular design

include scalarisation methods (e.g. weighted-sum method, sandwich algorithm),

ϵ-constraint methods, and metaheuristic methods. Papadopoulos & Linke (2006b)

proposed a multi-objective molecular design technique linked with a process synthe-

sis framework by using the weighted-sum method, extending it to the design of bi-

nary working fluid mixtures in Organic Rankine Cycles (ORC) (Papadopoulos et al.,

2010a) and to the design of solvents for CO2 capture (Papadopoulos et al., 2016,

2020). The authors adopted the simulated annealing (SA) algorithm proposed by

Marcoulaki & Kokossis (2000) to explore the design space directly. Burger et al.

(2015) utilised the sandwich algorithm (Bortz et al., 2014) within their MINLP solu-

tion strategy to design a solvent for a CO2 physical absorption process, avoiding the

difficulty in assigning weight vectors. The solutions generated by MOO were used as

starting points for the solution of the CAMPD MINLP. In this last step, a single (eco-

nomic) objective was used. Zhou et al. (2019) also introduced the sandwich algo-

rithm to identify a list of solvent candidates in their MOO CAMD formulation, which

were further optimised using rigorous thermodynamic analysis. In their CAMD prob-



CHAPTER 5. A COMPARATIVE STUDY OF MOO METHODOLOGIES FOR
MOLECULAR AND PROCESS DESIGN 136

lem, selectivity and capacity of the solvents were optimised simultaneously to con-

sider their efficiency within extractive distillation process. Buxton et al. (1999) and

Hugo et al. (2004) considered both process economics and environmental impact

simultaneously in the formulation of a CAMPD MINLP and proposed the use of the

ϵ-constraint method (Haimes et al., 1971) for its solution. The environmental im-

pact metrics were treated as constraints in their formulation, while the economic

performance was set as the objective function. Kim & Diwekar (2002) proposed

a novel MOO framework based on the ϵ-constraint method to solve the integrated

design of solvent recycling process and environmentally benign solvents for acetic

acid removal from water. In their study, four-objective problem was transformed to

SOO problems and the minimisation of the problem is solved by efficient sampling of

the number of SOO problems using the Hammersley stochastic annealing algorithm.

Schilling et al. (2017) solved an integrated working fluid and ORC process design

problem with the ϵ-constraint method to identify the trade-off between net power

output and total capital investment. The CAMPD problem was formulated as MINLP

and one-stage continuous-molecular targeting (CoMT) approach was applied. Ng

et al. (2014) introduced a metaheuristic method, fuzzy optimisation (Liang, 2008),

in developing a MOO CAMPD approach to the design of optimal chemical products,

by considering both the optimality of product properties and the accuracy of the

property prediction models. Venkatasubramanian et al. (1994) employed a genetic

algorithm (GA) in the design of a optimal structure of the polymer and refrigerant.

They introduced a string representation of the molecular structures as an encoding

strategy and used the molecular genetic operators (single-point crossover, chain-

mutation, insertion, deletion, and blending) to SOO MINLP problems. Dörgő &

Abonyi (2016, 2019) extended the GA approaches to the design of refrigerants for

ORC processes. The authors solved the MOO MINLP problems using Non-dominated

sorting genetic algorithm II (NSGA-II) (Deb, 2001) to investigate trade-off between

several properties of molecules. Xu & Diwekar (2007) developed a Multi-objective
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efficient genetic algorithm (MOEGA) in the integrated design of solvents and solvent

recycling process of acetic acid and water mixture. The authors considered up to six

objectives including acetic acid recovery, process flexibility, two environmental im-

pacts based on LC50, an environmental factor based on bioconcentration factor and

reboiler energy consumption.

While several MOO methods have been applied to CAM(P)D, CAM(P)D presents

challenges due to the nonconvexity of the the search space that arise from the con-

tinuous functions and the presence of integer variables. The Pareto front can be dis-

continuous and nonconvex, so that the efficient identification of a well-distributed

set of points on or near the Pareto front is non-trivial. In particular, weighted-sum

approaches are highly dependent on the choice of weight vectors. An even distri-

bution of the weights among objective functions does not always leads to an even

distribution of solutions on the Pareto front (Das & Dennis, 1997). Therefore, the

use of the WS is often time-consuming as a large number of SOO problems need to

be solved. Although this drawback has been addressed in the SD algorithm, in which

the weight vectors are selected systematically, the WS and SD approaches can only

identify convex regions of the Pareto front (Marler & Arora, 2004). This is in fact a

limitation of all weighted-sum based methods (Bortz et al., 2014). This limitation

can be overcome with ϵ-constraint methods, but a challenge is to choose appropriate

values of epsilon, ϵ that can maximise the improvement in the quality of the Pareto

front at each iteration in the absence of the relationship between the approximation

accuracy of the Pareto front and ϵ value. This is significant especially when the prob-

lem entails more than two objectives (Mavrotas, 2009) and the Pareto fronts consists

of many disjointed parts. Moreover, the constraints added to the original problem

increase the complexity of solving each SOO problem. It may be difficult to find new

Pareto point at each iteration with the weighted sum and convergence to dominated

solution is common, while it can be mitigated by using the ϵ-constraint method. This

is apparent when single objective optimisation problems are solved repeatedly and
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the mixed-integer and nonconvex nature of most molecular design problems means

the solver may converge to a local (dominated) solution rather than a Pareto point.

In fuzzy methods and genetic algorithms a set of solutions that is close to the Pareto

front may be identified, but there can be no guarantee that the points found are

Pareto-optimal (Deb, 2001). The application of these methods may result in a large

number of unsuccessful computations due to the highly constrained nature of such

MINLPs. Despite the many challenges faced in applying MOO to MINLPs, there has

been no systematic analysis to compare the performance of various algorithms for

CAM(P)D applications.

In this work, we present a comparative analysis of the performance of three classes

of MINLP MOO approaches, the weighted-sum (WS), the sandwich algorithm (SD)

(Rennen et al., 2011), and the non-dominated sorting algorithm-II (NSGA-II) (Deb

et al., 2000b). The WS method and SD are chosen over the ϵ-constraint method

with particular interest in their simplicity in the formulation of the subproblem, i.e.,

no additional constrains are involved. The solution of each scalarised problem with

WS and SD can be challenging in the presence of nonlinearities. To increase the

likelihood of identifying the globally-optimal Pareto front, we introduce the simu-

lated annealing (SA) (Marcoulaki & Kokossis, 2000) and multi-level single linkage

(MLSL) (Kucherenko & Sytsko, 2005) as global search methods. We first make use

of a SA version of the WS (WSSA) and a MLSL version of the WS (WSML). These

two algorithms are compared with the WS to investigate the effectiveness of global

search methods. Based on findings, we also put forward two variants of the al-

gorithms: MLSL with the WS (WSML) and the SD (SDML), and the comparison

between WSML, SDML and NSGA-II is undertaken. The resulting set of algorithms

is applied to three case studies: the design of solvents for the chemical absorption

of CO2, the design of working fluids for ORC based on property metrics, and the

integrated design of working fluids and ORCs processes. The performance of the

different algorithms is compared based on reliability and efficiency criteria.
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The main contributions of this work include: 1) the introduction of different global

search methods to solve single objective MINLPs within MOO secularisation meth-

ods; 2) a systematic comparative study of the performance of different classes of

MOO algorithms on solving several literature MOO CAM(P)D problems. In addition,

several modifications of the SA, MLSL and NSGA-II approaches are introduced to

adapt these algorithms to CAM(P)D problems.

5.2 Multi-objective optimisation methodologies

In this chapter, a brief of each MOO methodology and the problem formulation is

provided focusing on the molecular design problems which are often posed as MINLP

problems. Note that more general description of the MOO problem and the details

of sandwich algorithm for general cases will be provided in Chapter 6 in which

the development of a new MOO approach based on the sandwich algorithm will be

discussed.

5.2.1 Problem formulation

The generic mathematical formulation of the MINLP MOO problem is:

min
x,y,n

f o
1 (x, y, n), f

o
2 (x, y, n), ... , f

o
m(x, y, n)

s.t. g(x, y, n) ≤ 0

h(x, y, n) = 0

x ∈ Rn1 , y ∈ {0, 1}n′
2 , n ∈N ⊂ Zn2

(MOP2)

where m is the number of objectives, x is a n1-dimensional vector of continuous vari-

ables, y is a n′
2-dimensional vector of binary variables, n is a n2-dimensional vector

of integer variables, g(x, y, n) is a vector of inequality constraints that define design

constraints and feasibility constraints, h(x, y, n) is a vector of equality constraints
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that include structure-property models, process models and chemical feasibility con-

straints such as the octet rule (Odele & Macchietto, 1993).

5.2.2 Scalarisation-based methods

weighted-sum method

The weighted-sum method is one of the most widely used scalarisation-based algo-

rithms in MOO. Multiple objective functions f o
i , j=1, · · · ,m are aggregated into a

single objective function using weight coefficients, represented by the normalised

vector, w. Thus, the scalar objective function is given by
∑m

i=1wif
o
i (x, y, n) , where∑m

i=1wi = 1. The WS method is easy to implement and the problem is of same

degree of difficulty as the original MOO problem since there are no additional con-

straints involved and the feasible region remains unchanged. However, the weights

have to be determined a priori and an even distribution of weights does not al-

ways yield an even distribution of Pareto solutions. The Pareto points generated

are strongly dependent on the weight vectors used and a poor choice might lead to

points that are clustered. Alternatively, weight vectors can be randomly generated

to try and obtain a sufficient coverage of the Pareto front and to overcome these

deficiencies; this is the approach taken in our study. However, the use of randomly

generated of the weight vectors might also be time-consuming as a large number of

such vectors may be required to achieve good coverage of the Pareto front. Before

formulating the scalarised problem, each objective function is normalised (fi) with

respect to the limits of the objective space to avoid generating search directions that

are biased towards specific (larger) objectives.

fi(x, y, n) =
f o
i (x, y, n)− fnd

i (x, y, n)

f id
i (x, y, n)− fnd

i (x, y, n)
, i=1, · · · ,m (5.1)

where f o
i (x, y, n) is the i-th original objective function, fi(x, y, n) is the i-th nor-

malised objective function, and f id
i (x, y, n) and fnd

i (x, y, n) are the ideal and nadir
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points of i-th objective functions.

The mathematical formulation of the scalarised problem is as follows:

min
x,y,n

w⊤f =
∑m

i=1
wifi(x, y, n)

s.t. g(x, y, n) ≤ 0

h(x, y, n) = 0

x ∈ Rn1 , y ∈ {0, 1}n′
2 , n ∈N ⊂ Zn2

(5.2)

The general scheme of the weighted-sum algorithm is outlined in Algorithm 1.

Algorithm 1 weighted-sum method for CAM(P)D

1: procedure WEIGHTED-SUM ALGORITHM

2: W = ∅; iteration, k = 1, where W is a set of weight vectors

3: while Stopping criterion is satisfied (i.e. k ≤ Niter) do

4: Generate a random vector v from uniform distribution

v = {vi,k | i = 1, ...,m}

5: Calculate a weight vector wk = {wi,k | i = 1, ...,m},
wi,k = vi,k/

∑
vi,k

6: if wk ⊈ W then

7: Solve problem (5.2)

8: end if

9: k = k + 1, W = W ∪wk

10: end while

11: end procedure

Sandwich algorithm

The sandwich algorithm (Solanki et al., 1993; Rennen et al., 2011) has been pro-

posed as a scalarisation method with the aim to approximate the (convex) Pareto

front with as few optimisation runs as possible (Rennen et al., 2011). Within the al-

gorithm, a convex hull (inner approximation, IPS) and outer approximation (OPS)

of the Pareto front are constructed sequentially based on the incumbent Pareto points
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until the approximation error falls below some given tolerance, ϵ ≥ 0. The approxi-

mation error dmax is defined as the maximum distance between the inner and outer

approximations. In our study, we follow the approach of Rennen et al. (2011) of

considering dummy points and ϵ-dominance in the calculation of the approxima-

tion error, derror,p where p = 1, .., NF and NF is the number of facets generated by

the inner approximation, between the inner and outer approximations, whereby the

maximum error, dmax = max
p=1,...,NF

derror,p, is determined by solving the following linear

programming problem for each facet of IPS, F p
S . The derror,p is defined as:

derror,p =max
z

w⊤
p (z

vertex − z)

w⊤
p ϵd

, p = 1, ..., NF

s.t. z ∈ OPS

(5.3)

where wp is a normal vector of the pth facet F p
S , zvertex is one of extreme points of the

facet F p
S and ϵd is a user defined vector that represents ϵ-dominance. Note that the

facet which is defined by a negative normal vector, i.e., outer normal vector or only

dummy points are eliminated from consideration in the calculation of the error. The

weight vectors are chosen systematically from the set of normal vectors to the facets

constructed by inner approximation. The basic scheme of SD algorithm is outlined

in Algorithm 2. A graphical illustration of the procedure is shown in Figure 5.1. The

error tolerance is selected for each case study depending on the size of the problem.

The general description of SD is further detailed in Section 6.3.1.

Global phases

A challenge in applying the weighted-sum and sandwich algorithms to MOO prob-

lems is ensuring that the global solution of each scalarised problem is identified,

as local solutions are dominated solutions of the MOO problem rather than Pareto-

optimal solutions. To increase the likelihood of finding global solutions, two global

optimisation algorithms are used to solve scalarised problems at step 7 of Algo-
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Figure 5.1: Schematic illustrating the procedure of the sandwich algorithm in objective
space for two objectives f1 and f2. The dotted blue curve represents the true Pareto
front, the black circles are the Pareto points identified. The red lines represent the outer
approximation and the black lines represent the inner approximation. In (a), the algo-
rithm begins with the construction of the convex hull based on anchor points zA1 and
zA2 (black diamonds) and the first Pareto point z1 (black circle). This gives two facets,
that are used to define the first outer and inner approximations. (b) The approximation
error (the distance between the inner and outer approximations) is computed for each
facet. The second Pareto point z2 is obtained by solving problem (5.2) for the facet
(inner approximation) that has the largest approximation error. In this case, this is the
facet (z1, zA1). The weight vector w is defined by the normal vector of this facet. (c)
The third Pareto point z3 is obtained in the same manner as described in (b) after cal-
culating the approximation error between inner and outer approximations based on zA,
z1 and z2, with largest error occurring on facet (zA2, z1). This figure is an adaptation
of Figure 1 in Lee et al. (2020).
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Algorithm 2 Sandwich algorithm for CAM(P)D

1: procedure SANDWICH ALGORITHM

2: ZE = ∅; dmax =∞; k = 1, where ZE is a set of Pareto optimal solutions.

3: Find all anchor points ZA =
{
zAi | i = 1, ...,m

}
.

4: Choose an initial weight vector, w=[1/m
×m· · · ] and solve problem (5.2) to

obtain the initial outer approximation for z1.

5: while dmax ≥ ϵ do

6: Initialise a set of inner approximation, IPS

where IPS is obtained by constructing convexhull based on the set ZE,

IPS = convexhull(ZE),

ZE = {zA1, ..., zAm, z1, ..., zk}.
7: Calculate the error, derror,p, for each facet of IPS, i.e., p = 1, ..., NF .

8: Select the facet, FS∗, that has largest error, dmax = max
p=1,...,NF

derror,p

where p = argmax
p=1,...,NF

(derror,p) and FS∗=FSp. Select weight w to be normal

to the FS∗.

Let H(w, b) be a supporting hyper plane at FS∗ then,

H(w, b) : w⊤z = b

9: Determine z∗ by solving problem (5.2) with w

10: if (w⊤z∗ = b) then

11: Set the error of the FS∗ to zero and return to Step 8

12: end if

13: Update outer approximation by adding the inequality w⊤z∗ ≥ b

14: Update ZE by replacing it with ZE = {ZE, z
∗}

15: Set k = k + 1

16: end while

17: end procedure
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rithm 1 and step 4 and 9 of Algorithm 2. Multi-Level Single Linkage (MLSL), a

deterministic incomplete global optimisation method (Neumaier, 2004), and Simu-

lated Annealing (SA) (Marcoulaki & Kokossis, 2000), a stochastic incomplete global

optimisation method, are applied in our study. These are briefly described in the

remainder of this section.

Multi-Level Single Linkage (MLSL)

The Multi-level Single Linkage (MLSL) method is derived from the multi-start method,

which aims to find local minima by performing multiple local minimisation proce-

dures from a set of starting points distributed in an appropriate way (e.g., sampled

from a uniform distribution) over the decision space (Rinnooy Kan, 1987). A ma-

jor difference between the multi-start and MLSL methods is that the local search in

MLSL is invoked from a reduced set of sample points, Nr, chosen such that there is

no other sample point within some critical distance, rk′, that has a lower objective

function value. The reduced set is obtained by taking Nr = γk′Ns points from the

cumulated sample points that have the lowest function values, where γ ∈ (0, 1) is a

control parameter, k′ is the number of iteration and Ns is a total number of sample

points. Starting points that do not satisfy this conditions are clustered into one of the

regions of attraction, Cl, l=1,..., Wmin, where Wmin is the number of distinct local

minima that have been found up to the current iteration of the algorithm. Here, we

denote the cardinality of the set Cl as |Cl|. The main algorithmic options for this class

of approaches are the choice of an appropriate acceptance/rejection criterion for lo-

cal search, of the sampling methodology and of a stopping criterion for the overall

algorithm. In our study, we modify the algorithm Kucherenko & Sytsko (2005) to

account for the mixed-integer nature of problem (5.2). We adopt a Sobol’ sequence

(Sobol’ et al., 2011) to generate starting points. Sample points are generated in the

space of continuous variables ỹ and ñ, where ỹ and ñ are obtained by relaxing the

integrality of y and n, with the k-th point denoted by (ỹ(k), ñ(k)). To enable eval-
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uation of the objective function and subsequent clustering at each sample point, it

is imperative to ensure that the point is feasible. For this purpose, a pure integer

problem is solved to find the closest point (y(k),n(k)) to (ỹ(k), ñ(k)), as measured

by Euclidean distance, that satisfies the integer constraints. The formulation of this

problem at iteration k is given by

min
y(k),n(k)

∣∣∣∣(y(k),n(k))− (ỹ(k), ñ(k))
∣∣∣∣
2

s.t. h(y(k),n(k)) = 0

y ∈ {0, 1}n′
2 , n ∈N ⊂ Zn2 , nk,j ∈ {nl,j, nu,i} , j = 1, ..., n2

(5.4)

where ||·||2 is euclidean norm and nl,j and nu,j is lower and upper bounds on each

integer variable.

In CAMD problems where the degrees of freedom are fully specified once the

binary and integer variables are fixed, the continuous variables at sample point

(y(k),n(k)) are obtained by solving the model equations h(x(k), y(k), n(k)) = 0. The

objective function of problem (5.2) can then be evaluated to determine whether a

local (MINLP) optimisation should be run from this starting point. In CAMPD prob-

lems, there are usually the degrees of freedom for continuous variables and the

generation of starting points is applied to both integer and continuous variables.

Such variables can be generated using a Sobol’ sequence restricted to the feasible

region based on the method as described in Section 5.4.3. In our study, we focus

on generating a set of starting points only for integer and binary variables, since the

outer approximation (OA) algorithm (Viswanathan & Grossmann, 1990) is used as a

local search method to solve Problem (5.2). Within this algorithm only integer and

binary variables are specified as the starting points and the continuous variables are

specified by solving Primal problems within the OA algorithm.

The stopping rule is given by Wexp ≤ Wmin,k, where Wexp is the number of local

minima calculated based on a Bayesian stopping rule (Pál, 2013). The maximum
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number of generated starting point, Nmax, is also used as the stopping criteria and

set to Nmax = 10 × Ns. The pseudo-code for the MLSL algorithm is shown as Algo-

rithm 3.

Simulated Annealing (SA)

Simulated Annealing algorithms originate from the analogy of the heating and slow

cooling of liquid metal so that crystallisation into a structure that corresponds to a

minimum free energy can be achieved (Metropolis et al., 1953). Markov processes

and probability theory are combined in order to move from one state to another

based on transition probabilities. The essential algorithmic feature of SA is that it en-

courages extensive exploration of the search space by accepting “worse-performing”

random moves, thereby increasing the likelihood of convergence to a global solution.

The choice of algorithmic parameters is a critical aspect of any implementation of SA

(Papadopoulos & Linke, 2006b; Marcoulaki & Kokossis, 2000). Relevant parameters

include: the length of the Markov chain (Nmc), the cooling schedule, cooling param-

eter (δ), stopping criterion, initial temperature (Ti), stopping temperature (Tstop),

and the method used for the generation of perturbation moves. In our study, we

employ the method described in Papadopoulos & Linke (2006b) to determine ap-

propriate parameter settings. The Markov chain length is selected by examining the

standard deviation in the value of the optimal objective. Specifically, ten SA simu-

lations are executed with different seeds and starting points and the smallest chain

length is selected by which the standard deviation is below 0.2 % is selected as the

value of Nmc. The cooling parameters and cooling schedule are set according to

Marcoulaki & Kokossis (2000) and Aarts & Laarhoven (1985), respectively. All other

heuristic parameters used in the case studies are listed in Table 5.1.

The difficulty in applying the SA to CAM(P)D is in ensuring the random moves

satisfy the structural feasibility constraints. Note that the random moves should not

be biased, so an optimisation problem is formulated and solved to find the nearest
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Algorithm 3 MLSL algorithm for CAM(P)D

1: procedure MULTI-LEVEL SINGLE LINKAGE

2: Initialise Cl = ∅; k′ = 1; Wexp = 0; Wmin = 0, Set Ns and γ.

3: Set list of objective functions and corresponding sample points, L = ∅.
4: while Wexp ≤ Wmin or k′Ns ≤ Nmax do

5: for k = (k′ − 1)Ns + 1 to k′Ns do

6: Generate k-th Sobol’ point, (ỹ(k), ñ(k)) ∈ [0, 1]r × [nl, nu].

7: Solve Problem (5.4) to find (y(k), n(k)).

8: Generate x(k) from (y(k), n(k)).

9: Evaluate objective function

f (k) =
∑m

j=1wjfj(x
(k), y(k), n(k)).

10: Add ((x(k), y(k), n(k)), f (k)) to L, so that L is sorted in ascending order

of objective functions.
11: end for

12: Set Nr = γk′Ns; Nr sample points are selected from L.

13: for i = 1 to Nr do

14: if Wmin > 0 and there exist j, l such that

f(x(j), y(j), n(j)) ≥ f(x(i), y(i), n(i)) and∣∣∣∣(x(j), y(j), n(j))− (x(i), y(i), n(i))
∣∣∣∣
2
< rk′,

where j ∈ {1, ..., |Cl|} and l ∈ {1, ...,Wmin} then
15: Assign the point (x(i), y(i), n(i)) to Cl.

16: else

17: Solve Problem (5.2) starting from (x(i), y(i), n(i)) using a local

search method.

18: if feasible and solution (x∗, y∗, n∗) /∈ Cl then

19: Assign (x∗, y∗, n∗) to CWmin+1; Wmin = Wmin + 1.

20: end if

21: end if

22: end for

23: Set k′ = k′ + 1, Calculate Wexp

24: end while

25: end procedure
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point (y′
k,n

′
k) to the newly generated points (yk,nk), which satisfies all structure-

related constraints. The formulation of this problem at iteration k is given by

min
y′

k,n
′
k

||(yk,nk)− (y′
k,n

′
k)||2

s.t. h(y′
k,n

′
k) = 0

y′ ∈ {0, 1}r, n′ ∈N ⊂ Zs, n′
k,j ∈ {nl,j, nu,j} , j = 1, ..., s

(5.5)

Due to the difficulty of handling design constraints in simulated annealing, these

are handled via a penalty function (Marcoulaki & Kokossis, 2000), Fk(xk,y
′
k,n

′
k;M).

Note that the molecular feasibility constraints are not included in the penalty func-

tion Fk, since only the structurally feasible molecules are generated within the al-

gorithm. The penalty function used to combine the objective function and the con-

straints is as follows:

Fk(xk,y
′
k,n

′
k;M) =

m∑
i=1

wifi(xk,y
′
k,n

′
k)

+M

(
mg∑
j=1

[max (0, gj(xk,y
′
k,n

′
k))] +

mh∑
j=1

|hj(xk,y
′
k,n

′
k)|

) (5.6)

where M is a penalty weight imposed on inequality and equality constraints, and mg

and mh are the number of inequality and equality constraints, respectively.

The SA algorithm applied to CAM(P)D is outlined in Algorithm 4.

5.2.3 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

The NSGA-II algorithm (Deb et al., 2000b) is a particular form of genetic algorithm

(GA) and is one of the most prominent methods for evolutionary-based stochastic

search. The NSGA-II is directly applicable to MOO as it uses an explicit diversity-

preserving mechanism based on a crowding distance metric to generate uniformly



CHAPTER 5. A COMPARATIVE STUDY OF MOO METHODOLOGIES FOR
MOLECULAR AND PROCESS DESIGN 150

Algorithm 4 SA algorithm for CAM(P)D

1: procedure SIMULATED ANNEALING

2: Initialisation y0, n0, x0 ← initial guesses; T = Ti; Set M .

3: Calculate initial objective function value, F0(x0,y
′
0,n

′
0;M).

4: while T ≤ Tstop do

5: for k = 1 to Nmc do

6: Generate random vector ∆yk,∆nk and corresponding move

yk = y′
k−1 +∆yk, nk = n′

k−1 +∆nk

7: Solve Problem (5.5) to find y′
k,n

′
k; xk = x (y′

k,n
′
k)

8: ∆Fk = Fk(xk,y
′
k,n

′
k;M)− Fk−1(xk−1,y

′
k−1,n

′
k−1;M).

9: if ∆Fk ≥ 0 then

10: Sample random number, Pr,k from uniform distribution function

and calculate probability of accepting the random move, Paccept,

where Paccept = exp (−∆Fk/T ).

11: if Paccept ≤ Pr,k then

12: Discard the value of n′
k and Fk and assign the values from the

iteration k − 1; Fk=Fk−1 and xk=xk−1 y
′
k=y′

k−1, n′
k=n′

k−1

13: end if

14: else

15: Accept the next move (xk,y
′
k,n

′
k).

16: end if

17: end for

18: Set k = k + 1

19: Reduce the Temperature T based on cooling schedule.

20: end while

21: end procedure
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distributed Pareto points. Furthermore, it makes use of elite-preserving operators

to give “elite genes” an opportunity to survive in the next generation. In order to

adapt the NSGA-II for CAM(P)D problems, one needs to encode molecular structure

in an operable and interpretable form, and to specify a suitable set of heuristic pa-

rameters. In this work, the dynamic tree structure proposed by Zhou et al. (2017)

is implemented to represent molecules. The construction of the tree-like structure

guarantees the generation of structurally feasible molecules and allows the applica-

tion of the crossover and mutation operators over molecules to be more tractable.

For CAM(P)D problems, a penalty-based (Zhou et al., 2017) fitness vector (F fit,k)

is assigned to an individual solution, fi,k to measure their relative merit: Ffit,i,k =

fi,k(xk, yk, nk)× Pk. The fitness function is chosen to be proportional to the magni-

tude of an aggregate constraint violation, Pk: Pk = 1000×(
∑mg

j=1max [0, gj(xk, yk, nk)]+∑mh

j=1 |hj(xk, yk, nk)|). The tournament selection technique is employed as a selec-

tion strategy to choose parents for the next generation, since it can avoid premature

convergence and stagnation (Deb et al., 2000b). In tournament selection, four pop-

ulation members are randomly chosen to compete each other and the best one out

of the pool of the members is selected to be a parent. All other parameters used in

the case studies are specified in Table 5.1.

5.2.4 Algorithmic combinations

The combination of global phase and MOO methods results in four scalarisation

algorithms: weighted-sum with multi-level single linkage (WSML), weighted-sum

with simulated annealing (WSSA), sandwich algorithm with multi-level single link-

age (SDML), sandwich algorithm with simulated annealing (SDSA). This set of four

combinations is augmented with the weighted-sum without global phase (SWS) and

non-dominating sorting genetic algorithm II (NSGA-II), which is not based on scalar-

isation. These approaches are summarised in Table 5.2. Convergence to the global
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Table 5.1: Algorithmic parameters used in the case studies, where CS denotes case study

Method Parameter CS1 CS2 CS3

MLSL
Number of Sobol’ points, N s

Fraction to define reduced set, γ
Control parameter, σ

128
0.25

3

256
0.25

3

128
0.5
2

SA

Initial temperature, Ti

Final temperature, Tstop

Markov chain length, Nmc

Cooling parameter, δ

105

10−3

70
0.8

105

10−3

120
0.5

105

10−3

80
0.2

SD Error tolerance, ϵ 9.5×10−3 1.5×10−2 5.0 ×10−4

NSGA-II

Crossover fraction
Mutation fraction
Elite gene preservation Fraction
Population size

0.2
0.8
0.05
100

0.2
0.8
0.1
150

0.2
0.8

0.05
50

Table 5.2: Algorithmic used in this work

Algorithm name Pseudo code
SWS Algorithm 1 + local MINLP solver for Step 7
WSML Algorithm 1 + Algorithm 3 for Step 7
WSSA Algorithm 1 + Algorithm 4 for Step 7
SDML Algorithm 2 + Algorithm 3 for Step 9
NSGA-II -

optimal solution of the single objective optimisation problem, Problem MOP2, is es-

pecially critical in the sandwich algorithm since the algorithm uses the incumbent

solution set to generate the convex hulls and weight vectors. On the basis of this ob-

servation, the comparison of the performance of the algorithms is divided into two

stages: a comparative study of the performance of two global search methods with

the weighted-sum approach is first carried out; in the second stage, only the global

search method that gives better performance is used in further comparisons. The

methods compared in the first stage include the SWS, WSML, and WSSA. As will be

shown, MLSL gives the best performance for this investigation so that WSML, SDML

and NSGA-II are compared in the second stage.
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5.3 Quality measures for multi-objective optimisation

Since no single metric can represent the performance of the algorithms, a series of

appropriate metrics is used to assess performance in the specific domain of molecular

design. In particular, in developing the metrics, we take into account the fact that

some of the case studies involve only discrete decision variables, in which case a

full enumeration of the solution is possible and provides further insights. Other case

studies include both discrete and continuous variables and such an enumeration is

not possible. Thus, we define the following two quantities:

1. The exact number of Pareto points (Ntrue): For some CAMD problems, the

exact set of Pareto points, PT , can be obtained by complete enumeration of all

possible combinations of the functional groups. This set contains Ntrue Pareto

points, i.e. Ntrue = |PT | where |A| denotes the cardinality of set A.

2. The number of best-known Pareto points (NBP ): For some CAMD and CAMPD

problems, the best-known Pareto front, PBP , contains a set of non-dominated

points (i.e. NBP = |PBP |) obtained by evaluating dominance across all points

generated from several runs for a given problem. It is an approximation of the

true Pareto front, which may contain some points that are not Pareto-optimal

and/or may be missing Pareto points.

The following quantitative metrics are used to measure the quality of the solution

set obtained following a MOO run:

1. The number of unique non-dominated solutions (Nunq): The set PU contains all

the unique non-dominated solutions obtained in a given run with Nunq = |PU |.

This number captures the diversity of the solution set.

2. The number of non-dominated points (NPF ): The set PPF contains the NPF

non-dominated points generated in a given run that lie on the true Pareto front
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(or the best-known Pareto front), i.e. PPF = PU ∩ PT (or PPF = PU ∩ PBP ).

NPF is a measure of the extent of convergence to the Pareto front.

3. The number of supporting non-dominated points (NSPF ): The PSPF contains

the non-dominated points that have been identified during a SOO in which the

weight vector supports the Pareto front, i.e. PSPF ⊆ PPF . Specifically, if a point

is in PSPF , this indicates that the point was identified following termination of

the SOO algorithm at a global solution rather than at a local solution. If a point

in PPF is not in PSPF , this point was identified following convergence of the

SOO algorithm to a local solution, indicating a fortunate outcome to what is

essentially a failure of the global SOO solver.

4. Hypervolume (HV): The hypervolume (Zitzler et al., 2003) of a set PPF of non-

dominated solutions is the volume of the m-dimensional region in the objective

space enclosed by the non-dominated solutions obtained and a reference point,

fref,i: fref,i=1, i=1, ..., p. The larger HV, the better PPF in terms of convergence

to the true Pareto front and/or in terms of diversity of the solutions.

5. CPU time: Fast convergence to the Pareto frontier is a critical aspect for com-

putationally expensive MOO problems. Both the average CPU time to generate

a true (or best known) solution (tcpu,a) and the total CPU time to generate all

solutions (tcpu,t) are reported.

5.4 Case Studies

The optimisation methodologies presented are applied to three case studies to assess

their performance and to examine the applicability of each method. The case studies

are selected so that different levels of complexity are explored in terms of problem

size and the numerical difficulty.
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5.4.1 Case study 1: Solvent design for chemical absorption of

carbon dioxide (CAMD)

A CAMD application focused on the design of solvents for the chemical absorption

of CO2 is chosen as a first example. The formulation is based on the first of the

recent approach of Papadopoulos et al. (2016) who considered an extensive list of

property criteria for the design of solvents for the CO2 capture. Four of the solvent

properties are selected as objective functions in this case study, namely, liquid den-

sity (ρ), heat capacity (Cp), saturated vapour pressure (Pvap), and relative energy

difference (RED). With four objectives and only discrete decision variables, this

case study provides an opportunity to enumerate the entire search and gain insights

into some of the key features of CAMD MOO problems. Several other performance

criteria are considered as constraints: a) the normal melting point (Tm), to ensure

that the solvent is in the liquid phase at the lowest process operating temperature, b)

the normal boiling point (Tb) to avoid excessive evaporation at absorber operating

conditions, c) the viscosity (µ) to ensure ease of transport and d) the surface tension

(σ), to promote mass transfer performance. The property targets and performance

criteria are summarised in Table 5.3. Note that several authors include other proper-

ties, such as reactivity (Papadopoulos et al., 2016) and synthesisability(Zhang et al.,

2015) in their final design. Here, we focus on the first subproblem in the method-

ology of Papadopoulos et al. (2016) as it provides a useful test for MOO algorithms.

The SAFT-γ Mie group contribution equation of state Papaioannou et al. (2014) is

used to predict ρ, Cp, Pvap, and Tb. The property prediction method of Hukkerikar

et al. (2012b) is used for Tm, Hsu et al. (2002) is used to predict σ, RED and µ. A

set of 13 functional groups (N = 13), occurring ni (i=1, ..., N) times in the molecule

including 8 amine groups is selected as building blocks based on the applicability of

the property prediction methods. The set is shown in Table 5.4 and includes eight

amine groups. The total number of functional groups in the molecule and the to-
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Table 5.3: Property constraints for CS1

Physical properties, g(n) Bounds
ρ (g/cm3) at 25◦C and 1 atm [0.6,1.5]
RED [10−5, 6.5]
Tb (K) at 1 atm [393, 550]
Tm (K) at 1 atm [273,313]
σ (dyn/cm) at 25◦C [25, 60]
µ (cP) at 40◦C [10−5,60]

Table 5.4: Solvent design space for CS1

Functional groups Bounds
CH2N ,CH3N,
CHNH, CH2NH
CH3NH, CNH2,
CHNH2, CH2NH2,
CH3, CH2,
CH, C, and OH

ntot = 13
ntot,A = 5

tal number of groups with amine functionality are constrained by bounds ntot and

ntot,A, respectively. The set of amine group is given by GA={CH2N, CH3N, CHNH,

CH2NH, CH3NH, CNH2, CHNH2, CH2NH2}. In this case study, only acyclic molecules

are considered. The resulting mathematical formulation is as follows:

min
n

Cp, Pvap, RED

max
n

ρ

s.t. g(n) ≤ 0
N∑
i=1

(2− vi)ni − 2 = 0,

∑
i∈GA

nj − ntot,A ≤ 0,

N∑
i=1

ni − ntot ≤ 0

ni ∈ {nl,i, nu,i} , i = 1, ..., n2

(5.7)

where g(n) is a vector of inequality constraints on the physical properties (cf. Table

5.3, and vi is the valence of group i.

5.4.2 Case study 2: Working fluid design for ORC (CAMD)

In the second case study, we consider the design a working fluid for an ORC follow-

ing the CAMD formulation of Papadopoulos et al. (2010a) and Palma-Flores et al.

(2015). The Pareto front generated by solving such a problem is useful in iden-
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Table 5.5: Property constraints for case study 2, (Tmax,op= 353.15K, Tmin,op= 308.15K,
Top=330K, Tb is normal boiling point of a working fluid)

Physical property Bounds Reference
ρL (g/cm3) at Top and 1 atm [0.2, 1.86] Poling et al. (2001)
HV (kJ/mol) at Tb [0.2, 2.5] Constantinou & Gani (1994)
λL (W/m-K) at Top [0.06, 1] Sastri & Rao (1999)
Cp,L (J/mol K) at Top [110, 500] Sahinidis & Tawarmalani (2000)
µ (cP) at 30◦C and 1 atm [10−5,10] Hsu et al. (2002)
Tm (K) at 1 atm [273, Tmin,op] Constantinou & Gani (1994)
Tc (K) [Tmax,op, 313] Joback & Reid (1987)

Table 5.6: Solvent design space for CS2

Functional groups Bounds
CH3, CH2, CH2=CH, CH=CH,
CH3O, CH2O, FCH2O, CF3, CF2,
CH2NH2, CHNH2, CH3NH, CH2NH, CH3N,
CH3COO, CH2COO, COO, COOH,
CH3CO, CH2CO, CHO, HCOO , and OH

ntot = 6

ntot,E = 2

tifying high-performance ORC fluids as part of a two-stage CAMPD methodology

(Papadopoulos et al., 2010a). The purpose of this case study is to investigate the

performance of each algorithm for a higher problem dimension. The objective func-

tions for working fluid design are expressed as five thermodynamic properties: liquid

density (ρL), which is indicative of the size of process equipment and should be max-

imised, latent heat of vaporisation (HV ), which is a measure of how much heat can

be added to the ORC system, thermal conductivity (λL), for which a higher value is

desirable to obtain a larger heat transfer coefficient in the heat exchangers, liquid

heat capacity (Cp,L), and viscosity (µ) to increase the heat transfer coefficient and

achieve reduced energy consumption.

In addition to the properties aforementioned, the melting temperature (Tm) and

critical temperature (Tc) are also considered as property constraints in order to make

sure that the working fluid is in the two-phase region across the range of operating

conditions of the ORC. The predictive thermodynamic models used for each prop-
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erty and the relevant bounds are listed in Table 5.5. The molecular design space is

generated from 24 functional groups, including hydrocarbon, ether, fluoro, amine,

formate, aldehyde, and hydroxyl groups (Table 5.6). The design space of possible

working fluids consists of compounds generated by linear combination of functional

groups containing up to 6 functional groups. The resulting optimisation problem is

as follows:

max
n

ρL, HV , λL

min
n

Cp,L, µ

s.t. Tm(n) ≤ Tmin,op, Tmax,op ≤ Tc(n)

N∑
i=1

(2− vi)ni − 2 = 0,

∑
i∈GE

nj − ntot,E ≤ 0,

N∑
i=1

ni − ntot ≤ 0

ni ∈ {nl,i, nu,i} , i = 1, ..., n2

(5.8)

where Tmin,op, Tmax,op are the minimum and maximum operating temperature of

the ORC system, respectively, ntot is the maximum allowable number of groups in

a molecule, ntot,E is the maximum allowable number of end groups to ensure the

molecule is a linear combination of the functional groups and GE ={CH3, CH2 =CH,

CH3O, FCH2O, CF3, CH2NH2, CH3NH, CH3COO, COOH, CH3O, CH3O, CHO, HCOO,

OH}. Note that once a molecular structure has been specified, all continuous vari-

ables are fully determined.
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5.4.3 Case study 3: Integrated working fluid and ORC process

design (CAMPD)

In this case study, we consider the integrated design of working fluid and ORC pro-

cess. The aim of the optimisation is to determine the optimal molecular structure

of the working fluid as well as the process operating conditions that maximise the

net power output (Pnet) extracted from the ORC and to minimise the total cost of

investment (TCI), for a specified heat source and heat sink (Schilling et al., 2017).

The ORC system is defined as a single-stage, sub-critical, non-recuperated cycle and

comprises a turbine, a condenser, a pump, and an evaporator. A schematic of this

process configuration is shown in Figure 5.2. As a basis for the selection of the

working fluid, the following nine function groups are selected: CH3, CH2, CH2=,

CH=, eO (end group oxygen), cO (central oxygen), and OH. eO represents an oxy-

gen atom connected to one CH3 and one CH2 group, and cO describes an oxygen

atom bonded to two CH2 groups. Alongside the functional groups, four ORC pro-

cess variables (mWF : mass flow of working fluid, Pin,pump, Pout,pump: pump inlet,

outlet pressure, ∆Tsuperheat: extent of superheating) can also be optimised. The op-

timisation variables and their upper and lower bounds are listed in Table 5.7. In

solving the CAM(P)D problem, the feasible range of process variables is found to

vary depending on the molecule used in the process; thus it becomes challenging to

provide reasonable starting points and bounds for the process variables, especially

as many of the relevant bounds are typically expressed as implicit constraints (e.g.,

a two-phase system is expected in the evaporator and condenser) (Gopinath et al.,

2016). As a result, these assumptions are readily violated when a new ORC fluid

is selected and this usually leads to numerical failure in the calculation of phase

behaviour. To avoid these failures, Bowskill et al. (2020) extended the modified

outer-approximation algorithm of Gopinath et al. (2016) and introduced feasibility

tests to recognise the feasible domain for a specific choice of molecule. Here, we
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Table 5.7: Property constraints, g(x, n) for CS3. The bounds of
pump inlet and outlet pressure (Pmin, Pmax) are determined by fea-
sibility tests.

Physical properties, g(x, n) Bounds

Mass flowrate of working fluid, mWF (kg/s) [0, 1000]

Extent of superheating, ∆Tsuperheat (K) [0, 500]

Pump inlet pressure, Pin,pump (Pa) [Pmin,Pmax]

Pump outlet pressure, Pout,pump (Pa) [Pin,pump,Pmax]

Minimum approach temperature, ∆Tmin (K) [10, 105]

adopt the same optimisation framework and modelling assumptions. For a detailed

description of the optimisation strategy and assumptions used, see Bowskill et al.

(2020) and case study 2 (Table 1) therein. The generic formulation of case study 3

is as follows:

min
x,n

Pnet,

max
x,n

TCI

s.t. g(x, n) ≤ 0,

h(x, n) = 0,

(5.9)

Figure 5.2: Schematic of the organic Rankine cycle used in Case Study 3
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where g(x, n) is a vector of inequality constraints (see Table 5.7), h(x, n) is a vec-

tor of equality constraints. The detailed equations for g and h are described in the

supplementary information of (Bowskill et al., 2020)

Remarks on the application of SA and NSGA-II to case study 3

For the application of the SA and NSGA-II algorithm to the solution of a single ob-

jective CAMPD problem, both integer variables and continuous variables need to be

sampled. However, the feasible domain is not defined unless the molecular structure

is selected. Here, we combine NSGA-II, to optimise integer (molecular) variables,

with a gradient-based deterministic algorithm, to optimise the continuous nonlinear

variables at the given molecular structure proposed by NSGA-II. For the application

of SA, we divide the generation of random moves of SA approach in two parts: (1)

the generation of a new molecule that can pass the feasibility tests of Bowskill et al.

(2020); (2) the generation of continuous variables based on the feasible region de-

rived for the new molecule.

5.5 Results and Discussion

In this section, we compare the relative performance of all algorithms. Table 5.8

summarise the comparison of the problem size for the model defined in each case

study. Note that the feasibility tests are not considered in the problem size of case

study 3. All MOO methods are implemented with common subfunctions using the

same programming language in Matlab 2018a and all runs are performed on single

Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz processor with 384 GB of RAM. For the

local solution of MINLPs, the single-objective optimisation problem is solved using

an in-house implementation of the outer approximation algorithm with augmented

penalty (Viswanathan & Grossmann, 1990) that interfaces with gPROMS Model-

Builder 5.1.1 (process model and NLP solver) and Gurobi 8.1 MILP solver to solve
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Table 5.8: Problem size of the model for each case study, where CS denotes case study

CS1 CS2 CS3
Number of objectives 4 5 2
Number of total model variables 98 105 275
Number of discrete variables 13 24 9
Number of continuous design variables 85 81 266
Number of constraints 93 96 282

Table 5.9: Enumeration of all solutions for all possible combinations of functional
groups in each case study. Nstructure: the number of molecules that satisfy structural
feasibility, Nfeasible: the number of molecules that satisfy all constraints, Ntrue: the
number of exact Pareto Points, NBP : the number of best-known Pareto Points, HV: hy-
pervolume, tcpu,t: total CPU time to enumerate the space in seconds. The value in (.) of
Ntrue of case study 3 is the number of different molecular structures within true points.

Case Study 1 Case Study 2 Case Study 3
Nstructure 284,964 5,196,075 3,175
Nfeasible 6,200 905,168 267
Ntrue 283 2,748 -
NBP - - 203 (12)
HV 0.4054 0.1435 0.9160
tcpu,t (s) 3.18×104 1.03×106 1.06×104

the primal and master problems iteratively. The SAFT-γ Mie calculations are carried

out using gSAFT via a Foreign Object interface. We carry out two types of runs:

fixed number of iterations and fixed CPU time. For the scalarisation-based methods

(WS and SD), the number of iterations is defined as the number of weight vectors

that are explored. For NSGA-II, the number of iterations is defined as the number

of generations. Where a limit is imposed on CPU time, this is selected based on the

time taken for SDML to reach a pre-defined error tolerance for each case study.

5.5.1 True Pareto fronts

For all case studies, the true Pareto front is generated using exhaustive enumeration

of a finite set of molecular structures in order to provide a benchmark for the quality

of the solutions produced by each algorithm. For case study 3, it is impossible to

construct a complete set of Pareto points as there is an infinite number of solutions
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Figure 5.3: Parallel coordinate plots of the set of true Pareto points on the (a) four-
objective space of case study 1; and (b) five-objective space of case study 2, obtained by
the enumeration of all possible combinations of molecules

Figure 5.4: Best-Known Pareto front (blue marker, ×) and feasible points (gray marker,
◦) of the normalised net power output, −Pnet (f1) versus the normalised total capital
investment, TCI (f2) resulting from the enumeration of all possible working fluids in
case study 3

due to the presence of continuous variables. As an alternative, 23 NLP optimisa-

tions corresponding to different weight vectors are conducted for each of the 267

feasible working fluids, resulting in 6141 NLPs. The resulting set of the solution

is combined with the solutions obtained with each method across all runs during

all computational studies carried out in Section 5.5.2 and 5.5.3 with the different

algorithms. The results of these extensive calculations can be used as a reasonable

approximation of the true Pareto front for graphical comparison. Information on



CHAPTER 5. A COMPARATIVE STUDY OF MOO METHODOLOGIES FOR
MOLECULAR AND PROCESS DESIGN 164

the true/best-known Pareto frontier obtained for each case study is shown in Table

5.9. A graphical representation of the Pareto points in the domain of the objective

function is given in Figures 5.3 and 5.4. Within the 66 Pareto points identified in

Case Study 3, there are only 7 distinct molecular structures, but a range of values of

the continuous variables.

5.5.2 Comparisons between global search methods

We begin by comparing the effectiveness of MLSL and SA in identifying global so-

lutions using the same scalarisation method (WS). To compare SWS, WSML, and

WSSA, an identical set of randomly generated weight vectors is used for all algo-

rithms. We note that in all cases the number of iterations used falls far below the

number of true or best known Pareto points. Thus these runs can only provide a

partial view of the Pareto front and we therefore assess the efficiency with which

Pareto points are generated. As can be seen in Table 5.10, 5.11 and Figure 5.5,

WSSA can generate more diverse solutions (larger Nunq) for case studies 1 and 2

compared to MLSL. However, only 55-65% of solutions produced by SA are found to

be true Pareto optimal points, and the solutions identified as true Pareto optimal are

not necessarily supported by the corresponding weight vector, and are thus obtained

as a fortuitous result of the convergence of the SA algorithm to a local solution. For

example, 38 of the solutions that are identified by WSSA as true Pareto points in

case study 1 are sub-optimal solutions; hence, only four solutions lie on the convex

Pareto fronts. Therefore, an algorithm with SA might mislead a priori articulation of

preferences (weight vectors) of a decision-maker, since some solutions solved from

specified weight vectors are correspond to different weight vectors as a results of

premature convergence to the Pareto front. This trend becomes more evident in

case study 3. As shown in Figure 5.6, many of the points identified by WSSA are

not on the true Pareto front, and are therefore dominated by other solutions, result-
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ing in the lowest value of NPF for this case study. In addition, a comparison of the

average CPU times in Table 5.12 and Table 5.13 for WSML and WSSA shows that

the lowest value is obtained systematically with WSML, indicating that the use of

MLSL for SOO is more efficient. Furthermore, in all cases, we find that for WSML,

NPF=NSPF , indicating that the MLSL algorithm always converges to the global (or

best-known) solution of Problem (5.2).

For the problems considered here, the SWS algorithm performs nearly as well as

WSML. While the number of non-dominated solutions found is similar for both ap-

proaches, some of the points identified by SWS are local solutions (NSPF ≤ NPF ).

However, the fact that similar values of HV are obtained for SWS and WSML in-

dicates that these local solutions are close to the Pareto front. This is also evident

from Figures 5.5 and 5.6. The greater confidence in the quality of the solutions af-

forded by WSML comes at a computational cost, as is always the case when global

optimisation is used.

Overall, since MLSL is found to show much better performance than WSSA in

the experiments across all case studies, only MLSL is be used as the global search

method with WS and SD in the subsequent simulations.
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Table 5.10: Performance metrics for case study 2 and 3 using a fixed number of iter-
ations and the weighted-sum approach with three SOO approaches (SWS, MLSL and
SA)

Case Study 1 Case Study 2
SWS WSML WSSA SWS WSML WSSA

Niter 100 100 100 150 150 150
Nunq 14 12 58 30 35 69
NPF 14 12 38 28 35 40
NSPF 12 12 4 20 26 23
HV 0.3584 0.3592 0.3865 0.0745 0.1081 0.1003
tcpu,a (s) 1.41 20.26 800.07 2.74 16.68 304.11
tcpu,t (s) 1.98×101 2.47×102 3.04×104 7.67×101 5.84×102 1.22×104

Table 5.11: Performance metrics for case study 3 a fixed number of iterations and the
weighted-sum approach with three SOO approaches (SWS, MLSL and SA)

Case Study 3
SWS WSML WSSA

Niter 100 100 100
Nunq 98 100 100
NPF 83 95 7
NSPF 52 95 1
HV 0.9084 0.9103 0.8872
tcpu,a (s) 1.76 88.93 4268.89
tcpu,t (s) 1.50×102 7.38×103 3.24×104
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Figure 5.5: Parallel coordinate plots of true Pareto fronts (PPF ) generated by SWS (—
•—), WSML (—▲—), and WSSA (—■—) for (a) case study 1 and (b) case study 2, and
true Pareto fronts (PT ) (- - - -). The unique Pareto fronts (PU) that do not intersect the
PPF , i.e. PU − (PPF ∩ PU), are described as dash-dotted lines (− · − · −) and empty
makers in each plot.
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Figure 5.6: Best-known Pareto fronts (PBP ) for case study 3 generated by (a) SWS (•),
(b) WSML (▲), and (c) WSSA (♦). Gray markers (∗) indicate best-known Pareto points
(PB) obtained by full enumeration. The empty markers in each case study indicate
the unique Pareto fronts (PU) that do not intersect the best-known Pareto fronts, i.e.,
PU − (PU ∩ PBF ).
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5.5.3 Comparison between MOO methods

Having selected the MLSL algorithm to solve single objective optimisation problems

to global optimality, we now focus on comparing the performance of weighted-sum

(MLSL), the sandwich algorithm (SDML) and the NSGA-II algorithm. The results

of the three case studies with these algorithms for a fixed number of iterations are

summarised in Table 5.12, 5.13, Figure 5.7 and Figure 5.8. The results for a fixed

CPU time are reported in Table 5.14, 5.15, Figure 5.9 and Figure 5.10.

In case studies 1 and 2, each point in the feasible region corresponds to a distinct

molecular structure. As a result, the Pareto set and set of dominated solutions are

entirely disjoint in terms of the molecular structures they represent. In case study 3,

it is possible for some molecular structures to appear both on the Pareto front and in

the set of dominated solutions, as these may differ in terms of the continuous vari-

ables alone. However, in our experience, the dominated solutions generated by the

NSGA-II algorithm correspond to different molecules from those on the “true” Pareto

front. The set of optimal solutions (PT , PU , PPF ) is given in full in the Supporting

Information (See the data statement).

Focusing first on the fixed number of iterations, we consider the values of HV and

NPF obtained with each approach and shown in Table 5.12 and Table 5.13. The

highest values of HV and NPF for all cases are obtained when using SDML. These

HVs (0.3917 for case study 1, 0.1186 for case study 2, and 0.9138 for case study

3) are the closest value to the HVs of the true Pareto fronts (0.4054 for case study

1, 0.1435 for case study 2, and 0.9160 for case study 3, see Table 5.9). From vi-

sual inspection of Figure 5.7 and 5.8, it can be observed that SDML performs best in

generating a diverse set of solutions close to the true Pareto front.

The performance of WSML is similar to that of SDML in terms of HV, but fewer

points are identified in the Pareto front, indicating a less diverse set of solutions. The

similar trends can be seen for the case of fixed CPU time. The highest HV and NPF
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Table 5.12: Performance metrics for case study 1 and 2 using WSML, SDML and NSGA-II
for a fixed number of iterations

Case Study 1 Case Study 2
WSML SDML NSGA-II WSML SDML NSGA-II

Niter 100 100 100 150 150 150
Nunq 12 40 24 35 83 11
NPF 12 40 6 35 83 5
HV 0.3529 0.3917 0.2558 0.1081 0.1186 0.0353
tcpu,a (s) 20.60 8.83 43.98 37.49 7.58 546.45
tcpu,t (s) 2.47×102 3.53×102 2.64×102 5.84×101 6.29×102 1.64×103

Table 5.13: Performance metrics for case study 3 using WSML, SDML and NSGA-II for
a fixed number of iterations

Case Study 3
WSML SDML NSGA-II

Niter 40 40 40
Nunq 40 40 37
NPF 39 40 3
HV 0.8617 0.9138 0.8261
tcpu,a (s) 50.47 55.32 325.03
tcpu,t (s) 1.97×103 2.31×103 9.75×102

Table 5.14: Performance metrics for case study 1 and 2 using WSML, SDML and NSGA-
II for a fixed CPU time

Case Study 1 Case Study 2
WSML SDML NSGA-II WSML SDML NSGA-II

tcpu,t (s) 380 380 380 1000 1000 1000
Niter 150 177 140 266 225 128
Nunq 13 46 28 51 108 22
NPF 13 46 6 51 108 12
HV 0.3673 0.3928 0.3232 0.1121 0.1239 0.0798

Table 5.15: Performance metrics for case study 3 using WSML, SDML and NSGA-II for
a fixed CPU time

Case Study 3
WSML SDML NSGA-II

tcpu,t (s) 1800 1800 1800
Niter 35 31 135
Nunq 35 31 38
NPF 34 31 2
HV 0.9038 0.9132 0.8888
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values for case study 1 and 2 are achieved with SDML for a given time as described

in Table 5.14, showing 6 - 55 % higher values of the hypervolume and 2.1 - 7.7

times higher values of NPF , respectively. Although the highest NPF can be obtained

by WSML in the case study 3, the highest HV and similar NPF are achieved with

SDML as can be seen in Table 5.15. This is because the direction of the weight

vector in the SDML approach is updated deterministically in a sequence of iterations

that increase the likelihood of finding Pareto points that are evenly distributed. The

results confirm that diverse molecular structures and properties are found in the

Pareto-optimal set generated by SDML.

In contrast, only a small number of chemical structures is identified with WSML

in case study 1 and case study 2. This indicates that randomly generated weight

vectors do not always lead to different solutions. One may wonder why some of the

solutions generated by SDML are non-unique for the pure-integer problem (i.e. case

study 1 and 2). This is mainly due to the fact that the mapping of the weights onto

objective space assumes that the feasible region is convex. As a result, the assigned

weights may converge to one of the Pareto points previously identified if there are

no supported solutions in the integer domain.

In Table 5.12 - 5.15, it appears that the NSGA-II exhibits a lower HV than other

methods although a larger number of unique points (Nunq) are generated for both

stopping criteria. This suggests that the reliability of the Pareto front generated is not

satisfactory when using NSGA-II with the parameters in Table 5.1. It can be observed

that the use of the mutation and crossover operators make it challenging for the

algorithm to generate feasible offspring when constraints are involved. Accordingly,

this forces premature convergence to a sub-optimal front. This issue is likely to

be especially acute in molecular design problems where many combinations of the

integer variables are infeasible.
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Figure 5.7: Parallel coordinate plots of the exact true Pareto front (PT ) (- - - -) and true
Pareto fronts (PBF ) generated by WSML (—▲—), SDML (—♦—), and NSGA-II (—•—)
for (a) case study 1 and (b) case study 2 for a fixed number of iterations. The unique
Pareto fronts (PU) that do not intersect the PPF , i.e. PU − (PPF ∩ PU), are described as
dash-dotted lines (− · − · −) and empty makers in each plot.
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Figure 5.8: Best-known Pareto fronts (PBP ) generated by WSML (▲), SDML (♦), and
NSGA-II (•) for case study 3 for a fixed number of iterations. The empty markers in each
case study indicate the unique Pareto fronts (PU) that do not intersect the best-known
Pareto fronts, i.e. PU − (PU ∩ PBF )
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Figure 5.9: Parallel coordinate plots of the exact true Pareto front (PT ) (- - - -) and true
Pareto fronts (PBF ) generated by WSML (—▲—), SDML (—♦—), and NSGA-II (—•—)
for (a) case study 1 and (b) case study 2 for a fixed CPU time. The unique Pareto fronts
(PU) that do not intersect the PPF , i.e. PU − (PPF ∩ PU), are described as dash-dotted
lines (− · − · −) and empty makers in each plot.
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Figure 5.10: Best-known Pareto fronts (PBP ) generated by WSML (▲), SDML (♦), and
NSGA-II (•) for case study 3 for a fixed CPU time. The empty markers in each case study
indicate the unique Pareto fronts (PU) that are not mutual to the best-known Pareto
fronts, i.e. PU − (PU ∩ PBF )
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5.6 Conclusions

In this chapter, we have compared several MOO algorithms by assessing their per-

formance on molecular design applications. The algorithms include two types of

scalarisation-based methods and one evolutionary algorithm. In order to avoid pre-

mature convergence to a suboptimal front, two global search algorithms were com-

bined with one of the scalarisation methods (weighted-sum) and tested for reliability

and efficiency. Two CAMD case studies and one CAMPD case study, each with a dif-

ferent size of design space and numerical complexity, were employed to evaluate the

performance of the algorithms.

For the global search phase, comparative results highlighted the robustness of

the MLSL algorithm in terms of computational efficiency and success in reaching a

global solution. Furthermore, the findings from the case studies have provided clear

evidence of the effectiveness of the SDML to solve CAM(P)D problems, relative to

WSML and NSGA-II. SDML can be used to generate well-distributed Pareto fronts

in comparatively few solves, requiring low computational effort. Although stochas-

tic approaches have been successfully implemented in many practical problems, SA

and NSGA-II have been found to encounter difficulties in converging to the Pareto

optimal front for the case studies investigated. This is mainly attributed to the fact

that the gene operators in NSGA-II and the random moves in SA cannot guarantee

the generation of molecules that satisfy property constraints. Based on the results

of this work, SDML offers a very promising route to solve CAMD and CAMPD prob-

lems formulated as MOO and its performance should be investigated on additional

case studies. The Pareto-solutions generated by SDML lie on convex portions of the

Pareto front. Further work could be directed at testing the MOO algorithms on more

case studies to derive general conclusions of their performance on the CAM(P)D

problems. It is useful to investigate different types of scalarised subproblems e.g.,

hyper-boxing algorithm suggested by Bortz et al. (2014) and normal boundary sec-
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tion method suggested by Das & Dennis (1998) by which the weighted-sum sub-

problem of SDML is replaced, making it possible to explore nonconvex regions of

the Pareto front.



CHAPTER 6

The SDNBI Algorithm: A deterministic optimisation approach

for nonconvex and combinatorial bi-objective programming

In Chapter 5, the performance of MOO techniques commonly used in the molecu-

lar design domain was studied. While the performance of the sandwich algorithm

have shown the best performance for a given set of CAM(P)D problems, the approach

face specific challenges when seeking to produce optimal solutions reliably along the

nonconvex or non-continuous regions of a Pareto front. The mathematical formula-

tions of many practical multiobjective optimisation (MOO) problems indeed include

discrete decision variables and nonlinear model equations, which often results in

a smooth nonconvex or disconnected Pareto surface. In this chapter, motivated by

the well-known normal boundary intersection (NBI) method and the sandwich algo-

rithm, we present the SDNBI algorithm, a robust algorithm for general bi-objective

optimisation (BOO) designed to address the theoretical and numerical challenges

associated with the solution of general nonconvex and discrete BOO problems.

178
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6.1 Introduction

Many real-world problems in operational research, engineering, biology and chem-

istry, are often characterised as multi-objective optimisation (MOO), due to the pres-

ence of multiple objective functions that cannot be easily merged into a single metric.

The objective functions are typically conflicting, so that MOO problems do not have

a single solution that is optimal for all objectives simultaneously. Instead, a set of

points that each correspond to a trade-off between the objectives, commonly known

as Pareto-optimal solutions (or Pareto points, or nondominated points), are sought,

such that an improvement in one objective can only be achieved through a sacrifice

in another (Miettinen, 1998). In most practical applications, it is not possible to

derive an analytical expression that describes the loci of these points, i.e., the Pareto

frontier (Deb, 2001). As a result, the development of MOO algorithms that can be

used to construct an approximation of the Pareto frontier efficiently is of special

interest.

Among the several classes of MOO solution approaches, such as stochastic meth-

ods (Zimmermann, 1978; Serafini, 1994; Huang et al., 2006), evolutionary algo-

rithms (Deb et al., 2000a; Deb & Jain, 2013; Li et al., 2019) and exact solution

strategies (Belotti et al., 2013; Przybylski & Gandibleux, 2017), one of most widely

used class of approaches is based on the concept of scalarisation, in which the mul-

tiple objective functions are combined into a single objective function through pa-

rameters and/or additional constraints, making it possible to identify solutions of

the MOO problem by solving a series of single objective optimisation (SOO) prob-

lems using standard optimisation methods. A popular scalarisation method is the

weighted-sum method (Marler & Arora, 2004), in which a set of Pareto-optimal so-

lutions is generated by varying the weights assigned to the multiple objective func-

tions. The weighted-sum method is easy to implement and the problem is of same

degree of computational complexity as the original MOO problem since there are no
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additional constraints involved. However, this approach suffers from the theoretical

limitations that it is not possible to capture any Pareto optimal solutions on noncon-

vex regions of the Pareto frontier (Miettinen, 1998) and that an even distribution

of the weights does not guarantee an even distribution of solutions on the Pareto

front. The ϵ-constraint method, on the other hand, does not require any convexity

assumptions on the Pareto frontier. In this method, one of the objective functions is

selected to be optimised while the others are transformed into additional constraints

and the solution of the scalarised problem is proven to always be weakly Pareto op-

timal. However, it has the drawback of being sensitive to the ϵ values taken by the

objective functions in the feasible region, possibly resulting in infeasible or repeated

Pareto-optimal solutions (Ehrgott, 2005b). The choice of ϵ values that can maximise

the accuracy of the approximation of the Pareto front might not be straightforward

particularly when many objective functions are considered (Laumanns et al., 2006).

The ϵ values can be chosen to be equidistant aiming to produce evenly distributed

the nondominated points. The enumeration of such ϵ values, however, does not

always yield the well-distributed Pareto approximation especially when the Pareto

front comprises many disconnected parts. To determine the ϵ value systematically,

Laumanns et al. (2006) proposed the adaptive ϵ-constraint method in which the ϵ is

determined using the incumbent set of the Pareto points.

To deal with these shortcomings, several scalarisation methods have been pro-

posed with a special focus on the development of a systematic way to determine

scalarisation parameters and to capture Pareto points from nonconvex regions of the

Pareto surfaces. Kim & De Weck (2005) proposed the adaptive weighted-sum algo-

rithm (AWS). To derive a rough representation of the Pareto frontier, the algorithm

starts by generating some solution points using the weighted-sum method with a

(large) uniform step size in the weighting coefficients. Thereafter, the algorithm

continues to solve the weighted-sum scalarisation with additional upper bounds on

the objective functions for the regions that need further refinement. These regions
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are determined by computing the distance between neighbouring solutions, in order

to control the distribution and uniformity of the Pareto points. With this method,

it is possible to investigate nonconvex regions of the Pareto front. Furthermore the

approach provides a systematic way of obtaining more uniformly distributed Pareto

points. However, the algorithm can generate some dominated solutions (i.e., feasible

points that are not on the Pareto frontier and hence are suboptimal) and it cannot

be guaranteed to cover the entire set of nondominated points.

Das & Dennis (1998) introduced the normal boundary intersection (NBI) method

for identifying the solutions of nonconvex MOO problems. The method generates

a well-spaced set of points on the boundary of the space of objective function val-

ues by iteratively solving a scalarised subproblem with respect to reference points

placed on the convex hull of the individual minima (CHIM) of the objectives. In

contrast to weighted-sum methods where problem size is preserved in the subprob-

lems, a new vector of equality constraints is introduced, resulting in a size increase.

The performance of the method was tested for large-scale and highly-constrained

optimisation problems in the area of optimal control (Logist et al., 2010). While the

method was found to produce evenly-distributed solutions, its focus is on identifying

the boundary of the feasible objective space, which may include some points dom-

inated by others. Furthermore, it may difficult to achieve convergence when there

is no feasible solution that satisfies the equality constraints for the given choice of

scalarisation parameter values. Following similar concepts, Ismail-Yahaya & Messac

(2002) proposed the normal constraint (NC) method as an alternative to the NBI

method to avoid getting dominated solution or improve convergence behaviour. In-

stead of introducing equality constraints in the subproblems, as in the NBI method, a

set of inequality constraints is used to reduce the size of the feasible region. Messac

et al. (2003) further modified the NC method by incorporating a so-called Pareto

filter, which is used to eliminate non-Pareto optimal solutions. However, these nor-

mal constraint methods share the same drawbacks as the NBI method because they
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rely on the CHIM as a reference plane. Further adjustments were made by Messac

& Mattson (2004) and Shao & Ehrgott (2007), with the aim of reducing the likeli-

hood of missing regions of the nondominated set. Messac & Mattson (2004) used

an extension of the reference plane defined by the CHIM, so that the entire Pareto

set can be enclosed by a hypercube. These studies indicate that the non-connectivity

of the Pareto surface and the presence of isolated Pareto optimal points can cause

severe problems for the NBI method, whereas the WS and NC methods are less likely

to be affected by the disconnected nature of the Pareto set. In further work on the

NBI method, Shao & Ehrgott (2016) suggested an extension of an approach initially

designed for the solution of multi-objective linear programming (MOLP) problems

Shao & Ehrgott (2007), in which they combined the global shooting method (Benson

& Sayin, 1997) with the NBI method to guarantee coverage of the Pareto frontier as

well as an even distribution of the Pareto points.

While the methods discussed so far are designed to identify evenly distributed

points on the Pareto frontier, the development of Benson’s outer approximation al-

gorithm (Benson, 1998) has motivated the emergence of another class of algorithms

designed to generate outer and/or inner approximations of the Pareto frontier. The

majority of such methods have been focused on obtaining polyhedral approxima-

tions to ensure an even spread of points over the Pareto surface. Shao & Ehrgott

(2008); Ehrgott et al. (2011) presented improvements to Benson’s algorithm for the

solution of MOLP problems by introducing the sandwich (SD) algorithm so that the

Pareto frontier is located between the inner and outer approximation. The SD al-

gorithm and its variants have several useful properties. As the real Pareto surface

is sandwiched between the inner and outer approximation, an upper bound on the

approximation error can be calculated; it provides valuable information on the ac-

curacy of the Pareto-optimal solutions generated during the course of the algorithm.

Furthermore, the approximation quality can be improved efficiently by adding more

solutions in the region where the error bound is at the largest. However, the method
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is limited to MOLP problems and it cannot easily be applied to general nonlinear

MOO problems. Modified versions of the SD algorithm were proposed by Solanki

et al. (1993); Craft et al. (2006); Rennen et al. (2011); Klamroth et al. (2003);

Bokrantz & Forsgren (2013) to address general convex MOO problems. Solanki et al.

(1993) extended the SD algorithm to make it applicable for higher dimensions of the

MOLP problems (i.e., with more than two objective functions). At each iteration, a

weighted-sum subproblem is solved for the facet that exhibits the largest distance to

a point constrained to the outer approximation. Within the algorithm, the accuracy

of the Pareto front approximation is improved by recursively constructing inner and

outer approximations through the generation of a convex hull and the identification

of supporting hyperplanes. Although this method is directed towards the solution

of MOLP problems, it can also be applied to general convex MOO problems. Klam-

roth et al. (2003) used two separate algorithms for generating the inner and outer

approximations of the Pareto set and combined them by alternatively solving one

iteration of each algorithm. A major feature of their algorithm is the use of vertices

as reference points to construct an inner approximation with maximal combination

of the vertices of each facet or a solution closer to any vertex in the outer approxima-

tion, instead of relying on the weighted-sum method. Other authors have proposed

further developments of this approach, refining the method for calculating the error

between inner and outer approximations Craft et al. (2006) or modifying the way

in which parameters are chosen Rennen et al. (2011). In Craft et al. (2006), the

error is calculated by considering the hyperplanes of the outer approximation that

pass through the corner points of a facet rather than by solving a linear program-

ming problem. The next weight vector is taken from the linear combination of the

weight vectors used to obtain the corner points of the facet. Rennen et al. (2011)

further improved the algorithm by incorporating dummy points to ensure that all

facet have a non-negative normal, which is crucial for the weighted-sum method.

To reduce the computational expense, which increases exponentially with the num-
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ber of objectives, Bokrantz & Forsgren (2013) have suggested employing a vertex

enumeration method rather than the facet enumerative algorithm of Rennen et al.

(2011). While sandwich-type algorithms have provided a promising route to solving

MOO problems, their applicability is often limited to convex MOO problems as they

rely on weighted-sum subproblems. Accordingly, SD algorithms cannot achieve en-

tire coverage of the regions of the Pareto frontier that are nonconvex, disconnected

or consist of discrete points.

In this study, we propose to address these limitations by introducing a new scalar-

isation technique and a corresponding solution algorithm, the SDNBI algorithm,

for the accurate approximation of nonconvex and combinatorial Pareto fronts in

bi-objective optimisation (BOO) problems. Such problems may contain nonconvex

functions and involve a mixed set of continuous and integer decision variables. Given

the similarity in terms of the use of convex hulls, the development of the approach is

focused on the interplay between the SD algorithm and NBI method, exploiting the

strengths of both. The properties of the modified NBI method (mNBI) subproblem

is studied to make use of the is We present three main modifications, in particular

making use of the modified NBI (mNBI) method suggested by Shukla (2007), and

we investigate their theoretical properties: 1) the validity of the inner and outer

approximations derived from the solution of the scalarised subproblem and convex

hull generation, 2) the completeness of decomposing of an objective search space

based on the convexity of the Pareto front and 3) the effectiveness of modifying the

subproblem in avoiding unnecessary search steps for the disconnected or isolated

portion of the Pareto front. To assess the performance of the proposed SDNBI al-

gorithm, a numerical tests are conducted for five bi-objective benchmark problems

(MOP1, SCH2, TNK, ZDT3, and ZDT5) and compared with the results produced

by the original SD algorithm and mNBI method. The performance of the different

algorithms is compared based on reliability and efficiency criteria.

The remainder of this chapter is organised as follows. In section 6.2, all relevant
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preliminaries including the notation, definitions and the formulation of the prob-

lems are introduced. In section 6.3, we describe the NBI, mNBI and SD algorithm

and their properties. In section 6.4, we propose the new algorithm and highlight its

characteristics. We perform numerical experiments in Section 6.5 and 6.6 to inves-

tigate algorithmic efficiency. Finally, we state the main conclusions, also including

future perspectives for this research in Section 6.7.

6.2 Preliminaries

Following the basic notations and definition provided in Chapter 2.3, we repeat the

mathematical formulation of the MOO problem (MOP) for convenience. The generic

mathematical formulation of the MOO problem is defined as:

min (f1(x), . . . , fm(x))
⊤

subject to x ∈ X := {x ∈ Rn1 × Nn2 | g(x) ≤ 0,h(x) = 0},
(MOP)

We consider problems for which a constraint qualification holds so that the Karush-

Kuhn-Tucker (KKT) optimality conditions apply when the problem is specified only

for continuous variables, i.e., nonlinear programming (NLP) problem.

6.3 Background and Motivation

In this section, we start with a short recapitulation of the two MOO algorithms that

motivate the new algorithm proposed in this paper.

6.3.1 Sandwich Algorithm

The SD algorithm proposed by Solanki et al. (1993) is a scalarisation method de-

veloped with the aim of approximating a (convex) Pareto front while solving as few
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optimisation subproblems as possible. While there are variations of the approach,

SD algorithms are based on the successive solution of weighted-sum subproblems in

which the multiple objective functions are aggregated into a single objective function

using a weight vector, w, as follows:

min
x∈X

w⊤f(x) =
m∑
i=1

wifi(x). (WSPw)

We set out the key concepts necessary to describe a SD algorithm following the

definitions and notation of Rennen et al. (2011).

Definition 8. Anchor point – Anchor point zAi is a point in objective space equal

to the optimal objective function vector obtained by solving problem (WSPw) with

weight vector wi such that wi
i = 1 − δ and wi

j = δ, j = 1, . . . ,m, j ̸= i, where δ is a

small positive infinitesimal scalar value. Thus zAi = f(x∗), where x∗ = argmin
x∈X

fi(x).

Definition 9. Hyperplane – A hyperplane in the objective space is given by H(w, b) ={
z ∈ Z | w⊤z = b

}
with w ∈ Rm\{0} and b ∈ R.

Remark. The vector w is a normal of the hyperplane. In this study, the vector w is

always taken to be a unit normal vector, such that |w| = 1.

Next we define half-spaces and inner and outer normals.

Definition 10. Half-space – The set HS(w, b) =
{
z ∈ Rm | w⊤z ≥ b

}
is the half-space

given by w ∈ Rm\{0} and b ∈ R.

Remark. The vector w, |w| = 1, is an inner unit normal of the half-space.

Definition 11. Supporting hyperplane of a convex set – Suppose C is a convex set and

z0 is a point lies on the boundary of C, bd C, i.e., z0 ∈ bd C. If w ̸= 0 satisfies

w⊤z ≤ w⊤z0 for all z ∈ C, then a hyperplane H(w, b) defined by w⊤z = b, where

b = w⊤z0, is called a supporting hyperplane to C at point z0. This is equivalent to

saying that a hyperplane H(w, b) supports C at z0.
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Definition 12. k-face, facets and extreme points – A set of points F of dimensionality

k is a k-face of C if there exists a hyperplane H(w, b) that supports C at FS and for

which it holds that H(w, b) ∩ C = F. If C ⊆ Rm, its (m − 1)-faces are facets FS and

its 0-faces are the extreme points (vertices).

For m = 2, we denote a p-th facet which is defined with two extreme points

zp1 and zp2 as F p
S(z

p1, zp2), where it holds zp11 < zp21 . In Figure 6.1, we provide a

visual interpretation of the supporting hyperplane, (m − 1)-face and 0-face in two

dimensional space.

Figure 6.1: Schematic of (a) a supporting hyperplane H(w, b) to a convex set C at its
boundary point z0 (black circle), (b) a facet defined as H(w, b), where ∀z ∈ C and
b = w⊤z (red solid line) and a extreme point (blue circle) in two dimensional space.

Definition 13. Inner and outer approximations – A set IPS ⊆ Z is an inner approxi-

mation of Ψ∗ if it satisfies:

∀z′ ∈ IPS, ∃z ∈XE : z′ ≥ z,

where the inequality is understood component-wise. Similarly, a set OPS ⊆ Rm is

an outer approximation of Ψ∗ if it satisfies:

∀z′ ∈ OPS,∃z ∈XE : z′ ≤ z.
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The SD algorithm is based on iteratively constructing a convex hull (inner ap-

proximation) and adding an hyperplane and its positive half-space at a nondomi-

nated point (outer approximation) between which the Pareto front is sandwiched.

At each iteration, these piecewise approximations are improved by solving subprob-

lem (WSPw). Specifically, the outer approximation constructed by the successive

solutions of weighted-sum subproblems (WSPw) can be re-defined with multiple

Pareto points and their associated weight coefficients as below.

OPS = {z |W⊤z ≥ B} (6.1)

where W is a matrix with each column corresponding to a particular weight vec-

tor wk and B is a column vector where the k-th element is obtained by the vector

product between the transpose of the k-th column of W and corresponding non-

dominated solution zk ∈ ZE, i.e., B = W⊤ZE. The recursive procedure of the

approximations continues until the approximation error, a measure of the distance

between IPS and OPS satisfies a given tolerance, ϵ > 0. In our study, we follow the

approach of Rennen et al. (2011) of considering dummy points in the calculation of

the approximation error, derror,p, p = 1, ..., NF where NF is the number of facets gen-

erated by the inner approximation, between the inner and outer approximations,

whereby the maximum error, dmax = max
p=1,...,NF

derror,p, is determined by solving the

following linear programming problem for each facet of IPS, F p
S .

derror,p =max
z

w⊤
p (z

vertex − z)

w⊤
p ϵd

s.t. z ∈ OPS

(6.2)

where wp is a normal vector of the pth facet F p
S , zvertex is one of extreme points of

the facet F p
S and ϵd is a user defined vector that represents ϵ-dominance. Note that

the facet which is defined by a negative normal vector, i,e., outer normal vector or

only dummy points are eliminated from consideration in the calculation of the error.
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The basic scheme of the algorithm is stated in Algorithm 5, and a schematic illus-

tration of the procedure for a bi-objective problem is shown in Figure 5.1.

The major advantage of this method is that the weight vectors are systematically

chosen to be normal to the facets generated by the inner approximations and the

accuracy of the approximation is measured during the course of the algorithm, pro-

viding a natural stopping criterion.

Algorithm 5 Sandwich algorithm for MOO

1: procedure SANDWICH ALGORITHM

2: ZE = OPS = IPS = ∅; dmax = ∞; k = 1, where ZE is a set of non-

dominated solutions. Specify error tolerance ϵ and initial weight coefficients

w1

3: Find all anchor points ZA =
{
zAi | i = 1, ...,m

}
.

4: Update the set ZE: ZE =
{
zA1, ...,zAm, z1

}
5: Solve problem (WSPw) with initial w1 to obtain the initial outer approxima-

tion z1.

6: while dmax ≥ ϵ do

7: Set k = k + 1.

8: Generate the inner approximation set IPS with NF facets:

IPS = convexhull(ZE)
9: Calculate the error, derror,p, for each facet F p

S of IPS.

10: Select the facet, F pk

S , that has largest error, dmax=derror,pk

where pk = argmax
p=1,...,NF

(derror,p).

11: Set wk to be the unit inner normal to F pk

S

12: Determine zk by solving problem (WSPw) with wk.

13: Compute bk = wk⊤zk and define H(wk, bk)

14: Compute bi′ = wk⊤zi′ for all zi′ ∈ ZE.

15: if ∃i′ such that bi′ = bk then

16: Set the error derror,pk = 0 and return to Step 9.

17: end if

18: Update outer approximation: OPS = OPS ∪ {wk⊤zk ≥ bk}.
19: Update ZE: ZE = ZE ∪ {zk}.
20: end while

21: end procedure



CHAPTER 6. THE SDNBI ALGORITHM: A DETERMINISTIC APPROACH FOR
NONCONVEX AND COMBINATORIAL BOO 190

6.3.2 Normal Boundary Intersection

The NBI method was proposed by Das & Dennis (1998) to construct uniformly

spread nondominated solutions for a general nonlinear multi-objective optimisation

problem. In the NBI method, the individual minima or anchor points are found as

a first step. The convex hull of individual minima (CHIM) is then generated as the

set of all convex combinations of these individual minima. The CHIM can be ex-

pressed as {Φβ : β ∈ Rm
+ ,
∑m

j=1 βj = 1} where Φ ∈ Rm×m is a matrix with ith column

zAi − f id. The NBI subproblem (NBIβ) is formulated to search for the maximum

distance t along the normal vector n̄ to the CHIM at a point defined by a specific

choice of β.

max
x∈X,t

t

s.t. Φβ + tn̄ = f(x)− f id

t ∈ R, n̄ ∈ Rm

(NBIβ)

where n̄ is the outer normal direction at some points on CHIM pointing toward the

ideal point. The solution of the above problem (x∗, t∗) gives to the maximum value

of t at which the normal vector and the boundary of the feasible region intersect,

which corresponds to a boundary point, (x∗,f(x∗)).

During the course of the algorithm, the NBI subproblem (NBIβ) is solved for a set

of β values that give reference points Φβ evenly distributed over the CHIM.

A drawback of the original formulation of the NBI subproblem is that the method

aims at getting boundary points and some of these points may not be Pareto-optimal

points. To overcome this issue, Shukla (2007) modified the formulation with the use

of the goal-attainment approach such that Pareto-optimality of solution is guaran-

teed. The modified NBI method is denoted as mNBI and the resulting subproblem is



CHAPTER 6. THE SDNBI ALGORITHM: A DETERMINISTIC APPROACH FOR
NONCONVEX AND COMBINATORIAL BOO 191

Figure 6.2: Schematic illustrating the mNBI method for two objectives f1 and f2. The
blue solid curve represents the parts of the boundary of the feasible region where no
Pareto points exist. In (a), at the start of the algorithm the CHIM (black dashed line)
is constructed based on the anchor points zA1, zA2. Pareto point z1 is then obtained
by solving (mNBIβ) for Φβ1. In (b), (mNBIβ) is solved with Φβ2 and the resulting
new Pareto point is z2. If (NBIβ) was solved instead with Φβ2, point b (blue diamond)
would be obtained, which is dominated by z2.

described as:
max
x∈X,t

t

s.t. Φβ + tn̄ ≥ f(x)− f id

t ∈ R, n̄ ∈ Rm

(mNBIβ)

The advantage of the mNBI algorithm is that it allows one not only to avoid any

dominated boundary points but also to screen out some non-efficient regions in the

objective space. The generic mNBI algorithm is outlined in Algorithm 6 and a geo-

metric illustration of the optimisation is shown in Figure 6.2

6.3.3 Discussion

The performance of the SD algorithm has been proven in several practical applica-

tions such as the intensity-modulated radiation therapy optimisation problem (Craft

et al., 2006; Rennen et al., 2011), the design of distillation processes for separating

a binary mixture of chloroform and acetone (Bortz et al., 2014), integrated solvent

and process design problem (Burger et al., 2015), the design of a plate-fin heat-sink
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Algorithm 6 mNBI for MOO

1: procedure MODIFIED NBI METHOD

2: ZE = ∅; k = 1

3: Find all anchor points ZA =
{
zAi | i = 1, ...,m

}
.

4: Generate equidistant reference points for a pre-defined number of iterations,

Nβ, Cref =
{
Φβk, k = 1, ..., Nβ

}
5: Define vector n̄ to be normal to CHIM.

6: while k ≤ Nβ do

7: Solve problem (mNBIβ) with Φβk and obtain solution (t∗,x∗).

Compute z∗ = f(x∗).
8: Update the set of Pareto points ZE with ZE = {ZE, z

∗}
9: Set k = k + 1

10: end while

11: end procedure

to improve economic and thermal performance (Andersson et al., 2018) and the

solution of parameter estimation problems in the development of the equation of

state model (Graham, 2020), yet there are remaining difficulties to overcome. Since

the SD algorithm is closely related to weighted-sum methods, unsupported solutions

that lie in the nonconvex regions of the objective space cannot be attained. Thus,

there is no weight vector w suitable for finding an efficient solution x∗ in such a

region. On the other hand, the mNBI method can yield solutions that lie on the

nonconvex (concave) parts of the Pareto front as well as points on the convex re-

gions. These nondominated points can be generated with the appropriate choice of

β. The efficiency of the NBI method and its variants has been investigated in the

context of the optimal design of methylethyl ketone production process by carry-

ing out bi-objective optimisation of an economic value and potential environmental

impact (Lim et al., 2001), the development of optimal bidding strategies for the

participants of oligopolistic energy markets (Vahidinasab & Jadid, 2010), the design

of an optimal heat exchanger that maximises the amount of heat transfer and min-

imises tube length (Siddiqui et al., 2012), and the solution of a scheduling problem
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for pumped-hydro-thermal power in which a cost function and an emission metric

are considered as bi-objective criteria (Simab et al., 2018). However, unlike the SD

algorithm, the mNBI method neither provides information on approximation accu-

racy nor on the maximum achievable approximation quality level in the presence of

disconnected regions, thus making it difficult to determine when to stop the algo-

rithm and how to choose the iteration number Nβ. These drawbacks also preclude

the user from choosing the set of reference points Φβk ∈ Cref systematically. Given

the advantages derived from each algorithm and their similarity in terms of the use

of convex hulls, an extension of the SD algorithm through its combination with the

mNBI method is discussed in the following sections.

6.4 Proposed Algorithm

In this section, we present the SDNBI algorithm, a novel adaptive MOO approach for

the solution of BOO problems. It is more general than the SD algorithm in that it is

applicable to nonconvex problems, in particular to those with a disconnected Pareto

front and feasible region. A new feature is the use of the mNBI subproblem, such

that the mNBI parameters are systematically determined by the SD algorithm, in an

adaptive fashion. Although the SD algorithm and the mNBI method are applicable

to higher-dimensional MOO cases (m > 2) (Bokrantz & Forsgren, 2013), we focus

here on the solution of two-dimensional (BOO) problems and adapt the terminology

appropriately, as described in the following definition.

Definition 14. Line, half-plane, tangent – A line H2(w, b) and half-plane HS2(w, b)

are a special case of the hyperplane H(w, b) and half-space HS(w, b) defined for the

two-dimensional objective space, i.e., when m = 2. If a line is tangential to a curve

in the bi-objective space at the point z0, it is called a tangent at z0.

The main aspects of the proposed methodology are explained in the remainder of

this section.
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6.4.1 Setting the parameters of the mNBI subproblem

The main idea behind the proposed algorithm is to replace the weighted-sum sub-

problem that appears in the SD algorithm with the mNBI subproblem so as to obtain

solutions on the nonconvex part(s) of the Pareto front. Consider a facet F pk

S (zp1, zp2)

connecting two nondominated points zp1 and zp2 at some iteration k. The normal

vector of the facet can be used as the normal vector n̄k in the mNBI subproblem.

Then, Φk is defined by the two extreme points of the facet, with its ith column given

by zpi − zo, i = 1, 2 where zo = [min(zp11 , zp21 ),min(zp12 , zp22 )]⊤ = [zp11 , zp22 ]⊤. Subse-

quently, the reference point Φkβk on the facet can be determined by choosing an

appropriate βk. In this study, βk is chosen such that the reference point Φkβk is

located at the midpoint of the facet, in order to generate a Pareto point that may be

evenly placed between zp1 and zp2. Note that βk could be also chosen by projecting

the solution of Equation (6.2) onto the facet in order to minimise the error between

the inner and outer approximations.

6.4.2 Constructing valid inner and outer approximations

The solution of the mNBI subproblem with the proposed parameter values results

in point zk that may be used to update the approximations of the Pareto front.

This requires some careful analysis due to the potential nonconvexity of the efficient

frontier. In the original SD algorithm, the outer approximation OPS is improved

at iteration k by adding a line tangential to the recently-identified nondominated

point zk, H2(w
k, bk), and its half-plane HS2(w

k, bk) where bk = wk⊤zk, for m = 2.

The weight vector wk is that used in the weighted-sum scalarisation problem as

described in Section 6.3.1. The inner approximation IPS of the Pareto front is

obtained as a polyhedral approximation of the set of points z ∈ ZE ⊆ Ψ∗. This

polyhedral approximation is defined as the set of all convex combinations of points

in ZE in the objective space and it is denoted by convexhull(ZE).
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Figure 6.3: Representation of a line at the nondominated point z1 generated by the so-
lution of (mNBIβ) with the normal vector n̄1 (blue dashed line) and the reference point
Φ1β1. The grey curve represents the boundary of the feasible region in bi-objective
space and the black dashed line is a facet obtained by generating a convex hull using zA1

and zA2. If the next upper bounds, i.e., inner approximations are obtained by construct-
ing the convex hull based on the updated set of the Pareto points, ZE = {zA2, z1, zA1},
the solid black lines are obtained, cutting off part of the Pareto front.

Thus, in the original SD algorithm, the Pareto front must be convex to ensure that

valid upper and lower bounds are obtained that do not cut off any part of the front.

Furthermore, the line H2(n̄
k, bk) generated as a solution of problem (mNBIβ) does

not necessarily support the Pareto front at point zk. A simple example where the use

of the mNBI subproblem to generate a new Pareto point leads to erroneous inner

and outer approximations is shown in Figure 6.3. It is clear that the Pareto frontier

is not supported by the line H2(n̄
1, b1), where b1 = n̄1⊤z1, at nondominated point

z1. The inner approximation generated by facets F pk

S (zA2, z1) and F pk

S (z1, zA1) is

valid only for Pareto points z⊤ = (z1, z2) in objective space such that z1 ≤ z11 . We

address these issues in the remainder of this subsection.

Tangent at the solution of mNBI

To analyse further the properties of the mNBI subproblem, it is useful to partition

the vector of variables into a binary variable vector, denoted as y ∈ Y = {0, 1}n2,

and a continuous variable vector x ∈ Rn1. Without loss of generality, any function
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q(x,y) in the MOO problem, where q can refer to the objective function, an equality

or an inequality constraint, can be written as

q(x,y) = c⊤q y + qx(x) (6.3)

Then the mNBI subproblem is given by

max
x∈X,y∈Y,t

t

s.t. Φβ + tn̄ ≥ fx(x+ cTf y)− f id

t ∈ R, n̄ ∈ Rm

(6.4)

At the solution (x̂, ŷ, t∗) of the MINLP problem, one can obtain Lagrange mul-

tipliers at fixed values of y = ŷ, provided that the corresponding NLP meets an

appropriate constraint satisfaction.

Therefore, given an efficient solution (x̂,ŷ) obtained by solving an mNBI sub-

problem and at which t = t∗, there exist µ∗ and ν∗ such that the KKT optimality

conditions for optimisation problem (6.4) at fixed y are satisfied and therefore:

∇xL = µ∗⊤∇xfx (x̂) + ν∗⊤∇xĥx (x̂) = 0 (6.5)

∇tL = −1 + µ∗⊤n̄ = 0 (6.6)

where L(x, t,µ,ν; ŷ) = −t + µ⊤
(
fx(x) + c⊤f ŷ − f id − Φβ − tn̄

)
+ ν⊤(ĥx(x) +

c⊤h ŷ), µ ∈ Rm represents the vector of Lagrange multipliers corresponding to the

augmented objective constraints fx(x) + c⊤f ŷ − f id − Φβ − tn̄ ≤ 0, and ν ∈ Rs

is the vector of Lagrange multipliers for the s active constraints in the set {gx(x) +

c⊤g ŷ ≤ 0,hx(x) + c⊤h ŷ = 0}, represented by the vector ĥx(x) ∈ Rs, q ≤ s ≤ p + q.

Furthermore, at the KKT point, the following complementary condition must hold:
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µ∗⊤
(
fx(x̂) + c⊤f ŷ − f id − Φβ − t∗n̄

)
= 0 (6.7)

From equation (6.6), it can be deduced that at least one of the augmented ob-

jective constraints must be active. This can be shown by contradiction. Let us as-

sume that all constraints of the augmented objective constraints are inactive, i.e.,

fx(x) + c⊤f ŷ − f id − Φβ− tn̄ < 0 and µ∗ = 0. Then, equation (6.6) is reduced to

∇tL = −1 ̸= 0, which is the violation of the KKT necessary conditions. Therefore, if

we solve problem (mNBIβ) for any choice of parameters (n̄, β), there exists a cor-

responding normal vector w′ ≥ 0, where the inequality is understood component-

wise, that defines a tangent to the Pareto front at the nondominated solution, z, and

is given by:

w′ =
1∑m

i=1 µ
∗
i

µ∗,
∑m

i=1 w
′
i = 1. (6.8)

As Das & Dennis (1998) and Shukla (2007) have shown, an even stronger re-

lationship between the NBI/mNBI and weighted-sum subproblems exists when the

solution of the NBI/mNBI subproblem is located on a convex part of the Pareto front.

Consider problem (WSPw). If (x∗,y∗) is an efficient solution of this problem, then

there exists a unique vector λ∗ at fixed y = y∗ such that

∇xLw = w⊤∇xfx (x
∗) + λ∗⊤∇xĥx (x

∗) = 0 (6.9)

where Lw(x, λ;y∗) = w⊤(fx(x)+ c⊤f y
∗) +λ⊤(ĥx(x) + c⊤h y

∗), ĥ ∈ Rs, q ≤ s ≤ p+ q

is the vector of active constraints and λ is the vector of Lagrange multipliers for the

active constraints.

The following lemma is then derived from the claims in (Das & Dennis, 1998;

Shukla, 2007) and establishes the relationship between problems (mNBIβ) and (WSPw).

Lemma 1. Let (x̂, ŷ, t∗,µ∗,ν∗) be a solution of problem (mNBIβ), with
∑m

i=1 µ
∗
i ̸= 0

and normal vector: w′ = 1∑m
i=1 µ

∗
i
µ∗. Then, if (x̂, ŷ) is a supported efficient solution,
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the solution of problem (WSPw) with weight vector w = w′ is

(
x∗,y∗,λ∗ =

1∑m
i=1 µ

∗
i

ν∗
)
, (6.10)

where x∗ = x̂ and y∗ = ŷ.

Proof. Divide equation (6.5) by the nonzero scalar
∑m

i=1 µ
∗
i :

µ∗⊤∑m
i=1 µ

∗
i

∇xfx (x̂) +
ν∗⊤∑m
i=1 µ

∗
i

∇xĥx (x̂) = 0. (6.11)

If (x̂, ŷ) is a supported efficient solution, then there must exist a weight vector such

that (x̂, ŷ) is the solution of a (WSPw) subproblem. By comparing equation (6.11)

and equation (6.9), it can be observed that if (x̂, ŷ) is the solution of a weighted-sum

problem, the following must hold:

w =
1∑m

i=1 µ
∗
i

µ∗,
∑m

i=1wi = 1, (6.12)

with x∗ = x̂ and y∗ = ŷ.

Note that the solution (x̂, ŷ) of the mNBI problem differs from (x∗,y∗) at the

solution of the weighted-sum problem in Lemma 1 if the objective vector fx(x̂) +

cf
⊤ŷ is on the nonconvex part of the Pareto front, i.e., it cannot be generated by

means of weighted-sum scalarisation.

According to Lemma 1, if we solve problem (WSPw) for any choice of weight co-

efficients, w, there exist corresponding mNBI parameters (n̄,β) such that problem

(mNBIβ) and problem (WSPw) have the same solution. Moreover, the weight vec-

tor w defines a supporting line tangential to the Pareto front at the nondominated

solution, z. Interestingly, w = w′, as evident when comparing equations (6.8) and

(6.12). It is worth mentioning that the vector w′ in the mNBI method consists of

non-negative elements since the augmented objective functions are inequality con-
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straints, in contrast to to the original NBI method in which non-negative or positive

elements of the multiplier µ∗ ∈ Rm may be generated. This can also be understood

graphically from Figure 6.4. For specified parameters (Φ2β2, n̄2), one can see that

the solution of problem (NBIβ) produces a tangent at z2,e with its normal vector

w′ that contains a negative element, while the elements of the normal vector from

(mNBIβ) are all positive. This is because the original NBI method aims to obtain the

boundary of the feasible domain in objective space, rather than Pareto points only.

This results in the identification of dominated point z2,e.

Figure 6.4: Representation of the solutions z2,e (•) and z2 (•) obtained by solving
subproblem (NBIβ) and (mNBIβ), respectively, for the specified parameter (Φ2β2, n̄2).
The magenta dashed line and blue solid line denote line calculated from equation (6.8)
and (6.12) at each solution, respectively. The grey curve represents the boundary of
the feasible regions in bi-objective space and the black solid lines are facets obtained by
constructing a convex hull based on the current Pareto points zA1 and zA2(•).

Decomposition of the search space

Given the line H2(w
′1, b1) tangential to the Pareto front at z1, the next step is to con-

struct the outer and inner approximations. However, one can observe from Figure

6.5 is that the tangent at z1 intersects the nonconvex part of the Pareto front and

cannot be used to generate a valid outer approximation. Similarly, the facet (z1, zA1)
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Figure 6.5: Representation of the line H2(w
′1, b1) passing through z1 with normal vec-

tor w′1 (red solid line), calculated based on equation (6.8). The grey curve represents
the boundary of the feasible region in bi-objective space and the black solid lines are the
facets obtained by constructing a convex hull based on the current Pareto points zA1,
zA2 and z1. Facet (z1, zA1) and line H2(w

′1, b1) cannot be used to construct approxi-
mations of the Pareto front due to nonconvexity.

is below the Pareto front and cannot be used as an inner approximation. To provide

valid inner and outer approximations of the Pareto front, we introduce a systematic

decomposition of a search region based on the convexity of the Pareto front at the

Pareto points identified, such that each Pareto optimal point zk is supported by a

line H2(w
′k, bk) in a given space and the collection of supporting lines represents the

upper or lower bounds of the Pareto front.

The idea underlying the decomposition of the search space is to divide the objec-

tive space into a number of sub-regions whenever there exist Pareto points that are

exterior to the outer approximation as defined in the SD algorithm, i.e., the polyhe-

dral set given by the supporting lines that have been derived so far.

Definition 15. Subspace – A lth subspace C l(zi, zj) is a subset of bi-objective space

defined by the two nondominated points zi and zj, where zi1 < zj1, without loss of

generality. It consists of the rectangle whose diagonal is the line segment [zi, zj ]

such that all Pareto points in the interior of the search space satisfy zi1 ≤ z1 ≤ zj1 and

zj2 ≤ z2 ≤ zi2, where z1 and z2 are elements of z ∈ Ψ∗.



CHAPTER 6. THE SDNBI ALGORITHM: A DETERMINISTIC APPROACH FOR
NONCONVEX AND COMBINATORIAL BOO 201

Definition 16. Extreme points of a subspace – Points zi and zj in subspace C l(zi, zj)

are referred to as extreme points of the subspace.

Let C0(zA2, zA1) denote an initial search space defined by the anchor points

zA1 and zA2, as can be seen in Figure 6.6. The initial set of Pareto points is

ZE = {zA1, zA2}. It is initially assumed that the Pareto front in C0 is convex. By

solving subproblem (mNBIβ), a new nondominated point z1 is obtained that en-

ables one to define the corresponding supporting line H2(w
′1, b1) and its half-plane

HS2(w
′1, b1). Note that in Figure 6.6, z1 is located on the concave (or nonconvex)

part of the Pareto front. The current objective space is then investigated to determine

if the convexity assumption can be justified based on the current set of Pareto points.

For this purpose, we make use of the supporting hyperplane theorem described in

Theorem 6.4.1, a proof of which can be found in Luenberger (1997).

Theorem 6.4.1. Supporting hyperplane theorem – Suppose C ⊆ Rm is a nonempty

convex set and z0 is a point on its boundary bd(C), i.e., z0 ∈ bd(C). Then, there

exists a hyperplane
{
z | w′⊤z = w′⊤z0

}
such that w′⊤z ≥ w′⊤z0 for all z ∈ C,

z ̸= 0.

Corollary 6.4.1.1. Suppose convex set V ⊆ C ⊆ Rm, where m = 2, is a polyhedron

defined by a finite number of half-planes and lines

V =
{
z | w′k⊤z ≥ w′k⊤zk, k = 1, . . . , n

}
. If each point zk is supported by line

H2(w
′k, bk) where bk = w′k⊤zk, then every point z ∈ V must satisfy w′k⊤z ≥ bk for

all k = 1, . . . , n.

It can be observed in Figure 6.6(a) that the nondominated point zA1 does not

satisfy w1⊤zA1 ≥ b1, implying that zA1 is located on a nonconvex part of the Pareto

front in the subspace of C0. On the other hand, the nondominated point zA2 sat-

isfies w1⊤zA2 ≥ b1 so that the hyperplane can be assumed to be supporting in the

subspace C1(zA2, z1). Subsequently, the search region is decomposed, as shown in

Figure 6.6(b), into C1(zA2, z1), with a convexity assumption on the Pareto front in
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Figure 6.6: Schematic illustrating the procedure for the decomposition of the bi-
objective space: (a) An initial objective space is characterised by subspace C0(zA2, zA1)
(black rectangular box), assumed to contain a convex Pareto front. An new nondomi-
nated point z1 is found by solving problem (mNBIβ) for Φ1β1; (b) the initial objective
space is decomposed into subspaces C1(zA2, z1) and C2(z1, zA1) that are assumed to
contain convex and nonconvex Pareto fronts, respectively. The inner approximation of
the Pareto front in C1 is the facet (zA2, z1) (black dashed line) and the outer approx-
imation is given by the segment (red solid line) connecting z1 to the f1 = 0 line and
by the f1 = 0 line. For subspace C2, the inner approximation is given by the segment
(red solid line) connecting z1 to the f1 = 1 line and by the f1 = 1 line while the outer
approximation is given by the facet (z1, zA1); (c) the approximation of the Pareto front
is improved by adding z2 and the subspace C2 is not decomposed since w′2Tz ≤ b2

holds for all z ∈ ZC2

E

this subspace, and C2(z1, zA1), with a nonconvexity assumption. For any subspaces

that fall under a convexity assumption, the inner approximation and outer approx-

imation are obtained as described in Section 6.3.1, following the SD algorithm. By

contrast, for subspaces that fall under a nonconvexity assumption, the inner approx-

imation is constructed using the supporting lines of the nondominated points in the

subspace, IPS = {z |W ′⊤z ≥ B′}, where W ′ is a matrix with each column corre-

sponding to a particular normal vector w′k and B′ is a column vector where the k-th

element is obtained by the vector product between the transpose of the k-th column

of W ′ and corresponding nondominated solution zk. The outer approximation is

constructed as the convex hull of the nondominated points in the subspace. The

impact of adding a further Pareto point in subspace C2 is shown in Figure 6.6(c) and

does not require further decomposition of this subspace.

The decomposition strategy can be generalised as follows:
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1. Consider a search subspace C l(zi, zj) in which the Pareto front is assumed to

be convex, an associated set of known nondominated points, ZCl

E , and a newly

identified nondominated point z∗ within the subspace, with the corresponding

line H2(w
′∗, b∗), where b∗ = w′∗⊤z∗. If w′∗⊤z ≥ b∗ holds for all z ∈ ZCl

E , add

z∗ to ZCl

E and retain the convexity assumption on subspace C l.

2. Consider a search subspace C l(zi, zj) in which the Pareto front is assumed to

be nonconvex, an associated set of known nondominated points, ZCl

E , and a

newly identified nondominated point z∗ within the subspace, with correspond-

ing line H2(w
′∗, b∗), where b∗ = w′∗⊤z∗. If w′∗⊤z ≤ b∗ holds for all z ∈ ZCl

E ,

add z∗ to ZCl

E and retain the nonconvexity assumption on subspace C l.

3. If the conditions in 1 and 2 are violated, then partition subspace C l into two or

more subspaces by investigating all nondominated points, z ∈ ZCl

E ∪ {z∗}. N l

new subspaces are created based on the supporting hyperplane theorem, such

that
N l⋃

dc=1

C l,dc = ZCl

E ∪ {z∗} and for each dc = 1, . . . , N l, C l,dc must be such

that:

ŵ⊤z ≥ ŵ⊤ẑ for all z, ẑ ∈ C l,dc, (6.13)

or

ŵ⊤z ≤ ŵ⊤ẑ for all z, ẑ ∈ C l,dc. (6.14)

where ŵ is the vector associated with nondominated point ẑ.

The number of subspaces is chosen to be as small as possible while meeting

the supporting hyperplane criteria. A convexity (resp. nonconvexity) assump-

tion is made on the Pareto front in a subspace C l,dc if equation (6.13) (resp.

equation (6.14)) holds.
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6.4.3 Identification of disconnected regions of a Pareto front

One important aspect of the use of the mNBI method combined with the SD algo-

rithm is that the likelihood of finding new Pareto points can be increased by prevent-

ing the algorithm converging to a boundary point. However, the mNBI method may

not be efficient when a Pareto front consists of many disconnected regions or for the

extreme case when a Pareto front consists a finite set of points, i.e., for a purely inte-

ger problem. This is because the portion of the objective space that can be explored

by the mNBI method is limited by the choice of parameters (n̄,β). If the search direc-

tion defined by these parameters does not lead to any region where as-yet-unknown

nondominated points exist, the algorithm will converge to a previously-identified

nondominated solution, making it difficult to determine a new search direction. As

a result, the algorithm may not identify Pareto points efficiently for some problems,

leading to a higher computational cost. For example, a case involving the repeated

computation of the same nondominated point is shown in Figure 6.7. For a given

subspace defined by C3(z4, z5), the solution of subproblem (mNBIβ) for facet nor-

mal n̄6 with reference point Φ6β6 returns the already-known nondominated point

z4. As a result, it is possible to discard the reference points belonging to the line

segment defined by θz4 + (1 − θ)Φ6β6, θ ∈ [0, 1]. However, it is not possible to

ensure that subsequent explorations will result in the identification of new nondom-

inated points in the absence of a clear criterion for the selection of appropriate mNBI

parameters. In fact, as can be seen in Figure 6.8(b), any choice of β such that the

reference point lies on the line segment defined by θΦ6β6 + (1 − θ)Φ6β
′6, where

0 < θ ≤ 1 returns the z4. Note that z6 is obtained by solving an modified mNBI sub-

problem (mNBIn̄(a)), which we will discuss in the remaining part of this section and

β′6 is calculated by using the objective constraints of the NBI subproblem (NBIβ) for

a given parameter n̄6 and objective function value, f = z6.

To address this, two subproblems are introduced to fathom regions where no
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Figure 6.7: A geometrical illustration of the solution of (mNBIβ) subproblem for a dis-
connected Pareto front. We begin by considering subspace C3(z4, z5) (black rectangular
box). The solution of the (mNBIβ) subproblem for facet FS(z

4, z5) and β6 lies at z4.
The blue shaded region represents the area where Φ6β6 + t∗n̄6 ≥ z4 − f id.

Figure 6.8: A geometrical illustration of the SDNBI procedure for a disconnected Pareto
front when using an alternative subproblem (mNBIn̄(a)). (a) A new Pareto point z6

is generated as a solution of mNBIn̄(a). The red shaded region represents the area
where Φ6β6 + t′∗n̄6 ≥ z6 − f id ∩ z61 ≥ z41 + ϵz. The solid red line at z6 represents an
supporting line at the solution. The facet FS(z

4, z6) generated by an inner approxima-
tion is discarded from the search space in the following iterations. In (b), it illustrates
the case that any choice of the reference point between the line segment defined by
θz4 + (1− θ)Φ6β

′6 where 0 < θ ≤ 1 produces the same solution z4.
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Pareto-optimal solutions exist. These are modifications of the original mNBI sub-

problem. For an arbitrary p-th facet denoted by F p
S(z

p1, zp2) where zp11 < zp21 , if the

solution of subproblem (mNBIβ) for given parameters (n̄k, Φkβk) lies at zp1, then

the following subproblem is solved:

max
x∈X,t

t

s.t. Φkβk + tn̄k ≥ f(x)− f id

f1(x) ≥ zp11 + ϵz

x ∈ Rn, t ∈ R, n̄k ∈ Rm

(mNBIn̄(a))

where zp1, zp2 ∈ ZE are nondominated points obtained in previous iterations, n̄k is

an unit normal vector to F p
S and ϵz is a small positive number.

Similarly, for the case when the solution of subproblem (mNBIβ) lies at extreme

point zp2, the following subproblem is solved:

max
x∈X,t

t

s.t. Φkβk + tn̄k ≥ f(x)− f id

f1(x) ≤ zp21 − ϵz

x ∈ Rn, t ∈ R, n̄k ∈ Rm

(mNBIn̄(b))

Theorem 6.4.2. Given two Pareto points zp1 and zp2, such that zp11 < zp21 , and the

facet F p
S = (zp1, zp2) with normal vector n̄k, if (x∗, z∗, t∗) is a solution of subproblem

(mNBIn̄(a)) and z∗ is a nondominated point, then there is no nondominated point

z = (z1, z2)
⊤ such that zp11 + ϵz < z1 < z∗1 . If (x∗, z∗, t∗) is a solution of a subproblem

mNBIn̄(b) and z∗ is a nondominated point, then there is no nondominated point

z = (z1, z2)
⊤ such that z∗1 < z1 < zp21 − ϵz.

Proof. Let z∗ be a nondominated point obtained at the solution (x∗, z∗, t∗) of sub-

problem (mNBIn̄(a)) for facet F p
S = (zp1, zp2) as defined in Theorem 6.4.2, with

parameters βk = [βk
1 , 1− βk

1 ], Φ
k and n̄k.
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Suppose there exists a nondominated point z′ such that zp11 < z′1 < z∗1 . Because z′

is nondominated, there must exist a point (x′, z′, t′) that is feasible for subproblem

(mNBIβ). Then the first inequality of subproblem (mNBIn̄(a)) must hold for both

(x∗, z∗, t∗) and (x′, z′, t′):

Φkβk + t∗n̄k ≥ z∗ − f id (6.15)

Φkβk + t′n̄k ≥ z′ − f id (6.16)

Furthermore, there must exist β∗ and β′ with β′
1 > β∗

1 such that the following equal-

ities hold:

Φkβ∗ + t∗n̄k = z∗ − f id (6.17)

Φkβ′ + t′n̄k = z′ − f id (6.18)

By subtracting equation (6.18) from equation (6.17) and rearranging, we find

Φk(β∗ − β′) + (t∗ − t
′
)n̄k = z∗ − z′ (6.19)

where Φk is a m×m matrix given by:

Φk =

 0 zp21 − zp11

zp12 − zp22 0

 (6.20)

n̄k is the outer-facing normal vector of the facet F p
S and can be written as:

n̄k = −Φke = −

 0 zp21 − zp11

zp12 − zp22 0


 1

1

 = −

 zp21 − zp11

zp12 − zp22

 (6.21)

Therefore, n̄k is always negative and the non-principal elements of Φk are positive.

Note that the principal diagonal elements are always zero. The first term of equation
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(6.19) is expressed as component-wise:

Φk(β∗ − β′) =

 0 zp21 − zp11

zp12 − zp22 0


 β∗

1 − β′
1

(1− β∗
1)− (1− β′

1)


=

 (zp21 − zp11 )(β∗
1 − β′

1)

(zp12 − zp22 )(β′
1 − β∗

1)


(6.22)

where β∗
1 − β′

1 is strictly negative and β
′
1 − β∗

1 is strictly positive.

Since t∗ is a maximum value obtained as a solution of the problem (mNBIn̄(a)), the

strict inequality relation t∗ > t holds for all other feasible t. This means (t∗ − t′)n̄k

is always negative, while the first row of Φk(β∗ − β′) is strictly negative and the

second element is strictly positive. Apparent from the first row of the resulting matrix

in equation (6.19), where the element in LHS is always negative value, the first

element of RHS must be negative value, meaning that it holds z∗1 < z′1 . However,

this contradicts the assumption that z′1 < z∗1 . Therefore z′ cannot be a nondominated

point and there exist no Pareto point z such that zp11 < z1 < z∗1 .

Given a Pareto front, whenever the solution of subproblem (mNBIβ) for the cur-

rent facet F p
S = [zp1, zp2] generates a previously-identified nondominated point, the

facet is further explored by solving (mNBIn̄(a)) or (mNBIn̄(b)), so that the empty

part of the subspace can be excluded from the search space. If the solution of

(mNBIn̄(a)) or (mNBIn̄(b)) lies at one of the Pareto points obtained in a previous

iteration, the entire facet represented by F p
S = [zp1, zp2] is discarded from the search

space in a subsequent iteration.

6.4.4 Outline of the methodology

In this section, we provide the pseudocode for the proposed SDNBI algorithm for

the solution of BOO problems in Algorithm 7. The algorithm is built on the theory

developed in previous sections.
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The user specifies a convergence tolerance, ϵ, as input to the algorithm. In Step 3,

key quantities are initialised: the set of known Pareto points ZE and the inner and

outer approximations, IPS and OPS, respectively, are all empty. The approximation

error dmax, the iteration counter k and the subspace counter l are also initialised. The

two anchor points, zA1 and zA2 with zA2
1 < zA1

1 , are also identified. This enables the

definition of the first subspace C0 = (zA2, zA1), which is assumed to be convex as

indicated by setting the Boolean function Is Convex(C0) to TRUE, and of the first

facet F 0
S = [zA2, zA1]. There may be Pareto points in the subspace defined by this

facet (i.e., C0) so this facet is considered to be “open” and the Boolean function

Is Open is set to TRUE. The set of subspaces C and the set of facets F are initialised.

The main loop then begins at Step 4. For the first loop the facet is set to F p
S ,i.e.,

pk = 0. For k ≥ 2, the next facet and corresponding subspace determined from Steps

25-31, the parameters of subproblem (mNBIβ) at iteration k is specified in Step 6.

Subproblem (mNBIβ) is then solved in Step 7, yielding (z∗, t∗). In Steps 8 to 14,

the fathoming of facet F pk

S is considered as described in Section 6.4.3. Specifically,

if z∗ is a member of ZE, i.e., a previously-determined Pareto point, subproblem

(mNBIn̄(a)) or (mNBIn̄(b)) is solved for a new (z∗, t∗). If the resulting vector z∗ is

once more a known Pareto point, the entire facet is discarded, i.e., Is Open(F pk

S ) is

set to FALSE.

If a new Pareto point has been found, the convexity property of the Pareto front

in the current subspace C lk is examined in Steps 16-23 and new subspaces are cre-

ated as required, based on Section 6.4.2. Specifically, if all the Pareto points in the

subspace, z ∈ ZClk

E , are found lie on the half-plane consistent with the convexity

/ nonconvexity assumption on C lk , then z∗ can simply be added to the subspace

and the set of facets updated to take this new point into account. The convexity /

nonconvexity of C lk is unchanged. If on the contrary, there exists at least one point

in the other half-plane, the set of Pareto points ZClk

E by z∗ and the set of Pareto is

partitioned to create subspaces that only contain Pareto points that lie in the same
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half-space. The number of subspaces is updated as is the set of facets.

The iteration counter is then increased. The approximations IPS and OPS are

updated in Step 26 and if there are no remain facets to explore, the algorithm

terminates regardless the stopping tolerance has been satisfied. The next facet

F pk

S = [zpk
2 , zpk

1 ] to be explored is identified in Steps 27 and 31 as the open facet

at which the largest approximation error is observed. The corresponding subspace

is also identified, defined as the subspace C lk ∈ C such that zpk
2 , zpk

1 ∈ C lk . and the

algorithm terminates when the maximum approximation error is less than ϵ.

Algorithm 7 SDNBI Algorithm for bi-objective optimisation

1: procedure SDNBI ALGORITHM

2: Inputs:
Set a quality threshold, ϵ.

3: Initialize:
ZE = IPS = OPS = ∅; dmax ←∞, k ← 1, dc← 0, NF ← 1

Find anchor points zA1 and zA2 with zA2
1 < zA1

1

Define an initial search region, C0(zA2, zA1), set
Is Convex(C0) = TRUE and C = {C0}
Define facet F 0

S = [zA2, zA1], set Is Open(F 0
S) = TRUE and

F = {F 0
S}

4: Set ZE = {zA1, zA2}, set pk = 0.

5: while dmax ≥ ϵ do

6: Set the next normal n̄k to be the outer normal to F pk

S and set the reference
point Φkβk by choosing βk to be the midpoint of F pk

S .
7: Determine (z∗, t∗) by solving (mNBIβ) with Φkβk and n̄k.
8: if (zk ∈ ZE) then
9: Obtain new (z∗, t∗) by solving (mNBIn̄(a)) or (mNBIn̄(b))

with parameters Φkβk and n̄k.
10: if (z∗ ∈ ZE) then

11: Fathom facet F pk

S by setting Is Open(F pk

S ) = FALSE.
12: Set k = k + 1 and return to step 6.
13: end if
14: else
15: Define the supporting line H2(w

′k, bk) : bk = w′k⊤z∗ using Equation (6.8).
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16: if (Is Convex(ZClk

E ) == TRUE and w′k⊤z ≥ bk for all z ∈ ZClk

E )

or (Is Convex(ZClk

E ) == FALSE and w′k⊤z ≤ bk for all z ∈ ZClk

E ) then

17: Add z∗ to ZClk

E and replace F pk

S ∈ F by two new facets F pk1
S and F

pk2
S in

which z∗ is an extreme point. Set Is Open(F
pk1
S ) = Is Open(F

pk2
S ) = TRUE.

18: else
19: Update ZCl

E = ZClk

E ∪ {z∗}
20: Decompose current subspace C lk into two or more subspaces by

investigating all nondominated points, z ∈ ZClk

E and set
corresponding Is Convex.

21: Update facets for the subspaces that contain z∗

22: Set dc = dc+N l, where N l is the number of new subspaces created.
23: end if
24: end if
25: Set k = k + 1
26: For all subspaces C l ∈ C, l = 1, ..., dc, construct IPS and OPS.
27: if (Is OpenF p

S == FLASE, ∀p) then
28: Break
29: end if
30: Compute the approximation error derror,p between IPS and OPS

for each facet F p
S such that Is Open(F p

S) = TRUE, p = 1, . . . , NF .
31: Select the facet F pk

S that presents the largest error, i.e.,
pk = argmax

p=1,...,NF

(derror,p), and the corresponding subspace C lk .

Set dmax = derror,pk .
32: end while
33: end procedure
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6.5 Performance of the algorithm

In this section, the numerical experiments undertaken to evaluate the performance

of the proposed algorithm are discussed and the behaviour of the algorithm on test

cases is compared with the SD algorithm and mNBI method.

6.5.1 Test functions

To assess the performance of the three algorithms studied, five well-known prob-

lems are selected from the MOP1 (Van Veldhuizen & Lamont, 1999), ZDT (Zitzler

et al., 2000), SCH (Schaffer, 1984), and TNK (Tanaka et al., 1995) test suites de-

veloped for testing evolutionary MOO algorithms. The test problems are chosen to

vary in complexity in terms of problem size and numerical difficulty with convex,

nonconvex and disconnected Pareto fronts. The test problems are summarised in

Table 6.1 where the number of decision variables n, their bounds, and the nature

of the Pareto-optimal front are specified. Problem ZDT5 is a mixed-integer problem

and the integer variables are denoted by the vector y ⊆ Nn2, to distinguish them

from the continuous variable vector, denoted by variables vi, i = 1, . . . , 11 and g in

this problem.

Before formulating the scalarised problems (WSPw) and (mNBIβ), each objective

function is normalised with respect to the limits of objective space, i.e., the ideal

and nadir point, to avoid generating any biased search directions towards particular

objectives. Note that the mNBI method has been proven to be independent of the

relative scales of the objective functions (Das & Dennis, 1998), but the normalisation

is applied to all method in order to make a fair comparison. The m-dimensional

objective vector of normalised functions is denoted by f̂ and each component is

defined as follows:
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f̂i(x) =
fi(x)− fnd

i (x)

f id
i (x)− fnd

i (x)
, i=1, · · · ,m (6.23)

6.5.2 Performance metrics

The main goal when solving MOO problems is to generate, in the minimum time

possible, a diverse set of nondominated points that are evenly distributed along the

Pareto front. For nonconvex problems, there is the added challenge of ensuring that

the points found are as close as possible to the true Pareto front. Based on these

considerations, we use following performance metrics for evaluating the quality of

the solution set obtained by each algorithm.

1. The number of unique non-dominated solutions (Nunq): Nunq denotes cardinal-

ity of the set of unique Pareto points obtained in a given run. This performance

indicator is a measure of the diversity of the solution set.

2. Distribution metric (DM): The distribution metric was suggested by (Zheng

et al., 2017) to capture the spread of the solution set over the Pareto front

approximation and the extent of the true Pareto front covered by the nondom-

inated points. This metric addresses some of the deficiencies of the metrics of

Schott (1995) and Wu & Azarm (2001). Smaller values of the DM indicate

better distributed solution sets. The DM is given by:

DM(ZE) =
1

|ZE|
m∑
i=1

(
σi

τi

)(∣∣f id
i − fnd

i

∣∣
Ri

)
σi =

1

|ZE| − 2

∑|ZE |−1
e=1

(
die − di

)2
, τi =

1

|ZE| − 1

∑|ZE |−1
e=1 die, i = 1, . . . ,m,

Ri = max
x∈XE

fi(x)− min
x∈XE

fi(x), i = 1, . . . ,m,

(6.24)
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where |ZE| is the number of nondominated points, die is the absolute difference

between the values of the ith objective at two adjacent nondominated points

in objective space, di is an average value of die over e, ze and ze+1, σi and

νi are the standard deviation and mean of die over all e = 1, . . . , |ZE| for the

ith objective, σi/τi is the coefficient of variance for the ith objective, Ri is the

difference between the maximum and minimum values of the ith objectives

over all points in ZE and XE is the set of all Pareto solutions that have been

identified.

3. Hypervolume (HV): The hypervolume (Zitzler et al., 2003) of a set of non-

dominated solutions is the volume of the m-dimensional region in objective

space enclosed by the nondominated solutions obtained and a reference point,

fref , i = 1, ...,m. The larger HV, the better the solution set in terms of conver-

gence to the true Pareto front and/or in terms of diversity of the solutions. In

the evaluation of the hypervolume in this work, the reference point is chosen

by selecting the worst (largest) value of each objective across all nondominated

solutions generated by the three algorithms considered.

4. CPU time: The computational time required to obtain the approximation of the

Pareto frontier is a critical aspect for computationally-expensive MOO prob-

lems. Both the total CPU time to generate all solutions (tcpu,t) and the aver-

age CPU time taken to generate one nondominated point (tcpu,a), defined as

tcpu,t/Nunq are reported.

6.5.3 Implementation overview

All algorithms are implemented in Matlab 2018a using the same common subfunc-

tions. Each subproblem derived from the scalarisation method is solved through the

GAMS modelling environment interfaced with CONOPT (Drud, 1994) for nonlin-

ear programs and DICOPT (Grossmann et al., 2002) for the mixed-integer program.
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Both are local solvers. All runs are performed on single Intel(R) Xeon(R) Gold 5122

CPU @ 3.60GHz processor with 384 GB of RAM.

To increase the likelihood of identifying globally optimal Pareto points, an multi-

start approach (Pál, 2013) is adopted in the solution of the subproblems. The multi-

ple starting points (Nsobol) are generated via a Sobol’ sequence (Sobol’ et al., 2011)

to ensure their diversity in the space of design variables x. For the SD algorithm

and mNBI method, the stopping criterion is defined as a fixed number of iterations

Niter,fix, selected based on the number of iterations taken for SDNBI to reach a pre-

defined error tolerance for each test problem. This is because, although the SD

algorithm benefits from a stopping criterion based on a convergence tolerance, it

tends to terminate early as it cannot explore nonconvex regions of the Pareto front.

Furthermore the only stopping criterion for the mNBI algorithm is related to the

computational effort – it is not possible to estimate the quality of the approximation

of the Pareto front generated.

The initial set, Cref , of Nβ reference points for the mNBI method is chosen such

that consecutive reference points Φβk and Φβk+1 are equally spaced, with a spacing

δ. This is expressed as:

βk
2 = k × δ, βk

1 = βk
2 , for k = 1, ..., Nβ, δ = 1/(Nβ + 1). (6.25)

Once the parameters in the initial set have been enumerated by the algorithm, the

next β to be chosen, i.e., βNβ+1
1 is determined by taking the midpoint between two

adjacent β vectors used in previous iterations of the algorithm. As previously men-

tioned, the values of the parameter β for the SDNBI algorithm are chosen as facet

midpoints, i.e., βk = [0.5, 0.5]⊤. All other parameters used in the numerical tests are

specified in Table 6.2.
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Table 6.2: Algorithmic parameters used in the test problems

Parameter MOP1 SCH2 TNK ZDT3 ZDT5
Nsobol 20 20 20 50 30
ϵ in SDNBI 0.001 0.001 0.0015 0.005 0.005
Niter,fix 33 27 59 36 40
Nβ 10 10 15 10 10
f id [7.251, 0.5] [7.251, 0.5] [0.0416, 0.0416] [0, -0.7733] [0, 0.3226]
fnd [18.5, 3.045] [18.5, 3.045] [1.0384, 1.0384] [0.8518, 1] [31, 10]

Table 6.3: Values of the relevant performance metrics for the best-known Pareto fronts
of the test problems

Quality Metrics MOP1 SCH2 TNK ZDT3 ZDT5
Nfinite 100 200 301 100 100
Nunq 100 153 200 67 31
HV (10−2) 92.96 63.78 30.82 51.46 89.57
DM 0.0157 0.0389 0.0238 0.0455 0.0944

6.6 Results and discussion

In this section, we present the relative performance of all algorithms: SD, mNBI and

SDNBI. The “true” Pareto front and the boundary of the feasible region are generated

by solving (NBIβ) for MOP1, SCH2, TNK, and ZDT3 and (mNBIβ) for ZDT5 using

exhaustive enumeration of a finite set (Nfinite) of reference points Φβ in order to

provide a benchmark for the quality of the solutions produced by each algorithm.

The results of these calculations are denoted as the best-known approximations of

the true Pareto fronts and used for graphical comparison. The values of relevant

metrics for the best-known Pareto front obtained for each test problem are shown

in Table 6.3. Graphical representations of the Pareto fronts and boundary points in

bi-objective space are given in Figure 6.9.

6.6.1 Test problem MOP1

The results generated by applying the SD, mNBI, and SDNBI algorithms and the

relative performance of the algorithms are summarised in Tables 6.4-6.8. The al-

gorithms are run for 33 iterations, corresponding to the convergence of the SDNBI
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Figure 6.9: Best-known Pareto front (black symbols •) and boundary points (grey sym-
bols •) of the feasible region in bi-objective space for the test functions: (a) MOP1, (b)
SCH2, (c) TNK, (d) ZDT3, and (e) ZDT5 obtained by solving problem (NBIβ) for many
reference points Φβ.

algorithm with the chosen value of ϵ. For test problem MOP1, all three algorithms

show a similar performance in terms of HV and Nunq, as can be seen in Table 6.4.

This is attributed to the convexity of the Pareto front that allows the three algorithms

to generate a new nondominated point at every iteration, resulting in an equal num-

ber of Pareto points at termination. While the SD algorithm is marginally better in

terms of HV, the SDNBI algorithm yields the lowest DM, indicating better-distributed

solutions along the Pareto front. This can be observed in Figure 6.10, in which the

approximate Pareto front at the 33rd iteration is shown. This better performance in

DM is mainly due to the fact that in the SDNBI algorithm, the next search direction

is chosen by taking into account both a spacing and an approximation error: the

spacing between two adjacent Pareto points is used to set the parameter β as the

midpoint of a facet and the facet itself is chosen based on the distance between the

inner and outer approximation, which in turn determines the value of the param-

eters n̄ and Φ, in order to minimize the error. By contrast, in the mNBI and SD
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Table 6.4: Performance metrics for test problem MOP1 using the SD, mNBI and SDNBI
algorithms. The fixed number of iterations is Niter,fix = 33.

Quality Metrics SD mNBI SDNBI
Nunq 33 33 33
HV (10−2) 92.57 92.54 92.45
DM 0.0586 0.0534 0.0478
tcpu,a (s) 15.05 13.78 15.12
tcpu,t (s) 4.96×102 4.54×102 4.94×102

algorithms, either spacing or error is considered, but not both.

Although the mNBI algorithm outperforms the SDNBI in terms of HV, it is impor-

tant to note that the accuracy of the mNBI-generated approximation depends highly

on the initial set of β values chosen. Yet, the number of β values required in the

initial set and the number of additional values required to achieve a particular qual-

ity of solution set is unknown and there is no systematic method for determining

an appropriate number. This is reflected in Figure 6.11(a) and (b) where the HV

and DM values for the mNBI method exhibit the lowest initial performance. The SD

and SDNBI algorithm, on the other hand, achieve high HV and low DM values that

are close to the reference values (92.69 for HV and 0.0157 for DM) in few itera-

tions, most likely because the scalarisation parameters are chosen to maximise the

accuracy of the approximation.

The computational cost of generating Pareto points comes at a relatively higher

price for SD and SDNBI (9.2% and 9.7% higher tcpu,t value, cf Table 6.4 and Figure

6.11(d) and (e)). The higher computational time is mainly associated with the time

taken for convex hull generation and linear optimisation runs for the calculation of

the error between the inner and outer approximations of each facet.

6.6.2 Test problem SCH2

Test problem SCH2 is much more challenging than MOP1 because the Pareto-optimal

set consists of two disconnected regions, as shown in Figure 6.12. The first consists
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Figure 6.10: Pareto points generated by (a) SD (×), (b) mNBI (△), and (c) SDNBI (◦)
for test problem MOP1. The best-known Pareto front is shown in grey.
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Figure 6.11: Performance metrics as a function of iteration number for the application
of the SD algorithm (–×–), mNBI algorithm (–⋄–), and SDNBI algorithm (–◦–) to MOP1
for 33 iterations (a) Scaled hypervolume, HV, (b) Scaled distribution metric, DM, (c)
Number of unique Pareto points, Nunq, (d) CPU time spent per iteration in seconds,
tcpu,a, (e) overall CPU time in seconds, tcpu,t
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of a single point and the second is a large continuous, nonconvex region. There is a

large gap between these two regions.

The desired approximation quality is achieved with the SDNBI algorithm in 27

iterations. As shown in Table 6.5, the highest value of HV and the lowest value

of DM are achieved when using SDNBI, indicating that the nondominated points

generated by SDNBI are the closest approximation to the best-known Pareto front

and offer a better distribution. This can also be observed by comparing the three

panels in Figure 6.12. It can further be seen in the figure that the points identified

by SD algorithm lie only on the convex part of the true Pareto front, as is expected,

resulting in the lowest value of Nunq, HV and the highest value of DM metrics. In

view of this, subsequent discussion is focused on comparing the mNBI and SDNBI

algorithms.

The overall performance of the mNBI algorithm is similar to that of SDNBI in

terms of HV and DM, although the mNBI algorithm trails SDNBI in early iterations

(see Figure 6.13(a) and (b)).

The better overall quality of the solution set obtained with SDNBI arises in part

as a result of recognising the presence of a discontinuity in the Pareto front. Once

the corresponding facet has been fathomed, this makes it possible to generate a new

Pareto point at every subsequent iteration. For example, the disconnected region of

the Pareto front between 0 ≤ f̂1 ≤ 0.07 (see Figure 6.12) is removed from the search

space at the 8th iteration by solving an alternative SDNBI subproblem (mNBIn̄(b)).

This event is also observed as a kink in the plot of Nunq as a function of iteration

number for the SDNBI algorithm (Figure 6.13(c)). Fewer points are identified by

the mNBI algorithm within the fixed number of iterations. This is mainly because

at several iterations, the solution of the mNBI subproblem fails to results in new

Pareto points as searching takes place along the large disconnected region. In fact,

this region is repeatedly explored during the mNBI search procedure as iterations

proceed. This algorithmic behaviour is illustrated in Figure 6.13(c), where a lower
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Table 6.5: Performance metrics for test problem SCH2 using the SD, mNBI and SDNBI
algorithms. The fixed number of iterations is Niter,fix = 27.

Quality Metrics SD mNBI SDNBI
Nunq 26 25 26
HV (10−2) 53.09 62.70 62.94
DM 0.2512 0.0998 0.0910
tcpu,a (s) 9.35 9.46 9.41
tcpu,t (s) 2.43×102 2.36×102 2.44×102

value of Nunq is observed with the mNBI algorithm than with the SDNBI algorithm

after the 20th iteration.

Finally, all three algorithms exhibit a similar performance in terms of CPU time

per iteration and overall, as seen in Table 6.5 and in Figure 6.13(d) and (e).

6.6.3 Test problems TNK and ZDT3

Similar trends are observed for problems TNK and ZDT3 in which the nondominated

sets comprise two disconnected regions for TNK and four for ZDT3, as shown in

Figure 6.9(c) and (d).

A key challenge in solving these two problems is to identify a set of parameter

values so that the Pareto points identified are evenly distributed and, more impor-

tantly, so that the solution of optimisation subproblem that result in convergence to

an already known Pareto point are avoided.

The results are shown in Tables 6.6 and 6.7, and Figures 6.14-6.17. Note that

results with the SD algorithm are not presented in Table 6.6 nor in Figure 6.15 for

problem TNK, since there are no convex parts on the Pareto front and solutions other

than the anchor points cannot be identified, as can be seen in Figure 6.14(a).

From an examination of the tabulated and graphical results, we can conclude that

the SDNBI algorithm outperforms the SD algorithm and the mNBI method in all

metrics except for tcpu,t and tcpu,a. The higher total computational cost of SDNBI may

be explained by the additional calculation procedures required for: the generation
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Figure 6.12: Pareto points generated by (a) the SD algorithm (×), (b) the mNBI algo-
rithm (△), and (c) the SDNBI algorithm (◦) for test problem SCH2. The best-known
Pareto front is shown in grey.
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Figure 6.13: Performance metrics as a function of iteration number for the application
of the SD (–×–), mNBI (–⋄–), and SDNBI (–◦–) algorithms to SCH2 for 27 iterations:
(a) Scaled hypervolume, HV, (b) Scaled distribution metric, DM, (c) Number of unique
Pareto points, Nunq, (d) CPU time spent per iteration in seconds, tcpu,a, (e) overall CPU
time in seconds, tcpu,t
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Table 6.6: Performance metrics for test problem TNK using the SD, mNBI and SDNBI
algorithms. The fixed number of iterations is Niter,fix = 59.

Quality Metrics mNBI SDNBI
Nunq 56 59
HV (10−2) 30.34 30.46
DM 0.0674 0.0629
tcpu,a (s) 15.88 16.27
tcpu,t (s) 8.89×102 9.60×102

of inner and outer approximations of the Pareto front; the removal of subspaces that

do not contain Pareto points, and the addition of objective constraints inherent in

the mNBI subproblem. The SDNBI algorithm, all disconnected regions of the Pareto

front are detected and screened out from consideration, with confidence that no

Pareto points exist in these areas. By solving the (mNBIn̄(a))(a) subproblems in-

voked, not only two empty parts are discarded, but new Pareto points are identified.

As a result, the SDNBI algorithm succeeds in improving the Pareto approximation

efficiently at each iteration, whilst the performance of the mNBI is limited when it

encounters a large disconnected region. These aspects are illustrated in Figures 6.15

and 6.17, where the progress of each quality measure can be compared. As can be

seen in Figure 6.15(d) the differences tcpu,a between the algorithms is decreasing

despite the rapid increase in tcpu,t with SDNBI (see Figure 6.15(e)), since a larger

number of Pareto points (Nunq) are identified with SDNBI as iterations proceed. In

Figure 6.17(d), the lower values in tcpu,a are observed with SDNBI after 25th when

it compared to that of mNBI as a result of identifying more Pareto points, suggest-

ing that the SDNBI algorithm may be more computationally efficient when many

disconnected regions are involved in a Pareto front.

6.6.4 Test problem ZDT5

The results for test problem ZDT5 obtained with SD, mNBI and SDNBI for 40 itera-

tions are summarised in Table 6.8 and Figures 6.18 and 6.19. For this test problem,
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Figure 6.14: Pareto points generated by (a) the SD algorithm (×), (b) the mNBI method
(△), and (c) the SDNBI algorithm (◦) for test problem TNK. The best-known Pareto front
is shown in grey.

Table 6.7: Performance metrics for test problem ZDT3 using the SD, mNBI and SDNBI
algorithms. The fixed number of iterations is Niter,fix = 36.

Quality Metrics SD mNBI SDNBI
Nunq 36 35 36
HV (10−2) 48.85 51.12 51.21
DM 0.1356 0.0776 0.0667
tcpu,a (s) 45.06 47.38 46.10
tcpu,t (s) 16.22×102 16.58×102 16.59×102
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Figure 6.15: Performance metrics as a function of iteration number for the application
of the mNBI (–⋄–) and SDNBI (–◦–) algorithms to problem TNK for 59 iterations: (a)
Scaled hypervolume, HV, (b) Scaled distribution metric, DM, (c) Number of unique
Pareto points, Nunq, (d) CPU time spent per iteration in seconds, tcpu,a, (e) overall CPU
time in seconds, tcpu,t
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Figure 6.16: Pareto points generated by (a) SD algorithm (×), (b) mNBI (△), and (c)
SDNBI (◦) for the test problem ZDT3
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Figure 6.17: Performance metrics as a function of iteration number for the application
of the SD algorithm (–×–), mNBI method (–⋄–), and SDNBI algorithm (–◦–) to ZDT3
for 36 iterations: (a) Scaled hypervolume, HV, (b) Scaled distribution metric, DM, (c)
Number of unique Pareto points, Nunq, (d) CPU time spent per iteration in seconds,
tcpu,a, (e) overall CPU time in seconds, tcpu,t
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the true Pareto front is represented as a set of 31 integer Pareto points and the

SDNBI identifies the complete set of solutions for a given tolerance, while the mNBI

method and the SD algorithm appear to be relatively ineffective in achieving high

performance in DM and Nunq with the given number of iterations. These results

demonstrate the effectiveness of the SDNBI algorithm at finding a diverse and accu-

rate set of Pareto points over the discrete bi-objective domain. As can be observed in

Figure 6.19(d), the performance of the SDNBI algorithm in terms of tcpu,a improves

as iterations proceed with the lowest computational cost is obtained at iteration 40,

i.e., the iteration at which convergence is reached.

In order to investigate how the SDNBI algorithm works after identify the complete

Pareto set, the convergence tolerance, ϵ is reduced to 10−3 such that each algorithm

further iterates the search procedure. As can bee seen in Figure 6.19(d), the tcpu,a

values increase rapidly with the SDNBI algorithm. This follows the identification

of the complete set of Pareto points (at 40th) and is associated with the solution

of the subproblems (mNBIn̄(a)) and (mNBIn̄(b)) through which facets are removed,

but no additional Pareto points are identified. It is notable that all regions where

Pareto points do not exist are removed from the search space after 61 iterations

(see Figure 6.19), and this allows the SDNBI algorithm to terminate although the

pre-defined error tolerance, ϵ is not satisfied. Although not shown here, the SD

algorithm iterates the search procedure until there are no remaining facets to be

investigated (terminated at 66th iteration).

As can be observed from Figure 6.19(c), by iteration 56, all 31 Pareto points have

been identified with the mNBI method. However, β values are enumerated until the

87th iteration at which the possible choice of reference points, Φβ become almost

empty. This suggests that the mNBI method can fail to recognise that all Pareto points

have been found when a highly disconnected or discrete Pareto front is involved, due

to the in the lack of a problem-specific termination criterion.
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Table 6.8: Performance metrics for test problem ZDT5 using the SD, mNBI and SDNBI
algorithms. The fixed number of iterations is Niter,fix = 40.

Quality Metrics SD mNBI SDNBI
Nunq 23 23 31
HV (10−2) 89.46 89.48 89.57
DM 0.1377 0.1230 0.0944
tcpu,a (s) 73.40 52.86 51.92
tcpu,t (s) 1688.20 1215.88 1609.64

Figure 6.18: Pareto points (z) generated by the (a) SD algorithm (×), (b) the mNBI
method (△), and (c) the SDNBI algorithm (◦) for test problem ZDT5 with Niter,fix = 40.
The grey points represent the set all Pareto points.
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Figure 6.19: Performance metrics as a function of iteration number for the application of
the SD (–×–), mNBI (–⋄–), and SDNBI algorithms (–◦–) to ZDT5 for up to 64 iterations.
The white area corresponds to the 40 iterations consistent with the SDNBI stopping
criterion, while the grey shaded area corresponds to additional iterations needed for
eliminating all empty area and so terminating the algorithm before reaching the stopping
tolerance.
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6.7 Conclusions

In this study, we have proposed a novel algorithm, SDNBI, that combines features

of the SD and NBI methods with the aim of generating accurate approximations of

nonconvex and combinatorial Pareto fronts in bi-objective space. The main improve-

ments in the algorithm are focused on the exploration of nonconvex regions of the

Pareto front and on the identification of regions where no further nondominated so-

lutions exists, indicating that parts of the Pareto front are disconnected. Key aspects

of the SDNBI algorithm include: 1) the characterisation of inner and outer approxi-

mations such that the accuracy of the incumbent set of Pareto points can be assessed

during the course of the algorithm, 2) a systematic way of setting scalarisation pa-

rameters of the mNBI subproblem, 3) a decomposition of an objective space based on

the convexity and nonconvexity of parts of the Pareto front, and 4) the refinement

of the scalarised subproblem to avoid unnecessary iterations over disconnected or

empty regions of the objective space.

To access the performance of the proposed algorithm, numerical tests were con-

ducted for five bi-objective benchmark problems (MOP1, SCH2, TNK, ZDT3, and

ZDT5). The performance of the algorithm in terms of accuracy of the approxima-

tion of the Pareto front constructed in disconnected nonconvex objective domains

is compared to two MOO approaches: a SD algorithm and the mNBI method. The

comparative results have provided clear evidence of the effectiveness of the SDNBI

algorithm in terms of generating a more diverse and better-distributed set of Pareto

points over disconnected and/or nonconvex Pareto fronts compared to the approxi-

mations generated with the mNBI method and the SD algorithm. The solution of test

problem ZDT5, in which the true Pareto front comprises 31 discrete points, has high-

lighted the robustness of the SDNBI algorithm: the whole set of Pareto points was

generated with relatively few iterations, leading to high computational efficiency.

Further work will be directed at testing the MOO algorithms on more additional
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literature and engineering problems to derive general conclusions of the perfor-

mance. The implementation of the proposed solution approach in an algorithm

involving three or more objective functions also should also be considered in future

work.



CHAPTER 7

Application of the SDNBI algorithm to CAM(P)D problem

In Chapter 6, we discussed the development of a robust algorithm (SDNBI) for a

class of solving a mixed-integer nonlinear bi-objective optimisation (BOO) problems.

We assessed the efficiency of the proposed algorithm through the solution of five

benchmark problems. In this chapter, the effectiveness of the proposed algorithm is

investigated through CAM(P)D problems in an attempt to assess its applicability and

reliability in the context of practical mixed-integer nonlinear problems (MINLPs).

We first focus on reformulating into BOO of two MOO CAM(P)D case studies that

were introduced in Section 5.4. The resulting formulations are further modified so

that they can be adapted to the subproblems of the SDNBI, and then the performance

of the algorithm is compared to that of two different methods: the sandwich (SD)

algorithm and the modified normal boundary intersection (mNBI) method.

7.1 Problem statement

We first begin by briefly restating the original formulation of the CAM(P)D problems

of case study 1 and case study 3 introduced in Chapter 5, modifying the problem

statement as appropriate.

236
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7.1.1 Case study 4: Solvent design for chemical absorption of

CO2

A CAMD application for the design of optimal solvents for the chemical absorption of

CO2 is chosen as a first test problem. The formulation is modified based on problem

(5.7) such that the number of objective functions and the molecular design space

are reduced for BOO. In the design of optimal solvents for CO2 capture, some of the

most important properties are the total heat required to regenerate the solvent and

the CO2 loading capacity. The total heat demand for solvent regeneration can be ex-

pressed as the sum of 1) the heat of absorption, which is the enthalpy change when

1 mole of CO2 is absorbed in the solvent, 2) the sensible heat required to raise the

temperature of the CO2-rich solvent for regeneration, whose value is proportional

to the specific heat (or heat capacity), and 3) the stripping heat, which is approxi-

mately equal to the heat of vaporisation of water. The CO2 loading capacity, i.e., the

ability to dissolve gaseous CO2, is also an important consideration. A higher loading

capacity is desirable to reduce the solvent circulation rate in a process. As a result,

the two objective functions selected are the heat capacity (CP ), which correlates

with the sensible heat requirement and hence to the heat demand for regeneration

and relative energy difference (RED), which correlates inversely with the amount

of CO2 dissolved in the liquid solvent. Although the heat of absorption and the CO2

loading could be computed using the SAFT-γ Mie equation of state, as discussed in

Chapter 5, we choose the objective functions for the BOO problem from the original

objective functions used in Case Study 1 of Chapter 5 as analysis of the Pareto front

(5.5.1) has shown it is highly nonconvex in the space of these two objectives. This

makes it an ideal problem to test the performance of the SDNBI algorithm, which is

the primary objective in this chapter. As in Case Study 1, upper and lower bounds

are imposed on the liquid density (ρ) at standard conditions, the normal melting

point (Tm), the normal boiling point (Tb), the viscosity (µ) and the surface tension
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(σ), as shown in Table 5.3. The resulting optimisation problem is as follows:

min
n

CP , RED

s.t. g(n) ≤ 0

h(n) = 0

Cn ≤ d

(7.1)

where n ∈ N ⊆ Nn2 is a n2-dimensional vector of non-negative integer variables

that make up the molecular design space, g(n) is a vector of inequality constraints

on the physical properties (cf. Table 5.3), h(n) is a vector of equality constraints

that include structure-property models that link the structure of the solvent to its

thermophysical properties, and Cn ≤ d is a set of linear constraints that repre-

sent molecular feasibility constraints so that only chemically feasible molecules are

considered in the optimisation.

The same set of functional groups as in Case Study 1 in Chapter 4 is used here for

property prediction techniques other than the SAFT-γ Mie equation of state (Gani

et al., 1991; Hsu et al., 2002; Hukkerikar et al., 2012b). These are: NH2CH2, NH2CH,

NH2C, NHCH3, NHCH2, NHCH, NCH3, NCH2, CH3, CH2, CH, C, and OH. We also

further reduce the molecular design space by limiting the maximum number of CH

and C groups present in a molecule to avoid the structural complexity caused by the

inclusion of many isomers, i.e., nU
iso=4. Finally, from the brute-force evaluation for

all feasible combinations of solvent structures, we find that most of the molecules

with more than five amine groups or more than 12 functional groups are infeasible

with respect to the properties. Therefore, the maximum allowable number of amine

groups and the maximum allowable number of total functional groups are reduced

to nU
GA

=4 and nU
t =12, respectively, to reduce the computational burden arising from

infeasibilities.
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7.1.2 Case study 5: Integrated working fluid and ORC process

design (CAMPD)

In the second test, we consider the simultaneous design of pure-component working

fluids and Organic Rankine Cycle (ORC) processes. The net power output (Pnet)

and the total cost of investment (TCI) are considered as the two objective functions

in order to investigate trade-offs between the efficiency of the working fluid in ex-

tracting the power from the ORC process for a specified heat source and heat sink,

and the overall economic performance of the combined working fluid-ORC process

model. The formulation of this test is identical to case study 3 described in Section

5.4. For the sake of brevity, the reader is directed to the comprehensive description

of Bowskill et al. (2020) and Lee et al. (2020) for further details on the problem

formulation. For convenience, we repeat the formulation in order to describe the

properties of the mNBI/SDNBI scalarised subproblems in the subsequent sections.

min
x,n

Pnet,

max
x,n

TCI

s.t. g(x, n) ≤ 0,

h(x, n) = 0,

Cn ≤ d

(7.2)

where x is a n1-dimensional vector of continuous variables that represent process

conditions, g(x, n) is a vector of inequality constraints (see Table 5.7), h(x, n) is a

vector of equality constraints including heat and mass balance equations, thermody-

namic relations, and other structural-property relationship models. (cf. Supplemen-

tary Information of Bowskill et al. (2020) for an exact formulation of h(x, n) and

Cn ≤ d).

As a basis for the molecular design space of the working fluid, the following nine
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functional groups are selected: CH3, CH2, CH2=, CH=, eO (end group oxygen), cO

(central oxygen), COOH, COO and OH. eO represents an oxygen atom connected to

one CH3 and one CH2 group, and cO describes an oxygen atom bonded to two CH2

groups. For the evaluation of the overall performance of the ORC process as a func-

tion of working fluid structures, the following four process conditions are selected as

optimisation variables: the mass flow of working fluid (mWF ), the pump inlet pres-

sure (Pin,pump), the pump outlet pressure (Pout,pump), and the extent of superheating

in an evaporator (∆Tsuperheat). The optimisation variables and their upper and lower

bounds are listed in Table 5.7.

7.2 Scalarisation of the MOO problems

The original MOO problems (7.1) and (7.2) can be converted to a (scalarised) single

objective optimisation (SOO) either by assigning weights to the objective functions

or by introducing an additional free variable, t and objective constraints.

7.2.1 Weighted-sum subproblem

The weighted-sum subproblem (5.2) for case study 4 (CS4) can be written as:

min
n

w1f1(n) + w2f2(n)

s.t. g(n) ≤ 0

h(n) = 0

Cn ≤ d

w ∈ R2,n ∈N ⊆ Nn2

(CS4w)

where w is a two-dimensional and vector of weighting factors that is determined

by the inner approximation of the SD algorithm, f(n) ∈ {0, 1}2 is a vector of the

normalised objective functions of CP and RED.
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Throughout the study, each objective function value is normalised between 0 to

1 using the limits of the objective space to make a fair comparison between the

methods, as was the case in Chapters 5 and 6. The normalisation of the original

objective function values, fo, is described by:

fi =
f o
i − fnd

i

f id
i − fnd

i

, i=1, 2, (7.3)

where f id
i is the lowest possible Pareto-optimal value of i-th objective function and

can be obtained by minimising a single objective function, subject to the constraints.

fnd
i is the highest possible Pareto-optimal value of the i-th objective function and can

be obtained by maximising a single objective function, subject to the constraints. All

nadir and utopia points that are used for the normalisation is shown in Table 7.1.

For case study 5 (CS5), the weighted-sum subproblem is given by:

min
x,n

w1f1(x, n) + w2f2(x, n)

s.t. g(x, n) ≤ 0

h(x, n) = 0

Cn ≤ d

w ∈ R2, x ∈ Rn1 , n ∈N ⊆ Nn2

(CS5w)

where f(x, n) ∈ [0, 1]2 is a vector of normalised functions of each objective func-

tions, Pnet and TCI.

Table 7.1: Nadir and utopia point used for the normalisation of the objective functions
in CS4 and CS5

i
Cp

(kJ mol-K−1)
RED

(-)
Pnet

(MW)
TCI

(106 US$)
fnd
i 0.434 4.181 5.01×10−8 7.50
f id
i 0.139 0.226 31.62 6.00×10−2
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7.2.2 Modified normal boundary intersection/SDNBI subproblem

In a similar manner, the subproblem with the mNBI/SDNBI parameters for CS4 is

defined as:
max
n,t

t

s.t. Φβ + tn̄ ≥ f(n)− f id

g(n) ≤ 0

h(n) = 0

Cn ≤ d

t ∈ R, n̄ ∈ R2, n ∈N ⊆ Nn2

(CS4β)

where t is a continuous scalar variable to be maximised, n̄ is the outer normal direc-

tion pointing towards the ideal point f id = [f id
1 f id

2 ]⊤ at the reference point Φβ. For

CS5, it is given by:

max
x,n,t

t

s.t. Φβ + tn̄ ≥ f(x, n)− f id

g(x, n) ≤ 0

h(x, n) = 0

Cn ≤ d

t ∈ R, n̄ ∈ Rm x ∈ Rn1 , n ∈N ⊆ Nn2

(CS5β)

In problem (CS4w) and (CS4β), the integer variables are the only degree of freedom

so once a molecular structure has been specified, all continuous variables are fully

specified.

7.3 Solution strategy for SOO subproblems

Now that we have the scalarised BOO problems, a set of non-dominated points for

each problem (7.1) and (7.2) can be obtained by solving the SOO subproblems with
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chosen parameters. There are several numerical difficulties that arise in the solution

of the CAM(P)D problems.

Each MINLP SOO subproblem is solved using the outer approximation (OA) al-

gorithm, in which the problem is decomposed into a nonlinear programming (NLP)

subproblem, the primal problem, and a mixed-integer linear programming (MILP)

subproblem, the master problem. As has been discussed in Chapter 4, care needs to

be taken when employing the OA algorithm for the solution of large-scale nonconvex

MINLP models that present many infeasibilities in the search space. For example, an

optimal solution of the MILP subproblem in which a feasible space is approximated

by a collection of hyperplanes, i.e., a polyhedral relaxation of the objective function

and constraints, may not be feasible in the next NLP search step. The failure of the

NLP step may be avoidable by either solving an infeasible primal problem (Fletcher

& Leyffer, 1994) or adding integer cuts. However, it is not only computationally

expensive, but also it does not guarantee that a feasible solution can be identified in

a subsequent iteration. An solvent obtained as a solution of the MILP master prob-

lem (CS4β) that violate nonlinear property constraints, for instance, makes the NLP

primal problem infeasible because increasing or decreasing the continuous decision

variable t cannot reduces the violation of any constraint in {g(n) ≤ 0,h(n) = 0}.

If infeasible NLPs appear repeatedly in the course of the solution, the algorithm

either terminate prematurely or fail to produce an optimal solution. This is a par-

ticular problem when applying the OA algorithm to MINLPs with nonconvexities in

the continuous variables as the constraints generated during the solution of repeated

variable or infeasible primal problem may cut of the optimal solution. Similarly, in

CS5, the primal problem is infeasible for all values of the operating conditions x

in the ORC process when 1) the working fluid is not at sub-critical conditions for

any operating ranges , 2) the melting point of the working fluid is greater than the

minimum operating temperature, 3) a vapour-liquid phase transition of the working

fluid cannot occur within the ORC process for a given heating and cooling source. To
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mediate such difficulties, we incorporate an extension of the OA method proposed

by Buxton et al. (1999), Gopinath et al. (2016), and Bowskill et al. (2020) as used

in Chapter 4, in which tailored feasibility tests are introduced to recognise infeasi-

ble molecules and process conditions. The overall procedure employed is shown in

Figure 7.1 and elements are discussed in more detail in the remainder of this section.

7.3.1 Case study 4: CAMD

In the study of Lee et al. (2020) and as discussed in Chapter 5, it was observed that

solving the weighted-sum subproblem (CS4w) with a standard OA algorithm with

equality relaxation and augmented penalty (OA/ER/AP) (Viswanathan & Gross-

mann, 1990) using the default MINLP optimiser in gPROMS (Process Systems En-

gineering, 1997-2022) is a suitable approach to generate optimal solutions reliably,

provided good initial guesses are given. This is because once the integer variables

are fixed, the model equations are fully defined and the objective function and con-

straints can be evaluated without taking an NLP optimisation step. Furthermore,

any solvent encountered in the evaluation of the properties is excluded from further

consideration by introducing an integer cut in the master problem. One possible

modification that can be made when encountering the infeasible solvents is to add

the linearisations of the violated constraints to the master problem in order to in-

crease the likelihood of generating a feasible solvent candidate. This approach is

similar to the extended cutting plane method proposed by Westerlund & Pettersson

(1995) and Westerlund & Lundqvist (2001). The linearisation of the constraints,

however, potentially increases the computational cost as the first derivatives of the

properties with respect to the molecular variables, n, need to be calculated explicitly,

and the addition of constraints in the master problem may lead to further computa-

tional expense. In view of this, the weighted-sum subproblem (CS4w) is solved with

the a standard OA/ER/AP solver embedded in gPROMS, without linearisation.
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Figure 7.1: An overview of the algorithmic procedure employed in the solution of sub-
problems (CS5w), (CS4β), and (CS5β). The red shaded box (Test 0 and Test 2) are only
applied for case study 5.
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Solving the mNBI/SDNBI subproblem (CS4β) reliably, on the other hand, neces-

sitates the application of one feasibility test designed to examine whether the prop-

erties of the solvent candidate are within the desired ranges. The formulation of the

test is as follows:

TL
b ≤ Tb(P = 1atm,n) ≤ TU

b ,

ρL ≤ ρ(T = 313K,P = 1atm,n) ≤ ρU

µL ≤ µ(T = 313K,n) ≤ µU

(7.4)

where superscripts L and U denote upper and lower bounds, respectively. Note

that the properties expressed as linear combinations of the number of occurrences

of the functional groups, n, such as the surface tension, σ, and the melting point,

Tm, are employed in the master problem to generate more feasible molecules and

therefore do not need to be included in the feasibility test. We denote the set of the

inequality constraints in the feasibility test by g1(n) and “Test 1”. Accordingly, gp is

defined as the subset of inequality constraints obtained by excluding the constraints

used in Test 1 (g1 ≤ 0) from g. A molecule that passes the feasibility test is subse-

quently evaluated by solving the NLP primal problem with respect to the continuous

variable t. Should a molecule fail the test, the violated constraints are linearised and

used in the master problem to guide the search towards new feasible molecules.

The formulation of the master problem follows the original formulation (Duran &

Grossmann, 1986; Fletcher & Leyffer, 1994) with modifications applied specifically

to aid in CO2 solvent design. The master problem includes an augmented penalty

(AP) framework with slack variables e1 and e2 (Viswanathan & Grossmann, 1990),

so that the convexity assumption can be relaxed. In order to keep track of the out-

come of the feasibility test, primal problem, and of the linearised constraints, we use

several sets defined in Section 4.5.1, thereby providing consistency in the formula-

tion. The resulting formulation of the master problem at iteration l is summarised
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by problem (M4β):

min
n,t

−t+ 1000(e1 + e2)

s.t. f1(n
(l)) +∇⊤

nf1(n
(l))
[
n− n(l)

]
− n̄1

[
t− t(l)

]
≤ e1, ∀l ∈ F (k)

f2(n
(l)) +∇⊤

nf2(n
(l))
[
n− n(l)

]
− n̄2

[
t− t(l)

]
≤ e1, ∀l ∈ F (k)

gp,m(n
(l)) +∇⊤

ngp,m(n
(l))
[
n− n(l)

]
≤ e2, ∀(l,m) ∈ A(k)

g1,j(n
(l)) +∇⊤

ng1,j(n
(l))
[
n− n(l)

]
≤ e2, ∀(l, j) ∈ A1(k)

ML(1− yl) + εic ≤
n2∑
i=1

(ln(pi)(ni − n
(l)
i )) ≤MUyl − εic, ∀l ∈ IC(k)

yl ∈ {0, 1}, ∀l ∈ IC(k)

uL ≤ u ≤ uU

Cn ≤ d

−t ≤ fU

(M4β)

where the set F (k) is the set of major iteration numbers, l, such that the primal

problem is feasible with l ∈ {1, . . . , k}. For each index l ∈ F (k), the set A(k) is used

to save the pair of indices (l,m), where m is the index of an active constraint in

gp at the solution of the primal problem. If the evaluation of a molecule in Test 1

violates one or more constraints, all violated constraints are stored in a set A1(k).

The set A1(k) contains pairs of indices (l, j), where j denotes the index of an active

or violated constraint of g1. Finally, a set IC(k) is used to store the structure of all

molecules that are to be excluded via an integer cut (Samudra & Sahinidis, 2013)

introduced to remove infeasible molecules from the design space. Infeasibility of a

molecule arises when the molecule fails to pass the feasibility test, and the primal

problem becomes infeasible (l ≤ k), or the solution of the master problem n(l+1) is a

repeat of a previously generated structures. pi is a prime number, the vector n with

elements ni denotes the solvent being sought in the master problem, ML and MU is

a large negative and positive number, respectively, ϵic is a small positive number, and

yl is a binary variable introduced for iteration l to ensure the central term is strictly
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positive or negative, but not to equal to zero.

7.3.2 Case study 5: CAMPD

In solving (CS5w) and (CS5β), we employ the same optimisation strategy as Bowskill

et al. (2020), in which a set of optimal working fluids were identified reliably from a

large space of over 50,000 molecules at a low computational cost. The robustness of

the algorithm was achieved through the implementation of three feasibility tests: 1)

test 0: to derive reasonable bounds on the operating pressure and temperature to

ensure that process operation is within the sub-critical region and above the melting

point of the current fluid, 2) test 1: to examine whether the transition from vapour

to liquid phase in the condenser ,and vice versa in the evaporator, can occur within

the ranges of the operating conditions defined in test 0, 3) test 2: to tighten the

pressure bounds based on the feasible domain of the working fluid. The reader is

referred to the original paper for a more detailed discussion on the development of

the robust algorithm and the full formulation of the tests, primal and master prob-

lem. Note that, compared to Bowskill et al. (2020), only changes in the formulation

of (CS5w) is in the objective function as there are no additional variables and con-

straints involved. In the case of (CS5β), two additional constraints are introduced,

and so we summarise the full formulation of the master problem herein. The set

of continuous variables x is partitioned into a set of independent variables u and

a set of dependent variables xd so that x = (u,xd). The a set of dependent vari-

ables xd is calculated using process and physical property models, as represented

by the equalities. The set of inequality constraints g ≤ 0 is reduced to gp2 ≤ 0,

where gp2 ⊂ g is obtained by removing the constraints (gt1 ≤ 0) used in test 1. The

resulting formulation of the master problem
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min
x,n,t

−t+ 1000(e1 + e2)

s.t. f1(x
(l),n(l)) +∇⊤

nf1(x
(l),n(l))

[
n− n(l)

]
+∇⊤

xf1(x
(l),n(l))

[
x− x(l)

]
− n̄1

[
t− t(l)

]
≤ e1, ∀l ∈ F (k)

f2(x
(l),n(l)) +∇⊤

nf2(x
(l),n(l))

[
n− n(l)

]
+∇⊤

xfp2(x
(l),n(l))

[
x− x(l)

]
− n̄2

[
t− t(l)

]
≤ e1, ∀l ∈ F (k)

gp2,m(u
(l),n(l)) +∇⊤

ngp2,m(u
(l),n(l))

[
n− n(l)

]
+∇T

ugp2,m(u
(l),n(l))

[
u− u(l)

]
≤ e2, ∀(l,m) ∈ A(k)

gt1,j(u
(l),n(l)) +∇⊤

ngt1,j(u
(l),n(l))

[
n− n(l)

]
≤ e2, ∀(l, j) ∈ A1(k)

ML(1− yl) + εic ≤
n2∑
i

(ln(pi)(ni − n
(l)
i )) ≤MUyl − εic, ∀l ∈ IC(k)

yl ∈ {0, 1}, ∀l ∈ IC(k)

uL ≤ u ≤ uU

Cn ≤ d

−t ≤ fU

(M2β)

7.3.3 Remarks on the application of the OA-based framework

Despite the robustness of the optimisation procedure employed, finding a globally

optimal solution can be challenging when the problem exhibit many local optima

due to the highly nonlinear and nonconvex nature, of the model equations. For MOO

approaches that make use of the incumbent set of the Pareto optimal solutions for

choosing a suitable set of scalarisation parameters, the performance of the algorithm

is strongly dependent on the quality of these solutions. It is therefore of interest to

carry out a global search to obtain an accurate representation of the true Pareto

front. Furthermore, the choice of initial guesses for the decision variables impacts

the convergence behaviour of the MINLP algorithms in solving the nonconvex SOO

subproblems. A specific example where a poor choice of initial guesses results in
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Figure 7.2: An example of the nonlinear relaxation (shaded red) of the mixed-integer
nonlinear feasible set for a problem with two integer variable n1 and n2. The black dots
represent the integer domain. The blue solid lines represent the hyperplanes produced
by linearising the objective function and active constraints at the solution. Assume that
all linearisations are obtained from the first NLP step. The blue arrows show the feasible
direction of the hyperplanes and indicate all feasible points have eliminated.

algorithmic failure is shown in Figure 7.2. We assume that the first NLP step where

the molecular variables are fixed at the initial guesses successfully converges to a

(local) optimal solution. By visual inspection of the search domain, it is clear that the

MILP master problem cannot generate any feasible solutions in the region resulting

from linearising the objective function and active constraints and thus the algorithm

may get trapped at the initial molecular structure.

To overcome this behaviour, we use a modified Multi-Level Single Linkage (MLSL)

method (Kucherenko & Sytsko, 2005; Lee et al., 2020) derived from a multi-start

approach whereby the local search procedure is invoked for a selected set of starting

points, as is consistent with the work presented in Chapter 5. Once the SOO subprob-

lem is defined by assigning parameter values, starting points are sampled within the

hyperrectangle defined by the variable bounds based on a Sobol’ sequence (Sobol’

et al., 2011). We choose to a power of 2 for the number of Sobol’ points (Nsobol)

based on the study of Morokoff & Caflisch (1994) who investigated the error in

uniformity and discrepancy for various quasi-random sampling sequences. The al-
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gorithmic details and the pseudo-code for the MLSL algorithm is detailed in Section

5.2.2 and Algorithm 3. Note that the evaluation of the objective function in step 9

of Algorithm 3 for the mNBI/SDNBI subproblem is replaced by f (k) = −t.

7.4 Implementation overview

All three MOO methods are implemented with common subfunctions using the same

programming language in Matlab 2018a, whilst the implementation of the CAM(P)D

algorithms presented in Figure 7.1 has been carried out in C++, with an interface to

gPROMS ModelBuilder 7.0.7 for the solution of the primal problems and the Gurobi

9.0 MILP solver to solve the master problems. Each feasibility test is modelled as

a separate gPROMS entity and the gradients of the objective function and inequal-

ity constraints with respect to the decision variables are calculated using first-order

forward finite differences. The bounds on the variables, the optimal solutions and

the gradients obtained at each stage of the calculations are reported through a C++

interface. The CAM(P)D algorithm iterates until the user-provided termination cri-

teria is satisfied. The space-decomposition scheme within the SDNBI algorithm is

suited to parallelisation to increase computational efficiency. Specifically, the inner

and outer approximation of the Pareto front can be generated for each subset of the

objective search space independently and thus the solution of the mNBI subproblem

can be obtained for each subset. For ease of comparison, all computations were run

on single Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz processor with 384 GB of

RAM.

As discussed in Chapter 4, when using the OA/ER/AP framework to overcome

nonconvexities of the problem, care must be taken in choosing termination criteria to

prevent the algorithm from stopping too early and generating suboptimal solutions.

Provided that good convergence behaviour has been observed using the stopping

criteria presented in Bowskill et al. (2020) and in Chapter 4, the same termination
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criteria introduced in in Chapter 4 are used. Specifically, the iterative procedure of

the algorithm is terminated when: 1) the number of iterations at which the aug-

mented penalty term becomes nonzero exceeds a pre-defined limit, Nmax,slack, 2) the

number of unique molecules that has been evaluated either in the feasibility tests

or the primal problem exceeds a pre-defined limit Nmax,unq, and 3) when the MILP

master problem becomes infeasible.

In their study, Viswanathan & Grossmann (1990) suggested that the starting algo-

rithm by solving the relaxed NLP problem, in which all integer variables are relaxed

between their bounds and optimised with continuous variables, is in practice desir-

able. Following extensive computational studies, the authors found that the solution

of the relaxed NLP can yield good initial guesses on the continuous variables and,

hence, the resulting linear approximation to the problem is often of good quality.

However, in our case studies, it has been observed that the relaxed NLP problem of-

ten fails to converge or is computationally very expensive for a specific combination

of the MOO parameters and initial guesses, compared to the NLP primal problem

with the fixed integer variables. This is explained by the highly nonlinear nature

of the molecular structure-property relationships and the strong inter-dependency

between molecular properties and process models that lead to changes in the feasi-

ble domain of the process with each choice of molecular structure. Given that good

starting points for molecular candidates are provided as a part of the global search

phase, the first NLP problem is solved with all integer variables fixed to the values

specified by the Sobol’ sequence.

The convergence criteria of the SDNBI algorithm are based on the maximum ad-

missible error, ϵ between the inner and outer approximations and the maximum

admissible spacing, spmax. The spacing is additionally introduced as a measure

of how well the Pareto points are distributed and it is calculated with a distance

measure between consecutive solutions in the obtained Pareto points. The quan-

tity of spmax is calculated by computing the perimeter of the rectangle formed by
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Table 7.2: Algorithmic parameters used in the tests

SOO Phase MOO Phase
Parameter Nsobol Nmax,slack Nmax,unq ϵ spmax Nβ Niter,fix

CS4 64 10 50 5.0×10−3 10−3 10 27
CS5 128 4 20 5.0×10−3 4.0×10−2 10 61

two extreme (Pareto) points of each facet, spp, p = 1, ..., NF , where NF is the

number of facets at a current iteration and by taking the maximum value, i.e.,

spmax = max
p=1,...,Np

(sp1, ..., spp).

For comparison purpose, the stopping criteria used for the SD and mNBI algorithm

are based on a fixed number of iterations Niter,fix which is set as the number of it-

erations taken for the convergence of the SDNBI algorithm. The value of Niter,fix

corresponds to the number of weight vectors for the SD algorithm and the number

of β vectors for the mNBI method. Note that the SD algorithm may not proceed for

the user-specified number of iterations, as there may be no more facet to be inves-

tigated. In this case, the performance criteria are calculated based on the obtained

approximation at the last iteration number. The initial set, Cref , of Nβ reference

points for the mNBI method is chosen such that consecutive reference points Φβk

and Φβk+1 are equally spaced, with a spacing δ. This is expressed as:

βk
2 = k × δ, βk

1 = βk
2 , for k = 1, ..., Nβ, δ = 1/(Nβ + 1). (7.5)

Once the parameters in the initial set have been enumerated by the algorithm, the

next β to be chosen, i.e., βNβ+1
1 is determined by taking the midpoint between two

adjacent β vectors used in previous iterations of the algorithm. As previously men-

tioned, the values of the parameter β for the SDNBI algorithm are chosen as facet

midpoints, i.e., βk = [0.5, 0.5]⊤. All parameters and stopping tolerances used in the

comparative study is specified in Table 7.2.
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7.5 Results and discussion

7.5.1 True/Best-known Pareto fronts

Providing a reference for the true Pareto front of each problem is necessary in order

to verify the quality of the approximate Pareto fronts produced by each algorithm. In

CS4, the true Pareto front can be obtained by enumerating all possible combinations

of molecular structures, whereas it is very difficult to generate a complete set of

Pareto points for CS5 due to the presence of continuous variables. For CS5, as

an alternative, the 123 optimisation runs corresponding to different beta vectors β

are carried out based on the mNBI method to construct a initial approximation to

the true Pareto front. A different β is used for each run. The resulting set of the

solutions is combined with the solutions generated by all runs of the SD algorithm,

the mNBI method and the SDNBI algorithm. We also make use of the solutions

obtained in our previous study (Lee et al., 2020) where the number of solutions were

produced using exhaustive enumeration of the MOO parameters (weight vectors)

for each of the 267 feasible working fluids. Putting this all together, an approximate

Pareto front consisting of 326 points is obtained and denoted as best-known Pareto

front. A graphical representation of the true/best-known Pareto front for each case

study is shown in Figure 7.3, in the space of objective functions. Information on the

true/best-known Pareto front obtained for each test is provided in Table 7.3. As can

be seen in Figure 7.3(a), each point in the feasible region corresponds to a distinct

solvent structure, meaning that the Pareto front for CS4 is entirely disjoint. In the

case of CS5, one can observe two disconnected parts, corresponding to points where

one of the objective constraints of the mNBI method become inactive, implying that

there be two disconnected regions. The list of Pareto-optimal molecules for each

case study is given in Tables A.3 and A.4 in the Appendix. It should be noted that

each Pareto-optimal working fluid in CS5 typically appears in more than two Pareto
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Figure 7.3: True/best-Known Pareto front (blue marker,×) and feasible points (grey
marker,◦) of (a) the normalised heat capacity, Cp (f1) versus the normalised relative
energy difference, RED (f2) of CS4; and (b) the normalised net power output, −Pnet

(f1) versus the normalised total capital investment, TCI (f2) of CS5, resulting from the
enumeration of all possible combination of molecules

Table 7.3: Enumeration of all solutions for all possible combinations of functional
groups in each test. Nstructure: the number of molecules that satisfy structural feasi-
bility, Nfeasible: the number of molecules that satisfy all constraints, Ntrue: the number
of exact Pareto Points, NBP : the number of best-known Pareto Points, HV: hypervolume,
DM: distribution metric. The value in (.) of NBP of CS5 is the number of different
molecular structures contained within this set.

CS4 CS5
Nstructure 67,664 3,175
Nfeasible 3,160 267
Ntrue 15 -
NBP - 326 (6)
HV 79.12×10−2 91.62×10−2

DM 0.1366 0.0144

points, characterised by different optimal process conditions. Therefore, we only

present the distinct molecular structures in Table A.4 and omit objective function

values.

7.5.2 Results for CS4

The results of CS4 with each MOO algorithm for a fixed number of iterations are

summarised in Table 7.4 and Figure 7.4. From Figure 7.4, it can be seen that both

the SDNBI and mNBI methods generate well-distributed and globally Pareto-optimal
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solutions, whereas the SD algorithm fails to produce an accurate representation of

the Pareto front. This is because the weighted-sum subproblem over the large non-

convex part of the Pareto front, converges to the previously identified optimal so-

lution forcing the algorithm to premature termination. The resulting values of HV

and DM for the SD algorithm show a large discrepancy compared to the benchmark

quantities. Interestingly, none of the algorithms achieves convergence based on the

maximum allowable error criteria as the Pareto front is entirely disjoint, and Pareto

point are separated by large gaps. This indicates that it is essential to recognise

the subspaces where no Pareto points exist so as to curtail the search for lower ap-

proximation error and avoid a significant increase in (unnecessary) computational

effort. Consequently, the SDNBI algorithm outperforms the mNBI method and SD

algorithm resulting in the lowest DM and the highest HV. The effectiveness of the

SDNBI method for the CAMD domain is also highlighted at the 27th iteration, where

the SDNBI algorithm terminates by carrying out the objective space-fathoming steps.

The higher computational cost of SDNBI is partly attributed to the solution of ad-

ditional subproblems (mNBIn̄(a)) or (mNBIn̄(b)). It should be noted that a total of

14 optimisation runs for the solution of the subproblems (mNBIn̄(a)) or (mNBIn̄(b))

have been conducted. The increase in computational cost can also be explained by

the fact that the SDNBI subproblem includes additional constraints, making it diffi-

cult to find feasible regions that satisfy all the constraints. Consequently, the solution

of the subproblems may entail an increased computational burden to identifying a

feasible point during the course of the optimisation and more SOO optimisation

runs may be invoked in the global search phase as some local runs fail to converge

successfully as a result of having infeasible starting points.

Despite the higher computational cost, one main advantage of using the SDNBI

method over mNBI and SD is that the empty parts of are effectively discarded from

the consideration and that it provides a richer description of the Pareto front through

the identification of empty subspaces. In the case of the mNBI method, the algorithm
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iterates until the set of β becomes empty when other stopping criteria such as the

progression metric (Van Veldhuizen & Lamont, 1999), which measures the progres-

sion of the Pareto front approximation, are not employed. In order to investigate

such algorithmic behaviour in the mNBI method, we consider a set of additional

β. In Figure 7.5 as a function of iteration number, the progress of total CPU time

and the number of Pareto points are displayed for each algorithm. At the 30th itera-

tion, all 15 Pareto-optimal solvents are identified by the mNBI method. However, a

higher total CPU time is observed with mNBI as the iteration proceeds because the

objective search regions that do not include any new Pareto points are only partially

eliminated by mNBI and thus the algorithm iterates over the remaining search do-

main in an attempt to achieve the pre-defined approximation quality tolerance. This

demonstrates that the iterative search using the mNBI method may not be computa-

tionally efficient and an improvement in the quality of Pareto approximation is not

always achieved when the Pareto front comprises many disconnected parts.

Table 7.4: Performance metrics for CS4 and CS5 using the SD, mNBI and SDNBI algo-
rithms

CS4 CS5
SD mNBI SDNBI SD mNBI SDNBI

Niter 11 27 27 61 61 61
Nunq 9 14 15 61 60 60
NPF 9 14 15 59(3) 58(4) 60(4)
HV(10−2) 76.430 79.048 79.119 91.230 91.473 91.442
DM 0.2323 0.1521 0.1366 0.1130 0.0472 0.0388
tcpu,a (s) 34.55 28.31 43.77 30.97 144.99 115.78
tcpu,t (s) 3.11×102 3.96×102 6.58×102 1.68×103 8.41×103 6.95×103

7.5.3 Results of CS5

In Figure 7.6, we show the Pareto points generated by each algorithm with the best-

known Pareto front. The quality measures calculated based on the fixed number of

iterations are summarised in Table 7.4. It is clear from Figure 7.3 that most parts

of the Pareto front are characterised as convex, allowing the SD algorithm to access
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Figure 7.4: Pareto points in a bi-objective space generated by the (a) SD algorithm
(×), (b) mNBI method ( 2), and (c) SDNBI algorithm (△) for CS4. Grey markers (◦)
indicate true Pareto points
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Figure 7.5: Progress of the total CPU time, tcpu,t and the number of Pareto points iden-
tified, NPF with respect to the number of iterations for the SD (–×–), mNBI (– 2–), and
SDNBI (–△–) algorithms.
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a diverse set of Pareto-optimal solutions along the Pareto surface. The differences

in HVs (91.230×10−2 for SD, 91.473×10−2 for mNBI, and 91.442×10−2 for SD)

are indeed very small and all values are close to the reference value (91.62×10−2).

Similar values of NPF are achieved with each algorithm. This is also explained in

the same manner, although the SDNBI algorithm is marginally better at identifying

more diverse combinations of working fluids and thermal-economic performance. In

Table 7.4, it appears that the mNBI and SDNBI algorithm exhibit higher computa-

tional cost than the SD algorithm. As discussed in the case of CS4, such increases

are likely due to the increased numerical complexity inherent in the mNBI/SDNBI

subproblem in which two objective constraints are added to the original MINLP for-

mulation. The increase in computational time is significantly higher in CS5 than in

CS4. This is mainly due to the fact that the evaluation of the ORC process models,

where complex mass- and heat-balance equations are involved, is computationally

expensive and hence the performance of the OA-based framework highly relies on

the use of a feasible combination of continuous and discrete optimisation variables

for the primal problem. Therefore, the algorithm requires more iterations in search

for a feasible domain or becomes prone to failing when many of the molecular struc-

tures are found to be infeasible with respect to the added objective constraints. In

addition, it is worth noting that starting points are sampled in the space of the molec-

ular structures, meaning that the continuous variables are specified by solving the

primal problem for a fixed molecule. This may further increase the computational

complexity when using infeasible starting points in the global search phase, requir-

ing more sampling points to be evaluated or higher computational time to obtain

convergence of the NLP primal problem.

The highest value of DM is obtained when using SDNBI, indicating that it performs

best in generating well-distributed Pareto points close to the best-known Pareto

front. This is also evident in Figure 7.6, where the Pareto points obtained with

SDNBI can be seen to be the better distributed. By comparing the best-known Pareto
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front with the one approximated with SD in Figure7.3(a), it can be seen that there

are relatively large empty parts of the Pareto front in the region of 0.48 ≤ f1 ≤ 0.6

and 0.59 ≤ f2 ≤ 0.7. This indicates that there exist disconnected or nonconvex re-

gions of the Pareto front. A key advantage of the SDNBI algorithm is the capability of

recognising disconnected parts or nonconvex parts of a Pareto front, and therefore

the shape of the Pareto front can be confirmed by investigating the results generated

with SDNBI. It is clear from the figure that the surface of the Pareto front is very

steep around both anchor points. This provides a useful insight that the economic

performance of the process, for example, can be significantly improved by making a

small loss in power generation. In contrast, the analysis of the Pareto front generated

by SD suggests that there limited trade-offs that can achieve a large improvement in

one objective by sacrificing very little in another.

At the termination of the SDNBI algorithm, the objective space is decomposed

into a total of eight subspaces, and they are shown in Figure 7.7, where the Pareto

points included in each subspace are depicted with different colours. As denoted

with cross markers, two subspaces are successfully eliminated from consideration by

solving problems (mNBIn̄(a)) and (mNBIn̄(b)), while such regions are only partially

screened out when using mNBI. The discontinuity of the Pareto front observed at

0.8022 < f2 < 0.8547 is misinterpreted and a sub-optimal, i.e., dominated solution,

z44, is produced. The facets represented by F 1
S(z

1, z46) and F 2
S(z

46, z44) in Figure

7.7, which are constructed by the convex hull generation are discarded from the

search space in a subsequent iteration, as they satisfy the quality tolerances rather

than because an empty part of the Pareto front has been recognised. Similarly, mNBI

and SD each produce one dominated solution. This suboptimality is identified by

comparing the set of Pareto points generated by each algorithm with the elements

of the best-known Pareto front, not within the approximated set. Overall, the com-

parative analysis confirms that the SDNBI algorithm shows excellent performance

in generating a well-spaced and accurate set of Pareto-optimal working fluids and
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Figure 7.6: Pareto points generated by the (a) SD (×), (b) mNBI ( 2), and (c) SDNBI
(△) algorithms for CS5. Grey markers (◦) indicate best-known Pareto points
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Figure 7.7: Schematic of the solutions (△) generated by SDNBI in a bi-objective space
for CS5. Each colour denotes each of eight different sub-search spaces. The empty
regions between the cross marker(×) are identified by solving SDNBI subproblems
(mNBIn̄(a)) and (mNBIn̄(b)). Solution z46 is identified as a dominated solution after
investigating if it is a member of the best-known Pareto front.
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process conditions within a reasonable CPU time compared to other approaches.

7.6 Conclusions

In this chapter, we have extended the comparative study of the performance of the

proposed BOO algorithm, SDNBI, in order to examine the effectiveness and appli-

cability of the algorithm to CAM(P)D problems. One CAMD problem, where the

solvent structures are optimised with respect to thermal performance and CO2 solu-

bility criterion, i.e., RED and one CAMPD problem, where the best thermo-economic

performance of the ORC process is identified as a function of working fluids, were

formulated for a test purpose. In order to avoid the algorithmic failure arising from

the infeasibilities of the property or process model, we employed an OA-based frame-

work where tailored feasibility tests are introduced as a precursor to the primal

problem solution to eliminate infeasible molecules and process conditions. Several

modifications of the SOO solution approach have been made to adapt the SOO algo-

rithm to the SDNBI/mNBI subproblems. Having demonstrated the efficiency of the

global search algorithms in chapter 5, the MLSL algorithm is combined with each

MOO algorithm to prevent the algorithm from convergence to dominated points.

For the CAMD case, comparative results highlighted the robustness of the SDNBI

algorithm, relative to mNBI and SD, in generating the Pareto-optimal solutions along

the discrete Pareto front. The algorithm captures the disconnected regions where no

new Pareto points exist, allowing the algorithm to stop without relying on the user-

provided termination criteria. Although the mNBI method successfully generated the

Pareto points, it was found to encounter difficulties in determining the next scalar-

isation parameters that can guide the search towards Pareto points that have not

yet been identified, in particular when many disconnect parts of the Pareto front are

involved. Similar trends were observed for the CAMPD case, while the differences

in the values of each quality criterion are less striking. Such small deviations in the
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performance metrics is due to the fact that most of the best-known Pareto points

are characterised as convex, and the algorithms developed based on the nonconvex

assumption of Pareto front can generate fairly good quality of the Pareto points. The

greater confidence in the quality of the solutions produced by SDNBI comes with

the capability to recognise nonconvex and disconnected parts of the Pareto front

such that a more diverse and accurate set of trade-offs is achieved without expend-

ing effort in fruitless area of bi-objective space. Careful attention must be paid to

the choice of an appropriate (feasible) starting point to avoid numerical difficulties

during the solution of the primal problem.

Further work could be directed at testing the proposed SDNBI algorithm on addi-

tional engineering problems to derive more general conclusions of its performance.

It would be useful to explore the effect of adding additional objective functions to

the problem.



CHAPTER 8

Conclusions

“The study of origins is the art of drawing sufficient conclusions from insufficient
evidence.”

– Allan Sandage

8.1 Concluding remarks

In this thesis, robust algorithms for the integrated molecular and process design

problems, which inherently involve mixed-integer and nonlinear model equations,

have been developed focusing on two main aspects: the simultaneous optimisation

of molecular- and process-level variables, with special attention on amine-based CO2

chemical absorption processes; and the development of multi-objective optimisa-

tion (MOO) techniques that facilitate the approximation of the Pareto front over the

molecular design domain.

In Chapter 3, an equilibrium-based model of the CO2 absorption-desorption pro-

cess has been developed and validated on existing pilot plant data using a sophis-

ticated thermodynamic model, the SAFT-γ Mie equation of state, that is useful in

the general area of computer-aided molecular design (CAMD) and computer-aided

266
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molecular and process design (CAMPD) due to its predictive capabilities. The simu-

lation results have shown that the model is in overall good quantitative agreement

with the experimental data, allowing one to evaluate the economic performance of

the process for a wide range of process conditions and solvents molecular struc-

tures. In order to improve the convergence behaviour of the process model, a tai-

lored initialisation strategy has been established by incorporating the concept of the

inside-out algorithm. The performance tests conducted for a set of solvents have

shown that the initialisation approach provides a reliable way of achieving conver-

gence without the need for good initial guesses on process conditions. The resulting

numerical stability has made it possible to undertake a parametric study, which was

carried out to identify the impact of key operating parameters on the economic, en-

vironmental and thermal performance of the CO2 absorption process using an aque-

ous MEA solution. The results of this study have been used to formulated process

optimisation problems that can be integrated into the CAMPD framework. Process

optimisations carried out for two solvents have shown that a large reduction in to-

tal annualised cost (TAC) and energy penalty can be made by tuning the operating

conditions for each solvent considered. The optimisation results have suggested a

strong link between solvent types and process performance criteria. These results

also have emphasised that the choice of a suitable solvent is key to achieving better

economic performance and thermal efficiency of the process.

Building on the process modelling and optimisation approach, the next step was to

develop a robust CAMPD algorithm aiming to identify a list of optimal solvents that

can enhance the economic value of the chemical absorption process. This required

addressing the numerical challenges inherent in solving CAMPD problem with highly

nonconvex feasible regions. In Chapter 4, motivated by the work of Buxton et al.

(1999); Gopinath et al. (2016), improved feasibility tests have been proposed by

focusing on the identification of infeasible combinations of solvent structures and

process operating conditions, with a views to enhance the applicability and com-
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putational reliability to the more complex setting of CO2. In order to overcome

the difficulties associated with the phase equilibrium calculations for CO2-water-

solvent systems, alternative strategies, namely, tangent plane distance analysis and

the Helmholtz free energy Lagrangian Dual (HELD) algorithm have been investi-

gated to replace the previously-used flash calculations in the feasibility tests. By

comparing the reliability of these approaches in modelling the correct phase be-

haviour of the mixtures that present vapour-liquid-liquid splits, it has been shown

that the HELD algorithm provides is best suited for integration in the feasibility tests.

The resulting CAMPD framework with feasibility tests has been applied to three case

studies and has demonstrated the robustness and efficiency of the proposed algo-

rithm. The benefits of the simultaneous solution approach have been highlighted by

comparing the results with those produced by the conventional CAMD approach and

a decomposition-based CAMPD approach.

Given the inherently conflicting nature of the objectives considered in molecular

design problems, it is beneficial in many cases frame the problem as multi-objective

optimisation (MOO) formulation. In Chapter 5, we explored the performance of

five MOO solution approaches on the selection of two CAMD problems and one

CAMPD problem, aiming to gain a better understanding of the performance of differ-

ent algorithms in identifying the Pareto front efficiently. The five methods included:

weighted-sum method (WS) with simulated annealing (SA), WS with multi-level

single linkage algorithm (MLSL), sandwich (SD) algorithm with MLSL, and the non-

dominated genetic algorithm-II (NSGA-II). These algorithms have been derived by

combining different techniques for multi-objective and single objective optimisation

in order to address the discrete and nonlinear nature of the problem, with the aim of

generating an accurate approximation of the Pareto front. The results have shown

that the SD algorithm combined with MLSL offers the best performance in generat-

ing an accurate representation of the Pareto front.

In Chapter 6, a novel bi-objective optimisation (BOO) algorithm, the SDNBI algo-
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rithm, has been proposed for an accurate approximation of nonconvex and combina-

torial Pareto fronts. The development of the approach has focused on the interplay

between the modified normal boundary intersection (mNBI) method and the SD al-

gorithm, exploiting the strengths of both. Three main modifications presented were:

1) the characterisation of inner and outer approximations such that the accuracy of

the given set of Pareto points can be assessed during the course of the algorithm, 2)

a systematic way of setting the scalarisation parameters of the mNBI subproblem,

3) a decomposition of the objective space based on determining the convexity and

nonconvexity of parts of the Pareto front, and 4) the refinement of the scalarised

subproblem to avoid unnecessary iterations over disconnected or empty regions of

the objective space.

The performance of the algorithm as measured by the accuracy of the resulting

approximation of the Pareto front in the disconnected and nonconvex domain of

Pareto points has been assessed relative to two other MOO approaches: the SD al-

gorithm and the mNBI method. The features of these MOO algorithms have been

evaluated using two published benchmark problems and, in Chapter 7, two molecu-

lar design problems. Initial results have demonstrated that the proposed algorithm

outperforms the SD and the mNBI method in convex, nonconvex-continuous, com-

binatorial problems, in terms of the overall quality of the Pareto-optimal set.

8.2 Summary of the key contributions

The key contributions presented in this thesis include:

• The development and validation of a predictive and transferable equilibrium-

based model of CO2 chemical absorption-desorption processes with the SAFT-γ

Mie EOS. The development of a robust initialisation strategy for the solution

of this complex process model that improves the convergence behaviour over a

large set of the molecular possibilities and process conditions without the need
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for good initial guesses;

• A techno-economic analysis of the CO2 chemical absorption process that pro-

vides a better understanding of the relationship between process operating

parameters and overall process performance such as economic criteria, energy

efficiency, and environmental impact.

• The development of a robust CAMPD framework for the simultaneous design

of optimal solvents and CO2 chemical absorption processes that can overcome

numerical complexities arising from infeasibilities in the process conditions

and the dependence of the feasible operating region with each combination of

integer variables. This required improving a set of feasibility tests designed to

characterise the feasible process domain as a function of solvent structure. The

effectiveness of the tests in the complex setting of CO2 chemical absorption

have been demonstrated through the study of over 4000 molecules;

• A systematic analysis of the performance of optimal solvents obtained by the

proposed CAMPD algorithm and a comparison of the results generated by a

conventional CAMD approach and a decomposition-based CAMPD approach

with those from the proposed CAMPD algorithm;

• A systematic comparative study of the performance of different classes of MOO

algorithms in solving several literature MOO CAM(P)D problems, including the

introduction of several modifications to the algorithms in order to handle the

discrete nature of the molecular structure and nonconvex equations. The suc-

cessful application of the MOO algorithms and their results have provided ini-

tial guidance on the suitability of the algorithms in generating an accurate and

diverse set of Pareto fronts and also highlighted the importance of targeting

nonconvex parts of the Pareto front.

• The development of a novel deterministic optimisation approach (SDNBI) for
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nonconvex and combinatorial bi-objective programming that can tackle the-

oretical and numerical challenges arising from the solution of general non-

convex and discrete BOO problems. Having validated its performance, the

approximation capability of the SDNBI algorithm has been found to allow the

solution of MOO CAM(P)D problems to produce an accurate and diverse set of

Pareto points along nonconvex or disconnected parts of the Pareto front using

few optimisations runs.

8.3 Directions for future work

In this thesis, an algorithm for the integrated design of optimal solvents and CO2

chemical absorption processes has been developed, and its robustness has been

demonstrated for a set of acyclic amine solvents focusing on their economic values.

In recent years, cyclic amines and binary amine mixtures such as AMP (2-amino-

2-methyl-1-propanol) or, PZ (piperazine), and AMP/PZ mixture have been receiving

increasing attention to address shortcomings of conventional amines associated with

a high regeneration heat duty, slower reaction kinetics, and low absorption capacity

(Brúder et al., 2011; Zarogiannis et al., 2016; Bernhardsen & Knuutila, 2017; Bui

et al., 2018). Given the predictive power of the SAFT-γ Mie approach and the avail-

ability of the group parameters, one possible research avenue could be directed at

applying the proposed CAMPD framework to a larger molecular design space such

that the overall performance of cyclic amine functionalities and binary amine mix-

tures is examined systematically.

Another important aspect in developing CAMPD approaches is their the reliability,

in terms of generating promising solvent candidates, primarily relies on the accuracy

of the predicted physical properties. The property prediction models, however, may

exhibit deviations in their predictions compared with experimental data, particularly

for caloric properties and transport properties. It is therefore of interest to account
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for the uncertainty present in the model parameters. In this context, a second di-

rection to improve the applicability of CAM(P)D would be to assess the sensitivity

of key property model parameters under different operating conditions and to in-

corporate systematic uncertainty quantification methods directly into the CAMPD

framework. In addition, it would be useful to investigate the potential use of the

feasibility pump algorithm (Fischetti et al., 2005; Bonami et al., 2009; Bernal et al.,

2020) with the proposed CAMPD framework by which an initial feasible solution for

MINLPs is quickly identified by solving the feasible pump subproblem at the start of

the outer approximation algorithm (OA) and when the NLP subproblem is infeasible

(Bonami et al., 2009) or only once before the OA procedure starts (Bernal et al.,

2020).

As a second part of the thesis, a novel BOO has been developed, focusing on the

exploration of the nonconvex and combinatorial Pareto front. Having demonstrated

the robustness of the algorithm in approximating a Pareto front where many discon-

nected and nonconvex regions are involved, it would be interesting to implement

BOO for the design of optimal solvents for the CO2 absorption process in order to

generate trade-offs between the economic performance and energy efficiency or the

environmental impact of the solvents. In order to derive a general conclusion on the

reliability and applicability of the SDNBI algorithm, an extension of the performance

tests on additional engineering and benchmark problems would be a useful research

avenue for future work.

The performance of the sandwich algorithm that makes use of the weighted-sum

subproblem has been studied for the high-dimensional objective space (m ≥ 4) (Lee

et al., 2020; Rennen et al., 2011) and has shown their efficiency in terms of gen-

erating an accurate approximation of the Pareto front. However, the computational

time taken to approximate an error between inner and outer approximation and con-

vex hull generation may increase drastically. For the mNBI method, Burachik et al.

(2017) reported the difficulty of generating well-distributed Pareto points for three
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or more objective function space and proposed the grid generation method that can

replace the convex hull individual minima. Therefore, another important area of

research would be to explore the theoretical properties and algorithmic behaviour

of the SDNBI algorithm when adding objective functions to the problem so as to

extend its applicability to dimensions higher than two and investigate its computa-

tional performance when many additional constraints are added to the problem.

8.4 Publications and presentation

8.4.1 Publications

• Lee, Y.S., Galindo, A., Jackson, G. and Adjiman, C.S., (2022). The SDNBI

Algorithm: A deterministic optimization approach for nonconvex and combi-

natorial bi-objective programming. (in preparation, will be submitted to Eur J

Oper Res)

• Lee, Y.S., Galindo, A., Jackson, G. and Adjiman, C.S., (2022). Development of a

deterministic bi-objective optimisation algorithm and application to computer-

aided molecular design problems. (in preparation, will be submitted to Com-

put Chem Eng)

• Lee, Y.S., Galindo, A., Jackson, G. and Adjiman, C.S., (2022). Integrated amine

solvent and process design using a SAFT-γ Mie equation of state: chemical

absorption of carbon dioxide. (in preparation, will be submitted to Comput

Chem En)

• Lee, Y.S., Galindo, A., Jackson, G. and Adjiman, C.S., (2021). Development of

a bi-objective optimisation framework for mixed-integer nonlinear program-

ming problems and application to molecular design (submitted to Comput-

aided Chem En)
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• Lee, Y. S., Galindo, A., Jackson, G., and Adjiman, C. S. (2021). An approach for

simultaneous computer-aided solvent design and process design for CO2 chem-

ical absorption processes. In Comput-aided Chem En, vol. 50, (pp. 167–172)

• Lee, Y. S., Graham, E. J., Galindo, A., Jackson, G., and Adjiman, C. S. (2020).

A comparative study of multi-objective optimization methodologies for molec-

ular and process design. Comput Chem Eng, 136, 106802

8.4.2 Conferences presentation and posters

• A Modified Sandwich Algorithm for Nonconvex Multi-Objective Mixed-Integer

Nonlinear Programming, International Federation of Operational Research So-

cieties conference 2021, July 2021, Seoul, South Korea (virtual).

• An approach for simultaneous computer-aided solvent design and process de-

sign for CO2 chemical absorption processes, European Symposium on Com-

puter Aided Process Engineering 2021, June 2021, Virtual.

• Integrated solvent and chemical absorption process design for the separation

of CO2 from flue gas, AIChE Annual Meeting 2020, Nov 2020, San Francisco,

US (virtual).

• On the Performance of Multi-objective Optimization Methods Applied to a

Mixed-Integer Solvent Design Problem. Fundamental of Computer Aided Pro-

cess Design 2019, July 2019 Colorado, US. (poster session)

• A Comparison of the Performance of Multi-Objective Optimization Method-

ologies for Solvent Design. European Symposium of Computer Aided Process

Engineering. European Symposium on Computer Aided Process Engineering

2018, June 2018, Eindhoven, Netherlands.
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Mores, P., Rodŕıguez, N., Scenna, N., & Mussati, S. (2012). CO2 capture in power

plants: Minimization of the investment and operating cost of the post-combustion

process using MEA aqueous solution. International Journal of Greenhouse Gas Con-

trol, 10, 148–163.

Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their dis-

crepancies. SIAM Journal on Scientific Computing, 15(6), 1251–1279.

Muchan, P., Narku-Tetteh, J., Saiwan, C., Idem, R., Supap, T., & Tontiwachwuthikul,

P. (2017). Effect of number of hydroxyl group in sterically hindered alkanolamine

on CO2 capture activity. Energy Procedia, 114, 1966–1972.

Nagarajan, N., Cullick, A., & Griewank, A. (1991). New strategy for phase equi-

librium and critical point calculations by thermodynamic energy analysis. Part I.

stability analysis and flash. Fluid Phase Equilibria, 62(3), 191–210.

Naphtali, L. (1965). The distillation column as a large system. paper presented at the

AIChE 56th National Meeting, San Francisco, CA.



BIBLIOGRAPHY 293

Naphtali, L. M., & Sandholm, D. P. (1971). Multicomponent separation calculations

by linearization. AIChE Journal, 17(1), 148–153.

Neumaier, A. (2004). Complete search in continuous global optimization and con-

straint satisfaction. Acta Numerica, 13, 271–369.

Ng, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. (2014). A multiobjective

optimization-based approach for optimal chemical product design. Industrial &

Engineering Chemistry Research, 53(44), 17429–17444.

Ng, L. Y., Chong, F. K., & Chemmangattuvalappil, N. G. (2015). Challenges and

opportunities in computer-aided molecular design. Computers & Chemical Engi-

neering, 81, 115–129.

Nichita, D. V. (2019). Volume-based phase stability analysis including capillary pres-

sure. Fluid Phase Equilibria, 492, 145–160.

Nichita, D. V., Gomez, S., & Luna, E. (2002). Multiphase equilibria calculation by

direct minimization of Gibbs free energy with a global optimization method. Com-

puters & Chemical Engineering, 26(12), 1703–1724.

Norouzbahari, S., Shahhosseini, S., & Ghaemi, A. (2016). Chemical absorption of

CO2 into an aqueous piperazine (PZ) solution: development and validation of a

rigorous dynamic rate-based model. RSC advances, 6(46), 40017–40032.

Nuchitprasittichai, A., & Cremaschi, S. (2011). Optimization of CO2 capture process

with aqueous amines using response surface methodology. Computers & Chemical

Engineering, 35(8), 1521–1531.

O’Connell, H. (1946). Plate efficiency of fractionating columns and absorbers. Trans.

AIChE, 42, 741–755.

Odele, O., & Macchietto, S. (1993). Computer aided molecular design: a novel

method for optimal solvent selection. Fluid Phase Equilibria, 82, 47–54.



BIBLIOGRAPHY 294

Oexmann, J., & Kather, A. (2010). Minimising the regeneration heat duty of post-

combustion CO2 capture by wet chemical absorption: The misguided focus on low

heat of absorption solvents. International Journal of Greenhouse Gas Control, 4(1),

36–43.

Oko, E., Wang, M., & Olaleye, A. K. (2015). Simplification of detailed rate-based

model of post-combustion CO2 capture for full chain CCS integration studies. Fuel,

142, 87–93.

Oyarzún, B., Bardow, A., & Gross, J. (2011). Integration of process and solvent

design towards a novel generation of CO2 absorption capture systems. Energy

Procedia, 4, 282–290.

Pál, L. (2013). Comparison of multistart global optimization algorithms on the BBOB

noiseless testbed. In Proceedings of the 15th annual conference companion on Ge-

netic and evolutionary computation, (pp. 1153–1160). ACM.

Palma-Flores, O., Flores-Tlacuahuac, A., & Canseco-Melchor, G. (2015). Optimal

molecular design of working fluids for sustainable low-temperature energy recov-

ery. Computers and Chemical Engineering, 72, 334–349.

Papadopoulos, A. I., Badr, S., Chremos, A., Forte, E., Zarogiannis, T., Seferlis,

P., Papadokonstantakis, S., Galindo, A., Jackson, G., & Adjiman, C. S. (2016).

Computer-aided molecular design and selection of CO2 capture solvents based on

thermodynamics, reactivity and sustainability. Molecular Systems Design & Engi-

neering, 1(3), 313–334.

Papadopoulos, A. I., & Linke, P. (2006a). Efficient integration of optimal solvent and

process design using molecular clustering. Chemical Engineering Science, 61(19),

6316–6336.



BIBLIOGRAPHY 295

Papadopoulos, A. I., & Linke, P. (2006b). Multiobjective molecular design for inte-

grated process-solvent systems synthesis. AIChE Journal, 52(3), 1057–1070.

Papadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo,

F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simul-

taneous computer-aided molecular design with holistic sustainability assessment:

Application to phase-change CO2 capture solvents. Computers & Chemical Engi-

neering, 135, 106769.

Papadopoulos, A. I., Stijepovic, M., & Linke, P. (2010a). On the systematic design

and selection of optimal working fluids for Organic Rankine Cycles. Applied Ther-

mal Engineering, 30(6-7), 760–769.

Papadopoulos, A. I., Stijepovic, M., & Linke, P. (2010b). On the systematic design

and selection of optimal working fluids for Organic Rankine Cycles. Applied Ther-

mal Engineering, 30(6-7), 760–769.

Papadopoulos, A. I., Stijepovic, M., Linke, P., Seferlis, P., & Voutetakis, S. (2013).

Toward optimum working fluid mixtures for organic rankine cycles using molec-

ular design and sensitivity analysis. Industrial & Engineering Chemistry Research,

52(34), 12116–12133.

Papadopoulos, A. I., Tsivintzelis, I., Linke, P., & Seferlis, P. (2018). Computer-aided

molecular design: Fundamentals, methods, and applications. In Reference Module

in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier.

Papadopoulos, A. I., Tzirakis, F., Tsivintzelis, I., & Seferlis, P. (2019). Phase-change

solvents and processes for postcombustion CO2 capture: a detailed review. Indus-

trial & Engineering Chemistry Research, 58(13), 5088–5111.

Papaioannou, V., Lafitte, T., Avendaño, C., Adjiman, C. S., Jackson, G., Müller, E. A.,

& Galindo, A. (2014). Group contribution methodology based on the statistical



BIBLIOGRAPHY 296

associating fluid theory for heteronuclear molecules formed from Mie segments.

Journal of Chemical Physics, 140(5).

Perdomo, F. A., Khalit, S. H., Adjiman, C. S., Galindo, A., & Jackson, G. (2021).

Description of the thermodynamic properties and fluid-phase behavior of aqueous

solutions of linear, branched, and cyclic amines. AIChE Journal, 67(3), e17194.

Pereira, F. E., Jackson, G., Galindo, A., & Adjiman, C. S. (2012). The HELD algorithm

for multicomponent, multiphase equilibrium calculations with generic equations

of state. Computers & Chemical Engineering, 36, 99–118.

Pereira, F. E., Keskes, E., Galindo, A., Jackson, G., & Adjiman, C. S. (2011). Inte-

grated solvent and process design using a SAFT-VR thermodynamic description:

High-pressure separation of carbon dioxide and methane. Computers & Chemical

Engineering, 35(3), 474–491.

Pistikopoulos, E., & Stefanis, S. (1998). Optimal solvent design for environmental

impact minimization. Computers & Chemical Engineering, 22(6), 717–733.

Poling, B. E., Prausnitz, J. M., O’connell, J. P., et al. (2001). The properties of gases

and liquids, vol. 5. Mcgraw-hill New York.
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Finland.

Westerlund, T., & Pettersson, F. (1995). An extended cutting plane method for

solving convex MINLP problems. Computers & Chemical Engineering, 19, 131–136.

White, M. T., Oyewunmi, O. A., Haslam, A. J., & Markides, C. N. (2017). Indus-

trial waste-heat recovery through integrated computer-aided working-fluid and

orc system optimisation using SAFT-γ Mie. Energy Conversion and Management,

150, 851–869.

Wu, J., & Azarm, S. (2001). Metrics for quality assessment of a multiobjective design

optimization solution set. Journal of Mechanical Design, 123(1), 18–25.

Xu, W., & Diwekar, U. M. (2007). Multi-objective integrated solvent selection and

solvent recycling under uncertainty using a new genetic algorithm. International

Journal of Environment and Pollution, 29(1/3), 70.



BIBLIOGRAPHY 304

Zarogiannis, T., Papadopoulos, A. I., & Seferlis, P. (2016). Systematic selection of

amine mixtures as post-combustion CO2 capture solvent candidates. Journal of

Cleaner Production, 136, 159–175.

Zhang, L., Cignitti, S., & Gani, R. (2015). Generic mathematical programming for-

mulation and solution for computer-aided molecular design. Computers & Chemi-

cal Engineering, 78, 79–84.

Zhang, R., Yang, Q., Liang, Z., Puxty, G., Mulder, R. J., Cosgriff, J. E., Yu, H., Yang,

X., & Xue, Y. (2017). Toward efficient CO2 capture solvent design by analyzing

the effect of chain lengths and amino types to the absorption capacity, bicarbon-

ate/carbamate, and cyclic capacity. Energy & Fuels, 31(10), 11099–11108.

Zhang, S., Shen, Y., Wang, L., Chen, J., & Lu, Y. (2019). Phase change solvents

for post-combustion CO2 capture: Principle, advances, and challenges. Applied

Energy, 239, 876–897.

Zheng, K., Yang, R.-J., Xu, H., & Hu, J. (2017). A new distribution metric for compar-

ing pareto optimal solutions. Structural and Multidisciplinary Optimization, 55(1),

53–62.

Zhou, T., Song, Z., Zhang, X., Gani, R., & Sundmacher, K. (2019). Optimal solvent

design for extractive distillation processes: a multiobjective optimization-based hi-

erarchical framework. Industrial & Engineering Chemistry Research, 58(15), 5777–

5786.

Zhou, T., Zhou, Y., & Sundmacher, K. (2017). A hybrid stochastic–deterministic opti-

mization approach for integrated solvent and process design. Chemical Engineering

Science, 159, 207–216.

Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with sev-

eral objective functions. Fuzzy Sets and Systems, 1(1), 45–55.



BIBLIOGRAPHY 305

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Da Fonseca, V. G. (2003). Per-

formance assessment of multiobjective optimizers: An analysis and review. IEEE

Transactions on Evolutionary Computation, 7(2), 117–132.



Appendix

A.1 Appendix A. Implementation of the proposed CAMPD

algorithm to the CO2 chemical absorption process

Table A.1: Molecular starting points given for each case study

ID DS1 DS2 DS3
s1 [1-0-0-0-0-0-0-0-0-1-0-0-1] [1-0-0-0-0-0-0-0-0-1-0-0-1] [1-0-0-0-0-0-0-0-0-1-0-0-1]
s2 [0-0-0-0-1-0-0-0-0-3-0-0-2] [0-0-0-0-1-0-0-0-0-3-0-0-2] [0-0-0-0-1-0-0-0-0-3-0-0-2]
s3 [0-0-0-0-0-0-1-0-0-4-0-0-2] [0-0-0-0-0-0-1-0-0-4-0-0-2] [0-0-0-0-0-0-1-0-0-4-0-0-2]
s4 [0-0-0-0-1-0-0-0-0-5-0-0-2] [0-1-0-0-0-0-0-0-0-2-0-0-2] [1-0-0-0-1-0-0-0-0-2-0-0-1]
s5 [1-0-0-0-0-0-0-0-0-3-0-0-1] [0-0-0-1-0-0-0-0-0-2-0-0-1] [1-0-0-0-1-0-0-0-0-3-0-0-1]
s6 [0-0-0-0-0-0-0-1-3-3-1-0-1] [1-0-0-0-1-0-0-0-0-2-0-0-1] [0-0-1-0-1-0-0-0-2-0-0-0-1]
s7 [0-1-0-0-0-0-0-0-0-2-0-0-2] [1-0-0-0-0-0-0-1-0-5-0-0-2] [2-0-0-0-0-1-0-0-0-0-0-0-1]
s8 [0-1-0-0-0-0-0-0-1-3-0-0-1] [0-0-1-0-1-0-0-0-2-0-0-0-1] [0-0-1-1-1-0-0-0-2-1-0-0-0]
s9 [0-0-0-0-0-0-1-0-1-1-0-0-1] [0-1-0-0-0-0-0-0-1-3-0-0-1] [0-0-1-0-2-0-0-0-3-2-0-0-0]
s10 [0-0-0-1-0-0-0-0-0-2-0-0-1] [0-0-0-0-0-0-1-0-1-1-0-0-1] [0-0-1-0-1-0-1-0-3-1-0-0-0]
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Table A.2: Results of the solution of the integrated solvent and chemical absorption
process design for each case study. The molecules are presented in the order of high to
low rank with their molecular code. Test column represents the results of evaluating the
molecules in the feasibility tests.

ID Molecular code Test
M1 [0-0-0-0-0-0-0-2-2-0-0-0-2] Pass
M3 [0-0-0-0-0-1-0-1-4-0-1-0-1] Fail
M7 [0-0-0-0-0-0-0-2-2-2-0-0-2] Pass
M8 [0-0-0-0-0-0-0-1-2-0-0-0-1] Fail
M10 [0-0-0-0-1-0-0-1-2-0-0-0-1] Pass
M11 [0-0-0-0-2-0-0-1-2-0-0-0-1] Fail
M12 [0-0-0-0-0-1-0-1-3-0-0-0-1] Fail
M16 [0-0-0-0-1-0-0-0-2-4-0-0-0] Fail
M17 [0-0-0-0-0-1-0-1-5-1-2-0-1] Fail
M19 [0-0-0-0-0-1-0-1-6-3-3-0-1] Fail
M21 [0-0-0-0-0-0-0-2-2-1-0-0-2] Pass
M22 [0-0-0-0-2-0-0-0-1-0-0-0-1] Pass
M23 [0-0-0-0-2-0-0-0-2-2-0-0-0] Fail
M25 [0-0-0-0-0-1-0-1-5-0-0-1-1] Fail
M26 [0-0-0-0-0-1-1-1-3-0-0-0-1] Pass
M30 [0-0-0-0-0-0-0-1-3-0-1-0-1] Fail
M31 [0-0-0-0-1-1-0-0-2-0-0-0-1] Fail
M32 [0-0-0-0-1-0-0-0-1-0-0-0-1] Pass
M36 [0-0-0-1-0-1-0-1-3-0-0-0-0] Fail
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A.2 Appendix B. Implementation of the SDNBI algo-

rithm to the molecular design problems

Table A.3: A complete list of Pareto-optimal solvents for CS4. Each of the solvents is
represented with a molecular code where each number represents the occurrences of
a functional group in the following order: NH2CH2, NH2CH, NH2C, NHCH3, NHCH2,
NHCH, NCH3, NCH2, CH3, CH2, CH, C, and OH.

Index Molecular code f1 (Cp) f2 (RED)
S1 [1-0-0-0-0-0-0-0-0-0-0-0-1] 0.0000 1.0000
S2 [0-0-0-0-1-0-0-0-1-0-0-0-1] 0.0224 0.6947
S3 [2-0-0-0-0-0-0-0-0-0-0-0-0] 0.1022 0.6759
S4 [0-0-0-0-0-0-0-1-2-0-0-0-1] 0.1344 0.3426
S5 [0-0-0-0-0-0-0-1-2-1-0-0-1] 0.2495 0.3243
S6 [0-0-0-0-0-0-0-1-3-0-1-0-1] 0.3477 0.2736
S7 [1-0-0-0-0-0-0-0-1-4-0-0-0] 0.3922 0.1565
S8 [1-0-0-0-0-0-0-0-3-1-2-0-0] 0.4778 0.1100
S9 [1-0-0-0-0-0-0-0-3-2-0-1-0] 0.5012 0.0506
S10 [1-0-0-0-0-0-0-0-4-1-1-1-0] 0.5929 0.0265
S11 [1-0-0-0-0-0-0-0-4-2-1-1-0] 0.6922 0.0162
S12 [1-0-0-0-0-0-0-0-4-3-1-1-0] 0.7918 0.0103
S13 [1-0-0-0-0-0-0-0-3-5-0-1-0] 0.7999 0.0076
S14 [1-0-0-0-0-0-0-0-3-6-0-1-0] 0.8999 0.0005
S15 [1-0-0-0-0-0-0-0-3-7-0-1-0] 1.0000 0.0000

Table A.4: A list of Pareto-optimal working fluids for CS5. Each numbers in molecular
code represents the occurrences of a functional group and the groups are given in fol-
lowing order: CH3, CH2, eO, cO, COO, -CH=, COOH, CH2OH, =CH2.

Index Molecular code Name
W1 [1-0-0-0-0-1-0-0-1] Propene
W2 [1-1-0-0-0-1-0-0-1] But-1-ene
W3 [2-0-1-0-0-0-0-0-0] Dimethyl ether
W4 [2-1-0-0-0-0-0-0-0] Propane
W5 [2-1-1-0-0-0-0-0-0] Methyl Ethyl Ether
W6 [2-2-0-0-0-0-0-0-0] n-Butane
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