
Modular Termination Verification for
Non-blocking Concurrency

(Extended Version)

Pedro da Rocha Pinto1, Thomas Dinsdale-Young2, Philippa Gardner1, and
Julian Sutherland1

1 Imperial College London
{pmd09,pg,jhs110}@doc.ic.ac.uk

2 Aarhus University
tyoung@cs.au.dk

Abstract. We present Total-TaDA, a program logic for verifying the
total correctness of concurrent programs: that such programs both termi-
nate and produce the correct result. With Total-TaDA, we can specify
constraints on a thread’s concurrent environment that are necessary to
guarantee termination. This allows us to verify total correctness for non-
blocking algorithms, e.g. a counter and a stack. Our specifications can
express lock- and wait-freedom. More generally, they can express that
one operation cannot impede the progress of another, a new non-blocking
property we call non-impedance. Moreover, our approach is modular.
We can verify the operations of a module independently, and build up
modules on top of each other.

1 Introduction

The problem of understanding and proving the correctness of programs has been
considered at least since Turing [20]. When proving a program, it is not just
important to know that it will give the right answer, but also that the program
terminates. This is especially challenging for concurrent programs. When multiple
threads are changing some shared resource, knowing if each thread terminates
can often depend on the behaviour of the other threads and even on the scheduler
that decides which thread should run at a particular moment.

If we prove that a concurrent program only produces the right answer, we
establish partial correctness. Many recent developments have been made in
program logics for partial correctness of concurrent programs [5,21,18,16,11,17].
These logics emphasise a modular approach, which allows us to decouple the
verification of a module’s clients and its implementation. Each operation of the
module is proven in isolation, and the reasoning is local to the thread. To achieve
this, these logics abstract the interference between a thread and its environment.

These logics have been applied to reason about fine-grained concurrency,
which is characterised by the use of low-level synchronisation operations (such as
compare-and-swap). A well-known class of fine-grained concurrent programs is

2 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

that of non-blocking algorithms. With non-blocking algorithms, suspension of a
thread cannot halt the progress of other threads: the progress of a single thread
cannot require another thread to be scheduled. Thus if the interference from the
environment is suitably restricted, the operations are guaranteed to terminate.

If we prove that a program produces the correct results and also always
completes in a finite time, we establish total correctness. Turing [20] and Floyd [6]
introduced the use of well-founded relations, combined with partial-correctness
arguments, to prove the termination of sequential programs. The same technique is
general enough to prove concurrent programs too. However, previous applications
of this technique in the concurrent setting, which we discuss in §7, do not support
straight-forward reasoning about clients.

In this paper, we extend a particular concurrent program logic, TaDA [16],
with well-founded termination reasoning. With the resulting logic, Total-TaDA,
we can prove total correctness of fine-grained concurrent programs. The novelty
of our approach is in using TaDA’s abstraction mechanisms to specify constraints
on the environment necessary to ensure termination. It retains the modularity of
TaDA and abstracts the internal termination arguments. We demonstrate our
approach on counter and stack algorithms.

We observe that Total-TaDA can be used to verify standard non-blocking
properties of algorithms. However, our specifications capture more: we propose
the concept of non-impedance that our specifications suggest. We say that one
operation impedes another if the second can be prevented from terminating by
repeated concurrent invocations of the first. This concept seems important to
the design and use of non-blocking algorithms where we have some expectation
about how clients use the algorithm, and what progress guarantees they expect.

TaDA. TaDA introduced a new form of specification, given by atomic triples,
which supports local, modular reasoning and can express constraints on the
concurrent environment. Simple atomic triples have the following form:

`

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉
Intuitively, the specification states that the program C atomically updates p(x)
to q(x) for an arbitrary x ∈ X. As we are in a concurrent setting, while C is
executing, there might be interference from the environment before the atomic
update. The pseudo-quantifier

A

restricts the interference: before the atomic
update, the environment must maintain p(x), but it is allowed to change the
parameter as long as it stays within X; after the atomic update, the environment
is not constrained. This specification thus provides a contract between the client
of C and the implementation: the client can assume that the precondition holds
for some x ∈ X until it performs the update.

Using the atomic triple, an increment operation of a counter is specified as:3

`

A

n ∈ N.
〈
C(s, x, n)

〉
incr(x)

〈
C(s, x, n+ 1) ∧ ret = n

〉
3 The parameter s of the abstract predicate was mistakenly abstracted in [16]. Techni-

cally, it is not possible to abstract it by existentially quantifying in the precondition
of the atomic triple.

Modular Termination Verification for Non-blocking Concurrency 3

The internal structure of the counter is abstracted using the abstract predicate [14]
C(s, x, n), which states that there is a counter at address x with value n and s
abstracts implementation specific information about the counter. The specification
says that the incr atomically increments the counter by 1. The environment is
allowed to update the counter to any value of n as long as it is a natural number.
The specification enforces obligations on both the client and the implementation:
the client must guarantee that the counter is not destroyed and that its value is
a natural number until the atomic update occurs; and the implementation must
guarantee that it does not change the value of the counter until it performs the
specified atomic action. Working at the abstraction of the counter means that each
operation can be verified without knowing the rest of the operations of the module.
Consequently, modules can be extended with new operations without having
to re-verify the existing operations. Additionally, the implementation of incr
can be replaced by another implementation that satisfies the same specification,
without needing to re-verify the clients that make use of the counter. While
atomic triples are expressive, they do not guarantee termination. In particular, an
implementation could block, deadlock or live-lock and still be considered correct.

Non-blocking Algorithms. In general, guaranteeing the termination of concurrent
programs is a difficult problem. In particular, termination could depend on the
behaviour of the scheduler (whether or not it is fair) and of other threads that
might be competing for resources. We focus on non-blocking programs. Non-
blocking programs have the benefit that their termination is not dependent on
the behaviour of the scheduler.

There are two common non-blocking properties: wait-freedom [8] and lock-
freedom [13]. Wait-freedom requires that operations complete irrespective of the
interference caused by other threads: termination cannot depend on the amount
of interference caused by the environment. Lock-freedom is less restrictive. It
requires that, when multiple threads are performing operations, then at least one
of them must make progress. This means that a thread might never terminate if
the amount of interference caused by the environment is unlimited.

TaDA is well suited to reasoning about interference between threads. In
particular, we can write specifications that limit the amount of interference
caused by the client, and so guarantee termination of lock-free algorithms. We
will see how both wait-freedom and lock-freedom can be expressed in Total-TaDA.

Termination. Well-founded relations provide a general way to prove termination.
In particular, Floyd [6] used well-founded relations to prove the termination of
sequential programs. In fact, it is sufficient to use ordinal numbers [3] without
losing expressivity. A ‘Hoare-style’ while rule, using ordinals and adapted from
Floyd’s work, has the form:

∀γ ≤ α. `τ
{
p(γ) ∧ B

}
C
{
∃β. p(β) ∧ β < γ

}
`τ
{
p(α)

}
while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
The loop invariant p(γ) is parametrised by an ordinal γ (the variant) which is
decreased by every execution of the loop body C. Because ordinals cannot have

4 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

infinite descending chains, the loop must terminate in a finite number of steps.
This proof rule allows termination reasoning to be localised to the individual
loops in the program. In this paper, we extend TaDA with termination based on
ordinal numbers, using the while rule given above.

Total-TaDA. We obtain the program logic Total-TaDA by modifying TaDA to
have a total-correctness semantics. The details are given in §3. With Total-TaDA,
we can specify and verify non-blocking algorithms. Wait-free operations always
terminate, independently of the operations performed by the environment. For
lock-free operations however, we need to restrict the amount of interference the
environment can cause in order to guarantee termination. Our key insight is that,
as well as bounding the number of iterations of loops, ordinals can bound the
interference on a module. This allows us to give total-correctness specifications
for lock-free algorithms. In §2, we specify and verify lock-free implementations of
a counter. The specification introduces ordinals to bound the number of times
a client may update the counter. This makes it possible to guarantee that the
lock-free increment operation will terminate, since either it will succeed or some
other concurrent increment will succeed. As the number of increments is bounded,
the operation must eventually succeed.

Total-TaDA retains the modularity of TaDA. In particular, we can verify
the termination of clients of modules using the total-correctness specifications,
without reference to the implementation. We show an example of this in §2.2. Since
the client only depends on the specification, we can replace the implementation.
In §2.3 we show that two different implementations of a counter satisfy the same
total-correctness specification. With Total-TaDA we can verify the operations of
a module independently, exploiting locality.

As a case study for Total-TaDA, we show how to specify and verify both
functional correctness and termination of Treiber’s stack in §4. In §5, we discuss
the implications of a total-correctness semantics for the soundness proof of Total-
TaDA. In §6, we show how lock-freedom and wait-freedom can be expressed with
Total-TaDA specifications. We also introduce the concept of non-impedance in
§6.3 and argue for its value in specifying non-blocking algorithms. We discuss
related work in §7 and future directions in §8.

2 Motivating Examples: Counters

We introduce Total-TaDA by providing specifications of the operations of a
counter module. We justify the specifications by using them to reason about
two clients, one sequential and one concurrent. We show how two different
implementations can be proved to satisfy the specification.

Our underlying programming language is a concurrent while language with
functions, allocation and the atomic assignment x := E, read E := [E], write
[E] := E and compare-and-swap x := CAS(E,E,E), where expressions E have
no side effects. Consider a counter module with a constructor makeCounter and
two operations: incr that increments the value of the counter by 1 and returns

Modular Termination Verification for Non-blocking Concurrency 5

function makeCounter() {
x := alloc(1);
[x] := 0;
return x;
}

function read(x) {
v := [x];
return v;
}

function incr(x) {
b := 0;
while (b = 0) {
v := [x];
b := CAS(x, v, v + 1);
}
return v;

}

(a) Spin counter operations.

function incr(x) {
n := 0; b := 0;
while (b = 0) {
if (n = 0) {
v := [x];
b := CAS(x, v, v + 1);
n := random();
} else {
n := n− 1;
}

}
return v;
}

(b) Backoff increment.

Fig. 1: Counter module implementations.

its previous value; and read that returns the value of the counter. We give an
implementation in Fig. 1a, and an alternative implementation of incr in Fig. 1b.

2.1 Abstract Specification

The Total-TaDA specification for the makeCounter() operation is a Hoare triple
with a total-correctness interpretation:

∀α. `τ
{
emp

}
x := makeCounter()

{
∃s.C(s, x, 0, α)

}
The counter predicate is extended with an ordinal parameter, α, that provides a
bound on the amount of interference the counter can sustain. When the value of
the counter is updated, the ordinal α must decrease.

The operation allocates a new counter, with value 0, and allows the client to
pick an initial ordinal α. If a finite bound on the number of updates is already
determined, then that is an appropriate choice for the ordinal. However, it could
be that the bound is determined by subsequent (non-deterministic) operations, in
which case an infinite ordinal should be used. For example, consider the following
client program:

x := makeCounter();
m := random();
while (m > 0) {
incr(x); m := m− 1;

}

Here, the number of increments is bounded by the (finite) value returned by
random, but it is not determined when the counter is constructed. Choosing
α = ω (the first infinite ordinal) is appropriate in this case: the first increment
can decrease the ordinal from ω to m − 1, while subsequent increments simply
decrement the ordinal by 1.

6 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

The increment operation is specified as follows:

∀β. `τ

A

n ∈ N, α.
〈
C(s, x, n, α) ∧ α > β(n, α)

〉
incr(x)〈

C(s, x, n+ 1, β(n, α)) ∧ ret = n
〉

The specification resembles the partial-correctness specification given in the
introduction, but with the addition of the ordinal α and the function β. The client
chooses how to decrease the ordinal by providing a function β that determines
the new ordinal in terms of the old ordinal and previous value of the counter.
The condition α > β(n, α) requires the client to guarantee that such a decrease
is possible. (So, for example, the client could not use the specification in a
situation where the concurrent environment might reduce the ordinal to zero.)
The implementation may rely on the fact that a counter’s ordinal cannot be
increased to guarantee termination.

The read operation is specified as follows:

`τ

A

n∈N, α.
〈
C(s, x, n, α)

〉
read(x)

〈
C(s, x, n, α) ∧ ret = n

〉
Unlike the increment, the read operation does not affect the ordinal. This means
that the client is not bounded with respect to the number of reads it performs.
Such a specification is possible for operations that do not impede the progress of
other operations. In this case, read does not impede incr or read.

Finally, we give an axiom that allows the client to decrease the ordinal without
requiring any physical operation.

∀s, n, α, β < α.C(s, x, n, α) =⇒ C(s, x, n, β)

This is possible because the ordinals do not have any concrete representation in
memory. They are just a logical mechanism to limit the amount of interference
over a resource.

The ordinal parameter is exposed in the specification of the counter to
allow the implementation to guarantee that its loops terminate. In a wait-free
implementation it would not be necessary to expose the ordinal parameter. For
this counter, the read operation is wait-free, while the increment operation
is lock-free, since termination depends on bounding the number of interfering
increments.

2.2 Clients

Sequential Client. Consider a program that creates a counter and contains two
nested loops. As in the previous example, the outer loop runs a finite but randomly
determined number of times. The inner loop also runs a randomly determined
number of times, and increments the counter on each iteration. Fig. 2 shows this
client, together with its total-correctness proof.

The while rule is used for each of the loops: for the outer loop, the variant
is n; for the inner loop, the variant is m. Since the number of iterations of each
loop is determined before it is run, the variants need only be considered up to

Modular Termination Verification for Non-blocking Concurrency 7

{
emp

}
x := makeCounter();{
∃s.C(s, x, 0, ω2)

}
n := random();{
∃s.C(s, x, 0, ω · n)

}
while (n > 0) {
∀γ.{
∃s, v.C(s, x, v, ω · n) ∧ γ = n ∧ n > 0

}
m := random();{
∃s, v.C(s, x, v, ω · (n− 1) + m) ∧ γ = n ∧ n > 0

}
F

ra
m

e:
γ

=
n
∧
n
>

0

while (m > 0) {
∀δ.{
∃s, v.C(s, x, v, ω · (n− 1) + m) ∧ δ = m ∧ m > 0

}
incr(x);{
∃s, v.C(s, x, v, ω · (n− 1) + m− 1) ∧ δ = m > 0

}
m := m− 1;{
∃s, ζ, v.C(s, x, v, ω · (n− 1) + m) ∧ ζ = m ∧ ζ < δ

}
}{

∃s, v.C(s, x, v, ω · (n− 1)) ∧ γ = n ∧ n > 0
}

n := n− 1;{
∃s, β, v.C(s, x, v, ω · n) ∧ β = n ∧ β < γ

}
}{
∃s, v.C(s, x, v, 0)

}
Fig. 2: Proof of a sequential client of the counter.

finite ordinals (i.e. natural numbers). (We could modify the code to use a single
loop that conditionally decrements n (and randomises m) or decrements m. This
variation would require a transfinite ordinal for the variant.)

As well as enforcing loop termination, ordinals play a role as a parameter to
the C predicate, which must be decreased on each increment. When we create
the counter, we choose ω2 as the initial ordinal. We have seen that ω allows
us to decrement the counter a non-deterministic (but finite) number of times.
We want to repeat this a non-deterministic (but finite) number of times, so
ω · ω = ω2 is the appropriate ordinal. Once the number n of iterations of the
outer loop is determined, we decrease this to ω · n by using the axiom provided
by the counter module. Similarly, when m is chosen, we decrease the ordinal from
ω · n = ω · (n− 1) + ω to ω · (n− 1) + m.

Concurrent Client. Consider a program that creates two threads, each of which
increments the counter a finite but unbounded number of times. We again prove
this client using the abstract specification of the counter. The proof is given in
Fig. 3. In this example, the counter is shared between the two threads, which
may concurrently update it. To reason about sharing, we use a shared region.

As in TaDA, a shared region encapsulates some resource that is available to
multiple threads. Threads can access the resource when performing (abstractly)

8 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

atomic operations, such as incr. The region presents an abstract state, and defines
a protocol that determines how the region may be updated. Ghost resources,
called guards, are associated with transitions in the protocol. The guards for a
region form a partial commutative monoid with the operation •, which is lifted
by ∗ in assertions. In order for a thread to make a particular update, it must have
ownership of a guard associated with the corresponding transition. All guards
are allocated along with the region they are associated with.

For the concurrent client, we introduce a region with type name CClient.
This region encapsulates the shared counter. Accordingly, the region type is
parametrised by the address of the counter. The abstract state of the region
records the current value of the counter.

There are two types of guard resources associated with CClient regions. The
guard Inc(m,β, π) provides capability to increment the counter. Conceptually,
multiple threads may have Inc guards, and a fractional permission π ∈ (0, 1]
(in the style of [2]) is used to keep track of these capabilities. The parameter m
expresses the local contribution to the value of the counter — the actual value is
the sum of the local contributions. The ordinal parameter β represents a local
bound on the number of increments. Again, the actual bound is a sum of the local
bounds. Standard ordinal addition is inconvenient since it is not commutative;
we use the natural (or Hessenberg) sum [9], denoted ⊕, which is associative,
commutative, and monotone in its arguments.

To allow the Inc guard to be shared among threads, we impose the following
equivalence on guards:

Inc(n+m,α⊕ β, π1 + π2) = Inc(n, α, π1) • Inc(m,β, π2)

where n ≥ 0, m ≥ 0 and 1 ≥ π1 + π2 > 0. This equivalence expresses that Inc
guards can be split (or joined), preserving the total contribution to the value of
the counter, ordinal bound and permission.

The second type of guard resource is Total(n, α), which tracks the actual
value of the counter n and ordinal α. These values should match the totals for
the Inc guards, which we enforce by requiring the following implication to hold:

Total(n, α) • Inc(m,β, 1) defined =⇒ n = m ∧ α = β

We wish to allow the contributions recorded in Inc guards to change, but to
do so we must simultaneously update the Total guard, as expressed by the
following equivalence:

Total(n+m,α⊕ β) • Inc(m,β, π) = Total(n+m′, α⊕ β′) • Inc(m′, β′, π)

(We have constructed an instance of the authoritative monoid of Iris [11].)
The possible states of CClient regions are the natural numbers N, repre-

senting the value of the shared counter, together with the distinguished state ◦,
representing that the region is no longer required. The protocol for a region is
specified by a guarded transition system, which describes how the abstract state
may be updated in atomic steps, and which guard resources are required to do
so. The transitions for CClient regions are as follows:

Inc(m, γ, π) : n n+ 1 Inc(m, γ, 1) : n ◦

Modular Termination Verification for Non-blocking Concurrency 9

This specifies that any thread with an Inc guard may increment the value of the
counter, and a thread owning the full Inc guard may dispose of the region.

It remains to define the interpretation of the region states:

I(CClientr(s, x, n)) , ∃α.C(s, x, n, α) ∗ [Total(n, α)]r

I(CClientr(s, x, ◦)) , True

By interpreting the state ◦ as True, we allow a thread transitioning into that
state to acquire the counter that previously belonged to the region. (This justifies
the last step of the proof in Fig. 3.)

The proof rule that allows us to use the atomic specification of the incr
operation to update the shared region is the use atomic rule, inherited from TaDA.
A simplified version of the rule is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(G)∗ `τ

A

x ∈ X.
〈
I(ta(x)) ∗ [G]a

〉
C
〈
I(ta(f(x))) ∗ q

〉
`τ
{
∃x ∈ X. ta(x) ∗ [G]a

}
C
{
∃x ∈ X. ta(f(x)) ∗ q

}
In the conclusion of the rule, the abstract state of the region a (of type t) is
updated according to the function f . The first premiss requires that this update
is allowed by the transition system for the region, given the guard resources
available (G). The second premiss requires that the program C (abstractly)
atomically performs the corresponding update on the concrete state of the region.

The {}-assertions in Total-TaDA are required to be stable. That is, the region
states must account for the possible changes that the concurrent environment
could make, under the assumption that it has guards that are compatible with
those of the thread. This is why, for instance, in Fig. 3 the state of the CClient
region is always existentially quantified.

2.3 Implementations

We prove the total correctness of the two distinct increment implementations
against the abstract specification given in §2.1.

Spin Counter Increment. Consider incr shown in Fig. 1a. Note that the read,
write and compare-and-swap operations are atomic. We want to prove the total
correctness of incr against the atomic specification. The first step is to give a
concrete interpretation of the abstract predicate C(s, x, n, α). We introduce a new
region type, Counter, with only one non-empty guard, G. The abstract states
of the region are pairs of the form (n, α), where n is the value of the counter and
α is a bound on the number of increments. All transitions are guarded by G with
the transition:

G : ∀n ∈ N,m ∈ N, α > β. (n, α) (n+m,β)

The transition requires that updates to the state of the region must decrease the
ordinal. This allows us to effectively bound interference, which is necessary to
guarantee the termination of the loop in incr.

The interpretation of the Counter region states is defined as follows:

I(Counterr(x, n, α)) , x 7→ n

10 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

{
emp

}
x := makeCounter();{
∃s.C(s, x, 0, ω ⊕ ω)

}{
∃s, r.CClientr(s, x, 0) ∗ [Inc(0, ω ⊕ ω, 1)]r

}{
∃s, v.CClientr(s, x, v) ∗ [Inc(0, ω, 1

2
)]r ∧ 0 ≤ v

}
n := random(); i := 0;{
∃s, v.CClientr(s, x, v) ∗ [Inc(i, n, 1

2
)]r ∧ 0 ≤ v ∧ i = 0

}
while (i < n) {

∀β.
{
∃s, v.CClientr(s, x, v) ∗ [Inc(i, β, 1

2
)]r ∧ i ≤ v

∧ i < n ∧ β = n− i

}
incr(x); i := i + 1;{
∃s, δ, v.CClientr(s, x, v) ∗ [Inc(i, δ, 1

2
)]r ∧ i ≤ v

∧ i ≤ n ∧ δ = n− i ∧ δ < β

}
}{
∃s, v.CClientr(s, x, v) ∗ [Inc(n, 0, 1

2
)]r
}

{
∃s, v.CClientr(s, x, v)
∗ [Inc(0, ω, 1

2
)]r

}
m := random();
j := 0;
while (j < m) {
incr(x);
j := j + 1;
}{
∃s, v.CClientr(s, x, v)
∗ [Inc(m, 0, 1

2
)]r

}
{
∃s, r.CClientr(s, x, n + m) ∗ [Inc(n + m, 0, 1)]r

}{
∃s.C(s, x, n + m, 0)

}
Fig. 3: Proof of a concurrent client of the counter.

The expression x 7→ n asserts that there exists a heap cell with address x and
value n. Note that α is not represented in the concrete heap, as it is not part of
the program. We use it solely to ensure that the number of operations is finite.

We define the interpretation of the abstract predicate as follows:

C(r, x, n, α) , Counterr(x, n, α) ∗ [G]r

The abstract predicate C(r, x, n, α) asserts that there is a Counter region with
identifier r, address x, and with abstract state (n, α). Furthermore, it encapsulates
exclusive ownership of the guard G, and so embodies exclusive permission to
update the counter. (Note that the type of the first parameter of C, which is
abstract to the client, is instantiated as RId.)

The specification for the increment is atomic and as such, we use the make
atomic rule from TaDA. A slightly simplified version of the rule is as follows:

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x∈X Q(x) `τ
{
∃x∈X. ta(x) ∗ a Z⇒ �

}
C
{
∃x∈X, y ∈Q(x). a Z⇒ (x, y)

}
`τ

A

x ∈ X.
〈
ta(x) ∗ [G]a

〉
C
〈
∃y ∈ Q(x). ta(y) ∗ [G]a

〉
This rule establishes in its conclusion that C atomically updates region a from
some state x ∈ X to some state y ∈ Q(x). The first premiss requires that
the available guard G permits this update, according to the transition system.
The second premiss essentially establishes that C will perform a single atomic
update on region a, corresponding to the required update. The atomicity context
a : x ∈ X Q(x) records the update we require. The program is given the
atomic tracking resource a Z⇒ � initially (in place of the guard G); this resource

Modular Termination Verification for Non-blocking Concurrency 11

∀β.

A

n ∈ N, α.〈
C(s, x, n, α) ∧ α > β(n, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
r

〈
Counterr(x, n, α) ∗ [G]r ∧ α > β(n, α)

〉
m

a
k
e

a
to

m
ic

r : (n, α) ∧ n ∈ N ∧ α > β(n, α) (n+ 1, β(n, α)) `τ{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ α > β(n, α)

}
b := 0;{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ b = 0 ∧ α > β(n, α)

}
while (b = 0) {
∀γ.{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ b = 0 ∧ γ ≥ α > β(n, α)

}
o
p

en
re

g
io

n

A

n ∈ N, α.〈
x 7→ n ∧ γ ≥ α > β(n, α)

〉
v := [x];〈
x 7→ n ∧ v = n ∧ γ ≥ α > β(n, α) ∧ (n > v⇒ γ > α)

〉{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧
γ ≥ α > β(n, α) ∧ n ≥ v ∧ (n > v⇒ γ > α)

}

u
p

d
a
te

re
g
io

n

A

n ∈ N, α.〈
x 7→ n ∧ γ ≥ α > β(n, α) ∧ n ≥ v ∧ (n > v⇒ γ > α)

〉
b := CAS(x, v, v + 1);〈
α > β(n, α) ∧ if b = 0 then γ > α ∧ x 7→ n

else x 7→ n+ 1 ∧ v = n

〉
∃n ∈ N, α. γ ≥ α > β(n, α) ∧ if b = 0 then

(
Counterr(x, n, α)
∗ r Z⇒ � ∧ γ > α

)
else r Z⇒ ((v, α), (v + 1, β(n, α)))

}{
∃n ∈ N, α. r Z⇒ ((n, α), (n+ 1, β(n, α))) ∧ v = n

}
return v;{
∃n ∈ N, α. r Z⇒ ((n, α), (n+ 1, β(n, α))) ∧ ret = n

}〈
Counterr(x, n+ 1, β(n, α)) ∗ [G]r ∧ ret = n

〉〈
C(s, x, n, β(n, α)) ∧ ret = n

〉
Fig. 4: Proof of total correctness of increment.

permits a single update to the region in accordance with the atomicity context,
while at the same time guaranteeing that the region’s state will remain within
X. When the single update occurs, the atomic tracking resource simultaneously
changes to record the actual update performed: a Z⇒ (x, y).

The make atomic rule of Total-TaDA is just the same as that of TaDA. The
only difference is that termination is enforced. Whereas in TaDA it would be
possible for an abstract atomic operation to loop forever without performing its
atomic update, in Total-TaDA it is guaranteed to eventually perform the update.

A proof of the increment implementation is shown in Fig. 4. The atomicity
context allows the environment to modify the abstract state of the counter.
However, it makes no restriction on the number of times. The Counter transition
system enforces that the ordinal α must decrease every time the value of the
counter is increased. This means that the number of times the region’s abstract

12 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

state is updated is finite. Our loop invariant is parametrised with a variant γ
that takes the value of α at the beginning of each loop iteration. When we first
read the value of the counter n, we can assert: n > v⇒ γ > α.

If the compare-and-swap operation fails, the value of the counter has changed.
This can only happen in accordance with the region’s transition system, and so
the ordinal parameter α must have decreased. As such, the invariant still holds
but for a lower ordinal, α < γ. We are localising the termination argument for
the loop, by relating the local variant with the ordinal parametrising the region.

If the compare-and-swap succeeds, then we record our update from (v, α) to
(v + 1, β(v, α)), where β is the function chosen by the client that determines how
the ordinal is reduced. The make atomic rule allows us to export this update in
the postcondition of the whole operation.

Backoff Increment. Consider a different implementation of the increment opera-
tion, given in Fig. 1b. Like the previous implementation, it loops attempting to
perform the operation. However, if the compare-and-swap fails due to contention,
it waits for a random number of iterations before retrying.

Despite the differences to the previous increment, the specification is the same.
In fact, we can give the same interpretation for the abstract predicate C(x, n, α),
and the same guards and regions that were used for the previous implementation.
(Since this is the case, a counter module could provide both of these operations:
the proof system guarantees that they work correctly together.)

The main difference in the proof is that each iteration of the loop depends on
not only the amount of interference on the counter, but also on the variable n

that is randomised when the compare-and-swap fails. Any random number will be
smaller than ω, and the maximum amount of times that the compare-and-swap
can fail is α, the parameter of the C predicate. This is because α is a bound on
the number of times the counter can be incremented. We therefore use ω · α+ n

as the upper bound on the number of loop iterations.
Let γ be equal to ω · α + n at the start of the loop iteration. At each loop

iteration, we have two cases, when n = 0 or otherwise. In the first case we try to
perform the increment by doing a compare-and-swap. If the compare-and-swap
succeeds, then the increment occurs and the loop will exit. If it fails, then the
environment must have decreased α. This means that γ ≥ ω · α+ ω for the new
value of α. We then set n to be a new random number, which is less than ω, and
end up with γ > ω · α + n. In the second case of the loop iteration, we simply
decrement n by 1 and we know that γ > ω · α + n for the new value of n. The
proof of the backoff increment is shown in Fig. 5.

3 Logic

Total-TaDA is a Hoare logic which, for the first time, can be used to prove
total correctness for fine-grained non-blocking concurrent programs. The logic
is essentially the same as for TaDA, simply adapted to incorporate termination
analysis using ordinals in a standard way.

Modular Termination Verification for Non-blocking Concurrency 13

∀β.

A

n ∈ N, α.〈
C(s, x, n, α) ∧ α > β(n, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
r

〈
Counterr(x, n, α) ∗ [G]r ∧ α > β(n, α)

〉
m

a
k
e

a
to

m
ic

r : (n, α) ∧ n ∈ N ∧ α > β(n, α) (n+ 1, β(n, α)) `τ{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ α > β(n, α)

}
n := 0; b := 0;{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ n = 0 ∧ b = 0 ∧ α > β(n, α)

}
while (b = 0) {
∀γ.{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ b = 0 ∧ γ ≥ ω · α+ n ∧ α > β(n, α)

}
if (n = 0) {{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ γ ≥ ω · α ∧ α > β(n, α)

}

o
p

en
re

g
io

n

A

n ∈ N, α.〈
x 7→ n ∧ γ ≥ ω · α ∧ α > β(n, α)

〉
v := [x];〈
x 7→ n ∧ v = n ∧ γ ≥ ω · α ∧ α > β(n, α) ∧ (n > v⇒ γ ≥ ω · α+ ω)

〉{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ � ∧ γ ≥ ω · α ∧ α > β(n, α)
∧ n ≥ v ∧ (n > v⇒ γ ≥ ω · α+ ω)

}

u
p

d
a
te

re
g
io

n A

n ∈ N, α.〈
x 7→ n ∧ γ ≥ ω · α ∧ α > β(n, α) ∧ n ≥ v ∧ (n > v⇒ γ ≥ ω · α+ ω)

〉
b := CAS(x, v, v + 1);〈
α > β(n, α) ∧ if b = 0 then γ ≥ ω · α+ ω ∧ x 7→ n

else x 7→ n+ 1 ∧ v = n

〉
∃n ∈ N, α. α > β(n, α) ∧ if b = 0 then

(
Counterr(x, n, α) ∗ r Z⇒ �

∧ γ ≥ ω · α+ ω

)
else r Z⇒ ((v, α), (v + 1, β(n, α)))

n := random();∃n ∈ N, α. α > β(n, α) ∧ if b = 0 then

(
Counterr(x, n, α) ∗ r Z⇒ �

∧ γ > ω · α+ n

)
else r Z⇒ ((v, α), (v + 1, β(n, α)))

} else {{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ �
∧ b = 0 ∧ γ ≥ ω · α+ n ∧ α > β(n, α)

}
n := n− 1;{
∃n ∈ N, α.Counterr(x, n, α) ∗ r Z⇒ �
∧ b = 0 ∧ γ > ω · α+ n ∧ α > β(n, α)

}
}∃n ∈ N, α. α > β(n, α) ∧ if b = 0 then

(
Counterr(x, n, α) ∗ r Z⇒ �

∧ γ > ω · α+ n

)
else r Z⇒ ((v, α), (v + 1, β(n, α)))

}{
∃n ∈ N, α, . r Z⇒ ((n, α), (n+ 1, β(n, α))) ∧ v = n

}
return v;{
∃n ∈ N, α. r Z⇒ ((n, α), (n+ 1, β(n, α))) ∧ ret = n

}〈
Counterr(x, n+ 1, β(n, α)) ∗ [G]r ∧ ret = n

〉〈
C(s, x, n, β(n, α)) ∧ ret = n

〉
Fig. 5: Proof of total correctness of backoff increment.

14 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

Total-TaDA assertions, ranged over by p, q, . . . , are constructed from the
standard assertions of separation logic [15], plus abstract predicates, region
predicates and tokens, examples of which are given in §2. The Total-TaDA proof
judgement has the form:

A `τ

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉
.

In our examples, the atomicity context A describes an update to a single region.
In general, A may describe updates to multiple regions (although only one
update to each).4 The pre- and postconditions are split into a private part (the
pp and qp(x, y)) and a public part (the p(x) and q(x, y)). The idea is that the
command may make multiple, non-atomic updates to the private part, but must
only make a single atomic update to the public part. Before the atomic update,
the environment is allowed to change the public part of the state, but only by
changing the parameter x of p which must remain within X. After the atomic
update, the specification makes no constraint on how the environment modifies
the public state. All that is known is that, immediately after the atomic update,
the public and private parts satisfy the postcondition for a common value of
y. The private assertions in our judgements must be stable: that is, they must
account for any updates other threads could have sufficient resources to perform.

The non-atomic Hoare triple `τ
{
p
}
C
{
q
}

is syntactic sugar for the judgement
`τ
〈
p
∣∣ true〉 C 〈q ∣∣ true〉. The atomic triple `τ

A

x ∈ X.
〈
p(x)

〉
C
〈
q(x)

〉
is syntactic

sugar for the judgement `τ

A

x ∈ X.
〈
true

∣∣ p(x)
〉
C
〈
true

∣∣ q(x)
〉
.

We give an overview of the key Total-TaDA proof rules that deal with
termination and atomicity in Fig. 6. The while rule enforces that the number
of times that the loop body can run is finite. The rule allows us to perform a
while loop if we can guarantee that each loop iteration decreases the ordinal
parametrising the invariant p. By the finite-chain property of ordinals, there
cannot be an infinite number of iterations.

The parallel rule and the frame rule are analogous to those for separation
logic. The parallel rule allows us to split resources among two threads as long as
the resources of one thread are not touched by the other thread. The frame rule
allows us to add the frame resources to the pre- and postcondition, which are
untouched by the command. Our frame rule separately adds to both the private
and public parts. Note that the frame for the public part may be parametrised
by the

A

-bound variable x.
The next three rules allow us to access the contents of a shared region by using

an atomic command. With all of the rules, the update to the shared region must
be atomic, so its interpretation is in the public part of the premiss. (The region
is in the public part in the conclusion also, but may be moved by weakening.)

The open region rule allows us to access the contents of a shared region
without updating its abstract state. The command may change the concrete state
of the region, so long as the abstract state is preserved.

4 We have omitted region levels, analogous to those in TaDA, in our judgements to
simplify our presentation. They prevent a region from being opened twice within a
single branch of the proof tree, which unsoundly duplicates resources.

Modular Termination Verification for Non-blocking Concurrency 15

while rule
∀γ ≤ α.A `τ

{
p(γ) ∧ B

}
C
{
∃β. p(β) ∧ β < γ

}
A `τ

{
p(α)

}
while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
parallel rule

∀i ∈ {1, 2} .A `τ
{
pi
}
Ci
{
qi
}

A `τ
{
p1 ∗ p2

}
C1 ‖C2

{
q1 ∗ q2

}
frame rule

A `τ

A

x ∈ X.
〈
pp
∣∣ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ q(x, y)
〉

A `τ

A

x ∈ X.
〈
r′ ∗ pp

∣∣ r(x) ∗ p(x)
〉
C

E

y ∈ Y.
〈
r′ ∗ qp(x, y)

∣∣ r(x) ∗ q(x, y)
〉

open region rule
A `τ

A

x ∈ X.
〈
pp
∣∣ I(ta(x)) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ I(ta(x)) ∗ q(x, y)
〉

A `τ

A

x ∈ X.
〈
pp
∣∣ ta(x) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ ta(x) ∗ q(x, y)
〉

use atomic rule
a /∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

A `τ

A

x∈X.
〈
pp
∣∣ I(ta(x)) ∗ p(x) ∗ [G]a

〉
C

E

y∈Y.
〈
qp(x, y)

∣∣ I(ta(f(x))) ∗ q(x, y)
〉

A `τ

A

x ∈ X.
〈
pp
∣∣ ta(x) ∗ p(x) ∗ [G]a

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ ta(f(x)) ∗ q(x, y)
〉

update region rule

A `τ

A

x ∈ X.
〈
pp
∣∣ I(ta(x)) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣ ∃z ∈ Q(x). I(ta(z)) ∗ q1(x, y, z) ∨ I(ta(x)) ∗ q2(x, y)
〉

a : x∈X Q(x),A `τ

A

x ∈ X.
〈
pp
∣∣ ta(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E

y∈Y.
〈
qp(x, y)

∣∣∣∣ ∃z ∈ Q(x). ta(z) ∗ q1(x, y, z) ∗ a Z⇒ (x, z)
∨ ta(x) ∗ q2(x, y) ∗ a Z⇒ �

〉
make atomic rule

a /∈ A {(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X Q(x),A `τ{
pp ∗ ∃x ∈ X. ta(x) ∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)

}
A `τ

A

x ∈ X.
〈
pp
∣∣ ta(x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣ ta(y) ∗ [G]a
〉

Fig. 6: A selection of proof rules of Total-TaDA.

The use atomic rule allows us to update the abstract state of a shared region.
To do so, we need a guard that permits this update. This rule takes a C which
(abstractly) atomically updates the region a from some state x ∈ X to the state
f(x). It requires the guard G for the region, which allows the update according
to the transition system, as established by one of the premisses. Another premiss
states that the command C performs the update described by the transition
system of region a in an atomic way. This allows us to conclude that the region
a is updated atomically by the command C. Note that the command is not
operating at the same level of abstraction as the region a. Instead it is working
at a lower level of abstraction, which means that if it is atomic at that level it
will also be atomic at the region a level.

16 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

∀α. `τ
{
emp

}
makeStack()

{
∃s ∈ T1, t ∈ T2. Stack(s, ret, [], t, α)

}
∀β. `τ

A

vs, t, α.
〈
Stack(s, x, vs, t, α) ∧ α > β(vs, α)

〉
push(x, v)〈

∃t′. Stack(s, x, v : vs, t′, β(vs, α))
〉

`τ

A

vs, t, α.
〈
Stack(s, x, vs, t, α)

〉
pop(x)〈

if vs = [] then Stack(s, x, vs, t, α) ∧ ret = 0
else ∃vs′, t′. Stack(s, x, vs′, t′, α) ∧ vs = ret : vs′

〉
Fig. 7: Stack operation specifications.

The update region rule similarly allows us to update the abstract state of
a shared region, but this time the authority comes from the atomicity context
instead of a guard. In order to perform such an update, the atomic update to the
region must not already have happened, indicated by a Z⇒ � in the precondition
of the conclusion. In the postcondition, there are two cases: either the appropriate
update happened, or no update happened. If it did happen, the new state of the
region is some z ∈ Q(x), and both x and z are recorded in the atomicity tracking
resource. If it did not, then both the region’s abstract state and the atomicity
tracking resource are unchanged. The premiss requires the command to make a
corresponding update to the concrete state of the region. The atomicity context
and tracking resource are not in the premiss; they serve to record information
about the atomic update that is performed for use further down the proof tree.

Finally, we revisit the make atomic rule, which elaborates on the version
presented in §2.3. As before, a guard in the conclusion must permit the update
in accordance with the transition system for the region. This is replaced in the
premiss by the atomicity context and atomicity tracking resource, which tracks
the occurrence of the update. One difference is the inclusion of the private state,
which is effectively preserved between the premiss and the conclusion. A second
difference is the

E

-binding of the resulting state of the atomic update. This allows
the private state to reflect the result of the update.

4 Case Study: Treiber’s Stack

We now consider a version of Treiber’s stack [19] to demonstrate how Total-TaDA
can be applied to verify the total correctness of larger modules.

4.1 Specification

In Fig. 7, we give the specification of the lock-free stack operations. This is a
Total-TaDA specification satisfiable by a reasonable non-blocking implementation.
As with the counter, the predicate representing the stack is parametrised by
an ordinal that bounds the number of operations on the stack, in order to

Modular Termination Verification for Non-blocking Concurrency 17

guarantee termination. The Stack(s, x, vs, t, α) predicate has five parameters: the
address of the stack x; its contents vs; an ordinal α that decreases every time
a push operation is performed; and two parameters, s and t that range over
abstract types T1 and T2 respectively. These last two parameters encapsulate
implementation-specific information about the configuration of the stack (s is
invariant, while t may vary) and hence their types are abstract to the client.

The constructor returns an empty stack, parametrised by an arbitrary ordinal
chosen by the client. The push operation atomically adds an element to the head
of the stack. The pop operation atomically removes one element from the head
of the stack, if one is available (i.e. the stack is non-empty); otherwise it will
simply return 0. (As this stack is non-blocking, it would not be possible for the
pop operation to wait for the stack to become non-empty.)

Note that the ordinal parametrising the stack is not required to decrease when
popping the stack. This means that the stack operations cannot be starved by an
unbounded number of pop invocations. This need not be the case in general for
a lock-free stack, but it is true for Treiber’s stack. We discuss the ramifications
of this kind of specification further in §6.3.

4.2 Implementation

Fig. 8 gives an implementation of the stack operations based on Treiber’s stack [19].
The stack is represented as a heap cell containing a pointer (the head pointer) to
a singly-linked list of the values on the stack.

Values are pushed onto the stack by allocating a new node holding the value
to be pushed and a pointer to the old head of the stack. A compare-and-swap
operation updates the old head of the stack to point to the new node. If the
operation fails, it will be because the head of the stack has changed, and so the
operation is retried.

Values are popped from the stack by moving the head pointer one step along
the list. Again, a compare-and-swap operation is used for this update, so if the
head of the stack changes the operation can be retried. If the stack is empty (i.e.
the head points to 0), then pop simply returns 0, without affecting the stack.

4.3 Correctness

To prove correctness of the implementation, we introduce predicates to represent
the linked list:

list(x, ns) , (x = 0 ∧ ns = []) ∨ (∃v, l. node(x, v, l) ∗ list(l, ns′) ∧ ns = (x, v) : ns′)

node(n, v, l) , n.value 7→ v ∗ n.next 7→ l

It is important to the correctness of the algorithm that nodes that have been
popped can never reappear as the head of the stack. To account for this, in our
representation of the stack we track the set of previously popped nodes, and
ensure that they are disjoint from the nodes in the stack. The stack(x, ns, ds)

18 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

function makeStack() {
x := alloc(1);
[x] := 0;
return x;

}

function push(x, v) {
y := alloc(2);
[y.value] := v;
do {
z := [x];
[y.next] := z;
b := CAS(x, z, y);

} while (b = 0);
}

function pop(x) {
do {
y := [x];
if (y = 0) { return 0; }
z := [y.next];
b := CAS(x, y, z);
} while (b = 0);
v := [y.value];
return v;

}

Fig. 8: Treiber’s stack operations.

predicate therefore consists of a list starting at address x, with contents ns, and
a disjoint set of nodes ds (the discarded nodes):

stack(x, ns, ds) , list(x, ns) ∗ �
(n,v)∈ds

node(n, v,)

We define a region type TStack to hold the shared data-structure. The type
is parametrised by the address of the stack, and its abstract state consists of a
list of nodes in the stack ns, a set of popped nodes ds, and an ordinal α. The
TStack region type has the following interpretation:

I(TStackr(x, ns, ds, α)) , ∃y. x 7→ y ∗ stack(y, ns, ds)

We use a single guard G to give threads permissions to push and pop the stack.
The transition system is given as follows:

G : ∀n, v, ns, ds, α, β < α. (ns, ds, α) ((n, v) : ns, ds, β)

G : ∀n, v, ns, ds, α. ((n, v) : ns, ds, α) (ns, (n, v)] ds, α)

The first action allows us to add an element to the head of the stack. The second
action allows us to remove the top element of the stack, adding it to the set of
discarded nodes. There is no explicit transition for the pop on the empty stack,
since this operation does not change the abstract state.

Note that for every transition (ns, ds, α) (ns′, ds′, α′), we have 2 ·α+ |ns| >
2 · α′ + |ns′|. Pushing decreases the ordinal, but extends the length of the stack
by 1; popping maintains the ordinal, but decreases the length of the stack. This
property allows us to use 2 · α+ |ns| as a variant in the compare-and-swap loops,
since it is guaranteed to decrease under any interference.

The abstract predicate Stack(s, x, vs, t, α) combines the region and the guard:

Stack(r, x, vs, (ns, ds), α) , TStackr(x, ns, ds, α) ∗ [G]r ∧ vs = snds(ns)

The function snds returns the list of elements of the second elements of the list
of pairs ns. Consequently, vs is the list of values on the stack, rather than pairs
of address and value.

Modular Termination Verification for Non-blocking Concurrency 19

A

vs, t, α.〈
Stack(s, x, vs, t, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
r,
t

=
(n
s,
d
s)

〈
TStackr(x, ns, ds, α) ∗ [G]r ∧ vs = snds(ns)

〉
m

a
k
e

a
to

m
ic

r : (ns, ds, α)
 if ns = [] then (ns, ds, α) else (ns′, (n, v)] ds, α) ∧ ns = (n, v) : ns′

`τ{
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ �

}
do {
∀γ.{
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ γ ≥ 2 · α+ |ns|

}
u
p

d
a
te

re
g
io

n

A

ns, ds, α.
〈
∃w. x 7→ w ∗ stack(w, ns, ds) ∧ γ ≥ 2 · α+ |ns|

〉
y := [x];〈
x 7→ y ∗ stack(y, ns, ds) ∧ γ ≥ 2 · α+ |ns| ∧
if y = 0 then ns = [] else ∃v. (y, v) = head(ns)

〉

∃ns, ds, α. if y = 0 then r Z⇒ (([], ds, α), ([], ds, α))

else ∃v.
(
TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ (y, v) ∈ ns++ ds ∧
γ ≥ 2 · α+ |ns| ∧ head(ns) 6= (y, v)⇒ γ > 2 · α+ |ns|

)
if (y = 0) {
return 0;

{
∃ds, α. r Z⇒ (([], ds, α), ([], ds, α)) ∧ ret = 0

}
}{
∃ns, ds, v, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ (y, v) ∈ ns++ ds ∧
γ ≥ 2 · α+ |ns| ∧ head(ns) 6= (y, v)⇒ γ > 2 · α+ |ns|

}
z := [y.next];
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ γ ≥ 2 · α+ |ns| ∧(

(∃v, v′, ns′. ns = [(y, v), (z, v′)] ++ ns′) ∨ (∃v. ns = [(y, v)] ∧ z = 0)
∨(∃v. (y, v) ∈ ns++ ds ∧ head(ns) 6= (y, v) ∧ γ > 2 · α+ |ns|)

)

u
p

d
a
te

re
g
io

n

A

ns, ds, α.〈∃w. x 7→ w ∗ stack(w, ns, ds) ∧ γ ≥ 2 · α+ |ns| ∧(∃v, v′, ns′. ns = [(y, v), (z, v′)] ++ ns′)
∨ (∃v. ns = [(y, v)] ∧ z = 0)
∨ (∃v. (y, v) ∈ ns++ ds ∧ head(ns) 6= (y, v) ∧ γ > 2 · α+ |ns|)

〉

b := CAS(x, y, z);〈
if b = 0 then ∃w. x 7→ w ∗ stack(w, ns, ds) ∧ γ > 2 · α+ |ns|

else ∃v, ns′. x 7→ z ∗ stack(z, ns′, (y, v)] ds) ∧ ns = (y, v) : ns′

〉

∃ns, ds, α. γ ≥ 2 · α+ |ns| ∧
if b = 0 then TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ γ > 2 · α+ |ns|

else

(
∃v, ns′, ds′, α′. (y, v) ∈ ds′ ∧TStackr(x, ns

′, ds′, α′)
∗ r Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds), α)

)

} while (b = 0);{
∃v, ns, ds, α, ns′, ds′, α′. (y, v) ∈ ds′ ∧TStackr(x, ns

′, ds′, α′)
∗ r Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds, α))

}
v := [y.value];

{
∃ns, ds, α. r Z⇒ (((y, v) : ns, ds, α), (ns, (y, v)] ds, α))

}
return v;

{
∃y, ns, ds, α. r Z⇒ (((y, ret) : ns, ds, α), (ns, (y, ret)] ds), α)

}〈if vs = [] then TStackr(x, ns, ds, α) ∗ [G]r ∧ vs = snds(ns) ∧ ret = 0

else

(
∃ns′, vs′, y.TStackr(x, ns

′, (y, ret)] ds, α) ∗ [G]r
∧ vs′ = snds(ns′) ∧ ns = (y, ret) : ns′

) 〉
〈
if vs = [] then Stack(s, x, vs, t, α) ∧ ret = 0

else ∃vs′, t′. Stack(s, x, vs′, t′, α) ∧ vs = ret : vs′

〉
Fig. 9: Proof of total correctness of Treiber’s stack pop operation.

20 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

The proof for pop is given in Fig. 9. When the stack is non-empty, if the
compare-and-swap fails then another thread must have succeeded in updating
the stack, and so reduced the ordinal or the length of the stack; by basing the
loop variant on the ordinal and stack length, we can guarantee that the operation
will eventually succeed. The proof for push is given in appendix B.

5 Soundness

The proof of soundness of Total-TaDA is similar to that for TaDA [16] and based
on the Views Framework [4]. We use the same model for assertions as that for
TaDA. We also use a similar semantic judgement, �, which ensures that the
concrete behaviours of programs simulate the abstract behaviours represented by
the specifications. The key distinction is that, whereas in TaDA the judgement is
defined coinductively (as a greatest fixed point), in Total-TaDA the judgement
is defined inductively (as a least fixed point). This means that TaDA admits
executions that never terminate, while Total-TaDA requires executions to always
terminate: that is, reach a base-case of the inductive definition.

The soundness proof consists of lemmas that justify each of the proof rules
for the semantic judgement. Most of the Total-TaDA rules have similar proofs to
the corresponding TaDA rules, but proceed by induction instead of coinduction.
Of course, the while rule is different, since termination does not follow trivially.
We sketch the proof for while. All details are in appendix A.

Lemma 1 (While Rule). Let α be an ordinal. If, for all γ ≤ α,

A �τ
{
p(γ) ∧ B

}
C
{
∃β. p(β) ∧ β < γ

}
, then (1)

A �τ
{
p(α)

}
while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
. (2)

Proof. The proof is by transfinite induction on α. As the inductive hypothesis
(IH), assume that the lemma holds for all δ < α. The program while (B) C has
two possible reductions, which do not affect the state, depending on the truth
value of the loop test. Consequently, to show (2), it is sufficient to establish:

A �τ
{
p(α) ∧ B

}
C; while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
(3)

A �τ
{
p(α) ∧ ¬B

}
skip

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
(4)

(4) holds trivially. To establish (3), (1) gives A �τ
{
p(α) ∧ B

}
C
{
∃δ. p(δ) ∧ δ < α

}
.

For all δ < α, IH gives A �τ
{
p(δ)

}
while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ δ

}
, and hence

A �τ
{
∃δ. p(δ) ∧ δ < α

}
while (B) C

{
∃β. p(β) ∧ ¬B ∧ β ≤ α

}
. Now (3) follows using

the analogous sequential composition lemma in appendix A. ut

6 Non-blocking Properties

Non-blocking properties are used to characterise concurrent algorithms that
guarantee progress. A lock-free algorithm guarantees global progress: an individual
thread might fail to make progress, but only because some other thread does
make progress. A wait-free algorithm guarantees local progress: every thread
makes progress when it is scheduled. We consider how non-blocking properties
can be formalised using Total-TaDA.

Modular Termination Verification for Non-blocking Concurrency 21

6.1 Lock-freedom

We have described lock-freedom in terms of an informal notion of “progress”.
In order to properly characterise modules as lock-free, we need a more formal
definition. We can characterise global progress for a module as follows: at any time,
eventually either a pending operation will be completed or another operation
will be begun. If we assume that the number of threads is bounded, then as long
as there are pending module operations, some operation will eventually complete.
(If the number of threads is unbounded, then there is no guarantee that any
operation will complete, even if it is scheduled arbitrarily often, since additional
operations can always begin.)

Based on this observation, Gotsman et al. [7] reduced lock-freedom to the ter-
mination of a simple class of programs, the bounded most-general clients (BMGCs)
of a module. Hoffmann et al. [10] generalised the result to apply to algorithms
where the identity or number of threads is significant. An (m,n)-bounded general
client consists of m threads which each invoke n module operations in sequence.
If all such bounded general clients (for every n and m)5 terminate, then the
module is lock free.

Definition 1. Consider a moduleM with initialiser init and a set of operations
O. Define the following sets of programs:

Tn = {op1; . . . ; opn | opi ∈ O} Cm,n = {init; (t1‖ . . . ‖tm) | ti ∈ Tn} .

Theorem 1 (Hoffmann et al. [10]). Given a module M, if, for all m and n,
every program c ∈ Cm,n terminates, then M is lock free.

Using this theorem, we define a specification pattern for Total-TaDA that
guarantees lock-freedom and follows easily from the typical specifications we
establish for lock-free modules.

Theorem 2. Given a module M and some abstract predicate M (with two
abstract parameters and an ordinal parameter), suppose that the following specifi-
cations are provable:

∀α. `τ
{
true

}
init

{
∃s, u.M(s, u, α)

}
∀op ∈ O.∀β. `τ

A

α, u.
〈
M(s, u, α) ∧ α > β(α)

〉
op
〈
∃u′.M(s, u′, β(α))

〉
.

Then M is lock-free.

Proof. By Theorem 1, it is sufficient to show that, for arbitrary m,n and c ∈ Cm,n,
the program c terminates. Fix the number of threads m.

We define a region type M whose abstract states consist of vectors x̄ ∈
Nm. (We denote by xi, for 1 ≤ i ≤ m, the i-th component of vector x̄. We

denote by
∑
x̄ the sum

∑i=m
i=1 xi.) Region states are interpreted as follows:

I(Ma(s, x̄)) , ∃u.M (s, u,
∑
x̄). The guard algebra for M consists of m distinct

5 The bounded most-general client may be seen as the program which non-determin-
istically chooses among all bounded general clients.

22 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

guards G1, . . . ,Gm. The state transition system for M allows a thread holding
guard Gi to decrease the i-th component of the abstract state:

Gi : (∀j 6= i. xj = yj) ∧ xi > yi ∧ x̄ ȳ.

For 1 ≤ i ≤ m, arbitrary n, and op ∈ O, using the use atomic rule, we have

A

k, u.
〈
M(s, u, k + n+ 1)

〉
op
〈
∃u′.M(s, u′, k + n)

〉{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∧ xi = n+ 1

}
op
{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∧ xi = n

}
Applying this specification repeatedly (by induction), we have for arbitrary t ∈ Tn

`τ
{
∃s, x̄.Ma(s, x̄) ∗ [Gi]a ∧ xi = n

}
t
{
true

}
Let c = init; (t1‖ . . . ‖tm) ∈ Cm,n be arbitrary. We derive `τ

{
true

}
c
{
true

}
easily by choosing n ·m as the initial ordinal and creating an M-region with
initial state (n, . . . , n). Consequently, c terminates, as required. ut

It is straightforward to apply Theorem 2 to the modules we have considered.

6.2 Wait-freedom

Whereas lock-freedom only requires that some thread makes progress, wait-
freedom requires that every thread makes progress (provided that it is not
permanently descheduled). In terms of operations, this requires that each op-
eration of a module should complete within a finite number of steps. Since
Total-TaDA specifications guarantee that operations terminate, it is simple to
describe a specification that implies that a module is wait-free.

Theorem 3. Given a module M and some abstract predicate M (with two
abstract parameters), suppose that the following specifications are provable:

`τ
{
true

}
init

{
∃s, t.M(s, u)

}
∀op ∈ O. `τ

A

u.
〈
M(s, u)

〉
op
〈
∃u′.M(s, u′)

〉
.

Then M is wait-free.

Proof. The specifications imply that M is an invariant which is established by
the initialiser and preserved at all times by the module operations. Furthermore,
all of the module operations terminate, assuming the environment maintains M
invariant. Consequently, all of the module operations terminate in the context of
an environment calling module operations: the module is wait-free. ut

Lock-freedom can only be applied to a module as a whole, since it relates
to global progress. Wait-freedom, by contrast, relates to local progress — that
the operations of each thread terminate — and so it is meaningful to consider
an individual operation to be wait-free in a context where other operations may
be lock-free or even blocking. By combining (partial-correctness) TaDA and
Total-TaDA specifications (indicated by ` and `τ respectively), we can give a
specification pattern that guarantees wait-freedom for a specific module operation.

Modular Termination Verification for Non-blocking Concurrency 23

Theorem 4. Given a module M and some abstract predicate M (with two
abstract parameters), suppose that the following specifications are provable:

`
{
true

}
init

{
∃s, u.M(s, u)

}
`τ

A

u.
〈
M(s, u)

〉
op
〈
∃u′.M(s, u′)

〉
∀op′ ∈ O. `

A

u.
〈
M(s, u)

〉
op
′ 〈∃u′.M(s, u′)

〉
Then op is wait-free.

Proof. As before, M is a module invariant; op is guaranteed to terminate with
this invariant, therefore it is wait-free. ut

The specifications required by Theorem 4 do not follow from those given for
our examples. However, where applicable, the proofs can easily be adapted. For
instance, to show that the read operation of the counter is wait-free, we would
remove the ordinals from the region definition, and abstract the value of the
counter. This breaks the termination proof for the increment operations, but we
can adapt it to a partial-correctness proof in TaDA. The termination proof for
read does not depend on the ordinal parameter of the region, and so we can still
establish total correctness, as required.

6.3 Non-impedance

Recall the counter specification from §2.1. If we abstract the value and address
of the counter (which are irrelevant to termination), the specification becomes:

∀α. `τ
{
emp

}
x := makeCounter()

{
∃s ∈ T1, u ∈ T2.C(s, u, α)

}
`τ

A

u, α.
〈
C(s, u, α)

〉
read(x)

〈
C(s, u, α)

〉
∀β. `τ

A
u, α.

〈
C(s, u, α) ∧ α > β(α)

〉
incr(x)

〈
∃u′.C(s, u′, β(α))

〉
Since the read operation does not change the ordinal, it implies that both
the read and incr operations will terminate in a concurrent environment that
performs an unbounded number of reads. This suggests an alternative approach
to characterising lock-free modules in terms of which operations impede each
other — that is, which operations may prevent the termination of an operation
if infinitely many of them are invoked during a (fair) execution of the operation.
Our specification implies that read does not impede either read or incr. This is
expressed by edges 1 and 2 in the following non-impedance graph:

incr read 1

2

3

Note that the above specifications for the counter do not by themselves
imply that incr does not impede read (edge 3). This can be demonstrated by
considering an alternative implementation of read, that satisfies the specification
but is not wait-free:

do {
v := [x]; w := [x];
} while (v 6= w);
return v;

24 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

Recall that we can prove that read is wait-free by giving a different specification
as in Theorem 4. An operation is wait-free exactly when every operation does
not impede it. For read, this is expressed by edges 1 and 3 in the above graph.

The stack specification in Fig. 7, much like the counter specification, implies
that pop does not impede either push or pop:

push pop

The pop operation, however, may be impeded by push.
The non-impedance relationships implied by the stack specification are impor-

tant for clients. For instance, consider a producer-consumer scenario in which the
stack is used to communicate data from producers to consumers. When no data
is available, consumers may simply loop attempting to pop the stack. If the pop

operation could impede push, then producers might be starved by consumers. In
this situation, we could not guarantee that the system would make progress. This
suggests that non-impedance, which is captured by Total-TaDA specifications,
can be an important property of non-blocking algorithms.

7 Related Work

Hoffmann et al. [10] introduced a concurrent separation logic for verifying total
correctness. By adapting the most-general-client approach of Gotsman et al. [7],
they establish that modules are lock-free. (They do not, however, establish
functional correctness.) This method involves a thread passing “tokens” to other
threads whose lock-free operations are impeded by modifications to the shared
state. Subsequent approaches [1,12] also use some form of tokens that are used
up in loops or function calls. These approaches require special proof rules for
the tokens. When these approaches restrict to dealing with finite numbers of
tokens, support for unbounded non-determinism (as in the backoff increment
example of Fig. 5) is limited. In Total-TaDA such token passing is not necessary.
Instead, we require the client to provide a general (ordinal) limit on the amount
of impeding interference. Consequently, we can guarantee the termination of
loops with standard proof rules.

Liang et al. [12] have developed a proof theory for termination-preserving
refinement, applying it to verify linearisability and lock-freedom. Their approach
constrains impedance by requiring that impeding actions correspond to progress
at the abstract level. In Total-TaDA, such constraints are made by requiring
that impeding actions decrease an ordinal associated with a shared region. Their
approach does not freely combine lock-free and wait-free specifications whereas,
with Total-TaDA, we can reason about lock- and wait-freedom in combination, and
more subtle conditions such as non-impedance. For example, we can show when
a read operation of a lock-free data-structure is wait-free. Their specifications
establish termination-preserving refinement (given a context, if the abstract
program is guaranteed to terminate, then so is the concrete), whereas Total-TaDA
specifications establish termination (in a context, the program will terminate).

Modular Termination Verification for Non-blocking Concurrency 25

Name Appendix

Treiber’s Stack (continued) B
Linked List Map C
Hash Map D
Hash Set E

Table 1: Additional examples.

Boström and Müller [1] have introduced an approach that can verify termi-
nation and progress properties of concurrent programs. The approach supports
blocking concurrency and non-terminating programs, which Total-TaDA does not.
However, the approach does not aim at racy concurrent programs and cannot
deal with any of the examples shown in the paper. Furthermore, the relationship
between termination and lock- and wait-freedom is not considered.

Of the above approaches, none covers total functional correctness for fine-
grained concurrent programs. With Total-TaDA we can reason about clients that
use modules, without their implementation details. Moreover, with Total-TaDA
it is easy to verify module operations independently, with respect to a common
abstraction, rather than considering a whole module at once. Finally, our approach
to specification is unique in supporting lock- and wait-freedom simultaneously,
as well as expressing more subtle conditions such as non-impedance.

8 Conclusions and Future Work

We have introduced Total-TaDA, a program logic that provides local, modular
reasoning for proving the termination and functional correctness of non-blocking
concurrent programs. With our abstract specifications, clients can reason about
total correctness without needing to know about the underlying implementation.
Different implementations, satisfying the same specification, can have different
termination arguments, but these arguments are not exposed to the clients. By
using ordinals to bound interference, our specifications can express traditional
non-blocking properties. Moreover, they capture a new notion of non-impedance:
that one operation does not set back the progress of another.

We have claimed that our approach supports modular reasoning, and sub-
stantiated this claim by reasoning about implementations and clients of modules.
In the appendices, we provide further examples, listed in Table 1. In particular,
we specify a non-blocking map and verify two implementations, based on lists
and hash tables, with the second making use of the first through the abstract
specification. We also implement a set specification on top of the map.

Blocking. Many concurrent modules make use of blocking, for example by using
semaphores or monitors. Properties such as starvation-freedom can be expressed
in terms of termination, but require the assumption of a fair scheduler. Some
aspects of our approach are likely to apply here. However, it is also necessary to
constrain future behaviours, for instance, to specify that a lock that has been
acquired will be released in a finite time. This might be achieved with a program
logic that can reason explicitly about continuations.

26 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

Non-termination. Some programs, such as operating systems, are designed not
to terminate. Such programs should still continually perform useful work. It would
be interesting to extend Total-TaDA to specify and verify progress properties
of non-terminating systems. Progress can be seen as localised termination, so
the same reasoning techniques should apply. However, a different approach to
specification will be necessary to express and verify these properties.

Acknowledgements. We thank Bart Jacobs, Hongjin Liang, Peter Müller and
the anonymous referees for useful feedback. This research was supported by
EPSRC Programme Grants EP/H008373/1 and EP/K008528/1, by the “Modu-
Res” Sapere Aude Advanced Grant from The Danish Council for Independent
Research for the Natural Sciences (FNU) and the “Automated Verification for
Concurrent Programs” Individual Postdoc Grant from The Danish Council for
Independent Research for Technology and Production Sciences (FTP).

References

1. Boström, P., Müller, P.: Modular verification of finite blocking in non-terminating
programs. In: 29th European Conference on Object-Oriented Programming. vol. 37,
pp. 639–663. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

2. Boyland, J.: Checking interference with fractional permissions. In: Static Analysis,
Lecture Notes in Computer Science, vol. 2694, pp. 55–72. Springer Berlin Heidelberg
(2003)

3. Cantor, G.: Beiträge zur begründung der transfiniten mengenlehre. Mathematische
Annalen 49(2), 207–246 (1897), http://dx.doi.org/10.1007/BF01444205

4. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL. pp. 287–300 (2013)

5. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: ECOOP. pp. 504–528 (2010)

6. Floyd, R.W.: Assigning Meanings to Programs. Proceedings of the American
Mathematical Society Symposia on Applied Mathematics 19, 19–31 (1967)

7. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V.: Proving That Non-blocking
Algorithms Don’t Block. In: POPL. pp. 16–28 (2009)

8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

9. Hessenberg, G.: Grundbegriffe der Mengenlehre. Abhandlungen der Fries’schen
Schule / Neue Folge, Vandenhoeck & Ruprecht (1906)

10. Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-
freedom. In: Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM
Symposium on. pp. 124–133. IEEE (2013)

11. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL. pp. 637–650 (2015)

12. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). p. 65. ACM (2014)

http://dx.doi.org/10.1007/BF01444205

Modular Termination Verification for Non-blocking Concurrency 27

13. Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. SIGOPS Oper. Syst.
Rev. pp. 108– (1992)

14. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL. pp.
247–258 (2005)

15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on.
pp. 55–74. IEEE (2002)

16. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Tada: A logic for time and
data abstraction. In: ECOOP 2014–Object-Oriented Programming, pp. 207–231.
Springer Berlin Heidelberg (2014)

17. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular specifications
for concurrent modules (invited tutorial paper). Electronic Notes in Theoretical
Computer Science 319, 3–18 (2015)

18. Svendsen, K., Birkedal, L.: Impredicative Concurrent Abstract Predicates. In: ESOP.
pp. 149–168 (2014)

19. Treiber, R.K.: Systems programming: Coping with parallelism. Tech. Rep. RJ 5118,
IBM Almaden Research Center (April 1986)

20. Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines. pp. 67–69 (1949), http://www.turingarchive.
org/browse.php/B/8

21. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP. pp. 377–390 (2013)

http://www.turingarchive.org/browse.php/B/8
http://www.turingarchive.org/browse.php/B/8

28 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

A Semantics

A.1 Operational Semantics

The operational semantics of our language are given in Fig. 10 and Fig. 11.

〈s,C1〉
a−→ 〈s′,C′1〉

〈s,C1;C2〉
a−→ 〈s′,C′1;C2〉 〈s, skip;C〉 id−→ 〈s,C〉

BJBKs

〈s, if (B) C1 else C2〉
id−→ 〈s,C1〉

¬BJBKs

〈s, if (B) C1 else C2〉
id−→ 〈s,C2〉

BJBKs

〈s, while (B) C〉 id−→ 〈s,C; while (B) C〉

¬BJBKs

〈s, while (B) C〉 id−→ 〈s, skip〉

EJ
−→
E Ks = s′(vars(γ(f)))

〈s, x := f(
−→
E)〉 id−→ 〈s, x := 〈s′, code(γ(f))〉〉

τ
a−→ τ ′

〈s, x := τ〉 a−→ 〈s, x := τ ′〉

〈s, x := 〈s′, return E;C〉〉 id−→ 〈s[x 7→ EJEKs′], skip〉

〈s, x := E〉 id−→ 〈s[x 7→ EJEKs], skip〉

〈s, x := [E]]〉 read(EJEKs,v)−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, [E1] := E2〉
write(EJE1Ks,EJE2Ks)−−−−−−−−−−−−−→ 〈s, skip〉

〈s, x := CAS(E1,E2,E3)〉 cas(EJE1Ks,EJE2Ks,EJE3Ks,v)−−−−−−−−−−−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, x := alloc(E)〉 alloc(EJEKs,v)−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, fork f(
−→
E)〉 spawn(f,EJ

−→E Ks)−−−−−−−−−−→ 〈s, skip〉

Fig. 10: Small-step operational semantics for threads,
a−→γ . The parameter γ is

fixed, and not shown.

Modular Termination Verification for Non-blocking Concurrency 29

T ‖ 〈s, skip〉 id−→ T T ‖ 〈s, return E;C〉 id−→ T

τ
spawn(f,−→v)−−−−−−−→ τ ′ s(vars(γ(f))) = −→v

T ‖ τ id−→ T ‖ τ ′ ‖ 〈s, code(γ(f))〉

τ
a−→ τ ′ a /∈ {spawn(f,−→v) | f,−→v }

T ‖ τ a−→ T ‖ τ ′

Fig. 11: Small-step operational semantics for thread pools,
a−→γ .

A.2 Model

Guards and Guard Algebras. We assume a set Guard that will contain all guards
that we might wish to use. A guard algebra ζ = (G, •,0,1) consists of:

– a carrier set G ⊆ Guard,
– an associative, commutative partial binary operator • : G × G ⇀ G,
– an identity element 0 ∈ G, with 0 • g = g for all g ∈ G, and
– a maximal element 1 ∈ G, with x ≤ 1 for all g ∈ G,

where
x ≤ y def⇐⇒ ∃z. x • z = y.

We denote by GAlg the set of all guard algebras.
Note that a guard algebra is a separation algebra (in the sense of [4]) with a

single unit, 0.

Abstract States and Transition Systems. We assume a set AState that will contain
all abstract region states that we might wish to use. For a given guard algebra ζ,
a guard-labelled transition system T : Gζ →mon P(AState× AState) is a mapping
from guards to relations. The mapping is monotone with respect to the resource
ordering (≤ζ) and subset ordering (⊆), meaning that having more guard resource
permits more transitions. Although we make no restriction on the transition
relation, in general, we shall use the reflexive-transitive closure T (g)∗. We denote
by ASTSζ the set of all ζ-labelled transition systems.

Abstract Region Types. We assume a set RTName of region type names. An
abstract region typing

t ∈ ARType
def
= RTName→

∐
ζ∈GAlg

ASTSζ

maps region type names to pairs of guard algebras and guard-labelled transition
systems.

30 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

Heaps. We assume a set Val of program values, which includes a set Loc ⊆ Val of

program locations. A heap h ∈ Heap
def
= Loc⇀fin Val is a finite partial function

from locations to values. Heaps form a separation algebra (Heap,], ∅), where] is
the disjoint union of partial functions, and ∅ is the partial function with the empty

domain. Heaps are ordered by resource ordering: h1 ≤ h2
def⇐⇒ ∃h3. h1]h3 = h2.

Abstract Predicates. We assume a set APName of abstract predicate names.
An abstract predicate a ∈ APName × Val∗ consists of an abstract predicate

name and a list of parameters. An abstract predicate bag b ∈ APBag
def
=

Mfin(APName× Val∗) is a finite multiset of abstract predicates. Abstract pred-
icate bags form a separation algebra (APBag,∪, ∅), where ∪ is multiset union,
and ∅ is the empty multiset. Abstract predicate bags are ordered by the usual
subset order ⊆, which corresponds to the resource order.

Levels. A level λ ∈ Level
def
= N is simply a natural number. Levels are ordered by

the usual well-founded ordering on natural numbers.

Region Assignments. We assume a (countably infinite) set of region identifiers,

RId. A region assignment r ∈ RAss
def
= RId⇀fin Level×RTName×Val∗ is a finite

partial function from region identifiers to levels and parametrised region type

names. Region assignments are ordered by extension ordering: r1 ≤ r2
def⇐⇒

∀a ∈ dom(r1). r2(a) = r1(a).
For the following semantic definitions, we assume a fixed abstract region

typing t ∈ ARType.

Guard Assignments. Given a region assignment, r, a guard assignment

γ ∈ GAssr
def
=

∏
a∈dom(r)

Gζ(t(r(a)))

is a mapping from the regions declared in r to guards of the appropriate type for
each region. Guard assignments form a separation algebra (GAssr, •, λa.0ζ(t(r(a))))
where • is the pointwise lift of the guard combination operators:

γ1 • γ2
def
= λa. γ1(a) • γ2(a)

For γ1 ∈ GAssr1 , γ2 ∈ GAssr2 with r1 ≤ r2, guards assignments are ordered
pointwise-extensionally:

γ1 ≤ γ2
def⇐⇒ ∀a ∈ dom(γ1). γ1(a) ≤ γ2(a).

Region States. Given a region assignment, r, a region state

ρ ∈ RStater
def
= dom(r)→ AState

is a mapping from the regions declared in r to abstract states. For ρ1 ∈ RStater1 ,

ρ2 ∈ RStater2 with r1 ≤ r2, region states are ordered extensionally: ρ1 ≤ ρ2
def⇐⇒

∀a ∈ dom(ρ1). ρ1(a) = ρ2(a).

Modular Termination Verification for Non-blocking Concurrency 31

Worlds. A world

w ∈World
def
=

∐
r∈RAss

(Heap× APBag × GAssr × RStater)

consists of a region assignment, a heap, an abstract predicate bag, a guard
assignment and a region state.

Worlds can be combined, provided they agree on the region assignment and
region state, by combining the remaining components in the appropriate separa-
tion algebras. Thus, worlds form a (multi-unit) separation algebra (World, ·, emp)
where

(r, h1, b1, γ1, ρ) · (r, h2, b2, γ2, ρ)
def
= (r, h1] h2, b1 ∪ b2, γ1 • γ2, ρ)

emp
def
=
{

(r, ∅, ∅, λa.0ζ(t(r(a))), ρ)
∣∣ r ∈ RAss, ρ ∈ RStater

}
Worlds are also ordered by the product order. If w1 ≤ w2, then w2 may be

obtained from w1 by introducing new regions (with arbitary associated type
name and state) and adding heap, abstract-predicate and guard resources.

World Predicates. A world predicate p ∈WPred
def
= P↑(World) is a set of worlds

that is upwards closed with respect to the world ordering. That is, if w ∈ p and
w ≤ w′ then w′ ∈ p.

The composition operator on worlds is lifted to world predicates:

p1 ∗ p2
def
= {w | ∃w1 ∈ p1, w2 ∈ p2. w = w1 • w2}

(That the results is upwards closed is not difficult to check: any extension to
the composition of two worlds can be tracked back and applied to one of the
components.) The ∗ operator is associative and commutative with identity World.
To denote ∗ iterated over a finite set X, we write �x∈X p(x).

Worlds with Atomic Tracking. The atomic tracking separation algebra is defined
to be ((AState×AState)]{�,♦} , •, (AState×AState)∪{♦}), where • is defined
by

� • ♦ = � = ♦ • �
♦ • ♦ = ♦

(x, y) • (x, y) = (x, y)

and undefined in all other cases. The resource ordering on this separation algebra
is characterised by the two rules: k ≤ k (for all k ∈ (AState× AState)] {�,♦})
and ♦ ≤ �.

Given a finite set of region identifiers R ⊆fin RId, a world with atomic tracking

ϕ ∈ AWorldR
def
= World × (R → (AState × AState)] {�,♦}) consists of a world

together with a mapping that associates atomic tracking resources with each
region in R. The mapping records if an atomic update has taken place on a region,

32 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

and, if so, what state change the region underwent in the update. Specifically, ♦
and � record that the atomic update has not yet happened, while (x, y) records
that the update has happened, and it entailed updating the abstract state from
x to y. The difference between ♦ and � is that � embodies a right to perform
the update, while ♦ does not.

By lifting • to maps, the maps form a separation algebra. Consequently, by
combining the operators of its components, AWorldR is also an ordered separation
algebra.

We consider that World = AWorld∅.
As with worlds, we consider predicates over worlds with atomic tracking

p ∈ AWPredR
def
= P↑(AWorldR) to be upwards-closed sets. These predicates

similarly have a ∗ operator.

Atomicity Context. An atomicity context A ∈ AContext
def
= RId ⇀fin AState ⇀

P(AState) is a (finite) partial mapping from region identifiers to partial, non-
deterministic abstract state transformers. In the context of proving that an
operation is abstractly atomic, the atomicity context records the abstract oper-
ation to be performed. This has implications in terms of both how the thread
performing the operation and the environment can update the region mentioned
in the context.

Rely Relation. Interference by the environment is abstracted by the rely relation.
For a given atomicity context A ∈ AContext, with R = dom(A), the rely relation
RA ⊆ AWorldR×AWorldR is the smallest reflexive-transitive relation that satisfies
the following rules:

g # g′ (s, s′) ∈ Tt(n)(g′)∗ (d(a) ∈ {�,♦} ⇒ s′ ∈ dom(A(a)))

(r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s], d) RA (r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s′], d)

(s, s′) ∈ A(a)

(r[a 7→ n], h, b, γ, ρ[a 7→ s], d[a 7→ ♦]) RA (r[a 7→ n], h, b, γ, ρ[a 7→ s′], d[a 7→ (s, s′)])

The first rule expresses that the environment may make any update to a region
for which it can have a guard that permits it in the corresponding transition
system. (It can only have such a guard if it is compatible with the guard held
by the thread, expressed as g # g′.) The exception to this is that, if an atomic
update is pending then the environment must not take the state outside of those
on which the atomic operation is set to perform.

The second rule expresses that having the � entitles one to perform an update
corresponding to that expressed in the atomicity context.

Note that interference is explicitly confined to the shared regions and atomic
tracking resources. Furthermore, extending the atomicity context decreases the
possible interference of the environment.

Stable Predicates. Given an atomicity context A ∈ AContext, the stable predicates
are those which are closed under the associated rely relation. That is, we define

Modular Termination Verification for Non-blocking Concurrency 33

the stability judgement as follows:

A � p stable
def⇐⇒ RA (p) ⊆ p.

We call the stable predicates views (as in [4]) and denote the set of views (in
atomicity context A) by ViewA. We drop the subscript when the empty atomicity
context is intended.

If A′ is an extension of A, we have a coercion from ViewA to ViewA′ by
extending the atomicity tracking component for the additional regions in every
possible way.

Stable predicates are closed under ∗. That is

A � p stable ∧ A � q stable =⇒ A � p ∗ q stable

Region Interpretation. A region interpretation I ∈ RInterp
def
= Level× RTName×

Val∗ × RId× AState→ View associates a view with each abstract state of each
parametrised region type. The parameters are used to specify, for example, the
address of a datastructure contained in the region. The region identifier is often
a necessary parameter as it is common for a region interpretation to refer to
guards for the region.6

Abstract Predicate Interpretation. An abstract predicate interpretation ι ∈
APInterp

def
= APName× Val∗ → View associates a view with each abstract predi-

cate.
For the following, assume a fixed region interpretation I and abstract predicate

interpretation ι.

Region Collapse. Given a level λ ∈ Level, the region collapse of a world ϕ ∈
AWorldR′ is a set of worlds given by:

ϕ↓λ
def
=

{
ϕ · (w′, ∅)

∣∣∣∣∣ w′ ∈ �
{a | ∃λ′<λ.rϕ(a)=(λ′,−,−)}

I(rϕ(a), a, ρϕ(a))

}

This operation is lifted to predicates in a straightforward manner: p↓λ
def
=⋃

ϕ∈p ϕ↓λ.

Abstract Predicate Collapse. The one-step abstract predicate collapse of a world
is a set of worlds given by:

(r, h, b, γ, ρ, d)�1
def
=

{
(r, h, ∅, γ, ρ, d) · (w, ∅)

∣∣∣∣ w ∈ �
a∈b

ι(a)

}
6 Here, we have avoided having region interpretations directly referring to region

interpretations. Impredicative CAP [18] does support this by constructing the relevant
domains in the topos of trees. We opt for a simpler, if less powerful, alternative:
breaking self-reference by indirection through region type names.

34 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

This is lifted to predicates: p�1
def
=
⋃
ϕ∈p ϕ�1. The one-step collapse is iterated to

give the multi-step collapse: p�n+1
def
= (p�n)�1.

The abstract predicate collapse of a predicate applies the multi-step collapse
to collapse all abstract predicates:

p�
def
= {ϕ | ∃n. ϕ ∈ p�n ∧ bϕ = ∅}

Note 1. This approach to interpreting abstract predicates is different from the
usual one. It effectively gives a step-indexed interpretation to the predicates: the
concrete interpretation is given by the finite unfoldings. If a predicate cannot be
made fully concrete by finite unfolding, then its semantics will be false.

Reification. The reification operation on worlds collapses the regions and the
abstract predicates, and then considers only the heap portion:

bϕcλ
def
= {hϕ′ | ϕ′ ∈ ϕ↓λ�}

This operation is lifted to predicates in the usual manner.

Guarantee Relation. Given a level λ ∈ Level, and atomicity context A ∈ AContext,
the guarantee relation Gλ;A ⊆ AWorldR′ × AWorldR′ is defined as:

ϕ Gλ;A ϕ
′ def⇐⇒ ∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρϕ(a) = ρϕ′(a) ∧

∀a ∈ domA.

 (dϕ(a) = dϕ′(a) ∧ ρϕ(a) = ρϕ′(a)) ∨(
dϕ(a) = � ∧ dϕ′(a) = (ρϕ(a), ρϕ′(a))

∧ (ρϕ(a), ρϕ′(a)) ∈ A(a)

)
The guarantee relation enforces that regions with level λ or higher cannot be
modified. It also enforces that regions mentioned in the atomicity context can
only be updated using the atomicity context.

Note 2. It will be necessary to enforce that each execution step preserves regions
above a certain level, because these regions will simply be dropped by the
reification. If we didn’t constrain them in this way, a thread could change them
as it liked (resources permitting) without even making a concrete update!

Semantic Judgements In the Views Framework [4], primitive atomic actions
are abstracted to relations on views by means of an atomic satisfaction judgement.
Here, we have an analogous judgement, but which is more complex as it expresses
the role of an action in performing an abstractly-atomic operation. To express this
role, we conceptually divide the view into a private and a public part. A thread is
at liberty to do as it pleases with the private part (subject to preserving all stable
frames). The public part, however, must be maintained invariant by the thread
until it performs its abstract atomic action, at which point it updates the public

Modular Termination Verification for Non-blocking Concurrency 35

part accordingly and thereafter loses access to it. The primitive atomic satisfaction
judgement therefore incorporates five assertions: pp, the precondition for the
private part; p, the precondition for the public part; p′p, the postcondition for
the private part where the atomic update does not happen; q, the postcondition
for the public part (when an atomic update does happen — otherwise p plays
the role); and qp, the postcondition for the private part where the atomic update
does happen.

Definition 2 (Primitive Atomic Satisfaction Judgement). The primitive
atomic satisfaction judgement λ;A � 〈pp | p〉 a 〈p′p | −〉+〈qp | q〉, where λ ∈ Level,
A ∈ AContext, a ∈ AAction and pp, p, p

′
p, q, qp ∈ ViewdomA, is defined as:

λ;A � 〈pp | p〉 a 〈p′p | −〉+ 〈qp | q〉
def⇐⇒

∀r ∈ ViewA.∀ϕ ∈ pp ∗ p ∗ r. ∀h ∈ bϕcλ.∀h′ ∈ JaK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ (p′p ∗ p ∗ r) ∪ (qp ∗ q ∗ r)

Definition 3 (Primitive Atomic Satisfaction Judgement).

λ;A � 〈p〉a〈q〉 def⇐⇒
∀r ∈ ViewA.∀ϕ ∈ p ∗ r. ∀h ∈ bϕcλ.∀h′ ∈ JaK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ q ∗ r.

Definition 4 (Semantic Judgement). The semantic judgement

λ;A;Ω �
A

x ∈ X. 〈pp | p(x)〉 C
E

y ∈ Y. 〈qp(x,y) | q(x,y)〉

where

– λ ∈ Level is a level strictly greater than that of any region that will be affected
by the program;

– A ∈ AContext is the atomicity context, which constrains updates to regions
on which an abstractly atomic update is to be performed;

– Ω ∈ X × Y → Val → ViewdomA is the postcondition on return, which is
parametrised by the value returned;

– pp ∈ Store → ViewdomA is the private part of the precondition, which does
not correspond to resources in some opened shared region, and is parametrised
by the valuation of program variables;

– p ∈ X → ViewdomA is the public part of the precondition, which may corre-
spond to resources from some opened shared regions, and is parametrised by
x ∈ X that tracks the precondition at the linearisation point;

– C ∈ Command is the program under consideration;
– qp ∈ X × Y → Store → ViewdomA is the private part of the postcondition,

which is parametrised by x ∈ X that tracks the precondition at the linearisation
point, by y ∈ Y that tracks the postcondition at the linearisation point, and
by the valuation of program variables;

36 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

– q ∈ X × Y → ViewdomA is the public part of the postcondition, which is
similarly parametrised by x ∈ X and y ∈ Y ,

is defined to be the least-general judgement that holds when the following conditions
hold:

– For all s, s′ ∈ Store, C′ ∈ Command, a ∈ AAction with 〈C, s〉 a−→ 〈C′, s′〉, for
all x ∈ X, there exist p′p ∈ Store → ViewdomA, p′′p ∈ X × Y → Store →
ViewdomA such that

λ;A �
〈
pp(s) ∗ p(x)

〉
a
〈
p′p(s

′) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(x,y, s′) ∗ q(x,y)
〉

λ;A;Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,
and for all y ∈ Q(x), λ;A;Ω(x,y) �

{
p′′p(x,y)

}
C′
{
qp(x,y)

}
.

– For all s, s′ ∈ Store, C′ ∈ Command, f , −→v with 〈C, s〉 fork(f,−→v)−−−−−−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store → ViewdomA, p′′p ∈ X × Y →
Store → ViewdomA and pf ∈ Store → View such that for all sf ∈ Store
with sf (vars(γ(f))) = −→v ,

λ;A �
〈
pp(s) ∗ p(x)

〉
id
〈
p′p(s

′) ∗ pf (sf) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(s′) ∗ pf (sf) ∗ q(x,y)
〉

,

λ;A;Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,
for all y ∈ Q(x), λ;A;Ω(x,y) �

{
p′′p(x,y)

}
C′
{
qp(x,y)

}
,

and λ; ∅; true �
{
pf
}

code(γ(f))
{
true

}
.

– If C = skip then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈qp(x,y, s) | q(x,y)〉.

– If C = return E;C′ then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such
that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈Ω(x,y, EJEKs) | q(x,y)〉.

Here, we adopt the syntax λ;A;Ω �
{
p
}
C
{
q
}

as shorthand for λ;A;Ω �

A

x ∈
1. 〈p|true〉 C

E

y ∈ 1. 〈q|true〉.

The semantic judgement breaks down into four mutually-exclusive cases: two
progressing and two terminating. The first case covers normal progress, where
the thread performs some atomic action (possibly id). The action may or may not
perform the linearisation point: the two new private views express the outcome
of each case. In the case where the linearisation point is not performed, the
continuation takes up this obligation. In the case where the linearisation point is
performed, the continuation loses responsibility for the public part.

The second case covers forking a new thread. This is just like the first case,
taking the action id, but with an additional obligation on the semantics of the
new thread: we must split the private part to give a precondition for both the

Modular Termination Verification for Non-blocking Concurrency 37

continuation and the newly-forked thread. Since it is not possible to explicitly
join on forked threads, we take their postcondition to be simply true. Note that
the forked thread does not participate in the atomic action of the original thread.

The third case covers ordinary termination. In this case, the atomic action
must be performed by the id action (since the thread is not going to perform any
further actions).

The fourth case covers termination by return. This is similar to the previous
case, except that the return postcondition, Ω, is used.

A.3 Soundness

We give some of the interesting proof steps in the soundness proof.

Lemma 2 (While Rule). Let α be an ordinal. If, for all γ ≤ α,

λ;A �τ
{
pp(γ) ∧ B

}
C
{
∃β. pp(β) ∧ β < γ

}
(5)

then
λ;A �τ

{
pp(α)

}
while (B) C

{
∃β. pp(β) ∧ ¬B ∧ β ≤ α

}
. (6)

Proof. The proof is by transfinite induction on the ordinal α. As the inductive
hypothesis, we shall assume that the lemma holds for all δ < α. Since while (B) C
has two possible reductions, both with transition id, to show (6), it is sufficient
to establish:

λ;A �τ
{
pp(α) ∧ B

}
C; while (B) C

{
∃β. pp(β) ∧ ¬B ∧ β ≤ α

}
(7)

λ;A �τ
{
pp(α) ∧ ¬B

}
skip

{
∃β. pp(β) ∧ ¬B ∧ β ≤ α

}
(8)

(This is since the first condition of Definition 4 is the only one that may apply. For

the reduction 〈s, while (B) C〉 id−→ 〈s,C; while (B) C〉 (which requires B(s)), take
p′p = pp(α) ∧ B and p′′p = false. The first and third sub-conditions become trivial,

while the second reduces to (7). For the reduction 〈s, while (B) C〉 id−→ 〈s, skip〉
(which requires ¬B(s)), take p′p = pp(α) ∧ ¬B and p′′p = false. Similarly, the first
and third sub-conditions are trivial and the second reduces to (8).)

To establish (7), we have from (5)

λ;A �τ
{
pp(α) ∧ B

}
C
{
∃δ. pp(δ) ∧ δ < α

}
.

By the inductive hypothesis, we have, for all δ < α

λ;A �τ
{
pp(δ)

}
while (B) C

{
∃β. pp(β) ∧ ¬B ∧ β ≤ δ

}
,

and hence

λ;A �τ
{
∃δ. pp(δ) ∧ δ < α

}
while (B) C

{
∃β. pp(β) ∧ ¬B ∧ β ≤ α

}
.

Now (5) follows from the above by the sequencing lemma.
It is trivial to establish (8) by choosing α as the witness for β.

38 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

Lemma 3 (Recursion Rule). If

λ;A `τ
{
p(x, α)

}
y := f(x)

{
q(x, y)

}
then

λ;A;Ω �τ
{
p(x, α)

}
y := f(x)

{
q(x, y)

}
Proof. By transfinite induction, we prove ∀β. P (β), where:

P (β) ≡ α ≥ β ⇒ λ;A `τ
{
p(x, β)

}
y := f(x)

{
q(x, ret)

}
∧ λ;A `τ

{
p(vars(f), β)

}
code(f)

{
q(vars(f), ret)

}
Assume by transfinite induction ∀γ < β. P (γ). Assume α ≥ β.

Clearly, ∀γ < β. P (γ) implies ∀γ < β. λ;A `τ {p(x, γ)} y := f(x) {q(x, y)}
and by our premiss, we have:

(∀γ < β. λ;A `τ {p(x, γ)} y := f(x) {q(x, y)}),
λ;A `τ

{
p(vars(f), β)

}
code(f)

{
q(vars(f), ret)

}
So, λ;A `τ

{
p(vars(f), β)

}
code(f)

{
q(vars(f), ret)

}
holds, as the above

implies such a proof under the assumption that proofs exists for λ;A `τ
{p(x, γ)} y := f(x) {q(x, y)} for all γ < β. Clearly, this implies

λ;A `τ
{
p(x, β)

}
y := f(x)

{
q(x, y)

}
.

From this we have P (β). Therefore, by transfinite induction, ∀γ. P (γ).

To prove λ;A;Ω �τ
{
p(x, α)

}
y := f(x)

{
q(x, y)

}
, as we can execute one step

of the operational semantics, 〈y := f(x), s〉 id−→ 〈y := 〈code(γ(f)), s′〉, s〉, with

s′(vars(γ(f))) = EJ
−→
E Ks, that is not a fork, we need to prove:

λ;A;Ω �τ
{
p(x, α)

}
y := 〈code(γ(f)), s′〉

{
q(x, y)

}
From the above transfinite induction, P (α) gives us

λ;A `τ
{
p(vars(f), α)

}
code(f)

{
q(vars(f), ret)

}
.

By the inductive assumption of the structural induction over the structure of
syntactic triples, we have:

λ;A;Ω �τ
{
p(vars(f), α)

}
code(f)

{
q(vars(f), ret)

}
This clearly gives us enough to prove our goal, therefore, for the ordinal α,

the following holds:

λ;A;Ω �τ
{
p(x, α)

}
y := f(x)

{
q(x, y)

}

Modular Termination Verification for Non-blocking Concurrency 39

Lemma 4. If, for p ∈ Viewdom(A), q, ω ∈
∐
x∈X Q(x) → Viewdom(A), x ∈ X,

y ∈ Q(x)

λ; a : x ∈ X Q(x),A;∃x, y. ω(x, y) ∗ a Z⇒ (x, y) �τ
{p ∗ a Z⇒ (x, y)}

C
{∃x, y. q(x, y) ∗ a Z⇒ (x, y)}

then
λ;A;ω(x, y) �τ {p} C {q(x, y)}

Lemma 5 (Make Atomic Rule). Suppose that

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Ta(G)∗

λ;A;Ω �τ

{
pp ∗ ∃x ∈ X. tλ

′

a (x) ∗ a Z⇒ �
}

C
{∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)}

where

A = aλ
′

: x ∈ X Q(x),A′

Ω(ret) = ∃x ∈ X, y ∈ Q(x). ω(x, y, ret) ∗ a Z⇒ (x, y)

and a /∈ A′. Then

λ;A′;ω �τ

A

x ∈ X.
〈
pp

∣∣∣tλ′

a (x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣∣tλ′

a (y) ∗ [G]a

〉
Proof. Consider the case where C performs an action. Suppose that 〈C, s〉 a−→
〈C′, s′〉 where a ∈ AAction. By the premiss, there must be some p′p with

λ;A �
〈
pp(s) ∗ ∃x ∈ X. tλ

′

a (x) ∗ a Z⇒ �
〉
a
〈
p′p(s

′)
〉

(9)

λ;A;Ω �τ
{
p′p
}
C′
{
∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)

}
. (10)

Fix x ∈ X. Fix r ∈ ViewA′ . Fix ϕ ∈ pp(s) ∗ tλ
′

a (x) ∗ [G]a ∗ r.
Let p′p = λs.

{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ � ∈ p′p(s)}.

Let p′′p(x, y) = λs.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ (x, y) ∈ p′p(s)
}

.
Let r = r ∗ [G]a ∗ a Z⇒ −. (r is stable with respect to A since the additional

interference will be a : x ∈ X Q(x), and the subset of r that is compatible
with [G]a must be closed under this.) Let ϕ = ϕ • a Z⇒ �. By construction,
bϕcλ = bϕcλ. We have that ϕ ∈ (pp(s) ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �) ∗ r.

By (9) there exists ϕ′ with a) ϕ Gλ;A ϕ′, b) h′ ∈ bw′cλ, and c) ϕ′ ∈ p′p(s′) ∗ r.
From a) we can be sure that dϕ′ 6= ♦. Indeed, since dϕ = � and ρϕ = x, it

must be that either dϕ′ = � or dϕ = (x, y) for some y ∈ Q(x).
Let ϕ′ be such that ϕ ∈ ϕ′ ∗ a Z⇒ −. Now

ϕ′ ∈ p′p(s′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s′) ∗ tλ
′

a (y)

40 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

since ϕ′ ∈ p′p(s
′) ∗ r (by c). By a) and definitions, we get ϕ Gλ;A ϕ′. By

construction bϕ′cλ = bϕ′cλ so h′ ∈ bϕ′cλ by b). Hence, we have established

λ;A �
〈
pp(s) ∗ tλ

′

a (x) ∗ [G]a

〉
a
〈
p′p(s

′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s′) ∗ tλ
′

a (y)
〉

.

We have that p′p ∗ ∃x ∈ X. xt (a)λ′ ∗ a Z⇒ � �τ p′p and is stable with respect to
A. From (10), by left consequence and the inductive hypothesis, we have

λ;A;Ω �τ

A

x ∈ X. 〈p′p|tλ
′

a (x) ∗ [G]a〉 C′

E

y ∈ Y. 〈qp(x, y)|tλ
′

a (y) ∗ [G]a〉

Finally, from (10) and Lemma 4, we have, for all y ∈ Q(x)

λ;A′;ω �τ
{
p′′p(x, y)

}
C′
{
qp(x, y)

}
.

The remaining cases are simpler, or follow similar reasoning.

Lemma 6 (Update Region Rule). Suppose that a /∈ A and

λ;A;Ω �τ

A

x ∈ X.
〈
pp
∣∣I(tλa(x)) ∗ p(x)

〉
C

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

〉
.

Then

λ+1;A′;Ω �τ

A

x ∈ X.
〈
pp
∣∣tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E
y ∈ Q(x), z ∈ Z.

〈
qp(x, y, z)

∣∣∣∣tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

〉
,

where A′ = (a : x ∈ X Q(x),A).

Proof. Suppose that 〈C, s〉 a−→ 〈C′, s′〉 with a ∈ AAction.
Fix x ∈ X. From our assumption, there are p′p and p′′p with

λ;A �

〈
pp(s) ∗ I(tλa(x)) ∗ p(x)

〉
a〈

p′p(s
′) ∗ I(tλa(x)) ∗ p(x) ∨

∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(
I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

)〉 (11)

λ;A;Ω �τ

〈
p′p
∣∣I(tλa(x)) ∗ p(x)

〉
C′

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

〉 (12)

∀y ∈ Q(x), z ∈ Z. λ;A;Ω(x, y, z) �τ
{
p′′p(x, y, z)

}
C′
{
qp(x, y, z)

}
(13)

We will show that these p′p and p′′p(x, y, z) = p′′p(x, y, z) ∗ a Z⇒ (x, y) work to
establish our goal.

Modular Termination Verification for Non-blocking Concurrency 41

Fix r ∈ ViewA′ , ϕ ∈ pp(s) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∗ r, h ∈ bϕcλ+1, h′ ∈ JaK(h).
Let r ∈ ViewA be such that

r = removedonea

r ∗ �

a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

.

That is, we open all regions at level λ (except a) with their states as given by ϕ
and remove the atomicity tracking for a.

There will be some ϕ ∈ pp ∗ I(tλa(x)) ∗ p(x) ∗ r with rϕ = rϕ and ρϕ = ρϕ,
and bϕcλ = bϕcλ+1, and so h ∈ bϕcλ. By (11), there is some ϕ′ with ϕ Gλ;A ϕ′,
h′ ∈ bϕ′cλ and

ϕ′ ∈

p′p(s′) ∗ I(tλa(x)) ∗ p(x) ∨
∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(

I(tλa(y)) ∗ q1(x, y, z) ∨
I(tλa(x)) ∗ q2(x, y, z)

) ∗ r
We have the following cases for ϕ′:

– ϕ′ ∈ p′p(s′′) ∗ I(tλa(x)) ∗ p(x) ∗ r. In this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(x)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′p(s′) ∗ p(x) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).

Hence, by the guarantee, ϕ′ ∈ p′p(s′′) ∗ tλa(x) ∗ p(x) ∗ r, and by construction
bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

– ϕ′ ∈ p′′p(x, y, z, s′) ∗ I(tλa(y)) ∗ q1(x, y, z) ∗ r for some y ∈ Q(x) and z ∈ Z. In

this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(y)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′′p(x, y, z, s′) ∗ q1(x, y, z) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ [a 7→ y], dϕ′′ [a 7→ (x, y)]).

Hence, by the guarantee, ϕ′ ∈ p′′p(x, y, z, s′) ∗ tλa(y) ∗ q1(x, y, z) ∗ r, and by
construction bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

42 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

– ϕ′ ∈ p′′p(x, y, z, s′) ∗ I(tλa(x)) ∗ q2(x, y, z) ∗ r for some y ∈ Q(x) and z ∈ Z. In

this case, ϕ′ = ϕ′′ • ϕ′ where

ϕ′ ∈ I(tλa(x)) ∗ �
a′ ∈ RId
a′ 6= a

rϕ(a′) = (λ,−,−)

I(rϕ(a′), a′, ρϕ(a′))

and ϕ′′ ∈ p′′p(x, y, z, s′) ∗ q2(x, y, z) ∗ r. Let

ϕ′ = (rϕ′′ , hϕ′′ , bϕ′′ , γϕ′′ , ρϕ′′ , dϕ′′ [a 7→ �]).

Hence, by the guarantee, ϕ′ ∈ p′′p(x, y, z, s′) ∗ tλa(x) ∗ q2(x, y, z) ∗ r, and by
construction bϕ′cλ+1 = bϕ′′cλ. Also ϕ Gλ+1;A′ ϕ′.

In each case we have ϕ′ which satisfies ϕ Gλ+1;A ϕ
′, h′ ∈ bϕ′cλ+1 and

ϕ′ ∈ p′p(s′) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∨
∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(

tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

)
∗ r.

So we have established that

λ+1;A′ �

〈
pp(s) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
a〈

p′p(s
′) ∗ tλa(x) ∗ p(x) ∗ a Z⇒ � ∨

∃y ∈ Q(x), z ∈ Z. p′′p(x, y, z, s′) ∗(
tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨

tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

)〉.

By (12), it follows from the inductive hypothesis that

λ+ 1;A′;Ω �τ

A

x ∈ X.
〈
p′p
∣∣tλa(x) ∗ p(x) ∗ a Z⇒ �

〉
C

E

y ∈ Q(x), z ∈ Z.
〈
qp(x, y, z)

∣∣∣∣tλa(y) ∗ q1(x, y, z) ∗ a Z⇒ (x, y) ∨
tλa(x) ∗ q2(x, y, z) ∗ a Z⇒ �

〉
Fix y ∈ Q(x) and z ∈ Z. Because p′′p(x, y, z) = p′′p(x, y, z) ∗ a Z⇒ (x, y), we can

extend the atomicity context and have

λ+ 1;A′;Ω(x, y, z) �τ
{
p′′p(x, y, z)

}
C′
{
qp(x, y, z)

}
B Treiber’s Stack

The proof of the push operation is in Fig. 12.

Modular Termination Verification for Non-blocking Concurrency 43

∀β.

A

vs, t, α.〈
Stack(s, x, vs, t, α) ∧ α > β(α, vs)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
r,
t

=
(n
s,
d
s)

〈
TStackr(x, ns, ds, α) ∗ [G]r ∧ vs = snds(ns) ∧ α > β(α, snds(ns))

〉
m

a
k
e

a
to

m
ic

r : (ns, ds, α) ∧ α > β(α, snds(ns)) ((n, v) : ns, ds, β(α, snds(ns))) `τ{
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∧ α > β(α, snds(ns))

}
y := alloc(2);{
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗ node(y, ,)
∧ α > β(α, snds(ns))

}
[y] := v;{
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗ node(y, v,)
∧ α > β(α, snds(ns))

}
do {
∀γ.{
∃ns, ds, α. TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗ node(y, v,)
∧ α > β(α, snds(ns)) ∧ γ ≥ 2 · α+ |ns|

}

o
p

en
re

g
io

n

A

ns, ds, α.〈
∃y. x 7→ y ∗ stack(y, ns, ds) ∧ α > β(α, snds(ns)) ∧ γ ≥ 2 · α+ |ns|

〉
z := [x];〈
∃y. x 7→ y ∗ stack(y, ns, ds) ∧ z = y ∧ α > β(α, snds(ns))
∧ γ ≥ 2 · α+ |ns|

〉

∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗ node(y, v,)
∧ α > β(α, snds(ns)) ∧ γ ≥ 2 · α+ |ns| ∧
((ns = [] ∧ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)

[y.next] := z;
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗ node(y, v, z) ∧
α > β(α, snds(ns)) ∧ γ ≥ 2 · α+ |ns| ∧
((ns = [] ∧ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)

u
p

d
a
te

re
g
io

n

A

ns, ds, α.〈∃w. x 7→ w ∗ stack(w, ns, ds) ∗ node(y, v, z) ∧
α > β(α, snds(ns)) ∧ γ ≥ 2 · α+ |ns| ∧
((ns = [] ∧ z = 0) ∨ head(ns) = (z,) ∨ γ > 2 · α+ |ns|)

〉
b := CAS(x, z, y);〈
if b = 0 then

(
∃w. x 7→ w ∗ stack(w, ns, ds) ∗ node(y, v,)

∧ γ > 2 · α+ |ns|

)
else x 7→ y ∗ stack(y, ((y, v) : ns, ds))

〉
if b = 0 then

(
∃ns, ds, α.TStackr(x, ns, ds, α) ∗ r Z⇒ � ∗

node(y, v,) ∧ α > β(α, snds(ns)) ∧ γ > 2 · α+ |ns|

)
else ∃ns, ds, α. r Z⇒ ((ns, ds, α), ((y, v) : ns, ds, β(α, snds(ns))))

} while (b = 0);{
∃ns, ds, α. r Z⇒ ((ns, ds, α), ((y, v) : ns, ds, β(α, snds(ns))))

}〈
∃n.TStackr(x, (n, v) : ns, ds, β(α, vs)) ∗ [G]r ∧ v : vs = snds((n, v) : ns)

〉〈
∃t′. Stack(s, x, v : vs, t′, β(α, vs))

〉
Fig. 12: Proof of total correctness of Treiber’s stack push operation.

44 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

C Linked List Map

C.1 Code

We introduce an implementation of a Map module that uses a linked list. Each
node in the linked list represents a key-value pair that is in the map and is
implemented with adjacent memory cells, the key, the value and a pointer to
the next node (0 if there is no next element). Whenever an key-value pair with
a key that was never previously in the map, a node is added at the end of the
linked list (using the LLMapAdd function) storing the key value pair. If the key
was previously in the map, a cell with this key must exist, as, when the delete
operation of the map, LLMapRemove, finds a node in the linked list storing a
key-value pair with a key it is trying to remove from the map, it simply updates
the value of the node to 0, making it “invisible” to the map, rather than deleting
it, so in this case, the add function of the map simply write the new value into
the old cell with value 0. This imposses the restriction that a key cannot map to
the value 0.

function makeLLMap() {
x := alloc(1);
[x] := 0;
return x;

}

Fig. 13: makeLLMap

Modular Termination Verification for Non-blocking Concurrency 45

function LLMapAdd(x, k, v) {
nn := alloc(3);
[nn.key] := k;
[nn.value] := v;
[nn.next] := 0;
l := 0;
while (l = 0) {

prev := x;
n := [x];
while (n 6= 0) {

nk := [n.key];
if (nk = k) {

[n.value] := v;
return 0;

}
prev := n.next;
n := [n.next];

}
l := CAS(prev, 0, nn);

}
return 0;

}

Fig. 14: LLMapAdd function.

function LLMapRemove(x, k) {
n := [x];
while (n 6= 0) {

nk := [n.key];
if (nk = k) {

b := 0;
while (b = 0) {

v := [n.value];
if (v 6= 0) {

b := CAS(n.value, v, 0);
} else {

return 0;
}

}
return 1;

}
n := [n.next];

}
return 0;

}

Fig. 15: LLMapRemove function.

46 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

function LLMapLookup(x, k) {
n := [x];
while (n 6= 0) {

nk := [n.key];
if (nk = k) {

v := [n.value];
return v;

}
n := [n.next];

}
return 0;

}

Fig. 16: LLMapLookup function

n.key = n

n.value = n + 1
n.next = n + 2

Fig. 17: Object offsets

Modular Termination Verification for Non-blocking Concurrency 47

C.2 Specifications

We introduce the abstract specification for indexes. Note that the remove oper-
ation decreases the ordinal parametrising the abstract predicate as it impedes
itself due to the CAS loop used to write the value 0 to a cell when removing it
from that map to check that the previous value of the node is not 0 so that the
function can return a value that informs the client wether or not the deletion
found a key-value mapping to delete.

Otherwise, the specification defines a standard map module, the add function,
LLMapAdd, adds a new key-value pair to the mapping, removing any previous
mappings associated with the same key, the remove function, LLMapRemove,
removes the mapping associated with a given key and the lookup function,
LLMapLookup, returns the value associated with a given key within the map, or
0 if the key is not defined in the map.

∀α. `τ
{
emp

}
makeLLMap()

{
∃s, t. LLMap(s, ret, ∅, t, α)

}
∀β. `τ

A

S, t, α.
〈
LLMap(s, x, S, t, α) ∧ α > β(S, α) ∧ v 6= 0

〉
LLMapAdd(x, k, v)

〈
∃t′. LLMap(s, x, (S \ {(k,)})] {(k, v)} , t′, β(S, α))

〉
∀β. `τ

A

S, t, α.

〈
LLMap(s, x, S, t, α) ∧ α > β(S, α)

〉
LLMapRemove(x, k)

〈 if (k,) ∈ S
then ∃t′. LLMap(s, x, S \ {(k,)} , t′, β(S, α)) ∧ ret = 1

else LLMap(s, x, S, t, α) ∧ ret = 0

〉

`τ

A

S, t, α.

〈
LLMap(s, x, S, t, α)

〉
LLMapLookup(x, k)

〈
LLMap(s, x, S, t, α) ∧

(((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉

Fig. 18: Index operation specifications.

C.3 Definitions

We introduce the predicates, functions, regions and guards required for the proof.
The function map gives the key-values pairs of a map given the abstract state
of the linked list, a list of triples of node address, keys and values and the dom
function gives the set of all of the keys that a given map has ever been defined
over (including those where a 0 has been written to the node representing the
mapping to remove it) from this same list.

map(ls) =

{(k, v)}]map(ls′) ls = (x, k, v) : ls′ ∧ v 6= 0

map(ls′) ls = (x, k, 0) : ls′

∅ ls = []

dom(ls) =

{
{k}] dom(ls′) ls = (x, k, v) : ls′

∅ ls = []

48 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

LinkedListMap(x, ls) ,

{
∃y. x 7→ k, v, y ∗ LinkedListMap(y, ls′) ls = (x, k, v) : ls′

emp ls = [] ∧ x = 0

I(LinkedListMapa(x, ls, α)) , ∃y. x 7→ y ∗ LinkedListMap(y, ls)

LLMap(a, x, S, ls, α) , LinkedListMapa(x, ls, α) ∗ [G]a ∧map(ls) = S

G : ∀x, k, v, hs, ts, α, β < α. (hs ++ (x, k,) : ts, α) (hs ++ (x, k, v) : ts, β)

G : ∀x, k, v, ls, α, β < α. (ls, α) ∧ k 6∈ dom(ls) (ls ++ [(x, k, v)], β)

G : ∀ls, α, β < α. (ls, α) (ls, β)

This transition system, allows the value of a cell to be arbitrarily changed,
cells to be appended to the end of the list, both involve simulatenously decreasing
the ordinal parametrising the region, and the ordinal parametrising the region to
be arbitrarily decreased.

C.4 Proofs

Below are the proofs of total correctness of the operations on the Linked List map.
There are two loop invariants used in these proofs. The first is simply the ordinal
parametrizing the region, in the case of loops that have to continue executing
due to concurrent writes from the environment, as can be seen in the outer loop
of the LLMapAdd function and in the inner loop of the LLMapRemove function and
the second is α · 2 + |ts| for loops that traverse the list, where ts is the part of the
list the loop is yet to traverse, as whenever the list is lengthened, |ts| increases
by one, but α must decrease by at least the same amount so the total value of
the expression must decrease, and each time the loop progresses in its traversal,
|ts| decreases, so the total value of the expression once again decreases.

Modular Termination Verification for Non-blocking Concurrency 49

∀β.

A

S, t, α.〈
LLMap(s, x, S, t, α) ∧ α > β(S, α) ∧ v 6= 0

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
a
,
t

=
ls

〈
LinkedListMapa(x, ls, α) ∗ [G]a ∧map(ls) = S ∧ α > β(S, α) ∧ v 6= 0

〉
m

a
k
e

a
to

m
ic

a : (ls, α) (ls[k 7→ v], β(map(ls), α)) `τ{
∃ls, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
α > β(map(ls), α) ∧ v 6= 0

}
nn := alloc(3);
[nn.key] := k;
[nn.value] := v;
[nn.next] := 0;{
∃ls, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧
α > β(map(ls), α) ∧ v 6= 0

}
l := 0;∃ls, α. (if l = 0 then

(
LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧

α > β(map(ls), α) ∧ v 6= 0

)
else a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α))))

while (l = 0) {
∀γ.{
∃ls, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧
α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ

}
prev := x;{
∃ls, α.LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧
α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧ prev = x

}

u
p

d
a
te

re
g
io

n

A

ls, α.〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = []))

〉
n := [x];〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = [])) ∧ n = y

〉

∃k, k′, v, v′, ls, hs, ts, α.
LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧ k 6∈ dom(hs) ∧
α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧

(ls = hs ++ (prev, k′, v′) : (n, k, v) : ts ∧ k′ 6= k) ∨
(ls = hs ++ (prev− 2, k′, v′) : ts ∧ ts 6= []⇒ α < γ ∧ n = 0 ∧ k′ 6= k) ∨

(ls = (n, k, v) : ts ∧ hs = [] ∧ prev = x) ∨
(ls = ts ∧ hs = [] ∧ ts 6= []⇒ α < γ ∧ prev = x ∧ n = 0)

// see figure 20
∃k, k′, v, v′, ls, ts, hs, α.
LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧
k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧(

(ls = hs ++ (prev, k′, v′) : ts ∧ ts 6= []⇒ α < γ) ∨
(ls = ts ∧ hs = [] ∧ ts 6= []⇒ α < γ ∧ prev = x)

)

l := CAS(prev, 0, nn);
∃ls, α. if l = 0 then

LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗
LinkedListMap(nn, [(nn, k, v)]) ∧
α > β(map(ls), α) ∧ v 6= 0

else a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α)))

∧

α < γ

}{
∃ls, α. a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α)))

}
return 0;{
∃ls, α. a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α)))

}〈
LinkedListMapa(x, ls[k 7→ v], β(map(ls), α)) ∗ [G]a ∧map(ls) = S

〉〈
∃t′. LLMap(s, x, (S \ {(k,)})] {(k, v)} , t′, β(S, α))

〉
Fig. 19: Proof of total correctness of LLMapAdd function, details of inner while
loop in figure 20.

50 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

while (n 6= 0) {
∀δ.
∃k, k′, v, v′, ls, hs, ts, α.
LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧ k 6∈ dom(hs) ∧
α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧ α · 2 + |ts| ≤ δ ∧(

(ls = hs ++ (prev, k′, v′) : (n, k, v) : ts ∧ k′ 6= k) ∨
(ls = (n, k, v) : ts ∧ hs = [] ∧ prev = x)

)

o
p

en
re

g
io

n A

ls, α〈
∃y, k, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∧ ls = hs ++ (n, k, v) : ts

〉
nk := [n.key];〈
∃y, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∧ ls = hs ++ (n, nk, v) : ts

〉

∃k′, v, v′, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)])∧
k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧ α · 2 + |ts| ≤ δ ∧(

(ls = hs ++ (prev− 2, k′, v′) : (n, nk, v) : ts ∧ k′ 6= k) ∨
(ls = (n, nk, v) : ts ∧ hs = [] ∧ prev = x)

)

if (nk = k) {{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧
ls = (n, k, v) : ts ∧ α > β(map(ls), α)

}

u
p

d
a
te

re
g
io

n

A

ls, α〈
∃y. x 7→ y ∗ LinkedListMap(y, ls) ∧ k ∈ dom(ls) ∧
ls = (n, k, v) : ts ∧ α > β(map(ls), α)

〉
[n.value] := v;〈
∃y. x 7→ y ∗ LinkedListMap(y, ls) ∧ k ∈ dom(ls) ∧
ls = (n, k, v) : ts ∧ α > β(map(ls), α)

〉
{
∃ls, α. a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α)))

}
return 0;{
∃ls, α. a Z⇒ ((ls, α), (ls[k 7→ v], β(map(ls), α)))

}
}
∃k′, v, v′, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)])∧
k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ v 6= 0 ∧ α ≤ γ ∧ α · 2 + |ts| ≤ δ ∧ nk 6= k ∧(

(ls = hs ++ (prev− 2, k′, v′) : (n, k, v) : ts ∧ k′ 6= k) ∨
(ls = (n, nk, v) : ts ∧ hs = [] ∧ prev = x)

)

prev := n.next;
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧
nk 6= k ∧ ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs) ∧
α ≤ γ ∧ α · 2 + |ts| ≤ δ ∧ nk 6= k ∧ n = prev− 2

n := [n.next];

∃k, k′, v, v′, ls, hs, ts, α.
LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∗ LinkedListMap(nn, [(nn, k, v)]) ∧ k 6∈ dom(hs) ∧
α > β(map(ls), α) ∧ v 6= 0 ∧ α · 2 + |ts| < δ ∧

(ls = hs ++ (prev, k′, v′) : (n, k, v) : ts ∧ k′ 6= k) ∨
(ls = hs ++ (prev− 2, k′, v′) : ts ∧ ts 6= []⇒ α < γ ∧ n = 0 ∧ k′ 6= k) ∨

(ls = (n, k, v) : ts ∧ hs = [] ∧ prev = x) ∨
(ls = ts ∧ hs = [] ∧ ts 6= []⇒ α < γ ∧ prev = x ∧ n = 0)

}

Fig. 20: Details of LLMapAdd inner loop proof.

Modular Termination Verification for Non-blocking Concurrency 51

∀β.

A

S, t, α.〈
LLMap(s, x, S, t, α) ∧ α > β(S, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
a
,
t

=
ls

〈
LinkedListMapa(x, ls, α) ∗ [G]a ∧map(ls) = S ∧ α > β(S, α)

〉
m

a
k
e

a
to

m
ic

a : (ls, α) if (k,) ∈ map(ls) then (ls[k 7→ 0], β(map(ls), α)) else (ls, α) `τ{
∃ls, α.LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ α > β(map(ls), α)

}
u
p

d
a
te

re
g
io

n

A

ls, α.〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = []))

〉
n := [x];〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = [])) ∧ n = y

〉

∃ls, ts, α.(∃k, v, hs. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧

ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ n 6= 0

)
∨

(a Z⇒ ((ls, α), (ls, α)) ∧ ts = [] ∧ (k,) 6∈ map(ls) ∧ n = 0)

 ∧ α > β(map(ls), α)

while (n 6= 0) {
∀γ.{
∃k, v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ α · 2 + |ts| ≤ γ

}

o
p

en
re

g
io

n

A

ls, α〈
∃y, k, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs)

〉
nk := [n.key];〈
∃y, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∗ a Z⇒ � ∧
ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs)

〉
{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ α · 2 + |ts| ≤ γ

}
// see figure 22{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ ls = hs ++ (n, nk, v) : ts ∧
k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ α · 2 + |ts| ≤ γ ∧ nk 6= k

}
n := [n.next];
∃ls, ts, α.(∃k, v, hs. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧

ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ α > β(map(ls), α) ∧ n 6= 0

)
∨

(a Z⇒ ((ls, α), (ls, α)) ∧ ts = [] ∧ (k,) 6∈ map(ls) ∧ n = 0)

 ∧
α · 2 + |ts| < γ

}{
∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧ n = 0 ∧ (k,) 6∈ map(ls)

}
return 0;∃ls, ls′, α, α′.

 if (k,) ∈ map(ls)
then ls′ = ls[k 7→ 0] ∧ α′ = β(map(ls), α) ∧ ret = 1

else ls′ = ls ∧ α′ = α ∧ ret = 0

 ∗ a Z⇒ ((ls, α), (ls′, α′))

〈∃ls′, α′. if (k,) ∈ map(ls)

then ls′ = ls[k 7→ 0] ∧ α′ = β(map(ls), α) ∧ ret = 1
else ls′ = ls ∧ α′ = α ∧ ret = 0

 ∗
LinkedListMapa(x, ls′, α) ∗ [G]a ∧map(ls) = S

〉
〈
if (k,) ∈ S then ∃t′. LLMap(s, x, S \ {(k,)} , t′, β(S, α)) ∧ ret = 1

else LLMap(s, x, S, t, α) ∧ ret = 0

〉

Fig. 21: Proof of total correctness of LLMapRemove function, details of inner while
loop in figure 22.

52 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

if (nk = k) {{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
k ∈ dom(ls) ∧ ls = hs ++ (n, k, v) : ts ∧ α > β(map(ls), α)

}
b := 0;∃v, ls, hs, ts, α.

(
(LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧ b = 0) ∨

(a Z⇒ ((ls, α), (ls[k 7→ 0], α)) ∧ (k,) ∈ map(ls) ∧ b = 1)

)
∧

ls = hs ++ (n, k, v) : ts ∧ α > β(map(ls), α)

while (b = 0) {
∀δ.{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
k ∈ dom(ls) ∧ ls = hs ++ (n, k, v) : ts ∧ α > β(map(ls), α) ∧ α > β(map(ls), α) ∧ α ≤ δ

}

u
p

d
a
te

re
g
io

n

A

ls, α.〈
∃y, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∧ k ∈ dom(ls) ∧ ls = hs ++ (n, k, v) : ts ∧ α ≤ δ

〉
v := [n.value];〈∃y. x 7→ y ∗ LinkedListMap(y, ls) ∧(

(∃v, hs, ts. k ∈ dom(ls) ∧ ls = hs ++ (n, k, v) : ts ∧ v 6= v ⇒ α < δ ∧ α ≤ δ ∧ v 6= 0)∨
((k,) 6∈ map(ls) ∧ v = 0)

)〉
∃ls, α.

∃v, hs, ts. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧

ls = hs ++ (n, k, v) : ts ∧ α > β(map(ls), α) ∧
v 6= v ⇒ α < δ ∧ α ≤ δ ∧ v 6= 0

∨
(a Z⇒ ((ls, α), (ls, α)) ∧ (k,) 6∈ map(ls) ∧ v = 0)

if (v 6= 0) {{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧
ls = hs ++ (n, k, v) : ts ∧ α > β(map(ls), α) ∧ v 6= v ⇒ α < γ ∧ α ≤ δ

}
b := CAS(n.value, v, 0);∃v, ls, hs, ts, α.

(
(LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧ b = 0) ∨

(a Z⇒ ((ls, α), (ls[k 7→ 0], β(map(ls), α))) ∧ (k,) ∈ map(ls) ∧ b = 1)

)
∧

α > β(map(ls), α) ∧ ls = hs ++ (n, k, v) : ts ∧ α < δ

} else {{

∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧ (k,) 6∈ map(ls)
}

return 0;∃ls, ls′, α, α′.
(
if (k,) ∈ map(ls) then ls′ = ls[k 7→ 0] ∧ α′ = β(map(ls), α) ∧ ret = 1

else ls′ = ls ∧ α′ = α ∧ ret = 0

)
∗

a Z⇒ ((ls, α), (ls′, α′))

}∃v, ls, hs, ts, α.

(
(LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls) ∧ b = 0) ∨

(a Z⇒ ((ls, α), (ls[k 7→ 0], β(map(ls), α))) ∧ (k,) ∈ map(ls) ∧ b = 1)

)
∧

α > β(map(ls), α) ∧ ls = hs ++ (n, k, v) : ts ∧ α < δ

}{
∃ls, α. a Z⇒ ((ls, α), (ls[k 7→ 0], β(map(ls), α))) ∧ (k,) ∈ map(ls)

}
return 1;∃ls, ls

′, α, α′.

 if (k,) ∈ map(ls)
then ls′ = ls[k 7→ 0] ∧ α′ = β(map(ls), α) ∧ ret = 1
else ls′ = ls ∧ α′ = α ∧ ret = 0

 ∗
a Z⇒ ((ls, α), (ls′, α′))

}

Fig. 22: Details of LLMapRemove function inner loop proof.

Modular Termination Verification for Non-blocking Concurrency 53

A

S, t, α.〈
LLMap(s, x, S, t, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
a
,
t

=
ls

〈
LinkedListMapa(x, ls, α) ∗ [G]a ∧map(ls) = S

〉
m

a
k
e

a
to

m
ic

a : (ls, α) (ls, α) `τ{
∃ls, α.LinkedListMapa(x, ls, α) ∗ a Z⇒ �

}
u
p

d
a
te

re
g
io

n

A

ls, α.〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = []))

〉
n := [x];〈
∃y, k, v, ls′. x 7→ y ∗ LinkedListMap(y, ls) ∧
((ls = (y, k, v) : ls′) ∨ (y = 0 ∧ ls = [])) ∧ n = y

〉

∃ls, ts, α. (

∃hs, k, v. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ n 6= 0

)
∨

(a Z⇒ ((ls, α), (ls, α)) ∧ (k,) 6∈ map(ls) ∧ ts = [] ∧ n = 0)

while (n 6= 0) {
∀β.{
∃k, v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ α · 2 + |ts| ≤ β

}

o
p

en
re

g
io

n

A

ls, α〈
∃y, k, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs)

〉
nk := [n.key];〈
∃y, v, hs, ts. x 7→ y ∗ LinkedListMap(y, ls) ∗ a Z⇒ � ∧
ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs)

〉
{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs) ∧ α · 2 + |ts| ≤ β

}
if (nk = k) {{

∃ls, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧ k ∈ dom(ls)
}

u
p

d
a
te

re
g
io

n A

ls, α〈
∃y. x 7→ y ∗ LinkedListMap(y, ls) ∧ k ∈ dom(ls)

〉
v := [n.value];〈
∃y. x 7→ y ∗ LinkedListMap(y, ls) ∧
(((k, v) ∈ map(ls)) ∨ (v = 0 ∧ (k,) 6∈ map(ls)))

〉
{
∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧
(((k, v) ∈ map(ls)) ∨ (v = 0 ∧ (k,) 6∈ map(ls)))

}
return v;{
∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧
(((k, ret) ∈ map(ls)) ∨ (ret = 0 ∧ (k,) 6∈ map(ls)))

}
}{
∃v, ls, hs, ts, α. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, nk, v) : ts ∧ k 6∈ dom(hs) ∧ α · 2 + |ts| ≤ β ∧ nk 6= k

}
n := [n.next];
∃ls, ts, α. (

∃k, v, hs. LinkedListMapa(x, ls, α) ∗ a Z⇒ � ∧
ls = hs ++ (n, k, v) : ts ∧ k 6∈ dom(hs) ∧ n 6= 0

)
∨

(a Z⇒ ((ls, α), (ls, α)) ∧ (k,) 6∈ map(ls) ∧ ts = [] ∧ n = 0)

 ∧ α · 2 + |ts| < β

}{
∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧ (k,) 6∈ map(ls)

}
return 0;{
∃ls, α. a Z⇒ ((ls, α), (ls, α)) ∧
(((k, ret) ∈ map(ls)) ∨ (ret = 0 ∧ (k,) 6∈ map(ls)))

}
〈
LinkedListMapa(x, ls, α) ∗ [G]a ∧map(ls) = S ∧
(((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉
〈
LLMap(s, x, S, t, α) ∧ (((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉
Fig. 23: Proof of total correctness of LLMapLookup function.

54 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

D Hash Map

D.1 Code

We introduce a Hash Map module that uses the linked list module above as the
list stored in each element of the array that this hashtable uses. It is made up of
an array whos first element is a number denoting the size of the array, n, and
then n cells containing the addresses of linked lists. The hash function used is the
remainder function. Whenever a key has remainder i modulo n, any operations
related to this key will be performed on the list in the ith element of the array.

function makeHMap(n) {
a := alloc(n + 1);
[a] := n;
i := 1;
while (i ≤ n) {

l := makeLLMap();
[a + i] := l;
i := i + 1;

}
return a;

}

Fig. 24: makeHMap

function HMapAdd(x, k, v) {
n := [x];
i := k % n;
l := [x + i + 1];
LLMapAdd(l, k, v);
return 0;

}

Fig. 25: HMapAdd

Modular Termination Verification for Non-blocking Concurrency 55

function HMapRemove(x, k) {
n := [x];
i := k % n;
l := [x + i + 1];
b := LLMapRemove(l, k);
return b;

}

Fig. 26: HMapRemove

function HMapLookup(x, k) {
n := [x];
i := k % n;
l := [x + i + 1];
v := LLMapLookup(l, k);
return v;

}

Fig. 27: HMapLookup

D.2 Specifications

This Map style specification is almost identical to that of the linked list map as
it simply “refers” operations to the right linked list.

∀α. `τ
{
emp

}
makeHMap()

{
∃s.HMap(s, ret, ∅, α)

}
∀β. `τ

A

S, α.
〈
HMap(s, x, S, α) ∧ α > β(S, α) ∧ v 6= 0

〉
HMapAdd(x, k, v)

〈
HMap(s, x, (S \ {(k,)})] {(k, v)} , β(S, α))

〉
∀β. `τ

A

S, α.

〈
HMap(s, x, S, α) ∧ α > β(S, α)

〉
HMapRemove(x, k)

〈 if (k,) ∈ S
then HMap(s, x, S \ {(k,)} , β(S, α)) ∧ ret = 1

else HMap(s, x, S, α) ∧ ret = 0

〉

`τ

A

S, α.

〈
HMap(s, x, S, α)

〉
HMapLookup(x, k)

〈
HMap(s, x, S, α) ∧

(((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉

Fig. 28: Index operation specifications.

D.3 Definitions

We defined the regions, abstract predicates and guards required for the proof.

I(HashMapa(s′, x, n, arr, S, α)) ,

x 7→ n∗
n−1

�
i=0

(x+i+1 7→ arr(i)∗∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

56 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

HMap((a, n, arr, s′), x, S, α) , HashMapa(s′, x, n, arr, S, α) ∗ [H]a

The first two actions are for the different kinds of adds to the map (depending
on wether or not they key being added was previously in the map), the third
encodes deletion and the last simply allows the ordinal parametrizing the region
to be decreased.

H : ∀S, k, v, α, β < α. (S] {(k,)} , α) (S] {(k, v)} , β)

H : ∀S, k, v, α, β < α. (S, α) ∧ (k,) 6∈ S (S] {(k, v)} , β)

H : ∀S, k, v, α, β < α. (S] {(k,)} , α) (S, β)

H : ∀S, α, β < α. (S, α) (S, β)

D.4 Proofs

In this subsection, we give the proofs of total correctness of the operations of the
Hash Map module. The functions are all quite small and follow the same pattern,
so the proofs are very similar.

Modular Termination Verification for Non-blocking Concurrency 57

∀β.

A

S, α.〈
HMap(s, x, S, α) ∧ α > β(S, α) ∧ v 6= 0

〉

a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
(a
,n
,a
rr
,s
′)

〈
HashMapa(s′, x, n, arr, S, α) ∗ [H]a ∧ α > β(S, α) ∧ v 6= 0

〉

m
a
k
e

a
to

m
ic

a : (S, α) ((S \ {(k,)})] {(k, v)} , β(S, α)) `τ{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ v 6= 0

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

〉
n := [x];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ n = n

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ v 6= 0

}
i := k % n;{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ v 6= 0 ∧ i = k%n

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α)) ∧ i = k%n

〉
l := [x + i + 1];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α)) ∧

i = k%n ∧ l = arr(i)

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ v 6= 0 ∧ i = k%n ∧ l = arr(i)

}

u
p

d
a
te

re
g
io

n A

S, t, α〈
LLMap(s′(i), l, {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ α > β(S, α) ∧ v 6= 0 ∧ i = k%n ∧ l = arr(i)

〉
LLMapAdd(l, k, v);〈
∃t′. LLMap(s′(i), x, ({(k, v)|(k, v) ∈ S, k%n = i} \ {(k,)})] {(k, v)} , t′, β(S, α)) ∧
i = k%n ∧ l = arr(i)

〉
{
∃S, α. a Z⇒ ((S, α), (S \ {(k,)})] {(k, v)} , β(S, α)))

}
return 0;{
∃S, α. a Z⇒ ((S, α), (S \ {(k,)})] {(k, v)} , β(S, α)))

}〈
HashMapa(s′, x, n, arr, (S \ {(k,)})] {(k, v)} , β(S, α)) ∗ [H]a

〉〈
HMap(s, x, (S \ {(k,)})] {(k, v)} , β(S, α))

〉
Fig. 29: Proof of total correctness of HMapAdd function.

58 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

∀β.

A

S, α.〈
HMap(s, x, S, α) ∧ α > β(S, α)

〉

a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
(a
,n
,a
rr
,s
′)

〈
HashMapa(s′, x, n, arr, S, α) ∗ [H]a ∧ α > β(S, α)

〉

m
a
k
e

a
to

m
ic

a : (S, α) (S \ {(k,)} , β(S, α)) `τ{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α)

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

〉
n := [x];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ n = n

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α)

}
i := k % n;{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ i = k%n

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

〉
l := [x + i + 1];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α)) ∧ l = arr(i)

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ α > β(S, α) ∧ i = k%n ∧ l = arr(i)

}

u
p

d
a
te

re
g
io

n

A

S, t, α〈
LLMap(s′(i), l, {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ α > β(S, α) ∧ i = k%n ∧ l = arr(i)

〉
b := LLMapRemove(l, k);〈 if (k,) ∈ S

then ∃t′. LLMap(s′(i), l, {(k, v)|(k, v) ∈ S, k%n = i} \ {(k,)} , t′, β(S, α)) ∧ b = 1
else LLMap(s′(i), l, {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ b = 0

 ∧
i = k%n ∧ l = arr(i)

〉
{
a Z⇒ ((S, α), (S \ {(k,)} , β(S, α))) ∧ (if (k,) ∈ S then b = 1 else b = 0)

}
return b;{
a Z⇒ ((S, α), (S \ {(k,)} , β(S, α))) ∧ (if (k,) ∈ S then ret = 1 else ret = 0)

}〈
HashMapa(s′, x, n, arr, S, α) ∗ [H]a ∧ if (k,) ∈ S then ret = 1 else ret = 0

〉〈
HMap(s, x, S \ {(k,)} , β(S, α)) ∧ if (k,) ∈ S then ret = 1 else ret = 0

〉
Fig. 30: Proof of total correctness of HMapRemove function.

Modular Termination Verification for Non-blocking Concurrency 59

A

S, α.〈
HMap(s, x, S, α)

〉

a
b
st

ra
ct

;
q
u
a
n
ti

fy
s

=
(a
,n
,a
rr
,s
′)

〈
HashMapa(s′, x, n, arr, S, α) ∗ [H]a

〉

m
a
k
e

a
to

m
ic

a : (S, α) (S, α) `τ{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ �

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

〉
n := [x];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ n = n

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ �

}
i := k % n;{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ i = k%n

}

o
p

en
re

g
io

n

A

S, α〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α))

〉
l := [x + i + 1];〈
x 7→ n ∗

n−1

�
i=0

(x+ i+ 1 7→ arr(i) ∗ ∃t. LLMap(s′(i), arr(i), {(k, v)|(k, v) ∈ S, k%n = i} , t, α)) ∧

l = arr(i)

〉
{
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ a Z⇒ � ∧ i = k%n ∧ l = arr(i)

}

u
p

d
a
te

re
g
io

n A

S, t, α〈
LLMap(s′(i), l, {(k, v)|(k, v) ∈ S, k%n = i} , t, α) ∧ i = k%n ∧ l = arr(i)

〉
v := LLMapLookup(l, k);〈
∃S′. LLMap(s′(i), l, S′, t, α) ∧ (((k, v) ∈ S′) ∨ (v = 0 ∧ (k,) 6∈ S′)) ∧
S′ = {(k, v)|(k, v) ∈ S, k%n = i} ∧ i = k%n ∧ l = arr(i)

〉
{
∃S, α. a Z⇒ ((S, α), (S, α)) ∧ (((k, v) ∈ S) ∨ (v = 0 ∧ (k,) 6∈ S))

}
return v;{
∃S, α. a Z⇒ ((S, α), (S, α)) ∧ (((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

}〈
∃S, α.HashMapa(s′, x, n, arr, S, α) ∗ [H]a ∧ (((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉〈
HMap(s, x, S, α) ∧ (((k, ret) ∈ S) ∨ (ret = 0 ∧ (k,) 6∈ S))

〉
Fig. 31: Proof of total correctness of HMapLookup function.

60 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

E Hash Set

E.1 Code

function makeHashSet() {
x := makeHMap();
return x;

}

function contains(x, v) {
b := HMapLookup(x, v);
return b;

}

function add(x, v) {
HMapAdd(x, v, 1);

}

function remove(x, v) {
b := HMapRemove(x, v);
return b;

}

Fig. 32: Hash Set operations.

E.2 Specifications

`τ
{
emp

}
makeHashSet()

{
∃s.HashSet(s, ret, ∅, α)

}
`τ

A
vs, α.

〈
HashSet(s, x, vs, α)

〉
contains(x, v)

〈
HashSet(s, x, vs, α) ∧

if v ∈ vs then ret = 1 else ret = 0

〉
∀β. `τ

A

vs, α.

〈
HashSet(s, x, vs, α) ∧

α > β(vs, α)

〉
add(x, v)

〈
HashSet(s, x, {v} ∪ vs, β(vs, α))

〉
∀β. `τ

A

vs, α.

〈
HashSet(s, x, vs, α)∧

α > β(vs, α)

〉
remove(x, v)

〈
HashSet(s, x, vs \ {v} , β(vs, α)) ∧
if v ∈ vs then ret = 1 else ret = 0

〉

Fig. 33: Hash Set operation specifications.

E.3 Definitions

I(HSeta(s, x, vs, α)) , HMap(s, x, vs× {1} , α)

HashSet((a, s′), x, vs, α) , HSeta(s′, x, vs, α) ∗ [I]a

I : ∀v, vs, α, β < α. (vs, α) (vs ∪ {v} , β)

I : ∀v, vs, α, β < α. (vs, α) (vs \ {v} , β)

I : ∀vs, α, β < α. (vs, α) (vs, β)

Modular Termination Verification for Non-blocking Concurrency 61

E.4 Proofs

A

vs, α.〈
HashSet(s, x, vs, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
(a
,s
′)

〈
HSeta(s′, x, vs, α) ∗ [I]a

〉
m

a
k
e

a
to

m
ic

{
∃vs, α. HSeta(s′, x, vs, α) ∗ a Z⇒ �

}
u
p

d
a
te

re
g
io

n A

vs, α.〈
HMap(s′, x, vs× {1} , α)

〉
b := HMapLookup(x, v);〈
HMap(s′, x, vs× {1} , α) ∧ if v ∈ vs then b = 1 else b = 0

〉
{
∃vs, α. a Z⇒ ((vs, α), (vs, α)) ∧ if v ∈ vs then b = 1 else b = 0

}
return b;{
∃vs, α. a Z⇒ ((vs, α), (vs, α)) ∧ if v ∈ vs then ret = 1 else ret = 0

}〈
HSeta(s′, x, vs, α) ∗ [I]a ∧ if v ∈ vs then ret = 1 else ret = 0

〉〈
HashSet(s, x, vs, α) ∧ if v ∈ vs then ret = 1 else ret = 0

〉
Fig. 34: Proof of total correctness of Hash Set contains operation.

∀β.

A

vs, α.〈
HashSet(s, x, vs, α) ∧ α > β(vs, α)

〉

a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
(a
,s
′)

〈
HSeta(s′, x, vs, α) ∗ [I]a ∧ α > β(vs, α)

〉

u
se

a
to

m
ic A

vs, α.〈
HMap(s′, x, vs× {1} , α) ∧ α > β(vs, α)

〉
HMapAdd(x, v, 1);〈
HMap(s′, x, (vs ∪ {v})× {1} , β(vs, α))

〉〈
HSeta(s′, x, vs ∪ {v} , β(vs, α)) ∗ [I]a

〉
〈
HashSet(s, x, vs ∪ {v} , β(vs, α))

〉
Fig. 35: Proof of total correctness of Hash Set add operation.

62 P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner and J. Sutherland

∀β.

A

vs, α.〈
HashSet(s, x, vs, α) ∧ α > β(vs, α)

〉
a
b
st

ra
ct

;
su

b
st

it
u
te
s

=
(a
,s
′)

〈
HSeta(s′, x, vs, α) ∗ [I]a ∧ α > β(vs, α)

〉
m

a
k
e

a
to

m
ic

{
∃vs, α. HSeta(s′, x, vs, α) ∗ a Z⇒ � ∧ α > β(vs, α)

}
u
p

d
a
te

re
g
io

n A

vs, α.〈
HMap(s′, x, vs× {1} , α) ∧ α > β(vs, α)

〉
b := HMapRemove(x, v);〈
HMap(s′, x, (vs \ {(v,)})× {1} , α) ∧
if v ∈ vs then b = 1 else b = 0

〉
{
∃vs, α. a Z⇒ ((vs, α), (vs \ {v} , β(vs, α))) ∧ if v ∈ vs then b = 1 else b = 0

}
return b;{
∃vs, α. a Z⇒ ((vs, α), (vs \ {v} , β(vs, α))) ∧ if v ∈ vs then ret = 1 else ret = 0

}〈
HSeta(s′, x, vs \ {v} , β(vs, α)) ∗ [I]a ∧ if v ∈ vs then ret = 1 else ret = 0

〉〈
HashSet(s, x, vs \ {v} , β(vs, α)) ∧ if v ∈ vs then ret = 1 else ret = 0

〉
Fig. 36: Proof of total correctness of Hash Set remove operation.

F Module dependencies

Modular Termination Verification for Non-blocking Concurrency 63

Sequential Client Concurrent Client

Counter

Spin Counter Backoff Counter

Stack

Treiber Stack

Map Set

Linked-List Map Hash Map Hash Set

Fig. 37: Dependencies between module implementation, abstract modules and
clients in this paper.

	Modular Termination Verification for Non-blocking Concurrency

