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Abstract—Fully-supervised deep learning segmentation models
are inflexible when encountering new unseen semantic classes and
their fine-tuning often requires significant amounts of annotated
data. Few-shot semantic segmentation (FSS) aims to solve this
inflexibility by learning to segment an arbitrary unseen semanti-
cally meaningful class by referring to only a few labeled examples,
without involving fine-tuning. State-of-the-art FSS methods are
typically designed for segmenting natural images and rely on
abundant annotated data of training classes to learn image
representations that generalize well to unseen testing classes.
However, such a training mechanism is impractical in annotation-
scarce medical imaging scenarios. To address this challenge, in
this work, we propose a novel self-supervised FSS framework
for medical images, named SSL-ALPNet, in order to bypass
the requirement for annotations during training. The proposed
method exploits superpixel-based pseudo-labels to provide su-
pervision signals. In addition, we propose a simple yet effective
adaptive local prototype pooling module which is plugged into the
prototype networks to further boost segmentation accuracy. We
demonstrate the general applicability of the proposed approach
using three different tasks: organ segmentation of abdominal
CT and MRI images respectively, and cardiac segmentation of
MRI images. The proposed method yields higher Dice scores than
conventional FSS methods which require manual annotations for
training in our experiments.

Index Terms—Self-supervised learning; Few-shot segmenta-
tion; Representation learning

I. INTRODUCTION

When trained on abundant well-annotated training data, a
fully-supervised deep learning segmentation model usually
achieves good performance. However, the performance of a
fully-supervised model typically deteriorates severely when la-
beled training data is scarce [1], [2]. Unfortunately, in medical
imaging, there is often a lack of large, well-annotated medical
image dataset due to the prohibitive cost for manual labeling,
making it often impractical to train a data-consuming fully-
supervised deep model. Even more problematic is that fully-
supervised models are inflexible when faced with arbitrary new
classes of potential segmentation targets (anatomical structures
or lesions). It is impractical to train a new fully-supervised
model for every single new segmentation class, since training
from scratch or fine-tuning are time consuming and they
require expertise.
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A potential solution to the challenges of annotation scarcity
and inflexibility to new classes is few-shot learning [3]-[8].
During festing, a few-shot learning model extracts discrimina-
tive representations of a previously-unseen class from only a
few labeled examples (called support), and is then able to
predict this unseen class on unlabeled data (called query),
usually without additional fine-tuning. On medical images,
most of previous few-shot segmentation methods might be
limited by a common drawback: these methods require to be
trained on a huge amount of annotated training class examples
for learning image representations that are generalizable to
unseen classes [9]-[20]. This hunger for large amounts of
annotated training data leads to a chicken-and-egg problem
due to a scarcity in annotations in medical images.

To circumvent the need for large amount of annotations,
we propose to train a few-shot segmentation (FSS) model
directly on unlabeled images, via self-supervised learning
[21]-[28]. By training on a pretext task like patch in-painting
[27] or instance discrimination [29]-[31] on unlabeled images,
a self-supervised model learns image representations that
are generalizable or customizable to downstream tasks like
classification or semantics segmentation. Unfortunately, most
of self-supervised learning techniques are only designed for
generic transfer learning problem [30]-[32], and thus under-
explore the uniqueness of few-shot segmentation problem.
Therefore, we propose to tailor self-supervised learning to
the FSS problem. Specifically, we propose to exploit prior
knowledge of medical images via self-supervision, utilizing
specially-designed pseudolabels and training objectives.

Another performance bottleneck for many popular FSS
architectures lies in the inability to model differences between
local patches within a semantic class. This bottleneck is
particularly exaggerated in medical image segmentation in
the context of class imbalance. As shown in Fig. 1 (a), the
background class (i.e. regions outside the purple right kidney)
is composed of patches with different textures and intensities.
Under such a foreground-background segmentation scenario,
popular works [11]-[14], [33] might unfortunately lead to
ambiguity at the border between foreground and background.
This is because they represent each semantic class including
the background as a location-agnostic 1-D vector, where the
distinctions between different local patches are unreasonably
smoothed out. To tackle this problem, we argue that local
information needs to be explicitly preserved by an FSS model.

In this paper, we instantiate our solutions to self-supervised
few-shot segmentation problem as the proposed SSL-ALPNet:
a novel few-shot segmentation framework for medical images.
It is a synergy between a superpixel-based self-supervised



Fig. 1. (a). Intuition behind the proposed segmentation mechanism based
on explicitly modeling local image information: First, local representations
of each class including the background are extracted from the support
images. Each representation only represents a local region, and matches a
corresponding local patch in query. Since the background is not homogeneous,
performing extract-and-match between local patches yields higher spatial
accuracy, compared with methods that use one single 1-D representation
to match the entire background. (b). The proposed superpixel-based self-
supervision strategy: Superpixel-based pseudolabels are pre-computed from
unlabeled images. In each training iteration, an image and one of its randomly
sampled pseudolabel serve as the candidates for both support and query. To
simulate inter-patient varieties in real-world, random intensity and geometric
transformations are applied to the query in order to slightly alter its appearance
and shape. The self-supervision task is retrieving a same pseudolabel on the
query by referring to the support.

learning (SSL) strategy and an adaptive local prototype pool-
ing network (ALPNet). The SSL strategy is designed to
bypass the reliance on manually annotated training images,
by exploiting unlabeled images and pseudolabels. As shown
in Fig. 1 (b), to learn image representations tailored to few-shot
segmentation, we use superpixels as pseudolabels. We argue
that image representations learned on superpixels are well-
generalizable to real semantically meaningful objects. This is
because superpixels naturally share a piece-wise smoothness
prior with real semantic objects [34], [35]. In addition to
leveraging the smoothness prior, we exploit a boundary prior
learned from superpixels. This is based on the observation that
the boundaries of both superpixels and real semantic objects
share similar properties. In terms of network architecture, the
ALPNet is designed to improve segmentation accuracy of
prototype networks. This is achieved by utilizing the proposed
adaptive local prototype pooling module (ALP): a plug-in
module added to a prototype network [13]. It explicitly models
each local image patch as a distinct representation prototype.
Overall, we summarize our contributions as follows:

e We propose a novel superpixel-based self-supervised
learning (SSL) strategy for few-shot medical image seg-
mentation. In our experiments, it achieves the state-of-
the-art performance for FSS on medical images without
using manual annotations during training, when applied
to our network architecture.

« We propose an adaptive local prototype pooling network
(ALPNet): a simple network architecture which signifi-
cantly outperforms the baseline prototype network in few-

shot segmentation.

o We demonstrate the robustness and flexibility of our
SSL-ALPNet framework on a wide range of medical
image segmentation tasks. In particular, we report on
a comprehensive evaluation on multiple segmentation
classes, imaging modalities and different number of shots
in testing. We also explored the challenging weakly-
annotated testing scenario. We believe the established
evaluation protocol facilitates future works on few-shot
medical image segmentation and self-supervised repre-
sentation learning.

This paper is a substantial extension to our conference
paper [36], especially in the following aspects: First, we re-
interpret the proposed SSL technique as an early investigation
on tailoring representation learning to few-shot segmentation
task. In particular, we systematically analyzed the intrinsic
properties of medical images under FSS setting, and propose
to fully exploit their patch-level image prior knowledge using
self-supervised learning (see detailed analysis in Sec. I1I-C1).
Second, we further propose and validate a boundary prior for
SSL on medical imaging data, which brings consistent per-
formance gains throughout different datasets compared with
[36]. Third, we extend the previous one-shot testing scenario to
multiple shots, demonstrating that the proposed framework can
efficiently utilize multiple reference examples when available.
Fourth, we explore the challenging weakly-annotated few-shot
segmentation problem where annotations are extremely scarce
and coarse in testing. Powered by strong prior knowledge
learned through SSL, the proposed model which takes only
bounding-box annotations as reference in testing, still achieve
reasonable segmentation accuracy (see Sec. IV-E). Finally, in
Sec. 1I-B we draw connections between the proposed SSL
technique and recent contrastive representation learning [29]—
[31], [37]-[41], particularly a closely related work [2]. We
elaborate their similar practice of using image transformations
but different intuitions and derivations.

II. RELATED WORK
A. Few-shot semantic segmentation

Most of current few-shot segmentation techniques focus on
network architecture design, and can be roughly categorized
as methods based on implicit feature interaction, or meth-
ods based on explicit representation comparison. The former
category starts from [15], where both the support and the
query images are sent to a network, and the support features
implicitly guide the network to make predictions on the
query. Recent works [1], [16], [42] exploit more sophisticated
network components to construct stronger inductive biases that
are favorable for information propagation between support and
query.

The earliest work based on representation comparison is
by [10], where the label of the query is decided by making
comparisons with the support. Recent works include [12],
[17], [19], [43]. A major stream along this line of research
is prototypical networks (PN) [3], [11], [13], [33], where
representation prototypes of the support are calculated for
measuring pixel-wise similarities with the query feature map.



As the similarities measured between prototypes and feature
maps of the query in PN can be used to visualize the
prediction process, which is highly desirable for medical image
applications where network interpretability is beneficial, our
framework follows the principle of PN. Specifically, we choose
one of the state-of-the-art prototypical alignment network
(PANet) [13] as our baseline. Compared with other state-of-
the-art methods, PANet is conceptually simple and elegant,
with only an off-the-shelf feature extractor network and a
proposed alignment regularization term. Using such a generic
model could highlight our self-supervised technique as a
universal training strategy.

Almost all of the works above assume the availability of
abundant annotated training data, and therefore focus solely
on network architecture design. In contrast, our work aims
to tackle the unsolved training data scarcity problem, and
therefore focuses on designing a novel self-supervised learning
technique tailored to image segmentation.

In medical imaging applications, FSS has been previously
interpreted as using a few annotated samples for training or for
fine-tuning [2], [44], [45], [45]-[47], [47]-[52]. These methods
are therefore out-of-scope in our discussion as fine-tuning
requires expertise in deep learning, thus being inflexible in
clinical settings. SE-Net [1] utilizes squeeze-and-excite blocks
[53] for implicit feature interaction, and can be applied to
unseen classes without fine-tuning. Concurrent with or after
our previous work [36], Feyjie et al. [54] employ image
denosing as an auxiliary task for regularizing few-shot medical
image segmentation. Additionally, Sun et al. [55] extend SE-
Net by introducing attention mechanism and by regularizing
intra-class and inter-class distances. Yu et al. [56] enforce a
strong local constraint to a prototype network.

B. Self-supervised learning in semantic segmentation

In semantic segmentation, the majority of the self-
supervised techniques aim to obtain a pre-trained model to
facilitate further supervised training. These approaches learn
image representations through handcrafted pre-text tasks such
as image in-painting [27], patch reordering [22], rotation
regression [57], motion prediction [58] and so on. Similar
methods have also been applied to medical imaging: [2],
[59]-[62]. However, almost all of them still require a second-
stage fine-tuning after self-supervised pre-training. In contrast,
our proposed framework can be directly applied to few-shot
segmentation of real semantic labels without fine-tuning. In
addition, in conventional self-supervised learning, there is no
guarantee that image representations that are learned through a
pretext task to be fully transferable to downstream tasks. This
is due to the potential gap between two tasks (e.g. image-
level rotation prediction versus pixel-level segmentation). In
our method, features learned from SSL are well transferable to
few-shot segmentation, since the two tasks are highly related:
they share a unified problem formulation, and pseudo-labels in
SSL share similar image properties with real semantic labels.

Although derived from different perspectives, our self-
supervision task shares a common practice with contrastive
representation learning [29]-[31], [38]-[41]: In both methods,

image intensity and geometric transformations are employed
to boost invariance of learned representations. In addition,
our self-supervision task can be also interpreted as instance
discrimination on a dense pixel level (see Sec. III-C5). How-
ever, most of contrastive representation learning works stem
from the principle of mutual information maximization [63]
or feature uniformity [64], and they are designed for generic
transfer learning. They leave the unique natures of few-shot
segmentation under-explored. Our method is instead tailored
to few-shot segmentation task, and innovatively exploits im-
age prior knowledge in representations. In parallel with our
conference work [36], Chaitanya et al. [2] employ contrastive
learning on rectangular patches and image instances for semi-
supervised medical image segmentation. Unlike [2], which
requires a supervised fine-tuning stage, our method is designed
for the tuning-free few-shot segmentation scenario.

C. Superpixels

Superpixels are small, compact image patches composed
of pixels sharing common intensities or textures [35], [65],
[66]. Superpixels are usually generated by unsupervised algo-
rithms like graph-cuts [35], under assumptions like piece-wise
smoothness [34]. Concurrent with our previous work [36], [67]
employs superpixels as clues for grouping features in semi-
supervised few-shot segmentation. However, their approach
still heavily relies on abundant annotated training data [67].
In contrast, the training phase of our method is purely free of
manual annotations.

III. METHOD

A few-shot segmentation (FSS) model segments an unseen
class by referring to only a few labeled references. Of note,
in FSS, segmenting unseen classes do not require additional
fine-tuning. In the following section, we first introduce the
problem formulation of general few-shot segmentation in Sec.
III-A, then we describe the proposed adaptive local prototype
pooling network (ALPNet) in Sec. III-B. Finally, we present
the novel superpixel-based self-supervised learning strategy
(SSL) in Sec. ITI-C, with a detailed discussion of both intuition
and instantiation of the two image priors utilized in SSL.

* Training
Learning image representations
from the training dataset.

* Testing
Segmenting unseen classes by taking a few
annotated examples (support) as references.
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Fig. 2. Problem formulation of few-shot segmentation (FSS).



77N 77N

a. (COS) : Cosine similarity (o > : Softmax function b'
yi(eh) =22 - o
Support label Acoptive Foreground / /
Feature local protosl. - _ i/ ,./
( ds - e N, {11} e
extractor prototype {pr (e} i, c0s)» . -l o) H /" /Class-level
) f(;(') pooling N_~ HH N Local % 7/ oroto.
Support image // L " proto )
PP x5 8 Support feature map | (4 | {-"L',(" )} : pi(c’) P
S L
Z Background
p— Feature {[p)"m('{’f]')} |
By N extractor ki TN TN - Local Local
%3 7 Query prediction
Q_agg_ d 7.0 —{cos > o )l gt proto, - MEMMENEEE  proto.
fo g i i) (Lys L) nileh)
Query image Query feature map Local similarity maps Class-wise similarity maps Support feature map Z'S
x 74 S, () 0
{Sk, ()} S'(c")

Fig. 3. (a). Workflow of the proposed adaptive local prototype pooling network: The feature extractor fg(-) extracts feature maps of the support: z* and
that of the query: z9 from support and query images. Then, the support feature map and the label are sent to the proposed adaptive local prototype pooling
module to compute an ensemble of local representation prototypes py(c?)’s and a class-level prototype p9(c?) for class ¢7. In this example j € {0, L},
where ¢l is the foreground class Liver, and c° denotes the background class. These representation prototypes serve as references of each class, for measuring
spatial similarities with the feature map of the query. These similarity measurements are fused into the final prediction. (b). Mechanism of the adaptive local

prototype pooling module: Local prototypes (e.g. p1 (CL%/) are computed by taking averages of support features within pooling windows (orange boxes) along

the spatial dimensions; class-level prototypes (e.g. p9(c

A. Problem Formulation

To train an FSS network, a training set D;,. with images of
training classes Cy, (e.g., Cy. = {liver, spleen, kidney}) is re-
quired. The training classes are assumed to be known and their
labeled samples are assumed to be available, from which the
network learns image representations that are generalizable to
unseen classes. Specifically, D, = {(x,y(c?))} is composed
of images x € X and corresponding binary masks y(c¢/) € Y
of classes ¢/ € C;,., where X is the image space, ) is the label
space, and j = 1,2,3,... is the class index. After training,
the network is fixed and then evaluated on a testing set Dy,
which is defined in the same way as Dy, but contains images
of unseen testing classes Cie (e.g., Cie {heart}) where
CirNCie = @. An illustration of the training and testing phases
of (conventional) few-shot segmentation models is shown in
Fig. 2. Of note, the background class ¢’ does not belong to
neither training nor testing classes. We use a different notation
J=0,1,2,3, ... to index all classes including the background,
ie. {7} = {U{c}.

Most of the recent FSS models are both trained and tested
in episodes [9]-[11], [15]. An episode (Q, S) is sampled from
Dy, during training or sampled from D,. during testing. Each
episode consists of a query set Q = {x?}: unlabeled images to
be segmented, and a support set S = {(x7,y;(c’))}: images
x;’s and masks y;(c’)’s which are references for segmenting
class ¢. One episode comprises an N-shot segmentation sub-
problem with N image-label pairs of class ¢/ provided in
the support. The subscript I = 1,2,3,..., N denotes the [-th
sample pair in the support. For the ease of illustration, without
losing generality, in the following section, we assume only
one foreground class is present at a time, i.e. |{c’}] =1,
and the few-shot segmentation reduces to foreground (¢/) —
background (c”) segmentation.

B. Adaptive Local Prototype Pooling Network

1) Overview: As depicted in Fig. 3, the proposed ALPNet
is composed of three major components: (1) a generic feed-
forward convolutional network parameterized by 0: fo(-) :

)) are computed under the entire support label (purple region).

X — &, which extracts representations from images (£
denotes the feature space); (2) the adaptive local prototype
pooling (ALP) module: £ x YV — &, which is used for
computing representation prototypes from the support feature
map; (3) a proposed local-to-global similarity-based prediction
process: £ x & — Y for making the final segmentation.

As shown in Fig. 3 (a), both support and query feature maps:
z],z9 € £, are extracted by passing the support image x; and
the query image x? to the network fy(:). Then, the support
feature map z; and the corresponding binary semantic mask
y;(c¢?) are used by the ALP module to compute ensembles of
representation prototypes {P(c?)} for each class ¢/ (including
the background class), as shown in dotted boxes in Fig. 3 (a).
Then, for each class, we measure how similar the query feature
map is to each prototype. These measurements are in the form
of similarity maps (as seen in the right half of Fig. 3 (a) ).
These similarity maps are stitched together by each class of
the prototype to form the prediction.

2) Adaptive local prototype pooling module: The proposed
adaptive local prototype pooling module takes the support
feature map z; and the binary mask yi(c?) of the foreground
class ¢/ as input, and computes local prototypes and class-level
prototypes, of class ¢/ or of the background c°. Specifically,
local prototypes are obtained by locally averaging the support
feature map z; € RP*H#*W (D to be the channel depth and
H,W to be the spatial sizes) with local pooling windows
of size (Ly, Lw). This process is illustrated in Fig. 3 (b),
where the pooling windows are drawn as orange boxes. This
pooling window size decides the spatial extent over which
each representation prototype covers.

In practice, this local averaging operation is achieved by
passing the support feature map z; to an average pooling layer,
yielding the average-pooled support feature avgpool(z]) €

_H_
RDXLH

XZiw . Each 1-D feature vector of the average-pooled
support feature map at the location (m,n) € N? is now a
local prototype. We note the local prototype arises from spatial
position (m,n) of avgpool(z;) as pjmn(c) € RP*1X1 The
above process is written as follows:



1
P1mn(c) = avgpool(z} ) (m, n) = Tl 2 ; zj (h,w),
(D
where mLyg < h < (m+ 1)Ly, nLy <w < (n+ 1)Ly

m=0,1,2,3,... 5Ly —1, n=0,1,2,3,..., H/Ly — 1.

Here c is the class of this prototype, yet to be undecided at
this stage.

We then decide the semantic class ¢ of each local prototype
Pi,mn(c). This is done by average-pooling the binary mask
y; to the same spatial size (%,%) as avgpool(z}), and
fetching the corresponding value at the same spatial location
(m,n). Let y,... € [0,1] to be the value of average-pooled
y; at location (m,n), the class ¢ of the prototype p; mn(c) is

then given by:

& Yl <T o
‘- {63' g s 7 Wit Ylimn = avepool(yi (') (m, n),

2

where T is a threshold for categorizing the prototype as either
class ¢/ (the foreground class) or as the background class c°.
T is empirically set to 0.95. Through the process shown above,
we have now obtained all the local prototypes.

To further obtain a holistic representation of the foreground
class ¢/, as well as to account for objects smaller than the local
pooling window (L, Ly ) in zj, we also compute a class-
level prototype p{(c’) for the foreground class, using masked-
average pooling [13]. This is done by spatially averaging the
support feature map z; underneath the entire binary mask y;
of the object, namely:

Eh:%:}’?(c])(ha w)zj (h, w)
2Ty () (hw)

p() = 3)

For convenience, we put local prototypes pj,»,’s and class-
level prototypes pj’s together, and bin them into different
prototype ensembles {P(c¢’)} according to the class ¢/ of each
prototype. Each prototype ensemble P(c?) contains all the pro-
totypes of class ¢/. We re-index prototypes in each ensemble
P(c?) using subscript k; = 1,2,3, ..., K;, namely, py, (¢/) to
be the kj;-th prototype of class ¢/, P(c¢’) = {pk,(¢’)}, and
Kj =[P

Under an N > 1-shot scenario (i.e. multiple support sam-
ples (x7,y7(c¢?))’s are available during testing time), we repeat
the same prototype computation process for each support
image. We gather all obtained prototypes together and bin
them to the prototype ensembles by their classes, regardless
of which support sample that a prototype is from, and then
continue with the segmentation in one pass using the same
process as described below. We have also experimented with
an alternative mechanism: N independent 1-shot predictions
are first made based on N support samples. Then, these N
predictions are blended together to form the final prediction.
However, we did not observe any consistent benefit compared
to our default settings.

3) Local-to-global similarity-based prediction process:
Once prototypes are computed, we use them as references
of each class ¢/, to measure how similar each feature vector
z9(h,w) € RP*1*1 at spatial location (h,w) of the query
feature map z?, is to each class ¢/. We then predict the class of
the query at location (h,w) to be the class of the most similar
prototype. Intuitively, as most of prototypes are computed over
a small pooling window (L g, Ly ) instead of the entire object,
each prototype is only expected to match the most similar local
part in the query (e.g. to match a heart, a prototype whose
pooling window falls over the left ventricle region, only tries
to match a left-ventricle-like region in the query, rather than to
match the entire heart). As shown in Fig. 3 (a), these similarity
measurements are termed as local similarity maps, noted as
{Sk,(c)}. Each Sy, (c?) corresponds to a prototype py, (c’)
and reflects how similar each vector of the query feature map
z? is to a particular prototype py; (ch).

Then, as shown in the part of Fig. 3 after the cos icon,
all the local similarities {Sy,(¢’)} corresponding to a same
class ¢/ are stitched together into a global pixel-wise similarity
map called class-wise similarity, noted as S’(c’) (e.g. local
similarities of all ventricles and atria are stitched together
into an overall similarity to the heart class). The class-wise
similarity S’(c’) reflects how similar each feature vector of
the query feature map z? to the class ¢/. The final prediction
is obtained by normalizing all class-wise similarities into
probabilities.

Specifically, for each prototype P, (¢’) € P, we compute
a local similarity map Sy, (c’) between the prototype and the
query feature map z?. The local similarity score Sk, (¢7)(h, w)
at location (h,w) of the local similarity map S, (c’) is given
by

Sie; () (h, w) = asim(py; (¢/), 2% (h, w)), €
where sim(-,-) is a similarity measurement, which we con-
figure as consine similarity [13]. « is a temperature factor
(e > 0) [13]. During training « controls the strength of penalty
on any pairs of (py,(c?),2z%(h,w)) that yields a high local
similarity score S, (c’)(h,w) but with py,(c?) and 29(h,w)
coming from different classes. We set o = 20 to be consistent
with [13].

Then, as shown in the part of Fig. 3 after the cos icon, for
each class ¢/, we stitch all K local similarity maps S, (¢/)’s
together to form the class-wise similarity S’(c’). Specifically,
we take each entry S’(c’)(h,w) at location (h,w) to be the
(soft) maximum of all local similarities {Sy, (¢’)(h,w)} at the
same location (h,w), namely:

/() (h,w) =
S S, (¢9) () [softmax({Sy; () (h, w) D)K. ()

Here [sofgnax({sk; (¢?)(h,w)})](k;) refers to the operation

that is con{posed of the following three steps: (1) stacking all
(in total, K;) Sk, (c?)(h,w)’s along the channel dimension,
yielding a tensor with shape K; x 1x1; (2) then computing the
softmax function along all K; channels; (3) fetching the k;-th
channel of the output obtained by the softmax function. By



repeating this computation process for all classes, we obtain
class-wise similarity maps S’(c;)’s between the query feature
map z? and each class ¢; € {°,¢7}.

In the end, to obtain the final prediction y¢ in the form of
probability, we stack all class-wise similarities S’(¢?)’s along
the channel dimension, and apply another softmax function
along the channel dimension, namely:

vi(h,w) = sofirjnax({S/(c])(h,w)}). (6)

We then interpolate y¢ back to the original size of input
images.

a.

Organ
mask

Superpixel
boundary

Fig. 4. (a). Conceptual illustration of the piece-wise smoothness prior: In
image space, neighboring pixels within a superpixel (delineated by pink
boundaries) often share similar textures. This similarity property in texture
can also be observed in neighboring pixels within semantically meaningful
labels. We therefore argue this smoothness prior is generalizable and can be
leveraged for segmentation. Therefore, we encourage the network to learn to
preserve this piece-wise smoothness property of images in the corresponding
representation space, via the SSL. In this figure, each color in representation
space denotes one distinct cluster of similar feature vectors. (b). Boundaries
of real semantic labels (organs) and pseudolabels are usually associated with
drastic changes in image gradient, and both types of boundaries sometimes
overlap. This suggests that boundary prior learned on superpixels are gener-
alizable to real objects. Of note, in our experiments on abdominal images,
objects of testing classes are strictly excluded in training images even though
unlabeled.

C. Superpixel-based self-supervised learning

In this part, we first explain the intuition behind the
proposed superpixel-based self-supervised learning approach.
We then introduce the process for computing pseudolabels.
Finally, we discuss the detailed mathematical formulation of
the loss functions and the overall training process.

1) Intuition: To tailor self-supervised learning to few-shot
segmentation, the proposed superpixel-based self-supervised
learning (SSL) technique learns image representations that are
robust against inter-patient variability. It also fully exploits
patch-level image priors shared between pseudolabels and
semantic labels. This allows the network to learn image
representations that enable high spatial accuracy in few-shot
segmentation. In principle, for a similarity-based segmentation
process as described in Sec. I1I-B3, it is crucial for the features
to be invariant of variabilities among instances of a same
semantic class (e.g. differences in intensity and shape of a
same organ between two patients). This invariance ensures that
the retrieval from the support to the query of a same class to be
robust. Meanwhile, to ensure representations learned on SSL
to be well-generalizable to semantically meaningful labels, it
is desirable for the pseudolabels employed in pretext task to
share the same prior knowledge and properties with real labels
that the model may encounter in the downstream segmentation

task. Despite the recent hype of self-supervised learning [30],
[32], [39], [41], exploiting image priors for downstream dense
prediction tasks is hardly discussed.

The proposed SSL encourages feature invariance and it
exploits two shared prior knowledge: a piece-wise smoothness
property [34] of pixels in both pseudolabels and semantic
labels, which we refer to as the smoothness prior; and a
property shared between boundaries of pseudolabels and real
semantic labels that both types of boundaries are usually
associated with large values of the image gradient. We refer
to this property as the boundary prior. An illustration of two
priors are shown in Fig. 4.

As shown in Fig. 5, the SSL task is formulated as seg-
menting superpixel-based pseudolabels, by referring to their
randomly transformed copies. In this process, invariances to
these applied transformations are naturally enforced by the
gradients that are back-propagated from the similarity-based
segmentation mechanism. In addition, as shown in Fig. 4 (a),
to embed smoothness prior of semantic labels into learned
representations, we deliberately employ superpixels rather than
simple rectangular patches [2] as pseudolabels. This is because
superpixels themselves are usually generated following the
piece-wise smoothness model [34], [35]. Moreover, to boost
segmentation accuracy, we exploit the boundary prior shared
between pseudolabels and real semantically meaningful re-
gions. As shown in Fig. 4 (b), both boundaries of pseudolabels
and those of real semantically meaningful labels often occur at
regions where intensity drastically changes. Therefore, if the
learned representations were able to precisely grasp superpixel
boundaries, this capability of capturing boundaries would be
likely to generalize to real semantic labels. This boundary
prior therefore benefits segmentation accuracy. In practice, the
boundary prior is injected to the learned representations with
a simple but effective boundary loss [68] between the ground
truth boundary map and the soft edge map of prediction.

As shown in Fig. 5, the proposed SSL stategy comprises
an offline unsupervised pseudolabel generation phase and an
online episode-based training phase.

2) Unsupervised pseudolabel generation: As shown in the
left part of Fig. 5, a set Y7 of pseudolabel candidates are es-
sentially superpixels of an unlabeled image x;, where p stands
for pseudolabel. These superpixels are computed efficiently
with an offline unsupervised graph-based method [35] before
the online training phase.

3) Online episode composition: The network is trained in
episodes: few-shot segmentation sub-problems comprised by
randomly chosen support and query sets. Specifically, we for-
mulate the self-supervision task as a foreground-background
segmentation problem: the network is required to retrieve
a randomly sampled superpixel (i.e. the foreground) in a
transformed image.

As shown in Fig. 5, for each episode 4, the support S;
is formed by a randomly-sampled image x; in together with
one of its randomly chosen superpixel y?(c?) € Y?, namely,
S = {(xi,¥7(cP))}. yi(cP) is in the form of binary mask
with index r = 1,2, 3, ..., | Y?|. The upperscript p of ¢? stands
for the pseudolabel class (i.e. the foreground class), which
is assigned to the chosen superpixel. The rest of the image
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Fig. 5. Workflow of the proposed superpixel-based self-supervised learning technique.

is therefore given the background class c°. The mask of the
background class is naturally computed as 1 — y7(cP). Of
note, regardless of which specific superpixel is chosen as the
pseudolabel, we always give the pseudolabel a same class label
cP across iterations. This is because the prototype-based 1-way
few-shot segmentation problem can be interpreted as retrieving
the same object across the labeled and the unlabeled images,
where fixed class-id’s are unnecessary.

We obtain the corresponding query set by applying
a random geometric transformation 7,(-) to S;, and
a random intensity transformation 7;(-) to x;, namely
Q= {(Ty(Ti(x:)}. Ty (yi(c"))). Specifically, T,() in-
cludes affine transformation and elastic transformation and
T:(-) is gamma transformation. By this mean, one training
episode (S;, Q;) is formed. In practice, we employ the sim-
plest 1-shot scenario for each episode for SSL during training,
as we haven’t observed significant benefit of using higher shots
in SSL even when tested with N > 1 shots.

In each iteration, the prediction y7 (c”) of query pseudolabel
T4(yl(cP)) is obtained by feeding (S;, Q;) to the ALPNet, and
taking steps described in Section III.

4) Boundary prior and boundary loss: To embed the
boundary prior into the learned representations, we employ
an [-1 boundary loss between the predicted pseudolabel and
its ground truth [68]. Specifically, as shown in the right
part of Fig. 5, we first obtain the soft edge maps {E’Zm} of
the prediction y7(cP) and the ground truth boundary maps
{b;} of the ground truth 7y(y7(c?)). This is obtained by
applying 3x3 Sobel filters {V4} along the height dimension
and the width dimension separately. Here the lowerscript
d € D;.s = {height,width} denotes the direction of Sobel
filter (along which image gradient is computed). We have:

Bg,i =Vaxyi(cP) and
by = VaxTy(yi (), where d € Djys, (7)

where * denotes convolution. we then compute /-1 distances
between two sets of maps, and obtain the boundary loss
L5(0;S;, Q;) for episode i, namely:

L5(0;S:,Q:) =

An alternative boundary loss can be found in [69].

5) End-to-end training: The SSL framework is trained in a
straightforward end-to-end manner, where each iteration takes
an episode, and the gradients back-propagate to the network
weights 6 in a similar way as in fully-supervised scenarios.
On top of the boundary loss discussed above, we also employ
the commonly-used cross-entropy loss between y7(cP) and
T4(y7(c?)). For each episode ¢ we have

(G-SZ-,Q-):
ZZ 37 To(yi(e)) (how)log(37 () (h, w)).
w je{0,p}

€))

Of note, from the perspective of contrastive representation
learning, this cross-entropy loss is in analogy with InfoNCE
loss [32], [41], applied to superpixel-based pseudolabels.

Following the practice of [13], we employ prototypical
alignment regularization [13]. This improves model perfor-
mance by aligning features of a same class between the support
images and the predicted query image. This is achieved by
swapping the roles of the support and the query: It first takes
the query image 7,(7;(x;)) and its predicted segmentation
¥y7(cP)) as a new support S, and it takes the original support
image as a new query Q; = {x;}. Then, it enforces the new
support S = {T4(7i(x:)), ¥} (c)} being able to be used as
reference to segmentation x;. This regularization is written as
follows:

EiREGw;S{ Ql‘) =

1 H W
CEW L 3 Y ) oe(FH ) )

w je{0,p}
(10)

Here y7(cP) is the prediction of y7 (c?) taking x; as query (i.e.
y7(cP) denotes the prediction in the first pass, while y7(cP)
denotes the prediction after the support and the predicted query
are swapped).
Overall, in each iteration (episode) ¢, the training objective
is defined as follows:
L' (6 N SZ‘, Qq)

=Lbp + ALY + ArpcLlhpas (11)

where weights A\p and Argg are both empirically set to 1.0.
Once the iterative training process is finished, the network can



be directly used for few-shot segmentation on real semantic
objects, without any fine-tuning process.

IV. EXPERIMENTS
A. Datasets

We comprehensively evaluated our method on three dif-
ferent combinations of imaging modalities and anatomical
structures: abdominal CT [70], abdominal T2-SPIR MRI [71]
and cardiac bSSFP MRI [72]. In each dataset, images are
equally separated into 5 folds for cross-validation. In each fold,
the validation set is further split into disjoint sets of support
and query images. An illustration of dataset split scheme is
shown in Fig. 6. Images in all these datasets are 3-D and
contain many slices/regions which do not contain any labeled
classes. These slices/regions allow us to compute sufficient
pseudolabels. Each 3-D image is reformated as 2-D slices and
resampled to 256 x256. We replicate the 1-channel 2-D image
for three times and stack them along the channel dimension
to fit into the network. Following common practices, intensity
normalization is applied to 3-D images.

To directly compare the performance of a same set of se-
mantic classes between datasts and modalities, for abdominal
CT and abdominal MRI, we constructed a shared label set
of left kidney (LK), right kidney (RK), liver and spleen. For
cardiac MR, left ventricle blood pool (LV-BP), left ventricle
myocardium (LV-MYO) and right ventricle (RV) are included.
This label set covers a wide range of objects with various
shape, size and textures under different imaging modalities.

Training/validation sets splits

3-D images No. [0 - 6] are used as validation set  3-D images No. [7 — 29] are used as training set

[ ] vasa Train: [0-5] and [13-29]
I Y KT

Support/query images splits

5-fold
cross-validation

3-D image used as support 3-D image No. 0 used as query Not in use for evaluating this query

_________________________________________

[

1

1

1

1

1

: Repeat for 3-D
: images No. [0-5]
I

I

1
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1

Fig. 6. Upper part: training-validation sets splittings for Abdominal CT
dataset which contains 30 3D images, numbered as No. 0 - No.29. Lower
part: support-query splittings for a validation set, in a 5-shot segmentation
scenario, taking the validation of the first validation set as an example.

B. Evaluation protocol

1) Evaluating 3-D segmentation on 2-D models: We em-
ployed Dice score [73] as the evaluation metric. It measures
the overlaps between the prediction and the ground-truth. As
we segment 3-D images using a 2-D model, Dice scores are

computed per-patient after re-stacking 2-D predictions back
into 3-D volumes.

To assign support slices to query slices, we employed the
protocol in [1]. In both query set and support set, for each
3-D image, we first equally divide its region-of-interest into
C equal-sized chunks. Then, for each chunk in query, its
corresponding support samples are the set of central slices
of corresponding chunks from all support scans. We set C'=3
throughout our experiments. To rigorously observe the gener-
alization ability of an FSS model to unseen semantic classes
in abdominal images, we first group labels into the upper-
abdomen and the low-abdomen groups. In each experiment,
classes of one group are taken as the training classes while
those of the other group comprise the testing classes. We then
strictly exclude any slices containing testing classes from the
training set. For cardiac images, each time we take one label
for testing and the rest for training. Excluding slices containing
testing classes is unfeasible due to the view-point constraint.

2) Implementation: We implement the proposed framework
using PyTorch, based on vanilla PANet implementation' [13].
An off-the-shelf ResNet-101 [74] network pretrained on part
of MS-COCO is employed as the feature extractor fy(-) °.
It has an input dimension of 3 x 256 x 256 and yields a
feature map of 256 x 32 x 32. We train the proposed SSL-
ALPNet using 1-shot configuration for 100k iterations with
an SGD optimizer. Hyper-parameters of the proposed method
and baseline methods are decided by manually searching with
different combinations.

C. Quantitative and qualitative results

Table I - IT show the comparisons of the proposed SSL-
ALPNet with the baseline vanilla PANet [13] and the SE-
Net® [1], a method particularly designed for medical images,
as mentioned in Sec. II-A. The proposed SSL-ALPNet con-
sistently outperforms baseline methods by at least 10 points
in terms of Dice score in both 1-shot and 5-shot scenarios.
Fig. 7 qualitatively demonstrates the desirable performance
of the proposed method under different imaging modalities
and anatomical structures. In addition, SSL-ALPNet yields
consistent performance gains when expanding from 1-shot to
5-shot in testing, demonstrating its data efficiency in terms
of fully exploiting additional support examples if available.
We have also included the upper bounds by fully-supervised
methods for abdominal image segmentation in the last two
rows of Table I.

D. Ablation study

1) ALPNet architecture: To justify the benefit of exploiting
local information, as argued in Sec. I, in Table I and Table
II, we compared ALPNet with the PANet architecture when
trained using either manual annotations (Vanilla PANet versus
ALPNet) or self-supervised pseudolabels (SSL-PANet versus
SSL-ALPNet w/o BP, where BP is short for boundary prior).

Thttps://github.com/kaixin96/PANet

2This initialization alone does not contribute much to segmenting medical
images [36].

3https://github.com/abhidssj/few-shot-segmentation



TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AND BASELINE METHODS ON ABDOMINAL IMAGES, MEASURED IN DICE SCORE. "BP” IS
SHORT FOR "BOUNDARY PRIOR”

Inference with N=1 shot.

Abdominal-CT

Abdominal-MRI

Method Manual Anno.? Lower Upper Mean Lower Upper Mean
LK RK Spleen Liver LK RK Spleen Liver
SE-Net [1] v 32.70 23.60 3253 38.20 31.76 63.85 64.56 11.78 55.08 48.82
Vanilla PANet [13] v 33.29 16.27 36.47 50.10 34.04 53.95 35.05 58.50 54.14 49.41
ALPNet v 28.43 26.68 40.21 55.78 37.78 58.59 57.28 56.77 60.14 58.19
SSL-PANet X 37.58 34.69 43.73 61.71 44.42 47.71 47.95 58.73 64.99 54.85
SSL-ALPNet w/o BP X 63.34 54.82 60.25 73.65 63.02 73.63 78.39 67.02 73.05 73.02
SSL-ALPNet w/ BP X 66.04 62.14 68.39 73.90 67.62 78.77 83.44 70.02 75.01 76.81
Inference with N=5 shots.
Vanilla PANet [13] v 31.13 19.28 36.88 57.62 36.23 53.52 34.37 56.13 56.84 50.21
ALPNet v 39.90 32.75 45.61 60.90 44.79 67.38 71.84 61.36 64.13 66.18
SSL-PANet X 38.83 36.42 42.40 69.16 46.70 44.32 42.18 54.49 66.59 51.90
SSL-ALPNet w/o BP X 71.78 69.31 70.94 82.05 73.52 79.90 85.96 72.30 80.40 79.64
SSL-ALPNet w/ BP X 74.34 71.61 75.74 81.96 75.91 82.28 86.23 72.42 80.70 80.16
Upper bounds by fully-supervised segmentation
Zhou et al. [75] Ful. Sup. 95.3 92.0 96.8 97.4 95.4 -
Isenseen et al. [76] Ful. Sup. - - 94.6
TABLE 11 segmentation, which is usually under-explored in previous FSS

QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AND BASELINE
METHODS ON CARDIAC IMAGES.

Inference with N=1 shot.

Method Manual Anno.? LV-BP LV-MYO RV Mean
SE-Net [1] v 58.04 25.18 1286  32.03
Vanilla PANet [13] v 53.64 35.72 39.52 4296
ALPNet v 73.08 49.53 58.50  60.34
SSL-PANet X 70.42 46.79 69.52  62.25
SSL-ALPNet w/o BP X 83.99 66.74 79.96  76.90
SSL-ALPNet w/ BP X 83.98 67.68 82.15 7794
Inference with N=5 shots.
Vanilla PANet [13] v 60.69 39.44 41.66  47.26
ALPNet v 82.65 52.61 69.13  68.14
SSL-PANet X 70.62 46.03 67.16  61.27
SSL-ALPNet w/o BP X 86.88 70.56 85.12  80.85
SSL-ALPNet w/ BP X 86.89 72.14 85.95 81.66
Upper bound by fully-supervised segmentation
FCN-ResNet-101 [74], [77] Ful. Sup. 95.81 87.00 93.57 92.13

In both scenarios, consistent performance gains of ALPNet are
shown. Of note, this performance boost is achieved with the
almost-negligible additional computational cost of introducing
the adaptive local prototype pooling module.

2) SSL with image priors: As discussed in Sec. II-C, the
proposed SSL leverages two image priors: the smoothness
prior enforced by using superpixels as pseudolabels, and
the boundary prior (BP) enforced by the boundary loss. By
comparing the same ALPNet’s trained on manual annotations
versus those trained using SSL w/o BP, we can observe the
superiority of self-supervised learning in FSS. By a close-up
comparison between SSL-ALPNet’s with boundary prior and
those without, we can observe the performance gains in Table
I - II*. All these results highlights the benefit of exploiting
proper patch-level image priors in self-supervised learning for

“4For rigorousness we performed single-sided Wilxocon signed-rank tests
for scenarios where the performance gain of introducing BP is smaller than
+1.5 out of 100 in terms of mean Dice scores, across Table I-II & IV. p-values
for all tests are below 0.01 except for the 5-shot abdominal MRI segmentation.

or representation learning works.

3) Granularity of prototypes: We also examined the effect
of granularity of prototypes: the extend under which each local
prototype is computed over the feature map of the support.
As shown in Fig. 3-B and Equ. 1, this extend is controlled by
(Ly, Lw) (orange boxes in Fig. 3-B). They are empirically set
to be (4,4) during training and (2, 2) during testing, both over
support feature maps that have a spatial size of 32 x 32. This
configuration is based on the intuition that during both training
and testing, (L, Ly ) should be reasonably smaller than the
potential segmentation target to capture the fine-grained details
of the image. However, to enlarge the receptive field of a
prototype, during training, (Lg, Ly ) should be reasonably
large.

TABLE III
EFFECT OF VARYING PROTOTYPE WINDOW SIZE (LH, Lw) DURING
TRAINING ON SEGMENTATION RESULTS ON ABDOMINAL CT

(Lu,Lw) LK RK Spleen  Liver Mean
2,2) 6642 58.78 67.21 73.94  66.58
(4,4) (reported)  66.04 6214 6839 7390 67.62
(8,8) 61.68 53.89 6194 69.25 61.69

We therefore experimented with different (L, Lyy)’s dur-
ing training, and tested the obtained models on 1-shot abdom-
inal CT segmentation. These results are reported in Table III.
These results agree with our intuitions on selecting the size
of (Ly, Lw). It is interesting to note that choosing an over-
small (L, Ly ) during training does not severely affect the
performance. This might be because the backbone network has
already provided a reasonably large receptive field.

E. Testing with weak annotations

We have also examined the behavior of the model trained
on SSL under an extremely low-resource scenario, which we
term as weakly-annotated testing. Under this scenario, only
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Fig. 7. Qualitative results of the proposed method, in comparison with
baseline method PANet [13].

TABLE IV
QUANTITATIVE RESULTS OF WEAK (1-SHOT WITH BOUNDING BOX ONLY)
ANNOTATION DURING TESTING

Method Abdominal CT ~ Abdominal MRI  Cardiac MRI
ALPNet 38.21 5243 41.46
SSL-ALPNet w/o BP 48.73 64.80 46.71
SSL-ALPNet w/ BP 57.56 68.25 47.17

bounding-box-level annotations are available for each class
under a 1-shot setting. As shown in Table IV and Fig. 8§,
by leveraging two image priors in learned representations, the
model is still able to reasonably predict the rough shapes and
boundaries of unseen anatomical structures.

Weak annotation

Fig. 8. Examples of predictions under weak (l-shot with bounding box)
annotation during testing

V. CONCLUSION AND DISCUSSION

In this work, we have proposed a self-supervised framework,
named SSL-ALPNet, for few-shot medical image segmenta-
tion. Without using any manual labels during training, the
proposed method successfully outperforms previous methods
that rely on large amounts of annotated data of training classes.

From a broader perspective, self-supervised representation
learning is a family of promising techniques for learning
from rich but under-exploited unlabeled medical images. In
comparison with 2-D RGB images, medical images features
their own unique properties. For example, medical images
are usually in 3-D and are highly structured. These unique
properties promise future works on self-supervised learning for
medical imaging applications. In our method, the piece-wise
smoothness prior and the boundary prior of medical images
are proven to be beneficial for few-shot segmentation.

Although the proposed self-supervised learning technique
has demonstrated superiority over conventional methods, some
extensions remain to be made. For example, the current
method is designed for 1-way segmentation: only one la-
bel class to be segmented at a time. To expand to multi-
way segmentation where more than one classes are to be
segmented, adjustments to the SSL technique need to be
made. For example, sampling multiple superpixels at one
time and labeling them with different pseudolabels would
be a straightforward solution. Also, lesions are often more
difficult for a prototype-based network to segment compared
with organs, since many types of lesions do not have regular
textures or shapes. Therefore, both the SSL strategy and the
prototype-based network need to be upgraded to account for
these lesions. Interestingly, a recent work [78] which employs
a similar self-supervision technique to ours, has demonstrated
promising results on one-shot lesion retrieval. To further
automate few-shot segmentation during testing time, it is also
desirable to simplify the chunking mechanism for assigning
support 2-D slices to query images.

For few-shot medical image segmentation in general, several
questions remain to be investigated. For example, as 3-D
networks are generally regarded as superior to 2-D coun-
terparts in terms of segmentation accuracy [79], a fully 3-
D few-shot medical image segmentation technique with high
computational efficiency remains to be proposed. Meanwhile,
as medical images are usually accompanied by non-image
information like radiology reports, leveraging multi-modality
information in self-supervised learning will be promising.



Also, designing universal self-supervised learning techniques
which target at a wider range of downstream tasks is of great
practical value.

In summary,

we have successfully designed a self-

supervised few-shot medical image segmentation framework.
Circumventing the need for manually annotated training data,
this work potentially expands future applications of few-shot
segmentation in medical images. We hope that the proposed
superpixel-based self-supervision technique would inspire fu-
ture investigations on few-shot segmentation and unsupervised
representation learning.
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