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An international genome-wide meta-analysis of primary biliary cholangitis:
novel risk loci and a hierarchy of candidate drugs

1. Genome-wide meta-analysis (GWMA)
of five cohorts of European ancestry and
two East Asian cohorts identifies  21
additional risk loci for primary biliary
cholangitis (PBC).

2. Integration of GWMA statistics (outer  ring) with
reference ‘omic data (e.g., methylome-wide [middle]
and transcriptome-wide [inner] data) guides the
selection of candidate genes.

3. Candidate genes for PBC inform drug-
disease network proximity analysis,
identifying  medications potentially
suitable for re-purposing to this
condition.
Highlights
associated with PBC. Each of these
� Trans-ethnic genome-wide meta-analysis (GWMA) of susceptibility
to primary biliary cholangitis (PBC).

� Five cohorts of European ancestry and two East Asian cohorts (n =
10,516 cases and 20,772 controls).

� Identification of 21 additional risk loci for PBC.

� Preliminary evidence that the genetic architecture of PBC is broadly
shared across European and East Asian populations.

� Identification (using in silico drug efficacy screening) of medications
potentially suitable for re-purposing to PBC.
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Lay summary
Primary biliary cholangitis (PBC) is
a chronic liver disease that even-
tually leads to cirrhosis. In this
study, we analysed genetic infor-
mation from 10,516 people with
PBC and 20,772 healthy individuals
recruited in Canada, China, Italy,
Japan, the UK, or the USA. We
identified several genetic regions

regions contains several genes. For
each region, we used diverse sour-
ces of evidence to help us choose
the gene most likely to be involved
in causing PBC. We used these
‘candidate genes’ to help us identify
medications that are currently used
for treatment of other conditions,
which might also be useful for
treatment of PBC.
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Backgrounds & Aims: Primary biliary cholangitis (PBC) is a providing insight into its aetiology. We undertook the largest

chronic liver disease in which autoimmune destruction of the
small intrahepatic bile ducts eventually leads to cirrhosis. Many
patients have inadequate response to licensed medications,
motivating the search for novel therapies. Previous genome-
wide association studies (GWAS) and meta-analyses (GWMA)
of PBC have identified numerous risk loci for this condition,
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GWMA of PBC to date, aiming to identify additional risk loci and
prioritise candidate genes for in silico drug efficacy screening.
Methods: We combined new and existing genotype data for
10,516 cases and 20,772 controls from 5 European and 2 East
Asian cohorts.
Results: We identified 56 genome-wide significant loci (20
novel) including 46 in European, 13 in Asian, and 41 in combined
cohorts; and a 57th genome-wide significant locus (also novel) in
conditional analysis of the European cohorts. Candidate genes at
newly identified loci include FCRL3, INAVA, PRDM1, IRF7, CCR6,
CD226, and IL12RB1, which each play key roles in immunity.
Pathway analysis reiterated the likely importance of pattern
recognition receptor and TNF signalling, JAK-STAT signalling, and
differentiation of T helper (TH)1 and TH17 cells in the
021 vol. 75 j 572–581
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pathogenesis of this disease. Drug efficacy screening identified
several medications predicted to be therapeutic in PBC, some of
which are well-established in the treatment of other autoim-
mune disorders.
Conclusions: This study has identified additional risk loci for
PBC, provided a hierarchy of agents that could be trialled in this
condition, and emphasised the value of genetic and genomic
approaches to drug discovery in complex disorders.
Lay summary: Primary biliary cholangitis (PBC) is a chronic liver
disease that eventually leads to cirrhosis. In this study, we ana-
lysed genetic information from 10,516 people with PBC and
20,772 healthy individuals recruited in Canada, China, Italy,
Japan, the UK, or the USA. We identified several genetic regions
associated with PBC. Each of these regions contains several
genes. For each region, we used diverse sources of evidence to
help us choose the gene most likely to be involved in causing
PBC. We used these ‘candidate genes’ to help us identify medi-
cations that are currently used for treatment of other conditions,
which might also be useful for treatment of PBC.
© 2021 Published by Elsevier B.V. on behalf of European Association
for the Study of the Liver.
Introduction
Primary biliary cholangitis (PBC) is a chronic liver disease in
which autoimmune injury to the small intrahepatic bile ducts
eventually leads to cirrhosis. Only 2 medications, ursodeox-
ycholic acid (UDCA) and obeticholic acid (OCA), are licensed for
the treatment of PBC. Many patients have inadequate response to
both agents, leaving them at risk of progressive liver disease.
Notwithstanding recent advances, novel therapies are needed for
this condition.

Delineating the genetic architecture of PBC can provide
insight into its aetiology – and more specifically, identify po-
tential drug targets. Therefore, over the past decade, our
respective groups have undertaken genome-wide association
studies (GWAS) of PBC in Canadian-US,1 Italian,2 British,3 Japa-
nese,4 and Chinese5 cohorts; and in 2015, we undertook a
genome-wide meta-analysis (GWMA) of the Canadian-US, Ital-
ian, and British discovery panels.6 These studies have identified
genome-wide significant associations at the human leukocyte
antigen (HLA) locus and 42 non-HLA loci.

Our GWMA in 2015 did not include the Japanese or Chinese
discovery panels. Furthermore, since 2015, our respective groups
have undertaken genome-wide genotyping of substantially
expanded Canadian, Italian, UK, and US cohorts. Therefore, we
present an updated GWMA of PBC that includes these expanded
cohorts, as well as the Japanese and Chinese discovery panels. In
this study, we aimed to: i) capitalise on the increased sample size
to discover additional risk loci for PBC; ii) explore population-
specific genetic heterogeneity at known and newly identified
risk loci; iii) integrate GWMA statistics with publicly available
epigenetic, gene expression, and proteomic datasets to prioritise
causal variants and candidate genes; and iv) use these candidate
genes for in silico drug efficacy screening to identify agents
potentially suitable for re-purposing to PBC.
Materials and methods
Participants and genotyping are summarised in Table 1 and
detailed in the supplementary information. Written informed
consent was obtained from each participant. The research
Journal of Hepatology 2
conformed to the ethical guidelines of the 1975 Declaration of
Helsinki.

Quality control
For the European and Japanese panels, quality control (QC)
checks were performed at Newcastle University, UK, using the
software package PLINK.7 Specific QC thresholds to determine
outliers were based on visual inspection and varied by panel. For
the European panels, we first removed variants with minor allele
frequency (MAF) <0.01; genotype call rate <97% (<95% for the
‘old’ Italian, WTCCC3, and ‘new’ US panels); or significant devi-
ation from Hardy Weinberg Equilibrium (HWE) (p <10−6). We
then removed samples with rates of missing data >2% (>4% for
the new US panel); whole-genome heterozygosity >3.25 stan-
dard deviations from the mean; apparent gender discrepancies
(based on X-chromosomal heterozygosity >0.2 for men and <0.2
for women); estimated proportion of identity-by-descent
sharing with another sample >0.1 (based on subsets of be-
tween 38,000 and 97,000 variants pruned for linkage disequi-
librium [LD]); or that did not cluster with the CEU HapMap2
population (based on visual inspection of the first 2 principal
components). For the Japanese panel, we used the dataset
described in Kawashima et al. (2012),4 except for the additional
removal of 4 cases and 10 controls with apparent gender
discrepancies.

All samples recruited in China were processed and analysed
on Chinese servers to comply with the Regulation of the People’s
Republic of China on the Administration of Human Genetic Re-
sources. Thus, for the Chinese panel, QC checks were undertaken
on a local server in Shanghai, China. Variants were removed with
MAF <0.5%, genotype call rate <95%, or deviation from HWE in
controls p <−1x10

−6. Samples were removed with rates of missing
data >−5% or pairwise identity-by-state, PI_HAT >0.25. Population
outliers were identified for exclusion using principal component
analysis.

Genome-wide imputation and post-imputation quality
control
For the European and Japanese panels, we used the autosomal
variants and samples passing QC to carry out genome-wide
imputation within each individual panel using the Michigan
Imputation Server with Eagle2 phasing,8 informed by the 1000
Genomes Phase 3 reference panel. Following imputation, we
discarded variants with imputation R2 <0.5; non-unique alleles
at the same position; or imputation call rate <90% (based on
assigning genotypes according to the most likely genotype call
and setting genotypes to missing if the most likely genotype call
had posterior probability <0.9). We also used the resulting
common set of imputed variants to check for sample duplicates/
relationships across the European panels (based on estimated
identity-by-descent sharing using 25,873 variants pruned for LD)
and removed 1 person from each of the 137 identified relative
pairs.

For the Chinese panel, genome-wide imputation was under-
taken on a local server in Shanghai, China, using SHAPEIT9 and
IMPUTE2,10 and the 1000 Genomes Phase 3 reference panel.
Following imputation, we discarded variants with call rates <95%
(having set genotypes to missing if the most likely genotype call
had posterior probability <0.9), MAF <0.01, or HWE p <1×10-6 in
controls. The resulting imputation summary statistics (log odds
ratios [lnORs], standard errors, and p values) were submitted
021 vol. 75 j 572–581 573



Table 1. Discovery panels included in the current study.

Panel (Ref) Cases Controls Variants* Platform

European panels
‘Old’ Italian (2) 444 901 13,113,694 Illumina Human610-Quad (Cases), Illumina 1M-Duo

(Controls)
WTCCC3 (3) 1,816 5,155 12,881,032 Illumina Human-660W Quad (Cases), Illumina 1M-Duo

(Controls)
‘New’ Canadian-UK 4,615 9,233 8,656,760 Illumina HumanCoreExome
‘New’ Italian 255 579 9,264,788 Illumina HumanCoreExome
‘New’ US 891 621 9,964,354 Illumina Infinium Global Screening Array (GSA) v1
European combined 8,021 16,489 5,186,747 -

Asian panels
Japanese (4) 1,377 1,495 7,308,269 Affymetrix Axiom Genome-Wide ASI 1
Chinese (5) 1,118 2,788 6,934,908 HumanOmniZhongHua-8
Asian combined 2,495 4,283 5,347,815 -

All combined 10,516 20,772 2,817,608 -

WTCCC3, Wellcome Trust Case-Control Consortium 3.
*Number of variants following pre- and post-imputation quality control.
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without individual-level data to Newcastle, UK, for meta-analysis
with the other panels.

Statistical analysis of European and Japanese cohorts
Within each panel, we performed association analysis of the
genome-wide imputed data using logistic regression of disease
phenotype on single nucleotide polymorphism (SNP) genotype
(coded 0,1,2) in PLINK,7 with the first 10 principal components
(from a pruned set of SNPs with the HLA region removed)
included as covariates to correct for population stratification.
(The rationale for removing the HLA region was that inclusion of
SNPs in this region would risk generating components that
explain variation primarily caused by strong HLA-disease asso-
ciation, rather than population stratification.) For all but the new
Canadian-UK panel, the resulting genomic control (GC) inflation
factor k was modest (<1.026); therefore, we carried out GC
correction within each panel by multiplying the standard error
(SE) of the estimated lnOR for each SNP by Ok. For the new
Canadian-UK panel, k was somewhat inflated at 1.091; therefore,
we re-analysed the new Canadian-UK data using a logistic mixed
model score test (including the first 10 principal components as
covariates) as implemented in the GMMAT package,11 resulting
in a slightly deflated k of 0.971. The SE of the estimated lnOR for
each SNP from PLINK was then (conservatively) adjusted to
match that implied by the GMMAT test statistic. Specifically, we
multiplied the PLINK-derived SE for each SNP by a SNP-specific
factor c, where c was chosen so that the resulting s2 test statis-
tic (lnOR/cSE)2 for that SNP had a p value equal to the p value
from GMMAT. GC correction was also performed for the Chinese
summary statistics (k = 1.050) by multiplying the SE of the
estimated lnOR for each SNP by Ok.

Meta-analysis of European, Asian, and combined cohorts
We used the software package META12 to perform fixed-effect
meta-analysis of the resulting lnORs and adjusted SEs from i)
the 5 European panels; ii) the 2 Asian panels; and (3) all 7 panels,
in each case restricting the analysis to variants that (following
post-imputation QC) appeared within all panels. Within each
meta-analysed set (European, Asian, and combined), a further GC
correction was performed (to adjust for the inflation factors of
1.041, 1.033, and 1.080, seen within the European, Asian, and
combined cohorts, respectively) to produce the final set of
574 Journal of Hepatology 2
genome-wide results. Specifically, as for the individual panels
above, the SE of the final lnOR for each SNP was multiplied by Ok,
and the test statistic and p value were re-calculated accordingly.
This use of “double” GC correction might be considered overly
conservative, given that part of the observed inflation could be
due to polygenicity. We explored this using LD score regression
(LDSR)13 to compare our original results with those obtained
using no GC (or GMMAT-derived) correction at all. We also
compared our results from all panels combined with those ob-
tained using trans-ethnic meta-regression analysis as imple-
mented in the software package MR-MEGA14 (see supplementary
information for details).
Prioritisation of candidate causal variants and candidate
genes
We used the FINEMAP15 package and Conditional and Joint
Analysis (COJO)16 implemented within GCTA17 to refine and look
for independent associations within genome-wide significant
risk loci. We used FINEMAP to construct ‘credible sets’ of variants
most likely to be causal in PBC. We used the ENSEMBL Variant
Effect Predictor,18 FUMA (Functional Mapping and Annotation)
GWAS19 platform, and reference panels from the Avon Longitu-
dinal Study of Parents and Children (ALSPAC, http://www.bristol.
ac.uk/alspac/)20 and the INTERVAL study (http://www.
donorhealth-btru.nihr.ac.uk/studies/interval-study/)21 for map-
ping and functional annotation of the first set of ‘credible causal
variants’ at each risk locus.

Adapting the approach of Barbeira et al. (2018),22 we used the
MetaXcan package; our European GWMA summary statistics;
and reference panels from ALSPAC, the Genotype-Tissue
Expression (GTEx) project (https://gtexportal.org/),23 and the
INTERVAL study to derive genome-wide genetic prediction
models of DNA methylation, gene expression, and serum protein
levels in cases and controls. We used these models to correlate
predicted DNA methylation, gene expression, and serum protein
levels with disease status in methylome-wide, transcriptome-
wide, and serum proteome-wide association studies (MWAS,
TWAS, and PWAS, respectively).

We used the moloc package24 to look for co-localisation of
association signals from our GWMA of the European panels with
those derived from mapping of methylation, expression, and
protein-quantitative trait loci (mQTLs, eQTLs, pQTLs) in ALSPAC,
021 vol. 75 j 572–581
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the GTEx project, and the INTERVAL study, respectively. Finally,
we used the DEPICT package25 to prioritise the most likely causal
gene at risk loci based on gene function.

Enrichment analysis
We used the STRING Database26 to look for enrichment of
protein-protein interactions and functional annotations amongst
candidate genes; and the DAVID resource27 to look for enrich-
ment of KEGG pathways by genes with minimum pGWMA <0.01.

Network-based in silico drug efficacy screening
We employed the approach of Guney et al. (2016)28 in which
known drug targets and candidate genes for a disease are used
to estimate a drug-disease proximity measure, z, that quantifies
the closeness (or proximity) of the drug and disease gene
networks, respectively, correcting for the known biases of the
interactome. For this analysis, we used the drug targets listed in
DrugBank (https://www.drugbank.com/, accessed January
2021) and candidate genes for PBC prioritised as above. See the
supplementary information for details.

Results
GWMA identifies 21 additional genome-wide significant risk
loci for PBC
Following QC, the European panels consisted of 5,186,747 vari-
ants across 8,021 cases and 16,489 controls; Asian panels,
5,347,815 variants across 2,495 cases and 4,283 controls; and all
panels combined, 2,817,608 variants across 10,516 cases and
20,772 controls (Table 1). Of note, there was substantial reduc-
tion in the number of variants in all panels combined compared
to the European or Asian panels. This resulted from limited
overlap of variants that passed post-imputation QC in the Eu-
ropean compared to the Asian panels, explained by our use of
different genotyping platforms across cohorts, and different LD
patterns in Europeans compared to Asians.

GWMA of the European panels identified 46 loci at genome-
wide significance (p <5×10−8); GWMA of the Asian panels, 13
loci at genome-wide significance; and GWMA of all panels
combined, 41 loci at genome-wide significance (Fig. S1). Alto-
gether, we identified 56 genome-wide significant risk loci in one
or other meta-analysis (Table S1, Fig. S2). Using COJO, we iden-
tified an additional risk locus at 19p13.11 with genome-wide
significance in conditional analysis of European panels (p =
4.66×10-8), having narrowly missed this threshold in the main,
unconditional analysis (p = 6.55×10-8) (Fig. S2.57). Thus, a total of
57 genome-wide significant risk loci were identified in the cur-
rent study. Of these, 21 were not identified in previous studies;
and 2, 1q23.1 and 11q24.3, were previously identified at sug-
gestive rather than genome-wide significance (Tables 2A&B).4,29

At 6 newly identified or newly confirmed risk loci, we
considered evidence of association to be conclusive because: i) an
unequivocal association signal was evident in both the European
and Asian panels; and ii) where the lead variant at the locus was
different in the European compared to the Asian panels, permu-
tation testing confirmed the significance of a signal in the vali-
dating dataset, located in proximity to the primary signal in the
index dataset (ppermutation <0.00217, corresponding to p <0.05
Bonferroni-corrected for 23 tests; see supplementary information
for details) (Table 2A, Table S1, Fig. S2).

At 17 newly identified or newly confirmed risk loci, we
considered evidence of association to be strong but not
Journal of Hepatology 2
conclusive because unequivocal association was evident in the
European but not the Asian panels, or permutation testing was
not significant at ppermutation <0.00217 (Table 2B, Table S1, Fig. S2).
We note, however, that most of these loci achieved levels of
significance in the Asian panels that were suggestive for valida-
tion, including 2 loci with suggestive permutation p values
(4q24, ppermutation = 0.0040; and 5q21.1, ppermutation = 0.0032).

We confirmed genome-wide significant associations at 34 of
43 previously identified risk loci for PBC – but not at 9 previously
identified risk loci. Seven of these 9 loci nevertheless showed a
convincing association signal, albeit at p >5×10-8 (Table S2,
Fig. S3). We found no evidence of association at the 15q25.1 locus
(harbouring IL16) that was discovered and validated in the Chi-
nese GWAS by Qiu et al. (2017) 5; this is explained by the absence
of a signal in the Japanese and European panels. Coverage of the
19p13.2 locus was too sparse to test association.

Using FINEMAP and COJO, we found that at most risk loci, the
association signal was best explained by a single variant – but at
16 loci, it was best explained by >−2 independent variants
(Table S3). Notable examples include the 2q32.2 locus harbour-
ing STAT4, with 3 independent variants; 3q25.33 (IL12A, 3 vari-
ants); 7q32.1 (IRF5, 2 variants); and 16p13.13 (CLEC16A, 2
variants) – all consistent with previous studies showing >−2 in-
dependent associations at each of these loci.

We compared our original results to those obtained without
GC (or GMMAT-derived) correction. As expected, without
correction, all loci previously identified as genome-wide signif-
icant reached slightly higher levels of significance, while a few
loci that did not reach genome-wide significance in our original
analysis, now (just) did so (Fig. S4 and Table S4). We also
compared our original results for all panels combined with those
obtained using trans-ethnic meta-regression analysis, imple-
mented in MR-MEGA. Results from MR-MEGA were highly
concordant with those from our original analysis (Fig. S5), also
providing genome-wide significant confirmation of an inde-
pendent association signal at 7q32.1, which exhibited significant
heterogeneity in the direction of effects between the Asian and
European cohorts (Table S5 and Fig. S6).

PBC shows genetic correlation with other autoimmune
conditions
Recognising that most risk loci for PBC are also risk loci for other
autoimmune conditions (Table S6), we used LDSR implemented
via LD Hub30 to evaluate the genetic correlation between PBC
(using summary statistics from our European panels) and com-
plex traits with GWAS summary statistics in the LD Hub data-
base. We found significant genetic correlation between PBC and
other immune-mediated inflammatory disorders, including sys-
temic lupus erythematosus (SLE, rg = 0.54, p = 2.87×10-14),
rheumatoid arthritis (RA, rg = 0.26, p = 3.77×10-5), and inflam-
matory bowel disease (IBD, rg = 0.23, p = 6.97×10-5) (Table S7).
We were unable to test genetic correlation of PBC with autoim-
mune thyroid disease, Sjögren syndrome, or systemic sclerosis
because GWAS summary statistics for these conditions were not
available in LD Hub at the time of interrogation (19.09.2019).

The genetic architecture of PBC is broadly shared across
European and Asian populations
To evaluate consistency between European and Asian signals, we
applied permutation testing where warranted and standard
meta-analysis measures of heterogeneity to the lead variants at
021 vol. 75 j 572–581 575
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Table 2. Newly identified or newly confirmed risk loci with replicated evidence of association.

Table 2A

Lead variant in the European panels Lead variant in the Asian panels Lead variant in the combined panels

Locus Variant:A1/A2 p value Beta Variant:A1/A2 p value Beta Variant:A1/A2 p value Beta
Gene Chr:BP pperm. SE Chr:BP pperm. SE Chr:BP SE

2p25.1 rs891058:A/G 5.39×10-7 -0.12 rs3111414:C/G 1.75×10-4 0.17 rs13416555:G/C 2.95×10-8 -0.12
ID2 2:8,442,547 — 0.02 2:8,443,859 0.0017 0.04 2:8,441,735 0.02
2q21.3 rs859767:G/A 1.54×10-9 -0.14 rs842349:T/G 1.76×10-9 -0.24 rs859767:G/A 8.94×10-16 -0.16
TMEM163 2:135,341,200 — 0.02 2:135,342,452 <0.0001 0.04 2:135,341,200 0.02
6q21 rs58926232:G/C 6.75×10-7 0.14 rs4134466:A/G 6.71×10-7 0.20 rs742108:A/G 3.16×10-8 0.13
PRDM1 6:10,6563,612 — 0.03 6:106,577,368 0.0001 0.04 6:106,582,920 0.02
6q27 rs3093024:A/G 2.37×10-6 0.10 rs4709148:T/C 2.18×10-10 -0.25 rs968334:T/C 3.98×10-10 0.12
CCR6 6:167,532,793 0.0001 0.02 6:167,521,676 — 0.04 6:167,526,096 0.02
11q24.3* rs10893872:T/C 9.07×10-6 0.10 rs11430718:G/GA 1.11×10-6 -0.19 rs10893872:T/C 9.77×10-9 0.11
ETS1 11:128,325,553 — 0.02 11:128,307,445 <0.0001 0.04 11:128,325,553 0.02
14q13.2 rs712315:A/T 5.70×10-7 0.15 rs199892962:AT/A 4.36×10-6 0.20 rs799469:G/A 1.73×10-9 0.15
FAM177A1 14:35,409,701 — 0.03 14:35,646,404 0.0020 0.04 14:35,444,425 0.03

Table 2B

Lead variant in the European panels Lead variant in the Asian panels Lead variant in the combined panels

Locus Variant p value Beta Variant p value Beta Variant p value Beta
Gene Chr:BP SE Chr:BP pperm. SE Chr:BP SE

1q23.1* rs945635:G/C 1.59×10-8 -0.12 rs60459521:G/C 1.25×10-3 -0.46 rs11264790:T/C 2.25×10-8 -0.11
FCRL3 1:157,670,290 0.02 1:157,147,588 — 0.14 1:157,636,074 0.02
1q32.1 rs55734382:T/C 2.06×10-9 -0.14 rs117214467:C/T 8.55×10-3 -0.33 rs12122721:A/G 6.95×10-7 -0.11
INAVA 1:201,019,059 0.02 1:200,436,787 — 0.13 1:200,984,480 0.02
2p23.3 rs34655300:T/C 5.23×10-10 0.14 rs893589:A/G 9.41×10-4 0.15 rs6711622:A/G 3.89×10-8 0.11
DNMT3A 2:25,514,333 0.02 2:25,259,442 — 0.05 2:25,531,350 0.02
3p24.2 rs6550965:A/C 3.65×10-14 0.16 rs6807549:T/G 1.37×10-3 0.17 rs6550965:A/C 1.50×10-14 0.15
RARB 3:25,383,587 0.02 3:24,951,404 — 0.05 3:25,383,587 0.02
4q24 rs7663401:C/T 2.76×10-8 -0.13 rs79109654:T/C 8.56×10-5 0.37 rs2007403:T/C 6.19×10-10 0.13
TET2 4:106,128,954 0.02 4:106,170,514 0.0040 0.09 4:106,131,210 0.02
5q21.1 rs141002831:T/TCA 1.47×10-7 0.12 rs157181:A/C 3.94×10-5 0.21 rs60643069:GA/G 2.48×10-9 0.13
ST8SIA4 5:100,202,282 0.02 5:100,103,288 0.0032 0.05 5:100,238,073 0.02
5q31.3 rs10062349:G/A 7.36×10-8 -0.12 rs3761757:A/C 7.48×10-3 -0.14 rs6874308:C/T 4.67×10-8 -0.11
NDFIP1 5:141,509,597 0.02 5:141,488,219 — 0.05 5:141,506,911 0.02
7p21.1 rs7805218:A/G 4.12×10-8 0.13 rs77984571:C/G 7.54×10-3 -0.14 rs7786537:C/G 1.12×10-5 -0.11
ITGB8 7:20,378,801 0.02 7:20,512,650 — 0.05 7:20,427,776 0.02
7q34 rs370193557:GAAT/G 1.89×10-8 0.12 rs12056141:G/A 1.05×10-3 0.18 rs370193557:G/GAAT 9.37×10-10 -0.12
ZC3HAV1 7:138,729,543 0.02 7:138,797,730 — 0.05 7:138,729,543 0.02
8q24.21 rs4733851:A/G 2.18×10-7 0.11 rs1902780:C/T 5.51×10-4 -0.13 rs4733851:G/A 4.98×10-8 -0.11
PVT1 8:129,264,420 0.02 8:129,211,788 — 0.04 8:129,264,420 0.02
9q22.33 rs11390003:GA/G 2.56×10-8 -0.15 rs10283737:G/T 1.24×10-3 0.15 rs112500293:T/C 7.63×10-9 -0.15
TRIM14 9:100,741,912 0.03 9:100,780,063 — 0.05 9:100,763,455 0.03
10q11.23 rs7097397:A/G 2.42×10-10 -0.14 rs76129863:T/C 4.83×10-3 0.56 rs7922169:T/G 5.47×10-8 0.11
WDFY4 10:50,025,396 0.02 10:50,437,561 — 0.20 10:50,045,456 0.02
11p15.5 rs58523027:TAA/T 4.00×10-8 -0.12 rs3216:C/G 8.17×10-2 -0.10 rs9667500:G/A 1.74×10-4 -0.08
IRF7 11:646,986 0.02 11:214,421 — 0.06 11:683,761 0.02
14q32.12 rs72699866:A/G 2.89×10-11 -0.20 rs76914265:G/C 1.16×10-4 -0.30 rs4904964:C/A 2.45×10-8 -0.12
RIN3 14:93,114,787 0.03 14:93,219,854 0.0143 0.08 14:93,099,867 0.02
16q22.1 rs79577483:G/A 1.23×10-11 0.21 rs698729:G/C 1.90×10-2 -0.12 rs111644390:TC/T 1.18×10-9 0.17
DPEP3 16:68,036,939 0.03 16:68,624,205 — 0.05 16:68,046,323 0.03
18q22.2 rs1808094:T/C 2.79×10-9 0.13 rs76486918:T/C 2.72×10-3 -0.91 rs1808094:T/C 1.66×10-10 0.12
CD226 18:67,526,026 0.02 18:67,081,620 — 0.30 18:67,526,026 0.02

Results for the lead variant at newly identified or newly confirmed risk loci with p <5×10-8 in fixed-effect meta-analysis of the European, Asian, or combined panels. (A)
Evidence of association was taken to be conclusive because: i) an unequivocal association signal at the same locus was observed in both the European and the Asian panels;
and ii) where the lead variant at the locus was different in the European vs. the Asian panels, permutation testing confirmed the significance of the signal in the validating
dataset at pperm <0.00217 (see supplementary information and Table S1). (B) Evidence of associationwas taken to be strong but not conclusive because unequivocal association
was evident in the European but not the Asian panels, or permutation testing was not significant at pperm <0.00217. Gene: candidate gene at the risk locus (which is not
necessarily the mapped gene). A1, tested allele; A2, alternative allele; BP, base pair position; Chr, chromosome; pperm, permutation p value; OR, odds ratio.
*Note that 1q23.1 and 11q24.3 were previously identified at suggestive level of significance in the study by Kawashima et al. (2017).
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each of the 56 genome-wide significant risk loci identified or
confirmed in the main, unconditional analyses (Table S1). We
found concordance between risk loci operating in European and
Asian populations, considering i) the much smaller sample size
of the Asian panels; and ii) the interrogation of different variants
in the European compared to the Asian panels, for reasons given
above (for a detailed commentary of each risk locus, see Fig. S2).
With few exceptions, we also found concordance between the
lnORs seen in the combined Asian and combined European
panels (Fig. S7).

To investigate overall concordance in the genetic basis of PBC
between European and Asian populations, we estimated the
proportion of trait variance explained (on the liability scale) in
the Japanese cohort (for which individual-level genotype data
were available) by sets of variants chosen according to their p
values in the European GWMA (see supplementary information).
Regardless of the p value threshold and the assumed trait
prevalence, variants showing some level of association in the
European GWMA explained more of the trait variance than an
equivalent number of randomly chosen variants – in most in-
stances, significantly more – supporting the conclusion that loci
influencing the risk of PBC in Europeans, also influence its risk in
Asians (Table S8).

Thus, while equivalently powered cohorts, accurately geno-
typed at the same set of variants, would be required to fully
address the question of population-specific genetic heterogene-
ity, our results provide preliminary evidence that the genetic
architecture of PBC is broadly shared across European and Asian
populations.

Co-localisation and DEPICT enable prioritisation of candidate
genes
In functional annotation, we found that credible causal variants
included missense variants in 21 genes at 14 risk loci; splice
variants in 8 genes at 5 risk loci; and stop variants in 2 genes at 2
Table 3. In silico drug efficacy screening.

Drug name z

Ustekinumab -4.757
Belatacept -4.709
Abatacept -4.603
Acitretin -4.548
Denosumab -4.416
Etretinate -3.879
Tofacitinib -3.340
Basiliximab -3.320
Gilteritinib -3.310
Fostamatinib -3.305
Imatinib -3.189
Dexchlorpheniramine maleate -3.182
Linagliptin -3.010
Brigatinib -2.961
Interferon alfa-2a -2.748
Interferon beta-1b -2.688
Metformin -1.894
Fenofibrate -0.986
Bezafibrate -0.866
Obeticholic acid -0.737
Rifampicin -0.627
Ursodeoxycholic acid +0.171

Results for top-ranking agents and current treatments for primary biliary cholangitis, z b
shortest path length between the drug’s targets and the nearest disease gene, and l an
information. Guney et al. define a drug to be proximal to a disease if its proximity follo
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risk loci (Table S9). Few of these variants were predicted to be
deleterious. Credible causal variants at all genome-wide signifi-
cant risk loci mapped to chromatin interacting regions (CIRs),
mQTLs, eQTLs, or pQTLs (Tables S10–12); and in the MWAS,
TWAS, and PWAS, we predicted differential methylation, tran-
scription, or translation of genes at and beyond GWMA-
significant loci (Tables S13–15, Fig. S8). These observations sug-
gest that the genetic architecture of PBC confers susceptibility to
disease mainly by influencing the regulation of expression of
causal genes. Therefore, we sought co-localisation of GWMA
with mQTL, eQTL, or pQTL association signals, aiming to pinpoint
causal variants and genes across the genome. Using moloc, we
identified 251 co-localisation models with posterior probability
of association >−0.80, implicating variants and genes at 60 loci
(Table S16, Fig. S8C). Of these, 28 correspond to GWMA-
significant risk loci, where co-localisation models implicate
candidate genes such as IL12RB2 (1p31.3), FCRL3 (1q23.1), and
INAVA (1q32.1). Association at the other 32 loci did not reach
genome-wide significance in the GWMA; co-localisation models
nevertheless implicate highly plausible candidate genes at some
of these loci, such as CCL21 (9p13.3) and IL2RB (22q12.3).

We found that candidate genes implicated by co-localisation
were broadly concordant with those implicated by functional
annotation of credible causal variants, and by the MWAS, TWAS,
and PWAS. As in previous studies, we also observed that candi-
date genes at disparate risk loci are evidently related in function,
e.g., IL12A (3q25.33), IL12B (5q33.3), IL12RB1 (19p13.11), and
IL12RB2 (1p31.3). Therefore, we used DEPICT25 to prioritise
candidate genes at genome-wide significant risk loci based on
gene function. In this way, we identified 82 candidate genes with
a false discovery rate (FDR) <5% across 48 loci (Table S17). As
expected, genes prioritised by DEPICT overlapped with those
prioritised by the other approaches (Table S18).

We used the information garnered above to finalise a list of
top candidate genes at genome-wide significant risk loci
p value Description

9.82×10-7 Anti-IL-12/23 p40 antibody
1.24×10-6 IgG1 Fc/CTLA-4 fusion protein
2.08×10-6 IgG1 Fc/CTLA-4 fusion protein
2.71×10-6 Oral retinoid
5.03×10-6 Anti-TNFSF11 antibody
5.24×10-5 Oral retinoid
4.19×10-4 Janus kinase inhibitor
4.50×10-4 Anti-IL2Ra antibody
4.66×10-4 Tyrosine kinase inhibitor
4.75×10-4 Tyrosine kinase inhibitor
7.14×10-4 Tyrosine kinase inhibitor
7.31×10-4 Antihistamine
1.31×10-3 Dipeptidyl Peptidase-IV Inhibitor
1.53×10-3 ALK and EGFR inhibitor
3.00×10-3 Alpha interferon
3.59×10-3 Beta interferon

0.029 Biguanide antidiabetic agent
0.162 Fibrate, PPAR-a agonist
0.193 Fibrate, PPAR-a/d/c agonist
0.231 Bile acid, FXR agonist
0.265 Antibiotic
0.568 Bile acid

eing a drug-disease proximity measure, defined as z = (dc-l)/rwhere dc is the average
d r are calculated via a randomisation procedure as described in the supplementary
ws z <−−0.15 (p <−0.44), and distant otherwise.
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(Table S18). Using STRING,26 we found these genes to be highly
enriched for protein-protein interactions (p <1.0×10-16), with
enrichment at FDR <5% of the following KEGG pathways: T
helper (TH)1 and TH2 cell differentiation, TH17 cell differentia-
tion, and toll-like receptor (TLR), RIG-I-like receptor (RLR), TNF,
NF-jB, and JAK-STAT signalling pathways, amongst others
(Fig. S9). For comparison, we undertook enrichment analysis
using DAVID27 of 1,388 genes with minimum pGWMA <0.01, which
identified enrichment at FDR <5% of the following KEGG path-
ways: antigen processing and presentation, FccR-mediated
phagocytosis, NK cell-mediated cytotoxicity, and T cell receptor,
B cell receptor, PI3K-AKT, FcεRI, JAK-STAT, NF-jB, and MAPK
signalling pathways, amongst others (Table S19).

In silico drug efficacy screening identifies agents potentially
suitable for re-purposing to PBC
In the approach of Guney et al. (2016),28 the more negative the
value of z, the closer the drug and disease gene networks. A cut-
off of z <−-0.15 is taken to show that the drug is proximal to the
disease and thus, might exert pharmacological effects on it. In
our analysis, we identified many agents with z <−-0.15, which are
therefore predicted to exert pharmacological effects on PBC
(Table 3, Table S20). Top-ranking drugs that might be predicted
to ameliorate PBC included several immunomodulators, such as
ustekinumab, an anti-IL-12/23 monoclonal antibody used for
psoriasis and Crohn’s disease (z = -4.757); belatacept, a CTLA-4
fusion protein used in organ transplantation (z = -4.709); and
abatacept, a CTLA-4 fusion protein used for RA, juvenile idio-
pathic arthritis (JIA), and psoriatic arthritis (z = -4.603). Of in-
terest, other top-ranking agents include the retinoids etretinate
and its metabolite acitretin, both of which are used for the
treatment of psoriasis (z = -3.879 and z = -4.548, respectively).
Top-ranking drugs that might be predicted to exacerbate PBC
included the pharmacological interferons, such as interferon
alfa-2a and interferon beta-1b (z = -2.748 and z = -2.688,
respectively). Amongst recognised treatments for PBC, fenofi-
brate scored z = -0.986; bezafibrate, z = -0.866; and OCA, z =
-0.737, respectively. Thus, these drugs might be predicted to
exert pharmacological effects on PBC. Conversely, UDCA scored
z = +0.171, meaning it is not predicted to treat the genetically
determined component of disease in PBC.

Discussion
We report the largest GWMA of PBC undertaken to date, with a
sample size four times greater than that of our previous study. In
this better-powered study, we identified 21 additional genome-
wide significant risk loci; showed that the genetic architecture
of PBC is broadly shared across European and Asian populations;
prioritised candidate genes at known and newly identified
genome-wide significant risk loci; and used these candidate
genes to identify medications predicted to treat the genetically
determined component of disease in PBC, which might therefore
be suitable for re-purposing to this condition.

Candidate genes at newly identified or newly confirmed risk
loci provide additional insights into the pathogenesis of PBC
(Fig. 1). Thus, INAVA (1q32.1) amplifies pattern recognition re-
ceptor (PRR) signalling; DNMT3A (2p23.3), ZC3HAV1 (7q34), and
TRIM14 (9q22.33) are each involved in RLR signalling; TET2
(4q24) represses transcription of IL-6; and PVT1 (8q24.21) reg-
ulates inflammation via NF-jB and MAPK pathways. Chemokine
receptor 6 (CCR6, 6q27) interacts with CCL20 in the chemotaxis
578 Journal of Hepatology 2
of dendritic cells and lymphocytes to inflamed epithelia; ST8SIA4
(5q21.1) is required for the interaction of CCR7 with CCL21 in the
trafficking of immune cells to secondary lymphatic organs; and
CD226 (18q22.2) participates in lymphocyte and NK cell adhe-
sion and signalling. Fc receptor-like protein 3 (FCRL3, 1q23.1), ID2
(2p25.1), TET2 (4q24), RARB (3p24.2), NDFIP1 (5q31.3), ITGB8
(7p21.1), and CD226 (18q22.2) are each involved in the differ-
entiation of TH1, TH17, or regulatory T cells. As expected,
enrichment analysis of candidate genes reiterated the impor-
tance of PRR, TNF, and NF-jB signalling, and TH1/TH17 cell dif-
ferentiation in this disease. These findings are consistent with
functional data emphasising the importance of innate immune
cell hypersensitivity, chemokine signalling and immune cell
trafficking, and TH1/TH17 cell polarisation in PBC pathogenesis, as
summarised by Gulamhusein and Hirschfield (2020)31 in their
recent review.

There is considerable current interest in the ‘Druggable
Genome’, i.e., the use of genome-wide approaches to find targets
for drug discovery (for example, see the Open Targets initiative at
https://www.opentargets.org/). In the current study, having
prioritised candidate genes, we used network-based in silico drug
efficacy screening to identify agents potentially suitable for re-
purposing to PBC. Given our other findings – including genetic
correlation of PBC with SLE, RA, and IBD – it is expected that the
top-ranking medications should include immunomodulators
already approved for the treatment of RA, JIA, IBD, MS, or
psoriasis.

The evidence to support re-purposing of these immuno-
modulators to PBC is circumstantial yet convincing – but
circumspection is required. For example, in the current study,
LDSR demonstrated genetic correlation with IBD; enrichment
analysis showed association with ‘TH1 and TH2 cell differentia-
tion’; and drug efficacy screening suggested that ustekinumab,
an anti-IL-12/23 monoclonal antibody used for treatment of
Crohn’s disease, might exert pharmacological effects on PBC.
Therefore, it is notable that ustekinumab showed minimal effect
on PBC in the trial by Hirschfield et al. (2016).32 Similarly, drug
efficacy screening suggested that abatacept, a CTLA-4 fusion
protein used for treatment of RA, might be effective for treat-
ment of PBC – but abatacept showed no effect on PBC in the trial
by Bowlus et al. (2019).33 A potential explanation for these
discrepant observations, also expounded by Bowlus et al.,33 is
that the evaluation of immunomodulators in PBC might require a
change in clinical trial design. Thus, immunomodulators might
require immunological rather than cholestatic endpoints; might
be more effective in early disease, before the cholestatic liver
injury predominates; and might require combined treatment of
both the autoimmune and cholestatic injuries. Re-design of
clinical trials in PBC might be contentious but the use of genomic
data to prioritise potential agents for PBC is not, as new treat-
ments for PBC are needed and the druggable genome provides a
framework to find them.

It is notable that in drug efficacy screening, UDCA – well-
established as first-line treatment for PBC – was not predicted
to be therapeutic in this condition. One possibility is that UDCA
serves primarily to treat a cholestatic liver injury that is critical to
disease progression but orthogonal to the genetically deter-
mined, autoimmune processes that confer risk of disease.
Conversely, OCA (a potent FXR agonist) and the fibrates, bezafi-
brate and fenofibrate (PPAR-a/d/c and PPAR-a agonists,
021 vol. 75 j 572–581
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Fig. 1. Biological processes implicated by candidate genes (red bold or red filled) prioritised in the current study. (A) T and B cell activation, and dif-
ferentiation of T follicular helper, TH1, TH17, and TREG cells; (B) pattern recognition receptor and TNF signalling in antigen presenting cells; and (C) signalling by the
IL-12 family of cytokines. TH, T helper; TREG, regulatory T. (Figure created with BioRender.com).
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respectively), are expected to have immune-modulatory as well
as anti-cholestatic effects.34,35

We acknowledge 2 major limitations of the study. First, the
absence of an independent validation cohort meant we were
unable to confirm several newly identified risk loci. Other stra-
tegies, such as cross-phenotype meta-analysis, may be required
for external validation of these loci. Second, the use of different
genotyping platforms across cohorts meant that at many risk
loci, the lead variant in the European panels was not represented
in the Asian panels, or vice versa. This, together with marked
disparity in the sample size of the European vs. the Asian panels,
meant that we were unable to fully address the question of
population-specific genetic heterogeneity.

In conclusion, our large, trans-ethnic GWMA of PBC has
identified additional risk loci; found little evidence for
population-specific genetic heterogeneity; and, through func-
tional annotation of credible causal variants and multi-omic
analysis, allowed us to prioritise candidate genes, and thereby
prioritise drugs potentially suitable for re-purposing to PBC. This
study emphasises the value of genomic approaches to provide
biological insight and guide the development of novel therapies.
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