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Abstract

The generalized Wilson loop operator interpolating between the supersymmetric and the or-

dinary Wilson loop in N “ 4 SYM theory provides an interesting example of renormalization

group flow on a line defect: the scalar coupling parameter ζ has a non-trivial beta function and

may be viewed as a running coupling constant in a 1d defect QFT. In this paper we continue

the study of this operator, generalizing previous results for the beta function and Wilson loop

expectation value to the case of an arbitrary representation of the gauge group and beyond the

planar limit. Focusing on the scalar ladder limit where the generalized Wilson loop reduces to

a purely scalar line operator in a free adjoint theory, and specializing to the case of the rank

k symmetric representation of SUpNq, we also consider a certain “semiclassical” limit where k

is taken to infinity with the product k ζ2 fixed. This limit can be conveniently studied using

a 1d defect QFT representation in terms of N commuting bosons. Using this representation,

we compute the beta function and the circular loop expectation value in the large k limit, and

use it to derive constraints on the structure of the beta function for general representation. We

discuss the corresponding 1d RG flow and comment on the consistency of the results with the

1d defect version of the F-theorem.

1 Also at the Institute for Theoretical and Mathematical Physics (ITMP) of Moscow University and Lebedev

Institute.
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1 Introduction and summary

In this paper we continue our investigation [1, 2, 3, 4] of a family of operators that interpolate

between the supersymmetric Wilson-Maldacena (ζ “ 1) and the standard Wilson (ζ “ 0) loop

operators [5]

W pζqpCq “ TrP exp

¿

C

dτ
”
iAµpxq 9xµ ` ζφmpxq θm | 9x|

ı
, θ2m “ 1 . (1.1)

Here φm are the 6 scalars of the SUpNq N “ 4 SYM theory. We shall choose the unit vector θm
to be along the 6-th direction, i.e. φmθ

m “ φ6 ” φ. The study of (1.1) is of interest, in particular,

in the context of 1d defect QFT, see e.g. [6, 7, 8, 3, 9, 10, 11] for related work, and [12, 13, 14] for

other examples of RG flows on line defects.

Let us first summarize some previous results. In the simplest case the trace in (1.1) is taken

in the fundamental representation; then the expectation value of (1.1) is a function of ζ, N and ’t

Hooft coupling λ “ g2N . For a smooth contour C, xW pζqy is logarithmically divergent, requiring

a renormalization of the coupling ζ. Its renormalized value obeys the renormalization group (RG)

equation

xW pζqy ” W
`
λ; ζpµq, µ

˘
,

´
µ

B
Bµ ` βζ

B
Bζ

¯
W “ 0 , βζ “ µ

dζ

dµ
. (1.2)

At weak coupling in the planar limit the general structure of βζ is expected to be2

βζ “ b1 λ ζp1 ´ ζ2q ` λ2 ζ p1 ´ ζ2q pb2 ` b3 ζ
2q ` λ3 ζ p1 ´ ζ2q pb4 ` b5 ζ

2 ` b6 ζ
4q ` Opλ4q . (1.3)

The one-loop term in the βζ function was found in [5] and the two-loop term in [4]. Explicitly,

βζ “ ´ λ

8π2
ζ p1 ´ ζ2q ` λ2

64π4
ζp1 ´ ζ4q ` Opλ3q . (1.4)

The WL (ζ “ 0) and WML (ζ “ 1) cases are the fixed points to all orders in λ. The running of ζ

may be considered as an RG flow in an effective 1d defect theory coupled to the bulk SYM theory.

For a circular contour, F “ logW has an interpretation of (minus) 1d defect theory free energy on

S1, and logW obeys [4] the defect analog of the F-theorem [15, 16] FpUVq ąFpIRq (cf. also [17]).

One may also define a defect entropy function that is monotonically decreasing along the flow from

UV to IR [11]. On general grounds, consistent with this interpretation, we should have

B
Bζ logW “ Cβζ , (1.5)

where C “ Cpλ, ζq admits the weak coupling expansion C “ λ
4

` Opλ2q [1].

The expectation value W “ xW pζqy on a circle has the following structure [1, 2] (consistent with

(1.3) and (1.5))

W “ xW p1qy
”
1 ` w1 λ

2 p1 ´ ζ2q2 ` λ3 p1 ´ ζ2q2pw2 ` w3 ζ
2q ` ¨ ¨ ¨

ı
, (1.6)

2Note that the one-loop b1 and two-loop coefficients b2, b3 in (1.3),(1.4), are scheme independent as they are

invariant under redefinitions of ζ that do not move the fixed points ζ 1 “ ζ ` ζ p1´ ζ2q
“
λ z1 `λ2 pz2 ` z3 ζ

2q ` ¨ ¨ ¨
‰
..
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where N´1xW p1qy “ 2?
λ
I1p

?
λq “ 1 ` λ

8
` λ2

192
` Opλ3q [18]. The coefficients w1 “ 1

128π2 [1] and

w2 (which is presently unknown) are scheme-independent. The scheme-dependent coefficient w3 is

finite after the renormalization of ζ [2]

w3 “ ´ 1

256π4

`
log µ` 5

6

˘
. (1.7)

Here µ is a renormalization scale (in general multiplied by the radius of the circle which is set to

1 here); the coefficient of log µ is related (via (1.2)) to the coefficient in the one-loop beta-function

(1.4) while the constant 5
6

is scheme-dependent.

The coefficients of the highest ζ powers at each λn order in (1.3), i.e. b1, b3, b6, . . . , may be

computed by restricting to diagrams with maximal number of scalar propagators attached to the

Wilson line. In particular, these are diagrams that do not have internal vertices, i.e. they are

of (scalar) ladder type. Using the vertex renormalization method of [19], we computed them to

five-loop order [4]

βladderζ “ q1
λ

4π2
ζ3 ` q2

´ λ

4π2

¯2

ζ5 ` q3

´ λ

4π2

¯3

ζ7 ` q4

´ λ

4π2

¯4

ζ9 ` q5

´ λ

4π2

¯5

ζ11 ` ¨ ¨ ¨ , (1.8)

q1 “ 1
2
, q2 “ ´1

4
, q3 “ 1

4
´ ζp2q

8
, q4 “ ´17

48
` ζp2q

3
´ ζp3q

12
, (1.9)

q5 “ 29
48

´ 37 ζp2q
48

` 29 ζp3q
96

` 25 ζp4q
128

.

Here ζpnq are the Riemann zeta-function values and q3 and higher coefficients are scheme dependent.

In this ladder approximation, the expectation value of the operator defined on a closed contour

parameterized by τ P p0, 2πq reduces to

xW pζqyladder “ xTr P exp

ż 2π

0

dτ 1 ζ φpτ 1qy “ Wpξq , ξ ” λ ζ2 , (1.10)

where we set φpτq ” φpxpτqq and x...y is computed in the free adjoint scalar theory

x...y “
ż
dφ e´S ... , S “ 1

g2

ż
d4x TrpBαφBαφq . (1.11)

Redefining the scalar φ Ñ ζ´1φ we get the one-coupling theory with λ “ g2N in S replaced by ξ

defined in (1.10).3 In the circular or straight line cases the associated 1d propagator Dpτ ´ τ 1q “
xφpτqφpτ 1qy has then the following form4

circle: Dpτq “ ξ

8π2
1

4 sin2 τ
2

, line: Dpτq “ ξ

8π2
1

τ2
. (1.12)

Let us note that the study of the partition function W of the scalar loop model (1.10), (1.11) is

an interesting problem on its own right, as this is an example of a particularly simple defect QFT.

Note that for the case of SUp2q, the scalar defect (1.10) may also be thought as describing an

3Note also that after factoring out one power of ζ, the expansion in (1.9) may be written in terms of the effective

coupling ξ.
4 We recall that the (bulk) N “ 4 SYM action is schematically of the form S “ 1

g2

ş
d4x TrpF 2`DφDφ`φ4`. . . q,

and λ “ g2 N . Here we also took into account a factor 1

2
from the relation T aT a “ 1

2
N1, for the generators T a of

SUpNq in the fundamental representation.

3



impurity in the (free) Op3q vector model (see e.g. [20] and references therein, and also [14] for a

related discussion).

The motivation behind the present paper is to try to generalize the expression for the beta

function (1.4) and the Wilson loop expectation value (1.6) to the case when the trace in (1.1) is

taken in a generic representation R of SUpNq and beyond the planar limit. Let us consider a

generic simple group G with coupling g. Then for the circular supersymmetric WML (ζ “ 1) in a

general representation R of a group G one finds [21, 22] (see also (B.16))

1

dimR
xW p1qy “ 1`CR

g2

4
`

´
C2

R ´ 1

6
CRCA

¯ g4

32
`

´
C3

R ´ 1

2
C2

RCA ` 1

12
CRC

2
A

¯ g6

384
` ¨ ¨ ¨ . (1.13)

Here CA and CR are the quadratic Casimirs for the adjoint and R representations (CA “ N for

G “ SUpNq and T aT a “ CR dimR, see Appendix A for our conventions). For any ζ we then

expect to find for the corresponding generalization of the two-loop part of (1.6)

1

dimR
xW pζqy “ 1 ` CR

g2

4
`

”
C2

R ´ 1

6
CRCA ` p1 ´ ζ2q

`
k1 ` k2ζ

2
˘ı g4

32
` ¨ ¨ ¨ . (1.14)

The coefficients k1 and k2 may be determined by the methods of [1] and we will find that

1

dimR
xW pζqy “ 1 ` CR

g2

4
`

”
C2

R ´ 1

6
CRCA

´
1 ´ 3

π2
p1 ´ ζ2q2

¯ıg4
32

` ¨ ¨ ¨ (1.15)

Similarly, the beta function for general representation generalizing the one-loop term in (1.4) is

found to be

βζ “ ´CA ζ p1 ´ ζ2q g
2

8π2
` ¨ ¨ ¨ (1.16)

Note that (1.15) and (1.16) are related as expected according to (1.5), with C “ 1
2
CRg

2 ` .... In

the formal Abelian limit CA “ 0 we recover the expected exponentiation of the one-loop term in

(1.15), and the vanishing of the beta function.

The “ladder” part of (1.15) (given by highest power of ζ at each order in g) may be written as

1

dimR
xW pζqyladder “ 1 ` CRCA

ζ4g4

64π2
` ¨ ¨ ¨ . (1.17)

For the fundamental representation R=F of SUpNq using that CF “ N2´1
2N

and CA “ N we observe

that (1.15) reduces to

R “ F :
1

N
xW pζqy “1 `

”
1 ´ 1

N2
` O

´ 1

N4

¯ıλ
8

`
” 1

192
´ 5

384N2
` pζ2 ´ 1q2

128π2

´
1 ´ 1

N2

¯
` O

´ 1

N4

¯ı
λ2 ` Opλ3q.

(1.18)

This generalizes the previous planar two-loop result (1.6) to subleading terms in 1{N .

We may parametrize the three-loop term in (1.15) as

xW pζqy “ xW p1qy
”
1 ` CRCAp1 ´ ζ2q2 g4

64π2
` p1 ´ ζ2q2pw2 ` w3ζ

2q g6 ` ¨ ¨ ¨
ı
, (1.19)
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where xW p1qy is given by (1.13) and w2,w3 are the analogs of w2, w3 in (1.6). In particular, we

expect that

w3 “ ´ 1

128π4
CRC

2
Aplog µ` c3q , (1.20)

where in the SUpNq fundamental representation case and at large N (when CRC
2
A

Ñ 1
2
N3) we

should find that w3 Ñ N3w3 (so that c3 “ 5
6

in the same scheme as (1.7)).

For a generic representation R, the structure of the ladder-limit part of three-loop beta function

is expected to be the following generalization of (1.9)5

βladder
ζ “ q1

1CAζ
3 g2

4π2
` pq1

2 C
2
A ` q2

2 CACRq ζ5
´ g2

4π2

¯2

`
´
q1
3C

3
A ` q2

3 C
2
ACR ` q3

3 CAC
2
R ` q4

3 QR

¯
ζ7

´ g2

4π2

¯3

` Opg8q, (1.21)

QR ” dabcd
A

dabcd
R

CR dimR
. (1.22)

Here in QR the tensor dabcd
R

is the 4-index symmetrized trace STrpT aT bT cT dq (see Appendices A

and D). The qn-coefficients are numerical constants independent of representation. We will show

that

βladder
ζ “ 1

2
CAζ

3 g2

4π2
´ 1

4
C2

A ζ
5

´ g2

4π2

¯2

`
”
q1
3C

3
A ´ 3 ζp2qQR

ı
ζ7

´ g2

4π2

¯3

` Opg8q, (1.23)

where q1
3 is a scheme dependent constant (equal to 1

4
in the same regularization scheme that led to

(1.9)). Note that (1.19),(1.20) and (1.23) are consistent with each other via the RG equation (1.2).

To justify (1.23) and extract further information about the representation dependence, we will

consider the case of R being the k-symmetric representation Sk of SUpNq. Using perturbation

theory in large k at fixed k ζ2 g2 and fixed N and comparing with (1.21) we will confirm (1.23).

Our starting point will be the following 1d path integral representation for the Wilson loop in

the k-symmetric representation of SUpNq (see, e.g., [23, 24]) 6

Wk “ xWky, Wk “
ż
DχDχ̄ δpχ̄χ´R2q e´S , R2 ” k ` N

2
, (1.24)

S “
ż 2π

0

dτ
”
χ̄ Bτχ` ζ φapτq χ̄ T a χ

ı
, (1.25)

where we specialized to the purely scalar operator (1.10), and the averaging x...y is done over the

scalar φ as in (1.11). Here φpτq “ φpxpτqq, τ P r0, 2πs and χ, χ̄ are periodic bosons transforming in

the fundamental representation of SUpNq (T a are generators in the fundamental representation).

After the integration over the free adjoint scalar field φ we obtain an effective non-local 1d theory

with the action of the following structure

S “
ż
dτ χ̄ Bτχ´ ζ2 g2

ż
dτdτ 1 Dpτ ´ τ 1q χ̄pτqT aχpτq χ̄pτ 1qT aχpτ 1q, (1.26)

5This follows from inspection of the possible color structures. We also impose the condition that the beta-function

has to vanish in the Abelian limit CA “ 0.
6This is an example of representing the trace in some representation in terms of an integral over group orbit [25],

cf. also [26].

5



where Dpτ ´ τ 1q “ xφpτqφpτ 1qy (on the line D „ 1
pτ´τ 1q2 , cf. (1.11),(1.12)).

The rank k of the symmetric representation enters only through R2 in the delta-function con-

straint in (1.24). Rescaling χ by R so that now χ̄χ “ 1 we get (e.g. on the straight line)

S “ R2
” ż

dτ χ̄ Bτχ´ κ

ż
dτ dτ 1

pτ ´ τ 1q2 χ̄pτqT aχpτq χ̄pτ 1qT aχpτ 1q
ı
, (1.27)

κ ” ζ2 g2R2

8π2
. (1.28)

We may then develop a systematic “semiclassical” large R2 or large k perturbation theory at fixed

κ and N for Wk and the beta function βκ for the coupling κ. Note that since in the ladder

approximation the bulk theory is free, the coupling g can take any value (and can actually be

absorbed into ζ defining ξ̄ “ ζ2g2, cf. (1.10)) so the large k limit at fixed κ means also small ζ

limit.

Explicitly, we will find that for the k-symmetric representation

βκ “ µ
dκ

dµ
“ 2N

R2

κ
2

1 ` π2κ2
´ 2N2

R4

κ
3 p1 ´ b1 π

2
κ
2q

p1 ` π2κ2q3 ` O

´ 1

R6

¯
, (1.29)

where the coefficient b1 is scheme dependent with b1 “ 1 in a particular momentum cutoff scheme

(see also discussion below (6.34)).

Since g and R2 are not running, βκ is directly related to the ladder beta function for ζ in (1.23).

In general, the large k expansion of βκ gives an all order prediction for the small ζ expansion of

βladderζ : it fixes the coefficient of the highest power of k at each order in ζ. In particular, expanding

the “one-loop” term in (1.29) in powers of ζ yields

βladderζ “ Ng2

8π2
ζ3 ´ Ng6

512π2
k2ζ7 ` . . . (1.30)

Noting that for the k-symmetric representation QR “ k2N
4

`Opkq, this allows to fix the coefficient

of the QR part of the three-loop term in (1.23).

Note also that in the case when k is fixed and N is large the leading κ
2 and κ

3 terms in the

small κ expansion in (1.29) are in agreement with the one-loop and two-loop terms in βladderζ in

(1.8).7

For the renormalized value of the scalar ladder Wilson loop expectation value on a circle (of

unit radius) in (1.24) defined in the k-symmetric representation we will find that8

Wk “ dimSk

`
1 ` π2κ2

˘N´1
2

”
1 ` v1

R2

NpN ´ 1qκ3

p1 ` π2κ2q2 ` O
` 1

R4

˘ı
, (1.31)

v1 “ ´2π2plog µ` c3q , (1.32)

7Let us also note that the representation (1.24) applies for any finite k, in particular also to the k “ 1 case of

the fundamental representation. Then naively the large R2 perturbation could still be applied by taking N large at

fixed κ in (1.28) that then becomes κ Ñ 1

16π2 ξ, where ξ was defined in (1.10). However, since N here is as large as

R2 the 1{R2 expansion of the beta-function in (1.29) no longer makes sense, i.e. needs to be resummed. One can

still unambiguously extract the lowest order terms in the small ξ expansion and match them with the ζ3 and ζ5

terms in βladder
ζ .

8In the case of SUp2q group the prefactor
`
1 ` π2

κ
2
˘1{2

was found earlier in [27].

6



where dim Sk “ pN`k´1q!
pN´1q! k! is the dimension of the k-symmetric representation of SUpNq and c3 is

a scheme-dependent constant as in (1.20). Note that the expression (1.31) effectively resums an

infinite set of terms in the ordinary perturbative expansion in powers of ζ.9 Expanding (1.31) in

powers of κ, one finds

1

dimSk
Wk “ 1 ` π2

2
pN ´ 1qκ2 ` v1

R2
NpN ´ 1qκ3 ` . . . . (1.33)

Noting that CSk
„ k2pN ´ 1q{2N at large k, one can see that the term quadratic in κ matches

(1.17), while the cubic term matches the w3ζ
6g6 term in (1.19),(1.20).10

The expression (1.31) satisfies the RG equation as in (1.2) and also the analog of the relation

(1.5) with βκ given by the one-loop term in (1.29)

´
µ

B
Bµ ` βκ

B
Bκ

¯
Wk “ 0 ,

B
Bκ logWk “ C̄βκ , C̄ “ pN´1qπ2R2

2Nκ
ą 0 . (1.34)

Let us now discuss properties of the RG flow implied by the βκ function in (1.29). At the leading

1{k order we find (using that κ ě 0)

dκ

dt
“ 2N

k

κ
2

1 ` π2κ2
, t ” log µ , (1.35)

κptq “ γt` 1

π

a
1 ` π2γ2t2 , γ ” N

π2k
, (1.36)

so that the IR (µ Ñ 0) and UV (µ Ñ 8) asymtotics are

IR : κpt Ñ ´8q “ 1

2π2γ |t| Ñ 0, UV : κpt Ñ `8q “ 2γ t Ñ 8 . (1.37)

This asymptotic behaviour is, in fact, exact, i.e. not changed by higher 1{k corrections in βκ since

the exact βκ satisfies11

βκ

ˇ̌
ˇ
κÑ0

Ñ 0 , βκ

ˇ̌
ˇ
κÑ8

Ñ 2N

k ` 1
2
N

“ const . (1.38)

The corresponding asymptotic behaviour of the WL expectation value in (1.31)

IR : Wk

ˇ̌
ˇ
κÑ0

ÑdimSk, UV : Wk

ˇ̌
ˇ
κÑ8

Ñ dim Sk κ
N´1 , (1.39)

logW
pUVq
k ą logW

pIRq
k . (1.40)

This is consistent with 1d version of F-theorem for Wk as partition function on S1. Furthermore,

one may consider the line defect entropy defined in [11] (here a is the radius of S1)

s ”
´
1 ´ a

B
Ba

¯
logWk “

´
1 ´ µ

B
Bµ

¯
logWk , (1.41)

9A similar large k limit with k " N for the case of the Wilson-Maldacena loop was studied in [28, 29], where it

was observed that an exponentiation of the one-loop result occurs in this limit.
10Indeed, from (5.38) 1

128π4 CRC
2
Ag

6ζ6 “ 1

256π4 NpN´1qkpk`Nqg6ζ6 while from (1.28) we have 2π2

R2 NpN´1qκ3 “
1

256π4 NpN ´ 1qpk ` 1

2
Nq2g6ζ6 so we get agreement at large k.

11As is clear from (1.29), the 1{R4 term vanishes at large κ. The same should be true also at higher orders as for

large κ the propagator goes as κ
´1 while vertices in the action (1.27) are proportional to κ.
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which is equal to logWk at fixed points. Using (1.34) and C̄ ą 0 (which is true at least in

perturbation theory) we get

s “ logWk ` C̄β2κ ě logWk . (1.42)

To leading order in the 1{k perturbation theory, s “ logWk « log dim Sk ` 1
2

pN ´ 1q logp1`π2κ2q,
and so both functions monotonically decrease along the RG trajectory. According to the arguments

in [11], the defect entropy s should be monotonically decreasing also non-perturbatively.

Let us mention also that if one considers the defect line in a bulk scalar theory in d “ 4 ´ ǫ

dimensions then the coupling g2 and thus κ „ g2ζ2k will get dimension ǫ Ñ 0. Then the βκ
function gets an extra term ´ǫκ, and, in addition to the trivial UV fixed point κ “ 0, there are

two Wilson-Fisher-type UV and IR fixed points

βκ “ ´ǫκ ` 2N

k

κ
2

1 ` π2κ2
` O

` 1

k2

˘
, (1.43)

βκ “ 0 : κ˘ “ N

π2k ǫ

´
1 ˘

c
1 ´ π2k2 ǫ2

N2

¯
` O

` 1

k2

˘
. (1.44)

In order for these fixed points to be real, one should take the small ǫ and large k limits in such

a way that the condition ǫk ď N
π

is satisfied (for ǫk “ N
π

the two fixed points coincide, and for

ǫk ą N
π

they become complex). Taking the ǫ Ñ 0 limit first, the fixed points reduce to

UV : κ` “ 2N

π2k

1

ǫ
` Opǫ0q Ñ 8 , IR : κ´ “ k

2N
ǫ` Opǫ2q Ñ 0 . (1.45)

Like the asymptotics in (1.37) these fixed points are expected to be stable under higher order 1{R2

or 1{k corrections to βκ.

The structure of the rest of the paper is as follows. In section 2 we compute the two-loop

βζ function in ladder approximation (for any N) by applying the vertex renormalization method

described in [4]. We also discuss the structure of βζ at three-loop level. In section 3 we derive the

two-loop expression (1.15) for the expectation value xW pζqy in any representation, thus generalizing

our previous result in the fundamental representation [1].

In section 4 we introduce the bosonic 1d path integral expression (1.24),(1.25) for the ladder

Wilson loop in the k-symmetric SUpNq representation and discuss some of its general features.

It is different from the more standard fermionic 1d path integral (reviewed in Appendix B) and

convenient for the study of the large k limit considered in section 5. There we first discuss the free

κ “ 0 case (clarifying the role of the constant zero modes of χ) and then compute the Wilson loop at

leading order in large k „ R2 for κ ‰ 0. Finally, we present the calculation of the 1{R2 corrections

and, in particular, the logarithmically divergent contributions that determine the leading term in

the βκ function.

In section 6 we show that βκ may be computed starting from a two-point correlator of the

adjoint scalars inserted on the Wilson line. We first reproduce the 1{R2 term in βκ found in

section 5 and then study in detail the order 1{R4 correction.

In Appendix A we recall our group theoretic conventions. Appendix B reviews the 1d fermionic

path integral representation [30] for a Wilson loop in any representation. Appendix C presents

details of the calculation of the 1{R4 contribution to the βκ function in section 6. Appendix D is

devoted to a general proof of the universality, in planar limit, of the coefficient of the three-loop
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ζ7 term in βladder
ζ in (1.23). In Appendix E we compute the two-loop βζ for generic representation

using a two-point scalar correlator on the line. In Appendix F we apply similar method as in 3 to

the closely related case of a multiply wound Wilson loop in the fundamental representation, finding

the two-loop term in the weak gauge coupling expansion for generic ζ.

Note added: While completing this paper, we learned about the partially overlapping work

[31], which in particular studies the scalar line defect and its large k limit in the SUp2q case

(extending some results announced in [27]). We thank the authors for sharing their draft prior to

submission.

2 βζ function in ladder approximation from vertex renormalization

As discussed in detail in [4] the beta function for the ζ coupling in (1.10) can be obtained from the

study of the one point function on a long interval p´L,Lq12

xTr
´
φpτ0q P e

şL
´L

dτ 1 ζ φpτ 1q
¯

y

xTr
´
P e

şL
´L

dτ 1 ζ φpτ 1q
¯

y
, (2.1)

where the 4d scalar φ restricted to the line has a free propagator Dpτq “ xφpτqφp0qy “ g2

4π2
1
τ2

. Here

we shall assume Tr to be in generic representation R of a gauge group. The averaging is done with

respect to the free adjoint scalar field as in (1.11).

If we denote by τ the point on the loop connected by propagator to τ0, then βζ function follows

from the renormalization of the vertex V in

Dpτ0 ´ τqV pτ, ζq “ τ0 τ , V pτ, ζq “ ζ ` corrections. (2.2)

The point τ0 is at some far part of the Wilson line. We may also choose point τ to be at the origin,

τ “ 0.

2.1 One-loop order

In dimensional regularization the propagator is

Dpτq “ g2

4π2
1

|τ |2´ǫ
, d “ 4 ´ ǫ. (2.3)

The one-loop planar diagrams in the numerator of (2.1) are

τ0

0
L´L “

τ0

0
L´L “ ζ3

g2

4π2
CR

Lǫ

ǫ pǫ ´ 1q , (2.4)

12The renormalization of ζ is universal for any contour and thus can be determined by considering the simplest

straight-line Wilson loop.
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where we used the group generators satisfy T aT a “ CR1. We have also a single non-planar diagram

τ0

0
L´L “ ζ3

g2

4π2
pCR ´ 1

2
CAq L

ǫp2ǫ ´ 2q
ǫpǫ ´ 1q , (2.5)

where we used (A.9) (CA corresponds to the adjoint representation, i.e. is equal to N for SUpNq).
Finally, the denominator of (2.1) contributes

L´L “ ζ2
g2

π2
CR

2ǫ´2Lǫ

ǫpǫ ´ 1q . (2.6)

The total vertex is then

V pζ, Lq “ ζ ` CA ζ
3 g

2

8π2
Lǫp2 ´ 2ǫq
ǫpǫ´ 1q ` Opλ2q, (2.7)

where the dependence on CR canceled out. V is renormalized by ζbare “ ζ Ñ ζren “ ζpµq

ζ “ µǫ{2
”
ζpµq ` CAg

2

8π2ǫ
ζ3pµq ` Opg4q

ı
, (2.8)

The renormalized vertex is then

Vrenpζpµq, Lq “ ζpµq ` CAg
2

8π2
ζ3pµq

´
´ 1 ´ log

Lµ

2

¯
` Opg4q, (2.9)

and obeys the RG equation

´
µ

B
Bµ ` βladder

ζ

B
Bζ

¯
V ren

`
ζpµq, L

˘
“ 0, (2.10)

with

βladder
ζ “ CA ζ

3 g2

8π2
` Opg4q. (2.11)

This shows that the one-loop beta-function in (1.6) is universal, i.e. does not depend on a particular

representation of the gauge group used to define the WL.13

2.2 Two-loop order

The two-loop diagrams contributing V pζ, Lq are much more complicated and we found it convenient

to use the propagator with an explicit cutoff as in [4]

Dpτq “ g2

4π2
1

p|τ | ` εq2 , ε Ñ 0 . (2.12)

13We have shown that this applies to the ladder part of βζ but since it should have ζ2 “ 1 as its zero this should

be true also for the full one-loop expression.
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We shall focus on logarithmic UV divergences logn ǫ. To compare with dimensional regularization,

let us first repeat the above one-loop calculation. We find the following analogs of (2.4), (2.5) and

(2.6)

τ0

0
L´L “

τ0

0
L´L “ ζ3CR

´L
ε

` log
ε

ε` L

¯ g2

4π2
, (2.13)

τ0

0
L´L “ ´ζ3pCR ´ 1

2
CAq log εpε ` 2Lq

pε ` Lq2
g2

4π2
. (2.14)

L´L “ ζ2CR

´2L

ε
` log

ε

ε` 2L

¯ g2

4π2
, (2.15)

so that the total result for the vertex reads

V pζ, Lq “ ζ ` ζ3CA log
εpε ` 2Lq
pε ` Lq2

g2

8π2
` Opg4q. (2.16)

Dependence on CR again drops out and also the linear divergent terms L
ε

cancel. The vertex is

renormalized by

ζ ” ζbare “ ζpµq ´ CA ζ
3pµq logpµ εq g

2

8π2
` Opg4q . (2.17)

Then

Vren
`
ζpµq, L

˘
“ ζpµq ´ CA ζ

3pµq log Lµ
2

g2

8π2
` Opλ2q, (2.18)

obeys the Callan-Symanzik equation (2.10) with the same beta function as in (2.11).

The same approach can be extended to the two-loop level. We find that the corresponding

coupling redefinition and renormalized vertex are

ζ ” ζbare “ζpµq ´ CA ζ
3pµq logpµ εq g

2

8π2

` C2
A ζ

5pµq
”1
4
logpµ εq ` 3

8
log2pµ εq

ı g4

p4π2q2 ` Opg6q, (2.19)

Vren
`
ζpµq, L

˘
“ζpµq ´ CA ζ

3pµq log Lµ
2

g2

8π2

´ C2
A ζ

5pµq
”
π2 ` 12 log2 2 ´ 3 log

µL

2

´
2 ` 3 log

µL

2

¯ı g4

384π4
` Opg6q. (2.20)

The corresponding two-loop beta-function is then given by (in agreement with the Callan-Symanzik

equation (2.10))

βladder
ζ “ CA ζ

3 g2

8π2
´ C2

A ζ
5 g4

64π4
` Opg6q. (2.21)
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Thus the ladder part is again universal, i.e. does not depend on a particular representation. This

independence of representation is an accidental two-loop property – we shall see below that it does

not hold at three-loop order.

The full two-loop beta-function is then expected to be (cf. (1.3),(1.4))

βζ “ ´CA ζ p1 ´ ζ2q g
2

8π2
` ζ p1 ´ ζ2q pb2 ` C2

A ζ
2q g4

64π4
` Opg6q, (2.22)

where b2 may depend on representation R. Since the beta-function should vanish in the abelian

limit b2 should not contain C2
R

term, i.e. we should have

b2 “ p1C
2
A ` p2CACR , (2.23)

where p1, p2 are universal constants. Comparing to the case of the fundamental representation

of SUpNq in the planar limit where the two-loop term is given in (1.4) (where λ “ g2N, CA “
N, CR “ N2´1

2N
Ñ 1

2
N) we get the constraint

p1 ` 1

2
p2 “ 1 . (2.24)

One natural conjecture is that p2 “ 0 so that CR does not appear in (2.22), i.e. that like the one-

loop beta function, the full two-loop one does not depend on a choice of a particular representation,

namely

βζ “ ´CA ζ p1 ´ ζ2q g
2

8π2
` C2

Aζ p1 ´ ζ4q g4

64π4
` Opg6q . (2.25)

2.3 Three-loop order

As already mentioned in the Introduction (cf. (1.21)), from the analysis of possible contributions to

the four-loop WL expectation value the general structure of the three-loop beta function in ladder

approximation is expected to be

pβladder
ζ qp3q “

´
q1
3C

3
A ` q2

3 C
2
ACR ` q3

3 CAC
2
R ` q4

3 QR

¯
ζ7

´ g2

4π2

¯3

, (2.26)

where QR was defined in (1.22). This satisfies the condition of vanishing win the abelian limit

when CA “ 0. Here the tensor dabcdR is the symmetrized trace of the product of four generators

da1¨¨¨an
R

“ StrpT aT bT cT dq “ 1

n!
Tr

ÿ

σPSn
T aσp1q ¨ ¨ ¨ T aσpnq . (2.27)

To constrain the numerical coefficients q1
3, q

2
3 , ... we shall consider the case of R being k-symmetric

representation of SUpNq in the limit of k " 1. Then (see, e.g., [21])

CR “ kpN ´ 1qpN ` kq
2N

Ñ k2
N ´ 1

2N
, (2.28)

QR “ dabcd
A

dabcd
R

CR dimR
“ N

24

“
N2 ´ 6N ` 6kpk `Nq

‰
Ñ k2

N

4
. (2.29)

As we shall demonstrate below, the ladder beta function is expected to vanish (for generic N) in

the “classical” limit [27]

k Ñ 8, ζ Ñ 0, k ζ2 “ fixed . (2.30)
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This implies that q3
3 “ 0. Then the remaining terms give the following large k limit (at fixed ζ)

pβladder
ζ qp3q k"1“

´
q2
3NpN ´ 1q ` q4

3

N

4

¯
k2 ζ7

´ g2

4π2

¯3

. (2.31)

Below we will compute (2.31) explicitly determining the two constants q2
3 and q3

3 . Plugging them

into (2.26) will lead to the three-loop expression quoted in (1.23).

3 Two-loop term in xW pζqy for generic representation

Here we sketch the computation of the non-trivial two-loop term in xW pζqy quoted in (1.15). We

generalize the calculation in [1] in order to determine the coefficients k1 and k2 in (1.14) which

applies to a generic representation R of a simple gauge group G.

Decomposing the two-loop contributions to xW pζqy into planar ladder diagrams, self-energy

diagrams, spider diagrams involving 3-vertices, and non-planar ladders, we can write using [1]

(introducing explicit color factors)

1

dimR
xW pζqy “ 1 ` 2CR W

pζq
tree g

2 `
”
4C2

R W
pζq
planar ladder ` 2CR CA W

pζq
self

` 2CRCA W
pζq
3´vertex ` 4CRpCR ´ 1

2
CAqWpζq

non´planar ladder

ı
g4 ` ¨ ¨ ¨ (3.1)

The expressions of all planar pieces in dimensional regularization are [1] (in this Appendix we follow

the notation of [1] where d “ 2ω “ 4 ´ 2ǫ)

W
pζq
tree “ 1

8
´ 1

8
ζ2ǫ, W

pζq
planar ladder “ 1

192
` p1 ´ ζ2q

ˆ
1

64π2ǫ
` 1

128π2
p7 ´ 3ζ2q ` logpπeγE q

32π2

˙
,

W
pζq
self “ ζ2

ˆ
´ 1

64π2ǫ
´ 1

32π2
´ logpπeγE q

32π2

˙
` p1 ´ ζ2q

ˆ
´ 1

64π2ǫ
´ 1

16π2
´ logpπeγE q

32π2

˙
, (3.2)

W
pζq
3´vertex “ ´W

pζ“1q
self ` p1 ´ ζ2q

ˆ
´ 1

64π2ǫ
´ 1

64π2
´ logpπeγE q

32π2

˙
.

The non-planar ladder contribution is

W
pζq
non´planar ladder “ rΓp1 ´ ǫqs2

64π4´2ǫ

ż

τ1ąτ2ąτ3ąτ4

d4τ
pζ2 ´ cos τ13q pζ2 ´ cos τ24q

p4 sin2 τ13
2

4 sin2 τ24
2

q1´ǫ
. (3.3)

Computing it by the method described in [1], we find

W
pζq
non´planar ladder “ ζ2 ´ 1

64π2ǫ
` 1

384
` pζ2 ´ 1qp3ζ2 ´ 7q

128π2
` pζ2 ´ 1q logpπeγE q

32π2
. (3.4)

Substituting the expressions in (3.2) and (3.4) into (3.1) and also expressing the bare coupling ζ by

its renormalized value using the one-loop beta function βζ “ ´CAζp1 ´ ζ2q g2

8π2 ` ¨ ¨ ¨ ,14 we finally

find the expression in (1.15).

14That the one-loop term in (1.4) does not depend on representation R follows from a direct inspection of the

possible color factors, and using also the condition of the vanishing of beta-function in the Abelian limit.
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4 1d path integral for ladder Wilson loop in k-symmetric SUpNq

representation

As was mentioned in [4], one may also study the (fundamental) WL renormalization and compute

βζ using more conventional approach in which path ordering is replaced by a functional integral

over the auxiliary 1d fermions ψi (i “ 1, ..., N) as in [30, 32, 33]. We will review this representation

in Appendix B. Then in the ladder approximation when the bulk theory reduces to just a free 4d

adjoint scalar field integrating the scalar out leads to an effective theory of ψipτq with a non-local

1d action of the form (cf. (1.26))

S “
ż
dτ ψ̄iBτψi ´ λζ2

8π2

ż
dτ dτ 1 ψ̄jpτqψipτq 1

pτ ´ τ 1q2 ψ̄ipτ 1qψjpτ 1q . (4.1)

Below we will be interested in the case of k-symmetric SUpNq representation in which a different

1d effective representation in terms of 1d bosons [23, 24] is more convenient (cf. also [27]).15

Let us start with the following partition function of periodic bosons χi in the fundamental

representation of SUpNq

Z “
ż
DχDχ̄ ei

ş2π
0

dτL , L “ i χ̄Bτχ` i χ̄φpτqχ, φ “ φaT a. (4.2)

In the case of our interest φpτq will be the adjoint free scalar φ of the ladder model restricted to

the τ -line (1.10),(1.11) (up to rescaling by ζ).

In the operator quantization (with rχj , χ̄is “ δ
j
i ) we have Z “ trχrT exp i

ş
dτHpτqs where the

time dependent local Hamiltonian is Hpτq ” φ̂ “ ´i χ̄φχ. Here, time-ordering is interpreted as

path-ordering and we have

Z “ trχ

”
P exp

´
i

ż 2π

0

dτ φ̂pτq
¯ı

, (4.3)

where the trace is over the Hilbert space of χi, χ̄i. The state space is built starting from χi|0y “ 0

and acting with χ̄i. Z may be written as a sum of partition functions restricted to the subspace

where the particle number operator ν “ χ̄iχ
i has fixed value. On the many-particle states with

ν “ k the action of χ̄T aχ is the same as that of the generator T a in the k-symmetric representation

(that we will denote as Sk).
16 Hence, Z computes the sum of all “Wilson loops” in the k-symmetric

representations

Z “
8ÿ

k“0

Wk , Wk “ Trk P exp
´ ż 2π

0

dτ φpτq
¯
. (4.4)

To select a particular Wk contribution we may add the constraint on χ̄χ with a Lagrange multiplier

A “ Apτq as

L “ i χ̄Bτχ` iχ̄φpτqχ `Apχ̄χ´ k ´ N

2
q . (4.5)

15In [23, 24], this representation was discussed in the context of the half-BPS Wilson loop, but it applies the same

way to the generalized Wilson loop (1.1) or the purely scalar loop (1.10).
16For example, on 1-particle state (corresponding to fundamental representation) we have pχ̄T aχq χ̄i|0y “

χ̄kpT aqkjχj χ̄i|0y “ pT aqji χ̄j |0y.
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The extra constant shift by N
2

is due to the choice of Weyl ordering.17 In what follows we shall use

the notation

R2 “ k ` N

2
. (4.6)

Note that R2 appears in the action as the coefficient of the 1d Chern-Simons term
ş
dτA, and one

may argue as usual that it should not be renormalized since it is quantized.

We shall see shortly that this shift by N
2

leads indeed to the correct result for Wk in the

simplest case of φ “ 0, namely, that it is equal to the dimension Trk1 “ dimSk “ pN`k´1q!
k! pN´1q! of the

k-symmetric representation

Wk,0 “
ż
DχDχ̄ e´

ş
dτ χ̄Bτχ δpχ̄χ´R2q “ dimSk “

ˆ
N ` k ´ 1

k

˙
. (4.7)

This requires careful definition of the path integral over the Lagrange multiplier A, which can be

interpreted as a 1d Up1q gauge field. Indeed, the path integral

Wk,0 “
ż
DχDχ̄DA exp

´
i

ż 2π

0

dτ
“
iχ̄Bτχ`Apχ̄χ´R2q

‰¯
(4.8)

is invariant under

χi Ñ eiαχi , χ̄i Ñ e´iαχ̄i , A Ñ A ` Bτα , α “ αpτq . (4.9)

The function α compatible with periodic boundary conditions on χ should satisfy αp2πq ´ αp0q “
2πn where n is an integer, i.e.

αpτq “ α0pτq ` nτ , α0p2πq “ α0p0q , (4.10)

α0 corresponds to the “small” gauge transformation. It allows to gauge fix A to be a constant

A “ µ , µ “ 1

2π

ż 2π

0

dτ A . (4.11)

Under the “large” gauge transformation αpτq “ nτ , A changes by an integer n. Naively one would

expect this to be a symmetry of the path integral (4.8) only if R2 “ k ` N
2

is an integer, which

would require N to be even. However, as we shall see below, µ Ñ µ` n is in fact a symmetry for

any N , due to an “anomalous” contribution of the functional determinant coming from integration

over χ and χ̄. The redundancy under µ Ñ µ` n can be fixed by restricting the integration over µ

to the interval r0, 1s

Wk,0 “
ż 1

0

dµ

ż
DχDχ̄ exp

´
i

ż 2π

0

dτ
“
iχ̄Bτχ` µpχ̄χ´R2q

‰¯
. (4.12)

The functional integral over χ and χ̄ gives
“
detpiBτ ` µqs´N where the determinant that can be

defined as usual with the ζ-function prescription (recall that χp2πq “ χp0q)

detpiBτ ` µq “
8ź

n“´8
pn` µq “ µ

8ź

n“1

pµ2 ´ n2q “ µ

8ź

n“1

n2 ´ µ2

n2

8ź

n“1

p´n2q “ sinpπµq
π

8ź

n“1

p´n2q

17In the path integral integral formulation the number operator ν corresponds to χ̄χ ´ N
2

: if χ, χ̄ are operators,

using the symmetric (Weyl) ordering prescription we have ν “ 1

2
pχ̄iχ

i ` χiχ̄iq ´ N
2

.
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“ sinpπµq
π

elogp´1qζp0q´2ζ1p0q “ ´2i sinpπµq . (4.13)

This leads to the expected result in (4.7)18

Wk,0 “
ż 1

0

dµ e´2πiµR2 “
´ 2i sinpπµq

‰´N “
ż 1

0

dµ
e´2πikµ

p1 ´ e2πiµqN “
ˆ
R2 ` N

2
´ 1

R2 ´ N
2

˙
“

ˆ
N ` k ´ 1

k

˙
.

(4.14)

Note that as was claimed above, the integrand here is indeed invariant under µ Ñ µ` n.

Before proceeding, let us point out as a side remark that a similar 1d action (4.5), with χ

taken to be N anticommuting fermions with antiperiodic boundary conditions, describes instead

the Wilson loop in the rank k antisymmetric representation [23] (note that this is different from the

fermionic representation of [30, 32, 33] reviewed in the Appendix B). Further generalizations with

(bosonic or fermionic) χ fields carrying an additional UpMq index and a 1d UpMq gauge field on

the defect can also be used to describe Wilson loops in representations corresponding to a general

Young tableau.

5 Large k perturbative expansion in scalar ladder model

In this section we will work out the large k expansion of the Wilson loop in symmetric representation

Sk in the scalar ladder approximation. We will begin with the free theory (ζ “ 0) case to explain

the strategy of perturbative 1{k expansion and then move on to the general ζ ‰ 0 case .

5.1 Free theory

Since the parameter k appears only in the combination (4.6), it will be convenient to work out the

large k expansion as an expansion in inverse powers 1{R2. Thus, our aim will be to reproduce the

large R2 expansion of

Wk,0 “ dimSk “
ˆ
N ` k ´ 1

k

˙
“

ˆ
R2 ` N

2
´ 1

R2 ´ N
2

˙
“ R2pN´1q

pN ´ 1q!
”
1´NpN ´ 1qpN ´ 2q

24R4
`¨ ¨ ¨

ı
. (5.1)

Starting with the exact integral representation (4.14) for Wk,0 we may write it in the form amenable

to 1{R2 expansion19

Wk,0 “
ż 1{2

´1{2
dµ e´2πiµR2 “

´ 2i sinpπµq
‰´N

“
´

´ 2πi

R2

¯´N 1

R2

ż R2

2

´R2

2

dµ1 e´2πiµ1
µ1´N

´
1 ` π2µ12N

6R4
` ¨ ¨ ¨

¯
. (5.2)

Taking R large and thus setting the integration limits to ˘8,20 and using the analytic continuation

in the integral
ż 8

´8
dµ e´2πiµµα “ ´ 1

p2πqα e
iπα
2

α

Γp1 ´ αq , ´1 ă Repαq ă 0, (5.3)

18Here in computing the integral we use analytic continuation in N .
19We shifted µ by -1 which is a symmetry of the integral in (4.14).
20The effect of large gauge transformations is not visible in large R2 perturbation theory so the restriction on the

range of µ-integration can be relaxed.
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we find

Wk,0 “ R2N´2

ΓpNq
´
1 ´ NpN ´ 1qpN ´ 2q

24R4
` ¨ ¨ ¨

¯
, (5.4)

in agreement with (5.1).

This perturbative procedure has a direct counterpart at the level of the path integral (4.12),

i.e. before integrating out χ, χ̄ in terms of a functional determinant. Once again, we expect to find

Wk,0 “
ż 1{2

´1{2
dµ

ż
DχDχ̄ ei

ş
dτ riχ̄Bτχ`µpχ̄χ´R2qs “ 1

R2

ż R2

2

´R2

2

dµ1 e´2πiµ1
”
Jp µ

1

R2
q
ıN
, (5.5)

Jpµq ”
ż
DχDχ̄ ei

ş
dτ piχ̄Bτχ`µ χ̄χq “

“
´ 2 i sinpπµq

‰´1 “ i

2πµ
` iπµ

12
` 7iπ3µ3

720
` ¨ ¨ ¨ , (5.6)

where in (5.6) χ is now a singlet field. Let us show how to reproduce (5.6) in small mass expansion.

This requires isolating the contribution of the constant zero mode of the Bτ kinetic operator, i.e.

χ “ n` χ1, χ̄ “ n̄` χ̄1,
ż
dτ χ1 “

ż
dτ χ̄1 “ 0, (5.7)

S “
ż
dτpiχ̄Bτχ` µχ̄χq “

ż
dτpiχ̄1Bτχ1 ` µχ̄1χ̄1 ` µ n̄ nq. (5.8)

The Gaussian integration over the constants n and n̄ gives the 1
µ

factor and the rest of the small

µ expansion is then regular21

Jpµq “ 1

µ

ż
Dχ1Dχ̄1 e´

ş
dτ χ̄1Bτχ1

´
1 ` iµ

ż
dτχ̄1χ1 ´ µ2

2

ż
dτχ̄1χ1

ż
dτ 1χ̄1χ1 ` ¨ ¨ ¨

¯

“ i

2πµ

´
1 ` iµ x

ż
dτχ̄1χ1y ´ µ2

2
x
ż
dτχ̄1χ1

ż
dτ 1χ̄1χ1y ` ¨ ¨ ¨

¯
. (5.9)

The expectation values in (5.9) are computed using the propagator for the non-constant mode, i.e.

Dpτq “ Dpτ ` 2πq “ xχ1pτqχ̄1p0qy “
ÿ

ℓ‰0

1

2πiℓ
eiℓτ “ 1

iπ

8ÿ

ℓ“1

sinpℓτq
ℓ

, Dpτq “ ´Dp´τq, (5.10)

so that Dp0q “ 0. The explicit form of D restricted to the interval τ P p0, 2πq is

Dpτq “ i
τ ´ π

2π
, 0 ă τ ă 2π. (5.11)

Thus x
ş
dτχ̄1χ1y “ 0 and

x
ż
dτχ̄1χ1

ż
dτ 1χ̄1χ1y “

ż 2π

0

dτ

ż 2π

0

dτ 1 “
Dpτ ´ τ 1q

‰2 “ 2π

ż 2π

0

dτ rDpτqs2 “ ´π2

3
, (5.12)

where we used (5.11). As a result, we reproduce (5.2).

21The factor i
2π

comes from det1piBtq´1: starting from (4.13), removing the zero mode and then sending µ Ñ 0

one finds p´2i
sinpπµq

µ
q´1 Ñ i

2π
.
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5.2 Interacting case

Starting with the ladder scalar model on the circle (4.2), let is make the dependence on the coupling

ζ explicit by φ Ñ ζφ and integrate out the scalar field. This gives the effective 1d action

S “
ż
dτ

”
i χ̄Bτχ` µpχ̄χ´R2q

ı
´ iζ2 g2

8π2

ż
dτ dτ 1

4 sin2 τ´τ 1

2

χ̄pτqT aχpτq χ̄pτ 1qT aχpτ 1q , (5.13)

where we used the explicit form (1.12) of the scalar propagator restricted to the circle. Let us

introduce a compact notation for the integration measure

yd2τ “ dτ dτ 1

4 sin2 τ´τ 1

2

. (5.14)

The effective coupling that will play a central role below is

κ ” ζ2g2R2

8π2
, R2 “ k ` N

2
. (5.15)

Redefining χ and χ̄ by a factor of R we may then write (5.13) as

S “ S2 ` S4 “ R2

ż
dτ

”
i χ̄Bτχ` µpχ̄χ´ 1q

ı
´ iκR2

ż
yd2τ χ̄pτqT aχpτq χ̄pτ 1qT aχpτ 1q, (5.16)

where S4 stands for the quartic term. As in (5.7) let us separate the constant part of χ as

χ “ n` 1

R
χ1, χ̄ “ n̄` 1

R
χ̄1,

ż
dτ χ1 “

ż
dτ χ̄1 “ 0 . (5.17)

Then

S2 “
ż
dτ

”
i χ̄1Bτχ1 ` µ1

´
n̄n´ 1 ` 1

R2
χ̄1χ1

¯ı
, µ1 “ R2µ , (5.18)

S4 “ ´iκR2

ż
yd2τ

´
n̄` 1

R
χ̄1pτq

¯
T a

´
n` 1

R
χ1pτq

¯ ´
n̄` 1

R
χ̄1pτ 1q

¯
T a

´
n` 1

R
χ1pτ 1q

¯
. (5.19)

Note that in addition to 1{R2 term in (5.18) the action (5.19) contains 1{R cubic and 1{R2 quartic

interaction vertices. Integrating over µ1 we get for the resulting path integral measure
ż
DχDχ̄ Ñ

ż
Dχ1 Dχ̄1

ż
dn dn̄ δ

´
n̄n´ 1 ` 1

2πR2

ż
dτ χ̄1χ1

¯
. (5.20)

5.2.1 Leading (one-loop) order at large R

Expanding (5.18),(5.19) at large R2 for fixed κ we note that at leading order the delta-function in

(5.20) imposes that

n̄ini “ 1 . (5.21)

Then

S2 “i
ż
dτ χ̄1Bτχ1, S4 “ ´iκ

ż
yd2τ

”
n̄T aχ1pτq n̄T aχ1pτ 1q ` n̄T aχ1pτq χ̄1pτ 1qT an

` χ̄1pτqT an n̄T aχ1pτ 1q ` χ̄1pτqT an χ̄1pτ 1qT an
ı

` OpR´1q. (5.22)
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We used the following remarkable property of the measure yd2τ in (5.14) (valid in dimensional

regularization, or up to power divergences that we will neglect): for a generic function fpτq
ż

yd2τ fpτq “ 0. (5.23)

Using that for the T a in the fundamental representation

pᾱ T aβq pγ̄ T aδq “ 1

2
pᾱδqpγ̄δq ´ 1

2N
pᾱβqpγ̄δq , (5.24)

we then have from (5.19)

S “ Sp2q ` 1

R
Sp3q ` 1

R2
Sp4q , (5.25)

Sp2q “i
ż
dτ χ̄1Bτχ1 ´ i

2
κ

ż
yd2τ

”´
1 ´ 1

N

¯´
χ1
ipτ 1qn̄in̄jχ1

jpτq ` χ̄1
ipτ 1qninjχ̄1

jpτq
¯

` 2χ̄1
ipτ 1q

´
δij ´ 1

N
nin̄j

¯
χ1
jpτq

ı
, (5.26)

where we used (5.21). The explicit form of the cubic Sp3q and quartic Sp4q terms in the action will

be discussed later. In momentum space representation

χ1pτq “
ÿ

ℓPZzt0u
apℓq eiℓτ , χ̄1pτq “

ÿ

ℓPZzt0u
āpℓq eiℓτ , (5.27)

S2 in (5.23) becomes

i

ż
dτ χ̄1Bτχ1 “ 2π

ÿ

ℓPZzt0u
ℓ āpℓq ap´ℓq. (5.28)

Using that22
8ÿ

ℓ“1

p´ℓq cospℓτq “ 1

4 sin2 τ
2

, (5.29)

we have

ż
yd2τ χ̄1

ipτ 1qχ1
jpτq “ ´2π2

8ÿ

ℓ“1

ℓ
“
āipℓq ajp´ℓq ` āip´ℓq ajpℓq

‰
“ ´2π2

ÿ

ℓPZzt0u
|ℓ| āipℓqajp´ℓq, (5.30)

and a similar expression for the integral of two χ1’s or two χ̄1’s. The resulting quadratic part (5.26)

of the total action that determines the leading contribution at large R is

Sp2q “ 2π
ÿ

ℓPZzt0u

!
ℓ āipℓqajp´ℓq ` iπκ

2
|ℓ|

”´
1 ´ 1

N

¯´
n̄in̄jaipℓqajp´ℓq ` ninj āipℓqājp´ℓq

¯

` 2
´
δij ´ 1

N
nin̄j

¯
āipℓqajp´ℓq

ı)
“ 2π

ÿ

ℓPZzt0u
Au pℓqQuvpℓqAvp´ℓq, (5.31)

22This follows, for instance, from 1

2
logp1 ` b2 ´ 2b cos θq “ ´ ř8

n“1
bn

n
cospnθq, after applying pbBbq2 and setting

b “ 1.
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where Au “ pa1, . . . , aN , ā1, . . . , āN q and Quv is the 2N ˆ 2N matrix

Qpℓq “ 1

2
ℓ

ˆ
0 ´1

1 0

˙
` iπκ

2
|ℓ|

ˆ
p1 ´ 1

N
qnb n 1 ´ 1

N
nb n̄

1 ´ 1
N
n̄b n p1 ´ 1

N
qn̄b n̄

˙
. (5.32)

Using that n̄n “ 1 its determinant evaluates to

detQpℓq “ 1

4N
ℓ2

`
ℓ2 ` π2κ2|ℓ|2

˘N´1 “ 1

4N
ℓ2N p1 ` π2κ2qN´1. (5.33)

A short-cut way to this result is to use the rotational symmetry of the problem implying that

determinant can only depend on length on ni which is 1 and then to choose this constant vector

ni “ p1, 0, ..., 0q.
Thus the integral over Au “ pai, āiq gives

ź

ℓ‰0

rdetQpℓqs´1{2 9 p1 ` π2κ2qN´1
2 , (5.34)

where we used that in the ζ function regularization23

ź

ℓ‰0

c “
8ź

ℓ“1

c2 “ exp
`
ζp0q log c2

˘
“ c´1 . (5.35)

The κ-independent proportionality constant in (5.34) and the normalization of the path integral

measure can be accounted for at the end by observing that for κ “ 0 the action (5.16) becomes

free and thus the partition function should be given by (4.14) (or its large R expansion in (5.1)) as

discussed above.

We thus find for the ladder Wilson loop expectation value

Wk “ dim Sk

`
1 ` π2κ2

˘N´1
2

`
1 ` Γ

˘
, Γ “ Γ2 ` Γ4 ` ... , Γ2n “ OpR´2nq , (5.36)

or, equivalently,24

logWk“ log dim Sk ` N ´ 1

2
log

´
1 ` ζ4 g4R4

64π2

¯
` Γ2 ` OpR´4q , (5.37)

where Γ stands for subleading corrections at large R and fixed κ “ ζ2 g2 R2

8π2 .

Using that R2 “ k` N
2

and expanding in powers of ζ2g2 we may compare (5.37) with the ladder

part of the two-loop expression for the WL expectation value in (1.17). Since for k-symmetric

representation of SUpNq one has

CA “ N , CR “ kpk `NqpN ´ 1q
2N

(5.38)

so that CACR “ 1
2
pN ´ 1qpk2 ` Nkq and thus we find the agreement with the leading ζ4g4 term

in the expansion of (5.37) in both leading and subleading orders in large k expansion.

23This derivation of the p1 ` π2
κ

2q N´1

2 prefactor in Wk is formally very similar to the one of the Born-Infeld

factor in the disc partition function of an open string in external abelian gauge field [34].
24In the case of SUp2q equivalent result was announced earlier in [27].
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5.2.2 Propagators for the χ1, χ̄1 fluctuation

To develop perturbation theory in 1{R2 starting with (5.18),(5.19), i.e. to compute the effect of

interaction terms that complement the quadratic part of the action (5.31) we need to find the

propagators for the corresponding fluctuation fields. Using the covariance with respect to the

rotation of the constant vector ni in (5.17),(5.21) and of the fluctuation fields we may write the

quadratic action (5.26) in the special frame where

n “ n̄ “ p0, . . . , 0, 1q . (5.39)

Let us label the components of non-constant fluctuation χ1
i as

χ1
i “ pη1, . . . , ηN´1, ϕq, χ̄1

i “ pη̄1, . . . , η̄N´1, ϕ̄q, (5.40)

Then the quadratic action (5.26) reads (r “ 1, ..., N ´ 1)

Sp2q “i
ż
dτ

`
ϕ̄Bτϕ ` η̄rBτηr

˘

´ iκ

ż
yd2τ

”´
1 ´ 1

N

¯´1

2
ϕpτ 1qϕpτq ` 1

2
ϕ̄pτ 1q ϕ̄pτq ` ϕ̄pτ 1qϕpτq

¯
` η̄rpτ 1q ηrpτq

ı
. (5.41)

Going to momentum space, inverting the 2 ˆ 2 matrix in the ϕ, ϕ̄ sector and using (5.28), we find

for the corresponding propagators

Dϕϕpτ ´ τ 1q “ xϕpτqϕpτ 1qy “ xϕ̄pτqϕ̄pτ 1qy “ ´N ´ 1

2N
κ

ÿ

ℓ‰0

1

|ℓ| e
iℓpτ´τ 1q,

Dϕ̄ϕpτ ´ τ 1q “ xϕ̄pτqϕpτ 1qy “
ÿ

ℓ‰0

´ i

2πℓ
` N ´ 1

2N
κ

1

|ℓ|
¯
eiℓpτ´τ 1q,

Dηηpτ ´ τ 1q “ 1

2π

ÿ

ℓ‰0

i

ℓ` iπκ |ℓ| e
iℓpτ´τ 1q, xη̄rpτqηspτ 1qy “ δrsDηηpτ ´ τ 1q. (5.42)

Computing the sums and restricting to the interval 0 ă τ ă 2π the propagators may be written

explicitly as

Dϕϕpτq “ xϕpτqϕp0qy “ xϕ̄pτqϕ̄p0qy “ κ
N ´ 1

2N
log

´
4 sin2

τ

2

¯
,

Dϕ̄ϕpτq “ xϕ̄pτqϕp0qy “ 1

2π
pτ ´ πq ´ κ

N ´ 1

2N
log

´
4 sin2

τ

2

¯
,

Dηηpτq “ 1

2π

1

1 ` π2κ2

”
τ ´ π ´ πκ log

´
4 sin2

τ

2

¯ı
. (5.43)

Then they can be extended to all τ by periodicity. Note that the linear in τ part is not continuous

at τ “ 0 where it has a jump. For the corresponding propagators in momentum space we then

have25

xϕpϕqy “ xϕ̄pϕ̄qy “ ´κ
N ´ 1

2N

1

|p| δp`q,0, xϕ̄pϕqy “
´ i

2π p
` κ

N ´ 1

2N

1

|p|
¯
δp`q,0,

25In all cases xApτ qBpτ 1qy “ ř
ℓ‰0

Kℓ eiℓpτ´τ 1q. Hence xApBqy “ 1

p2πq2

ş
dτdτ 1 ř

ℓ‰0
Kℓ e

iℓpτ´τ 1q e´ipτ´iqτ 1

“ Kp δp`q,0.
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xη̄r,pηs,qy “ δrs
1

2π

i

p` iπ κ |p| δp`q,0, r, s “ 1, . . . , N ´ 1. (5.44)

In the following, it will be convenient to use these propagators in the more general case when

n̄n “ u (where u is a positive constant) and thus when n “ n̄ “ ?
u p0, . . . , 0, 1q. Then (5.44)–

(5.53) generalize simply by the replacement κ Ñ uκ, cf. (5.23),(5.25).

5.2.3 1{R2 order: logarithmic divergence and one-loop beta function

The next step is to compute the leading 1{R2 term Γ2 in Γ in (5.37). It is given by the sum of the

three contributions (which are effectively two-loop ones from the path integral point of view)

Γ2 “ D ` Σ4 ` Σ3 . (5.45)

Here D is the contribution of the 1{R2 term in S2 in (5.18) or in the delta-function in (5.20). Σ4

is the contribution of the quartic interaction terms in (5.19) or Sp4q in (5.25) and Σ3 comes from

the contraction of two cubic 1{R vertices in Sp3q in (5.25). We will focus on the logarithmic UV

divergent part of (5.45). Its renormalization will determine the leading one-loop 1{R2 term in the

beta function for κ.

D-term The D-contribution in (5.45) comes from the delta-function constraint in (5.20). Ex-

panding this delta-function in 1{R2 gives

δ
`
n̄n´ 1 `M

˘
“ δpn̄n´ 1q ` δ1pn̄n´ 1qM ` ... “ δpn̄n´ 1q ´ B

Buδpn̄n´ uqM
ˇ̌
ˇ
u“1

` ..., (5.46)

M ” 1

2πR2

ż
dτ χ̄1χ1 “ 1

R2

Nÿ

i“1

ÿ

ℓ‰0

χ̄1
ipℓqχ1

ip´ℓq , (5.47)

where we introduced an auxiliary parameter u. Then in the subleading term the integration in

(5.20) is done with the constraint n̄n “ u with u set to 1 at the end. We get using (5.40)–(5.42)

Nÿ

i“1

ÿ

ℓ‰0

xχ̄1
ipℓqχ1

ip´ℓqyn̄n“u “
ÿ

ℓ‰0

”
xϕ̄ℓϕ´ℓyn̄n“u `

N´1ÿ

r“1

xη̄r,ℓηr,ℓyn̄n“u

ı
(5.48)

“
ÿ

ℓ‰0

” i

2π ℓ
` uκ

N ´ 1

2N |ℓ| ` ipN ´ 1q
2πpℓ ` iπ uκ |ℓ|q

ı
“ uκpN ´ 1qpN ` 1 ` π2u2κ2q

Np1 ` π2u2κ2q I0 ,

I0 ”
8ÿ

ℓ“1

e´ε ℓ

ℓ
“ ´ log ε ` Opεq, (5.49)

where we introduced an exponential cut-off in the sum over ℓ. Then the contribution of the

correction term in (5.46) is found to be

D “ ´ 1

R2
I0

1

p1 ` π2κ2qN´1
2

B
Bu

”
uN´1p1 ` u2π2κ2qN´1

2
uκ pN ´ 1qpN ` 1 ` π2u2κ2q

Np1 ` π2u2κ2q
ıˇ̌
ˇ
u“1

.

(5.50)
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Here in the square bracket we included the factor of uN´1 from the integral over n, i.e.
ş
dndn̄ δpn̄n´

uq, and the leading κ dependent factor in (5.34),(5.36) generalized to the present case of u ‰ 1.

Computing the derivative over u at u “ 1 we finish with

D “ ´ 1

R2
I0

pN ´ 1qκ
Np1 ` π2κ2q2

”
NpN ` 1q ` π2κ2p2N2 ´ 1q ` π4κ4p2N ´ 1q

ı
. (5.51)

Quartic terms The contribution Σ4 in (5.45) comes from the quartic terms in (5.19) after

expanding eiS

Σ4 “ ixSp4qy , Sp4q “ ´i κ
R2

ż
yd2τ rχ̄1pτqT aχ1pτqs rχ̄1pτ 1qT aχ1pτ 1qs. (5.52)

Using again the SUpNq fusion relation (5.24), i.e.

χ̄1pτqT aχ1pτq χ̄1pτ 1qT aχ1pτ 1q “ 1

2
rχ̄1pτ 1qχ1pτqsrχ̄1pτqχ1pτ 1qs ´ 1

2N
rχ̄1pτqχ1pτqsrχ̄1pτ 1qχ1pτ 1qs, (5.53)

we obtain

Σ4 “ 1

R2

N ´ 1

2N
κ

ż
yd2τ

”
rDϕ̄ϕp0qs2 ` Dϕ̄ϕpτ ´ τ 1qDϕ̄ϕp´τ ` τ 1q ´ 2Dϕ̄ϕp0qDηηp0q ` rDηηp0qs2

`NDϕ̄ϕp´τ ` τ 1qDηηpτ ´ τ 1q `NDϕ̄ϕpτ ´ τ 1qDηηp´τ ` τ 1q ´ Dηηpτ ´ τ 1qDηηp´τ ` τ 1q

´NDηηpτ ´ τ 1qDηηp´τ ` τ 1q `N2
Dηηpτ ´ τ 1qDηηp´τ ` τ 1q ` rDϕϕpτ ´ τ 1qs2

ı
. (5.54)

Ignoring constant divergent terms (that drop out after integrating with measure yd2τ , cf. (5.23))

and using the symmetry under τ Ø τ 1, we get

Σ4 “ 1

R2

N ´ 1

2N
κ

ż
yd2τ

”
Dϕ̄ϕpτ ´ τ 1qDϕ̄ϕp´τ ` τ 1q ` 2NDϕ̄ϕp´τ ` τ 1qDηηpτ ´ τ 1q

` pN2 ´N ´ 1qDηηpτ ´ τ 1qDηηp´τ ` τ 1q ` rDϕϕpτ ´ τ 1qs2
ı
. (5.55)

Using the translation invariance gives

Σ4 “ 2π

R2

N ´ 1

2N
κ

ż 2π

0

dτ

4 sin2 τ
2

”
Dϕ̄ϕpτqDϕ̄ϕp2π ´ τq ` 2NDϕ̄ϕpτqDηηp2π ´ τq

` pN2 ´N ´ 1qDηηpτqDηηp2π ´ τq ` rDϕϕpτqs2
ı
. (5.56)

The propagators D in (5.43) have a linear part „ τ ´ π and a log part „ logp4 sin2 τ
2

q. Due to

parity around τ “ π there cannot be crossed contributions. The logarithmic divergences may come

only the linear in τ terms.26 The linear in τ parts are

D
lin
ηη pτq “ 1

2π

1

1 ` π2κ2
pτ ´ πq, D

lin
ϕϕpτq “ 0, D

lin
ϕ̄ϕpτq “ 1

2π
pτ ´ πq. (5.57)

26The contributions of purely logarithmic terms in D are finite. This may be easily shown in dimensional regu-

larization. In mode regularization, where we add a factor expp´ε ℓq to the ℓ-th Fourier mode [1], this is also true up

to a power-like divergence log ε

ε
. Indeed, using logp4 sin2 τ

2
q Ñ ´2

ř8
n“1

1

n
e´εn cospnτ q, we have

ż 2π

0

dτ

4 sin2 τ
2

rlog 4psin2 τ

2
qs2 “ 4

8ÿ

n,p,q“1

e
´pn`p`qqε ´n

pq

ż 2π

0

dτ cospnτ q cosppτ q cospqτ q “ 4
”

´ π

2

8ÿ

p,q“1

p ` q

pq
e

´2pp`qqε

´ 2 ˆ π

2

ÿ

1ďqăpă8

e
´2pε p ´ q

pq

ı
“ 4π

1 ` p1 ` e2εq logp1 ´ e´2εq
´1 ` e2ε

“ 2π

ε
p1 ` 2 log 2 ` 2 log εq ´ 6π ` Opεq.
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Using (5.29) with mode regularization, i.e. 1
4 sin2 τ

2

Ñ
ř8

ℓ“1 e
´ε ℓp´ℓq cospℓτq we have (cf. (5.49))

ż 2π

0

dτ

4 sin2 τ
2

“ 0,

ż 2π

0

dτ

4 sin2 τ
2

τ “ 0,

ż 2π

0

dτ

4 sin2 τ
2

τ2 “ ´4π

8ÿ

ℓ“1

e´ε ℓ

ℓ
“ ´4πI0, (5.58)

and then finally the logarithmically divergent part of Σ4 is found to be

ΣUV
4 “ 1

R2
I0

pN ´ 1qκ
N p1 ` π2κ2q2

“
NpN ` 1q ` 2π2κ2pN ` 1q ` π4κ4

‰
. (5.59)

Combined with (5.51) this gives

D ` ΣUV
4 “ ´ π2

R2
I0

pN ´ 1qκ3

N p1 ` π2κ2q2
“

´ 3 ´ 2N ` 2N2 ` 2π2κ2pN ´ 1q
‰
. (5.60)

Cubic terms The term Σ3 in (5.45) is coming from contraction of two cubic vertices vertices

Sp3q in the action (5.19),(5.25) (i.e. from the quadratic term in the expansion of eiS4). Explicitly,

expanding S4 in (5.19) near n “ n̄ “ p1, 0, ..., 0q using (5.17),(5.40) gives

S4 “ ´ iκR2

ż
yd2τ

´1

2
rχ̄pτ 1qχpτqsrχ̄pτqχpτ 1qs ´ 1

2N
rχ̄pτqχpτqsrχ̄pτ 1qχpτ 1qs

¯
ÝÑ

´ iκ

R

ż
yd2τ

”1
2

pϕ̄pτ 1q ` ϕpτqqrχ̄1pτqχ1pτ 1qs ` 1

2
rχ̄1pτ 1qχ1pτqspϕ̄pτq ` ϕpτ 1qq

´ 1

2N
pϕ̄pτq ` ϕpτqqrχ̄1pτ 1qχ1pτ 1qs ´ 1

2N
rχ̄1pτqχ1pτqspϕ̄pτ 1q ` ϕpτ 1qq

ı

“ ´ iκ

R

ż
yd2τ

”
pϕ̄pτ 1q ` ϕpτqqrχ̄1pτqχ1pτ 1qs ´ 1

N
pϕpτq ` ϕ̄pτqqrχ̄1pτ 1qχ1pτ 1qs

ı
. (5.61)

Thus (using that χ̄1n “ ϕ̄, etc.)

Sp3q “ ´ iκ

R

ż
yd2τ

”
pϕ̄pτ 1q ` ϕpτqqrϕ̄pτqϕpτ 1q ` η̄pτqηpτ 1qs

´ 1

N
pϕpτq ` ϕ̄pτqqrϕ̄pτ 1qϕpτ 1q ` η̄pτ 1qηpτ 1qs

ı

“ ´ iκ

R

ż
yd2τ

”´
1 ´ 1

N

¯
ϕpτqϕ̄pτqrϕpτ 1q ` ϕ̄pτ 1qs ` rϕ̄pτ 1q ` ϕpτqs η̄pτqηpτ 1q

´ 1

N
rϕpτq ` ϕ̄pτqs η̄pτ 1qηpτ 1q

ı
. (5.62)

For three generic non-constant functions of τ we have the following expression in terms of their

Fourier modes ż
yd2τApτqBpτqCpτ 1q “ ´2π2

ÿ

ℓ,pPZzt0u
ℓ‰p

|n|ApBℓ´pC´ℓ. (5.63)

Hence, introducing the mode regularization factor we get

Sp3q “ ´2π2iκ

R

ÿ

ℓ,pPZzt0u
ℓ‰p

|ℓ| e´ε |ℓ|
”´

1 ´ 1

N

¯
ϕpϕ̄ℓ´ppϕ´ℓ ` ϕ̄´ℓq ` ϕ̄pηℓ´pη̄´ℓ
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` ϕpη̄ℓ´pη´ℓ ´ 1

N
η̄pηℓ´ppϕ´ℓ ` ϕ̄´ℓq

ı
. (5.64)

Taking the expectation value of rSp3qs2 using the momentum space propagators in cf. (5.44) we

obtain a sum of triple products of propagators, that after the integration can be reduced to a set of

double sums. Regulating all infinite sums with an exponential mode cutoff and dropping power-like

singular terms of the form 1
ε

or log ε
ε

, we find for the UV logarithmically divergent part

ΣUV
3 “ 1

2
x
“
i Sp3q‰2y “ π2

R2
log ε

pN ´ 1qκ3

N p1 ` π2κ2q2
“
2N ` 3 ´ 2π2κ2pN ´ 1q

‰
. (5.65)

Summing this up with (5.60) gives the total log divergence at order 1{R2

Γ2 “ D ` ΣUV
4 ` ΣUV

3 “ 2π2

R2
NpN ´ 1q κ

3

p1 ` π2κ2q2 log ε ` ¨ ¨ ¨ . (5.66)

Log divergence and beta-function Using (5.37) the ladder Wilson loop expectation value is

thus

logWk “ log dim Sk ` N ´ 1

2
logp1 ` π2κ2q ` Γ2 ` OpR´4q

“ log dim Sk ` N ´ 1

2
logp1 ` π2κ2q ` 2π2

R2
NpN ´ 1q κ

3

p1 ` π2κ2q2 log ε ` ¨ ¨ ¨ (5.67)

where dots stand for finite parts and higher R´4 corrections.

The divergence in (5.67) can be absorbed into renormalization of κ (which is equivalent to

renormalization of ζ as this is the only running coupling, cf. (2.19))

κ ” κbare Ñ κpµq ´ 2N

R2

κ
2pµq

1 ` π2κ2pµq logpµεq ` OpR´4q, (5.68)

so that the renormalized Wk expressed in terms of renormalized κpµq (cf. (1.31)) satisfies

´
µ

B
Bµ ` βκ

B
Bκ

¯
Wk “ 0, (5.69)

βκ “ µ
dκ

dµ
“ 2N

R2

κ
2

1 ` π2κ2
` OpR´4q . (5.70)

The corresponding κ
3 log µ „ ζ6g6 log µ term in renormalized logWk is in agreement with the

ζ6g6 log µ term in (1.19),(1.20):

´ 1

128π4
CRC

2
A ζ

6g6 “ ´2π2

k
NpN ´ 1qκ3 ` ¨ ¨ ¨ . (5.71)

Here we used (5.38), (2.28) and expanded at large k with fixed κ “ 1
8π2 ζ

2g2R2, R2 “ k` 1
2
N . The

beta-function (5.70) written in terms of ζ gives

βκ Ñ βladder
ζ “ µ

dζ

dµ
“ ζ3Ng2

8π2
`
1 ` 1

64π2 ζ4g4R4
˘ ` OpR´4q . (5.72)
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Expanding in small ζ the leading ζ3 term here is in agreement with the one-loop beta-function in

(1.4) (in the large N limit λ “ Ng2). The first correction from the denominator in (5.72) comes

only at order ζ7λ3.

We also get the following analog of the relation (1.5)

B
Bκ logWk “ C̄βκ , C̄ “ pN ´ 1qπ2R2

2Nκ
` ... , (5.73)

where the leading one-loop term (5.70) in βκ comes directly from the leading finite one-loop term
N´1
2

logp1 ` π2κ2q in (5.67).27

6 βκ-function from two-point correlator on Wilson line

The Wilson line may be viewed as defining a defect 1d CFT with basic correlation functions of

local operators inserted on the line defined as (here W “ exprζ
ş
dτφs is the scalar Wilson factor)

⟪O1pτ1q ¨ ¨ ¨Onpτnq⟫ ” xTr
“
PO1pτ1q ¨ ¨ ¨OnpτnqW

‰
y

xTr
“
PW

‰
y . (6.1)

If we consider the scalar ladder model as a subsector of N “ 4 SYM then for the two-point function

of a “transverse” scalar φK not coupled to the loop (i.e. not appearing in the Wilson factor W)

there is no genuine anomalous dimension, i.e. all divergences in

GKpτ12q “ κ ⟪φKpτ1q φKpτ2q⟫, (6.2)

can be absorbed into ζ or κ only (i.e. no extra Z factor is needed). Thus, the renormalized

two-point function should satisfy

´
µ

B
Bµ ` βκ

B
Bκ

¯
Gren

K “ 0 . (6.3)

In this section we discuss how we can use this relation to extract the beta-function βκ from the

two-point function Gren
K .

This way of deriving βκ has several advantages. First, the propagator on the line is simpler

than on the circle, cf. (1.12). Second, there are no constant zero modes on the line and thus it will

be possible to treat the delta-function constraint χ̄χ “ R2 (cf. (4.7) in the free case) by solving it

directly.

Our starting point will be the bosonic 1d action on the line (cf. (5.13); we rescaled χ by R)

S “ iR2

ż
dτ χ̄Bτχ´ iκR2

ż
dτ dτ 1

pτ ´ τ 1q2 χ̄pτqT aχpτq χ̄pτ 1qT aχpτ 1q , χ̄χ “ 1 . (6.4)

This action has the same local Up1q invariance as in (4.9)28

χi Ñ eiαpτqχi, χ̄i Ñ e´iαpτqχ̄i . (6.5)

27An apparent singularity of C̄ in κ is just an artifact of the expression of (5.73) in terms of κ „ ζ2 rather than?
κ „ ζ.
28Due to the constraint, the kinetic term is invariant up to an irrelevant total derivative.
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We can use this symmetry to gauge fix χN to be real; then solving the constraint we get

χN “ χ̄N “
`
1 ´ η̄rηr

˘1{2
, ηr ” pχ1, ..., χN´1q . (6.6)

In the following, we shall use the notation η for the N ´1 independent components χr. The kinetic

term in (6.4) becomes simply η̄rBτηr (since χN is real, it contributes only a total derivative).

The two-point function (6.2) may be written as

GKpτ12q “ κ ⟪rχ̄φKχpτ1qs rχ̄φKχpτ2qs⟫, (6.7)

where the indices of the adjoint scalar φK “ φaKT
a are contracted with the 1d bosons. The average is

done with the effective action (6.4) (already incorporating the effect of the integral over free coupled

scalar) and with the free scalar bulk action (1.11) for φK.29 Computing first the expectation value

with respect to the bulk field φK one gets (τ12 “ τ1 ´ τ2)

GKpτ12q “ κ g2

8π2τ212
x
´

rχ̄pτ2qχpτ1qsrχ̄pτ1qχpτ2qs ´ 1

N

¯
y, (6.8)

where x...y is the remaining averaging over 1d bosons χ.

6.1 One-loop 1{R2 contribution

Then writing this in terms of independent N ´ 1 components ηr “ pχ1, ..., χN´1q in (6.6) we get

GKpτ12q “ κ g2

8π2τ212
x
”
1 ´ 1

N
` η̄pτ2qηpτ1q ` η̄pτ1qηpτ2q ´ η̄pτ1qηpτ1q ´ η̄pτ2qηpτ2q ` Opη4q

ı
y

“
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ` N

R2

“
Dpτ12q ` Dp´τ12q ´ 2Dp0q

‰
` Opxη4yq

ı
. (6.9)

Here D is the infinite line analog of the exact propagator (5.42) on the circle that is found from

the action (6.4) after using (6.6)30

Dpτq “
ż 8

´8

dp

2π

i

p` i π κ |p| e
ipτ “ 1

πp1 ` π2κ2q

ż 8

0

dp

p

“
π κ cosppτq ´ sinppτq

‰
. (6.10)

While Dpτq is singular in the IR (at p “ 0) the combination appearing in (6.9)

Dpτq ` Dp´τq ´ 2Dp0q “ 2κ

1 ` π2κ2

ż 8

0

dp
cosppτq ´ 1

p
(6.11)

is regular at p “ 0. Its UV divergence at p Ñ 8 can be regularized with a hard cutoff |p| ă Λ:

ż Λ

0

dp
cosppτq ´ 1

p
“ ´ logpΛ̄τq ` OpΛ̄´1q, Λ̄ “ Λ eγE . (6.12)

29One may view (6.7) as originating from the generating functional with the coupling ζφ ` hpτ qφK and then

differentiating twice over the source function hpτ q.
30We explicitly extracted the 1

R2 prefactor which is due to the normalization of χr ” ηr in (6.4); xη̄rpτ qηsp0qy “
δrsDpτ q.
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This is equivalent to mode regularization e´ε ℓ if used in (5.42) after identifying ε “ Λ̄´1 (cf. also

(5.49)), i.e.
ż 8

0

dp
cosppτq ´ 1

p
e´p{Λ̄ “ ´1

2
log

´
1 ` Λ̄2τ2

¯
“ ´ logpΛ̄ τq ` OpΛ̄´1q . (6.13)

Thus we find for the log divergent part of (6.9) (we assume τ ą 0)31

GKpτq “
´
1 ´ 1

N

¯
κ g2

8π2τ212

„
1 ´ 1

R2
f

p1q
1 pκq logpΛ̄ τq ` ¨ ¨ ¨


, f

p1q
1 pκq “ 2Nκ

1 ` π2κ2
. (6.14)

Then renormalizing κ as in (5.68) we find that the renormalized GKpτq satisfies the CS equation

(6.3) with

βκ “ 1

R2
κ f

p1q
1 pκq ` O

` 1

R4

˘
“ 2N

R2

κ
2

1 ` π2κ2
` O

` 1

R4

˘
, (6.15)

which is the same as in (5.70).

6.2 Subleading 1{R4 contribution

At the next order we expect to find the following 1{R4 corrections in (6.14)

GKpτq “
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ´ 1

R2
f

p1q
1 pκq logpΛ̄τq

´ 1

R4

´
f

p2q
0 pκq ` f

p2q
1 pκq logpΛ̄τq ` f

p2q
2 pκq log2pΛ̄τq

¯
` ¨ ¨ ¨

ı
. (6.16)

Assuming renormalizability or using the CS equation (6.3) we have (prime is derivative over κ)

f
p2q
2 “ ´1

2
f

p1q
1

“
f

p1q
1 ` κpf p1q

1 q1‰ “ ´4N2 κ
2

p1 ` π2κ2q3 , (6.17)

βκ “ 1

R2
κ f

p1q
1 ` 1

R4
κ f

p2q
1 ` O

` 1

R6

˘
, (6.18)

where in (6.17) we used the one-loop expression in (6.14).

In (6.16) we assumed that all IR divergences cancel, i.e. the UV cutoff enters together with τ .

Thus to check (6.17) and to find the two-loop coefficient f
p2q
1 we may concentrate on extracting the

1
R4 log τ terms.

To compute corrections to (6.9) we note that in general they come from the following expectation

value computed with the effective propagator D in (6.10) (we again use η ” pχrq, r “ 1, ..., N ´1)

X “ x
”
p1 ´ η̄pτ2qηpτ2qq1{2p1 ´ η̄pτ1qηpτ1qq1{2 ` η̄pτ2qηpτ1q

ı”
τ1 Ø τ2

ı
eiSinty, (6.19)

where Sint contains interacting (higher than quadratic in η) parts of the quartic part of the action

in (6.4) after one eliminates χN using (6.6). The relevant quartic interaction term in Sint is given

by

S
p4q
int “ ´1

2
iκR2

ż
dτdτ 1

pτ ´ τ 1q2
!

rη̄pτqηpτ 1qsrη̄pτ 1qηpτqs ´ rη̄pτqχpτ 1qsrη̄pτqηpτqs

31Note that here the UV scale Λ̄ enters only together with τ so that there are no IR divergences. Thus we can

safely take the limit of the infinite length of the line as in the similar computations in [4].
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´ rη̄pτ 1qχpτqsrη̄pτqηpτqs ` rη̄pτ 1qχpτ 1qsrη̄pτqηpτqs
)
. (6.20)

In general

X “ X1 `X2 `X3 ` ... , (6.21)

where Xn is given by sums of products of n propagators D . The 1{R4 correction will come from

either doing contractions of four η in the prefactor in (6.19) between themselves (X2 term) or from

contractions of two η with one power of S
p4q
int from the expansion of eiSint (X3 term). We do not need

to include disconnected contractions as they cancel against the contributions of the normalization

factor in (6.1).

We thus find

GKpτ12q “
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ` N

N ´ 1
pX1 `X2 `X3q ` O

` 1

R6

˘ı
, (6.22)

X1 “ 1

R2
pN ´ 1q

“
Dpτ12q ` Dp´τ12q

‰
, Dpτq ” Dpτq ´ Dp0q , (6.23)

X2 “ 1

R4
NpN ´ 1qDpτ12q Dp´τ12q , (6.24)

X4 “ κ
NpN ´ 1q

4R4

ż
dτdτ 1

pτ ´ τ 1q2 Y3pτ, τ 1, τ12q , (6.25)

where Y3 is the relevant connected part given by the sum of products of three propagators

Y3 “ ´2Dpτ ´ τ12q
“
Dp´τqDpτ ´ τ 1q ` Dp´τqDp´τ ` τ 1q ´ 2Dp´τ 1qDp´τ ` τ 1q

‰
(6.26)

´ 2Dp´τ ` τ12q
“
DpτqDpτ ´ τ 1q ´ 2Dpτ ´ τ 1qDpτ 1q ` DpτqDp´τ ` τ 1q

‰

` 2Dpτ ´ τ12qDp´τ ` τ12q
“
Dpτ ´ τ 1q ` Dp´τ ` τ 1q

‰
´ 4Dp´τ ` τ12qDp´τ12 ` τ 1qDpτ ´ τ 1q.

All terms in (6.22) are expressed in terms of the shifted propagator Dpτq that is regular in the IR

(cf. (6.10),(6.11))

Dpτq “ R2
“
Dpτq ´ Dp0q

‰
“

ż 8

´8

dp

2π

i

p` iπκ|p| peipτ ´ 1q

“ 1

πp1 ` π2κ2q

ż 8

0

dp

p

´
π κ

“
cosppτq ´ 1

‰
´ sinppτq

¯
. (6.27)

The terms in the third line of (6.26) become independent of τ12 after shifting of τ and τ 1 by τ12
under the integral in (6.25). The remaining terms (in the first and the second line) can be written,

using also the symmetry pτ, τ 1q Ø p´τ,´τ 1q of (6.25) as

Y3 “ ´ 4
“
Dp´τqDpτ ´ τ 1q ´ Dp´τ 1qDp´τ ` τ 1q

‰ “
Dpτ ´ τ12q ` Dpτ ` τ12q

‰

“ ´ 4Dp´τqDpτ ´ τ 1q
“
Dpτ ´ τ12q ` Dpτ ` τ12q ´ Dpτ 1 ´ τ12q ´ Dpτ 1 ` τ12q

‰
. (6.28)

Thus (6.22) is given by

GKpτq “
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ´ 2N

R2

κ

1 ` π2κ2
logpΛ̄τq

` N2

R4
Dpτ12qDp´τ12q ` N2

4R4
κ

ż
dτdτ 1

pτ ´ τ 1q2 Y3pτ, τ 1, τ12q ` O
` 1

R6

˘ı
. (6.29)
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The computation of the logarithmically divergent part of the 1{R4 correction in the second line of

(6.29) is quite non-trivial and is presented in Appendix C. Here we just quote the result

GKpτq “
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ´ 2N

R2

κ

1 ` π2κ2
logpΛ̄τq

` N2

R4

4κ2

p1 ` π2κ2q3 log2pΛ̄τq ` N2

R4

2κ2 p1 ´ b1 π
2
κ
2q

p1 ` π2κ2q3 logpΛ̄τq ` ¨ ¨ ¨
ı
. (6.30)

The coefficient b1 in general is scheme dependent; in the momentum cutoff scheme we found that

(see Appendix C)

b1 “ 1 . (6.31)

The log2 term obeys the RG condition (6.17) while the log term leads to the two-loop term in the

beta-function (6.18)

βκ “ 2N

R2

κ
2

1 ` π2κ2
´ 2N2

R4

κ
3 p1 ´ b1 π

2
κ
2q

p1 ` π2κ2q3 ` O

´ 1

R6

¯
. (6.32)

As already discussed below (1.29) the lowest κ
3 term in the 1{R4 correction corresponds precisely

to the ζ5 term in the two-loop ladder beta function for ζ in (1.4),(1.23).

6.3 Comments on scheme dependence and three-loop βladder

ζ in general repre-

sentation

Let us comment on the scheme dependence of of the beta-function (6.32). In general, in this one-

coupling theory (with only ζ or κ running and expansion going in powers of ~ “ 1
R2 ) the scheme

freedom should correspond to coupling κ redefinitions

κ Ñ κ ` 1

R2
q1pκq ` ... , (6.33)

βκ “ µ
dκ

dµ
“ 1

R2
b1pκq ` 1

R4
b2pκq ` ... Ñ βκ ` 1

R4

”
q1pκq b1

1pκq ´ b1pκq q1
1pκq

ı
` ... (6.34)

Thus unless qpξq is exactly proportional to the one-loop beta function term b1pξq (as it happens in

simplest cases of one-coupling theories) the two-loop 1{R4 term is not, in general, invariant. For

example, considering small κ expansion, with q1 “ c1κ
2 ` c2κ

4 ` ... and using that the one-loop

term in (6.32) is b1 “ 2Npκ2 ´ π2κ4 ` ...q we find that q1b
1
1 ´ b1q

1
1 “ ´4Npc2 ` π2c1qκ5 ` .....

Thus while the coefficient of the leading κ
3 term in the two-loop correction in (6.32) is invariant,

the coefficient b1 of the first subleading κ
5 term is, in general, scheme dependent. At the same

time the denominator p1 ` π2κq´3 structure originating from p1 ` π2κ2q´1 factors in the exact

propagator (6.27) appears to be universal (at least in a natural class of regularization schemes that

do not substantially modify the structure of (6.11),(6.27)).

Next, let us elaborate on the implications of the structure of βκ in (6.32) (see comments below

(5.70)). Using the definition of κ we may turn (6.32) into a perturbative large R2 „ k expansion

of βladder
ζ

βladder
ζ “ N

2
ζ3

g2

4π2
´ N2

4
ζ5

´ g2

4π2

¯2

´ π2N k2

8
ζ7

´ g2

4π2

¯3

` ... (6.35)
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Note that three loop g6ζ7 term in (6.35) comes entirely from the expansion of the denominator in

the first term in (6.32) or from (5.72). Indeed, the 1{R4 term in (6.32) produces only ζ5g4`ζ9g8`...
terms. Comparing with (2.31) for general N fixes the coefficients there as

q2
3 “ 0, q4

3 “ ´3 ζp2q “ ´1

2
π2 . (6.36)

We thus obtain the following 3-loop ladder beta function for general representation (cf. (1.21),(1.22))

βladder
ζ “ 1

2
CAζ

3 g2

4π2
´ 1

4
C2

A ζ
5

´ g2

4π2

¯2

`
´
q1
3C

3
A ´ 3 ζp2qQR

¯
ζ7

´ g2

4π2

¯3

` Opg8q. (6.37)

We will prove in Appendix D that in the planar limit, for any irreducible representation R of

SUpNq the coefficient QR of the ζp2qζ7 term in (6.37) is universal, i.e. one has (λ “ g2N)

βladder
ζ “ 1

2
ζ3

λ

4π2
´ 1

4
ζ5

´ λ

4π2

¯2

`
´
q1
3 ´ ζp2q

8

¯
ζ7

´ λ

4π2

¯3

` Opλ4q, (6.38)

Comparing with (1.8), we see that the QR term in (6.37) corresponds to the ζp2q transcendental

part of the coefficient q3 “ 1
4

´ ζp2q
8

in (1.8). This agreement is remarkable given that the three

loop beta function is, in general, expected to be scheme dependent. Indeed, the expansion (1.8)

has been derived in dimensional regularization while (6.32, 6.35) have been obtained in a mode

regularization. This suggests that only q1
3 term in (6.37) is actually scheme dependent while q4

3 in

(6.36) is scheme independent. An explanation of this scheme independence is that this coefficient

comes from the κ4 term in the expansion of the one-loop term in βκ in (1.29), i.e. from the first

scheme-independent term in the perturbative 1{k expansion.
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A SUpNq conventions

For the SUpNq generators in the fundamental representation we have (a “ 1, ..., N2´1; i “ 1, ..., N)

rT a, T bs “ i fabc T c, TrT a “ 0, Tr pT aT bq “ 1

2
δab, pT aT aqij “ N2 ´ 1

2N
δij , (A.1)

T a
ijT

a
kl “ 1

2

´
δilδjk ´ 1

N
δijδkl

¯
, facdf bcd “ Nδab. (A.2)

Then also

TrpT aT aT bT bq “ 1

2
Trp1q TrpT bT bq ´ 1

2N
TrpT bT bq “

`N
2

´ 1

2N

˘N2 ´ 1

2
“ pN2 ´ 1q2

4N
, (A.3)
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TrpT aT bT aT bq “ 1

2
TrpT bq TrpT bq ´ 1

2N
TrpT bT bq “ ´ 1

2N

N2 ´ 1

2
“ ´N2 ´ 1

4N
, (A.4)

TrpT aT bT bT aq “ TrpT aT aT bT bq “ pN2 ´ 1q2
4N

. (A.5)

For a generic representation R we define the index CR by

T aT a “ CR 1 , TrpT aT aq “ CR dimR . (A.6)

In the special case of the fundamental representation

TrpT aT aq “ 1

2
pN2 ´ 1q Ñ CF “ N2 ´ 1

2N
. (A.7)

For the adjoint representation pT a
adjqbc “ ´ifabc so from (A.2) we have CA “ N .

For the k-symmetric representation Sk

dimSk “
ˆ
N ` k ´ 1

k

˙
, CSk

“ kpN ´ 1qpN ` kq
2N

. (A.8)

Let us note also the following relation32

T aT bT a “ pCR ´ 1

2
CAqT b. (A.9)

Also, if X is some matrix (e.g. a product of some generators) then

T aT bXT aT b “ T aT bXT bT a ´ 1

2
CA T

aXT a. (A.10)

Useful examples are

TrpT aT aT bT bq “ C2
R dimR, (A.11)

TrpT aT bT aT bq “ pCR ´ 1

2
CAqTrpT bT bq “ pCR ´ 1

2
CAqCR dimR. (A.12)

B 1d Fermionic representation for the Wilson loop

The Wilson loop admits a 1d fermionic representation [30, 32, 33] that we we will review here for

the case of a general representation of gauge group. We start with the path-ordered exponential

Uab “
„
P exp

ż τ2

τ1

F pτq


ab

, (B.1)

where F pτq “ F apτqT a is a Lie algebra valued function in the representation R (with the corre-

sponding indices being a,b). We can write

Uab “ eΩ
„

δ2

δūapτ2q δubpτ1q exp
´ ż τ2

τ1

dτ
δ

δucpτqFcc1 pτq δ

δūc1 pτq
¯

u“ū“0

e´Ω,

32For other similar relations see, for instance, sec. 3.1 of [35].
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Ω “
ż τ2

τ1

dτdτ 1 ūcpτqucpτ 1q θpτ ´ τ 1q, (B.2)

where u and ū are (Grassmann) vectors of R and θ is the step function. Ω admits the following

representation in terms of path integral over anticommuting fields ψa and ψ̄a (which are vectors in

the representation R) with the antiperiodic boundary condition ψpτ2q “ ´ψpτ1q 33

e´Ω “
ż
DψDψ̄ exp

ż
dτ

“
ψ̄Bτψ ` ipūψ ` ψ̄uq

‰
. (B.3)

Then for a closed loop the trace of U in (B.2) may be written as

TrU “ δ2

δūap0qδuap0q

„
log

ż
DψDψ̄ exp

ż
dτ

´
ψ̄Bτψ ´ ψ̄Fψ ` ipūψ ` ψ̄uq

¯

u“ū“0

. (B.4)

Eq. (B.4) represents the 2-point function xψ̄p2πqψp0qy whose perturbative expansion is expressed

in terms of factors of F pτq connected by z-propagators, i.e. by theta functions that implement

path-ordering.

As an example, let us consider the scalar ladder model. Integrating the free scalar field we get

the corresponding 1d effective action

S “
ż
dτ ψ̄Bτψ ` 1

2
ζ2

ż
dτdτ 1 Dpτ ´ τ 1qψ̄pτqT aψpτq ψ̄pτ 1qT aψpτ 1q . (B.5)

HereDpτ´τ 1q “ xφpτqφpτ 1qy is the scalar propagator restricted to the line. Introducing an auxiliary

1d field σapτq we may write the corresponding ladder WL expectation value as

W “
A

Tr
” 1

Bτ ´ σapτqT a

ıE
, (B.6)

where x...y amounts to Wick contractions of the free fields σapτq with the propagator xσapτqσbpτ 1qy “
δabDpτ ´ τ 1q. This reconstructs the standard perturbative evaluation of the Wilson loop like (1.1)

or (1.10).

The same steps may be repeated in the case of the circular 1
2
-BPS loop in N “ 4 SYM where

the function F can be read off from (1.1) with ζ “ 1. Assuming interaction terms in the SYM

action do not contribute (as turns out to be true) and integrating out the free scalar and vector

fields we obtain

xW p1qy “
ş
DψDψ̄ ψ̄p2πqψp0q exp

” ş
dτ ψ̄Bτψ ` g2

16π2

` ş
dτ ψ̄T aψ

˘2ı

ş
DψDψ̄ exp

” ş
dτ ψ̄Bτψ ` g2

16π2

` ş
dτ ψ̄T aψ

˘2ı . (B.7)

We used that here the effective propagator corresponding to the combination pAA`φφqab is constant

[18], i.e. Dpτq “ D0 “ g2δab

8π2 . Introducing an auxiliary constant field σa, we may write the quartic

action in a local form
ż
dτ ψ̄Bτψ ` g2

16π2

´ ż
dτ ψ̄pτqT aψpτq

¯2

Ñ
ż
dτ ψ̄Bτψ ´ g

2π
σa

ż
dτψ̄pτqT aψpτq ´ σ2a. (B.8)

33This follows from θpτ q being the propagator associated with the first order kinetic term Bτθpτ q “ δpτ q.
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Integrating out the fermions ψ, ψ̄, we then obtain another equivalent representation

xW p1qy “
A

Tr
” 1

Bτ ´ g
2π
σa T a

ıE
, x...y “

ż ź

a

dσa e
´σ2

a ... (B.9)

Let us show how (B.9) can be used to reproduce the perturbative expansion in (1.13). We expand

the trace using xτ2|pBτ q´1|τ1y “ θpτ2 ´ τ1q. For instance,

x2π|pBτ q´3|0y “
ż 2π

0

dτdτ 1 θpτ ´ 0qθpτ 1 ´ τqθp2π ´ τ 1q “
ż

τăτ 1

d2τ. (B.10)

We then obtain

Tr
” 1

Bτ ´ g
2π
σaT a

ı
“ dimR ` TrpT aT bqσaσb

g2

4π2

ż

τ1ăτ2

d2τ

` TrpT aT bT cT dqσaσbσcσd
´ g2

4π2

¯2
ż

τ1ă¨¨¨ăτ4

d4τ ` ¨ ¨ ¨ . (B.11)

Taking the average using that

xσaσby “ 1

2
δab, xσaσbσcσdy “ 1

4
pδabδcd ` δacδbd ` δadδbcq, (B.12)

TrpT aT bqδab “ TrpT aT aq “ dimRCR, (B.13)

TrpT aT bT cT dqpδabδcd ` δacδbd ` δadδbcq “ 2TrpT aT aT bT bq ` TrpT aT bT aT bq

“ dimR
“
2C2

R ` CRpCR ´ 1

2
CAq

‰
, (B.14)

ż

τ1ăτ2

d2τ “ 2π2,

ż

τ1ă¨¨¨ăτ4

d4τ “ 2

3
π4, (B.15)

we find that
1

dimR
xW p1qy “ 1 ` 1

4
CR g

2 ` 1

192
CRp6CR ´ CAq g4 ` Opg6q, (B.16)

which is in agreement with (1.13).

C Computation of divergent part of 1{R4 term in scalar two-point

function

To find the divergent part of the
ş
dτdτ 1 pτ ´ τ 1q´2 Y3 term in (6.29) we shall use somewhat eclectic

direct cutoff method. First, let us introduce a UV cutoff a Ñ 0 in the pτ ´ τ 1q´2 kernel (which

originated from the 4d scalar propagator restricted to the line) as

1

pτ ´ τ 1q2 Ñ 1

pτ ´ τ 1q2 ` a2
“

ż 8

´8
dp

e´a |p|

2a
eippτ´τ 1q , a Ñ 0 . (C.1)

Using the expression for the propagator D in (6.27) in Y3 in (6.28) and integrating over τ, τ 1 we

then obtain34

Ȳ3 ”
ż

dτdτ 1

pτ ´ τ 1q2 ` a2
Y3 “

ż 8

0

dp1

ż 8

0

dp2 fpp1, p2q, (C.2)

34Note that singular terms like 1

p`iπκ|p|
at p Ñ 0 that appear at intermediate steps cancel.
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fpp1, p2q
ˇ̌
ˇ
p1ăp2

“ 4e´app1`p2qp1 ´ eap1qκ cospp1τ12q
ap1 ` π2κ2q3 p21p2

“
1 ` π2κ2 ` eap1p3 ´ π2κ2q ` 2eap2p1 ´ π2κ2q

‰

Introducing an extra hard momentum cutoff p1, p2 ă Λ (which we will later relate to 1{a) and

integrating over p2 we get

Ȳ3 “
ż Λ

0

dp1
4κ cospp1τ12q
ap1 ` π2κ2q3p21

”
e´ap1p1 ´ eap1q

“
1 ` π2κ2 ` eap1p3 ´ π2κ2q

‰
Eip´aΛq (C.3)

` eap1p3 ´ π2κ2qEip´ap1q ` e´ap1p´3 ` π2κ2qEipap1q ` 2e´ap1p´1 ` eap1qp´1 ` π2κ2q logpaΛ̄q
ı
,

where Eipzq “ ´
ş8

´z
dt e´t

t
, and Λ̄ “ Λ eγE . To perform the last integration over p1 we consider the

integrand in the limit Λ Ñ 8, a Ñ 0. Dropping power divergent terms „ 1{a and integrating over

p1 ă Λ we find that the terms depending on τ12 are

κ

4
Ȳ2 “ ´κ

2p´3 ` π2κ2q
p1 ` π2κ2q3 log2pΛ̄τ12q ´ 2κ2 p´5 ` 2 logpaΛ̄q ` π2κ2q

p1 ` π2κ2q3 logpΛ̄τ12q ` ¨ ¨ ¨ . (C.4)

To this we need to add the contribution of the X2 term in (6.24) or Dpτ12q Dp´τ12q in (6.29). Intro-

ducing the same momentum cutoff Λ in the propagators D (6.27) (
ş8
0
dp Ñ

şΛ
0
dp) and integrating

over p we get for τ ą 0

Dp˘τq “ ´ κ

1 ` π2κ2
logpΛ̄|τ |q ¯ 1

2p1 ` π2κ2q ` OpΛ´1q , (C.5)

Dpτ12qDp´τ12q “ κ
2

p1 ` π2κ2q2 log2pΛ̄τ12q ` finite . (C.6)

Combining the contributions of (C.4) and (C.6) we get for the relevant divergent terms in (6.29)

GKpτq “
´
1 ´ 1

N

¯
κ g2

8π2τ212

”
1 ´ 2N

R2

κ

1 ` π2κ2
logpΛ̄τq

` N2

R4

4κ2

p1 ` π2κ2q3 log2pΛ̄τq ` N2

R4

2κ2
“
5 ´ 2 logpaΛ̄q ´ π2κ2

‰

p1 ` π2κ2q3 logpΛ̄τq ` ¨ ¨ ¨
ı
. (C.7)

The coefficient of the log2 term here agrees with the one following from the RG constraint (6.17).

The resulting coefficient of the leading 1
R4κ

3 term in the beta function will then be 5´2 logpaΛ̄q
(cf. (6.30),(6.32)). To match the known two-loop coefficient of ζ5 term in βladder

ζ in (1.3),(1.8) we

need to require that a and Λ̄ are related so that logpaΛ̄q “ 1. It is clearly desirable to find a more

systematic regularization approach in which this value will appear automatically. In principle, it

should be sufficient to introduce a UV cutoff only in the bulk propagator kernel 1
pτ´τ 1q2 appearing in

the 1d effective action (6.4). Then this cutoff will appear also in the exact κ-dependent propagator

(6.10). However, our attempts to use some natural choices like dimensional regularization led to

complicated integrals that we did not manage to evaluate.

D Universal form of planar limit of three-loop term in βladder

ζ

The three-loop ζ7 term in βladder
ζ in (1.23) contains the group-theoretic coefficient

QR “ dabcd
A

dabcd
R

CR dimR
. (D.1)
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Here we shall prove that for any irreducible representation R of SUpNq one has

lim
NÑ8

QR

N3
“ 1

24
, (D.2)

independently on R, leading to the universal coefficient of the ζp2qζ7 term in (6.38).

To prove (D.2) we need first to recall some definitions. The Chern character in representation

R with generators T a
R

is a function of Xa (a “ 1, ..., N2 ´ 1) defined by

ChpRq “ Tr
“
eX

aTa
R

‰
“

8ÿ

n“0

1

n!
da1...an
R

Xa1 ¨ ¨ ¨Xan , (D.3)

ChpR1 ˆ R2q “ ChpR1q ChpR2q, ChpR1 ` R2q “ ChpR1q ` ChpR2q. (D.4)

For symmetric Sk and antisymmetric Ak representations it is known that

ChpSkq “
ÿ

k“ř
i nimi

ź

i

1

mi!

”ChpniFq
ni

ımi

, ChpAkq “ p´1qk
ÿ

k“ř
i nimi

ź

i

1

mi!

”
´ ChpniFq

ni

ımi

,

(D.5)

where the sums are over all integer partitions of k (ni appears in the partition with multiplicity

mi). Tensoring representations one can obtain expressions for characters in terms of fundamental

characters, see examples below. For a generic irreducible representation with nR blocks in the

Young tableau, the leading large N power comes from the term with a maximal power of ChpFq

ChpRq “ 1

hR

rChpFqsnR ` ¨ ¨ ¨ . (D.6)

In (D.6) hR is obtained as the product over all blocks B in the Young tableau of their hook length,

defined as one plus the number of blocks below and to the right to B. The relevant terms in (D.3)

are then

ChpRq “ 1

hR

”
NnR ` nRN

nR´1
´1

2
dabF X

aXb ` 1

4!
dabcdF XaXbXcXd ` ¨ ¨ ¨

¯

` nRpnR ´ 1q
2!

NnR´2
´1

2
dabF X

aXb ` 1

4!
dabcdF XaXbXcXd ` ¨ ¨ ¨

¯2ı
, (D.7)

where subscript F refers to fundamental representation. Picking the terms with 0,2,4 factors of Xa

gives the leading power of N in

dimR “ NnR

hR

` ¨ ¨ ¨ , CR “ N2 ´ 1

dimR

nRN
nR´1

2hR

` ¨ ¨ ¨ “ nRN

2
` ¨ ¨ ¨ , dabcdR “ nRN

nR´1

hR

dabcdF ` ¨ ¨ ¨ .
(D.8)

Using now that

dabcdF dabcdA “ NpN2 ´ 1qpN2 ` 6q
48

“ N5

48
` ¨ ¨ ¨ , (D.9)

we obtain for (D.1)

QR “ N3

24
` ¨ ¨ ¨ , (D.10)

implying (D.2).
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Let us now present some explicit examples of particular representations that check the expan-

sions (D.8). Let us begin with the case of the representation which is the minimal one not

included in Sk and Ak series. We start with

ˆ ˆ “ ` 2 ` . (D.11)

Using (D.4), (D.5) one obtains [21]

Chp q “ 1

3

“
ChpFq

‰3 ´ 1

3
Chp3Fq. (D.12)

Using (D.3) and expanding to 4th order gives then

dim “NpN2 ´ 1q
3

, C “ 3pN2 ´ 3q
2N

, (D.13)

dabcd “pN2 ´ 27q dabcdF ` N

2
pδabδcd ` δacδbd ` δadδbcq. (D.14)

Contracting with dabcd
A

for adjoint representation and using daabc
A

“ 5
6
N2 δbc

dabcddabcdA “ 1

48
NpN2 ´ 1qpN4 ` 39N2 ´ 162q , lim

NÑ8
QR

N3

ˇ̌
ˇ
R“

“ 1

24
. (D.15)

As a next example we consider is . From

ˆ “ ` , (D.16)

we obtain

Chp q “ 1

8

“
ChpFq

‰4 ` 1

4

“
ChpFq

‰2
Chp2Fq ´ 1

8

“
Chp2Fq

‰2 ´ 1

4
Chp4Fq. (D.17)

Expanding as in (D.3) gives

dim “ NpN2 ´ 1qpN ` 2q
8

, C “ 2pN2 `N ´ 4q
N

, (D.18)

dabcd dabcdA “ 1

96
NpN2 ´ 1qpN ` 2qpN4 ` 7N3 ` 74N2 ` 48N ´ 384q, (D.19)

and thus again

lim
NÑ8

QR

N3

ˇ̌
ˇ
R“

“ 1

24
. (D.20)

Our final example is . Using

ˆ “ ` ` , ˆ “ ` (D.21)

and (D.12) and (D.17) we get

Chp q “ 1

12

“
ChpFq

‰4 ` 1

4
rChp2Fq

‰2 ´ 1

3
ChpFq Chp3Fq,

dim “ N2pN2 ´ 1q
12

, C “ 2pN2 ´ 4q
N

, dabcddabcdA “ N2pN2 ´ 1qpN2 ´ 4qpN2 ` 42q
144

,

lim
NÑ8

QR

N3

ˇ̌
ˇ
R“

“ 1

24
. (D.22)
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E Two-loop ladder beta function from two-point correlators on the

line

In [4] we showed how to compute the two-loop ladder beta function βladder
ζ in the planar limit

by considering the defect two-point function of the scalar fields (either coupled to the loop or

“transverse” to it) in the case when the scalar Wilson loop in the fundamental representation is

defined on a straight line of length 2L. Here we will extend that calculation to the case of a generic

representation of SUpNq at finite N .

E.1 Transverse scalar

For one “transverse” scalar denoted by φK which does not appear in the Wilson line exponent we

want to compute

GKpτq “ ⟪φKp0qφKpτq⟫ “
xTr

“
PφKp0qφKpτq exp

şL
´L

dτ 1 φpτ 1q
‰
y

xTr
“
P exp

şL
´L

dτ 1 φpτ 1q
‰
y

. (E.1)

Here φ is rescaled by ζ so that the relevant coupling that appears in the propagator is ξ̄ “ ζ2g2 “
N´1ξ (where ξ was defined in (1.10)). The propagator on the line (cf. (1.11),(1.12)) in dimensional

regularization is given by (cf. (2.3))

Dpτq “ Nξ̄

8π2
1

|τ |2´ǫ
, d “ 4 ´ ǫ, ξ̄ “ ζ2 g2 . (E.2)

One loop At the tree and one loop level we have from (E.1)

xTr
“
P exp

ż L

´L

dτ 1 φpτ 1q
‰
y “ 1 ` ´L Lτ1 τ2

` ¨ ¨ ¨ , (E.3)

xTr
“
PφKp0qφKpτq exp

ż L

´L

dτ 1 φpτ 1q
‰
y “ ´L L

0 τ

` ´L L
0 τ τ1 τ2

` ´L Lτ1 τ2 0 τ

` ´L L
0 ττ1 τ2

` ´L Lτ1 τ20 τ

` ´L L
0 ττ1 τ2

` ´L Lτ1 τ20 τ
` ¨ ¨ ¨ . (E.4)

A given diagram contributes with factor r ξ̄
4π2 sν , ν “ number of loops. The planar diagrams have

color factor rCRsν , while the last two two-loop non-planar diagrams have a factor of CRpCR ´ 1
2
CAq.

As a result, we find for (E.1)

GKpτq “ τ´2`ǫCRξ̄

4π2
` τ´2`ǫ

“
pL´ τqǫ ` 2τ ǫ ´ pL ` τqǫ

‰
CACRξ̄

2

32π4p´1 ` ǫqǫ ` Opξ̄3q, (E.5)
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where the dependence on CR is just by an overall factor. This is renormalized by setting (cf. (2.8))

ξ̄ “ µǫ
”
ξ̄pµq ` p1

ǫ
ξ̄ 2pµq ` ¨ ¨ ¨

ı
, p1 “ CA

4π2
. (E.6)

One can then take L Ñ 8 and finally

Gren
K pτ, µq “ CR

ξ̄

4π2
1

τ2

”
1 ´ CA

ξ̄

4π2

`
logpµτq ` 1

˘
` Opξ̄2q

ı
. (E.7)

Note that here there is no need for an additional Z-factor so that we have
´
µ

B
Bµ ` βξ̄

B
Bξ̄

¯
Gren

K pτ ;µq “ 0. (E.8)

Two loops At two loops, the most convenient scheme is the regularization discussed in [4] where

the propagator is as in (2.12)

Dpτq “ Nξ̄

8π2
1

p|τ | ` εq2 , ε Ñ 0 . (E.9)

We find that the renormalized two-point function is then35

Gren
K pτ ;µq “ CR

ξ̄

4π2
1

τ2

”
1 ´ CA

ξ̄

4π2
logpµτq ` C2

A

´ ξ̄

4π2

¯2´π2
24

` 1

2
logpµτq ` log2pµτq

¯
` Opξ̄3q

ı
,

(E.10)

so that (E.8) is satisfied with

βξ̄ “ CA

ξ̄2

4π2
´ 1

2
C2

A

ξ̄3

p4π2q2 ` Opξ̄4q . (E.11)

E.2 Coupled scalar

The same analysis for the scalar field φ coupled to the Wilson line requires the evaluation of around

200 different diagrams. All of them can be treated with the regularization (E.9) with the final result

Grenpτ ;µq “CR

ξ̄

4π2
1

τ2

”
1 ` CA

ξ̄

4π2

`
1 ´ 3 logpµτq

˘

` C2
A

´ ξ̄

4π2

¯2´
´ 2 ` 5π2

24
´ 3

2
logpµτq ` 6 log2pµτq

¯
` Opξ̄3q

ı
, (E.12)

where in addition to renormalization of ξ̄ one needs to introduce a Z-factor, i.e. Gren “ ZG with

Z “ 1 ´ CA ξ̄

2π2
logpεLq ` C2

A
ξ̄2

16π4

“
2 logpεLq ` log2pεLq

‰
` Opξ̄3q. (E.13)

As a result, Gren satisfies the Callan-Symanzik equation with an anomalous dimension ∆ (see a

discussion in [4]) ”
µ

B
Bµ ` βξ̄

B
Bξ̄ ` 2p∆ ´ 1q

ı `
ξ̄´1Grenpτ ;µq

˘
“ 0, (E.14)

where βξ̄ is as in (E.11) and

∆ “ 1 ` 3CA ξ̄

8π2
´ 5C2

A
ξ̄2

64π4
` Opξ̄3q. (E.15)

35Compared to (E.7) found in dimensional regularization in this regularization scheme the one-loop correction

contains just logpµτ q term, i.e. the two µ parameters in (E.7) and in (E.10) are related by a factor of e.

39



F Multiply wound Wilson loop

Our results have a simple application to the case of k-wound Wilson loop in the fundamental

representation F. This generalization amounts to the replacement TrFU Ñ TrFpUkq in the definition

of the Wilson loop (1.1). To start, let us write

TrFU
k “

ÿ

i

ckiTrRi
U, (F.1)

where the sum is over all irreducible representations appearing in Fbk. Then, (F.1) implies the

following relation for the associated Wilson loops

Wk´wound “
ÿ

i

ckiWRi
. (F.2)

The coefficients tckiu in (F.1) appear in the inversion of the Frobenius formula [36]

TrRU “ 1

|R|!
ÿ

σPS|R|

χRpσq
ź

i“1,2,...

TrFU
kipσq. (F.3)

Here K “ |R| is the number of blocks in the Young tableau of R, kipσq is the length of the i-th

cycle of the permutation σ. The symmetric group characters χRpσq are obtained as

χRpσq “ coeff. of xℓ11 ¨ ¨ ¨ xℓKK in ∆pxq
nź

jě1

Pjpxqνjpσq , (F.4)

where λi are the rows of the Young tableau of R, padded with zero to have K entries, νjpσq is the

number of cycles of length j in σ, and ∆pxq “ ś
1ďiăjďKpxi ´ xjq. For K “ 2 this gives the well

known relations36

Trp1,1qU “ 1

2
pTrFUq2 ´ 1

2
TrFU

2, Trp2qU “ 1

2
pTrFUq2 ` 1

2
TrFU

2, (F.5)

so that the inversion of (F.3) reads

TrFU
2 “ Trp2qU ´ Trp1,1qU. (F.6)

Repeating the same procedure for higher values of k, (F.6) generalizes to

TrFU
3 “ Trp3qU ´ Trp2,1qU ` Trp1,1,1qU,

TrFU
4 “ Trp4qU ´ Trp3,1qU ` Trp2,1,1qU ´ Trp1,1,1,1qU,

TrFU
5 “ Trp5qU ´ Trp4,1qU ` Trp3,1,1qU ´ Trp3,1,1,1qU ` Trp1,1,1,1,1qU, (F.7)

and so on. To evaluate (1.15), we need the sum of CR and C2
R

based on the decomposition (F.1),

i.e. the effective k-dependent coefficients

CR Ñ
ÿ
CR “ k2

N2 ´ 1

2N
, C2

R Ñ
ÿ
C2

R “ k2
pN2 ´ 1qrN2 ` k2p´3 ` 2N2qs

12N2
, (F.8)

36We use ps1, s2, ....q to label traces in representations R by the corresponding Young tableau.
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leading to

1

N
xW yk´wound “ 1`k2 N

2 ´ 1

8N
g2 ` k2 pN2 ´ 1q

” k2
192

´
1 ´ 3

2N2

¯
` 1

128π2
p1 ´ ζ2q2

ı
g4 ` Opg6q.

(F.9)

We remark that, for ζ “ 1, the winding is implemented by the simple substitution rule g2 Ñ k2g2,

which is clear in the matrix model model representation of the BPS WML (at any finite N). For

generic ζ, we notice that the coefficient of the p1 ´ ζ2q term is instead „ k2g4, i.e. has a different

scaling with k.

The same analysis applies to the two point functions or more general correlators. Once we write

⟪TrFrOpτ1q ¨ ¨ ¨OpτnqUks⟫ as derivatives of ⟪TrFUpηqk⟫ where ηpsq is a local coupling to O, and we

can treat TrF
“
Upηq

‰k
as above.
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