
Accelerating Fully Spectral CNNs with Adaptive
Activation Functions on FPGA

Shuanglong Liu∗, Hongxiang Fan†, Wayne Luk†
∗ Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, School of Physics and Electronics

Hunan Normal University, Changsha, China, liu.shuanglong@hunnu.edu.cn
† Dept. of Computing, Imperial College London, UK, {h.fan17, w.luk}@imperial.ac.uk

Abstract—Computing convolutional layers in frequency do-
main can largely reduce the computation overhead for training
and inference of convolutional neural networks (CNNs). However,
existing designs with such an idea require repeated spatial- and
frequency-domain transforms due to the absence of nonlinear
functions in the frequency domain, as such it makes the benefit
less attractive for low-latency inference. This paper presents a
fully spectral CNN approach by proposing a novel adaptive
Rectified Linear Unit (ReLU) activation in spectral domain.
The proposed design maintains the non-linearity in the network
while taking into account the hardware efficiency in algorithm
level. The spectral model size is further optimized by merging
and fusing layers. Then, a customized hardware architecture is
proposed to implement the designed spectral network on FPGA
device with DSP optimizations for 8-bit fixed point multipliers.
Our hardware accelerator is implemented on Intel’s Arria 10
device and applied to the MNIST, SVHN, AT&T and CIFAR-10
datasets. Experimental results show a speed improvement of 6×
∼ 10× and 4× ∼ 5.7× compared to state-of-the-art spatial or
FFT-based designs respectively, while achieving similar accuracy
across the benchmark datasets.

I. INTRODUCTION

Typical CNN models exhibit high computational complex-
ity, which largely limits their applications in edge devices
with resource and power constrained settings such as FPGAs.
Previous research [1]–[3] has shown that the computation
of convolution in the frequency domain using the Fourier
transform (e.g. FFT) achieves significant speedups compared
to the conventional implementation in spatial domain. How-
ever, the performance of existing frequency-domain designs
suffers from repeatedly computing the Fourier transform and
its inverse due to the absence of spectral implementation for
sub-sampling and non-linear activations.

To address this problem, researchers [4]–[7] have recently
introduced the idea of fully spectral implementation of CNNs,
which aims to run the model in complete frequency domain
during training or inference without the need of domain
switching. Despite the success of spectral pooling introduced
in [4], which proves to outperform the spatial version by
preserving more information per parameter and enabling
flexibility in output dimensionality, the design of non-linear
activations such as the Rectified Linear Unit (ReLU) remains
challenge and an open issue [5]. The main sticking point lies
in that the application of non-linear function does not satisfy
the linearity property of the frequency domain, and therefore
must be implemented in the spatial domain [5]. The lack

of appropriate representation of the activations in frequency
domain has been the stumbling block for researchers working
in this area [7].

In this paper, we propose a novel and adaptive design
approach of ReLU activation function in frequency domain
with consideration of both classification accuracy and hard-
ware efficiency. This design maintains and approximates the
non-linear performance of its spatial counterpart adaptively
across different tasks. Combined with the spectral pooling in
[4], a fully spectral CNN for image classification is designed,
and the network structure is optimized by fusing and merging
layers for model reduction. Then, we propose an efficient hard-
ware accelerator to implement the proposed spectral CNN on
FPGA, and DSP optimization for 8-bit multiplier is employed
to further increase the speed of CNN inference. The main
contributions of this work are:

1) An adaptive spectral ReLU activation design method,
which improves the non-linear approximation of its spatial
counterpart across image datasets while taking into account
the efficiency of multiplications with complex numbers;

2) A fully spectral CNN approach with optimizations for
model reduction in frequency domain, such as merging layers
(batch normalization) and fusing layers (pooling);

3) The hardware architecture to accelerate fully spectral
CNNs; when evaluated on Intel’s Arria 10 SoC, it demon-
strates up to 10× and 5.7× speedups compared to the spatial
and FFT-based implementations on the same device, with
comparable accuracy achieved across the benchmark datasets.

II. BACKGROUND AND RELATED WORK

A. CNNs in Frequency Domain

CNNs are typically built of several computational operations
stacked on top of each other, commonly known as layers.
Frequently used layers are 2-D convolutional (Conv) layer,
sub-sampling (pooling) layer or fully-connected (FC) layer.
Besides, there are batch normalization layers and activations
such as rectified linear unit (ReLU). Conv layer receives
C×Hi×Wi sized input feature maps, and then these inputs are
convolved with a kernel having a shape of F×C×K×K, and
generates output feature maps with the size of F ×Ho×Wo.
On contrast, pooling layer only needs channel-wise operations,
and element-wise operation is applied to ReLU layer. There-
fore, the input and output feature maps of pooling and ReLU
layers have the identical number of channel, i.e F = C.

FFT-based Convolution: Let X , Y and W represent the
2-D input, output and weight matrices respectively. Then Y
is computed as the dot-product of the input feature maps
and the corresponding weight kernel, i.e. space convolution.
The powerful property of using Fourier transformation is
that the heavy-duty convolution in spatial domain turns into
an element-wise Hadamard product operation in the spectral
domain, as shown in Equation (1).

Y =
∑
i=1

Xi ·Wij = X ~W

= F−1(F (X)�F (W))

(1)

where ~ denotes a convolution and � denotes an element-
wise product, F and F−1 denote Fourier transform and its
inverse operation.

Other Layers: It is however challenging to compute the
pooling and ReLU layers in frequency domain, since they do
not have exact dual operations in spectral due to the non-
linearity of these layers. Running FC layer in frequency do-
main leads to low compute efficiency because of the overhead
of FFT and additional operations due to zero-padding when
the input image size is very small (e.g. 1×1) [1]. As a result,
FC layer is implemented in spatial domain [1]–[3].

B. Related Work

Computing Conv layers in the Fourier domain as point-
wise products has been widely studied in machine learning
community [1], [4], [5]. Mathieu et al. [1] introduced the use
of FFTs to accelerate the training and inference of CNNs, with
speed improvements of over an order of magnitude. Rippel
et al. [4] proposed spectral pooling which performs dimen-
sionality reduction by truncating the lower frequency repre-
sentations. Francesca et al. [5] used Laplace transformation to
implement the activation functions in frequency domain. How-
ever, Laplace transform has the numerical problem due to the
exponential function in the Laplace inversion, especially when
implemented in hardware with reduced arithmetic precision.

Many hardware designers [2], [3], [6], [7] have proposed
FFT-based FPGA accelerators for inference and/or training of
CNNs. Zhang et al. [2] exploited the Overlap-and-Add method
to accelerate convolutional layers in frequency domain on
FPGA. Then, Zeng et al. [3] improved this work by proposing
a novel Concatenate-and-Pad technique. However, both work
require Fourier transforms and the inverse at the boundary
of every layer, thereby significantly limits the performance
gain. Ko et al. [6] proposed a method to train the network
entirely in the frequency domain. They used linear functions
to approximate tanh and sigmoid activations. As a result, this
method suffers from the lack of nonlinearity in the network,
and it cannot apply to the commonly used ReLU function. Ayat
et al. [7] proposed a spectral ReLU function to implement
the fully spectral CNN. However, the design of their ReLU
function depends on the evaluated dataset, and it is much more
compute intensive than its spatial counterpart. In addition, the
performance of their design is only evaluated in CPU instead
of embedded devices or FPGAs.

III. FULLY SPECTRAL CNN WITH ADAPTIVE RELU
A. Adaptive Spectral ReLU Design

Rectified Linear Units (ReLU) are components of a network
that map the input into a specific range of its output. ReLU
function introduces non-linearity into the system. In this work,
we consider the widely used ReLU function which is simply
defined as a max operator:

F (x) = max(0, x) (2)

It is straightforward to implement in the spatial domain with
low computation cost. However, in the frequency domain,
implementing such a non-linear function is rather difficult,
since the Fourier transform can only be applied to linear
operations.

As shown in Equation (1), convolution in spatial domain
is equivalent to a point-wise product in the Fourier domain.
Because of the duality property of the Fourier transform, Eq.
(1) also works the other way around, i.e.

x� y = F−1(F (x)~ F (y)) (3)

which means that convolution in spectral domain is equivalent
to point-wise product in spatial domain. By substituting y with
x, we have:

x2 = F−1(F (x)~ F (x)) (4)

Likewise, by convolving x with itself multiple times in the
spectral domain, more non-linear functions (x2, x3, · · · , xn)
can be performed in the spatial domain:

xn = F−1(F (x)~ F (x)~ · · ·~ F (x)) (5)

This allows for the possibility of building non-linear functions
in the spectral domain using the basic building blocks as
functions (x, x2, x3, ...). Noting the linear property of Fourier
transform, we can obtain a non-linear function R(x) which
can be computed in the spectral domain:

R(x) = p0 + p1 · x+ p2 · x2 + · · ·+ pn · xn (6)

This function can be used to approximate the max ReLU by
carefully designing the coefficients pi in each term. However,
multiple convolutions are too computationally intensive, espe-
cially when complex numbers are used in spectral domain.
Since batch normalization is always used before activation
function which downscales the input into a specified boundary,
we only need to approximate ReLU in the central region
[6]. As such, only terms with low order in Equation (6)
are required. Therefore, a quadratic function is used in this
work to approximate the max ReLU, and it only requires one
convolution in the frequency domain:

F (R(x)) = p0 + p1 ·F (x) + p2 · (F (x)~ F (x)) (7)

Its backward propagation can be computed as below:

d

dx
R(x) = p1 + 2 · p2 · x (8)

The coefficient p0 is the DC value of inputs and is set to zero
to have the same behaviour of the original ReLU.

-8 -4 0 4 8

-2

0

2

4

6

8

ReLU
Opt-ReLU
Pro-ReLU

Fig. 1. Approximation of the spatial ReLU function in frequency domain
using optimal and hardware-friendly (proposed) parameters.

In this work, the coefficients p1 and p2 are first obtained
through the non-linear curve fitting tool, such as the Matlab
Curve Fitting Toolbox. They are optimal parameters in terms
of approximation quality. To improve the compute efficiency
for hardware implementation, we propose the use of hardware
friendly parameters in replace of the optimal parameters for
approximation. The idea is to decompose the optimal coeffi-
cients by powers of two. In such a way, multiplications with
p1 or p2 can be performed as shifting and adding, i.e.

p · x = x >> i+ x >> j (9)

Usually, FPGAs have very limited DSP resource to imple-
ment multipliers. For example, an 8-bit complex multiplier
needs two DSPs in Intel’s Arria 10 device [8]. Nevertheless,
operations of shifting and adding can be implemented using
logic elements which is adequate in FPGA device. Figure 1
shows both approximations with optimal or hardware-friendly
parameters to the original ReLU function in frequency domain.

In CNNs, the data range of inputs of ReLU layer can vary
largely across layers or image datasets, as shown in Figure 2.
As a result, a single spectral ReLU with fixed coefficients
for every layer will have variations in approximation quality
and thus lead to low classification accuracy. To address this
problem, we propose to use an adaptive spectral ReLU with
which the coefficients can be adaptively changed across layers
based on the input range for different datasets. The information
of the dynamic range of inputs is obtained from the training
stage which isn’t involved in the classification speed. Then
the hardware friendly coefficients are decided by choosing
the combination of shifting values (i, j) in Eq. (9). This can
be implemented with a multiplexer for a number of shifting
values of the input data, without any additional computational
operations. Therefore, in our design both p1 and p2 are
configured dynamically during runtime in order to adapt to
the image datasets.

B. Spectral Pooling Function

The spectral pooling proposed by Rippel et al. [4] is
used in our design. This function is to crop the frequency
representation by only keeping a sub-matrix of frequencies
that belongs to the lower frequency spectrum. The forward and
backward propagation of this function is shown in Code 1. It

0-2 2 0-1 1 0-4 4

0-6 6 0-3 3 0-8 8

conv0

conv1 cifar-10

mnist

mnist

svhn

svhn

cifar-10

Fig. 2. The range of inputs of ReLU layers in LeNet-5 of different datasets.

has proven to be more beneficial than the spatial-domain max
or average pooling, since it maintains more information and
also allows any arbitrary output dimensionality.

Code 1 Spectral Pooling Function [4]
I Forward propagation:

Input: X ∈ CM×N

Output: Y ∈ CH×W

1: Y ← CROPSPECTRUM(X,H ×W)

I Backward propagation:
Input: ∂R

∂Y
∈ CH×W

Output: ∂R

∂X
∈ CM×N

1:
∂R

∂X
← PADSPECTRUM(

∂R

∂Y
,M ×N)

C. Fully Spectral Network Design & Optimization

The initial LeNet-5 CNN architecture [9] consists of 7
layers, i.e. 3 Conv layers, 2 pooling layers and 2 FC layers.
To improve the performance of classification accuracy, batch
normalization (BN) and ReLU activation are applied to each
convolutional layer. FC layer is memory bound and not
suitable for spectral implementation as its input size is only
1× 1. For this reason, the last two FC layers are merged into
one layer with increased filters.

To save computational resources, batch normalization can
be merged with the preceding convolutional layer. Let x be
the data within the network to be normalized. BN computes
x as follows:

x̂ = γ
x− µ√
σ2 + ε

+ β (10)

where µ and σ2 are the mean and variance computed over a
batch, ε is a small constant included for numerical stability, γ
is the scaling factor and β the shift factor. Let Wconv and bconv
denote the weight matrix and bias of the convolutional layer
that precedes batch normalization. We merge these two layers
by a single convolutional layer with the following parameters:

f = BN(Wconv ·X + bconv) =Wnew ·X + bnew

Wnew =
γWconv√
σ2 + ε

, bnew = γ
bconv − µ√
σ2 + ε

+ β
(11)

32×32×1

14×14×3214×14×1

28×28×32

5×5×32

28×28×32 10×10×64

5×5×64 5×5×64

10×10×64

1×1×128

1×1×128

1×1×128

1×1×128

·
·

·

·
·

·

128 10

Original Spatial Size (H×W×C)

Valid Spectrum (H×W×C)

Merged Conv + BN + MaxPool

Spectral ReLU

Conv 5×5 IFFT

FC

Valid
Spectrum

Fig. 3. Proposed fully spectral CNN architecture with model reduction.

Model Reduction: For spatial CNN, ReLU layer is per-
formed right after the preceding convolutional layer, then
followed by the pooling layer. Notice that the spectral pooling
presented in Code 1 is merely cropping the sub-matrix of
higher frequency spectrum. When executed in the order of
CONV → RELU → MAXPOOL, many operations performed
by the spectral ReLU layer are being wasted, i.e. cropped in
the succeeding pooling layer, especially considering that now
the spectral ReLU requires a convolution operation which has
the complexity of O(n2) in complex numbers. This means
a large number of computations are wasted to generate the
unnecessary data which are going to be filtered out in the
succeeding pooling layer.

To overcome this issue, we propose to apply the pooling
layer before ReLU in spectral CNN model, i.e. in the order of
CONV → MAXPOOL → RELU. We prove that this order has
identical results as the spatial order. The following formula
holds for any non-decreasing function f :

max(f(x1), · · · , f(xn)) = f(max(x1, · · · , xn)) (12)

Remembering that the proposed spectral ReLU is an element-
wise operation and a non-decreasing function, we have:

MAXPOOL(RELU(X)) = RELU(MAXPOOL(X)) (13)

for any input X . Note that it does not work for average
pooling, and it has negligible impact on the computation
complexity of spatial CNNs. Nevertheless, in spectral domain,
by placing ReLU after pooling, we can avoid the unnecessary
Conv and ReLU operations which are performed to produce
useless data, i.e. not used by the succeeding layer.

Besides, spectral pooling can be merged into Conv layers
since it doesn’t perform any mathematical operation in spectral
domain. In this way, the ReLU layer only receives the cropped
feature map which has a reduced size compared to the spatial
size. For example, in MNIST dataset, the first ReLU layer has
a valid input size of 14× 14 and a valid output size of 5× 5
(Figure 3), while the input and output size of spatial model are
both 28×28. That means around 125× computation reduction1

for the first spectral ReLU layer.
With the above optimizations, the proposed spectral CNN

architecture is shown in Figure 3. To get an impression on the
benefit of our model reduction method, the original spatial size
and the valid spectral size of MNIST in each computational
layer are compared in the figure. The valid spectrum of the

1(282 × 282)/((142 × 52)

input image has been reduced from 32× 32 to 14× 14 which
focus on the lower frequency representations. The reason to
do that is that the power spectrum is heavily concentrated in
the lower frequencies while higher frequencies tend to encode
noise. As such, the elimination of higher frequencies has only
minimal damage to the information in the input image and can
even be viewed as a type of denoising [4].

Training and Inference: Since this work is focused on the
inference stage, training is performed offline. To keep most
of the backward propagation algorithm unchanged, training is
mainly run in spatial domain, with the spatial ReLU suing
forward propagation (Eq. 6) and backward propagation (Eq.
8). The only layer to run in spectral during training is spectral
pooling, since it doesn’t have a spatial counterpart. During
inference, all computational layers except FC are executed in
spectral domain with hardware acceleration, in order to achieve
a high classification speed. FC layer is to run with spatial
implementation in the host CPU. In the real-time inference
stage, there are one domain conversion from spatial to spectral,
i.e. FFTs of the input image, and one from spectral to spatial,
which is the IFFT that succeeds the last Conv layer to generate
the input of FC, as shown in Figure 3. Fourier transforms
for the weight kernels of Conv can be prepared in advance
and computed offline. As such, it eliminates the computation
overhead of these repeated domain transformations, and also
enables the simplicity and efficiency of the FFT-base Conv
block in hardware without the need to consider the FFT size,
compared to previous work of [2], [3].

IV. ACCELERATOR ARCHITECTURE DESIGN

A. Spectral Conv Module

The hardware architecture of the Spectral Conv module is
presented in Figure 4(a). Since the spectral Conv only requires
point-wise product, the implementation is quite simple which
consists of a Multiply-and-Accumulate (MAC) unit for product
and accumulation along channel dimension. The MAC unit
needs to support complex numbers. The spectral Conv module
also makes effective use of data parallelism by implementing
an array of MAC units, in order to improve the throughput.

B. Adaptive ReLU Module

The architecture of the Spectral ReLU to compute Eq.
(7) is presented in Figure 4(b). It consists of a dot-product
block to perform convolution first. Then shifting and adding
is followed to perform the multiplication with the coefficients
for each term in Eq. (7). The coefficients are configured

Input

...

Kernel

MAC

Output

(a) Spectral Conv (b) Spectral ReLU

...

Dot-product

...

× p2

× p1 × p1

DC value

. . .

x xx

()R x

Shift

Shift

Shift

Shift

Shift

Shift

. . .

. . .

. . .

. . .

Input:

M
U

X

M
U

X

M
U

X

Fig. 4. Diagram of (a) spectral Conv and (b) spectral ReLU.

adaptively with controlled signals to the multiplexer to select
the corresponding combination of the shifting values of the
input data. This module also makes use of data parallelism to
allow parallel processing.

C. Overall Architecture
Figure 5 shows the overall system design. Owning to the

proposed fully spectral CNN, Fourier transforms are only
required for input image and weight kernels. The transforms
of weights are prepared and computed off-line, then stored
in DDR memories in advance, to be cached in on-chip
buffers through DMA during the execution of inference. This
saves large computation cost and memory transfer overhead
compared to the FFT-based approach in [2], [3]. The host CPU
is responsible for FFT of the input image, IFFT of the results
of the last Conv layer and the fully-connected layer. These
light-weight operations are well suited for CPU and can be
overlapped with the FPGA’s execution time. The hardware
accelerator on FPGA mainly consists of the spectral Conv
and ReLU modules. Both computation modules receive inputs
from on-chip buffers and their outputs are stored back to the
buffers. Double buffer technique [10] with a flow control from
the host is used to support inter-layer and intra-layer pipeline
in order to keep both modules working concurrently, which
overlaps the computation time between modules as much as
possible and thus improves the compute efficiency.

Host CPU

(FFT, IFFT, FC)

DDR
Memory

Interconnect

DMA

Spectral
Conv

Shared On-chip
Buffers

Spectral
ReLU

Flow Control

FPGASpectral Weights

Spectral Input

Fig. 5. The overall system architecture.

D. DSP Optimization for INT8 Complex Multiplier
The variable-precision digital signal processing (DSP) block

in Intel Arria 10 devices includes two 18×19 multipliers with
variable arithmetic precision support. Without any optimiza-
tion, one complex multiplier with 8-bit fixed point (INT8)
precision requires two DSP blocks [8]. One is responsible for
the imaginary part and the other for the real part:

(a+jb)×(c+jd) = [(a×c)−(b×d)]+j[(a×d)+(b×c)] (14)

ah[1:0] al[5:0]

bh[1:0] bl[5:0]
×

=

a[7:0]

b[7:0]

0 … 0

+

+

+

al×bl[11:0]

0 … 0 0 … 0

0 … 0 0 … 0

0 … 0

ah×bl[7:0]

al×bh[7:0]

ah×bh[3:0]

Fig. 6. The INT8 multiplication is decomposed into one 6-bit multiplication
and other simple operations.

a[5:0] b[5:0]
X

=

Port A

Port B

0 … 0

c[5:0] d[5:0]0 … 0

a×c[11:0] b×d[11:0]

a×c[11:0]

b×d[11:0]

Fig. 7. The 18×19 multiplier in Arria 10 DSP block is optimized to
implement two 6×6 multipliers, in order to improve the performance of INT8
multiplication.

In this work, we propose an INT8 optimization method,
targeted at Intel’s DSP block, which efficiently maps two 8-bit
multiply into one 18×19 multiplier, i.e. 2 : 1 DSP multiplier
to INT8 MAC ratio. Since the multiplier’s input width is only
18 bits, we first separate the inputs (a[7 : 0]) into two parts: the
higher 2-bit (ah = a[7 : 6]) and the lower 6-bit (al = a[5 : 0]).
Then, the multiply a×b is decomposed into one 6-bit multiply,
three multiply with very small input bits, and one addition of
the four multiply results, as shown in Figure 6. Now we can
pack 6-bit inputs a and b in the higher and lower 6-bit of the
multiplier’s 18-bit input port A, c and d in port B in the same
manner, as shown in Figure 7. The 36-bit product result has
a×c in higher 12-bit and b×d in lower 12-bit. As a result, two
multiplication results can be separated from the 36-bit product,
and the other three simple operations required to generate the
8-bit multiply result are implemented with logic resource.

V. EVALUATION AND EXPERIMENTS

A. Benchmark Datasets

To verify and compare the accuracy and performance of
the adaptive ReLU function to the fixed ReLU design, the
proposed spectral CNN is applied to four image datasets: (1)
MNIST, the handwritten digits; (2) SVHN, the street view
house numbers; (3) AT&T, grey-scale face images and (4)
CIFAR-10, color images of 10 objects. All datasets are trained
using the proposed spectral CNN topology shown in Figure 3.

B. Implementation Detail

Our accelerator was implemented on Intel’s Arria 10 SoC
which contains an SX160 FPGA (20nm), 1.5 GHz dual-core
ARM-based CPU and 2GB DDR4 memory. The CPU was
responsible for one FFT, IFFT and FC operations. All other
layers are run in the FPGA device. The hardware system was
developed using Verilog HDL, and synthesized and placed-
and-routed with Quartus Prime Pro 18.1. The designed accel-
erator achieved a working clock rate of 250 MHz.

C. Resource Utilization

Table I shows the resource utilization of our accelerator
evaluated on the Arria 10 SX160 device. With the proposed

DSP optimization technique, we achieve a relatively high
resource efficiency and compute density, as such the inference
speed is largely improved with parallel processing.

TABLE I
RESOURCE UTILIZATION OF THE PROPOSED ACCELERATOR ON SX160

Resources ALMs Registers DSPs M20K
Used 43,466 95,834 140 360
Total 61,510 246,040 156 440

Utilization 70.7% 40% 90% 81.8%

D. Accuracy Comparison

We trained four versions of CNNs for comparison: the first
one is the spatial CNN with original ReLU function, the
other three are the spectral CNNs introduced above using
the spectral pooling and ReLU with the fixed parameters,
fixed and optimal parameters, adaptive and hardware-friendly
parameters respectively. Table II shows the comparison of the
classification accuracy of these designs on the benchmarks.

TABLE II
CLASSIFICATION ACCURACY (%) COMPARISON OF SPECTRAL CNNS.

Spatial Fixed-ReLU Opt-ReLU Adaptive-ReLU diff.
MNIST 99.6 99.12 99 99.72 +0.6
SVHN 92.07 90.13 90.25 91.8 +1.67
AT&T 95 93.7 93.65 94.92 +1.22

CIFAR-10 79.4 75.2 75.41 78.56 +3.36

With the adaptive ReLU, the spectral CNNs achieve compa-
rable accuracy to that of the original spatial version (Spatial),
within only 0.8% accuracy loss across the datasets. However,
the fixed ReLU design with either optimal or hardware friendly
parameters leads to 4% accuracy loss on CIFAR-10. The
accuracy difference of the adaptive and fixed ReLU designs is
also listed in Table II, which confirms that the adaptive ReLU
activation largely improves the accuracy of spectral CNNs.

E. Performance Comparison

The proposed hardware accelerator is implemented on In-
tel’s Arria 10 device, together with two existing state-of-the-
art implementations, i.e. spatial design and FFT-based design
on the same device for performance comparison. The spatial
design is built from our prior work in [10], which is used as
a baseline in our experiment. The FFT-based hardware design
is based on the work of [2].

Table III shows the performance of our accelerator against
the other two methods (batch size = 32). The proposed design
achieves 5.96× ∼ 9.97× speed improvement compared to the
baseline and 4.0× ∼ 5.69× speedup compared to FFT-based
design, while the FFT-based method only achieves around
1.5× speedup against the baseline. The results confirm that
the computation overhead of Fourier transforms largely limits
the benefit of computing Conv in frequency domain, while
our method allows running CNN inference entirely in the
frequency domain which avoids domain transforms. Besides,
the adaptive design has the same speed as the fixed ReLU

design, since it doesn’t introduce any compute overhead when
the ReLU is adaptively changed at runtime configuration.

TABLE III
CLASSIFICATION SPEED OF THE PROPOSED ACCELERATOR COMPARED TO

THE STATE-OF-THE-ART SPATIAL AND FFT-BASED ACCELERATORS.

Methods Datasets time (ms) Speedup

Spatial
MNIST/SVHN 2.70

-AT&T 7.38
CIFAR-10 3.10

FFT-based
MNIST/SVHN 1.87 1.45×

AT&T 4.21 1.75×
CIFAR-10 2.07 1.50×

Fully spectral
MNIST/SVHN 0.45 6.0×

AT&T 0.74 9.97×
CIFAR-10 0.52 5.96×

VI. CONCLUSION

This paper proposes a fully spectral CNN approach to
remove the repeated Fourier transforms when accelerating con-
volutions in frequency domain. This is achieved by proposing
an adaptive and hardware-efficient spectral ReLU to approxi-
mate its spatial counterpart while keeping non-linearity in the
network. Model reduction is performed in spectral domain by
fusing and merging layers. The proposed hardware accelerator
with DSP optimization shows significant speedups compared
to the spatial and FFT-based implementations on the same
device. Future work will apply the fully spectral approach to
other CNNs, such as 3D CNNs for more complex tasks.

ACKNOWLEDGEMENT

The support of the National Natural Science Foundation
of China (No. 62001165), United Kingdom EPSRC (grant
numbers EP/L016796/1, EP/N031768/1, EP/P010040/1 and
EP/L00058X/1), Corerain, Maxeler, Intel and Xilinx is grate-
fully acknowledged.

REFERENCES

[1] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through FFTs,” in ICLR, 2014.

[2] C. Zhang and V. Prasanna, “Frequency domain acceleration of con-
volutional neural networks on CPU-FPGA shared memory system,” in
FPGA, 2017, pp. 35–44.

[3] H. Zeng et al., “A framework for generating high throughput CNN
implementations on FPGAs,” in FPGA, 2018, pp. 117–126.

[4] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for
convolutional neural networks,” in Advances in neural information
processing systems, 2015, pp. 2449–2457.

[5] M. Francesca, A. Hughes, and D. Gregg, “Spectral convolution
networks,” 2016. [Online]. Available: http://arxiv.org/abs/1611.05378

[6] J. H. Ko, B. Mudassar, T. Na, and S. Mukhopadhyay, “Design of an
energy-efficient accelerator for training of convolutional neural networks
using frequency-domain computation,” in DAC, 2017, pp. 1–6.

[7] S. O. Ayat et al., “Spectral-based convolutional neural network without
multiple spatial-frequency domain switchings,” Neurocomputing, vol.
364, pp. 152–167, 2019.

[8] Intelr, “Intel Stratix 10 Variable Precision DSP Blocks User Guide,”
2020. [Online]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/kly1436148709581.html

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[10] S. Liu and W. Luk, “Towards an Efficient Accelerator for DNN-Based
Remote Sensing Image Segmentation on FPGAs,” in FPL, 2019, pp.
187–193.

http://arxiv.org/abs/1611.05378
https://www.intel.com/content/www/us/en/programmable/documentation/kly1436148709581.html
https://www.intel.com/content/www/us/en/programmable/documentation/kly1436148709581.html

	Introduction
	Background and Related Work
	CNNs in Frequency Domain
	Related Work

	Fully Spectral CNN with Adaptive ReLU
	Adaptive Spectral ReLU Design
	Spectral Pooling Function
	Fully Spectral Network Design & Optimization

	Accelerator Architecture Design
	Spectral Conv Module
	Adaptive ReLU Module
	Overall Architecture
	DSP Optimization for INT8 Complex Multiplier

	Evaluation and Experiments
	Benchmark Datasets
	Implementation Detail
	Resource Utilization
	Accuracy Comparison
	Performance Comparison

	Conclusion
	References

