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Abstract
The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and ongoing scientific

guidance in response to this recently emerged human infectious disease. Fitting mathematical models of infectious disease

transmission to the available epidemiological data provide a key statistical tool for understanding the many quantities of

interest that are not explicit in the underlying epidemiological data streams. Of these, the effective reproduction number,

R, has taken on special significance in terms of the general understanding of whether the epidemic is under control

(R < 1). Unfortunately, none of the epidemiological data streams are designed for modelling, hence assimilating informa-

tion from multiple (often changing) sources of data is a major challenge that is particularly stark in novel disease out-

breaks. Here, focusing on the dynamics of the first wave (March–June 2020), we present in some detail the inference

scheme employed for calibrating the Warwick COVID-19 model to the available public health data streams, which

span hospitalisations, critical care occupancy, mortality and serological testing. We then perform computational simula-

tions, making use of the acquired parameter posterior distributions, to assess how the accuracy of short-term predictions

varied over the time course of the outbreak. To conclude, we compare how refinements to data streams and model

structure impact estimates of epidemiological measures, including the estimated growth rate and daily incidence.
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1 Introduction
In late 2019, accounts emerged from Wuhan city in China of a virus of unknown origin that was leading to a cluster of
pneumonia cases.1 The virus was identified as a novel strain of coronavirus on 7 January 2020,2 subsequently named
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the respiratory syndrome known as
COVID-19. The outbreak has since developed into a global pandemic. As of 3 August 2020, the number of confirmed
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COVID-19 cases was approaching 18 million, with more than 685,000 deaths occurring worldwide.3 Faced with these
threats, there is a need for robust predictive models that can help policy makers by quantifying the impact of a range of
potential responses. However, as is often stated, models are only as good as the data that underpin them; it is therefore
important to examine, in some detail, the parameter inference methods and agreement between model predictions and data.

In the UK, the first cases of COVID-19 were reported on 31 January 2020 in the city of York. Cases continued to be reported
sporadically throughout February and by the end of the month, guidance was issued stating that travellers from the high-risk
epidemic hotspots of Hubei province in China, Iran and South Korea should self-isolate upon arrival in the UK. By
mid-March, as the number of cases began to rise, there was advice against all non-essential travel and, over the coming
days, several social-distancing measures were introduced including the closing of schools, non-essential shops, pubs and restau-
rants. This culminated in the introduction of a UK lockdown, announced on the evening of 23 March 2020, whereby the public
were instructed to remain at home with four exceptions: shopping for essentials; any medical emergency; for one form of exer-
cise per day; and to travel to work if absolutely necessary. By mid-April 2020, these stringent mitigation strategies began to have
an effect, as the number of confirmed cases and deaths as a result of the disease began to decline. As the number of daily con-
firmed cases continued to decline during April, May and June, measures to ease lockdown restrictions began, with the reopening
of some non-essential businesses and allowing small groups of individuals from different households to meet up outdoors, whilst
maintaining social distancing. This was followed by gradually reopening primary schools in England from 1 June 2020 and all
non-essential retail outlets from 15 June 2020. Predictive models for the UK are therefore faced with a changing set of beha-
viours against which historic data must be judged and an uncertain future of potential additional relaxations.

Throughout, a significant factor in the decision-making process was the value of the effective reproduction number, R, of the
epidemic. The effective reproduction number is a time-varying measure of the average number of secondary cases per infectious
case in a population (made up of both susceptible and non-susceptible hosts) and has been a quantity estimated by several
modelling groups that provided advice through the Scientific Pandemic Influenza Group on Modelling Operational subgroup
(SPI-M-O).4 Note, the effective reproduction number differs from the basic reproduction number, R0 (the average number of sec-
ondary infections produced by a typical case of an infection in a population where everyone is susceptible). The Warwick
COVID-19 model presented here provided one source of R estimates through SPI-M-O. When R is estimated to be significantly
below one, such that the epidemic is exponentially declining, then there is scope for some relaxation of intervention measures.
However, as R approaches one, further relaxation of control may lead to cases starting to rise again. It is therefore crucial that
models continue to be fitted to the latest epidemiological data for them to provide the most robust information regarding the
impact of any relaxation policy and the effect upon the value of R. It is crucial to note, however, that there will necessarily be
a delay between any change in behaviour, the epidemiological impact and the ability of a statistical method to detect this change.

The initial understanding of key epidemiological characteristics for a newly emergent infectious disease is, by its very
nature of being novel, extremely limited and often biased towards early severe cases. Developing models of infectious
disease dynamics enables us to challenge and improve our mechanistic understanding of the underlying epidemiological
processes based on a variety of data sources. One way such insights can be garnered is through model fitting/parameter
inference, the process of estimating the parameters of the mathematical model from data. The task of fitting a model to
data is often challenging, partly due to the necessary complexity of the model in use, but also because of data limitations
and the need to assimilate information from multiple sources of data.5

Throughout this work, the process of model fitting is performed under a Bayesian paradigm, where knowledge of the
parameters are modelled through random variables and have joint probability distributions.6 In full, the posterior distribu-
tion of the parameters θ given the data, P(θ|D), describes how our prior beliefs in the distributional properties of the para-
meters, P(θ), have been updated as a consequence of the information in the data, which is captured through the likelihood
function (the probability distribution of the data given the model and parameters, L(D|θ)). Through applying Bayes’
theorem, the relationship between the posterior and the likelihood is encapsulated by

P(θ|D) ∝ L(D|θ)P(θ)
Whilst we would ideally seek an analytical expression for the target posterior distribution, in many cases, the solution for
the posterior distribution is not mathematically tractable. As a consequence, we revert to deriving empirical estimates of the
desired probability distribution. In particular, we use Markov Chain Monte Carlo (MCMC) schemes to find the posterior
probability distribution of our parameter set given the data and our prior beliefs. MCMCmethods construct a Markov chain
that converges to the desired posterior parameter distribution at steady state.7 Simulating this Markov chain thus allows us
to draw sets of parameters from the joint posterior distribution.

Adopting a Bayesian approach to parameter inference means parameter uncertainty may then be propagated if using the
model to make projections. This affords models with mechanistic aspects, through computational simulation, the capability
of providing an estimated range of predicted possibilities given the evidence presently available. Thus, models can demonstrate
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important principles about outbreaks,8 with examples during the present pandemic including analyses of the effect of non-
pharmaceutical interventions (NPIs) on curbing the outbreak of COVID-19 in the UK.9.

In this paper, we present the inference scheme, and its subsequent refinements, employed for calibrating the Warwick
SARS-CoV-2 transmission and COVID-19 disease model10 to the available public health data streams and estimating key
epidemiological quantities such as R during the first wave of SARS-CoV-2 infection in the UK (March–June 2020). In
particular, it is worth stressing that throughout we present our approach as it evolved during the outbreak, rather than
the optimal methods and assumptions that would be made with hindsight. In addition, the paper was initially composed
in July–August 2020 and we have largely retained the contextual information as originally written. In other words, we
treat the manuscript as a record of the state of our modelling at that time.

We begin by describing our mechanistic transmission model for SARS-CoV-2 in Section 2, detailing in Section 3 how
the effects of social distancing are incorporated within the model framework. To fit the model to data streams pertaining to
critical care, such as hospital admissions and bed occupancy, Section 4 expresses how epidemiological outcomes were
mapped onto these quantities. In Section 5, we outline how these components are incorporated into the likelihood function
and the adopted MCMC scheme. The estimated parameters are then used to measure epidemiological measures of interest,
such as the growth rate (r), with the approach detailed in Section 6.

The closing sections draw attention to how model frameworks may evolve during a disease outbreak as more data streams
become available and we collectively gain a better understanding of the epidemiology (Section 7). We explore how key epidemio-
logical quantities, in particular the reproduction number R and the growth rate r, depend on the data sources used to underpin the
dynamics (Section 8). To finish, we outline the fits and model-generated estimates using data up to mid-June 2020 (Section 9).

2 Model description
Here we present the University ofWarwick SEIR-type compartmental age-structured model, developed to simulate the spread of
SARS-CoV-2 within regions of the UK. Matched to a variety of epidemiological data, the model operates and is fitted to data
from the seven NHS regions in England (East of England, London,Midlands, North East and Yorkshire, NorthWest, South East
and SouthWest) and the three devolved nations (Northern Ireland, Scotland andWales). The model incorporates multiple layers
of heterogeneity, through partitioning the population into five-year age classes, tracking symptomatic and asymptomatic trans-
mission, accounting for household saturation of transmission and household quarantining.

The population is stratified into multiple compartments with respect to SARS-CoV-2 infection status (Figure 1): individuals
may be susceptible (S), exposed (E), infectious with detectable infection (symptomatic D), or have undetectable infection
(asymptomatic, U ). Undetectable infections are assumed to transmit infection at a reduced rate given by τ. We let superscripts

Figure 1. Model schematic of infection states and transitions. We stratified the population into susceptible, exposed, detectable

infectious, undetectable infectious, and removed states. Solid lines correspond to disease state transitions, with dashed lines

representing a mapping from detectable cases to severe clinical cases that require hospital treatment, critical care (intensive care unit

(ICU)), or result in death. We stratified the population into five year age brackets. See Tables 1 and 2 for a listing of model parameters.

Note, we have not included quarantining or household infection status in this depiction of the system.
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denote the first infection in a household (F), a subsequent infection from a detectable/symptomatic household member (SD) and
a subsequent infection from an asymptomatic household member (SU ). A fraction (H) of the first detected cases in households
are quarantined (QF), as are all their subsequent household infections (QS) –we ignore the impact of household quarantining on
the susceptible population as the number in quarantine is assumed small compared with the rest of the population. The recovered
class is not explicitly modelled, although it may become important once we have a better understanding of the duration of
immunity. Natural demography and disease-induced mortality are ignored in the formulation of epidemiological dynamics.

The model is deterministic in structure, based on a large set of coupled ordinary differential equations (ODEs). The
continuous results from these ODEs are never going to precisely match the discrete integer-valued data. We therefore
assume that the observed data are an imprecise measure of the modelled quantities and represent this through a distribution
(e.g. Poisson or Binomial) centred around the solution of the ODEs.

2.1 Model equations
We provide a description of the model parameters in Tables 1 and 2. The full system of ODEs for the model are given by:

dSa
dt

= − λFa + λSDa + λSUa + λQa
( ) Sa

Na
,

dEF
1,a

dt
= λFa

Sa
Na

−MεEF
1,a,

dESD
1,a

dt
= λSDa

Sa
Na

−MεESD
1,a,

dESU
1,a

dt
= λSUa

Sa
Na

−MεESU
1,a ,

dEQ
1,a

dt
= λQa S −MεEQ

1,a,

dEX
m,a

dt
= MεEX

m−1,a −MεEm,a X ∈ {F, SD, SU , Q}

dDF
a

dt
= da(1− H)MεEF

M ,a − γDF
a ,

dDSD
a

dt
= daMεESD

M ,a − γDSD
a ,

dDSU
a

dt
= da(1− H)MεESU

M ,a − γDSU
a ,

dDQF
a

dt
= daHMεEF

M ,a − γDQF
a ,

dDQS
a

dt
= daHMεESU

M ,a + daMεEQ
M ,a − γDQS

a ,

dUF
a

dt
= (1− da)MεEF

M ,a − γUF
a ,

dUS
a

dt
= (1− da)Mε(ESD

M ,a + ESU
M ,a)− γUS

a ,

dUQ
a

dt
= (1− da)MεEQ

M ,a − γUQ
a ,

where a refers to each of the 21 5-year age groups (e.g. 0–4, 5–9, etc.). We have included M latent classes for individuals
infected with the virus but not yet infectious. The rate of progression from each latent class was ϵM , with the length of the
total latent period being ϵ−1; in a stochastic framework, this would be equivalent to the time in the latent class being an
Erlang distribution with shape parameter M and rate parameter ϵM . Throughout we have taken M = 3. The rate of
leaving the infectious class is γ; equivalent to an exponential distributed infectious period of length γ−1 in a stochastic
framework.
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The forces of infection govern the non-linear transmission of infection. We partition the infectious pressure exerted on a
given age group a, λa, based on the category of the infected case created: transmission in non-household settings generating
first infected in households (λFa ), subsequent household infections caused by non-quarantined first infected in a household
who are detectable/symptomatic (λSDa ), subsequent household infections caused by non-quarantined first infected in a
household who are asymptomatic (λSUa ), and subsequent household infections caused by quarantined first infected (λQa ).
The collection of the force of infection terms obey:

λFa = σa
∑
b

DF
b + DSD

b + DSU
b + τ(UF

b + US
b )

( )
βNba

λSDa = σa
∑
b

DF
b β

H
ba

λSUa = σaτ
∑
b

UF
b β

H
ba

λQa = σa
∑
b

DQF
b βHba

where βHba represents household transmission (with the subscript ba corresponding to transmission from age group b
against age group a) and βNba = βSba + βWba + βOba represents all other transmission locations, comprising school-based

transmission (βSba), work-place transmission (βWba) and transmission in all other locations (βOba). We took the setting
specific age structured contact matrices from Prem et al.,11 although other sources such as POLYMOD12 could be
used, with the modification of these contact patterns to model social distancing measures explained in Section
3. σa corresponds to the age-dependent susceptibility of individuals to infection, da the age-dependent probability
of displaying symptoms (and hence being detected), and τ represents reduced transmission of infection by undetect-
able individuals compared to detectable infections.

2.2 Amendments to within-household transmission
We wanted our model to be able to capture both individual-level quarantining and isolation of households with
identified cases. In a standard ODE framework, the incorporation of the household structure increases the dimension-
ality of the system. Combined with the inclusion of other heterogeneities, such as age structure, the result can be a
system whose dimensionality results in model calibration and simulation only being achievable at a large computa-
tional expense.13,14 Therefore, we instead make a number of approximations in our model to achieve a comparable
effect.

We make the simplification that all within household transmission originates from the first infected individual within the
household (denoted with a superscript F or QF if they quarantine). This allows us to assume that secondary infections
within a household in isolation (denoted with a superscript QS or Q) play no further role in the transmission dynamics.
This means that high levels of household isolation can drive the epidemic extinct, as only the first individual infected
in each household can generate infections outside the household. This methodology also helps to capture to some

Table 1. Description of key model parameters not fitted in the Markov Chain Monte Carlo (MCMC) and their source.

Parameter Description Source

β Age-dependent transmission, split into household, school, work and

other

Matrices from Prem et al. 11

γ Recovery rate, changes with τ, the relative level of transmission from

undetected asymptomatics compared to detected symptomatics

Fitted from early age-stratified UK case data to

match growth rate and R0
da Age-dependent probability of displaying symptoms (and hence being

detected), changes with α and τ
Fitted from early age-stratified UK case data to

capture the age profile of infection.

σa Age-dependent susceptibility, changes with α and τ Fitted from early age-stratified UK case data to

capture the age profile of infection.

HR Household quarantine proportion (set equal to 0.8ϕR
t ) Can be varied according to scenario

NR
a Population size of a given age within each region ONS
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degree household depletion of susceptibles (or saturation of infection), as secondary infections in the household are not
able to generate additional household infections.

Given the novelty of the additional household structure that is included in this model, we clarify in more detail here the
action of this formulation. We give a simpler set of equations (based on a standard SIRmodel) that contains a similar house-
hold structure; in particular, we take the standard SIR model and split the infected class into those first infected within a
household (IF ) and subsequent infections (IS):

dS

dt
= −βHSIF − βOS(IF + IS)

dIF
dt

= βOS(IF + IS)− γIF

dIS
dt

= βHSIF − γIS

dR

dt
= γ(IF + IS)

where the transmission rate is also split into within household transmission βH and all other transmissions βO (i.e.
out-of-household transmission). Again, we make the assumption that only the first infection in any household generates
infections within the household. We compare this to the SIR model without this additional structure:

dS

dt
= −β̂HSI − β̂OSI

dI

dt
= β̂HSI + β̂OSI − γI

dR

dt
= γI

where we retain the split in transmission type.
The early growth rate of the two models are r̂ = β̂H + β̂O − γ for the simple SIR model, and r = 1

2 [β
O − 2γ +���������������

βO
2 + 4βOβH

√
] for the household structured version. From this simple comparison, it is clear that for the simple

model the growth rate can remain positive even when control measures substantially reduce transmission outside the
home (̂βO gets reduced), whereas in contrast for the structured version there is always a threshold level of transmission
outside the household (βOc = γ2/(βH + γ)) that is needed to maintain positive growth.

Table 2. Description of key model parameters fitted in the MCMC.

Parameter

Affects

transmission? Description Prior

ε Yes Rate of progression to infectious disease (1/ε is the duration in the exposed class). U(0.1, 0.3)
α Yes Scales the degree to which age-structured heterogeneity is due to age-dependent

probability of symptoms (α = 0) or age-dependent susceptibility (α = 1).

U(0.0, 1.0)

τ Yes Relative level of transmission from asymptomatic compared to symptomatic infection. U(0.0, 0.5)
ϕR
t Yes Relative strength of the regional lockdown restrictions (and the adherence of the

population to these restrictions) at different time points; scales the transmission

matrices. Can be time-varying and also be varied according to scenario.

U(0.0, 1.0)

σR Yes Regional modifier of susceptibility to account for differences in level of social mixing. U(0.25, 4.0)
ER0 Yes Initial regional level of infection, rescaled from early age-distribution of cases. U(1.0, 30.0)
ST No Long-term sensitivity of the serological test. U(0.8, 1.0)
DR
S No Regional scaling for the mortality probability PH�Death

a . U(0.5, 2.0)
HR
S No Regional scaling for the hospitalisation probability PD�H

a . U(0.5, 2.0)
IRS No Regional scaling for the ICU probability PD�I

a . U(0.5, 2.0)
HR
f No Regional stretch factor for the hospitalisation time distribution DD�H

q . U(0.5, 2.0)
IRf No Regional stretch factor for the ICU admittance time distribution DD�I

q . U(0.5, 2.0)
Lag No Regional data reporting lag. U(0, 5)

MCMC: Markov Chain Monte Carlo; ICU: intensive care unit.
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For both the simple household-structured model given here and the full COVID-19 model, the inclusion of additional
household structure reduces the amount of within-household transmission compared to a model without household struc-
ture – as only the initial infection in each household (IF ) generates secondary within-household cases. It is therefore neces-
sary to rescale the household transmission rate βH to obtain the appropriate average within-household attack rate. For the
full COVID-19 model, we found that a simple multiplicative scaling to the household transmission (βH → zβH , z ≈ 1.3)
generated a comparable match between the new model and a model without this household structure – even when the age
structure was included. We therefore included this scaling within the full model.

2.3 Key model parameters
As with any model of this complexity, there are multiple parameters that determine the dynamics. Some of these are global para-
meters and apply to all geographical regions, with others used to capture the regional dynamics. Parameters that vary between
regions are labelled with a superscript R defining the region of interest; other parameters are age-dependent, in which case we use
subscript a to refer to the appropriate age group. We separate two types of parameters that are required by our model formation.
Those parameters in Table 1 are generally from external sources and take fixed values (such as β orNR

a ), or are a fixed scaling of
estimated values (such as γ or HR). In contrast, a number of other parameters are inferred using the MCMC process (Table 2),
some of which directly impact transmission and therefore determine the infection dynamics while others control the relationship
between the infection dynamics and epidemiological observable quantities (such as the expected number of hospitalisations).

2.4 Relationship between age-dependent susceptibility and detectability
We interlink age-dependent susceptibility, σa, and detectability, da, by a quantity Qa. Qa can be viewed as the scaling
between force of infection and symptomatic infection.

Further, in a population that may be divided into a finite number of discrete categories according to a specific trait or traits
(symptomatic and asymptomatic infection, for example), a next-generation approach can be used to relate the numbers of newly
infected individuals in the various categories in consecutive generations.15 Applying the next-generation approach to the symp-
tomatic and asymptomatic infection states in our transmission model, the early dynamics would be specified by

R0Da = daσaβ
N
ba Da + τUa( )/γ, R0Ua = (1− da)σaβ

N
ba Da + τUa( )/γ

where Da measures those with detectable infections, which mirrors the early recorded age distribution of symptomatic cases.
Explicitly, we let da = 1

κQ
(1−α)
a and σa = 1

k Q
α
a . As a consequence, Qa = κkdaσa; where the parameters κ and k are determined

such that the oldest age groups have a 90% probability of being symptomatic (d>90 = 0.90) and such that the basic reproductive
ratio from these calculations gives R0 = 2.7.

Throughout much of our work with this model, the values of α and τ are key in determining behaviour – in particular the role
of school children in transmission.16 We argue that a low τ and a low α are the only combination that is consistent with the
growing body of data suggesting that levels of seroprevalence show only moderate variation across age-ranges,17 yet children
do not appear to play a major role in transmission.18,19 To some extent, the separation into symptomatic (D) and asymptomatic
(U ) within the model is somewhat artificial as there is a wide spectrum of symptom severity that can be experienced.

2.5 Regional heterogeneity in the dynamics
Throughout the current epidemic, there has been noticeable heterogeneity between the different regions of England and
between the devolved nations. In particular, London is observed to have a large proportion of early cases and a relatively
steeper decline in the subsequent lockdown than the other regions and the devolved nations. We capture this heterogeneity
in our model through three estimated regional parameters that act on the heterogeneous population pyramid of each region.

Firstly, the initial level of infection in the region is re-scaled from the early age distribution of cases, with the regional
scaling factor ER

0 estimated by the MCMC process. Secondly, we allow the age-dependent susceptibility to be scaled
between regions (scaling factor σR) to account for different levels of social mixing and hence differences in the early
R0 value. Finally, the relative strength of the lockdown (which may be time-varying) is again regional (scaling factor
ϕR
t ) and also estimated by the MCMC process.

Keeling et al. 7



3 Modelling social distancing
We obtained age-structured contact matrices for the United Kingdom from Prem et al.,11 which we used to provide infor-
mation on household transmission (βHab, with the subscript ab corresponding to transmission from age group a against age
group b), school-based transmission (βSab), work-place transmission (βWab) and transmission in all other locations (βOab).

We assumed that the suite of social-distancing and lockdown measures acted in concert to reduce the work, school and
other matrices while increasing the strength of household contacts. Two additional parameters that acted to modulate the
contact structure were the relative strength of lockdown interventions, ϕt, and the proportion of work interactions that occur
in public-facing ‘industries’, θ (we provide further details on both parameters later in this section).

We first capture the impact of social distancing by defining new transmission matrices (Bab), which represent the poten-
tial transmission in the presence of extreme lockdown. In particular, we assume that

BS
ab = qSβSab, BW

ab = qWβWab, BO
ab = qOβOab

while household mixing BH is increased by up to a quarter to account for the greater time spent at home. We set qS = 0.05,
qW = 0.2 and qO = 0.05 to approximate the reduction in attendance at school, attendance at workplaces and engagement
with shopping and leisure activities in a maximum lockdown situation, respectively. Note that the parameterisation of the q
parameters was subjective, with a higher value for the workplace setting used (corresponding to a lesser reduction in con-
tacts) compared to all other settings on the basis of essential businesses maintaining a semblance of in-person staff
attendance.

We used the assumed transmission matrices for a maximum lockdown scenario (Ba,b) to generate new transmission
matrices in each setting (̂βab) for a given strength of interventions and adherence level, ϕt, as follows:

β̂Hab = (1− ϕt)β
H
ab + ϕtB

H
ab

β̂Sab = (1− ϕt)β
S
ab + ϕtB

S
ab

β̂Wab = (1− θ) (1− ϕt)β
W
ab + ϕtB

W
ab

[ ]+ θ (1− ϕt)+ ϕtq
W

( )
((1− ϕt)+ ϕtq

O)βWab

β̂Oab = βOab((1− ϕt)+ ϕtq
O)2

As such, home and school interactions are scaled between their pre-lockdown values (β) and post-lockdown limits (B)
by the intervention and adherence parameter ϕt. Work interactions that are not in public-facing ‘industries’ (a propor-
tion 1− θ) were also assumed to scale in this manner; while those that interact with the general populations (such as
shop-workers) were assumed to scale as both a function of their reduction and the reduction of others. We have
assumed θ = 0.3 throughout, which we subjectively chose, with us acknowledging that the use of an alternative para-
meterisation could alter the outcomes. Similarly, the reduction in transmission in other settings (generally shopping
and leisure) has been assumed to scale with the reduction in the activity of both members of any interaction, giving
rise to a squared term.

4 Public health measurable quantities
The main model equations focus on the epidemiological dynamics, allowing us to compute the number of symptomatic and
asymptomatic infectious individuals over time. However, these quantities are not measured – and even the number of con-
firmed cases (the closest measure to symptomatic infections) is highly biased by the testing protocols at any given point in
time. It is therefore necessary to convert infection estimates into quantities of interest that can be compared to data. We
considered six such quantities which we calculated from the number of newly detectable symptomatic infections on a
given day nDd .

1. Hospital admissions:We assume that a fraction PD�H
a of detectable cases will be admitted into hospital after a delay q

from the onset of symptoms. The delay, q, is drawn from a distribution DD�H
q (note that

∑
q D

D�H
q = 1.) Hospital

admissions on day d of age a are therefore given by

Ha(d) = PD�H
a

∑
q

DD�H
q nDd−q
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2. ICU admissions: Similarly, a fraction PD�I
a of detectable cases will be admitted into ICU after a delay, drawn from a

distribution DD�I
q which determines the time between the onset of symptoms and admission to ICU. ICU admissions on

day d of age a are therefore given by

ICUa(d) = PD�I
a

∑
q

DD�I
q nDd−q

3. Hospital beds occupied: Individuals admitted to the hospital spend a variable number of days in the hospital. We there-
fore define two weightings, which determine if someone admitted to hospital still occupies a hospital bed q days later
(TH

q ) and if someone admitted to ICU occupies a hospital bed on a normal ward q days later (TI�H
q ). Hospital beds

occupied on day d of age a are therefore given by

Ho
a (d) =

∑
q

Ha(d − q)TH
q +

∑
q

ICUa(d − q)TI�H
q

4. ICU beds occupied: We similarly define TI
q as the probability that someone admitted to ICU is still occupying a bed in

ICU q days later. ICU beds occupied on day d of age a are therefore given by

ICUo
a(d) =

∑
q

ICUa(d − q)TI
q

5. Number of deaths: The mortality ratio PH�Death
a determines the probability that a hospitalised case of a given age, a, dies

after a delay q between hospitalisation and death drawn from a distribution,DH�Death
d . The number of deaths on day d of

age a are therefore given by

Deathsa(d) = PH�Death
a

∑
q

Ha(d − q)DH�Death
d

We note that while in the early stages of the epidemic only deaths from hospitalised individuals were initially regis-
tered as a death due to COVID-19, here we use all COVID-19 deaths irrespective of where they occur. This
measure has since been superseded by deaths within 28 days of a positive COVID-19 test as a standardised
measure in the UK. Therefore, PH�Death

a should be viewed as a relative scaling rather than an absolute probability
that a hospitalised individual dies.

6. Proportion testing seropositive: Seropositivity is a function of time since the onset of symptoms; we therefore define an
increasing sigmoidal function which determines the probability that someone who first displayed symptoms q days ago
would generate a positive serology test from a blood sample. We matched the shape of this sigmoidal function to data
from Public Health England (PHE; estimated independently, not within our MCMC scheme), while the asymptote (the
long-term sensitivity of the test, ST ) is a free parameter determined by the MCMC. We match our age-dependent pre-
diction against antibody seroprevalence from weekly blood donor samples from different regions of England (∼1000
samples per region).20

These nine distributions are all parameterised from individual patient data as recorded by the COVID-19 Hospitalisation in
England Surveillance System (CHESS),21 the ISARIC WHO Clinical Characterisation Protocol UK (CCP-UK) database
sourced from the COVID-19 Clinical Information Network (CO-CIN),22,23 and the PHE sero-surveillance of blood
donors.20 CHESS data is used to define the probabilities of different outcomes (PD�H

a , PD�I
a , PH�Death

a ) due to its
greater number of records, while CCP-UK is used to generate the distribution of times (DD�H

q , DD�I
q , DH�Death

q , TH
q ,

TI
q , T

D�I
q ) due to its greater detail (Figure S1).

However, these distributions all represent a national average and do not therefore reflect regional differences. We there-
fore define regional scalings of the three key probabilities (PD�H

a , PD�I
a and PH�Death

a ) and two additional parameters that
can stretch (or contract) the distribution of times spent in hospital and ICU. We infer these five regional parameters
(Table 2), which are necessary to get good agreement between key observations in all regions and may reflect both differ-
ences in risk groups (in addition to age) between regions or differences in how the data are recorded between devolved
nations. We stress that these parameters do not (of themselves) influence the epidemiological dynamics, but do strongly
influence how we fit into the evolving dynamics.
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5 Likelihood function and the MCMC process
Multiple components form the likelihood function; most of which are based on a Poisson-likelihood. For brevity we
define LP(n|x) = (n ln (x)− x)− log (n!) as the log of the probability of observing n given a Poisson distribution with
mean x. Similarly LB(n|N , p) = nlog(p)+ (N − n)log(1− p) is the log of the binomial probability function. The
log-likelihood function is then:

LLR(θ) =∑
d

LP(
∑
a

Observed hospitalisations on day d|
∑
a

Predicted hospitalisations on day d)

+
∑
d

LP(
∑
a

Observed ICU admissions on day d|
∑
a

Predicted ICU admissions on day d)

+
∑
d

LP(
∑
a

Observed bed occupancy on day d|
∑
a

Predicted bed occupancy on day d)

+
∑
d

LP(
∑
a

Observed ICU occupancy on day d|
∑
a

Predicted ICU occupancy on day d)

+
∑
d

LP(
∑
a

Observed Deaths on day d|
∑
a

Predicted Deaths on day d)

+
∑
d

∑
a

LB(Observed +ve serology tests on day d|Number of tests, Predicted proportion +ve)

This log-likelihood is the key component of the MCMC scheme. In the MCMC process, we apply multiple updates of
the parameters using normal or log-normal proposal distributions about the current values. Some parameters (the
scaling of age-structure α, the relative transmission rate τ, the latent period 1/ε and the test sensitivity ST ) are
global and apply to all regions; new values of these are proposed and the log-likelihood calculated over all 10
regions. Other parameters are regional (such as the relative strength of lockdown restrictions ϕR

t ) and can be
updated for each region in turn, the ODEs simulated and stored. Finally, another set of regional parameters
governs how the ODE output is translated into public health measurable quantities (Section 4). These can be
rapidly applied to the solution to the ODEs and the likelihood calculated. Given the speed of this last set, multiple
proposals are tested for each ODE replicate. We remark that the observation processes for the different public
health measurable quantities are conditionally independent given the mechanistic model predictions.

New data are available on a daily time scale, and therefore inference needs to be repeated on a similar time scale. We can
take advantage of this sequential refitting, taking random draws from the posteriors of the previous inference process to set
the initial conditions for each chain, thus reducing the need for a long burn-in period.

Figure 2. Daily hospital admissions per 100,000 individuals in London. Points show the number of daily admissions to the hospital

(both in-patients testing positive and patients entering hospital following a positive test); results are plotted on a log scale. We show

three simple fits to the data for pre-lockdown (red), strict-lockdown (blue) and relaxed-lockdown phases (green). Lines are linear fits

to the logged data together with 95% confidence intervals, returning average growth rates of 0.21 (doubling every 3.4 days), −0.06

(halving every 11.5 days) and −0.02 (halving every 34 days).
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6 Measuring the growth rate, r
The growth rate, r, is defined as the rate of exponential growth (r > 0) or decay (r < 0); and can be visualised as the gradient
when plotting observables on a logarithmic scale. Figure 2 shows a simple example, whereby linear trends are fitted to the
number of daily hospital admissions (per 100,000 people) in London. In this figure, three trend lines are plotted: one before
lockdown; one during intense lockdown; and one after partial relaxation on 11 May 2020. This plot clearly highlights the
very different speeds between the initial rise and the long-term decline.

While such statistically simple approaches are intuitively appealing, there are three main drawbacks. Firstly,
they are not easily able to cope with the distributed delay between a change in policy (such as the introduction of
the lockdown) and the impact of observable quantities (with the delay to deaths being multiple weeks). Secondly,
they cannot readily utilise multiple data streams. Finally, they can only be used to extrapolate into the future –
extending the period of exponential behaviour – they cannot predict the impact of further changes to the
policy. Our approach is to instead fit the ODE model to multiple data streams, and then use the daily incidence to
calculate the growth rate. Since we use a deterministic set of ODEs, the instantaneous growth rate r can be calculated
on a daily basis.

There has been a strong emphasis (especially in the UK) on the value of the reproductive number (R) which measures
the expected number of secondary cases from an infectious individual in an evolving outbreak. R brings together both the
observed epidemic dynamics and the time-frame of the infection and is thus subject to uncertainties in the latent and infec-
tious periods as well as in their distribution – although the growth rate and the reproductive number have to agree at the
point r = 0 and R = 1. We have two separate methods for calculating R, which have been found to be in very close numer-
ical agreement. The first is to calculate R from the next-generation matrix βba/γ using the current distribution of infection
across age classes and states. The second (and numerically simpler method) is to use the relationship between R and r for an
SEIR-type model with multiple latent classes, which gives

R = 1+ r

εM

( )M
1+ r

γ

( )

7 An evolving model framework
Unsurprisingly, the model framework has evolved during the epidemic as more data streams have become available
and as we have gained a better understanding of epidemiology. Early models were largely based on the data from
Wuhan and made relatively crude assumptions about the times from symptoms to hospitalisation and death. Later
models incorporated more regional variation, while the PHE serology data in early May 2020 had a profound
impact on model parameters.

Figure 3 shows how our short-term predictions (each of three weeks duration) changed over time, focusing on
hospital admissions in London. It is clear that the early predictions were pessimistic about the reduction that
would be generated by lockdown, although in part the higher values from early predictions are due to having identical

Figure 3. Sequential comparison of model results and data. For all daily hospital admissions with COVID-19 in London, we show the

raw data (black dots) and a set of short-term predictions generated at different points during the outbreak. Changes to model fit reflect

both improvements in model structure as well as increased amounts of data. The intervals represent our confidence in the fitted ODE

model and do not account for either stochastic dynamics or the observational distribution about the deterministic predictions – which

would generate far wider intervals.
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parameters across all regions in the earliest models. In general later predictions, especially after the peak, are in far
better agreement although the early inclusion of a step-change in the strength of the lockdown restrictions from 13
May 2020 (orange) led to substantial overestimation of future hospital admissions. Across all regions, we found some
anomalous fits, which are due to changes in the way data were reported (Figures S3 and S4).

The comparison of models and data over time can be made more formal by considering the mean squared error across
the three-week prediction period for each region (Figure 4). We compare three time-varying quantities: (i) the mean value
of the public health observable (in this case hospital deaths) in each region; (ii) the mean error between this data and the
posterior set of ODE model predictions predicting forwards for three weeks; (iii) the mean error between the data and a
simple moving average across the three time points before and after the data point. In each panel, the solid line corresponds
to where the presented error statistic is equal to the mean, which is to be expected if the error originates from a Poisson
distribution. The top left-hand graph in Figure 4 shows a clear linear relationship and correspondence in magnitude
between the mean value and the error from the moving average, implying similarity between the variance and mean,
giving support to our assumption (in the likelihood function) that the data are reasonably approximated as Poisson distrib-
uted. The other two graphs show how the error in the prediction has dropped over time from very high values for simula-
tions in early April 2020 (when the impact of the lockdown was uncertain) to values in late May and June 2020 that are
comparable with the error from the moving average.

Figure 4. Improvement in fit over time for the number of hospital deaths. Each dot represents an analysis date (colour-coded) and

region. For a data stream xt and model replicates yit (where i accounts for sampling across the posterior parameter values), we compute

the mean 1
21

∑t+20
T=t xT ; the prediction error 1

21N

∑N
i=1

∑t+20
T=t (xT − yiT )

2; the moving average

Xt = 1
6
(xt−3 + xt−2 + xt−1 + xt+1 + xt+2 + xt+3); and the moving average error 1

21

∑t+20
T=t (xT − XT )

2. In each panel, the solid line

corresponds to the path where the presented error statistic is equal to the mean.
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8 Choice of data streams to inform the likelihood
The likelihood expression given above is an idealised measure and depends on all the observed data streams being available
and unbiased. Unfortunately, ICU admission data had not been available and there were subtle differences in data streams
between the devolved nations. An important question is therefore how key epidemiological quantities (and in particular the
reproduction number R and the growth rate r) depend on the data sources used to underpin the dynamics.

In high-dimensional systems with different temporal lags (see Figure S1), there are inevitably different time scales from
when a change in policy or adherence occurs and when its impact is observed in key quantities. We briefly assess this
problem in Figure 5, by considering the model output as surrogate data and examining how long a change in policy
would take to impact the growth rate of key quantities. At time t = 0, we introduce a step-change in the strength of lock-
down restrictions (ϕt) within the model and record the subsequent growth rates (r) associated with five key model outputs
(infections, symptomatic cases, hospitalisations, admission to ICU and deaths). Unsurprisingly, the impact of this change
in restrictions takes the longest time to resolve in the mortality, taking around seven weeks for the estimate of the growth
rate to stabilise to the asymptotic value. Even measures that should be more immediate, such as the growth of symptomatic
cases, take some time to settle to the theoretical value (or r ≈ 0.01) given the high dimensionality of the age-structured

Figure 5. Impact of a change in underlying restrictions on the growth rate of modelled data streams. A change in the underlying

restrictions occurs at time zero, taking the asymptotic growth rate r from ≈− 0.026 to ≈+ 0.01. This change is reflected in an

increase in the growth rate of five key epidemiological quantities, which reach the true theoretical growth rate at different times.

Figure 6. Impact of data streams and model structure on estimated growth rate. The growth rates are estimated using the predicted

rate of change of new infections for London on 10 June 2020, with parameters inferred using data until 9 June 2020. The panels display

posterior predictive distributions for the growth rate, where each data point corresponds to an estimate produced from a model

simulation using a single parameter set sampled from the posterior distribution. To aid visualisation, we have applied a horizontal jitter

to the data points. (a) The impact of restricting the inference to different data streams (deaths only, hospital admissions, hospital bed

occupancy, deaths and admissions or all data); serology data was included in all inference. (b) The impact of having different numbers of

lockdown phases (while using all the data); the default is three (as in Figure 2).
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model. This all strongly suggests that at best our estimates of r and hence Rmay not be able to rapidly detect changes to the
underlying behaviour.

Figure 6 (left panel) shows the impact of using different observables for London (other regions are shown in Figure S5).
This is achieved by only retaining a limited number of elements in the log-likelihood function, such that the model is
matched to different combinations of data streams. Five different choices are shown: matching to recorded deaths only
(using the date of death); matching to hospital admissions (both in-patients testing positive and admissions of individuals
who have already tested positive); matching to bed occupancy, both hospital wards and ICU; matching to a combination of
deaths and admissions; and finally matching to all data. Each of these different likelihood functions required an indepen-
dent set of MCMC chains to be generated; from the associated posteriors, we consider an estimate of the instantaneous
growth rate as the most important epidemiological characteristic. In general, we find that just using reported deaths pro-
duces the greatest spread of growth rates (r) presumably because deaths represent a small fraction of the total outbreak
and therefore naturally introduce more uncertainty, and because deaths are slow to respond to dynamic changes. When
hospital admissions (with or without deaths) are included in the likelihood, this generates similar predictions of the
growth rate and similar levels of uncertainty in predictions. One could therefore postulate that an accurate measure of hos-
pital admissions is the key epidemiological observable that best captures the recent growth of the epidemic.

As mentioned in Section 7, the number of phases used to describe the reduction in transmission due to lockdown has
changed as the situation, model and data evolved. The model began with just two phases; before and after lockdown.
However, in late May 2020, following the policy changes on 13 May 2020, we explored having three phases. Having
three phases is equivalent to assuming the same level of adherence to the lockdown and social-distancing measures
throughout the epidemic, with changes in transmission occurring only due to the changing policy on 23 March 2020
and 13 May 2020. However, a different number of phases can be explored (Figure 6, right panel). Moving to four
phases (with two equally spaced within the more relaxed lockdown) increases the variation, but does not have a substantial
impact on the mean. Allowing eight phases (spaced every two weeks throughout lockdown) dramatically changes our esti-
mation of the growth rate as the parameter inference responds more quickly to minor changes in observable quantities.

Lastly, it was noted in late May 2020 that one of the quantities used throughout the outbreak (number of daily hospital
admissions) could lead to biased results. Hospital admissions for COVID-19 are comprised of two measures:

(i) In-patients who test positive; this includes both individuals entering the hospital with COVID-19 symptoms who sub-
sequently test positive, and hospital-acquired infections. Given that both of these elements feature in the hospital death
data, it is difficult to separate them.

(ii) Patients arriving at the hospital who have previously tested positive. In the early days of the outbreak, these were indi-
viduals who had been swabbed just prior to admission; however, in the later stages, there are many patients being
admitted for non-COVID-related problems that have previously tested positive.

Figure 7. Impact of including different types of hospital admission in parameter inference. Growth rates and total incidence

(asymptomatic and symptomatic) estimated from the ODE model for 10 June 2020 in London. The panels display posterior predictive

distributions for the stated statistic, where each data point corresponds to an estimate produced from a model simulation using a single

parameter set sampled from the posterior distribution. To aid visualisation, we have applied a horizontal jitter to the data points. In each

panel, blue dots (on the left-hand side) give estimates when using all hospital admissions in the parameter inference (together with

deaths, ICU occupancy and serology when available); red dots (on the right-hand side) represent estimates obtained using an alternative

inference method that restricted to fitting to in-patient hospital admission data (together with deaths, ICU occupancy and serology

when available). Parameters were inferred using data until 9 June 2020, while the growth rate r comes from the predicted rate of change

of new infections.
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It seems prudent to remove this second element from our fitting procedure, although we note that for the devolved nations this
separation into in-patients and new admissions is less clear. Removing this component of admissions also means that we cannot
use the number of occupied beds as part of the likelihood, as these cannot be separated by the nature of admission. In Figure 7,
we therefore compare the default fitting (used throughout this paper) with an updated method that uses in-patient admissions
(together with deaths, ICU occupancy and serology when available). We observe that restricting the definition of hospital admis-
sion leads to a slight reduction in the growth rate r but a more pronounced reduction in the incidence.

9 Fits and results at mid-June 2020
We now wish to compare how the fits made weekly (or more frequently) from late March to early June 2020 compare to
later results. We note that this period also saw considerable development of the model structure as more data streams
became available.

We used a fit to the data performed on 14 June 2020 (which matched to in-patient data, ICU occupancy, date of
death records and serological results) to infer the change in NPIs and adherence, ϕR

t , across two main intervals
since lockdown: 23 March to 13 May, and 14 May to 14 June (Figure 8 top panels green line and shaded interval).
When fed through the ODE model, the inferred distribution of parameters generates a distribution of growth rates
over time (Figure 8 bottom panels green line and shaded interval). These estimates can be compared to the estimates
made at different time points for the NPI adherence and associated growth rate at that time (Figure 8 dots and inter-
vals). We focus on London and the North East and Yorkshire region in the main text, with other regions given in the
Supplemental material.

The time profile of the predicted growth rate illustrates how the imposition of lockdown measures on 23 March 2020 led
to r decreasing below 0. The predicted growth rate is not a step function as changes to policy precipitate changes to the age
distribution of cases which has second-order effects on r. The second change in ϕt (the relative strength of lockdown
restrictions) on 13 May 2020 leads to an increase in r in all regions, although London shows one of the more pronounced
increases. Despite this increase in mid-May 2020, model estimates suggest r remained below 0 across all regions as of 14
June 2020 (Figure 8).

The relative strength of lockdown restrictions parameter, ϕt, also captured early changes in preventative transmission
behaviour that resulted from advice issued prior to the introduction of lockdown measures, such as social distancing,

Figure 8. Evolution of the strength of interventions and adherence values (ϕt), and associated growth rate predictions (r) together
with later model estimates. For two regions, (left) London, and (right) North East & Yorkshire, we show estimated values of the

strength of interventions (comprising intervention stringency and adherence to measures, ϕt), inferred from the MCMC scheme, which

are translated through the model into predictions of r. The dots (and 95% credible intervals) show how these values have evolved over

time, and are plotted for the date the MCMC inference is performed. The solid green and blue lines (together with 50% and 95%

credible intervals) show our estimate of ϕt and r through time using a fit to the data performed on 14 June 2020 (restricting hospital

data to in-patient data only). Vertical dashed lines show the two dates of main changes in policy (imposition of lockdown on 23 March

2020, easing of restrictions on 13 May 2020), reflected in different regional ϕt values. Early changes in advice, such as social distancing,

self-isolation and working from home were also included in the model and their impact can be seen as early declines in the estimated

growth rate r before 23 March 2020.
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encouragement to work from home (from 16 March 2020) and the closure of all restaurants, pubs, cafes and schools on 20
March 2020. For all regions, we observe minor declines in the estimated growth rate following the introduction of these
measures, though the estimated growth rate remained above 0 (Figure 8). As the model has evolved and the data streams
become more complete, we have generally converged on the estimated growth rates from current inference. It is clear that it
takes around 20 days from the time changes are enacted for them to be robustly incorporated into model parameters (see
dots and 95% credible intervals in Figure 8).

Using parameters drawn from the posterior distributions, the model produces predictive posterior distributions for multi-
ple health outcome quantities that have a strong quantitative correspondence to the regional observations (Figure 9). We
recognise there was a looser resemblance to data on seropositivity, though salient features of the temporal profile are cap-
tured. In addition, short-term forecasts for each measure of interest have been made by continuing the simulation beyond
the date of the final available data point, assuming that behaviour remains as of the final period (starting 13 May 2020).

Figure 9. Health outcome predictions of the SARS-CoV-2 ODE transmission model from the beginning of the outbreak and three

weeks into the future for London. (Top left) Daily deaths; (top right) seropositivity percentage; (bottom left) daily hospital admissions;

(bottom right) ICU occupancy. In each panel: filled markers correspond to observed data, solid lines correspond to the mean outbreak

over a sample of posterior parameters; shaded regions depict prediction intervals, with darker shading representing a narrower range

of uncertainty (dark shading – 50%, moderate shading – 90%, light shading – 99%). The intervals represent our confidence in the fitted

ODE model and do not account for either stochastic dynamics or the observational distribution about the deterministic predictions –
which would generate far wider intervals. Predictions were produced using data up to 14 June 2020. SARS-CoV-2: severe acute

respiratory syndrome coronavirus 2; ODE: ordinary differential equation; ICU: intensive care unit.
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10 Discussion
In this study, we have provided an overview of the evolving MCMC inference scheme employed for calibrating the
Warwick COVID-19 model10 to the available health care, mortality and serological data streams. We have focused on
the period May–June 2020, which corresponds to the first wave of the outbreak; a brief account of further refinements
is given below. The work we describe was performed under extreme time pressures, working from limited initial knowl-
edge and with data sources of varying quality. There are therefore assumptions in the model that with time and hindsight we
have refined and compared to other more recently available data sources; similarly, the focus on hotspots of infection
during the summer and the rise in cases into autumn 2020 has shaped much of our methodology. This article relates
the model formulation that was used to understand the dynamics, predict cases and advise policy during the first wave.

A comparison of model short-term predictions and data over time (i.e. as the outbreak has progressed) demonstrated an
observable decline in the error – suggesting that our model and inference methods have improved. We have considered in
some detail the choice of data sets used to infer model parameters and the impact of this choice on the key emergent proper-
ties of the growth rate r and the reproductive number R. We highlight that many of the decisions about which data sets to
utilise are value judgements based on an epidemiological understanding of the relationships between disease dynamics and
observed outcomes. None of the data sets available to epidemiological modellers are perfect, all have biases and delays;
here we believe that by using multiple data sources in a Bayesian framework we arrive at a model that achieves a natural
compromise. In particular, we have highlighted how single measures such as the number of daily deaths generate consid-
erable uncertainty in the predicted growth rate (Figure 6) and may be slower to identify changes in behaviour (Figure 5).
However, some questions related to the data are more fundamental; the ambiguity of what constitutes a COVID hospital-
isation (Figure 7) is shown to cause a slight difference in the estimated growth rate r but a more marked discrepancy in
incidence.

It is important that uncertainty in the parameters governing the transmission dynamics, and its influence on pre-
dicted outcomes, be robustly conveyed. Without it, decision-makers will be missing meaningful information and
may assume a false sense of precision. MCMC methodologies were a suitable choice for inferring parameters in
our model framework, since we were able to evaluate the likelihood function quickly enough to make the approach
feasible. However, a fundamental part of assessing whether your empirical estimates of the posterior distributions is
valid and robust, which we have omitted to discuss thus far, is the use of MCMC convergence diagnostics. In the early
stages of code development, we were checking convergence using the Gelman–Rubin test,24 comparing intra-chain
with inter-chain variability (a computable convergence diagnostic as throughout the fitting process we were generally
using at least 15 independent chains). Yet, in the midst of a global public health emergency such as a pandemic, there
are extremely short time scales over which the results need to be generated. In this instance, the speed of the epidemic
meant that results needed to be produced every 2–3 days. Results were required even if full convergence had not been
achieved, precluding any regular assessment of convergence and mixing – on the basis that a reasonable but imperfect
answer was better than none.25 These reflections signpost that attention should be paid to ensuring adequate research
support is provided to permit the design of more robust and efficient ways of performing statistical inference for
complex models in real-time.

Nevertheless, for some model formulations and data, it may not be possible to write down or evaluate the likelihood
function. In these circumstances, an alternative approach to parameter inference is via simulation-based, likelihood-free
methods, such as approximate Bayesian computation.26–28 We also recognise the appropriate mathematical structure of
the model is also uncertain. Our methodology is formulated around deterministic differential equations that work well
for large populations and significant levels of infection. On the other hand, stochastic effects are ignored and stochastic
approaches may be needed when modelling low infection level regimes. In addition, a subset of our parameters had
fixed values throughout our analyses, which means we may have underestimated the overall amount of parameter
uncertainty.

As we gain a collective understanding of the SARS-CoV-2 virus and the COVID-19 disease it causes, the structure of
infectious disease transmission models, the inference procedure and the use of data streams to underpin these models must
continuously evolve. The evolution of the model through the early phase of the epidemic (up to June 2020) is documented
here (Figures 3 and 8) and we feel it is meaningful to show this evolving process rather than simply present the final fin-
ished product. A vast body of work exists describing mathematical models for different infectious outbreaks and the asso-
ciated parameter inference from epidemiological data. In most cases, however, these models are fitted retrospectively,
using the entire data that have been collected during an outbreak. Fitting models with such hindsight is often far more
accurate than predictions made in real-time. In the case when models are deployed during active epidemics, there are
also additional challenges associated with the rapid flow of detailed and accurate data. Even if robust models and
methods were available from the start of an outbreak, there are still significant delays in obtaining, processing and inferring
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parameters from new information.5 This is particularly crucial as new interventions are introduced or significant policy
changes occur, such as the relaxation of multiple NPIs during May, June and July of 2020 or the introduction of the nation-
wide ‘test and trace’ protocol.29 Predicting the impact of such changes will inevitability be delayed by the lag between
deployment and the effects on observable quantities (Figure 5) as well as the potential need to reformulate model structure
or incorporate new data streams.

Multiple refinements to the model structure and approaches have been realised since June 2020 and more are still pos-
sible. The three biggest changes have been forced by external events: the rise and spread of the Alpha (B.1.1.7) variant
during the latter part of 2020; the rise and spread of the Delta (B.1.617.2) in April and May of 202130; and the development
and delivery of vaccines from December 2020 onwards.31 The two variants have necessitated an increase in the dimension
of the ODEs as at least two variants need to be modelled simultaneously (either Alpha out-competing wild type, or Delta
out-competing Alpha); the two new variants also require the estimation of variant-specific parameters governing their rela-
tive transmission rates and the proportion of infected individuals that require hospital treatment or die from the disease.32

The spread of these two variants is captured by looking at ‘S-gene failures’: the TaqPath system used to perform polymer-
ase chain reaction (PCR) tests in many regions of the country fails to detect the S-gene of Alpha due to a point mutation.
The rise of Alpha is therefore determined by the increase of S-gene failures, while the decline of Delta is captured by the
decline of S-gene failures. Vaccination also requires a large number of parameters: in particular, the vaccine efficacy after
one and two doses against infection, symptoms, severe illness and hospitalisation, death, and against both Alpha and Delta
variants are needed within the model. We treat these additional parameters as inputs to the model, based on the estimations
made by Public Health England.33

Other changes to the model structure include using the proportion of community (known as Pillar 2) PCR samples
that are positive rather than the number of positive tests. We feel that this proportion is less likely to be biased by
changes in testing behaviour, and so provide a more stable estimate of the level of infection in the community. We
also no longer use serology data from blood-donors, as again this is likely to suffer from a number of confounding
factors. Instead, data from the national REACT 2 study34 is incorporated into the likelihood and helps to anchor
the total number of previously infected individuals in each region. More consideration has been given to detecting
changes in the strength of social distancing (ϕt). In the original model, ϕt was inferred in two main phases: the
main lockdown (from 23 March to 13 May 2020) and the more relaxed restrictions (from 13 May 2020). In practice,
there will be continuous changes to this quantity as the population’s behaviour varies (not necessarily in response to
government guidelines), given the importance to public health planning of rapidly detecting such changes, we now
estimate the values of ϕt on a weekly timescale but assume the value to only vary slowly (unless there has been a
major change to the restrictions). Finally, we have assumed that many of the observable epidemiological quantities
(such as hospitalisation and death) are related in a fixed way to the age distribution of infection in the population.
In reality, the medical treatment of COVID-19 cases in the UK has changed dramatically since the first few cases
in early March 2020, such that the risk of mortality, the need for hospitalisation and the duration of hospital stay
have all changed. Such changes have been incorporated periodically into the model structure, informed from hospital
data sources.

Despite all of these improvements over the last year, there are still aspects that could be further improved. The under-
standing that infection may be partially driven by nosocomial transmission,35,36 while significant mortality is due to infec-
tion in care homes37,38 suggests that additional compartments capturing these components could greatly improve model
realism if the necessary data were available throughout the course of the epidemic. Similarly, schools, universities and
some workplaces pose additional risks, so there is merit in considering how these amplifiers of community infection
could be incorporated within the general framework.39–41 Additionally, if in a regime with much lower levels of infection
in the community, it may be prudent to adopt a stochastic model formulation at a finer spatial resolution to capture localised
outbreak clusters, although the potential heterogeneity in local parameters may preclude accurate prediction at this scale.

In summary, if epidemiological models are to be used as part of the scientific discussion of controlling a disease out-
break it is vital that these models capture current biological understanding and are continually matched to all available data
in real-time. Our work on COVID-19 presented here highlights some of the challenges with predicting a novel outbreak in a
rapidly changing environment. Probably the greatest weakness is the time that it inevitably takes to respond – both in terms
of developing the appropriate model and inference structure, and the mechanisms to process any data sources, but also in
terms of delay between real-world changes and their detection within any inference scheme. Both of these can be shortened
by well-informed preparations; having the necessary suite of models supported by the latest most efficient inference tech-
niques could be hugely beneficial when rapid and robust predictive results are required.
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