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Summary

How do humans physically interact with the environment or with other humans? It

is well known that the nervous system can modify the body’s stiffness by selectively

cocontracting muscles to shape the mechanical interaction with the environment, but how

this influences haptic perception is not known. This thesis examines whether humans can

adapt muscles’ activation to influence their perception of the physical interaction with the

environment. This question is investigated by conducting behavioural experiments using

dedicated robotic interfaces to study sensorimotor interactions in the presence of haptic

and visual perturbations. Hypotheses about the underlying mechanism are then tested

through mathematical modelling and simulations.

Chapter 1 reviews related frameworks and introduces the most relevant questions addressed

in this work. Chapter 2 then shows that the central nervous system (CNS) can voluntarily

adapt muscle cocontraction to increase haptic sensitivity. In an experiment, participants

tracked a randomly moving target with visual noise while being physically guided by a

virtual elastic band, where the band’s stiffness was controlled by their muscle coactivation.

The results show that participants learned to increase cocontraction with visual noise

and decrease it when the guidance is incongruent with the visual target. The adaptation

law governing the regulation of the body’s stiffness by the CNS is then derived through

computational modelling. This model is designed to maximise visuo-haptic information

while minimising metabolic cost, thus trading off sensory information with energy.

Further, it is shown in Chapter 3 that when the subjects are coupled via a tuneable

connection to a robotic guidance designed to hinder their tracking through perturbations

at the turning points (where participants physiologically increase cocontraction), they

adapted cocontraction to reduce the impact of perturbations on performance. These results

highlight the CNS ability to modify the muscle activation patterns to improve performance

with minimal effort.

Chapter 4 tests the robustness of human adaptive haptic sensing introduced in the previous

chapters for human-human physical interaction. For example, in tango dancing physical
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contact provides haptic information of the partner’s action required to coordinate the

movements. During such physical interactions, should one keep the arms compliant

so that the partner can correct the motion, or should one stiffen them to better keep

along the planned movement? Using a tracking task in which a dyad is coupled via

a rigid connection, subjects readily adapted the compliance of their limb depending on

both the accuracy of the partner’s and their own movement. The same computational

model introduced in Chapter 2 could explain these results and predict the experimentally

observed cocontraction adaptation. This suggests that the minimisation of prediction error

and energy is a general principle also holding in interpersonal interactions.

Altogether, these findings shed light on how humans can adapt haptic sensing by changing

body properties, and propose a novel framework to interpret visuo-haptic perception for

interaction with the environment and other humans.

Keywords: human interaction, haptic sensing and perception, body adaptation, visuo-

haptic integration.
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Chapter 1 Introduction

The aims of my thesis are to investigate the human capability of tuning haptic information

to improve visuo-haptic sensing and to unveil the computational mechanism underlying

this process. I explore whether humans can modulate their body properties, specifically

their limb viscoelasticity, for improving sensory information during contact with either the

environment or other humans. As a related question, I examine the relationship between

impedance modulation and vibrotactile information during physical interaction. I address

these questions by developing a novel methodology to systematically study the human

behaviour through a set of experiments, using dedicated robotic interfaces and state of

the art sensors to analyse sensorimotor interactions, as well as computational models and

simulations.

1.1 Background and motivation

When interacting with the external environment or with other humans, we gather physical

information from a wide variety of sensory receptors located in the skin, muscle spindles

and tendons, to plan our next action based on the current perception. Human haptics, the

study of human sensing and manipulation through touch [1], is critical for accomplishing

most daily activities and generally allow humans to interact with the surrounding environment.

Haptics, from the Greek words ἁπτικός (haptikós, able to come into contact with) and

ἁπτός (haptós, tangible) according to the Merriam-Webster dictionary, is commonly viewed

as a perceptual system provided with sensory inputs by two afferent subsystems, that most
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Chapter 1 Introduction

typically involves active manual exploration [2]. Haptic sensing, e.g. when the hand is

interacting with an object, it is based on two kinds of sensory information:

• Kinesthetic information, using proprioception (sense of limbs’ position and motion)

and forces detected by the sensory receptors in the skin around the joints, tendons,

and muscles, combined with driving motor commands.

• Tactile information, during contact with objects, propagated through vibrations and

mediated by the skin’s mechanoreceptors (mostly present in the fingerpad and in

the hand in general).

Mainly kinesthetic information is used to control free motion of the hand, without contact

with the environment. In contrast, mainly tactile information is used in contact with an

object, while is conveyed together with kinesthetic inputs about the limb posture and

isometric forces. In fact, the two afferent systems are not strictly segregated but subserve

common functions: previous literature highlighted how both tactile and proprioceptive

stimulations lead to the activation of very similar cerebral networks. This arises a unified

percept of one’s own body movements, thus showing that heteromodal areas may contribute

to multisensory integrative mechanisms at cortical and subcortical levels [3]. In addition,

as found for the skin deformation feedback, specific kinds of tactile feedback provide

effective haptic information of force, stiffness, and friction comparable to those emerging

from kinesthetic sensing, so that cutaneous and kinesthetic sensory cues can be conveniently

integrated [4], [5]. Both classes of information are therefore critical relevant to perform

robust unconstrained sensory and manipulation tasks [1].

Within the framework of objects’ manipulation, the tool-use function is an important

aspect that has assumed a central role in the way humans interact and shape the surrounding

environment. Goal-oriented grasping and objects’ manipulation are skills that rely on

predictive strategies integrating somatosensory and visual signals with sensory-motor

memory systems [6]. Memory representations of physical and task-relevant properties
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Chapter 1 Introduction

of the objects together with feedforward mechanisms are crucial when deliberate actions

arise from established relationships between afferent patterns and efferent commands (for

reference see the opposition space model, that takes into account the hand’s ability to

apply task-related forces while gathering sensory information [7]).

Figure 1-1: Different kinds of human interactions. Humans accomplish a wide range
of interactions, from complex interactions with the environment like using a chisel for
carving a piece of wood, to helping a friend for moving a heavy object or for social
interaction.

Early studies also emphasized a neat distinction in tactual experiences when comparing

passive and active interactions: in free arm movements the observer tends to focus on

the subjective bodily sensations, whereas contact resulting from active exploration guides

the observer’s attention to properties of the external environment [8]. In fact, the haptic

percept depends on the material properties of the environment we interact with. When a

finger slides to scan a surface (tactile sensing), the moving contact induces vibrations that

activate receptors allowing the brain to identify objects and to perceive information about

their properties. The information is conveyed through signals elicited by friction between

the skin and the object scanned by the fingertip. The characteristics of the vibrotactile

signals give information about the texture features, thus affecting the tactile perception.

Previous studies have focused on the relation between the physical characteristics of

the surfaces and the detected signals by investigating the correlation between contact-

induced vibrations and tactile perception of textures. Vibration spectra measured on

the fingers and in the forearm tissues revealed regularities correlated with the scanned

surface that were found to change as a function of contact parameters such as roughness,
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Chapter 1 Introduction

surface texture, scanning speed [9], [10], thus transmitting information regarding explored

and manipulated objects [11]. These results explain the perceptual mismatch between

the real roughness and the perceived roughness of a surface that takes place when a

subject receives external vibrations hindering its perception [12]. From this perspective,

it looks necessary to characterize the vibrotactile signals that drive neural responses for

understanding tactile perception, given the non-trivial dependence of skin vibrations with

the hand biomechanics [13]. The correlations between vibrotactile sensory information

and motor activity may be of broader significance for the control of human interactions

than has been previously acknowledged [14]. On the other hand, recent research also

showed that the kinesthetic information exchanged while tracking a common target between

virtually connected dyads of physically interacting partners depends on the connection

stiffness. The tracking performance monotonically improves with a stiffer connection

for the worse partner, at the cost the skilled partner’s extra effort, thus highlighting how

the coupling impedance connecting the partners determines maximum communicated

information [15] (Fig. 1-2).

The CNS combines the haptic information gathered through physical interaction with task

relevant information obtained by alternative sensory channels to produce a comprehensive

reliable estimate. Sensory weighting between different sensory systems (e.g., vision

and proprioception) and within the same sensory system (e.g., force and position in

proprioception) have been extensively studied [16], [17]. To quantitatively investigate

sensory integration, researchers measured the variances associated with the different sensory

estimates and then integrate them. A typical model outcome fits the experimental data,

implying that one sensory input prevails over the others when the associated variance is

lower than that associated with the other estimates [16], [18]–[20]. Further evidence is

pointed by a shift in the brain activity from the primary visual cortex to the motor cortex

concurrent when altering visual and haptic information reliability [21].
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Figure 1-2: Physical interaction between humans through different coupling
dynamics (from [15]). (A) Improvement, defined as the tracking error in a solo trial
minus the error in the preceding connected trial, as a function of the relative error,
defined as the difference in tracking errors between the partners in the solo trial. The
improvement was modulated as a function of the coupling stiffness such that the worse
partner (positive in the horizontal axis) improved more with the hard than with the soft
interaction. However, the hard interaction did not hinder the better partner’s performance.
(B) Interaction effort, defined as the effort expended during a solo trial minus the effort in
the preceding connected trial, as a function of the relative error. The effort was estimated
as the sum of the mean muscle activations, normalised with respect to torque, from a wrist
flexor and extensor pair. As with the improvement, the interaction effort is modulated by
the softness of the interaction. Only the better partner in the hard and medium interactions
exerted more effort in comparison to solo trials.

Perception is not a process taking only place at brain level, but can be counter-intuitively

seen as a skillful activity of the system as a whole [22]: active perception is rather

a problem of an intelligent data acquisition process where percepts do not simply fall

onto sensors. For example, our pupils change size depending on the available light for

increasing visual acuity [23]. The perception capabilities of the sensorimotor system is

not solely the consequence of the control provided by the CNS. It is also affected by the

system morphology (shape, position and type of sensors and effectors), by the material

properties characterising its morphological components and by the physical constraints

shaping its interactions with the environment [24]. The concurrent exploitation of sensorimotor

interaction and body morphology produces statistical regularities in sensory inputs so

that the information flow between sensors and effectors and the resulting perception is
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Chapter 1 Introduction

actively shaped by the interaction dynamics [25]. This suggests that motor control can

be understood as fulfilling prior expectations about proprioceptive, kinesthetic and tactile

sensations [26]. Would it be possible to reshape and eventually improve human haptic

sensing and the resulting perception by adjusting the body morphology or its material

properties?

While the body anatomy cannot be changed, there is ample evidence that the CNS selectively

controls the limb’s viscoelasticity in response to instability and signal-dependent noise

[27]–[31] to reduce kinematic variability by selective muscle activation [32], [33]. Recent

studies examined how impedance influences sensing, suggesting the possibility to improve

measurement through optimal impedance tuning [34]. In the case of free surface exploration,

the adjustment of internal stiffness is further suspected to enhance haptic perception by

regulating the function of mechanoreceptors and proprioceptive sensors such as tendon

and spindle sensors located in muscles [35].

Given experimental evidence that is possible to influence the measurements accuracy by

changing impedance, this research aims at testing if, and understand how, humans can

modulate their limb viscoelasticity for obtaining reliable information and improving their

visuo-haptic sensing.
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Chapter 2 The nervous system can improve

the visuo-haptic perception by optimising

muscle cocontraction

Summary

While the nervous system can modify the body’s stiffness by selective cocontraction

to shape the mechanical interaction with the environment, little is known of how this

influences haptic perception. Here, we show for the first time that the central nervous

system can voluntarily adapt muscle cocontraction to increase haptic sensitivity. Subjects

tracked a randomly moving noisy visual target while being physically guided by a virtual

elastic band whose strength was controlled by the subject’s cocontraction. They learned

to increase cocontraction under visual noise and decreased it when the guidance was

incongruent. Computational modelling revealed the adaptation law governing the CNS’

regulation of the body’s stiffness, which maximizes visuo-haptic information while minimising

metabolic cost, trading off sensory information with energy.

Contribution Statement

The content of Chapter 2 has been developed by Gerolamo Carboni, with the contribution

of Xiaoxiao Cheng, Thrishantha Nanayakkara, Atsushi Takagi and Etienne Burdet.

The contributions are as follows:

• GC carried out the experiment.
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Chapter 2 The nervous system can improve the visuo-haptic perception by optimising
muscle cocontraction

• GC, AT, performed the data analysis.

• GC, XC, AT, EB developed the statistical and computational modeling.

• GC, XC, TN, AT, EB have edited the text and agree with its content.

Some of this chapter’s content has been published on Scientific Reports as: Carboni, G.,

Nanayakkara, T., Takagi, A. et al. Adapting the visuo-haptic perception through muscle

coactivation. Sci Rep 11, 21986 (2021). https://doi.org/10.1038/s41598-021-01344-w.

2.1 Introduction

Humans are endowed with various sensors to interact with the environment, where haptics

(the synthesis of touch and proprioception [2]) enables us to interpret physical interactions.

In walking down a dimly lit flight of curved steps we instinctively reach out the handrail,

that will guide our movement by providing haptic information about the steps direction.

The guidance provided by the handrail becomes stronger when the arm is stiffened through

muscle cocontraction [27], but how the body stiffness influences the haptic percept is

unclear.

Could the central nervous system (CNS) modify haptic sensitivity by cocontracting muscles?

The possibility and details of a mechanism driving such adaptive sensing have yet to be

addressed. Haptics is challenging to investigate as the percept (the interaction force) is

entwined with the mechanical guidance. Here, we disentangle the mechanical guidance

from the haptic percept to study the brain’s capacity to regulate its haptic sensitivity, and

uncover the mechanism behind its regulation.

To this end, we developed a new paradigm wherein subjects used the cocontraction of a

flexor-extensor pair of wrist muscle to control the strength of the elastic guidance while

tracking a randomly moving target trajectory (Fig. 2-1A). An additional experiment was

devised to isolate the mechanical effect of the elastic guidance, enabling us to study

how the haptic percept changed with the wrist’s stiffness. Using this paradigm, we

21



Chapter 2 The nervous system can improve the visuo-haptic perception by optimising
muscle cocontraction

could systematically investigate whether and how the CNS adapts the body’s stiffness

in response to visual and haptic noise.
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Figure 2-1: Schematic of the experimental task and protocol. (A) Subjects tracked a
randomly moving target with their wrist flexion-extension movement while being guided
by a virtual elastic band. The strength of the guidance increased with the cocontraction
of a flexor-extensor muscle pair estimated from their myoelectrical activity. (B) Protocol
of the experiment to study the effect of visual noise on the cocontraction. (C) Protocol
to examine the effect of bias in the guidance trajectory with respect to the target on the
cocontraction.

2.2 Methods

2.2.1 Subjects and experimental setup

The experiments described below were approved by the Joint Research Compliance Office

at Imperial College London. A total of 59 subjects without known sensorimotor impairments,

aged 21–36 years, including 22 females, were recruited to take part in one of the three

main experiments and in the two experiments to identify the individual influence of

haptics and vision. Each subject gave written informed consent prior to participation.

The majority of subjects (56/59) were right-handed, as was assessed using the Edinburgh

Handedness Inventory [36].
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Each subject was seated comfortably on a height-adjustable chair next to the Hi5 robotic

interface. The system consists of two 1 DoF flexion/extension wrist interfaces where the

subject can lean the arm and easily hold a handle. This unique bilateral manipulandum-

to-manipulandum system allows the subject to exchange interaction torques through the

handle with both another human subject or a robotic controller. Subjects carried out the

experiment individually and each of them held a single handle of the Hi5 dual robot

with the dominant wrist as shown in Fig. 2-1A (further details on the Hi5 dual robotic

interface can be found in [37]). This experimental setup has been selected not because

considering the wrist joint activity the most relevant for haptics (for example, over the

intrinsic hand muscles), but so that subjects could perform the experiments primarily

activating a single flexor/extensor muscle pair with the aim of enhancing data clarity by

reducing the complexity of the interaction dynamics. Along the line, subjects were also

instructed to avoid fingers motion when pushing/pulling the handle. A screen placed

in front of the subject provided visual feedback of the task with a cursor indicating the

current wrist position (Fig. 2-1A). The Hi5 handle is connected to a current-controlled

DC motor (MSS8, Mavilor) that can exert torques of up to 15 Nm, and was equipped

with a differential encoder (RI 58-O, Hengstler) to measure the wrist angle and a force

sensor (TRT-100, Transducer Technologies) to measure the exerted torque in the range

[0,11.29] Nm. The Hi5 system is controlled at 1kHz using Labview Real-Time v14.0

(National Instruments) and a data acquisition board (DAQ-PCI-6221, National Instruments),

while data was recorded at 100 Hz.

The activation of two antagonist wrist muscles, the flexor carpi radialis (FCR) and extensor

carpi radialis longus (ECRL), were recorded with surface electrodes using a medically

certified non-invasive electromyography system (g.LADYBird + g.GAMMABox + g.BSamp,

g.Tec). The raw muscle activity was high-pass filtered at 20 Hz, rectified, then low-pass

filtered at 5 Hz. The filtering process yielding the filtered muscle activity was in both

cases a second-order Butterworth filter.
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2.2.2 Muscle activation calibration and cocontraction computation

Every experiment started with an EMG normalization to map the raw muscle activity

(in mV) to a corresponding torque value (in Nm). The subject placed their wrist in the

most comfortable middle posture, which was set to 0◦. Constrained at that posture, they

were then instructed to sequentially (i) flex, or extend the wrist to exert a torque, or (ii)

maximally co-contract in order to keep the wrist position stable during a 3 Hz sinusoidal

positional disturbance of 10◦ amplitude. Each phase was 4 s long with a 5 s rest period

between consecutive contraction phases to avoid fatigue, which was used as a reference

activity in the relaxed condition. This was repeated four times at flexion/extension torque

levels {1,2,3,4}Nm and {-1,-2,-3,-4}Nm, respectively. For each subject, the recorded

muscle activity was linearly regressed against the torque values to estimate the relationship

between them. Therefore, the torque associated with the flexor muscle was modelled from

the filtered EMG signal depicting the flexor muscle activation u f as

τ f (t) = α0 u f (t) + α1 , α0,α1 > 0 , (2.1)

and similarly for the torque of the extensor muscle τe. The variables α0, α1 computed

from the linear regression for both flexion and extension are subject specific. Muscle

cocontraction was then computed as

u(t)≡ min{τ f (t),τe(t)} . (2.2)

The muscle cocontraction u(t) represents an indicator of joint stiffening that stems from

contracting a pair of antagonist muscles. This cocontraction indicator does not take into

account the absolute activation of a single muscle and the resulting change of stiffness if

the other muscle does not change its activity. The average cocontraction over all subjects

(as shown in Figs. 2-3B,D) was computed from each subject’s normalised cocontraction,
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calculated as

un ≡
u−umin

umax −umin
, u ≡ 1

T

∫ T

0
u(t)dt , T = 20s (2.3)

with umin and umax the minimum and maximum of the means of all trials for the specific

subject.

2.2.3 Tracking with visual and haptic feedback

In the three main experiments of sections 2.2.4 - 2.2.6, subjects were required to track a

visual target (in degrees) moving with

q∗(t)≡ 18.5 sin
(

πt∗

1.547

)
sin
(

πt∗

2.875

)
, t∗ ≡ t + t0 , 0 ≤ t ≤ 20s (2.4)

using flexion-extension movements (Fig. 2-1A). To avoid trajectory memorisation, t∗

started in each trial from a randomly selected zero {t0 ∈ [0,20]s | q∗(t0) ≡ 0} of the

multi-sine function. After each 20 s long trial, the target disappeared and the subject was

required to place the hand on the starting position at the center of the screen. The next

trial then started after a 5 s rest period and a 3 s countdown. Each subject was instructed

to take small breaks when feeling (mental or physical) fatigue during the course of the

experiment. The tracking error

e ≡
(

1
T

∫ T

0
[q∗(t)−q(t)]2 dt

) 1
2

, T ≡ 20s (2.5)

was displayed at the end of each trial, where q(t) is the wrist angle.

The tracking task consisted of a free phase (in which no interaction torque was exerted on

the wrist) to get the subject accustomed with the Hi5 interface, followed by an interaction

phase in which the subject’s wrist position was connected to a haptic reference trajectory

qh(t) with an elastic force

τ(t) = κ(t) [qh(t)−q(t)] , κ(t)≡ u(t)
8

(2.6)
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where the connection stiffness κ< 0.25 Nm / ◦ linearly increased with the cocontraction

u(t).

Subjects were informed of the possibility to regulate the coupling stiffness by co-contracting

or relaxing wrist’s muscles, and of the transition between free trials and interaction trials.

They were further instructed not to resist large torques provided by the motor.

2.2.4 Visual noise experiment

In this experiment qh ≡ q∗ thus there was no haptic noise. A visual noise experiment

was carried out by 15 right-handed subjects (7 females, aged 23.46±2.39 years old).

The target trajectory was displayed on the screen either as a 8 mm diameter circle or as a

“cloud” of eight normally distributed dots around the target (Fig. 2-1A), depending on the

experimental condition. The cloud of dots were defined by three parameters, randomly

picked from independent Gaussian distributions: the vertical distance to the target position

η ∈ N(0, 15 mm), the angular distance to the target position ηq ∈ N(0, 1.01◦<σv<8.00◦),

and the angular velocity ηq̇ ∈ N(0, 4◦/s). The amplitude of visual noise was controlled by

the angular distance deviation, while both the vertical and the angular velocity deviations

were kept constant. The dots were updated sequentially so that each dot was replaced

every 100 ms. The experimental protocol consisted of 10 free trials followed by 32

interaction trials split into 8 blocks. The 4 trials of each block used a different value of

σv ∈ {1.01◦,3.34◦,5.67◦,8.00◦} presented in a random order in each block (Fig. 2-1B).

We assume that the ordering of the blocks has no effect.

2.2.5 Haptic bias experiment

In this experiment the target was a 8 cm diameter disk, and the elastic guidance trajectory

was biased by δ relative to the target trajectory:

qh(t) = q∗(t)+δ . (2.7)
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Another 13 subjects (4 females, 12 right-handed, aged 23.53±3.03 years old), carried

out a haptic noise experiment. The experiment consisted of 52 trials with 10 free trials

followed by 42 interaction trials subdivided into 6 blocks. The 7 trials of each block

had a different δ ∈ {0◦,2◦,−5◦,8◦,−11◦,14◦,−17◦}, where these bias conditions were

presented in a random order in each block (Fig. 2-1C). We assume that the ordering of

the blocks has no effect.

2.2.6 Visual noise and haptic bias experiment

A third experiment with both visual noise and haptic bias was carried out with 15 subjects

(aged 25.06±2.12 years old, with 5 females, 14 right-handed). The protocol consisted

of 40 trials with 8 free trials, followed by a 32 interaction trials in 8 blocks of 4 trials.

In these 4 trials, the subject experienced different combinations of the guidance bias

and visual noise (δ ,σv) ∈ {(1.5◦,0◦),(1.5◦,6.7◦),(8.5◦,0◦),(8.5◦,6.7◦)}, presented in

a random order in each block.

2.2.7 Haptic noise model

Haptic noise relative to the target movement is due to the biased reference trajectory

relative to the target (resulting in the movement standard deviation σb relative to the target

trajectory) and to the elasticity of the virtual band [15]. Assuming that these effects are

independent and that the band elasticity results in zero mean noise with deviation σκ(u),

the haptic noise deviation can be calculated as

σ
2
h (u) = σ

2
b + σ

2
κ(u) . (2.8)

The effect of the reference trajectory bias is described through

σb = αb + δ
θ (2.9)
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with subject specific αb,θ > 0. Two additional experiments were carried out to observe

the tracking performance as either a function of the visual noise or as a function of the

virtual band’s elasticity in order to specify the haptic noise.
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Figure 2-2: Results of experiments to isolate the effect of visual feedback and haptic
guidance on the tracking performance. (A) In the visual noise experiment, the tracking
error linearly grew with visual noise, and decreased across all noise levels after learning.
(B) In the experiment with haptic feedback only, the tracking error decreased with the log
of the elasticity (linear mixed-effect analysis, p<0.001). This relationship did not change
with practice.

A visual experiment was carried out to evaluate the influence of the visual noise on the

tracking performance. No elastic force was present in this experiment. Eight right-handed

subjects not involved in the main experiments (25.01±0.53 years old, including 2 females)

participated in this study. The protocol was similar to the main experiments, consisting

of 42 trials divided in initial trials for task familiarisation and a following testing phase.

Each trial lasted 20 seconds. In the acclimatisation phase, consisting of 10 trials without

visual noise, the target’s position was displayed by a single point. In the remaining 32

trials of the testing phase, the trials were organized into 8 blocks, each containing 4 trials

with visual noise σv ∈{1.01◦, 3.34◦, 5.67◦, 8.00◦}. The four levels of visual noise were

randomized in each block. The results show that the tracking error is linearly correlated

with the visual noise imposed on the target (Fig. 2-2A, [38]).
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This was modelled as

ev(σv) = αv +βv σv , (2.10)

αv = −11.67,βv = 0.13 were identified from a least-squares linear regression with data

from late trials.

Next, a haptic experiment was performed to measure how the tracking error depended on

the elasticity of the virtual band. In this experiment, no visual feedback was provided

while the wrist was connected to the target reference trajectory with 7 selected levels of

elasticity. Another eight subjects (7/8 right-handed, 26.75±1.28 years old, including 4

females) participated in this experiment. The experiment was structured in 5 blocks of 7

elasticity values κ ∈ {0.011,0.016,0.025,0.037,0.055,0.081,0.120}Nm/◦ presented in

random order. In the 35 interaction trials, the subjects experienced an elastic force to the

target. As expected, the tracking error decreased with increasing elasticity (Fig. 2-2B),

which was modelled as an exponential function

eh(κ) = αh e−βhκ + γh , (2.11)

where αh = 4.42, βh =−7.59, γh = 4.15 were identified from a least-square fit.

To compare the deviations of tracking error due to visual and haptic noise, the error due

to haptic noise was transformed to its equivalent value in visual noise. This was carried

out by setting e(κ)≡ e(σv), yielding

σκ(u) = ξ0 + ξ1 e−βκ u, ξ0 ≡ (γh −αv)/βv , ξ1 ≡ αh/βv , βκ ≡ βh/8 (2.12)

2.2.8 Statistical integration

To statistically model the adaptation mechanism, the visual error ev was generated from a

Gaussian distribution (with σv ∈ {1.01◦, 3.34◦,

5.67◦, 8.00◦}) around the average error in the last two blocks of the visual control
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experiment (see Fig. 2-2A). To estimate the haptic error eh, the mean stiffness values

recorded over the last two experimental blocks of the visual and haptic bias experiment

(section 2.2.6) was first computed. Then, this averaged coupling value was given as input

to calculate eh from the square fit of the data in the haptic control experiment (Fig. 2-

2B). The standard deviation σh(u), necessary to compute the weights in the Bayesian

integration model introduced in equation 2.18, was obtained from eh by inverting the

mapping obtained to fit the visual control experiment in a similar fashion to eq. 2.12.

2.2.9 Haptic noise experiment simulation

Tracking error minimization (TEM)

For each of the 7 bias levels {i}, the initial coactivation level {ûi(1)} was first set as

the initial experimental value {ui(1)}. Then, by using the respective trial-by-trial tracking

error {ei(k)},k= 1, ...,5 from the experiment, the adaptation parameters α,γ in the computational

model of eq.(2.19) were computed to minimize the error between the learned values after

5 iterations {ûi(6)} and the corresponding data {ui(6)} in last experiment’s trial:

(α∗,γ∗)≡ argmin
α,γ>0

{ 7

∑
i=1

[ûi(6)−ui(6)]
2
}
. (2.13)

The parameters α∗ ≡ 0.01,γ∗ ≡ 0.14 were found by using a grid search with a step 0.01

in the range [0,2]× [0,2].

Optimal information and effort (OIE)

A gradient descent optimisation is used to minimize the prediction error and effort in

eq.(2.21). Muscle cocontraction is updated trial after trial using:

unew = u− dV (u)
du

= −dE(u)
du

+ (1− γ)u ,

−dE(u)
du

=

[
σ2

v

σ2
h +σ2

v

]2[
−

dσ2
h (u)
du

]
> 0 .

(2.14)
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where γ , αb and θ were computed by minimizing the variation of the cost derivative:

(γ∗,θ ∗,α∗
b )≡ argmin

γ,θ ,αb>0

{ 7

∑
i=1

[
dV
du

[
ûi(6), σh,i(αb,θ), σv,i

]]2}
(2.15)

Assuming σv ≡ 2 for the minimal visual noise standard deviation and using the learned

cocontraction data {ui(6)}, γ∗ = 0.106, θ ∗ = 2.5, α∗
b = 30 determined through a grid

search for (θ ,αb) in [0,3]× [0,40] with steps 0.5 and 1 respectively, where for each

gridpoint γ was the solution to

0 ≡ d
dγ

[
7

∑
i=1

(
dVi

du

)2
]
. (2.16)

Bayesian error minimization (BEM)

BEM was considered as a special case of OIE model with γ ≈ 0. θ ∗ = 3, α∗
b = 40 were

determined by using the same grid search as above with γ ≡ 10−5.

2.3 Experimental results

We first examined the results from a visual noise tracking experiment wherein increasing

amounts of visual noise were imposed on the target to which the subjects were elastically

guided (Fig. 2-1B). The strength of the elastic guidance was controlled by the subjects

themselves through the cocontraction of their wrist. Figs. 2-3A and 2-3B show the square

root of square error over a trial or tracking error (defined in the Methods through eq.(2.5))

and the mean cocontraction as a function of the block number, separately for each level

of visual noise.

The tracking error magnitude was large but gradually decreased over blocks (Fig. 2-3A).

The effect of training was measured by comparing the error in the first and last blocks.

A two-way repeated measures ANOVA (RANOVA) showed that both the visual noise

(p<0.001, F(3,40)=8.67) and the training (p=0.002, F(1,12)=14.34) had a significant

influence on the error. Post-hoc comparisons using Tukey’s Honest Significant Difference
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Figure 2-3: Tracking error and muscle cocontraction. Adaptation with training in
both the visual noise tracking experiment (A,B) and haptic bias experiment (C,D). The
figures show the mean values with standard error bar over all subjects of each trial in
the corresponding block. (A) The population mean tracking error and the associated
variability decreased with trials for every level of visual noise. (B) The normalised
cocontraction was initially large in the first block of trials for all visual noise conditions
and decreased with practise. The level to which the cocontraction converged was
dependent on the visual noise imposed on the target. (C) In the haptic bias experiment the
tracking error magnitude over one trial decreased with training, with higher error when
the haptic bias was greater. (D) The initial cocontraction was comparable for all haptic
bias levels, but subjects gradually learned to increase the elastic stiffness with smaller
haptic bias and decrease it with large haptic bias.

criterion (HSD) confirmed a decrease of tracking error with training for the two higher

levels of visual noise (p=0.027 and p<0.001 respectively).

We then looked at how the mean cocontraction measured over a whole trial depended on

the visual noise and the block number. The cocontraction was normalized for comparisons

between subjects. Another two-way RANOVA revealed a significant effect of both the

visual noise level (p<0.001, F(3,40)=8.3) and training (p=0.01, F(1,12)=8.9) on the

normalized cocontraction. Post-hoc comparisons confirmed that the normalized cocontraction
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in the first block was comparable across all visual noise levels, but different between

the lowest and highest visual noise levels in the last block (p=0.02). The normalized

cocontraction tended to decrease over blocks by a larger amount when the visual noise

was lower. This yielded a normalized cocontraction in the final three blocks that increased

monotonically with the level of visual noise (slope=0.0185±0.002, one-sample t-test

t(2)=13.15, p<0.006). This suggests that the CNS adapts the body’s stiffness to modify

the haptic guidance in response to visual noise on the target.

To test whether haptic sensitivity is adapted in response to the quality of the haptic

information arising from the guidance, we examined the results from a haptic bias tracking

experiment where the target was displayed without visual noise but the guidance trajectory

was shifted from the target by increasing amounts, from henceforth referred to as guidance

bias (Figs. 2-1A,C). The tracking error tended to increase with the magnitude of the

guidance bias as shown in Fig. 2-3C. A two-way RANOVA highlighted the influence of

the guidance bias (p<0.001, F(6,71)=28.44) and the training (p<0.001, F(1,12)=18.96)

on the tracking error. Post-hoc comparisons revealed a significant decline in the error

between the first and the last blocks across all bias levels. The error was also higher with

greater bias (p<0.001 comparing highest and lowest bias).
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Figure 2-4: Evolution of normalised cocontraction when tracking with haptic bias.
Cocontraction waveforms with different trajectory bias in the first (A) and last (B) blocks.
The data exhibits quicker settlement to discrete and stable levels of coactivation for
different trajectory biases in last block (2 s vs. 4 s).
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The improvement in the tracking error with guidance bias was also accompanied by an

adaptation of the wrist’s cocontraction (Fig. 2-3D). We first analyzed how the subjects

reacted to the different levels of bias by measuring the mean normalized cocontraction

in the first 200 ms (see Figs. 2-3D, 2-4). Subjects initially reacted to the guidance by

cocontracting greatly regardless of the bias (p=0.78, F(6,71)=0.44, repeated measures

ANOVA on the different bias level conditions with Greenhouse-Geisser correction). However,

the normalized cocontraction tended to decrease thereafter on trials with a large bias, and

increased on select trials wherein the bias was small, as if the CNS was modulating the

cocontraction in response to the congruency between the target and the guidance. A one-

way RANOVA confirmed that larger bias was associated with smaller cocontraction in the

last block (p<0.001, F(1,12)=153.09). It appears that the CNS also modulated the body’s

stiffness in response to the quality of the haptic guidance.

The subjects in both the visual noise and the guidance experiments improved their tracking

performance with training, and modified the body’s stiffness depending on the level of

the visual noise and the amount of bias on the guidance trajectory. Increasing visual noise

induced subjects to increase their cocontraction, in line with previous studies on learning

in unpredictable dynamic environments [29], [39]. However, large haptic noise caused a

reduction in the cocontraction, in contrast to the effect observed in unpredictable dynamic

environments [29], [39]. The CNS had seemingly learned to modify the body’s stiffness

in accordance with its effect on the tracking performance.

2.4 Statistical modelling

While learning is known to be generally accompanied by a decrease of muscle cocontraction

[30], [40], this would not explain the distinct cocontraction levels observed at the end of

the learning phase for the different visual noise conditions. Why did subjects increase

cocontraction as a function of visual noise?
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To address this question, we analyzed how the sensory information of the target’s motion

from vision and haptics was combined by the NS. We considered the tracking performance

as a linear function of the amount of visual error ev and haptic error eh:

e ≡ wh ev +wv eh , wh,wv > 0 , (2.17)

and tested four models expressing different combinations of the visual and haptic information.

The visual dependence model expresses that only information of the target’s motion from

vision is used to track the target, such that the performance is fully explained by the

reliability of vision alone (wh=1, wv=0). The haptic dependence model expresses the

converse, where haptic information alone is used to track the target (wh=0, wv=1). In the

averaging model, visual and haptic information are weighted equally to track the target

(wh =wv=1/2). The Bayesian integration model assumes that a stochastically optimal

weighted average is used to minimize the prediction error considering information from

vision and haptic sensing:

wh =
σ2

h

σ2
v +σ2

h
, wv =

σ2
v

σ2
v +σ2

h
(2.18)

with σv and σh the standard deviations of visual and haptic noise, respectively. Each

model yielded a different prediction of the task performance for a given visual noise

level and cocontraction value. By comparing the predicted task error and the empirically

measured error, we could assess which model best explained the sensory combination of

vision and haptics.

We first analyzed how each model’s predicted performance depended on the visual noise

condition (Fig. 2-5A). Unsurprisingly, the visual dependence model predicted greater

error as visual noise increased. Conversely, the haptic dependence model predicted decreasing

error with visual noise since the cocontraction was greater with higher visual noise. The

averaging model predicted a roughly constant error irrespective of the visual noise value.

35



Chapter 2 The nervous system can improve the visuo-haptic perception by optimising
muscle cocontraction

B

2 4 6 8
Trials

0.5

1

1.5

2

2.5

3

3.5

Pr
ed

ic
tio

n 
er

ro
r [

de
gr

ee
s] ImpedanceDom

Average
VisualDom
BayesianInt

+4  
-


1o 3o 5o 8o
block

2o -

1o -

3o -

1o -

2o -

3o -

pr
ed

ic
tio

n 
er

ro
r

Bayesian integration

visual 
dominance

A

0 2 4 6 8
Visual Noise Std [degrees]

1

1.5

2

2.5

3

3.5

4

Tr
ac

ki
ng

 e
rro

r [
de

gr
ee

s]
tra

ck
in

g 
er

ro
r e

A

A

A
+4  
-


1.01o 3.34o 5.67o 8.00o

+0.6 -

2.5o -

1.5o -

+0.2 -

3.5o -

visual noise standard deviation

visual 
dominance

haptic 
dominance

average

data
Bayesian 
integration

average

haptic dominance

Figure 2-5: Statistical modelling. The best model that minimised the prediction error was
the Bayesian integration of visual and haptic information. (A) The tracking performances
predicted by each model for the last block are plotted as a function of the visual
noise. With the increase of visual noise, the visual dependence model diverged from the
experimental data. In contrast, the haptic dependence model predicted large error with
low visual noise, which was different from the data. The error predicted by the Bayesian
integration model was closest to the empirical data for all levels of visual noise. (B) The
predicted error from each model is plotted as a function of the block number. In the first
block, the visual dependence model yielded the lowest prediction error. From the second
block onwards, the Bayesian integration model outperformed the others, with both the
visual dependence and the averaging models’ predictions inflating with trials. The haptic
dependence mode yielded the worst prediction.

The predicted performance from the Bayesian integration model was the nearest to the

empirical data. A two-way repeated measure ANOVA of the difference between the

model and experimental data revealed a significant influence of the different models on the

estimation (p<0.001, F(3,56)=5.75), while the effect of visual noise level had a negligible

effect. Post-hoc comparisons both confirmed the similarity of the Bayesian integration

model predicted with experimental data (p>0.1), and their difference to predictions from

the other models (p<0.001).

We then examined how the prediction error (computed as the maximum likelihood estimate

of the difference between the task error predicted by each model and the empirical error

from the experimental data) changed as a function of the trials’ blocks. The visual

dependence model yielded the smallest prediction error in the first block (Fig. 2-5B).

However, its prediction faltered in later blocks. The haptic dependence model yielded
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the worst prediction of all four models, with the prediction error growing in later blocks.

The averaging model laid in between the visual and haptic dependence models, which

indicates that the information from the two sensory channels was not weighted equally

by the NS. The Bayesian integration model was the best model in all blocks but the first.

This suggests that subjects may have relied mainly on vision in the first block to track the

target, but gradually learned to integrate haptic percepts from the second block onwards

to improve performance.

2.5 Computational adaptation mechanism

The improvements in the tracking performance could be purely due to the mechanical

effect of the guidance. To test this possibility, we simulated a computational model

according to which cocontraction is modulated to minimize the tracking error, which

explains its adaptation when interacting with various dynamic environments [41]. In this

model, the cocontraction increases with the tracking error e and decreases with each new

trial according to

unew ≡ α e+(1− γ)u , α,γ > 0 . (2.19)

Simulation of the visual noise experiment with this tracking error minimization (TEM)

model predicted an increase in cocontraction with the visual noise, corresponding to the

trend observed in the experimental data, albeit not capturing its variability (Fig. 2-6A). We

then simulated its predictions for the guidance bias experiment. The model predicted an

increase in the coactivation with the bias, opposite to what was observed in the experiment

(Fig. 2-6B). While the TEM model could capture the change in the cocontraction as a

function of visual noise, it cannot explain the results of the guidance bias experiment.

Alternatively, as suggested by our statistical modelling, the CNS may be actively modifying

the body’s stiffness to regulate its haptic sensitivity and use this information to improve

motor performance. Since the cocontraction adapted to both visual noise and the guidance

bias, it may be determined by the statistical information from vision and haptics, characterized
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by their respective standard deviations σh and σv. Specifically, cocontraction could be

adapted to minimize the Bayesian prediction error

E(u)≡
σ2

h (u) σ2
v

σ2
h (u)+σ2

v
(2.20)

that depends on the cocontraction through σh(u). Simulations with this Bayesian error

minimization (BEM) model predict an increase in the cocontraction with greater visual

noise (Fig. 2-6A) as well as smaller cocontraction with larger bias (Fig. 2-6B), corresponding

to the tendencies observed in the experimental data. However, the cocontraction in the

BEM model increases to values outside of the range observed in the experiments.

These results suggest that while the prediction error is considered by the CNS, the BEM

model misses a fundamental mechanism to regulate the overall cocontraction level. Considering

the natural tendency to minimize cocontraction during learning [40], [41], we propose that

a function consisting of the prediction error and the metabolic cost

V (u)≡ E(u)+
γ

2
u2 , γ > 0 (2.21)

is minimized. Simulations with this optimal information and effort (OIE) model exhibit an

increase in the cocontraction with greater visual noise (Fig. 2-6A), as well as a decrease in

the cocontraction with increasing guidance bias (Fig. 2-6B). Crucially, the OIE model’s

predicted normalized cocontraction corresponds accurately to those of the data with an

error of 0.02±0.01.

The OIE model further predicts how coactivation will be modulated in the presence

of both visual noise and guidance bias (blue surface of Fig.2-6C). We tested the OIE

predictive capability by conducting a third experiment where the visual noise and the

guidance bias were concurrently manipulated across trials. An aligned ranks transformation

ANOVA (ART ANOVA) with repeated measurements revealed that the normalized cocontraction

was significantly influenced by the guidance bias (p<0.001, F(1,98)=61.91), weakly influenced
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Figure 2-6: Computational modeling of adaptation to visual and haptic
perturbations. (A) The cocontraction in the last block of the visual noise experiment
is compared with the prediction of the tracking error minimization (TEM), Bayesian
error minimization (BEM) and optimal information and effort (OIE) models. (B) The
cocontraction in the last block of the guidance bias experiment is compared with the
predictions from the above mentioned models. TEM showed the opposite trend to the
data, the BEM exhibited a correct trend but with diverging values, while the results
predicted by OIE resembled the data. (C) A third experiment with concurrent changes
in visual noise and guidance bias was carried out. The protocol involved 8 blocks of 4
trials with bias and visual noise conditions corresponding to the red dots presented in
random order. The corresponding mean values and standard error are shown in black.
The OIE model (red dots on the surface) predicts an increase in cocontraction both as a
function of the visual noise and the bias. (D) Corresponding difference of cocontraction
with a larger visual noise standard deviation and smaller haptic guidance bias.

by the visual noise level (p=0.14, F(1,98)=2.16), and not affected by the training (p=0.56,

F(1,98)=0.35) (Figs. 2-6D, 2-7). Post-hoc comparisons revealed how the normalized

cocontraction increased with larger visual noise (p=0.025) and decreased with a larger

haptic bias (p<0.001). The cocontraction in this third experiment was indeed modulated

by both visual noise and bias as predicted by the OIE model (Fig. 2-6C), a testament to

its predictive power.

39



Chapter 2 The nervous system can improve the visuo-haptic perception by optimising
muscle cocontraction

0

0.2

0.4

0.6

0.8

1

cocontraction
15 subjectsno
rm

al
is

ed
 c

oc
on

tra
ct

io
n

co
co

nt
ra

ct
io

n


0.2 -

0.4 -

0.8 -

0.6 -

0 -

1.0 -1 -

6.7o visual noise deviation
no noise

 1.5o   
obias - -

 - 
-

8.5o  

bias ..…
.
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the 15 subjects taking part in the experiment with concurrent changes in visual noise and
guidance bias, the cocontraction increased with visual noise while the larger haptic bias
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2.6 Discussion

While haptic sensing is used to guide actions, here we show that the brain can take an

action to improve haptic sensing of the environment. Our experimental results reveal

that the brain activates muscle groups to modify the arm’s compliance, making it stiffer

when better haptic sensing could improve task performance. Past studies have shown

how the CNS controls the body’s stiffness to shape the mechanical interaction with the

environment [29], [42], [43], and morphological computation has analysed how the biomechanical

design in animals facilitates their functions [24], [44]. Different from these motor and

morphological adaptations, our results provide the first evidence that the CNS can actively

control the body’s stiffness to regulate its haptic sensitivity.

The computational mechanism of adaptive sensing introduced in this chapter suggests

that the brain tries to maximize information from vision and haptics while minimizing

energetic costs. The association of sensory modalities and their stochastically optimal

integration has been reported in numerous studies [16], [19], [20], whereby the reliability
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of each sensory input was manipulated externally by the experimenter. In contrast, the

haptic sensitivity in our experiment was actively controlled by the subjects themselves

through the strength of the guidance.

While previous studies have provided qualitative evidence of humans spontaneously adapting

their sensors’ acuity to improve perception when undertaking physical interaction tasks

[45]–[47], we could quantify the performance improvement resulting from the reduction

in haptic noise as a consequence of greater body stiffness or cocontraction. Importantly, to

obtain these results, it was necessary to subtract the mechanical guidance from the haptic

percept. The haptic tracking control experiment enabled us to isolate the mechanical

effect of the haptic guidance on the tracking performance, and then deduct it to determine

how the haptic percept was influenced by the limb’s cocontraction.

The optimisation of mechanical properties observed in our study may contribute to the

performance benefits observed when physically connected pairs carry out a common task

[48]. Cocontraction may be tuned to improve sensing of the partner’s movement [15], thus

enabling faster learning and improved assistance. The increase of visuo-haptic accuracy

observed in our experiment may also explain why increasing the body’s stiffness can

speed up the acquisition of internal models of novel dynamics [49].

Recent models [50], [51] clarified how major characteristics of motor memory correspond

to the minimisation of motor error and its history. These models however do not possess a

mechanism to deal with muscle stiffness so cannot explain our results nor those from [29].

On the other hand, a range of experimental evidence from arm movements carried out in

various spatial, temporal and dynamic conditions suggest that planned actions minimise

task error and metabolic cost in the presence of motor noise [41], [52]–[54]. However,

these studies did not consider sensory noise and its influence on the cost function. Our

study provides evidence that the CNS also considers noise in the sensory signals and

voluntarily controls the muscle activation to minimise task error and metabolic cost. The
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CNS adapts the motor commands to improve visuo-haptic perception through an optimal

trade-off of information and energy.
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Summary

The information emerging from haptic interactions depends on the body features and is

shaped by the perception-actuation loop. While it is recognised that the brain exploits

the body dynamics to ease control and facilitate perception, it is not clear whether and

how it would compensate when the body morphology and the muscle activation patterns

are undermining performance in a given task. In this chapter, we investigate the human

capability of thoughtfully modulating body properties to deal with the haptic information

originating from physical interaction. A continuous tracking experiment in which the

subjects motion is hindered by local haptic perturbations was carried out. The subjects

could control the interaction compliance using the coactivation of a wrist antagonist

muscles pair. We observed that subjects adapted their wrist activation pattern and cocontraction

magnitude to cope with perturbations of variable intensity. The results confirmed an

active regulation of the wrist viscoelasticity to reduce the tracking error. The CNS can

selectively adjust muscle impedance to tune haptic interactions with the environment by

learning a novel activation strategy.

Contribution Statement

The content of Chapter 3 has been developed by Gerolamo Carboni, with the contribution

of Atsushi Takagi and Etienne Burdet.

The contributions are as follows:
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• GC, AT, EB conceptualised the experiment.

• GC carried out the experiment.

• GC performed the data analysis.

3.1 Introduction

The central nervous system integrates the information flow of sensory stimuli to plan

and perform consecutive motor responses which, in turn, alter the available information

[55]. The mutual relationship entangling sensory inputs and motor commands with the

surrounding environment is defined perception-actuation loop [23] and it is built through

an enactive approach [56]. When guided by a dog, should one rigidly hold the leash to

best know where it is going, or relax to filter its movement jerk? Previous studies on

interacting with unpredictable dynamics [29], [39] suggest that one may stiffen the limbs

to attenuate the disturbance. On the other hand, being rigidly connected could inject more

noise into the system, or may provide more accurate information about its movement

[15]. If one’s motion is perturbed, such as when a dog abruptly pulls the leash so that

the owner’s arm reaches the limit of its range of motion, despite the intrinsic dynamics

of a physical system can be exploited to facilitate the control of the system itself [24], an

increase in cocontraction due to the joined action of reflexes and muscle mechanics [31]

would disturb the owner’s motion.

The results presented in Chapter 2 show that the CNS is able to adapt muscle cocontraction

in order to attenuate the effect of a uniform displacement while dealing with the accuracy

of visual and haptic information in an optimal fashion. As a following step, here we

investigate to which extent the CNS can adapt the muscle activation to improve task

performance when the required activation pattern is opposite to the one naturally framed

by the muscle mechanics.
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For this purpose, we developed a paradigm in which subjects tracked a visual target while

being elastically connected to it. Subjects were required to track a complex but smooth

function with wrist flexion/extension movement while the elastic force provided by the

robotic interface was designed to hinder their performance through local impulsive haptic

disturbances: tailored displacements of the elastic force reference were produced around

the visual target’s changes of direction (Fig. 3-1A), thus generating large acceleration and

deceleration associated to a high level of cocontraction [57]. We thoughtfully investigated

how the subjects deal with a trade-off between gaining target trajectory related information

and attenuating the effect of perturbation. Also in this case, the experiment population

could control the band elasticity by cocontracting the same pair of wrist muscles involved

in tracking. Would subjects increase cocontraction to better use motion guidance, relax

to attenuate the effect of haptic noise or combine the two behaviours as more convenient?

As a consequent question, would they modify their muscle activation strategy, defined as

muscle cocontraction timing and magnitude, to improve task performance?

Our first hypothesis is that the cocontraction would increase in magnitude when the

haptic feedback is assisting the task completion and would attenuate for filtering out the

noise otherwise. Given what we have observed in Fig. 2-4, where the local increase

of cocontraction was the outcome of a change in tracking direction, the experiment was

planned to deliver impulsive disturbances at the timing in which the users’ muscle activation

is the highest. Therefore, our second hypothesis is that the tracking strategy would adapt

to reduce the noise impact, thus updating well established muscle activation patterns for

boosting performance.

3.2 Methods

3.2.1 Subjects and experimental setup

The experiment was approved by the Research Ethics Committee of Imperial College

London and carried out by 8 subjects (4 females) without known sensorimotor impairment
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aged 25.62±3.16 years old. Two subjects were left-handed. Each subject was informed

about the experiment, gave informed consent, and filled in the Edinburgh handedness

form [36] as well as a demographic questionnaire before starting with the experiment.

Subjects carried out the experiment individually and each of them interacted with a single

handle of the Hi5 dual robot [37], which is a 1-DOF flexion/extension wrist interface that

can be controlled by both a human subject or robotic controller (Fig. 3-1A). The Hi5

interface was controlled at 1000 Hz, while wrist angle data was recorded at 100 Hz.

3.2.2 Muscle activation calibration and cocontraction computation

Surface electrodes were used to record EMG activity from the FCR and the ECRL muscles.

This was calibrated through a process in which subjects were asked to flex/extend their

wrist while their wrist was locked by the device at 0◦, the subject’s most comfortable

position. The subject was asked to produce flexion and extension torques of 1, 2, 3 and 4

Nm for 2 s, first flexion then extension, with a rest period of 5 s between each activation

to prevent fatigue. This EMG data was linearly regressed versus torque to estimate the

relationship between muscular activity and torque. Then cocontraction was computed as

u(t)≡ min{τ f (t),τe(t)} . (3.1)

where τ f (t) and τe(t) are the (absolute) flexor and extensor torque, computed from the

respective EMG signals. The average cocontraction over all subjects was computed from

each subject’s normalised cocontraction, calculated as

un ≡
u−umin

umax −umin
, u ≡ 1

T

∫ T

0
u(t)dt , T = 20s (3.2)

with umin and umax the minimum and maximum of the means of all trials of the specific

subject.
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Figure 3-1: Experimental framework for local perturbations. (A) The subject uses
wrist flexion/extension to track a sharp visual target while coupled with the haptic target
characterised by an increasing haptic disturbance respectively for β ∈ {0,2.5,5}. The
perturbations occur at about the moment in which the target changes direction. The
black dashed line represents the user’s visual target, corresponding to null mismatch. (B)
Protocol for the experiment consisting in 3 randomised sets of 18 consecutive trials each.

3.2.3 Experimental protocol

Each subject was asked to track a visual pseudo-randomly moving target, being displayed

on a screen in front of the user, “as accurately as possible” by using the wrist flexion/extension

of their dominant hand. The target trajectory (in degrees) was given by

q∗(t)≡ 12.7 sin
(

πt∗

2.547

)
sin
(

πt∗

3.875

)
, t∗ ≡ t + t0 , 0 ≤ t ≤ 20s (3.3)

with t∗ starting in each trial from a randomly selected zero {t0 ∈ [0,20]s | q∗(t0) ≡ 0},

while being connected by the elastic force of equation (2.6) to

qh(t)≡


q∗(t) |q̈∗(t)|< ξ ≡ 35◦/s2

q∗(t)−β sign[q̈∗(t)] (|q̈∗(t)|−ξ ) .

(3.4)
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This experiment investigates the adaptation to a local haptic perturbations profiled for

hindering the tracking when the target changes direction and supporting it elsewhere (Fig.

3-1A). The visual reference trajectory has been slowed down when compared to the one

proposed in Chapter 2 with the purpose of facilitating the subjects in finely controlling

their muscle activation while tracking. This precaution has occurred after noticing that

the subjects capability to modulate cocontraction within a trial was limited by the minimal

activation due to keep it up with the tracking. The tracking performance, being displayed

on the monitor at the trial’s completion, was evaluated using the tracking error introduced

with equation (2.5), where q(t) denotes the joint angle of the interface at time t.

The experiment protocol is described in Fig. 3-1B and consists of a total 62 trials. In

the initial free phase, each subject attempted 8 tracking trials without haptic feedback to

familiarise with the task and minimise subsequent learning effects. It was followed by a

54 trials interaction phase split into 3 set of trials. Each set consisted of 18 consecutive

trials with one of the three disturbances set by β ∈ {0,2.5,5}, where the three sets were

carried out in random order by the different subjects.

3.3 Experimental results

For an exhaustive examination of the adaptation taking place withing the experiment,

the measurements collected over time across the experimental blocks and the mean of

the initial and final 6 block, are presented for each experimental condition. Given the

limited number of subjects available for this experiment, non-parametric analyses were

preferred over parametric ones when the data distribution was not normal. The statistical

analyses presented in this section are therefore exact sign-test or paired-sample t-test for

single pairs of observations and Freedman test or two-way repeated measures ANOVA

when considering the effect of learning and the haptic condition as factors. The statistical

significance was set at 5% with Tukey’s HSD correction for all post-hoc comparisons.
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Figure 3-2: Tracking error and muscle cocontraction adaptation. (A) Mean tracking
error values over blocks for the different haptic conditions. The performance improves
with learning across perturbations of different magnitude. (B) Mean normalised muscle
cocontraction over blocks for the different haptic conditions. The cocontraction increases
for assistive haptic feedback and decreases when hindered by local perturbations. (C)
Subject’s average tracking error for the first (green lines) and the last (yellow to brown
lines) experimental trials of each condition. The error drops around the turning points and
increases in between. (D) The corresponding mean cocontraction adaptation. The muscle
activation shrinks with learning in correspondence of local disturbances.

We initially analysed the tracking performance, presenting the subjects’ mean tracking

error and error deviation as function of the blocks number for the different haptic noise

levels (see Fig. 3-2A). Since the very first trial of interaction, the perturbation magnitude

was found to hinder the tracking performance in respect to the last free trial (Freedman

non-parametric test, χ2(3)=18.45, p<0.001) with the exception of β=0, as confirmed by

post-hoc comparison (p=1). The subjects improved their tracking while practicing the task
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as indicated by a negative error slope (paired-sample t-test, t(7)=-3.15, p= 0.0160 for β=0;

t(7)=-2.78, p=0.027 β=5). The performance analysis showed an after-training reduction

of tracking error independent of the perturbation level (exact sign test between first and

last block, p=0.0015). The tracking error in the last block was similarly affected by the

haptic noise injected in the system (χ2(3)=24, p<0.001). The post-hoc tests indicated

a difference in the tracking performance for each combination of haptic conditions but

when comparing the last free trial with β=0 and β=2.5 with β=5 (p=0.41).

In order to get an insight into the relationship between task performance improvement

and muscle activation, we examined the mean cocontraction modulation over blocks (Fig.

3-2B). For an accurate and unbiased comparison among the population, cocontraction

was normalised with respect to each subject’s individual maximal recorded voluntary

activation. The experimental data revealed that the cocontraction magnitude scaled up

with respect to the last free trials after the introduction of haptic perturbations in the

first block, as predicted by spontaneous disturbance minimisation through impedance

control (χ2(3)=15.45, p=0.0015; post-hoc analysis among interaction trials, p>0.76).

Importantly, the last block of trials showed higher muscle cocontraction than the initial

block in the case of null displacement at the turning points (β=0) and an homogeneous

decrease in activation for β ∈{2.5,5}, therefore suggesting an updated interaction modulation.

A significant proof of task adaptation can emerge from the comparison of cocontraction

slopes across experimental blocks for the three proposed haptic scenarios (paired-sample

t-test, t(7)=2.42, p=0.046 for β=(0,2.5); t(7)=9.53, p<0.001 for β=(0,5); t(7)=-0.27,

p=0.79 for β=(2.5,5)). Coherently with our first hypothesis, the subjects were able to

adapt their cocontraction to the local disturbances by increasing the cocontraction magnitude

for assistive haptic feedback and decreasing it otherwise, thus confirming the trend discussed

in the previous chapter.

As a following step in understanding the decrease of tracking error between the initial and

final blocks for each experimental condition, the tracking profiles were inspected (Fig. 3-
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2C). The improvement in performance appears to be a consequence of the error decreasing

around the visual target turning points. The average error decreased by 0.42◦, 0.59◦

and 1.71◦ for growing perturbation amplitude (paired-sample t-test, t(7)=4.06, p=0.005

for β=0; t(7)=2.19, p<0.064 for β=2.5; t(7)=3.12, p=0.017 for β=5). Interestingly,

for post-training trials the mean tracking in between consecutive turning points became

less accurate of respectively 0.11◦ and 0.33◦ for β ∈ {2.5,5} when compared with the

initial block. Conversely, on average the task execution still improved of 0.34◦ for β=0

(t(7)=2.91, p=0.022). Could these results be explained as the outcome of an updated

cocontraction strategy? The wrist muscle activation for the same trials was hence examined.

As we see in Fig. 3-2D, with practice the muscle activation was finely controlled to

attenuate perturbations. The normalised cocontraction pattern when connected to local

disturbacnces was initially above the cocontraction level characterising an assistive coupling

of 0.11 and 0.13 for β ∈ {2.5,5} (see light and dark green lines in Fig. 3-2D) and

accordingly decreased lower to this level of about 0.12 and 0.10 (brown lines in Fig.3-2D,

χ2(2)=2242, p<0.001). Moreover, the patterns characterising activation in both solo and

unperturbed trials (β=0) differ in shape when compared with the corresponding perturbed

trials: since the first interacting block we could find signs of adaptation to the hindering

coupling in the rise of the cocontraction frequency across the different experimental

conditions ( f ∈ {0.05,0.15,0.10,0.65}Hz, Fast Fourier Transform for last free trial and

increasing values of β respectively).
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Figure 3-3: Cocontraction correlation with perturbation patterns. (A) Normalised
cross-correlation between cocontraction minima and perturbation maxima in the final
block. (B) Temporal lag between cocontraction and perturbation patterns for maximising
the inverse correlation.

Fig. 3-3 shows that, in particular after learning, the minima of the cocontraction correlate

with the perturbation maxima. Cross-correlations analyse the relationship between the

perturbation dynamics and the subject’s concurrent cocontraction. It was calculated as

the time lag at which the correlation between the target and subject’s positions was the

lowest. A normalised cross-correlation exhibits mean correlation values of -0.07, -0.30

and -0.32 for β ∈ {0,2.5,5}. The cross-correlation delay was of about 2s for β=0,

being thus compatible with the visual target oscillations. The value settled at about

1s when the disturbance was delivered in an attempt to cocontract in antiphase with

the trajectory motion. Figs. 3-4 A, B provide a more detailed outlook of how the

cocontraction strategy is updated by comparing the averaged first six and final six blocks

of interaction for a representative subject. From this point on, the results description will

only consider β ∈ {0,5} given the correlation between β=(2.5,5) (Pearson correlation

coefficient: r(7)=0.88, p<0.001). In addition to the change in muscle activation intensity,

Figs. 3-4C, D highlights a non-trivial tuning of the cocontraction minima and maxima

with respect to the perturbations’ onsets. While there is not significant difference in

the timing of muscle cocontraction among early and late trials minima (t(10)=-0.36,
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Figure 3-4: Cocontraction adaptation: averaged results for a single representative
subject. (A) Normalised cocontraction pattern of a representative subject in the first
six and last six blocks for β=0. Each couple of black dashed vertical lines represents
the perturbations onset and ending. The activation pattern is tuned with learning and
scales up in intensity. (B) Normalised cocontraction pattern of a representative subject
in the first six and last six blocks for β=5. The cocontraction magnitude drops after
task adaptation. (C) Delay of cocontraction minima (circles) and maxima (squares) with
respect to the perturbations onset in the first six (in green) and last six (in yellow) blocks
for β=0. The data points represent the subject behaviour with respect to each of the
11 perturbations characterising a trial. The cocontraction delay broadens for activation
minima without substantially changing with learning. (D) Delay of cocontraction minima
and maxima with respect to the perturbation onset in the first six (in green) and last six
(in brown) blocks for β=5. The cocontraction keeps a consistent activation delay pattern
while compacting the delay distribution around zero for the late blocks minima.

p=0.72), maxima t(10)=-0.10, p=0.92) and in between them (t(21)=1.96, p>0.078) when

connected to an unperturbed trajectory, since early trials with local perturbations the

subject learned to relax just before the perturbation onset and to cocontract again soon

afterwards (t(10)=-24.85, p<0.001). This behaviour is strenghten by extra practice (t(10)=-

50.24, p<0.001).
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Figure 3-5: Cocontraction adaptation: averaged population results. (A) Normalised
cocontraction minima (circles) and maxima (squares) with respect to the perturbation
onset in the first six (in green) and last six (in yellow) blocks for β=0. The data points
represent the individual subjects’ mean behaviour averaged over the 11 perturbations
characterising a trial. The normalised cocontraction is increased with training when
coupled with an helpful haptic feedback. (B) Cocontraction delay with respect to the
perturbations onset for β=0. The cocontraction delay does not mutate with training.
(C) Normalised cocontraction minima (circles) and maxima (squares) with respect to
the perturbation onset in the first six (in green) and last six (in brown) blocks for β=5.
The cocontraction decreases with learning, as an attempt to mitigate the perturnation
effect. (D) Delay of cocontraction with respect to the perturbation onset for β=5.
The cocontraction delay is skewed with most of subjects trying to relax before the
perturbation starts and then cocontracting afterwards. This effect becomes more consistet
with learning.
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The subjects general behaviour was found to be consistent with the proposed individual

trend. Fig. 3-5A shows that the normalised cocontraction when coupled to the assistive

guidance is increased for both minima and maxima (F(1,7)=66.61, p<0.001) with training

(F(1,7)= 7.92, p=0.025) as confirmed with a two-way RANOVA. A significant interaction

effect was found between cocontraction modulation and learning (F(1,7)=17.69, p=0.004).

Conversely, no significant difference was found in the cocontraction timing between

minima and maxima for both early and late trials (Fig. 3-5B). When considering β=5, the

normalised cocontraction displays higher maxima and lower minima than the previously

examined ones (Fig. 3-5C). Another two-way RANOVA confirmed the cocontraction

being decreased with learning (F(1,7)=50.45, p<0.001), thus showing a significant reduction

in activation before and after the perturbation onset (F(1,7)=15.52, p=0.005). Importantly,

the cocontraction delay settled in two clusters (F(1,7)=4.89, p=0.062) with the subjects

relaxing closer to the disturbance onset and increasing again muscle activation after its

decay (Fig. 3-5D). Post-hoc comparisons supported the idea of a synchronisation to the

perturbation with a significant difference in relaxations delay (p=0.012).

3.4 Discussion

The muscle activation evolution over time presented in the guidance bias experiment of

Chapter 1 suggested that higher cocontractions were associated with tracking around

the visual target changes of direction. The subjects stiffened their wrist conspicuously

when the wrist run was approaching the end of its flexion/extension range of motion [31].

While for this task the wrist anatomy naturally helped in stabilising tracking when most

needed, what would happen when the muscle mechanics is negatively affecting the task

accomplishment?

In this chapter we explored whether humans could consciously reshape the muscle activation

pattern established by their body morphology when helpful to improve their performance

in a given task. To this purpose, we implemented a cocontraction dependent perturbation

during the target’s direction reversals. The results showed that subjects could reduce
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their tracking error with training as consequence of a modified cocontraction muscle

activation. Subjects relied more on the haptic reference when supportive and reduced their

coupling when interfering with the task. They further learned to relax when approaching a

perturbation and to cocontract again soon afterwards. This voluntary coupling modulation

steamed from and updated activation strategy developed to maximise useful interactions

and to minimise disturbances, as highlighted by the negative after-learning cross-correlation

between cocontraction minima and perturbation maxima.

Altogether, these results further indicate that subjects can actively tune the coupling

dynamics with the environment to maximise haptic information during physical interaction.

In particular, the CNS modulates the body’s mechanical impedance to enhance haptic

sensing, thus filtering the useful kinesthetic information coming from the interaction in

order to stochastically weight haptic information subjected to noise [15], [16], [20], [58].

Hence, the ability to fine-tune the interactional information may be a common factor

in all interactive tasks and could determine how subjects use this information to their

advantage. Critically, this study showed evidences of robust adaptation in humans with

the CNS capability to take advantage of adaptive sensing not fading when constrained by

body morphology and well established task dependant muscle activation patterns.
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regulate muscle cocontraction to improve

visuo-haptic perception

Summary

When moving a piano or dancing tango with a partner, how should I control my arms to

best feel my partner’s movements and follow or guide them smoothly? In our study, we

observed that physically connected pairs of subjects tracking a common target adapted

the compliance of their wrists depending on both own and the partner’s performance. The

wrist’s rigidity, as measured by muscular cocontraction, was more compliant when vision

was blurred, and stiffened when the partner’s performance was worse. Computational

modelling revealed that this cocontraction adaptation cannot be explained by the movement

error minimization proposed in earlier models. Instead, individuals skilfully regulate

the arm’s compliance to guide it along the planned motion while minimizing effort and

gathering relevant haptic information from the interacting partner. The CNS regulates

muscle cocontraction to guide motion by extracting maximal task information from vision

and haptics while concurrently minimizing energy.

Contribution Statement

The content of Chapter 4 has been developed by Gerolamo Carboni∗, with the contribution

of Hendrik Börner∗, Xiaoxiao Cheng∗, Atsushi Takagi, Sandra Hirche, Satoshi Endo and
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Etienne Burdet.

The contributions are as follows:

• GC, HB, SH, EB conceptualised the experiment.

• GC, HB carried out the experiment.

• GC, HB, AT, SE, EB performed data and statistical analysis.

• GC, HB, XC, EB developed the computational modeling.

• GC, HB, XC, AT, SH, SE, EB have edited the text and agree with its content.

This chapter’s content has been submitted to Science Advances as: H. Börner∗, G. Carboni∗,

X. Cheng∗, A. Takagi, S. Hirche, S. Endo and E. Burdet. “Physically interacting humans

regulate muscle cocontraction to improve visuo-haptic perception”.

* equal contribution

4.1 Introduction: Why and what we do?

Human muscles are elastic elements that increase stiffness and shorten with activation

[57]. While it was shown that the CNS regulates the limbs’ stiffness by coordinating

muscles’ activation to shape the interaction with the environment [27], [29], [41], [42],

how this affects haptic sensing is not known. When two connected individuals carry out

a task together, such as when moving a piece of furniture or sharing the control of an

old-school aircraft through a rigid cross-cockpit linkage [59] (Fig. 4-1A), they exchange

haptic information about their motion plan to combine with own visual information and

improve their accuracy [48]. During these physical interactions, it is unclear whether one

should keep the arm relaxed or compliant so that can correct the motion more readily, or

if one should cocontract its muscles and stiffen the arm for guiding the partner along

its planned movement. As the quality of this haptic communication varies with the
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connection stiffness [15], could humans regulate muscle cocontraction to adapt their limb

stiffness and better sense the partner’s movement?

To investigate how physically connected individuals adapt their limbs cocontraction, we

observed 22 connected pairs of subjects or dyads tracking a common randomly moving

target using wrist flexion and extension (Fig. 4-1A). The target observed by each partner

on an individual monitor was either sharp and precise (a 8 mm large disk) or noisy (a

dynamic cloud of 8 normally distributed dots). We analyzed the tracking performance

and wrist cocontraction of each partner in four conditions: sharp (self) - noisy (partner)

(SN), sharp - sharp (SS), noisy - sharp (NS) and noisy - noisy (NN) as described in the

Methods section 4.2. The experiment was carried out as a within-subject design with these

four interaction conditions randomly presented in a block of ten trials per condition (Fig.

4-1B). The forty interaction trials were preceded by five solo trials without interaction

with the partner to learn the task, and followed with five solo trials.

Studies on the adaptation to unpredictable force fields [29], [39] suggest that muscle

cocontraction would increase with the tracking error magnitude [41] independent of its

source. However, in line with the results presented in the previous chapters, we first

hypothesize that in our experiment the subjects would be able to adapt their muscle

cocontraction to the level of visual noise in their own target and to haptic noise resulting

from the interaction with the partner (with their own visual noise). Furthermore, it was

observed in [60] that subjects cocontract with increased accuracy constraints. Therefore,

our second hypothesis is that in presence of visual noise making it harder to ensure

accurate tracking the subjects would increase cocontraction. Finally, we expected that

the subjects would filter out the noise from a partner receiving fuzzy visual feedback of

the task by reducing cocontration. Therefore, our third hypothesis is that cocontraction

would decrease if the partner’s target had more noise.
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noisy

noisy

Figure 4-1: Schematic of the experimental task and modeling. (A) The two partners
tracked the same randomly moving target with their wrist flexion-extension movement
while being connected with a rigid virtual bar. Their wrist flexion/extension movement
was recorded, as well as the myoelectrical activity of a flexor-extensor muscle pair.
(B) Protocol of the experiment to study the effect of visual noise on either partner on
performance and cocontraction. (C) Mechanical modeling of the interaction with the
partner and with own movement plan. Both own and the partner movement plans are
affected by the respective visual noise. The interaction with the partner’s hand depends
on the stiffness of the connection to their motion plan modulated by their cocontraction u.

4.2 Methods

4.2.1 Subjects and experimental setup

The experiment was approved by the Joint Research Compliance Office at Imperial College

London. A total of 44 subjects without known sensorimotor impairments, aged 18–37

years, including 16 females, were recruited. Each subject gave written informed consent

prior to participation. The majority of subjects were right-handed (37/44), as was assessed

using the Edinburgh Handedness Inventory [36]. The subjects carried out the experiment

in pairs or dyads, with 14 male-male dyads and 8 female-female dyads. The two subjects
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of a dyad were seated comfortably on height-adjustable chairs, next to the Hi5 dual

robotic interface. The system consists of two 1 DoF flexion/extension wrist interfaces

where the subjects can lean their arms and easily hold a handle. This unique bilateral

manipulandum-to-manipulandum system allows the two subjects to exchange interaction

torques through the handle that each of them holds with their dominant wrist, as shown

in Fig. 4-1A (further details on the Hi5 dual robotic interface can be found in [37]). A

personal monitor placed in front of each subject provided them visual feedback of the task

with a cursor indicating their own wrist position (Fig. 4-1A). No visual feedback of the

partner’s position was available as the two subjects were separated by a curtain, and they

were instructed not to speak to each other during the experiment.

Each Hi5 handle is connected to a current-controlled DC motor (MSS8, Mavilor) that

can exert torques of up to 15 Nm, and is equipped with a differential encoder (RI 58-O,

Hengstler) to measure the wrist angle and a (TRT-100, Transducer Technologies) sensor

to measure the exerted torque in the range [0,11.29] Nm. The two handles are controlled

at 1 kHz using Labview Real-Time v14.0 (National Instruments) and a data acquisition

board (DAQ-PCI-6221, National Instruments), while the data was recorded at 100 Hz.

The activation of two antagonist wrist muscles, FCR and ECRL were recorded during

the movement from each subject. EMG signals were measured with surface electrodes

using the medically certified g.Tec’s g.LADYBird&g.GAMMABox&g.BSamp system.

The EMG data was recorded at 100 Hz.

4.2.2 Tracking task

The two partners were required to track the same visual target (in degrees) moving with

q∗(t)≡ 18.5 sin
(

π t∗

1.547

)
sin
(

π t∗

2.875

)
, t∗ ≡ t + t0 , 0 ≤ t ≤ 20s (4.1)

as accurately as possible using flexion-extension movements (Fig. 4-1A). To prevent

the subjects from memorising the target’s motion, t∗ started in each trial from a randomly
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selected zero {t0 ∈ [0,20]s | q∗(t0)≡ 0} of the multi-sine function. The respective tracking

error

e ≡
(

1
T

∫ T

0
[q∗(t)−q(t)]2 dt

) 1
2

, T ≡ 20s (4.2)

was displayed at the end of each 20 s long trial.

After each trial, the target disappeared and the subjects had to place their respective cursor

on the starting position at the center of the screen. The next trial then started after a 5 s

rest period and a 3 s countdown. The initialization of next trial started when both subjects

placed their wrist on the starting position, so that each subject could take a break at will

in between trials, by keeping the cursor away from the center of the screen.

4.2.3 Experimental conditions and protocol

In solo trials, the two partners moved the wrist independently to each other. In interactive

trials, the partners’ wrists were connected by a stiff virtual spring with torque (in Nm)

τ(t) = 17.2 [qp(t)−qo(t)] , (4.3)

where qo and qp (in radians) denote own and the partner’s wrist angles. As the tracking

errors of the two partners of a dyad were strongly correlated (r(20)=0.95, p<0.0005), the

average tracking error between them was used in the data analysis.

The interaction trials were carried out under two different visual feedback conditions. In

the sharp condition the target visual was displayed as a single 8 mm diameter disk. In

the noisy condition the target trajectory was displayed as a “cloud” of eight normally

distributed dots around the target. The cloud of dots were defined by three parameters,

randomly picked from independent Gaussian distributions: the vertical distance to the

target position η ∈ N(0, 15 mm), the angular distance to the target position ηq ∈ N(0, 4.58◦),

and the angular velocity ηq̇ ∈ N(0, 4.01◦/s). Each of the eight dots was sequentially

replaced every 100 ms.
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A calibration of the measured EMG (described in Section 4.2.4) was first carried out to

map the raw EMG signal (in mV) to a corresponding torque value (in Nm), so that the

activity of each subject’s flexor and extensor’s can be compared and combined in the data

analysis. After this calibration, the subjects carried out 5 initial solo trials to learn the

tracking task and the dynamics of the wrist interface. This was followed by 4 blocks

of 10 interaction trials, each with one of the different noise conditions {noisy (self)-sharp

(partner), SN, SS, NN} presented in a random order, followed by 5 control solo trials (Fig.

4-1B). The subjects were informed when an experimental condition would be changed but

not which condition would be encountered in the next trials.

4.2.4 Muscle activation calibration and cocontraction computation

The subjects placed their wrist in the most comfortable middle posture, set to 0◦. Constrained

at that posture, they were then instructed to sequentially (i) flex or extend the wrist to

exert a torque, or (ii) maximally co-contract in order to keep the wrist position stable

during a 3 Hz sinusoidal positional disturbance of 10◦ amplitude. Each phase was 4 s

long and was followed by a 5 s rest period to avoid fatigue. The latter period was used as

a reference activity in the relaxed condition. This procedure was repeated four times at

flexion/extension torque levels of {1,2,3,4}Nm and {-1,-2,-3,-4}Nm, respectively. For

each subject, the recorded muscle activity was then linearly regressed against the torque

values to estimate the relationship between them. The raw EMG signal was first high-

pass filtered at 20 Hz using a second-order Butterworth filter to remove drifts in the EMG

signal. This was then rectified and passed through a low-pass second-order Butterworth

filter with a 5 Hz cut-off frequency to obtain the envelope of the EMG activity.

The torque of the flexor muscle could then be modelled from the envelope of the EMG

activity u f as

τ f (t) = α0 u f (t) + α1 , α0,α1 > 0 , (4.4)
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and similarly for the torque of the extensor muscle τe. Muscle cocontraction was then

computed as

u(t)≡ min{τ f (t),τe(t)} . (4.5)

The average cocontraction over all subjects (as shown in Fig. 4-3) was computed from

each subject’s normalised cocontraction, calculated as

un ≡
u−umin

umax −umin
, u ≡ 1

T

∫ T

0
u(t)dt , T ≡ 20s (4.6)

with umin and umax the minimum and maximum of the means of all trials of the specific

subject.

4.2.5 Simulation of tracking error minimization (TEM)

For each of the 4 noise conditions (i, j)∈{SS, SN, NS, NN}, the initial cocontraction

level {ûi, j(1)} was set as the initial experimental value {ui, j(1)}. Then, by using the

respective trial-by-trial tracking error {ei, j(k)},k = 1, ...,10 from the experiment, the

adaptation parameters α,γ in the computational model of eq.(4.14) were computed to

minimize the error between the learned cocontraction values after 9 iterations {ûi, j(10)}

and the corresponding data {ui, j(10)} in last experiment’s trial:

(α∗,γ∗)≡ argmin
α,γ

{
∑
i, j

[
ûi, j(10)−ui, j(10)

]2}
. (4.7)

The parameters α∗ ≡ 0.5,γ∗ ≡ 0.06 were found by using a grid search with a step 0.01 in

the range [0,2]× [0,1.5].

4.2.6 Simulation of planning noise minimization (PNM)

Using the standard deviation of own visual noise σo ∈ {0,4.58◦} in each noise conditions,

the adaptation parameters α , ζ , γ in the computational model of eq. (4.15) were identified

that minimize the error between the learned values {ûi, j(10)} and the last trial’s data
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{ui, j(10)}:

(α∗,ζ ∗,γ∗)≡ argmin
α,β ,γ

{
∑
i, j

[
ûi, j(10)−ui, j(10)

]2}
. (4.8)

The parameters α∗ ≡ 0.01 , ζ ∗ ≡ 0.1 , γ∗ ≡ 0.2 , were determined by using a grid search

with a step 0.01 in the range [0,2]× [0,2]× [0,1.5].

4.2.7 Simulation of optimal information and effort (OIE)

A gradient descent optimisation was used to minimize the prediction error and effort

V (u) = E(u)+ 1
2γu2 with E(u) defined in eq. (4.16). Muscle cocontraction was updated

trial after trial using:

unew = u− dV (u)
du

= −dE(u)
du

+ (1− γ)u ,

−dE(u)
du

=

[
σ2

p

σ2
o +σ2

p

]2[
−dσ2

o (u)
du

]
> 0 .

(4.9)

The target tracking arises from the guidance to the planned motion and the mechanical

connection with the partner, with both being subjected to the noise in the individual’s

visual feedback (Fig. 4-1C). How should σo be modelled? Let σvo describe the tracking

deviation of own wrist movement due to the target cloud. The wrist’s compliance also

affects the tracking performance and adds to this noise in the planned movement [15].

Assuming that these two effects are independent and that the wrist’s viscoelasticity results

in zero mean noise with deviation σκo(u), the deviation in the wrist can be calculated as

σ
2
o (u) = σ

2
vo + σ

2
κo(u) . (4.10)

The effect of the connection noise was identified in [61] from a tracking experiment in

which subjects were guided only from haptic feedback (thus without visual feedback), as

σκo(u) = ξ0 + ξ1 e−βκ u
ξ0, ξ1, βκ > 0 (4.11)
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with ξ0 = 5.18, ξ1 = 49.65, βκ = 6.11.

In the experiment, own visual noise and the partner’s noise on the wrist movement each

have two values, resulting in four parameters to identify for each model: {σ
(0)
vo ,σ

(n)
vo ,σ

(0)
p ,σ

(n)
p },

where (0) represents the clean target while (n) corresponds to the cloud target. These

parameters, used in the noise models of eqs.(4.10, 4.11), were computed by minimizing

the variation of the cost derivative:

(
σ
(0)∗
vo ,σ

(n)∗
vo ,σ

(0)∗
p ,σ

(n)∗
p

)
≡ (4.12)

argmin
σ
(0)
vo ,σ

(n)
vo ,σ

(0)
p ,σ

(n)
p

{
∑
i, j

[
∂V
∂u

(
ûi, j(10), σ

(i)
vo , σ

( j)
p

)]2}

Using the learned cocontraction data {ûi, j(10)}, a grid search for (σ (0)
vo ,σ

(n)
vo ,σ

(0)
p ,σ

(n)
p ) in

[0,10]× [0,20]× [0,10]× [0,20] with step 0.2 yields σ
(0)∗
vo = 10, σ

(n)∗
vo = 18.8, σ

(0)∗
p = 5.2,

σ
(n)∗
p = 6, where for each gridpoint γ∗ = 0.65 was the solution of

0 ≡ d
dγ

(
∑
i, j

[
∂V
∂u

(ûi, j(10),σ (i)
vo ,σ

( j)
p )

]2
)
. (4.13)

4.3 Experimental results

To evaluate the short-term adaptation within each condition, the measurements from the

first half and the second half of trials were averaged into two epochs for the statistical

analysis.

As the two partners of a dyad are rigidly connected, the root mean square tracking error

by trial was analysed per dyad using a two-way repeated-measures ANOVA with noise

conditions {SS, NN, SN ≡ NS since r(20)=0.95, p<0.0005} and epoch as the factors.

Statistical significance was detected at 5% with Bonferroni correction for all post-hoc

comparisons. As muscle cocontraction was modulated by each partner, it was analysed

individually wherein the partner’s visual noise was perceived as haptic noise. Thus, a
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three-way repeated-measures ANOVA with visual noise, haptic noise and epoch as the

factors was used in the cocontraction analysis.

Fig. 4-2 shows that the tracking error decreased in the initial solo trials, and the learning

had saturated by the last of the initial solo trials to the same degree as the average of the

last solo trials (paired-sample t-test, t(21)=0.354, p=0.73). The analysis of error in the

different noise conditions indicated that the magnitude of the tracking error depended on

the noise level (F(1,21) = 91.95, p<0.001, η2
p=0.81). The post-hoc comparisons showed

that the tracking error in the mixed noise condition {SN≡NS} was greater than in the SS

condition (p<0.001) and smaller than in the NN condition (p<0.001). The tracking error

remained at a similar level between the first and the second epochs (p=0.64), and there

was no interaction effect between the noise level and epoch (p=0.17).
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Figure 4-2: Evolution of tracking performance in different noise conditions. Error
bars with standard error. Group mean tracking error charted as a function of trials. The
error saturated in the initial solo trials, and increased with visual and haptic noise.

The cocontraction level decreased with the epoch (F(1,43)=53.58, p<0.0005, η2
p=0.56),

similar to what was observed during the learning of a novel force field [40], [41] (Figs. 4-

3, 4-4). There was an interaction effect between visual noise and epoch (F(1,43)=15.65,

p<0.001, η2
p=0.27), and no significant interaction was found between haptic noise and

epoch (p=0.21). The reduction in the cocontraction thus occurred at a slower rate than the
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Figure 4-3: Evolution of cocontraction in different noise conditions. Error bars with
standard error. The normalized cocontraction as a function of trials. The cocontraction
decreased across all noise conditions, while visual noise tended to affect the cocontraction
by a larger margin than the haptic noise.

change in the movement error, an observation consistent with the outcomes of force field

learning [30].

Importantly, the cocontraction decreased with a larger level of own visual noise (F(1,43)=85.91,

p<0.0005, η2
p=0.67) while it increased with haptic noise from the interaction with the

partner (F(1,43)=5.53, p<0.03, η2
p=0.11). Post-hoc comparisons confirmed that all differences

between the combinations of the visual and haptic noises were significant with the exception

of NS vs. NN (p=0.99). Visual noise had a larger effect on cocontraction than haptic

noise. Augmenting visual noise decreased the cocontraction by 0.194 when the haptic

noise was low (i.e. NS-SS) and 0.293 when the haptic noise was high (NN-SN), while the

cocontraction increased by only 0.100 when haptic noise increased with high visual noise

(NS-NN) and 0.001 with low visual noise (SS-SN).

These results demonstrate that during interaction, the CNS spontaneously regulates muscle

cocontraction considering the level of the visual noise on one’s own and the partner’s

targets, in agreement with our first hypothesis. However, the observed cocontraction

patterns contradict the second and third hypotheses as cocontraction decreased largely
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noisy-noisy
sharp-sharp noisy-sharp
sharp-noisy

Figure 4-4: Cocontraction adaptation during interaction trials. Cocontraction
waveforms during interaction trials with different noise conditions in the first (A) and last
(B) trials’ blocks. While the normalised cocontraction decreased with practice for each
experimental condition, the cocontraction drop was limited when the subjects tracked a
noisy target.

with own visual noise and increased slightly with the haptic noise stemming from the

visual noise at the partner.

4.4 Computational adaptation mechanism

To clarify the cocontraction adaptation mechanism during interaction, we first tested the

computational model of [41] that explains the motor learning in novel force fields. In this

model, the cocontraction u increases with each new trial to minimize tracking error e, and

decreases to minimize effort, according to

unew ≡ α e+(1− γ)u , α,γ > 0 . (4.14)
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Simulation of the learning during the ten trials of each condition with this tracking error

minimization (TEM) model predicted cocontraction at a level increasing with the corresponding

tracking error (Fig. 4-5A). This prediction is qualitatively different from the data, such

as larger cocontraction in the noisy relative to the sharp visual feedback condition (e.g.

compare the NN and SS conditions in Fig. 4-5A). Therefore, the TEM model cannot

explain the adaptation in the cocontraction during interaction.

We considered what adaptation factor may be missing from the TEM model. The statistical

analysis revealed that own visual noise was a major factor of the cocontraction level

adaptation. A larger cocontraction level increases the stiffness of the wrist, thereby

strengthening the guidance to the planned movement (Fig. 4-1C). However, if the planned

movement is disturbed by visual noise, a stiffer connection will bring larger noise to the

hand control, in which case it would be better to relax the arm. Therefore, cocontraction

u should decrease with visual noise deviation σo(u):

unew ≡ −α σo +ζ +(1− γ)u , α,ζ ,γ > 0 , (4.15)

counterbalanced by a general increase ζ and effort minimisation. Simulation with this

planning noise minimization (PNM) model yields a trend similar to the data, with cocontraction

decreasing in the NS and NN conditions (Fig. 4-5A). However, the PNM model is not

able to differentiate between these two conditions or between the SS and SN conditions.

This result suggests that cocontraction adaptation depends not only on own visual noise

but also on the haptic noise from the partner. As illustrated in Fig. 4-1C, the hand’s

movement depends on the guidance towards the planned movement and on the connection

to the partner. As the stiffness of the guidance increases with own cocontraction [27], it

is in principle possible to weight these two influences. Cocontraction should decrease

to lower the guidance to the planned movement when it is affected by visual noise.

Conversely, the guidance to the planned motion should increase to counteract the effect

of haptic noise when the partner receives noisy visual feedback. The experimental data
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noisy-noisy
sharp-sharp noisy-sharp
sharp-noisy

Figure 4-5: Results of computational modeling the cocontraction adaptation to own
and partner noise. (A) Comparison of cocontraction predicted by the three models
described in the text. The TEM model predicts a different modulation of cocontraction
with varying noise conditions as in the data, the PNM model predicts only the modulation
with own visual noise. (B) The OIE model prediction (red ovals) exhibits a similar
decrease of cocontraction with own noise and increase with partner noise as in the data
(black disks with standard error bars).

of Fig. 4-3 seem to agree with this interpretation, and shows that cocontraction adapts

according to the effect it has on the tracking performance.

The cocontraction may depend on the statistical information determining the quality of

the planned motion, which relies primarily on vision, and on the quality of the partner’s

accuracy in tracking the common target. We propose that the cocontraction is modulated

to maximise visual and haptic information from the interaction with the partner. Specifically,

the optimal information and effort (OIE) model addresses the tradeoff between motion

guidance and interaction noise attenuation by selecting cocontraction u to minimize the

prediction error

E(u)≡
σ2

o (u)σ2
p

σ2
o (u)+σ2

p
(4.16)

and metabolic cost u2, where σo(u) results from the effect of own visual noise on the arm

movement and σp from the interaction with the partner. This optimization can be carried
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out through gradient descent minimization:

unew ≡ −dE(u)
du

+ (1− γ)u , γ > 0 . (4.17)

As suggests Fig. 4-5A, the OIE results in less error to the data as the TEM and MPN

models. More importantly, the OIE model predicts the modulation of cocontraction with

both own visual noise and haptic noise from the partner as observed in the data (Fig.

4-5B), in contrast to the TEM and PNM models.

4.5 Discussion

It was recently shown that physically interacting individuals tracking the same target can

improve their performance by estimating the partner’s movement goal and using it to

complement own sensory information [48]. The present study extends this finding by

demonstrating that individuals adapt their muscle contraction to maximize task information

while concurrently minimizing energy. We thought that individuals would stiffen the

limbs to compensate for visual noise, and relax cocontraction to attenuate the mechanical

perturbations from a partner receiving noisy visual feedback. However, the converse

adaptation was observed as the CNS considers the guidance to the planned motion and

adapts cocontraction to minimize the effect of visual and haptic noise.

These results could not be explained by a previous model of cocontraction adaptation

which considers only the error in the task performance [41], [62], [63]. We also considered

a motion planning noise model that decreases cocontraction with increasing visual noise

to reduce errors in visual motion guidance, but this model could not explain the modulation

of cocontraction with the partner’s noise. The only model that could explain how cocontraction

changes with both own and the partner’s noise was the optimal information and effort

model (OIE) in which cocontraction is adapted to maximize information from vision and

haptics arising from the interaction with the partner.
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The OIE model does a deft balance of three variables. First, it tries to minimize energy on

a trial-to-trial basis by reducing superfluous cocontraction. Second, it regulates cocontraction

to have stiffer guidance towards the planned motion when vision is sharp. Third, it

controls cocontraction depending on the haptic information and guidance coming from

the partner’s actions. Cocontraction increases when haptic information is valuable, but

this act reduces guidance from the partner that may be critical to better performance when

vision is noisy. In this sense, the cocontraction is skilfully balanced to extract maximal

haptic information while exploiting the guidance potential from the partner.

The OIE model of how the CNS adapt cocontraction to minimize information and energy

(OIE) extends previous work on motor learning and adaptation, including those determining

the motion plan in the next trial from a history of movements [50], [51]. As this new

model considers the limbs’ neuromechanics, it can predict the interaction force and the

subsequent muscle activity during motion. The OIE also extends optimal and nonlinear

adaptive control models [41], [52]–[54], [64] by considering the consequence of action

on the acquired sensory information from the environment, closing the loop between the

sensory and motor actions.

Previous learning algorithms inspired by the observation of human learning adapt muscles’

viscoelasticity to compensate for the interaction with an unknown mechanical environment

[41], [62], [63]. While these algorithms are based on the error to the motion plan,

the proposed OIE model also considers the haptic information that can be gained from

the interaction with the environment, and combines it optimally with other information

sources like vision. An important aspect of the OIE is that it considers how motor

commands like cocontraction can increase or reduce sensor noise, while traditional stochastic

optimal control only considered the one-sided influence of sensory noise on motor actions

[53]. The adaptation mechanism of OIE can be implemented on robots and used to

optimize their interaction with dynamic environments and human partners in collaborative

tasks.
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Touch plays a critical role in a human’s life since before birth. For the fetus, the sensory

system priorities tactile information over auditory or visual cues [65], while soon after

birth the exposure to our parents’ touch and physical contact is essential in fostering

children’s adequate growth and development [66]. As we mature, we progressively refine

muscle coordination, thus learning how to properly interact with the environment while

extracting relevant information from it. In every task involving touch the body acts as a

medium to interact with the environment, yet little is known of the role that the body has

in tuning haptic sensing (the synthesis of touch and force) and the related perception.

We began this research on adaptive haptic sensing by investigating the human’s CNS

capability of modulating body properties, specifically limb viscoelasticity, to adapt the

acuity of their senses for augmenting the salience of environmental features, such as

when the pupil dilates to increase visual acuity in the dark. Past literature pointed out

the CNS ability to control the body’s stiffness to shape the mechanical interaction with

the environment [29], [42] along with how the coupling mechanics affects the exchange of

haptic information during physical interaction [15]. However, it was challenging to show

that the haptic sense adapts its sensitivity as the percept (the interaction force) cannot

be separated from its mechanical influence. By developing an experimental paradigm

wherein robotic motion guidance changed with the participant’s muscle activity to disentangle

the haptic percept from its mechanical effect, we could demonstrate the CNS’ ability to

willingly regulate the wrist’s stiffness (using muscle coactivation) and so to augment

haptic sensitivity when it is congruent with vision, and decreases it when the haptic

information is poor. We further proposed a computational adaptive haptic sensing mechanism
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that explains the underlying principle of this adaptation, accurately predicting the experimental

data and revealing how the CNS optimizes the information gain while concurrently minimising

the metabolic cost used to sense the haptic percept in an optimal trade-off of information

and energy.

To test potential limitations of this adaptive behaviour, we designed a second experiment

in which the task completion is hindered by cocontraction dependant perturbations elicited

by the natural muscle activation pattern established by the human body morphology. This

study showed that humans conspicuously learn muscle activation patterns maximising

interaction benefits while filtering disturbances. This highlights the CNS capability to

take advantage of adaptive sensing for optimising interactional information using body

morphology.

Finally, we validated our understanding of adaptive haptic sensing by studying how physically

interacting humans regulate the body viscoelasticity to improve their visuo-haptic perception.

By varying noise in the visual channel in each of the mechanically connected partners, we

could observe how they adapt muscle cocontraction to regulate their arm viscoelasticity

specifically while coordinating their motions. Surprisingly, our computational model

could also explain this mechanism: it appears that cocontraction is adapted to optimally

combine haptic information from the interaction with the partner and own vision, thereby

improving the prediction of the target position with minimal metabolic cost.

The thesis reveals a fundamental human mechanism for adapting sensing during interaction

with the environment or other humans. We believe that these new findings will inspire

neuroscientists by sheding a light on the basic mechanisms underlying human interaction.

These results can help understanding how humans interact with the environment and

selectively retrieve task relevant information from it, thus also potentially improving

hand interactions identification by introducing muscle activation mediated features. This

understanding of the adaptive sensing mechanism could inspire engineers to conceive soft

robots that can modify their rigidity to better perceive the user’s control and assist them.
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Furthermore, the results of the studies in this thesis may enable the development of more

efficient sensorimotor strategies for applications requiring human-robot interaction such

as collaborative robots for manufacturing and robot-assisted physical training.

As a following step, the OIE adaptation mechanism could be implemented on a robotic

interface to test whether the underlying stiffness adaptation can filter haptic noise to

improve the robot’s sensing of the interaction and provide its user a more reliable haptic

percept. In general, the OIE algorithm could optimize robots physical interactions by

identifying the optimal control gain for retrieving tactile cues from dynamic environments

and exchanging haptic information with humans. Relevant applications include: scenarios

in which the haptic information is exchanged through a tunable virtual coupling with

an end-effector, as in teleoperation and robotic assisted surgery; shared driving, where

the control is balanced between the driver and the robot based on the available sensors

measurements’ quality; for moving fleets of semi-autonomous and autonomous cars in a

shared network connected through virtual spring being tuned depending on the individual

behaviours. Likewise, nautical robots may tune the stiffness of the interaction with the

environment to collect valuable information in a dark or murky environment, or medical

robots to locate anatomical haptic landmarks and abnormalities in internal organs while

integrating multiple sensory feedback during soft tissues palpation. Additionally, robots

physically interacting with a human during manufacturing or neurorehabilitation could

adjust their stiffness to best combine their own measurement with the plan of the human

operator inferred from the interaction.
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