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The field of immunoengineering aims to develop novel therapies and modern vaccines

to manipulate and modulate the immune system and applies innovative technologies

toward improved understanding of the immune system in health and disease.

Microfluidics has proven to be an excellent technology for analytics in biology and

chemistry. From simple microsystem chips to complex microfluidic designs, these

platforms have witnessed an immense growth over the last decades with frequent

emergence of new designs. Microfluidics provides a highly robust and precise tool

which led to its widespread application in single-cell analysis of immune cells. Single-cell

analysis allows scientists to account for the heterogeneous behavior of immune cells

which often gets overshadowed when conventional bulk study methods are used.

Application of single-cell analysis using microfluidics has facilitated the identification of

several novel functional immune cell subsets, quantification of signaling molecules, and

understanding of cellular communication and signaling pathways. Single-cell analysis

research in combination with microfluidics has paved the way for the development of

novel therapies, point-of-care diagnostics, and evenmore complex microfluidic platforms

that aid in creating in vitro cellular microenvironments for applications in drug and toxicity

screening. In this review, we provide a comprehensive overview on the integration

of microsystems and microfluidics with immunology and focus on different designs

developed to decode single immune cell behavior and cellular communication. We have

categorized the microfluidic designs in three specific categories: microfluidic chips with

cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the

ongoing research in the field of immunology at single-cell level.

Keywords: immunoengineering, microfluidics, single-cell analysis, cellular heterogeneity, cellular communication

INTRODUCTION: IMMUNOENGINEERING

The human immune system recognizes myriads of environmental triggers and is highly flexible
in generating a variety of signaling responses over time (1, 2). Several types of cells collaborate
with antibodies and cytokines to generate an appropriate immune response (3). The spatial
organization and migration of cells within tissues as well as the dynamic nature of cellular
communication enhances the complexity of our immune system and determines the type of
response (4–7). The nature and magnitude of an immune response is dependent on dynamic
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molecular and cellular interactions where well-orchestrated
cellular communication is the key factor to maintain it (8). The
question arises whether all immune cells fight all pathogens and
tumors similarly in order to leverage this broad flexibility and
diversity. Even though there are multiple subsets of immune
cells, with each subset responding to specific stimuli, responses
are often initiated by individual cells within each subset and
communicated in order to establish a more complex population
level response (9). Stochastic expression of genes (influenced
by a cellular microenvironment) or pre-defined molecular
drivers (as in case of B-cell and T-cell receptors) are driving
factors behind heterogeneity in the human immune system
(9). Numerous studies over the last decades established that
heterogeneity is a trademark of the human immune system (10,
11). The identification of heterogeneity requires systems beyond
conventional biological methods like ELISA, western blot, and
others that do not allow the required spatial and temporal
manipulation of biological cells (12–14). Technologies such
as microsystems and microfluidics, have allowed scientists to
study the individual behavior of immune cells, identify signaling
pathways, map distinct immune cell subsets, quantify secreted
molecules and characterize the immune response under varied
conditions (15–17). Research on immune cells with technology
integration has contributed toward innovative immunotherapy-
based treatment modalities with lower treatment-related toxicity
and side effects (18–20). They provide better alternatives to
more conventional treatment modalities e.g., chemotherapy,
radiotherapy or targeted therapy. At the same time, microfluidic
basedmodels have assisted in the development of novel therapies,
discovery of new drugs, and monitoring the clinical efficacy of
new treatments (21–23). Microfluidic devices are also used for
the isolation of circulating tumor cells from clinical samples
for diagnosis, prognosis, and creation of patient-derived tumor
models with the aim to develop and test personalized medicine
(24–27). Furthermore, integration of assays, microarrays, and
several sensor technologies has led to the development of
several point-of-care devices for the early diagnosis of cancer by
identification of cancer biomarkers (28, 29).

The majority of this type of research can be coined as
immunoengineering. The term immunoengineering has been
used since the seventies and covers several aspects in the field
of immunology (30). Immunoengineering is an interdisciplinary
and vast field of research comprising engineering methods
and approaches that allow the modulation of the immune
system and its responses: biomaterials, tissue engineering,
protein engineering, synthetic biology, and drug delivery
systems [Figure 1; (31–34)]. Immunoengineering includes the
application of systems immunology to replicate complex
immune microenvironment, in vitro, that aims to enhance our
understanding of the human immune system for development
of immunotherapy, the modulation of the human immune
cells to boost their response against cancer (35–37). Recent

Abbreviations: IFN-γ, interferon gamma; IL, interleukin; mLSI, microfluidic large

scale integration; NF-κB, nuclear factor-κB; NK cells, natural killer cells; PAIGE,

protein assay via induced gene expression; PDMS, polydimethylsiloxane; TCR,

T-cell receptor; TNF, tumor necrosis factor.

and most noteworthy examples of major discoveries within
the field of immunoengineering, specially immunotherapy, are
the development of chimeric antigen receptor T-cells and
artificial antigen presenting cell systems (38–40). Moreover,
immunoengineering also involves mathematical models that
describe the functioning of the immune system, technologies
to monitor and track the migration of immune cells and
engineering tools to understand immune cell function at the
systemic level in health and disease (41–43). The field of
immunoengineering can, and has been described by various
definitions, e.g., for the current issue in Frontiers “Application of
systems immunology to engineering the tumor immunological
microenvironment, aiming at predicting lymphocyte receptor’s
recognition patterns. Building sophisticated mimetic in vitro
models, for instance by means of optical and magnetic tweezers
to develop novel immuno-oncotherapeutics paving the way
toward personalized and predictive medicine.” The Center for
Immunoengineering at Georgia Tech University defined this
field as follows: “The field that applies engineering tools and
principles to quantitatively study the immune system in health
and disease, and to develop new therapies or improve existing
therapies by precisely controlling and modulating a patient’s
immune response.” The field of immunoengineering has been
described in excellent reviews with a focus on engineering
approaches to augment immunotherapy (44–48). In this review
article, we highlight one aspect of immunoengineering and we
particularly discuss various microfluidic and microsystems and
focus on their advantages over conventional methods especially
for decoding heterogeneous immune cell behavior and cellular
interactions.

Single-Cell Technology
Immune cells, characterized by their heterogeneity, tend to
differ in their behavior when in different societal contexts
ranging from the single cell to the population level. Experiments
performed at the population level average out the behavior
of all the individual cells (49). Hence, bulk studies fail to
provide a coherent understanding of the immune system
by masking the phenotype, expressed genes, proteins or
metabolites at single-cell level, and cellular communication
between single immune cells (49, 50). The advent of single-
cell technologies and the subsequent possibility to study the
behavior of individual immune cells has uncovered various
biological functions that were previously not detectable with
bulk studies (51–53). For instance, Shalek et al. demonstrated
the importance of paracrine communication for generation
of immune response using single-cell analysis (54). Single-cell
analysis enabled the investigation of maturation, activation,
and signaling pathways of individual immune cells triggered
by various environmental factors as well as intercellular
communication between different immune cells (43, 55, 56).
Additionally, this approach identified new immune cell subsets
(57, 58). For instance, single cell transcriptomics, introduced
a paradigm shift in the CD4+ T helper field and enabled
the identification of multiple functionally distinct T helper cell
subsets in addition to the two well-established subsets, Th1 and
Th2 (59–62).
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FIGURE 1 | Different research areas in the field of immunology that can be explored with multiple single-cell analysis tools.

Single-cell technology requires isolation of individual cells
from a population for multiple data extraction from each isolated
cell in order to gain information on the genotype, phenotype,
lineage, protein secretion, proliferation, activation, maturation,
cytolytic activity, and intercellular communication (63). Single-
cell analysis tools are currently investigated by various research
groups worldwide and hold great promise in providing a
comprehensive understanding of our immune system. After
the isolation of individual immune cells, multiple experimental
operations for DNA sequencing, RNA and protein expression
profiling can be implemented to map the lineage and identify
subsets of immune cells (12, 64, 65).

Amongst immunologists, flow and mass cytometry are
well-established, high-throughput, and high-content single-cell
analysis tools (66–68). Flow cytometers measure fluorescently
labeled cells and mass cytometers use transition element isotopes
for mapping the functional heterogeneity and phenotypes of
different immune cells by quantification of multiple cytokines,
chemokines, and surface protein markers of the individual cells
(69, 70). One of the benefits of cytometry over other conventional
methods is its potential to provide high-throughput analysis of
thousands of single-cells and measure multiple parameters in a
given time frame (71, 72). Further, with recent advancements,
mass cytometry can acquire samples using laser ablation to
improve the resolution of this technology and is known as
imaging mass cytomtery (73). Although cytometers are a
powerful tool for single-cell analysis, spectral overlap and limited
availability of antibodies labeled with isotopes for flow and
mass cytometers, respectively are some of the drawbacks of this
technology (13). Even though spectral overlap in conventional
cytometry can be effectively mitigated by careful panel design,
cytometers are still predominantly an end-point measurement
tool that can only provide a snapshot in time and quantify
static markers on cells to provide information on immune cell
heterogeneity.

Microsystems for Single-Cell Analysis
The requirement for miniaturization of technological platforms
has driven the development of several technologies such
as microtiter plates (74). However, with microtiter plates,
reaction volumes of immunological experiments have only
been reduced from milliliters to microlitres. The problem of
evaporation and capillary action in microtiter plate technology
has hampered its further miniaturization (75). While microtiter
plates cannot be further scaled down, the field of microsystems
and microfluidics has played a key role in miniaturization
to propel interdisciplinary research on single-cell analysis of
immune cells.

Driven by the idea of scaling down, nanowells, in combination
with microengraving, is a microsystems tool that was developed
in the Love laboratory for single-cell analysis (76). Nanowells,
made from polydimethylsiloxane (PDMS), contain features that
have volumes in the order of nanolitres. When cells, from a
bulk solution, are dispensed on the platform, individual cells
settle down in each nanowell by gravity. Once the cells are
isolated and activated, secreted molecules from the cells can be
captured on functionalised glass slides (microengraving) or on
the surface of nanowells and quantified by imaging cytometry
or microscopy [Figure 2; (76, 77)]. Nanowell-based platforms
with imaging cytometry and microarray analysis have been
used for quantification of cytokines secreted by T-cells and
observation of T-cell proliferation when activated with an array of
ligands (CD80, major histocompatibility complex class II/peptide
and intercellular adhesion molecule-1) or anti-CD3/CD28 (78).
Nanowells can also be used for cell-pairing to study intercellular
immune cell interactions and to monitor cytotoxic effector
functions of immune cells (79). In 2017, An et al. presented
their work on natural killer (NK) cells (80). In their study, they
dynamically profiled the secretion of interferon gamma (IFN-γ)
from single NK cells to map the phenotypic behavior of these
cells based on their cytokine secretion pattern. Using this system,
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they showed that CD56dimCD16+ NK cells, when activated with
phorbol 12-myristate 13-acetate and ionomycin, immediately
secrete IFN-γ and that the secretion rate and amount of IFN-γ
from these cells is dependent on the donor.

To study complex biological systems, it is essential that
technology platforms replicate the cellular microenvironment
accurately and also provide precise control over it. Microfluidic
devices have been instrumental in providing automated
platforms to perform all the essential functions for single-cell
analysis of immune cells, on-chip. In the forthcoming sections,
we discuss the contribution of microfluidics to the field of
single-cell analysis, focused on immune cells, along with its
advantages and disadvantages.

Microfluidics for Single-Cell Analysis
Over the last decade, microfluidics has made significant
contributions to the field of single-cell analysis. This method
allows cells to be monitored dynamically with a high degree
of control over the cellular microenvironment (81, 82).
These approaches have offered new information by creation
of innovative conditions that are limited in conventional
bulk methods. Microfluidic systems are being developed for
applications in several areas such as protein purification and
PCR on a drastically decreased scale (83, 84). Microfluidic
chips are capable of accurately replicating in vivo biological
environments and allow high-throughput analysis of cells
(85). Microfluidics allows precise automation and control of
analytical functions as well as manipulation of cells and their
microenvironments with high resolution in both space and
time (86, 87). With microfluidics, scientists can implement
techniques and protocols for single-cell analysis through DNA
sequencing, RNA expression, and protein quantification for
understanding the mechanism of cell activation, proliferation,
protein expression, motility and morphology, secretion, and
cellular communication (88–91).

The ability to rapidly fabricate microfluidic devices in PDMS
by soft lithography has greatly stimulated the development of
several microfluidic designs (92). Besides being inexpensive,
PDMS is biocompatible and permeable to gases, two properties
that are a necessary for replication of artificial cellular
microenvironments in vitro (93, 94). The flexibility of PDMS
allows easy integration of membrane valves and pumps on more
complex microfluidic designs to create an intricate network
of microchannels wherein protocols can be realized in full
automation with the help of programming software (95).

Microfluidic chip designs can be broadly classified in
three categories: microfluidics with passive traps, valve-based
microfluidics, and droplet microfluidics. With pros and cons of
each design, in the field of immunology, microfluidics finds its
applications in understanding immune cell behavior at single-cell
level.

Microfluidic Chips With Cell Traps
Microfluidic chips with cell traps have been designed by multiple
laboratories for single-cell studies (96, 97). In 2006, Di Carlo et
al. designed a microfluidic chip with an array of hydrodynamic
cell traps for analysis of enzyme kinetics in three different types

of cells (98). Later in 2009, Faley et al. presented their design
of a microfluidic chip with multiple traps that was used to
study signaling dynamics of isolated, individual, hematopoietic
stem cells (99). Besides these studies, several groups have
used hydrodynamic cell trap arrays for multiple applications
in biology and chemistry (100–102). Of all these groups, the
Voldman laboratory has extensively used a modified version
of the hydrodynamic cell trap design for specifically studying
immune cell interactions at single-cell level (103–106).

Cellular interactions play a vital role in establishing complex
immune responses that originate from individual immune cells
or immune cell subsets (107). Interactions between immune
cells, if hampered, can cause several diseases (108). Hoehl et al.
designed a single-layer microfluidic chip for parallel analysis of
immune cell interactions at single-cell level (109). They used
this design, integrated with weir like U-shaped traps, to pair two
different cell types using a three-step loading protocol to obtain
cell pairing efficiencies of more than fifty percent. The device was
used for pairing murine T-cells with B cells to investigate the
activation dynamics of T-cells. They demonstrated the presence
of functional heterogeneity in the activation dynamics of OT-
1 T-cells. Since OT-1 T-cell are reactive against ovalbumin,
it is expected that all the T-cells will show similar activation
profile when presented with the antigen. However, within the
population of these cells, a variation in response was still
observed even though all the cells bear the same identical
T-cell receptor (TCR). Later, Dura et al. used this design to
characterize the activation dynamics of CD8T cells (OT-1 and
TRP1) with different TCR affinities when paired with antigen
presenting cells (104). This study showed that the variations
in TCR affinity influences the secretion of cytokines by T-cells.
The production of IFN-γ is strong for both low and high TCR
affinity whereas the production of interleukin-2 (IL-2) reduces
with reduction in the affinity. Dura et al. also used this chip to
monitor cytotoxic effector functions of immune cells [Figure 3;
(105)]. For this study, they modified the design of the cell
traps to capture and pair NK92MI and K562 cells with high
cell-pairing efficiency. The cytotoxic activity of NK cells was
monitored by measuring the Ca2+ signaling for a day and
further, the production of IFN-γ in NK cells, when activated
with IL-2 and IL-18, was also quantified. Thirty-five percent of
the cells showed cytotoxicity and 60% of the cell population
produced IFN-γ over time, demonstrating cellular heterogeneity
(105).

Besides applications in immune cell interactions, this design
was also used for implementation of cell pairing and fusion
protocols. In 2009, Skelley et al. paired fibroblasts, mouse
embryonic stem cells, and myeloma cells, on-chip, to implement
a more efficient electrical and chemical fusion protocol in
comparison to the standard procedures (103). Further in 2014,
Dura et al. modified the trap design to implement hydrodynamic
and deformation based pairing and biologically, chemically, and
electrically stimulated fusion of cells, on-chip (106). Kimmerling
et al. in 2016 also used the principles of hydrodynamic trapping to
design a microfluidic chip with an array of traps for the isolation
of single murine leukemia cells, L1210, and primary CD8+ T-
cells on chip (64). The isolated cells were cultured on-chip and,
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FIGURE 2 | Nanowell format array, developed at the Love laboratory, to understand activation dynamics of immune cells, probe cellular interactions, and quantify

cytokine secretion. Figure adapted from Torres et al. (77).

FIGURE 3 | Microfluidic chip, developed in the Voldman laboratory, with hydrodynamic based pillar-like traps. There are multiple variations of this design that allow

different types of cells to be loaded and paired to monitor cellular interactions of different kinds. Figure adapted from Dura et al. (105).

after proliferation, these cells were released from the chip for
investigating their transcriptomic profiles.

Microfluidic chips with cell traps have made significant
contributions and have opened opportunities to investigate
different immune cells to attain improved insights into cell-cell
communication by allowing deterministic one to one cell pairing
which is not easily attainable with other technologies.

Valve-Based Microfluidics: Microfluidic Large-Scale

Integration Technology
Microfluidics large-scale integration (mLSI) is the integration of
hundreds to thousands of pneumatic membrane valves, arrayed
as fluidic multiplexers, on a microfluidic chip (95). Fluidic
multiplexers, analogous to electronicmultiplexers, allow complex
manipulation of fluids with very small number of inputs. Valve-
based microfluidic devices are made by aligning two separately
cured PDMS layers with channels in such a way that the
pneumatic membrane valves are formed when the channels in
the two layers intersect each other orthogonally. These pneumatic
membrane valves are “push down” when the control layer is on
top of the flow layer and are “push up” when the alignment
is reversed. The channels in the control layer are pressure
driven and responsible for the actuation of pneumatic membrane

valves. The multiplexer on the chip helps in automation and
parallelisation of experimental workflows and the pneumatic
membrane valves on the chip help in fluid routing, metering,
and control (110). mLSI integrated microfluidic devices are
controlled using external units and can be programmed to
operate for days, allowing them to monitor immune cell activity
longitudinally (111).

mLSI devices are versatile and have been adapted for
highly complex biological applications including cellular studies
and genomic analysis (112–115). mLSI technology has been
extensively used by the Quake lab for isolation of mRNA,
synthesis of cDNA, and purification of DNA using fully-
automated microfluidic chips (116, 117). Furthermore, they used
a similar architecture for the ligation and transformation of genes
with sample volumes of the order of a few nanolitres (118). In
2014, Ketterer et al. used a highly multiplexed microfluidic chip
to develop a sensory system for quantification of metabolites
from cellular samples (119). Blazek et al., from the same
laboratory, implemented a proximity ligation assay on a fully
automated microfluidic chip for analysis of phosphorylation
kinetics in cells with high-throughput and parallel analysis
(120, 121). The Maerkl lab also focuses on implementation
of highly multiplexed and automated microfluidic designs for
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characterization and quantification of transcriptional regulatory
network and synthesis of genes and genome onmicrofluidic chips
(122–124).

The generation of an immune response relies on
environmental cues that are sensed by immune cells in
their microenvironment (125). Signals received by cells within
their microenvironment are not always continuous but often
dynamic and can vary both in time, intensity, and concentration
(126). More specifically, environmental cues can have variable
amplitude, time of exposure, concentration gradient or can have
pulsatile or sinusoidal variations (126). Among these variations,
pulsatile modulation holds physiological relevance as several
biological cues in our body such as hormones or cytokines
are released with temporal variation that in turn affects the
mode of action, downstream, of signaling molecules (127). In
the human immune system pulsatile bursts of environmental
signals dictate cellular heterogeneity and regulate the fate of
transcription factors to influence the activation of genes and
determine the phenotypic response of immune cells (126).
Programmable mLSI based microfluidic devices make it possible
to deliver pulsatile bursts of input stimuli to immune cells in a
highly controlled fashion (128, 129). mLSI chips are capable of
accurately mimicking the cellular microenvironment along with
a reduction in extrinsic noise or cell-cell variability to generate
synchronized immune cell responses at single-cell level.

In 2016, the Tay lab designed a fully-automated microfluidic
device for studying the signaling dynamics of nuclear factor-
κB (NF-κB) in macrophages [Figure 4A; (128)]. In their design
they precisely replicated the dynamics of the immune cell
microenvironment in a highly controlled manner and complete
automation at single-cell level (128). NF-κB is an important
transcription factor that is responsible for production of
cytokines and survival of immune cells (130). The activation
and deactivation of NF-κB shows oscillatory behavior and is
popularly studied using microfluidics by providing immune cells
with variable input stimuli (131–133). Junkin et al. used an
mLSI based microfluidic system, which was integrated with a
bead-based immunoassay, to investigate the transcription factor
activity and quantify cytokine secretion in macrophages when
stimulated with time variable inflammatory signals from the
cellular microenvironment (128). The design comprised of 40,
individually addressable, cell isolation chambers in which single
immune cells were trapped using pillar like structures and each
cell chamber was associated with its individual immunoassay
unit. For the first time, this study showed the heterogeneous
secretion profile of tumor necrosis factor (TNF) when single
macrophages are simulated with dynamically variable input
stimuli and that there is no correlation between the production
of TNF and activation of NF-κB. Very recently an immunoassay
was patterned on the microfluidic chip using a modified version
of the mechanically induced trapping of molecular interaction
(MITOMI) method for trapping antibodies to quantify TNF
secretion [Figure 4B; (129, 134)]. Since the microfluidic device
is based on the mLSI technology, it was possible to completely
automate the experimental workflow including the patterning of
the surface for an immunoassay. In this work, they were able to
stimulate cells with dynamically variable signaling molecules in a

highly-precise and controlled manner as well as to monitor the
activation of NF-κB in real-time using automated microscopy
(129). Earlier, Frank et al. presented a microfluidic device that
was used to co-culture macrophages and fibroblasts on-chip
(135). This co-culture platform enabled the interaction of single
immune cells with populations of cells. They used the automated
device to provide dynamic inputs of lipopolysaccharide to single
macrophages and monitor the signal transmission of TNF, upon
activation of NF-κB, from single macrophages to a population
of fibroblasts to replicate the initiation of the immune response.
The experimental results of this work showed that an activated
macrophage can spatiotemporally control the activation of NF-
κB in fibroblasts to demonstrate that inflammation in tissues is
regulated by the dynamics of gene expression (135).

mLSI technology allows automation of functional steps, on-
chip, giving researchers the freedom to implement multiple
experimental functions that are required for single-cell analysis.
The aforementioned examples demonstrate that this technology
has made valuable contributions to accurately replicate the
dynamics of the cellular microenvironment with high precision
and control. These designs can be further implemented to
dynamically investigate the behavior of different immune cells at
single-cell level.

Droplet-Based Microfluidics
The idea to perform biological analysis in water-in-oil droplets
was first published in the 1950s by Nossal and Lederberg
(136). Since then droplet microfluidics has continued to fuel
a growing body of research leading to multiple applications in
fields of biology and chemistry (137–139). Droplet microfluidics
has been widely implemented for high-throughput screening of
biological and chemical reactions, single-cell analysis, genomics,
and transcriptomics (140–144). It also finds applications in
molecular detection, imaging, drug delivery, antibody screening,
toxicity screening, and diagnostics (145–151). On a microfluidic
chip, using two immiscible liquids, droplets, in one liquid phase,
are generated in another liquid phase by breaking off either at a
T-junction or flow-focusing junction (152, 153). In such a setup,
passive generation of droplets relies on drag forces and viscous
dissipation (154). Variations in channel geometries help to pair,
trap, merge, mix, release, and split droplets (155). Pneumatic
membrane valves, electrical forces, optical manipulations and
acoustic waves are other alternatives for active production of
droplets on microfluidic chips (156–159).

Droplet-based microfluidic platforms provide scientists with
the ability to investigate immune cell behavior in complete
isolation by creating a noise-free and controllable cellular
microenvironment (160). Specifically, it allows to map immune
cell subsets, quantify the secretion of signaling molecules
from single cells, and investigate cellular communication. In
2015, Sarkar et al. demonstrated an array-based droplet device
that allowed monitoring of nanolitre-sized droplets for T-cell
activation longitudinally right from the onset of activation (161).
Their results suggested that the activation of single T-cells is faster
when cells come in contact with dendritic cells in comparison to
other activationmethods. Furthermore, they developed amethod
to probe into the potentially heterogeneous cytolytic behavior
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FIGURE 4 | Microfluidic large-scale integration (mLSI). Microfluidic chips integrated with mLSI technology designed for monitoring transcription factor activities and

quantification of secreted proteins developed in the Tay laboratory. mLSI chips allow the replication of dynamic immune system microenvironment to provide better

insights to immune cell behavior. (A) Adapted from Junkin et al. (128). (B) Adapted from Kaestli et al. (129). Reproduced with permission from The Royal Society of

Chemistry.

of human NK cells (162). They demonstrated a 100% killing
efficiency of NK cells, which is in contrast to earlier findings by
various groups performed either in bulk or single cell (105, 163).

In order to quantify secreted molecules, cells are paired
with functionalised beads or other sensing molecules to capture
target analytes during incubation, prior to analysis (164). The
droplet interface ensures that encapsulated cells are shielded
from external factors that might influence their secretory
behavior. Concurrently, this interface in combination with the
small droplet volume, confines secreted molecules within the
droplet resulting in increased sensitivity. Qiu et al. employed
aptamer-based DNA sensors to quantify IFNγ secretion by
encapsulating single T-cells in droplets followed by flow-
cytometric and microscopic analysis [Figure 5A; (165)]. This
study demonstrated the versatility of droplet microfluidics
to be integrated with multiple detection methodologies. In
another recent study, Eyer et al. used DropMap technology
for phenotyping IgG secreting plasma cells at single-cell level
[Figure 5B; (166)]. In this study, they paired antibody secreting
cells with multiple paramagnetic functionalised nanoparticles
that capture target antibodies in picolitre sized droplets. For the
purpose of analysis, the generated droplets were immobilized in
a glass observation chamber to measure fluorescence intensity of
each droplet and to quantify secreted antibodies to map different

plasma cell phenotypes. With this technology it is possible to
monitor and quantify antibody secretion by encapsulated cells in
droplets real time.

Besides aqueous based droplets, hydrogel agarose can also
be used to create droplets in oil phase, which allows washing
steps and permits staining with antibodies within droplets by
slow diffusion. This conceptual advantage of using hydrogel
based droplets was exploited in the Huck laboratory, where
agarose droplets were used for encapsulation of Jurkat T-cells to
capture multiple cytokines on functionalised beads and used to
demonstrate cellular heterogeneity and mapping cellular subsets
[Figure 6; (167)]. Generally, for cytometry, droplets need to be
broken to retrieve cells and beads. On the contrary, cells and
beads encapsulated in hydrogels can be analyzed directly with
flow cytometry, preventing loss of cells and saving significant
amounts of time.

Recently, researchers have also implemented protocols for
single-cell sequencing in droplet microfluidics (168). In 2015,
Macosko et al. developed the Drop-seq technology where the
transcriptomics of thousands of retinal cells were analyzed
in droplets using barcoded microparticles (169). Later, the
Abate lab also demonstrated the genomic sequencing of
more than fifty thousand cells at single-cell level in agarose
microgels (170). Single-cell sequencing allows researchers to
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FIGURE 5 | Droplet microfluidics is a very versatile tool that allows single-cell analysis of immune cells in a noise-free environment. The cells are often paired with

functionalized beads or sensors such as aptamer sensors for quantification of secreted molecules and proteins. Droplet microfluidics is combined with flow cytometry,

mass cytometry, and automated microscopy for downstream analysis. (A) Adapted from Qiu et al. (165). (B) Adapted from Eyer et al. (166). Reproduced with

permission from Springer Nature.

identify the differences in cellular behavior and understand
the functionalities of individual cells, which assists in decoding
immune cell heterogeneity (171). Genomic amplication for
sequencing can be performed in droplet microfluidics with high
accuracy and specificity in a massively parallel fashion (168).
The work of Shahi et al. demonstrated the efficiency of droplet
microfluidics to profile protein secretion by single immune
cells using a high-throughput droplet-microfluidic barcoding

technique, Abseq (172). This microfluidic device was integrated
with functions to amplify DNA in nanolitre sized droplets to

allow more than tens of thousands of cells to be analyzed in
parallel.

Together, all these studies highlight the role of droplet
microfluidics in single-cell analysis of immune cells. Droplet-
based microfluidics is a highly versatile and flexible technology
and is widely applicable in multiple realms of immunology. The
ability to carry out high-throughput analysis of hundreds to
thousands of individual immune cells and paired immune cells
in a parallel manner makes droplet microfluidics a highly reliable
and popular single-cell analysis tool.

Strengths and Weaknesses of Microfluidic
Technologies
The motivation for miniaturization was driven by the
requirement to acquire more information from single cells
at higher resolution. Flow cytometric analysis allows for
sampling cell populations in time but fails to provide dynamic
information from single immune cells. Also, high costs of the
equipment and infrastructure for mass cytometers often limits
the usage of this technology. To compensate for the drawbacks
of the cytometric analysis and gather more temporal information
on the behavior of single immune cells, microsystems and
microfluidics gained popularity. Innovation in microsystems and
microfluidics facilitated the integration of numerous complex
functions on-chip that were earlier not feasible or demanded
a lot of manual labor. At the same time, the ability of these
platforms to dynamically acquire information from immune
cells and monitor immune cell activities real time made them
popular among researchers.

Nanowells and microfluidic chips with hydrodynamic cell
traps are the simplest examples of miniaturization that,

Frontiers in Immunology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 2373

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sinha et al. Integrating Single-Cell Technology and Microfluidics

FIGURE 6 | Hydrogel agarose gel droplets used in the Huck laboratory for measurement of cytokine secretion. The advantage of hydrogel droplets is that it allows

washing steps for immunoassays. Also, cells encapsulated in hydrogel droplets can directly be analyzed by cytometry. Figure adapted from Chokkalingam et al. (167).

because of ease of fabrication and operation, are frequently
used for decoding immune cell behavior and intercellular
communication. These high-throughput analysis platforms allow
both real-time and end-point measurements and can facilitate
one to one cell pairing for decoding communication between
immune cells, e.g., for monitoring cytotoxic cellular function.
However, microfluidic chips with cell traps are more efficient in
achieving desired pairing efficiencies in comparison to nanowells.
These platforms are limited by their ability to replicate the
dynamically variable immune cell microenvironment in which
immune cells work. Also, for more efficient single-cell level
analysis of immune cells it is essential that cells are isolated and
analyzed in a noise-free environment to negate the effects of
paracrine communication from neighboring cells.

Valve- and droplet-based microfluidics have realized the
aforementioned key requirements and have been able to
circumvent the drawbacks of other single-cell tools. Both
these platforms have the ability to compartmentalize cells in
a closed environment to understand cellular behavior with
high sensitivity. One of the key advantages of programmable
valve-based microfluidics is that it allows the replication of
dynamic immune cell microenvironments with high precision
for delivering input stimuli in forms of pulsatile bursts. Although
the process of fabrication and experimental setup for such
devices is fairly complex and time-consuming, automation
and reproducibility compensates for the drawbacks of these
designs (132). Also, the throughput of mLSI designs is often

low to medium, but has the capacity to be increased by
scaling.

For high-throughput analysis of immune cells, droplet-based
microfluidics is preferred. Easy to design and implement for
multiple applications, it allows the isolation of single immune
cells in droplets for analysis in an isolated system. Small
compartment size and very low droplet volumes makes this
system highly sensitive by preventing the loss of stimuli and
secreted molecules from the system. Further, this system also
facilitates encapsulation of multiple cells in a closed environment
to understand immune cell communication, e.g., for cytotoxic
behavior. While droplet microfluidics is a well-established tool
in the single-cell analysis community, it often finds limited
applications with use of primary, rare immune cells because
of the difficulties faced during seeding of cells. Traditional cell
seeding methods often lead to a loss of the cells because of
attachment or sedimentation, and when cells are already rare
in population, it is difficult to obtain high encapsulation rates
(173). Encapsulation of cells in droplets is random and relies
heavily on Poisson statistics (174). To overcome the limitations
of Poisson statistics alternative cell seeding methods as well as
use of external physical forces are required to ensure desired cell
distribution in droplets (175, 176). The designs discussed in this
review, each with their own set of advantages and disadvantages,
have been widely implemented for several single cell studies to
enhance our understanding of various immune cell functions
(Table 1).
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TABLE 1 | Table summarizing different single-cell analysis tools discussed in this review in terms of their advantages, disadvantages, and applications.

Research applications Advantages Limitation Commercial vendors References

Cytometry Cytokine and surface

markers

Signaling and activation

dynamics

Cytotoxicity

Immunophenotyping

Sorting

High throughput

Quick to run (on the order of

several hours)

Ability to sort cells based on

expression of molecules

Spectral overlaps

Expensive

Not possible to replicate

dynamic cellular

microenvironment

Static snapshot over time

BD Biosciences,

MilliporeSigma, Miltenyi

Biotec, Thermo Fisher

Scientific

(177), (178), (179)

MICROSYSTEMS

Nano wells Antibody and drug

screening

Activation dynamics

Cytotoxicity

Inter and intra cellular

communication

Cytokines and signaling

molecules release

High-throughput

Possibility to recover cells

from the wells

Simple to use

Multiplexing and real time

monitoring

Quantitative analysis of

proteins

Possibility to pair multiple

cells in each well

Seeding cells under the

effect of gravity lowers the

efficiency of cell loading

Manual operation

Limited control over the

fluidic and cellular

microenvironment

Random distribution of cells

in wells

µFluidix, microfluidic

ChipShop

(76), (77), (79), (80),

(163), (55), (78)

MICROFLUIDICS

Trap-Based Inter and intracellular

communication

Cytotoxicity

Signaling and activation

dynamics

Cytokines and signaling

molecules release

Efficient cell pairing and

fusion

Ability to monitor cellular

behavior, from the point of

cellular interaction and

contact

Multiplexing and real time

monitoring

High throughput

Stimulation of cells in bulk

and not on-chip (Juxtacrine

and paracrine interactions

before loading the cells

cannot be ruled out)

Controlled on-chip

stimulation is not possible

Cells are not isolated from

each other (The trapped

cells and secreted

molecules are not

completely confined and

this can influence the

behavior of the neighboring

cells by paracrine

communication)

µFluidix, microfluidic

ChipShop

(104), (105), (106), (96),

(109)

Valve-based Signaling and activation

dynamics

Cytokines and signaling

molecules release

Monitor transcription factors

activity

Migration

Complete automation

Replication of dynamic

cellular microenvironment

Sensitive (addressable cell

chambers with very small

volume)

Low sample volume

Both real time monitoring

and end-point analysis

Laborious and

time-consuming fabrication

Not portable (additional

equipment for operation)

Low to medium throughput

Fluidigm C1 (128), (129), (135), (16),

(180), (181), (182)

Droplet-based Inter and intracellular

communication

Cytokines and signaling

molecules release

Activation dynamics

Antibody screening

Cytotoxicity

High throughput

Noise-free cellular

microenvironment due to

compartmentalization

Both real time monitoring

and end point analysis

Multiple as well as single cell

pairing

Sensitive (low reaction

volume)

Small sample and reagent

volume

Not possible to replicate

dynamic cellular

microenvironment

Random encapsulation

(follows Poisson

Distribution)

Difficult to incorporate

washing steps

µFluidix, microfluidic

ChipShop, Dolomite,

Fluigent, 10X

Genomics (Chromium

Controller) BIORAD

(ddSEQ)

(144), (162), (164),

(166), (167), (161)

The applications described here are what is presented in this review as well as all the other potential applications of the design for immune cell analysis at single-cell level.
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CONCLUSION AND FUTURE OUTLOOK

Single-cell analysis tools have played a major role in enhancing
our understanding of the human immune system. Several
research groups have focused on technology development
to constantly provide novel design alternatives for biological
studies. Thereby, it enabled to address complex immunological
questions that were earlier not possible with conventional bulk
methods and resulted in identification of heterogeneous
immune cell behavior, discovery of new immune cell
subsets, and understanding how single immune cells drive
population responses. Single-cell analysis facilitated the
design and development of new diagnostic tools, personalized
medicines, and immunotherapies for treatment of cancer,
immunosuppressive diseases, and autoimmune disorders
(183–186). For example, single-cell studies recognized specific
signaling pathways within individual immune cells that were
suppressed in a tumor microenvironment (187). Identification
of such immunosuppressive signaling pathways, molecules,
and individual immune cells improves the design of treatment
modalities aimed at targeting cells and activation of the
suppressed signaling pathways to fight cancer, infectious-
and auto-immune diseases (184, 188). For development of
vaccines, it is critical to understand how specific antigens
induce effective immunization. Novel vaccines with higher
clinical efficacy can be developed using results from antibody
screening and quantification experiments at single-cell level
(149, 166). Also, quantification of signaling molecules at
single-cell level provides information on new pathways for
development of sensitive diagnostic tools that can provide faster
and accurate results in comparison to traditional laboratory
methods (189).

Developments in the field of microsystems and microfluidics
have been ongoing for more than a decade and continues to
grow. As our understanding of the human immune systems
deepens, more questions arise to decode the complexity of our
system. To cater to these questions, technology continues to
evolve. The designs discussed in this review were limited to
applications in single-cell analysis of immune cells. However,
there are several established and on-going design developments
in single-cell research for multiple biological applications that
can be easily modified and implemented for better understanding
of the immune system. As an example, the microfluidic droplet
system published by Shembekar et al. can be modified for use
with primary B-cells for antibody screening (149). Furthermore,
a droplet microfluidic system integrated with Protein Assay via
Induced Gene Expression (PAIGE) can be used for quantification
of secretory molecules at single-cell level (190). Microfluidic
chips can be also be used to study immunosurveillance
and migration of immune cells, in vitro (191, 192). Finally,
there are several other designs that can be integrated with
different systems or modified for immune system related
research (193–195).

There are multiple small and medium scale companies that
have commercialized microfluidics, as individual components

or complete analytical system, to promote the integration of
microfluidics in multiple laboratories for several single-cell
analysis applications. Companies like Dolomite and Fluigent
fabricate droplet microfluidic chips that can be bought and
directly used in laboratories for research applications. These
chips, however, still have to be integrated with downstream
analytical methods. Other companies such as µFluidix and
microfluidic ChipShop do provide professional facilities to
fabricate different types of microfluidic devices as per the
user requirements. Sphere Fluidics also provides completely
integrated analytical solutions for single-cell research. Further,
there are commercial systems integrated with microfluidics that
provide complete analytical solutions to research problems.
One such example is the C1, developed by FLUIDIGM, that
is integrated with microfluidic circuits for transcriptomics at
single-cell level to identify heterogeneity among immune cell
population. This system provides a fully automated solution
to implement experimental protocols with high precision and
accuracy. The Chromium Controller by 10X Genomics allows
profiling of immune cells and their repertoire at single-cell
level with high automation and parallelisation. ddSEQ by
BIORAD uses droplet microfluidics for isolation of single
cells to provide sequencing solutions at single cell level.
This commercial device has multiple applications including
assessment of cellular heterogeneity, identification of cellular
sub-populations, and functional analysis of immune cells. The
aforementioned examples are just a few of the many companies
that have commercialized microfluidic technology for research
puposes.

Taken together, robust technology for decoding cell-cell or
cell-pathogen interactions longitudinally and in great detail
will revolutionize cell biology and the fields of immunology

and cellular immunotherapy in particular. The impact of
rapid expansion of single-cell analysis is evident in its great

potential for numerous applications, including, but not limited
to: cancer research, regenerative medicine, diagnostics, and
synthetic biology. We believe that even though technology

development might sometimes be an extended process, the
ease and cost-effectiveness of microfluidics will boost the
integration of this exciting technology in the portfolio of other
single-cell assays used in cell biology and immunology related
disciplines.
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