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Synergistic Upper-limb Functional Muscle
Connectivity using Acoustic Mechanomyography

Carlos Sebastian Mancero C., Ravi Vaidyanathan∗, and S. Farokh Atashzar∗

Abstract— Functional connectivity is a critical concept
in describing synergistic muscle synchronization for the
execution of complex motor tasks. Muscle synchronization
is typically derived from decomposition of intermuscu-
lar coherence (IMC) at different frequency bands through
electromyography (EMG) signal analysis, which potentially
limits out-of-clinic applications. In this investigation, we
introduce muscle network analysis to assess the coordi-
nation and functional connectivity of muscles based on
mechanomyography (MMG). We focus on a targeted group
of muscles vital for activities of daily living (ADLs) in
the upper-limb. Functional muscle networks are evaluated
for ten able-bodied participants and three upper-limb am-
putees. Muscle activity was acquired from a custom-made
wearable armband of MMG sensors placed over four su-
perficial muscles around the forearm (flexor carpi radialis
(FCR), brachioradialis (BR), extensor digitorum communis
(EDC), and flexor carpi ulnaris (FCU)) while participants
performed four different hand gestures. Muscle connectiv-
ity analysis at multiple frequency bands shows significant
topographical differences across gestures for low ( < 5Hz)
and high (> 12 Hz) muscle activation frequencies as well
as observable differences in coherence between amputee
and non-amputee subjects. Results demonstrate MMG can
be used for the analysis of functional muscle connectivity
and mapping of synergistic synchronization of upper-limb
muscles in complex movement tasks. The new physiolog-
ical modality provides key insights into neural circuitry of
motor coordination. Findings further offer the concomitant
outcomes of demonstrating feasibility of MMG to map mus-
cle coherence from a neurophysiological perspective and
providing a mechanistic basis for its translation in human-
robot interface.

Index Terms— Biomechanics, muscle networks, coher-
ence, functional connectivity, mechanomyography (MMG).

This work was supported in part by the UK EPSRC CDT in Neu-
rotechnology, UK Dementia Research Institute Care-Research Tech-
nology Centre (DRI-CRT), Imperial College Department of Mechanical
Engineering and US National Science Foundation (Awards 2037878;
2031594). *Corresponding authors contributed equally to this work.
Correspondence: S. Farokh Atashzar and Ravi Vaidyanathan.

C. Sebastian Mancero Castillo and Ravi Vaidyanathan are with the
Department of Mechanical Engineering, Imperial College London (ICL),
London SW7 2BU, UK, and the UK DRI-CRT, Imperial College Lon-
don (ICL), London SW7 1AL, U.K. (e-mail: csm116@imperial.ac.uk,
r.vaidyanathan@imperial.ac.uk).

Ravi Vaidyanathan is also with Serg Technologies, London E16 2DQ,
U.K. (e-mail: r.vaidyanathan@sergtechnologies.com).

S. Farokh Atashzar is with the Department of Mechanical and
Aerospace Engineering, New York University (NYU), New York, NY
10003 USA, also with the Department of Electrical and Computer
Engineering, New York University (NYU), New York, NY 10003 USA,
and also with NYU WIRELESS, New York, NY 11201 USA (e-mail:
f.atashzar@nyu.edu).

I. INTRODUCTION

A. Functional Connectivity

Congruous coactivation and coordination of groups of
muscles are centrally controlled by the nervous system for
the execution of functional motor tasks. A theory strongly
investigated in the last decade is that the central nervous
system (CNS) simplifies this complex task by controlling
coordinative neural functions, or synergies, as opposed to
individual muscles [1]. Neurophysiological studies have shown
that the musculoskeletal system and the nervous system work
collectively to coordinate the activation of muscle synergies
to execute complex functional motor behaviors [2]–[4]. The
functional synergistic synchronization implies a common neu-
ral drive identified using intermuscular coherence (IMC) [5].
This method seeks to characterize the spectral synchronization
of the common neural drives to groups of muscles. While
classical analysis of synergies (e.g., those achieved by applying
non-negative matrix factorization to EMG signals) represents
the low-frequency basis of coordination in neuromuscular
control, coherence analysis captures full-spectrum functional
connectivity and synchronous control between muscle pairs,
which can be summarized using metrics rooted in graph theory.

Historically, coherence analysis has been implemented to
process electroencephalography (EEG) brain activity to corre-
late functional connectivity between different regions of the
brain [6]. More recently, it has been proposed to investigate
functional connectivity between brain and muscle activity
(i.e., corticomuscular coherence (CMC)), through mapping of
synchronization between EEG and electromyogram (EMG)
recordings [7] [8] [9]. Furthermore, modulations of neural
input to muscle groups in broader frequencies have been
investigated using intermuscular coherence and the concept
of muscle networks [5], [10]–[13]. Muscle network analysis
is a novel toolset proposed to estimate functional connectivity
between muscles. This is accomplished through the isolation
of key characteristics of the neural drive of muscle synergies
which enable the CNS to simplify functional control via
synchronous muscle activation. Boonstra [10], for example,
investigated lower-limb connectivity (synchronous activation)
of muscles over a range of frequency bands during various
postural tasks. In another study, Laine [14] isolated coherence
between three-hand muscles (first dorsal interosseous, abduc-
tor pollicis brevis, and flexor digitorum superficialis) through
analysis of muscle activation during two precision pinch
tasks. Both of these studies found systematic task-specific
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Fig. 1. Left-side, experimental layout. While seating, participants were asked to perform four hand-gesture tasks. Hand gestures were sustained
for a period of five seconds with a five-second resting period between each contraction. A digital clock was presented to the participants to keep
track of the duration of each contraction. Right-side, the cross-section view of MMG sensor placement. Four MMG sensors were placed over the
flexor carpi radialis (FCR), brachioradialis (BR), extensor digitorum communis (EDC), and flexor carpi ulnaris (FCU) muscles.

changes and widespread connectivity of muscles at multiple
frequencies bands. While conventional muscle synergy anal-
ysis seeks to identify low-frequency coactivation bases of
muscles, functional muscle networks seek to group muscles
based on their collective spectral response, observed as the co-
modulation of multiple frequencies in EMG signals. Studies
have further demonstrated conventional synergy analysis and
functional coherence-based muscle network analysis elucidate
disparate, complementary features of muscle activation, both
of which are essential for understanding neuromuscular motor
control [10] [13]. Muscle network analysis has also been
studied in able-bodied individuals using EMG for hand gesture
recognition [15], and in stroke survivors for the analysis of
functional intermuscular connectivity alterations [16]. How-
ever, its role in compensation for neural trauma has not been
extensively explored. In particular, functional connectivity
variations linked to limb loss and how surgical amputation
alters the behavior of muscle networks during motor tasks have
not been investigated.

B. Modalities of Muscle Activity Measure

All investigations of muscle networks to date have ex-
clusively focused on the analysis of activity through EMG.
While the obvious gold standard for muscle activity mapping,
EMG signal acquisition can be challenging for isolating spe-
cific muscle activation in amputees due to variations in skin
impedance (e.g., sweat, scar tissue caused by surgery, etc.)
and robustness of signal acquisition in sockets. Mechanomyo-
graphy (MMG) is a myographic activity measure that detects
mechanical oscillations produced by the dimensional changes
of the active muscle fibers during a contraction [17]. MMG
has been demonstrated to contain imperative information
regarding neuromuscular parameters associated with motor
function [18]. Investigations of this modality have revealed that
spectrotemporal parameters of MMG can correlate strongly
with the motor unit activation [19]. MMG has also been
demonstrated to be a useful tool to assess muscle weakness

characteristics and muscle performance in healthy individuals
and patients [20] [21] [22]. Furthermore, MMG has been
reliably described as the mechanical counterpart giving com-
plementary information to EMG [23]. The combination of the
two signals has been shown to provide unique information
about the electromechanical characteristics of the muscles
[24]. The benefit of MMG over EMG signal acquisition relates
to the robustness to electromagnetic noises, in addition to
skin sweating and sensor-skin impedance changes, as well
as its response correlating to direct muscle movement [25].
However, MMG also suffers from a lack of established sensors
and can demand complementary motion sensing to reject me-
chanical interference [26]. It should be noted that while MMG
contains a lower information rate and less linear behavior when
compared with EMG, in the literature, MMG has attracted
a great deal of interest for practical uses where EMG may
not function as well due to the electromagnetic artifacts and
sensitivity to sensor-skin conditions.

C. Investigative Focus

Coherence analysis has been extensively studied through
surface EMG signals to investigate the connectivity of motor
neuron pools. However, the method has not been used to
determine muscle connectivity by the use of MMG. In the
present study, for the first time, we use MMG to assess the
functional connectivity between four superficial muscles in
the forearm during various hand gesture tasks. Our study
is motivated by evidence in the literature demonstrating that
the frequency spectrum of MMG contains critical information
regarding motor unit recruitment and firing rate [27] [28],
which provides a neurophysiological basis for their use in
coherence analysis.

We investigate muscle network analysis during sustained
hand gesture tasks in amputee and able-bodied human par-
ticipants. We hypothesize that muscle networks generated
from MMG signals will be task-dependent while showing
synchronized behavior at multiple distinct frequency bands,
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Fig. 2. Power spectral density shown for the different muscles (FCR, BR, EDC, and FCU) for all gestures (red: Flexion, yellow: Extension, purple:
Pronation, and green: Supination). Power spectra were averaged across homologous muscles, trials, and subjects for able-bodied (top-row) and
amputee (bottom-row) participants.

reflecting the spectral fingerprints of the motor unit pool acti-
vation. We also aim to determine muscle network characteristic
differences between tasks and demographics. Furthermore,
we hypothesize that functional connectivity networks derived
from MMG not only show significant changes across different
hand gestures but will also show identifiable variations across
the two understudied demographics of amputee and able-
bodied participants. Graph theoretical analysis is implemented
to quantify characteristics of the network topologies and
statistically compare muscle networks across four hand-gesture
tasks and between the two demographics. The topology and
spectral characteristics of the muscle networks provide novel
insights into the neural basis of muscle synergies. Also, the
characterization of MMG-based functional muscle networks
can offer a new tool to examine the neural circuitry involved
in motor tasks.

In summary, the main contributions of this study are:
• Identification of functional intermuscular connectivity be-

tween superficial upper-limb muscles, in various spectral
bands, by the use of MMG across a cohort of amputee
and able-bodied participants (ten able-bodied; three am-
putees)

• Identification of different muscle network topologies for
each hand gesture.

• Comparison of the characteristics of muscle network
patterns across both demographics.

• Identification of alterations in muscle network character-
istics associated with amputation.

Beyond the first implementation of MMG in muscle net-
work analysis, this study is the first contrasting functional co-
modulation of amputee and able-bodied subjects. While MMG
has been studied as an alternative means of prosthetic control
surmounting well-documented challenges involved in EMG
use out-of-clinic [29], [30], aspects of its neurophysiological
basis remain unknown.

II. METHOD

A. Participants

Ten able-bodied individuals (6 males, 4 females, mean age
26 ± 7 years old) and three trans-radial amputees (2 males,
1 female, mean age 38 ± 8 years old) participated in this
experiment. All participants provided their signed informed
consent before taking part in the study. All experiments were
approved by the Imperial College Research Ethics Committee
(ICREC reference: 15IC3068).

B. Experimental Design

Data collection was performed by the use of a custom-made
wearable acoustic MMG armband, described in [31]. Thanks
to the low effect that crosstalk has in the MMG signal in the
transverse direction of propagation of the mechanical waves
[32], the use of microphone-based MMG sensors, as used in
the present study, results in a robust tool for the assessment
of muscle activity. In addition, the level of crosstalk in the
MMG signal has shown to be dependent on the level of
muscle effort [33]; therefore, low level contractions of a
short span (5 seconds) resembling activities of daily living
(ADLs) were applied in this study. Experiments involved the
detection of MMG activity while participants were asked to
perform four different hand gestures, namely wrist Flexion,
Extension, Pronation, and Supination. Four MMG sensors
were placed around the forearm over the target muscles:
flexor carpi radialis (FCR), brachioradialis (BR), extensor
digitorum communis (EDC), and flexor carpi ulnaris (FCU).
The participants were asked to position their dominant arm in
a resting position while seated. Resting position is defined as
placing the arm midway in supination at the forearm with the
elbow in contact with the torso and the forearm at 90 degrees
with respect to the arm. Participants were asked to stay still
for the duration of the experiment. Prior to the experiment,
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Fig. 3. Intermuscular coherence between all muscle pairs. Coherence is shown between all muscles (FCR, BR, EDC, and FCU) for all gestures
(red: Flexion, yellow: Extension, purple: Pronation, and green: Supination).

all participants underwent a training trial which consisted of
performing sustained contractions for two randomly selected
gestures. Participants performed 5 repetitions of the first
selected gesture, and similar to the existing literature in gesture
detection [34] [35], and in motor unit activity decoding [36],
intervals of 5 seconds of rest between each contraction were
applied. After the last resting period, following the repetitions
of the first gesture, participants performed 5 repetitions of
the second gesture with similar resting intervals between each
contraction. A 10-second interval was applied at the beginning
and at the end of the trial. The training trial took 2 minutes per
participant. Participants were asked to follow a digital clock
presented on a monitor in front of them to keep track of the
timing of each contraction. Fig 1 shows an illustration of the
experimental layout. The experiment consisted of two groups
of 2 randomly selected gestures. Similar to the training trial,
performing each group of gestures lasted for 2 minutes. One
minute of rest was applied between the two groups to prevent
fatigue of the muscles. The order and grouping of the gestures
were randomized. Both able-bodied and amputee groups fol-
lowed the same experimental protocol. The experiment took
5 minutes per participant. Fig 1 shows an illustration of the
cross-section view of the forearm and the positioning of the
sensors. The non-symmetry of the sensor location illustrates
the anatomical differences between participants. Muscles were
palpated, and sensors were positioned over the target muscles.
All amputee participants are quadruple amputees and needed
to undergo amputation after sepsis. The first participant had
the amputation 8 years ago and has a high-level trans-radial
amputation on the tested limb. The participant makes regular
use of a body-powered prosthesis on a day-to-day basis and
maintains a high level of activity, including regular exercise

and ADLs. The second and third amputee participants had
the amputation 6 and 7 years ago, respectively, and have
distal trans-radial amputations. Both participants use a Mitt
prosthesis on average every 3-4 days for ADLs, maintaining
a medium level of activity.

C. Data Processing

The raw acoustic signals of the MMG channels were ana-
lyzed to identify the onset and the offset of each contraction.
In this study, and similar to the existing literature on gesture
detection for electromyography [37], and mechanomyography
[38], the signal was analyzed during the steady-state phase
of the contraction in order to minimize the high degree of
stochastic non-stationarity present in the transient phases. The
transient state was discarded by removing the one-second post-
onset and one-second pre-offset of the signal recorded for each
contraction. The duration of the extracted signal was validated
to ensure at least 3 seconds of a steady-state contraction.

In this work, MMG information was recorded using a
sampling frequency of 1 kHz. The literature shows that the
MMG power information resides in frequencies no higher than
120 Hz [17]. Numerous investigations have demonstrated that
the dominant frequencies of muscle sound are found in the
range of frequencies below 30 Hz [39] [40], and there is
evidence showing MMG power information at frequencies as
low as 2 Hz and as high as 118 Hz [41]. Thus, guided by the
literature, the raw MMG signal was filtered using a fourth-
order band-pass Butterworth filter in the range of 1 - 150 Hz.

Mechanomyography can be categorized as a signal with
time-varying properties with power information at multiple
frequencies. Therefore, a time-variant, frequency-selective ap-
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Fig. 4. The frequency content of the coherence spectra of all muscle combinations was averaged across subjects and decomposed into three
components using non-negative matrix factorization. The three frequency components were defined as follows: component 1: 1-5 Hz, component
2: 5-12 Hz, component 3: 12-40 Hz. Top-row, common spectral patterns extracted for each gesture at every frequency component. Different
shadings of color show the frequency ranges. Gestures are color-coded (red: Flexion, yellow: Extension, purple: Pronation, and green: Supination).
Functional muscle networks were extracted for each gesture at each of the frequency components. Muscle networks were characterized by the
extracted common frequency patterns and the weightings of those patterns in the original spectra. The weightings give the strength of the edges
between the four muscles (nodes). The mapping of the color bar and the thickness of the edges show the strength of the connections between all
muscle pairs. The size of the nodes denotes the degree of each connectivity for each muscle. Functional connectivity networks of all components
(rows) are shown for each gesture (columns) for able-bodied participants.

proach is required for its analysis. A method widely in-
vestigated in the literature for time-frequency analysis is
the Hilbert transform, a transform-based approach used for
spectral analysis of time-varying signals which has shown
to be equivalent to Fourier and wavelet analysis and from
which coupling measures such as coherence can be derived
[42]. In this way, the Hilbert transform was applied to the
filtered MMG signal to obtain the analytic representation of
the signal which was further used for the estimation of the
cross-spectrum and the power spectral density, both necessary
measures for the evaluation of intermuscular coherence.

D. Intermuscular Coherence
Intermuscular coherence is derived based on the magnitude

square of the cross-spectrum between two signals normalized
by the product of the power spectrum of the two signals (1).
Because of the normalization, IMC is confined to be between
the values 0 to 1. The closer the value of IMC to 1, the
more linearly dependent (correlated) are the two signals in

the frequency domain. A common problem in the estimation
of coherence is the presence of spurious coherence due to
spatial and spectral leakages [43]. In this study, in order to
minimize the presence of spurious coherence caused by the
filtering process and by the frequencies at which the spectral
power information is critically close to zero, we implement
a modified magnitude squared coherence (MMSC) method
which includes a conditional statement based on the value of
the product between the power spectrum of the two signals.
The MMSC algorithm specifically avoids spurious coherence
when the spectral information context of the signals has the
least power. MMSC and IMC are used interchangeably for the
rest of the paper. The mathematical derivation of MMSC can
be found here:

MMSCxy =


|Sxy|2
Sx∗Sy

, if Sx ∗ Sy ≥ 1

|Sxy|2
1 , if Sx ∗ Sy < 1

(1)

where,
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Fig. 5. The common spectral patterns of the coherence responses of all muscle combinations were decomposed into three components. Functional
muscle networks were generated for each gesture at each of the frequency components. Muscle networks are generated from weightings of the
common frequency patterns. The weightings give the strength of the edges between the four muscles (nodes). The thickness and color code of the
edges shows the strength of the connections between muscles. The size of the node denotes the degree of connectivity of muscles. Functional
connectivity networks are shown for all components (rows) for each gesture (columns) for all amputee participants (amputee 1: top-left, amputee 2:
top-right, amputee 3: bottom-left, and average of amputees: bottom-right).

MMSCxy is the modified magnitude-squared coherence be-
tween signals x and y,
Sxy is the cross-spectrum between the signals,
Sx is the power spectral density of x, and
Sy is the power spectral density of y.

In this study, a method based on segment overlapping and
tapering was applied in order to improve frequency resolution
and reduce variance, as described in [44]. Coherence was
evaluated using the following parameters: a segment of 1024
samples to obtain a frequency resolution of 0.98 Hz, a Nuttall
window which helps reducing spectral leakage thanks to
its significant side-lobe suppression, and 50% of overlap to
account for the spectral resolution of the Nuttall window.
To prevent non-stationarities and spurious coherence resulting
from edge-effects caused from concatenation of trials, each
3-second trial of information was multiplied by a Tukey
window using a cosine-tapered section of 0.05 [45]. Following
this tapering process, the five trials of each gesture were

concatenated to form a signal of 15 s duration. MMSC was
calculated for all muscle pairs, gestures, and participants,
resulting in a matrix of (fxmxgxs), denoting f coherence
values, m muscle pairs, g number of gestures, and s number
of subjects.

E. Non-negative Matrix Factorization
A common method for deeper analysis of muscle networks

is to decompose the full-spectrum coherence between differ-
ent muscle groups into frequency-based connectivity using
mathematical factorization methods (such as non-negative
matrix factorization (NNMF), principal component analysis
(PCA), or independent component analysis (ICA)). This allows
identifying the common frequency space at which muscles
are co-modulated by the neural drive. Non-negative matrix
factorization is a multivariate method which is characteristic
for its non-negative constraints [46]. NNMF has been widely
used in the literature to identify the coactivation of groups
of muscles that contribute to a particular task, also known
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as muscle synergies [47]. In this respect, muscle synergies are
extracted by applying NNMF to the EMG envelopes [48] [49].
NNMF has also been used to identify unique spectral patterns
shared by groups of muscles from the estimated coherence
between pairs of muscles [10] [12] [13]. However, NNMF
has not been applied yet for the analysis of MMG activity;
in particular, for the spectral decomposition of the signal. In
this study, we use NNMF to decompose the MMG spectral
space into frequency band components to study the spectral
characteristics of the signal and to identify the common
spectral patterns shared by the target muscles when performing
different hand gestures.

It is established in the literature that mechanomyography
includes three main processes: (i) the gross lateral movement
of the muscles caused by the asynchronous activation of
muscle fibers, (ii) lateral oscillations occurring at the resonant
frequency of the muscles, and (iii) dimensional changes of
the active muscle fibers as well as gross limb displacements
[50] [33]. Dimensional changes of the muscle and gross limb
displacement account for the lowest frequencies of the signal
[51], tremor contributions reflecting the oscillations of the
motor system have been reported over a broad frequency band,
typically below 12 Hz [52] [53], and muscle inner vibrations
account for the higher frequencies, falling in the range of 10-
40 Hz due to intrinsic muscle fibers oscillations [54] [55].
As reported in the aforementioned studies, the components
comprising the MMG signal have been found to occur at
different frequency ranges, with some level of overlapping.
In this study, frequency bands have been defined as 1-5 Hz
for low-frequency information due to the bulk movement and
dimensional changes of the muscles, 5–12 Hz for oscillations
due to tremor produced during isometric contractions, and
12–40 Hz to capture the mechanical inner vibrations due to
intrinsic muscle fibers oscillations. In this way, non-negative
matrix factorization was applied, according to (2), to extract
three components in order to determine the common spectral
patterns in the delta band for component 1, theta and alpha
bands for component 2, and beta and gamma bands for
component 3.

Using NNMF, the original dataset regarded as an fxm
matrix X , where each row contains f non-negative coherence
values evaluated at each discrete frequency of the m muscle
pairs, is factorized into two low-rank non-negative matrices:
W , an fxk matrix with the activation patterns (common spec-
tral patterns) of k components, and H , a kxm matrix denoting
the weight coefficients (strength of muscle-pair connection) of
each muscle pair for every component.

X ≈ W.H (2)

Non-negative matrix factorization was used to decompose
the full-spectrum of the signal into frequency band compo-
nents with their corresponding coupling strength across all
muscle pairs for all gestures and subjects. In this way, NNMF
was applied to each coherence matrix fxm (513 coherence
values x 6 muscle pairs) corresponding to each gesture for all
participants. In this paper, we use the multiplicative update rule
for NNMF to minimize the objective function, as described in

Fig. 6. Clustering coefficient (CC) was used to statistically compare
the functional muscle networks across gestures (red: Flexion, yellow:
Extension, purple: Pronation, and green: Supination) and frequency
components (from top to bottom: 1-5 Hz, 5-12 Hz, and 12-40 Hz).
The clustering coefficient was evaluated for each undirected weighted
network for able-bodied (left column) and amputees (right column). A
two-sample t-test was used to statistically compare the CC between
gestures for able-bodied participants. Significance is shown in orange
color for p-value<0.05, Bonferroni-adjusted significance is shown in red
color for adjusted-p-value<0.0028

[56]. Different initialization methods for NNMF have been
investigated in the literature to achieve a smaller error in the
approximation and faster convergence [57] [58]. In this study,
we introduce a similar initialization method to that proposed
in [58]; however, instead of imposing a sparse structure in the
spatial organization of the vectors, we constraint the scope of
each component by initializing the columns of the W matrix.
Each column of the W matrix representing a frequency band
component (k1: frequency band 1-5 Hz, k2: frequency band
5-12 Hz, k3: frequency band 12-40 Hz) was initialized with
a uniform random amplitude distribution in the range [0.9, 1]
only for their respective active frequency band. As expected,
this initialization method resulted in delineated segregation of
frequency bands for the common spectral patterns extracted
(see Fig 4 top-row).
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F. Connectivity Analysis

Coherence muscle networks were constructed after identi-
fying the common spectral response of the muscle pairs at
different frequencies by using NNMF. The spectral activation
patterns represent the unique frequencies shared by the mus-
cles during the hand gesture tasks. The weight coefficients
produced from the factorization were used to construct the
adjacency matrices. Task- and frequency-specific matrices
were obtained, as NNMF extracted three components from
the coherence spectra for each gesture and participant. These
adjacency matrices were then used to construct the undirected
weighted functional connectivity networks.

Clustering coefficient (CC) is a measure of functional segre-
gation and is denoted by the extent to which neighbors of each
node are connected to each other [59]. The mean of the cluster-
ing coefficient reflects the average of the clustered connectivity
across nodes [60], with highly functional segregated networks
indicated by higher values of averaged CC and vice versa.
Based on the generalization of the algorithm to weighted undi-
rected networks [61], the clustering coefficient was computed
at all frequency bands for each of the connectivity networks
for all gestures and participants. The average of CC across
nodes was subsequently calculated to obtain a value of CC
for each component, gesture, and participant.

G. Statistical Analysis

The clustering coefficient of the networks was compared
between gestures for all participants to obtain statistical sig-
nificance at each of the frequency band components. The data
passed the Shapiro–Wilk normality test. Thus, a t-test was
applied to determine significance of CC between gestures.
CC at each frequency component was considered significantly
different between gestures for p-values < 0.05. Bonferroni-
adjusted significance level was calculated to account for the
increased possibility of type-I error. The adjusted significance
level is adjusted-p-value = 0.0028.

III. RESULTS & DISCUSSION

In this work, we analyzed muscle networks based on MMG
activity recorded from four superficial muscles of the forearm
while participants performed four different hand gestures.
The power spectral density (PSD) was generated to analyze
the spectral content of the MMG signal. PSD was averaged
across homologous muscles, trials, and subjects. Fig 2 shows
the different PSD profiles of all muscles across gestures for
able-bodied and amputee participants. PSD for able-bodied
participants shows a broad spectrum with peaks between 2-
4 Hz and similar frequency profiles across muscles with
differences in scaling depending on the gesture (Fig. 2).
PSD for amputee participants reveals distinctively different
profiles across muscles with peaks found between 2-12 Hz
depending on the hand gesture. PSD profiles for amputees
show a shift of peaks towards higher frequencies compared
to the PSD generated able-bodied participants. PSD for both
demographics showed power information at frequencies no
higher than 40 Hz.

A. Coherence Matrix

Functional muscle networks were defined by mapping the
correlated spectral response of different muscles for each
gesture for able-bodied and amputee participants. The nodes
of the networks represent the target muscles, and the edges of
the networks represent the strength of functional connections
between muscles. Fig 3 shows the intermuscular coherence
between all muscle pairs of able-bodied subjects along with
the confidence interval generated according to the method
described in [44]. The common frequency components across
all muscle pairs, hand gestures, and subjects for both demo-
graphics were extracted. Coherence for all muscle pairs were
averaged across subjects to obtain coherence profiles for each
gesture. The results show distinct functional organization for
different hand gestures. Coherence is observed over a range
of frequencies below 40 Hz, and distinctive frequency profiles
were found depending on the muscle-pair and hand gesture.
No values of coherence were found at frequencies higher than
40 Hz. The IMC results in Fig. 3 imply a dense connectivity
matrix for all muscle pairs, showing high levels of common
spectral patterns across different frequency bands. In the case
of Flexion, different levels of IMC were found at frequencies
below 12 Hz across all muscle pairs. The highest level of
IMC for this gesture was found at 2 Hz for muscle pair FCR-
FCU. Similar coherence profiles were found for Extension,
with most of the IMC found at frequencies below 12 Hz and
some level of IMC present at frequencies higher than 12 Hz for
the muscle pairs BR-EDC and FCU-EDC. Pronation showed
the highest levels of IMC for all the muscles connected to
FCU, with peaks just below 5 Hz for muscle pairs FCU-EDC
and FCU-BR and high IMC for all frequencies below 12 Hz
for muscle pair FCU-FCR. A closely similar IMC profile was
observed for Supination for FCU-FCR. Regarding the IMC
pattern of FCU-FCR, it can be highlighted that two distinct
behaviors are observed, one of which relates to similar patterns
for Flexion and Extension (red and yellow lines), and the
other one relates to a similar behavior comparing Pronation
and Supination (purple and green lines).

B. Muscle Connectivity Networks

In order to evaluate the coherence over specific frequency
ranges, intermuscular coherence was decomposed into three
frequency bands using non-negative matrix factorization [46].
The number of components extracted evaluates the functional
connection between muscles at low (1-5 Hz), medium (5-12
Hz), and high frequencies (12-40 Hz).

1) Able-bodied: The common spectral patterns for the three
frequency components for each gesture were extracted using
NNMF. The corresponding weightings for each component
yield the functional connectivity matrices of the muscle net-
works for each gesture. Fig 4 shows the functional connec-
tivity networks for able-bodied participants, generated for all
gestures at each one of the frequency components.

The first component captures coherence at low frequencies
and shows relatively high connectivity between all muscle
pairs for Flexion and Extension. Pronation and Supination



MANCERO CASTILLO et al.: SYNERGISTIC UPPER-LIMB FUNCTIONAL MUSCLE CONNECTIVITY USING ACOUSTIC MECHANOMYOGRAPHY 9

TABLE I
STATISTICAL RESULTS OF CLUSTERING COEFFICIENTS

comp. Flexion Extension Pronation Supination
k1 t:-0.892 p:0.38 t:0.385 p:0.7 t:3.53 p:0.00068 ∆:-18.4% ↓

Flexion k2 t:-1.11 p:0.27 t:-0.356 p:0.72 t:0.779 p:0.44
k3 t:-2.51 p:0.014 ∆:16.7% ↑ t:1.78 p:0.079 t:-0.227 p:0.82
k1 t:-0.892 p:0.38 t:1.31 p:0.2 t:5.27 p:1.1e-06 ∆:-21.6% ↓

Extension k2 t:-1.11 p:0.27 t:0.869 p:0.39 t:2.34 p:0.022 ∆:-8.73% ↓
k3 t:-2.51 p:0.014 ∆:-16.7% ↓ t:4.13 p:9.1e-05 ∆:-25.4% ↓ t:2.03 p:0.045 ∆:-12.5% ↓
k1 t:0.385 p:0.7 t:1.31 p:0.2 t:3.01 p:0.0036 ∆:-16.6% ↓

Pronation k2 t:-0.356 p:0.72 t:0.869 p:0.39 t:1.39 p:0.17
k3 t:1.78 p:0.079 t:4.13 p:9.1e-05 ∆:25.4% ↑ t:-1.85 p:0.067
k1 t:3.53 p:0.00068 ∆:18.4% ↑ t:5.27 p:1.1e-06 ∆:21.6% ↑ t:3.01 p:0.0036 ∆:16.6% ↑

Supination k2 t:0.779 p:0.44 t:2.34 p:0.022 ∆:8.73% ↑ t:1.39 p:0.17
k3 t:-0.227 p:0.82 t:2.03 p:0.045 ∆:12.5% ↑ t:-1.85 p:0.067

Frequency band components are represented as, k1: component 1-5 Hz, k2: component 5-12 Hz, and k3: component 12-40 Hz.
Significance is shown in orange color for p-value<0.05, Bonferroni-adjusted significance is shown in red color for adjusted-p-value<0.0028, df =18.

appear to have a lower level of connectivity for muscle pairs
EDC-BR and FCR-BR.

The second component shows a similar topology to that of
the first component for all gestures. High connectivity between
FCR-FCU is shown for both components for Pronation and
Supination.

The third component shows a distinctly different functional
organization of the networks compared to the first two spectral
components. Flexion shows high connectivity for all vertices
connected to the BR muscle. Weaker connectivity is shown
for the muscle triplet FCR-FCU-EDC compared to the first
two spectral components. In the case of Extension, muscle
triplet FCR-BR-EDC maintained a high level of connectivity
while FCR-FCU and FCU-BR show reduced connectivity.
As opposed to Flexion and Extension, Pronation shows an
evidently strong connectivity for all muscles pairs connected
to FCU. connectivity between FCR-BR and EDC-BR show
similar connectivity to that shown in the other two spectral
components. Lastly, Supination shows a distinct topology
related to the third spectral component, showing lower con-
nectivity between the muscle pair FCR-FCU and FCU-EDC
but higher connectivity between the rest of the muscle pairs.
FCR-BR shows a similar level of connectivity compared to
the first two spectral components. Muscle networks in Fig
4 indicate a gradual transition from widespread connectivity
between all muscle pairs for the lowest frequency component
to strong localized connections for the third frequency band.
This analysis also suggests a distinct signature of MMG-based
connectivity for different gestures.

2) Amputees: Fig 5 illustrates the functional connectivity
networks for each amputee participant and the mean of the
participants for all gestures at each frequency component.

For each amputee participant, the first component shows
high connectivity between muscle pair FCR-FCU for Flexion,
medium to high levels of connectivity between FCR-BR for
Extension, and low levels of connectivity for both gestures
between FCU-BR. Pronation shows high connectivity between
FCR-BR, medium levels of connectivity between EDC-FCR,
and medium to low connectivity between FCU-EDC and EDC-
BR. Supination shows low connectivity between FCU-BR and
heterogeneous connectivity for the rest of the muscle pairs
across participants.

The second component shows widespread connectivity be-
tween all muscle pairs for Flexion and Extension for two of the
amputee participants, and a strong connection between FCR-
BR for Flexion, Extension and Pronation for all participants.
Strong connections were also found for all vertices connected
to BR for Pronation, with low connectivity between EDC-BR.
Interestingly, a similar topology to that of the first component
was shown for Supination across all participants.

The third component shows a decrease in connectivity in
muscle pair BR-FCU and high connectivity between FCR-
FCU for Flexion for all participants. Heterogeneous connec-
tivity between all muscle pairs across participants was found
for Extension with medium levels of connectivity between
EDC-BR and FCU-EDC and low connectivity for FCR-EDC.
A similar topology was found for Pronation with higher
connectivity between FCU-BR. For Supination, all participants
showed high and medium levels of connectivity for FCU-EDC
and EDC-BR, respectively, while medium to low connectivity
was found for the rest of the muscle pairs.

3) Able-bodied vs Amputees: The first component shows a
similar network topology to that of the second component
across all gestures for able-bodied and for each of the amputee
participants. The third component shows different topologies
and lower connectivity compared to the first two components
for both demographics. These results suggest overlapping
frequency information for the bulk movement of the muscles
and the tremor produced during the contractions. The distinct
topologies at higher frequencies suggest that muscle fibers
oscillations produce localized spectral activity for specific
muscle pairs depending on the gesture.

It is important to mention that opposite gestures reflect a
similar topology of connectivity for the first two frequency
components for all amputee participants and, more evidently,
for able-bodied participants. In other words, Flexion and
Extension show a similar connectivity topology, and Pronation
and Supination present the same phenomena. This could be a
result of the fact that MMG captures not only the contraction
of the agonist muscles but also the relaxation of the antagonist
muscles, both simultaneously occurring during the task and
found to be present at low frequencies [62]. Interestingly, sim-
ilar topologies were found between Extension and Pronation
across all frequency components for each amputee participant.
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The third component showed a different topology between
able-bodied and amputees for all gestures, with some similarity
in connectivity strength for BR muscle pairs for Extension and
Pronation

Regarding the role of each muscle during the gestures,
all four muscles are involved when performing wrist Flexion
and Extension. Able-bodied participants showed widespread
connectivity between muscles for the first two components
with some localized connectivity in the FCR and BR muscles
for the third component. Similarly, high connectivity was
found for FCR and BR muscles for two of the amputee par-
ticipants across the same gestures in the first two components,
with also high connectivity present in the FCU muscle for
both participants. In general, for each amputee participant,
EDC appeared to be the least active muscle for Flexion and
Extension for the first two components.

The brachioradialis muscle is responsible for bringing the
pronated, or supinated forearm into a neutral position. Thus,
in the case of Pronation and Supination, it is expected to find
a higher level of connectivity for vertices connected to BR due
to its role in both actions. Interestingly, similar topologies were
found between Extension and Pronation across all frequency
components for each amputee participant. The third compo-
nent showed a different topology between able-bodied and
amputees for all gestures, with some similarity in connectivity
strength for some muscle pairs for Extension and Pronation.

A low level of connectivity is expected for the EDC muscle
during Pronation and Supination due to the role that the EDC
muscle has during these gestures. The extensor digitorum
communis muscle is a multi-compartment muscle that is
responsible for extending digits 2–5. Given that extension of
the fingers occurred only during Flexion and Extension, the
connectivity of the muscle is expected to be higher for these
gestures than for Pronation and Supination. This is evident for
able-bodied participants, particularly for the third frequency
component. However, this is not the case for amputee par-
ticipants, where a low level of connectivity is found for the
EDC muscle compared to the rest of the muscles across all
frequency components for all gestures. These differences in
muscle pair connectivity strengths, and therefore on the topol-
ogy of the networks between demographics might be present
because of the anatomical differences caused by amputation,
variations of remaining muscle, and level of muscle activity.
These functional (re)organization differences between able-
bodied and amputees could show not only how the anatomy
has changed after amputation but also how the neural drive
adapts to those anatomical changes when performing the same
gestures. To better investigate this phenomenon, our future line
of research includes participating more amputees to provide
stronger statistics regarding the observed changes reported
here.

C. Network Analysis

Complex network analysis was used to compare the muscle
networks between hand gestures for the different frequency
components. In order to analyze network segregation, the clus-
tering coefficient (CC) was derived from all networks. In this

work, a t-test was used to evaluate the statistical significance
of the network behaviors. Fig 6 shows the results of the t-
test for the CC of all the undirected networks. Significant
differences between gestures are shown in orange for (p <
0.05) and in red after applying Bonferroni correction for (p
< 0.0028). For able-bodied participants, the first frequency
component showed that CC for Flexion and Extension were
significantly higher than CC for Supination (p < 0.0028). CC
for Pronation was also found to be significantly higher than CC
for Supination (p < 0.05). The second frequency component
shows a significant difference in CC between Extension and
Supination only (p < 0.05). On average, similar values of CC
were found between the rest of the gestures. Similar to the first
component, Supination showed the lowest values of CC across
all gestures. The third frequency component shows that CC for
Extension is significantly higher than CC for Flexion, and CC
for Supination is significantly higher than CC for Extension (p
< 0.05). Pronation showed a significantly lower value of CC
compared to Extension (p < 0.0028). Table I summarizes the
statistical results of the clustering coefficient for all frequency
bands and gestures for able-bodied participants. For amputee
participants, the first component showed distinct distributions
of CC values for all gestures. The individual contributions of
each amputee participant can be seen in Fig 6. Similar to able-
bodied participants, the second frequency component showed
the least variability of CC between gestures compared to the
other frequency components. The third frequency component
showed a distinctively wider distribution for Flexion compared
to the other gestures which showed similar distributions of CC.

In this study, we have shown distinct muscle connectivity
topologies depending on the frequency component, gesture,
and demographic. Significant differences in functionally seg-
regated networks for specific gestures at low and high frequen-
cies were found. The differences of CC between Supination
and the rest of the muscles for the first frequency component
for able-bodied participants suggest a characteristic spectral
profile for the muscle displacement that occurs during Supina-
tion. The differences of CC between Extension and the rest of
the muscles for the third component suggest common spectral
characteristics between muscles at higher frequencies for this
particular gesture compared to the other gestures. The above-
mentioned analysis and the results given in Table I show
a clear distinction of functional muscle networks registered
using MMG and calculated by intermuscular coherence at
different frequency bands. The results also highlight potential
differences in the MMG frequency spectra between able-
bodied and amputees. This work, for the first time, provides a
strong biomarker of synergistic muscle functionality using the
clustering coefficient of the network extracted using MMG ac-
tivity. Different types of time and frequency analysis methods
have been suggested to analyze the MMG signal features and
its role in motor control [17], [63]. MMG power spectrum has
been reported to contain information regarding firing rate of
motor units, with increases in the global firing rate of motor
units resulting in higher frequencies of the MMG signal [64].
The results of the present study regarding differences in muscle
connectivity networks across frequency components and clus-
tering coefficient distributions may support the application of
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MMG signal parameters as indicators of motor unit activation
patterns and firing rates during muscle activity. The outcome of
the study can further be used for the conduction of classifiers
to find the motor intention of the user based on functional
connectivity, with potential for real-time implementation of the
MMG-based approach [65]. The results can also be used to
track the changes in functional synergistic behavior of healthy
and impaired muscles.

The present results show evidence that mechanomyography
can be used as a tool to perform analysis of functional
muscle networks for able-bodied and amputee users. However,
this study presents several limitations. Miniaturization of the
device is needed to make it a wearable system to be able
to utilize the proposed novel MMG-based muscle network
analysis in the control of prostheses. This study also did not
consider complex dynamic activities which have shown to
provide relevant information regarding muscle function [17].
So far, muscle network analysis has been done only by the
use of EMG. This study did not include the simultaneous
acquisition of EMG activity for the comparison of muscle
networks obtained using each type of myographic signal.
Previous research indicates that the motor unit recruitment and
firing rate affect the MMG and EMG equally for contractions
up to 80% MVC [54]. Therefore, it is to expect that muscle
networks derived from both of these myographic modalities
will reflect similarities in their topologies for low and medium
levels of contraction. Future perspectives of this work will
focus on (a) miniaturization of the device for translation of
the proposed system into wearable technology to be used
in a clinical setting, (b) evaluation of static and dynamic
tasks for a deeper analysis of the neural circuitry involved in
different types of motor tasks, and (c) simultaneous acquisition
of electromyography and mechanomyography activity during
different gestures for analysis and comparison of muscle
networks derived from each myographic modality.

IV. CONCLUSION

In this study we present, for the first time, the analysis
of functional muscle networks using MMG and mapping of
its variance between able-bodied and amputee participants.
Intermuscular coherence was derived from the frequency re-
sponse of all the muscle pairs for all gestures and participants.
Coherence was decomposed into three frequency components
using non-negative matrix factorization. Muscle networks were
generated for all gestures and all spectral components. Com-
plex network analysis was conducted to extract the clustering
coefficient of each network, which was used for statistical
comparisons between gestures for able-bodied participants.
Results showed significant differences between gestures across
multiple frequency bands for able-bodied participants. These
findings support the hypothesis that mechanomyography can
be used for muscle network analysis and that it can be further
exploited for the analysis of functional muscle connectivity for
able-bodied and amputees. The findings of this investigation
offer the concomitant outcomes of supporting the usability of
MMG to map muscle coherence from a neurophysiological
perspective as well as providing a mechanistic basis for its

translation into human-robot interfaces (e.g., prosthetic hand
control). It is important to mention that further analysis
including the simultaneous acquisition of MMG and EMG
activity is expected as the next step of this research in order
to analyze muscle networks derived from each myographic
signal and study the contributions of each modality in the
analysis of functional muscle connectivity. In addition, the
results of the present study motivate the investigation of a
wider range of research questions, including MMG spectral
analysis of a wider range of activities requiring different sets of
muscles in the upper and lower limbs. Translation is underway
with corporate collaborators (https://sergtechnologies.com/) in
artificial limbs and tremor control.
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