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MCAL: An Anatomical Knowledge Learning
Model for Myocardial Segmentation in 2D

Echocardiography
Xiaoxiao Cui, Pengfei Zhang, Yujun Li, Zhi Liu, Xiaoyan Xiao, Yang Zhang, Longkun Sun, Lizhen Cui, Guang

Yang, and Shuo Li

Abstract—Segmentation of the left ventricular (LV) my-1

ocardium in 2D echocardiography is essential for clinical decision2

making, especially in geometry measurement and index computa-3

tion. However, segmenting the myocardium is a time-consuming4

process as well as challenging due to the fuzzy boundary5

caused by the low image quality. Previous methods based on6

deep Convolutional Neural Networks (CNN) employ the ground-7

truth label as class associations on the pixel-level segmentation,8

or use label information to regulate the shape of predicted9

outputs, works limit for effective feature enhancement for 2D10

echocardiography. We propose a training strategy named multi-11

constrained aggregate learning (referred as MCAL), which lever-12

ages anatomical knowledge learned through ground-truth labels13

to infer segmented parts and discriminate boundary pixels. The14

new framework encourages the model to focus on the features in15

accordance with the learned anatomical representations, and the16

training objectives incorporate a Boundary Distance Transform17

Weight (BDTW) to enforce a higher weight value on the boundary18

region, which helps to improve the segmentation accuracy. The19

proposed method is built as an end-to-end framework with a20

top-down, bottom-up architecture with skip convolution fusion21

blocks, and carried out on two datasets (our dataset and the22

public CAMUS dataset). The comparison study shows that the23

proposed network outperforms the other segmentation baseline24

models, indicating that our method is beneficial for boundary25

pixels discrimination in segmentation.26

Index Terms—Boundary distance transform weight, multi-27

constrained aggregate learning, myocardial segmentation.28

I. INTRODUCTION29

ECHOCARDIOGRAPHY is routinely used in the diagno-30

sis and management of cardiovascular disease because it31

can provide real-time images of a beating heart, combined with32

its availability and portability [1]. Heart function assessment,33

such as diastolic analysis, calculation of the cardiac output,34

and ejection fraction (EF), are key determinants of clinical35

decisions. And segmentation of the left ventricular (LV) my-36

ocardium helps accurate quantification of these indexes in the37

clinical workflow. Thus developing an automatic approach for38
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(a)

(c)

(b)

Fig. 1. Typical images extracted from our dataset. (a) Examples of samples
with an ambiguous border (Left: Fuzzy chamber border; Right: Fuzzy apical
border); (b) Illustration of the annotation of the myocardium. Up: the original
ultrasound image; Down: the annotation of the myocardium with a green dot;
(c) Different image quality (Left: good image quality; Middle: medium image
quality; Right: Poor image quality).

accurate myocardial segmentation liberates radiologists from 39

manual annotation. 40

Several research works have been performed efficiently on 41

the segmentation in B-mode echocardiography in the past 42

few decades [2]–[4]. With the combination of various feature 43

enhancement modules [5], [6] and different deep network 44

architectures [7]–[10], the ground-truth is applied as a class 45

associate or shape regulation by minimizing the loss function. 46

However, these methods still have scope for improvement. 47

First, methods that focus on feature enhancement to achieve 48

a better result still work limit for echocardiography. Since 49

the limitations of the ultrasound image due to resolution, the 50

presence of speckle noise, and artifacts caused by the complex 51

interaction between the tissue and ultrasound, usually lead to 52

an ambiguous border between the myocardium and chamber 53

(Fig. 1-(a)), making it difficult for an accurate delineation of 54

the myocardium (Fig. 1-(b)) by feature enhancement modules. 55

Second, works that regulate the segmented output with some 56

constraint strategy [9], [10] are much like post-procession and 57

global constraint. But boundary pixels of echocardiography 58

are hard to capture by shape constraints. Because imaging 59

quality varies from subject to subject (Fig. 1-(c)), giving rise 60

to difficulty in capturing the intensity change on the boundary. 61

To fully use the annotations to address the limitations, we 62

propose a novel training strategy named Multi-Constrained 63

Aggregate Learning (MCAL). Specifically, we force the distri- 64

butions divergence of the latent features of the input and the 65

ground-truth to be close in the training process. This helps 66

to infer anatomical structure from the deeper layer of the 67
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encoder. Furtherly adjusting the scale and offset of the learned68

anatomical information by a Feature-wise Linear Modulation69

(FiLM) [11], the segmented relevance feature information70

is enhanced. Finally, upon observing that the boundary is71

hard to detect, we further enhance a higher weight on the72

border neighborhood pixels by proposing a Boundary Distance73

Transform Weight (BDTW) for the segmentation loss, which74

acts as guidance for penalizing the learning process.75

The main contributions of our proposed framework are:76

• Our method derives segmented-relevance information77

by narrowing distribution divergence between the latent78

space of input and label, which exploits anatomical79

knowledge to guide feature enhancement. FiLM is ap-80

plied to enhance segmented-relevant features with the81

guidance of the anatomical information, which restrains82

the irrelative features under low image quality.83

• A novel Boundary Distance Transform Weight (BDTW)84

is applied to the cross-entropy loss. It forces the network85

to focus on the boundary region pixels in each training86

batch and improves the discrimination on boundary pix-87

els, which is useful in cases with low image quality.88

II. RELATED WORKS89

There have been many works on the segmentation of B-90

mode echocardiography, which mainly fall into two categories:91

the traditional methods and the deep learning methods. Most92

of the solutions based on traditional methods need prior93

information such as the appearance or shape of the LV [2], [4],94

[12]–[14], which presents an assumption that the border be-95

tween myocardium and blood pool is accessible, and therefore96

possible to achieve good segmentation results based on prior97

knowledge. As these studies are dependent on the predefined98

knowledge, so they may fail if data vary from the information99

stored in the priors. The other methods aim to minimize the100

energy function by tuning a large number of parameters [3],101

[15], [16].102

Recently, with the development of deep learning in medical103

image analysis [17], [18] segmentation methods based on104

deep CNN learned the features with different convolutional105

kernels and connection methods to obtain accurate and ro-106

bust results [19]–[24]. Two publicly available datasets in107

echocardiography CAMUS [25] and Dynamic-Echonet [26]108

are researched, proved that the deep learning algorithm out-109

performed in the tasks of segmenting the left ventricle, es-110

pecially the encoder-decoder based architectures [25]. Several111

works deal with echocardiographic sequence segmentation by112

incorporating temporal information such as optical flow [27]113

and hierarchical convolution aggregated with temporal rele-114

vance [28]. However, the temporal information may deteriorate115

significantly in a low-quality frame because of the high noise.116

With insights from shape regularization on the prediction,117

the anatomically constrained neural networks (ACNNs) [9]118

and shape reconstruction neural network [29] have worked to119

maintain a realistic shape of the resulting segmentation without120

post-procession.121

VAE [30] approximates posterior distribution via a param-122

eterized variational inference. The distribution is enforced to123

be close to a normal distribution as a regularization, which 124

is applied in the cross-modality image segmentation [31], 125

[32]. By regularization, the model can learn a shared domain- 126

invariant latent space with the same distribution. In this work, 127

we applied regularization to narrow the distribution divergence 128

between the latent features of the input and the label, which 129

helps to infer the segmented information. 130

III. METHODOLOGY 131

In this paper, the MCAL leverages anatomical and spatial 132

knowledge learned through ground-truth labels on the myocar- 133

dial segmentation in 2D echocardiography, on the backbone of 134

an encoder-decoder architecture, as shown in Fig. 2. A latent 135

representation encoder maps the input to a latent space by 136

learning the high-level semantical information. For a raw input 137

image, the spatial space contains the segmented anatomical 138

information mixed with the other contexture. So we apply the 139

Kullback-Leibler (KL) divergence loss to learn the distribution 140

difference between the spatial space and the anatomical space 141

of the ground-truth label. On the other hand, FiLM highlights 142

the feature responses in relevant segmentation regions by 143

modulating the spatial space. Further, the skip convolution 144

fusion blocks are applied to discriminate more fine-grained 145

details from the intermediate feature maps through the encoder. 146

Finally, the BDTW focuses on the border neighborhood pixels 147

in each training batch and improves the segmentation accuracy. 148

Fig.3 shows the detailed architecture of each module.

Fig. 2. Block diagram of the proposed model. An input image and its
corresponding annotation are encoded to a spatial space s and anatomical
space g respectively using an encoder fs and fg . Then s and the spatial
factor zs are combined as an input to a decoder fh to produce a myocardial
segmentation prediction. The spatial factor zs is constrained to learn the
distribution, which is close to that of anatomical factor zg . The parameters
of the whole model (the black line and the red line) propagate to achieve an
optimal result in the training stage, and the parameters among the black lines
are loaded in the test stage.

149

A. Anatomical Information Derivation with Distribution Di- 150

vergence Regularization 151

VAE is a generated model based on samples from a latent 152

variable, of which the posterior distribution is approximated 153

from the input. For an input x, the approximate posterior 154

distribution of its latent variable z can be estimated by an 155

encoder p(·|·). The encoded distributions are set to be an 156

isotropic multivariate Gaussian N(µ, σ) with mean µ and 157

variance σ. Specifically, the encoded feature space produces 158

dimensional mean and diagonal co-variance by dimensional 159
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Fig. 3. The architectures of the encoder-decoder that make up the MCAL
network. The spatial encoder module is constructed of four convolutional
blocks and produces spatial space s for the input image. Then it is modulated
by the spatial factor zs with a FiLM. Finally, the decoder combines the bridge
layer from the encoder with a skip convolution fusion block, to produce a
segmentation prediction of the myocardial. The number on each box represents
the channels of feature maps. Here the “Conv”, “BN”, “ReLU“, and ”FC”
represent the convolution layer, the batch normalization layer, the rectified
linear unit activation layer, and the fully connected layer, respectively.

squeeze, then they are sampled to be an axis-aligned Gaussian160

distribution to yield the final latent variable. And a decoder161

q(·|·) converts the samples from z back to the input space.162

Motivated by the distribution regularization in VAE, we aim163

to apply the regularization to narrow distribution divergence164

between the latent feature space of input and label. Specif-165

ically, we first transform the input and label into a latent166

feature variable by a latent representation encoder, separately.167

Then we estimated the approximate posterior distribution168

by a parameterized variational form. The divergence of the169

distribution from the input and label is regularized to infer170

segmented-relevance information in segmentation.171

The latent representation encoder transforms the input into172

a spatial representation in our model. The encoded spatial173

representation is a group of feature maps that contain the174

spatial information of the input in different channels, so we175

define spatial feature space s as fs(x), specifically for an input176

x. Considering that the encoded latent space of the annotation177

ground truth y mainly includes the anatomic information,178

we define the anatomical feature space g as fg(y). And the179

latent factor from the encoded feature space is denoted as180

zs and zg for the input and ground-truth, respectively. Their181

corresponding approximate probability distribution is denoted182

as pθ(zs |x, s ) and pφ(zg |y, g ), respectively. The distance183

between pθ(zs |x, s ) and pφ(zg |y, g ) is then used as an184

effective regularization for segmentation directly. The distri-185

bution discrepancy convergences gradually during the network186

training. The distribution difference is directly penalized by the187

KL divergence:188

Lkl = DKL(pθ(zs |x, s )||pφ(zg |y, g )). (1)

B. Feature Enhancement with FiLM189

A FiLM constrains the information stored in the spatial190

space by adjusting the scale and offset of the sampled data191

Fig. 4. Visualization of the learned feature maps of some selected channels
before and after FiLM. The input images and the corresponding prediction
results of our method are in the first column. The five most relevant channel
maps of the spatial information before and after modulation are in the first
and the third rows, the second and the fourth rows, respectively.

over the spatial factor zs. The re-scale and offset coefficients 192

are predicted from spatial factor s, which, after a series of 193

convolutions, are conditioned by zs samples. Specifically, zs is 194

sampled and then fed into two fully connected layers to obtain 195

the scale γ and offset β, as shown in Fig.3. To modulate each 196

feature map in the spatial space s, γ and β are un-squeezed by 197

the dimensional expanding. Then the spatial space s is passed 198

through a convolution layer, and the modulated output of each 199

channel is formulated by an element-wise multiplication � 200

and addition operation as follows: 201

F ′c = γc � Fc + βc. (2)

Each feature map is affined to learn from the sampled data, 202

here Fc represents the feature map in each channel c. 203

To verify the effectiveness of FiLM, the feature maps of 204

some selected channels relevant to the segmentation before and 205

after FiLM are visualized in Fig. 4. The first column represents 206

the input images and predicted segmentation results of the 207

MCAL. The feature maps in the first and third rows demon- 208

strate that the spatial space contains anatomical information 209

drowned in the complicated semantical and spatial informa- 210

tion. The second and the fourth rows display the corresponding 211

output of the FiLM. It is obvious that with the modulation of 212

the spatial factor, the network has learned critical information 213

of the segmented structure in some channels. However, we 214

observed that the feature map of channel 12th is weakly 215

associated with the myocardial segmentation, and the structure 216

in the 27th and 87th channels is incomplete. So we use the 217

skip convolution fusion block, which combines the semantic 218

information of the encoder and the relative rich anatomical 219

information in the decoder to solve the problem and fulfill 220

segmentation. 221

C. Segmentation with Decoder 222

The architecture of the decoder shown in Fig. 3 is a bottom- 223

up structure with a skip connection with the encoder. Each up- 224

sampling layer adds the feature maps of the bridge pathway 225
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that makes input of the Single Convolutional Block (SCB). The226

bridge pathway between the encoder and the decoder consists227

of a convolutional block with three successive convolution228

layers.229

Formally, we formulate the bridge pathway as follows: let230

F ei and F di denote the learned feature maps with the same231

size before the ith down-sampling layer along the encoder232

and the ith up-sampling layer along the decoder, respectively.233

The stack of feature maps represented by F si is computed as234

F si =H1(F ei ) + U(F di+1) (3)

where function H1(·) is a convolutional block operation, U(·)235

denotes an up-sampling layer. Then we obtain the output by236

F di = H2F
s
i , where function H2(·) is a convolution operation237

followed by batch normalization and ReLU activation.238

The decoder recovers the features in each up-sampling layer239

by fusing corresponding semantical feature information of240

the encoder. Specifically, the modulated spatial output s′ is241

firstly up-sampled by a bilinear operation, which restores the242

dimension of the feature maps gradually in each up-sample243

layer and finally achieves pixel-level prediction. Mainly, the244

skip convolution introduces the feature maps of the encoder245

selectively, which contains more semantic information closer246

to that of the feature maps in the decoder. Then outputs of247

the skip convolution fusion block are fused with the previous248

bilinear layer output of the lower skip convolution fusion249

block. The fusion of the enhanced semantical feature maps250

with the same size between the encoder and the decoder by the251

skip convolution fusion block can facilitate optimizer during252

network training.253

D. Boundary Distance Transform Weight Loss254

Some works have proposed to solve the label imbalance by255

multiplying the class weight and tuning the weight value of256

hard examples iteratively [33]. The boundary is hard to detect257

in segmentation, especially for ultrasound images with artifacts258

and speckle noise. Errors located on boundaries affect further259

index calculation and analysis. A simple and straightforward260

way to solve this problem is to assign higher weights to the261

adjacent pixels of the boundary. More weight assigned only262

to the boundary pixels leads the network to strengthen the263

boundary information. However, determining the weight value264

of the boundary region is difficult.265

Fig. 5. Illustrations of (a) the primary weight and (b) the boundary distance
transform weight (BDTW), the weight values are different according to the
distance to the boundary pixels (the red). The BDTW assigns a higher weight
to the boundary region, which directly learns the desirable result and therefore
helps reduce the prediction errors.

In this paper, we apply the boundary information to cal-266

culate the new weight, which displays the distance of each267

pixel to the boundary. The weighted distance transform map 268

is decreased exponentially according to the Hausdorff Distance 269

(HD) to the boundary. It forces the network to pay more 270

attention to the boundary, which is formulated as follows: 271

Wi,j = exp(−HD[i, j]) = exp(− min
(k,l)∈q

d([i, j], [k, l])) (4)

where d is the distance of each pixel [i, j] of the ground- 272

truth to [k, l], which belongs to a boundary set q. The stan- 273

dard Euclidean distance d([i, j], [k, l])=

√
(k − i)2 + (l − j)2 274

is used to calculate the distance between pixels. As shown 275

in Fig.5(b), the BDTW assigns the pixels of the boundary 276

region to higher values. Such a mechanism penalizes the hard 277

prediction boundary pixels and therefore helps to reduce the 278

overall prediction errors. 279

Finally, the boundary distance transform weight (BDTW) 280

loss is obtained by: 281

Lbdtw = (λWi,j + 1)� Lce (5)

where λ is a hyperparameter, Lce is the cross-entropy, and 282

� is the Hadamard product. Since the weight of pixels that 283

are far from the boundary is small, hence, to mitigate the 284

vanishing gradient issue, all the weight value is increased by 285

1. Moreover, the BDTW can be computed in the dataset only 286

once, which does not burden the calculations. 287

We also adopt the Lovasz-Softmax loss [34] as the loss 288

function to measure the result of the segmentation, as the 289

framework fulfills the segmentation based on the pixel classifi- 290

cation problem. The Lovasz-Softmax loss function Lls directly 291

optimizes the mean intersection-over-union loss in the context 292

of semantic image segmentation: 293

Lls =
1

|C|
∑
c⊂C

∆Jc(m(c)) (6)

where ∆Jc is the loss surrogate, m(c) corresponds to the 294

vector of pixel identification errors, and C is the class number. 295

In general, the final loss function is the weighted sum of the 296

segmentation loss and KL loss, and the trainable parameters 297

θw are regulated with the L2 paradigm by factor η, which is 298

formulated as: 299

L = λlLls + Lbdtw + λvLkl + η ‖θw‖22 (7)

where the λl and λv are hyper-parameters to allocate the 300

corresponding loss. 301

IV. MATERIAL AND EXPERIMENTAL RESULTS 302

A. Dataset Information and Annotations 303

Our Echocardiography Dataset: We evaluated the pro- 304

posed MCAL on our dataset, which contains a total of 1472 305

frames of 11 healthy subjects, and is collected from two 306

hospitals with different devices by Philips and GE, with ethics 307

approval from the Clinical Medical Research Ethics Board. 308

The privacy information of patients is erased at the worksta- 309

tion. The temporal rate is 65−70 Hz among frames. The pixel 310

resolution of images from the devices are 0.353×0.353 mm2. 311

We research the apical 4-chamber view (A4C) of each exami- 312

nation of those subjects in the experiment. From these images, 313
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we randomly select these subjects to train the model and314

test. Considering the inter-subjective appearance difference315

and the intra-subjective frame-relevance, we split the dataset316

into cross-validation set for training and a dependent test set317

with a ratio of 9:2 on a subject basis, based on a ratio of 8:2318

on an image basis, to illustrate the robustness of our proposed319

method. Besides, we abandon the first and last frames of the320

echo cine due to poor image quality. Each subject contains321

at least one temporally cropped sequence that captures one322

complete cardiac cycle from ES to ED. An expert annotates the323

myocardium of each image in the dataset manually according324

to [1]. The other expert confirms the inconsistency of the325

annotation and the labels. The annotation masks are considered326

as ground truth to train our model.327

CAMUS Dataset: To comprehensively evaluate the per-328

formance of our model, we also use the public CAMUS329

dataset for verification in the experiment. The CAMUS dataset330

contains 500 patients with an apical 2-chamber view (A2C)331

and an A4C view, acquired from a single vendor and center.332

The pixel resolution of the image is 0.154 × 0.154 mm2.333

Only the annotations of the ES and ED frames are available.334

Because the annotations of the final 50 are not given in the335

training data, we adopted 10 folds cross-validation for the336

evaluation on the CAMUS dataset on the left 450 patients.337

B. Data Prepossessing338

The raw image is preprocessed to keep the cardiac part only339

before feeding into the model. We randomly apply rotation340

augmentation to avoid overfitting, and the rotation angle is341

between -5 and 5 degrees randomly according to the real342

echo cine. These images are resized to 224 × 224, and the343

gray value has been normalized to the range [0, 1]. For the344

comparison study and ablation study on the CAMUS with345

different views and phases, We apply the same prepossession346

as [35]. Please refer to [35] for a more detailed pre-procession347

of the CAMUS dataset. Since we preprocessed the images by348

resizing the image to 224 × 224, the pixel distance in the349

resized image is scaled down from the original image. We cal-350

culated the distance metrics by multiplying the rescaled pixel351

distance specified on the resized image. More importantly, we352

set the length and width of the image to be the same by filling353

zeros before resizing the image. So the aspect ratio of pixel354

distance is unchanged before and after the preprocessing.355

C. Experimental Setup356

We use 10-fold cross-validation to train the model. Since357

our model is based on an encoder-decoder backbone with358

skip concatenate fusion, we adopted U-net with the same359

architecture design in [24]. In detail, the number of filters is360

the same as the U-net in the encoder and decoder. And we361

set the number of latent vectors to 32 due to the computation362

efficiency. The normal distribution is applied to initialize the363

parameters of the network at first. The Adam optimizer applies364

an initial learning rate of 0.0001 and a weight decay of 0.9 in365

initialization. The batch size was set to 7 for our dataset. For366

each fold cross-validation, we trained 100 epochs. The Dice367

coefficient [36] is used to assess the accuracy of the segment368

model. We performed our model on a NVIDIA GeForce RTX 369

2080Ti GPU in Pytorch. 370

We explored the impact of hyper-parameters of the loss 371

function on the behavior of MCAL. Because Lls and Lce 372

are fundamental in the segmentation loss, we set the λl to 373

be 1 in our experiment. In addition, the λ and λv are set the 374

same value to evaluate their performance on segmentation. 375

The performance of MCAL was evaluated under different 376

parameter settings λ ∈ {1, 3, 5, 10, 15}. The results are shown 377

in Table I. Totally, the best performance is obtained when 378

λ = 15. We also observed that the Dice dropped obviously 379

when λ ∈ {3, 5}, which was the worst performance. Ta- 380

ble I illustrates that although the performance varies when 381

λ ∈ {1, 10, 15}, the magnitude of the variation is not very 382

large, so the value of λ = 10 is adopted for its second-best 383

performance among the three. We trained and test the model 384

with the same parameters settings on our dataset. 385

D. Comparison With Existing Methods 386

Comparison on Our Dataset: The comparison study is 387

carried out to evaluate the effectiveness of the network. 388

We compared our method with the UNet, ACNN, and the 389

effectiveness of BDTW on our dataset in this paper. We used 390

the geometrical metric for a comprehensive evaluation of the 391

method: three area error metrics (precision, recall, Dice) and 392

two distance error metrics (absolute surface distance (ASD) 393

and HD). The mean and standard deviation values of each 394

metric were obtained from the cross-validating on the test 395

dataset. We selected the best model on each fold validation 396

set for the test. 397

Ours Ours(w/o BDTW) ACNN UNet

Fig. 6. Qualitative comparison of the results under four different settings on
myocardial segmentation. The red and yellow colors denote the ground-truth
and predict, respectively. The blue arrow indicates the wrong prediction of
the boundary region. The MCAL could improve the prediction accuracy, and
the precision improves more for the pixels of the boundary region, revealing
that the BDTW is especially effective for the boundary region.

Table II shows the experimental results on our echo dataset. 398

The mean and the standard deviation values are used for each 399

metric to perform the cross-validation procedure. The bold 400

Page 5 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE I
SEGMENTATION PERFORMANCE UNDER DIFFERENT HYPER-PARAMETER SETTINGS ON CAMUS.

BOLD NUMBERS REPRESENT THE BEST RESULTS OBTAINED.

Weight A2C A4C

Dice(%) dm(mm) dH (mm) Dice(%) dm(mm) dH (mm)
1 84.15±6.70 0.97±0.44 4.34±3.34 84.69±6.45 0.77±0.31 3.63±3.14
3 83.74±7.16 0.98±0.43 4.70±3.83 83.63±7.05 0.81±0.35 4.23±3.84
5 83.96±6.67 1.00±0.61 4.75±4.03 83.83±6.95 0.80±0.35 4.17±3.85

10 84.27±6.40 0.97±0.48 4.33±3.38 84.78±6.58 0.76±0.33 3.40±2.57
15 84.39±6.60 0.95±0.42 4.36±3.54 84.92±6.50 0.75±0.30 3.46±2.89

ED ES
1 83.93±6.44 0.86±0.42 3.97±3.06 84.84±7.18 0.86±0.36 3.97±3.43
3 83.26±6.67 0.88±0.40 4.36±3.53 84.10±7.49 0.91±0.40 4.55±4.10
5 83.38±6.72 0.89±0.54 4.46±3.82 84.42±6.87 0.90±0.47 4.45±4.08

10 84.13±6.32 0.84±0.44 3.88±2.95 84.93±6.64 0.87±0.40 3.81±3.09
15 84.22±6.41 0.83±0.38 3.95±3.12 85.11±6.67 0.85±0.37 3.83±3.37

TABLE II
MCAL OUTPERFORMS THE OTHER METHODS UNDER

DIFFERENT CONFIGURATIONS ON OUR DATASET.
BOLD NUMBERS REPRESENT THE BEST RESULTS OBTAINED.

Method Precision
(%)

Recall
(%)

Dice
(%)

dH
(mm)

dm
(mm)

UNet 69.20
±7.11

73.62
±6.13

71.12
±5.31

7.21
±4.32

0.80
±0.16

ACNN 68.58
±6.54

76.05
±8.15

71.76
±5.33

13.27
±6.42

0.90
±0.45

MCAL
(w/o BDTW)

69.62
±6.52

80.44
±4.54

74.42
±4.19

7.19
±3.14

0.70
±0.09

MCAL 75.43
±6.24

76.18
±7.00

76.16
±4.16

5.85
±1.74

0.83
±0.21

Fig. 7. Precision, Dice, HD, and ASD at different frames of the cardiac cycle
of one test subject.

font indicates the best results for each metric. We observed401

that our framework outperforms other methods on all metrics,402

achieving the highest mean values of precision (75.43%) and403

Dice (76.16%), the lowest mean values of HD (5.85 mm),404

and significantly lower standard deviations of all metrics,405

especially with the BDTW. This finding demonstrates that a406

combination of shape and latent anatomical information brings407

improvement in myocardial segmentation. Fig.6 presents some408

typical segmentation results, which visually illustrate that409

the mentioned method obtains a more accurate segmentation,410

especially the BDTW keeps more fine anatomical information411

on the prediction.412

All echocardiographic sequences from ES to ED are an-413

alyzed in Fig.7 to observe the temporal performance of the 414

proposed method. The precision, Dice, HD, and ASD are 415

computed at each frame of a whole cardiac cycle of one test 416

subject to assess the temporal stability. As shown in Fig.7, all 417

the four metrics fluctuate moderately between each frame in 418

the entire cardiac cycle, which means that the proposed method 419

has a limitation on a single image without spatial information. 420

This limitation could be improved by taking into account the 421

relevance of the successive frame. 422

Comparison on CAMUS: Since the domain gap in our 423

dataset may affect the performance, we conducted another 424

comparison experiment on the public CAMUS dataset to 425

evaluate our method intuitively. For CAMUS dataset, we 426

compared the method with UNet++ [21], SegNet [38], CPFNet 427

[37], HarDNet-MSEG [39] and PLANet in [35], except UNet 428

and ACNN. While the first two are leading methods, the 429

middle two are newly proposed public methods, and the last 430

is a new method proposed on CAMUS. The Dice, ASD, and 431

HD are used in the comparison study. 432

Geometrical results are analyzed comprehensively by per- 433

forming the comparison study on the public CAMUS from 434

the view and phase perspective, to assess the influence of the 435

latent representations in the myocardial segmentation between 436

different training views. We carried out the comparison study 437

without any post-procession, such as filling the hole and 438

removing the small area on the segmentation result. Results in 439

Table III showed that the proposed method achieved for most 440

of the metrics compared with other methods. Some methods, 441

such as PLANet and ACNN in our experiments, have been 442

integrated with the label coherence information and shape 443

prior to the learning of anatomical structures. Notably, based 444

on an encoder-decoder design, CPFNet outperformed the other 445

methods and performed close to our method, demonstrating 446

that global/multi-scale information fusion on context informa- 447

tion can also achieve better segmentation performance. Our 448

method applied the ground-truth to capture the anatomical 449

information indirectly can achieve higher performance. Fur- 450

thermore, we performed a statistical comparison of the Dice 451

results using paired t-test with a confidence interval of 0.95. 452

MCAL is compared to CPFNet for statistical significance, and 453

the p values specified to the Dice of A4C/ES/ED are 0.004100/ 454

0.000178/0.001100. It can be seen that the proposed method 455
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TABLE III
PERFORMANCE COMPARISON OF MCAL AGAINST EXISTING METHODS ON THE CAMUS DATASET.

BOLD NUMBERS REPRESENT THE BEST RESULTS OBTAINED.

Methods A2C A4C

Dice(%) dm(mm) dH (mm) Dice(%) dm(mm) dH (mm)
Ours 85.33±5.65 0.92±0.37 3.54±2.45 85.85±5.59 0.73±0.30 3.61±2.98

CPFNet [37] 85.84±6.70 0.84±0.41 4.34±3.28 85.25±6.65 0.75±0.30 3.17±2.08
SegNet [38] 83.37±7.39 0.95±0.48 5.82±4.77 83.45±7.58 0.79±0.39 6.19±5.92
PLANet [35] 83.54±6.38 1.06±0.51 4.36±3.14 85.85±5.68 0.71±0.32 2.97±2.07

HarDNet-MSEG [39] 82.41±6.86 1.14±0.69 4.83±3.41 82.57±7.13 0.89±0.47 4.05±2.99
ACNN [9] 84.31±6.60 0.96±0.57 4.46±3.60 84.23±6.60 0.78±0.37 3.79±3.29
UNet [24] 79.84±8.53 1.28±0.95 6.74±5.10 81.50±7.74 0.91±0.48 5.97±5.05

UNet++ [21] 80.22±8.36 1.27±0.99 7.10±5.46 81.19±7.71 0.94±0.48 6.45±5.53
ED ES

Ours 85.10±5.58 0.83±0.36 3.42±2.28 86.08±5.59 0.81±0.38 4.01±3.43
CPFNet [37] 85.08±6.56 0.78±0.35 3.94±2.86 86.00±6.77 0.85±0.34 3.27±2.25
SegNet [38] 82.97±7.13 0.86±0.46 6.13±5.43 83.86±7.80 0.88±0.43 5.88±5.31
PLANet [35] 83.68±6.16 0.92±0.51 4.14±3.25 85.71±5.96 0.85±0.40 3.18±2.02

HarDNet-MSEG [39] 81.81±6.87 1.03±0.71 4.72±3.54 83.16±7.06 1.00±0.47 4.16±2.85
ACNN [9] 83.81±6.56 0.87±0.57 4.22±3.58 84.73±6.60 0.87±0.38 4.03±3.34
UNet [24] 79.74±8.27 1.14±0.91 6.55±5.10 81.60±7.99 1.05±0.60 6.16±5.07

UNet++ [21] 79.68±8.17 1.17±0.95 6.91±5.50 81.63±7.93 1.05±0.62 7.10±5.46

(b)

(c)(a)

(d)

(e)

Fig. 8. The FiLM design achieved more effective feature enhancement than other settings. The input image and the corresponding label are in (a) and (b).
The performance of the three settings in Table 1 is illustrated in (c), (d), and (e), respectively.

significantly outperforms CPFNet with p < 0.05.456

E. Ablation Study457

We investigated the contributions of each module of our458

method to the segmentation performance by different configu-459

rations in the public CAMUS. We also explored the impact of460

hyperparameters in the loss function on the behavior of MCAL461

by grid-searching. In the hyper-parameter setting experiments,462

the patients with annotations in CAMUS were randomly463

divided into training (410) and evaluation (40) datasets. In464

the ablation study experiments, we applied the same training465

strategy with the comparison study. All the experiments were466

conducted under the same training and evaluation methods as467

in [35]. We determined the model with the best performance468

for each group on the Dice coefficient.469

Ablation for Spatial Factor and FiLM: To verify the ef-470

fectiveness of FiLM design on the relative segmented features,471

we replaced the re-scale and offset coefficients in FiLM design 472

by concatenating the dimensional expanding on samples from 473

learned spatial factors zs with successive convolution layers, 474

which is represented by ’C’ in the Spatial factor column. 475

Alternatively, the re-scale and offset coefficients are derived 476

defectively from the spatial space s through successive convo- 477

lution operations, which is represented by ’◦’ in the FiLM 478

column. The results are shown in Table IV. We observed 479

a performance drop when the re-scale and offset designs 480

are replaced with successive convolution layers, indicating 481

the effectiveness of the FiLM structure on the feature en- 482

hancement. Similarly, deriving the re-scale and offset directly 483

from the spatial space performed worse, demonstrating the 484

necessity of the FiLM structure. The Visualization results in 485

Fig.8 (c) and (e) are evidence that the FiLM design performs 486

better than the concatenation operation. It demonstrates that 487

an affine transformation to each channel of the feature map 488
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TABLE IV
ABLATION RESULTS FOR MCAL WITH DIFFERENT SETTINGS ON CAMUS.

BOLD NUMBERS REPRESENT THE BEST RESULTS OBTAINED.

Spatial factor FiLM BDTW A2C A4C

Dice(%) dm(mm) dH (mm) Dice(%) dm(mm) dH (mm)
X X X 85.33±5.65 0.92±0.37 3.54±2.45 85.85±5.59 0.73±0.30 3.61±2.98
C X X 84.11±6.73 0.97±0.50 4.82±4.18 84.51±6.25 0.76±0.30 3.98±3.74
X ◦ X 83.83±6.59 0.99±0.50 4.80±3.74 83.30±6.98 0.83±0.32 4.19±3.37
X × × 84.19±6.64 0.97±0.46 4.46±3.43 84.48±6.33 0.77±0.32 3.94±3.82
X X × 84.31±6.54 0.96±0.45 4.45±3.46 84.39±6.24 0.78±0.35 3.92±3.79
X ◦ × 84.22±6.85 0.97±0.45 4.62±3.74 84.40±6.47 0.77±0.29 3.98±3.63
C X × 83.89±6.56 0.98±0.47 4.73±3.77 83.33±6.84 0.82±0.33 4.17±3.67
X × X 84.07±6.57 0.97±0.46 4.72±3.92 84.14±6.49 0.78±0.32 3.87±3.39
× × X 84.07±6.64 0.98±0.46 4.47±3.49 83.87±7.34 0.81±0.45 3.93±3.30
× × × 83.69±7.05 1.01±0.59 4.45±3.41 84.02±6.93 0.79±0.32 3.69±2.74

ED ES
X X X 85.10±5.58 0.83±0.36 3.42±2.28 86.08±5.59 0.81±0.38 4.01±3.43
C X X 83.84±6.42 0.86±0.48 4.28±3.66 84.78±6.54 0.87±0.36 4.53±4.27
X ◦ X 82.94±6.72 0.90±0.46 4.53±3.47 84.20±6.80 0.91±0.39 4.46±3.67
X × × 83.70±6.30 0.88±0.46 4.40±3.69 84.80±6.79 0.88±0.39 4.22±3.88
X X × 83.87±6.14 0.87±0.42 4.17±3.38 84.83±6.43 0.88±0.40 4.17±3.78
X ◦ × 83.75±6.66 0.87±0.43 4.39±3.68 84.88±6.61 0.87±0.35 4.20±3.71
C X × 82.96±6.58 0.90±0.43 4.57±3.70 84.26±6.76 0.90±0.39 4.33±3.74
X × X 83.51±6.42 0.87±0.43 4.36±3.59 84.70±6.58 0.88±0.38 4.24±3.78
× × X 83.43±6.63 0.88±0.41 4.29±3.33 84.50±7.32 0.91±0.51 4.12±3.47
× × × 83.32±6.88 0.90±0.55 4.08±2.97 84.38±7.06 0.91±0.42 4.06±3.26

TABLE V
THE COMPARISON OF EXISTING METHODS FOR LV SEGMENTATION FOR CLINICAL DEPLOYMENT

Methods Models Description Clinical Limitation

Non-deep learning
ACM Minimizing an energy function under the Require user-imposed guidance

influence of different forces and constraints to achieve high accuracy

AAM Describing the image appearance and the shape Require consistent shape
as a statistical shape-appearance model prior over a large database

Deep learning

UNet Encoder-decoder
Poor model generalization;

Limit performance on the LV segmentationUNet++ Highly flexible feature fusion

HarDNet-MSE Low memory traffic backbone

PLANet Features enhancement by Complicate computation;
label coherence learning Lack of temporal information

CPFNet Feature enhancement by preserving
abstract spatial information

Lack of temporal information;
Poor model generalization;

Lack of model interpretability

SegNet Pooling indices are applied
in the max-pooling step

CNN Labels are also used as anatomical prior

Ours Labels are also used for feature enhancement

helps to enhance the segmented-relevant features. However,489

the learned spatial factor is more effective for guiding feature490

enhancement (Fig.8 (d)). Obviously, performance has been491

greatly improved on the condition that the scale and offset492

parameters are derived from the learned spatial factors.493

Ablation for BDTW: Based on these configurations, we494

investigated the performance of BDTW on segmentation.495

Results in Table IV displayed that improvement is limit when496

adding the BDTW to the baseline. However, the Dice dropped497

slightly when adding the BDTW to the spatial factor, while498

the distance error metrics improved. Because it is difficult499

to balance the spatial distribution and the boundary region500

under two different scales without intermediate operation in501

the training stage. An improvement was illustrated in Table502

IV when the FiLM design was added to the configurations. In503

conclusion, the joint of FiLM structure on the spatial factors 504

and BDTW has improved the performance of segmentation. 505

V. DISCUSSION 506

This work tackles the challenge of myocardium segmenta- 507

tion because of the fuzzy boundary caused by the modality 508

imaging characteristic. This segmentation task can be solved 509

by deep neural networks based on different settings. Since the 510

ground-truth label as class associations on segmentation lack 511

effective feature enhancement of segmented region. We lever- 512

age anatomical knowledge learned through ground-truth labels 513

to infer and strengthen the segmented parts. By regulating the 514

distribution discrepancy of two posterior probabilities, which 515

are approximated from the sampled input and labels, we can 516
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modulate the learned anatomical feature maps based on the517

FiLM. Further, we apply BDTW to assign a higher weight518

to boundary region pixels in each training batch. Hence,519

the proposed model can achieve high performance on both520

segmentation.521

This work has limitations. The temporal relevance caused522

by cardiac movement is neglected in our paper. Researches523

on 2D echocardiography segmentation have been proven to524

be effective by adding temporal information [25], [40]. This525

makes sense as we currently studied anatomical knowledge526

through labels to infer segmented parts and discriminate527

boundary pixels. But the segmentation accuracy is limited.528

Our method still needs to be improved before the clinical529

deployments. Because we just train and test our model based530

on data from two different devices, the model generalization531

has not been fully verified. In the future, it might be expected532

to embed a temporal correlation of the successive frames or533

the model generalization to get a better result (TableV).534

In general, the proposed method of myocardium segmenta-535

tion can be applied to other image modalities when we analyze536

the medical images by segmentation. For instance, it can be537

used for anatomical segmentation by retraining the network538

based on new images and labels.539

VI. CONCLUSION540

Accurate LV segmentation in a 2D echocardiography is541

significant for cardiovascular disease diagnosis and assessment542

of cardiac function. However, it is difficult to discriminate543

between the myocardium and chamber due to the characteristic544

of echos. A new method named MCAL, which makes use of545

prior anatomical information and constraint of the predicted546

map, is proposed to infer the segmented structure and dis-547

criminate the boundary pixels. We apply a KL divergence548

to learn a spatial factor of the raw input that can account549

for segmentation. Furthermore, the spatial factor modulates550

the encoded spatial space by FiLM to strengthen the critical551

segmented structure information in relative channels. A skip552

convolution fusion block combines the semantical information553

from the encoder with the relatively rich anatomical infor-554

mation in the decoder, solves the segmentation by a bottom-555

up structure. In addition, we introduce the BDTW to weight556

the binary cross-entropy loss, to force the network to focus557

on the border neighborhood pixels in each training epoch.558

Finally, we test the proposed method on two different datasets,559

and experiment results reveal that the proposed method can560

improve the myocardial segmentation performance.561
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Dear Editors, 

  

We would like to thank you and all the reviewers for your very constructive comments 

and useful suggestions, which have greatly improved our manuscript. The manuscript ID is 

TUFFC-11452-2021. We have carefully studied each of the comments, conducted point-to-

point responses, and revised the manuscript by considering all the suggestions and comments 

made by the reviewers. 

 

We thank the reviewers for appreciating our work and for their constructive suggestions. 

We would also like to thank reviewers for deeming that this work “addressed most of the 

comments from the previous round of reviews”. We are also grateful to all the reviewers for 

their advice. In this version, we continue to improve this paper while at the same time 

maintaining the merits mentioned by the reviewers. 

 

Please find one e-copy of the revised version of our submission, and a file containing our 

responses on how we addressed all the suggestions or comments by the reviewers. For your and 

the reviewer’s convenience, our responses shown in blue color are prepared based on a point-

by-point response to each of the issues raised by the reviewers. 

 

Hope you and the reviewers find the minor revision acceptable. Looking forward to 

hearing from you about the final decision on our submission. 

 

Sincerely Yours, 

Xiaoxiao Cui (on behalf of all the co-authors) 

 

================================================================== 

Minor revisions we made include:  

1) We have corrected all the tables in the manuscript and the response letter. We have added 

the mention that the bold numbers represent the best results into the table caption and made 

corresponding changes to the contents. In this way, it avoids confusion or concerns for 

future readers. 

2) We have performed a statistical comparison of the Dice results by using paired t-test with 

a confidence interval of 0.95. MCAL is compared to CPFNet for statistical significance to 

prove that the proposed method significantly outperforms CPFNet with p < 0.05 in lines 

450-456 on pages 6-7. 

3) We have added the details of calculating distance metrics after the resizing operation in 

lines 348-355 on page 5. In detail, we calculated the distance metrics by multiplying the 

rescaled pixel distance specified on the resized image. 

4) We have added information about the resolution of our dataset and CAMUS in lines 310-

311 on page 4 and line 333 on page 5, respectively. 
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Comments from reviewer 1: 

Major Comments: 

The authors have addressed most of the comments from the previous round of reviews. 

However, some more explanation and corrections are required before the work can be accepted. 

 

Response: We sincerely thank you for thinking that we “addressed most of the comments from 

the previous round of reviews”. In this version, according to your following constructive 

suggestions, we improved this paper to avoid confusion or concerns for future readers. 

 

Some specific points: 

Comment#1. Please in the table captions mention that the bold numbers represent the best 

results obtained. Please also correct the tables to incorporate this. For example, in Table 2 the 

best results are obtained for weight 15. 

 

Response#1: We sincerely thank you for this detailed suggestion. We have corrected all the 

tables by adding the mention that the bold numbers represent the best results into the table 

caption. We have made corresponding changes to the contents of Table Ⅰ on page 6 and Table 

Ⅲ on page 7. In detail: 
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Comment#2. The tables in the response letter also should be corrected accordingly since they 

represent miss information (it gives the impression that the method is achieving the best results 

compared to SOTA which is not the case (see example Table 3)). 

 

Response#2: We sincerely thank you for this detailed suggestion. We have made corresponding 

changes to the table captions and contents in Table 1 and Table 3 in the response letters to avoid 

confusion on the results. In detail: 

Table 1. Segmentation performance under different hyper-parameter settings on CAMUS. 

Bold numbers represent the best results obtained. 

Weight 
A2C A4C 

𝐷𝑖𝑐𝑒(%) 𝑑𝑚(mm) 𝑑𝐻(mm) 𝐷𝑖𝑐𝑒(%) 𝑑𝑚(mm) 𝑑𝐻(mm) 

1 

3 

5 

10 

84.15±6.70 0.97±0.44 4.34±3.34 84.69±6.45 0.77±0.31 3.63±3.14 

83.74±7.16 0.98±0.43 4.70±3.83 83.63±7.05 0.81±0.35 4.23±3.84 

83.96±6.67 1.00±0.61 4.75±4.03 83.83±6.95 0.80±0.35 4.17±3.85 

84.27±6.40 0.97±0.48 4.33±3.38 84.78±6.58 0.76±0.33 3.40±2.57 

15 84.39±6.60 0.95±0.42 4.36±3.54 84.92±6.50 0.75±0.30 3.46±2.89 

  ED   ES  

1 

3 

5 

10 

83.93±6.44 0.86±0.42 3.97±3.06 84.84±7.18 0.86±0.36 3.97±3.43 

83.26±6.67 0.88±0.40 4.36±3.53 84.10±7.49 0.91±0.40 4.55±4.10 

83.38±6.72 0.89±0.54 4.46±3.82 84.42±6.87 0.90±0.47 4.45±4.08 

84.13±6.32 0.84±0.44 3.88±2.95 84.93±6.64 0.87±0.40 3.81±3.09 

15 84.22±6.41 0.83±0.38 3.95±3.12 85.11±6.67 0.85±0.37 3.83±3.37 

 

Table 3. Performance comparison of MCAL against existing methods on the CAMUS dataset. 

Bold numbers represent the best results obtained. 

Methods 
A2C A4C 

𝐷𝑖𝑐𝑒(%) 𝑑𝑚(mm) 𝑑𝐻(mm) 𝐷𝑖𝑐𝑒(%) 𝑑𝑚(mm) 𝑑𝐻(mm) 

Ours 

CPFNet 

SegNet 

PLANet 

85.33±5.65 0.92±0.37 3.54±2.45 85.85±5.59 0.73±0.30 3.61±2.98 

85.84±6.70 0.84±0.41 4.34±3.28 85.25±6.65 0.75±0.30 3.17±2.08 

83.37±7.39 0.95±0.48 5.82±4.77 83.45±7.58 0.79±0.39 6.19±5.92 

83.54±6.38 1.06±0.51 4.36±3.14 85.85±5.68 0.71±0.32 2.97±2.07 

HarDNet-MSE 82.41±6.86 1.14±0.69 4.83±3.41 82.57±7.13 0.89±0.47 4.05±2.99 

ACNN 84.31±6.60 0.96±0.57 4.46±3.60 84.23±6.60 0.78±0.37 3.79±3.29 

UNet  79.84±8.53 1.28±0.95 6.74±5.10 81.50±7.74 0.91±0.48 5.97±5.05 

UNet++ 80.22±8.36 1.27±0.99 7.10±5.46 81.19±7.71 0.94±0.48 6.45±5.53 

  ED   ES  

Ours 

CPFNet 

SegNet 

PLANet 

85.10±5.58 0.83±0.36 3.42±2.28 86.08±5.59 0.81±0.38 4.01±3.43 

85.08±6.56 0.78±0.35 3.94±2.86 86.00±6.77 0.85±0.34 3.27±2.25 

82.97±7.13 0.86±0.46 6.13±5.43 83.86±7.80 0.88±0.43 5.88±5.31 

83.68±6.16 0.92±0.51 4.14±3.25 85.71±5.96 0.85±0.40 3.18±2.02 

HarDNet-MSE 81. 81±6.16 1.03±0.71 4.72±3.54 83.16±7.06 1.00±0.47 4.16±2.85 

ACNN  83.81±6.56 0.87±0.57 4.22±3.58 84.73±6.60 0.87±0.38 4.03±3.34 

UNet 79.74±8.27 1.14±0.91 6.55±5.10 81.60±7.99 1.05±0.60 6.16±5.07 

UNet++  79.68±8.13 1.17±0.95 6.91±5.50 81.63±7.93 1.05±0.62 7.10±5.46 
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Comment#3. The authors should provide statistical significance test results (paired t test) for 

results that are too close to each other. For example, in Table 3 the dice values of A4C/ES/ED 

for the proposed method vs SOTA (CPFNet) appear to be very similar. 

 

Response#3: We sincerely thank you for this detailed suggestion. We have performed a 

statistical comparison of the Dice results by using paired t-test with a confidence interval of 

0.95 in lines 450-456 on pages 6-7. MCAL is compared to CPFNet for statistical significance 

to prove that the proposed method significantly outperforms CPFNet with p < 0.05. In detail: 

 

Furthermore, we performed a statistical comparison of the Dice results using paired t-test with 

a confidence interval of 0.95. MCAL is compared to CPFNet for statistical significance, and 

the p values specified to the Dice of A4C/ES/ED are 0.004100/0.000178/0.001100. It can be 

seen that the proposed method significantly outperforms CPFNet with p < 0.05. 

 

Comment#4. The authors are resizing the image before processing (resizing to 224×224). This 

would change the image resolution. How did they calculate the distance metrics reported in the 

paper after this resizing operation? Details should be included in the main manuscript. 

 

Response#4: We sincerely thank you for this detailed suggestion. We preprocessed the images 

by resizing the image to 224×224, and the pixel distance in the resized image is scaled down 

from the original image. We have added the details of calculating distance metrics after the 

resizing operation in lines 348-355 on page 5. In detail: 

 

Since we preprocessed the images by resizing the image to 224×224, the pixel distance in the 

resized image is scaled down from the original image. We calculated the distance metrics by 

multiplying the rescaled pixel distance specified on the resized image. More importantly, we 

set the length and width of the image to be the same by filling zeros before resizing the image. 

So the aspect ratio of pixel distance is unchanged before and after the preprocessing. 

 

Comment#5. The authors should also include information about the resolution of the 

ultrasound data (not the size of the image but the actual pixel resolution in mm). 

 

Response#5: We sincerely thank you for this detailed suggestion. The pixel resolution is 

0.353×0.353 mm2 and 0.154×0.154 mm2 for our dataset and CAMUS, respectively. We have 

added information about the pixel resolution of our data and CAMUS in lines 310-311 on page 

4 and line 333 on page 5, respectively. 

 

Comment#6.  If the image resolution is around 0.2mm the improvements in dm and dH in 

some cases would correspond to < pixel resolution (for example 0.02mm for A4C and 0.04 for 

ES). This is a change that can not be detected by the naked eye. I would like the authors to 

explain why such a small change, which seems very insignificant, is important? Will that have 

significant long-term effects for the patient. 

 

Response#6: We sincerely thank you for this detailed question. 
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Mean absolute surface distance (refers to dm) and Hausdorff distance (refers to dH) are two 

distance error metrics for the image segmentation. dm measures the average minimal distance 

between two boundaries. dH measures the largest minimal distance between two boundaries. 

Their values decrease with the increasing resemblance between the segmented results and the 

ground truth. 

 

A small improvement in dm and dH, which is smaller than the pixel resolution, is very important 

for the myocardium segmentation. Because the myocardium segmentation aims to assess the 

normality of myocardial movement, each segment of the myocardial is analyzed to diagnose 

the presence or absence of viable myocardium, which are important considerations for patients 

with chronic total occlusion (CTO) lesions when choosing a revascularization plan.  

Especially for the situation where only a few pixels are moving in this segment, the absence of 

these pixels could lead to the wrong diagnosis. So it has significant long-term effects on the 

patient. 

Page 15 of 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


