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Main Abstract 

Effective monitoring and protection of tropical ecosystems has the potential to conserve vast 

amounts of the earth’s biodiversity. Yet logistical and technical challenges associated with species 

rarity, large distributions and home ranges, low detectability and inaccessibility of study sites can 

hinder monitoring efforts. If we are to mitigate against the threats to biodiversity and restore 

natural ecosystems, then we urgently need rapid and cost-effective methods to evaluate the current 

state of species, communities, ecosystems and the effectiveness of interventions. Here, we use 

passive acoustic monitoring (PAM) combined with computational approaches, as a method to 

effectively measure trends in biodiversity at a wide spatial scale across a biodiverse region in the 

tropics.  

In Chapter Two we used soundscape analysis to evaluate changes in acoustic diversity across the diel 

cycle over a gradient of land use change. We aimed to assess if soundscape indices can reveal 

changes in the biological community across the diel cycle and whether loss of native forests affect 

acoustic diversity in tropical ecosystems. In disturbed habitats, we found a loss of the characteristic 

dawn and dusk peaks in the diel cycle; known as the dawn and dusk chorus. This was especially 

prominent in palm oil plantations and grasslands, which showed a complete loss of these peaks. This 

suggests that in disturbed ecosystems there is likely a loss of species diversity, a shift in species 

composition, where forest specialists are being replaced by disturbance tolerant species, or that 

there are modifications in species behaviour, reinforcing the value of native old growth forests in 

maintaining ecosystem functionality. This loss in dawn and dusk peaks was not apparent when 

analysing acoustic diversity at specific times during the diel cycle, showing that evaluating acoustic 

diversity at this temporal scale can be misleading, but in assessing trends across the diel cycle, we 

can gain a much better representation of changes to biotic communities. 
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In Chapter Three we determined if PAM and a newly developed automated detection and 

classification system was effective at retrieving information on the Geoffroy’s spider monkey at a 

wide spatial scale. We assessed how this endangered primate responds to habitat loss and human 

influence across a gradient of disturbance. We found that the Geoffroy’s spider monkey was absent 

below 80% forest cover and within 1 km of paved roads, yet was found to some extent in areas of 

secondary forest and near unpaved roads and buildings. The success of this methodology in the 

study of a vocal rare species suggests that similar rare species could be studied in the same way. 

Threshold values for percent forest cover and paved roads will be valuable in developing 

conservation strategies for the protection of this species. 

In Chapter Four, we investigated the effectiveness of a sustainable use forest reserve in facilitating 

connectivity for the Geoffroy’s Spider monkey between two National Parks. We specifically 

evaluated occurrence across the reserve, habitat suitability, barriers to connectivity and potential 

mitigation strategies to improve connectivity in the region. We found that the Golfo Dulce Forest 

Reserve is acting as a buffer to Corcovado National Park and is able to support populations of the 

Geoffroy’s spider monkey, however, as occurrence was limited to the area surrounding Corcovado, it 

is possible that it is not facilitating connectivity as intended. Primary road and low forest cover were 

the most important predictors of poor habitat suitability, both acting as barriers to connectivity and 

potentially impeding the conservation of an endangered species. This is problematic since Piedras 

Blancas National Park serves as a connection between the Osa Peninsula and populations of the 

Geoffroy’s spider monkey in other areas of Costa Rica.  

In summary, we have shown how PAM, combined with computational approaches, can be used to 

effectively monitor trends at both fine temporal scales and wide spatial scales across a tropical 

ecosystem. PAM has provided an effective and rapid approach to monitor trends in biological 

communities across disturbance gradients, to study rare species across a challenging environment 

and to evaluate the effectiveness of current management interventions, overcoming many of the 



 

 

10 
 

key logistical and technical challenges associated with biodiversity monitoring. These methods have 

revealed important information regarding how anthropogenic disturbance, related to land use 

change and human development, are threatening both species and communities, which can 

contribute to setting targets and developing conservation strategies for the protection of 

biodiversity in the Osa region and beyond. 
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Chapter One: Introduction 

1.1. Biodiversity and Monitoring 

1.1.1. Biodiversity Decline 

Changes in land use and land cover due to agriculture, resource extraction and urban development 

are causing the loss and fragmentation of natural habitats, changing the type and amount of 

available land and its spatial configuration (Fahrig, 2003; Vallejos, Padial and Vitule, 2016; Arroyo-

Rodríguez et al., 2017b). It is well recognised that this is a major driver of biodiversity loss, as many 

species, communities and ecological functions rely on specific habitats, structures and 

environmental conditions (Rudnick et al, 2012). A recent study found that land use change and other 

human disturbance have had a significant effect on the reduction of biodiversity, with a loss of 

13.7% of species globally and a further 41.5% predicted before 2100 (Newbold et al., 2016). The 

availability and connectivity of natural habitats are central to sustaining viable populations of 

species, especially under the threat of climate change (Laurance, Carolina Useche, et al., 2012; 

Stewart et al., 2019). 

Tropical forests make up just 2% of the earth’s surface, yet hold over 50% of its biodiversity. As well 

as being the most biodiverse, tropical ecosystems are also among the most threatened in the world, 

mainly owing to anthropogenic disturbance. Over half of the world’s tropical forests have been 

significantly altered and are threatened by fragmentation, logging and hunting, affecting the 

persistence of biodiversity (Laurance, Sayer and Cassman, 2014). Globally, we lack information on 

threatened species, ecosystems and the effectiveness of current management actions (Arroyo-

Rodríguez and Fahrig, 2014; Browning et al., 2017; Legge et al., 2018; Bezanson and McNamara, 

2019; Junker et al., 2020), however this information gap is more apparent in tropical ecosystems 

(Browning et al., 2017; Gibb et al., 2019).  
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1.1.2. The Importance of Effective Monitoring 

Rapid and cost-effective methods for monitoring and evaluating the current state of species, 

communities, ecosystems and the effectiveness of interventions are essential if we are to mitigate 

against anthropogenic disturbance (Stem et al., 2005; Bennett et al., 2018; Legge et al., 2018; Dixon 

et al., 2019; Gibb et al., 2019). This information is critical for understanding what is driving changes 

in biodiversity, enables prioritisation of research and funding and feeds into policy frameworks for 

protection (Legge et al., 2018). Despite decades of research, the status and trends for some of the 

worlds most threatened species and ecosystems are undefined and the effectiveness of our 

management actions remain unclear, impacting our ability to protect biodiversity (Arroyo-Rodríguez 

and Fahrig, 2014; Bennett et al., 2018; Legge et al., 2018; Dixon et al., 2019; Junker et al., 2020). This 

lack of information is often due to the logistical and technical challenges associated with species 

rarity, large distributions, low detectability and data collection across remote locations (Legge et al., 

2018). For example, there is no published literature for over 50% of primate species, with studies 

biased to specific, easier to access locations and more common species, impacting our ability to 

protect these species (Bezanson and McNamara, 2019; Junker et al., 2020). 

1.2. Passive Acoustic Monitoring 

1.2.1. History and Application of Passive Acoustic Monitoring 

Passive acoustic monitoring (PAM) in ecology involves the surveying of wildlife and ecosystems using 

sound recorders, where ecological data is then processed and extracted to answer questions of 

interest (Browning et al., 2017). Ecological applications of PAM are similar to other survey methods 

and include abundance and density estimates, temporal or spatial trends, activity patterns, 

occupancy estimation and community composition (Gibb et al., 2019). The field of PAM is rapidly 
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advancing owing to the development of affordable, smaller devices, with increased storage capacity 

and longer battery life, which can be left unattended in the field for long periods and programmed 

according to specific schedules (Gibb et al., 2019; Sugai et al., 2019). For example, the recently 

developed AudioMoth is small, light, programmable and affordable, costing only $50 (Hill et al., 

2018). The benefits of these advancements can be seen in the exponential rise in the number of 

PAM studies published on terrestrial ecosystems since the 1990’s (Sugai et al., 2019). Despite this, 

terrestrial studies using PAM are currently biased towards northern temperate regions and 

concentrated around bat species, followed by birds, anurans and soundscapes, with the least 

studied groups being non-flying mammals and invertebrates and fewer studies in the tropics (<25%) 

(Sugai et al., 2019).  

1.2.2. Comparison to other Field Methods 

In Chapters Three and Four, we focus on developing PAM methodology for primates. To date, most 

primate studies have used line transect methodology or scan sampling (van Roosmalen, 1980; 

Chapman, 1988; Defler, 1995; Sorensen and Fedigan, 2000; Pruetz and Leasor, 2002; Ramos-

Fernandez and Ayala-Orozco, 2002; Zaldívar et al., 2004; Wallace, 2005; Weghorst, 2007; Buckland 

et al., 2010; Aquino et al., 2013; Wood et al., 2017). These methods are time consuming, practically 

challenging and require extensive person-power (Gibb et al., 2019), and therefore generally, the 

spatial and temporal scale of studies are limited. This methodology is also invasive, especially when 

attempting to study species that react to human presence, meaning that we can alter the exact 

response that we are trying to measure simply by our presence (Penar, Magiera and Klocek, 2020). 

Camera trapping is receiving increasing interest because it is a relatively non-invasive method, 

effective for the study of elusive species and across challenging terrain (Whitworth et al., 2019; 

Nguyen et al., 2020), however, the detection space for this method is limited and installation can 

require specialist skills and climbing equipment for arboreal species, which adds to project expenses 

and practical challenges. The emerging field of PAM can overcome many of these constraints.  
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1.2.3. Benefits and Challenges of Passive Acoustic Monitoring  

Passive Acoustic Monitoring has improved our ability to monitor landscapes at fine temporal 

resolutions and across large spatial scales, allowing the rapid and efficient collection of data to 

understand the status and trends of species and communities (Pijanowski, Farina, et al., 2011;  

Deichmann et al., 2018;  Ross et al., 2018;  Burivalova, Game and Butler, 2019;  Sugai et al., 2019;  

Ducrettet et al., 2020). PAM shares many of the same benefits of camera trapping, acoustic sensors 

can be deployed in the field for long periods of time and can monitor continuously, and aside from 

initial deployment and collection, do not require the presence of the researcher (Kalan et al., 2015; 

Sueur and Farina, 2015; Browning et al., 2017; Gibb et al., 2019). These benefits, combined with 

their feasibility in challenging terrain and increasing affordability of sensors, can increase the spatial-

temporal extent of the study, reduce the effects of disturbance on individuals and increase the 

chance of detecting rarer species (Blumstein et al., 2011; Mennill et al., 2012; Kalan et al., 2015; 

Sueur and Farina, 2015; Browning et al., 2017; Gibb et al., 2019; Sugai et al., 2019; Penar, Magiera 

and Klocek, 2020). One major benefit of PAM when compared to camera trapping is the increased 

detection space, which can be hundreds of meters for PAM but just a few meters for camera 

trapping (Gibb et al., 2019). PAM can therefore provide a favourable cost-benefit advantage when 

compared to traditional wildlife surveys (Wrege et al., 2017; Sugai et al., 2019). 

Despite the benefits discussed above, PAM still faces many challenges. Firstly, larger PAM studies, 

and those that record at higher frequencies, have substantial data storage requirements, adding to 

the costs of any study (Gibb et al., 2019). Secondly, whilst the costs associated with person-power 

may be reduced, projects must consider the initial and ongoing costs of purchasing and maintaining 

the recorders and associated equipment, which, for larger studies, can be substantial. However, with 
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the development of increasingly affordable options these costs are becoming more manageable (Hill 

et al., 2018). Thirdly, for long-term acoustic projects, ongoing redeployment of the recording units 

can involve significant time and economic costs. The development of affordable recorders that 

automatically transfer data to a central location will significantly reduce these costs (Browning et al., 

2017). Fourthly, as with more traditional wildlife surveys, PAM studies can still be challenging 

practically, with access issues and challenging terrain proving problematic. Finally, while PAM 

dramatically reduces the burden of collecting field data, the methods for extracting information 

from the recordings pose significant challenges. Large acoustic data sets are time consuming to 

analyse manually, often requiring automated detection and classification systems to extract sounds 

(Kalan et al., 2015; Browning et al., 2017; Gibb et al., 2019). The development of these tools requires 

specialist skills and large labelled training datasets, which are difficult to collate, especially for rare 

species (Browning et al., 2017). Automated systems should therefore be considered before 

undertaking any large-scale PAM study. 

1.3. Soundscape Ecology and Acoustic Indices 

1.3.1. What is Soundscape Ecology? 

Soundscape ecology, or ecoacoustics, as it is also known, is a relatively new field of study, first 

formalised in 2011 (Pijanowski, Villanueva-Rivera, et al., 2011; Sueur and Farina, 2015). Every 

landscape generates a diverse array of natural and anthropogenic sounds. Species that produce 

biotic sound collectively comprise the biophony. The geophony are those sounds originating from 

geophysical processes such as wind and water flow, and the anthrophony are those sounds 

generated from human-made objects such as vehicles. It is the combination of these sounds that is 

known as the soundscape (Pijanowski, Farina, et al., 2011; Pijanowski, Villanueva-Rivera, et al., 

2011). Soundscape ecology is the study of the interaction between animals, humans and the 

environment and is useful for studying spatial-temporal patterns, interactions between different 
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components of the soundscape and for ecosystem monitoring (Pijanowski et al, 2011). While 

soundscape ecology is used across all fields, ecoacoustics is devoted to the study of solely ecological 

questions (Sueur and Farina, 2015). 

1.3.2. Acoustic Indices: Development and Application 

Analysing all of the components in a soundscape can be challenging and automated analysis is 

becoming essential (Towsey et al., 2014). To date, over 60 acoustic indices have been developed to 

automate this process (Bradfer‐Lawrence et al., 2019). Each index measures a different part of the 

soundscape, including pitch, saturation and amplitude across time and frequency bands, with most 

indices being sensitive to the characteristics of biophony (Sueur et al., 2008; Bradfer‐Lawrence et al., 

2019), thereby providing single measures of richness, evenness and heterogeneity of biotic sounds 

(Sueur et al., 2014). Acoustic indices offer the potential to rapidly analyse acoustic datasets at wide 

temporal and spatial scales, which is beneficial for applied ecological studies and conservation 

management (Browning et al., 2017; Bradfer‐Lawrence et al., 2019). Consequently, the number of 

studies using acoustic indices has grown exponentially over the last decade, providing information 

on the temporal and spatial variability of different soundscapes (Krause, Gage and Joo, 2011; 

Gottesman et al., 2020; Francomano, Gottesman and Pijanowski, 2021) and the effects of 

anthropogenic sound and land use change on acoustic diversity (Sueur et al., 2008; Tucker et al., 

2014; Burivalova et al., 2021; Hao et al., 2021; Holgate, Maggini and Fuller, 2021).  

1.3.3. Acoustic Indices: Relationship with Traditional Biodiversity Metrics  

Despite the growth in popularity of acoustic indices, the exact relationship between these indices 

and traditional biodiversity metrics remains questionable. Whilst some studies have demonstrated a 

correlation between index values and measures of species richness or the abundance of biological 

sounds in a recording (Boelman et al., 2007; Sueur et al., 2008; Joo, Gage and Kasten, 2011; Fairbrass 

et al., 2017; Mammides et al., 2017; Buxton, McKenna, et al., 2018; Eldridge et al., 2018; Bradfer-
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Lawrence et al., 2020; Smith et al., 2020; Dröge et al., 2021; Holgate, Maggini and Fuller, 2021) there 

is some inconsistency between results, with studies failing to find existing differences between 

landscapes (Mammides et al., 2017; Ng, Butler and Woods, 2018) and others reporting opposing 

results using the same index (Bradfer‐Lawrence et al., 2019).  

1.3.4. Acoustic Indices: Disadvantages  

It is the inconsistencies in findings that generates the main disadvantages of using acoustic indices: 

the uncertainty surrounding if and how biotic sounds relate to the indices and what aspect of 

diversity they are measuring. Recent literature has suggested that this is due to the lack of a 

standardised approach across the field, with many indices being used, variance in the spatial and 

temporal configuration of studies (Bradfer‐Lawrence et al., 2019), and the inherent differences that 

exist across different ecosystems and geographically (Gibb et al., 2019). Many indices are also 

sensitive to anthropogenic sounds, limiting their use in urban environments (Fairbrass et al., 2017), 

and to abiotic factors resulting from rain and wind and poorly understood biotic sound; which is 

often not accounted for (Pijanowski et al., 2011). For these reasons it is essential to be cautious in 

our interpretation of acoustic indices and develop standardised approaches to their use (Bradfer‐

Lawrence et al., 2019). It is also important to recognise that many species do not produce sound and 

therefore the species captured within the field of bioacoustics may not be representative of overall 

biodiversity. To the best of my knowledge this relationship has not been tested in the published 

literature.  

1.4. Machine Learning Approaches 

1.4.1. Application of Machine Learning in Passive Acoustic Monitoring 

Depending on the objectives of the study, it may be preferable to monitor specific species and 

populations, rather than entire communities. The manual extraction of calls from large acoustic data 
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sets is time consuming and for this reason it is common to use computational approaches to extract 

sounds (Kalan et al., 2015; Browning et al., 2017). To date, automated call classifiers have been used 

across a wide range of species including insects (Zilli et al., 2014; Kiskin et al., 2017) marine 

mammals (Jaramillo-Legorreta et al., 2017), birds (Campos-Cerqueira and Aide, 2016; Jahn et al., 

2017; Znidersic et al., 2021), bats (Jennings, Parsons and Pocock, 2008; Mac Aodha et al., 2018), 

anurans (Crump and Houlahan, 2017; Lapp et al., 2021) and non-flying mammals (Thompson et al., 

2010; Rocha et al., 2015; Wrege et al., 2017). Several automated analysis tools for primates have 

been developed across African and Asian species (Pozzi, Gamba and Giacoma, 2010; Mielke and 

Zuberbühler, 2013; Heinicke et al., 2015; Kalan et al., 2015, 2016; Spillmann et al., 2015; Clink et al., 

2017; Dufourq et al., 2021), but models for Neotropical species are lacking, with only one model 

created using calls from a small group of captive marmosets bred in a laboratory (Turesson et al., 

2016).  

 1.4.2. Advantages and Disadvantages of Machine Learning  

Automated detection and classification systems can significantly reduce the time required for 

analysing acoustic datasets, providing information on presence, abundance and density of species, 

activity patterns, behaviour, phenology and responses to anthropogenic stressors (Kalan et al., 2015; 

Browning et al., 2017; Gibb et al., 2019). Currently, the greatest barrier to the use of acoustics in 

ecology is the complexity of developing such computational approaches (Browning et al., 2017). The 

creation of labelled training datasets can require extensive field work and many hours of manual 

analysis to find, extract and label calls for use in the training process. The subsequent development 

of machine learning algorithms also requires specialist knowledge and skills (Browning et al., 2017). 

Although automated detection and classification systems have been developed for multiple species, 

they are currently biased to specific taxa (bats, birds and cetaceans) and geographic regions (Europe 

and North America) and their transferability to other datasets is questionable (Gibb et al., 2019; 

Sugai et al., 2019). The development of these approaches, especially for rare and endangered 
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species in the tropics, are therefore considered a major gap in the field (Browning et al., 2017). 

Classification algorithms are rarely perfect and performance is often reduced because of 

interference from background noise and other signals and failure to distinguish faint and distant calls 

(Gibb et al., 2019). This means that the process is rarely fully automated, adding additional time 

costs to any project. Several companies have designed software with inbuilt algorithms, and, 

although user-friendly, they can act as a black-box in terms of analysis methods and expensive 

closed-source programmes further increase project costs (Gibb et al., 2019). The future use of 

acoustics in ecology will partly depend on the development of open-source, reliable automated 

classifiers (Browning et al., 2017). 

1.5. Primates  

1.5.1. The Importance of Primates 

Of the 509 species of primate, 60% are threatened with extinction and 75% are declining as a result 

of human disturbance (Estrada et al., 2017; Junker et al., 2020). The conservation of primates is 

essential as they hold important functions in the ecosystem such as pollination and seed dispersal 

and, evidence suggests that local extinction can significantly alter floral structure and diversity, 

impacting other species that rely on the ecosystem (Chapman et al., 2013; Wich and Marshall, 2016; 

Estrada et al., 2017). In addition to their ecological benefits, primates can also have important 

economic benefits for local communities owing to nature tourism (Wich and Marshall, 2016). Their 

charismatic nature also makes them effective flagship species, helping to raise money for 

conservation that can protect entire ecosystems (Wich and Marshall, 2016). Despite decades of 

research, we still lack rapid and efficient methods to assess how primates respond to habitat 

changes across human-modified landscapes and the knowledge to implement conservation 

strategies to protect them (Estrada, 2006; Arroyo-Rodríguez and Fahrig, 2014; Junker et al., 2020) 

1.5.2. Ecology and Threats  
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Most primate species inhabit lowland moist tropical forests, yet they can also occur in tropical dry 

forests, montane and temperate forests, mangrove ecosystems, and even in savannahs, grasslands 

and deserts (Estrada et al., 2017). Primates face a number of threats from habitat loss and 

fragmentation due to agriculture, logging, the development of urban areas and roads, mining and 

drilling, climate change and hunting (Wich and Marshall, 2016; Estrada et al., 2017; Junker et al., 2020). 

Whilst some species can persist in fragmented and degraded forests, those with specialist diets and 

forest specialists fare less well (Estrada et al., 2017). The loss and fragmentation of forests can reduce 

population size and genetic diversity, weakening population fitness (Estrada et al., 2017). The slow life 

histories and low reproductive rates of primates make recovery a challenge (Junker et al., 2020). 

Primates also typically inhabit countries undergoing rapid development and growth, which further 

drives habitat loss, exploitation of resources and the exotic wildlife trade (Estrada et al., 2017). The 

global demand for non-forest products and arboreal crops is driving deforestation across the tropics 

and expansion of these industries is predicted to significantly overlap with areas currently occupied 

by primates, making policies to avoid agricultural development in sensitive biodiverse regions 

essential (Estrada et al., 2017).  

1.5.3. Current Knowledge Gaps 

Despite a wealth of primate studies in the literature, 75% of studies are based on Asian and African 

species and focus on just a small portion of the total species pool, making scientific data for the 

majority of primate species limited (Estrada et al., 2017). Long-term monitoring studies are 

important for the study of primates due to their slow life histories. Owing to the short-lived nature 

of funding, long-term studies are rare (Junker et al., 2020). Studies evaluating the response of 

primates to changes in habitat loss and fragmentation are mostly at the patch-scale. There is limited 

knowledge about how primates use the matrix or respond to heterogeneity of landscapes, which 

would be beneficial in designing conservation strategies (Arroyo-Rodríguez and Fahrig, 2014). In 

response it has been recommended that landscape scale studies are conducted (Arroyo-Rodríguez 
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and Fahrig, 2014), however this requires extensive data collection, which, as discussed above, is 

expensive and can be challenging practically, especially at large spatial scales. A recent review of 

primate literature concluded that there is an urgent requirement for species and habitat specific 

knowledge on a range of threats, including habitat loss and fragmentation and climate change and 

an urgent need for species recovery plans (Estrada et al., 2017), and it has been stated that we lack 

evidence-based strategies to effectively conserve primates (Estrada et al., 2017; Junker et al., 2020). 

New technology and methodologies for monitoring primates are essential to help overcome these 

knowledge gaps (Estrada et al., 2017), and PAM could complement existing methods to bridge this 

gap.  

1.6. The Geoffroy’s Spider Monkey 

1.6.1. Conservation Status and Importance 

The Geoffroy’s spider monkey (Ateles geoffroyi) is currently classified by the IUCN as Endangered 

and globally its population is known to be decreasing. It is estimated that this species will decline by 

50% within a 45 year period (Cortes-Ortíz et al., 2021). This is a cause for concern as this species has 

a critical function in the ecosystem. The Geoffroy’s spider monkey has been found to disperse the 

seeds of over 150 species of tree, thereby increasing the chance of seed germination and 

establishment (Link and Di Fiore, 2006). Many of the dispersed seeds belong to hardwood species, 

which also have an important role in carbon storage (van Roosmalen, 1980; Whitworth et al., 2019). 

1.6.2. Habitat and Dietary Requirements 

The Geoffroy’s spider monkey is found from sea level to 2200 m elevation (Zaldívar et al., 2004). 

They are reported to require continuous tracts of mature old growth forests to survive (van 

Roosmalen, 1980; Sorensen and Fedigan, 2000; Ramos-Fernández and Ayala-Orozco, 2003; Zaldívar 

et al., 2004; Urquiza-Haas, Peres and Dolman, 2009), although they have been found to occur, albeit 
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at lower levels, in secondary forest (Ramos-Fernández and Ayala-Orozco, 2003; Ramos-Fernandez et 

al., 2013; Arroyo-Rodríguez et al., 2017a) and forest fragments (Chaves, Stoner and Arroyo-

Rodríguez, 2012; Galán-Acedo, Arroyo-Rodríguez and Chapman, 2021). For example, in Mexico, they 

were found at a density of 89.5/km2 in mature forest and only 6.3/km2 in secondary successional 

forests (Ramos-Fernández and Ayala-Orozco, 2003). Although not found to reside permanently in 

other land uses, infrequently, they have been found to use agroforestry plantations, isolated trees, 

and vegetation corridors for travelling and feeding (Estrada et al., 2006; Estrada, Raboy and Oliveira, 

2012; Arroyo-Rodríguez et al., 2017a). They are mainly found in the mid and upper canopy, avoiding 

the lower canopy and rarely venturing to the forest floor (van Roosmalen, 1980; Weghorst, 2007).  

The diet of the Geoffroy’s spider monkey consists of 90% mature fruits, with the fruits of the fig 

family known to be particularly important (van Roosmalen, 1980; Sorensen and Fedigan, 2000; 

Wallace, 2008b). Their remaining diet comprises leaves, flowers and invertebrates, when fruits are 

less abundant (van Roosmalen, 1980; Sorensen and Fedigan, 2000; Weghorst, 2007; Felton et al., 

2008; Wallace, 2008b). Mainly due to their frugivorous diet, the Geoffroy’s spider monkey requires 

larger areas of forest than other primates, with a home range of up to 4 km2 and the ability to travel 

up to 4.5 km a day in search of food (Sorensen and Fedigan, 2000; Weghorst, 2007; Wallace, 2008b; 

Arroyo-Rodríguez et al., 2017b). This means they are especially sensitive to habitat loss and 

fragmentation (Wallace, 2008b; Arroyo-Rodríguez et al., 2017b). Ranging behaviour varies seasonally 

based on food and sleeping site availability, with travel being more limited during times of fruit 

scarcity (Wallace, 2008b). Ranging behaviour and choice of sleeping sites were also found to be 

based on predation risk, with the spider monkey avoiding areas of poor visibility and excessive noise 

(Wallace, 2008b).  

In Costa Rica studies on the Geoffroy’s spider monkey are limited, with most taking place in the dry 

forests of Santa Rosa National Park. Here, spider monkey density was positively correlated with forest 

age and continuity, reduced disturbance, higher fruit biomass (Sorensen and Fedigan, 2000) and the 
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density of large mature sleeper trees (Chapman, 1989). On the Osa Peninsula, Costa Rica, one study 

located in Corcovado National Park, found high densities of the Geoffroy’s spider monkey and no 

difference between use of old growth and secondary forests (Weghorst, 2007) and another, located 

in Pejepero wildlife refuge, characterised sleeping behaviour and its influence on other species, 

showcasing the importance of spider monkey latrines for biodiversity (Whitworth et al., 2019). 

1.6.3. Threats 

The spider monkey is at risk from hunting across its range, for meat, the pet trade and in retaliatory 

killings. Spider monkeys have consistently been found at lower densities in areas where there is 

higher hunting pressure (van Roosmalen, 1980; Peres, 1990, 1997; Aquino et al., 2013; Cronin et al., 

2016). For example, in Peru, spider monkey density was 70-80% lower in areas where they were 

hunted (Aquino et al., 2013). In Costa Rica there are no formal assessments of hunting pressure, 

however it is known by rangers that the Geoffroy’s spider monkey and other species are hunted 

using firearms (G.Saborio 2018, personal communication, 26 May). Due to their slow life history they 

are particularly slow to recover from hunting pressure and can take decades to respond to changes 

(Weghorst, 2007; Wich and Marshall, 2016). 

Many species, especially medium-large bodied mammals, arboreal species and those who have high 

site fidelity or a transient nature, are vulnerable to the negative effects from roads (Coffin, 2007; 

Fahrig and Rytwinski, 2009; Taylor and Goldingay, 2010; da Rosa et al., 2018; Pinto, Clevenger and 

Grilo, 2020). Whilst there are few studies looking specifically at primates, they are thought to be 

particularly affected by roads due to their arboreal nature, dependence on trees and sensitivity to 

habitat change (Asensio et al., 2017). To my knowledge only one study has addressed the effects of 

roads on spider monkeys (Asensio et al., 2017), finding that they avoided areas of their home range 

with roads and their ability to cross roads was based on the size of the opening in the canopy 

(Asensio et al., 2017). Human population centres on the other hand appear to have mixed effects on 

the spider monkey. In Mexico human density was found to have no effect on spider monkey 
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occurrence (Urquiza-Haas, Peres and Dolman, 2009) and a study in the north of Costa Rica 

concluded that they showed a preference for areas with less development, however this study did 

not separate the effects of roads, buildings or forest loss (Van Hulle and Vaughan, 2008).  

 

1.6.4. Current Knowledge Gaps 

As with other primate studies, previous studies of the Geoffroy’s spider monkey have generally been 

limited in scale and/or coverage, with many studies focusing on just one or a few groups within a 

forested area (Chapman, 1987, 1989; Asensio, Schaffner and Aureli, 2012; Chaves and Stoner, 2012; 

Ramos-Fernandez et al., 2013). Other studies have considered more individuals, however have only 

covered small regions of less than 10 km2 (Luckett et al., 2004; Weghorst, 2007). There have been 

several studies that covered larger regions, achieving a larger spatial scale, however these studies 

were still patch scale studies and coverage was limited to less than 50 forested sites (Sorensen and 

Fedigan, 2000; Boyle and Smith, 2010; Da Silva et al., 2015; Galán-Acedo et al., 2018; Spaan et al., 

2020; Galán-Acedo, Arroyo-Rodríguez and Chapman, 2021). It is therefore rare that previous studies 

have been at the recommended landscape scale and have achieved both high coverage and spatial 

scale. In addition to the lack of landscape scale studies, the Geoffroy’s spider monkey experiences 

many of the same knowledge gaps as other primates, such as a lack of long term monitoring and 

large gaps in knowledge of distribution and density (Ramos-Fernández and Wallace, 2010). These 

knowledge gaps are partially a result of methodology constraints and the difficulties of surveying 

species with a high degree of fission-fusion dynamics and with large home ranges, which can be 

aided with new technologies (Spaan et al., 2019). 
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1.7. Protected areas 

1.7.1. Application and Benefits 

Protected areas (PAs) are considered one of the key tools for mitigating biodiversity loss through 

protecting species and the habitat that they need to survive (Barrows, Fleming and Allen, 2011; 

Watson et al., 2014; Gray et al., 2016). The 2020 Strategic Plan for Biodiversity called for the 

protection of 17% of terrestrial land by 2020 (CBD, 2010) and it is expected that targets for 2030 will 

be set at 30% (Waldron et al., 2020). Studies have shown that PAs can be effective in reducing land 

clearing and habitat loss (Bruner et al., 2001) and protecting species, with higher levels of 

biodiversity found inside PAs than outside (Butchart et al., 2012; Gray et al., 2016; Geldmann et al., 

2019).  

1.7.2. Protected Areas Under Threat 

As the human population continues to expand and funding for management of PAs decreases, PAs 

are becoming increasingly threatened by habitat loss, illegal logging and hunting (Chazdon et al., 

2009; Laurance, Sayer and Cassman, 2014). As a consequence of habitat loss in the surrounding 

area, many are also isolated in a matrix of disturbed land (Chazdon et al., 2009; Laurance, Sayer and 

Cassman, 2014). The effectiveness of PAs in protecting ecosystems and wildlife globally are 

questionable, and it is thought that as little as 20% of PAs are under effective protection (Laurance 

et al., 2012; Watson et al., 2014) and over 90% of PAs are currently not connected to each other via 

intact land (Ward et al., 2020). Monitoring the effectiveness of protected areas is therefore essential 

to evaluate if they are functioning as intended, to measure the impact of investments, to allow for 

the reallocation of resources and adaptation of practices and to track targets and promote 

accountability and transparency (Geldmann et al., 2021). Despite the value of monitoring, only 18% 

of the worlds PAs have had any assessment of effectiveness and there are no global standardised 

assessments (UNEP-WCMC and IUCN, 2016). This has led to calls to include indicators for 
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measurement of effectiveness in future action plans, in addition to percentage cover targets 

(Geldmann et al., 2021). 

1.7.3. Passive Acoustic Monitoring as a Method for Monitoring Protected Areas 

Geldmann et al., (2021) recommended that to effectively monitor PAs, site-level field data, 

evaluating trends in species and ecosystems, should be collected at a fine scale, using an approach 

that can be implemented globally. The data required to make such assessments will be time 

consuming and expensive to obtain, especially for rare species, in challenging environments such as 

the tropics and for long term studies. Researchers are therefore searching for more efficient 

methods to evaluate conservation strategies (Wrege et al., 2017). Passive acoustic monitoring could 

help fill this gap through providing information on multiple species and communities. As discussed 

above, PAM can also overcome some of the main constrains of using traditional wildlife survey 

methods, thereby allowing non-invasive, long term studies at greater spatial and temporal scales 

(Wrege et al., 2017). There are few studies using PAM to evaluate the effectiveness of PAs, however, 

Campos et al., (2021), showed that acoustic indices were able to successfully detect trends in 

acoustic diversity within PAs, and PAM has successfully been used to assess gun hunting inside PAs 

and evaluate the effectiveness of anti-poaching patrols (Astaras et al., 2020). 

1.8. Study Design 

The initial sampling design for this study was developed to ensure a representative, independent 

and unbiased network of acoustic recorders across the study site. The study area was split into a grid 

of 240, 4 x 4 km2 landscapes/squares, using a system developed by the Costa Rican government to 

aid the implementation of scientific research (Fig. 1.1). These squares also represented the 

maximum home range recorded for a group of spider monkeys (Wallace, 2008a). As the initial grid 

system did not cover the mangrove region, we expanded it using the fishnet tool in ArcGIS 10.8. High 

resolution 5 x 5 m land use maps were used to calculate the percentage cover of each land use in the 
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study area (Fig. 1.1a) (Shrestha et al., 2018), and GIS layers of protected areas were used to calculate 

the percentage cover of each protected area in the study region. Fifty-two squares were removed 

from the analysis as we were only interested in the area in between and surrounding the national 

parks. These squares represented the area to the east of Piedras Blancas national park. All squares 

to the east of and not directly bordering the park were not considered. From the remaining 188 

squares, each square was designated to a particular land use and protection type based on the 

category with the highest proportion of cover in the square. Forty-five squares were then randomly 

chosen using a random number generator, ensuring a representative sample of each category. We 

aimed to install 8-10 recording devices in each square at a minimum distance of 500m apart. This is 

based on a maximum distance of 200 meters for most biotic sounds, ensuring independence in the 

samples and avoiding pseudo replication. (Figueira et al., 2015). To identify the locations to place the 

recorders within each square we further divided the 4 x 4 km2 grid into smaller 500m2 boxes and 

randomly chose 10 of those boxes as the installation locations. 

We maintained this sampling strategy for four of the 4 x 4 km2 squares, installing eight recording 

devices in each of the four target squares, however it quickly became apparent that access issues, 

owing to terrain and land ownership, would make this approach too challenging. The grid system 

was therefore abandoned and installation sites for the recording devices were selected on feasibility 

of access, whilst maintaining a representative number of recorders in each category of land use and 

protection and ensuring uniform coverage of the study region. To ensure non-bias in sampling 

locations, the first recorder in each accessible area was placed by walking 500 m in a random 

direction and the remaining placed at a minimum of 500 m apart. To avoid bias, trails were not used 

where possible, however, where this was not possible, devices were placed a minimum distance of 

200 m perpendicular to a trail; as indicated by GPS.  

Table 1.1 shows the target number of recording devices in each land use and protection category 

that we aimed to install, based on the percentage cover, against the achieved number of recorders 
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installed. Old growth forest and large areas of Corcovado National Park were typically located in 

areas where access was a challenge and therefore, the optimal number of recorders were not 

achieved. Owners of private wildlife refuges were also very receptive to having the recorders 

installed on their land, consequently, there were additional recorders placed in these areas in order 

to achieve required numbers in old growth forests. Inaccessibility of locations may have introduced 

some bias as they are likely to be less prone to human disturbance and may therefore have higher 

levels of biodiversity, possibly leading to an underrepresentation of biodiversity levels across the 

study. Despite this difficulty it was possible to install many recording units in areas with little to no 

human disturbance and the sheer number of sampling sites should help mitigate any bias. 

Additionally, it is likely that access to some locations was refused due to illegal hunting and logging 

activity occurring, also potentially biasing the results. 
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Figure 1.1.a. Land Use Map of the Osa Peninsula. Land use map showing the nine land use 

categories in the study site. Created at a resolution of 5 x 5 m using Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager (OLI) (Shrestha et al., 2018). b. Protected Area Map of the 

Osa Peninsula. White circles represent the sample sites where each audio recorder was placed. The 

grid system in both maps contains 240 squares each 4 x 4 km2. 

 

a 
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Table 1.1. Audio Placement: Land Use. Target number of recording devices that we aimed to install 

in each land use category to achieve a representative number of recorders, based on the percentage 

(%) cover of each land use and the achieved number of recording devices that were installed. 

 

 

 

 

 

 

 

Land Use Category Percent Coverage (%) Target No. of Devices Achieved No. of Devices 

Mangrove 4.8 18 28 

Secondary 46.5 160 175 

Agriculture 9.7 33 42  

Palm 9.6 32 26 

Old Growth forest 28 92 62 

Teak 1.4 6 8 

Total 100 341 341 
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Table 1.2. Audio Placement Protection. Target number of recording devices that we aimed to install 

in each protection category to achieve a representative number of recorders, based on the 

percentage (%) cover of each protection category and the achieved number of recording devices 

that were installed 

 

 

 

 

 

 

Protected Area Category Percent Coverage 
(%) 

Target No. of Devices Achieved No. of 
Devices 

Corcovado National Park 21.9 71 30 

Terraba-Sierpe National park 11 40 26 

Piedras Blancas National Park 7.6 25 29 

Golfo Dulce Forest Reserve 30.8 105 124 

Private Wildlife Refuge 4 8 28 

Non-protected Areas 24.8 92 104 

Total 100 341 341 
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1.9. Pilot Study 

Between December 2017 - May 2018 two pilot studies were conducted to test the feasibility of 

several methods for collecting data on the Geoffroy’s spider monkey. Line transects, acoustic 

monitoring and monitoring with UAV’s (Unmanned Aerial Vehicles) were tested as follows:  

1. Line transects were trialled at five locations where it was known that spider monkeys were 

present, made up of old growth and secondary successional forest. The aim was to assess the 

feasibility and accessibility of potential sampling locations in the region. It became apparent very 

early on that access was going to be challenging due to topography, the density of the forest and 

land ownership. Cutting transects though forests was also not permitted on public or private 

lands and, therefore, access was restricted to pre-existing paths through the forest.  

2. Several trial flights of a UAV were conducted to test whether spider monkeys could be seen in 

images if they were present in the canopy. The UAV was tested at two sites where spider 

monkeys were present, one open canopy secondary forest and one closed canopy old growth 

forest. On review, the spider monkeys could not be seen in any of the images taken, despite 

confirmation that they were present in the forest. This was due to both the density of the 

canopy and the height that the UAV was flown over the canopy because of inexperience and the 

UAV model.  

3. Acoustic monitoring equipment was tested using the AudioMoth, a low-cost acoustic logger 

recently developed to allow high quality recordings at a fraction of the cost of current 

equipment on the market (Hill et al., 2018). The devices were tested in eight locations, the same 

locations where line transects were conducted and were left up for 5-6 days each time. In 

between sessions, batteries were replaced and cards were cleared ready for the next recording 

period. The AudioMoth was placed in a bag for protection against environmental conditions, as 

recommended by the AudioMoth team, however, during periods of heavy rain, water leaked 

into the bag and the recorders stopped working. A specially designed waterproof case was 
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therefore used in the main study. For each day that the audio recorders were installed, attempts 

were made to walk line transects or to carry out timed searches, with the aim of comparing the 

detection capability of each method. The primary spider monkey call, the whinny, was 

successfully recorded on each of the audio devices, and, after analysing five recording days at 

one site, the spider monkeys were picked up every day. At this same site spider monkeys were 

only encountered on two out of five walks. Due to the success of the acoustic study it was 

decided that I would proceed with acoustic monitoring.   
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Chapter Framework 

Across the field of ecology there remains a lack of information on threatened species and 

ecosystems and the effectiveness of current management actions (Estrada, 2006; Arroyo-Rodríguez 

and Fahrig, 2014; Browning et al., 2017; Legge et al., 2018; Bezanson and McNamara, 2019; Junker 

et al., 2020). There is an urgent need for rapid and cost-effective methods to evaluate the current 

state of species, communities, ecosystems and the effectiveness of interventions. To help address 

this need I used passive acoustic monitoring (PAM), combined with computational approaches, to 

measure trends in biodiversity and the effectiveness of management actions at a wide spatial scale 

across a biodiverse region in the tropics.  

Chapter Two 

Fluctuations in the diel cycle can reveal key changes in the biological community and species 

behaviour (Bradfer‐Lawrence et al., 2019; Francomano, Gottesman and Pijanowski, 2021), yet few 

studies have addressed the effects of land use change on biodiversity across the diel cycle. The 

emergence of passive acoustic monitoring (PAM) allows us to monitor landscapes over far longer 

and more continuous periods, providing data on temporal variability (Francomano, Gottesman and 

Pijanowski, 2021). Due to limited resources, monitoring is still often conducted with long intervals 

between sampling periods and at a limited extent; providing only a snapshot of variables that can 

fluctuate greatly between samples. In this second chapter we assessed whether soundscape indices 

can reveal changes in the biological community across the diel cycle and if loss of native forests 

affect acoustic diversity across the diel cycle in tropical ecosystems. To do this we used a suite of 

nine acoustic indices to analyse differences in acoustic diversity across the diel cycle over a gradient 

of land use change. This chapter highlights the importance of using the diel cycle in soundscape 

studies to reveal changes in acoustic diversity and the disruption to the diel cycle in disturbed 

landscapes.   



 

 

43 
 

Chapter Three 

As more land is altered by human activity and more species are threatened with extinction, it is 

essential that we understand how to conserve rare and threatened species across human-modified 

landscapes. Yet despite decades of research, we still lack rapid and efficient methods to assess how 

species respond to such disturbance and the knowledge to implement conservation strategies to 

protect them (Estrada, 2006; Arroyo-Rodríguez and Fahrig, 2014; Wrege et al., 2017; Legge et al., 

2018; Bezanson and McNamara, 2019; Junker et al., 2020). In this third chapter we determined if 

PAM and a newly developed automated detection and classification system, was effective at 

retrieving information on the Geoffroy’s spider monkey across over 340 sites at a wide spatial scale. 

We then assessed how this endangered primate responds to habitat loss and human influence 

across a gradient of disturbance. Little is known about the distribution of this primate across the Osa 

region in Costa Rica and we addressed this for the first time at a landscape scale. This is important 

since the Osa Peninsula is considered a stronghold for this endangered species (Weghorst, 2007). 

Overall, this analysis shows how PAM, combined with machine learning approaches, can be an 

effective tool for the study of rare species and provides further evidence as to the sensitivity of this 

species to human disturbance. 

Chapter Four 

Protected areas (PAs) are a key method to prevent biodiversity loss and protect ecosystems, yet a 

large portion of PAs are not thought to be functioning as intended (Laurance, Useche, et al., 2012; 

Watson et al., 2014). Connectivity across a PA network is one of the essential aspects for sustaining 

viable populations of species, especially with the threat of climate change (Laurance, Carolina 

Useche, et al., 2012; Stewart et al., 2019), yet it is estimated that less than 10% of PAs are 

structurally connected via undisturbed land (Ward et al., 2020) and any evaluation of connectedness 

is generally absent from reporting procedures (Ward et al., 2020). Fine scale site-level field data is 
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required to monitor protected areas, yet this information is difficult to obtain (Geldmann et al., 

2021)  In Chapter Four, we investigated the effectiveness of a sustainable use PA in facilitating 

connectivity between two strictly protected PAs for an endangered forest specialist. Using PAM we 

assessed the occurrence of the Geoffroy’s spider monkey across the PA network and used habitat 

suitability modelling to predict suitable habitat for the spider monkey and identify potential barriers 

to connectivity. Finally, we used least-cost analysis and Circuitscape analysis to determine an ideal 

biological corridor and highlight possible bottlenecks to connectivity. This chapter demonstrates the 

success of a PA in protecting forest and providing habitat for a threatened species, however, it also 

highlights the lack of connectivity in the region between PAs, mainly owing to a single paved road. 

 

 

 

  



 

 

45 
 

Chapter Two: Soundscapes Show Disruption across the Diel 

Cycle in Human Modified Tropical Landscapes 

Abstract 

Background: Fluctuations in the diel cycle, especially when compared across different land-use 

types, can reveal key changes in the biological community and species behaviour. Yet few studies 

have assessed the effects of land use change on biodiversity across the diel cycle. The emergence of 

passive acoustic monitoring (PAM) allows us to monitor landscapes over longer and more 

continuous periods, providing data on temporal variability across the diel cycle.  

Methods: Using AudioMoth acoustic recorders we collected data at 170 sites on the Osa Peninsula, 

Costa Rica, across a gradient of land use change. Information was extracted from recordings using a 

suite of nine acoustic indices. Dimensionality reduction techniques reduced the indices into two 

indices of biotic and anthropogenic sound.   

Results: In disturbed habitats, we found a loss of the characteristic dawn and dusk peaks across the 

diel cycle; known as the dawn and dusk chorus. Despite showing similar or higher levels of acoustic 

diversity when compared to native forests, palm oil plantations and grasslands sites showed a 

complete loss of these peaks, while teak plantations retained evidence of a small dawn and dusk 

chorus. Secondary forests showed slightly less pronounced peaks than did native forest. Changes in 

in acoustic diversity were less apparent when analysed at set points during the diel cycle. 

Implications: While acoustic diversity may appear to be higher in grasslands, disturbed ecosystems 

did not present the usual pattern of a dawn and dusk chorus found in native forest habitats. This 

suggests that in disturbed ecosystems there is likely a loss of species diversity, a shift in species 

composition, or modifications in species behaviour, reinforcing the value of native old growth forests 
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in maintaining ecosystem functionality and the importance of reforestation and afforestation efforts 

that focus on native species rather than monoculture plantations. The lack of changes in acoustics 

diversity found when analysing the soundscape only at key times during the day suggests that 

evaluating acoustic diversity at specific times of the day is misleading, but by assessing trends across 

the diel cycle, we can gain a much better representation of changes to biotic communities. 

2.1. Introduction 

As we are facing a period of rapid biodiversity loss (Ceballos et al., 2015), it is essential to monitor 

how ecosystems respond to both anthropogenic disturbance and management actions, so that we 

can effectively mitigate these threats and halt, or even reverse, biodiversity loss (Novacek and 

Cleland, 2001; Francomano, Gottesman and Pijanowski, 2021). It is only with the development of 

new technology and novel methods that we are able to effectively and efficiently monitor 

ecosystems at fine temporal resolutions and across large spatial scales (Deichmann et al., 2018; Ross 

et al., 2018; Burivalova, Game and Butler, 2019). The diel cycle is a complex organisation of species 

activity that can reveal important changes in the biological community and species behaviour 

resulting from anthropogenic activity (Francomano, Gottesman and Pijanowski, 2021). Yet due to 

limited resources, monitoring is often conducted with long intervals between sampling periods and 

at a limited extent; providing only a snapshot of variables that can fluctuate greatly between 

samples.  

The activity patterns of species are generally classified into nocturnal, diurnal, crepuscular and 

cathemeral (Ikeda et al., 2016). Animals’ endogenous clocks are what control these activity patterns 

(Francomano, Gottesman and Pijanowski, 2021). The diel cycle is characterised by these changes in 

activity and the characteristic dawn and dusk peaks; known as the dawn and dusk chorus. Vocal 

communication, especially at these times, is generally associated with territorial, social and 

reproductive behaviour (Barnett and Briskie, 2007; Kleyn, da Cruz Kaizer and Passos, 2021). As 
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proposed by the Acoustic Niche (Krause, 1987) and the Acoustic Adaptation Hypothesis (Sueur and 

Farina, 2015), species singing in the same temporal and spatial acoustic space, will often partition 

their song to minimise interference from other species and increase signal transmission (Planqué 

and Slabbekoorn, 2008; Luther, 2009).  

The organisation of this acoustic space across the diel cycle has evolved over time and major 

disruptions to this system may alter species’ ability to communicate (Francomano, Gottesman and 

Pijanowski, 2021). Effective intraspecies communication is directly linked to survival (Kleyn, da Cruz 

Kaizer and Passos, 2021), and inability to communicate can disrupt important behaviours such as 

mating, recognition, predator avoidance and territoriality, ultimately interfering with population 

fitness (Luther, 2009; Lee, MacGregor-Fors and Yeh, 2017). Changes across the diel cycle can also 

reveal differences in species behaviour and assemblage since loss of, or change in species 

composition, will alter activity and sounds produced (Bradfer‐Lawrence et al., 2019; Francomano, 

Gottesman and Pijanowski, 2021). Sampling at just one period in the day could lead to 

misrepresentation of or missing key changes in these patterns and processes. It is therefore 

recommended to sample at a fine temporal scale, across the diel cycle, to fully reveal differences in 

the biological community and species behaviour across ecosystems (Bradfer‐Lawrence et al., 2019; 

Francomano, Gottesman and Pijanowski, 2021; Hao et al., 2021).  

The emergence of new technology, such as passive acoustic monitoring (PAM), has improved our 

ability to monitor landscapes continuously, allowing the study of temporal variability at a fine scale, 

in a non-invasive way (Pijanowski et al., 2011; Ducrettet et al., 2020), paving the way for sampling 

across the diel cycle to be possible. Yet listening to and analysing this data can be challenging and 

automated analysis is becoming essential (Towsey et al., 2014). Computational approaches from the 

field of soundscape ecology provide one method of automated analysis.  Soundscape ecology, a 

branch of bioacoustics, is the study of the interaction between animals (biophony), humans 

(anthrophony) and the environment (geophony), and is useful for studying spatial-temporal patterns 
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(Pijanowski et al., 2011). Soundscape ecology uses indices of acoustic diversity to determine 

measures of biotic and anthropogenic sound in the recordings across spatial and temporal scales 

(Pijanowski et al., 2011; Sueur et al., 2014). Each index measures a different part of the soundscape, 

including pitch, saturation and amplitude across time and frequency bands, with most indices being 

sensitive to the characteristics of biophony (Sueur et al., 2008; Bradfer‐Lawrence et al., 2019), 

thereby providing measures of richness, evenness and heterogeneity of biotic sounds (Sueur et al., 

2014). By comparing acoustic diversity to diversity measured through standard sampling (e.g. point 

counts), a variety of indices are found to be related to the number of biological sounds in a 

recording, measures of species richness and abundance and functional diversity, mainly across 

avifauna (Boelman et al., 2007; Joo, Gage and Kasten, 2011; Mammides et al., 2017; Buxton, 

McKenna, et al., 2018; Eldridge et al., 2018; Bradfer-Lawrence et al., 2020; Smith et al., 2020; Dröge 

et al., 2021), but also other taxa, including amphibians, orthopterans and mammals (Sueur et al., 

2008; Fairbrass et al., 2017; Holgate, Maggini and Fuller, 2021).  

Few studies have used PAM to analyse acoustic diversity across the diel cycle, with relatively little 

focus on biodiverse tropical regions, but those that did consistently found higher acoustic diversity 

during the day than at night (Villanueva-Rivera et al., 2011; Pieretti et al., 2015; Gage et al., 2017; 

Bradfer‐Lawrence et al., 2019; Dröge et al., 2021; Francomano, Gottesman and Pijanowski, 2021). 

Changes in the diel cycle over a gradient of land use change, however, are even less studied. Dröge 

et al., (2021) found that some biotic index values were lower during the day in more disturbed land 

uses, such as agroforestry and rice fields, but remained high in forested areas. Villanueva-Rivera et 

al. (2011) analysed recordings for 15 minutes per hour and found higher acoustic biotic diversity and 

evenness with increasing habitat quality; especially at dawn. Spatial patterns in other studies were 

either not considered (Gage et al., 2017; Francomano, Gottesman and Pijanowski, 2021), or no clear 

effects were found (Bradfer‐Lawrence et al., 2019).  
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A number of other acoustic studies have used indices of acoustic diversity to demonstrate the 

effects of land use change on biodiversity, most taking measures during specific points of the day. 

For instance, Hao et al., (2021) found higher biophony in areas with more complex vegetation 

structure and a taller, denser canopy and Burivalova et al., (2021) found that biophony dropped 

when forested areas had been logged. In general, studies have found that biophony increases and 

anthrophony decreases with increasing habitat quality (Sueur et al., 2008; Tucker et al., 2014; 

Burivalova et al., 2021; Hao et al., 2021; Holgate, Maggini and Fuller, 2021).  

Despite evidence that acoustic indices correlate to species richness and diversity, and can reveal 

changes in biodiversity across different land uses, there is some inconsistency in results, with some 

studies failing to find any differences between landscapes (Mammides et al., 2017; Ng, Butler and 

Woods, 2018) and others reporting opposite results using the same index (Bradfer‐Lawrence et al., 

2019). This is perhaps due to lack of a standardised approach across the field, with over 60 different 

indices being used across very different temporal sampling regimes (Bradfer‐Lawrence et al., 2019) 

and the inherent differences that exist across different environments and geographically (Gibb et al., 

2019). Indices are also sensitive to abiotic factors resulting from rain and wind and poorly 

understood biotic sound; which is often not accounted for (Pijanowski et al., 2011).  

To avoid these inconsistencies several recommendations have been proposed. As each index detects 

different spatial-temporal features, it is recommended to use multiple indices to represent the 

soundscape, especially to capture changes across land use types (Bradfer‐Lawrence et al., 2019; 

Dröge et al., 2021; Hao et al., 2021). It is also recommended to record continuously, for long enough 

to capture temporal variability, to reliably describe fine scale temporal patterns in the soundscape 

that can reveal important changes in the ecosystem (Bradfer‐Lawrence et al., 2019; Dröge et al., 

2021; Francomano, Gottesman and Pijanowski, 2021).   

This study aims to address this research gap by using a suite of nine acoustic indices to analyse 

differences in acoustic diversity across the diel cycle, over a gradient of land use change, to reveal 
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potential changes in ecosystem patterns and processes. Here we ask: 1. Can soundscape indices 

reveal changes in the biological community across the diel cycle. 2. Does loss of native forests affect 

acoustic diversity across the diel cycle in tropical ecosystems. 

2.2. Methods 

2.2.1. Study Site 

Our study area covers 1093 km2 on the South Pacific coast of Costa Rica. The terrain is generally low-

lying, with a maximum elevation of 792 meters. Mean annual rainfall ranges from 3,000-6,500 mm 

and mean yearly temperature is 27 oC, with high levels of humidity throughout the year. There are 

two distinct seasons, wet and dry season, with the highest rainfall occurring September through 

December (Gilbert et al., 2016). 

The peninsula contains the last remnants of tropical broadleaf evergreen lowland rainforest on the 

Central American Pacific (Gilbert et al., 2016), imbedded within a mosaic of pasture, plantations and 

urban centres (Figure 2.1). Due to the geology and geography of the area, the peninsula contains 

high levels of biodiversity and endemism (Sánchez-Azofeifa et al., 2002). There are three national 

parks (Corcovado, Piedras Blancas and the Terrebe-Sierpe Wetlands) and one forest reserve, the 

Golfo Dulce. The Terreba-Sierpe wetlands (30,654 ha) were declared a national park in 1997, 

Corcovado (42, 560ha) in 1975, Piedras Blancas (14,019ha) in 1991 and the forest reserve (60,000ha) 

in 1979 (Sánchez-Azofeifa et al., 2002; Osa Conservation, 2016; Gutierrez et al., 2019).  
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Figure 2.1. Land Use Map of the Osa Peninsula. Shows the nine land use categories, created at a 

scale of 5 x 5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) 

(Shrestha et al., 2018). White circles represent the sample sites where each audio recorder was 

placed. 
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2.2.2. Sampling Design 

Land use at each site was calculated using land use maps provided by NASA, created at a scale of 5 x 

5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) (Shrestha 

et al., 2018) (Figure 2.1). The map was classified into nine land use categories (Figure 2.1), with 

recordings taken in old growth and secondary forests, palm and teak plantations, mangroves and 

grassland sites (Figure 2.1). Wetlands, water and urban areas were excluded from the analysis due to 

inaccessibility. 

To ensure a representative number of sampling sites were chosen across each land use category, we 

used a stratified sampling approach. We calculated the percentage cover of each land use category 

across the region and placed a representative number of recorders in each category. To ensure even 

coverage of the study region we selected sampling locations in a uniform distribution across the 

area. Due to access issues it was not possible to randomly choose sampling locations in all areas, 

therefore, to ensure independence among sampling locations, the first recorder in each area was 

placed by walking 500 m in a random direction and the remaining placed at a minimum of 500 m 

apart. Where possible, trails were not used to avoid bias, however, where this was not possible, 

devices were placed a minimum distance of 200 m perpendicular to a trail; as indicated by GPS. Non-

audio data were collected for each point including GPS location, elevation and land use, to verify 

data from NASA land use maps. For more information on sampling design please see Chapter One. 

Of the 341 data points sampled, 170 were included in the final analysis, again ensuring a 

representative number of points were chosen across land use, levels of protection and to ensure 

even coverage of the study site. Given that biotic sounds generally travel a maximum distance of 200 

m (Figueira et al., 2015), we used a minimum distance of 500 m between recorders, ensuring 

independence in the samples and avoiding pseudo-replication. Recording devices were also placed 

at a minimum distance of 200 m from habitat boundaries, to ensure sounds were solely from the 

classified habitat.  
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Recordings were obtained using Audio Moth devices (Open Acoustics Devices, UK). Recorders ran for 

seven consecutive days to allow for variability in activity across different days and to allow for 

sufficient sampling effort. The devices recorded on a schedule of 05:00-09:30, 14:00-18:30 and 

21:00- 03:00, to ensure data were collected across the diel cycle. We recorded constantly over the 

recording schedule at a sample rate of 48000 kHz based on best practice guidelines (Bradfer‐

Lawrence et al., 2019). Sampling was conducted within the dry season (December-August) to avoid 

extreme seasonal differences and due to restricted access to many areas of the study site during wet 

season. Birds generally tend to migrate to the area during the North American winter between 

November and March (Desante et al., 2005). To avoid bias from these events we included sampling 

month as a random effect in our models. 

2.2.3. Environmental Variables 

Land use at each site was calculated using land use maps provided by NASA in ArcGIS software 

v.10.6. Maps were created at a scale of 5 x 5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 

Operational Land Imager (OLI) (Nasa Develop, 2018) (Figure 2.1).  

Time of day was used as an explanatory variable to understand changes in biotic and anthropogenic 

sound throughout the diel cycle. The cycle was split into 30 categories corresponding to each 30-

minute period during the recording schedule. 

2.2.4. Acoustic Indices 

To extract acoustic information from the raw data we used a suite of nine complementary acoustic 

indices which, depending on study design, can be used together to provide a comprehensive picture 

of the soundscape (Towsey, 2018). These indices were chosen, as together, they capture the spatial-

temporal variation that exists across the soundscape (Towsey, 2018), avoiding incorrect 

interpretations that may occur due to competing explanations or sensitivities in different 

environments for a particular index value (Bradfer‐Lawrence et al., 2019).  The indices are designed 
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to represent various components of biotic sound, except for NDSI, which calculates anthrophony. 

Larger index values are correlated to increased diversity, abundance, entropy or evenness of biotic 

sounds. Table 2.1 describes each index, for a full description of how indices are calculated refer to 

Towsey (2018).  

Table 2.1. Description of Acoustic Indices. Description of each acoustic index used, together with 

the reference to papers where indices were first developed and presented 

Index Measure Reference 

Acoustic 

Complexity 

Index (ACI) 

A spectral index that calculates the difference between two adjacent 

values of amplitude. It measures fluctuations in amplitude, with 

larger differences and information contained indicating a more 

complex and variable environment  

Pieretti, Farina 

and Morri, 2011 

Temporal 

Entropy (ENT) 

Measures the entropy of energy values of the signal waveform to 

provide a measure of energy concentration. 

Towsey, 2018 

Normalised 

Difference 

Soundscape 

Index (NDSI) 

This index is based on the difference between anthropogenic and 

biotic sounds. It produces a value between 0 and 1 based on the 

proportion of these sounds in the recordings, with a value of 1 being 

pure biotic sounds  

Kasten et al., 

2012 

Events per 

Second (EVN) 

Calculates the number of acoustic events per second above 3 dB  Towsey, 2018 

Low Frequency 

Cover (LFC) 

The number of spectrogram cells exceeding 3 dB in the low 

frequency band (1-1000Hz) 

Towsey, 2018 

Mid Frequency 

Cover (MFC) 

The number of spectrogram cells exceeding 3 dB in the mid 

frequency band (1000-8000Hz) 

Towsey, 2018 

High Frequency 

Cover (HFC) 

The number of spectrogram cells exceeding 3 dB in the high 

frequency band (8000-11025Hz). 

Towsey, 2018 

Cluster Count 

(CLS) 

Calculates the number of distinct spectral clusters in the mid 

frequency band. This index measures the amount of internal 

acoustic structure within the mid frequency band. 

Towsey, 2018 

Three Gramm 

Count (ThreeG) 

Derived from calculation of spectral clusters in the mid frequency 

band and the number of sequences that occur more than once. 

Towsey, 2018 
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2.2.5. Statistical Analysis 

2.2.5.1. Pre-processing 

Geophony is known to inflate the values of some indices and reduce others (Bradfer‐Lawrence et al., 

2019). We selected 20 sites, four from each land use, and reviewed the response of the indices to 

geophony in the recordings by simultaneously listening to the recordings and viewing the 

spectrograms and associated indices. To do this we generated Long Duration False Colour 

Spectrograms (LDFC Spectrograms) using Analysis Programmes software developed by Towsey et al., 

(2018). This process combines the spectral data from six indices, ACI, EVN, ENT, BGN, PMN and EVN, 

to visually summarise the content of 24 hours of audio recording, allowing sections of geophony, 

such as rain and wind, to be identified visually. We determined that geophony inflates the NDSI 

index and reduces indices of biotic sound. For each site, geophony was therefore isolated and 

removed before calculating index values. To do this we used the LDFC spectrograms to determine 

roughly where geophony was located across each 24-hr period and then matched these times to the 

associated index values to pinpoint the exact time that the index values either increased or 

decreased. In total 4% of data were lost to Geophony.    

Using Windows PowerShell 6.0 all data were processed using Analysis Programmes software and a 

value calculated for each of the nine indices for each 1-minute file (Towsey et al, 2018). These data 

were then averaged across the seven days and then again for each 30-minute period. 

2.2.5.2. Principal Component Analysis (PCA) 

We used PCA to reduce the dimensionality of the nine acoustic indices using the vegan package 

(Oksanen et al., 2019) to find the best summary of the data in the Principal Components (PC’s). 

Eigenvalues were extracted to determine the number of PC’s to retain. PC’s were retained if their 
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eigenvalue was > 1 and until approximately 70% cumulative variance was reached (James et al., 

2013). 

To determine which combinations of indices are represented across the PC’s, we used the loadings 

values for each index, with higher values indicating a larger effect from the index on that particular 

PC.  PC scores were then extracted for use in regression analysis (For a more detailed explanation of 

PCA analysis please see Supplementary Information. 1.1).  

2.2.5.3. Generalised Additive Mixed Models 

Generalised additive mixed models (GAMM’s) were fitted using a thin plate regression spline 

smoother chosen for optimum RMSE performance. REML-restricted maximum likelihood method 

was used for smoothness selection (Wood, 2017), and degree of smoothness was tested by fitting 

different basis functions and assessing fit, both visually, and using AIC. The optimum number of basis 

functions for PC1 GAMM was 12 (‘Gam_k12’). Model AIC increased for 15 and 20 basis functions 

(‘Gam_k15’, ‘Gam_k20’), but on visual inspection it was confirmed the model was overfitting to 

biologically irrelevant patterns. Optimum basis functions for PC2 GAMM was nine (‘Gam_k9’), as 

chosen by the mgcv package. Increasing the basis functions to 12, 15 or 20 (‘Gam_k12’, ‘Gam_k15’, 

Gam_k20’) did not improve model AIC (Supplementary Information 1.2- Table. 1.3) or change the 

smooth plots.  

GAMM’s were fitted using the mgcv package (Wood, 2017). Models were fitted with a Gaussian 

error structure using an identity link function. All outliers that fell outside the Inter-Quartile Range 

were tested. They were removed if, on inspection, they were considered abnormal.  

GAMM’s were used to assess how the soundscape varied across the diel cycle between land use 

type. We conducted two separate GAMM’s, using PC1 and PC2 as the response variables, as 

together they captured almost 70% of the cumulative variance and both had eigenvalues of > 1 

(Supplementary Information 1.1- Table. 1.1). We included a smooth term to model changes across 
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the diel cycle and an interaction term between time and land use to test whether the effect of time 

was dependent on land use. The variable month, to account for temporal variation across the 

sampling period, reduced model AIC and significantly improved loglikelihood for PC1, and was 

therefore added to the final model (Supplementary Information 1.2- Table. 1.3). 

Temporal autocorrelation was expected due to the nature of diel time-series analysis. We tested our 

model for autocorrelation of the residuals using the autocorrelation function (ACF), which calculates 

the degree of correlation associated with increasing lags. When there is no autocorrelation, lags 

should all be close to 0, when present, there will be a pattern across time lags, with values 

significantly different from 0. Where autocorrelation was found, we included an autocorrelation 

structure in the model. We tested three autocorrelation structures, auto-regressive model order 

1(AR-1), continuous auto-regressive (corCAR) and auto-regressive moving average (ARMA) (Pinheiro 

and Bates, 2000). The best model for both PC1 and PC2, ‘Gamm_Final’, included a corCAR 

autocorrelation structure, producing time lags generally below the line of significance 

(Supplementary Information 1.2- Figure. 1.3) and improving model AIC and loglikelihood 

(Supplementary Information 1.2- Table. 1.3). 

 

Due to the nested structure in the data, we also tested for spatial autocorrelation. We created a 

distanced based weight matrix using model residuals and sampling site coordinates. Using gstat 

package (v2.0-6; Pebesma, 2004) we then produced a variogram plot to visually determine the 

presence of autocorrelation. Points should roughly run along a horizontal line across the y-axis if 

there is no auto-correlation present.  Finally, we calculated the Moran’s I statistic in ape package 

(v5.4; Paradis and Schliep, 2019). If no autocorrelation is present, then the p-value should be 

insignificant and the observed and expected values very similar. Moran’s I Statistic and variogram 

plots indicated that there was no significant spatial autocorrelation in the final models for PC1 or 

PC2 (Supplementary Information 1.2- Table 1.4 & Figure 1.4). 
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2.2.5.4. Linear Mixed Models (LMM’s) 

To quantify the difference in PC1 and PC2 between land use types at different points during the day, 

LMM’s were used, assuming a gaussian distribution for normally distributed data. We fitted models 

in the nlme (Pinheiro, Bates and DebRoy, 2020) and lme4 package (Bates, Maechler and Bolker, 

2015). We chose four points, corresponding to dawn (06:30-07:00), mid-afternoon (14:00-14:30), 

dusk (16:30-17:00), and night (00:00-00:30). Two models were created for each time period using 

PC1 and PC2 as response variables. Fixed covariate was land use. Bonferroni’s correction for multiple 

pairwise comparisons was applied to adjust p-values and reduce the risk of type I errors. Model 

assumptions were verified by inspecting residual plots for normality and temporal and spatial 

dependency. Temporal autocorrelation between months were tested using ACF plots and spatial 

autocorrelation using variograms and the Moran’s I statistic, as detailed above. ACF plots showed no 

significant temporal autocorrelation across months for PC1 or PC2 (Supplementary Information 1.2- 

Figure 1.5). Moran’s I statistic and variogram plots suggest no significant spatial autocorrelation in 

model residuals (Supplementary Information 1.2- Figure 1.6 & Table 1.5).  

2.2.5.5. Model Selection 

Model performance was evaluated using Akaike Information Criteria (AIC) to select the model with 

the best fit and the likelihood ratio test (LRT) to test for goodness of fit (Zuur et al., 2009a). 

Diagnostic plots for all models indicate model assumptions are met. All statistical analysis were 

carried out in R 3.6.0 (R Core Team, 2020). 

2.3. Results  

2.3.1. Dimensionality Reduction 

The variable correlation plot shows that the biotic indices are correlated, apart from the HFC index 

and the NDSI index, which represents anthropogenic sound (Figure. 2). From inspection of high 



 

 

59 
 

frequency areas of the LDFC spectrograms (Supplementary Information 1.3- Figure. 1.7), we 

conclude that across our landscape, HFC index is dominated by anthropogenic sounds from vehicles 

and, to a lesser extent, by insect sounds, which is likely why we see little correlation to other biotic 

indices and more correlation to the NDSI index. The biotic indices are represented across PC1 (56.1% 

variance), with ThreeG, MFC, CLS and ENT indices showing a stronger effect and NDSI and HFC 

indices are represented across PC2 (12.8% variance) (Figure 2.2).  From this result we can conclude 

that PC1 can be considered an index of biotic sound and PC2 an index of anthropogenic sound. Some 

caution must be taken with interpretation of PC2 since HFC does represent both anthropogenic and 

biotic sounds.  
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Figure 2.2. Variable Correlation Plot. Variable correlation plot showing the relationship between the 

indices and the PC’s. Closer vectors are more highly correlated, those on opposite quadrants are 

negatively correlated and indices with longer vectors indicate increased strength on that PC. The x-

axis represents PC1, represented by biotic indices and y-axis PC2, represented by NDSI and HFC 

index, with % of variance explained.  

2.3.2. Changes in Acoustic Diversity Across the Diel Cycle  

The best models, with time and land use as predictor variables, month as a random effect and a 

corCAR1 correlation structure, explained a large proportion of the variation in the data (R2=0.544) 

across PC1 and less so across PC2 (R2=0.166) (Supplementary Information 1.2- Table. 1.3). Diagnostic 

plots showed normality and homoscedasticity in the residuals. 
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2.2.2.1. Index of Biotic Sound: PC1 

Effective degrees of freedom (edf) are given for each smooth term, which describe the level of 

structure and pattern in the relationship between the response and explanatory variables. A score of 

1 is a linear fit and anything over 8 is considered to have a strong non-linear pattern (Zuur et al., 

2009b). Edf were higher in forested habitats and grassland, compared with palm and teak 

plantations, indicating that biotic sound varied more across the diel cycle in native forests and 

grasslands (Figure 2.3 & Supplementary Information 1.3- Table. 1.6). Although edf values are similar 

between old growth and secondary forests, we can see more defined dawn and dusk peaks in old 

growth forests (Figure 2.3). The relationship between biotic sound and time is significant in all land 

use types (p<0.001), showing that biotic sound varied non-linearly throughout the day. F-value is 

lower in plantations, suggesting a weaker association between time and biotic sound (Figure 2.3 & 

Supplementary Information 1.3- Table. 1.6).  

GAMM plots of biotic sound (PC1) across the diel cycle in different land use types show a strong 

pattern in forested habitats, with clear dawn and dusk peaks that are more prominent in old growth 

than secondary forests. Grassland habitat shows much higher levels of biotic sound during the day, 

but loss of dawn and dusk peaks. Palm and teak plantations show a small increase in biotic sound 

during the day, but with less clear or non-existent dawn and dusk peaks (Figure 2.3). Whilst it is 

difficult to pinpoint the onset of the dawn chorus, the peak of activity is earlier in teak plantations, 

compared to native forests, being at 5:45 instead of 6:30.  
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Figure 2.3 Smooth Curves for PC1. Estimated smoothing curves showing the change in PC1 across 

the diel cycle in different land uses. Shaded area represents 95% confidence bands. Edf, F and p 

values for each land use are marked on the plots. Final plot shows all land use types together. 
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2.2.2.2 Index of Anthropogenic Sound: PC2 

Edf values were highest in grassland and secondary forest, indicating that anthropogenic sound 

(PC2) varied across the day more in these land use types (Figure 2.4 & Supplementary Information 

1.3- Table 1.7). On visual inspection, in secondary forest, the changes in PC2 do not show any large 

increase in anthropogenic sound, as in grassland, the large edf values are due to the values 

oscillating around zero (Figure 2.4). The relationship between anthropogenic sound and time is 

significant in all land use types (p=<0.05), showing that anthropogenic sound varied non-linearly 

throughout the day. The F-value is lower in native forest habitats, suggesting a weaker association 

between time and anthropogenic sound in these land use types (Figure 2.4).  

GAMM plots of PC2 across the diel cycle in different land use types show a large drop in PC2 during 

the day in palm and teak plantations and grassland, indicating increased anthropogenic sounds in 

these habitats. We can see a small drop in PC2 in old growth and secondary forests later in the day 

and although in secondary forest PC2 oscillates across the cycle, there is little meaningful biological 

change (Figure 2.4). 
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Figure 2.4 Smooth Curves for PC2. Estimated smooth curves showing the change in PC2 across the 

diel cycle in different land uses. Shaded area represents 95% confidence bands. Edf, F and p values 

for each land use are marked on the plots. Final plot shows all land use types together. 
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2.3.3. Changes in Acoustic Diversity at Key Times in the Diel Cycle  

We then quantified the differences in biotic sound (PC1) and anthropogenic sound (PC2) between 

land use types at key times in the diel cycle (i.e., dawn:06:30-07:00, mid-afternoon:14:00-13:30, 

dusk:16:30-17:00 and night:00:00-00:30).   

Acoustic biotic diversity (PC1) was significantly higher in old growth and secondary forests and 

grasslands at dawn, when compared to palm and teak plantations (Figure 2.5 a).During the day and 

at dusk, only grassland showed any significant differences, with native forests and plantations 

showing little difference (Figure 2.5 b & c). At night acoustic biotic diversity was significantly lower in 

native forests when compared to plantation forestry (Figure 2.5 d). 

At dawn and during the day anthropogenic sound was higher (lower values of PC2) in disturbed land 

use types than native forests, however this difference was only significant between secondary 

forests and disturbed land use (Figure 2.5 e & f). At dusk and during the night anthropogenic sound 

remained constant across habitats (Figure 2.5 g & h). 
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Figure 2.5. Boxplots for PC1 and PC2 at Key Points in the Diel Cycle. Boxplots showing the 

differences in PC1 and PC2 between land use types at key times in the diel cycle (dawn: 06:30-07:00, 

mid-afternoon: 14:00-13:30, dusk: 16:30-17:00 and night: 00:00 00:30). R2, F and p values for each 

model are marked on the graphs. Pairwise differences between land use are indicated with letters A, 

B and C, where different letters represent a significant difference between land use. 
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2.4. Discussion 

By using a soundscape approach across 170 sites, we found a loss of the characteristic dawn and 

dusk peaks and associated chorus in disturbed land use types. This suggests that there are changes 

in the biological community and species behaviour in disturbed areas, which is likely due to three 

main factors: loss of species diversity, changes in species composition and/or changes in acoustic 

behaviour; all which have important conservation and management implications.   

2.4.1. Loss of Species Diversity 

If reduced species diversity is driving the lost dawn and dusk chorus, it is the species that call during 

these times that have likely been lost. Birds make up a large portion of sounds in both the dawn and 

dusk chorus (Stanley et al., 2016; Ducrettet et al., 2020; Gil and Llusia, 2020). Amphibians generally 

call at dusk and during the night (Bridges, Dorcas and Montgomery, 2000; Hilje and Aide, 2012; 

Guerra et al., 2020), however, diurnal species have been found to call at dawn (Caldart et al., 2016), 

and orthopterans and mammals call across the day and night  (Greenfield, 2015; Stanley et al., 

2016).  

Reduced acoustic biotic diversity has previously been found in disturbed habitats, resulting from 

reduced forest quality (Sueur et al., 2008; Tucker et al., 2014), in rice paddies and pasture (Dröge et 

al., 2021), in forests with less complex vegetation structure (Hao et al., 2021) and in logged forests 

(Burivalova et al., 2021). Although they had a sample size of just two sites, Villanueva-Rivera et al., 

(2011) sampled across the diel cycle and also found loss of dawn and dusk peaks in agricultural sites, 

when compared to temperate forests in the USA. Our research shows a similar pattern in plantation 

forestry and grasslands at a much larger scale in the tropics.  

Soundscape studies, by their nature, cannot directly link loss of acoustic biotic diversity to loss of 

species, however, previous studies have found a strong correlation between acoustic biotic diversity 
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and species richness, abundance and biomass (Sueur et al., 2008; Joo, Gage and Kasten, 2011; 

Fairbrass et al., 2017; Buxton, Agnihotri, et al., 2018; Bradfer-Lawrence et al., 2020; Smith et al., 

2020; Dröge et al., 2021; Holgate, Maggini and Fuller, 2021). As a result, it is plausible that species 

contributing to the dawn and dusk chorus have been lost where we see little or no evidence of a 

dawn or dusk chorus.  

A similar pattern has been found across other non-acoustic studies. Loss of native tree cover and its 

replacement with disturbed and structurally less complex habitats, has consistently been shown to 

reduce the diversity of birds (Bell, 1979; Edwards et al., 2010; Villanueva-Rivera et al., 2011; Lees et 

al., 2015; Lee and Goodale, 2018; Ocampo-Ariza et al., 2019; Dröge et al., 2021), mammals (Gibbs, 

MacKey and Currie, 2009; Norris et al., 2010; Harikrishnan et al., 2012; Yue et al., 2015; Oliveira et 

al., 2019; Iezzi, De Angelo and Di Bitetti, 2020), anurans (Gibbs, MacKey and Currie, 2009; Cole et al., 

2014; Gallmetzer and Schulze, 2015; Paoletti et al., 2018), and orthopterans (Hassall et al., 2006; 

Tangmitcharoen et al., 2006; Wong et al., 2016; Méndez-Rojas, Cultid-Medina and Escobar, 2021).  

2.4.2. Changes in Species Composition 

Despite loss of dawn and dusk peaks in disturbed land use, our study found similar or higher levels of 

acoustic diversity at other times of the day in these areas, especially in grasslands. Consequently, 

loss of dawn and dusk peaks in disturbed land use may not necessarily be due to these areas 

containing fewer species, but different species. Generalist species can adapt to a wider range of land 

use, especially in disturbed habitats, and as a result are able to replace specialists in these habitats 

(Clavel, Julliard and Devictor, 2011). This has been shown in both agricultural grasslands and 

plantations, where species composition was significantly different to forested sites, with grasslands 

and plantations containing few unique species and mostly disturbance tolerant generalists (Bell, 

1979; MacLean et al., 2003; Hassall et al., 2006; Tangmitcharoen et al., 2006; Magura, Tóthmérész 

and Molnár, 2008; Harikrishnan et al., 2012; Gallmetzer and Schulze, 2015; Grant and Samways, 

2016; Paoletti et al., 2018; Oliveira et al., 2019). Hatfield et al., (2020) compared species richness 
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and composition across an interior-edge-matrix gradient of forest, plantation and pasture sites in the 

Atlantic Forest of Brazil using point counts. They found similar species richness in plantation and 

pasture sites and significantly higher species richness in forested sites, however, community 

composition was significantly different between all three land uses. This was driven by a significantly 

higher richness of disturbance tolerant species in pasture and forest specialists in forests, with 

plantations showing similar levels of both types of species and showing more similarity to forest 

than did pasture. This paper highlights the differences that exist in species composition between 

forests, plantations and grasslands, which are not clearly visible in broader studies that do not 

consider species level variables. This change in composition is concerning since habitat specialists 

are at a greater risk of extinction than generalists (Davies, Margules and Lawrence, 2004). 

No published evidence has been found to suggest that generalists have different calling patterns to 

forest specialists, and do not produce a dawn and dusk chorus. However, our observation during 

data collection was that large flocks of social birds, such as parakeets that inhabited woody patches 

in grasslands, were seen to call intensely throughout the day and not necessarily at dawn and dusk. 

If acoustic indices are being driven by abundance or activity of biotic sound, as found in previous 

studies (Boelman et al., 2007; Bradfer-Lawrence et al., 2020; Holgate, Maggini and Fuller, 2021),  as 

well as or instead of species richness, this may be one explanation for our finding of similar or higher 

acoustic index values in disturbed sites throughout the day.   

2.4.3. Changes in Acoustic Behaviour 

It is possible that the same species are still present but have changed their calling behaviour and are 

no longer calling at dawn and dusk. Higher anthropogenic sound was identified during the day in 

disturbed habitats. Previously, this has been found to reduce call activity (Lenske and La, 2014), 

change the type of call produced (Brumm, 2004), and cause some species to call at different times of 

the day or night (Fuller, Warren and Gaston, 2007). This may also explain why higher acoustic 

diversity was detected at night in disturbed habitats. Our results also showed peak dawn chorus 
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activity was earlier in teak plantations, compared to native forests. Research suggests that both 

increased light (Berg, Brumfield and Apanius, 2006; Da Silva, Valcu and Kempenaers, 2016; Da Silva 

and Kempenaers, 2017) and anthropogenic sound (Arroyo-Solís et al., 2013; Dorado-Correa, 

Rodríguez-Rocha and Brumm, 2016) can cause earlier onset of the chorus as birds try to maximise 

their signal transmission. If anthropogenic sound is affecting the acoustic space in these disturbed 

habitats, impairing or changing acoustic behaviour, it is possible that this will reduce population 

fitness, since communication ability is directly linked to species survival (Kleyn, da Cruz Kaizer and 

Passos, 2021), and has been found to interfere with mating, egg laying, provision of young and 

fledging success (Halfwerk et al., 2011; Schroeder et al., 2012). 

In this study, teak plantations retained some of the characteristic dawn and dusk chorus found in 

native forest habitats. No published research was found showing a direct comparison between teak 

plantations and other disturbed land uses, however, it can be hypothesised from this result that teak 

plantations within this study site are more similar to forested sites than are grasslands or palm 

plantations. Secondary forest showed similar levels of acoustic diversity to old growth forests, 

however, the dawn and dusk peaks were also less prominent. Secondary forests are not thought to 

support the same level of biodiversity as old growth forests (Gibson et al., 2011), and in a meta-

analysis of 65 studies, species composition was found to differ by an average of 58% (Dent and 

Wright, 2009). It can, therefore, be hypothesised that secondary forests in this study may also be 

subject to changes in the biological community and/or species behaviour. Despite this we should not 

underestimate the value of secondary forests, which are considered highly important for sustaining 

biodiversity, especially when they complement existing old growth forests (Dent and Wright, 2009). 

2.4.4. Acoustic indices: Changes in Species Diversity or Sound Abundance? 

Despite loss of dawn and dusk peaks in disturbed land use, acoustic biotic diversity was similar at 

other points across the diel cycle in plantation forestry and much higher during the day in grassland. 

Although acoustic indices are found to be linked to measures of species richness and abundance, 
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their ability to function correctly can often be masked by anthropogenic sounds and continuous 

biotic sounds such as stridulating insects and can vary between ecosystems and geographically 

(Fairbrass et al., 2017; Bradfer‐Lawrence et al., 2019; Gibb et al., 2019; Ross et al., 2021). Field 

observations suggest that acoustic diversity indices, particularly in grassland sites, may be controlled 

by the continuous calling of flocks of social birds. This suggests that just a few species in an 

ecosystem could alter the behaviour of the acoustic indices and therefore caution should be taken 

when interpreting the outputs of indices.  

2.4.5. Conservation and Management Implications 

This study has shown that conversion of native old growth forests in the tropics into agricultural 

land, forestry plantations and even re-established secondary forests, disrupts the diel cycle, most 

notably causing a loss of the dawn and dusk chorus. These changes in the biological community and 

species behaviour can impact the resilience of ecosystem functionality, leading to a loss of key 

processes such as pollination and decomposition (Oliver et al., 2015), reinforcing the importance of 

native old growth forests for biodiversity conservation (Gibson et al., 2011). Despite some questions 

over the functionality of acoustic indices, they were able to reveal key differences in acoustic 

diversity across different ecosystems, however, our research highlights the importance of studies 

that cover the breadth of the diel cycle, since analysis at key points during the diel cycle did not 

reveal such dramatic changes between land use types and the loss of the dawn and dusk choruses.   

Reforestation and afforestation has been recommended as a way to reverse forest loss, capture 

atmospheric carbon and mitigate climate change (Bastin et al., 2019), yet if these schemes do not 

focus on planting native forests the benefits to biodiversity will be lost. Currently 45% of the land 

committed for afforestation or restoration under the Bonn Challenge are monoculture plantations of 

commercial trees, which cannot match the ability of native forests for carbon storage or supporting 

biodiversity (Lewis et al., 2019). Our research highlights the importance of planting native trees, 
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especially in the tropics, where forests regenerate quicker and biodiversity is at its highest (Lewis et 

al., 2019).   
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Chapter Three: Effects of Land Use Change and Human 

Disturbance on the Geoffroy’s Spider Monkey 

Abstract  

Background: As more land is altered by human activity and more species become at risk of 

extinction, it is essential that we understand how to conserve rare and threatened species across 

human-modified landscapes. Owing to their rarity and often sparse distributions, threatened species 

can be difficult to study and efficient methods to sample them across wide temporal and spatial 

scales have been lacking. Passive acoustic monitoring (PAM) is increasingly recognised as an efficient 

method for collecting data on rare species; however, the development of automated species 

detectors required to analyse such large amounts of data is not keeping pace.  

Methods: Here, we collected over 60,000 hours of acoustic data across 341 sites in a region over 

1000 km2 to show that PAM, together with a newly developed automated detector, can be 

successfully used to detect the endangered Geoffroy’s spider monkey (Ateles geoffroyi) and assess 

how this species responds to anthropogenic disturbance.  

Results: We found that the Geoffroy’s spider monkey was absent below a threshold of 80% forest 

cover and within 1 km of primary paved roads. In contrast to what was expected, we found equal 

occurrence in old growth and secondary forests.  

Implications: We have shown that this methodology is successful in the study of a vocal rare and 

threatened species, suggesting that similar species could be studied in the same way. We provide 

threshold values for percentage forest cover and paved roads, which highlights the sensitivity of this 

species to anthropogenic change will be valuable in setting targets and developing conservation 

strategies for the protection of this species.  
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3.1. Introduction  

The number of species threatened with extinction is increasing drastically. A recent report by 

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) found 

that over 1 million species are now under threat, which impacts the ecosystems and processes they 

support (IPBES, 2019). Monitoring and evaluating the response of threatened species and 

communities to anthropogenic change is essential for effective management and improved decision 

making (Stem et al., 2005; Bennett et al., 2018; Dixon et al., 2019; Gibb et al., 2019). Yet despite 

decades of research, we still lack rapid and efficient methods to assess how species respond to 

habitat changes across human-modified landscapes and the knowledge to implement conservation 

strategies to protect them (Estrada, 2006; Arroyo-Rodríguez and Fahrig, 2014; Wrege et al., 2017; 

Legge et al., 2018; Bezanson and McNamara, 2019; Junker et al., 2020).  

Threatened species can be difficult to study owning to their reduced population sizes, sparse 

distributions and often elusive nature (Bissonette, 1999; Campos-Cerqueira and Aide, 2016). Thus, 

collecting data on species ecology or conservation requirements often involves wide spatial and 

temporal scales (Bissonette, 1999; Campos-Cerqueira and Aide, 2016; Williams, O’Donnell and 

Armstrong, 2018), which can be constrained by practical and economic challenges (Arroyo-Rodríguez 

and Fahrig, 2014; Williams, O’Donnell and Armstrong, 2018). Traditional survey methods for 

primates, such as line transects, often hinder the ability to carry out large scale studies, since they 

are expensive, time consuming, practically challenging and require the researcher to be present at 

all times (Gibb et al., 2019; Campos et al., 2021). Ecological studies using traditional methods that 

include capturing individuals, involve the close proximity of researchers and can be invasive, cause 

stress and suffering to wildlife, impact animal welfare and even bias results (Iossa et al., 2007; 

Zemanova, 2020). When attempting to study species that react to human presence, we can alter the 

exact response that we are trying to measure simply by our presence, especially in areas where 

hunting occurs (Wrege et al., 2017; Penar, Magiera and Klocek, 2020).  
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The emerging field of passive acoustic monitoring (PAM) can overcome these constraints.  Acoustic 

sensors can be deployed in the field for long periods of time and monitor continuously, without the 

need for the researcher to be present. This allows for the potential to increase the temporal extent 

of the study, reduces disturbance on the individuals, and increases the chance of detecting rarer 

species (Blumstein et al., 2011; Mennill et al., 2012; Kalan et al., 2015; Sueur and Farina, 2015; 

Browning et al., 2017; Penar, Magiera and Klocek, 2020). PAM has been shown to be effective in the 

study of rare species of birds (Celis-Murillo, Deppe and Ward, 2012; Williams, O’Donnell and 

Armstrong, 2018), mammals (Kalan et al., 2015; Wrege et al., 2017) and anurans (Willacy, Mahony 

and Newell, 2015). The reduction of person-power required in the field, increased feasibility in 

challenging terrain and the increasing affordability of sensors also offers the ability to study across 

greater spatial scales, allowing researchers to understand the impacts of anthropogenic disturbance 

across much larger areas (Gibb et al., 2019; Sugai et al., 2019)  Crucially, using PAM would also allow 

for designing landscape-scale studies, which arguably provide a better approach to collecting 

biodiversity data than patch-scale studies, currently the norm in the field (Arroyo-Rodríguez and 

Fahrig, 2014). Camera trapping offers many of the same benefits as PAM, however in a recent 

comparative study on chimpanzees (Pan troglodytes) PAM was five times more effective at detecting 

individuals (Crunchant et al., 2020). 

While PAM dramatically reduces the burden to collect field data, the methods for extracting 

information from the recordings poses significant challenges. Large acoustic data sets are time 

consuming to analyse manually, requiring automated detection and classification systems to extract 

sounds (Kalan et al., 2015; Browning et al., 2017). The development of these tools requires specialist 

skills and large labelled training datasets, which are difficult to collate, especially for rare species 

(Browning et al., 2017), hence the creation of automated models for detecting species is recognised 

as a major bottleneck in the field, especially in the tropics, since most models have been created for 

temperate regions (Browning et al., 2017). Several automated analysis tools for primates have been 

developed across African and Asian species (Pozzi, Gamba and Giacoma, 2010; Mielke and 
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Zuberbühler, 2013; Heinicke et al., 2015; Kalan et al., 2015, 2016; Spillmann et al., 2015; Clink et al., 

2017; Dufourq et al., 2021), but models for Neotropical species are lacking, with only one model 

created based on calls from a small group of captive marmosets, designed for use in the medical 

field (Turesson et al., 2016).  

Of the 504 species of primate, 60% are threatened with extinction and 75% are declining as a result 

of human disturbance  (Estrada et al., 2017). The Geoffroy’s spider monkey (Ateles geoffroyi) is 

classified by the IUCN as Endangered and its population is predicted to decline by 50% over a 45 year 

period (Cortes-Ortíz et al., 2021).  

There have been several studies investigating how the Geoffroy’s spider monkey responds to 

anthropogenic change, revealing inconsistent results. Most studies have found this species to prefer 

continuous tracts of mature old growth forests, where there are larger sleeper trees and higher fruit 

biomass and human disturbance is restricted (van Roosmalen, 1980; Chapman, 1989; Sorensen and 

Fedigan, 2000; Ramos-Fernández and Ayala-Orozco, 2003; Urquiza-Haas, Peres and Dolman, 2009). 

Studies have also shown that this species will use secondary forest, but to a lesser degree (Ramos-

Fernández and Ayala-Orozco, 2003; Ramos-Fernandez et al., 2013; Arroyo-Rodríguez et al., 2017a; 

Whitworth et al., 2019), with only one study finding equal use of both old growth and secondary 

forests (Weghorst, 2007). In contrast to this, some studies have shown this species to occur in more 

disturbed forest fragments (Chaves, Stoner and Arroyo-Rodríguez, 2012; Galán-Acedo, Arroyo-

Rodríguez and Chapman, 2021) and have even found them to occur in agroforestry plantations and 

vegetation corridors used for travelling and feeding (Estrada et al., 2006; Estrada, Raboy and 

Oliveira, 2012; Arroyo-Rodríguez et al., 2017a). There is very little information available on the 

effects of human development, however avoidance of roads and population centres has been found 

(Van Hulle and Vaughan, 2008; Asensio et al., 2017).  

Owing to its endangered and declining status, general sensitivity to human disturbance, sparse 

distributions and large home ranges, combined with the requirement for rapid and efficient 



 

 

77 
 

methods to assess how primates respond to habitat changes across human-modified landscapes, the 

Geoffroy’s spider monkey is an excellent study species for testing the use of PAM as a tool to study 

rare and threatened species.  

The aim of this study is to determine if a new method, using PAM and a newly developed automated 

detection and classification system for the spider monkey call, is effective at retrieving information 

on the Geoffroy’s spider monkey in over 340 sites across a region spanning 1093 km2 in the Osa 

Peninsula, Costa Rica. To the best of my knowledge this is the first study of the Geoffroy’s spider 

monkey with such a broad scale and coverage. We use presence and absence, as well as number of 

calls, to assess how this endangered and rare primate responds to habitat loss and human influence 

across a gradient of disturbance. Specifically, we answer the following questions: 1. Is PAM effective 

in studying the Geoffroy’s spider monkey across large spatial scales. 2. How does land use change, 

forest cover and density of roads and human settlements affect the presence and call rate of the 

spider monkey. 

3.2. Methods 

3.2.1. Study Site 

Our study area covers approximately 1,000 km2 in the South-Pacific coast of Costa Rica. The terrain is 

generally low altitude, with a maximum elevation of 792 meters. Mean annual rainfall ranges from 

3,000-6,500 mm and mean yearly temperature is 27°C, with high levels of humidity throughout the 

year. There are two distinct seasons, wet and dry season, with the highest rainfall occurring 

September through December (Gilbert et al., 2016). The peninsula contains the last remnants of 

tropical broadleaf evergreen lowland rainforest on the Central American Pacific (Gilbert et al., 2016), 

embedded within a mosaic of pasture, plantations and urban centres (Figure 3.1). Due to the 

geology and geography of the area, the peninsula contains high levels of biodiversity and endemism 

(Sánchez-Azofeifa et al., 2002). Managed under the Area de Conservación Osa (ACOSA), the Osa 
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Peninsula contains three core protected areas, Piedras Blancas and Corcovado National Parks and a 

Ramsar wetland site, the Terreba-Sierpe Wetlands. There are also nine smaller private and public 

wildlife refuges and the Golfo Dulce Forest Reserve (Sánchez-Azofeifa et al., 2002; Gutierrez et al., 

2019).    

  

Figure 3.1. Land Use Map of the Osa Peninsula. Map showing the nine land use categories in the 

region, created at a scale of 5 x 5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 

Operational Land Imager (OLI) (Shrestha et al., 2018). White circles represent the sample sites where 

each audio recorder was placed. 
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3.2.2. Study Species 

The Geoffroy’s spider monkey, is currently classified by the IUCN as Endangered and globally its 

population is expected to decline by 50% within a 45 year period (Cortes-Ortíz et al., 2021). They are 

found from south-eastern Mexico to north-western Colombia (Di Fiore, Link and Campbell, 2011). 

The Geoffroy’s spider monkey is a large-bodied primate with a home range of up to 4 km2, a 

frugivorous diet and requirement for large mature trees as sleeping sites (van Roosmalen, 1980; 

Chapman, 1989; Sorensen and Fedigan, 2000; Zaldívar et al., 2004; Weghorst, 2007; Wallace, 2008a, 

2008b; Arroyo-Rodríguez et al., 2017a). Due to this, they require large areas of undisturbed mature 

forest and are therefore particularly sensitive to forest loss and fragmentation (Boyle and Smith, 

2010; Ramos-Fernández and Wallace, 2010), making them a forest specialist (Arroyo-Rodríguez et 

al., 2017a). 

3.2.3. Sampling Design 

Land use at each site was calculated using land use maps provided by NASA, created at a scale of 5 x 

5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) (Shrestha 

et al., 2018) (Figure 3.1). The map was classified into nine land use categories, with recordings for 

this study taken in old growth and secondary forests, palm and teak plantations, mangroves and 

grassland sites (Figure 3.1). Wetlands, water and urban areas were excluded from the analysis due to 

inaccessibility. Wetlands also consist mainly of a single species of fern and contain no fruiting trees, 

which due to body mass and dietary requirements, it is unlikely that the spider monkey would use.  

To ensure a representative number of sampling sites were chosen across each land use category, we 

used a stratified sampling approach. We calculated the percentage cover of each land use category 

across the region and placed a representative number of recorders in each category. To ensure even 

coverage of the study region we selected sampling locations in a uniform distribution across the Osa 

Peninsula. Due to access issues it was not possible to randomly choose sampling locations in all 
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areas, therefore, to ensure independence among sampling locations, the first recorder in each area 

was placed by walking 500 m in a random direction and the remaining placed at a minimum of 500 

m apart. Where possible, trails were not used to avoid bias, however, where this was not possible, 

devices were placed a minimum distance of 200 m perpendicular to a trail; as indicated by GPS. Non-

audio data were collected for each point including GPS location, elevation and land use, to verify 

data from NASA land use maps. For more information on sampling design please see Chapter One.  

Given that biotic sounds generally travel a maximum distance of 200 m (Figueira et al., 2015), we 

used a minimum distance of 500 m between recorders, ensuring independence in the samples and 

avoiding pseudo-replication. Recording devices were also placed at a minimum distance of 200 m 

from habitat boundaries, to be confident that calls were from within the classified habitat.  

Data were collected at 341 sites totalling 60,000 hours of recordings. Recordings were obtained 

using Audio Moth devices (Open Acoustics Devices, UK). Recorders were set up for seven 

consecutive days to increase the chances of detecting the spider monkey if they were present. The 

devices were set to record on a schedule of 05.00-09 30, 14:00-18:30 and 21:00- 03:00, to ensure 

data were collected at key periods of spider monkey activity (Wallace, 2001) including the periods of 

night activity (Whitworth et al., 2019). We recorded constantly over the recording schedule at a 

sample rate of 48000 kHz, 2.5 times higher than the maximum call of the Geoffroy’s spider monkey. 

Sampling was conducted within dry season (December-August) due to restricted access to many 

areas of the study site during wet season.  

3.2.4. Development of an Automated System for Signal Classification 

Animals often use several different calls for communication, however it was beyond the scope of this 

study to develop a classification algorithm for each of the 13 calls of the spider monkey (Eisenberg, 

1976). In a pilot study, we developed and tested the suitability of passive acoustic monitoring as a 

method for studying the Geoffroy’s spider monkey, where we found that over 80% of recorded calls 
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were the “whinny” and every calling period contained several of this call type (see Chapter One for 

more details). The whinny represents general communication related to feeding and movement 

(Ramos-Fernández, 2008). This call was therefore chosen for creating a classification algorithm to 

study this species. 

3.2.5.1. Labelled Call Database  

The creation of automated detection and classification algorithms in acoustics requires a large 

database, ideally 500+ labelled samples of the target sound, which is difficult to collate for rare 

species. Using pilot data collected at 12 different sites across the study area and one region in the 

north of Costa Rica, we manually listened to 600 hours of acoustic data and isolated 580 examples of 

the target sound. Both good and bad quality calls were used and those in both quiet and noisy 

environments, to best represent the natural environment. Audio files containing calls were then 

annotated in programme praat, which produces .txt files of exact call location, duration and 

frequency, suitable for use in machine learning software (Boersma and Weenink, 2018).  

3.2.5.2. Convolutional Neural Network 

The algorithm was developed together with the Department of Computing, Imperial College London, 

published as part of the Interspeech Challenge 2021 (Rizos et al., 2021), however the methodology is 

briefly explained here. A convolutional neural network (CNN) was used to train the classifier to 

detect the whinny. A CNN is a deep learning algorithm, where a multi-layered artificial neural 

network learns from large amounts of sample data without the need for prior feature extraction 

(Lecun, Bengio and Hinton, 2015). CNN’s can only learn from images, not sound, so data is first 

transformed into a pictorial representation of the sound through a process called short-time Fourier 

transformation (Mac Aodha et al., 2018). Data are fed though each layer in the network, where 

more complex features are extracted as it progresses though the layers. The final process of 
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classification provides a set of confidence scores about how likely the sound is to belong to a 

particular class (Lecun, Bengio and Hinton, 2015). 

3.2.5.3. Model Validation 

Model results showed that recall was 75%, which means that the model returned 75% of the true 

positives when a confidence threshold of 50% was set. As we were using a semi-automated 

approach, we manually checked all returned positives, and then used these results to build up a 

database of calls. Precision was a little lower at 53%, indicating that the model was making some 

incorrect classifications, i.e. false positives. The F1 score was 62%, which takes into account precision 

and recall, providing an overall estimate of model accuracy. As we were using a semi-automated 

approach and validating all returned positives, the number of true positives returned, the recall, was 

more important for the purposes of this study. 

To further validate these results, we tested the model on two sets of acoustic data where we knew 

how many positive calls were contained in the files. One folder contained very little background 

noise and the second contained many other biotic and abiotic sounds, making it more difficult for 

the model to classify. The first set of files, with little background noise, contained 76 calls. The model 

returned 67 positives, all of which were correct with zero false positives, only 9 calls were missed. 

The second folder, with lots of background noise, contained 35 calls. The model returned 220 

positives, 29 which were correct and 191 false positives, only 6 calls were missed. Under both 

scenarios very few calls were missed, however it was clear that a semi-automated approach was 

required, where all returned positives are validated, to avoid overestimating occupancy or call rate. 

Lower precision and a semi-automated approach is common, especially in tropical ecosystems 

where there is a lot of background noise and other species calling (Heinicke et al., 2015). 

Using the best model above, we then ran data from all 341 sites through the model algorithm using 

a confidence threshold of 50%. The model outputs all positives into .csv files and an associated 
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folder with clipped audio files. We listened to all returned audio files and marked the number of true 

positive detections per day per site. All analysis was carried out in Python v.3.6 (Van Rossum and 

Drake, 2009). 

3.2.5. Statistical Analysis 

3.2.6.1. Explanatory Variables 

We installed acoustic recorders in six of the nine land use categories: Old growth and secondary 

forest, mangrove forest, grassland, palm and teak plantations. We did not place recorders in urban 

areas due to restrictions on recording in public spaces or in wetlands due to inaccessibility. To 

correctly assess species responses to habitat changes, it is crucial that predictors are measured at 

the scale at which the species responses are strongest, known as scale of effect (Jackson and Fahrig, 

2015; Galán-Acedo et al., 2019). To assess the scale of effect of forest cover, primary (paved) and 

secondary (unpaved) roads and buildings, we calculated percentage forest cover (%), the density of 

roads (km) and the area of buildings (km2) in a buffer around each site at intervals between 100-

5,000 m radius for forest cover and 100-1,000 m for roads and buildings (see Supplementary 

Information 2.1. Table 2.6). We then tested at which spatial scale the variables had the strongest 

effect on the spider monkey. We created GIS layers for roads and buildings across the study site 

using satellite images.  

The data showed complete separation across land use and primary road variables, which happens 

when a combination of the explanatory variables produces a perfect prediction of the response 

variable (Albert and Anderson, 1984). This led to high standard errors, confidence intervals and p-

values. To account for this, a model containing these variables was fitted separately in package 

brglm2 (Kosmidis, 2020) that can model complete separation. We fitted all other models in the nlme 

(Pinheiro, Bates and DebRoy, 2020) and lme4 package (Bates et al., 2015).  
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3.2.6.2. Occupancy 

A detection period constituted one 24-hour period of recording, providing a 7-day detection history. 

A detection was registered if the audio device recorded the call of the Geoffroy’s spider monkey 

each day.  Detections were coded as 1 and non-detections as 0. We used a single-species, single-

season occupancy model assuming a closed system for the 7-day sampling period, where there are 

no changes to occupancy between survey days. It should be noted that it is difficult to guarantee a 

closed system and therefore occupancy model results should be viewed with caution, since 

violations of closure can lead to overestimates of the probability of occurrence (Rota et al., 2009). 

We first created a model where we assumed that detection probability and site occupancy were 

constant across time and space, to provide a comparison against naïve estimates. We also 

constructed a set of candidate models where the occupancy was modelled as a function of forest 

cover, area cover of buildings and density of secondary roads, and detection probability as a function 

of forest cover. Occupancy analyses were conducted in package unmarked (Fiske and Chandler, 

2011). We used Akaike’s information criterion, corrected for small sample size (AICc), Delta AIC 

(QAICc) and Akaike’s weights (w) to select the best model that compromised between precision and 

complexity, from a biologically relevant candidate set of models (Burnham and Anderson, 2002). We 

considered all models where QAICc<2.  

3.2.6.3. Generalised Linear Models 

To determine the naïve probability of occurrence of the spider monkey across our study site, we 

used logistic regression with a logit link function. Site occurrence was calculated by combining the 

detection histories from occupancy analysis into one parameter, coded as 1 or 0 for presence or 

absence per site. To measure site call abundance, we calculated the total number of vocalisations 

recorded across all sampling days, to provide one measure per site. Although there was some 

correlation between variables, it was generally low (R2= 0.15-0.27) with the exception of buildings 

and primary road variables (R2= 0.58) (Supplementary Information 2.1- Figure 2.1), however these 



 

 

85 
 

were run separately due to complete separation in the primary road data. Primary road and land use 

were significantly correlated (p <0.01) and hence, within package brglm2, these variables were run 

separately. For the model where call rate was the response variable, we first tested for 

overdispersion and zero-inflation in the data using package DHARMa (Hartig, 2020) and found 

significant overdispersion but did not find any evidence for zero-inflation (Supplementary 

Information 2.1- Figure 2.2). To account for overdispersion, we used a GLM with negative binomial 

distribution, diagnostic plots indicated no significant overdispersion when using this distribution 

(Supplementary Information 2.1- Figure 2.3 a). R package brglm2 does not yet have an option for 

quasipoisson or negative binomial analysis and therefore the models for call rate containing land use 

and primary road variables were run using a Poisson distribution. Although overdispersion was 

found in these models (Supplementary Information 2.1- Figures 2.3 b & c), since the data exhibits 

complete separation, we do not need to be too concerned. Finally, we used the Likelihood-ratio test 

and model AIC to assess model fit between Poisson and negative binomial models. The negative 

binomial model significantly outperformed the Poisson model (Supplementary Information 2.1- 

Table 2.1). Bonferroni’s correction for multiple pairwise comparisons was applied to adjust p-values 

and reduce the risk of type I errors. 

In order to reliably compare the contribution of variables across models and understand how much 

of the variance explained by each explanatory variable is individual, or shared and cannot be 

ascribed separately to any one variable, we ran variance partitioning analysis in package hier.part 

(Mac Nally and Walsh, 2004). We used residual plots to assess violations in model assumptions for 

binomial, Poisson and negative binomial models. All plots showed no deviation from the expected 

distribution or heteroscedasticity in the residuals, with the exception of the Poisson models as 

expected (Supplementary Information 2.1- Figures 2.4 & 2.5). 
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3.2.6.4. Spatial Autocorrelation 

Due to the nested structure in the data, we tested for spatial autocorrelation across all generalised 

linear models. We created a distanced based weight matrix using model residuals and sampling site 

coordinates. Using gstat package (Pebesma, 2004) we then produced a variogram plot to visually 

determine the presence of autocorrelation. Finally, we calculated the Moran’s I statistic in ape 

package (Paradis and Schliep, 2019). If no autocorrelation is present, then the observed 

autocorrelation should be close to 0 and to the expected value. 

Spatial autocorrelation was found across all models, violating the spatial independence assumption 

of regression analysis. To account for this, we constructed a spatial auto-covariate that was included 

as an additional predictor variable. For each site we calculated a distance-weighted average of 

neighbouring response values, using a minimum neighbour’s distance of 210 m, with sites further 

away receiving lower weightings (Dormann et al., 2007). To test whether the auto-covariate function 

reduced autocorrelation in the residuals we used Moran’s I statistic. No autocorrelation was present 

across the models when the auto-covariate function was added (Supplementary Information 2.1- 

Tables 2.2 & 2.3). We also used the Likelihood-ratio test and AIC to determine if the addition of an 

auto-covariate function improved model fit. In cases where the auto-covariate function reduced 

autocorrelation but model fit remained equal, it was still included in the model (Supplementary 

Information 2.1- Tables 2.4 & 2.5). 

3.3. Results 

The automated detection and classification algorithm for the spider monkey whinny returned a total 

of 2977 true positives across 273 days in 64 out of 341 sites and 52,248 false positives. To listen to 

this data manually it would take 20 years, listening on a schedule of 8 hours per day, 365 days of the 

year. It took eight weeks to pass all 341 sites through the algorithm and a further four weeks to 

identify all true positives using a semi-automated approach. Had we been able to use the HPC 
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service, which was not possible due to coronavirus, the eight weeks would have been considerably 

reduced.  

3.3.1. Scale of Effect 

For forest cover, the strongest response was at 200 m radius for presence (R2 = 0.77)  and call rate 

(R2= 0.97), although the response remained strong until we reached a radius of 2000-3000 m. Forest 

cover appears to have a non-linear relationship with response the variables, therefore a polynomial 

term was added to the models. For secondary roads, the strongest response was at 200 m radius for 

presence (R2= 0.09) and for call abundance (R2= 0.3), however all spatial scales showed a similar 

response (mean R2= 0.07, SD= 0.01). For primary roads, the strongest response was at 1000 m radius 

for presence (R2= 0.6) and for call abundance (R2= 0.95). For buildings, the strongest response was 

also at 1000 m radius for presence (R2= 0.22) and for call abundance (R2= 0.85) (Supplementary 

Information 2.1- Tables 2.6). Thus, from here on, all results are presented where each explanatory 

variable was measured at these scales.  

3.3.2. Occupancy Models 

Presence of the Geoffroy’s spider monkey in 64/341 sites yielded a naïve occupancy estimate of 

0.187. Our single-site, single-species occupancy model, in which we assumed constant occupancy 

and detection probabilities, estimated spider monkey site occupancy at 0.192 (se= 0.02) and 

detection frequency at 0.675 (se= 0.02). A 0.5% difference between our naïve and model estimates, 

and relatively high detection frequency, suggests that the species was detected at almost all sites 

where they were present. Due to similar naïve and model estimates of occupancy, the failure of the 

occupancy model to converge with our variables that exhibit complete separation, and the fact that 

we would have not been able to account for spatial auto-correlation in occupancy models, we 

present here only the results of logistic regression analysis. Results from occupancy analysis can be 
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found in the supplementary material, yielding similar results to logistic regression analysis 

(Supplementary Information 2.2)  

 

 

3.3.3. Presence and Call rate 

Land use has a significant effect on the presence of the spider monkey (Figure 3.2.a), with spider 

monkeys only found in old growth and secondary forests. The probability of occurrence was 

significantly lower in grassland, palm and mangrove when compared to old growth and secondary 

forests (Figure 3.2.a. Supplementary Information 2.3. Table 2.9).  We registered no records of the 

spider monkey in teak plantations, however, this difference was not significant due to high standard 

errors and confidence intervals from model fitting. Probability of occurrence was not significantly 

different between old growth and secondary forests (Figure 3.2.a. Supplementary Information 2.3. 

Table 2.9). Spider monkey calls were only found in old growth and secondary forests. Call rate varied 
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significantly between habitats, being higher in old growth and secondary forest when compared to 

other land use types (Figure 3.2.b. Supplementary Information 2.3. Table 2.10).   

Figure 3.2. Land Use Model Results. a. Probability of species occurrence in each land use type on the 

y-axis (X), error bars represent 95% confidence intervals and percentage of occupied sites in each 

land use type on the z-axis (⚫) b. Results from model predictions showing estimated call rate in each 

land use type on the y-axis (X), error bars represent 95% confidence intervals and observed number 

of calls per site in each land use type on the z-axis (⚫). Pairwise differences between land use are 

indicated with letters A and B, where different letters represent a significant difference between 

land use. R2, X2, F and p values are annotated on each plot. 

           A                       A                      B                         B                       B                     B 

R2=0.99, F=7.226,334, p<0.001 

A                       A                       B                     A  B                     B                       B                      

R2=0.38, X2=15.26,334, p<0.01 

b 

a 

………………………………………………………………………………………………………………………………………………………………………………………….. 
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Spider monkeys were strongly associated with higher levels of forest cover, only being found above 

80% cover. Call rate was significantly higher at higher levels of forest cover, with an average of 13.5 

calls per site across the 7-day recording period at 100% forest cover, dropping to almost zero below 

80% forest cover (Figure 3.3 a & e. Supplementary Information 2.3. Table 2.11 & 2.12). Primary road 

had a significant effect on spider monkey occurrence and call rate (Figure 3.3 b & f. Supplementary 

Information 2.3. Table 2.11 & 2.12). Crucially the spider monkey was not found at any site with 

primary road within a 1 km radius (Figure 3.3 b & f). Occurrence and call rate were not significantly 

affected by total area of buildings (Figure 3.3 c & g. Supplementary Information 2.3. Table 2.11 & 

2.12), however the spider monkey was not found where cover of houses exceeded 18 km2 within a 1 

km radius of the site (Figure 3.3 c & g. Supplementary Information 2.3. Table 2.11 & 2.12). The effect 

of secondary road on spider monkey occurrence and call rate showed a non-significant decrease 

(Figure 3.3 d & h. Supplementary Information 2.3. Table 2.11 & 2.12). Despite this, the spider 

monkey was only found where density of secondary roads were below 0.6 km within 200 m radius of 

the site (Figure 3.3 d & h).  
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Figure 3.3. Continuous Variables Model Results. a-d.  Probability of occurrence on the y-axis and 

observed presence/absence on the z-axis (⚫) in relation to a. Forest Cover (%) measured within 200 

m.  b. Density of primary roads measured within a 1 km radius of the site. c. Cover of buildings 

measured within a 1 km radius of the site. d. Density of secondary roads measured within a 200 m 

radius of the site and  e-h. Results from model predictions showing model estimated call rate per 

site on the y-axis and observed average number of calls per site on the z-axis (⚫) in relation to a. 

Forest Cover (%) measured within 200 m. b. Density of primary roads within a 1 km radius of the site 

c. Cover of buildings within a 1 km radius of the site and d. Density of secondary roads within a 200 

m radius of the site. Shaded area represents 95% confidence intervals. R2, X2 and p values are 

annotated on each plot. 

3.3.4. Variance Partitioning 

Variance partitioning for models containing both occupancy and call rate as the response variable 

showed that there was a portion of the variation within most variables that were shared and could 

not be attributed to one single variable. The variance contained within secondary road density and 

for area cover of buildings were mostly attributed to other variables for both occurrence and call 

rate. As expected from the model results above, forest cover, land use and primary road density are 

the main drivers of changes in occurrence and call rate, even when accounting for shared variance 

(Table 3.1). Models containing call rate as the response variable showed a similar pattern and can be 

found in the supplementary material (Supplementary Information 2.3. Table 2.13). 

 

 



 

 

93 
 

Table 3.1. Variance Partitioning Results: Occurrence. Variance partitioning analysis for occurrence 

models showing individual and shared variance and % individual variance for each explanatory 

variable. Larger values indicate more variance attributed to that variable. 

Variable Individual Variance Shared variance Individual variance (%) 

Land Use 0.19 0.18 28.4 

Forest Cover 0.22 0.19 34.1 

Primary Road Density 0.2 0.04 31.4 

Secondary Road Density 0.03 0.06 4 

Area of Buildings 0.01 0.01 2 

 

3.4. Discussion 

In this study we have shown that passive acoustic monitoring (PAM), combined with an automated 

detection and classification system for extracting calls, can be successfully used to assess how a rare 

and threatened species, the Geoffroy’s spider monkey (Ateles geoffroyi), responds to changes across 

the landscape at a wide spatial scale. We were able to analyse 60,000 hours of data across 341 sites 

over a large region in the tropics. Our results show that this species does not occur below a 

threshold of 80% forest cover and is absent from areas within 1 km of primary paved roads. In 

contrast to what was expected, we found equal occurrence in old growth and secondary forests and 

a limited tolerance of human development. Despite large amounts of seemingly suitable habitat in 

the region, the spider monkey remains absent from many forested areas, suggesting a lack of 

connectivity in the region.   
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3.4.1. Application of Passive Acoustic Monitoring for the Geoffroy’s Spider Monkey 

The automated detector used in this study was able to analyse over 60,000 hours of data in just 8 

weeks, which would not have been possible otherwise. We returned a total of 2977 calls across 64 

out of 341 sites. Despite a low naïve site occupancy estimate of only 18.7%, using occupancy 

modelling to account for imperfect detection provided an estimate of 19.2%, suggesting that our 

estimate of occupied sites using calls extracted by the automated detector are very accurate. This is 

likely because there were no instances when we only detected a single call, generally, in sites where 

we detected the spider monkey, we detected dozens of calls over a few days. Detection probability 

from occupancy modelling was 68% and recall from the automated detector was 75%, which means 

we potentially may have missed approximately 25% of calls and therefore may be underestimating 

call rate, however we set call confidence at 50% to increase the number of calls returned and avoid 

missing true positives. Because model precision was only 53%, we used a semi-automated approach, 

where we manually confirmed all positives returned by the model, reducing the chance of false 

positives. Site occupancy would have been artificially inflated if we had not taken this approach, with 

all sites showing false positives, severely biasing the results and affecting conservation and 

management recommendations. 

In this study we used call rate as an index of relative abundance. This relationship has been shown to 

hold true in many other species such as elephants (Thompson et al., 2010), marine mammals (Van 

Parijs, Smith and Corkeron, 2002), amphibians (Graves and Nelson, 2004; Crump et al., 2017) and 

birds (Buxton et al., 2013; Pérez-Granados et al., 2019). Although no study has directly quantified 

this relationship in spider monkeys, Chapman and Lefebvre (1990) observed there to be more calls 

when there were more individuals present. In spider monkeys the whinny is known to be a general 

communication call between individuals about location, movement and food sources between or 

within groups or sub groups (Chapman and Lefebvre, 1990; Ramos-Fernández, 2008). Unlike the 

repetitive nature of alarm calls, whinnies are single calls that are emitted from one individual to 
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another, thought to contain information about caller identify (Chapman and Lefebvre, 1990; 

Chapman and Weary, 1990; Teixidor and Byrne, 1999). This suggests that more calls should be 

indicative of more individuals. However, since spider monkeys operate in a fission-fusion society, 

more individuals in a group doesn’t necessarily translate to a larger total group size and could 

indicate that that the sub-groups formed are larger, which usually occurs when food abundance is 

greater in the area (van Roosmalen, 1980; Chapman, 1990). It is also possible that since spider 

monkeys are known to reduce calling in the presence of observers (Teixidor and Byrne, 1999), that 

the same number of individuals are present, but that they are living in a more disturbed 

environment, where they do not feel safe to call as frequently. Validating this link would be 

beneficial for future acoustic studies with the spider monkey. This can be done by using acoustic 

recorders to determine the number of calls emitted from a group, whilst simultaneously counting 

the number of individuals in a group. However, since observer presence is known to reduce calling in 

the spider monkey (Teixidor and Byrne, 1999), data on group numbers would need to be collected 

thorough remote sensing, perhaps using camera traps.   

3.4.2. Geoffroy’s Spider Monkey: Response to Land Use Change 

3.4.2.1. Highly Suitable Habitat 

Geoffroy’s spider monkey occurrence and call rate were at their highest in areas with over 80% 

native forest cover. Identifying thresholds, or “tipping points” below which biodiversity may decline, 

is essential in the design of conservation strategies to prevent local extinction of species (Ficetola 

and Denoël, 2009; de Oliveira Roque et al., 2018). Previous research on this species in Mexico shows 

that they were present in areas where forest cover was above 50%, being locally extinct below this 

threshold (Galán-Acedo, Arroyo-Rodríguez and Chapman, 2021). Previous work to identify 

thresholds of forest cover for communities in the Amazon and Atlantic rainforests in Brazil 

highlighted a 30-40% forest cover threshold to preserve the integrity of vertebrate communities 

(Banks-Leite et al., 2014; Ochoa-Quintero et al., 2015), and a recent review suggested that a global 
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threshold of 40% forest cover could be used (Arroyo-Rodríguez et al., 2020). The reason that the 

requirements are so much higher for the Geoffroy’s spider monkey is likely due to their specialised 

diet of mature fruits and requirement for mature sleeper trees (van Roosmalen, 1980; Sorensen and 

Fedigan, 2000; Ramos-Fernández and Ayala-Orozco, 2003; Urquiza-Haas, Peres and Dolman, 2009).. 

In a study of African bird species, declines in overall richness were seen below 42% forest cover, 

however for species with more specialised diets, diversity started to decline once forest cover was 

below 74%, suggesting more specialist species require higher thresholds of forest cover (Kupsch et 

al., 2019). Although reported community based thresholds are lower, it is recognised that higher 

thresholds may be needed in the tropics (Arroyo-Rodríguez et al., 2020), and blanket thresholds such 

as this do not take into account local differences in species thresholds or for more sensitive species 

(Banks-Leite et al., 2021). 

In this study, occurrence probability was similar across old growth and secondary forests, as found 

previously in the same region (Weghorst, 2007). However, studies conducted in other regions have 

found that spider monkeys generally prefer continuous tracts of old growth forests (van Roosmalen, 

1980; Sorensen and Fedigan, 2000; Ramos-Fernández and Ayala-Orozco, 2003; Parry, Barlow and 

Peres, 2007; Urquiza-Haas, Peres and Dolman, 2009), and occur in secondary forests at significantly 

lower levels (Ramos-Fernández and Ayala-Orozco, 2003; Ramos-Fernandez et al., 2013).The reason 

for the disparity in these results is likely due to the definition and characteristics of secondary 

forests, which may vary across studies since the term secondary forest can be used to describe 

forests of varying age. Owing to the protected status of forests in Costa Rica, secondary forests are 

generally 30 years+ (Whitworth et al., 2019), and the land use maps used in this study defined 

secondary forests as 40 years+ (Shrestha et al., 2018), therefore secondary forests, as defined here, 

may be considerably more mature than forests in other studies. It is also possible that high levels of 

hunting in more accessible secondary and fragmented forests in other study regions, which reduce 

population densities of the Geoffroy’s spider monkey (Peres, 2001; Aquino et al., 2013), do not exist 

to the same levels here since the spider monkey is not the main target species in our study region. 
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3.4.2.2. Unsuitable Habitat 

Previous studies have found use of shaded coffee (Coffea spp.) and cacao (Theobroma cacao) 

plantations by the Geoffroy’s spider monkey, however this was only where plantations had a 

structure and spacing suitable for locomotion and when shaded with native forest, providing a 

diversity of mid and upper canopy structures and species for feeding, shelter, protection and resting 

(Estrada et al., 2006). They have been also found to use live fences of mature trees (Estrada et al., 

2006; Arroyo-Rodríguez et al., 2017a), however these studies suggest that they are only used as 

stepping stones to other, more favourable habitats. Studies of the Geoffroy’s spider monkey rarely 

sample non-native forests, likely due to time and economic constraints of previous sampling 

methods, therefore there is limited evidence for their use. In our study we did not find use of non-

native forest habitats, of grasslands or forestry plantations, suggesting that these habitats are not 

suitable for permanent or temporary use. This is likely due to the palm and teak plantations in the 

region having a much lower floral diversity than coffee and cacao plantations, highlighting the 

importance of planting native species in forest plantations to improve human-disturbed 

environments for wildlife. Studies of this species in mangrove ecosystems are also rare, however use 

of mangroves have previously been found (Eisenberg and Kuehn, 1966; Navarro-Fernández, Carmen 

and Escobedo-Cabrera, 2003). In our study we did not find them in this habitat, it is therefore 

possible that mangroves are not suitable. 

A strong effect of paved roads has been previously found for species of mammal, owing to increased 

gap width and heavier traffic volume (Asensio, Schaffner and Aureli, 2012; Cibot et al., 2015; Chen 

and Koprowski, 2016; Mulero-Pázmány, D’Amico and González-Suárez, 2016; Asensio et al., 2021), 

alteration of roadside vegetation structure (Zhou et al., 2020), secondary road development and 

increased human presence (Laurance, Goosem and Laurance, 2009). The Geoffroy’s spider monkey 

has previously been found to cross both paved and unpaved roads to a similar degree in the north of 

Costa Rica, however only where canopy opening was small enough to facilitate locomotion (Asensio 
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et al., 2017). In our study we find that they responded very differently to paved roads, not being 

found at any site with primary (paved) road within a 1 km radius. Our results from variance 

partitioning show that very little of the variance attributed to this variable is shared, further 

highlighting the importance of primary roads on this species. This is the first time such an effect has 

been shown and provides further evidence as to the sensitivity of this species to human disturbance. 

The use of PAM in this study allowed us to cover a large enough area with enough sampling 

locations to reveal such an effect. 

3.4.2.3. Limited Suitability 

Density of secondary roads and human settlements were not found to significantly affect probability 

of occurrence or call rate. Despite these results the Geoffroy’s spider monkey was only found in 

areas with limited levels of unpaved roads and buildings, suggesting that that cannot tolerate areas 

with high human development. Previous research in this area related to Ateles is lacking, with only 

one study on the effects of roads, where avoidance of unpaved roads was also found (Asensio et al., 

2017) and two studies related to human population size or buildings, where no separate effects 

were found (Van Hulle and Vaughan, 2008; Urquiza-Haas, Peres and Dolman, 2009). 

3.4.3. Study Limitations, Wider Context and Conclusions 

Whilst this study was successful in using PAM to study at a wide spatial scale and with high coverage, 

due to logistical constraints we were not able to cover the region uniformly. Sampling over a large 

spatial scale also meant that temporal analysis was restricted, missing seasonal variation in movement 

patterns that may exist due to the timing of fruiting trees. It is therefore possible that the spider 

monkey exists in other areas across the study region, however, the high number of sampling locations 

minimises any bias. The use of PAM as a methodology improves our ability to study across wide 

temporal scales, however as with other methods weather can limit accessibility and data collection. 

Heavy rain prevented our ability to hear most calling species in the recordings and likewise may limit 
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the ability of the detector to classify calls. This limitation does however exist for other methodologies, 

since it is very difficult to visually detect or hear spider monkeys in the field during periods of heavy 

rain. Due to accessibility of sites we were also not able to complete fieldwork during a three-month 

period of the rainy season, however again, this is a limitation for not just PAM but all methodologies 

where access to field sites with challenging conditions are required.  

Using PAM combined with an automated detector for the spider monkey call has allowed us to 

effectively determine the dispersal limitations and threats for a rare and endangered species over a 

large scale, whilst limiting the impact of our presence on the results. Our results corroborate previous 

research showing that the Geoffroy’s spider monkey is highly sensitive to anthropogenic changes, 

requiring over 80% of forest cover and avoiding any paved roads within 1 km. We also highlight the 

dangers of paving roads through important habitat.  

The automated detector developed for this study was costly in terms of time and expertise to develop, 

however, it can now be used in future studies of this species in the area, and potentially across its 

range. Developing automated detectors for noisy tropical regions is challenging and whilst we have 

missed some calls and potentially underestimated call rate, the results suggest that we have not 

underestimated occupancy, highlighting the value in this methodology. Future work should first focus 

on improving this detector by combining the original call database that we have for the region, of 580 

calls, with the additional 3000 detected in this study. This detector can then be tested on the calls of 

Ateles geoffroyi across its range from Mexico to Colombia, to see if the calls are similar enough to be 

detected and background noise isn’t substantially different to interfere in the classification process. 

As with human speech it is also possible in the future that this work could be expanded to train the 

algorithm to recognise individuals, paving the way for density-based studies. This work could be 

further expanded to the seven other species of spider monkey, all of which their main call is the 

whinny (Ramos-Fernández, 2008). All but one of these species are endangered, and one, the brown 

spider monkey, is critically endangered (IUCN, 2021), it is therefore essential to understand how they 
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respond to changes across the landscape in human-modified environments, and this methodology 

could provide a means to effectively achieve this goal. 
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Chapter Four: The Functionality of a Protected Area to 

Provide Connectivity for the Geoffroy’s Spider Monkey (Ateles 

geoffroyi) 

Abstract 

Background: Globally, protected areas (PAs) are one of the main approaches for biodiversity 

conservation, covering 17% of the terrestrial earth surface,  yet only 20-50% of PAs are successful in 

protecting biodiversity. Connectivity between protected areas, and indeed between all patches of 

native habitat, is an essential aspect for the effective protection of biodiversity, however, recent 

estimates suggest that less than 10% of PAs are structurally connected via undisturbed habitats and 

most monitoring and planning even fails to take connectivity into account. In this study, we 

investigate whether a sustainable-use PA is effective in facilitating connectivity for an endangered 

forest specialist between two strictly protected national parks. 

Methods: We used passive acoustic monitoring to collect data at 341 sites across the Osa Peninsula, 

Costa Rica and assess occurrence of the Geoffroy’s spider monkey across the PA network in the 

region. We used habitat suitability modelling to predict suitable habitat for the spider monkey and 

identify potential barriers to connectivity. Finally, we use least-cost analysis to determine an ideal 

biological corridor and predict potential bottlenecks. 

Results: Our results show that the Golfo Dulce Forest Reserve, a large sustainable-use PA, is acting as 

a buffer to Corcovado National Park and is able to support populations of the Geoffroy’s spider 

monkey. However, as the Geoffroy’s spider monkey was undetected in Piedras Blancas National Park 

and occurrence was limited to the area surrounding Corcovado, it is possible that this Reserve is not 

facilitating connectivity as intended. Primary roads and low forest cover were the most important 
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predictors of poor habitat suitability, both acting as barriers to connectivity and potentially impeding 

the conservation of an endangered species.  

Implications: As the global community commits to protect at least 30% of the Earth’s surface, it is 

essential to consider connectivity to ensure the effective protection of biodiversity, especially under 

predicted climate change scenarios. We show that paved roads and areas of low forest cover are 

major barriers to connectivity across the network of PAs, findings which can help future restoration 

efforts in the region to improve conservation outcomes. 

4.1. Introduction 

The world is in a period of rapid biodiversity loss (Ceballos et al., 2015) and PAs are becoming ever 

more important for conserving biodiversity (Laurance, Useche, et al., 2012; Watson et al., 2014). 

Connectivity between protected areas is one of the essential aspects for sustaining viable 

populations of species, especially with the threat of climate change (Laurance, Carolina Useche, et 

al., 2012; Stewart et al., 2019). When assessing the effectiveness of PAs in preserving biodiversity, it 

is therefore essential to evaluate if they are connected. However, currently, connectivity across the 

PA network is generally absent from reporting procedures (Ward et al., 2020).  

PAs are considered a key tool in tackling biodiversity loss (Watson et al., 2014; Gray et al., 2016). 

They are implemented to conserve ecosystems and wildlife, whilst having a wider role in 

contributing to local livelihoods, tourism and in the mitigation of and adaptation to climate change 

(UNEP-WCMC and IUCN, 2016). The 2020 Strategic Plan for Biodiversity called for the protection of 

17% of terrestrial areas by 2020 (CBD, 2010) and it is expected that targets for 2030 will be set at 

30% (Waldron et al., 2020). Whilst more land is being protected, the quality of protection is falling 

short (UNEP-WCMC and IUCN, 2016), sparking a debate over whether we should be focusing on 

improving the effectiveness of current PAs instead of protecting more land (Lacerda, 2004; Laurance, 

Useche, et al., 2012; UNEP-WCMC and IUCN, 2016; Geldmann et al., 2019).  
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Connectivity across a PA network is essential for the effective protection of biodiversity (UNEP-

WCMC and IUCN, 2016; Ward et al., 2020). The 2020 Strategic Plan for Biodiversity states that PAs 

should be well connected to each other (CBD, 2010) and studies have recommended that PAs should 

be integrated into wider planning, with the connecting habitat receiving equal attention to the PA 

itself to facilitate the movement of wildlife (Laurance, Useche, et al., 2012; Stewart et al., 2019). Yet 

globally, over 90% of PAs are currently not connected via undisturbed land (Ward et al., 2020). For 

example, structural connectivity within Borneo’s current system of PAs was measured at less than 

20% (Proctor, McClean and Hill, 2011). Owing to their transient nature and often threatened status, 

mammals are consistently found to survive as isolated populations in PAs and be threatened by lack 

of connectivity across Asia and Europe (Bleyhl et al., 2017), Australia (Ottewell et al., 2019), Africa 

(Brennan et al., 2020) and Latin America (Mendoza et al., 2013). Studies have identified several 

common barriers to connectivity, including lack of native vegetation, roads, infrastructure and 

human settlements, artificial water sources and fences (Mendoza et al., 2013; Pardo Vargas et al., 

2016; Bleyhl et al., 2017; Tucker et al., 2018; Ottewell et al., 2019; Brennan et al., 2020). 

Both structural and functional connectivity between landscapes allows for access to suitable food 

sources, shelter, facilitation of gene flow and the dispersal and migration of species, thereby 

allowing populations to colonise and access new habitats and respond to shifts in habitat and 

climate (Crooks and Sanjayan, 2006; Barrows, Fleming and Allen, 2011; Rudnick et al., 2012). In 

addition to species-specific benefits, connected landscapes increase ecosystem functionality and 

resilience (Beller et al., 2019). Urbanisation and person-made infrastructures, farming, unsustainable 

forestry and mining has led to loss and fragmentation of forests and is known to breakdown natural 

connectivity (Tucker et al., 2018; Watson et al., 2018), reducing the resilience of species and 

ecosystems and ultimately reducing species population viability (UNEP, UNEP-WCMC and IUCN, 

2020). As species are increasingly being forced to survive in human modified landscapes (Gardner et 

al., 2009) the connectivity between PAs will be essential for the preservation of biodiversity (UNEP-

WCMC and IUCN, 2016). 
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Areas with a lower category of protection are generally not as effective at protecting wildlife 

(Carrillo, Wong and Cuarón, 2000; Lacerda, 2004). There are seven categories of IUCN PAs. National 

parks (Category II) are large areas set aside to conserve ecological processes, species and 

ecosystems, with visitor use being limited (IUCN, 2014). Category VI (PA with sustainable use of 

natural resources), the least restrictive in terms of its conservation requirements, is designed to 

conserve ecosystems, habitats and species, whilst permitting sustainable use of the area in a way 

that protects nature (IUCN, 2014). Whilst PAs in lower categories may not be as effective in 

protecting biodiversity, their wide spread use and use as areas to facilitate connectivity, makes it 

essential to ensure these areas are effectively protected and are both structurally and functionally 

connected for the free movement of wildlife. 

By the 1970s Costa Rica had lost over half of its forests. Over the last 50 years, a system of almost 

200 PAs covering 26% of its land, together with strong national policies, restoration programmes and 

subsidies for landowners, has turned this small country into a global leader in conservation 

(González-Maya et al., 2015; Kappelle, 2016). The system appears to be effective in reducing forest 

loss, with national parks under strict protection (IUCN category l and ll) almost completely halting 

deforestation (Sánchez-Azofeifa et al., 2002; González-Maya et al., 2015). Despite these successes, 

the country’s PA network has grown far beyond current human and financial resources required to 

maintain it and high human pressure in the surrounding areas is reducing connectivity across the PA 

network (Sánchez-Azofeifa et al., 2002; Bovarnick, 2007). In a global study of connectivity, Costa Rica 

was found to have just 2.5% of its PA network connected (Ward et al., 2020).   

Of top priority for the Osa region in Costa Rica, is the maintenance of connectivity between core PAs 

on the peninsula and connectivity with the rest of Costa Rica and Central America (Ankersen, Regan 

and Mack, 2006). The Osa Peninsula contains three core PAs, Piedras Blancas and Corcovado 

National Parks (IUCN Category II) and a Ramsar wetland site, the Terreba-Sierpe Wetlands, the Golfo 

Dulce Forest Reserve (IUCN Category VI) and several smaller privately managed wildlife refuges 



 

 

105 
 

(Figure 1). These PAs, together with a growing ecotourism industry and foreign investment, have 

helped to preserve large areas of forest on the peninsula (Ankersen, Regan and Mack, 2006). Despite 

a large portion of the area being under some level of protection and ongoing conservation efforts 

over the last 40 years, there are still numerous challenges across the Osa region resulting from loss 

and isolation of forests and limited resources leading to lack of enforcement against illegal logging, 

hunting and mining (Ankersen, Regan and Mack, 2006). The main purpose of the Golfo Dulce Forest 

Reserve is to provide connectivity between core PAs; in this study we investigate whether this PA is 

effective in facilitating connectivity across the PA network as intended.  

We chose to use the Geoffroy’s spider monkey to model connectivity, firstly due to its historic 

occurrence across the region. This species was hunted to extinction in the region in the early-mid 

20th century, with only a small remnant population surviving in Corcovado National Park (pers 

comms, J.Espinoza, July 2018). A study in 2000, after the designation of the Golfo Dulce Forest 

Reserve, found very low numbers of the Geoffroy’s spider monkey in the Reserve, suggesting that 

there has been some recovery of the species (Carrillo, Wong and Cuarón, 2000), but we do not know 

the extent of this recovery and if the reserve is facilitating connectivity for this species between 

Corcovado and Piedras Blancas National Parks as intended. Secondly, the Geoffroy’s spider monkey 

has a critical function in the ecosystem; the productivity of their latrine sites and seed dispersal of 

hardwood species alters the structure of the forest, owing to this they have been cited as ecosystem 

engineers (van Roosmalen, 1980; Whitworth et al., 2019) and are an important species to protect. 

Finally, they require large areas of undisturbed mature forest and are therefore particularly sensitive 

to forest loss and fragmentation (Boyle and Smith, 2010; Ramos-Fernández and Wallace, 2010), 

making them a forest specialist (Arroyo-Rodríguez et al., 2017a) and an ideal case to study the 

connectivity of native habitat.  

To do this we ask the following questions: 1. Where does the Geoffroy’s spider monkey occur across 

the PA network?  2. Where does suitable habitat exist for the Geoffroy’s spider monkey? 3. Is the 
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Golfo Dulce Forest Reserve facilitating connectivity across the PA network? 4. What and where are 

the barriers to connectivity? 5. How can we mitigate against any lack of connectivity? 

4.2. Methods 

4.2.1. Study Site 

Our study area covers 1093 km2 in the South Pacific coast of Costa Rica. The terrain is generally low 

altitude, with a maximum elevation of 792 meters. Mean annual rainfall ranges from 3,000-6,500 

mm and mean yearly temperature is 27 oC, with high levels of humidity throughout the year. There 

are two distinct seasons, wet and dry season, with the highest rainfall occurring September through 

December (Gilbert et al., 2016). The peninsula contains the last remnants of tropical broadleaf 

evergreen lowland rainforest on the Central American Pacific (Gilbert et al., 2016), imbedded within 

a mosaic of pasture, plantations and urban centres (Figure 4.1.a). Due to the geology and geography 

of the area, the peninsula contains high levels of biodiversity and endemism (Sánchez-Azofeifa et al., 

2002).  

 

Managed under the Area de Conservacion Osa (ACOSA), the Osa Peninsula contains three core PAs, 

Piedras Blancas and Corcovado National Parks (IUCN Category II) and a Ramsar wetland site, the 

Terreba-Sierpe Wetlands, all under strict protection. There is also the Golfo Dulce Forest Reserve 

(IUCN Category VI) and nine smaller private and public wildlife refuges, with no designated level of 

protection (Figure 4.1 b). The Terreba-Sierpe wetlands (30,654 ha) were declared a national park in 

1997, Corcovado (42, 560ha) in 1975, Piedras Blancas (14,019ha) in 1992 and the Golfo Dulce Forest 

Reserve (60,000ha) in 1979 (Sánchez-Azofeifa et al., 2002; Osa Conservation, 2016; Gutierrez et al., 

2019).  The Golfo Dulce Forest Reserve (IUCN Category VI) is a mixed-use reserve, where sustainable 

use of natural resources is permitted, but restrictions on owning land and both construction and 

extraction of resources, including timber and wildlife, are in place (Carrillo, Wong and Cuarón, 2000; 
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Ankersen, Regan and Mack, 2006). This area was initially designated with the aim to protect a buffer 

around Corcovado National Park and for managed forestry activities. After the creation of Piedras 

Blancas National Park in 1992, its role was prioritised to provide connectivity with Corcovado 

National Park. The Osa Biological Corridor was later created to protect forests between and around 

all PAs on the peninsula, with the additional objective to link these areas with the rest of Costa Rica 

and the Mesoamerica Biological Corridor (Ankersen, Regan and Mack, 2006). This area will not be 

considered for the purposes of this study since its boundaries are under review, the committee for 

its designation and protection is no longer functional and it is yet to be inscribed into the national 

system or receive any formal protections (pers comms, W. Barrantes, July 2021).  
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Figure 4.1 a. Land Use Map of the Osa Peninsula Land use map of the Osa peninsula containing nine 

land use categories, created at a scale of 5 x 5 m using Landsat 5 Thematic Mapper (TM) and Landsat 

8 Operational Land Imager (OLI) (Shrestha et al., 2018). b. Protected Area Map of the Osa 

Peninsula. White circles represent the sample sites where each audio recorder was placed. 
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4.2.2. Study Species 

The Geoffroy’s spider monkey is currently classified by the IUCN as Endangered and globally its 

population is expected to decline by 50% within a 45 year period (Cortes-Ortíz et al., 2021). They are 

found from south-eastern Mexico to north-western Colombia (Di Fiore, Link and Campbell, 2011). 

The Geoffroy’s spider monkey is a large-bodied primate with home ranges of up to 4 km2, a 

frugivorous diet and requirement for large mature trees as sleeping sites (van Roosmalen, 1980; 

Chapman, 1989; Sorensen and Fedigan, 2000; Zaldívar et al., 2004; Weghorst, 2007; Wallace, 2008a, 

2008b; Arroyo-Rodríguez et al., 2017a). Due to this, they require large areas of undisturbed mature 

forest and are therefore particularly sensitive to forest loss and fragmentation (Boyle and Smith, 

2010; Ramos-Fernández and Wallace, 2010).  

4.2.3. Sampling Design 

Land use at each site was calculated using land use maps provided by NASA, created at a scale of 5 x 

5 m using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) (Shrestha 

et al., 2018) (Figure 4.1.a). The map was classified into nine land use categories, with recordings for 

this study taken in old growth and secondary forests, palm and teak plantations, mangroves and 

grassland sites Figure 4.1.a). Protection level for each site was calculated using GIS layers of national 

park, reserve and wildlife refuge borders (Figure 4.1.b). All points located outside a PA were 

classified as unprotected. Wetlands, water and urban areas were excluded from the analysis due to 

inaccessibility. Wetlands also consist mainly of a single species of fern and contain no fruiting trees, 

which due to body mass and dietary requirements, it is unlikely that the spider monkey would use.  

To ensure a representative number of sampling sites were chosen across each land use and 

protection category, we used a stratified sampling approach. We calculated the percentage cover of 

each land use and protection category across the region and placed a representative number of 

recorders in each area. To ensure even coverage of the study region we selected sampling locations 
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in a uniform distribution across the Osa Peninsula. Due to access issues it was not possible to 

randomly choose sampling locations, therefore, to ensure independence among sampling locations, 

the first recorder in each accessible area was placed by walking 500 m in a random direction and the 

remaining placed at a minimum of 500 m apart. Where possible, trails were not used to avoid bias, 

however, where this was not possible, devices were placed a minimum distance of 200 m 

perpendicular to a trail; as indicated by GPS. Non-audio data were collected for each point including 

GPS location, elevation and land use, to verify data from NASA land use maps. For more information 

on sampling design please see Chapter One. 

Given that biotic sounds generally travel a maximum distance of 200 m (Figueira et al., 2015), we 

used a minimum distance of 500 m between recorders, ensuring independence in the samples and 

avoiding pseudo-replication. Recording devices were also placed at a minimum distance of 200 m 

from habitat boundaries, to ensure sounds were solely from the classified habitat.  

Data were collected at 341 sites totalling 60,000 hours of recordings. Recordings were obtained 

using Audio Moth devices (Open Acoustics Devices, UK). Recorders were set to operate for seven 

consecutive days to increase the chances of detecting the spider monkey if they were present. The 

devices were set to record on a schedule of 05:00-09:30, 14:00-18:30 and 21:00- 03:00, to ensure 

data were collected at key periods of spider monkey activity (Wallace, 2001) including the periods of 

night activity (Whitworth et al., 2019). We recorded constantly over the recording schedule at a 

sample rate of 48000 kHz, 2.5 times higher than the maximum call of the Geoffroy’s spider monkey. 

Sampling was conducted within dry season (December-August) due to restricted access to many 

areas of the study site during wet season.  

4.2.4. Statistical Analysis 
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4.2.4.1. Explanatory Variables 

We installed audios in six of the nine land use categories: Old growth and secondary forest, 

mangrove forests, grassland, palm and teak plantations. We did not place recorders in urban areas 

due to restrictions on recording in public spaces or in wetlands or water due to inaccessibility. 

Protection level for each site was calculated using GIS layers of national park, reserve and refuge 

borders (Figure 4.1 b). If points were located outside of the PAs, they were classified as unprotected. 

Distance to Corcovado National Park was measured as a way to quantify how far the spider monkey 

has dispersed from the park and was calculated using distance across land mass between each point 

and the park. All GIS work was carried out in ArcGIS software v.10.6 (ESRI, 2011). 

The data showed complete separation across protection, which happens when a combination of the 

explanatory variables produces a perfect prediction of the response variable (Albert and Anderson, 

1984). This led to high standard errors, confidence intervals and p-values. To account for this, 

protection was fitted separately in package brglm2 (Kosmidis, 2020) that can model complete 

separation. We fitted other models in the nlme (Pinheiro, Bates and DebRoy, 2020) and lme4 

package (Bates et al., 2015).  

4.2.4.2. Development of an Automated System for Signal Classification 

To extract the spider monkey calls from the audio recordings an algorithm was developed together 

with the Department of Computing, Imperial College London. We ran data from all 341 sites through 

the model algorithm, listened to all positive outputs and marked the number of true positive 

detections per day per site. All analysis was carried out in Python v.3.6 (Van Rossum and Drake, 

2009).  For more information on the development and validation of this model see Chapter Three. 
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4.2.4.3. Generalised Linear Models 

To determine the naïve probability of occurrence of the spider monkey across our study site, we 

used logistic regression with a logit link function. Site occurrence was calculated by combining daily 

detection histories into one parameter, coded as 1 or 0 for presence or absence per site. We used 

residual plots from logistic regression models to assess violations in model assumptions. Plots 

showed no significant overdispersion, deviation from the expected distribution or heteroscedasticity 

in the residuals (Supplementary Information 3.1- Figure 3.1 & 3.2). Bonferroni’s correction for 

multiple pairwise comparisons was applied to adjust p-values and reduce the risk of type I errors. 

4.2.4.4. Spatial Autocorrelation 

Due to the nested structure in the data, we tested for spatial autocorrelation across all generalised 

linear models. We created a distanced based weight matrix using model residuals and sampling site 

coordinates. Using gstat package (Pebesma, 2004) we then produced a variogram plot to visually 

determine the presence of autocorrelation. Points should roughly run in a horizontal line from the y-

axis if no autocorrelation is present. Finally, we calculated the Moran’s I statistic in ape package 

(Paradis and Schliep, 2019). If no autocorrelation is present, then the observed autocorrelation 

should be close to 0 and to the expected value.  

Spatial autocorrelation was found across all models, violating the spatial independence assumption 

of regression analysis. To account for this, we constructed a spatial auto-covariate that was included 

as an additional predictor variable. For each site we calculated a distance-weighted average of 

neighbouring response values, using a minimum neighbour’s distance of 210 m, with sites further 

away receiving lower weightings (Dormann et al., 2007). To test whether the auto-covariate function 

reduced autocorrelation in the residuals we used Moran’s I statistic. No autocorrelation was present 

across the models when the auto-covariate function was added (Supplementary Information 3.1- 

Table 3.1). We then used the Likelihood-ratio test and AIC to determine if the addition of an auto-
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covariate function improved model fit. In cases where the auto covariate function reduced 

autocorrelation but model fit remained equal, it was still included in the model (Supplementary 

Information 3.1- Table 3.2) 

4.2.5. Habitat Suitability Modelling 

Presence-absence data used to calculate habitat suitability for the spider monkey were based on 

acoustic data collected and analysed from the above 341 sites. An automated detection and 

classification algorithm for the spider monkey call, the whinny, used to determine presence in the 

recordings, returned a total of 64 occupied and 271 unoccupied sites (see Chapter Three for more 

details) (Figure 4.2).  

Figure 4.2. Presence and Absence Map for the Geoffroy’s Spider Monkey. Land use map of the Osa 

peninsula containing nine land use categories, created at a scale of 5 x 5 m using Landsat 5 Thematic 

Mapper (TM) and Landsat 8 Operational Land Imager (OLI) (Shrestha et al., 2018). White circles 
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represent the locations where the study species was recorded as present and pink circles where it 

was recorded as absent. 

4.2.5.1. Selection of Explanatory Variables 

In Chapter Three, land use, forest cover and primary road density were all found to significantly 

affect occurrence probability of the spider monkey. Area of buildings and density of secondary roads 

had a non-significant negative effect (For further information see Chapter Three). Forest cover, 

primary and secondary road density and area cover of buildings were considered for inclusion in the 

habitat suitability model. Land use was excluded as it represented the same measure as forest cover. 

It is recommended that to correctly assess a species response to predictor variables, the variables 

should be measured at the scale at which the species-landscape relationship is the strongest 

(Jackson and Fahrig, 2015; Galán-Acedo et al., 2019). To assess the scale of effect of forest cover, 

primary (paved) and secondary (unpaved) roads and buildings, we calculated percentage forest 

cover (%), the density of roads (km) and the area of buildings (km2) in a buffer around each site at 

intervals between 100-5,000 m radius for forest cover and 100-1,000 m for roads and buildings (see 

Supplementary Information 2.1. Table 2.6). We then tested at which scale the variables had the 

strongest effect on the spider monkey. We created GIS layers for roads and buildings across the 

study site using satellite images. Roads were separated into primary for paved roads and secondary 

for smaller non-paved roads.  

Using spider monkey presence as the response variable, the strongest response to forest cover was 

at a radius of 200 m (R2=0.77), although the response remained strong until we reached a radius of 

2000 m. For secondary roads, the strongest response was at a radius of 200 m (R2=0.09) however all 

spatial distances showed a similar response (mean R2= 0.07, SD=0.01). For primary roads and 

buildings, the strongest response was at a radius of 1000 m (R2=0.6 and R2=0.22). Each explanatory 

variable was therefore measured at these scales.  



 

 

115 
 

Using NASA land use maps and feature layers of roads and buildings, we constructed raster layers for 

each explanatory variable in ArcGIS software v.10.6 (ESRI, 2011). We calculated percentage forest 

cover by reclassifying land use maps into native forest cover or other land use, since native forest 

cover was a key driver for spider monkey occupancy (see Chapter Three). We then calculated forest 

cover for each pixel at radius of 200 m around the sampling point (Figure 4.3). Mangrove forests of 

the Terreba-Sierpe wetlands were classified as ‘other land use’ and not native forest cover. This 

decision was taken as the study species was absent from this land use (see Chapter Three) and 

classification as native forest cover would have likely deemed these areas as suitable in the absence 

of land use as an explanatory variable in the habitat suitability model. Wetland areas were not 

surveyed due to the area being inaccessible, however flora in this area is predominantly a species of 

fern and so was also classified as zero forest cover. The same was done for density of secondary 

roads at a radius of 200 m and 1000 m for primary roads and area cover of buildings. All maps were 

created with the same projection system, resolution and extent (Figure 4.3).  

 

Figure 4.3.a. Forest Cover and Roads Map. Forest cover map of the Osa peninsula showing native 

forest cover in green and non-forested areas (including mangrove forests) in blue with primary 

(paved) roads in red and secondary (non-paved) roads in yellow and b. Forest Cover and Buildings 

a b 
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Map. Forest cover map of the Osa peninsula showing native forested areas in green and non-

forested areas in blue and buildings in black. 

Collinearity between explanatory variables decreases the efficiency and increases the uncertainty in 

species distribution modelling (De Marco and Nóbrega, 2018). Correlation plots between 

explanatory variables revealed primary road and buildings to be highly correlated (R2=0.73) 

(Supplementary Information 3.1- Table 3.2). Previous results suggest that primary road is more 

important for predicting occupancy probability for the spider monkey than buildings (see Chapter 

Three), and variable importance for the best performing model was higher for primary road (25.8) 

than for buildings (18) when all variables were included in the habitat suitability model. We 

therefore excluded buildings as an explanatory variable from the model.  

4.2.5.2. Model Algorithms 

Choice of modelling method in habitat suitability models can lead to highly different results, making 

model choice particularly important (Elith et al., 2006; Marmion et al., 2009; Thuiller et al., 2009; 

Naimi and Araújo, 2016). It has recently been recommended to use an ensemble approach, where 

the outputs and predictions of several different models are considered (Araújo and New, 2007; 

Naimi and Araújo, 2016). We therefore tested eight different regression and machine learning 

models, all employing both presence and absence data, to test which was better at predicting 

habitat suitability: Generalized Linear Models (GLM), Generalized Additive Models (GAM), Boosted 

Regression Trees (BRT), Multivariate Adaptive Regression Spline (MARS), Classification and 

Regression Trees (CART), Multivariate Adaptive Regression Spline (MARS), Random Forests (RF), 

Support Vector Machine (SVM), and Flexible Discriminant Analysis (FDA).  

4.2.5.3. Model Performance 

Models were verified using a five-fold cross-validation procedure where data were randomly 

partitioned into training (70%) and testing datasets (30%) for five model runs to reduce any potential 
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effects of spatial autocorrelation (Naimi and Araújo, 2016). TSS true statistic score (TSS) and Area 

Under the ROC (Receiver Operating Characteristic) Curve (AUC) were calculated and used to test the 

predictability of the model (Elith et al., 2006; Naimi and Araújo, 2016). A TSS of > 0.5 indicates good 

predictability. The AUC value is calculated by summing the area under the ROC curve and provides a 

measure of how well the model can correctly classify presences and absences. An AUC of 0.5 

indicates that the model is no better at predicting than by random chance, > 0.7 is considered 

adequate and, > 0.8 shows excellent model fit (Elith et al., 2006; Naimi and Araújo, 2016). The ROC 

curve is used as a visual of measure model performance, with curves closer to the top-left corner 

indicating better performance (Supplementary Information 3.2- Figure 3.4). Fitted response curves 

and measures of variable importance, which show the strength and directionality of response and 

percentage of variation explained by that variable, were used to assess the relationship between 

explanatory variables and habitat suitability (Supplementary Information 3.2- Table 3.5).  

4.2.5.4. Model Outputs 

Habitat suitability scores were calculated across the study area ranging from 0-1; higher values 

indicate a more suitable habitat. To incorporate the predictions and assumptions of different models 

in predicting habitat suitability across the study region, we combined the best performing and 

biologically realistic models to improve the robustness of forecasting (Araújo and New, 2007; Naimi 

and Araújo, 2016). All statistical analysis were carried out in sdm package (Naimi and Araújo, 2016), 

in R 3.6.0 (R Core Team, 2020). 

4.2.6. Corridor Design  

Least-cost corridor and Circuitscape analysis were used to design a biological corridor between 

Corcovado and Piedras Blancas National Parks. Least-cost corridor analysis was performed using the 

Linkage Pathways tool 2.0 in ArcGIS (McRae and Kavanagh, 2011). This analysis maps least-cost 

pathways by assigning a value to each cell that reflects the energetic cost to a species moving 
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through that area, using characteristics defined in the resistance map, such as forest cover and road 

density. Cost-weighted distance analysis between the core areas gives higher resistance scores to 

areas that are less suitable and low resistance scores to those that are considered suitable (McRae 

and Kavanagh, 2011). 

For the model inputs, we created two vector layers in ArcGIS to represent the core areas that 

connectivity was to be mapped between, using the boundaries of Corcovado and Piedras Blancas 

National Parks. We then created a raster layer of resistance values by inverting the values of the 

habitat suitability map, so that cells with high suitability scores became areas of low resistance and 

visa-versa. The corridor was truncated at a threshold of 2 km to limit the corridor design to only 

those areas between and immediately surrounding the core areas (McRae and Kavanagh, 2011). 

The linkage pathways tool outputs two corridor designs, a vector layer representing the single path 

of least resistance and a raster layer that assigns a resistance value to every cell, allowing alternative 

paths to be considered in the surrounding area if sections of the absolute least cost path are 

unsuitable. Higher values are given for cells that represent higher resistance values, and are 

therefore less suitable for inclusion within the corridor (McRae and Kavanagh, 2011). We chose to 

add a 2 km buffer width around the path of least resistance. This was chosen because previous 

research has shown that riparian corridors of up to 800 m wide may be suitable for many species of 

bird and mammals with smaller home ranges, however larger bodied, wider-ranging species, such as 

the spider monkey, white-lipped peccary and jaguar were found to be rare or absent at these widths 

(Lees and Peres, 2008). 2 km is the minimum recommended width of a biological corridor, to enable 

long-term genetic flow and recolonisation for corridor dwellers: those species that cannot pass 

through the corridor in a single event of hours or days (Beier, 2019). This width is suggested to be 

suitable for 96% of terrestrial mammals, any less than this and potential edge effects would severely 

reduce its viability (Beier, 2019). 
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To determine areas that are critical for connectivity, we used the Pinchpoint Mapper tool 2.0, part of 

the Linkage Mapper toolbox (McRae, 2012). Pinchpoint Mapper utilizes circuit theory to identify and 

map areas in the corridor where there are current constrictions to movement, such as bottlenecks. 

These areas represent sections where movement is already funnelled and where loss of suitable 

habitat could impede connectivity (McRae, 2012). We used the above corridor design and resistance 

maps as inputs and a 2 km cut-off for pinch points (McRae, 2012). The final maps were visualized in 

ArcGIS 10.8. 

4.3. Results 

4.3.1. Generalised Linear Models 

The automated detection and classification algorithm for the spider monkey whinny returned a total 

of 2977 true positives across 64 out of 341 sites and 52,248 false positives. 

4.3.1.1. Distance to Corcovado National Park 

Occurrence decreased significantly with increasing distance from Corcovado National Park, with the 

Geoffroy’s spider monkey only being found within 20 km of the national park (Figure 4.4. 

Supplementary Information 3.2- Table 3.3) 



 

 

120 
 

Figure 4.4. Model Results: Distance to Corcovado. Probability of occurrence on the y-axis and 

observed presence/absence on the z-axis (⚫) in relation to distance to Corcovado National Park. 

Shaded area represents 95% confidence intervals. R2, X2 and p values are annotated. 

4.3.1.2. Protection 

Results showed that 93% of the Golfo Dulce Forest Reserve is forested, compared to 92-96% within 

national parks (Piedras Blancas and Corcovado National Park respectively), 94% within the private 

wildlife refuges, and only 36% in unprotected areas, showing that forest cover is comparable in the 

reserve to levels in strictly PAs. Protection has a significant effect on the occurrence of the spider 

monkey (Figure 4.5). Private wildlife refuges and Corcovado National Park showed the highest 

probability of occurrence and were significantly different to all other areas, but not from each other 

(Figure 4.5. Supplementary Information 3.2- Table 3.4). The Golfo Dulce Forest Reserve showed 

significantly higher occurrence, when compared to unprotected areas and both Piedras Blancas 

National Park and the Terreba-Sierpe Wetlands. No significant differences were found between 

unprotected areas, Piedras Blancas National Park and the Terreba-Sierpe Wetlands, where few or no 

records of the spider monkey were found (Figure 4.5. Supplementary Information 3.2- Table 3.4) 

 

R2=0.43 

X2=9.242,338 

p<0.001 
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Figure 4.5. Model Results: Protection. Probability of species occurrence in each protection level on 

the y-axis (X), error bars represent 95% confidence intervals and percentage of occupied sites in 

each protection level on the z-axis (⚫). Pairwise differences between land use are indicated with 

letters A, B and C, where different letters represent a significant difference between land use. R2, X2 

and p values are annotated. 

4.3.2. Habitat Suitability Models 

4.3.2.1. Model Performance 

All models, with the exception of SVM, showed good performance, with AUC scores above 0.7 and 

TSS scores above 0.5. Random Forest (RF) was the best performing model with an AUC score of 0.8 

and TSS score of 0.57. SVM was the worst performing model with an AUC score of 0.64 and a TSS 

score of 0.38 (Table 4.1. Supplementary Information 3.2- Figure 3.4).  

 

 

R2=0.46, X2=74.98,332, p<0.001 

        A                          A                         B                         C                          C                          C  
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Table 4.1. Habitat Suitability Model Performance Metrics. Performance metrics (AUC and TSS) for 

all eight modelling methods. Larger AUC and TSS values indicate better model performance. 

Method AUC TSS 

Generalized linear models (GLM) 0.76 0.55 

Generalized additive models (GAM) 0.78 0.56 

Boosted regression trees (BRT) 0.76 0.5 

Random forests (RF) 0.8 0.57 

Classification and regression trees (CART) 0.77 0.52 

Flexible Discriminant Analysis (FDA) 0.76 0.52 

Multivariate adaptive regression spline (MARS) 0.75 0.53 

Support vector machine (SVM) 0.64 0.38 

 

4.3.2.2. Variable Contribution 

Forest cover was consistently the most important variable in predicting habitat suitability, with 

variable importance scores ranging from 40.4 - 54.4 %. Except for GAM and CART, primary road was 

the second most important variable in predicting habitat suitability (15.1 - 27.6 %), followed by 

secondary roads (3.1 - 24.6%) (Table 4.2). On visual inspection of the fitted response curves, only RF, 

FDA and SVM revealed biologically realistic patterns as expected from previous results where spider 

monkey occurrence showed a strong positive correlation with forest cover and negative correlation 

with both primary and secondary roads, with the effect being weaker in secondary roads (see 
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Chapter Three). Across other methods, one or more of the variables resulted in a flat line, indicating 

that the model is not correctly modelling the effect from the variable (Supplementary Information 

3.2- Figure 3.5), these models were therefore not considered for use in the final ensemble model. 

SVM was also excluded from the final model due to poor performance scores (Table 4.1). 

Table 4.2. Habitat Suitability Model Variance Explained. Results showing the percentage of variance 

explained in each model from the three different environmental variables: forest cover, primary and 

secondary road. 

Method Forest Cover  
(%) 

Primary Road 
(%) 

Secondary Road 
(%) 

Generalized linear models (GLM) 41.9 27.6 3.1 

Generalized additive models (GAM) 51.7 20.1 22.8 

Boosted regression trees (BRT) 54.4 16.5 6.8 

Random forests (RF) 44.1 24.9 13.2 

Classification and regression trees (CART) 41.7 22.2 24.6 

Flexible Discriminant Analysis (FDA) 33.8 15.1 5.4 

Multivariate adaptive regression spline (MARS) 48.3 25 23 

Support vector machine (SVM) 40.4 16.9 14.4 

 

4.3.2.3. Ensemble Model 

An ensemble model was constructed using a weighted average of RF and FDA models. AUC and TSS 

values were similar or higher for the ensemble model (Supplementary Information 3.2. Table 3.3). 
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Using this model, habitat suitability was predicted for the study area (Figure 4.6). The habitat 

suitability map showed, as expected from the variable contribution results above, that the most 

suitable habitat for the spider monkey are areas with 100% forest cover, more than 1 km from 

primary roads and not within close proximity to secondary roads and disturbed land use types (0.3-

0.36). Areas with high forest cover but closer to secondary roads and disturbed land use types also 

appear to be quite suitable (0.25-0.30), however higher densities of secondary roads lead to a drop 

in habitat suitability. (0.15-0.25). Areas with no native forest cover, such as palm and teak 

plantations and grasslands or within close proximity primary roads had very low habitat suitability 

scores (0.05-0.15), and the lowest habitat suitability scores (<0.05) were found in areas where both 

primary roads and/or a high density of secondary roads occurred in the same area as low forest 

cover. 

Figure 4.6. Habitat Suitability Model Map. Predicted habitat suitability map of the Osa Peninsula 

using an ensemble approach for the Geoffroy’s spider monkey. Higher values and greener colours 

indicate more suitable habitat, warmer, redder colours and lower numbers indicate less suitable 

habitat. 

Habitat Suitability Scores 
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4.3.3. Corridor Design  

Least-cost corridor analysis highlighted the least-cost path of movement for the Geoffroy’s spider 

monkey, shown as a single-celled black line and a heatmap of resistance values for all land cover 

pixels in between Corcovado and Piedras Blancas National Parks. Greener colours (lower values) 

represent areas with the least resistance and warmer colours (higher values) highlight areas with 

higher resistance to movement. A 2 km buffer zone around the absolute least-cost path shows the 

area to be included in the corridor if the corridor is designed in-line with the minimum 

recommended guidelines for corridor width (Beier, 2019) (Figure 4.7).  

Figure 4.7. Least-cost Corridor Map. Least-cost Corridor Map showing the absolute least-cost path 

represented as a thick black line. Greener colours show areas with the least resistance to movement 

and warmer colours represent areas with higher resistance to movement. The buffer around the 

absolute least cost path represents the minimum corridor width of 2 km. Grey features represent 

core protected areas: Corcovado and Piedras Blancas National Parks. 
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Pinchpoint analysis highlights specific areas in the corridor where there are potential bottlenecks. 

Darker green colours represent areas where movement is less constricted and warmer colours 

represent areas where there are critical impediments to movement (Figure 4.8). One area within the 

2 km buffer zone stands out as a potential bottleneck that could impede connectivity (Figure 4.8). 

This area represents a section of forest in between the primary road and Piedras Blancas National 

Park. Other potential bottlenecks exist in the middle of the corridor, representing areas where there 

are patches of grassland, palm and teak together with secondary roads. 

Figure 4.8. Pinchpoint Analysis Map. Darker green colours represent areas where movement is less 

constricted and warmer colours represent areas where there are potential bottlenecks. The zoomed-

in portion of the map highlights the main bottleneck next to Piedras Blancas National Park 

Corcovado National 

Park 

Piedras Blancas 

National Park 
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4.4. Discussion 

In this study we investigated the effectiveness of a PA in facilitating connectivity between two core 

PAs for an endangered forest specialist. Results suggest that the Golfo Dulce Forest Reserve is 

providing habitat for the Geoffroy’s spider monkey but does not seem to be facilitating connectivity 

across the PA network for this species . The Geoffroy’s spider monkey was undetected in Piedras 

Blancas National Park and despite large areas of suitable habitat in the Golfo Dulce Forest Reserve, 

they were not found more than 20 km from Corcovado National Park. The main barrier to 

connectivity is an area where a primary road intersects Piedras Blancas National Park. We also found 

sections in the middle of the Golfo Dulce Reserve where a mix of pasture, plantations and secondary 

roads are reducing landscape permeability. If the Golfo Dulce Forest Reserve is to facilitate 

connectivity for sensitive species between Corcovado and Piedras Blancas National Parks as 

intended, then mitigation strategies are needed. We indicate the exact location of the bottleneck, 

where investment to improvement to connectivity would likely produce the most significant 

conservation outcomes.  

4.4.1. Functionality of the Golfo Dulce Forest Reserve 

The absence of the Geoffroy’s spider monkey from the Golfo Dulce Forest Reserve immediately 

before its designation (pers comms, J.Espinoza, July 2018) and subsequent detection here, shows 

that this species is now able to survive in the reserve area, albeit at lower occupancy than Corcovado 

National Park. Studies have revealed a similar pattern for other large-bodied mammals in the region. 

In 2000, jaguar (Panthera onca), puma (Puma concolor), Baird’s tapir (Tapirus bairdii), and peccary 

(Pecari spp) were found in Corcovado, but were absent from the Golfo Dulce Forest Reserve 

(Carrillo, Wong and Cuarón, 2000), yet 20 years later, all of these species are now found in the 

reserve (Soto et al., 2021). This shows that the Reserve is providing additional habitat for native 

fauna and is likely mitigating edge effects for Corcovado National Park. 
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4.4.2. Connectivity within the Golfo Dulce Forest Reserve 

The Golfo Dulce Forest Reserve was intended to facilitate connectivity between Corcovado and 

Piedras Blancas National Park, however, the fact that spider monkeys remain undetected more than 

20 km from Corcovado and within Piedras Blancas, suggests that they cannot utilise the entire 

reserve area. Our results, corroborated by previous studies (Sorensen and Fedigan, 2000; Ramos-

Fernández and Ayala-Orozco, 2003; Urquiza-Haas, Peres and Dolman, 2009; Asensio et al., 2017), 

imply that this is due to a lack of connectivity, impeded by a paved road and areas of low forest 

cover, mainly owing to pasture and palm plantations. Similar to our findings for the Geoffroy’s spider 

monkey, occurrence of jaguar, Baird’s tapir and white-lipped peccary (Tayassu pecari), are also 

limited to areas around Corcovado and these species remain undetected in Piedras Blancas (Soto et 

al., 2021). 

Although our results suggest a lack of connectivity in the reserve, which was intended to facilitate 

connectivity across the PA network, it could be possible that they are dispersing and that there is 

another threat driving local extinction. Although we did not collect information on hunting in the 

region, past studies have found a significant reduction of hunted species in the Golfo Dulce Forest 

Reserve when compared to Corcovado (Carrillo, Wong and Cuarón, 2000) and hunting remains a 

serious problem, most of which is not subsistence hunting, but undertaken for sport by hunters from 

other areas of Costa Rica (Ankersen, Regan and Mack, 2006). Spider monkeys are known to avoid 

areas where hunting occurs (van Roosmalen, 1980; Aquino et al., 2013), which could therefore 

impact landscape permeability, highlighting the need to address these issues in the region. Whether 

the absence of the Geoffroy’s spider monkey and other threatened species from large parts of the 

reserve and Piedras Blancas is due to a lack of connectivity in the reserve or another threat, the 

situation is problematic, since Piedras Blancas National Park serves as a connection between the Osa 

Peninsula and populations on the mainland of Costa Rica. 
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4.4.3. Connectivity and Protected Area Management  

It is suggested that effective management of PAs is the key to their ability to provide connectivity. 

Lack of connectivity is often found to be linked to the absence of complete management plans, 

management of the PA in isolation of the wider area or PA network (Saura et al., 2018), and lack of 

adequate resources, governmental support or formal assessments of PA effectiveness (Saura et al., 

2017). Many of these challenges exist in the Osa region, including limited resources and subsequent 

lack of enforcement against illegal logging, hunting, mining and lack of a formal management plan 

(Ankersen, Regan and Mack, 2006). The Golfo Dulce Forest Reserve has also been subject to years of 

conflict between farmers and the government, which lead to unpermitted agricultural activities in 

the area (Ankersen, Regan and Mack, 2006). We now focus on mitigation strategies to improve 

functional connectivity, specifically for large-bodied specialist mammals. 

4.4.4. Mitigation: Biological Corridor 

Given the constraints above, we designed a 2 km wide corridor through the reserve using the path of 

least resistance. It has been suggested that this width is most suitable to maximise permeability 

across the PA network for the greatest number of species and avoids any potential edge effects that 

would severely reduce its viability (Beier, 2019). Smaller corridors may end up being a wasted 

investment as they are unlikely to function for a large number of species and anything too wide can 

become too expensive to manage (Beier, 2019). The width of the Golfo Dulce Forest Reserve, which 

was designed to facilitate connectivity, is on average 10 km wide. Providing land managers with a 

smaller 2 km wide area to focus mitigation strategies may facilitate monitoring and improve the 

feasibility of mitigation efforts. Providing a smaller focal area for conservation efforts could also 

have a negative effect, and lead to increased deforestation and other anthropogenic activities in the 

surrounding area where large areas of forest and species already exist. This corridor will also not 
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solve the issue of the paved road, although the corridor does highlight the section where mitigation 

strategies may incur the least costs and resistance.  

4.4.5. Mitigation: Roads 

Paved roads were the second most important driver of habitat suitability for the spider monkey in 

this study, and previous results indicate that this primate does not occur within 1 km of a paved road 

(see Chapter Three). Since paved roads surround Piedras Blancas National Park, wildlife must cross 

the road to disperse between the national parks, and the section next to Piedras Blancas represents 

the most significant bottleneck in the corridor. A strong effect of paved roads has also been found in 

previous studies on mammals due to increased gap width and heavier traffic volume (Weston et al., 

2011; Asensio, Schaffner and Aureli, 2012; Cibot et al., 2015; Chen and Koprowski, 2016; Mulero-

Pázmány, D’Amico and González-Suárez, 2016; Asensio et al., 2021) alteration of vegetation 

structure (Zhou et al., 2020), secondary road development and increased human presence 

(Laurance, Goosem and Laurance, 2009). These effects have subsequently been found to increase 

road kill and hunting pressure due to increased access to undisturbed areas (Trombulak and Frissell, 

2000). 

For arboreal species, mitigation strategies to reduce the threats posed by roads include ensuring the 

gap in the forest canopy is small enough that natural crossings remain, or the creation of artificial 

canopy bridges (Gregory et al., 2017; Asensio et al., 2021). However, if the spider monkey does not 

occur within 1 km of paved roads due to additional disturbance in the surrounding area, then these 

bridges alone will have little effect and consideration should also be given to the wider effects of 

roads. There is very little research into the effectiveness of bridges for the Geoffroy’s spider monkey, 

however, in a study on the Caribbean coast in Costa Rica, this species did not use artificial rope 

bridges that were installed on a paved road (Lindshield, 2016). Studies of other arboreal mammals 

and primates have found use of artificial bridges (Teixeira et al., 2013; Donaldson and Cunneyworth, 

2015) and ground dwelling species of mammal have been found to use culverts and underpasses to 
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pass through roads (Taylor et al., 2010). If roads are to be created or paved within PAs, they should 

consider key factors that may impact wildlife, such as gap width, traffic volume and speed and the 

secondary effects from increased development and resource extraction. 

4.4.6. Mitigation: Private Protected Areas 

One additional observation that we found within our results, was the high forest cover and 

occurrence of the Geoffroy’s spider monkey in privately protected wildlife refuges, which was 

comparable to strictly protected national parks. This result is likely due to successful reforestation 

programmes (Zambrano, Broadbent and Durham, 2010; Lopez Gutierrez et al., 2020) and the 

presence of hotels, land owners and other staff in these areas, subsequently deterring illegal logging 

and hunting (Lopez Gutierrez et al., 2020). There is very little research surrounding the contribution 

of privately protected areas to biodiversity protection, however, they are increasingly becoming 

recognised as essential components of a PA network (Stolton et al., 2014) and have previously been 

found to play a substantial role in the protection of medium-large bodied mammals (Clements et al., 

2019). There are many privately owned lands within the Golfo Dulce Forest Reserve that have the 

potential to facilitate connectivity. 

4.4.7. Piedras Blancas National Park 

Although no official records exist, hotels and tourists have reported sightings of spider monkeys in 

Piedras Blancas National Park, and it is known that an animal sanctuary on the border of the park 

has unofficially released a number of spider monkeys into the wild. Lack of detection suggests that 

their numbers remain very low and that they may be restricted to small areas. Future research 

should confirm the presence, status and health of this population, as their ability to successfully 

breed and disperse through the region will affect management decisions on how to protect this 

species.    
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4.4.8. Conclusion 

The Golfo Dulce Forest Reserve, a large sustainable-use PA, is acting as a buffer to Corcovado 

National Park and is able to support populations of the Geoffroy’s spider monkey, a rare and 

endangered forest specialist. However, our results suggest that it may not be facilitating connectivity 

across the PA network and the main bottleneck is driven by a single primary road and areas of palm 

plantation, pasture and secondary road. It is possible there are other stressors that we have not 

measured limiting dispersal, such as hunting, which is known to be problematic in the region, and 

these should be taken into consideration in any management plans for the area. The lack of 

connectivity is problematic since Piedras Blancas National Park serves as a connection between the 

Osa Peninsula and populations on the mainland. We have identified the key barriers to connectivity 

in the reserve and designed a small corridor which can serve as the focus for management efforts. 

The Osa Peninsula is one of the most biodiverse regions of the world, we show that with little 

investment it is possible to maintain and even improve the natural capital for generations to come.    
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Chapter Five: General Discussion 

5.1.  Advantages of Passive Acoustic Monitoring  

Using Passive acoustic monitoring I was able to collect 60,000 hours of data, across 341 sites, over a 

large region encompassing over 1000 km2. Without PAM I would not have been able to achieve this 

level of coverage in terms of number of sites or spatial scale. The alternative approach, line 

transects, would have been too time consuming and costly in terms of person-power to achieve the 

desired number of replicates or scale, resulting in a smaller study with potentially different 

objectives. Whilst in the field we encountered groups of our target species, the Geoffroy’s spider 

monkey. They consistently displayed aggressive behaviour towards me and altered their behaviour 

and activity, which would certainly have biased data collection. Using PAM, my presence in the area 

was limited, reducing the negative implications on wildlife and bias on the data collected. During the 

pilot study, I attempted to walk line transects in the same area where I placed an audio recorder. 

When walking the transect, I only encountered the Geoffroy’s spider monkey twice, however 

manual analysis of the recordings revealed the species to be present on all seven days. This 

highlights the functionality of this method for detecting rare species, which is likely owing to the use 

of a less invasive method and the increased temporal extent of the study. I have used the dataset for 

a broad assessment of biotic diversity and to target one call of the Geoffroy’s spider monkey. This 

dataset has huge potential for further study and can be used in the future for additional assessments 

of acoustic biotic diversity, to analyse more calls of the Geoffroy’s spider monkey and to analyse the 

calls of additional species. If I had collected data using line transects, this would not be possible since 

I would have had data only for our target species to answer specific questions.  

5.2. Soundscape Ecology 

5.2.1. The Importance of the Diel Cycle  
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The emergence of new technology, such as passive acoustic monitoring (PAM), has improved our 

ability to monitor landscapes continuously, allowing the study of temporal variability at a fine scale 

(Pijanowski et al., 2011; Ducrettet et al., 2020). The use of PAM combined with acoustic indices for 

rapid extraction of information, allowed me to monitor acoustic diversity across the diel cycle, 

revealing important changes in acoustic biotic diversity at dawn and dusk. By studying at this 

temporal scale, I was able to detect disruption to the dawn and dusk chorus in disturbed land use. 

Comparative analysis at key times of the day (dawn, dusk, midday, midnight) did not fully uncover 

these changes, revealing only a reduction in biotic diversity at dawn in disturbed land use. If I had 

not included the diel cycle in my analysis I would have missed important changes that have occurred 

in the acoustic space as a result of land use change. Previous studies have mainly focused on 

studying acoustic diversity at key points during the diel cycle, revealing inconsistent results (Bradfer‐

Lawrence et al., 2019). Here we highlight the importance of studies that cover the breadth of the 

diel cycle and the ability of acoustic indices to reveal key differences in acoustic diversity across 

different ecosystems. 

5.2.2. Misuse of Acoustic Indices 

As discussed in Chapters One and Two, previous studies have revealed inconsistencies with the use 

of acoustic indices and questions as to their correlation with measures of species diversity remain, 

which must be taken into consideration in any study. It has been suggested that this is due to lack of 

a standardised approach across the field (Bradfer‐Lawrence et al., 2019) and the inherent 

differences that exist geographically and between ecosystems (Gibb et al., 2019). For example, 

Eldridge et al., (2016) found that bird species richness were correlated to acoustic indicies in 

temperate zones but not in the tropics, and suggested this was due to the diversity of other taxa in 

the tropics. It is also possible that interference from other sound sources prevents indices from 

accurately representing species diversity. For example, indices were found to be biased by 

anthropogenic sound (Fairbrass et al., 2017) and continuous biotic sounds from stridulating insects 
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(Ross et al., 2021). The question also still remains about which component of diversity the acoustic 

indices are measuring, with some finding correlations with species richness (Eldridge et al., 2018; 

Bradfer-Lawrence et al., 2020; Dröge et al., 2021) and others with abundance or activity (Boelman et 

al., 2007; Bradfer-Lawrence et al., 2020; Holgate, Maggini and Fuller, 2021). These results are also 

likely to differ between environments and indices. Therefore, although indices can reveal important 

patterns and changes in acoustic diversity, we must be cautious in our interpretation of the results, 

especially when not using comparative data sets.  

The need for caution is highlighted in my results from Chapter Two. Here, although I found a loss of 

the dawn and dusk peaks in grasslands, indicating some divergence from a healthy functioning 

ecosystem, I found high acoustic biotic diversity throughout the day. Without questioning these 

outputs, I could have concluded that acoustic diversity was higher in grasslands than in native 

forests. However instead, using knowledge from the literature, which shows indices may represent 

acoustic activity and abundance and not necessarily richness and that they may be affected by 

continuous biotic sounds, I conclude that this result is potentially due to the indices being influenced 

by large flocks of social parakeets in the grasslands.  

In this study I did not take comparative measurements of species diversity whilst in the field. This 

was due to comparative measurements emerging as a potential issue towards the end of the 

fieldwork period. I did consider validating the outputs of the acoustic indices by listening to the 

diversity of sounds in the recordings, however, due to the sheer number of sounds and species in 

some recordings and the spatial scale of the study, this would have been a complex and time 

consuming task and was outside the limits of the project. This could be considered for future 

publication, focusing on the functioning of the indices as well as the ecological outputs.     

5.3. Machine Learning 

5.3.1. The Advantages of Automated Approaches 
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Recently, the acoustic literature has discussed the significant reduction in analysis time owing to the 

use of automated species detectors (Browning et al., 2017; Gibb et al., 2019). The automated 

detector used in this study was able to analyse over 60,000 hours of data in just 8 weeks, with a 

further 4 weeks required for manually validating false positives. Without this, I estimate that manual 

listening, assuming 8 hours per day 7 days per week and not considering time to stop and record 

positives, would have taken 1092 weeks or 21 years. Here, I show the difference in analysis time 

between manual and automated approaches and hence the benefit of using automated species 

detectors for large datasets. It has been said that one of the major barriers to the future use of 

acoustics in ecology is the development of reliable automated classifiers (Browning et al., 2017). 

Here I close this gap a little further by creating a detector for a rare endangered mammal in the 

neotropics.   

5.3.2. Future Application 

The large acoustic dataset that I collected has been used for my PhD to study the Geoffroy’s spider 

monkey and to gain measures of overall species diversity using acoustic indices. However, the 

potential lines of study using this same dataset are vast, including the creation of more automated 

species detectors. The development of automated detectors are based on expertly labelled training 

datasets of species calls, which are difficult to collate, especially for rare species (Browning et al., 

2017; Gibb et al., 2019). For a rare species such as the spider monkey, this required the collection of 

12 weeks of pilot data and manually listening to over 1000 hours of recordings. This was a time-

consuming activity and highlights the first barrier in the development these automated approaches, 

and why there is perhaps such a gap in the field. Over the last two years we have begun creating 

labelled training databases for other species using this dataset. In the 2020/2021 academic year we 

created an MSc project for a student from an Imperial College based course: Computational 

Methods in Evolution and Ecology and Evolution (CMEE). This student attempted to adapt the code 

used to train the spider monkey detector to train a detector for the mantled howler monkey. They 
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were successful in adapting the code for both single and multi-call classification and achieved high 

accuracy. Not only does this show the adaptability of the original detector for other species, but also 

highlights the future work that could be done using this dataset to further close the gap in the field. 

5.3.3. Barriers to Automated Approaches 

The development of automated species detectors not only requires large labelled training datasets, 

but also specialised expertise and knowledge in the field of data science (Browning et al., 2017; Gibb 

et al., 2019). This can often present technical barriers for ecologists (Browning et al., 2017; Gibb et 

al., 2019) and has likely contributed to the gap in the field. In the absence of a collaboration with the 

Department of Computing, where a fellow PhD student, George Rizos, trained the detector for the 

Geoffroy’s spider monkey, this project would not have been possible. Before Mr Rizos was successful 

in training the detector, there were two previous MSc students, Duncan Butler and Zhuoda Han from 

the CMEE course, who attempted the task, neither was able to develop a well‐trained model. This 

highlights the level of expertise required for the development of these detectors. This is further 

exemplified by attempts at training a gunshot detector. Originally, the final chapter of this PhD was 

intended to be based around the effects of hunting on spider monkeys. A team of researchers had 

been successful in developing a model for gunshots in Belize using this a dataset of gunshots created 

from shooting firearms in Belize, however, discussions revealed that their model was unlikely to be 

transferable to other regions. A CMEE student attempted to create a model for our region using a 

mix of gunshot data from online sources and the region, however this proved unsuccessful. Both 

Google and the Lab of Ornithology at Cornell University have also created gunshot detectors, 

however, in a separate MSc project that I co-supervised, neither proved highly successful in 

extracting gunshots from an acoustic dataset in Africa (Huang et al., 2021). This highlights both the 

difficulty in creating accurate detectors and a potential problem with their transferability, which 

should be tested.      
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Accurate automated species detectors are invaluable for the use of acoustics in ecology and enable 

rapid analysis of large acoustic datasets (Browning et al., 2017; Gibb et al., 2019) as I have 

demonstrated here in my study of the Geoffroy’s spider monkey. However as discussed above, the 

barriers to their development, in terms of expertly labelled training databases and the technical skills 

and knowledge required, may be leading to a gap in the field (Browning et al., 2017; Gibb et al., 

2019). Expertly labelled and publicly available call databases, together with collaborations between 

technically specialised data scientists and ecologists and a user-friendly tool for training species 

detectors are urgently required (Browning et al., 2017; Gibb et al., 2019).  

5.4. The Use of Passive Acoustic Monitoring for Primate Studies 

5.4.1. Current Application in the Field of Primatology 

To date only 10 detectors have been developed for primate calls, these include the Bornean Gibbon 

(Hylobates muelleri) (Clink et al., 2017), Hainan gibbon (Nomascus hainanus) (Dufourq et al., 2021),  

chimpanzee (Pan troglodytes) (Kalan et al., 2015), Diana monkey (Cercopithecus diana), king colobus 

(Colobus polykomos), western red colobus (Procolobus badius) (Heinicke et al., 2015), blue monkeys 

(Cercopithecus mitis stuhlmanni) (Mielke and Zuberbühler, 2013), black lemurs (Eulemur macaco 

macaco),(Pozzi, Gamba and Giacoma, 2010) common marmoset (Callithrix jacchus) and Bornean 

orangutan (Pongo pygmaeus wurmbii) (Spillmann et al., 2015) 

(Pozzi, Gamba and Giacoma, 2010; Mielke and Zuberbühler, 2013; c et al., 2015; Kalan et al., 2015, 

2016; Spillmann et al., 2015; Clink et al., 2017; Dufourq et al., 2021).  

Of these, only one species is from the neotropics and this detector was developed using calls from a 

single captive population, designed for use on captive populations in biomedical research (Turesson 

et al., 2016). Training a detector on a single captive population would likely reduce its transferability 

to other datasets, since it does not capture intraspecies variability and captive bred individuals may 
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have different call patterns. One further study took a different approach and isolated sounds within 

a selected frequency to look for calls of the Black and Gold Howler Monkey (Alouatta caraya) (Pérez-

Granados and Schuchmann, 2021). This is an interesting approach as it will significantly reduce the 

time required to manually analyse the data, however, this would not function for many species of 

primate who call in the same frequency bands as birds, anurans and insects. At various points in this 

thesis I have highlighted the bias of passive acoustic monitoring to northern temperate species and 

to certain taxa, however, it appears within the primate literature there is a bias developing towards 

African and Asian species.  

There are also questions as to their transferability. I have been unable to confirm if any detectors 

developed for primates have verified the functionality of the detector on other datasets. If they are 

not transferable then this will limit their use and a new detector would need to be developed for 

each region, which would limit the future use of acoustics in ecology and conservation. 

5.4.2. Knowledge Gaps 

Owing to their threatened status (Junker et al., 2020), survival in human-modified landscapes 

(Arroyo-Rodríguez et al., 2017a) and importance in the ecosystem (Estrada et al., 2017), the 

conservation of primates is of primary importance. Despite the wealth of primate studies in the 

literature, knowledge gaps still exist, including the study of lesser-known and neotropical species 

(Estrada et al., 2017), landscape scale studies (Arroyo-Rodríguez and Fahrig, 2014), long- term 

studies (Junker et al., 2020) and species and habitat specific knowledge on threats (Estrada et al., 

2017). As a result of these knowledge gaps, we lack evidence-based strategies to effectively 

conserve primates (Estrada et al., 2017; Junker et al., 2020). In this study I have shown how using 

PAM combined with an automated species detector can facilitate a landscape scale study covering a 

region of over 1000 km2. This scale and coverage allowed me to answer questions related to the 

effects of land use change, roads, buildings and protection status, providing habitat and species-

specific knowledge on threats. Additionally, in Chapter Four, we used this information to develop 
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evidence-based strategies to conserve an endangered neotropical primate, further contributing to 

gaps in the literature. The ability to record continuously facilitated the collection of sufficient 

replicates over a 7-day period, and combined with the non-invasive nature of the study, likely 

increased the detection probability for a rare species. This demonstrates how passive acoustic 

monitoring, combined with a computational approach, can help to fill important knowledge gaps 

related to the study of primates. Although more expensive, long term studies are also possible using 

this method, which is becoming even more feasible as battery life and storage capacity increase and 

with the development of real-time data transfer (Gibb et al., 2019). This method is suitable for any 

primate that makes a recognisable call and is also likely to be feasible for some of the lesser studied 

species where knowledge gaps are even more severe. 

5.4.3. Conservation Application 

One of the main findings in Chapter Four was the absence of the Geoffroy’s spider monkey within 1 

km of primary roads. Paved roads across the study region are limited, however are still acting as a 

barrier to connectivity and causing a bottleneck in the corridor. There is a large system of secondary 

roads across the region, if these are paved through important native forest habitat it could have 

devastating consequences for this species and other sensitive species. This year on the Osa 

Peninsula, the government released plans to pave a 42 km stretch of secondary road that cuts 

through critical habitat for the Geoffroy’s spider monkey and would have reduced connectivity in the 

region further. Using the evidence from this study I worked with local NGO’s in the region to try and 

modify this development. Our work became part of a campaign that was able to temporarily halt the 

paving of this road and we will continue to work to ensure that roads passing through critical habitat 

in the region are either not paved, or that necessary measures are put into place to mitigate some of 

the negative consequences of road development on wildlife. This provides further evidence for how 

PAM can be used to provide species-specific knowledge on threats and evidence-based strategies for 

conservation. 
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5.5. The Use of Passive Acoustic Monitoring for Monitoring Protected Areas 

PAs are considered a key tool in tackling biodiversity loss (Watson et al., 2014; Gray et al., 2016). 

They are implemented to conserve ecosystems and wildlife, whilst having a wider role in 

contributing to local livelihoods, tourism, and in the mitigation of and adaptation to climate change 

(UNEP-WCMC and IUCN, 2016). Despite their importance, globally, large portions of the protected 

area network are not effectively conserving habitats or species (Laurance, Useche, et al., 2012; 

Watson et al., 2014; Osipova et al., 2020; Ward et al., 2020) and few have even had any assessment 

of effectiveness or functionality (UNEP-WCMC and IUCN, 2016). The site-level data required to make 

these assessments is time consuming and expensive to obtain (Geldmann et al., 2021) and 

researchers are continually searching for more efficient methods to evaluate conservation strategies 

(Wrege et al., 2017). Here we have demonstrated how PAM can help to evaluate the effectiveness of 

a protected area for conserving rare and endangered species, be used for evidence-based 

conservation strategies and can serve as a baseline for future standardised assessments to monitor 

changes over time.  

Monitoring the effectiveness of protected areas should not however be based on one species, even 

if that species does hold an important role in the ecosystem. Biological monitoring should 

encompass analysis of ecological communities at different trophic levels (Buxton, Lendrum, et al., 

2018). Pairing acoustic monitoring with other technology such as camera trapping, which is also a 

non-invasive method for studies at large spatial-temporal scales, offers one way to study community 

composition and species distribution across multiple anthropogenic stressors (Buxton, Lendrum, et 

al., 2018).  

5.6. Main Conclusions 

Knowledge gaps across the acoustics, primatology and threatened species literature, are currently 

hindering our ability to conserve species and ecosystems. This is, in part, due to the challenges of 
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efficient data collection and analysis at the spatial and temporal scales required to evaluate how 

species respond to habitat changes across human-modified landscapes. In this thesis I have shown 

that PAM, combined with computational approaches can be successful in evaluating and revealing 

changes in acoustic diversity across the diel cycle, for the study of rare and threatened species and 

to monitor aspects of protected area effectiveness. I believe this work has highlighted the potential 

of PAM for use in the field of ecology and conservation and has contributed to closing the 

knowledge gaps that currently exist across these fields.  

5.7. Future Directions 

Future work in the field of soundscape ecology should continue to validate the indices that have 

been developed across different geographical areas and ecosystems, to gain a better understanding 

of how they function in different areas and to understand what aspect of diversity they are 

measuring. As a follow on to the work undertaken here, we should firstly listen to a selection of 

recordings to validate the functionality of the indices and, secondly, it is possible to use the dataset 

to test new methods evaluating acoustic diversity and community composition (Furumo and Mitchell 

Aide, 2019). This work has highlighted the benefits of studying across the diel cycle to uncover 

potential changes in acoustic diversity and it is recommended that soundscape studies take this 

approach in the future.  

Using PAM, combined with an automated detector for the spider monkey call, has allowed us to 

effectively determine the dispersal limitations and threats for an endangered species over a large 

spatial scale, whilst limiting the impact of our presence on the results. We have then used this 

information to develop a habitat suitability model, design a biological corridor, identify potential 

bottlenecks and we are now in discussions with community partners about management 

recommendations to improve conservation for this species across the region. Future work should 

focus on the continued development of these computational approaches through creating call 
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libraries and both training and testing species call detectors, especially for data-deficient, rare 

species. Below I will present ideas of how the acoustic dataset that I have collated during this project 

could be used to fulfil some of these objectives. 

5.7.1 Automated Classifier for the Genus Ateles 

I have demonstrated the value of the Geoffroy’s spider monkey model on the Osa Peninsula in 

increasing the knowledge of and improving the conservation for an endangered species. I now want 

to make this a transferable tool that can be used by researchers in other regions to implement similar 

projects. To do this I propose the following project to develop a range wide, broad model for the genus 

Ateles. Within this genus are seven species of spider monkey, six endangered and one critically 

endangered species (IUCN, 2021), all with the same call, the whinny. 

 Stages for the development are as follows: 

1. Model improvement Ateles geoffroyi: This model was created with the support of the 

Department of Computing at Imperial College London. It was trained using a database of 580 

calls, however, after extracting almost 3000 calls from the dataset, we can now use these for 

model improvement. 

2. Model testing Ateles geoffroyi: Using the improved model we would test its functionality on 

acoustic datasets from other regions, where, although this species has the same call, the 

characteristics of this call and background noise may differ slightly. The aim is to determine how 

widely the Osa specific model can be applied. I already have partners in Northern Costa Rica and 

Mexico with acoustic datasets for testing.  

3. Model training and expansion Ateles geoffroyi: Depending on the results of these tests, if 

model performance for other regions is lagging, then calls from these regions will be extracted 

and added to the labelled training dataset to improve model performance. The aim is to produce 
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a range-wide model for this species and to determine how much coverage or data is needed to 

obtain this and what might be the geographic variation in the calls.  

4. Model expansion genus Ateles: Using the range-wide model for Ateles geoffroyi I would then 

test its performance on other species within the genus, repeating steps 2 and 3 as described 

above. We have partners at WWF Peru with an acoustic dataset that could be used for this 

purpose. If more data is needed this could be collected with a small amount of fieldwork by 

myself or through sending acoustic recorders to in-country partners. 

5.7.2. Multiple Species Models 

Using the large acoustic dataset, we have been working towards acoustic algorithms for additional 

species, which are in various stages of development. We have recently adapted the code developed 

for the spider monkey model and trained a multi-label classifier for two calls of the mantled howler 

monkey (Alouatta palliata). This multi-taxa approach could now be further developed in line with 

suggestions for project 1. We also have labelled training datasets for the Central American squirrel 

monkey (Saimiri oerstedii), great tinamou (Tinamus major), scarlet macaw (Ara macao) and yellow-

throated toucan (Ramphastos ambiguous). The conservation status of these species ranges from 

least concern to vulnerable, however, all populations are known to be declining. I would be 

particularly interested in developing the great tinamou model as this species, like the spider monkey, 

is a sensitive forest specialist subject to hunting pressure. Additionally, the genus Tinamus contains 

47 species, many with a similar acoustic range and a combined geographic range covering Central 

and South America.  
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Supplementary Information One: Chapter Two 

1.1. Detailed Explanation of Principal Component Analysis 

Results indicate that biotic indices are generally correlated, with an R2 value of between 0.4 and 1 

(Supplementary Figure.1.1), confirming that Principal Component Analysis (PCA) is suitable for 

reducing the dimensionality of the nine acoustic indices into PC axis. Eigenvalues indicate that we 

should retain PC1, and that PC2 may also contain some interesting information. PC1 alone accounts 

for more than 56% of the variation in the data and cumulative variance across PC1 and PC2 is almost 

70%, therefore we are unlikely to lose important information by discarding the other PCs 

(Supplementary Table.1.1).  

Supplementary Figure 1.1. Correlation Plot. Correlation plot showing the correlation between 

acoustic indices. Correlation values indicate the level of correlation between each of the indices.  
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Supplementary Table 1.1. Eigenvalues and Explained Variance. Eigenvalues, variance explained and 

cumulative variance for each PC. PC’s to be retained are highlighted in grey. PC1 and PC2 both have 

eigenvalues over 1 and together account for 69% of variance.   

 

The variable correlation plot (Supplementary Figure. 1.2.a) shows the relationship between the 

indices and their relationship to PC1 and PC2. It confirms that most biotic indices are correlated, 

with the exception of HFC index that is negatively correlated to the biotic indices and correlated to 

the NDSI index, which represents anthropogenic sound. From inspection of the LDFC spectrograms 

we conclude that across our landscape, HFC index is dominated by insect sounds, mainly cicadas, 

and anthropogenic sounds, which is likely why we see little correlation to other biotic indices and 

more correlation to the NDSI index (Supplementary Figure. 1.7). The biotic indices are represented 

Principal Component eigenvalue Variance (%) Cumulative Variance (%) 

Dim.1 5.049277 56.10307 56.10307 

Dim .2 1.152307 12.80341 68.90649 

Dim .3 0.84507 9.38967 78.29616 

Dim .4 0.674869 7.49854 85.7947 

Dim .5 0.447408 4.971205 90.7659 

Dim .6 0.38383 4.264777 95.03068 

Dim .7 0.239444 2.660488 97.69117 

Dim .8 0.161413 1.793483 99.48465 

Dim .9 0.046381 0.51535 100 
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across PC1, with ThreeG, MFC, CLS and ENT indices showing a stronger effect and NDSI and HFC 

index are represented across PC2 (Supplementary Figure. 1.2.a & b). The separation of the biotic and 

anthropogenic indices across PC1 and PC2 shows that as anthropogenic sound increases, biotic 

sound decreases (Supplementary Figure. 1.2.a). Supplementary Figure 1.2.b highlights which indices 

are represented across all nine PCA axis and the contribution of each index, with larger and darker 

circles indicating increased strength. Here we see again that biotic indices are represented across 

PC1, the most important being ThreeG and CLS indices, and to a lesser extent LFC index 

(Supplementary Fig. 1.2.b). This is likely due to LFC containing less biotic sounds and more left-over 

geophony and anthrophony than other biotic indices. This is further highlighted in the loading 

values, where larger values represent a stronger influence along that PC axis (Supplementary Table 

1.2).  

From these results we can conclude that PC1 can be considered an index of biotic sound and PC2 an 

index of anthropogenic sound. Some precaution must be taken with the interpretation of PC2 since 

HFC does represent both anthropogenic and biotic sounds. Further investigation of other PC’s would 

be of little benefit since they contain little variation, PC3 is mainly represented by HFC and PC4 

represented by LFC, making it more beneficial to study the actual index itself (Supplementary Figure 

1.2.b).  
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Supplementary Figure 1.2.a. Variable Correlation Plot. Variable correlation plot showing the 

relationship between the indices, closer vectors are more highly correlated and those on opposite 

quadrants are negatively correlated. The x-axis represents PC1 and y-axis PC2, with % of variance 

explained. b. Variable Correlation Plot All Axis. Correlation plot showing the contribution of each 

index to a PC, larger darker circles represent a stronger contribution. 
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Supplementary Table 1.2. Loading Values. Loading values indicating the strength of contribution of 

each index to the PC’s. Higher values show a stronger contribution. Indices that represent PC1 and 

PC2 are highlighted. 

Index PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

ACI 0.355791 0.009918 -0.07503 0.37573 -0.01756 0.797949 0.185951 0.21514 -0.09283 

ThreeG 0.40249 0.14967 0.294838 0.02026 -0.2746 -0.17039 0.087723 0.249754 0.744143 

CLS 0.406131 0.01404 0.235143 -0.13529 -0.16079 -0.28448 -0.11641 0.529525 -0.60045 

ENT 0.380919 -0.13802 -0.07901 -0.25263 0.260905 0.189232 -0.7871 -0.1488 0.142249 

EVN 0.351479 0.006377 0.08028 -0.43963 0.618439 -0.01702 0.526435 -0.12956 -0.00548 

HFC 0.111292 0.639137 -0.70809 -0.22195 -0.12692 -0.05107 0.012169 0.097855 0.005046 

MFC 0.380102 0.257638 0.203652 0.155853 -0.32878 -0.07035 0.040619 -0.74399 -0.23486 

LFC 0.289532 -0.20855 -0.37049 0.647123 0.325746 -0.45786 0.009115 0.000666 0.028588 

NDSI -0.19272 0.663209 0.399167 0.301166 0.466453 0.00465 -0.21361 0.094414 -0.02882 

 

 

 

 

 



 

 

173 
 

1.2. GAMM’s and LMM’s 

Supplementary Table 1.3. Model Selection for GAMM’s. Model selection for all GAMM’s showing 

model df, AIC, LogLik and R-sq values for PC1 and PC2 separately. The best models are highlighted in 

grey and contain month as a random effect and a corCAR correlation structure.  

Model df AIC (PC1) AIC (PC2) LogLik 
(PC1) 

LogLik 
(PC2) 

R-sq.(adj) 
PC1 

R-sq.(adj) 

PC2 

Basic Gam_k9 16 16240.85 12370.680 -8104.424 -6169.340 0.558 0.158 

Gam_k12 16 16218.68 12371.093 -8093.341 -6169.546 0.561 0.158 

Gam_k15 16 16166.26  12371.345 -8067.128 -6169.672 0.569 0.158 

Gam_k20 16 16158.35  12371.400 -8063.173 -6169.700 0.571 0.158 

Gamm_Month 17 15954.47 x -7991.723 x 0.542 x 

Gamm_ARMA 22 16230.68  12382.680 -8093.341 -6169.340 0.561 0.158 

Gamm_AR1 17 16220.68  12372.680 -8093.341 -6169.340 0.561 0.158 

Gamm_ corCAR 17 11673.31 7100.300 -5819.654 -3533.165 0.561 0.158 

Gamm_Final  17 11643.42 7061.983 -5803.710 -3512.991 0.544 0.166 
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a. 

c d 

b. 

Supplementary Figure 1.3. Autocorrelation Plots for GAMM’s. Autocorrelation plots for 

GAMM’s showing the level of temporal autocorrelation between each 30-minute period in the 

diel cycle. Each lag represents one 30-minute period. Lag at zero is always 1, subsequent lags 

closer to zero suggest less autocorrelation. The blue dashed horizontal line represents the 

significance boundary, with all lags falling within that boundary showing insignificant levels of 

correlation. a. PC1 GAMM before corCAR correlation structure added b. PC1 GAMM after corCAR 

correlation structure added. c. PC2 GAMM before corCAR correlation structure added. d. PC2 

GAMM after corCAR correlation structure added. 



 

 

175 
 

 

 

Supplementary Figure 1.4. Variogram Plots for GAMM’s. Variogram plots showing the absence of 

spatial autocorrelation for the best GAMM model for a. PC1 and b. PC2. All points run along the 

horizontal at 1.0 indicating no significant spatial autocorrelation for either model.  

 

Supplementary Table 1.4. Moran’s I Statistic for GAMM’s. Results for Moran’s I Statistic showing 

insignificant spatial autocorrelation for the best GAMM model for PC1 and PC2. If no significant 

autocorrelation is present, then the observed and expected values should be similar and the p-value 

insignificant. 

 

 

GAMM Observed correlation Expected correlation p Value 

PC1 -0.0008051865 -0.000226808 0.486 

PC2 -0.0008372966 -0.000232288 0.680 

a
. 

b
. 
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a b 

c d 

e f 

g h 

Supplementary Figure 1.5. Autocorrelation Plots for LMM’s. Autocorrelation plots showing 

insignificant temporal autocorrelation between months for each LMM. Each lag represents 

one month. Lag at zero is always 1, subsequent lags closer to zero suggest less 

autocorrelation. The blue dashed horizontal line represents the significance boundary, with all 

lags falling within that boundary showing insignificant levels of correlation, a. PC1 at 06:30, b. 

PC2 at 06:30, c. PC1 at 14:00, d. PC2 at 14:00, e. PC1 at 16:30, f. PC2 at 16:30, g. PC1 at 00:00, 

h. PC2 at 00:00. 
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Supplementary Figure 1.6. Variogram Plots for LMM’s. Variogram plots showing the absence of 

spatial autocorrelation for. a. PC1 at 00:00, b. PC2 at 00:00, c. PC1 at 06:30, d. PC2 at 06:30, e. PC1 at 

14:00, f. PC2 at 14:00, g. PC1 at 16:30, h. PC2 at 16:30. All points run along the horizontal at 1.0 

indicating no significant spatial autocorrelation.  

a b 

c 

f e 

g h 
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Supplementary Table 1.5. Moran’s I Statistic for LMM’s. Results for Moran’s I Statistic showing 

absence of significant spatial autocorrelation in LMM’s for PC1 and PC2. If no significant 

autocorrelation is present, then the observed and expected values should be similar and the p-value 

insignificant. 

Model Observed correlation Expected correlation p-value 

PC1 06:30 0.01 -0.006 0.23 

PC2 06:30 -0.02 -0.006 0.34 

PC1 14:00 -0.03 -0.006 0.06 

PC2 14:00 0.01 -0.006 0.19 

PC1 16:30 -0.01 -0.006 0.53 

PC2 16:30 -0.02 -0.006 0.38 

PC1 00:00 -0.006 -0.006 0.97 

PC2 00:00 -0.03 -0.006 0.13 
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1.3. Results 

1.3.1. Dimensionality Reduction 

 

Supplementary Figure 1.7. Long Duration False Colour Spectrogram (LDFC Spectrogram). Created 

using Analysis Programmes software, developed by Towsey et al (2018). This process combines the 

spectral data from six indices, ACI, EVN, ENT, BGN, PMN and EVN to visually summarise the content 

of 24 hours of audio recording. In the example above we can see hues of blue and pink representing 

biotic sounds, overlaid by anthropogenic sounds in yellow and green covering the full frequency 

range of the spectrogram. HFC index only detects sounds above 8000kHz, we can see how this 

section is dominated by anthropogenic sounds, causing this index to be more closely related to NDSI 

index, the index of anthropogenic sound.  
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Supplementary Table 1.6. Model Results PC1. Edf, F values and p values for each smooth term for 

the best model PC1 ‘Gamm_Final’  

Model terms Edf SE F value p value 

s(Time*Grassland) 9.616 0.21 47.181 <0.0001 

s(Time*Old Growth) 10.379 0.2 20.929 <0.0001 

s(Time*Palm) 4.294 0.21 5.443 <0.0001 

s(Time*Secondary) 10.702 0.17 60.069 <0.0001 

s(Time*Teak) 5.887 0.28 3.572 <0.0001 

 

Supplementary Table 1.7. Model Results PC2. Edf, F values and P values for each smooth term in 

best model PC2- ‘Gamm_Final’ 

Model terms edf F value P value 

s(Time*Grassland) 7.430 12.436 <0.001 

s(Time*Old Growth) 3.345 3.526 <0.05 

s(Time*Palm) 4.836 8.265 <0.001 

s(Time*Secondary) 6.844 3.036 <0.01 

s(Time*Teak) 3.233 5.365 <0.01 
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Supplementary Information Two: Chapter Three 

2.1. Methods 

Supplementary Figure 2.1. Explanatory Variables Correlation Plot. Correlation plot for each of the 

explanatory variables. Correlation values indicate the level of correlation between each of the 

variables. 
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Supplementary Figure 2.2. Zero Inflation Plot. Plot showing no zero-inflation for negative binomial 

model with call rate as the response variable and forest cover, secondary road and buildings as the 

explanatory variables. 

Supplementary Figure 2.3. Test for Overdispersion. a. Plot indicating insignificant overdispersion for 

the negative binomial model with call rate as the response variable and forest cover, secondary road 

and buildings as the explanatory variables. b. Plot indicating significant overdispersion for Poisson 

model with call rate as the response variable and land use as the explanatory variable and c. primary 

road as the explanatory variable 

a b c 



 

 

183 
 

 

Supplementary Table 2.1. Model Fit for Poisson and Negative Binomial Model. Shows AIC and Log 

Likelihood results for Poisson and negative binomial models with call rate as the response variable 

and forest cover, secondary road and buildings as the explanatory variables. *** indicates whether 

this difference was significant. 

 

 

Supplementary Figure 2.4. Residual Plots for Binomial Models. Plots indicating good model fit for 

binomial models with presence as the response variable and a. Land use b. Primary road and c. 

Forest cover, secondary road and buildings as the explanatory variables 

Model AIC Poisson   AIC Negative 
binomial 

LogLik Poisson  LogLik   Negative 
binomial 

Forest Cover /Secondary 
Road/ Building 

9330.04 
920.28 

-4661.0 -455.1*** 

a b c 
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Supplementary Figure 2.5. Residual Plots for Poisson and Negative Binomial Models. a. Plot 

indicating good model fit for negative binomial model with call rate as the response variable and 

forest cover, secondary road and buildings as the explanatory variables. b. Plot indicating poor 

model fit for Poisson model with call rate as the response variable and land use as the explanatory 

variable and c. primary road as the explanatory variable. 

Supplementary Table 2.2 Spatial Autocorrelation Results: Occurrence. Results for Moran’s I 

Statistic showing insignificant spatial autocorrelation for logistic regression. If no significant 

autocorrelation is present then the observed values should be close to zero and similar to the  

expected values and the p-value insignificant. 

Model Observed correlation Expected correlation p-value 

Land Use  -0.006 -0.002 0.059 

Primary Road -0.006 -0.002 0.058 

Forest Cover/Secondary 
Road/ Building 

-0.005 -0.002 0.09 

 

a c b 
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Supplementary Table 2.3 Spatial Autocorrelation Results: Call rate. Results for Moran’s I Statistic 

showing insignificant spatial autocorrelation in Poisson and negative binomial models. If no 

significant autocorrelation is present then the observed values should be close to zero and similar to 

the expected values and the p-value insignificant. 

Model Observed correlation Expected correlation p-value 

Land Use -0.004 -0.002 0.26 

Primary Road -0.003 -0.002 0.83 

Forest Cover/Secondary 
Road/ Building 

-0.007 -0.002 0.07 

 

Supplementary Table 2.4. Model Selection: Occurrence. Showing AIC and Log Likelihood results for 

logistic regression models without and with an auto covariate function added to account for spatial 

autocorrelation in the data. *** indicates whether this difference was significant. 

Model AIC (without 
ac function) 

AIC (with ac 
function) 

LogLik (without 
ac function) 

LogLik (with 
ac function) 

Habitat  293.75 292.63 -129.64 -140.88 

Primary Road 311.36 307.67 -139.31 -150.84* 

Forest Cover/Secondary Road/ 
Building 

280.59 231.69 -136.30 
-110.85 *** 
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Supplementary Table 2.5. Model Selection: Call rate. Showing AIC and Log Likelihood results for 

Poisson and negative binomial models without and with an auto covariate function added to account 

for spatial autocorrelation in the data. *** indicates whether this difference was significant. 

Model AIC (without 
ac function) 

AIC (with ac 
function) 

LogLik (without 
ac function) 

LogLik (with 
ac function) 

Habitat  9645.568 9055.147 -4816.8 4520.6 *** 

Primary Road 10581.273 9949.455 -5288.6 -4971.7*** 

Forest Cover/Secondary Road/ 
Building 

920.28 916.46 -455.14 452.23* 
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Supplementary Table 2.6. Scale of Effect. Scale of effect for Occurrence (Occ) and call rate (CF) for 

each explanatory variable: Forest cover, primary and secondary roads and buildings, measured using 

a buffer around each site at a scale of 50:5000 m radius for forest cover and 50:1000 all for other 

variables. X indicates non-convergence of the model  

Scale 
(m) 

Forest: 
Occ 

Forest: 

CF 

Primary 
Road: Occ 

Primary 
Road: CF 

Secondary 
Road: Occ 

Secondary 
Road: CF 

Buildings: 

Occ 

Buildings: 

CF 

50 0.66 0.96 x 0.225 0.073 0.237 0.002 0.021 

100 0.69 0.96 x 0.225 0.082 0.272 0.000 0.379 

200 0.77 0.97 x 0.543 0.091 0.305 0.002 0.025 

300 0.71 0.96 x 0.651 0.083 0.191 0.010 0.235 

400 0.63 0.95 0.185 0.720 0.072 0.182 0.049 0.368 

500 0.66 0.94 0.244 0.799 0.051 0.158 0.027 0.400 

750 0.49 0.92 0.483 0.910 0.064 0.274 0.078 0.731 

1000 0.41 0.87 0.597 0.951 0.071 x 0.228 0.819 

2000 0.33 0.821 

      

3000 0.17 0.713 

      

4000 0.19 0.55 

      

5000 0.16 0.25 

      

 



 

 

188 
 

2.2. Results: Occupancy Analysis 

Our full model with p (forest cover) psi (forest cover, secondary road and buildings) shows good fit 

(p=0.08, c-hat=1.53) but ranked fifth within the candidate models and had a QAICc of >2. The best 

model according to QAICc contained only forest cover as affecting occupancy and detection 

probability, the second-best model contained only forest cover as affecting occupancy and detection 

remaining constant p(.). The third best model contained forest cover and secondary road as affecting 

occupancy, and forest cover affecting detection probability and the fourth best model contained 

forest cover and secondary road as affecting occupancy and detection remaining constant p(.). As all 

four models had a QAICc of <2, they are all plausible (Supplementary Table 2.7).  

When considering model averaged parameter estimates and summed Akaike weights (wi) forest 

cover is the most important variable in explaining site occupancy (Supplementary Table 2.7). As 

secondary road density is included in our third-best model, it is likely that it is also affecting site 

occupancy to some extent (AICw=0.13, QAICc=1.8) (Supplementary Table 2.7). Model averaged 

coefficients from the top four models show a significant positive effect of forest cover on occupancy, 

suggesting occupancy increases with increasing forest cover (Supplementary Table 2.8). The effect of 

forest cover on detection probability was not significant (p=0.3). Secondary road density and area 

cover of building show a weaker, non-significant negative effect on occupancy, suggesting 

occupancy decreases with increasing density of secondary roads and buildings (Supplementary Table 

2.8). 
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Supplementary Table 2.7. Model Selection: Occupancy. Model selection results for occupancy 

analysis. AICc, QAICc and AIC weights show the best models.    

 

AICc QAICc AICw 

p(Forest cover) Psi(Forest Cover) 891.91 0 0.33 

p(.) Psi(Forest_Cover) 893.14 1.22 0.18 

p(Forest cover) Psi(Forest Cover, 
Secondary_Road) 893.72 1.80 0.13 

p(.) Psi(Forest Cover, Secondary_Road) 893.98 2.07 0.12 

 

Supplementary Table 2.8. Model Output: Occupancy. Estimates show the direction of the 

correlation with standard errors and z values and p values indicate the strength and significance of 

that variable in its effect on site occupancy. 

 

Estimate se z value P value 

psi(Forest Cover) 9.47 3.11 3.04 <0.01 

psi(Secondary_Road) -0.10 0.20 0.5 0.61 

psi(Building) <-0.001 <0.01 0.01 0.98 

p(Forest Cover) 3.3 3.1 1.02 0.3 
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2.3. Results: Generalised Linear Models 

Supplementary Table 2.9. Model Results for Land Use: Occurrence. Logit scale estimates and 

transformed probability of occurrence estimates for each land use with standard errors (se) 

Habitat Estimate (logit scale) se Probability of occurrence se 

Old Growth -0.83 0.28 0.30 0.05 

Secondary -0.23 0.32 0.257 0.03 

Mangrove -3.21 1.47 0.01 0.02 

Teak -2.0 1.56 0.05 0.8 

Palm -3.02 1.48 0.01 0.02 

Grassland -3.61 1.46 0.01 0.01 
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Supplementary Table 2.10. Model Results for Land Use: Call rate. Call rate, logit estimate and 

standard errors (se) in different land use types 

Habitat Call rate Estimate (logit 
scale) 

se 

Old Growth 10.8 2.23 0.04 

Secondary 11.1 0.02 0.04 

Mangrove 0.01 -6.40 1.41 

Teak 0.06 -5.15 1.41 

Palm 0.02 -6.20 1.41 

Grassland 0.01 -6.81 1.41 

 

Supplementary Table 2.11. Model Results for Continuous Variables: Occurrence. Logit estimates 

showing increase or decrease in probability of occurrence with increasing values of each variable. Se, 

z values and p values for model covariates are shown. 

Variable Estimate (logit scale) se Z value P value 

Forest Cover 5.21 1.96 2.60 <0.01 

Secondary Road -0.69 0.92 -0.74 0.45 

Buildings -0.005 0.02 -0.24 0.81 

Primary Road -2.03 1.02 -1.98 <0.05 
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Supplementary Table 2.12. Model Results for Continuous Variables: Call rate. Logit estimates 

showing increase or decrease in call rate with increasing values of each variable. Se, z values and p 

values for model covariates are also shown. 

Variable Estimate (logit scale) se Z value P value 

Forest Cover 3.73 0.98 3.8 <0.001 

Secondary Road -0.09 0.4 -0.23 0.81 

Houses -1.47 2.26 -0.65 0.51 

Primary Road -44.27 18.86 -2.34 <0.05 
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Supplementary Table 2.13. Variance Partitioning Results: Call rate. Variance partitioning analysis 

for call rate variables showing individual and shared variance and % individual variance for each 

explanatory variable. Larger values indicate more variance attributed to that variable. 

Variable Individual Variance Shared variance Individual variance (%) 

Land Use -5.10 

 

-4.69 

 

27 

Forest Cover -7.02 

 

-5.22 

 

37 

Primary Road Density -5.6 

 

1.2 

 

30 

Secondary Road Density -0.91 

 

-1.53 

 

4.8 

Area of Buildings -0.22 

 

-0.46 

 

1.2 
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Supplementary Information Three: Chapter Four 

3.1. Methods  

 

Supplementary Figure 3.1. Diagnostic Plots for Distance to Corcovado. Plots indicating good model 

fit and insignificant overdispersion for binomial model with occurrence as the response variable and 

distance to Corcovado National Park as the explanatory variable. 

a b 
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Supplementary Figure 3.2. Diagnostic Plots for Protection Level. Diagnostic plots for GLM with a 

binomial distribution fitted in brglm2 package with presence as the response variable and protection 

as the explanatory variables. Plots show good model fit and insignificant overdispersion. 

 

Supplementary Table 3.1. Spatial Autocorrelation Results. Results for Moran’s I Statistic showing 

insignificant spatial autocorrelation for logistic regression models. If no significant autocorrelation is 

present then the observed values should be close to zero and similar to expected values and the p-

value insignificant. 

Model Observed correlation Expected correlation p-value 

Protection -0.007 -0.002 0.051 

Distance to Corcovado -0.004 -0.002 0.18 
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Supplementary Table 3.2. Model Selection. Showing AIC and Log Likelihood results for logistic 

regression models without and with an auto covariate function added to account for spatial 

autocorrelation in the data. *** indicates whether this difference was significant. 

Model AIC (without 
ac function) 

AIC (with ac 
function) 

LogLik (without 
ac function) 

LogLik (with 
ac function) 

Protection 219.32 221.33 -103.66 -103.67 

Distance to Corcovado 304.29 57.47 -150.15 -125.74*** 

 

Supplementary Figure 3.3. Explanatory Variable Correlation Plot. Correlation values indicate the 

level of correlation between each of the explanatory variables.  
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3.2. Results 

Supplementary Table 3.3. Model Results for Distance to Corcovado. Logit estimates showing 

increase or decrease in probability of occurrence with increasing values of each variable. Se, z values 

and p values for model covariates are also shown. 

Variable Estimate (logit scale) se Z value P value 

Distance to 
Corcovado 

-0.08 0.02 -3.04 <0.01 

 

Supplementary Table 3.4. Model Results for Protection Status. Logit scale estimates and  

transformed probability of occurrence estimates for each protection level with standard errors (se) 

Protection Estimate (logit scale) se Probability of occurrence se 

Corcovado NP 0.52 0.37 0.63 0.08 

GD Forest Reserve -2.15 0.43 0.16 0.03 

Unprotected -3.89 0.66 0.03 0.03 

Terreba-Sierpe NP -4.49 1.5 0.01 0.02 

Piedras Blancas NP -4.60 1.49 0.01 0.02 

Wildlife Refuge 0.71 0.5 0.78 0.08 



 

 

198 
 

 

Figure 3.4. Receiver Operating Characteristic (ROC) Curve for Habitat Suitability Modelling Methods. 

ROC Curves for all eight modelling methods: Generalized linear models (GLM), Generalized additive 

models (GAM), Boosted regression trees (BRT), Multivariate adaptive regression spline (MARS), 

Classification and regression trees (CART), Multivariate adaptive regression spline (MARS), Random 

forests (RF), Support vector machine (SVM), and Flexible Discriminant Analysis (FDA). The ROC curve 

shows the trade-off between sensitivity (or TPR) and specificity (1 – FPR). Methods that show curves 

closer to the top-left corner indicate a better performance. The closer the curve comes to the 45-degree 

diagonal of the ROC space, the less accurate the method. 
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Supplementary Figure 3.5. Fitted Response Curves for Habitat Suitability Models. Plots show the 

fitted response curves for all eight modelling methods for each explanatory variable (forest cover, 

primary and secondary road): Generalized linear models (GLM), Generalized additive models (GAM), 

Boosted regression trees (BRT), Multivariate adaptive regression spline (MARS), Classification and 

regression trees (CART), Multivariate adaptive regression spline (MARS), Random forests (RF), 

Support vector machine (SVM), and Flexible Discriminant Analysis (FDA). 
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Supplementary Table 3.5. Ensemble Model Performance Metrics. AUC, TSS and deviance explained 

for final habitat suitability model using a combination of RF and RDA methods. 

 

 

 

 

 

 

 

 

Model AUC TSS 

RF 0.81 0.58 

FDA 0.78 0.55 


