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Abstract

Intuitively, memory is conceived as a collection of static images that we accumulate

as we experience the world. But actually, memories are constantly changing through

our life, shaped by our ongoing experiences. Assimilating new knowledge without

corrupting pre-existing memories is then a critical brain function. However, learning

and memory interact: prior knowledge can proactively influence learning, and new

information can retroactively modify memories of past events. The hippocampus is

a brain region essential for learning and memory, but the network-level operations

that underlie the continuous integration of new experiences into memory, segregating

them as discrete traces while enabling their interaction, are unknown. Here I show

a network mechanism by which two distinct memories interact. Hippocampal CA1

neuron ensembles were monitored in mice as they explored a familiar environment

before and after forming a new place-reward memory in a different environment.

By employing a network science representation of the co-firing relationships among

principal cells, I first found that new associative learning modifies the topology of

the cells’ co-firing patterns representing the unrelated familiar environment. I fur-

ther observed that these neuronal co-firing graphs evolved along three functional

axes: the first segregated novelty; the second distinguished individual novel be-

havioural experiences; while the third revealed cross-memory interaction. Finally, I

found that during this process, high activity principal cells rapidly formed the core

representation of each memory; whereas low activity principal cells gradually joined

co-activation motifs throughout individual experiences, enabling cross-memory in-

teractions. These findings reveal an organizational principle of brain networks where

high and low activity cells are differentially recruited into coactivity motifs as build-

ing blocks for the flexible integration and interaction of memories.

Finally, I employ a set of manifold learning and related approaches to explore and

characterise the complex neural population dynamics within CA1 that underlie sim-

ple exploration.
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‘Se vogliamo che tutto rimanga com’è, bisogna che tutto cambi.’
‘For everything to stay the same, everything has to change.’

Giuseppe Tomasi de Lampedusa
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Chapter 1

Introduction

1.1 Network analysis of the cellular circuits of

memory

Memory is instinctively conceived as a collection of static photographs that we ac-

cumulate as we experience the world, storing them somewhere in our brains. On

the other hand, memories are constantly changing through our life, shaped by our

ongoing experiences and interactions with the world. The function of a memory sys-

tem, that is assimilating new knowledge without corrupting pre-existing memories

of successful behaviour, is a critical brain function to guide behaviour and secure

survival in a dynamically changing environment. However, learning and memory

interact: prior knowledge can proactively influence ongoing learning, and new infor-

mation can retroactively modify memories of past events. (Richards and Frankland,

2017; Mau, Hasselmo, et al., 2020).

A region of the brain essential for learning and memory is the hippocampus, home to

the cellular circuitry that gives rise to these functions. Its fundamental role became
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clear since the 1950s with the studies on retrograde amnesia in humans and further

evidence came from the discovery of place cells in rodents, which paved the way to

the conception of the hippocampus as a fundamental hub in the brain for the for-

mation and manipulation of memories and their associations. (Eichenbaum et al.,

1999; Bunsey and Eichenbaum, 1996; Tse et al., 2007). The theory of cell assemblies

was particularly successful in framing the hippocampal representation of mnemonic

engrams, showing that the precise timing of neuronal spiking activity is critical to

information processing within the hippocampal network (Kubie et al., 2020; O’Neill

et al., 2008; Trouche, Perestenko, et al., 2016; Ven et al., 2016). However, the

circuit-level operations that underlie the continuous integration of new experiences

into memory, segregating them as discrete traces while enabling their interaction,

are unknown.

While the physiology of single neurons is important to understand the functions of

a circuit, the population-level interactions are key to fully uncover the mechanisms

that underlie its multiplex processes. Nowadays the increasing size and scope of

the neural ensembles captured by modern acquisition technologies, together with

the refined behavioural paradigms of the associated experiments, demand analytical

techniques that can cope with the complexity generated by the recorded neural activ-

ity. Here we use tools from graph-theory and topology to study the complex system

formed by the dCA1 hippocampal circuitry, investigating the dynamic integration

of new information into flexible pre-existing mnemonical structures.

1.2 Overview

In this thesis I aim to investigate the neuronal network mechanisms underpinning

the integration of new information within a pre-existing mnemonic framework.
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In the first part of the thesis, chapter 2, I review literature framing the mnemonic

system as an internal dynamic model of the world to predict future events, instead

of a collection of static pieces of information. I highlight the role of the hippocampus

in the formation of the context within which episodic memories are formed and later

recalled. In doing so I focus on methods to quantify the spatial tuning of hippocam-

pal neurons using information theory. I conclude the chapter by highlighting the

skewed distributions of the brain’s structural and dynamical features, addressing

the consequent effects on the neural activity and it’s computations. This leads to a

characterisation of the heterogeneous population of principal cells in hippocampal

CA1 region, which is thought to be key to the diverse operations carried out by this

circuit.

In chapter 3 I consider the application of graph-theoretical and topological meth-

ods to the study of complex systems, such as brain networks. I set up a framework to

evaluate the co-firing topology of a neuronal network that will enable us to capture

the temporal fine grained co-activity relationships between neurons in different con-

texts. Such analysis will yield insights into the mechanisms underpinning dynamic

neural representations. Moreover, the co-firing topology of the dCA1 pyramidal cells

circuit is evaluated, finding a weak small-world structure.

In chapter 4 I show a network mechanism by which two distinct memories interact,

leveraging on the framework developed in chapter 3. I analyse hippocampal CA1

neuron ensembles in mice exploring a familiar environment before and after forming

a new place-reward memory in a different environment during a conditioned place

preference (CPP) task. By analysing the activity of principal cells with graph-

theoretical techniques, I first find that new associative learning modifies the topology

of the cells’ co-firing patterns that represents the unrelated familiar environment,
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suggesting the presence of hysterical dynamics in the network. Moreover, I observe

that the co-firing networks evolved along three functional axes supported by the

heterogeneous contributions of high and low activity principal cells. The first axis

separated the two spatial environments (the “where”) and was mostly explained

by the contribution of high activity cells, the second axis distinguished individual

behavioural sessions (the “what”) while low activity cells spanned the third axis

by gradually joining coactivation motifs throughout individual experience, revealing

cross-memory interaction. These findings reveal an organizational principle of brain

networks where high and low activity cells are differently recruited into coactivity

motifs as building blocks for flexible integration and interaction of memories.

In chapter 5 I use manifold learning and related approaches to explore mice hip-

pocampal CA1 population dynamics evoked by exploration of a 1D circular linear

track and 2D open field environments. I describe the representational space of the

neural population by using the manifold learning approach to uncover low dimen-

sional structure in the high dimensional neuronal activity. I argue this population

dynamics analysis is complementary to the graph-theoretical one described in chap-

ter 3: instead of describing network interaction motifs at the single-cell level res-

olution, manifold learning extracts “higher level” neural representations driven by

the population dynamics, which are more closely related to the animal’s behaviour.

Within CA1 I show that 2D exploration evokes a more complex response than 1D

one, displaying how the neural population dynamics are closely knit to behaviour.

Finally, in chapter 6 I summarise the contributions of this thesis and discuss them

in light of the existing literature, together with highlighting the potentials of popu-

lation and network-level analyses towards our understanding of memory and related

functions supported by the neuronal circuitry.
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Chapter 2

The hippocampus sets the context

2.1 Dynamic memories

Memories are patterns of neural activity that guide present behaviour in familiar

situations by preserving useful information from past experiences. Such a simple

theoretical definition, though, becomes a complex concept in practice: the sur-

rounding environment is dynamic and probabilistic, requiring the brain to shape its

mnemonic representations according to the context at hand. In fact, dynamic, ever-

changing environments imply that whatever is learned from an individual episode

may not hold true in similar future experiences and should therefore be updated

over time. Failing to do so, would make memory systems unable to generalize to fu-

ture retrieval episodes where conditions might have changed, leading to suboptimal

behaviors (Richards and Frankland, 2017).
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2.1.1 Memory is shaped by persistence and transience

However, it is still fairly common, also across scientists, to believe that the optimal

memory system would be one of perfect persistence. This is a system where infor-

mation is stored with the highest possible accuracy, for the longest period of time.

Is it possible, then, to have a system capable of storing information with perfect

accuracy and to use it optimally to drive behaviour?

In the short story ”Funes the Memorious” (first published in 1944), the Argentinean

writer Jorge Luis Borges insightfully explored the consequences of a flawless, all-

encompassing memory. The fictional story is an unknown storyteller’s recollection

of Ireneo Funes, a young man who, after sustaining a head injury due to a horse

incident, was able to remember and perceive everything down to its finest details:

“Funes remembered not only every leaf of every tree of every wood, but also every

one of the times he had perceived or imagined it.” Although Funes himself consid-

ered his extraordinary memory a blessing at first, the storyteller recognized serious

drawbacks soon after meeting him. He noticed that Funes was unable to form even

the simplest generalization. He described how ”it was not only difficult for him to

understand that the generic term dog embraced so many unlike specimens of dif-

ferent sizes and different forms; he was disturbed by the fact that the dog at three

fourteen (seen from the side) should have the same name as the dog at three fifteen

(seen from the front).” Towards the end of the story, Borges, through the mouth of

his storyteller, goes insofar as to infer that Funes “was not very capable of thought”,

and to finally conclude that “to think is to forget differences, to generalize, to make

abstractions”.

What Borges so skilfully depicted in his short story and the conclusion reached by his

storyteller resembles the thesis, written several decades earlier, by the philosopher

William James. In his book “The Principles of Psychology” he states that “in the
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practical use of our intellect, forgetting is as important a function as recollecting”

(James, 1890; p.679). What James meant here, is that for our memory to be useful,

we need to be selective in what we remember. He argued that if too many memories

were stored in our brain, the recall of each individual memory would be so time-

consuming that no time would be left for thinking.

The aforementioned thesis acquired scientific confirmation from the few examples of

individuals with something approximating a memory system of perfect persistence,

suggesting that remembering everything comes at a dire cost. More than 60 years

ago, the Soviet clinical neuropsychologist A. R. Luria described the case of Patient

S., a man with “vast memory” who could only forget something if he actively willed

himself to do so (Luria, 1968). Nonetheless, according to Luria’s accounts, Patient

S. was hindered by his apparent super-human memory. While he was able to re-

member instances in exquisite detail, his memory was inflexible and he was unable

to generalize across instances. This highlights, as James suggested, the importance

of forgetting (transience) as a critical component of a healthy mnemonic system.

So a memory system aims not to remember individual events with the highest fi-

delity, instead it aims to update and refine its internal model of the world in response

to external stimuli a critical tool for survival in a dynamic environment (Mau, Has-

selmo, et al., 2020). A well-known approach to build a solid and versatile model is

to avoid overfitting, which potentially leads to biased future predictions. In memory

terms, this relates to the ability to generalise over multiple events, which can be

compromised when a model is ”trained” too extensively on the particular features

of an individual dataset (Hawkins, 2004). The solution to overfitting usually resides

in a careful model selection process, which often leads to the simplest model that can

explain the events reasonably well, following Occam’s razor heuristics: the simpler

the explanation, the broader its application.

When memory is framed as a model, the events details that get forgotten are nec-
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essary to keep the model simple rather than being caused by some imperfections in

the processes underlying mnemonic persistence, as commonly thought (D. Schacter,

2001). Simple memories that store the gist of our experiences and avoid compli-

cated details will be better for generalizing to future events (Kumaran et al., 2016;

Richards, Xia, et al., 2014). One way to construct simple memories is to engage in

some controlled, partial forgetting. Specifically, in order to store only the essence

of an experience, statistically insignificant details must be forgotten (Sekeres et al.,

2016). Partial forgetting could then be interpreted as a form of regularization of

the model, which can also be viewed as a form of Bayesian learning (Mackay, 2003).

Within neuronal networks, the outcome of minimizing overfitting is generalization,

as previously stated. Consistent with this, a recent study showed that preventing for-

getting impairs the development of generalization in a contextual fear conditioning

task in rats, highlighting the importance of transience in memory systems (Migues

et al., 2016).

2.1.2 Models of memory consolidation

The combination of persistence and transience lead to memory-updating routines

within the brain, which can be defined as the modification of existing firing patterns

within the brain to integrate new information into pre-existing memories (Mau,

Hasselmo, et al., 2020). Memories are known to be liable immediately after learning,

that is are subject to modification and interference. Memory consolidation refers to

the process leading to the integration of a newly acquired mnemonic within the large

network of pre-existing knowledge (Ribot, 1882; Glickman, 1961). A similar process,

called reconsolidation, takes place every time a mnemonic trace is recalled, exposing

it to potential modification and update, a process that continues indefinitely over an

animal lifetime (Dudai, 2004; Nadel et al., 2012; Dudai, 2012). These two processes

share similar neuronal mechanism leading to the proposal that reconsolidation is
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just lingering consolidation, framing the problem as a system consolidation one –

i.e, the reorganisations of memories among different regions of the brain (Nader et

al., 2000; McKenzie and Eichenbaum, 2011; Dudai, 2012).

The consolidation hypothesis emerged from studies performed on patients with me-

dial temporal lobe lesions who suffered from temporally graded retrograde amnesia

and were unable to form new declarative (i.e, explicit, non-motor or implicit) mem-

ories (Scoville and Milner, 1957; Milner et al., 1998). Patient H. M. is perhaps

the most remarkable case: he suffered a bilateral medial temporal lobe removal as

an experimental procedure to treat epileptic seizures. He was unable to form new

memories after the intervention and suffered from a partial retrograde amnesia, even

though he developed ”no impairment of personality or general intelligence” (Scoville

and Milner, 1957; p.17).

The medial temporal lobe refers a large part of the brain that includes the hip-

pocampal formation (containing the dentate gyrus and the hippocampus proper

consisting of the Cornu Ammonis [CA] regions and the subiculum), the entorhi-

nal, perirhinal and parahippocampal cortices and the amygdaloid complex (Squire

and Zola-Morgan, 1991). A number of studies, including on animal models such

as monkeys and rats, have since proven that the hippocampal formation is critical

for the formation of new memories and have brought evidence for its decreasing

involvement over time (Squire, Clark, et al., 2001). This hypothesis is regarded

as the standard consolidation model (Squire and Alvarez, 1995, McClelland et al.,

1995; with important roots in the theory of Marr 1970, 1971). This model posits

that the hippocampus is only a temporary repository for memory and that the neo-

cortex stores the memory thereafter. Importantly, it is hypothesised that memory

retrieval critically depends on an intact hippocampus at first, but that over time

this dependence diminishes so that memories can be recalled by the cortex on its

own.
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However, over time, some evidence that seems incompatible with the standard con-

solidation theory has accumulated. While medial temporal lobe damage results in

temporally graded retrograde amnesia for semantic memories (i.e., facts, general

knowledge), this seems not be the case for episodic memories (i.e., personal experi-

ences, autobiographical events). Even though H. M. and similar patients can recall

details of remote memories, they lack the ability to narrate and place themselves in

spatio-temporal contexts (Squire, 2004). Therefore, stemming on observations from

both lesion (Fujii et al., 2000) and imaging studies (e.g., Gilboa et al., 2004, 2006),

it has been suggested that the hippocampus always remains involved in the retrieval

of episodic memories (Moscovitch et al., 2006). This hypothesis has been called the

multiple trace model, as it proposes that each time an episodic memory is recalled

it is re-encoded, which leads to the formation of multiple overlapping but dissimilar

memory traces for the same experience. This proposes to explain why remote mem-

ories are more widely distributed in the brain and why the cortex alone can recall

semantic aspects of such memories. To truly re-experience past events, however, the

hippocampus is believed to always be required in order to bind together in the right

sequence all details of an episodic memory. Recently, an extension to this theory has

been the trace-transformation hypothesis, which highlights that there is a qualitative

difference between the self-centred, episodic memories depending on the hippocam-

pus and the more abstract, gist-like, semantic memories supported by cortical areas

(Winocur and Moscovitch, 2011). An alternative hypothesis is that memory traces

themselves no longer reside in the hippocampus, but that hippocampal circuits help

to sequentially coordinate the recall of mnemonic traces stored in the neocortex,

therefore providing an egocentric perspective for the episodes (Buzsáki, 2019).

All these hypothesis, though, consider systems consolidation as a gradual, lengthy

process. The schema assimilation model (Tse et al., 2007) posits that systems con-

solidation could be accomplished quickly if a previously established body of related

knowledge, i.e., a memory schema (Barlett, 1932), is available into which the new
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knowledge may be assimilated. In this way, it is proposed, the hippocampus sys-

tematically organizes multiple overlapping memories to form relational networks,

which serve as a mnemonic backbone that can foster rapid learning (McKenzie,

A. J. Frank, et al., 2014). This theory is very much in accord with the hypothe-

sis framing memory as an internal model of the world that can create hierachicaly

generalise across memories to improve its predictions and facilitate learning.

The two latter presented hypothesis, the multiple trace model (with its variations)

and the schema assimilation model, result in a highly dynamic depiction of the

memory trace, appreciating its restlessness and incessant assimilation into knowledge

for an internal model of the world (Dudai and Morris, 2013).

2.2 The cellular circuitry underpinning memory

In this thesis, I will focus on the dynamic neuronal network representation of memo-

ries within the dCA1 region of the hippocampus. It is important though that I stress

the fundamental circuitry and physiological constraints, together with the network

functional ones, that shape the output of the hippocampal dCA1 region.

2.2.1 The hippocampal circuit

Architecture

As mentioned earlier, the hippocampus includes the dentate gyrus, the Cornu Am-

monis (CA) and subiculum. The CA can be subdivided in three regions, CA1-3

(with CA3 at the dentate gyrus end and CA1 at subibulum’s). The hippocampus

is three-layered, a deep layer, comprised mostly by afferent fibres and interneurons,

a (stratum oriens in the CA region), a cell layer (stratum pyramidale) above and a

molecular layer (stratum moleculare) most superficially. In the CA region, though,
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the stratum moleculare is composited of further sublayers. In the CA1 region these

are the stratum radiatum, comprising the apical dendrites of the neurons located in

the stratum pyramidale; and, most superficially, the stratum lacunosum-moleculare,

comprising the apical tufts of the apical dendrites (Strien et al., 2009). Moreover,

the dorsal and ventral regions of the hippocampus are also known to underpin very

different functions. The dorsal hippocampus performs primarily cognitive functions,

the ventral region, instead, primates) relates to stress, emotion and affect. They have

different anatomical connections and gene expression, which correlates with cortical

areas in the dorsal hippocampus and with region connected to emotions and stress

(amygdala and hypothalamus) in the ventral region (Fanselow and Dong, 2010; Tao

et al., 2021).

The CA1 region, along with subiculum, is considered the output of the hippocam-

pus to the neocortex. The two main inputs to the dorsal CA1 region (dCA1) are

directly from layer III of entorhinal cortex and via the perforant path that originate

from the dentate gyrus and then through the CA3 region. Both theoretical models

and experimental evidence suggest local competitive inhibition allows the dentate

gyrus to decorrelate the cortical inputs (Treves and Rolls, 1994; J. K. Leutgeb et al.,

2007). The highly recurrent connectivity of the CA3 region is thought to underlie

its pattern completion capacity (Hasselmo et al., 1995). The CA1 may integrate

the output of the CA3 with direct input from layer III of entorhinal cortex and pro-

vide a sparse representation for readout by downstream regions (Barnes et al., 1990).

Cellular diversity

In the hippocampus, like everywhere else in the cortex, there are excitatory, glu-

tamatergic neurons (principal cells) and inhibitory, GABAergic interneurons. CA1

principal cells carry the primary output of the hippocampus to other brain regions,

displaying spatio-contextual tuning (see section 2.3.4) but at least 16 types of differ-
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ent types of interneurons support their activity (Somogyi and Klausberger, 2005).

The connectivity between the excitatory and inhibitory neurons (feedback inhibi-

tion, including lateral inhibition) is believed to gate afferent inputs (Fernández-Ruiz

et al., 2017; Milstein et al., 2015), control local synchrony (Stark, Roux, Eichler,

Senzai, et al., 2014), and give rise to competitive interactions within the excitatory

population (Buzsáki, 2010; Trouche, Perestenko, et al., 2016). CA1 principal cells

arenot an homogeneous population either, and differences are known to exist along

the dorsoventral and radial axes (see section 2.4.4).

2.2.2 Distinct oscillations underlie distinct network states

within the hippocampal network

The brain activity is characterised by periodic, recurrent events that shape its func-

tions and responses both to internal and external phenomena. First evidence of

these oscillatory patterns first came from Hans Berger in 1929, but they were only

formally classified in 1974, The brain rhythms were divided into bands: delta, 0.5–4

Hz; theta, 4–8 Hz; alpha, 8–12 Hz; beta, 12–30 Hz; gamma, >30 Hz. The borders

of these classes were drawn arbitrarily as the function of each oscillation was largely

unknown. The frequency of the oscillation within the brain actually span more than

4 orders of magnitude and Penttonen and Buzsáki, 2003 found that these bands

form a geometric progression on a linear frequency scale. The power law relation

has roughly constant base of e = 2.718 – Euler’s number and base of the natural

logarithm. Since e is an irrational number, the various oscillations are never able to

entrain each other, perpetually fluctuating between transiently stable states. These

constantly interfering network rhythms, then, give rise to a quasi-periodic or weakly

chaotic pattern, characteristic of the EEG landscape (Buzsáki, 2009).

The activity within the hippocampus is mainly characterised by three brain rhythms:
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theta, gamma and sharp-wave ripples (SWR); which define two distinct network

states. The first one is present in the awake mouse, and during rapid eye movement

sleep (REM); rhythms at theta (4-10 HZ) and gamma (30-80 Hz) are observed, with

the former being largely predominant. Theta oscillations, in the awake exploring

animal, are thought to support the structure of principal cells activity, by provid-

ing discrete windows where information can be processed by the network (driven

by different gamma and slower oscillations; Lopes-dos-Santos et al., 2018). These

oscillations play a crucial role in the temporal firing sequence (e.g. place cell ac-

tivity, see section 2.3.4) and in the modification of synaptic weights (O’Keefe and

Recce, 1993; Buzsáki, Adey, et al., 2002; E. I. Moser, Kropff, et al., 2008). During

this state, highly processed sensory information from the entorhinal cortex drives

activity throughout the hippocampal circuit (Brun et al., 2008).

The second hippocampal network state arises during consummatory behaviours -

i.e. eating and drinking -, resting and non REM sleep (these two sets of behaviour

are believed to evoke two separate states, see Kay and L. M. Frank, 2018), and is

characterised by a pattern of slow irregular waves which is interrupted by a large,

highly synchronised burst of oscillations. They last around 50-100ms and give rise to

high frequency bursts of spiking neuronal activity (140-200 Hz) that originates in the

hippocampus CA3 region and propagate, through CA1, to a wide area of the cortex,

making it the most synchronous known event in the mammalian brain (Buzsáki,

2015). SWRs are thought of playing a critical role in memory consolidation (see

section 2.1.2) by replaying of awake exploration firing patterns during sleep (Wilson

and McNaughton, 1994; O’Neill et al., 2008). It has also been shown that SWR

frequency increases after learning and predicts subsequent performance (Ramadan

et al., 2009). Moreover, SWR disruption impairs the performance in mnemonic

tasks, affecting memory consolidation (Ven et al., 2016; Girardeau et al., 2009)
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2.3 Memory representation

2.3.1 The neuron doctrine

Since the times of Camillo Golgi, Santiago Ramon y Cajal and Charles Sherrington

the neuron doctrine has served as the central conceptual foundation for neuroscience,

considering the individual neuron as the structural and functional unit of the ner-

vous system. The plasticity of their connection could then underlie memory and

learning (Sherrington, 1892; DeFelipe, 2006). The focus on the properties of indi-

vidual neurons was a natural consequence of the use of single-cell anatomical and

physiological techniques, such as the Golgi stain (Golgi, 1885) or the microelec-

trode (Hubel, 1957). The piecemeal reconstruction of neuronal circuits into their

individual neuronal components using these methods enabled researchers to obtain

important insights in to the structure and design logic of many regions of the brain,

including some functional elements (e.g. the neuron’s receptive field; Hubel and

Wiesel, 1962).

An influential result was the discovery of “grandmother cells” at the top of the hi-

erarchy of the mammalian visual system. These selectively tuned cells were thought

responsible for the selective perception of our grandmother (Barlow, 1972). Simi-

larly, “face cell” that responded to images of specific individuals were found in the

temporal cortex of monkeys and humans (Desimone et al., 1984; Kreiman et al.,

2000; Quiroga et al., 2005). These successes fostered the idea that the single neuron

was not only the anatomical and functional unit of the brain but also its perceptual

unit. Moreover, electrical stimulation of a very small number of cortical neurons,

or even of individual neurons, can produce behavioural changes in monkeys and

rodents, suggesting that the perception and even the behaviour of the animal could

have individual neurons as its functional units (Brecht et al., 2004; Houweling and
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Brecht, 2008).

But the neuronal doctrine might have become limiting as a scientific framework.

For example, the concept of receptive field might lead to an underestimation of the

true complexity of neuronal function, as unreliable, “noisy” responses recorded in

the primary sensory areas of awake animals (Ko et al., 2011). In fact, It may be

too narrow or simplistic to equate neuronal function with its tuning to a stimulus:

firing patterns, timing and coupling with other peers in the network are most likely

relevant (Fairhall, 2014; Okun et al., 2015). In fact, organized spontaneous activity

appears to be prevalent in many brain regions, particularly in humans, suggesting

that neurons take part in intrinsic brain functions unrelated of external stimuli (e.g.,

Kenet et al., 2003). Even in the case of “face cells”, it is more likely that the coding

process is distributed across large populations of neurons. Thus, the receptive field

could be reinterpreted more generally as the single-cell manifestation of distributed

and composite circuit states (Yuste, 2015). Moreover, recent studies have shown

that neurons, particularly in the prefrontal and parietal cortices, display “mixed

selectivity” by responding to different stimuli together by taking part to different

neural ensembles (Fusi et al., 2016). If this is the case, we should focus on the activity

of groups of neurons together to further our understanding of brain representations,

memory included. To do so methodological innovations such as large-scale multi-

unit electrophysiological and imaging recordings, together with suited analytical

techniques are critical (see chapter 3).

2.3.2 Cell assemblies within neuronal networks

Thanks to its complex architecture and wiring, the brain has the structure that un-

derpins emerging properties (i.e., properties that arise from the interactions among

elements but are not present in the individual elements themselves) characteristic

of many physical systems, such as the oscillatory patterns described in section 2.2.2
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(P. S. Churchland and Sejnowski, 1992; Anderson, 1972). That neural circuit are

built for emergent function has been known for a long time (Lorente de Nò, 1933).

In 1949, Donald Hebb developed these pre-existing ideas and provided an elegant

and highly influential theory about how memories are stored and represented in

the brain. He proposed that neural states, including memories, are represented by

the combined activity of groups of neurons, which he called “cell assemblies”. He

proposed that neurons repeatedly firing together in response to a particular stim-

ulus could bind together through strengthened synaptic connections, resulting in

their combined firing in response to a stimulus. For this, he postulated a learning

rule by which neurons can change their synaptic weights, which was later famously

shortened to “neurons wire together if they fire together”. The resulting strength-

ened connections would later enable the same neurons to also fire together in the

absence of the stimulus, which Hebb believed to correspond to the memory of that

stimulus (Hebb, 1949). As I’ll detail in the next sections, two initially separate

lines of research, both predominantly focused on the hippocampus, would provide

empirical support for Hebb’s theory: synaptic plasticity and the hippocampal spatio-

contextual map.

Recently, György Buzsáki formulated a very compelling argument for the impor-

tance of cell assemblies in the computation within neural circuit (Buzsáki, 2010) He

reasoned that, since a neuron’s spiking activity is relevant only in terms of its effect

on downstream “readers” (i.e., other neurons) and that many coincident inputs are

typically needed to discharge a ”reader”, the relevant “effective unit” in the brain

is the combined activity of groups of neurons. Therefore, from the point of an in-

dividual “reader” neuron, all neurons whose spiking activity contributes to its own

discharge effectively compose a cell assembly. This “reader-centric” definition of cell

assemblies highlights the importance of precise spike timing within neural circuits. It

is supported by evidence that the activity of principal cells in the hippocampus can

be best predicted from the activity of their peer neurons for time windows between
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10 and 30 ms (Harris, Csicsvari, et al., 2003). This is an important physiological

time window because many physiological variables share it, from gamma oscillations

to the cell membrane time constant and synaptic signalling.

More evidence of memory representation by specific neuronal ensembles in the hip-

pocampus and in other brain regions came from optogenetic experiments. A series

of studies demonstrated that it is possible to genetically tag neurons that are active

in a particular environment, and are then thought to represent the memory asso-

ciated to it (e.g a fear conditioning; (Reijmers et al., 2007; Tayler et al., 2013). It

was shown, then, that by stimulating or inhibiting the tagged neurons would induce

or inhibit, respectively, recall of the memory (Liu et al., 2012; Denny et al., 2014;

Tanaka, Pevzner, et al., 2014). Moreover, recent work has assessed also the dy-

namics of such ensembles over time, highlighting the importance of the temporally

precise co-activity across them (Trouche, Perestenko, et al., 2016; Ven et al., 2016).

2.3.3 Synaptic plasticity

Because of its well defined and simply layered organisation of neurons, the hip-

pocampus is an area that has been the research target of many studies on the

synaptic organisation and dynamics of neural circuits (Bliss and Lomo, 1973; Dou-

glas and Goddard, 1975). It was found that synaptic connections between neu-

rons can be strengthened (long-term potentiation, LTP) or weakened (long-term

depression, LTD) by repeated spiking inputs or the lack thereof, respectively. LTP

has been proposed as the biological mechanism underlying Hebb’s rule, and, then,

the main process that responsible for memory formation at the cellular level. The

hippocampus and, in particular the CA1 region, has the highest concentration of

N-Methyl-D-aspartate (NMDA) receptors - whose activity underlies LTP - in the

brain.
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2.3.4 The hippocampal spatio-contextual representation

John O’Keefe reported spatial receptive fields in complex spiking neurons (i.e., pyra-

midal cells) in the hippocampus of rats (O’Keefe and Dostrovsky, 1971). These prin-

cipal cells were called place cells as they were found to fire at specific rat’s position

in space (i.e., the cell’s place field), with neurons in the CA region being the most

sharply tuned. Large-scale recordings of hippocampal neurons demonstrated that

the fields of place cells covered the entire explored environment, constituting an in-

ternal cognitive map, and that every location was covered by multiple fields (O’Keefe

and Nadel, 1978; Wilson and McNaughton, 1993; Wilson and McNaughton, 1994).

Between different environments cells were found to ”remap” to yield a different map

from the same population of neurons (Muller et al., 1987; Colgin et al., 2008). An

important implication of remapping is that across different environments different

sets of hippocampal neurons are co-active, with that being crucial to the neural

circuit computations, following the ”reader-centric” hypothesis presented in section

2.3.2, and effectively coding for the surrounding context (Kubie et al., 2019).

These system brings mounting evidence towards the cell assembly hypothesis under-

pinning memory representation: not only each group of co-active place cells signals

a specific location and each spatial context has multiple of such co-active groups,

but also the pharmacological blockage of LTP impaired place cells formation and

place cell stability was correlated to performance in a mnemonic task (C. Kentros

et al., 1998; C. G. Kentros et al., 2004). The hippocampal activity, though, does not

simply represent the spatial location of the animal, but it has been proposed that it

represents the broader mnemonic context by encoding sequential, time-related and

episodic information (Buzsáki and Llinás, 2017; Kinsky, Mau, et al., 2020).
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2.3.5 Neural sensory tuning characterisation with

information theory

A useful way to charecterise the activity of neuronal population is quantifying the

information content with respect to a stimulus or behaviour, such as spatial location

in the case of place cells, using the information theoretic formalism developed by

Claude Shannon (Shannon and Weaver, 1949). The concept of information is tightly

bounded to the one of entropy, a measure of uncertainty of a random variable (Cover

and Thomas, 2006). In other terms, it is a measure of the amount of information

required, on average, to describe a random variable, which could be the time spent

by the mouse exploring the different locations s of an environment. The entropy is

defined as:

H(S) = −
∑
s

p(s) log2 p(s) (2.1)

where S is a discrete random variable with probability distribution function p(s),

representing the stimulus uncertainty. As the log is in base 2, the information is

expressed in bits, which is usually the preferred unit; if the base was e, then the

unit would be nats. H(S) = 0 when the stimulus is unchanged, e.g. the mouse

stays still in one location, and is positive otherwise, reaching a maximum value of

H(S) = log2K when K stimuli are observed the same number of time (i.e., the

uncertainty is maximum). If the neuronal response R contains some information

about the stimulus S it will reduce its uncertainty defined by equation 2.1, so that

the remaining unexplained entropy H(S|R) (also referred to as equivocation) is

obtained:

H(S|R) = −
∑
s,r

p(s)p(s|r) log2 p(s|r) (2.2)

, which is equivalent to the weighted average entropy of the conditional probability

p(s|r) (i.e., the probability of the mouse being at location s when the response

r is observed; this can also be viewed as posterior distribution from a Bayesian
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perspective; Quian Quiroga and Panzeri, 2009). From this, mutual information

I(R;S) is defined as the reduction of uncertainty (or gained information) about

the stimulus obtained by knowing the neuronal response. That is subtracting the

equivocation from the stimulus entropy:

I(R;S) = H(S)−H(S|R)

=
∑
s,r

p(r)p(s|r) log2

p(s|r)
p(s)

=
∑
s,r

p(s, r) log2

p(s, r)

p(s)p(r)

(2.3)

, where p(s, r) denotes the joint probability of observing stimulus s and response r

together. Mutual information (MI), like entropy, is measured in bits. If the stimuli

and the responses are independent, the mutual information equals zero. Otherwise

it takes positive values. Perfect knowledge about the stimulus from the neuronal

activity gives a maximum mutual information of I(S;R) = H(S).

All the probability quantities mentioned so far need to be estimated empirically. For

example, the range of responses of each neuron, or the spatial position of a mouse

along a linear track, can be partitioned into M bins, and the frequency of observing

a response in each bin is computed. This can lead to ’limited sampling biases’ —

that is, pronounced systematic errors caused by limited amounts of data - if all

possible responses (or stimuli) are not sampled well enough (Panzeri, Senatore, et

al., 2007). Such under-sampling leads to an underestimation of entropy, which leads

to an overestimation of MI using the plugin (or näıve) estimator shown in equation

2.3. Various methods, using both maximum likelihood and Bayesian estimation,

have been proposed to remove this bias and allow MI calculations to be feasible

in neuroscientific experiments where data is scarce (see Panzeri and Treves, 1996;

Strong et al., 1998; Nemenman et al., 2001 Archer et al., 2013).

In the hippocampal literature, the spatial information content of place cells has been
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valuable to understand the network representation (e.g. L. M. Frank et al., 2000).

This quantity has been estimated with the stimulus-dependent information rate

(Isec), measured in bits/s, proposed by Skaggs et al., 1993, which is an approximation

of the MI definition of equation 2.3.

Isec =
∑
s

p(s)λ(s) log2

λ(s)

λ
(2.4)

, where λ(s) is the neuron’s location-dependent firing rate estimation and λ =∑
x λ(x)p(x) is the mean firing rate over the whole trial. This From Isec, the infor-

mation per spike, measured in bits/spike is defined

Ispike =
Isec
λ

(2.5)

The two measures introduced by Skaggs et al. are equivalent to the average infor-

mation rate conveyed by the cell and correspond to the first time derivative of the

power series expansion of MI (Panzeri, S. R. Schultz, et al., 1999; Panzeri and S. R.

Schultz, 2001). From

MI(t+ ∆t) =
∞∑
k=0

∆tk
MI(k)

k!
(2.6)

where MI(k) indicates the k-th time derivative, thus the first time derivative approx-

imates to

MI(1) ≈
∑
s

p(s)λ(s) log2

λ(s)

λ
= Isec (2.7)

Isec and Ispike were found to correlate less with the accuracy of spatial decoding than

the MI plugin estimator. MI could then be considered a more suitable metric to

capture hippocampal spatial correlates, and maybe others types too (Souza et al.,

2018).
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2.4 Log-dynamic brain

As mentioned in the previous sections, the collection of brain networks underpinning

memory are composed by a plethora of different actors interacting with each other,

making it a complex system. Complex systems are ubiquitous in nature and are

characterised by a high degree of labor diversity. In the brain, labor diversity is

based on the structural and physiological differences across the units that make up its

network. Brain circuits are, in fact, not only constituted by many different types of

neurons and non-neuronal cells, but each types contains, in turn, a further wide range

of functional neuronal profiles (Kebschull et al., 2016; Mayer et al., 2016). So, an

analogy to describe a neuronal network would be an orchestra, where the interactions

of different instruments give rise to a potential limitless variety of compositions.

Just like the inherently skewed distribution of instrument contributions, e.g the first,

second and third violin’s, is central to the realisation and delivery of the composition,

the inherently skewed (log-normal) distributions of brain features is central to its

function (Buzsáki and Mizuseki, 2014).

Considering the wide range of properties within neuronal populations, the analysis

of larger ensembles of neurons arises as fundamental to obtain a complete picture of

the brain dynamics, including memory representation, which is the focus of chapter

3 of this thesis. Let me first, though, start the discussion on skewed distributions

within the brain by consider a central property of cognition: log-scaled perception.

2.4.1 Log-scaled perception

An incredibly simple and pervasive law of neuroscience is the Weber-Fechner law.

This law is named after two German scientists who laid the foundation for hu-

man psychophysics, a discipline that aims to find a quantitative relationship be-
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tween physical stimuli and the mental state they evoke. They noticed that stimulus

strength and its perception are linked by a logarithmic relationship: when the for-

mer multiplies, the latter adds. The Weber-Fechner law generalises well and applies

to all senses: hearing, vision, tactile, taste and smell (Stone and Bosley, 1965). Also

distance and time perception vary logarithmically with the distance or the duration

of the stimulus, respectively (Gibbon, 1977; Gibbon et al., 1984). Moreover, deci-

sion making and short term memory error accumulation (Gold and Shadlen, 2000;

Deco and Rolls, 2006; Buzsáki, 2015). Interestingly, not only many non-biological

phenomena, such as earthquake intensity, pH scale, sound level and entropy dis-

play logarithmic behaviour, but also many sociological phenomena, like spoken and

written word frequency (Zipf’s law) and wealth distribution display skewed distri-

butions. Even though Weber-Fechner law was conceived 150 years ago, the reason

behind the presence of such systematic patterns within our perception remains un-

known. One possible hypothesis is that the subjective properties of our action and

perception are supported by the skewed, log-normal distributions with the brain

structural (e.g. wiring) and dynamical (e.g. neural activity) elements (Buzsáki,

2019). Similarly, Bayesan models of the brain attempt to find a quantitative match

between real-world events and brain activity patterns (Dayan et al., 1995; Friston,

Stephan, et al., 2010; Friston and Buzsáki, 2016).

2.4.2 Log-scaled architecture of neuronal networks

As mentioned in the previous sections, log-normal distributions have multiplicative

relationships: they arise with the multiplication of a large number of positive vari-

ables. All brains, regardless of their size, share similar brain activity patterns, such

as the various brain rhythms discussed in section 2.2.2, whose computational and

syntactic rules should impose a common organisational principle - i.e., integrate a

plethora of local processes into globally ordered states, coherent across brain regions.
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To this aim, the neural hardware should be hacked to provide flexible solutions that

can work at different scales. For example, the diameter and myelination of a neuron’s

axon influence its signalling speed, therefore the adjustment of these two parame-

ters seems critical for scaling-invariant computations within neuronal networks. In

fact, these properties are log-normally distributed across and within species (Fig.

2.3), ensuring an efficient consumption of energy (larger fibres demand larger sup-

ply) while enabling the same local-global processing within the brain (Wang et al.,

2008). Sensory fibres that can also go across hemispheres have typically large diam-

eters, while in the frontal cortical area, where communication speed is slower due to

the more complex cognitive tasks, small diameter axons dominate.

Log-normal distributions are observed also at the level of microscopic (dendritic

spines, synaptic boutons) and macroscopic (the neuronal wiring organisation) con-

nections. Spine sizes in both the neocortex and hippocampus have been reported

to span more than two orders of magnitude (Loewenstein et al., 2011). Mesoscopic

connectivity in brain networks also exhibits skewed distributions: the number of

connections made by individual neurons locally, as well as the connection strength

across different brain regions span various orders of magnitude and give rise to pe-

culiar connectivity patterns that diverge significantly from random-wiring generated

ones ( Markov et al., 2011; Ercsey-Ravasz et al., 2013; I will also discuss it in more

details in chapter 3). As we mentioned at the beginning of the section, the neuronal

network structural organisation shapes the activity generated by the neurons within

it, and the next section will delve deeper into it.
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Figure 2.3: Skewed distribution of axon calibers. a, Representative micrographs
of callosal tissue in different species. Note the various sizes of axon diameters. b, The
distribution of diameters of unmyelinated and myelinated axons in the corpus callosum of
the macaque monkey and mouse. Note the lognormal-like distribution of axon diameters.
Data from. Figure reproduced with permissions from Buzsáki and Mizuseki, 2014
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2.4.3 Log-scaled brain dynamics

The log-normal distributions of dendritic spine volumes suggest a large variation

in synaptic weights, which regulate the functional connections among neurons. In

fact, measuring the spike transmission probability between mono-synaptically con-

nected neurons, which can be used as a proxy to assess the connection strength

between them, reveals a log-normal distribution. This, in turn, means that stronger

synapses not only provide a strong connection between neurons, but also a more

reliable one (English et al., 2017). In fact, the neurons mean spontaneous firing rate

spans around four orders of magnitude, across different brain regions and species,

giving rise to very heterogeneous populations (Fig 2.4a-f). Propensity to fire burst

of spikes also varies largely across neurons and displays a log-normal distribution.

Thus, when considering the distribution of neuronal activity, this log-normal prin-

ciple yields a large number of slow-firing neurons together with a small fraction of

fast-firing, bursting cells, which can fire nearly half of the spikes recorded at any

physiological time frame, such as a theta oscillations (Buzsáki, 2009; Mizuseki, Diba,

et al., 2011). Interestingly, neurons scale also their firing response to stimuli (even

optogenetically induced ones) to their spontaneous level of activity (Stark, Roux,

Eichler, and Buzsáki, 2015). Local field potentials (LFPs), too, span many orders

of magnitude in time and frequency, displaying a linear relationship between power

and frequency on a log-log plane (Freeman et al., 2000; Penttonen and Buzsáki,

2003). Good evidence of such features are found in the hippocampal circuit; in fact,

also synchronous neuronal events like SWR and theta oscillations show a skewed

distribution in the magnitude - i.e.level of synchrony - of the event, too. In fact,

larger, more synchronised events are irregularly interspersed by many smaller, less

synchronised ones (Mizuseki and Buzsáki, 2013).

Such a wide range of neuronal dynamics constitutes a good framework to consider

both rate and temporal codes together as different but complementary tools to
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an effective and efficient information transmission in the brain. Faster neurons

- i.e. following the rate code hypothesis - may provide fast, economic and highly

efficient but, perhaps, less-precise communication. These neurons, by being strongly

connected to all components in the network, might readily produce a ”best guess”

for matching behaviour to environmental situations. However, perfect and adaptive

performance may require the participation of the more flexible majority of neurons,

which can be fine-tuned with experience. Such ”best guess” hypothesis is supported

also by brain-machine interfaces applications, where only 10-20% of the recorded

neurons make up approximately 60-80% of the limb kinematic or force that is being

decoded (Hochberg et al., 2006).

Networks with skewed statistical properties have been shown both to provide a broad

dynamic range and to offer stability, resilience and tolerance to component failures

(Ikegaya et al., 2013). A ’log-dynamic’ brain points toward a relatively hard-wired

backbone in the neural network formed by the high activity minority of neurons,

which provides readily available and routine responses. The low activity majority

would then be responsible for the experience dependent, flexible and plastic compo-

nent. This solution would combine the advantages of local computation and global

control: synchronization, wiring economy, information storage and communication

speed (Buzsáki, Geisler, et al., 2004).
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Figure 2.4: Lognormal distribution of firing rates in the cortex. a, Siliocon
probe recordings in the rat brain showing the firing-rate distribution of principal cells in
the hippocampus (CA1, CA3 and dentate gyrus (DG)) and the entorhinal cortex (EC;
specifically, in layers 2, 3 and 5) during slow-wave sleep (SWS; left panel) and exploration
(RUN; right panel). b, Whole-cell patch recordings showing the firing-rate distribution
of neurons in the auditory cortex of awake rats. The two distributions show all cells
and a subset, from which seven neurons with narrow spikes (that is, putative fast-firing
interneurons (FFIs)) are excluded. c, Silicon probe recordings in the rat brain showing
the firing-rate distribution of superficial (layers 2/3) and layer 5 neurons in the prefrontal
cortex of an exploring rat. Neurons with a peak firing rate in the maze (¡1 Hz) were ex-
cluded from the analysis. d, Sharp metal electrodes data showing firing-rate distribution
of all recorded neurons from lateral intraparietal and parietal reach region areas of the
macaque cortex during a baseline condition and during performance of a reaching task.
e, Utah array recordings showing firing-rate distribution of neurons in the human middle
temporal gyrus during sleep. Principal cells and putative interneurons are plotted sepa-
rately. f, Firing-rate distribution of neurons in multiple cortical areas of human patients
recorded with metal electrodes during various tasks. g, Distribution of spatial features
of dorsal hippocampal CA1 pyramidal neurons of rats exploring an open field, showing a
lognormal distribution of spike information for place field. The proportion of cells plotted
against the spatial information content per spike (bits per spike) are shown in dark blue;
the proportion of cells plotted against the spatial information rate (bits per second) are
shown in light blue; and the proportion of place fields plotted against place field size (cm2)
are shown in red. AU, arbitrary units. Figure reproduced with permissions from Buzsáki
and Mizuseki, 2014.
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2.4.4 Hippocampal heterogeneous population of principal

cells

A potential mechanism underlying the formation of log-dynamics could be due to

neurogenesis. In fact, early born neurons have a higher chance of projecting to each

other and at the dendrites locations closer to the soma. Thus late born neurons

innervate more prominently the more distant segments of the dendrites. Therefore,

it is speculated, early-born neurons are more effective in depolarising their peers

and are more likely to be within the minority of high activity cells (Buzsáki, 2019).

It is the case, though, within the hippocampal circuit where a clear morphological

subdivision between deep and superficial principal cells exists along the radial axis,

a feature noted by early anatomists, observed in diverse species (Fig 2.5a; Lorente

De Nó, 1934; Slomianka et al., 2011.In fact, together with the demonstration of

transcriptional gradients along all the axis of CA1, radial included, which could

manifest in cell-intrinsic differences in protein expression and functional properties

(Fig. 2.5c,d; Cembrowski and Spruston, 2019), a very recent study has found that

that birthdate is a strong predictor of CA1 principal cell diversity, which could

support the log-normal distribution of activity and sensory tuning (Fig. 2.5b,e;

Cavalieri et al., 2021).

The differences along the radial axis of CA1 were found to have differential roles in

supporting behavior. Deep CA1 principal cells display higher firing rate and burst-

ing propensity, are more likely to form place fields than superficial cells and that

deep cells can shift their firing-phase preference depending on brain state (Mizuseki,

Diba, et al., 2011). Importantly, studies using various in-vivo electrophysiological

recording techniques report a bias in the recruitment of radially defined CA1 prin-

cipal cells during hippocampal SWRs, with superficial cells firing earlier, more, and

more consistently during these events (Valero et al., 2015), in agreement with the

45



notion that superficial and deep CA1PCs form functionally heterogeneous groups

in vivo. (Soltesz and Losonczy, 2018). Moreover, the two subgroups of principal

cells were found to respond differently depending on the context and task at hand:

superficial cells had more stable and context-specific representations in a random

foraging task, while deep cells acquired a more stable and behaviour-predicting rep-

resentation during a learning task (Danielson et al., 2016).

With regard to the hippocampal spatio-contextual representation, the number of

place field per cell and their size are also log-normally distributed, with a small

minority having many, large place fields, regardless of the environment size (Fig.

2.4g, see also Rich et al., 2014; Alme et al., 2014). Such skewed distribution might

seem detrimental from an independent coding perspective, given that the minority

of neurons with multiple and larger fields could be regarded as ”noise” (Marr, 1970;

Marr, 1971). But considering their other physiological features, such as high firing

rate and bursting propensity, higher population synchrony and stronger target ex-

citation, such minority of high activity cells might instead play a key role also in

the generalisation of hippocampal spatio-contextual representations. They might

also produce the initial brain’s ”best guess” within novel environments: a recent

study found that the c-fos-positive populations distinguish between spatial contexts

display high mean firing rates (Tanaka, He, et al., 2018). The majority of low activ-

ity neurons, instead, could flexibly encode the details of individual events, as LTP

and LTD can induce new place cells and make place cells disappear, an effect most

strongly expressed in slow-firing place cells (Dragoi et al., 2003).

The coexistence of a highly firing minority and a low activity majority of place cells

supports the theory of cell assemblies (Hebb, 1949). The latter proposes that neu-

rons form synchronised assemblies whose activity is modulated by sensory inputs

- such as the spatial position of the animal in the case of place cells. Constitut-

ing these assemblies, there are rigid and plastic principal cells: place cells encoding
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spatial memories were found to be formed by a subgroup of relatively fast firing

cells, with stable temporal, rigid dynamics, and by a subset of slowly firing neurons,

with more adaptive, plastic dynamics (Grosmark and Buzsáki, 2016). The latter

acquire highly selective spatial firing patterns and show increased recruitment dur-

ing post-exploration/experience SWR events. Rigid place cells, instead, show low

spatial selectivity and were shown to maintain global stability in the network, thus

allowing the plastic majority to adapt its activity to the novel environment (Panas

et al., 2015). It was found out that the activity of individual place cells can be

better predicted by considering the activity of neighbouring synchronised neurons

- which are part of the same cell assembly - together with the spatial location of

the animal (Harris, Csicsvari, et al., 2003). The optimal time window for predicting

one cell’s spike timings from the activity of neighbouring neurons is 10-30ms, which

matches the cellular membrane time constant, the gamma oscillation period and the

temporal interval for synaptic plasticity to take place. Therefore, precise temporal

activity and assembly dynamics at this time scale could be optimal for memory

transmission and storage in cortical circuits. In such a regime, neocortical storage

sites may house relatively more stable memories that hippocampal computations

incrementally modify (Kumaran et al., 2016).
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Figure 2.5: Developmental, genetic, morphological, and intrinsic electrophys-
iological differences between radially defined CA1 principal cells sublayers.
a, Top: schematic illustrating coronal section of the hippocampus with major subregions.
Middle left: schematic drawing illustrates the deep (blue) and superficial (red) subdivisions
of the CA1 somatic layer. Middle right: calbindin expression in the superficial sublayer in
the septal CA1. Scale bar, 20µm. Rad., stratum radiatum; Ori., stratum oriens. Bottom:
differences in the cellular compactness and width of the deep and superficial CA1 prin-
cipal cells (CA1PCs) sublayers along dorsoventral axis of the hippocampus.b, Superficial
and deep CA1PCs are generated in different time-windows during embryonic neurogen-
esis: in utero intraventricular injections (IUI) of tdTomato-expressing adeno-associated
virus at embryonic day 14 (E14, cyan) and E17 (red) label deep and superficial CA1PCs,
respectively. Pyramidal cells of the densely packed superficial layer in CA1 arise approxi-
mately 2–3 d after those of the deep layer, on average. c, Two example marker genes for
superficial and deep sublayers identified with RNA sequencing (top) and cross-validated
with in situ hybridization (bottom); gene-expression values (top) are expressed in frag-
ments per kilobase of exon per million fragments mapped (FPKM). Super, superficial. d,
Top: the number of enriched genes as a function of the minimum enrichment across all
replicates using bulk RNAseq. Note that the dorsoventral axis exhibits the most robust
gene-expression differences, but there are many enriched genes across both the superfi-
cial–deep and proximodistal axes as well. Bottom: examples of genes enriched in the
superficial and deep sublayers. Differences in gene expression may relate to functional dif-
ferences between layers. Differences in gene expression may relate to functional differences
between layers: calbindin-deficient mice and mice with deletion of the gene encoding the
transcription factor Zbtb20, which controls calbindin expression, demonstrate deficits in
hippocampal-dependent learning and LTP. Zbtb20 expression is maintained throughout
adulthood in superficial CA1PCs, and its expression is mutually exclusive with that of
Sox5, a marker of deep CA1PCs e, Morphological and intrinsic electrophysiological differ-
ences between superficial and deep CA1PCs. Top: representative camera lucida drawings
of a superficial CA1PC and a deep CA1PC. L.M., stratum lacunosum-moleculare; Rad.,
stratum radiatum; Pyr., stratum pyramidale; Ori., stratum oriens. Deep cells have larger
soma and more complex basal dendrites. Note that calbindin-expressing CA1PCs, primar-
ily located in the superficial sublayer, have more complex apical dendritic arborizations
(not shown). Middle: superficial CA1PCs exhibit a more strongly depolarized somatic
resting membrane potential (Vrest) and a larger somatic h-current that mediates a de-
polarizing sag (indicated by arrow) during hyperpolarizing current pulses. Bottom: ex-
amples of superficial CA1PC-biased signaling pathway, calcium-binding protein, and a
divalent ion. H-current, a major regulator of dendritic excitability and synaptic input
integration, is larger in superficial CA1PCs, and recent results indicate that tonic activ-
ity of postsynaptic cannabinoid type 1 receptors (CB1R) maintains the amplitude of Ih
through a dedicated molecular pathway in these cells. HCN1, hyperpolarization-activated
cyclic nucleotide-gated channel. Figure reproduced with permissions from Cembrowski
and Spruston, 2019.
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Chapter 3

A network science framework for systems

neuroscience

As Camillo Golgi first observed using silver nitrate staining (Golgi, 1885) and

Santiago Ramón y Cajal detailed and artistically depicted using light microscopy

(Ramón y Cajal, 1888), the neural circuitry is not a single homogeneous reticulum

but is instead a network composed of individual, anatomically distinct nerve cells

with complex interconnections. Networks of neurons use spikes to communicate

(Bialek et al., 1999), which is the substrate for all the codes and operations that give

rise to perception, action and memory. Therefore understanding these phenomena

requires understanding the spiking activity across populations of neurons (Pouget

et al., 2013; Yuste, 2015).

The latest technological advances allow us to simultaneously capture the activity

of hundreds, thousands of neurons in different brain systems. These can span from

invertebrate locomotion and motor control, through higher-level mnemonical tasks

in rodents to abstraction-driven decisions in primate prefrontal cortex (see section

2.3.1). Once the data is recorded, the key question becomes how do we get insights

into the system: how do we describe this population-wide spiking activity? How

should we visualize and represent it? And how do we discover the coding and
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computations therein?

Network science and graph theory gives us powerful tools for studying complex

systems, such as brain circuits (see section 2.4), by representing, analysing

and modelling the dynamics of a multitude of components interacting together.

Networks, or graphs, are simply a collection of nodes, representing items, and

edges between them, representing the interactions between items. Such repre-

sentations can be used to study a range of diverse systems: from interaction

within social groups, through economic and industrial processes, to word structure

in a text (Newman, 2003). By abstracting these systems to a network descrip-

tion, we can study their topology, compare them and decompose them in their

functional elements. It is important to stress that the edges in these networks

do not necessarily represent a physical connection between nodes but they can

signify any interaction of interest between them (i.e. friendships in a social network).

Apart from mapping the physical structure of brain regions, graph representation

has been employed in neuroscience to yield insightful descriptions of neural

circuits activity: from mesoscale neural data in human subjects, to optical and

electrophysiological readout of neural activity in animals (Bullmore and Sporns,

2009; Bassett and Sporns, 2017; Humphries, 2018). In these networks, the nodes

are either local brain circuits (in MEG, EEG, fMRI recordings) or individual

neurons (in optical and electrophysiological recordings) and the edges represent the

interactions between them.

In this chapter I will focus on networks representing the co-firing interactions within

neuronal populations, surveying graph-theoretical tools and concepts to characterise

their topology. The data used are electrophysiological recordings of putative pyra-

midal cells in the hippocampal dCA1 region in mice freely exploring different arenas
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(n=1,083 total principal cells; 63.7±33.2 principal cells per day; 17 days from 7

mice. For details on the recordings procedures see section 4.2.1).

3.1 Network characteristics

As mentioned before a network is comprised of nodes and edges. In our case,

the nodes are individual neurons and the edges represent the interaction between

them (Fig. 3.1b). The interactions can be computed from any pairwise metric

between the timeseries activity of any two neurons. A critical feature of any

interaction metric is whether it is directed or not, which consequently makes the

resulting network symmetric or not. Frequent choices of interaction metric are the

cosine similarity or the Pearson correlation coefficient (both undirected) as these

measures are easy to interpret, compute and are not data-intensive. Nonlinear

metrics can also be used, when sufficient data is available: these include mutual

information (undirected; Singh and Lesica, 2010; Bettencourt et al., 2007), transfer

entropy (directed; Schreiber, 2000; Thivierge, 2014), interaction measures tailored

for binary spiketrains (their use in defining networks interaction is unclear though;

Lyttle and Fellous, 2011; Rossum, 2001; Victor and Purpura, 1996), the weights of

a Generalised Linear Model (GLM; directed; Pillow et al., 2008) and biophysically

inspired ones (directed; Billeh et al., 2014). It is to be stressed, though, that

measures of pairwise interaction alone cannot distinguish whether the correlations

are caused by common inputs to both neurons or whether they are indeed physically

connected (Das and Fiete, 2020).

Irrespective of the interaction metric selected, a network is represented as a graph,
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defined by its adjacency matrix, A, which is an NxN square matrix (Fig. 3.1c):

A =


w00 . . . w0N

...
. . .

...

wN0 . . . wNN

 (3.1)

where N is the number of nodes in the graph; and each element, wij, is a continuous

weight value that corresponds to the chosen interaction measure between two nodes

i and j. In the case of a binary graph wij = aij, where aij is a binary variable

reporting whether there is an edge between i and j. As we want to represent the

co-firing associations across neurons, dense weighted graphs are formed using the

Pearson correlation coefficient r to measure the coactivity interaction between any

two cells. In this way we consider also the weak interactions across neurons, which

are discarded by the commonly used thresholding techniques, that may contain rel-

evant information (Humphries, 2011; Zanin et al., 2012; Khambhati et al., 2015).

To build dense weighted graphs, we evaluate r using the continuous variables ob-

tained from smoothing the two selected spike-trains, which are first binned at 0.8

ms to ensure the resulting vector is binary, with a Gaussian kernel (SD=20ms) (Fig.

3.1a). This operation yields a continuous and bounded measure of the co-firing

relationship between any pair of neurons - i.e, −1 ≤ r ≤ 1 - that is easy to inter-

pret and to compute . Moreover, A is symmetric as the metric is undirected - i.e.

wij = wji -; this greatly simplifies the topology of the network allowing us to exploit

its Riemmanian properties, as I will describe in section 3.3. Other measures, such

as the ones mentioned earlier could have been employed but the additional compu-

tational burden was found not to be justified as the simple r measure is already well

capturing the neurons co-firing associations. It is important to note though that

our choice of Gaussian kernel is justified by the neuron’s membrane time constant

of 20ms (Suszkiw, 2012). Such a ”binless” approach was shown to give Pearson

correlation coefficient estimates that are equivalent to the ones produces by coarser
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binning procedures, without introducing the quantisation noise introduced by the

bin estimate (P. B. Kruskal et al., 2007). The convolution step introduces dependen-

cies between the individual samples, which, in this case, are assumed to reflect the

transmission effect induced by the neuron membrane capacitance, but might also

produce spurious effects if the kernel width is not reflecting the properties of the

underlying system. With respect to hippocampal principal cells activity, another

alternative approach would be using bins matching the duration of individual theta

cycles, as they are believed to be a fundamental element of the syntax used by the

hippocampus to encode information (see section 2.2.2).

3.1.1 Connection strength

Connectivity is an important and fundamental measure of a graph. Node i’s con-

nectivity is quantified by its strength, Si, in the case of weighted graphs, which is

the equivalent to the degree ki in the case of binary graphs - i.e, the number of

connections made by each node.

Si =
N∑
j=1

wij (3.2)

The simple sum is taken instead of the sum of the amplitude of the coefficients

because it aims to capture also the sign of the correlation strength of each neuron,

not just its magnitude. The example in Fig. 3.1 shows the skewed distribution of

co-firing strength within a dCA1 pyramidal cells network (Fig. 3.1e), which arises

from a power-law distribution of their co-firing associations (3.1d). Such skewed dis-

tributions points to the presence of a minority of highly coactive neurons, a charac-

teristic of log-dynamic brain circuits (see section 2.4). Recurrent neuronal dynamics

are known to produce by chance wide neuron pairwise neuronal correlation distri-

butions centered The positive bias of the co-firing associations distributions suggest

that a common input could be synchronising the neurons activity together (Renart
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et al., 2010). Employing a GLM to predict the activity of cell i from two separate

inputs, namely the activity of another cell j and the remaining population activity

or a concurrent behavioural state such as the animal speed. Employing the beta

coefficient of the trained GLM to quantify the pairwise neuronal interactions could

then possibly discriminate between the independent co-activity between neurons i

and j and the one induced by shared external inputs.

What discussed up until now is enough to define the connectivity of i in an undi-

rected graph. In the case of a directed graph though, every node has two strength

values associated with it, for inward and outward connections. The two quantities

are defined by summing over either the rows or the columns of A separately.

Sin
i =

N∑
j=1

wji Sout
i =

N∑
j=1

wij

3.1.2 Geodesic path length

The geodesic path between any two nodes in a graph is the shortest possible route

between them. Its length - i.e. the shortest path length - measures the ease of

connection between any two nodes in a network, which captures their information

transmission potential. In the case of a co-firing neuronal network, the geodesic path

length captures the level of coordination between the neurons’ activity. If the graph

is binary, the shortest path length is just the smallest number of edges that connects

any given two nodes. In weighted networks, it is useful to attach a physical quantity

to the edges of the network if we were to embed it in a D-dimensional space (R2 or

R3 typically). The co-firing distance between two nodes i and j is then defined as

dij =
1

wij

(3.3)

discarding all negative edges. Possibly, to avoid discarding all negative edges, an

alternative approach would be to create equivalent positive weights by adding 1
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to all the entries in the co-firing matrix, mapping negative weight to the range

0 ≥ x < 1 and positive weights to 1 < x ≤ 2. This operation, though, would

distort the resulting distances d as differences between negative weights would be

given more relevance than distances between positive weights. As 1/x = x−1 is a

non-linear function, its slope in the range 0 ≤ x < 1 its much steeper than in the

range 1 < x ≤ 2. Given that most of the co-firing relationship have positive values

(see section 3.1.1) discarding the negative minority was deemed more appropriate

but this should be tested by comparing the two measures empirically.

Once we have defined a distance metric, we may want to find the shortest path

between any two nodes in the network by minimising the total length between them,

so to obtain their pairwise geodesic path length Lij (Figure 3.1d; Boccaletti et al.,

2006). To compute this quantity in dense networks we employ the Floyd-Warshall

algorithm (Floyd, 1962; Warshall, 1962; Roy, 1959) as the frequently used Dijkstra’s

algorithm is only applicable to sparse graphs (Djikstra, 1959). To every neuron we

can then assign an average geodesic path length Li

Li =
1

N

N∑
j=1

Lij (3.4)

In Fig.3.1g the distribution of L among a neuronal population is shown, it is heavy-

tailed suggesting a wide range of individual cells synchronisation across the network.

3.1.3 Clustering coefficient

The clustering, also known as transitivity, of a graph measures the number of closed

triangles, or triplets, formed by interconnected nodes. In a social network this

is intuitively represented by two friends that share a common third friend. The
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transitivity T of a graph is defined as

T =
3Ntri

N
(3.5)

, where Ntri is the number of triangles in the graph. An alternative measure is the

clustering coefficient, introduced by Watts and Strogatz (Watts and Strogatz, 1998),

which defines a node-wise measure instead of a graph-wise, such as T . The clustering

coefficient Ci of node i aims to quantify how likely are two of its neighbours of being

connected. In a binary graph, Ci is defined as the ratio between the number of

edges ei present in its neighborhood, i.e, within the subgraph GI made by i and all

the nodes connected to it, and the maximum possible number of edges within Gi,

ki(ki − 1)/2.

Ci =
2ei

ki(ki − 1)
(3.6)

In this study. we want to calculate the clustering coefficient in signed weighted net-

works, to quantify the propensity of individual neurons to form triads of coactivity

within the network. Using a modified version of the formula proposed by Onnela et

al. (Onnela et al., 2005; Saramäki et al., 2007; Costantini and Perugini, 2014):. For

any neuron i, we can then obtain its clustering coefficient Ci as

Ci =

∑
jm(ŵijŵimŵjm)1/3

ki(ki − 1)
(3.7)

where j and m are neighbors of neuron i, all edge weights are normalized by the

maximum edge weight in the network ŵ = w/max(w)) , and ki is the degree of

neuron i, which in these dense weighted graphs with no self-connection is equal to

the number of neurons minus one. Note that this formula accounts naturally for

negative edges: a given triad yields a negative contribution when there is an odd

number of negative edges; it is positive otherwise.
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In Fig. 3.1h an example of the clustering coefficient distribution among a dCA1

network is shown. The distribution is asymmetric, skewed, which suggests that a

minority of pyramidal cells participate to a great number of neuronal coactivity

motifs (triplets), while the majority does not. This behaviour is related to the log

dynamics within brain circuits, which is discussed in depth in section 2.4.
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Figure 3.1: Representing the co-firing relationships among a population of
neurons using dense signed weighted graph. a An exemplar raster plot displaying
the spiking activity from 109 simultaneously recorded pyramidal cells in the mouse hip-
pocampal dCA1 as the animal was freely exploring an arena. For clarity, a 50-s sample
is shown. b, The adjacency matrix representing the pairwise Pearson correlation coeffi-
cient measuring the co-firing of pyramidal cells for the same recording as in a. c, The
corresponding graph graph is visualised using the Fruchterman-Reingold force-directed
algorithm. Each node represents one cell. Each edge represents the co-firing association of
one cell pair, color-coded according to their correlation’s sign and width proportional to
the edge’s absolute value d, The corresponding pairwise geodesic path length matrix. e,
Skewed probability distributions of neuron-wise connection strength (left), geodesic path
length (middle) and clustering coefficient (right) for the exemplar network shown in the
previous panels.
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3.2 Neuronal circuits as small-world networks

Main real-world networks share a common small world architecture, characterised by

a low average geodesic path length and a high clustering coefficient, which supports

many important functions such as synchronisability and information flow (Nishikawa

et al., 2003; Lu et al., 2004; Oliveira et al., 2014). This topology was first described

by Watts and Strogatz, who developed a simple model starting from a binary, highly-

regular (lattice) network which has some of its connections randomly rewired (Watts

and Strogatz, 1998). In this way, small network boast a high clustering while al-

lowing fast navigation across it. Famous examples of small world networks include

social networks, email traffic, the internet and many biological networks. Neural

networks have also been described as small world: the canonical example being the

neural network of the worm Caenorhabditis elegans, but also the anatomical tracing

of the wiring within the brain of mammals, including humans, and its functional ac-

tivity (EEG, MEG, fMRI) have revealed strong locking (high clustering) of dynamics

across neurons and cohesive activity across the population (short path length) (Bull-

more and Sporns, 2009; Bettencourt et al., 2007; Sadovsky and MacLean, 2013).

The small-world network description given by Watts and Strogatz is tailored for

theoretical investigations of the model but unfortunately it is not useful to describe

real-world data. The Small-world Index (σ) is the most common statistics used

to quantify the small-world-ness of real-world networks (Humphries and Gurney,

2008). The idea behind this index is simply to compare the geodesic path length

(Ldata) and clustering coefficient (Cdata) of the network of interest with the ones of a

random (Erdos-Renji) network (Lrnd, Crnd), as a small-world network has a geodesic

path length larger, but comparable, to a random network while it has a much larger

clustering. Then, the following quantities are defined:

γ =
Cdata

Crnd

λ =
Ldata

Lrnd
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σ =
γ

λ

if the network is small-world it will have γ > 1 and λ ≈ 1, leading to σ > 1.

Therefore if a network has σ > 1 is said to be small-world - is to be noted, though,

that σ has no upper bound. The small-world index was defined for binary networks

but it can be applied to weighted networks as well (Colon-Perez et al., 2016). The

main drawback of σ is that, by comparing the topology of the network of interest

only with random networks, lacks in sensitivity because the clustering coefficient

of random networks can be very low. This is especially exacerbated when the edge

density of the network increases, such as in dense weighted graphs, leading to a large

γ, and therefore σ > 1, even if the network is not particularly clustered. To overcome

this issue, two indexes were developed taking into consideration the topology of the

equivalent lattice network as well as the random one. Telesford et al. defined a new

metric ω as

ω =
Lrnd

Ldata

− Cdata

Clatt

where the clustering coefficient of the target network is now normalised by the one

of its lattice equivalent (Clatt) an not by the random one (Telesford et al., 2011).

This leads to ω being bounded in the range [-1, 1]: if ω is close to 0 the network

is considered to be small-world, if it is, instead, closer to 1 it indicates the network

is most similar to a random one, while a negative ω indicates a strongly regular

topology. This index is only defined for binary networks, though, limiting its use on

real-world data. Nonetheless, this index has been used to identify the small-world

regime accurately and it has been applied successfully to modelling and neural data

but it remains density dependent and is not applicable to weighted networks (Zippo

et al., 2013; Acimovic et al., 2015; Pritchard et al., 2014). To tackle weighted

networks of varying density, the Small-world Propensity (φ) has been introduced

(Muldoon et al., 2016)

φ = 1−
√

∆C2 + ∆L2

2
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where,

∆C =
Clatt − Cdata

Clatt − Crnd

∆L =
Lrnd − Ldata

Lrnd − Llatt

The ratios ∆C and ∆L represent the fractional deviation of the metric (Cdata

and Ldata) from its respective null model (a lattice or random network). Posing a

boundary on Ldata ≥ Lrnd and Cdata ≤ Clatt guarantees that φ is within the range [0,

1]. Values of φ close to 1 indicate that the network displays high small-world charac-

teristics. Networks with high small-world characteristics (low ∆C and ∆L) will have

a value of φ close to 1, while lower values of φ represent larger deviations from the

respective null models for clustering and path length, and display less small-world

structure. Muldoon et al. empirically selected φ > 0.6 as a threshold for a strong

small-network topology, but as φ allows to distinguish across different degrees

of small-world-ness, they also noted that 0.4 indicate a weak small-network topology.

To assess the small-world-ness of the hippocampal dCA1 multi-neuron data, I first

construct null network models to compare the target networks topology to. The

random network equivalent is built by random shuffling the edge weights in the real

network (Fig. 3.1b-c) to obtain a symmetric graph with no self-connections (Fig

3.2a,c). For the lattice network equivalent, instead, I re-organise the real network

weights to construct a 1D highly clustered lattice (i.e., a ring topology) that displays

the strongest connections between neighbouring neurons. To do so, I consider the

row/column location in the adjacency matrix a proxy of the physical location of

the neurons, which is supported by the natural ordering of tetrode-recorded cells.

To then construct the lattice equivalent network I assign the strongest weights in

the real network first to the connections between adjacent nodes within the 1D

lattice (i.e., starting from d=1 Euclidean distance along the ring), and only once all

adjacent weights are assigned I start filling the d¿1 locations (Fig. 3.2b,d; Muldoon
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et al., 2016). As expected, the geodesic path length and clustering coefficient of

the units in the random network is smallest, while the units in the lattice network

show the greatest values (Fig. 3.2e). Within a random network it is, in fact, easy

to move from one node to any other but there is very little local structure; a

lattice networks, on the other hand, has a very regular and clustered local structure

that makes it difficult to move between faraway nodes (no shortcuts are present).

Moreover, in the random and lattice equivalent networks the clustering coefficient

and geodesic path length have symmetric and narrower distributions compared to

the skewed ones of the neuronal network (Fig. 3.2e).

Once the correct null models are built, it is then possible to assess whether the

neuronal networks display a small-world structure and quantify it. We find that the

hippocampal dCA1 networks of pyramidal cells (n=102 graphs; 260,058 co firing

pairs) have σ = 6.09 ± 0.41 (mean ± SEM; Fig. 3.2f, left) and φ = 0.575 ± 0.019

(mean ± SEM; Fig. 3.2f, right). These results suggest that these cellular dCA1

networks have a weak small-world topology, therefore not displaying a strong hier-

archical structure. I find that σ > 1 for 97.1% of the networks examined, but this

measure is not very accurate and tends to overestimate, as previously discussed.

Instead, the more specific Small-world Propensity indicates that 87.3% of the net-

works have φ > 0.4, suggesting a weak small-world structure, while only 15.6% have

φ > 0.6, which is a hallmark of a stronger small-world topology.
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Figure 3.2: Assessing small-world structure of the hippocampal dCA1 pyra-
midal cells network. a The adjacency matrix of a random network equivalent to the
target network in Fig 3.1. b, The adjacency matrix of a lattice network equivalent to the
target network in Fig 3.1 c, The random network in panel a visualised as a graph using
the Fruchterman-Reingold force-directed algorithm to position the nodes. d, The lattice
network of panel b is visualised in the same way as in panel c. e, Right, the clustering co-
efficient distribution for the nodes in the dCA1 network (Fig 3.1), in its equivalent random
network (panels a, c) and in the lattice one (panels b, d). Left, the clustering coefficient
distribution for the nodes in the same three networks as in the left panel. f, Left, Small-
world Index σ for all (n=102) the dCA1 networks examined ([5.29, 6.90], 95% confidence
intervals for the mean). Right, the Small-world propensity φ for the same networks sample
([0.48, 0.53], 95% confidence intervals for the mean).
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3.3 Distance metrics between networks: a

Riemannian approach

Apart from describing the topology of neuronal networks using ad-hoc measures,

one may wish to compute the overall change that emerges within a network across

different conditions. To do so, a measure of similarity is needed. In this section

I will describe an alternative approach to the commonly used methods, which

exploits the symmetric structure of correlation matrices, like the one representing

the coactivity in a neuronal network described in section 3.1.

Correlation matrices are used often in neuroimaging studies (usually fMRI) where

they are referred to as functional connectivity (FC) matrices, and have demon-

strated a fundamental component of many investigations (D. H. Schultz and Cole,

2016). A common approach to compute the proximity or similarity between to FC

matrices is to “unroll” them into vectors and then compute the Pearson correlation

between them. Indeed, the correlation approach has yielded outstanding results

in the neuroimaging field, such as successfully identifying a participant out of a

large group of participants based on FC matrix similarity (Finn et al., 2015; Amico

and Goñi, 2018). Related approaches include computing the Euclidean distance

between the matrices (Ponsoda et al., 2017), or using the Manhattan distance

(Allen et al., 2014). Matrices computed by Pearson correlating time series data

such as the dense weighted coactivity networks introduced in section 3.1 are positive

semidefinite matrices. Therefore they lie on a non-linear surface, a Riemannian

manifold, called the positive semidefinite cone: their geometry is non-Euclidean

(Boyd and Vandenberghe, 2004; Moakher, 2005). Accordingly, distances between

correlation matrices must be measured along the surface of the cone: the shortest

curve joining two points (matrices) on the cone is called a geodesic and are the

most accurate measure of the distance between two points laying on a manifold
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(Fig. 3.3; Navarro-Sune et al., 2017).

Figure 3.3: Geometry of symmetric positive semidefinite matrices representing
neuronal networks. a The adjacency matrices representing the co-firing structure of the
same network during three different exploration sessions and conditions. b, Illustration of
geodesic (red) and Euclidean (green) distances on the so-called positive semidefinite cone.
A, B and X, the three adjacency matrix of a, are represented as points on the cone and
the distance among them is correctly described by the geodesic distance and not by the
Euclidean one. This panel is adapted with permissions from Venkatesh et al., 2020.

Such geodesic distances are well defined and computationally tractable on Rieman-

nian manifolds. The affine Invariant metric DAFF ( introduced in Pennec et al.,

2006) defines the geodesic between two N ×N positive semidefinite matrices A and

B laying on a Riemannian manifold as

DAFF (A,B) =

√
trace(Log2(A−

1
2BA−

1
2 ) (3.8)

, where Log(·) is the matrix logarithm, the inverse of the matrix exponential defined

as: exp(A) =
∑∞

k=0A
k/k!. Note that this notation implies that A is invertible, so we

add the identity matrix I to both matrix to ensure that all eigenvalues are greater

than 0. If we set Q = A−
1
2BA−

1
2 and λi, for i = 1 to N , are the N eigenvalues ≥ 0

of Q, the affine invariant distance is simply

DAFF (A,B) =

√√√√ n∑
i=1

log(λi)2 (3.9)
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An alternative framework to define operations on symmetric positive semidefinite

matrices is the Log-Euclidean framework (Arsigny et al., 2006). By taking a logarith-

mic mapping of a positive semidefinite matrix, a geodesic D(A,B) on a Riemannian

manifold M is projected to its tangent plane at A where Euclidean geometry can be

used. Then, from a Euclidean norm on symmetric matrices ‖ · ‖, the distance DLE

between two matrices is given by:

DLE(A,B) = ‖Log(A1)− Log(A2)‖ (3.10)

The formulation in eq. 3.10 is much simpler to compute than the ones in eq. 3.8

and 3.9, as matrix multiplication and matrix inverse have to be performed.

To motivate why geodesic distance are preferable over the Pearson correlation dis-

tance, consider that the Pearson correlation between two vectors is equivalent to

the cosine of the angle between them after they have been individually “centered”

(i.e, the mean of each vector is subtracted from it) and normalized. Indeed, this

operation allows the Pearson correlation to discard the contribution of the signal

mean, as can be readily seen in the following equation:

corr(x, y) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(xi − x̄)2
(3.11)

, where x and y are vectors. For correlation matrices, such centering alters the eigen-

values and the positive semidefiniteness of the matrix, which can lead to distortions

when evaluating the similarity between correlation matrices.

3.4 Outlook

In this chapter we set out an analytical framework to investigate the coactivity

interactions within neuronal network using graph theory and topological concepts.
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Such methods are part of the broader network science approach to neuroscience

(Bassett and Sporns, 2017; Humphries, 2018), which is mainly motivated in the

extraordinarily rapid advances in neural recording technologies, now capable of

capturing hundreds, even thousands, of simultaneously recorded neurons (Stevenson

and Kording, 2011; Stringer et al., 2019). Capturing whole nervous systems of even

moderately complex animal models will require scaling the number of cells recorded

together by further orders of magnitude (Lemon et al., 2015). And this is really

the most evident advantage of network science: these tools have been developed to

address social and technological networks of millions of nodes or more, so can easily

scale to systems neuroscience problems.

On the other hand, systems neuroscience poses new challenges for network science.

Most studies in network science target data that is static or slowly changing

over time. Neural populations, instead, have intrinsic nonstationary dynamics,

which change rapidly compared to the temporal resolution of neural recordings.

Moreover, systems neuroscience analysis requires not only to quantitatively

compare networks within and across brain regions and animals, but also across

experimental conditions—stimuli, decisions, and other external variables. The

manifold learning approach, discussed in chapter 5 of this thesis, might be helpful

to tackle this problem as it focuses on extracting the dynamics of a network rather

than its structure. Bringing these two approaches together to tackle the issues

raised by system neuroscience has the potential to be fruitful and bear novel insights.

In the next chapter I will employ this framework to track changes in the co-firing

relationship between pyramidal cells in the dCA1 network as new information is

integrated in the pre-existing mnemonical network. In this way, I will uncover a

mechanism of memory encoding an updating within the hippocampal network, and

the potential cellular substrate that enables it.
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Chapter 4

Integrating new memories in the hip-

pocampal network activity space

The work presented in this chapter is published as:

Giuseppe P. Gava, Stephen B. McHugh, Laura Lefévre, Vitor Lopes-dos-Santos,

Stephanie Trouche, Mohamady El-Gaby, Simon R. Schultz, and David Dupret

(2021), Integrating new memories into the hippocampal network activity space,

Nature Neuroscience, 24(3), 326–330.

I conceived and designed the study together with S. R. Schultz and D. Dupret. I

analysed all the data, performed the analytical study and generated all figures. V.

Lopes-dos-Santos developed the tetrode depth estimation algorithm. All animals

recordings were performed by the members of the Dupret Lab, whom I am very

thankful to.

4.1 Introduction

Assimilating new knowledge without corrupting previously acquired memories is a

critical brain function. However, as reviewed in section 2.1, of this thesis, learning

and memory interact: prior knowledge can proactively influence ongoing learning,
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and new information can retroactively influence memories of past events (Dudai and

Morris, 2013; D. L. Schacter et al., 2007). As detailed in chapter 2, the hippocampus

is a brain region essential for learning and memory (Eichenbaum et al., 1999; Morris,

2006), yet the network-level operations that underlie the continuous integration of

new experiences into memory, segregating them as discrete traces while enabling

their interaction, are unknown. Different environments and contexts are represented

by distinct combinations of neurons through a map-like representation, as seen in

section (O’Keefe and Nadel, 1978; Wilson and McNaughton, 1994; E. I. Moser,

M.-B. Moser, et al., 2017). While this suggests how the hippocampus disentangles

the spatial contexts of different memories, these representations further involve

the fine-grained temporal coordination of neuronal spiking that give rise to sets of

jointly-active neurons that organize motifs of coactivity (co-firing patterns), some

of which underpin spatially-selective assemblies (Buzsáki and Llinás, 2017; Kubie

et al., 2020; O’Neill et al., 2008; Ven et al., 2016).

Here, by analysing the activity of principal cells with graph-theoretical techniques

(Bassett and Sporns, 2017; Humphries, 2018), we first found that new associative

learning modifies the topology of the cells’ co firing patterns representing the un-

related familiar environment, strengthening their spatial information content. We

further observed that these neuronal co firing graphs evolved along three functional

axes: the first identified novelty by segregating spatial contexts, the second distin-

guished ongoing behavioural events, and the third revealed cross-memory interac-

tion. Finally, we found that during this process, high activity principal cells rapidly

formed the core representation of each memory; whereas low activity principal cells

gradually joined co-activation motifs throughout individual experiences, enabling

cross-memory interactions. These findings reveal an organizational principle of brain

networks where high and low activity cells are differently recruited into coactivity

motifs as building blocks for flexible integration and interaction of memories.
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4.2 Methods

4.2.1 Experimental procedure

Animals. Adult male C57BL/6J mice (Charles River Laboratories, UK) or trans-

genic heterozygous CamKIIa-Cre mice (Jackson Laboratories; CamKIIa-Cre B6.Cg-

Tg(Camk2a-cre)T29-1Stl/J, stock number 005359, RRID: IMSR JAX:005359;

maintained on a C57BL/6J background) were used for these experiments. Mice

were housed with their littermates until the surgical procedure with free access

to food and water in a room with a 12/12h light/dark cycle, 19–23°C ambient

temperature and 40–70% humidity. All mice were held in IVC’s, with wooden chew

stick and nestlets. Mice were 4-7 months old at the time of testing. Experimental

procedures were performed on mice in accordance with the Animals (Scientific

Procedures) Act, 1986 (United Kingdom), with final ethical review by the Animals

in Science Regulation Unit of the UK Home Office.

Surgical procedure. Mice were implanted with a microdrive during a surgical

procedure performed under deep anaesthesia using isoflurane (0.5–2 %) and oxygen

(2 l/min), with analgesia (0.1 mg/kg vetergesic) provided before and after surgery.

Microdrives contained 10–12 tetrodes, targeting the stratum pyramidale of the

dorsal CA1 hippocampus (Ven et al., 2016). Tetrodes were constructed by twisting

together four insulated tungsten wires (12µm diameter, California Fine Wire) and

heating them to fuse them into a single bundle. Each tetrode was attached to

a M1.0 screw to enable their independent movement. The drive was implanted

under stereotaxic control in reference to bregma (Ven et al., 2016). Tetrodes

were initially implanted above the CA1 pyramidal layer and their exposed parts

were covered with paraffin wax. The drive was then secured to the skull using

dental cement and stainless-steel anchor screws inserted into the skull. Two of the
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anchor screws, both above the cerebellum, were attached to a 50 µm tungsten wire

(California Fine Wire) and served as ground. Tetrode placement was confirmed

by the electrophysiological profile of the local field potentials in the hippocampal

ripple frequency band and anatomical electrode tracks (Ven et al., 2016; Csicsvari,

Hirase, A. S. Czurkó, et al., 1999). In one mouse, a single-shank silicon probe

(Neuronexus, model A1x32-5mm-25-177-H32 21mm) was implanted following the

same surgical procedure to span the somato-dendritic axis of dCA1 principal cells

and establish the laminar profile of the sharp-wave/ripples (SWRs) detected in the

local field potentials. These silicon probe recordings allowed estimating the position

(depth) of individual tetrode-recorded principal cell soma (Fig. 4.3.2).

Recording procedure. After at least one-week post-operative recovery, mice were

handled for 3-4 days and then daily familiarized to the experimental paradigm,

including connection to the electrophysiological recording system and exploration

of a circular-walled open-field enclosure (42 cm diameter; the familiar enclosure).

Mice were food restricted (to 90% body weight) and the various experimental

conditions were randomly allocated across mice and recording days. The 1-day CPP

task included four sessions lasting 15 minutes each: pre-test, place conditioning

to sucrose (+Suc.), to water (+Wat.) and test [23]. The enclosure consisted of

two square-walled (46 cm × 46 cm × 38 cm) compartments with distinct inside

building block configurations on each day. A bridge (8 cm length, 7 cm width)

connected the two compartments during pre-test and CPP test. A linear locomotion

assistant (Imetronic, Pessac, France) held the recording cable while sensing its

movement using infrared light beam detectors, allowing the connected animal to

move freely within and across compartments. During pre-test, mice explored the

entire CPP enclosure and their baseline (spontaneous) preference for one of the two

compartments was determined. Next, the bridge was removed for the conditioning

sessions, and mice explored their non-preferred compartment containing drops of
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20% sucrose diluted in water (2x10min sessions, 10x10µl drops per session). Next,

mice explored their preferred compartment containing drops of water (2x10min

sessions, 10x10µl drops per session). One hour later, CPP memory was tested by

allowing the mice to explore the entire apparatus again (CPP test). We calculated

a place preference score for each mouse during both pre-test and test sessions as

the difference between the time spent in the compartment paired with sucrose

minus the time spent in that one paired with water, during conditioning, over their

sum. On the morning of each recording day, the local field potential (LFP) signals

obtained from each tetrode was used to guide its optimal positioning within the

dCA1 pyramidal layer in search of multi-unit spiking activity (Ven et al., 2016).

Tetrodes were left in position for 1.5-2h before recordings started. On each day,

ensemble recordings were performed continuously while mice explored the familiar

circular-walled enclosure before and after (“exposure” and “re-exposure”; 15

minutes each) the CPP task. Mice were subjected to a novel CPP enclosure on each

recording day (i.e., novel spatial configurations and wall cue cards). Three other

behavioural tasks had a 6-session layout similar to that of the CPP task, in order

to evaluate whether the topological deviations observed during CPP reflected a

general network response for integrating new information. In these three tasks, each

day contained 6 sessions that matched the timeline of the CPP task. Mice explored

the familiar enclosure before (exposure) and one hour after (re-exposure) either: (i)

four sessions of spatial exploration in a novel enclosure without reward (the Novel

context only task; Extended Data Fig. 2a), (ii) four sessions testing spontaneous

preference for one of two novel enclosures, following a similar protocol as for the

CPP task but with no reward (the Spontaneous Place Preference task; Fig. 4.1.3c),

or (iii) four sessions of spatial exploration in a second familiar enclosure with

sucrose reward and water provided in the second and third session, respectively

(the Familiar context with reward condition; Fig. 4.1.3f), as in the CPP task (Fig.

1a). A fifth task further allowed testing whether network topological deviations
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occurred during repeated exploration of a familiar enclosure (the “Familiar context

only” task; four exploration sessions in the same familiar enclosure on each day;

Fig. 4.1.3h). On each recording day, mice were returned to their homecage

between task sessions, having access to water and food while the experimenter

prepared the open-field arena for the next session. Data collection could not be

performed blind to the conditions of the experiments since the experimenter had

to be aware as to which condition they had to expose each mouse on a given day

(which behavioural task) and on a given session (which open-field arena). At the

end of each day, tetrodes were raised to avoid possible mechanical damage overnight.

Multichannel data acquisition and position tracking. The extracellular

signals from the electrodes were amplified, multiplexed, and digitized using a single

integrated circuit located on the head of the animal (RHD2164, Intan Technologies;

gain x1000). The amplified and filtered (0.09Hz to 7.60kHz) electrophysiological

signals were digitized at 20kHz and saved to disk along with the synchronization

signals from the position tracking. To track the location of the animal, three LED

clusters were attached to the electrode casing and were captured at 25 frames per

second by an overhead camera.

4.2.2 Neural activity and events detection

Spike detection and unit isolation. For the offline spike detection process,

the recorded signals were first band-pass filtered (800 Hz to 5 kHz). Spikes were

then detected using the power (root-mean-square) of the filtered signal calculated

in 0.2-ms sliding windows. The detected spikes from each individual electrode

were combined per tetrode. To isolate spikes belonging to the same neuron, spike

waveforms were first up-sampled to 40 kHz and then aligned to their maximal

trough (Csicsvari, Hirase, Czurko, et al., 1998). Principal component analysis was
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applied to these waveforms in a window of ±0.5 ms from the trough to extract the

first three or four principal components per channel, such that each individual spike

was represented by 12 waveform parameters. An automatic clustering program

(KlustaKwik, http://klusta-team.github.io) was run on this principal component

space and the resulting clusters were manually recombined and further isolated

based on cloud shape in the principal component space, cross-channels spike

waveforms, auto-correlation histograms and cross-correlation histograms (Harris,

Henze, et al., 2000; Kadir et al., 2014). All sessions recorded on the same day were

concatenated and clustered together. Each cluster used for further analysis showed

throughout the entire recording day stable cross-channels spike waveforms, a clear

refractory period in its auto-correlation histogram, well-defined cluster boundaries

and an absence of refractory period in its cross-correlation histograms with the

other clusters. Hippocampal principal cells were identified by the shape of their

auto-correlation histogram, their firing rate and their spike waveform (Csicsvari, Hi-

rase, Czurko, et al., 1998). We further used an automated clustering pipeline using

Kilosort (https://github.com/cortex-lab/KiloSort; Pachitariu et al., 2016) via the

SpikeForest sorting framework (https://github.com/flatironinstitute/spikeforest,

Magland et al., 2020). To apply KiloSort to data acquired using tetrodes, the

algorithm was used tetrode-wise (i.e., templates were obtained from channels

within a given tetrode bundle, while masking all other recording channels). The

resulting clusters were manually curated to check all clusters and remove spurious

units using metrics derived from the waveforms and spike times. This procedure

was cross-validated using several datasets and verified against manual curation,

by computing confusion matrices to validate that clusters obtained automatically

were also obtained with the previous method. In total, this study includes n=3,483

principal cells from 63 recordings days: n=1,083 principal cells in the “Conditioned

Place Preference” task (63.7±33.2 principal cells per day; 17 CPP 6-session days

from 7 mice; 5 CamKIIa-Cre and 2 C57BL/6J; yielding 102 graphs; 260,058 co
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firing pairs), n=585 principal cells in the “Novel context only” task (45.0±13.7

principal cells per day; 13 “Novel only” 6-session days from 5 mice; 3 CamKIIa-Cre

and 2 C57BL/6J; yielding 78 graphs; 28,192 co firing pairs), n=640 principal cells

in the “Spontaneous Place Preference” task (49.2±17.5 principal cells per day;

13 SPP 6-session days from 6 mice; 3 CamKIIa-Cre and 3 C57BL/6J; yielding

78 graphs; 34,838 co firing pairs), n=517 principal cells in the “Familiar context

with reward” task (57.4±12.2 principal cells per day; 9 “Familiar with reward”

6-session days from 3 mice; 2 CamKIIa-Cre and 1 C57BL/6J; yielding 54 graphs;

30,512 co firing pairs) and n=658 principal cells in the “Familiar context only” task

(59.3±15.8 principal cells per day; 11 “Familiar only” 4-session days from 3 mice; 2

CamKIIa-Cre and 1 C57BL/6J; yielding 44 graphs; 40,744 co firing pairs).

Sharp-wave/ripples (SWRs) detection. Local field potentials (LFPs) of each

pyramidal CA1 channel (for tetrode recordings) or recording site (for linear silicon

probe recordings) were subtracted by the mean across all channels/sites (common

average reference). These re-referenced signals were then filtered for the ripple band

(110 to 250 Hz; 4th order Butterworth filter) and their envelopes (instantaneous

amplitudes) were computed by means of the Hilbert transform. The peaks (local

maxima) of the ripple band envelope signals above a threshold (5 times the median of

the envelope values of that channel) were regarded as candidate events. Further, the

onset and offset of each event were determined as the time points at which the ripple

envelope decayed below half of the detection threshold. Candidate events passing

the following criteria were determined as SWR events: (i) ripple band power in the

event channel was at least 2 times the ripple band power in the common average

reference (to eliminate common high frequency noise); (ii) an event had at least

four ripple cycles (to eliminate events that were too brief); (iii) ripple band power

was at least 2 times higher than the supra-ripple band defined as 200-500 Hz (to

eliminate high frequency noise, not spectrally compact at the ripple band, such as
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spike leakage artefacts). We classified tetrodes as being in the deep or superficial

sublayer of the CA1 pyramidal layer based on the mean peak amplitude of detected

SWRs (Fig. 4.3.2). Positive values indicated that the tetrode was in the deep

sublayer (i.e. closest to stratum oriens) while negative values indicated tetrode was

in the superficial sublayer (i.e. closest to stratum radiatum) (Mizuseki, Diba, et al.,

2011; Oliva et al., 2016; Csicsvari, Hirase, A. Czurkó, et al., 1999). SWRs were also

used as time bins to calculate SWR firing response of low and high activity cells

(Fig. 4.3.6e,f).

4.2.3 Graph-theoretical analysis of principal cells co-firing

We constructed weighted graphs that represent the spike relationships between

dCA1 principal cells recorded in a given task session, calculating for that session

the set of pairwise Pearson correlation coefficients between all pairs of spike trains.

These co-firing graphs were computed using time bins during active exploratory

behavior (with speed > 2cm/s), discarding periods of immobility and further

excluding sharp-wave/ripples (SWRs) in each task session. The recorded neurons

(and their co-firing associations) are therefore the nodes (and their edges) in the

co-firing graph of each task event, defined by their respective adjacency matrices

(see eq. 3.1). As detailed in section 3.1, to compute each co-firing association

value we used a bin-less approach by convolving the spike trains of i and j with

a Gaussian kernel (SD=20ms) and then calculating their correlation coefficient r

(thus, −1 < r < 1). As a result, A is symmetric, wij = wji, and the graph is

undirected and fully connected (with no self-connections).

Clustering coefficient. We computed a clustering coefficient to characterize the

local synchronization of network activity by quantifying the number of three-node

motifs, as described in section 3.1.3. In each graph, for any neuron i, we obtained

its clustering coefficient Ci using eq. 3.7 (Onnela et al., 2005; Saramäki et al., 2007;
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Costantini and Perugini, 2014). Note that in this way negative edges are taken

into account, as an odd number of negative edges in a triad leads to a negative

contribution.

Geodesic path length. We measured the geodesic (i.e., shortest) path length

to estimate the coordination efficacy between the activity of any two nodes in the

graph. Here, as detailed in section 3.1.2, we embedded each weighted graph in a

lattice and defined the length between two nodes i and j as in eq. 3.3, discarding

all negative edges. We then identified the shortest path length Lij between any

two nodes in the graph using the Floyd-Warshall algorithm (Floyd, 1962; Warshall,

1962; Roy, 1959); to finally yield one average value per neuron as in eq. 3.4.

Single-neuron cumulative co-firing strength. We defined the single-neuron

cumulative co-firing strength as the total pairwise activity correlation strength of a

given node in a weighted graph. As already presented in section 3.1.1, the strength

Si of a node i is the sum of all the weights wij of the edges projected from that node

(eq. 3.2).

4.2.4 Spatial rate map and spiking activity analyses

We divided the horizontal plane of the recording enclosures into spatial bins of

approximately 2×2 cm to generate the spike count map (number of spikes fired in

each bin) for each neuron and the occupancy map (time spent by the animal in

each spatial bin) in each task session. All maps were then smoothed by convolution

with a two-dimensional Gaussian kernel having a standard deviation equal to

two bin widths. Finally, spatial rate maps were generated by normalizing the

smoothed spike count maps by the smoothed occupancy map. The single-neuron

map similarity was calculated by the 2D Pearson correlation coefficient between

the place maps of a given neuron across two task sessions. Here, this task session
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pairwise measure compares for each neuron the spatial relationship between its

place map in the exposure session and that computed for another task session. For

the pre-test and test sessions, two place maps were extracted (one per arena) and

the single-neuron map similarity was obtained taking the maximum similarity value

between either of the two CPP sessions’ maps and that of the exposure session.

The population map similarity (O’Neill et al., 2008; Dupret et al., 2010; McNamara

et al., 2014) compares the spatial relationships of the set of place maps computed

for one task session with those from another task session. Here, this task session

pairwise measure represents the extent to which sets of cells that fired in similar

regions of space (that is, overlapping place fields) during the exposure session

still fire together in similar regions of space later during another task session.

For this measure, we used cells with a spatial coherence value (see below) above

0.2 during the exposure session. The population map similarity was calculated

by first computing the place field similarity (PFS) value for each cell pair during

the exposure session as the Pearson correlation coefficient from the direct binwise

comparisons between the spatial rate maps of the two cells, limited to valid bins

(occupancy greater than zero). This procedure yields a vector storing the PFS

values for all cell pairs during the exposure session. We repeated this procedure

to obtain the PFS vectors of the other task sessions. Finally, the population map

similarity between two task sessions was calculated as the Pearson correlation

coefficient between the PFS vector of the exposure session versus the PFS vector of

the chosen comparison session.

Spatial coherence. To measure the spatial coherence (i.e. the similarity of a

cell’s firing rate over spatial bins), we computed a boxcar-averaged version of its

unsmoothed spatial rate map, with each bin replaced by the arithmetic mean of

itself and its eight adjacent neighbours. The smoothed spatial rate map was then

correlated to its unsmoothed version to yield a Pearson correlation value (Zhang
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et al., 2014).

Spatial information. To estimate the amount of spatial information conveyed by

the spike train of a given cell, we used the mutual information measure I(R;S),

defined in equation 2.3 and discussed in section 2.3.5 (Butts, 2003; Cover and

Thomas, 2006; Shannon and Weaver, 1949). This was corrected for the estimation

bias by subtracting an analytical estimate of the bias itself (Panzeri and Treves,

1996).

Bursting index. For the spike train of each neuron, we defined spike bursts as

transient packets of spikes with inter-spike intervals less than 6ms (Harris, Hirase,

et al., 2001; Ranck, 1973). We used the inter-spike interval t versus inter-spike

interval t+ 1 plot to identify the first, mid and last spikes of each burst candidate.

The bursting index was then defined by the ratio of bursting spikes out of all the

spikes fired by the neuron.

4.2.5 Across-graph topological distance analyses

Co-firing graphs have symmetric and positive semi-definite adjacency matrices since

their elements are computed using the Pearson correlation coefficient between pairs

of spike-trains. Thus, their topologies lie on a Riemannian manifold, as discussed in

chapter 3, section 3.3, and the geodesic distance between them is the most accurate

measure of their dissimilarity (Pennec et al., 2006; Moakher, 2005; Venkatesh et al.,

2020). Accordingly, we employed the log-Euclidean metric (Arsigny et al., 2006),

detailed in eq. 3.10, to compute the topological distance between constellations of

co-firing patterns for pairs of task session graphs. This way, we obtained for each

task session s (from exposure to re-exposure) a vector of six topological distances

Ds separating the co firing graph of that session to the co firing graph of each of

the other five task sessions, as well as to itself (by adding one SD of white noise
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to avoid exact 0 results). We normalized each of these vectors by their maximum

distance value, to compare them across days. We thus obtained a 6 x 6 matrix

of the topological distances between the co firing graphs of the six task sessions

for each recording day. Dimensionality reduction, primarily PCA but also MDS

and ICA, was used to visualize the topological distances separating all co-firing

graphs in the activity space of the hippocampal network. To do so, we stacked all

topological distances vectors in a 6 x N matrix, where N is the total number of

co-firing graphs (N = nd × ns, one graph per task session, ns, per recording day,

nd). We next used PCA on the recordings with more than 40 principal cells to

obtain the set of principal components that indicate trajectories in the network

activity space along which co-firing graphs evolved from exposure to re-exposure

task sessions. We then projected the first principal components that explained 80%

of the variance in co-firing patterns onto the topological distances separating the

co-firing graphs of all recordings from a given task.

High and low activity cells contribution to network co-firing patterns. For

each task session s, we quantified the contributions Cs
G of the high and low activ-

ity sub networks G to network-level co-firing patterns by computing the Euclidean

distance Rs
G between the six-dimensional topological distance vector representing

the entire network Ds and those representing the two sub-networks Ds
G (see section

above):

Rs
G = Euclidean(Ds, Ds

G); Cs
G = 1−Rs

G
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4.2.6 Data and statistical analyses

Data were analysed in Python 3.6 and using the packages DABEST v0.3.048,

scikit-learn v0.23.249 (Pedregosa et al., 2011), NetworkX v2.450 (Hagberg et al.,

2008), pyentropy v0.5.051 (Ince et al., 2009), Numpy v1.18.1, Scipy v1.4.1,

Matplotlib v3.1.2, Pandas v0.25.3 and Seaborn v0.11.0. All statistical tests related

to a symmetric distribution were performed two-sided using Gardner-Altman

plots (to compare 2 groups) and Cumming plots (for more groups) from the Data

Analysis with Bootstrap-coupled ESTimation (DABEST) framework (Ho et al.,

2019). These DABEST estimation plots (Cumming’s or Gardner-Altman’s) allow

visualizing the effect size by plotting the data together with the mean or median

difference between one of the groups (the left-most group of each plot/dataset,

used as group-reference) and the other groups (to the right, along the x-axis of

each plot). For each estimation plot: (i) the upper panel shows the distribution of

raw data points for the entire dataset together with the mean (gap) and ± STD

of each group (vertical ends) as gapped lines; and (ii) the lower panel displays the

difference between a given group and the (left-most) group-reference, computed

from 5,000 bootstrapped resamples and with difference-axis origin aligned to the

mean or the median of the group-reference distribution. For each estimation plot:

black-dot, mean (for normal distributions) or median (for skewed distributions) as

indicated; black-ticks, 95% or 99% confidence interval as indicated; filled-curve:

bootstrapped sampling-error distribution. Such visualisation of difference statistics

is considered sufficient and therefore no p-values are reported in the main text

(Ho et al., 2019). Data distributions were assumed to be normal but this was

not formally tested. We also used the t-test to compare two conditions; the Wald

test for assessing the significance of regression lines; and the Kolmogorov–Smirnov

test for comparing probability distributions. No statistical methods were used to

pre-determine sample sizes but our sample sizes are similar to those reported in
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previous publications (e.g., O’Neill et al., 2008, Danielson et al., 2016, Oliva et al.,

2016, McKenzie, A. J. Frank, et al., 2014). Neural and behavioural data analyses

were conducted in an identical way regardless of the identity of the experimental

condition from which the data were collected, with the investigator blind to group

allocation during data collection and/or analysis.

4.3 Results

We monitored dorsal CA1 (dCA1) ensembles from mice exploring a familiar en-

vironment before and after associating a novel environment with reward (sucrose),

using a 1-day conditioned place preference (CPP) task (Fig. 4.1.1a and Fig. 4.1.2a).

On each day of this paradigm, mice first explored the familiar enclosure (exposure).

Next, we identified the preference of each mouse for one of the two novel compart-

ments connected by a bridge to form the CPP enclosure that day (pre-test). We sub-

sequently removed that bridge in conditioning sessions where each mouse explored

its non-preferred compartment baited with drops of a sucrose solution (+Suc.); and

then the preferred compartment with drops of water (+Wat.). One hour after the

last conditioning session, we re-inserted the bridge and tested the place preference

memory (CPP test; Extended Data Fig. 1b). To assess the effect of new CPP mem-

ory on prior representations, we finished each recording day by re-exposing mice to

the familiar enclosure (re-exposure). See the Methods section for a more in depth

description of the experimental protocols.

4.3.1 The topology of hippocampal co-firing is modified by

the encoding of novel memories

On each day we recorded neuronal spiking throughout the six CPP task sessions (Fig.

1a; n=1,083 total principal cells; 63.7±33.2 principal cells per day; 17 days from 7
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mice; Trouche, Koren, et al., 2019). Using the spike trains recorded during active

exploration (i.e. excluding immobility epochs and sharp-wave/ripples), we computed

weighted graphs (Bassett and Sporns, 2017; Humphries, 2018) to represent the firing

relationships between sets of coactive neurons in each task session (Fig. 4.1.1b-

e; n=102 graphs; 260,058 co firing pairs). In these co firing graphs, each node

represents one neuron; the edge linking any two nodes represents the coactivity of

that cell pair, with a weight computed as the Pearson correlation coefficient between

their spike trains. For each graph, this procedure yielded an adjacency matrix of

pairwise co-firing coefficients, with dimensions equal to the number of neurons (Fig.

4.1.1c and Fig. 4.1.2c).

We observed that the co-firing graphs featured more triads of coactive neurons dur-

ing CPP learning (Fig. 4.1.1f; Clustering coefficient), showing that associating a

novel place with reward changes the coactivation structure of the network. Con-

comitantly, the average geodesic path length, calculated as the mean shortest path

between any two nodes, decreases (Fig. 4.1.1f; Geodesic path length), indicating

greater functional connectivity between sets of coactive neurons. By calculating for

each node, the summed weight of all its edges in the adjacency matrix, we also

found that the average single-neuron cumulative co-firing increases (Fig. 4.1.1f;

Co-firing strength), reporting heightened firing associations among neurons during

CPP learning. Similar topological deviations are observed in the co-firing network

under related conditions: exploration of a novel context without reward (”Novel

context only” task), spontaneous preference for a novel place (”Spontaneous Place

Preference” task, also referred to as SPP) and reward experience in an otherwise

familiar context (”Familiar context with reward experience” task) (4.1.3a-g). To en-

sure that such topological deviations are not due only to the passing of time, we let

the animals explore over multiple sessions the same familiar environment (”Familiar

context only” task) and no change in the co-firing was observed (4.1.3h). These find-

ings suggest a potential general mechanism for the integration of new information.
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Importantly however, these topological deviations did not reset during re-exposure

one hour after CPP (Fig. 4.1.1f) while they did in the other tasks (4.1.3). These

sustained changes following CPP neither reflected differences in exploration and be-

havioural patterns (Fig. 4.1.4a-f) nor mere fluctuations in the co-firing (4.1.4g).

Thus, the mnemonic operation of updating a recently-encountered place with re-

ward caused an enduring topological reorganisation (“hysteresis”) in the coactivity

structure of the network.
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Figure 4.1.1: New CPP memory reorganizes pre-existing hippocampal co-
firing topology. a, CPP task layout. Each day, mice explored the same familiar enclosure
before and after a four-session CPP task. Mouse trajectory in each session from 1 d is
shown below the schematic of in-use enclosures. Numbers indicate place preference scores
for pre-test and test, as the time in sucrose-paired compartment (+Suc.) minus that
in water-paired compartment (+Wat.) over the sum. During the CPP test, the mouse
successfully changed its initial preference for the sucrose-paired compartment, as indicated
by the positive score. b, Example raster plot showing the spike trains of 68 simultaneously
recorded dCA1 principal cells (one cell per row) for the day shown in a. For clarity, a
20-s sample is shown. c, The corresponding adjacency matrix of the pairwise correlation
coefficients measuring the co-firing of principal cells. d, The corresponding co-firing graph.
Each node represents one cell. Each edge represents the co-firing association of one cell
pair, color-coded according to their correlation’s sign and width proportional to the edge’s
absolute value. e, Example adjacency matrices (top row) and corresponding neuronal
motifs (bottom row) extracted from the graph shown in d to visualize some co-firing
changes across sessions. f, Changes in topological clustering (top), geodesic path length
(middle) and single-neuron cumulative co-firing strength (bottom) of co-firing graphs.
For each measure, the entire dataset is presented using a Cumming estimation plot to
visualize the effect size; bottom panels: black dot, median; black ticks, 99% confidence
interval; filled curve: sampling error
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Figure 4.1.2: Behavioural performance and hippocampal co-firing graphs in
the CPP task. a, Additional example trajectories for four mice. Each day (one day per
row), mice explored the same (circular-walled) familiar enclosure before (exposure) and
after (re-exposure) a 1-day 4-session CPP task (Fig. 4.1.1a). The CPP apparatus was
formed by two novel compartments on each day. Numbers indicate place preference scores
for pre-test and CPP test sessions, as the time in sucrose-paired compartment (+Suc.)
minus that in water-paired compartment (+Wat.) divided by the sum. b, Place preference
scores. A negative score indicates that mice spent less time in the compartment paired
with sucrose during conditioning. Note that during CPP test, mice successfully changed
their preference for the compartment recently paired with sucrose, as indicated by the
positive score. Scores are presented using a Gardner-Altman estimation plot to visualise
the effect size. The left panel shows the distribution of raw data points for the pre-test
and test sessions. The right panel displays the difference between CPP test and pre-test,
computed from 5,000 bootstrapped resamples and with difference-axis origin aligned to
the mean of the pre-test session distribution. Black-dot, mean difference; black-ticks,
99% confidence interval; gray-filled-curve: sampling-error distribution. c, The adjacency
matrices (top row) of the pairwise correlation coefficients measuring principal cells’ co-
firing for days shown in (a), with the corresponding co-firing graphs (bottom row). Each
node represents one principal cell. Each edge represents the co-firing association of one
cell pair, color-coded according to their correlation’s sign and width proportional to the
edge’s absolute value.
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Figure 4.1.3: Graph topology during exploration of a novel enclosure, spon-
taneous novel place preference and exploration of a familiar enclosure with or
without reward. a,b, “Novel context only” task. Behavioural protocol (a) and topology
of hippocampal co-firing graphs (b) for unrewarded exploration of a novel enclosure (n =
585 total principal cells; 45.0±13.7 principal cells per day; 13 days from 5 mice yielding
n=78 graphs; 28,192 co-firing pairs). Each day, mice explored the familiar enclosure before
(exposure) and after (re-exposure) exploring a novel enclosure over four sessions, without
sucrose reward. The session timeline matches that of the CPP task. (a) An example
mouse trajectory for each session is shown for one day below the schematic of in-use en-
closures. Additional examples shown below for two other days (one day per row). (b) The
topological changes in clustering (top), geodesic path length (middle) and single-neuron
cumulative co-firing strength (bottom) of co-firing graphs. For each measure, the entire
“Novel context only” dataset is presented using a Cumming estimation plot to visualize
the effect size. Note that exploring a novel context causes topological deviations from
the co-firing graph that had featured exposure, indicating that the hippocampal network
“learns” about the novel spatial layout. These deviations no longer occurred during re-
exposure. c-e, “Spontaneous Place Preference” (SPP) task. Behavioural protocol (c) and
performance (d) along with the graph topology (e). Each day, mice explored the familiar
arena before (exposure) and after (re-exposure) exploring a CPP-like apparatus formed by
two novel compartments (Nov 1 and Nov 2) connected by a bridge (pre-test). After having
identified the preference of each mouse for one of the two novel compartments, the bridge
was removed and each mouse first explored its non-preferred compartment (Nov 1), and
then its preferred compartment (Nov 2), as in the CPP task but with no rewards. One
hour after, the bridge was inserted back to test the animal’s place preference (SPP test).
The session timeline matches that of the CPP task. c, Example mouse trajectories as in
(a). Numbers indicate place preference scores for pre-test and SPP test, as the time in the
non-preferred compartment minus that in the preferred compartment over the sum. Note
that mice did not changed their preference, as indicated by the negative scores. d, The
scores are presented using a Gardner-Altman estimation plot (as in Fig. 4.1.2b). Note that
co-firing topology also deviates during SPP sessions from that featuring exposure returns
to baseline in the re-exposure. f,g, “Familiar context with reward” task. Behavioural
protocol (f) and graph topology (g). Each day, mice explored the first familiar arena be-
fore (exposure) and after (re-exposure) exploring a second familiar enclosure during four
sessions. The timeline matches that of the CPP task. Drops of sucrose (+Suc.) and
water (+Wat.) were provided during Fam 2b and Fam 2c sessions, respectively. Example
mouse trajectories from three days (f) shown as in (a). g, Similar to the unrewarded
exploration of novel enclosures and the SPP task (b,e), co-firing topology deviated dur-
ing exploration of the second familiar arena when paired with reward but returned to
baseline in the re-exposure. h,i, “Familiar context only” task. Behavioural protocol (h)
and network topology measured by co-firing strength (i) during exploration of a familiar
enclosure without reward. Each day, mice explored a familiar enclosure (Fam 1 or Fam
2) over four sessions, to match the four sessions used between exposure and re-exposure
in the other tasks (Fig. 4.1.1a and Fig. 4.1.1a–g). h, Example mouse trajectories shown
as in (a). i, Co-firing strength did not deviate during repeated familiar explorations. j,
Topological changes between exposure and re-exposure are compared across tasks. Note
the sustained deviations (topological “hysteresis”) following CPP. For each Cumming esti-
mation plot, bottom panels: black dot, median; black ticks, 99% confidence interval; filled
curve: sampling error
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Figure 4.1.4: Topological changes between exposure and re-exposure in the
cPP task do not relate to differences in spatial exploration or mere fluctuations
in co-firing. a, Spatial occupancy during exposure and re-exposure for example CPP days
from four mice (one mouse day per row; using examples shown in Fig 4.1.1 1). Shown for
each day, from left to right: (i) animal’s trajectory for each familiar session, (ii) map of
pixel-wise dwell time difference across the two sessions (for each pixel, the time spent in
that pixel during exposure minus re-exposure), (iii) distribution of pixel-wise dwell time
differences for all pixels covering the familiar enclosure, showing no significant difference
of the mean from 0 (all Ps>0.05), and (iv) corresponding Gardner-Altman estimation plot
to visualize the effect size of the pixel-wise dwell time difference across the two sessions.
For each Gardner-Altman plot: left panels show the raw data points for exposure (grey)
and re-exposure (green), with each point representing the dwell time in a given pixel; right
panel: mean (black-dot), 95% confidence interval (black-ticks) and sampling-error distri-
bution (filled-curve) of the difference between re-exposure and exposure, computed from
5,000 bootstrapped resamples and with the difference-axis (dashed-line) origin aligned to
the mean of the exposure distribution. b, Pixel-wise dwell time difference in spatial occu-
pancy across the two sessions for all CPP days, as in (a). Average time difference distribu-
tion (left) not significantly different from 0 (1-sample t-test, p=0.53, t=0.62, df=1461; in
sec per spatial bin: mean difference=0.05±0.08; 95% confidence interval=[0.106, -0.205];
interquartile range=[1.306, -0.870]), as also shown in the corresponding Gardner-Altman
plot (right). c, Cumming estimation plots showing the absolute number of pixels visited
in each CPP task session (top; each dot representing one mouse CPP day) and the frac-
tion of visited pixels in each enclosure (bottom). Note that the animal’s coverage was not
significantly different between exposure and re-exposure. The higher number of pixels vis-
ited during pre-test and CPP test merely reflects the higher dimension of the whole-CPP
apparatus. d, Example time course of a mouse instantaneous speed during exposure (top)
and re-exposure (bottom) in one CPP day. e, Instantaneous speed across the six sessions
for all CPP days (bar charts: mean±SEM; with each superimposed dot representing one
mouse CPP day). No significant differences across sessions with respect to exposure (P
values: pre-text=0.25; +Suc.=0.38; +Wat.=0.76; CPP test=0.82; Re-exposure=0.98; all
2-sample Kolmogorov-Smirnov tests). f, Average speed across the six CPP task sessions
(top) along with the total distance travelled (bottom; calculated for the first 15 min of
each session). Note that the significant increased speed and distance travelled during
pre-test (when the mouse is exposed for the first time to the novel CPP apparatus) do
not translate in topological differences (Fig. 4.1.1f). These analyses (a-f) show that the
topological hysteresis during re-exposure compared to exposure (Fig. 4.1.1f) does not re-
flect non-specific changes in spatial exploration. g, Topology alterations of hippocampal
graphs in re-exposure (Fig. 4.1.1f) do not reflect mere fluctuations in co-firing. To con-
trol for natural variations in co-firing graphs, we split both exposure and re-exposure in
two sections (1 and 2) with equal duration of active exploration (speed¿2 cm/sec; expo-
sure: 6.89±0.13 versus 6.97±0.10 min; re-exposure: 6.99±0.30 versus 6.85±0.31 min, all
Ps>0.05; Wilcoxon signed-rank test) and quantified topological changes across. As for all
topological analyses, sharp-wave/ripples were excluded (though their occurrence did not
differ between exposure and re-exposure; t=-1.55, p=0.14, paired t-test). For each Cum-
ming estimation plot: black-dot, median; black-ticks, 95% confidence interval; filled-curve:
bootstrapped sampling-error distribution.
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4.3.2 Mnemonic information is encoded along multiple

axes in the network co-firing space

We next asked whether the topological hysteresis caused by associative learning

on the co-firing motifs expressed in the familiar enclosure (Fig. 4.1.1f) affected its

spatial representation. By computing the firing maps of individual neurons in each

task session (Fig.4.2.1a), we found that both single-neuron and population-level

maps featuring exposure reorganized in the CPP enclosure, as expected from the

remapping hypothesis of the hippocampus spatial code (e.g., Muller et al., 1987;

Wilson and McNaughton, 1993; S. Leutgeb et al., 2004; Colgin et al., 2008; Wills

et al., 2005), to then largely re-emerge during re-exposure (Fig. 4.2.2a,b). Yet,

despite their reinstatement during re-exposure after CPP, familiar maps seemed

edited beyond mere fluctuations in neuronal activity (Fig. 4.2.2c-e). Likewise, in

the other tasks (Fig. 4.1.3) a complete reinstatement of the familiar map was not

observed, suggesting a potential time-related fluctuation, but the amplitude of the

mismatch was significantly smaller than the one reported in the CPP task (Fig.

4.2.2h).

These results indicate that new CPP memory re-structured the prior representation

of the familiar environment. To further investigate the nature of this cross-talk,

we quantified the variation of co-firing graphs within the “network activity space”.

We computed the topological distances separating graphs across the six CPP task-

sessions (Fig. 4.1.1a), using the Riemannian Log-Euclidean metric (Arsigny et al.,

2006; Pennec et al., 2006). For the co-firing adjacency matrix of each session, this

procedure yielded a vector of distances to the adjacency matrices of the other sessions

recorded that day (n=6 task-session pairwise distance vectors, together forming one

6x6 matrix each day; Fig. 4.2.1b and Fig. 4.2.3a). Principal component analysis of

the distance matrices revealed three axes explaining 80% of the variance between
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co-firing graphs across CPP task-sessions (Fig. 4.2.1c-e; see also Fig. 4.2.3b-e).

Along the first principal component, the co-firing patterns of a given session over-

lapped with those of the other sessions in the same environment but not across (Fig.

4.2.1c-e), thus discriminating the familiar enclosure from the novel CPP apparatus

and reporting the hippocampal remapping between these contexts (Fig. 4.2.2a-d).

Coactivity along the second component disentangled the four distinct behavioural

experiences within the CPP apparatus: the sessions in the two individual arenas

(+Suc. and +Wat.) were projected on the opposite ends of the axis, encoding

the difference between the two enclosures. The third component instead separated

the sessions before from those after reward conditioning, notably separating the

exposure and re-exposure sessions and thus reporting the topological hysteresis fol-

lowing CPP (Fig. 4.1.1f). These results held when considering separately the two

CPP compartments during pre-test and CPP test, supporting the discrimination

along the second component (Fig. 4.2.3f, g). We also used multidimensional scaling

(MDS) and independent component analysis (ICA) to visualise the distance ma-

trices and the same sessions layout was found (Fig. 4.2.3b, c). Moreover, using

the Pearson correlation coefficient as a simpler, although potentially less accurate

(see section 3.3), measure to gauge the similarity across co-firing graphs, revealed

the same structure found with the Riemannian metric (Fig. 4.2.3d). Across CPP

task-sessions, co-firing motifs therefore spanned different directions of the network

activity space, segregating spatial contexts while discretizing events within them.

Likewise, multiple axes explained the variance in hippocampal co-firing in the other

tasks, by highlighting novelty and discerning individual mnemonic events, suggest-

ing it could be a general framework to organise information in the network (Fig.

4.2.3h-j).

93



Figure 4.2.1: Mnemonic information spans multiple network co-firing axes.
a, Example firing maps across CPP task sessions (one cell per row; numbers indicate
peak rate). b, Average matrix of the topological distances separating the co-firing graphs
across the six CPP task sessions. c–e, PC analysis applied to matrices of topological
distances unfolded multiple axes explaining across-session variance in co-firing. c, Weight
vectors representing the contribution of individual sessions to the variance in topological
distances along the first three PCs. d, Projection of the topological distances between
co-firing motifs onto the first three PCs. Each data point represents one (color-coded)
session of a given mouse day. e, Same topological distances projected on the PC1 versus
PC2 (left) and PC3 (right) planes. Note the segregation of co-firing motifs along PC1 for
sessions in familiar versus CPP enclosures, for the four CPP sessions along PC2 and for
exposure/re-exposure sessions along PC3.
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Figure 4.2.2: Familiar map-representations are largely reinstated during re-
exposure after CPP but include edits not explained by mere fluctuations. a,b,
Cumming estimation plots showing the effect size for changes in the similarity of both
single-neuron (a) and population (b) spatial maps across CPP task sessions, with respect
to (w.r.t.) exposure. For the single-neuron map similarity analysis (a), each data point
represents the Pearson correlation using the firing rate of an individual neuron between
the spatial bins of its map during exposure matched to those in a subsequent session.
Note that single-neuron familiar maps are well reinstated during re-exposure following
their reorganization during CPP sessions. For the population-level map similarity analy-
sis (b), each data point represents the extent to which on a given CPP day pairs of cells
that jointly represented a location during exposure continued to show spatially overlap-
ping firing fields in subsequent sessions. This indicates that the combination of cell pairs
sharing place fields during exposure largely re-emerges during re-exposure after their re-
organization in the CPP enclosure, consistent with the remapping of hippocampal maps
across spatial contexts. c-g, The strength of familiar map reinstatement from exposure
to re-exposure was compared to non-specific fluctuations in firing activity over time. (c)
With respect to the first section (half) of exposure, shown is the effect size for changes
in single-neuron map similarity during the second section of the exposure, the 4 CPP
sessions and the two (first and second) sections of re-exposure. d, Same as (c) but for
the population map similarity. e,f, To contrast the effect of CPP on familiar map rein-
statement against within-session variations in single-neuron (c) and population (d) map
similarity, we compared the spatial correlation of hippocampal maps between exposure
and re-exposure (Re-exposure across) with that between the two sections of the exposure
(Exposure within) and of the re-exposure (Re-exposure within). The across-session fluc-
tuations were quantified by comparing maps of each of the two re-exposure half sections
(computed as in (c,d)) with those of the two exposure half sections, taking the mean of
the four resulting similarity scores. The within-session fluctuations were obtained by com-
paring maps of the two sections of exposure or re-exposure, as indicated. Note that both
single-neuron (e) and population-level (f) map fluctuations are significantly smaller within
an exploration session of the familiar enclosure than across, even though single-neuron map
variations (e) within re-exposure are markedly larger than those within exposure before
CPP. g, In addition, the effect of CPP on familiar map reinstatement was compared to
familiar map reinstatement between exposure and re-exposure in the other tasks: unre-
warded exploration of a novel enclosure (”Novel context only” task), spontaneous place
preference for a novel place (SPP) and reward experience in another familiar enclosure
(Familiar with reward). Altogether, these analyses show that while spatial maps expressed
during re-exposure following CPP are strongly correlated with those initially seen during
exposure before CPP (a,b), these reinstated maps nevertheless differ across these two
sessions in the familiar enclosure of the CPP task more than changes expected from non-
specific fluctuations occurring within a given exploration of the familiar enclosure or those
due to the temporal gap between exposure and re-exposure (c-g). These results indicate a
crosstalk between the new CPP memory and the prior hippocampal representation of the
familiar enclosure. Subsequent analyses in this study relate such a crosstalk to changes in
firing activity of low rate principal cells (see Figs. 4.3.3-4.3.6). For each Cumming estima-
tion plot: black-dot, median or mean as indicated; black-ticks, 95% confidence interval;
filled-curve: bootstrapped sampling-error distribution.
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Figure 4.2.3: Visualizing transformations in the hippocampal network co-firing
space. a, Computing the topological distances that separate co-firing graphs across the six
task sessions. The co-firing graph of each task session was used to define a 6-dimensional
vector of topological Riemannian Log-Euclidean distances to the other co-firing graphs
obtained that day (for example here illustrated re-exposure versus exposure), including
itself (see Methods). For each 6-session task day, this procedure thus gives a 6 x 6 matrix
of topological distances between co-firing graphs. All distance matrices were then stacked
together to form a 6 x N matrix (with N the number of total graphs, that is N = 17 days x
6 sessions = 102) onto which we apply a dimensionality reduction technique (PCA, ICA or
MDS). b,c, Segregation of co-firing graphs using Independent Components Analysis (ICA;
b) or Multidimensional Scaling (MDS; c). The shaded areas mark the best elliptical fit
to the raw data projected on 2D. b, ICA applied to the same matrices of topological
distances used with PCA in the CPP dataset (Fig. 4.2.1b) as another dimensionality
reduction method to visualize axes explaining across-session variance in co-firing motifs.
Note that co-firing graphs computed for the exposure and the re-exposure overlap on the
first two independent components (IC) as they do along the first principal component (Fig.
4.2.1c–e); co-firing graphs are separated across the 4 CPP task events, as they are along the
second principal component (Fig. 4.2.1c–e). c, MDS also applied to the same matrices
of topological distances used with PCA in the CPP dataset (Fig. 4.2.1); this method
preserves the six-dimensional distances between co-firing graphs and maps them onto a
2D plane. d,e, Here the Pearson correlation coefficient is used instead of the Riemannian
Log-Euclidean distance to compute the topological distance between co-firing graphs across
the six CPP task sessions. In (d) the average topological distance matrix (left) and its first
three PCs (right) are shown. In (e) the segregation of the six CPP task sessions is shown
using the PCs shown in (d). Note that for both the Riemannian Log-Euclidean distance
(Fig. 4.2.1c–e) and the Pearson correlation coefficient (d,e) approaches, the PCA of the
CPP dataset reveals that the variance in hippocampal co-firing segregated the familiar
enclosure from the whole CPP test apparatus along PC1. Surprisingly, PC1 did not
segregate the two compartments (Nov1 and Nov2) that formed the CPP apparatus. This
suggests that these compartments were treated together as one spatial continuum along
PC1 because when their novelty feature were equally novel and physically connected by
the bridge during the pre-test. Therefore, a refined interpretation why along PC1 the two
CPP compartments are clustered together (and different from the familiar enclosure) is
that neuronal co-firing along this axis also accounts for spatial familiarity versus novelty.
f,g, PCA with the two compartments of the CPP apparatus considered separately during
both pre-test (f) and CPP test (g) sessions. Here, we computed a co-firing graph using the
spike trains associated with the visits of each CPP compartment during both test sessions,
thus obtaining one co-firing graph per individual compartment (Nov1 versus Nov2) during
each test session. Projecting the resulting four co-firing graphs (two for pre-test and two
for CPP test) onto the PCA axes obtained when considering the CPP apparatus as a
whole entity (Fig. 4.2.1e) shows that PC2 segregates co-firing patterns related to each
CPP compartment during CPP test compared to pre-test. h-j, The topological distance
projections of the co-firing graphs from the other 6-session tasks. Note, however, that
co-firing variance relates to the specifics of each task, and so is each set of PCs and
their interpretation. For each task, we used the PCs explaining at least 80% of the total
variance to project the co-firing graphs topological distance. The variance explained by
these PCs is: “Novel context only” PC1=57%, PC2=19% and PC3=8%; “Spontaneous
Place Preference” PC1=52%, PC2=18% and PC3=16%; “Familiar context with reward
experience” PC1=69%, PC2=15%; and “CPP” PC1=48%, PC2=19% and PC3=14% (Fig.
2e).
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4.3.3 The heterogeneous population of principal cells

differently supports the network co-firing axes

Recent findings suggest that the heterogeneity of the principal cell population,

marked by the skewed (log-normal) distribution of firing rates, is central to the

network operations underlying hippocampal function (Mizuseki, Diba, et al.,

2011; Buzsáki and Mizuseki, 2014; Rich et al., 2014; Soltesz and Losonczy, 2018;

Grosmark and Buzsáki, 2016; Cembrowski and Spruston, 2019; Navas-Olive et al.,

2020). We thus identified principal cells in the top and bottom quartiles of the

firing rate distribution during the exposure session (Fig. 4.3.1a) to examine the

contribution of these two subpopulations to the topology of the co-firing networks.

High and low-rate principal cells were biased towards deep and superficial pyramidal

sublayers, respectively. To estimate the position of the neurons recorded with

tetrodes, we leveraged on silicon probe recordings with known spacing between

the recording sites along a linear shank, to obtain template profiles of the SWR

events along the radial axis of dCA1 (Fig. 4.3.2a-b). Then, we were able to

estimate the depth of the implanted tetrodes for CPP days finishing with a sleep

session, by matching the profile of the SWR events with the template obtained

using the silicone probe (Fig. 4.3.2c-d). The estimated tetrode depths [+83.8µm,

-166.2µm] are outside the thickness of the pyramidal layer ( 100µm), which leads

to the estimation of the cell position outside of the layer. This is because the

electrodes on each tetrode can pick up signals within a radius of 100µm (Buzsáki,

2004) and therefore induce some uncertainty in the depth estimation itself. Even

though the depth estimation just described is not very precise and its results

taken with caution, in line with previous findings, we found that pyramidal

cells within the deep sublayer exhibited higher firing rate values and bursting

propensity than cells within the superficial sublayer (Fig. 4.3.2e-f; Mizuseki, Diba,

et al., 2011, Danielson et al., 2016, Oliva et al., 2016). Because of the intrinsic
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limitation of depth estimation using tetrodes, we decided to continue to use

the low-high activity criteria to separate cells, but further work should be done

using either silicon probes or genetic birth date tagging to obtain a more pre-

cise labelling of putative deep and superficial pyramidal cells (Cavalieri et al., 2021).

We observed that low, but not high, activity cells discharged more bursts of spikes

(spike packets with inter-spike intervals within 6ms) during re-exposure compared

to exposure (Fig. 4.3.1b and Fig. 4.3.3a,b), sustaining increased firing rate one

hour after CPP (Fig. 4.3.3c). These lasting activity changes were not observed in

the other three tasks (Fig. 4.3.3d-i). Moreover, in the CPP task, low activity cells

with higher bursting during re-exposure showed increased spatial coherence and

information content, in line with their heightened firing (Fig. 4.3.3b-c), which was

not the case for the other tasks (Fig. 4.3.4). Remarkably, these cells that initially

had the lowest place-field coherence during exposure increased both their spatial

information content and burst spiking propensity following CPP learning. In

addition, low activity cells with the most spatially tuned activity during exposure

also showed increased spatial information during re-exposure, without altered burst

spiking (Fig. 4.3.5). On the other hand, high activity cells maintained a high

spatial information content and spatial coherence throughout the entire task (Fig.

4.3.5). These results suggested that the cross-talk between the new CPP memory

and the prior familiar representation involved the heightened network contribution

of low activity cells following their recruitment during CPP learning. Indeed, the

low – but not high – activity subpopulation exhibited sustained topological changes

throughout CPP sessions (Fig. 4.3.5a), explaining whole-network hysteresis during

re-exposure (Fig. 4.1.1f). Moreover, reward-related firing modulation of low

activity cells from pre-test to sucrose conditioning in the CPP enclosure predicted

changes in co-firing from exposure to re-exposure in the familiar enclosure (Fig.

4.3.6b,c), constituting another instance of the impact of reward on hippocampal
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activity (Danielson et al., 2016; Gauthier and Tank, 2018; Dupret et al., 2010).

We finally evaluated the contribution of high and low activity pyramidal cell subpop-

ulations to the network co-firing motifs, leveraging the Riemannian Log-Euclidean

framework (Fig. 4.2.1b-e and Fig 4.2.3a). Co-firing within high activity cells segre-

gated the two task enclosures at the onset of pre-test (Fig. 4.3.1c and Fig. 4.3.6d).

Coactivity motifs including low activity cells, instead, did not distinguish familiar

exposure and novel CPP pre-test (Fig. 4.3.1c and Fig. 4.3.6d). Rather, this subpop-

ulation gradually participated in the network co-firing patterns as mice experienced

each task event, remaining engaged thereafter during re-exposure where their con-

tribution to the network motifs reached that of high activity cells. Accordingly, in

the CPP task, patterns within high and low activity cells supported more the first

and third co-firing network axis, respectively; while their combination explained

more the second axis (Fig. 4.3.1d). Moreover, low - but not high - activity cells

exhibited increased firing at the reward wells during the sucrose conditioning session

(+Suc.), in line with the changes in their co-firing topology (Fig. 4.3.6b-c). The

topological changes affecting the co-firing structure of the network throughout the

CPP task were associated with changes in sharp-wave/ripple firing and of low ac-

tivity cells during awake rest (Fig. 4.3.6e,f), in line with recent work showing that

these two subpopulations exhibit distinct sharp-wave/ripple responses (Grosmark

and Buzsáki, 2016; Valero et al., 2015).

101



Figure 4.3.1: High and low activity cells contribute differentially to network
co-firing axes. a, Firing rate (log-normal) distribution of principal cells during expo-
sure. The highest and lowest quartiles formed the high- and low-activity subpopulations,
respectively. b, Example spike trains of a low-activity cell and a high-activity cell during
exposure and re-exposure. Two raster plots shown for each cell (60-s rows, vertical ticks
representing spike times) during exposure (top) and re-exposure (bottom). For clarity,
the first 5 min of each session is represented. c, Matrices of topological distances sepa-
rating co-firing graphs across sessions, for low–low-, low–high- and high–high-activity cell
pairs. d, Cumming estimation plots showing the contribution of low–low-, low–high- and
high–high-activity cell pairs to co-firing variance along the first three axes of the CPP
network. Top: each data point represents the variance explained by a given co-firing motif
along one axis for 1 d. Bottom: for each axis, the co-firing motif with the strongest con-
tribution (color-coded dashed line) is compared with the other two motifs’ contribution.
Black dot, mean difference; black ticks, 95% confidence interval; filled curve: sampling
error distribution.
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Figure 4.3.2: High and low rate ca1 principal cells are skewed towards deep
and superficial pyramidal sublayers, respectively. a-d, For each CPP task day,
we estimated the position (depth) of individual tetrode-recorded principal cell soma by
leveraging silicon probe recordings with known spacing between the recording sites along
a linear shank (25-µm steps). From these silicon probe recordings, we first computed the
laminar profile of sharp-wave/ripples (SWRs) detected in the local field potentials (LFPs)
along the radial axis of the dCA1 hippocampus (a). We used the peak of the corresponding
depth profile of the ripple-band (110-250Hz) power to estimate the centre (middle) of the
pyramidal (pyr.) layer (b; red cross). Using the average LFP waveform of the SWR
events detected in these silicone probe recordings, we then established a SWR template
where we reported the distance relative to the estimated centre of the pyramidal layer,
knowing the precise distance between the recording sites on the linear shank (c). Next,
we computed the individual SWR profile of each tetrode for CPP recording days finishing
with a sleep session, this way estimating the depth of each individual tetrode (and thus
that of the somas of its recorded neurons) by positioning its SWR profile within the silicone
probe SWR template (the ground-truth vertical depth; c). Shown in (d) are examples of
single-tetrode SWR profiles and their estimated depth. e, Left: the estimated depth of
principal cells as a function of the average firing rate measured in the CPP task. Each data
point represents one principal cell. Right: the same data plotted as a firing rate probability
distribution per estimated depth. f, Same data as in (e) but plotted as a ridge plot to better
visualise the relation between firing rate of principal cells and depth of their recording
tetrodes. Note that principal cells in the deep sublayer of the dCA1 pyramidal layer
(closer to stratum oriens) show higher firing rates than those in the superficial sublayer
(closer to stratum radiatum) (line of best fit: y = 23.34 log(x) − 74.7; p = 10−30; two-
sided Wald Test). g,h, The same analyses shown in (e,f) but performed for the bursting
index. Note that principal cells of the deep dCA1 sublayer show higher spike bursting
compared to those of the superficial sublayer (line of best fit: y = 47.43 log(x) − 15.0;
p = 10−64; two-sided Wald Test). i, Relative prevalence (left) and cumulative distribution
(right) of low (blue) and high (red) rate principal cells along the dCA1 radial axis. Low
and high activity cells are skewed towards superficial and deep dCA1 pyramidal sublayers,
respectively (p=0.016, Kolmogorov-Smirnov 2-sample test).
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Figure 4.3.3: Low activity principal cells show increased firing activity dur-
ing re-exposure to the familiar enclosure following CPP learning. a, Example
spike trains of low and high activity cells during exposure and re-exposure to the familiar
environment. For each of the eight example cells, shown are two raster plots (60-s rows;
vertical ticks representing spike times) for exposure (upper plot) and re-exposure (lower
plot). For clarity, only the first 5 min of each session are presented. Note the increased
spike burst discharge by low activity cells during re-exposure compared to exposure. b,
Cumming estimation plot used to visualize for low (blue colours) and high (red colours)
activity cells the effect size for changes in spike bursting between re-exposure and expo-
sure. Upper panel: distributions of raw data points (each color-coded point represents
one cell from the CPP task: n=272 low activity cells and 272 high activity cells) during
exposure and re-exposure in light and dark colours, respectively; with the gapped lines on
the right as mean (gap) ± SD (vertical ends) for a given subpopulation in a given session.
Middle panel: the median (black-dot), 95% confidence interval (black-ticks) and sampling-
error distribution (filled-curve) of the difference between (low or high activity) cells in a
given session and the low activity cells in exposure, computed from 5,000 bias-corrected
bootstrapped resamples and with the difference-axis (dashed-line) origin aligned to the
median of low activity cells in exposure. Lower panel: similarly, compares the distribution
in re-exposure to that in exposure within each sub-population. Note that low, but not
high, activity cells significantly discharge more bursts of spikes during re-exposure follow-
ing CPP compared to exposure. The lack of increased bursting of the high activity cells
during re-exposure compared to exposure does not reflect a ceiling effect given that the
burst spiking distribution of this sub-population had an inter-quartile range=0.07–0.18, a
median=0.12 and a mean=0.15 throughout the CPP task sessions (see also the correspond-
ing raw data points in Fig. 4.3.5d and the coherence-percentiles’ mean in Fig. 4.3.5h),
showing that this sub-population could have discharged more bursts during re-exposure.
c, Cumming estimation plots to visualize the change in firing rate across CPP task ses-
sions for the low (left panel) and the high (right panel) activity cell sub-populations. Note
that firing rate of low activity cells increased during CPP sessions and stayed at higher
values during re-exposure, not resetting to the values seen in exposure. d-i, Bursting
index (d-f) and firing rate (g-i) of high and low activity principal cells in the exposure
and re-exposure to the familiar enclosure during the other tasks: exploration of a novel
enclosure only (d,g), spontaneous place preference for a novel place (e,h) and exploration
of another familiar enclosure with reward (f,i). Each (color-coded) data point represents
one cell (“Novel context only” task: n=214 low activity cells and 128 high activity cells;
“Spontaneous Place Preference” task: n=188 low activity cells and 152 high activity cells;
“Familiar context with reward experience” task: n=148 low activity cells and 96 high
activity cells). All differences presented using Cumming estimation plots as in (b). Note
that in these three other tasks, low activity cells did not show significant changes in burst
spiking and firing rate during re-exposure compared to exposure.
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Figure 4.3.4: Low activity cells with increased burst spiking following CPP
exhibited stronger place field coherence and spatial information content. a,b,
Cumming estimation plots showing for low (blue colours) and high (red colours) activity
cells the effect size in changes of place field coherence (a) and spatial mutual information
(b) between exposure and re-exposure in the CPP task. The most burst spiking cells of
both subpopulation (top 40% of bursting index distribution) in the re-exposure session
are considered. Note that low, but not high, activity cells have significantly higher spatial
coherence (a) and mutual information (b) during re-exposure after CPP. c-h, Similarly,
the place field coherence (c,e,g) and the spatial mutual information (d,f,h) of low and
high activity principal cells is shown for the other tasks including exposure and re-exposure
sessions. Low and high activity cells selected in the same way as in the CPP task dataset
(a,b) to allow for comparison. For each Cumming estimation plot: black-dot, median (for
skewed distributions) or mean (for normal distributions) as indicated; black-ticks, 95%
confidence interval; filled-curve: bootstrapped sampling-error distribution.
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Figure 4.3.5: Relation between spatial field coherence during exposure and
subsequent changes in both burstiness and spatial information for low and
high activity cells in the CPP task. a,b, The spatial mutual information of low
and high activity cells is plotted against their respective spatial coherence for each of the
six CPP task sessions. Each data point represents one cell. Comparing with exposure,
note the right-shift towards higher spatial information for a set of low activity cells during
the CPP sessions, which then remained at higher values during re-exposure (a). c,d,
Similarly, the bursting index of low and high activity cells is plotted against their spatial
coherence for each CPP task session. Also comparing with exposure, note the right-
shift towards higher spike bursting in the distributions of low activity cells during CPP
sessions, remaining higher during re-exposure (c). e-h, For each of the six CPP task
sessions, both low (e,f) and high (g,h) activity cell sub-populations were binned in 20th-
percentiles according to the spatial coherence of each cell’s place field during the exposure
session. Then, the average spatial mutual information (e,g) and bursting index (f,h) were
computed for each 20th-percentile bins across all task sessions. For clarity, the bins of
the re-exposure session marked with a white star (*) have significant changes in either
measure (spatial information or bursting index) compared to the corresponding bins in
the exposure session. Note that during re-exposure, low activity cells show significant
increase in spatial information following CPP compared to exposure (e). This was not
the case for high activity cells (g). Moreover, low activity cells with the least (0th–60th
percentiles) spatial coherence during exposure increased their spike bursting during the
CPP sessions and thereafter during re-exposure (f ; with statistically different percentile
bins marked with a white star compared to their corresponding bins in exposure). This
was not seen for high activity cells (h). i-l, Cumming estimation plots showing the effect
size for changes in spatial information (i,k) and bursting index (j,l) for the low (i,j) and
the high (k,l) activity cell sub-populations, binned as 20th-percentiles according to the
spatial coherence of each cell’s place field during exposure. For further clarity, the black
stars above the green filled-curves in re-exposure indicate significant changes compared to
exposure. Note that across all percentile bins, low activity cells show significant increase
in spatial information in re-exposure compared to exposure (i). This was not seen for
high activity cells (k). Moreover, low activity cells with the least (0th–60th percentiles)
spatial coherence during exposure thereafter discharged more spike bursts during the CPP
sessions and continued to exhibit significant higher burstiness during re-exposure compared
to exposure (f,j; see stars). High activity cells maintained the same burstiness throughout
all task sessions (h,l). For each Cumming estimation plot: black-dot, mean; black-ticks,
95% confidence interval; filled-curve: bootstrapped sampling-error distribution.
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Figure 4.3.6: High and low activity principal cells make distinct contributions
to network co-firing motifs. a, Cumming estimation plots showing CPP task-related
changes in topological clustering (top), geodesic path length (middle) and single-neuron
cumulative co-firing strength (bottom) of co-firing graphs (with respect to exposure) for
low and high activity cells. Black-dots, median; black-ticks, 95% confidence interval;
filled-curve: sampling-error distribution. b, Top, schematic showing the location of the
containers for the sucrose and water drops in an example CPP enclosure. Bottom, distri-
bution of firing rate changes (scores) between the +Suc and pre-test sessions for low and
high activity cells (low activity cells: p=2.68×10−5, t=4.279, df=251; high activity cells:
p=0.25, t=1.160, df=271; 1-sample t-tests against 0 mean). For every cell that fired at
least 100 spikes in either session, a score is obtained by taking the difference between its
mean firing rate at the containers during +Suc and pre-test sessions, dividing by the sum.
c, The change in firing rate at the containers from pre-test to +Suc. session correlated with
the change in co-firing strength from exposure to re-exposure for the low (regression line
y = 0.21x− 0.11; p=0.018, Wald test) but not the high (regression line y = 0.12x− 0.23;
p=0.51, Wald test) activity cells. Together with the topological deviations that feature
the low activity cell co-firing graphs (a), this result supports the idea that during the
mnemonic update of a newly encountered place with reward experience, a change in the
firing activity of low activity cells allows a cross-talk between the new CPP memory and
the prior representation of the familiar enclosure, as reported along PC3 (Fig. 4.3.1d).
d, Contribution of low and high activity cells to network co-firing motifs, as measured by
the proximity between the high (right) and low (left) activity sub-networks to the whole
network (that is, containing the full distribution of all recorded neurons) in the topolog-
ical distance space across the six CPP task events (w.r.t. low activity cells in exposure).
Black-dot, median or mean as indicated; black-ticks, 99% confidence interval; filled-curve:
sampling-error distribution. e, For low and high activity cells, firing rate changes during
sharp-wave/ripples (SWRs) detected in periods of immobility (speed¡2cm/sec) of expo-
sure and re-exposure sessions. For every cell, the change in SWR firing is measured as
the difference between its mean firing rate during SWRs in the exposure and re-exposure
sessions divided by the sub-population’s average firing rate during SWRs of exposure.
f, Change in co-firing during SWRs between exposure and re-exposure for low-low, low-
high and high-high activity cell pairs. SWR co-firing computed during SWRs detected
in periods of immobility (speed<2cm/sec) of a given exploration session in the familiar
enclosure. The change in co-firing between re-exposure and exposure was then divided by
the average sub-population’s co-firing. Note the increased SWR co-firing between low-low
and low-high activity cells during the re-exposure session following CPP learning.
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4.4 Discussion

In this chapter, by exploring the dCA1 hippocampal network activity space from

a graph-theoretical perspective, we show that new place-reward associative mem-

ories restructure the neural patterns representing prior memory for an unrelated

environment. During this transformation of the hippocampal co-firing structure,

high activity cells organize motifs that rapidly discriminate spatial contexts, robust

to perturbation by subsequent experience. This contribution might instantiate a

spatio-contextual backbone for memory schemas, which would enable subsequent

related memories to be rapidly encoded (McKenzie, A. J. Frank, et al., 2014; Tse

et al., 2007). Low activity cells, instead, integrate coactivity motifs on-demand,

throughout behavioural events. Their heightened engagement, fostered by the new

place-reward learning, persists across contexts, affecting the network representation

of an otherwise familiar environment. This effect could involve low-rate principal

cell plasticity (Grosmark and Buzsáki, 2016) leveraged by high computational

load or neuro-modulatory processes when novel contextual information and reward

experience are related in memory.

Even though only associative learning induced a restructuring of the co-firing

patterns representing a previous memory, we find that novelty alone generates

a common mechanism enhancing neuronal co-activity within the dCA1 network,

as shown by the co-firing topological deviations observed during both the CPP

task (Fig. 4.1.1f), but also the SPP, ”novel context only” and ”familiar context

with reward” tasks (Fig. 4.1.3). This suggests that correlated activity might aid

the encoding of consistent information within the neural circuitry, as relevant

literature proposes (Diesmann et al., 1999; Salinas and Sejnowski, 2001; Zandvakili

and Kohn, 2015; Zylberberg et al., 2017; Valente et al., 2021). Another point to

highlight is that the increase in the network co-activity might be caused by a global
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increase in the firing rate of the individual neurons, although the rate dynamics do

not seem to follow the co-firing ones (see Figs. 4.3.3c) but this should be tested

more rigorously. Moreover, further work should be done to investigate whether

the increased network co-firing is due to the independent increase of pairwise

interactions within neurons in the network or is it driven by an external common

input to the network that is increasing as the memory encoding progresses. A

possible solution could be employing a GLM, or another similar technique, to

separate shared inputs driven correlations, such as behavioural or network states,

from individual pairwise correlations.

The newly-acquired topology of the hippocampal firing output, shaped by past

inputs, may not be permanent, perhaps slowly returning to a baseline config-

uration as memories consolidate within other cortical circuits. The observed

hysteresis could represent a network response protecting existing memories from

catastrophic interference by adjusting the co-firing structure of learnt associations

or forming redundant ones. This could also reflect retroactive encoding of recent

experience, juxtaposing the current spatial reference frame with those encountered

before. Further work should investigate the relationship between the encoded

novel representation (e.g. CPP) and the consequent potential modification of a

pre-existing memory more closely: how are individual novelty-induced neuronal

motifs retroactively modifying the network co-firing structure, which represents

past memories? Moreover, considering the SWR re-activations might be key to

reveal how novel neuronal trajectories modify pre-existing neuronal associations,

as low activity cells are more strongly engaged (see Fig. 4.3.6e-f; Grosmark and

Buzsáki, 2016). Therefore investigating the role of resting and sleep seem crucial

to obtain a deeper understanding of the integration of novel information within a

pre-existing mnemonical structure (Dudai and Morris, 2013).

114



Together, these findings support the view of a division in computational labour

within the log-normally distributed principal cell population for the discretization of

memories of space and events within the hippocampus, allowing adaptive insertion

and interaction of new information within a larger network of prior knowledge.
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Chapter 5

Population and manifold analysis of large-

scale hippocampal network activity

5.1 Introduction

In the recent years technological developments have allowed to perform recording

of large-scale neuronal populations in multiple brain sites. Examples of such tech-

nology are silicon probes, which allow electrophysiological recording hundreds of

neurons simultaneously and can be implanted in multiple regions, or brain imaging

techniques of fluorescent proteins coupled with genetically-encoded neural activity

indicators, such as calcium or voltage. Such volumes of data require analytical

techniques that target the population dynamics and the interactions within the

neuronal network interactions. To target the latter, in chapter 3 I presented a

network science framework which allows capturing the structure of the interactions

within the neuronal population. Another analytical frameworks that provide useful

insights into the activity of large neural populations is dimensionality reduction,

which refers to a variety of methods used to visualise and describe high dimensional

data with low dimensional dynamics (see section 2.3.1; Cunningham and Yu, 2014).

Such methods have been adopted by the manifold learning paradigm to represent

and model neural dynamical systems. A manifold is a lower dimensional topological
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space embedded within a higher-dimensional one, which has the property of being

a linear subspace locally but it can otherwise have a non-linear geometry Such

low-dimensional structures have been reported in the neural population dynamics

of a variety of brain circuits and different behavioural tasks (Chaudhuri et al.,

2019; Rubin, Sheintuch, et al., 2019). Manifold learning techniques have been

used in many neuroscientific studies, such as in understanding neural mechanisms

underpinning decision-making in prefrontal cortex (Mante et al., 2013; Harvey

et al., 2012), movement preparation in premotor cortex (M. M. Churchland et al.,

2012; Gallego et al., 2020; Feulner and Clopath, 2021), and more (Vyas et al., 2020).

Manifold learning techniques and network science offer different but complementary

approaches to the analysis of neural population activity data, with the former

extracting dynamical trajectories of the neural population activity, while the latter

preserves the individual neuron representation to characterise the structure of their

interaction.

In this chapter I employ manifold learning techniques to analyse a two-photon cal-

cium imaging datasets of hippocampal neurons as mice explore a circular environ-

ment. I aim to describe the representational space of the neural population by using

the manifold learning approach to uncover low dimensional structure in the high

dimensional neuronal activity.

5.2 Methods

5.2.1 Manifold learning methods

Manifold learning methods aim to uncover lower dimensional structure, referred to

as neural manifold, within the high dimensional neural activity using dimensionality

reduction techniques. That is, from the activity X of N neurons during the time

interval T , a lower-dimensional representation Y is obtained, whose extracted
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dimensions k are called latent variables (see Fig 5.1; Cunningham and Yu, 2014).

There are several types of manifold learning methods that can be divided into linear

and nonlinear methods. Although they are similar in some ways, they may differ

in the type of statistical structures or properties they capture and preserve. It is

important to select which type of method is most suitable for different types of neural

data, as this may have significant impact on the resulting scientific interpretations.

Figure 5.1: Dimensionality reduction schematic illustrating how the manifold learning
paradigm transforms a high dimensional neural population activity matrix, X, with N
neurons and T time points, into a lower dimensional representation within a manifold
space of k dimensions.

Principal Component Analysis

One of the most common linear manifold learning methods is Principal Component

Analysis (PCA). It is a linear dimensionality reduction technique that aims to reduce

the number of variables of large data sets by transforming them into a smaller set of

k latent variables, called the principal components (PCs). Geometrically speaking,

PCs represent the directions of the data that explain a maximal amount of variance

and they are constructed as linear combinations of the original variables. To obtain

them, first the covariance matrix Q of the neural activity matrix X is computed as

Q = XXT
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and then eigendecomposition is applied

Q = WΛW

The columns of W are then the resulting eigenvectors (w1, ..wN) are the directions

of the axes that capture the most variance (i.e., PCs), and the corresponding

eigenvalues (i.e, λ1, ...λN the diagonal elements of Λ) yield the amount of variance

carried by each PC. Then, by sorting the PCs with respect to their respective

eigenvalues, the first k PCs are retained so that a set amount of variance in the

original data is explained.

Multidimensional Scaling

Classical multidimensional scaling (MDS) is also a linear dimensionality reduction

technique that aims to find a low-dimensional map of a number of objects (e.g.

neural states) starting from the pairwise distances between them in the high

dimensional space (J. B. Kruskal and Wish, 1978). In the case of neural data, given

an N × T activity matrix, X, a T × T distance matrix, D, is first obtained using

the Euclidean or a similar metric (in the analysis shown the cosine dissimilarity is

used). A lower-dimensional mapping, Y ∈ Rk×T , where k << N , is then found by

minimising a loss function, called strain, so that the mapped inter-point distances

are as close as possible to the original distances in D. From the eigendecomposition

of B, the double-centred distance matrix D, the components (i.e, dimensions)

of classical MDS are revealed as the eigenvectors of B, while their respective

eigenvalues report the amount of variance they explain.

Isomap

One of the most commonly used nonlinear dimensionality reduction algorithms is

Isomap (Tenenbaum et al., 2000). Non-linear techniques aim to uncover the broader
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non-linear structure of the neural manifold embedding of the neural population

activity, X, by approximating the true topology of the neural manifold, Y . To do

so, it first embeds X onto a weighted graph G, whose nodes represent the activity of

the neuronal population at a given time xt, and the edges between them represent

links to network states xm, xn, ... that are the most similar to xt, i.e., its neighbours.

The k-nearest neighbours algorithm is usually used to estimate the neighbours for

all network states x1, ..., xT . These neighbouring relations are then encoded in a

weighted graph with edges dX(i, j) between neighbouring states i, j that depends on

the distance metric dX used. G can then be used to approximate the true geodesic

distances on the manifold dM(i, j) between any two points i, j (i.e. network states

xi, xj) by measuring their shortest path length dG(i, j) in the weighted graph G

using an algorithm such as Dijkstra’s (Djikstra, 1959). Classical MDS is then

applied to the matrix of distances within the graph DG = {dG(i, j)} to yield an

embedding of the data in a k-dimensional Euclidean space Y that best preserves

the manifold’s estimated geometry. The quality of the reconstructed manifold Y

depends greatly on the size of the neighbourhood search and the distance metric

used to build G.

Other nonlinear dimensionality reduction techniques include Locally Linear Embed-

ding (LLE; Roweis and Saul, 2000) and Laplacian Eigenmaps (Belkin and Niyogi,

2003), which share a similar graphical approach as Isomap but aim to preserve

only the local geometry of the data (i.e, only the distance between nearby points /

neural states). These approaches can be more stable than Isomap but they may

also distort the representation of the data. This can be crucial when the manifold

embedding is to be used to make qualitative, but also quantitative, inferences

about neural activity. In fact, preserving global distances within neural data is

equivalent to considering all connections in a weighted graph, which, as discussed in

chapter 3, ensures all the information is conserved but might include noise. Further
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developments in local-geometry preserving methods have lead to the development

of the t-distributed Stochastic Neighbour Embedding (t-SNE; Van Der Maaten

and Hinton, 2008, which is considered the state-of-the-art algorithm for dimension

reduction for visualization and clustering.

Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a nonlinear dimension-

ality reduction technique that is constructed from a theoretical framework based on

topological data analysis, Riemannian geometry and algebraic topology. (Mcinnes

et al., 2018). UMAP builds upon the mathematical foundations of LEM, Isomap

and other nonlinear dimensionality techniques in that it uses a k-nearest neighbours

weighted graphs representation of the data. By then using manifold approximation

and patching together local fuzzy simplicial set representations, a topological

representation of the high dimensional data is constructed. This layout of the data

is then optimised in a low dimensional space to minimize the cross-entropy between

the two topological representations. Compared to t-SNE, UMAP is competitive

with it in terms of visualization quality and arguably preserves more of the

global dataset structure with superior run time performance. Furthermore the algo-

rithm is able to scale to significantly larger data set sizes than are feasible for t-SNE.

UMAP and t-SNE have recently also being employed for visualising high dimensional

genomics data and some distortion issues have been raised (Chari et al., 2021). Al-

though this problem is particularly apparent with t-SNE embedding, which tend to

completely disregard the global structure of the data, any dimensionality reduction

to few dimensions will inherently distort the topology of the high-dimensional data,

as shown by the Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1984).

Genomics dataset, though, are intrinsically higher dimensional than the neural pop-

ulation activity on which manifold learning has been applied (Rubin, Sheintuch,
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et al., 2019; Nieh et al., 2021), therefore reduction to just a few dimension is bound

to produce distortions; but it is not the case where a few latent dimensions have

shown to drive a neural population activity and explain its variability (Chaudhuri

et al., 2019; M. M. Churchland et al., 2012; Gallego et al., 2020).

5.2.2 Manifold characterisation methods

In this section are listed the measures employed to describe and characterise the

neural manifold embedding obtained from the neural population data.

Linear dimensionality

The linear dimensionality of the neural population activity can be estimated by

counting the number of PCs needed to achieve a certain amount (90% here) of

variance in the original data. A similar reasoning can be used with the dimensions

found by MDS, even if the variance accounted for is not the raw activity matrix’s

but the one contained in the pairwise distance matrix (see 5.2.1).

Intrinsic dimensionality

To estimate the intrinsic dimensionality of the neural activity, for any given point

in the high dimensional space (i.e, neural state), we calculated the number of

neighbouring neural states within a sphere surrounding it as a function of the

sphere’s radius. The slope of the number of neighboring data points within

a given radius on a log–log scale equals the exponent in k in the power law

N(r) = crk, where N is the number of neighbours and r is the sphere radius. The

slope k is then an estimate of the intrinsic dimensionality of the neural activity

(Grassberger and Procaccia, 1983; Rubin, Sheintuch, et al., 2019; Nieh et al., 2021).

In Fig 5.2 the intrinsic dimensionality estimator is applied to two simulated datasets.

This measure could also be applied to the low-dimensional manifold coordinates to
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inspect the nonlinear geometry possibly uncovered by the manifold embedding (i.e,

used with nonlinear manifold learning techniques).

Figure 5.2: Intrinsic dimensionality estimation of a point cloud. a-b, Simulated
data points, for 1-dimensional data a and for 2-dimensional data b. The red circles indicate
different distances from a given data point. c-d, The average number of neighboring data
points increases with the distance following a power law. The power is indicative of the
internal dimension of the data. The number of neighboring data points increases linearly c
or quadratically d with the radius for 1-dimensional and 2-dimensional data, respectively.
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Optimal Linear Estimator (OLE) for behavioural decoding

To test the information content of the estimated hippocampal manifolds with any

of the algorithm described above, I compute the decoding accuracy of the animal’s

angular position as a function of the number of manifold dimension using an

Optimal Linear Estimator (OLE; Warland et al., 1997). This allows to assess the

information content of the manifold’s embedding and the number of dimensions

necessary to encode the animal’s position. I use a 10-fold cross-validation approach,

training the decoder on 90% of the data and testing it on the remaining 10%. Given

the testing data low dimensional manifold embedding Ŷ of the neural population

activity and the mouse angular position φ̂, the OLE reconstruction is given by The

decoding performance is assessed by computing the Pearson correlation coefficient

between the actual and reconstructed angular position for the test data.

Reconstruction of neural activity from low dimensional embedding

Another measure to evaluate the degree of fidelity of the manifold embedding to the

recorded neural data is to quantify the reconstruction of the high dimensional neural

data from the low dimensional embedding. To obtain such a mapping we employ

the non-parametric regression method originally introduced for LLE (Roweis and

Saul, 2000). So, given the manifold coordinates Y = y1, ..., yT ⊂ Rk representing

the neural activity X = x1, ..., xT ⊂ RN , learn a mapping g : Rk → RN such

that g(yi) approximates xi for all i. To map a new point y from the manifold to

the neural activity space, its k nearest neighbors η1(y), ..., ηk(y) ⊂ Y are found,

as measured by Euclidean distance in manifold space. y is then expressed as a

weighted sum of its neighbors. Weights w(y) are found that minimize the squared

reconstruction error plus an l2 regularization term that encourages small weights.

Weights are constrained to sum to one, which makes them invariant to translation
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of x and its neighbors (they are also invariant to rotation and scaling).

w(y) = argmin
w

∥∥∥∥∥y −
n∑

i=1

wiηi(y)

∥∥∥∥∥
2

− λ‖w‖2 (5.1)

s.t.
k∑

j=1

wi = 1

A closed form solution to this optimization problem is described in.11. LetG denote

the local Gram matrix:

Gi,j = (y − ηi(y)) · (y − ηj(y)) (5.2)

Let I denote the identity matrix and ~1 denote a vector of ones. The optimal weights

can be found by solving the following equation and then rescaling the weights so

that they sum to one.

(G+ λI)w = ~1 (5.3)

y is then mapped onto the neural activity space by applying the same weights

to the known images of its neighbors in the original high dimensional space

η′
1(y), ..., η′

k(y) ⊂ X.

g =
n∑

i=1

wi(y)η′
i(y) (5.4)

The number of neighbors k and the regularization parameter l2 are fixed and set

to 10 and 1, respectively. This approach was inspired by Low et al., 2018.

I then obtain the reconstruction score by computing the Pearson correlation coef-

ficient between the reconstructed and the original neural activity, to assess their

similarity. To perform an element-wise comparison, the N × T neural activity

matrices are concatenated column-wise into a single vector and the correlation co-

efficient is calculated. Using 90% of the data from each session to train the reverse

mapping g, the reconstruction was then evaluated on the remaining 10% test data.
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By then averaging across the 10 cross-validation folds, the reconstruction score is

obtained.

5.3 Manifold analysis of hippocampal population

activity in head-fixed mice navigating a

floating real-world environment

5.3.1 Data and behavioural protocol

Head-fixed mice were trained to navigate the floating track system (Fig 5.3a) in

the dark either along a 1D circular track or in a 2D circular open field and were

tracked using an infrared system (see Go et al., 2021 for more details on the

experimental setup). Mice were trained in the floating track system after viral

injection and hippocampal window implantation. The similarity of their behavior

to that observed in tethered and freely-moving mice is validation that the surgical

procedures do not adversely affect behavior, consistent with previous reports (Fig

5.3b; Dombeck et al., 2010; Pilz et al., 2016). Greater numbers of animals were

available at earlier than later stages of the experimental pipeline simply because

of the requirement to pass successive criteria relating to behavioral performance,

quality of preparation, GCaMP6s expression located in area of interest, and

registration of ROIs over multiple sessions. For the analyses presented in this

chapter, n=4 mice and n=6 trials are used for the 1D circular track and n=3 mice

and n=3 trials for the 2D open field exploration.

To optically record the activity of CA1 neurons, mice were injected with an

adeno-associated virus to express both the calcium indicator GCaMP6s and the

static marker mRuby into the hippocampus. The animals then had the cortex

overlying the hippocampus removed and were implanted with an imaging window.
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Two-photon imaging (at 940 nm) through the hippocampal window 3 weeks later

showed robust expression of both GCaMP6s and mRuby in a large population

of CA1 neurons (Fig 5.3c). We primarily used the mRuby image to repeatedly

identify the same cells across time.

Two-photon time-series videos of GCaMP6s fluorescence in the hippocampi of be-

having mice were acquired. An automated algorithm (Giovannucci et al., 2019) was

used to identify cells and extracts their activity from the GCaMP6s fluorescence

changes (∆F/F). 53–225 (median: 101) active neurons per FOV (330 × 330 µm, 6

FOVs in 3 mice) were imaged for 12–28 min (see Fig. 5.3d showing 225 ROIs for

the representative image shown in Fig. 5.3c). ∆F/F traces were extracted from the

ROIs and displayed significant calcium transients (Fig 5.3e), which can be repre-

sented in the form of an N × T activity matrix, with N being the number of units

and T the number of time samples (Fig 5.3f).
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Figure 5.3: Floating real-world environment experimental set-up and data
description. a, Schematic of experimental setup. Mouse is head fixed while navigating a
floating track under a two-photon microscope (in light gray). b, Twenty minutes of spatial
trajectories of head-fixed mice navigating (i) a circular track (1D) and (ii) a circular open
field (2D). c, Two-photon images from a typical CA1 imaging session. Green: GCaMP6s,
red: mRuby. d 225 segmented ROIs from image in c. e, Ca2+ transients for 30 (of 225)
randomly selected cells from the region shown in c. Trace height is normalized to the 99th
percentile of the ∆F/F for each cell. Magenta trace at top shows position of the mouse
along the circular track f, An exemplar N × T activity matrix showing 20 seconds of
neural activity from the recorded population. Panel a - e are taken with permissions from
Go et al., 2021
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5.3.2 Low dimensional embedding encode the animal

spatial position

To study how spatial behavior on the air-lifted platform is reflected in neural

population dynamics, I performed a neural manifold analysis using different

algorithms described in section 5.2.1. Applying this to data recorded from mice

running on the 1D circular track revealed the distinct laps of the animal’s spatial

trajectory in the low-order components of the neural manifold (typical session

example shown in Fig. 5.4). Such circular topology was revealed using all the

algorithms tested (intrinsic dimensionality: PCA, ; MDS, ; Isomap, ; UMAP, ), but

it was perhaps captured best by the UMAP embedding (Fig. 5.4d), which clearly

displays the separate circular laps of the neural population activity and had the

lowest intrinsic dimensionality. The open field exploration, being less constrained,

unsurprisingly revealed more complex dynamics on the manifold (Fig. 5.5).

Color-coding the neural population activity (i.e., the points on the visualisations

in Figs. 5.4 and 5.5) by the animal’s angular position in the 2D circular open

field arena revealed some clustering of points on the manifold, without however an

homogeneous mapping but instead rather spread throughout the manifold (Fig.

5.5a). Color-coding instead for the animal’s radial position revealed additional

structure at larger scales (Fig. 5.5b), as well as for the passage of time within the

session, perhaps highlighting the neural drifting dynamics (Fig. 5.5c; see Mau,

Hasselmo, et al., 2020). By quantifying the variance in the neural population

dynamics accounted for by the manifold dimensions of the linear MDS embedding,

it revealed that fewer components (dimensions) are needed to account for a fixed

amount of variance for mice exploring the 1D circular track compared to the 2D

open-field (Fig. 5.6a). Similarly, considering the number of components required

to account for a fixed percentage (90%) of the variance as the linear dimensionality

of the manifold (see section 5.2.2; Stringer et al., 2019), it grew with the number of
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neurons incorporated within an ensemble. This grew at a faster rate with ensemble

size for the 1D circular track than for the 2D open-field environments (Fig. 5.6b).

A similar result was obtained by computing the intrinsic dimensionality of the two

neural datasets as the gradient of the cumulative neighbouring neural states as a

function of the distance between them in the high-dimensional neural space (see

section 5.2.2; Nieh et al., 2021). The neural activity evoked by the 1D circular

track exploration displayed a slightly lower intrinsic dimensionality than the one

evoked by the 2D open field exploration (Figs. 5.6c,d; dataset dimensionality:

1D, 2.70 ± 0.17; 2D, 3.30 ± 0.04), suggesting that the greater complexity of

the exploration trajectory and behaviour was recapitulated in higher-dimensional

neural population dynamics. Additionally, I computed the reconstruction score

using the highly nonlinear UMAP embedding of the neural population activity

during the 1D and 2D explorations to assess the amount of neural activity variance

that could be recovered from the low dimensional embedding using a nonlinear

reverse mapping (see section 5.2.2). I found that only around 3 manifold dimensions

were needed to obtain an optimal reconstruction, but this latter score was higher

for the neural activity induced by the 1D than the 2D exploration, again suggesting

that the neural activity was low dimensional in both datasets but yielded higher

complexity during the 2D exploration (Fig 5.6e). Finally, I assessed the extent to

which spatial information could be decoded from low-dimensional neural manifolds,

by training an Optimal Linear Estimator (OLE) decoding algorithm on the angular

position data. Angular position could be decoded with high accuracy from a very

small number of components in the circular track case (Fig 5.6f); in comparison,

decoding of angular position in the open-field task yielded lower fidelity estimates,

and required more manifold dimensions.
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Figure 5.4: Manifold embedding of neural activity during circular track 1D
exploration. a, An exemplar neural population activity embedding using the PCA algo-
rithm. b, The same neural population activity is embedded using the MDS algorithm. c,
The same neural population activity is embedded using the ISOMAP algorithm. d, The
same neural population activity is embedded using the UMAP algorithm. These analy-
ses show that the angular position of the mouse is encoded by the hippocampal neural
activity.
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Figure 5.5: Manifold embedding of neural activity during open field 2D explo-
ration. a, An exemplar neural population activity embedding using the MDS algorithm
color-coded with respect to the angular position of thew mouse in the arena. b, The
same manifold embedding is color-coded with respect to the radial position of the mouse
in the arena. c, The same manifold embedding is color-coded with respect to the explo-
ration time. These analyses show that the neural population activity is encoding multiple
variables.
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Figure 5.6: Open field exploration induces more complex dynamics in the
neural population activity. a, The variance explained by inclusion of an increasing
number of manifold dimensions for the 1D circular track and 2D open field environments.
b, The growth of linear dimensionality, defined as the number of components needed to
capture 90% of the variance, with the number of cells included in the manifold. c, The
intrinsic dimensionality of the population activity is obtained from the high-dimensional
neural representation for both the 1D circular track and the 2D open field datasets. d,
The difference in dimensionality between the two datasets is presented using a Cumming
estimation plot to visualize the effect size; top panel: vertical lines, SEM; bottom panels:
black dot, median; black ticks, 95% confidence interval; filled curve: sampling error. e,
Decoding performance of the animal’s angular position, measured by Pearson correlation
coefficient (r), as a function of the number of MDS embedding dimensions, for circular
track and open field environments. f The reconstruction score of the neural population
activity with respect to the number of manifold dimensions used.
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5.4 Discussion

I used manifold learning approaches to uncover the dynamics and the topology of

neural population activity in the hippocampal CA1 region of mice exploring either

a circular linear track or open-field arena. We tested four algorithms (PCA, MDS,

Isomap, UMAP; see Fig. 5.4) and we found that UMAP seemed to qualitatively

capture the best representation of the neural activity recorded during the circular

linear track exploration, as the behavioural trajectory is clearly captured together

with a mild neural drift (Fig. 5.4d). Any manifold learning algorithm, though,

uncovers a similar topology, which suggest that a robust spatial tuning is present

in the linear track exploration and is dominating the hippocampal network activity.

The angular position of the mouse in the 1D task was visually apparent in the

lowest dimensions of the neural manifold; while this was less immediately obvious

in the 2D task (because of the non-cyclical nature of the exploratory trajectory, see

Fig 5.5a), a decoding analysis indicated that for the open field task spatial location

could still be decoded with some success from a relatively small number of manifold

dimensions, although with much less fidelity (see Fig. 5.6e). On the other hand,

within the 2D exploration evoked manifold more behavioural variable seemed, such

as radial position and the passing of time (or perhaps neural drift?) seemed to

be coded (see Fig. 5.6b,c). Furthermore, estimation of both linear and intrinsic

dimensionality (see Fig. 5.6b-d), together with the amount of neural population

activity variance captured (see Fig. 5.6a,e), revealed that the neural activity evoked

by the 2D exploration displays a higher complexity and dimensionality than the

one evoked by the 1D exploration, as might be expected given the more constrained

nature of the task.

As shown in this chapter, population approaches to the study of the activity within

neural circuits have the potential to intuitively represent its complex dynamics
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and may reveal unseen or unexpected behavioural correlates. Quantifying the

dimensionality of neural activity can give us insights into the type of computations

employed by the underlying network: a higher dimensional representation allows

a simple linear readout to generate a large number of potential responses, while a

low dimensional representation grants consistency and generability over different

contexts (Fusi et al., 2016). A varying neural activity dimensionality is supported

by mixed selectivity neurons: cells that respond to different stimuli features

together, depending on the contexts (this is particularly true for, but not limited

to, prefrontal and parietal cortices neurons; see Raposo et al., 2014; Mante et al.,

2013; McKenzie, A. J. Frank, et al., 2014; Basso et al., 1998). Compared to the

hypothesis of highly specialised neurons as the core of brain processing (see section

2.3.1), mixed selectivity allows the brain to perform order of magnitudes more

demanding computations needed to support cognition and complex behaviour

(Rigotti et al., 2013). Such a perspective is fully embraced by the manifold learning

approach: the single neuron attributes are lost to instead highlight the ensembles

dynamics, which can share the inputs of individual units, that underlie neural

representations (Vyas et al., 2020).

This is a complementary view to the one offered by network science methods (see

chapter 3), which preserve the information about the single neurons identity to de-

scribe and model their interactions and their role in the network. Such circuit level

analysis can yield important insights into the mechanisms that underlie neural com-

putation but are difficult to relate directly to external behaviour (Humphries, 2018).

Manifold learning approaches, instead, yield a potentially higher level interpretation

of the neuronal network dynamics, which can be more closely related to behaviour

(Barack and Krakauer, 2021).
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Chapter 6

Conclusion and outlook

6.1 Summary and General Discussion

The main aim of this PhD thesis was to investigate the network-level mechanism

that underpin the formation and continuous modification of memories. By

combining network science methods and complex system analysis, I presented

a framework for the analysis of the activity arising within neuronal networks,

focusing on the hippocampal circuit. Using this framework, I was able to track

and characterise the co-activity structure of the dCA1 principal cells network,

arising from the precise temporal neuronal spiking within it, as mice performed an

associative memory (CPP) task. This analysis revealed that the co-firing patterns

representing an already familiar environment were modified by the encoding of

novel place-reward association memories, suggesting the presence of hysterical

dynamics in the network. Therefore this points to a potential mechanism underlying

the retroactive modification of a previous representation in light of new information.

Moreover, I noticed that the encoding of mnemonic information onto neuronal

co-firing patterns unraveled along distinct functional axes in the network co-firing

activity space. These axes were found, firstly, to segregate novel from familiar

environments, secondly to distinguish the individual behavioural events within
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the novel environment, and finally to highlight the interaction between the new

mnemonic information and the pre-existing familiar representation.

Finally, I observed that the heterogeneous population of dCA1 principal cells sup-

ported the co-firing mechanism just described. High activity units, biased towards

the dCA1 deep pyramidal layer, quickly distinguished the familiar from the novel

environment, giving rise to the core representation of each memory. Instead, low

activity cells, biased towards the superficial pyramidal layer, joined co-firing motifs

“on demand” throughout each task event, enabling cross-memory interactions.

These findings shed light on an organizational principle of brain networks where

high and low activity cells take part to the network coactivity motifs differently,

forming the building blocks for flexible integration and interaction of memories.

As a final contribution, I used manifold learning and related approaches to uncover

the populations dynamics within hippocampal CA1 as mice performed different

types of exploration. Neuronal network population activity evoked by the 2D cir-

cular open field exploration resulted more complex than the one evoked by the 1D

circular linear track, revealing a higher dimensionality and variance to explain via

manifold learning methods. Such methods, then yield an intuitive representation of

neuronal network activity, unveiling neural states that can provide direct insights

into behaviour and neural computations.

6.1.1 Network science and neural population dynamics

approaches to track neural population activity

As described in section 2.4 of this thesis, neuronal networks are composed by a

diverse cellular population with wide, skewed activity distributions. The activity

dynamics arising from these circuits are emergent properties of the wiring within

them, both physical and functional. Using graph-theoretical tools, network science
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can indeed be used to describe the former, obtaining insights into the mapping from

wiring to dynamics (Lee et al., 2016; Schröter et al., 2017), as well as the latter, since

the activity dynamics are constrained by the underlying physical connections but

they can change much faster (e.g. neuromodulators (Nadim and Bucher, 2014)).

Network science thus allows capturing the changes in the moment-to-moment

activity structure of neuronal networks. By combining graph theory with complex

system theory, in chapter 3 I have developed a network scientific framework for the

analysis of co-activity patterns within neuronal networks.

Manifold learning approaches also offer an alternative view onto neuronal networks

activity, by extracting the low dimensional population level dynamics that underpin

behavioural correlates and cognitive computations (Vyas et al., 2020). Such low

dimensional structures have been reported in the neural population dynamics of a

variety of brain circuits and different behavioural tasks (see Figs 5.4 - 5.6; Mante

et al., 2013; Chaudhuri et al., 2019; Rubin, Sheintuch, et al., 2019).

Both network science and manifold learning approaches offer powerful, complemen-

tary views of complex neural dynamics. The two approaches share the starting point

of a pairwise interaction matrix representation of the data (being the covariance

matrix in the case of PCA). Therefore, both methods assume that the relationships

between neurons are stable over the interval of time analysed. Manifold learning ap-

proaches allow to qualitatively track and visualise the fine-grained trajectories of the

population dynamics, but often they do not offer a clear mapping between the iden-

tified dimensions and the underlying neuronal population – it is especially the case

for non-linear dimensionality reduction techniques (see section 5.2.2). This latter

limitation can then become an advantage of manifold learning techniques because by

extracting population level dynamics the unveil higher level neural representations

that can be closely related to behaviour (see Figs 5.4 - 5.5). In fact, it is also pos-
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sible to identify activity landscapes shared by different populations of neurons and

individuals performing the same task (Gallego et al., 2020; Nieh et al., 2021), and

how the geometry of such manifold constraints both learning and behaviour (Sohn

et al., 2019; Feulner and Clopath, 2021). Furthermore, extracting low-dimensional

structure from a high dimensional data can help in removing noise but can also

remove useful information. On the other hand, network representations capture the

structure of the interaction (co-firing) across all pairs of neurons, potentially includ-

ing information discarded by dimensionality reduction methods. Moreover, network

science enables the quantitative analysis of neural population activity, yielding sim-

ple variables describing its structure (Figures 3.1, 4.1.1 and 4.1.3). The presence

of null models, such as small-world or random networks, allow us to make theory-

driven hypothesis and compare them with experimental results (Fig. 3.2). The

interpretation of some graph-theoretical variables, however, is not straightforward,

as it is visualising population activity trajectories or drawing qualitative conclusions

on neural states and their potential higher level correlates (Humphries, 2018; Barack

and Krakauer, 2021). Therefore combining network science and manifold learning

approaches could offer complementary insights into the activity of neural popula-

tions (Bruno et al., 2017). One such application of manifolds techniques could be

the tracking neuronal motifs and trajectories induced by novelty encoding to inves-

tigate their effect on the pre-existing neuronal coactivity structure and its potential

consequent retroactive modification, as discussed in section 4.4.

6.1.2 The role of co-activity within neuronal networks

The network science approach just discussed enabled me to investigate the co-firing

topology of dCA1 principal cells network in mice performing different tasks.

Even though there is evidence suggesting that the hippocampus is characterised

by sequential activity (Buzsáki and Llinás, 2017), using the symmetric Pearson

correlation coefficient measure to describe the co-firing interaction within the dCA1
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circuitry yielded similar insights as employing a directional, biophysically inspired

measure (Billeh et al., 2014). In fact, since both measures revealed the same results

shown in Fig. 4.1.1 and Fig. 4.1.2, I decided to employ the simpler representation

as it allowed for more interpretable results and the use of Riemmanian topological

methods (see section 3.3). This result may imply that a directional representation

is not needed to capture the learning-related network co-activity dynamics reported

in section 4.3.1.

In the four datasets analysed in chapter 4 (Novel context only, SPP, CPP and

Familiar context with reward ; see section 4.2.1 and the caption of Fig. 4.1.3)

we found that learning was accompanied by an increase in co-activity within

the network. This is reflected in the increase in co-firing strength, geodesic path

length and clustering coefficient observed in the weighted network representations

(Fig. 4.1.1f and Fig. 4.1.3). This increase in co-activity could be the result of a

general mechanism underpinning the encoding of new information. It is not simply

explained by the passage of time (Fig. 4.1.3), even though there are experimental

observations reporting that during waking the hippocampal neurons’ log-normal

distributions of firing rates widens, which could lead to an increase in the co-activity

within the network (Watson et al., 2016; Buzsáki, 2019). Measures such as the

neuron’s population coupling (i.e., the tendency of a individual cell to follow the

population activity; see Okun et al., 2015) and the sparseness of their neural

representation (Rolls and Treves, 1990; Rolls and Tovee, 1995) could yield further

insights towards the mechanism underpinning this phenomenon.

The co-firing “topological hysteresis” reported in the CPP task (Fig. 4.1.1f) is ex-

plained by the involvement of the low-activity cells in the network representation

during the re-exposure session (Fig. 4.3.6). Their persistent co-firing perhaps re-

turns to baseline with the successive sleep thanks to the homeostatic processes that
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are active then (e.g. resetting the population log-normal distribution of firing rates;

Watson et al., 2016; Levenstein et al., 2017; Peyrache et al., 2011). The height-

ened co-firing could, perhaps, be a network response to protect existing memories

from catastrophic interference by adjusting the structure of learnt associations or

forming redundant ones. This could also reflect the dynamic process of retroactively

encode recent experience, juxtaposing the current spatial reference frame with those

encountered before. Investigating the role of sleep and SWR re-activation in the

re-modelling of pre-existing neuronal representation might be crucial, as discussed

in section 4.4.

6.1.3 Different role of hippocampal principal cells within

memory schemas

Although a substantial amount research has shown that “stable” engrams cells

underpin memory retrieval (Tonegawa et al., 2015), it is agreed that some degree

of plasticity is needed to ensure the integration of new information. The work

in this thesis suggest that taking in novel mnemonic items can induce enduring

changes on pre-existing memories (see Figures 4.1.1, 4.2.1, and 4.3.1), which is

in agreement with previous studies showing that learning can modify the initial

state of the network when retrieving familiar information (Dupret et al., 2010;

McKenzie, Robinson, et al., 2013; Grewe et al., 2017). Moreover, the results in

section 4.3.3 suggest that high activity cells readily form the neural backbone of

memories, which can then be built upon and modified by the low activity cells

to obtain finer representations (see Fig 4.3.6d). This mechanism could constitute

the physiological basis for memory schemas within the hippocampal circuitry,

which could enable the rapid formation of novel memories on top of a common

mnemonic framework (see section 2.1.2; Tse et al., 2007; McKenzie, A. J. Frank,

et al., 2014). Similar functional heterogeneity within the dCA1 has already been

reported, on one hand highlighting the role of the plastic subset of principal cells
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in encoding new information on top of networks dynamics mainly driven by the

fast-firing subset (Grosmark and Buzsáki, 2016), and on the other describing the

functional differences across the principal cells within the dCA1 superficial and deep

pyramidal layer (see Fig. 4.3.2; Cembrowski and Spruston, 2019; Danielson et al.,

2016; Soltesz and Losonczy, 2018). Such diversity could be key to the interleaved

learning hypothesis which portrays the acquisition of new information as a lasting

process impacting the future computations of mnemonic systems (Kumaran et al.,

2016).

Such neuronal ensembles yielding dynamic representations would have the effect of

deteriorating the “tuning” of neuronal populations relative to the external world,

explaining many neural instability observations (Ziv et al., 2013; Rubin, Geva, et al.,

2015; Mau, Sullivan, et al., 2018; Driscoll et al., 2017). That would imply that even

though the neuronal motifs related to external stimuli are not long-lasting, the in-

ternal mappings across neurons persist through time, possibly due to compensatory

adaptation mechanisms at the network level (e.g. neural drift; Kinsky, Sullivan,

et al., 2018; Rule et al., 2020; Gonzalez et al., 2019). This hypothesis is consis-

tent with the internal “reader” neurons (or assemblies, regions) view introduced in

section 2.3.2, which highlights the importance of the temporally precise co-activity

patterns for neural representations (Buzsáki, 2010). With this thesis I propose, in

fact, that a possible mechanism for the integration of new information within a

body of pre-existing memories is a coordinated change in the co-firing between the

heterogeneous population of dCA1 principal cells.

6.2 Outlook

Neural computations and its emerging representations are composed by the tem-

porally precise and coordinated firing patterns of thousands of neurons. While the
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rapid advances in neural recording technology, now scaling to hundreds or thousands

of simultaneously recorded neurons (Stevenson and Kording, 2011; Stringer et al.,

2019), enable us to capture the computations underpinning complex processes such

as memory formation and manipulation, we need to have the right analytical tools

to describe them. In this thesis I have developed a network science framework

to analyse the co-firing structure of principal cells within the hippocampal dCA1

network, which underpins memory representations. In this way I was able to

describe the co-firing network mechanism that accompanies the integration of new

information into pre-existing memories, highlighting the importance of the la-

bor diversity of the hippocampal principal cell population that supports this process.

Future developments should attempt to integrate the network science framework,

presented in chapter 3, with the manifold learning approach, presented in chapter

5. I believe the two analytical methods are strongly complementary; while

network science allows to represent the structure and the neuron-wise patterns

of the activity within neuronal networks, the manifold analysis aims to extract

the dynamics generated within the network using a population representation.

Therefore, network science can be used to find the cellular framework underlying

the lower-dimensional activity patterns uncovered by manifold analysis, which

may reveal higher order representations of the neural dynamics that are directly

comparable to cognitive computations and behaviour (Vyas et al., 2020; Barack

and Krakauer, 2021). This compound approach would facilitate the description of

complex neuronal population dynamics and its association to behavioural and inter-

nal variables processed by the network, possibly uncovering previously overseen ones.

Regarding the hippocampal dCA1 network co-firing mechanisms that accompany

the integration of novel information into a body of pre-existing memories, I believe

an important next step would be to causally test the labour diversity of the hetero-
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geneous population of principal cells. Both deep and superficial cells have distinct

genetic profiles (Cembrowski and Spruston, 2019) that allow selective genetic tagging

of the two subpopulations. Because of that, the two group of cells can be optogenet-

ically targeted separately to investigate their respective roles in memory formation

and consolidation. The former can be approached with a theta-oscillation-targeted

silencing, while the latter with a SWR-targeted silencing in the sleep section subse-

quent to exploration (Ven et al., 2016). This next step can lead to deeper insights

into the temporally precise circuit mechanism that underpins memory formation

and integration within the hippocampal circuit.

144



Appendix

Throughout this thesis some figures are taken from published papers, all of which

are cited in the captions. Specifically, the figures shown in chapter 4 are all taken

from a scientific publication of which I am the first author, and some figures in

chapter 5 are also taken from a publication of which I am an author.

All of the data and figures were published open access under a CC BY license

(Creative Commons Attribution 4.0 International License). The CC BY license

allows for re-use provided the source is cited.
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‘Selective suppression of hippocampal ripples impairs spatial memory.’ Nature

neuroscience, 12(10), pp. 1222–3.

Glickman, S. E. (1961), ‘Perseverative neural processes and consolidation of the

memory trace.’ Psychological bulletin, 58, pp. 218–33.

Go, M. A., Rogers, J., Gava, G. P., Davey, C. E., Prado, S., Liu, Y., and Schultz,

S. R. (2021), ‘Place Cells in Head-Fixed Mice Navigating a Floating Real-World

Environment’, Frontiers in Cellular Neuroscience, 15, p. 19.

Gold, J. I. and Shadlen, M. N. (2000), ‘Representation of a perceptual decision in

developing oculomotor commands’, Nature, 404(6776), pp. 390–394.

Golgi, C. (1885), Sulla fina anatomia degli organi centrali del sistema nervoso, Reg-

gio Emilia: Tip. S. Calderini e Figlio.

Gonzalez, W. G., Zhang, H., Harutyunyan, A., and Lois, C. (2019), ‘Persistence of

neuronal representations through time and damage in the hippocampus.’ Science

(New York, N.Y.), 365(6455), pp. 821–825.

Grassberger, P. and Procaccia, I. (1983), ‘Measuring the strangeness of strange at-

tractors’, Physica D: Nonlinear Phenomena, 9(1-2), pp. 189–208.

Grewe, B. F., Gründemann, J., Kitch, L. J., Lecoq, J. A., Parker, J. G., Marshall,

J. D., Larkin, M. C., Jercog, P. E., Grenier, F., Li, J. Z., Lüthi, A., and Schnitzer,
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Scikit-learn: Machine Learning in Python, tech. rep., pp. 2825–2830.

Pennec, X., Fillard, P., and Ayache, N. (2006), ‘A Riemannian Framework for Tensor

Computing’, International Journal of Computer Vision, 66(1), pp. 41–66.
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