
Robustness against Adversarial Attacks
on Deep Neural Networks

By Yi-Ling Liu

A thesis submitted to the Department of Computing

Imperial College London

in fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing

Imperial College London

October 2021

ABSTRACT

While deep neural networks have been successfully applied in several different domains,

they exhibit vulnerabilities to artificially-crafted perturbations in data. Moreover, these

perturbations have been shown to be transferable across different networks where the same

perturbations can be transferred between different models. In response to this problem,

many robust learning approaches have emerged. Adversarial training is regarded as a

mainstream approach to enhance the robustness of deep neural networks with respect to

norm-constrained perturbations. However, adversarial training requires a large number

of perturbed examples (e.g., over 100,000 examples are required for MNIST dataset)

trained on the deep neural networks before robustness can be considerably enhanced.

This is problematic due to the large computational cost of obtaining attacks. Developing

computationally effective approaches while retaining robustness against norm-constrained

perturbations remains a challenge in the literature.

In this research we present two novel robust training algorithms based on Monte-

Carlo Tree Search (MCTS) [1] to enhance robustness under norm-constrained perturba-

tions [2,3]. The first algorithm searches potential candidates with Scale Invariant Feature

Transform method and makes decisions with Monte-Carlo Tree Search method [2]. The

second algorithm adopts Decision Tree Search method (DTS) to accelerate the search

process while maintaining efficiency [3]. Our overarching objective is to provide compu-

tationally effective approaches that can be deployed to train deep neural networks robust

against perturbations in data. We illustrate the robustness with these algorithms by

studying the resistances to adversarial examples obtained in the context of the MNIST

and CIFAR10 datasets. For MNIST, the results showed an average training efforts saving

of 21.1% when compared to Projected Gradient Descent (PGD) and 28.3% when compared

to Fast Gradient Sign Methods (FGSM). For CIFAR10, we obtained an average improve-

ment of efficiency of 9.8% compared to PGD and 13.8% compared to FGSM. The results

suggest that these two methods here introduced are not only robust to norm-constrained

perturbations but also efficient during training.

In regards to transferability of defences, our experiments [4] reveal that across differ-

ent network architectures, across a variety of attack methods from white-box to black-box

i

and across various datasets including MNIST and CIFAR10, our algorithms outperform

other state-of-the-art methods, e.g., PGD and FGSM. Furthermore, the derived attacks

and robust models obtained on our framework are reusable in the sense that the same

norm-constrained perturbations can facilitate robust training across different networks.

Lastly, we investigate the robustness of intra-technique and cross-technique transferability

and the relations with different impact factors from adversarial strength to network capac-

ity. The results suggest that known attacks on the resulting models are less transferable

than those models trained by other state-of-the-art attack algorithms.

Our results suggest that exploiting these tree search frameworks can result in signifi-

cant improvements in the robustness of deep neural networks while saving computational

cost on robust training. This paves the way for several future directions, both algorith-

mic and theoretical, as well as numerous applications to establish the robustness of deep

neural networks with increasing trust and safety.

ii

ACKNOWLEDGMENTS

My sincere gratitude goes to my supervisor Alessio Lomuscio providing me the op-

portunity to perform research in a highly interesting field. Thank you for honing my skills

as a researcher and instructing me in deep work as well as rigor that are key ingredients

to good science.

Furthermore, I would like to express my warmest thanks to my colleagues in the

Verification of Autonomous Systems (VAS) group for their support and their contribution

to an inspiring and pleasant atmosphere during these four years.

Also, I would like to thank Computing Department of Imperial College London for

the numerous opportunities I have enjoyed throughout my studies.

Then, I say “Thank You!” to Shuang Xia, Chen Chen, Yuliya Gitlina and Haoyang

Wang for making London feel more homely.

I would like to send my most sincere thanks to Yao-Chun Fang for his understanding

especially during the strenuous moments.

Last, but certainly not least, I would like to say “感恩！”, a special thanks to my

family and my friends back home. This thesis is dedicated to my family.

iii

DECLARATION OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of original research,

is free of plagiarised materials, and has not been submitted for a higher degree to any

other University or Institution.

iv

COPYRIGHT

The copyright of this thesis rests with the author. Unless otherwise indicated, its

contents are licensed under a Creative Commons Attribution-NonCommercial 4.0 Inter-

national Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or

format. You may also create and distribute modified versions of the work. This is on the

condition that: you credit the author and do not use it, or any derivative works, for a

commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others

by naming the licence and linking to the licence text. Where a work has been adapted,

you should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.

v

Contents

Abstract . i

ACKNOWLEDGMENTS . iii

DECLARATION OF ORIGINALITY . iv

COPYRIGHT . v

Contents . vi

List of Figures . x

List of Tables . xiii

List of Algorithms . xiv

Symbols and Acronyms . xv

1 Introduction . 1

1.1 Research Motivation . 2

1.2 Research Challenges and Existing Approaches 3

1.3 Contributions and Publications . 5

1.4 Thesis Structure Overview . 7

2 Background and Literature Review . 10

2.1 Machine Learning Basics . 10

2.2 Neural Networks . 13

2.2.1 Feedforward Neural Networks . 14

2.2.2 Convolutional Neural Networks . 15

2.3 Attacks on Deep Neural Networks . 18

2.3.1 Fast Gradient Sign Method . 19

2.3.2 Projected Gradient Descent . 20

2.3.3 Jacobian-based Saliency Map Attack 21

2.3.4 Deepfool Attack . 22

2.3.5 Carlini & Wagner Attack . 24

vi

2.3.6 Summary of Attack Techniques . 25

2.3.7 Adversarial Attacks in the Physical World 26

2.4 Reactive Countermeasures . 26

2.4.1 Adversarial Detecting . 27

2.4.2 Input Reconstruction . 29

2.5 Proactive Countermeasures . 31

2.5.1 Network Distillation . 31

2.5.2 Adversarial Re-training . 32

2.6 Existing Limitations . 36

3 An MCTS-based Method for Robustness . 39

3.1 Problem Formulation & Notation . 40

3.2 MCTS-based Attack Method . 41

3.2.1 Scale Invariant Feature Transform (SIFT) 41

3.2.2 Monte Carlo Tree Search (MCTS) 48

3.2.3 Effective Adversarial Examples . 52

3.3 MCTS-based Adversarial Training . 53

3.3.1 MCTS-based Adversarial Training Framework 53

3.3.2 MCTS-based Adversarial Training Algorithm 54

3.4 Experimental Results . 55

3.4.1 Adversarial Accuracy . 55

3.4.2 Experimental Setup . 56

3.4.3 MNIST . 57

3.4.4 CIFAR10 . 59

3.5 Summary . 61

4 A Decision Tree Search Robustness Method . 63

4.1 Decision Tree Search Attack . 64

4.1.1 Initialise Spanning Tree . 64

4.1.2 Tree Traversal . 66

4.1.3 Sampling Nodes . 66

4.1.4 Back Propagation . 67

4.2 The DTS Robust Tool . 69

4.2.1 Robust Optimisation . 69

vii

4.2.2 DTS Implementation Framework 70

4.3 Experimental Results . 72

4.3.1 Experimental Setup . 72

4.3.2 Network Architecture . 74

4.3.3 MNIST . 75

4.3.4 CIFAR10 . 79

4.3.5 Adversarial Examples with DTS . 80

4.4 Summary . 80

5 MRobust: Transferability for DNNs . 82

5.1 Defining Transferability . 84

5.1.1 Cross-technique Transferability . 84

5.1.2 Intra-technique Transferability . 86

5.2 White-box and Black-box Attack Methods 89

5.2.1 White-box Attack Model . 90

5.2.2 Black-box Attack Model . 91

5.3 The MRobust Defence Method . 92

5.3.1 Black-box Adversarial Attack Method 93

5.3.2 Black-box Adversarial Training Algorithm: MRobust 96

5.4 Experimental Results . 97

5.4.1 Robustness Transferability . 97

5.4.2 Experimental Setup . 99

5.4.3 MNIST . 101

5.4.4 CIFAR10 . 102

5.5 Summary . 104

6 Conclusions . 106

6.1 Summary of Thesis Achievements . 106

6.2 Comparisons in Related Work . 107

6.2.1 Perturbation-based Adversarial Robustness 108

6.2.2 A Broader View of Robustness in DNNs 109

6.2.3 Robustness in Generative Models 110

6.2.4 Equivariance and Invariance to Noises in Computer Vision 111

6.3 Overall Contributions . 112

viii

6.4 Thesis Limitations . 113

6.5 Future Work . 114

Bibliography . 116

ix

List of Figures

1.1 An adversarial example for GoogleNet [15]. GoogleNet correctly classified
the image on the left as a “school bus”. An adversarial image (shown on the
right) was constructed by adding small imperceptible perturbation (shown
in the middle) to the original image. The neural network misclassified the
adversarial image as a “ostrich”. The original and adversarial images are
indistinguishable to the human eye, yet, GoogleNet predicted a different
label for the adversarial image. 3

2.1 Feedforward neural network with L fully connected layers. Each neuron is
connected to all neurons in the previous layer, but the neurons in the same
layer do not share connections. 14

2.2 The architecture of a traditional convolutional neural network. The objec-
tive of the convolution layers is to extract the high-level features such as
edges, from the input image. It need not be limited to only one convo-
lutional layer. Conventionally, the first convolutional layer is responsible
for capturing the low-level features such as edges, color, gradient orienta-
tion, etc. With added layers, the architecture adapts to the High-Level
features as well. The pooling layers (subsampling layers) are responsible
for reducing the spatial size of the convolved features. This is to decrease
the computational power required to process the data through dimension-
ality reduction. Furthermore, it is useful for extracting dominant features
which are rotational and positional invariant, thus maintaining the process
of effectively training of the model. 16

2.3 An adversarial example for GoogleNet [15] generated by Fast Gradient
Sign method [29]. GoogleNet correctly classified the image on the left as a
“panda” class. An adversarial image (shown on the right) was constructed
by adding small imperceptible perturbation (shown in the middle) to the
original image. The neural network misclassified the adversarial image as
a “gibbon”. As we can see, the original and adversarial images are visually
indistinguishable to the human eye, yet, GoogleNet predicted a different
label for the adversarial image. 20

2.4 Saliency map of a 784-dimensional input to the LeNet architecture [41]. . . 22

2.5 A minimal adversarial perturbation for a 2-class affine classifier and an
n-class nonlinear classifier [36]. In Fig. 2.5a, the minimal adversarial per-
turbation for a 2-class affine classifier is the distance to the decision hy-
perplane. The region of the current prediction for an n-class nonlinear
classifier, such as DNNs, can be approximated using a polyhedron. Then,
the adversarial perturbation for an n-class nonlinear classifier is the short-
est distance to the facets of the polyhedron in Fig. 2.5b. 23

2.6 Sensitivity on the constant c [42]. 24

x

2.7 (Top) ResNets used for classification. Numbers below arrows denote the
number of feature maps and numbers on top of arrows denote spatial res-
olutions. Conv denotes a convolutional layer, Res*5 denotes a sequence
of 5 residual blocks as introduced by He et al. [55], GAP denotes a global-
average pooling layer and Dens a fully connected layer. Spatial resolutions
are decreased by strided convolution and the number of feature maps on the
residual’s shortcut is increased by 1 × 1 convolutions. All convolutional
layers have 3 × 3 receptive fields and are followed by batch normalization
and rectified linear units. (Bottom) Topology of detector network, which is
attached to one of the AD(i) positions. MP denotes max-pooling and is
optional: for AD(3), the second pooling layer is skipped, and for AD(4),
both pooling layers are skipped. 28

2.8 Illustration of detectability of different adversaries and values for ε on 10-
class ImageNet [27]. The x-axis shows the predictive accuracy of the Ima-
geNet classifier on adversarial examples of the test data for different adver-
saries. The y-axis shows the corresponding detectability of the adversarial
examples, with 0.5 corresponding chance level. 29

2.9 An example of denoising autoencoder (DAE) [20]. The denoising autoen-
coder processes a noisy image, generating a clean image on the output
side. 30

2.10 An overview of the defence mechanism based on a transfer of knowledge
contained in probability vectors through distillation [21]: The mechanism
first trains an initial network F on data X with a softmax temperature
of T . It then uses the probability vector F (X), which includes additional
knowledge about classes compared to a class label, predicted by network
F to train a distilled network F d at temperature T on the same data X. . 31

2.11 One step attack with/without adversarial re-training [28]. 33

2.12 Iterative attack with/without adversarial re-training [28]. 34

3.1 The Gaussian pyramid of one image. 43

3.2 The comparison process of scale-space extrema detection. 44

3.3 Different stages of keypoint localisation . 45

3.4 The orientation assignment for some keypoint centred at (x, y) within a
region. The orientation histogram has 36 bins covering the 360-degree range
of orientations. Increasing the bin numbers will increase the computation
efforts. 45

3.5 The process of keypoint descriptor assignment. A keypoint descriptor is
created by first computing the gradient magnitude and orientation at each
image sample point in a region around the keypoint location, as shown
in figure (b). These are weighted by a Gaussian window, indicated by
the overlaid circle. These samples are then accumulated into orientation
histograms summarising the contents over 4x4 subregions, as shown in
figure (c), with the length of each arrow corresponding to the sum of the
gradient magnitudes near that direction within the region. This figure
shows a 4 × 4 descriptor array computed from a 16 × 16 set of samples. . 47

3.6 The process of Monte Carlo Tree Search. Each round of MCTS consists of
four steps, that are selection, expansion, simulation and backpropagation.
The value in each node stands for the confidence value. 50

xi

3.7 Some game tree starting from point pi with perturbations δik along the
path in a region Ri under the constraint of ‖ η ‖p≤ ε. 52

3.8 MCTS-based Adversarial Training Framework. 53

3.9 Effective adversarial examples on MNIST dataset with ε = 0.01. 57

3.10 Adversarial accuracy and loss value on MNIST dataset with ε = 0.01. . . . 58

3.11 Effective adversarial examples on CIFAR-10 dataset with ε = 0.01. 59

3.12 Adversarial accuracy and loss value on CIFAR10 dataset with ε = 0.01. . . 60

4.1 The process of the decision tree search attack. 68

4.2 The DTSRobust toolkit training framework. The framework is divided
into an attack generation step DTSAttack and a robust training model
M. 71

4.3 Accuracy and loss comparisons on MNIST dataset with εDIFF = 0.02, 0.03
in the l∞ norm. 76

4.4 Accuracy and loss comparisons on CIFAR10 dataset with εDIFF = 0.02, 0.03
in the l∞ norm. 78

4.5 Some adversarial examples for MNIST and CIFAR10 under εDIFF = 0.02. . 80

5.1 The cross-technique transferability matrix: cell (i, j) is the percentage of
adversarial samples crafted to mislead a classifier learned using machine
learning technique i that are misclassified by a classifier trained with tech-
nique j [81]. 85

5.2 Intra-technique transferability for different techniques. Fig. 5.2a reports the
accuracy rates of the 25 models used, computed on the MNIST test set.
Fig. 5.2b to Fig. 5.2d in cell (i, j) report the intra-technique transferability
between models i and j using the same method with different parts of the
dataset, i.e. the percentage of adversarial samples produced using model i
misclassified by model j. 87

5.3 An Effective Adversarial example in a region Ri with ‖δ‖p ≤ ε. 95

5.4 Accuracy and loss comparisons on MNIST dataset with ε = 0.1 in the l∞
norm. 100

5.5 Accuracy and loss comparisons on CIFAR10 dataset with ε = 0.1 in the l∞
norm. 103

xii

List of Tables

3.1 The adversarial accuracy comparisons of PGD and MAT against FGSM
attack method with MNIST and CIFAR10 datasets. 57

3.2 The adversarial accuracy comparisons of PGD and MAT against C&W
attack method with MNIST and CIFAR10 datasets. 57

4.1 The full network architectures and parameters for MNIST and CIFAR10. . 73

4.2 The resulting accuracy of nature training, FGSM, PGD and DTS methods
against white-box adversarial attacks with εDIFF = 0.02 and 0.03 on MNIST
dataset. 75

4.3 The resulting accuracy of nature training, FGSM, PGD and DTS meth-
ods against white-box adversarial attacks with εDIFF = 0.02 and 0.03 on
CIFAR10 dataset. 77

5.1 The robustness transferability comparison of nature training, FGSM, PGD
and MRobust methods using black-box adversarial attack from the source
network on MNIST. 98

5.2 The robustness transferability comparison between nature training, FGSM,
PGD and MRobust methods using black-box adversarial attack from the
source network on CIFAR10. 102

xiii

List of Algorithms

1 Adversarial training of network N.
Size of the training minibatch is m.
Number of adversarial images in the minibatch is k 35

2 MCTS-based Adversarial Training
Deep neural network M
Size of the training minibatch is m . 54

3 Decision Tree Search Adversarial Attack: DTSAttack 65

4 DTS Robust Optimisation: DTSRobust
Size of the training minibatch is m . 71

5 Black-box Adversarial Attack: MAttack . 93

6 Black-box Adversarial Training: MRobust
Deep neural network M
Size of the training minibatch is m . 96

xiv

Symbols and Acronyms

Symbols

xi the i-th original (clean, unmodified) input data

yi the label of i-th input data

x′i the i-th adversarial example (modified input data)

y′i the label of i-th adversarial example

RD the D-dimensional Euclidean space

f(·) the deep learning model for an image classification task (f(·) ∈ F : RD → y)

θ the parameters of a deep learning model f(·)
L(θ, x, y) the loss function (e.g., cross-entropy) of a model f(·)

η the differences between original data xi and adversarial example x′i
‖ · ‖p the distance metric in p norm on suitable real vector spaces given by the p-th

root of the sum of the vector components

5f the gradient vector of a deep learning model f

sign the odd mathematical function that extracts the sign of a real number

ε the measurement constraint of perturbations applied to adversarial examples

Z the softmax function which is used to obtain the probability of the class y

Acronyms

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

FFNN Feedforward Neural Network

ReLU Rectified Linear Unit

SVM Support Vector Machine

PCA Principal Component Analysis

LR Linear Regression

DT Decision Tree

xv

LIST OF ALGORITHMS

kNN k-Nearest Neighbour

DCN Deep Contractive Network

DAE Denoising Autoencoder

FGSM Fast Gradient Sign Method

BIM Basic Iterative Method

JSMA Jacobian Saliency Map Attack

PGD Projected Gradient Descent

AT Adversarial Training

MCTS Monte-Carlo Tree Tearch

SIFT Scale Invariant Feature Transform

MAT MCTS-based Adversarial Training

DTS Decision Tree Search

xvi

Chapter 1

Introduction

Work on artificial neural networks, commonly referred to as “neural networks”, has

been motivated right from its inception by the recognition that the human brain computes

in an entirely different way from the conventional digital computer. The brain is a highly

complex, nonlinear, and parallel computer (information-processing system). It can organ-

ise its structural constituents, known as neurons, to perform certain computations (e.g.,

pattern recognition, perception, and motor control) many times faster than the fastest

digital computer in existence today. Consider, for example, human vision, which is an

information-processing task. It is the function of the visual system to provide a represen-

tation of the environment around us and, more important, to supply the information we

need to interact with the environment. To be specific, the brain routinely accomplishes

perceptual recognition tasks (e.g., recognising a familiar face embedded in an unfamiliar

scene) in approximately 100-200 ms, whereas tasks of much lesser complexity take a great

deal longer on a powerful computer.

The human vision system is surprisingly robust when it comes to changes in object

appearance, shape, and pose and reliably perceive and accurately navigate the world

around us without realising the difficulty of the task. An open question in computer

vision is: can computers understand the world around us with the same accuracy and

reliability as humans do? Creating such algorithms is the main exploration in computer

vision. Deep neural networks (DNNs) have emerged as one universal representation in

1

Chapter 1 Introduction

recent years and mimic information processing system in the human brain. In its most

general form, a neural network is a machine that is designed to model how the brain

performs a particular task or function of interest; the network is usually implemented

by using electronic components or is simulated in software on a digital computer. DNNs

consist of multiple processing layers that extract a higher-level representation of the data,

which is similar to the visual cortex. With recent advances, deep neural networks have

surpassed human performance on the image classification task [5], speech recognition [6]

and machine translation [7]. DNNs have been applied to different fields from speech

recognition to image recognition and play an important role in several applications.

1.1 Research Motivation

The success of deep neural networks in countless applications is undeniable. There

are several applications in many different fields, from computer vision [8], natural language

processing [9], face recognition in smartphone devices [10], automated image organisation

in image directories [11], image classification for websites with large visual databases [12]

to visual recognition system in self-driving cars [13]. Although deep neural networks

have achieved significant experimental results in image recognition, many existing image

classifiers are highly vulnerable to small imperceptible perturbations in the input data.

The intriguing result is that the changes required to shift the prediction of DNNs are

invisible to the human eye. For example, Fig. 1.1 shows an example of the image that was

classified correctly as a “school bus” but was misclassified as a “ostrich” after applying

small perturbations. Yet, the perturbed image still looks like a “school bus” for human

perceptions. These examples, named adversarial examples, are blind spots or optical

illusions for deep neural networks [14].

Adversarial examples are comprised of applying small but intentionally worst-case

perturbations to examples from the dataset, such that the perturbed input results in the

model outputting an incorrect classification result with high confidence [16,17]. Szegedy

et al. first proposed this intriguing discovery about the image misclassification problem

with small perturbations on the images and successfully fooled deep neural networks with

2

Chapter 1 Introduction

Fig. 1.1: An adversarial example for GoogleNet [15]. GoogleNet correctly classified the

image on the left as a “school bus”. An adversarial image (shown on the right) was

constructed by adding small imperceptible perturbation (shown in the middle) to the

original image. The neural network misclassified the adversarial image as a “ostrich”. The

original and adversarial images are indistinguishable to the human eye, yet, GoogleNet

predicted a different label for the adversarial image.

high confidences [17]. In many situations, like image classification, these modifications

can be so subtle that a human observer does not even notice the modification, yet the

classification outcome is still incorrect. Adversarial examples will raise safety concerns in

self-driving cars while traffic signs or road conditions are misclassified due to scratches or

changes to camera angle or lighting conditions [18,19], e.g., speed limits changed from 20

to 200 miles. Moreover, it has been shown that the same adversarial examples tend to

fool different models with different architectures which are trained on different training

sets in similar sequences, which is called transferability. In general, the fact that they can

be generated by simple and structured procedures and are common to different models

can be used to perform attacks between models [20].

1.2 Research Challenges and Existing Approaches

There are several indicators of image recognition methodologies to evaluate the ro-

bustness under adversarial attacks. One is accuracy - the image classifier is required to

endure some perturbations and still recognises images correctly. Another key indicator

is learning ability - the model itself could learn from the existing training dataset and

the newly generated dataset efficiently. An ideal image recognition methodology usu-

3

Chapter 1 Introduction

ally contains both high accuracy and self-learning ability. The primary reason for the

existence of adversarial examples is the linear behaviour in high-dimensional spaces of

DNNs [16,17,18,19,14]. For high dimensional weights of DNNs, we can make many in-

finitesimal changes to the input that will add up to one large change to the output so

even a minor perturbation will make considerable contributions for the results. Therefore,

the major challenge in robustness is how to endure perturbations whilst preserving the

accuracy of a classifier.

In response to this vulnerability, a growing body of work has focused on improving

the robustness of DNNs [21,22,23,24,25,26]. In particular, the literature concerning adver-

sarial robustness has sought to improve robustness to small, imperceptible perturbations

of data. There are two categories of existing countermeasures for adversarial examples.

One of these is reactive countermeasure which defends after adversaries generate adver-

sarial examples and this usually attempts to detect adversarial examples from inputs

after deep neural networks are established, e.g., adversarial detecting [27]. The other

category is proactive countermeasure which enhances deep neural networks more robust

before adversaries generate adversarial examples, e.g., adversarial re-training [28]. In the

next chapter, we will discuss more details about two types of reactive countermeasures

(adversarial detecting [27] and input reconstruction [20]) and two kinds of proactive coun-

termeasures (network distillation [21] and adversarial re-training [28]). Although these

methodologies improve the robustness of image recognition to some extent, there are still

some existing limitations under different attacks.

To this end, the adversarial robustness literature has developed novel robust training

algorithms, i.e. adversarial training [29], which typically incorporates norm-constrained

perturbations in a robust optimisation formulation where the norm-constrained pertur-

bations are the distances from the input data to the perturbed input. Adversarial train-

ing has provided a rigorous framework for understanding, analysing, and improving the

robustness of DNNs considering norm-constrained perturbations. However, adversarial

training requires learning via a large number of perturbed images (e.g., over 100,000 ex-

amples are required for MNIST dataset aforementioned) before robustness is obtained.

This is expensive and time-consuming. Therefore, developing computationally effective,

robust training approaches is a topic of interest. This raises the key research question

4

Chapter 1 Introduction

of learning models robust to adversarial examples in a computationally effective manner

and is also our main target in this thesis.

1.3 Contributions and Publications

The main contributions of this thesis can be categorised in a threefold way:

1. Conceptual:

• We introduce two classes of attack methods: Monte-Carlo Tree Search (MCTS)

attack and Decision Tree Search (DTS) attack. The benefit of MCTS is on

the analysis of the most promising moves, expanding the search tree based

on the search space. Through this method, the computational efforts can re-

duce during the search of adversarial examples while maintaining robustness

enhancement. More details about MCTS will be introduced in Chapter 3.

• We combine these attack methods and introduce two robustness countermea-

sures efficiently: MCTS-based adversarial training (MAT) and decision tree

search robust optimisation (DTSRobust).

• We evaluate the transferability with our MCTS-based robustness countermea-

sure, i.e. whether our method can prevent adversarial examples transferred

between different models and improve model generalisation.

2. Methodological:

• We introduce a novel, systematic methodology of combining MCTS with ad-

versarial training to improve the training efficiency and robustness in deep

neural networks. With the adversarial examples generated from the MCTS-

based attack method, the model can accelerate the convergence rates.

• We introduce a novel, systematic methodology of combining DTS with robust

optimisation to enhance the training efficiency and robustness in deep neural

5

Chapter 1 Introduction

networks. The adversarial examples generated from the DTS attack method

are reusable and able to apply in different models. For this reason, the compu-

tational efforts can save to some level and the model robustness is competitive

with the state-of-the-art methods.

• Using the MCTS-based attack method aforementioned, we introduce a black-

box adversarial training algorithm and evaluate systematic transferability be-

tween different models to verify if our method can provide robustness and

reduce transferability.

3. Practical:

• We introduce MCTS-based Adversarial Training (MAT), a toolkit implementing

the work aforementioned.

• We introduce Decision Tree Search robust optimisation (DTS), a toolkit imple-

menting the second work aforementioned.

• We present implementations of transferability evaluations in MAT and give re-

sults compared with the state-of-the-art methods.

The results presented in this thesis have previously appeared, in a shorter form, in

the following papers [2,4,3]:

• Yi-Ling Liu, Alessio Lomuscio. An MCTS-based Adversarial Training Method for

Image Recognition. Proceedings of the 32nd International Joint Conference on

Neural Networks (IJCNN). Budapest, Hungary. 1-8(2019). IEEE Press.

DOI: 10.1109/IJCNN.2019.8852337.

• Yi-Ling Liu, Alessio Lomuscio. Robustness Learning via Decision Tree Search Ro-

bust Optimisation. Proceedings of the 32nd British Machine Vision Conference

(BMVC). United Kingdom, 2021. BMVA Press.

6

Chapter 1 Introduction

• Yi-Ling Liu, Alessio Lomuscio. A Method for Robustness against Adversarial At-

tacks on Deep Neural Networks. Proceedings of the 33rd International Joint Confer-

ence on Neural Networks and IEEE World Congress on Computational Intelligence

(WCCI). Glasgow, United Kingdom. 1-8(2020). IEEE Press.

DOI: 10.1109/IJCNN48605.2020.9207354.

This thesis builds based on the above papers by combining the theoretical results

into a unified presentation. Further, the individual toolkits presented in the papers are

combined to support all the different platforms.

1.4 Thesis Structure Overview

The remainder of this thesis is organised as follows. Chapter 2 first outlines some

machine learning basics, introduces how adversarial examples are generated with different

approaches and explains two genres of countermeasures with existing limitations. We

now provide an overview of the research problems investigated and three major research

contributions fulfilled relating to these problems in the thesis.

Chapter 3 describes our MCTS-based robustness method and how we can improve

the robustness of image recognition from the scope of a global perspective. Chapter 4

introduces a novel decision tree search robust optimisation method to cope with different

adversarial attacks. Chapter 5 describes how we aim to conquer the phenomenon of

transferability on DNNs and further improve the robustness. In the following, we give a

brief summary in each chapter.

• In Chapter 2, we first define the problem and introduce neural networks with which

we experiment. We then present the existing state-of-the-art methods from at-

tack methods to countermeasures toward robustness. For the attack methods, we

introduce five genres of attacks and then conclude for these attacks. For the coun-

termeasures against attacks, we separate them into reactive and proactive types

with two different methods for each of these types. Lastly, we discuss the existing

limitations toward these state-of-the-art methods.

7

Chapter 1 Introduction

• In Chapter 3, we present an adversarial training algorithm based on Monte-Carlo

Tree Search. We illustrate the robustness of the algorithm by studying its resistance

to adversarial examples in the context of the MNIST and CIFAR10 datasets. For

MNIST, after 2000 epochs the experimental results showed an average improvement

of efficiency of 21.1% when compared to PGD. For CIFAR10, after 7000 epochs

we obtained an average improvement of efficiency of 9.8% compared to PGD. We

further compare the robustness of the algorithm against various attack methods.

The results suggest that the adversarial training method here introduced is not

only robust against adversarial examples but also efficient during training.

• In Chapter 4, we present a novel method for robustness training for ReLU-based

deep neural networks. The method involves decision tree search targeting the worst-

case data points to generate adversarial examples. We combine the decision tree

search method with robust optimisation to train a robust model while maintain-

ing accuracy at comparably lower computational effort than the state-of-the-art

methods. The efficiency is obtained by focusing on small regions centred around

the input that have significant potential to generate adversarial samples. We im-

plemented the resulting method in the toolkit DTSRobust, which was evaluated

against the state-of-the-art defence methods on MNIST and CIFAR10 datasets. In

experiments, DTSRobust achieved a 14.2% gain on efficiency against the state-of-

the-art defence methods in MNIST and 10.3% of that in CIFAR10 while maintaining

similar accuracy. .

• In Chapter 5, we present a novel black-box adversarial training algorithm to defend

against the state-of-the-art attack methods in machine learning. To search for an

adversarial attack, the algorithm analyses small regions around the input that are

likely to make significant contributions to the generation of adversarial samples.

Unlike some of the literature in the area, the proposed method does not require

access to the internal layers of the model and is therefore applicable to applications

such as security. We report the experimental results obtained on models of different

sizes built for the MNIST and CIFAR10 datasets. The results suggest that known

attacks on the resulting models are less transferable than those models trained by

the state-of-the-art attack algorithms.

8

Chapter 1 Introduction

• In Chapter 6, we first summarise the achievements for each chapter and then discuss

some related works from different perspectives, i.e. perturbation-based adversarial

robustness, a broader view of robustness, robustness in generative models and equiv-

ariance and invariance to noises in computer vision. Lastly, we summarise the overall

contributions and discuss some future works in different directions, e.g., learning a

library of different noise models, model-based algorithms and architectures, appli-

cations beyond image classification and theoretical foundations.

Before diving into technical details, we review machine learning basics and neural

networks in the next chapter. Then, we introduce different genres of literatures relating

to this problem and discuss the existing limitations of these approaches.

9

Chapter 2

Background and Literature Review

Humans can recognise objects and places seamlessly. In their first efforts in the 60s,

researchers attempted to construct programmable rules for extracting useful information

from images. However, it soon became clear that the complexity of visual data makes

the task of designing extraction rules very challenging. The world around us seems just

too complex to be described with simple rules. The solution is to enable computers

to learn directly from the data. Machine learning algorithms allow computers to learn

from experience without being explicitly programmed to perform the task at hand. This

chapter provides a basic background summary about machine learning in general. We

cover empirical risk minimisation, discuss regularisation methods, and the issue of data

overfitting. We then describe the basic principles underlying deep neural network models.

Then, we present some recent attacks on deep neural networks and defences against

adversarial noises. Lastly, we highlight some limitations that occurred in these state-of-

the-art methods.

2.1 Machine Learning Basics

Artificial intelligence (AI) has captivated our imagination for decades. If developed,

it might be the greatest humankind invention. The first attempts to program intelligent

10

Chapter 2 Background and Literature Review

machines can be traced back to the 1960s by the British logician and computer pioneer

Alan Mathison Turing. After the initial optimism, the researchers soon learned that the

complexity of the real world makes it infeasible to program a computer with an explicit

set of rules for performing the task. Learning in some form is necessary. While the way

a machine learns is different from the way a human learns, machine learning has been

largely inspired by the principles of continuous improvement from experience in human

learning. Machine learning research can thus potentially shed light on the principles that

govern human intelligence.

Machine learning is the study of algorithms that enable computers to learn from

data. A commonly cited and more formal definition of machine learning is “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P if its performance at tasks in T, as measured by P, improves with

experience E” [30]. We can describe many learning problems in this framework. As an

example, let’s consider a basic image classification task:

Task T: is to recognise objects in the image.

Performance measure P: is a percentage of correctly classified images.

Experience E: is a dataset of images with the target labels.

Machine learning algorithms can be divided into three categories according to the

amount of information available about the target: supervised learning, unsupervised learn-

ing, and reinforcement learning. In this work, we consider supervised learning problems,

in particular, image classification problems. For supervised learning, the goal is to learn

a mapping from the input to the output for the image classifier f : x→ y. x is an image

x ∈ RD, where D is the dimensionality of the image. y is the target output for image

classifier f with k-labels, where y ∈ {` : 1, ..., k}. Output is usually encoded using 1-hot

coding vector of length k with 1 at position ` if y = ` and 0 at all other positions. The loss

function for classifier f is expressed as L(x, θ, y) (or J(x, θ, y)) - a function that quantifies

and evaluates the quality of fitness between the parameter θ of f and the observations

(x, y).

Machine learning models can be categorised into parametric and non-parametric

11

Chapter 2 Background and Literature Review

models. An example of a non-parametric model with no assumption for underlying data

distribution is the k-nearest neighbour classifier. In our work, we consider parameter

models. A parametric family of models defines a set of functions F = {fθ | θ ∈ Θ}, where

fθ = fF(x, θ) is a mapping from the input space to the target space; θ ∈ Θ are trainable

model parameters, e.g. neural network weights. Additionally, the function family F can

depend on non-trainable parameters or hyperparameters, e.g., the type and the number of

layers in a neural network. A parametric family restricts the class of functions the model

can represent. In this way, we provide an inductive bias to the model for learning about

task T.

Each member fθ ∈ F represents a particular instance of a machine learner. The goal

of learning is to find the most suitable member f ∗ of a parametric family F for a given

task T and a given performance measure P. For parametric models, this is equivalent to

finding optimal parameters θ∗ ∈ Θ. Assume that training data was drawn independently

and identically distributed (i.i.d.). If π is data distribution from which data was i.i.d.

drawn, we can formalise learning as an optimisation problem with expectation E:

f ∗ = arg min
f∈F

E(x,y)∼π[L(f(x, θ), y)] (2.1)

Data distribution π is not available for most problems of interest. Instead, data is

sampled from the empirical or training distribution D:

f̂ = arg min
f∈F

1

m

m∑
i=1

L(f(xi, θ), yi)

= arg min
f∈F

E(x,y)∼D[L(f(x, θ), y)],

(2.2)

where m is the number of training examples.

Does the solution of Equation (2.2) converge to the solution of Equation (2.1)? For-

tunately, we can show that under mild conditions on the function family F empirical

estimate f̂ convergences to the optimal solution f ∗ in the limit of the number of examples

limm→inf f̂ = f ∗. This principle is known as the empirical risk minimisation principle.

Empirical risk minimisation is the foundation of many machine learning algorithms, in-

12

Chapter 2 Background and Literature Review

cluding neural networks. To find a solution to Equation (2.2), we can use any optimisation

technique, e.g. gradient descent, Newton’s method, or a method tailored for the problem’s

structure. Next, we introduce neural networks as one example of a parametric machine

learning model, which is a particular focus in this thesis.

2.2 Neural Networks

Artificial neural network (ANN) is a parametric model, which has been introduced

to machine learning over decades. Their creation and development were loosely inspired

by the layered structure of the human brain. Neural networks for pattern recognition

do not aim to imitate the human mind intrinsically, yet, many of the neural network

terminologies and ideas have been borrowed from neuroscience. Spiking neural networks

(SNNs) provide a much more accurate approximation of the computations in the human

brain [31]. However, SNNs are difficult to train due to the non-differentiability of the

spiking activation function.

A deep neural network (DNN) is an artificial neural network (ANN) with multiple

layers between the input and output layers. It consists of neurons, synapses, weights,

biases, and functions and can be trained like any other machine learning algorithm. Neural

network computation is represented as a directed graph of connected processing units or

neurons. Each neuron receives an output from the adjacent neurons as an input and

performs some transformation of the data, e.g., weighted sum or output thresholding. An

output signal of the neuron is passed to the connected neurons. The neurons that perform

related computations are organised in layers. For simplicity, we describe neural networks

as a sequence of layer transformations. The neural networks can be categorised into

two groups: feedforward neural networks (FFNN) and recurrent neural networks (RNN).

Recurrent neural networks (RNNs), in which data can flow in any direction, are used for

applications such as language modeling while FFNNs are used in computer vision. Due to

the vast number of parameters, FFNNs can be reduced by using prior knowledge about the

structure of natural images and be represented as convolutional neural networks (CNNs)

used in computer vision. In the section, we first introduce feedforward neural networks

13

Chapter 2 Background and Literature Review

1

x0

x1

...

xD

a
(1)
0

a
(1)
1

...

a
(1)
N (1)

. . .

. . .

. . . a
(L)
0

a
(L)
1

...

a
(L)
N (L)

a
(L+1)
1

a
(L+1)
2

...

a
(L+1)
K

input layer
1st hidden layer Lth hidden layer

output layer

Fig. 2.1: Feedforward neural network with L fully connected layers. Each neuron is

connected to all neurons in the previous layer, but the neurons in the same layer do not

share connections.

(FFNNs) and then convolutional neural networks (CNNs) for the study of robustness to

deep neural networks in computer vision.

2.2.1 Feedforward Neural Networks

We start with an introduction to feedforward neural networks. Each layer of a feed-

forward neural network transforms an output from the previous layer and passes the

transformed output as an input to the next layer. The architecture of an L-layer fully

connected feedforward neural network is represented in Fig. 2.1.

For an input vector xt ∈ RD, each hidden layer transforms its input vector from the

previous layer to the next layer by applying an affine transform as follows:

z0 = xt (t: 0...D),

a
(l+1)

i (i: 1...N(l))
=

N(l)∑
j=1

w
(l)
ij z

(l)
j + b

(l)
i ,

z
(l+1)
i = σ(a

(l+1)
i),

(2.3)

where N (l), W (l) and b(l) (a
(l)
0 unconnected in Fig. 2.1) are the numbers of nodes, a weight

14

Chapter 2 Background and Literature Review

matrix, and a bias vector of the l-th layer (l = 1 to L), respectively, and σ(a
(l+1)
i) is

a nonlinear ReLU activation function. The Rectified Linear Unit (ReLU) is defined as

ReLU(xt) = max(0, xt), where the output is the maximum between 0 and the input

positive value. In the last layer, the softmax function is used to obtain the probability of

the class yt, which is formulated as:

softmax(xt) =
exp(wyta

(L))∑N(L)

n=1 exp(wna
(L))

, (2.4)

where wyt is the weight matrix for class yt, N
(L) is the number of nodes in the last layer

and a(L) is the activation values in the last layer. In summary, a DNN model θ is defined

by the set of weight matrices W , bias vectors b, and a nonlinear activation function σ(x)

for an input x as follows:

θ = {W, b, σ(x)}, (2.5)

where W = {W (1), ...,W (L)} and b = {b(1), ..., b(L)} [32,33].

A fully connected layer is a basic component for building a neural network. However,

the number of layer parameters limits its applications to vision problems. Consider a fully

connected layer with n input and k output units. The number of the layer parameters is

scaled as (n×k+k) ·L, where L is the number of neural network layers. It is prohibitively

large for image data (where n, k ∼ 1000) and leads to overfitting even for simple computer

vision tasks. The number of parameters can be reduced by using prior knowledge about

the structure of natural images. Next, we introduce convolutional layers that use prior

information about images.

2.2.2 Convolutional Neural Networks

Hubel and Wiesel [34] discovered that neurons in the human visual cortex are organ-

ised in a complex arrangement of two types of cells: simple and complex cells. Simple

cells only respond to the specific edge-like pattern within their receptive field, while com-

plex cells are locally invariant to the pattern’s exact location. Discoveries of the simple

and complex cells and selective receptive fields in the visual cortex had led to the devel-

opment of convolutional neural networks [35]. Convolutional neural networks implement

the idea of simple and complex cells using convolutional and pooling layers, respectively.

15

Chapter 2 Background and Literature Review

1

Convolutions

INPUT

Subsampling

C1: feature maps

Convolutions

S2: feature maps

Subsampling

C3: feature maps

Full connection

S4: feature maps

Gaussian connections

F5: layer

OUTPUT

Fig. 2.2: The architecture of a traditional convolutional neural network. The objective

of the convolution layers is to extract the high-level features such as edges, from the

input image. It need not be limited to only one convolutional layer. Conventionally,

the first convolutional layer is responsible for capturing the low-level features such as

edges, color, gradient orientation, etc. With added layers, the architecture adapts to the

High-Level features as well. The pooling layers (subsampling layers) are responsible for

reducing the spatial size of the convolved features. This is to decrease the computational

power required to process the data through dimensionality reduction. Furthermore, it is

useful for extracting dominant features which are rotational and positional invariant, thus

maintaining the process of effectively training of the model.

We describe the operation that the convolutional and polling layer perform next and an

example of a convolutional neural network is presented in Fig. 2.2.

A convolutional layer contains a set of learnable filters (or kernels) which have a

small receptive field. The height and weight of the filters are smaller than those of the

input volume. Each filter is convolved with the input volume to compute an activation

map made of neurons. In other words, the filter is slid across the width and height

of the input and the dot products between the input and filter are computed at every

spatial position. The output volume of the convolutional layer is obtained by stacking the

activation maps of all filters along the depth dimension. Since the width and height of

each filter are designed to be smaller than the input, each neuron in the activation map is

only connected to a small local region of the input volume. In other words, the receptive

16

Chapter 2 Background and Literature Review

field size of each neuron is small and equal to the filter size.

The local connectivity is motivated by the architecture of the animal visual cortex

where the receptive fields of the cells are small. The local connectivity of the convolutional

layer allows the network to learn filters that maximally respond to a local region of the

input, thus exploiting the spatial local correlation of the input (for an input image, a pixel

is more correlated to the nearby pixels than to the distant pixels). In addition, as the

activation map is obtained by performing convolution between the filter and the input,

the filter parameters are shared for all local positions. This sharing reduces the number

of parameters for efficiency of expression, efficiency of learning, and good generalisation.

A pooling layer (subsampling layer) is usually incorporated between two successive

convolutional layers. The pooling layer reduces the number of parameters and computa-

tion by down-sampling the representation. There are two types of pooling: max pooling

and average pooling. Max pooling returns the maximum value from the portion of the

image covered by the kernel. On the other hand, average pooling returns the average

of all the values from the portion of the image covered by the kernel. Max pooling also

performs as a noise suppressant. It discards the noisy activations altogether and also per-

forms de-noising along with dimensionality reduction. On the other hand, average pooling

simply performs dimensionality reduction as a noise suppressing mechanism. Hence, max

pooling performs better than average pooling.

In Fig. 2.2, we demonstrate the architecture of a traditional convolutional neural

network. The architecture of the original convolutional neural network, as introduced

by LeCun et al. (1989), alternates between convolutional layers including hyperbolic

tangent non-linearities and subsampling layers. In this illustration, the convolutional

layers already include non-linearities and, thus, a convolutional layer actually represents

two layers. The feature maps of the final subsampling layer are then fed into the actual

classifier consisting of an arbitrary number of fully connected layers. The output layer

usually uses softmax activation functions (Gaussian connections) in Equation (2.4).

17

Chapter 2 Background and Literature Review

2.3 Attacks on Deep Neural Networks

Adversarial examples on conventional machine learning models have been discussed

for years [36,18,19,37,14,38]. Machine learning-based systems with handcrafted features

are the main targets, such as spam filters, intrusion detection, biometric authentication,

fraud detection, etc. [38]. Biggio et al. [16] first proposed a gradient-based approach to

generate adversarial examples against linear classifier, support vector machine (SVM), and

neural network. They also reviewed several proactive defences and reactive approaches to

improve the security of machine learning models [39]. Compared with adversarial exam-

ples in deep neural networks, the difference is that their methods permit greater freedom

to modify the data. The digit handwriting MNIST dataset was first evaluated under

their attack although a human could easily distinguish from the adversarial digit images.

In [17], they proposed a method to generate adversarial attacks for image classifications

on deep neural networks with high confidence. This body of work has received particular

attention in applications of deep neural networks to vision systems for autonomous ve-

hicles, face recognition, and malware detection [13,10,40]. These developments make the

security aspects of deep neural networks increasingly important. In particular, resistance

to small perturbations to ensure robustness is now a key property of classifiers.

To evaluate the distance between the adversarial example and input data, the lp

norm and l∞ norm are commonly used. For 1 ≤ p < ∞, the lp norm of xi is defined as

‖xi‖p = (
∑D

j=1 |xi(j)|p)1/p and the l∞ norm is defined as ‖xi‖∞ = maxj|xi(j)|. In this

section, we illustrate and review some representative approaches for generating adversarial

examples. Although some of these approaches are defeated by some countermeasures

which will be introduced in the later section, we first introduce some state-of-the-art

attacks to show how these attacks can achieve. These techniques are illustrated in the

following sequences. We start from Fast Gradient Sign Method (FGSM) [29] as this

method represents a fast method for generating adversarial examples. Jacobian-based

Saliency Map Attack (JSMA) [41] is accomplished by searching the input feature of x

that makes the most significant changes to the output. Deepfool method [36] follows

the rule of searching the closest distance from original input to the decision boundary

of adversarial examples. C&W’s attack method [42] is effective for most of the existing

18

Chapter 2 Background and Literature Review

adversarial detecting defences so we will evaluate the resistance strength to this attack on

our robustness methodology in later chapters. Projected Gradient Descent (PGD) [26]

is regarded as a strong attack and competitive with C&W’s attack method so we also

evaluate our methodologies against it in the following chapters.

2.3.1 Fast Gradient Sign Method

Goodfellow et al. [29] proposed a fast method for generating adversarial examples

called Fast Gradient Sign Method (FGSM). They only performed one step gradient update

along the direction of the sign of gradient at each pixel. According to Goodfellow et al.,

given an adversarial input x′ = x + η, where x is original input image and η stands for

perturbations, the goal of an adversarial attack is to maximise the second term in the

addition expressed as Equation (2.6):

L(x′, θ, y′) = L(x, θ, y) + (x′ − x)Ox L(x, θ, y), (2.6)

where θ is the hyperparameters of a model, x′ is the adversarial example, y′ is the ad-

versarial class, and Ox is the gradient with respect to x. Through minimising L(x′, θ, y′)

subjecting to ‖x′−x‖∞ ≤ ε, the required perturbation is derived as Equation (2.7), where

‖ · ‖∞ denotes the distance between two data samples with l∞ norm and ε is the mag-

nitude of the perturbation factoring the sign matrix. Increasing its value increases the

likelihood of x′ being misclassified by the classifier f(·), but on the contrary, it causes

high vulnerable chances detected by humans.

η = ε · sign(Ox L(x, θ, y)) (2.7)

Fig. 2.3 shows an adversarial example on ImageNet image sets. The loss function

in the figure is expressed as J(x, θ, y) which is the same as L(x, θ, y) used in Equation

(2.7). The original picture of a panda is classified as a gibbon with 99.3% confidence after

applying small perturbations [29]. FGSM is imprecise at evaluating the model robustness,

but it is extremely fast in practice. Due to its speed, FGSM can be used to improve the

robustness of the model without significantly increasing the training time. This weakness

of this method is the linear property in the high dimensional domain that can not resist

19

Chapter 2 Background and Literature Review

Fig. 2.3: An adversarial example for GoogleNet [15] generated by Fast Gradient Sign

method [29]. GoogleNet correctly classified the image on the left as a “panda” class. An

adversarial image (shown on the right) was constructed by adding small imperceptible

perturbation (shown in the middle) to the original image. The neural network misclassified

the adversarial image as a “gibbon”. As we can see, the original and adversarial images

are visually indistinguishable to the human eye, yet, GoogleNet predicted a different label

for the adversarial image.

to adversarial examples, although the linear behaviour accelerates the training process.

We review more details about the defence based on FGSM attack in Section 2.5.

2.3.2 Projected Gradient Descent

The Projected Gradient Descent (PGD) [28] attack is widely believed to be one of

the most powerful attack methods. It is also competitive with C&W [42] and FGSM [29]

attacks and is regarded as a strong attack so we will evaluate our methodologies against

this method in the following chapters. This method adopts the multi-step variant of

FGSM, i.e., projected gradient descent (PGD) on the negative loss function [28]:

x′t+1 = Clipx+η (x′t + α · sign(Ox L(x′, θ, y))), (2.8)

where α is the variant step size at step t and the Clip function ensures that the output

falls in the valid input value (0 . . . 255). PGD iteratively re-starts from many points in

the l∞ balls around data points from the respective evaluation sets. As PGD does not

explicitly minimise the lp-norm of the perturbation, to evaluate robustness at N distinct

20

Chapter 2 Background and Literature Review

thresholds ε, PGD attack needs to be restarted N times which linearly increases the cost

of the attack.

2.3.3 Jacobian-based Saliency Map Attack

Papernot et al. [41] designed a saliency adversarial map called Jacobian-based Saliency

Map Attack (JSMA) and this is suitable for targeted misclassification. According to their

method, the saliency map was based on forward derivative and this provides the adversary

the required information to cause the neural network misclassifying a given sample. More

precisely, the adversary attempted to misclassify a sample x such that it is assigned a

target class t which is not equal to the original class of x. To achieve this specification,

the probability of target class t denoted by Z(x)t must be increased while the probabil-

ities Z(x)j of all other classes j 6= t decrease, until t = arg maxj Z(x)j, the maximum

probability among all other classes. The model of saliency map is expressed as Equation

(2.9):

Target Class: αpq =
∑
i∈{p,q}

∂Z(x)t
∂xi

,

Other Classes: βpq =
∑
i∈{p,q}

∑
j 6=t

∂Z(x)j
∂xi

− αpq,

(p∗, q∗) = arg max(p,q) (−αpq · βpq) · (αpq > 0) · (βpq < 0),

(2.9)

where i is an input feature that stands for a pair of pixels p, q. The derivative of the

target class is required to be positive for Z(x)t to increase while the derivative of other

classes is required to be negative for Z(x)j to decrease. Therefore, the negative derivative

of the target class and the positive derivative of other classes are then discarded. The

product on α and β allows comparisons in all input features for convenience. Similar

to JSMA, [43] found that it is possible to change the model’s prediction by modifying a

single pixel. To generate adversarial examples, they applied a differential evolution (DE)

algorithm on the population of vector coordinates that modify a single pixel in the image.

Fig. 2.4 [41] demonstrates a saliency map, where large absolute values represent

feature with a significant impact on the output when applied perturbations. This method

emphasises features corresponding to larger forward derivative values in given input when

21

Chapter 2 Background and Literature Review

Fig. 2.4: Saliency map of a 784-dimensional input to the LeNet architecture [41].

constructing a sample, making their search more efficient and ultimately leading to smaller

overall distortions. Although they achieve a 97% adversarial success rate by modifying

only 4.02% input features per sample on average, the runtime of this method is inefficient

due to the significant computation cost in each pixel of input samples.

2.3.4 Deepfool Attack

DeepFool [36] searches the closest class boundary and takes one step in the direction

of the closest decision boundary. The optimisation process stops as soon as adversarial

perturbation is found. For a 2-class affine classifier in Fig. 2.5a, the Euclidean distance

to the decision hyperplane can be defined exactly as follows: r(x) = − (f(x)/‖w‖22) · w,

where w is the weight vector. For an n-class nonlinear classifier in Fig. 2.5b, Moosavi-

Dezfooli et al. [36] approximated the current prediction region of DNNs using polyhedron.

The distance to the class y decision boundary for the input x with the label y can be

approximated as:

rj(x, y) =
|fy(x) − fj(x)|

‖∇fy(x) − ∇fj(x)‖ · (∇fy(x)−∇fj(x)), (2.10)

where ∇fj(x) is the gradient of the unnormalised output for the class j at the input

x. The authors computed the distance to the decision boundary for all classes j 6= y,

in total (k − 1) calculations. Then, the minimal adversarial perturbation is the smallest

22

Chapter 2 Background and Literature Review

1

F

f (x) < 0 f (x) > 0

r(x)

x0

∆(x0 ; f)

(a) Adversarial examples for a linear binary

classifier.

1

x

r

F1

F2
F3

(b) One example of polyhedron for x be-

longing to class 4.

Fig. 2.5: A minimal adversarial perturbation for a 2-class affine classifier and an n-class

nonlinear classifier [36]. In Fig. 2.5a, the minimal adversarial perturbation for a 2-class

affine classifier is the distance to the decision hyperplane. The region of the current

prediction for an n-class nonlinear classifier, such as DNNs, can be approximated using a

polyhedron. Then, the adversarial perturbation for an n-class nonlinear classifier is the

shortest distance to the facets of the polyhedron in Fig. 2.5b.

distance among all classes: r = arg minj 6=y ry(x, y). They applied the above approximation

iteratively until the adversarial perturbation was generated.

Although DeepFool is a relatively fast and accurate method, it has some limitations:

1) it does not explicitly handle box constraints on the input x+ r ∈ [0, 1]m; 2) it does not

explicitly minimise the norm of the perturbation. The optimisation process stops as soon

as the adversarial perturbation is found. In [44], they introduced fast adaptive bound-

ary attack (FAB), which addresses the limitations of DeepFool attack. FBA solves the

box-constrained l1, l2, and l∞-norm projection on the approximated decision hyperplane

exactly. In addition, the authors introduced a biased backward step, which reduces the

perturbation norm after each step. SparseFool (SF) [45] proposes a geometry inspired

`1-norm attack, which uses DeepFool [36] attack as a subprocedure to estimate the local

curvature of the decision boundary. They developed an efficient algorithm to compute

`1-norm projection of the perturbation on the decision boundary subject to image box

23

Chapter 2 Background and Literature Review

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Su
cc
es
s
Pr
ob

ab
ili
ty

0
2

4
6

8
10

M
ea
n
A
dv

er
sa
ri
al

Ex
am

pl
e
D
is
ta
nc

e

1e-02 1e-01 1e+00 1e+01 1e+02
Constant c used

Fig. 2.6: Sensitivity on the constant c [42].

constraints.

2.3.5 Carlini & Wagner Attack

The C&W attack [42] is widely believed to be the most powerful attack which defeats

the defence strategy of network distillation that we will illustrate in the later section 2.5.

They explored how the choice of the minimiser, the surrogate loss function, and handling of

the box constraints affect the attack’s optimisation. In their experiments, they found that

Adam optimiser [46] with multi-class hinge loss and hyperbolic tangent transformation

of variables is the best attack on a set of image datasets. The authors also highlighted

the importance of using strong attacks when we evaluate and compare defences based on

robustness. In particular, they showed that defensive distillation [42,47] is not robust to

adversarial examples. At the present moment, C&W is the recommended attack for the

assessment of DNNs robustness to `2-norm perturbations [48].

In the work [42], Carlini and Wagner considered a wide variety of formulations, but

we introduce here the one that performs best according to their evaluation. They define

a new objective function g so that it satisfies Equation (2.11), where g(x′) ≥ 0 if and only

24

Chapter 2 Background and Literature Review

if f(x′) = y′ (label of the adversarial class). From their seven objective functions g, one

of the most effective functions evaluated by their experiments is expressed as Equation

(2.12), where Z represents the softmax function and κ is one constant controlling the

confidence.

min ‖ η ‖p + c · g(x+ η)

s.t. x′ = x+ η ∈ [0, 1]n.
(2.11)

g(x′) = max(max
i6=y′

(Z(x′)i)−Z(x′)y′ , −κ). (2.12)

They also introduced a new variant ω to avoid box constraint satisfying η = 1
2
(tanh(ω)+

1)− x and then explored an optimal c by binary search. However, they discovered that if

the gradients of ‖η‖p and g(x + η) are not in the same scale, it would be hard to obtain

an optimal constant c in all of the iterations. Fig. 2.6 demonstrates the sensitivity on

the constant c. When c < 0.1, the success rate of attacks is close to 0. After c > 1, the

attack becomes effective with a high success rate.

2.3.6 Summary of Attack Techniques

Goodfellow et al. [29] proposed a fast method for generating adversarial examples

called Fast Gradient Sign Method (FGSM). They only performed one step gradient up-

date along the direction of the sign of gradient at each pixel. This weakness of this method

is the linear property in the high dimensional domain that can not resist to adversarial

examples, although linear behaviour accelerates the training process. Papernot et al. [41]

designed a saliency adversarial map called Jacobian-based Saliency Map Attack (JSMA)

and this is suitable for targeted misclassification. Although they achieved 97% adversarial

success rate by modifying only 4.02% input features per sample on average, the runtime of

this method was inefficient due to the significant computation cost in each pixel of input

samples. Moosavi-Dezfooli et al. [36] attempted to find the closest distance from original

input to the decision boundary of adversarial examples. DeepFool provides fewer pertur-

bations compared to FGSM and JSMA and it also reduces the intensity of perturbations

instead of the number of selected features compared to JSMA. The C&W attack [42] is

25

Chapter 2 Background and Literature Review

widely believed to be the most powerful attack in l2-norm perturbations which defeat the

defence strategy of network distillation [21]. The PGD [28] attack plays an important role

among popular state-of-the-art methods and is regarded as a powerful attack method in

linf-norm perturbations. For the reason of its significant attack potential, we will evaluate

our robustness under this attack method in the following chapters.

2.3.7 Adversarial Attacks in the Physical World

Initially, the threat of adversarial examples was considered frivolous for real-world

applications. In [17], they argued that adversarial noise occupies low probability “pockets”

in the input space that act as “blind spots” to DNNs. Because of that, it was not clear

if adversarial examples are physically realisable. The problem of adversarial noise was

not considered to be a serious security issue for real-world systems. However, since then,

several methods have been introduced that are effective in producing physically feasible

and imperceptible adversarial disturbances. In [18], they showed that it is possible to

generate printable adversarial images that are consistently misclassified when shown to

the camera of a cell phone. In [49], they generated a special pattern that misleads face

recognition and face identification systems when printed on the specs frame. In [50,19],

they introduced a road sign attack. They generated a special sticker that fools an object

detection system when the sticker was placed on the road sign. [51] argued that adversarial

examples are not a concern for objection detection in autonomous vehicles due to the

changing physical conditions of a moving car. However, the findings in [50,19,52] suggest

that it is not the case.

2.4 Reactive Countermeasures

Many DNNs are generally fragile to seemingly imperceptible changes to their input

data [17] as aforementioned. Well-documented examples of such fragility to carefully-

designed noise can be found in the context of image detection [53], video analysis [54],

and traffic sign misclassification [50]. In response to this vulnerability, a growing body of

work has focused on improving the robustness of DNNs [21,22,23,24,25,26]. In particular,

26

Chapter 2 Background and Literature Review

the literature concerning adversarial robustness has sought to improve robustness to small,

imperceptible perturbations of data.

The disparity between the error on the test data and the error on the adversarial

examples raises several questions regarding the limitations and weaknesses of the existing

deep learning models. In this section and the following one, we review some recent defence

algorithms for improving DNN robustness to adversarial noise. In particular, we cover

reactive and proactive methods.

Countermeasures for adversarial examples contain two main categories of defence

strategies that are reactive and proactive. This section introduces two representative

reactive countermeasures which defend after attacks and attempt to detect adversarial

examples from inputs after deep neural networks are established. The first genre is ad-

versarial detecting [27] and the second one is input reconstruction [20].

2.4.1 Adversarial Detecting

Metzen et al. [27] created a small detector subnetwork for adversarial examples as an

auxiliary network of the original neural network. The detector is a small neural network

that was trained on the binary classification task to distinguish genuine data from data

containing adversarial perturbations, i.e. the probability of the input being adversarial.

Fig. 2.7 demonstrates the structure of a detecting network, where Conv denotes a

convolution layer, Res∗5 denotes a sequence of 5 residual blocks as introduced by He et

al. [55], GAP denotes a global-average pooling layer, Dens is a fully connected layer and

MP denotes max-pooling. Metzen et al. demonstrated that adversarial perturbations

can be detected surprisingly well even though they are quasi-imperceptible to humans.

However, detectability is 85% or more except for the “Iterative” l2-based adversary in Fig.

2.8. For this adversary, the detector only reaches the chance level. Other choices of the

detector’s attachment depth, internal structure, or hyperparameters of the optimiser

might achieve better results. This failure case emphasises that the detector has to detect

very subtle patterns and the optimiser might get stuck in bad local optima or plateaus.

27

Chapter 2 Background and Literature Review

1

Input Conv Res Res Res GAP Dens

32×32 32×32 32×32 16×16 8×8 1×1 1×1

3 16 16 32 64 64 10

*5 *5 *5

AD(0) AD(1) AD(2) AD(3) AD(4)

AD(i) Conv MP Conv MP Conv Conv GAP:

adv.
detector opt. opt. 1 × 1

96 192 192 2

Fig. 2.7: (Top) ResNets used for classification. Numbers below arrows denote the number

of feature maps and numbers on top of arrows denote spatial resolutions. Conv denotes

a convolutional layer, Res*5 denotes a sequence of 5 residual blocks as introduced by He

et al. [55], GAP denotes a global-average pooling layer and Dens a fully connected layer.

Spatial resolutions are decreased by strided convolution and the number of feature maps

on the residual’s shortcut is increased by 1 × 1 convolutions. All convolutional layers

have 3 × 3 receptive fields and are followed by batch normalization and rectified linear

units. (Bottom) Topology of detector network, which is attached to one of the AD(i)

positions. MP denotes max-pooling and is optional: for AD(3), the second pooling layer

is skipped, and for AD(4), both pooling layers are skipped.

Several researches have also attempted to detect adversarial examples in the testing

stage [56,57,58,59,60,61,62]. SafetyNet [56] extracted the binary threshold of each ReLU

layer’s output as the features of the adversarial detector and detected adversarial images

by RBF-SVM. [60] added an outlier class to the original deep learning model and the

model detected the adversarial examples by classifying it as an outlier. Similarly, [62]

employed probability divergence (Jensen-Shannon divergence) as one of its detectors. [61]

demonstrated that after whitening by Principal Component Analysis (PCA), adversarial

examples have different coefficients in low-ranked components. However, Carlini and

Wagner summarised most of these adversarial detecting methods [27,57,58,59,60,61] and

demonstrated that these methods can not defend against their previous attack, C&W

Attack [42], with slight changes of loss function.

28

Chapter 2 Background and Literature Review

1

Fast

Iterative (`2)

Iterative (`∞)
DeepFool (`2)

DeepFool (`∞)
No

A
dv

er
sa
ri
al

D
et
ec
ta
bi
lit
y

Predictive accuracy on adv. images

Fig. 2.8: Illustration of detectability of different adversaries and values for ε on 10-class

ImageNet [27]. The x-axis shows the predictive accuracy of the ImageNet classifier on

adversarial examples of the test data for different adversaries. The y-axis shows the

corresponding detectability of the adversarial examples, with 0.5 corresponding chance

level.

2.4.2 Input Reconstruction

The concept of input reconstruction aims to transform adversarial examples to clean

data and to assist deep neural network in predicting correct results. Gu et al. [20] pro-

posed a variant of denoising autoencoder network with a penalty, called deep contractive

network (DCN), to increase the robustness of neural networks. They performed various

experiments to assess the removability of adversarial examples by corrupting with ad-

ditional noise and pre-processing with denoising autoencoders (DAEs), which is shown

in Fig. 2.9. A denoising autoencoder is a feedforward neural network that learns to de-

noise adversarial images. By training this neural network to learn interesting features

from training images, the neural network can be then employed to extract features from

29

Chapter 2 Background and Literature Review

similar images of the test dataset as well. They discovered that DAEs can remove sub-

stantial amounts of the adversarial noise, e.g., 9.1% error rate on ConvNetM with σ = 0.1

Gaussian noise. However, when stacking the DAE with the original DNN, the resulting

network can again be attacked by new adversarial examples with even smaller distortion.

As a solution, they proposed DCN, a model with a new end-to-end training procedure

that includes a smoothness penalty inspired by the contractive autoencoder (CAE) [63].

This increases the network robustness to adversarial examples without a significant per-

formance penalty. However, such a penalty is computationally expensive for calculating

partial derivatives at each layer in the standard back-propagation framework. Although

the simplified model respecting to each local layer was employed, this layer-wise contrac-

tive penalty objective does not guarantee global optimality for the solution and also limits

the capacity of the neural network.

1

Adversarial
input

Clean
outputCompressed

representation

Encoder Decoder

Fig. 2.9: An example of denoising autoencoder (DAE) [20]. The denoising autoencoder

processes a noisy image, generating a clean image on the output side.

Further researches via denoising are introduced as follows. In [64], they showed that

it’s possible to remove some adversarial noise with a small mean filter. Features squeez-

ing [65] reduced the search space available to an adversary, which makes the attack more

difficult. PixelDefend [66] used PixelCNN to reconstruct the original image from its ad-

versarial example. In [67], they studied the robustness of DNNs when the input image was

preprocessed using JPEG compression, total variation minimisation, and image quilting.

These simple input transformations were shown to be effective in countering adversarial

examples. In [68], they proposed a defence method by randomisation at inference time,

e.g., random resizing and random padding. In [69], they stochastically combined several

weak denoising defences, e.g., JPEG compression and non-local means denoising. Fea-

30

Chapter 2 Background and Literature Review

ture denoising [70] introduced special network blocks that denoise hidden features using

non-local means.

2.5 Proactive Countermeasures

This section introduces two proactive countermeasures which improve the robustness

of deep neural networks before adversaries generate adversarial examples. The first one

is network distillation [21] and the second one is adversarial re-training [29].

2.5.1 Network Distillation

1

Training Data X Training Labels Y
0
1
0
0

DNN F trained at temperature T

Probability Vector Predictions F(X)
0.05
0.87
0.06
0.02

Initial Network

Training Data X Training Labels F(X)
0.05
0.87
0.06
0.02

DNN Fd (X) trained at temperature T

Probability Vector Predictions Fd (X)
0.05
0.87
0.06
0.02

Distilled Network

0.05
0.87
0.06
0.02

Class
Probabilities
Knowledge

1

2

3

4

5

Fig. 2.10: An overview of the defence mechanism based on a transfer of knowledge con-

tained in probability vectors through distillation [21]: The mechanism first trains an initial

network F on data X with a softmax temperature of T . It then uses the probability

vector F (X), which includes additional knowledge about classes compared to a class label,

predicted by network F to train a distilled network F d at temperature T on the same

data X.

Papernot et al. [21] presented network distillation to defend deep neural networks

against adversarial examples. Network distillation was originally designed to reduce the

size of deep neural networks by transferring knowledge from a large network to a small

one. The knowledge extracted by distillation and transferred in smaller networks can

31

Chapter 2 Background and Literature Review

maintain accuracies comparable with those of larger networks and can also be beneficial

to improve the generalisation capability of DNNs outside of the training dataset and

therefore enhance resilience to perturbations. In Fig. 2.10, the probability of classes

produced by the first DNN is used as inputs to train the second DNN. The framework

first trains an initial network F on data X with a softmax temperature of T. It then

uses the probability vector F (X), which includes additional knowledge about classes,

predicted by network F to train a distilled network F d at temperature T on the same

data X. T is a temperature parameter to control the level of knowledge distillation.

The schema of network distillation can be repeated several times and connects several

deep neural networks. They demonstrated that attacks primarily target the sensitivity

of networks and then proved that using high-temperature softmax reduces the model

sensitivity to small perturbations. Network distillation improves the generalisation of

neural networks and reduces the success rate of JSMA attack by 0.5% and 5% on MNIST

and CIFAR10 respectively. However, the defensive distillation is unable to defend a novel

method introduced by Carlini et al. [42] aforementioned. C&W attack can still acquire

100% success attack rate on DNNs trained with defensive distillation.

2.5.2 Adversarial Re-training

Training with adversarial examples is currently the mainstream strategy for increas-

ing robustness against several attack strategies. Goodfellow et al. [29] first included

adversarial examples which were generated with Fast Gradient Sign Method in every step

of the training stage and injected them back into the training set. They demonstrated

that adversarial training can improve the robustness of deep neural networks significantly

since it can provide regularisation for deep neural networks and improve precisions.

Adversarial re-training with adversarial examples to make neural networks more ro-

bust is widely adopted in many works [71,72,22,73]. Although this method improves

robustness, the method consumes large numbers of adversarial examples before converg-

ing into a steady state during the model training process. This is because perturbations

applied on images are distributed evenly based on Fast Gradient Sign Method. This

raises the key research question of learning models robust to adversarial examples in a

32

Chapter 2 Background and Literature Review

1

ε = 2
ε = 4
ε = 6
ε = 8

R
at

io
of

ad
ve

rs
ar

ia
lt

o
cl

ea
n

to
p

1
ac

cu
ra

cy

Scale factor ρ for number of filters

(a) No adversarial training.
1

ε = 2

ε = 4
ε = 6

ε = 8

R
at

io
of

ad
ve

rs
ar

ia
lt

o
cl

ea
n

to
p

1
ac

cu
ra

cy

Scale factor ρ for number of filters

(b) With adversarial training.

Fig. 2.11: One step attack with/without adversarial re-training [28].

33

Chapter 2 Background and Literature Review

1

ε = 2

ε = 4

ε = 6

ε = 8

R
at

io
of

ad
ve

rs
ar

ia
lt

o
cl

ea
n

to
p

1
ac

cu
ra

cy

Scale factor ρ for number of filters

(a) No adversarial training.
1

ε = 2

ε = 4

ε = 6

ε = 8

R
at

io
of

ad
ve

rs
ar

ia
lt

o
cl

ea
n

to
p

1
ac

cu
ra

cy

Scale factor ρ for number of filters

(b) With adversarial training.

Fig. 2.12: Iterative attack with/without adversarial re-training [28].

34

Chapter 2 Background and Literature Review

computationally effective manner. The algorithm is demonstrated in Algorithm 1.

Algorithm 1: Adversarial training of network N.

Size of the training minibatch is m.

Number of adversarial images in the minibatch is k

1 function AdversarilTraining (N);

2 Randomly initialize network N

3 repeat

4 Read minibatch B = {X1, ..., Xm} from training set;

5 Generate k adversarial examples {X1
adv, ..., X

k
adv} from corresponding clean

examples {X1, ..., Xk} using current state of the network N ;

6 Make new minibatch B′ = {X1
adv, ..., X

k
adv, X

k+1, ..., Xk+1+m};

7 Do one training step of network N using minibatch B′

8 until training converged ;

In this algorithm, the initial setting for a neural network is random uniform distribu-

tion. They started a training loop by choosing a minibatch set B of size m from training

set images and then generated adversarial examples of size k from corresponding clean

images {X1, ..., Xk} using the current state of network N with gradient sign method. The

new minibatch B′ is composed of the original minibatch B and the adversarial examples

of size k. One training step of network N is trained with the new minibatch B′ and the

previous steps are repeated until the training loss is converged.

In [29], they only evaluated the MNIST dataset and comprehensive analysis of adver-

sarial training methods on the ImageNet dataset was presented in [28]. They employed

half adversarial examples and half origin examples in each step of training stage. From

their results, adversarial training increases the robustness of neural networks for one-step

attack (e.g., FGSM) and is also adopted for regularisation to avoid overfitting. In Fig. 2.11,

the left column is without adversarial training while the right one is adversarial training

with different magnitude of perturbations. Although the accuracy increases dramatic for

the one-step attack, it does not improve accuracy under basic iterative attacks (BIM) in

Fig. 2.12. Much larger models may be necessary or more effective adversarial examples

(e.g., C&W attack) for adversarial training are required to achieve better robustness.

35

Chapter 2 Background and Literature Review

2.6 Existing Limitations

We have reviewed some state-of-the-art defence methods so far in Section 2.4 and 2.5.

In the first, we placed those commonly referred to as “reactive countermeasures” (such as

adversarial detecting [27] and input reconstruction [20]). In the second, we listed those

involving proactive countermeasures (such as network distillation [21] and adversarial re-

training [28]). Both countermeasures improve the robustness of image classifiers, but they

still have limitations.

Metzen et al. [27] created a small detector subnetwork for adversarial examples as

an auxiliary network of the original neural network. The detector is a small neural net-

work which was trained on the binary classification task to distinguish genuine data from

data containing adversarial perturbations, i.e. the probability of the input being ad-

versarial. Approaches have been put forward to detect adversarial examples at testing

stage [56,57,58,59,60,61,62]. SafetyNet [56] extracted the binary threshold of each ReLU

layer’s output as the features of the adversarial detector and detected adversarial im-

ages by RBF-SVM. In [60], they added an outlier class to the original deep learning

model; the resulting model detects the adversarial examples by classifying them as out-

liers. Similarly, in [62] they employed Jensen-Shannon probability divergence to construct

detectors. In [61], they demonstrated that after whitening by Principal Component Anal-

ysis (PCA), adversarial examples have different coefficients in low-ranked components.

However, Carlini et al. demonstrated that many adversarial detecting methods, includ-

ing [27,57,58,59,60,61], cannot defend against the C&W attack [42].

Input reconstruction approaches aim to transform adversarial examples to clean data

and then applying these to assist neural networks to predict correct results with denoising

autoencoders (DAEs) [20]. The DAEs aim to learn a representation for a set of data and to

reduce dimensionality by training the networks to ignore signal noise. Input reconstruction

has been used to alter adversarial examples to assist deep neural network in predicting

correct classifications. Gu et al. [20] proposed a variant of denoising autoencoder network

with a penalty, called deep contractive network (DCN), to increase the robustness of

neural networks. This increases the network robustness to adversarial examples without

36

Chapter 2 Background and Literature Review

a significant performance penalty. However, calculating partial derivatives at each layer in

the back-propagation framework becomes computationally expensive. Also, the proposed

layered based approach does not guarantee global optimality.

Papernot et al. [21] presented a method for network distillation to defend deep neural

networks against adversarial examples. Network distillation was originally designed to

reduce the size of deep neural networks by transferring knowledge from a large network

to a small one. The intuition is that knowledge extracted by distillation and transferred

in smaller networks can also be beneficial to improve the generalisation capability of

DNNs outside the training dataset and therefore enhance resilience to perturbations.

They showed that network distillation can improve the generalisation of neural networks

and reduce the success rate of JSMA attack by 0.5% and 5% on MNIST and CIFAR10

respectively [41]. However, network distillation was unable to defend against an attack

by developed in [42].

Adversarial training [29] concerns explicitly training a model on adversarial examples,

in order to make it more robust against attacks or to reduce its test error on clean inputs.

Training with adversarial examples is one of the most powerful countermeasures to make

networks more robust. It enhances robustness by generating adversarial examples at every

step of the training stage and injecting them into the training set. In this way, adversarial

training provides regularisation for DNNs and improves precisions through the process.

A disadvantage of adversarial training is that it takes more training efforts compared

with other methods. We have shown that the method here presented is more lightweight

compared to adversarial training while maintaining similar performance.

Some state-of-the-art defence methods have been introduced in the previous sections.

However, these methods can not provide comprehensive defences under different attack

methods for some reasons. In adversarial detecting strategy, the failure case emphasises

that the detector has to detect very subtle patterns and the optimiser may get stuck in bad

local optima or plateaus. In input reconstruction strategy, although the simplified model

with respect to each local layer is employed, the layer-wise contractive penalty objective

does not guarantee global optimality for the solution and also limits the capacity of the

neural network. In network distillation strategy, though they demonstrate that attacks

37

Chapter 2 Background and Literature Review

primarily target the sensitivity of networks and then prove that using high-temperature

softmax reduces the model sensitivity to small perturbations. However, Carlini et al. [42]

introduce a novel method for constructing adversarial examples that breaks the defensive

distillation. In adversarial re-training strategy, although the accuracy increases dramatic

for one-step attack, it would not help under basic iterative attacks aforementioned. Even

though they adopt iterative adversarial examples during training, few benefits are ob-

tained from it. In the meanwhile, it is computationally costly and they are unable to

prevent the procedure from reducing the accuracy on clean examples significantly. Much

larger models may be necessary or more effective adversarial examples (e.g. C&W attack)

for adversarial training are required to achieve better robustness. This also implies that

adversarial training with more powerful adversarial examples increases the robustness of

deep neural networks indeed. However, this comes at a high cost as the resistance to

attacks increases only after large numbers of adversarial examples have been added to the

training data. This raises the key research question of learning models that are robust to

adversarial examples in a computationally effective manner.

38

Chapter 3

An MCTS-based Method for

Robustness

To enhance the robustness against adversarial examples in a computationally effective

manner while maintaining accuracies, we present an adversarial training algorithm based

on Monte-Carlo tree search (MCTS). We illustrate the robustness of the algorithm by

studying its resistance to adversarial examples in the context of the MNIST [74] and

CIFAR10 [75] datasets. In this research, we develop a new adversarial training method

based on MCTS-based adversarial training (MAT). We put forward the architecture of the

training method and present the experimental results obtained. We show that MAT not

only can provide effective adversarial examples for adversarial training, but also robustness

against different attack methods, e.g., FGSM, PGD and C&W. To generate adversarial

examples, we use an MCTS-based attack method. This enables us to reduce significantly

the number of adversarial examples required for adversarial training, which leads us to a

computationally attractive approach to generating robust models.

We start with a problem formulation in Section 3.1. Section 3.2 describes how to

generate adversarial examples with an MCTS-based attack method. Section 3.3 explains

the MCTS-based adversarial training algorithm and how that leads to an improvement

of the robustness of image recognition classifiers against different attacks. Section 3.4

reports experimental results obtained on the MNIST and CIFAR-10 datasets; section 3.5

39

Chapter 3 An MCTS-based Method for Robustness

summarises the chapter and compares the results with some related works.

The material presented in this chapter has been heavily adjusted to fit the rest of

this thesis, but is loosely based on research first presented in the following paper [2]:

• Y. Liu and A. Lomuscio. An MCTS-based Adversarial Training Method for Image

Recognition. Proceedings of the 32nd International Joint Conference on Neural

Networks (IJCNN). Budapest, Hungary. 1-8(2019). IEEE Press.

3.1 Problem Formulation & Notation

Before introducing the MAT method, we first recall the definition for adversarial

examples. Given a trained neural network f(·) ∈ F : RD → y, an original input data

sample x ∈ RD and a label in K classes y ∈ {1, ..., K}, generating an adversarial example

x′ ∈ RD can be defined as a box-constrained optimisation problem, which optimising the

cost function with respect to x constrained in a range:

min
x′

‖x′ − x‖p

s.t. f(x′) = y′,

f(x) = y,

y 6= y′,

x, x′ ∈ [0, 1],

(3.1)

where y and y′ is the output label of x and x′, ‖ · ‖p denotes the distance between two

data samples under some norm p. Let η = x′ − x be the perturbations applied on x.

This optimisation problem aims to minimise the perturbation while misclassifying the

prediction with a constraint of input data. Many variants of this optimisation problem

have been proposed focusing on different scenarios and assumptions. For instance, some

adversaries attempt to constrain the perturbation in a subtle range that is unnoticeable

to humans. The optimisation objective function develops to the distance of targeted

40

Chapter 3 An MCTS-based Method for Robustness

prediction score from the original prediction score. This can be formulated by:

min
x′

L(f(x′), θ, y)

s.t. ‖x′ − x‖p ≤ ε,

f(x′) = y′,

f(x) = y,

y 6= y′,

x, x′ ∈ [0, 1],

(3.2)

where L(f(x′), θ, y) is the cost function for the distance of targeted prediction score from

the original prediction score and ε denotes the measurement of the perturbation constraint.

3.2 MCTS-based Attack Method

In this section, we present an MCTS-based attack method with the assistance of scale

invariant feature transform (SIFT) algorithm and how this method can be employed to

generate effective adversarial examples. In subsection 3.2.1, we introduce SIFT algorithm

and how it can work with MCTS algorithm in subsection 3.2.2. Subsection 3.2.3 explains

how to generate effective adversarial examples under the perturbation constraint.

3.2.1 Scale Invariant Feature Transform (SIFT)

SIFT algorithm can be employed to extract features for any object in an image and

provide a feature description of this object. This description can then be used to iden-

tify and locate objects in other images. In order to perform accurate recognition, these

extracted features should be detectable under variations of image scale, orientation and

illumination. These features are normally associate with high-contrast regions of images,

such as object edges. The SIFT algorithm was first proposed to extract image features in

object recognition systems [76] that these features are invariant to image scaling, transla-

tion and rotation. Through the invariant characteristics to image transformation of SIFT,

adding perturbations on the locations of these invariant features on images are more likely

41

Chapter 3 An MCTS-based Method for Robustness

to induce an adversarial example. This concept is taken into this research and evaluated

on different constraints with MNIST and CIFAR10 datasets. This SIFT algorithm will

extracts keypoints and then computes its descriptors which involves four stages that are

scale-space extrema detection, keypoint localisation, orientation assignment and keypoint

descriptor. We explain more details about SIFT in the following subsections (A to D).

A. Scale-space Extrema Detection

To search for these features, Laplacian Filters are normally used to detect areas of

rapid changes (edges) in images. Since derivative filters are very sensitive to noise, it is

common to smoothen the image (e.g., using Gaussian-blurred images) before applying

the Laplacian operation. This two-step process is called Laplacian of Gaussian (LoG)

operation. For the reason of the significant computational cost of LoG operation, the

Difference of Gaussians (DoG) is employed for simplification in Fig. 3.1. In SIFT, key

locations are defined as maxima of Difference of Gaussian (DoG) that occur at different

scales and low-contrast candidate points and edge response points along an edge are then

discarded. To maintain invariance to image scaling, this process is implemented under

different octaves with different scaling value nσ of the image in a Gaussian pyramid

structure. This is first convolved with Gaussian-blurs at different scales of kiσ. The

convolved images are then grouped by octaves (an octave corresponds to a doubling value

of σ), and the value of ki is selected so that a fixed number of convolved images per

octave are obtained. The Difference-of-Gaussian images are then obtained from adjacent

Gaussian-blurred images per octave. In Fig. 3.1a, the first octave with scale value σ and

different ki is first calculated with Gaussian-blurs and then computes the Difference of

Gaussian between each image. In Fig. 3.1b, the second octave with down-sampled size by

2 is calculated using the same scheme and so on.

Once DoG images have been obtained, local extrema of the DoG images over different

scales are then identified. This is implemented by comparing each pixel in the DoG images

to its eight neighbours at the same scale and nine corresponding neighbouring pixels in

each of the neighbouring scales. If a local extremum is identified, this is considered a

potential invariant feature. A feature description containing different invariant feature

candidates will be obtained in the last step of SIFT algorithm.

42

Chapter 3 An MCTS-based Method for Robustness

1

Scale
(first octave)

Gaussian
Difference of

Gaussian (DoG)

k0σ

k1σ

k2σ

k3σ

k4σ

−

−

−

−

(a) The first octave of Gaussian pyramid. 1

Scale
(second octave)

· · ·

Gaussian
Difference of

Gaussian (DoG)

k02σ

k12σ

k22σ

k32σ

k42σ

down-sampled by 2

−

−

−

−

(b) Second octave of Gaussian pyramid and following octaves in smaller scales.

Fig. 3.1: The Gaussian pyramid of one image.

43

Chapter 3 An MCTS-based Method for Robustness

1

Scale

Image

Fig. 3.2: The comparison process of scale-space extrema detection.

B. Keypoint Localisation

As some of the local extrema produced from the scale-space extrema detection stage

are unstable, they have to be refined to obtain more accurate keypoints. The keypoint

localisation stage is to perform a detailed fit for a more accurate location of extrema.

For each potential keypoint, interpolation of nearby points is employed to accurately

determine its position. The interpolation is implemented with quadratic Taylor expansion

of the DoG scale-space function using the potential keypoint as the origin to compute

offset. If the offset from the potential keypoint is less than 0.03, this potential keypoint,

which is a low-contrast keypoint, is then discarded [77]. DoG function also has strong

responses to edges, so high edge responses are necessary to be eliminated for stability.

This is implemented with a second-order Hessian matrix to solve the principal curvature

and the eigenvalues of the Hessian matrix are proportional to the principal curvatures.

This can avoid explicitly computing the eigenvalues because this is only concerned with

the ratio. If the ratio of two eigenvalues of the Hessian matrix exceeds the threshold,

which is set as 10 in the paper [77], the keypoint is discarded. Fig. 3.3a demonstrates

the potential keypoints from Scale-space Extrema Detection, Fig. 3.3b shows remaining

keypoints discarding low-contrast keypoints, and Fig. 3.3c is the result eliminating high

edge responses.

44

Chapter 3 An MCTS-based Method for Robustness

(a) Scale-space Extrema. (b) Discarding Low Con-

trast.

(c) Filtering Edge Re-

sponses.

Fig. 3.3: Different stages of keypoint localisation

1

(x, y)

Image gradients
information at pixel (x, y)

within a region

36 bins of 360 degrees

··· ···

· · ·

Fig. 3.4: The orientation assignment for some keypoint centred at (x, y) within a region.

The orientation histogram has 36 bins covering the 360-degree range of orientations.

Increasing the bin numbers will increase the computation efforts.

C. Orientation Assignment

In this stage, an orientation is assigned to each keypoint (x, y) to achieve invariance

to image rotation. At each pixel Aij, the image gradient magnitude Mij and orientation

45

Chapter 3 An MCTS-based Method for Robustness

Rij are computed using pixel differences shown in Equation (3.3) and (3.4). An orientation

histogram is formed from the gradient orientations of sample points within a region around

the keypoint. The orientation histogram has 36 bins covering the 360-degree range of

orientations. Each sample added to the histogram is weighted by its gradient magnitude

and by a Gaussian-weighted circular window with a σ that is 1.5 times that of the scale

of the keypoint. The highest peak value of the 36 bins in the histogram is taken and

any peak value above 80% of it is also considered as a reference orientation. Therefore,

for locations with multiple peaks of similar magnitudes, there will be multiple keypoints

created at the same location and scale but with different orientations. Only about 15% of

points are assigned multiple orientations, but these contribute significantly to the stability

of matching. The detailed process of orientation assignment for some keypoint (x, y) is

shown in Fig. 3.4.

Mij =
√

(Aij − Ai+1,j)2 + (Aij − Ai,j+1)2, (3.3)

Rij = tan−1
Aij − Ai+1,j

Ai,j+1 − Aij
. (3.4)

D. Keypoint Descriptor

Previous steps found keypoint locations at particular scales and assigned orienta-

tions to them. This ensured invariance to the image location, scale and rotation. This

subsection is to compute a descriptor vector for each keypoint such that the descriptor is

highly distinctive and partially invariant to the remaining variations such as illumination,

3D viewpoint, etc. This step is performed on the image closest in scale to the keypoint’s

scale.

In Fig. 3.5, we explain the process of keypoint descriptor assignment. In Fig. 3.5(a),

it shows all the keypoints of some image. First, the image gradient magnitudes and

orientations are sampled around the keypoint location, using the scale of the keypoint to

select the level of Gaussian blur for the image. In order to achieve orientation invariance,

the coordinates of the descriptor and the gradient orientations are rotated relative to the

keypoint orientation. For efficiency, the gradients are precomputed for all levels of the

pyramid as described previously. These are illustrated with small arrows at each sample

46

Chapter 3 An MCTS-based Method for Robustness

1

(a) Keypoints of an image (b) Image gradients of some
keypoint centred in (x, y) within a region

(c) The keypoint descriptor

Fig. 3.5: The process of keypoint descriptor assignment. A keypoint descriptor is created

by first computing the gradient magnitude and orientation at each image sample point in

a region around the keypoint location, as shown in figure (b). These are weighted by a

Gaussian window, indicated by the overlaid circle. These samples are then accumulated

into orientation histograms summarising the contents over 4x4 subregions, as shown in

figure (c), with the length of each arrow corresponding to the sum of the gradient mag-

nitudes near that direction within the region. This figure shows a 4 × 4 descriptor array

computed from a 16 × 16 set of samples.

47

Chapter 3 An MCTS-based Method for Robustness

location in Fig. 3.5(b). A Gaussian weighting function with σ equal to one half the width

of the descriptor window is used to assign a weight to the magnitude of each sample point.

This is illustrated with a circular window. The purpose of this Gaussian window is to

avoid sudden changes in the descriptor with small changes in the position of the window

and to give less emphasis to gradients that are far from the centre of the descriptor,

as these are most affected by misregistration errors. The histograms are computed in

16 × 16 regions around the keypoint such that each histogram contains samples from

4 × 4 subregions of the original neighbourhood region. Finally, these samples are then

accumulated into orientation histograms summarising the contents over 4 × 4 subregions,

as shown in Fig. 3.5(c), with the length of each arrow corresponding to the sum of the

gradient magnitudes near that direction within the region. Since there are 4 × 4 = 16

histograms each with 8 bins, the vector has 128 elements. As the best results are achieved

with a 4 × 4 array of histograms with 8 orientation bins in each, the experiments in the

paper use a 4 × 4 × 8 = 128 element feature vector for each keypoint. A change in image

contrast in which each pixel value is multiplied by a constant will multiply gradients by

the same constant, so this contrast change will be canceled by vector normalisation. For

this reason, this vector is then normalised to unit length to enhance invariance to affine

changes in illumination [77].

3.2.2 Monte Carlo Tree Search (MCTS)

In this subsection, we explain how the Monte Carlo Tree Search [1] algorithm can

be employed to assist in making decisions about which candidates should be applied

perturbations once the description of invariant feature candidates is obtained from SIFT.

Each node in the game tree stands for a candidate from SIFT. MCTS is a heuristic search

algorithm for the decision process which is widely adopted in games. The key feature of

MCTS is the search of promising candidate moves on the basis of random sampling in

search space. Each round of MCTS consists of four steps, that are selection, expansion,

simulation and backpropagation, which is illustrated in Fig. 3.6.

In the selection step, a root and successive child nodes are selected until a leaf node is

reached according to each confidence value on the node, which is defined in Equation (3.5).

48

Chapter 3 An MCTS-based Method for Robustness

The root is the current game state and a leaf is any node that has a potential child from

which no simulation (playout) has yet been initiated. The selection is more about a

way of biasing choice of child nodes that letting the game tree expand towards the most

promising moves. In the expansion step, unless the leaf node ends the game decisively

(e.g., win/loss/draw) for either player, create one (or more) child nodes from the leaf

node and choose one node from them. In the simulation step, one random playout from

the created node is completed. This step is sometimes also called playout or rollout. A

playout may be as simple as choosing uniform random moves until the game is decided,

for example in chess, the game is won, lost, or drawn. In the last backpropagation step,

the result of the playout is used to update information in the nodes on the path from the

newly created node to the root node.

As for the confidence value, according to MCTS, it is recommended to choose the

move in each node of the game tree for which the expression in Equation (3.5) has the

highest confidence value:
wi
ni

+ c

√
lnNi

ni
. (3.5)

where wi stands for the number of wins for the node considered after the i-th move, ni

stands for the number of simulations for the node considered after the i-th move, Ni

stands for the total number of simulations after the i-th move and c is the exploration

parameter, theoretically equal to
√

2. The higher the confidence value means the more

contributions to search adversarial examples. Conversely, the lower probability to obtain

an adversarial example the lower is the confidence value. This confidence measure above

is inspired by neural approaches to game playing [78].

Instead, we employ this concept to search adversarial examples from the keypoints

obtained from SIFT. In our implementation, wi stands for the inversion of Euclidean

distances for the node considered after the i-th move, ni stands for the number of visits

for the node considered after the i-th move, and Ni stands for the total number of visits

after the i-th move.

In the following subsections, we explain how the MCTS algorithm is employed to

assist in making decisions about which candidates should be applied perturbations once

the description of invariant feature candidates is obtained from SIFT for details.

49

Chapter 3 An MCTS-based Method for Robustness

1

(a) Selection (b) Expansion

(c) Simulation (d) Backpropagation

Fig. 3.6: The process of Monte Carlo Tree Search. Each round of MCTS consists of four

steps, that are selection, expansion, simulation and backpropagation. The value in each

node stands for the confidence value.

50

Chapter 3 An MCTS-based Method for Robustness

A. Selection

In the selection step, we start from root node R and select successive child nodes

down to a leaf node L according to the confidence value on each node as shown in the

blue path in Fig. 3.6(a). The step is aiming to choose child nodes that allow the game tree

to expand towards the most promising moves, which means the most potential keypoints

to apply perturbations for an adversarial example.

B. Expansion

The expansion step creates one or more child nodes and chooses node C from one

of them unless L terminates the game with a win/loss result. The win stands for an

adversarial example is obtained and loss is the other way around. In Fig. 3.6(b), one node

is created from the leaf node L with the orange path.

C. Simulation

We then simulate the game from the chosen node C in the simulation step in

Fig. 3.6(c). This step simulates the results if an adversarial example is obtained once

a perturbation is applied to the point. 0 stands for failure to an adversarial example and

1 stands for success to get one adversarial example.

D. Backpropagation

The last backpropagation step updates relative information according to the simu-

lation results along the path from node C back to the root node R in a backtracking

direction. In Fig. 3.6(d), the failure result is propagated back along the whole path by

adding one to each denominator shown in the green path.

Through SIFT method, we obtain the potential keypoints for adversarial examples

and via the heuristic characteristics of MCTS, it helps to search the effective adversarial

examples according to the confidence values acquired in each simulation iteration. The

higher the confidence value means the more contributions to search adversarial examples

while perturbed.

51

Chapter 3 An MCTS-based Method for Robustness

1

‖η‖p ≤ ε

One region Ri

Fig. 3.7: Some game tree starting from point pi with perturbations δik along the path in

a region Ri under the constraint of ‖ η ‖p≤ ε.

3.2.3 Effective Adversarial Examples

In this subsection, we define an effective adversarial example under the constraint

with ‖η‖p ≤ ε using the MCTS-based attack method. Given an image, it is divided into

R regions. For each region Ri in an image, each path of the game tree is illustrated with

a ladder-like structure in Fig. 3.7.

Each region Ri contains several nodes pk of the game tree and a specific perturbation

δk is applied after one node pk is selected. The total perturbations applied in a region

is then presented as
∑K

k=0 δk, where K is the total number of nodes along a path. An

effective adversarial example A with ||η||p ≤ ε is formulated as Equation (3.6):

A = ‖
R∑
i=0

K∑
k=0

δik‖p ≤ ε, (3.6)

where R is the number of regions in an image. Note that the total perturbations applied

in a region are possibly zero if there are no differences of the region between an adversarial

example and the original image.

52

Chapter 3 An MCTS-based Method for Robustness

3.3 MCTS-based Adversarial Training

We start by introducing the MCTS-based adversarial training framework in subsec-

tion 3.3.1. The overall algorithm, including a robust optimisation function, is presented

in subsection 3.3.2.

3.3.1 MCTS-based Adversarial Training Framework

1

PreTrain
Model

MCTS
Attack

MAT
ModelLoss

x′

x x′

f (x′) 1/0

Images Adv. Images

M(x′)

L(x′,θ)

Fig. 3.8: MCTS-based Adversarial Training Framework.

We propose the training framework illustrated in Fig. 3.8. This is divided into two

steps: the first consists of an attack generation step; the second is an adversarial training

step. For the attack generation part, first, a model f(·) is trained as an assistant classifier

from a training dataset of images x. Then, the procedure follows a training loop. In

each training loop, corresponding to a training epoch, a minibatch of size m of images

is randomly selected from the training dataset x. This minibatch is then analysed by

the MCTS attack block to generate adversarial examples x′. Whether or not the images

53

Chapter 3 An MCTS-based Method for Robustness

generated by MCTS attack block are proper adversarial examples is determined by a

test on the assistant classifier f(·). The resulting adversarial examples x′ form the basis

for training the adversarial training model M(·), which is initially untrained. The loss

value L is updated according to the softmax result of adversarial training modelM. The

training loop continues for as many epochs as required until the required accuracy is

converged.

Algorithm 2: MCTS-based Adversarial Training

Deep neural network M

Size of the training minibatch is m

1 function MCTS-based Adversarial Training (M);

2 Setup Pre Training Model f(·)

3 Randomly initialize neural network M

4 while training not converged do

5 Read minibatch B = {x1, ..., xm} from training set;

6 Generate m adversarial examples Badv = {x′1, ..., x′m} from corresponding

clean examples {x1, ..., xm} with MCTS attack method (Section 3.2);

7 Do one training step of network M using minibatch B′;

8 Update model loss with min max optimisation:

minθ L = minθ
∑m

i=1 maxη L(x′i, θ, yi);

9 end

3.3.2 MCTS-based Adversarial Training Algorithm

We now introduce the MCTS-based adversarial training (MAT) algorithm in Algo-

rithm 2, including the robust optimisation function applied in MAT modelM. Following

the framework mentioned above, the MAT algorithm randomly selects a minibatch in

each epoch until the loss of the MAT model converges to the desired value. The conver-

gence criteria ensure that the resulting model M is robust in small neighbourhoods of

every training point around x. We call these neighbourhoods the perturbations η and we

represent them as x′ = x + η. The overall process can be regarded as a solution to the

robust optimisation problem against adversarial examples formulated as:

54

Chapter 3 An MCTS-based Method for Robustness

min
θ
L = min

θ

m∑
i=1

max
η≤‖ε‖

L(x′i, θ, yi), (3.7)

where η is the uncertainty set under the constraint ε corresponding to the adversarial

example x′i. This involves optimising the model parameter θ with respect to a worst-case

data (x′i, yi), rather than against the original training data; the i-th worst-case data point

is selected from the uncertainty set η. These uncertainty sets are determined by the

problem at hand; adversarial training [17] can be understood as one such problem.

3.4 Experimental Results

In this section, the experimental results obtained from the MCTS-based adversarial

training algorithm presented in the previous section are reported. To evaluate robustness,

we consider a network to be reliable against adversarial attacks if the predictions of the

network are accurate under different attack methods (FGSM or C&W) with different

amounts of perturbations. As previously discussed, the FGSM is extremely fast in practice

and is widely adopted to generate attacks. The C&W is regarded as one of the most

powerful attack methods, so is considered in our experiments. The PGD method is

believed to be the state-of-the-art attack method and is largely applied to develop a

robust model. For these reasons, we compare our results with PGD under the attacks of

FGSM and C&W.

We use two datasets: MNIST [74] and CIFAR-10 [75]. The resulting accuracy, con-

sidering different attacks, is defined in subsection 3.4.1 and the experimental setup is

reported in subsection 3.4.2. The experimental results for our method with adversarial

accuracies are shown in subsections 3.4.3 and 3.4.4.

3.4.1 Adversarial Accuracy

In this paper, we consider a network to be reliable against adversarial attacks if the

predictions of the network are accurate under different attack methods (FGSM or C&W)

and different amounts of perturbations. This is defined as the adversarial accuracy and

55

Chapter 3 An MCTS-based Method for Robustness

is formulated as the fraction of test dataset for which the model is robust to all allowed

perturbations under different metrics: l0, l1, l2 or l∞. In what follows we most commonly

consider the l∞ metric.

3.4.2 Experimental Setup

The MNIST database [74] of handwritten digits contains a training set of 60,000 ex-

amples and a test set of 10,000 examples in size of 28×28. The digits were size-normalised

and centred in a fixed-size image. We implemented MAT under the perturbation con-

straints of size ε = 0.01, 0.02, 0.03 in the l∞ norm and evaluated the adversarial accuracy

under different attacks of FGSM [29] and C&W [42] methods. Note that the values of

input images were normalised in the interval [0, 1]. The training network consists of two

convolution layers with 32 and 64 filters, respectively. Each convolutional layer is fol-

lowed by a 2× 2 max-pooling layer and a fully connected layer of size 1024. This network

achieves 99.2% accuracy on the test set when evaluated on clean images.

The CIFAR10 dataset [75] is a labelled subset of the 80 million tiny image dataset.

It contains a training set of 50,000 examples and a test set of 10,000 examples of 32×32

colour images in 10 different classes. These 10 different classes represent airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks. As before, we implemented MAT

under the perturbation constraints of size ε = 0.01, 0.02 in the l∞ norm and evaluated the

adversarial accuracy under different attacks of FGSM [29] and C&W [42] methods. The

values of input images were also normalised in the interval [0, 1]. The training network

Resnet [55] was applied with 5 residual units with (16, 160, 320, 640) filters each on the

CIFAR10 dataset; the resulting classifier achieved 95.2% accuracy on the test set when

evaluated on clean images.

In the followings, we focus on small perturbation constraints which are sometimes

not detectable by human eyes, so we do not consider large perturbations which might lose

image resolutions. Also, these small perturbations are the most difficult ones to generate.

With our MAT algorithm, we search for those critical points in the images for generating

adversarial examples.

56

Chapter 3 An MCTS-based Method for Robustness

Original Acc. FGSM Adv. Acc.

Dataset Epsilon PGD (%) MAT (%) PGD (%) MAT (%) l0 l1 l2 Diff.

MNIST ε = 0.01 96.38 98.87 96.13 96.35 12.60 12.20 3.36 0.01

ε = 0.02 96.15 98.32 95.89 96.21 18.00 17.50 4.02 0.02

ε = 0.03 96.02 97.84 93.65 95.02 26.30 25.70 4.76 0.03

CIFAR10 ε = 0.01 70.83 78.36 68.27 73.36 11.30 11.85 3.27 0.01

ε = 0.02 68.27 72.19 65.39 69.82 17.50 16.80 3.97 0.02

Table 3.1: The adversarial accuracy comparisons of PGD and MAT against FGSM attack

method with MNIST and CIFAR10 datasets.

Original Acc. C&W Adv. Acc.

Dataset Epsilon PGD (%) MAT (%) PGD (%) MAT (%) l0 l1 l2 Diff.

MNIST ε = 0.01 96.38 98.87 93.24 94.23 12.60 12.20 3.36 0.01

ε = 0.02 96.15 98.32 93.12 94.19 18.00 17.50 4.02 0.02

ε = 0.03 96.02 97.84 91.32 92.85 26.30 25.70 4.76 0.03

CIFAR10 ε = 0.01 70.83 78.36 64.84 70.12 11.30 11.85 3.27 0.01

ε = 0.02 68.27 72.19 62.93 67.98 17.50 16.80 3.97 0.02

Table 3.2: The adversarial accuracy comparisons of PGD and MAT against C&W attack

method with MNIST and CIFAR10 datasets.

3.4.3 MNIST

We report some of the adversarial examples obtained with the MCTS-based attack

method on MNIST dataset in Fig. 3.9. The images on the first row are the original clean

images in 10 different classes; the second row is the corresponding adversarial examples

using the MCTS-based attack. Through this method, only minor perturbations, where

Fig. 3.9: Effective adversarial examples on MNIST dataset with ε = 0.01.

57

Chapter 3 An MCTS-based Method for Robustness

(a) Adversarial Accuracy.

(b) Adversarial Loss.

Fig. 3.10: Adversarial accuracy and loss value on MNIST dataset with ε = 0.01.

58

Chapter 3 An MCTS-based Method for Robustness

Fig. 3.11: Effective adversarial examples on CIFAR-10 dataset with ε = 0.01.

ε = 0.01, are required to generate attacks. These attacks are hard to detect by humans; see

for example the one reported for class 8. In addition, these attacks are effective when used

for adversarial training. As we show in Fig. 3.10, the resulting training process becomes

efficient with the same training epochs. The time for the pre-training model in MAT is

not considered in the training progress as the training time for it is small compared with

the time of adversarial training. In the figure, the comparison is made against the results

obtained by using Projected Gradient Descent (PGD) [26], one of the state-of-the-art

methods in adversarial training. The figure reports an average improvement of efficiency

of 21.1% over the first 2,000 epochs to achieve the same level of accuracy; the improved

average loss value obtained is 8.63. The average memory usage for PGD and MAT are

1.5 and 1.8 GB respectively with a GPU of NVIDIA TITAN XP.

Table 3.1 summarises the experimental results on the MNIST dataset against FGSM

attack method [29] under the perturbation constraints of size ε = 0.01, 0.02, 0.03 in the l∞

norm. Table 3.2 summarises the experimental results on the MNIST dataset against C&W

attack method [42] also under the perturbation constraints of size ε = 0.01, 0.02, 0.03 in

the l∞ norm. The results obtained for the average l0, l1, l2 norms and the differences

between clean images and adversarial examples are also presented in the table. Under the

same training epoch of 2,000, MAT achieved better accuracy and robustness; this can be

of benefit for both training efficiency and computational cost. The adversarial accuracy

can be higher if more training epochs are adopted.

3.4.4 CIFAR10

In this subsection, we report the experiments obtained with the MCTS-based attack

method on the CIFAR10 dataset (see Fig. 3.11). The images on the first row are the

59

Chapter 3 An MCTS-based Method for Robustness

(a) Adversarial Accuracy.

(b) Adversarial Loss.

Fig. 3.12: Adversarial accuracy and loss value on CIFAR10 dataset with ε = 0.01.

original clean images from 10 different classes; the second row reports the corresponding

adversarial examples obtained by using our MCTS-based attack method. Only minor

perturbations, with ε = 0.01, were required to generate adversary symbols. As before

some attacks are difficult to discover by humans (see, e.g., the one for the deer class). In

our experiments, we found the same results we obtained in MNIST. The overall training

process was reduced significantly, as it is shown in Fig. 3.12. When comparing the results

against PGD, we found an average improvement of efficiency of 9.8% when training up

60

Chapter 3 An MCTS-based Method for Robustness

to 7,000 epochs to achieve the same level of accuracy and an improved average loss value

is 5.43. The average memory usage for PGD and MAT are 2.2 and 2.3 GB respectively

with a GPU of NVIDIA TITAN XP.

The last two rows of Table 3.1 summarises the experimental results on the CIFAR10

dataset against FGSM attack method [29] under the perturbation constraints of size ε =

0.01, 0.02 in the l∞ norm. Table 3.2 summarises the experimental results on the CIFAR10

dataset against C&W attack method [42] also under the perturbation constraints of size

ε = 0.01, 0.02 in the l∞ norm. The average l0, l1, l2 norms and the differences between

clean images and adversarial examples are also presented in the table. The evaluation

confirms the results obtained with MNIST. Comparing with PGD under a training epoch

of 7,000, MAT obtains higher accuracy with less training efforts and computational cost.

In the same way with MNIST, the adversarial accuracy can be better if more training

epochs are implemented. In summary, the MNIST and CIFAR experimental results show

that the proposed method is effective and general against both single and multiple colour

channels.

3.5 Summary

In this chapter, we proposed an MCTS-based adversarial training framework and pre-

sented the experimental results obtained on MNIST and CIFAR10 datasets. For MNIST,

after 2000 epochs the experimental results showed an average improvement of efficiency of

21.1% when compared to PGD. For CIFAR10, after 7000 epochs we obtained an average

improvement of efficiency of 9.8% compared to PGD. We further compared the robustness

of the algorithm against previous work against C&W attack method. The results sug-

gested that the adversarial training method accompanied with MCTS is not only robust

with respect to adversarial examples but also efficient during training.

We especially focused the evaluations on small perturbations since pre-processing

components like denoising elements are normally included prior to a neural network model

in real applications. The contributions of this work show: i) that the method is computa-

tionally attractive, ii) it maintains competitive accuracies compared with PGD adversarial

61

Chapter 3 An MCTS-based Method for Robustness

training against the FGSM and C&W attack, and iii) does not appear to be susceptible

to local optima.

62

Chapter 4

A Decision Tree Search Robustness

Method

Adversarial training provides a rigorous framework for understanding, analysing, and

improving the robustness of DNNs by considering norm-constrained perturbations. How-

ever, adversarial training requires learning via a large number of perturbed examples

before resistance is obtained. This is expensive and time-consuming. Therefore, develop-

ing computationally effective and robust training approaches is a topic of interest.

In this chapter, we develop a robust learning method based on decision tree search

and robust optimisation. The method involves decision tree search targeting the worst-

case data points to generate adversarial examples. The decision tree search method is

combined with robust optimisation to training a robust model while maintaining accu-

racy at comparably lower computational effort than SoA methods. Given an arbitrary

input to a DNN, our algorithm searches in small regions centred around the input that

have significant contributions to generate adversarial samples. This method doesn’t need

to access the internal layers of DNNs and thus falls in the realm of black-box adversarial

attack. As we show, the method results to be more robust against different adversarial

attacks and is more competitive compared with Fast Gradient Sign Method (FGSM) [29]

and Projected Gradient Descent (PGD) [26], the state-of-the-art method in adversarial

training. Our method also reduces significantly the number of adversarial examples re-

63

Chapter 4 A Decision Tree Search Robustness Method

quired for adversarial training, which leads us to computationally attractive advantages

when generating robust models.

The remainder of this chapter is organised as follows. In Section 4.1 we describe

a novel method to generate adversarial examples with decision tree search attack. Sec-

tion 4.2 introduces how adversarial examples are employed for adversarial training via

robust optimisation. Section 4.3 reports experimental results obtained on the MNIST

and CIFAR-10 datasets and a brief summary concludes the chapter.

The material presented in this chapter is presently under review and is loosely based

on research first presented in the following paper [3]:

• Y. Liu and A. Lomuscio. Robustness Learning via Decision Tree Search Robust

Optimisation. Proceedings of the 32nd British Machine Vision Conference (BMVC).

United Kingdom, 2021. BMVA Press.

4.1 Decision Tree Search Attack

In this section, we present a decision tree search adversarial attack DTSAttack

to generate effective adversarial examples. The method is composed of four steps, i.e.

initialise spanning tree, tree traversal, sampling nodes, and back propagation, which are

summarised in Algorithm 3. In subsection 4.1.1, we introduce how to initialise spanning

tree for tree traversal; in subsection 4.1.2, we explain how to traverse tree according to a

confidence value and initialise explorable nodes. We then sample values for each node on

the tree from the explorable nodes in subsection 4.1.3 and finally update the confidence

information in the back propagation step in subsection 4.1.4. The iteration will continue

until the termination conditions are satisfied.

4.1.1 Initialise Spanning Tree

For each image x ∈ Rd in d dimensions, x can be separated into m sub-regions with

the number of pixels j in each sub-region. To search the most potential pixels with a

64

Chapter 4 A Decision Tree Search Robustness Method

Algorithm 3: Decision Tree Search Adversarial Attack: DTSAttack

1 function DTSAdversarialAttack ;

Input : Clean image dataset x

Initialise perturbation constraint setting for ε

Initialise search trees T

Output: Effective adversarial examples x′

2 Initialise Spanning Tree to obtain maximal distance values;

3 while not terminalNode and Pert ≤ ε and time < TimeOut do

4 while iterationTime < stepSearchTime do

5 Tree Traversal: Traverse the spanning tree according to the confidence value for

each node i;

6 Initialise Exploration Nodes: Explore available expanding nodes Ne;

7 for each exploration nodes Ne do

8 Sampling Nodes: Randomly choose one region from available sub-regions;

9 Back Propagation: Update associated information for each node along the

path;

10 end

11 end

12 Choose Best Child Node: Choose one of the best path from the root node ;

13 Make One Move: Make one move based on the best exploration node as child node

and update new root node;

14 end

higher probability of generating an adversarial example, we first compute each pixel by

the distance between the average value xa =
∑d

i=0 xi
d

and each pixel value as D = ‖xi−xa‖,

where xi is the value of each pixel i, and the matrix D is the distance of each pixel xi from

the average value. The larger value in D, it stands for the more potential pixel intuitively.

We then sort D by the value with descent order as DS = Sort(D) and divide DS into m

sub-regions Nm with the number of points j in each sub-region. This initialisation step

establishes a starting search step for the root node Nr of the spanning tree, which will be

the start point of the next tree traversal step.

65

Chapter 4 A Decision Tree Search Robustness Method

4.1.2 Tree Traversal

We now present how to expand nodes from the initialised spanning tree and what

criteria are used to make decisions of choosing nodes in the tree traversal step. In this

step, we consider the most promising moves according to the confidence value of each node

in the spanning tree. Each node of the spanning tree is regarded as a sub-region Nm from

the previous step. In each move k, we choose a child node Nc with the highest confidence

value down to a leaf node Nl. The confidence value Ck of associated information in each

node Nc of the spanning tree is formulated as Equation (4.1), which is on the basis of

Monte Carlo Tree Search [1] algorithm, a decision search algorithm for decision process,

and revised accordingly:

Ck =
wk
nk

+ c

√
lnNk

nk
, (4.1)

where wk stands for the Euclidean distances for the node considered after the k-th move,

nk stands for the number of visits for the node considered after the k-th move, and Nk

stands for the total number of visits after the k-th move. The exploration parameter c is

theoretically equal to
√

2. The higher the confidence value means the more contributions

to search adversarial examples.

4.1.3 Sampling Nodes

From the leaf node Nl in the previous step, we then choose among the exploration

nodes Ne for the sampling step. The explorable nodes consist of the remaining sub-regions

excluding the ancestors of a node Na in the tree. For example, the explorable nodes of

the root node Nr are the remaining sub-regions from the sub-regions in the root node.

We first sample nodes from these explorable nodes and simulate whether an adversarial

example is generated. This step continues by choosing from the remaining sub-regions

randomly and applying perturbations accordingly on the datapoints j in each sub-region

until the end of the search time. We then simulate based on these newly perturbed points

and examine whether an adversarial example is found. The randomly choosing process is

formulated as Equation (4.2):

66

Chapter 4 A Decision Tree Search Robustness Method

RC = random(Savai(Ne)− Sused(Na)), (4.2)

where random choose one region from the remaining sub-regions randomly, Savai =

{N |N ∈ Ne, exploration nodes} is the available set of explorable sub-regions and Sused =

{N |N ∈ Na, ancestor nodes} is the sub-regions in the ancestors of a node.

4.1.4 Back Propagation

We now present how to update the information for the newly explored nodes under

the constraint with ‖δ‖p ≤ ε. We select one path from the previous sampling step with

the maximal distance between the newly perturbed and the clean points. We then back

propagate and update the corresponding distance value and number of visits for the

confidence values of nodes along the expanding path.The perturbation amount P in each

iteration is constrained with ‖δ‖p ≤ ε, which is formulated as Equation (4.3):

P = ‖
T∑
t=0

R∑
r=0

∆tr‖p ≤ ε, (4.3)

where
∑R

r=0 ∆tr stands for the number of perturbations in each node, and T is the total

number of nodes along the same path.

We explain more details for the whole process in Fig. 4.1a-4.1d. In Fig. 4.1a, the image

is divided into m sub-regions and the root node N1 is selected as the start point in the

spanning tree. In Fig. 4.1b, the tree is expanded to N2 and N3. These two nodes are then

sampled and the updated confidence values are back-propagated accordingly. In Fig. 4.1c,

the path with highest confident values of nodes (N1, N2) is selected. The expanded nodes

N4 and N5 are then sampled to check if an adversarial example is acquired. The confidence

values are updated for each node of the whole path accordingly. In Fig. 4.1d, the nodes

(N1, N2, N5) are selected and the nodes (N6, N7) are expanded from N5. The simulation

and back-propagation steps are applied as previously mentioned. These iterations will

continue until the termination conditions are satisfied. The ∆tr stands for the number of

perturbations in each node. For example, ∆1r in the node N1 is the perturbations applied

67

Chapter 4 A Decision Tree Search Robustness Method

N1

∆1r

(a)

N1

∆1r

N2

∆2r

N3

∆3r

(b)

N1

∆1r

N2

∆2r

N3

∆3r

N4

∆4r

N5

∆5r

(c)

N1

∆1r

N2

∆2r

N3

∆3r

N4

∆4r

N5

∆5r

N6

∆6r

N7

∆7r

(d)

Fig. 4.1: The process of the decision tree search attack.

when N1 is selected. The overall perturbations applied in an adversarial example are the

summation of perturbations of the nodes along the whole path.

The decision tree search attack is summarised in Algorithm 3. The algorithm starts

from the step of initialising the spanning tree (line 2). In the search iteration, the spanning

tree is traversed according to the confidence value (line 5) and available expanding nodes

are then explored (line 6). For each exploration node, one region is randomly chosen from

available sub-regions for sampling (line 8). Lastly, the associated information is updated

for the nodes along the search path (line 9). These iterations (line 4-13) will continue

until the termination conditions are satisfied.

68

Chapter 4 A Decision Tree Search Robustness Method

4.2 The DTS Robust Tool

In this section, we introduce a robust optimisation method in subsection 4.2.1, which

interacts with DTSAttack from the previous section to form the basis of the DTSRo-

bust toolkit described in subsection 4.2.2. The overall algorithm, including the robust

optimisation method, is presented in Algorithm 4. To be more specific, we combine

robust optimisation with DTSAttack thereby obtaining a method that is evaluated

against other attack methods, which also include robust optimisation.

4.2.1 Robust Optimisation

The robust optimisation method [79] described below aims to obtain stable solutions

under uncertainty of the data. The uncertainty has a deterministic and worst-case nature;

perturbations to the data are drawn from uncertainty sets U . The objective in robust

optimisation is to obtain solutions, which are feasible and well-behaved under any real-

isations of the uncertainty from U . An optimal solution among feasible solutions is the

one that has minimal cost given the worst-case realisation from U . Robust optimisation

thus normally have a min-max formulation, where the objective function is minimised

with respect to a worst-case realisation of perturbations. For example, consider a linear

programming problem in Equation (4.4):

min
x
{cTx : Ax ≤ b}, (4.4)

where the given data is (A, b, c) and the objective is to search a solution x, which is robust

to perturbations in the data. No solution can be well-behaved if the perturbations of the

data are arbitrary. Hence, we restrict to only allowing the perturbations existing in the

uncertainty set U . The corresponding robust optimisation is formulated as:

min
x

sup
(A,b,c)∈U

{cTx : Ax ≤ b}, (4.5)

69

Chapter 4 A Decision Tree Search Robustness Method

where the objective is to select an x that can work well with all instances of the problem

parameters within the uncertainty set U .

Given this, the problem can be formulated as the search for a stable solution in a

small neighbourhood around every training point xi. This neighbourhood corresponds to

the uncertainty set Ui. For example, we may set Ui = Rp(xi, r), a region with radius r

around xi with respect to some norm p. To do so, we select from the neighbourhood a

representative x′i = xi+δxi , the point on which the network output will induce the greatest

loss. The network output on x′i is required to be yi, the target output for xi. Assuming

that many test points are close to training points from the same class, we expect that

the training algorithm will have a regularisation effect and consequently will improve the

network performance on test data. Moreover, we expect this approach to increase the

robustness of the network output to adversarial example. Hence, the training network is

optimised with a minimisation-maximisation approach:

min
θ
L = min

θ

m∑
i=1

max
δ≤‖ε‖

L(x′i, θ, yi), (4.6)

where δ is the uncertainty set under the constraint ε corresponding to the adversarial

example x′i. This involves optimising the model parameter θ with respect to a worst-

case data (x′i, yi), rather than against the original training data; the i-th worst-case data

point is selected from the uncertainty set δ. These uncertainty sets are determined by the

problem at hand; adversarial training [29] can be understood as one such problem.

4.2.2 DTS Implementation Framework

We now introduce the decision tree search robust optimisation algorithm in Algo-

rithm 4. We first initialise a non-trained neural networkM and a pre-trained model f(·).

We then choose a minibatch of size m of images from input dataset x and generate size

m of corresponding adversarial examples with our DTSAttack. These corresponding

adversarial examples are then applied to model M for robust optimisation. Lastly, the

related model loss is updated according to the values from the minibatch.

A more detailed explanation is shown in Fig. 4.2, and is divided into two steps:

70

Chapter 4 A Decision Tree Search Robustness Method

Algorithm 4: DTS Robust Optimisation: DTSRobust

Size of the training minibatch is m

1 function DTS Robust Optimisation (M);

2 Setup Pre Training Model f(·)

3 Randomly initialise neural network M

4 while training not converged do

5 Read minibatch B = {x1, ..., xm} from training set;

6 Generate m adversarial examples Badv = {x′1, ..., x′m} from corresponding

clean examples B with DTSAttack;

7 Do one training step of network M using Badv;

8 Update model loss with min max optimisation:

minθ L = minθ
∑m

i=1 maxη L(x′i, θ, yi);

9 end

1

Images Initial
Tree

Adversarial
images

Feature
Database

Initialise Exploration
Nodes Tree Traversal

Sampling NodesBack Propagation

1

x0

x1

...

xD

a(1)
0

a(1)
1

...

a(1)
N (1)

. . .

. . .

. . . a(L)
0

a(L)
1

...

a(L)
N (L)

a(L+1)
1

a(L+1)
2

...

a(L+1)
K

Input
layer

Hidden
layers

Output
layer

DTSATTACK

DTSROBUST

x x′

f (x′)

0/1
M (x′)

L (x′ ,θ)

Fig. 4.2: The DTSRobust toolkit training framework. The framework is divided into

an attack generation step DTSAttack and a robust training model M.

71

Chapter 4 A Decision Tree Search Robustness Method

the first consists of an attack generation step with DTSAttack; the second is a robust

optimisation step. For the attack generation part, first, a model f(·) is trained as an

assistant classifier from a training dataset of images x. Then, the procedure follows a

training loop. In each training loop, corresponding to a training epoch, a minibatch of

size m of images is randomly selected from the training dataset x. This minibatch is

then analysed by the DTSAttack to generate adversarial examples x′. Whether or not

the images generated by DTSAttack are proper adversarial examples is determined by

a test on the assistant classifier f(·). The resulting adversarial examples x′ form the

basis for training the robust model M(·), which is initially untrained. The loss value L

is updated according to the softmax result of the robust model M. The training loop

continues for as many epochs as required until the required accuracy is converged.

Following the framework mentioned above, the DTSRobust randomly selects a

minibatch in each epoch until the loss of the robust model converges to the desired value.

The convergence criteria ensure that the resulting modelM is robust in small neighbour-

hoods of every training point around x. We call these neighbourhoods the perturbations

δ and we represent them as x′ = x+ δ. The overall process can be regarded as a solution

to the robust optimisation problem against adversarial examples.

4.3 Experimental Results

In this section, we evaluate the DTS robust optimisation algorithm presented in the

previous section and report the results using MNIST [74] and CIFAR10 [75] datasets. We

evaluate the robustness obtained against different attack methods, namely FGSM, PGD,

and DTS. The experimental setup and results are shown from subsection 4.3.1 to 4.3.5.

4.3.1 Experimental Setup

The MNIST database of handwritten digits contains a training set of 60,000 examples

and a test set of 10,000 examples. The digits were size-normalised and centred in a

fixed-size image of 28×28. We generated adversarial examples under the perturbation

72

Chapter 4 A Decision Tree Search Robustness Method

Dataset Network Name Network Architecture Test Error

MNIST

[74]

Simple Network

(S. (MDL Training)

Conv1(
[
5, 5, 1, 32

]
, 2×2)

Conv2(
[
5, 5, 32, 64

]
, 2×2)

Full(
[
7× 7× 64, 1024

]
)

Avg-pool(
[
−1, 7× 7× 64

]
)

2.3

Wide Network

(W. (MDL Training)

Conv1(
[
5, 5, 1, 64

]
, 2×2)

Conv2(
[
5, 5, 64, 128

]
, 2×2)

Full(
[
7× 7× 128, 1024

]
)

Avg-pool(
[
−1, 7× 7× 128

]
)

1.8

CIFAR10

[75]

Simple Network

(S. (MDL Training)

Conv1(
[
3× 3, 16

]
)

Conv2(

3× 3 16× k

3× 3 16× k

×N, k:1 N:5)

Conv3(

3× 3 32× k

3× 3 32× k

×N)

Conv4(

3× 3 64× k

3× 3 64× k

×N)

Avg-pool(
[
8× 8

]
)

4.9

Wide Network

(W. (MDL Training)

Conv1(
[
3× 3, 16

]
)

Conv2(

3× 3 16× k

3× 3 16× k

×N, k:10 N:5)

Conv3(

3× 3 32× k

3× 3 32× k

×N)

Conv4(

3× 3 64× k

3× 3 64× k

×N)

Avg-pool(
[
8× 8

]
)

4.2

Table 4.1: The full network architectures and parameters for MNIST and CIFAR10.

constraints of size ε = 0.02 and 0.03 respectively in the l∞ norm. To investigate model

capacity, we consider two training networks of simple and wide architectures, respectively.

The simple network consists of two convolution layers of sizes 32 and 64 filters, and a fully

connected layer of size 1024. The wide network consists of two convolution layers of sizes

64 and 128 filters, and also a fully connected layer of size 1024. Both networks are

73

Chapter 4 A Decision Tree Search Robustness Method

adversarially trained with FGSM, PGD and DTS methods.

The CIFAR10 dataset contains a training set of 50,000 examples and a test set of

10,000 examples of 32×32 colour images in 10 different classes. The values of input images

were also normalised in the interval [0, 1]. As before, we generated adversarial examples

under the perturbation constraints of size ε = 0.02 and 0.03 in the l∞ norm. For the

CIFAR10 dataset, we used the Resnet model [55] as the simple network and modify the

network via using wider layers by a factor of 10, resulting in a network with 5 residual

units with (16, 160, 320, 640) filters each. We also performed adversarial training with

FGSM, PGD and DTS methods on these two architectures and investigated the resulting

accuracies against white-box attack adversaries on different adversarial trained models.

4.3.2 Network Architecture

To investigate model capacity, we consider two training networks of simple and wide

architectures for MNIST dataset [74], respectively. The simple network consists of two

convolution layers of sizes 32 and 64 filters, and a fully connected layer of size 1024. The

wide network consists of two convolution layers of sizes 64 and 128 filters, and also a fully

connected layer of size 1024. Both networks are adversarially trained with FGSM, PGD

and DTS methods. The test errors for these two network architectures are 2.3% and 1.8%

respectively, and the detailed parameters for each layer are summarised in the first two

rows of Table 4.1. The MDL in the table is represented as one of the FGSM, PGD and

DTS methods.

For the CIFAR10 dataset [75], we used the Resnet model [55] with different filters

as the simple and wide networks. The network width is determined by factor k and

the groups of convolutions are shown in brackets where N is the number of blocks in a

group. For the simple network, the factor k is set as 1 while the number of blocks N

is set as 5. For the wide network, a modified one is implemented via wider layers by a

factor, resulting in a network of (16, 160, 320, 640) filters with 5 residual units in each

convolution, where the factor k is set as 10. The network width is determined by factor

k and the groups of convolutions are shown in the table where N is a number of blocks in

74

Chapter 4 A Decision Tree Search Robustness Method

Target Model

Adversary
Nature FGSM FGSMR PGD2 PGD5 PGD20 DTS1 DTS2 l2 εDIFF

S. (FGSM Training) 96.2 95.1 94.8 92.7 91.4 89.7 90.8 89.6 3.87

0.02

S. (PGD Training) 95.8 95.2 94.2 93.6 92.7 90.6 91.5 90.8 3.71

S. (DTS Training) 97.7 96.3 95.1 93.8 93.3 91.9 91.9 91.6 3.27

W. (FGSM Training) 97.4 96.7 96.4 94.6 94.1 92.7 92.8 92.3 3.95

W. (PGD Training) 96.9 95.7 95.3 95.1 94.8 93.4 93.5 93.1 3.86

W. (DTS Training) 97.8 96.8 96.3 95.8 95.2 94.1 93.9 93.6 3.79

S. (PGD Training) 94.8 92.7 91.9 90.7 89.9 88.7 89.5 88.6 4.17

0.03
S. (DTS Training) 96.5 94.1 93.2 92.7 92.3 90.6 90.5 90.1 4.04

W. (PGD Training) 96.1 92.8 92.1 91.3 90.3 89.7 90.1 89.3 4.28

W. (DTS Training) 97.3 94.3 93.7 93.1 92.5 91.7 91.8 91.2 4.21

Table 4.2: The resulting accuracy of nature training, FGSM, PGD and DTS methods

against white-box adversarial attacks with εDIFF = 0.02 and 0.03 on MNIST dataset.

group [55]. The resulting ResNet28-10 model [80] is adopted by an error rate of 4.17% and

with 36.5M parameters at most. We also perform adversarial training with FGSM, PGD

and DTS methods on these two architectures and investigated the resulting accuracies

against white-box attack adversaries on different adversarial trained models. The details

are enumerated in the last two rows of Table 4.1.

In all our experiments we use Stochastic Gradient Descent (SGD) with momentum

and cross-entropy loss. The initial learning rate is set to 0.1, weight decay to 0.0005,

dampening to 0, momentum to 0.9 and minibatch size to 128. On CIFAR learning rate

dropped by 0.1 at 10,000, 15,000 and 20,000 epochs and we train for total 30,000 epochs.

We select the ResNet28-10 model [80] as it outperforms the original ResNet [55] by 0.92%

(with the same minibatch size during training) on CIFAR10.

4.3.3 MNIST

Table 4.2 summarises the resulting accuracies obtained on the MNIST dataset. We

generated adversarial examples using the white-box attack method of FGSM, PGD and

75

Chapter 4 A Decision Tree Search Robustness Method

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A
C
C
U
R
A
C
Y

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(a) Adversarial accuracy compar-

isons of nature, FGSM, PGD and

DTS with εDIFF = 0.02.

0
15

30
45

60
75

90
LO

SS

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(b) Adversarial loss comparisons

of nature, FGSM, PGD and DTS

with εDIFF = 0.02.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A
C
C
U
R
A
C
Y

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(c) Adversarial accuracy compar-

isons of nature, FGSM, PGD and

DTS with εDIFF = 0.03.

0
15

30
45

60
75

90
LO

SS

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(d) Adversarial loss comparisons

of nature, FGSM, PGD and DTS

with εDIFF = 0.03.

Fig. 4.3: Accuracy and loss comparisons on MNIST dataset with εDIFF = 0.02, 0.03 in the

l∞ norm.

DTS with εDIFF = 0.02 and 0.03, and then evaluated them on a target network, that was

adversarially trained independently, with different methods. The target models consist of

two different architectures, which are simple and wide networks. For example, S.(FGSM

Training) means the target model trained with FGSM adversarial training using a simple

network. For each target model, we choose randomly and fairly from the full set of

training set for 3,000 epochs with minibatch size of 128. The results would be similar

even running for several times since each time the number of trained images is millions

of images, e.g., MNIST with 0.4M of images and this is fairly massive for MNIST with

76

Chapter 4 A Decision Tree Search Robustness Method

Target Model

Adversary
Nature FGSM FGSMR PGD2 PGD5 DTS1 DTS2 l0 l1 l2 εDIFF

S. (FGSM Training) 93.8 93.0 92.5 89.5 89.1 87.9 87.0 14.5 13.6 3.93

0.02

S. (PGD Training) 93.3 92.4 92.0 91.6 91.2 90.1 88.9 13.8 12.9 3.82

S. (DTS Training) 94.8 93.2 92.8 91.9 90.7 90.5 89.8 12.3 11.3 3.74

W. (FGSM Training) 94.2 93.9 93.3 91.4 90.8 90.3 89.5 14.2 13.9 3.91

W. (PGD Training) 94.0 93.7 93.4 92.9 92.3 91.6 91.0 13.9 13.5 3.84

W. (DTS Training) 94.9 94.1 93.7 93.2 92.5 91.7 91.5 12.4 11.9 3.79

S. (PGD Training) 92.4 89.8 88.4 87.6 86.9 86.4 85.9 20.8 18.9 4.22

0.03
S. (DTS Training) 93.2 92.5 91.8 90.7 89.7 88.6 87.4 19.2 18.3 4.04

W. (PGD Training) 93.4 90.1 88.9 88.1 87.4 87.1 86.2 20.3 19.2 4.34

W. (DTS Training) 93.8 92.5 92.1 91.4 90.2 89.3 88.6 19.5 18.6 4.21

Table 4.3: The resulting accuracy of nature training, FGSM, PGD and DTS methods

against white-box adversarial attacks with εDIFF = 0.02 and 0.03 on CIFAR10 dataset.

εDIFF = 0.02 and 0.03. For this reason, the confidence interval results are not shown in the

experiments since we can approximate the distribution with a Gaussian with large sample

sizes. This is expressed as interval = z ·
√

(accuracy · (1− accuracy))/n, where interval

is the radius of the confidence interval, accuracy is classification accuracy, n is the size of

the sample and z is the number of standard deviations from the Gaussian distribution. The

first column (Nature) stands for the accuracy of each adversarially trained target network

without attacks. The FGSM random attack (FGSMR) was implemented according to [22],

whereby small random perturbations are performed before applying FGSM. The PGD

attack considered 10 random restarts uniformly distributed under ε per input and settings

of 2, 5 and 20 steps with step size 0.01. The search time for DTS attack is constrained

in 1 second and 2 seconds respectively; once an adversarial example is found, the process

will be terminated. From the results, the attack strength from strong to weak is DTS,

PGD and then FGSM as the accuracies against DTS attack (DTSX columns) are lower

than PGD and FGSM columns. This means that DTSAttack is a stronger attack, and

thus the resulting accuracies among different trained networks are lower. In addition, the

results show that DTS contributes to improved accuracies against different adversaries,

77

Chapter 4 A Decision Tree Search Robustness Method

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C
C
U
R
A
C
Y

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(a) Adversarial accuracy compar-

isons of nature, FGSM, PGD and

DTS with εDIFF = 0.02.

0
10

20
30

40
50

LO
SS

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(b) Adversarial loss comparisons

of nature, FGSM, PGD and DTS

with εDIFF = 0.02.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C
C
U
R
A
C
Y

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(c) Adversarial accuracy compar-

isons of nature, FGSM, PGD and

DTS with εDIFF = 0.03.

0
10

20
30

40
50

LO
SS

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(d) Adversarial loss comparisons

of nature, FGSM, PGD and DTS

with εDIFF = 0.03.

Fig. 4.4: Accuracy and loss comparisons on CIFAR10 dataset with εDIFF = 0.02, 0.03 in

the l∞ norm.

and maintain robustness even under the DTS attack itself. For example, the accuracy of

S. (DTS training networks) is 93.8, which is higher than other training networks 92.7 and

93.6 under the PGD attack (column PGD2). Moreover, changing the architecture from

simple to wide networks also contributes to accuracies overall. The accuracies decrease

only few percentages even increasing εDIFF to 0.03 and the W. (DTS training) is more

robust than W (PGD Training) in general. The average distances required for DTS are

smaller than the others as DTS searches mainly the most potential features. Figure 4.3

reports the accuracy and loss trends for different adversarial training methods over the

78

Chapter 4 A Decision Tree Search Robustness Method

first 3,000 epochs with εDIFF = 0.02 and 0.03. The average memory usage for FGSM,

PGD and DTS are 1.5, 1.7, and 1.8GB respectively. We find that the accuracies of robust

optimisation with DTS converges faster than the other two state-of-the-art methods with

14.2% on average when compared with PGD method. The improvement is computed with

the accuracy differences between DTS and PGD by epochs during training. The reason

for this gain is that we only search important features as opposed to adding perturbations

with randomly distributed methods. With these advantages, DTS does save training

efforts and contribute to robustness during adversarial training.

4.3.4 CIFAR10

Table 4.3 summarises the resulting accuracies obtained on the CIFAR10 dataset with

similar setting as MNIST. For each target model, we also choose randomly and fairly from

the full set of training set for 30,000 epochs with minibatch size of 128. The results would

be similar even running for several times since each time the number of trained images

is millions of images, e.g., CIFAR10 with 3.8M of images and this is fairly massive for

CIFAR10 with εDIFF = 0.02 and 0.03. The results obtained also demonstrate that a

strong adversary can help to improve model accuracies. In addition, DTS contributes to

improving the accuracies against different adversaries while retaining robustness against

the DTS attack itself. For example, the accuracy of W. (DTS training network) under

the DTS attack itself (column DTS2) is 91.5, which is higher than other networks with

91.0 or 89.5 (e.g., W. (PGD training network) or W. (FGSM training network)) with

εDIFF = 0.02. Comparing the results against different network architectures reveals that

changing the architecture from simple to wide networks can contribute to accuracies

generally. The average distances required for DTS are smaller than FGSM and PGD as

DTS only searches for the most potential features. Figure 4.4 reports the accuracy and

loss trends for different adversarial training methods over the first 30,000 epochs with

εDIFF = 0.02 and 0.03. The average memory usage for FGSM, PGD and DTS are 1.9, 2.2,

and 2.3GB respectively. The data obtained support the conclusion that the adversarial

training with DTS converges faster with 10.3% on average than the other state-of-the-art

methods.

79

Chapter 4 A Decision Tree Search Robustness Method
1

8 to 2, C = 0.56 9 to 4, C = 0.61 8 to 3, C = 0.72

6 to 0, C = 0.51 9 to 4, C = 0.58 4 to 2, C = 0.55

7 to 2, C = 0.54 1 to 8, C = 0.61 5 to 6, C = 0.55

8 to 2, C = 0.58 0 to 9, C = 0.48 3 to 5, C = 0.56

(a) MNIST adversarial images with ε=0.02.

1

cat to dog, C = 0.69 truck to automobile, C = 0.66 cat to dog, C = 0.45

airplane to ship, C = 0.72 truck to airplane, C = 0.48 dog to horse, C = 0.58

ship to automobile, C = 0.65 airplane to cat, C = 0.42 ship to automobile, C = 0.58

truck to automobile, C = 0.56 bird to cat, C = 0.45 frog to airplane, C = 0.81

(b) CIFAR10 adversarial images with ε=0.02.

Fig. 4.5: Some adversarial examples for MNIST and CIFAR10 under εDIFF = 0.02.

4.3.5 Adversarial Examples with DTS

We present some adversarial examples obtained for MNIST and CIFAR10 in Fig-

ure 4.5 with different confidence values under εDIFF = 0.02. Through DTSAttack, only

minor perturbations, where εDIFF = 0.02, are required to generate attacks. The odd

columns are the original images with correct classes and the even columns are their cor-

responding adversarial examples. In the figure, most confidence values are over 0.5 while

generating adversarial examples. From the results, the adversarial ones are still clear to

distinguish from the correct classes. Some of these attacks are not easy to detect by hu-

mans; see for example the ones reported for class cat to class dog with confidence values

of 0.69 and 0.45 in CIFAR10.

4.4 Summary

In summary, we proposed a decision tree search robust optimisation framework and

presented the experimental results obtained on MNIST and CIFAR10 datasets with dif-

ferent perturbation settings of ε = 0.02 and 0.03. Also, we compared the impacts on

robustness on different network architectures. As aforementioned about adversarial train-

ing [29], which concerns explicitly training a model on adversarial examples, in order to

80

Chapter 4 A Decision Tree Search Robustness Method

make it more robust against attacks or to reduce its test error on clean inputs, training

with adversarial examples is one of most powerful countermeasures to make networks more

robust. It enhances robustness by generating adversarial examples at every step of the

training stage and injecting them into the training set. In this way, adversarial training

provides regularisation for DNNs and improves precisions through the process although

it takes more training efforts compared with other methods. Conquering the training ef-

forts during adversarial training, we have shown that the method here presented is more

lightweight compared to adversarial training, while maintaining similar performance.

Though we evaluated robustness in different sizes of models, we do not compare

under different model types, e.g., from ResNets to VGGNets. As we select model types

following the principles of choosing the most accurate model for some specific dataset,

we do not evaluate under various types of model architectures. The proposed approach

was evaluated against small perturbations since pre-processing components like denoising

elements are normally included in real applications. The results we obtained show that: i)

that the method is computationally attractive compared to the present SoA, ii) differently

from other approaches, it can defend against the FGSM and PGD attacks, and iii) it

achieves global optima while maintaining robustness. From the benefits aforementioned,

this method can be applied in more possibilities of exploration for robustness on different

aspects of applications.

In summary, this work improves on the state of the art by providing a technique

that is computationally more attractive, can defend against two types of state-of-the-art

attacks and does not appear to be susceptible to local optima. Another stream of research

focuses on robustness against black-box attacks and transferability [81,82]; these are not

directly comparable, since the present paper focuses on white-box attacks. For a more

detailed discussion about robustness against black-box attacks and the transferability

phenomenon, we are going to explore and evaluate these faces in the next chapter.

81

Chapter 5

MRobust: Transferability for DNNs

Conventional machine learning models are known to be vulnerable to adversarial

examples [38,18,36,14]. A gradient-based approach to generate adversarial examples for

linear classifiers, support vector machines (SVM), and neural networks in the context of

MNIST models, was first developed in [16]. This was then extended to proactive and

reactive defences to improve the security of machine learning models [39]. It has also

been observed that adversarial examples may have imperceptible differences compared to

the original input [17]. [29] suggested that adversarial examples are inherently caused by

the linear behaviour of deep neural networks (DNNs) when operating in high-dimensional

spaces. The topology and geometry of adversarial examples were analysed in [83], while

the local intrinsic dimensionality of adversarial regions for adversarial examples was char-

acterised in [84]. More recently, it has been observed that adversarial examples are trans-

ferable, i.e. an example, which is adversarial for a DNN can often be used to mislead the

prediction of other DNNs [81,17,85]. Moreover, adversarial examples could be universal

in the sense that a single example may be used against several different models created

from the same dataset [86].

In this chapter, we first develop a black-box adversarial attack method and then a

black-box adversarial training algorithm MRobust to improve transferability and defend

against state-of-the-art attack methods. Before diving into our black-box adversarial

training algorithm, we first introduce some preliminaries about white-box and black-box

82

Chapter 5 MRobust: Transferability for DNNs

attack methods relating to transferability and different adversarial specificities. Given

an arbitrary input to a DNN, the proposed attack method analyses small regions around

the input that are likely to make significant contributions generating adversarial samples.

Furthermore, the attack method does not require access to the internal layers of the model

and thus falls in the realms of black-box attacks.

Moreover, we demonstrate the experimental results obtained on models with different

sizes on MNIST and CIFAR10 datasets. The results suggest that known attacks on the

resulting models are less transferable than those models trained by state-of-the-art attack

algorithms, i.e. FGSM [29] and PGD [26]. From the comparisons, our results further show

that the resulting DNNs synthesised via our method are less susceptible to transferability

of attacks. We also show that the method reduces significantly the number of adversarial

examples required for adversarial training.

The remainder of this chapter is organised as follows. As previously mentioned,

Section 5.1 starts with introducing the transferability occurring between deep neural net-

works and Section 5.2 discusses different attack methods considering transferability and

different adversarial specificities. Section 5.3 then describes the main black-box algorithm

here proposed aimed at generating adversarial examples and how adversarial examples

are employed for adversarial training. Lastly, Section 5.4 reports quantitative results on

the MNIST and CIFAR10 datasets and a brief summary concludes the chapter.

The material presented in this chapter has appeared, in a shorter form, in the fol-

lowing paper [4]:

• Y. Liu and A. Lomuscio. A Method for Robustness against Adversarial Attacks on

Deep Neural Networks. Proceedings of the 33rd International Joint Conference on

Neural Networks and IEEE World Congress on Computational Intelligence (WCCI).

Glasgow, United Kingdom. 1-8(2020). IEEE Press.

83

Chapter 5 MRobust: Transferability for DNNs

5.1 Defining Transferability

Many machine learning models have been shown to be vulnerable to adversarial

examples, which are specially crafted to cause a machine learning model to produce an

incorrect output. Adversarial examples that affect one model can often affect another

model, even if the two models have different architectures or were trained on different

training sets. This also happened in both models, which were trained to perform the same

task. An attacker may therefore train their substitute model, craft adversarial examples

against the substitute, and transfer them to a victim model, with very little information

about the victim [81]. Recent work has further developed a technique that uses the victim

model as an oracle to label a synthetic training set for the substitute, so the attacker

does not need to know the input training information. In this section, we introduce the

transferability methodology which transfers between previously unexplored (substitute,

victim) pairs of machine learning model classes, called cross-technique transferability. We

also introduce another transferability method that lies between different training datasets

but the same training technique, named intra-technique transferability.

5.1.1 Cross-technique Transferability

Adversarial sample transferability has been found across the machine learning space

and these samples can transfer well across models trained with different techniques or en-

sembles. For example, a support vector machine and decision tree respectively misclassify

91.43% and 87.42% of adversarial samples crafted for a logistic regression model [81]. Pre-

vious work on adversarial example transferability has primarily studied the case where at

least one of the models involved in the transfer is a neural network [17,29,87]. However,

the adversarial sample is capable to transfer in a more generally characterised manner

between a diverse set of models chosen to capture most of the space of machine learning

algorithms.

We discuss five machine learning techniques: Deep Neural Networks (DNNs), Lin-

ear Regression (LR), Support Vector Machines (SVMs), Decision Trees (DTs), and k-

84

Chapter 5 MRobust: Transferability for DNNs

1

kNN

DT

SVM

LR

DNN

DNN LR SVM DT kNN

Fig. 5.1: The cross-technique transferability matrix: cell (i, j) is the percentage of adver-

sarial samples crafted to mislead a classifier learned using machine learning technique i

that are misclassified by a classifier trained with technique j [81].

Nearest Neighbours (kNNs). According to [81], DNNs were chosen for their state-of-the-

art performance, LR for its simplicity, SVMs for their potential robustness stemming

from the margin constraints when choosing decision boundaries at training, DTs for

their non-differentiability, and kNNs for being lazy-classification models. Theano [88]

and Lasagne [89] were used while training DNN, LR, and kNN models. In this study, the

DNN is made up of a hierarchy of 2 convolutional layers of 32 3×3 kernels, 2 convolutional

layers of 64 3×3 kernels, 2 rectified linear layers of 100 units, and a softmax layer of 10

units. It was trained during 10 epochs with learning, momentum, and dropout rates of

respectively 10−2, 0.9, and 0.5 decayed by 0.5 after 5 epochs. The LR was performed

using a softmax regression on the inputs. It was trained during 15 epochs at a learning

rate of 10−2 with a momentum rate of 0.9 both decayed by 0.5 after 10 epochs. The linear

SVM and DT were trained with scikit-Learn.

85

Chapter 5 MRobust: Transferability for DNNs

The cross-technique transferability is defined between models i and j, trained using

different machine learning techniques, as the proportion of adversarial samples produced

to be misclassified by model i that are also misclassified by model j. Hence, this is a

more complex phenomenon than intra-technique transferability because it involves models

learned using possibly very different techniques like DNNs and DTs. Yet, cross-technique

transferability is surprisingly a strong phenomenon to which techniques like LR, SVM,

DT, and ensembles are vulnerable, making it easy for adversaries to craft adversarial

samples misclassified by models trained using diverse machine learning techniques.

From Fig. 5.1, a cross-technique transferability matrix is presented, where each cell

(i, j) holds the percentage of adversarial samples produced for classifier i that are misclas-

sified by classifier j. In other words, rows indicate the machine learning technique that

trained the model against which adversarial samples were crafted. Columns indicate the

underlying technique of the classifier making predictions on adversarial samples. This ma-

trix shows that cross-technique transferability is a strong but heterogeneous phenomenon.

The most vulnerable model is the decision tree (DT) with misclassification rates ranging

from 79.31% to 89.29% while the most resilient is the deep neural network (DNN) with

misclassification rates between 0.82% and 38.27%.

We conclude that all machine learning techniques studied are vulnerable to two types

of adversarial sample transferability with different impacts. The most surprising results

in adversarial samples being misclassified across multiple models learned with different

machine learning techniques. This cross-technique transferability greatly reduces the min-

imum knowledge that adversaries must possess to force a machine learning model mis-

classifying inputs that they crafted.

5.1.2 Intra-technique Transferability

The intra-technique transferability is defined across models trained with the same

machine learning technique but different parameter initialisations or datasets (e.g., f

and f ′ are both neural networks or both decision trees). The differentiable models like

DNNs and LR have been shown to be more vulnerable to intra-technique transferability

86

Chapter 5 MRobust: Transferability for DNNs

1

kNN

DT

SVM

LR

DNN

A B C D E

(a) Model Accuracies.

1

E

D

C

B

A

So
ur
ce

D
N
N

A B C D E
Target DNN

(b) DNN models.

1

E

D

C

B

A

So
ur
ce

LR

A B C D E
Target LR

(c) LR models.

1

E

D

C

B

A

So
ur
ce

SV
M

A B C D E
Target SVM

(d) SVM models.

Fig. 5.2: Intra-technique transferability for different techniques. Fig. 5.2a reports the ac-

curacy rates of the 25 models used, computed on the MNIST test set. Fig. 5.2b to Fig. 5.2d

in cell (i, j) report the intra-technique transferability between models i and j using the

same method with different parts of the dataset, i.e. the percentage of adversarial samples

produced using model i misclassified by model j.

87

Chapter 5 MRobust: Transferability for DNNs

than non-differentiable models like SVMs, DTs, and kNNs according to [81]. The intra-

technique transferability is measured between models i and j, both learned using the same

machine learning technique. The measurement is based on the proportion of adversarial

samples produced to be misclassified by model i that are misclassified by model j. To

train different models using the same machine learning technique, the training set was

split into disjoint subsets A,B,C,D,E of 10,000 samples each, in order of increasing indices.

For each of the machine learning techniques (DNN, LR, SVM, DT, kNN), five different

models were learned referred to as A,B,C,D,E. Model accuracies, i.e. the proportion of

labels correctly predicted by the model for the testing data, are reported in Fig. 5.2a.

For each of the 25 models, the suitable adversarial sample was crafted with suitable

algorithms described previously from 10,000 samples in the test set, which was unused

during training. The parameters of different algorithms were fine-tuned to achieve a quasi-

complete misclassification of the 10,000 adversarial samples by the model on which they

are crafted. Upon empirically exploring the input variation parameter space, the ε is set

to 0.3 for the fast gradient sign method algorithm and ε = 1.5 for the SVM algorithm.

Fig. 5.2b to Fig. 5.2d report intra-technique transferability rates for each of the DNN,

LR, and SVM learning techniques. Rates (i, i) on the diagonals indicate the proportion of

adversarial samples misclassified precisely by the same model i on which they were crafted.

Off-diagonal rates (i, j) indicate the proportion of adversarial samples misclassified by a

model j different from the model i on which they were crafted. From these figures, all

models are vulnerable to intra-technique transferability in a non-negligible manner. LR

models are most vulnerable as adversarial samples transfer across models at rates larger

than 94%. DNN models display similarly important transferability, with rates of at least

49%. On the SVM matrix, the diagonal stands out more, indicating that this technique

is to some extent more robust to the phenomenon. In the case of SVMs, this could be

explained by the explicit constraint during training on the choice of hyperplane decision

boundaries that maximise the margins (i.e. support vectors).

In conclusion, all models are found vulnerable to intra-technique adversarial sample

transferability-misclassification of samples by different models trained using the same

machine learning technique, the phenomenon is stronger for differentiable models like

DNNs and LR than for non-differentiable models like SVMs.

88

Chapter 5 MRobust: Transferability for DNNs

5.2 White-box and Black-box Attack Methods

Adversarial attacks can be categorised based on the attacker’s knowledge about

the model (white-box and black-box attacks), the attack’s specificity (targeted and non-

targeted attacks), and the perturbation measurement (`∞-, `2-, `1-, and `0-norm attacks).

White-box attacks have full knowledge of the neural network model, including the train-

ing data, the architecture, the weights, and the hyperparameters of the model, whilst

black-box attacks have access only to the output of the model, e.g., the final decision or

the score.

Targeted attacks aim to produce a targeted misclassification, whereas the adversarial

label for an un-targeted attack can be arbitrary except the original one. A targeted attack

searches for the perturbation that changes the network prediction to the specific target

f(x + δ) = yt. Targeted attacks usually occur in the multi-class classification problem.

For example, an adversary fools an image classifier to predict all adversarial examples as

one class. In a face recognition/biometric system, an adversary tries to disguise a face

as an authorised user (Impersonation) [47]. Targeted attacks usually can be realised by

maximising the probability of the targeted adversarial class.

In contrast to targeted attacks, non-targeted attacks do not assign a specific class to

the neural network output. The adversarial class of output can be arbitrary except the

original one, which is f(x + δ) 6= f(x). For example, an adversary makes his/her face

misidentified as an arbitrary face in a face recognition system to evade detection (dodg-

ing) [47]. Non-targeted attacks are easier to implement compared to targeted attacks

since it has more options and space to redirect the output. Non-targeted adversarial ex-

amples are usually generated in two ways: 1) running several targeted attacks and taking

the one with the smallest perturbation from the results; 2) minimising the probability of

the correct class. Some generation approaches (e.g., extended BIM, ZOO) can be applied

to both targeted and non-targeted attacks. For binary classification, targeted attacks are

equivalent to non-targeted attacks.

In the previous section, we introduced the transferability among different machine

learning models and discussed robustness in these models. This section will review the

89

Chapter 5 MRobust: Transferability for DNNs

landscape of the research on different adversarial attacks, especially for deep neural net-

works. A myriad of attacks on DNNs has been proposed since the discovery of adversarial

examples and has been categorised into two genres, white-box and black-box attacks.

Intuitively, a white-box adversary should always be stronger than any black-box adver-

sary because it has complete information about the attack’s target model. However, in a

special case, when the defence obfuscates or shatters the gradients, white-box adversaries

tend to overestimate model robustness [90]. Athalye et al. [91] suggested evaluating de-

fence on white-box and black-box adversaries. If the model is more robust to white-box

adversaries, then the model might mask the gradients. In the following subsections, we

review some white-box and black-box adversarial attacks. A more in-depth review and

comparison of various attack methods can be found in [92,93].

5.2.1 White-box Attack Model

White-box attacks assume the adversary knows everything about the trained neural

network models, including training data, model architectures, hyper-parameters, numbers

of layers, activation functions, model weights. Realising this information, the adversary

can generate adversarial examples via calculating model gradients easily. We discussed

some attack methods in Section 2.3, including the followings:

• Fast Gradient Sign Method (FGSM): This method performs one step gradient

update along the direction of the sign of gradient at each pixel.

• Projected Gradient Descent (PGD): This method adopts the multi-step variant

of FGSM.

• Jacobian-based Saliency Map Attack (JSMA): This method uses the saliency

map based on forward derivative and provides the adversary with the required in-

formation to cause the neural network misclassifying a given sample.

• Deepfool Attack: This method finds the closest class boundary and takes a step

in the direction of the closest decision boundary.

90

Chapter 5 MRobust: Transferability for DNNs

• Carlini & Wagner Attack: Carlini and Wagner consider a wide variety of formu-

lations with a set of techniques to improve the speed and accuracy of the gradient-

based attack. They summarise from one of them that performs best according to

their evaluation.

5.2.2 Black-box Attack Model

Black-box attacks assume the adversary has no access to the trained neural network

model. The adversary, acting as a standard user, only knows the output of the model

(label or confidence score). This assumption is common for attacking online Machine

Learning services (e.g., Machine Learning on AWS1, Google Cloud AI2, BigML3, Clar-

ifai4, Microsoft Azure5, IBM, Bluemix6, and Face++7). Most adversarial methods are

white-box attacks. However, they can be transferred to attack black-box services due to

the transferability of adversarial examples which we discussed in Section 5.1.

Attacks under the black-box threat model are more difficult to perform than white-

box settings because the gradients of the model are not known. Black-box, or gradient-

free attacks, could be divided into two categories: gradient estimation and transfer-based

attacks. In gradient estimation, the gradients of the black-box model are estimated, which

may require many queries for accurate approximation [94,95]. Transfer-based attacks [90]

rely on the fact that adversarial examples transfer between models. However, the efficiency

of the transfer-based attacks largely depends on the quality of the substitute network.

In [90], a practical black-box adversarial attack was introduced based on the prop-

erty that adversarial examples often transfer between models. A substitute model was

first trained based on the model’s task. Then, adversarial examples generated for the

substitute model can be used to attack the target model. Brendel et al. [96] introduced

a decision-based attack which estimates the decision boundary using rejection sampling.

Starting at some adversarial image, they randomly draw a random perturbation from the

candidate distribution and minimise the distance to the original image. In [94], a random

perturbation was sampled from an orthonormal basis of discrete cosine transform (DCT),

which significantly improves query-efficiency of the decision-based attack. Gradient-based

91

Chapter 5 MRobust: Transferability for DNNs

attacks should be almost always stronger than gradient-free attacks. However, gradient

masking [90] can fool gradient-based attacks and give a false sense of security [91]. If the

defence obfuscates the gradients, gradient-free attacks often perform better than white-

box attacks. In [48], it was suggested that defences should be tested on both white-box

and black-box adversaries. If the model is more robust to white-box adversaries, then the

model probably masks the gradients.

Some defence methods have been explored to enhance robustness against the black-

box attacks. DeepDGA [97] used generative adversarial network (GAN) to generate ad-

versarial domain names to evade detection of domain generation algorithms. MalGan

also adopted a GAN-based algorithm to generate malware examples and evade black-box

detection [98].They used a substitute detector to simulate the real detector and leveraged

the transferability of adversarial examples to attack the real detector. MalGan was evalu-

ated by 180K programs with API features. However, it required the knowledge of features

used in the model. Another line of works used a large number of features (2,350) to cover

the required feature space of portable executable (PE) files [99]. The features included

PE header metadata, section metadata, and import & export table metadata. They also

defined several modifications to generate malware evading deep learning detection. The

solution was trained by reinforcement learning, where the evasion rate is considered as a

reward.

5.3 The MRobust Defence Method

After some introductions about the transferability techniques and different attack

methods, in this section, we present a black-box adversarial attack method relying on the

Scale Invariant Feature Transform (SIFT) algorithm [76] aforementioned in Chapter 3.

This method is categorised into the genre of the non-targeted attacks. We present how

this algorithm uses Monte-Carlo tree search (MCTS) [1] to generate effective adversarial

examples in Subsection 5.3.1. In Subsection 5.3.2 we summarise the full black-box adver-

sarial training algorithm, called MRobust, including a robust optimisation function.

92

Chapter 5 MRobust: Transferability for DNNs

Algorithm 5: Black-box Adversarial Attack: MAttack

1 function Black-boxAdversarialAttack ;

Input : Clean image dataset x

Initialise perturbation constraint setting for ε

Initialise search trees T

Output: Effective adversarial examples x′

2 Execute Scale Invariant Feature Transform to obtain potential candidate descriptor;

3 while effective adversarial example not found do

4 Pick up one most promising point as root node NR from the descriptor;

5 Trace from the root node;

6 Selection: select nodes with greatest confidence value and trace till the leaf node;

7 Expansion: expand one node from leaf node;

8 Simulation: do simulation with the expanded node and check win or loss;

9 Backpropagation: update associated information for each node along the traversing

path back to the root node

10 end

5.3.1 Black-box Adversarial Attack Method

In this subsection we introduce Scale Invariant Feature Transform [76] to search po-

tential invariant feature candidates and Monte Carlo Tree Search [1] to find an adversarial

example based on the outcomes of Scale Invariant Feature Transform. We summarise the

full algorithm in Algorithm 5.

Scale Invariant Feature Transform [76]. The algorithm begins by executing

SIFT [76] on the clean image, given a perturbation ε, received as input (line 2). SIFT

was first proposed to extract image features in object recognition systems [76]. It can be

employed to extract features for any object in an image and provide a feature description

of this object. This description can then be used to identify and locate objects in other

images. In order to perform accurate recognition, these extracted features should be de-

tectable under variations of image scale, orientation and illumination, and these extracted

features are also invariant to image scaling, translation and rotation.

93

Chapter 5 MRobust: Transferability for DNNs

For the purpose of searching for features, Laplacian of Gaussian (LoG) are normally

used to detect areas of rapid changes (edges) in images. Due to the significant computa-

tion cost of LoG operations, the Difference of Gaussians (DoG) is instead employed for

simplification. Once the DoG is obtained, each pixel in the DoG is compared with its

eight neighbours at the same scale and the process is then repeated at different scales.

If a local maximum is identified, this is considered a potential invariant feature. The

points that are low-contrast and those that are edge response points are discarded. By

discarding these points we are left with potential candidates for feature invariance over

the parameters above. These points are collected into a descriptor also containing the

location and orientation of these points.

Monte Carlo Tree Search (MCTS) [1]. We now explain how Monte Carlo Tree

Search [1] can be employed to identify potential adversary symbols by searching in the

neighbourhood of the candidates obtained by SIFT as above in Algorithm 5 (line 3-10).

MCTS is a heuristic search algorithm for decision making; its key feature consists of

selecting the most promising moves on the basis of random sampling of the search space.

In each iteration, MCTS consists of four steps, that are selection (line 6), expansion (line

7), simulation (line 8) and backpropagation (line 9). We consider each node of the tree as

a specific pixel in an image. We first traverse from the root node NR and choose a child

node NC with the highest confidence value down to a leaf node NL. Then we expand

one or more children nodes NE and simulate from one of them to get a win or loss. A

win of the game represents the fact that an adversarial example can be found once a

perturbation is applied to this pixel. In the last step, we update the tree structure with

the new confidence information for each node according to the simulation result whether

the search was a win or a loss.

We use the confidence value Ci, representing the associated information in each node

NC of the game tree, given by Equation (3.5) aforementioned.

Intuitively the higher probability to derive an adversarial symbol have the higher

confidence value for each node. On the contrary, the lower probability to obtain an

adversarial one will have a lower confidence value. The confidence measure above is

inspired by the game of Go [78] where is widely used to make decisions in different games

94

Chapter 5 MRobust: Transferability for DNNs

Fig. 5.3: An Effective Adversarial example in a region Ri with ‖δ‖p ≤ ε.

and applications for deep neural networks.

Given the above, we select one effective adversary symbol from the candidates above

by imposing the constraint ‖δ‖p ≤ ε. For each region Ri in an image, each path of the

game tree can be considered as a ladder-like structure. Each region Ri contains several

nodes NCik
of the game tree and a specific perturbation ∆ik is applied after a node NCik

is selected. The total perturbations applied to a region is then presented as
∑K

k=0 ∆ik,

where K is the total number of nodes along a path. An effective adversarial example EA
with ‖δ‖p ≤ ε is then formulated as Equation (5.1):

EA = ‖
R∑
i=0

K∑
k=0

∆ik‖p ≤ ε, (5.1)

where R is the total number of regions in an image.

We explain more details in Fig. 5.3 (A-D). In this figure, there are two regions Ri=1..2

and each region Ri contains several nodes NCik
of the game tree. For region R1, a specific

perturbation ∆1k is applied after one node NC1k
is selected. The total perturbations

applied in a region R1 is then presented as
∑K

k=0 ∆1k. An effective adversarial example

95

Chapter 5 MRobust: Transferability for DNNs

Algorithm 6: Black-box Adversarial Training: MRobust

Deep neural network M

Size of the training minibatch is m

1 function Black-boxAdversarialTraining ;

Input : Deep neural network M

Training dataset x

Size of the training minibatch is m

Output: Deep neural network MRobust

Adversarial training accuracy and loss values

2 Randomly initialize deep neural network M

3 while training not converged do

4 Read minibatch B = {x1, ..., xm} from training dataset;

5 Generate m adversarial examples Badv = {x′1, ..., x′m} from corresponding clean

examples {x1, ..., xm} with black-box adversarial attack method in Algorithm 1:

6 function Black-boxAdversarialAttack;

7 Do one training step of network M using minibatch B′;

8 Update model loss with robust optimisation: minθ L = minθ
∑m

i=1 maxδ L(x′i, θ, yi);

9 end

EA with constraint ‖δ‖p ≤ ε is obtained once all perturbations in these two regions satisfied

with the constraint.

5.3.2 Black-box Adversarial Training Algorithm: MRobust

In the previous subsection, we obtained effective adversarial examples by using the

black-box adversarial attack method. In this subsection, we introduce a black-box adver-

sarial training algorithm relying on these effective adversarial examples. We summarise

the full algorithm in Algorithm 6, including the robust optimisation step.

We now explain Algorithm 6. We first randomly initialised the neural network M .

The loss value L of the neural network M is updated according to the softmax result of

each adversarial training iteration. The training loop continues for as many epochs as

required until the required accuracy is converged. During each training loop, we randomly

96

Chapter 5 MRobust: Transferability for DNNs

select a minibatch B of size m from the training dataset and generate corresponding

minibatch Badv consisted of size m adversarial examples using the black-box adversarial

attack method. The minibatch Badv is then applied to the robust model M for adversarial

training. The convergence criteria ensure that the resulting model M is robust in small

neighbourhoods of every training point around x. We call these neighbourhoods the

perturbations δ and we represent them as x′ = x+δ. The overall process can be regarded as

a solution to the robust optimisation problem against adversarial examples and formulated

as:

min
θ
L = min

θ

m∑
i=1

max
‖δ‖≤ε

L(x′i, θ, yi), (5.2)

where δ is the perturbation set under the constraint ε corresponding to the adversarial

example x′i. This involves optimising the model parameter θ with respect to a worst-

case data (x′i, yi), rather than against the original training data, which is related to the

black-box attack method previously; the i-th worst-case data point is selected from the

perturbation set δ.

5.4 Experimental Results

In this section, we evaluate the robustness of the black-box adversarial training al-

gorithm (MRobust) presented in the previous section and report the results obtained

on the MNIST [74] and CIFAR-10 [75] datasets. We evaluate the transferability between

different adversarial training models using FGSM, PGD, and MRobust methods. The

evaluation basis for transferability is defined in Subsection 5.4.1 and the experimental

setup and results are shown in Subsections 5.4.2, 5.4.3 and 5.4.4.

5.4.1 Robustness Transferability

Attacks transferability is problematic in applications [81] as attacks identified in one

domain may be easily transferable to another. Transferability can be analysed in terms

of intra-technique and cross-technique transferability. Intra-technique transferability con-

97

Chapter 5 MRobust: Transferability for DNNs

Target

Source S. (Nat.

Train)

S. (FGSM

Train)

S. (PGD

Train)

S. (M

Train)

W. (Nat.

Train)

W. (FGSM

Train)

W. (PGD

Train)

W. (M

Train)

S. (Nature Train) 12.3 85.6 85.8 86.2 6.4 78.4 86.6 87.3

S. (FGSM Train) 78.3 64.3 68.4 74.7 76.4 64.8 76.2 82.1

S. (PGD Train) 80.2 78.4 81.4 80.1 79.2 76.5 80.8 82.7

S. (M Train) 83.8 84.2 84.7 74.9 83.2 84.5 86.8 79.7

W. (Nature Train) 15.7 89.7 88.6 90.1 5.2 77.2 85.3 90.7

W. (FGSM Train) 79.2 72.7 79.6 82.6 70.5 64.2 81.2 84.8

W. (PGD Train) 81.4 80.1 82.7 83.5 81.4 79.5 82.4 82.9

W. (M Train) 85.5 86.3 86.2 78.6 85.1 85.7 88.4 80.6

Table 5.1: The robustness transferability comparison of nature training, FGSM, PGD

and MRobust methods using black-box adversarial attack from the source network on

MNIST.

cerns the misclassifications (caused by a set of attacks) on different models trained on the

same learning method. Cross-technique transferability concerns misclassifications (caused

by a set of attacks) on models trained on different learning methods. Here we focus on

cross-technique transferability against attacks on models built with FGSM [29], PGD [26],

and MRobust methods. Specifically, we use the black box adversarial attack method of

the previous section as an adversary and evaluate the robustness of different adversarially

trained models against this adversary. We also study the robustness of different model

architectures and evaluate how the capacity of the network impacts transferability.

In the following, we focus on robustness transferability (RT), defined as RT = 1 −

AttackSuccessRate, which measures the percentage of adversarial samples produced using

the black-box attack adversary that do not cause a misclassification on the trained model.

In other words, a higher robustness transferability represents a situation in which the

trained model is more robust under the attack of the black-box attack adversary.

98

Chapter 5 MRobust: Transferability for DNNs

5.4.2 Experimental Setup

We evaluated the method on the MNIST and CIFAR10 datasets. The MNIST

database of handwritten digits contains a training set of 60,000 examples and a test

set of 10,000 examples aforementioned. The digits were size-normalised and centred in

a fixed-size image of 28×28. We generated adversarial examples under the perturbation

constraints of size ε = 0.1 in the l∞ norm. To investigate model capacity, we considered

two training networks of simple and wide architectures, respectively. The simple network

consisted of two convolution layers of sizes 32 and 64 filters and a fully connected layer of

size 1024. The wide network consisted of two convolution layers of sizes 64 and 128 filters,

and also a fully connected layer of size 1024. Both networks were adversarially trained

with FGSM, PGD and MRobust methods. The robustness transferability for black-

box attack adversary between different adversarial trained methods and architectures are

shown in Table 5.1. More explanations about the experimental results are described in

Subsection 5.4.3.

The CIFAR10 dataset contains a training set of 50,000 examples, and a test set

of 10,000 examples of 32×32 colour images in 10 different classes aforementioned. The

value of each pixel in the input image was normalised in the interval [0, 1]. As before,

we generated adversarial examples under the perturbation constraints of size ε = 0.1

in the l∞ norm. For the CIFAR10 dataset, we used Resnet model [55] as the baseline

model and constructed a variant with layers wider by a factor of 10, resulting in a wide

network with 5 residual units with (16, 160, 320, 640) filters each. This network achieved

up to 95.2% accuracy on the clean test dataset. We also performed adversarial training

with FGSM, PGD and MRobust methods on these two networks and investigated the

robustness transferability for black-box attack adversary between different adversarially

trained methods. The resulting robustness transferability measures are shown in Table 5.2.

We will explain more experimental results in Subsection 5.4.4.

99

Chapter 5 MRobust: Transferability for DNNs

(a) Adversarial Accuracy on MNIST dataset with ε = 0.1.

(b) Adversarial Loss on MNIST dataset with ε = 0.1.

Fig. 5.4: Accuracy and loss comparisons on MNIST dataset with ε = 0.1 in the l∞ norm.

100

Chapter 5 MRobust: Transferability for DNNs

5.4.3 MNIST

Table 5.1 summarises the results for robustness transferability obtained for the MNIST

dataset. We first trained DNNs with FGSM, PGD and MRobust methods as the source

and target models and generated attacks with a MAttack adversary based on the query

result from each of the trained source models. The generated attack was then transferred

into each of the target trained models and a check was carried to determine whether the

target trained models can successfully defend against this attack. The results obtained

show that a strong adversary generally reduces transferability and increases robustness

transferability. For example, the robustness transferability with source simple trained

model S. (M Train) paired with target S. (FGSM Train) is 74.7; this is higher than 68.4,

which is the value for the same target but source S. (PGD Train). In addition, the MRo-

bust method generally augments robustness transferability for different models, except

for those that have MRobust itself as a source. For instance, the robustness transferabil-

ity with source simple trained model S. (M Train) paired with target W. (PGD Train)

is 83.5; this is higher than 82.7, which is the value for the same target but source S.

(PGD Train). This happens in most cases. On the contrary, the robustness transfer-

ability with source simple trained model S. (M Train) paired with target W. (M Train)

itself is 78.6; this is lower than 86.2, which is the value for the same target but source S.

(PGD Train). The reason is that we generate attacks based on the source model using

the similar method. Moreover, changing the architecture from simple to wide networks

generally has a positive effect on robustness transferability; so the value with source wide

model W. (M Train) paired with target W. (M Train) is higher than source S. (M Train)

paired with target W. (M Train).

We report the accuracy and loss for different adversarial training methods over the

first 2,000 epochs in Figure 5.4a and Figure 5.4b. The results show that the convergence

is highest for nature training with no adversarial examples, followed by MRobust, then

PGD, and finally FGSM. The results show that MRobust converges faster than the

competing methods with 13.2 % because it searches for only potential candidates of the

perturbations for adversarial examples. This can also help to reduce the required adver-

sarial examples for adversarial training and thus save the training efforts. In summary,

101

Chapter 5 MRobust: Transferability for DNNs

Target

Source S. (Nat.

Train)

S. (FGSM

Train)

S. (PGD

Train)

S. (M

Train)

W. (Nat.

Train)

W. (FGSM

Train)

W. (PGD

Train)

W. (M

Train)

S. (Nature Train) 9.1 75.4 76.4 76.9 3.4 71.9 77.6 78.3

S. (FGSM Train) 68.3 53.4 58.2 64.9 66.1 55.5 66.9 72.5

S. (PGD Train) 69.6 68.1 70.7 69.4 69.3 65.9 70.1 73.2

S. (M Train) 73.3 74.1 75.2 64.5 72.1 74.9 76.4 69.3

W. (Nature Train) 10.3 79.1 78.3 79.6 8.3 67.6 75.9 79.8

W. (FGSM Train) 69.1 63.2 69.7 71.5 69.4 54.9 70.1 74.6

W. (PGD Train) 70.6 69.8 71.3 72.9 70.8 69.2 71.9 72.8

W. (M Train) 75.7 77.1 76.8 69.4 75.2 76.6 79.2 68.3

Table 5.2: The robustness transferability comparison between nature training, FGSM,

PGD and MRobust methods using black-box adversarial attack from the source network

on CIFAR10.

the adversarial training with MRobust converges faster than the other two methods.

5.4.4 CIFAR10

Table 5.2 summarises the robustness transferability of the CIFAR10 dataset. As

above the results show that a strong adversary reduces transferability and helps the

robustness transferability. For instance, the robustness transferability with source simple

trained model S. (M Train) paired with target W. (FGSM Train) is 71.5; this is higher

than 69.7, which is the value for the same target but source S. (PGD Train). Furthermore,

the MRobust contributes to robustness transferability for different models, except for

those with a source MRobust themselves; see, e.g., source S. (M Train)/target W. (M

Train) is lower than source S. (PGD Train)/target W. (M Train), whilst the value of

source S. (M Train)/target W. (PGD Train) is higher than source S. (PGD Train)/target

W. (PGD Train). Moreover, changing the architecture from simple to wide networks

improves robustness transferability on average, e.g., source W. (M Train)/target W. (M

Train) is higher than source S. (M Train)/target W. (M Train).

102

Chapter 5 MRobust: Transferability for DNNs

(a) Adversarial Accuracy on CIFAR10 dataset with ε = 0.1.

(b) Adversarial Loss on CIFAR10 dataset with ε = 0.1.

Fig. 5.5: Accuracy and loss comparisons on CIFAR10 dataset with ε = 0.1 in the l∞

norm.

103

Chapter 5 MRobust: Transferability for DNNs

We plot the accuracy and loss for different adversarial training methods over the

first 25,000 epochs in Figure 5.5a and Figure 5.5b. As above we found that the nature

training method converged faster than all, followed by MRobust, PGD and FGSM. The

results also show that MRobust requires fewer adversarial examples during adversarial

training and thus improves the training efforts by 5.2%. As in the MNIST case, we can

see from Figure 5.5a and Figure 5.5b, the adversarial training with MRobust converges

more efficient than the other two methods.

5.5 Summary

In this chapter, we first introduced some preliminaries about white-box and black-

box attack methods relating to transferability and different adversarial specificities before

diving into our black-box adversarial training algorithm. We then developed a black-

box adversarial attack method and a black-box adversarial training algorithm MRobust

to improve transferability and defend against state-of-the-art attack methods. The at-

tack method does not require access to the internal layers of the model and is therefore

applicable to applications such as security.

Moreover, we demonstrated the experimental results obtained from models with dif-

ferent sizes on MNIST and CIFAR10 datasets. The results suggested that known attacks

on the resulting models are less transferable than those models trained by state-of-the-art

attack algorithms, i.e. FGSM [29] and PGD [26]. From the comparisons, our results

further showed that the resulting DNNs synthesised via our method are less susceptible

to the transferability of attacks. We also showed that the method reduces significantly

the number of adversarial examples required for adversarial training.

In summary, we proposed the MRobust defence method with MCTS and evaluated

the robustness transferability results on MNIST and CIFAR10 datasets in this work.

We focused on small perturbations from potential candidates that are capable to generate

adversarial examples as this can save time complexity for adversarial training and increase

the robustness against adversarial attacks. We used the black-box adversarial training

framework to learn robustness under different constraint metrics. We do not explore

104

Chapter 5 MRobust: Transferability for DNNs

different noise models, e.g., image rotations or different light conditions as we emphasise

non-augmented data here.

In real applications some pre-processing components like denoising elements are nor-

mally included prior to neural network models; so we here only focus on potential per-

turbations. Summarising for this chapter, the results show: i) that the method is com-

putationally attractive as we adversarially train potential perturbations, and save more

computational efforts, ii) it can defend against the FGSM and PGD attacks and sustain a

competitive robustness transferability, and iii) does not appear to be susceptible to local

optima compared with the SoA. In future work, we will continue to improve robustness

and computational efforts applying on different datasets against different attacks.

105

Chapter 6

Conclusions

In this chapter, we assess the advancements of this thesis and draw systematic views

of related work. We conclude with possible future directions. Section 6.1 summarises

the main contributions of each chapter. Then, Section 6.2 evaluates these via drawing

some systematic views of related work compared with those presented in Chapter 2. In

light of this analysis, Section 6.3 underlines the main overall achievements of the thesis.

Section 6.5 finalises with possible future directions and further developments of this line

of work.

6.1 Summary of Thesis Achievements

In Chapter 3, we presented an adversarial training algorithm based on Monte Carlo

Tree Search. We illustrated the robustness of the algorithm by studying its resistance to

adversarial examples in the context of the MNIST and CIFAR10 datasets. For MNIST,

after 2000 epochs the experimental results showed an average improvement of efficiency of

21.1% when compared to PGD. For CIFAR10, after 7000 epochs we obtained an average

improvement of efficiency of 9.8% compared to PGD. We further compared the robust-

ness of the algorithm against previous work against various attack methods. The results

showed that the adversarial training method introduced is not only robust with respect

106

Chapter 6 Conclusions

to adversarial examples but also efficient during training.

In Chapter 4, we presented a novel method for robustness training for ReLU-based

deep neural networks. The method involved decision tree search targeting the worst-

case data points to generate adversarial examples. We combined the decision tree search

method with robust optimisation to train a robust model while maintaining accuracy at

comparably lower computational effort than the state-of-the-art methods. The efficiency

was obtained by focusing on small regions centred around the input that have significant

potential to generate adversarial samples. We implemented the resulting method in the

toolkit DTSRobust, which was evaluated against state-of-the-art defence methods on

MNIST and CIFAR10 datasets. In experiments DTSRobust achieved a 14.2% gain on

efficiency against the state-of-the-art defence methods in MNIST and 10.3% of that in

CIFAR10 while maintaining similar accuracy.

Chapter 5 presented a novel black-box adversarial training algorithm to defend

against the state-of-the-art attack methods in machine learning. In order to search for an

adversarial attack, the algorithm analysed small regions around the input that are likely

to make significant contributions to the generation of adversarial samples. Unlike some

of the literature in the area, the proposed method does not require access to the internal

layers of the model and is therefore applicable to applications for security, e.g., obfus-

cating malware code within network packets or misleading signature detection; attacks

in biometric recognition where fake biometric traits may be exploited to impersonate a

legitimate user. We reported the experimental results obtained on models of different

sizes built for the MNIST and CIFAR10 datasets. The results demonstrated that known

attacks on the resulting models are less transferable than those models trained by the

state-of-the-art attack algorithms.

6.2 Comparisons in Related Work

In this section, we draw a comparison between the results in this thesis and the

existing state-of-the-art methods. See also the discussion at the end of each chapter. This

section is systematisation and an extension of those presentations. The motivations and

107

Chapter 6 Conclusions

contributions of this thesis give the main criteria to be considered in this comparison.

These criteria are categorised as follows: 1) perturbation-based adversarial robustness; 2)

a broader view of robustness in DNNs; 3) robustness in generative models; 4) equivariance

and invariance to noises in computer vision.

6.2.1 Perturbation-based Adversarial Robustness

A rapidly growing body of work has addressed the adversarial robustness of deep

neural networks with respect to small norm-bounded perturbations. This problem has

motivated various related researches about adversarial attacks and defences within the

scope of norm-bounded adversaries [91,100]. While some defences have resisted against a

variety of strong adversaries [26], it remains an open question as to how well to defend

against such attacks.

Several notable works formulate adversarial training algorithms which proposed meth-

ods to defend against adversarial attacks, the goal of which is to defend neural networks

against worst-case perturbations [29,36,101]. Some of the most successful works take a

robust optimisation perspective, in which the goal is to find the worst-case adversarial

perturbations of data by solving a min-max problem [26,102]. In a different yet related

line of work, optimisation-based methods have been proposed to provide certifiable guar-

antees on the robustness of neural networks against small perturbations [103,104,105].

Another line of researches has studied how adapting network architectures can be used

to defend against adversarial examples [106,62].

As adversarial training methods have become more sophisticated, computational effi-

ciency is regarded as a criterion during the training process. Our objective was to provide

an efficient training algorithm that is not only robust against different norm-bounded

perturbations but also generates effective adversarial examples which are perceptually

similar to a given input image such as [43,107]. Based on these purposes, we proposed an

MCTS-based Robustness Method in Chapter 3 and a Decision Tree Search Robustness

Method in Chapter 4. Both of these methods provide generalisations for the robustness of

DNNs while maintaining competitive computation efforts from the results. Besides, these

108

Chapter 6 Conclusions

methods also provide adversarial examples only considering potential features which are

possible to generate successful attacks. Benefits from these advances, our methods are

efficient during adversarial training while retaining robustness against a variety of attacks,

e.g., the results from Section 3.4 and 4.3.

6.2.2 A Broader View of Robustness in DNNs

From a broader view of robustness in DNNs, defence methods can be classified into

two variants. The first variant can be seen as reactive defence methods, which defend

after the attacks are generated and attempt to detect adversarial examples from inputs

after DNNs are built. Adversarial detecting [27] and input reconstruction [20] fall in

the realm of reactive ones. The second variant can be seen as proactive defence meth-

ods, which defend before adversaries generate adversarial examples. The representative

researches of proactive defence methods are network distillation [21] and adversarial re-

training [28]). While these defence methods have helped to motivate new notions of

robustness to some extent, these approaches proposed defences against the nuisances are

limited in the sense that they do not generalise well to a learning paradigm. For the ad-

versarial detecting methods, Carlini et al. demonstrated that many adversarial detecting

methods [27,57,58,59,60,61] cannot defend against the C&W attack [42] to varying de-

grees. As for the input reconstruction [20], calculating partial derivatives at each layer in

the back-propagation framework becomes computationally expensive. Also, the proposed

layered based approach does not guarantee global optimality. Speaking of the proactive

defence methods such as network distillation [21], it has been shown failing to defend

against an attack developed in [42]. Although the adversarial re-training [28] can defend

against most series of attacks, the computational efforts are regularly concerned.

The works discussed above do not provide comprehensive defences under different

attack methods on the whole. Our method improves on the state of the art by providing

a defence method that is comparably computationally attractive, can defend against the

C&W attack and does not appear to be susceptible to local optima from the results.

More recently, a different line of work has considered the robustness of deep neural

109

Chapter 6 Conclusions

networks against transformations that are more likely to be encountered in applications.

Nuisances that have recently received attention from the adversarial robustness com-

munity include adversarial quilting [67], adversarial patches and clothing [108], geometric

transformations [109,110,111], distortions [52], deformations and occlusions [112], and nui-

sances encountered by unmanned aerial vehicles [113]. While these progresses have helped

to motivate new notions of robustness, the approaches that propose defences against these

nuisances are limited in the sense that they do not generalise to a learning model which

could be applied across different forms of natural variation. In response to these works

and motivated by myriad safety-critical applications, a defence method that is plausible

to be leveraged for the robustness of different applications is considered. From the moti-

vation behind our method, which can provide general robust training algorithms on deep

neural networks across a variety of scenarios and applications.

6.2.3 Robustness in Generative Models

Another line of work that focuses on attack and defence strategies against adversarial

examples use generative models in the loop of training. In [114], the authors proposed

attack strategies that use the generator from a generative adversarial network (GAN)

to generate additive perturbations that can be used to attack a classifier. The authors

of [115] and [116] use the generator from a GAN to generate adversarial examples that

obey norm-based constraints. Alternatively, [117] use GANs to construct adversarial

patterns that can be used to transfer adversarial examples from one domain to another.

Similarly, [118] generate unrestricted adversarial examples via a generative model.

On the other hand, a framework called DefenseGAN, which uses a Wasserstein

GAN to “de-noise” adversarial examples [119], has been proposed to defend against

perturbation-based attacks. This defence method was later broken by the Robust Mani-

fold Defense [120], which searches over the parameterised manifold induced by a generative

model to find worst-case perturbations of data. The min-max formulation used in this

work is analogous to the projected gradient descent (PGD) defence [26].

In contrast to the generative adversarial models, we describe in this thesis are works

110

Chapter 6 Conclusions

that aim to learn and model the natural variability within worst-case perturbations of

data via robust optimisation. Our methods are shown to be resistant against attacks

such as PGD and C&W compared with the aforementioned works. Furthermore, it is

still unknown in most of these aforementioned works whether they are robust to PGD

and C&W. Also, the generated samples from our methods are perceptually realistic ones,

which can be applied to another hierarchy of networks for robust training.

6.2.4 Equivariance and Invariance to Noises in Computer

Vision

Parallel to the progress made toward training deep neural networks to be robust

against small, norm-bounded adversarially chosen perturbations, a related line of work in

the computer vision community has sought to design equivariant DNNs. In the context

of adversarial robustness, if P is a function that perturbs an input by a small amount,

DNNs are often trained to provide the same prediction for f(P (x)) and f(x) [121].

More generally, several more recent works have sought to provide robustness or in-

variance against noise-based attacks; such works have included [122,123], which used an

information-theoretic approach to edit the noise content of images to create perceptually

similar data that caused misclassification. Similarly, another line of work has sought to

use differentiable renderers to produce “semantic adversarial examples” [124]. In this

line of work, mechanisms are often used to edit noise factors such as rotation or scaling

in images by creating perturbations in a given semantic latent space [125].

The progress toward equivariant and invariant neural networks in computer vision

has largely focused on designing new network topologies to combat a given transformation

or a set of related transformations. Our robust training framework differs fundamentally

from the above approaches in the following aspects. Rather than changing the topology

of the neural network, we propose to change the robust training procedure according to

the model of variation. In the case where the model is known (e.g. white-box attacks)

we can use it during training to provide worst-case examples to train the neural network.

In more challenging and natural cases where the model is unknown (and hence cannot be

111

Chapter 6 Conclusions

used to alter the topology) we proposed to learn the model in advance and then use it

for training. Our robust training paradigm could provide an intellectual bridge between

robust deep learning and exploiting invariances in computer vision.

6.3 Overall Contributions

The contributions of our thesis can be summarised as follows:

• Norm-based robust deep neural networks. We propose a paradigm for differ-

ent norm-bounded adversarial robustness with robust learning, wherein models of

natural variation express changes due to a variety of applications.

• Robust optimisation formulation. We formulate the novel problem of model-

based robust training by constructing novel general robust optimisation procedures

that search for challenging norm-based variations of data.

• Learned models of natural variation. For many different forms of natural

variation commonly encountered in safety-critical applications, we show that our

robust models can be used to learn models of natural variations that are consistent

with realistic conditions.

• Model-based robust training algorithms. We propose a family of novel robust

training algorithms that exploit models of natural variations in order to improve the

robustness of deep neural networks against different metrics of worst-case natural

variations.

• Broad applicability and robustness improvements. We show empirically that

models of natural variations can be used in our formulation to provide significant

improvements in the robustness of deep neural networks for several datasets com-

monly used in deep neural networks. We reported improvements as large as 10-20

percentage points in the test efficiency compared to state-of-the-art adversarially

robust classifiers on tasks involving challenging conditions.

112

Chapter 6 Conclusions

• Reusability and modularity of models of natural variation. We show that

models of variations can be reused on multiple new and different datasets without

retraining to provide high levels of robustness against naturally varying conditions.

Further, we show that models of different variations can be easily composed to

provide robustness against multiple forms of variations.

• Out-of-distribution robustness. We show that our norm-based paradigm can

be used to provide robustness to unseen and out-of-distribution data that has been

subjected to higher levels of variations than the data that is seen during training.

We conclude robust methods varying against both white-box and black-box attacks

while maintaining competitive efficiency.

While the experiments in this thesis focus on image classification tasks subject to

challenging conditions, our norm-based robust learning paradigms are much broader and

can, in principle, be applied to many other deep learning domains as long as one can

obtain accurate models of how the data can vary in a useful manner. Before diving into

numerous directions for future research, we list some limitations in which this thesis does

not address in the next section.

6.4 Thesis Limitations

We enumerate the uncovered scopes from four aspects.

Different Noise Models. In this thesis, we used the robust-learning framework

to learn robustness under different constraint metrics. We did not explore different noise

models, e.g., image rotations or different light conditions. This is left for future work.

Different Model-based Architectures. Though we evaluated the robustness in

different sizes of models, we do not compare under different model types, e.g., from

ResNets to VGGNets. As we select model types following the principles of choosing the

most accurate model for some specific dataset, we do not evaluate under various types of

model architectures.

113

Chapter 6 Conclusions

Different Applications beyond Image Classification. In this thesis, we focus

on researches in image classifications but robustness against adversarial attacks exists in

different domains, e.g., natural language processing (NLP), malware detection, or network

attack. As a constantly increasing number of real-world applications and systems have

been powered by deep learning, robustness in these applications becomes more and more

important.

Theoretical Foundations. While this thesis emphasises improvement for robust-

ness against different noises from a physical perspective, a different perspective from a

theoretical aspect is not a central objective here. Some theoretical questions can be con-

sidered in this field. For example, how do we develop a faster algorithm from a geometric

transformation such as rotation or scaling as well as a statistical perspective aforemen-

tioned?

6.5 Future Work

In this thesis, we investigated the problem of ensuring the robustness of deep neural

networks with respect to small changes in the input. Motivated by perceptible perturba-

tions in computer vision, such as lighting changes, we proposed novel algorithms based on

robust training for deep neural networks that provides robustness with respect to different

variations. Our notion of robustness differs from the notion of adversarial training with

respect to norm-bounded perturbations. Our optimisation-based formulation for model-

based training results in a family of training algorithms that we refer to as model-based

robust training. These algorithms exploit either known or previously learned models of

natural variations using both robust and adversarial approaches. Given a model of natu-

ral variation P that models naturally occurring perturbations, the main idea across these

algorithms is to use P to perform model-based data augmentation or model-based adver-

sarial training to produce samples with varying noises. In the case of unknown noises, by

blending models P with adversarial training, we empirically find that our model-based

paradigms provide significant robustness improvements for numerous physically meaning-

ful noises across various datasets. Our model-based paradigm is naturally compositional,

114

Chapter 6 Conclusions

leverages models across datasets, and shows improved robustness as datasets become more

challenging. In what follows, we briefly highlight several of these broad directions from

the aforementioned perspectives.

Learning a Library of Different Noise Models. First, the problem of how to

best learn a model of natural variations to perform model-based training is an open and

interesting problem. In this thesis, we used the robust-learning framework, but other

existing architectures may be better suited for specific noises or datasets. Indeed, a

more rigorous statistical analysis of generative models may lead to the discovery of new

architectures designed specifically for model-based training. To this end, recent work in

learning equivariances in computer vision may provide insight into learning physically

meaningful models.

Model-based Algorithms and Architectures. Another important direction in-

volves the development of new algorithms for solving the min-max formulation. In this

thesis, we presented three algorithms which can be used to approximately solve robust-

ness problem. In particular, adapting Monte-Carlo methods to search globally over the

manifold induced by learned models in a latent space of variability may provide more

efficient, scalable, or robust results. Do we need to decouple offline learning of a model

of natural variation or it is possible to think of a new architecture in which the model

and the classifier can be learned simultaneously? Another interesting direction is to re-

think deep network architectures in a model-based manner by taking inspiration from

how equivariance is exploited in deep network architectures used in computer vision.

Applications beyond Image Classification. Throughout the thesis, we have

focused on empirical demonstrations of our approaches in numerous image classification

tasks. But our model-based paradigm could be broadly applied in numerous applications

within computer vision as well as outside computer vision. Within computer vision, one

can consider other tasks, such as segmentation, in the presence of challenging physical

noises. Outside computer vision, one exciting area is to exploit physical models of robot

dynamics with deep reinforcement learning for applications such as walking in unknown

terrains. In any domain where one has access to good models, our approaches allow

domain experts to leverage these models in order to make deep neural networks more

115

Chapter 6 Conclusions

robust.

Theoretical Foundations. Finally, we believe that there are many interesting open

questions with respect to the theoretical aspects of model-based robust training. What

type of models provides significant robustness gain in our paradigms? How accurate does

a model need to be to produce neural networks that are robust to natural variations? We

would like to address such theoretical questions from a geometric, physical as well as a

statistical perspective with an eye toward developing faster algorithms that are both more

sample-efficient as well as more robust. A deeper theoretical understanding of our robust

learning paradigm could result in new approaches that blend model-based and data-based

methods and algorithms.

116

Bibliography

[1] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,”

in Proceedings of the 5th International Conference on Computers and Games, 2006,

pp. 72–83.

[2] Y. Liu and A. Lomuscio, “An mcts-based adversarial training method for image

recognition,” in Proceedings of the International Joint Conference on Neural Net-

works (IJCNN), 2019.

[3] Y. Liu and A. Lomuscio, “Robustness learning via decision tree search robust opti-

misation,” in Proceedings of the British Machine Vision Conference (BMVC), 2021.

[4] Y. Liu and A. Lomuscio, “A method for robustness against adversarial attacks

on deep neural networks,” in Proceedings of the International Joint Conference on

Neural Networks and IEEE World Congress on Computational Intelligence (WCCI),

2020.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[6] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research groups,”

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

117

[7] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning with neural

networks,” in Advances in Neural Information Processing Systems 27, 2014, pp.

3104–3112.

[8] S. Sabour, N. Frosst, and G. Hinton, “Dynamic routing between capsules,” in Ad-

vances in neural information processing systems, 2017, pp. 3856–3866.

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding,” in arXiv:1810.04805, 2018.

[10] I. Apple, “Face id security https://images.apple.com/business/docs/FaceID

Security Guide.pdf,” 2017.

[11] H. Tamura and N. Yokoya, “Image database systems: A survey,” Pattern Recogni-

tion, vol. 17, no. 1, pp. 29–43, 1984.

[12] S. Vijayanarasimhan and P. Natsev., “large visual databases https://research.

googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html,” 2016.

[13] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel,

M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end

learning for self-driving cars,” in arXiv: 1604.07316, 2016.

[14] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015,

pp. 427–436.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.

1–9.

[16] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and

F. Roli, “Evasion attacks against machine learning at test time,” ECML PKDD,

vol. 8190, no. 3, pp. 387–402, 2013.

118

https://images.apple.com/business/docs/FaceID_Security_Guide.pdf
https://images.apple.com/business/docs/FaceID_Security_Guide.pdf
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html
https://research.googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html

[17] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” in Proceedings of the Inter-

national Conference on Learning Representations (ICLR), 2014.

[18] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical

world,” in arXiv: 1607.02533, 2016.

[19] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rah-

mati, and D. Song, “Robust physical-world attacks on deep learning models,” in

arXiv:1707.08945, 2017.

[20] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to ad-

versarial examples,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2015.

[21] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense

to adversarial perturbations against deep neural networks,” in Proceedings of the

37th IEEE Symposium on Security and Privacy. IEEE, 2016, pp. 582–597.

[22] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel, “Ensemble ad-

versarial training: Attacks and defenses,” in arXiv:1705.07204, 2017.

[23] A. Rozsa, M. Gunther, and T. Boult, “Towards robust deep neural networks with

bang,” in arXiv:1612.00138, 2016.

[24] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example defenses:

Ensembles of weak defenses are not strong,” in arXiv:1706.04701, 2017.

[25] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples

in deep neural networks,” in arXiv:1704.01155, 2017.

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep

learning models resistant to adversarial attacks,” in Proceedings of the International

Conference on Learning Representations (ICLR), 2018.

[27] V. F. J.H. Metzen, T. Genewein and B. Bischoff, “On detecting adversarial perturba-

tions,” in Proceedings of the International Conference on Learning Representations

(ICLR), 2017.

119

[28] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”

in Proceedings of the International Conference on Learning Representations (ICLR),

2017.

[29] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” in Proceedings of the International Conference on Learning Representa-

tions (ICLR), 2015.

[30] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[31] N. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial

Intelligence, 1st ed. Springer, 2018.

[32] C. Bishop, Pattern Recognition and Machine Learning. Berlin, Heidelberg:

Springer-Verlag, 2006.

[33] S. Haykin, Neural networks and learning machines, 3rd ed. Upper Saddle River,

NJ: Pearson Education, 2009.

[34] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, no. 1,

pp. 106–154, 1962.

[35] K. Fukushima, “Neocognitron: Self-organizing neural network model for a mecha-

nism of pattern recognition unaffected by shift in position,” Biological Cybernetics,

vol. 36, pp. 193–202, 1980.

[36] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate

method to fool deep neural networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 2574–2582.

[37] W. Knight, “The dark secret at the heart of ai,” in MIT Technology Review, 2017.

[38] M. Barreno, B. Nelson, A. Joseph, and J. Tygar, “The security of machine learning,”

Machine Learning, vol. 81, no. 2, pp. 121–148, 2010.

[39] F. Roli, B. Biggio, and G. Fumera, “Pattern recognition systems under attack,” of

the 18th Iberoamerican Congress on Progress in Pattern Recognition, Image Analy-

sis, Computer Vision, and Applications, vol. 8258, pp. 1–8, 2013.

120

[40] J. Saxe and K. Berlin, “Deep neural network based malware detection using two

dimensional binary program features,” in Proceedings of 10th International Confer-

ence on Malicious and Unwanted Software (MALWARE), 2015, pp. 11–20.

[41] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Celik, and A. Swami, “The

limitations of deep learning in adversarial settings,” in Proceedings of the 37th IEEE

Symposium on Security and Privacy. IEEE, 2016, pp. 372–387.

[42] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”

in Proceedings of the 38th IEEE Symposium on Security and Privacy. IEEE, 2017,

pp. 39–57.

[43] J. Su, D. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-

works,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–

841, 2019.

[44] F. Croce and M. Hein, “Minimally distorted adversarial examples with a fast adap-

tive boundary attack,” in arXiv: 1604.07316, 2019.

[45] A. Modas, S. Moosavi-Dezfooli, and P. Frossard, “Sparsefool: A few pixels make

a big difference,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE, 2019, pp. 9087–9096.

[46] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceed-

ings of the International Conference on Learning Representations, ICLR, 2015.

[47] N. Carlini and D. Wagner, “Defensive distillation is not robust to adversarial ex-

amples,” CoRR, 07 2016.

[48] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Good-

fellow, A. Madry, and A. Kurakin, “On evaluating adversarial robustness,” CoRR,

vol. abs/1902.06705, 2019.

[49] M. Sharif, S. Bhagavatula, L. Bauer, and M. Reiter, “Accessorize to a crime: Real

and stealthy attacks on state-of-the-art face recognition,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, 2016, pp.

152–1540.

121

[50] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2018, pp. 1625–1634.

[51] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “NO need to worry about adversarial

examples in object detection in autonomous vehicles,” CoRR, 2017.

[52] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial

examples,” CoRR, 2017.

[53] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to com-

mon corruptions and perturbations,” in arXiv:1903.12261, 2019.

[54] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations for videos,” in

Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 8973–8980.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 2016, pp. 770–778.

[56] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adver-

sarial examples robustly,” in Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 446–454.

[57] A. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as a defense

against evasion attacks on machine learning classifiers,” in arXiv:1704.02654, 2017.

[58] R. Feinman, R. Curtin, S. Shintre, and A. Gardner, “Detecting adversarial samples

from artifacts,” in arXiv:1703.00410, 2017.

[59] Z. Gong, W. Wang, and W. Ku, “Adversarial and clean data are not twins,” in

arXiv:1704.04960, 2017.

[60] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the

(statistical) detection of adversarial examples,” in arXiv:1702.06280, 2017.

122

[61] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial images,” in

Proceedings of the International Conference on Learning Representations (ICLR),

2017.

[62] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial ex-

amples,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017, pp. 135–147.

[63] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Proceedings of the Inter-

national Conference on Machine Learning (ICML). Omnipress, 2011, pp. 833–840.

[64] X. Li and F. Li, “Adversarial examples detection in deep networks with convo-

lutional filter statistics,” in Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 5764–5772.

[65] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples

in deep neural networks,” in Annual Network and Distributed System Security Sym-

posium (NDSS), 2018, pp. 1–15.

[66] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Leverag-

ing generative models to understand and defend against adversarial examples,” in

Proceedings of the International Conference on Learning Representations (ICLR),

2018.

[67] C. Guo, M. Rana, M. Cisse, and L. Maaten, “Countering adversarial images using

input transformations,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2018.

[68] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects

through randomization,” in Proceedings of the International Conference on Learning

Representations (ICLR), 2018.

[69] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random transforms for

adversarially robust defense,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019, pp. 6521–6530.

123

[70] C. Xie, Y. Wu, L. Maaten, A. Yuille, and K. He, “Feature denoising for improving

adversarial robustness,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 501–509.

[71] Y. Wu, D. Bamman, and S. Russell, “Adversarial training for relation extraction,”

in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-

cations Security, 2017, pp. 1779–1784.

[72] Y. Dong, H. Su, J. Zhu, and F. Bao, “Towards interpretable deep neural networks

by leveraging adversarial examples,” in arXiv:1708.05493, 2017.

[73] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvari, “Learning with a strong

adversary,” in arXiv:1511.03034, 2015.

[74] Y. LeCun and C. Cortes, “Mnist handwritten digit database http://yann.lecun.

com/exdb/mnist/,” 1998.

[75] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-10 https:

//www.cs.toronto.edu/∼kriz/cifar.html,” 2010.

[76] D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of

the IEEE International Conference on Computer Vision (ICCV), 1999, pp. 1150–

1157.

[77] D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Com-

put. Vision, vol. 60, pp. 91–110, 2004.

[78] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G.Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,

and D. Hassabis, “Mastering the game of go with deep neural networks and tree

search,” Nature, vol. 529, pp. 484–503, 2016.

[79] A. Bental, L. E. Ghaoui, and A. Nemirovski, Robust Optimization, ser. Princeton

Series in Applied Mathematics. Princeton University Press, October 2009.

[80] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of the

British Machine Vision Conference (BMVC), 2016, pp. 87.1–87.12.

124

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

[81] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples,” in

arXiv:1605.07277, 2016.

[82] Y. Liu and A. Lomuscio, “Mrobust: A method for robustness against adversarial

attacks on deep neural networks,” in 2020 International Joint Conference on Neural

Networks (IJCNN), 2020, pp. 1–8.

[83] A. Fawzi, S. Moosavi-Dezfooli, P. Frossard, and S. Soatto, “Empirical study of the

topology and geometry of deep networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE, 2018, pp. 3762–3770.

[84] X. Ma, B. Li, Y. Wang, S. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song,

M. Houle, and J. Bailey, “Characterizing adversarial subspaces using local intrinsic

dimensionality,” in arXiv:1801.02613, 2018.

[85] F. Tramr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “The space of

transferable adversarial examples,” in arXiv:1704.03453, 2017.

[86] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial

perturbations,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE, 2017, pp. 1765–1773.

[87] D. Warde-Farley and I. Goodfellow, Adversarial perturbations of deep neural net-

works. In T. Hazan, G. Papandreou, and D. Tarlow, editors, Perturbations, Opti-

mization, and Statistics. MIT Press, 2016.

[88] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and gpu math com-

piler in python,” in Proceedings of the Python for Scientific Computing Conference

(SciPy), 2010.

[89] E. Battenberg, S. Dieleman, and al, “Lasagne: Lightweight library to build and

train neural networks in theano,” 2015.

125

[90] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and A. Swami, “Practical

black-box attacks against machine learning,” in Proceedings of the 2017 ACM on

Asia Conference on Computer and Communications Security, 2017, p. 506–519.

[91] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples,” in Proceedings of the

35th International Conference on Machine Learning, 2018, pp. 274–283.

[92] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses

for deep learning,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 30, no. 9, pp. 2805–2824, 2019.

[93] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in computer

vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[94] C. Guo, J. Gardner, Y. You, A. Wilson, and K. Weinberger, “Simple black-box

adversarial attacks,” CoRR, 2019.

[95] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with

limited queries and information,” CoRR, 2018.

[96] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reli-

able attacks against black-box machine learning models,” 2018.

[97] H. Anderson, J. Woodbridge, and B. Filar, “Deepdga: Adversarially-tuned domain

generation and detection,” 2016.

[98] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box attacks

based on gan,” 2017.

[99] H. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine learning malware

detection,” 2017.

[100] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to adver-

sarial example defenses,” 2020.

[101] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. Ghaoui, and M. Jordan, “Theoretically

principled trade-off between robustness and accuracy,” in Proceedings of the 36th

International Conference on Machine Learning (ICML), 2019, pp. 7472–7482.

126

[102] J. Kolter and E. Wong, “Provable defenses against adversarial examples via the

convex outer adversarial polytope,” CoRR, 2017.

[103] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial

examples,” CoRR, 2018.

[104] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas, “Efficient and ac-

curate estimation of lipschitz constants for deep neural networks,” in Advances in

Neural Information Processing Systems, 2019, pp. 11 427–11 438.

[105] M. Fazlyab, M. Morari, and G. Pappas, “Safety verification and robustness analysis

of neural networks via quadratic constraints and semidefinite programming,” 2020.

[106] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval net-

works: Improving robustness to adversarial examples,” in Proceedings of the 34th

International Conference on Machine Learning, 2017, pp. 854–863.

[107] Y. Dong, F. Liao, T. Pang, X. Hu, and J. Zhu, “Discovering adversarial examples

with momentum,” 2017.

[108] Z. Wu, S. Lim, L. Davis, and T. Goldstein, “Making an invisibility cloak: Real

world adversarial attacks on object detectors,” 2020.

[109] C. Kanbak, S. Moosavi-Dezfooli, and P. Frossard, “Geometric robustness of deep

networks: analysis and improvement,” 2017.

[110] M. Balunovic, M. Baader, G. Singh, T. Gehr, and M. Vechev, “Certifying geomet-

ric robustness of neural networks,” in Advances in Neural Information Processing

Systems, 2019, pp. 15 313–15 323.

[111] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the land-

scape of spatial robustness,” 2019.

[112] X. Wang, A. Shrivastava, and A. Gupta, “A-fast-rcnn: Hard positive generation

via adversary for object detection,” in Proceedings of Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 3039–3048.

127

[113] Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon, and Z. Wang, “Delving into

robust object detection from unmanned aerial vehicles: A deep nuisance disentan-

glement approach,” in 2019 IEEE International Conference on Computer Vision

(ICCV), 2019, pp. 1201–1210.

[114] C. Xiao, B. Li, J. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial exam-

ples with adversarial networks,” in Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence, IJCAI-18, 2018, pp. 3905–3911.

[115] L. Schott, J. Rauber, M. Bethge, and W. Brendel, “Towards the first adversarially

robust neural network model on mnist,” 2018.

[116] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial examples,” 2018.

[117] M. Naseer, S. Khan, H. Khan, F. Khan, and F. Porikli, “Cross-domain transferabil-

ity of adversarial perturbations,” 2019.

[118] I. Dunn, H. Pouget, T. Melham, and D. Kroening, “Adaptive generation of unre-

stricted adversarial inputs,” 2019.

[119] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers

against adversarial attacks using generative models,” 2018.

[120] A. Jalal, A. Ilyas, C. Daskalakis, and A. Dimakis, “The robust manifold defense:

Adversarial training using generative models,” 2019.

[121] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via random-

ized smoothing,” in Proceedings of the 36th International Conference on Machine

Learning, 2019, pp. 1310–1320.

[122] J. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge, “Excessive invariance causes

adversarial vulnerability,” 2020.

[123] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener, “Efficient

verification of neural networks via dependency analysis,” in Proceedings of the 34th

AAAI Conference on Artificial Intelligence, 2020, pp. 3291–3299.

[124] T. Dreossi, S. Jha, and S. Seshia, “Semantic adversarial deep learning,” 2018.

128

[125] L. Jain, S. Chen, W. Wu, U. Jang, V. Chandrasekaran, S. Seshia, and S. Jha,

“Generating semantic adversarial examples with differentiable rendering,” 2020.

129

	Abstract
	ACKNOWLEDGMENTS
	DECLARATION OF ORIGINALITY
	COPYRIGHT
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Symbols and Acronyms
	Introduction
	Research Motivation
	Research Challenges and Existing Approaches
	Contributions and Publications
	Thesis Structure Overview

	Background and Literature Review
	Machine Learning Basics
	Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks

	Attacks on Deep Neural Networks
	Fast Gradient Sign Method
	Projected Gradient Descent
	Jacobian-based Saliency Map Attack
	Deepfool Attack
	Carlini & Wagner Attack
	Summary of Attack Techniques
	Adversarial Attacks in the Physical World

	Reactive Countermeasures
	Adversarial Detecting
	Input Reconstruction

	Proactive Countermeasures
	Network Distillation
	Adversarial Re-training

	Existing Limitations

	An MCTS-based Method for Robustness
	Problem Formulation & Notation
	MCTS-based Attack Method
	Scale Invariant Feature Transform (SIFT)
	Monte Carlo Tree Search (MCTS)
	Effective Adversarial Examples

	MCTS-based Adversarial Training
	MCTS-based Adversarial Training Framework
	MCTS-based Adversarial Training Algorithm

	Experimental Results
	Adversarial Accuracy
	Experimental Setup
	MNIST
	CIFAR10

	Summary

	A Decision Tree Search Robustness Method
	Decision Tree Search Attack
	Initialise Spanning Tree
	Tree Traversal
	Sampling Nodes
	Back Propagation

	The DTS Robust Tool
	Robust Optimisation
	DTS Implementation Framework

	Experimental Results
	Experimental Setup
	Network Architecture
	MNIST
	CIFAR10
	Adversarial Examples with DTS

	Summary

	MRobust: Transferability for DNNs
	Defining Transferability
	Cross-technique Transferability
	Intra-technique Transferability

	White-box and Black-box Attack Methods
	White-box Attack Model
	Black-box Attack Model

	The MRobust Defence Method
	Black-box Adversarial Attack Method
	Black-box Adversarial Training Algorithm: MRobust

	Experimental Results
	Robustness Transferability
	Experimental Setup
	MNIST
	CIFAR10

	Summary

	Conclusions
	Summary of Thesis Achievements
	Comparisons in Related Work
	Perturbation-based Adversarial Robustness
	A Broader View of Robustness in DNNs
	Robustness in Generative Models
	Equivariance and Invariance to Noises in Computer Vision

	Overall Contributions
	Thesis Limitations
	Future Work

	Bibliography

