
Imperial College of Science, Technology and Medicine
Department of Physics

Full stack development toward a trapped ion logical qubit

David Bretaud

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Physics at the Imperial College of London

May 2021

1



Declaration

I declare the work presented in this thesis as my own, and that the contribution of others is clearly referenced.

May 1, 2021

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a

Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You may also create

and distribute modified versions of the work. This is on the condition that: you credit the author and do not use

it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence

and linking to the licence text. Where a work has been adapted, you should indicate that the work has been

changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in this licence or

permitted under UK Copyright Law.

2



Abstract

Quantum error correction is a key step toward the construction of a large-scale quantum computer, by pre-

venting small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and

correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical

qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates

can be performed.

The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each

physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized

through RF and microwave radiation in combination with magnetic field gradients. The project vertically in-

tegrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional

small device demonstrator.

This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware

level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated.

The experimental organization is optimized through automation and compressed waveform data transmission.

A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The

demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger

scale iterations [1].

3



4



Acknowledgements

• First and foremost I would like to thank Prof. Myungshik Kim for accepting me in the first cohort of

the Quantum System Engineering CDT. This crazy journey would not have started without that fateful

interview with him in company of Dr Mark Oxborrow and Prof. Bruno Clerckx.

• I would like to thank Prof. Winfried Hensinger for accepting me to do my doctoral project in the Ion

Quantum Technology group. His vision has provided a great deal of inspiration throughout these years.

• I would like to thank Dr Florian Mintert for his help from London, his sharp comments and his energy

deployed to overcome all the administrative challenges encountered through the years.

• I express my thanks to Dr Sebastian Weidt, whose multitasking capabilities, being an academic, father

and a CEO, maintaining efficiency everywhere, are definitely what I would call scalable. His critical

insight at our weekly meetings was regularly helpful and needed.

• I would like to thank Dr Sam Hile for his invaluable help and support across those three and a half years,

from hardware design, software engineering, theoretical physics to thesis writing.

• I would like to thank Alex Owens, a true brother in arms and relentless worker whose help transformed

our experiment into, well, a working one.

• I would like to thank Raphaël Le Brun-Ricalens, the hardest worker I know, for your friendship, your

help, and also all these evenings of moral support getting shot together in PUBG.

• I would like to thank Dr Zak Romaszko for his passion and humor brought in the group, and for giving me

this probably once in a lifetime opportunity to play MGS4. I would also like to thank Martin Siegele for

his incredible work on making the next chip generation a reality, Dr Reuben Puddy for his explanations

on microfabrication and allowing us to play his really fun card game and Dr Seokjun Hong for all of his

time checking those traps. You guys of the micro-fab team designed a working X-junction surface ion

trap and I will be forever grateful for it. I will thank the subcontracting company which fabricated it next

week.

• I would like to thank Dr Tomas Navickas for basically keeping this lab in one piece for all those years,

whose practical knowledge about ion trapping kept us on the right track on many occasions.

5



• I would like to thank Mitch Peaks and Iason Apostolatos, true friends, true geeks and great colleagues.

They made these years so much more enjoyable.

• I would like to thank Christophe Valahu for his help in the lab and on my thesis. I hope you get that

dream job of yours.

• I would like to thank Mark Webber for all the interesting discussions and collaboration on quantum

compilation.

• I would like to thank Nick Johnson and Dr Harry Bostock, the old guard, for their help and all our great

discussions.

• I would like to thank Pedro Taylor-Burdett for his hard work on the initial atomic oven designs. I sincerely

hope that this new experiment of yours will succeed.

• I would like to thank Chris Knapp for his contribution to the group’s atmosphere. We didn’t have much

occasions for collaborating because of covid, but I wish you best for your PhD.

• I would like to thank Dr Anton Ground, an inspiration to me as a scientist, engineer and person.

• I would like to thank Dr Anna Webb for mentoring me for those first few months in the group and

teaching me everything to know about doing research with trapped ions.

• I would like to thank Dr Simon Webster for his help and support during my first year in the research

group.

• I would like to thank all those who arrived this year: Falk Bonus, Daisy Smith, Sahra Kulmiya, Scott

Mason and Dr Mariam Akhtar. You guys rock and this research group has bright days ahead of it because

of you all. Have fun. I will miss the Saturday lab work.

• I would like to thank the first QSE cohort for their patience and humor.

• I would like to thank my family and friends back in France for their overwhelming support and love.

Finally, I also would like to thank Pamela for her incredible patience and support. I wish to thank

Rydberg despite the blatant ignorance of this cat about my thesis questions.

6



Chapter Contributions

The research presented in this thesis is undoubtedly a team effort. Although the contributions of other re-

searchers are regularly mentioned throughout the thesis, this section provides a summary, per chapter, of the

specific contributions to the presented work:

• Chapter 3: The implementation of the polychromatic gate and experimentally characterizing its robust-

ness was conducted by Dr Anna Webb, Dr Simon Webster, Dr Adam Lawrence and myself. I participated

in the search for implementing the gate itself, helped characterize the injected noise and measured with

Dr Simon Webster the first robustness scan. The macroscopic blade trap experiment was developed over

nearly fifteen years and involves a long list of people [2]. I developed the calibration simulation.

• Chapter 5: The contributions to the ProjectQ framework of existing compilation algorithms results from

a collaborative work with Daisy Smith. I alone designed the QCCD syntax and the shuttling viewer

software. The current pulse sequence structure was written by Christophe Valahu, based on the work of

Dr Simon Webster and Dr Adam Lawrence, and I extended it to include shuttling sequences.

• Chapter 6: I designed, implemented and tested the complete software framework for laser control and

monitoring. I designed the cyro-cooler software following a requirement list from Raphaël Le Brun-

Ricalens. I implemented and tested the LabVIEW code with the assistance of Christophe Valahu. The

core logic controlling the heater PID was written by Dr Sam Hile, but I added the pressure reading

capability and memory efficient logging. I designed the GUI interface to the heater controller, built the

backup system and wrote the driver between the heater and the backup modules. I designed, implemented

and tested all of the automation tasks listed in Section 6.4.

• Chapter 7: The logical apparatus was built by Dr Sam Hile, Alex Owens and myself, based on a functional

UHV structure previously assembled by Dr David Murgia and Dr Tomas Navickas. The “back PCB” was

designed by Dr David Murgia. Dr Sam Hile designed the “Front PCB”, configured the Sinara firmware,

the external DC filter box, the “top PCB” antenna and genially converted a copper tube into a functional

heat exchanger. The cryogenic cooling system was designed by Raphaël Le Brun-Ricalens. Alex Owens

built the atomic oven flexible bellows and the atomic oven mount. I designed the new atomic oven

after several iterations, helped in the early stages by Pedro Taylor-Burdett. The latest designed also

integrated ideas from Mitch Peaks. I aligned the atomic oven, and designed most of the ARTIQ code for

experimental control. All the work on automation and monitoring is my own. I contributed to the laser

optic path and the imaging optic implementation. At the exception of the EMCCD python driver written

by Dr Sam Hile, all the work on instrumentation is my own.

7



• Chapter 8: The parametric excitation setup was installed by Alex Owens and I took and analyzed the data.

The python framework for simulating shuttling protocol was initially, and is still, developed by Dr Sam

Hile, with important contributions from Alex Owens, Sahra Kulmiya and Dr Mehrez Agnaou. I designed

the compiling tool for shuttling via waveform concatenation. I studied the waveform compression and

upload rate to the hardware. The successful X-junction shuttling protocol was designed by Alex Owens

with the assistance of Dr Sam Hile and myself. The successful splitting/merging protocol was designed

by Alex Owens. I designed and wrote the code compiling ProjectQ code into ARTIQ experiments.

• Appendix B: I designed the concept of a shuttling format, which was formalized under my supervision

in a document written by Sahra Kulmiya. This appendix is a shortened adaptation of that document.

8



Contents

Abstract 3

Acknowledgements 5

Chapter contributions 6

Contents 9

List of Tables 17

List of Figures 19

1 Introduction 23

1.1 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 Quantum physics and qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.2 Quantum gates and quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.3 Tools for characterizing quantum computers . . . . . . . . . . . . . . . . . . . . . . . 28

1.1.4 Qubit technology and connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Applications of quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.1 Quantum Fourier transform and related tools . . . . . . . . . . . . . . . . . . . . . . 30

1.2.2 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.3 The Shor algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.4 Oracles and the Grover algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2.5 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Building quantum computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 The full stack model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.2 Quantum computers are not classical computers . . . . . . . . . . . . . . . . . . . . . 35

1.3.3 Toward large scale computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9



10 CONTENTS

2 Trapped ion quantum computing with magnetic field gradients 38

2.1 Trapped ion technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 Earnshaw theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.2 Paul traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.3 Ion crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.4 Surface traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Quantum logic with trapped ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Electronic states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Quantum harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 The interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.4 The Jaynes-Cummings Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5 Single qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.6 The geometric gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.7 The Mølmer-Sørensen gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Ytterbium as a qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 The ytterbium atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.2 The ytterbium ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.3 Dressed state configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.4 Ion Doppler cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.5 Preparation and detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.6 The effective Lamb-Dicke parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.7 Sideband cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 The QCCD architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.1 Ion manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.2 Position dependent quantum logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Robust quantum computing 66

3.1 Robust quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 The phase space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Gate robustness characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.3 Dynamical decoupling and gate robustness . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 The polychromatic Mølmer-Sørensen gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS 11

3.2.2 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.3 Gate implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.4 Gate characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.5 Outlook and further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Calibrating a trapped ion based quantum computer . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Introduction to the calibration problem . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Weak node dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.4 Time based calibration simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.5 Remarks on the calibration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.6 Calibration of an experimental entangling gate . . . . . . . . . . . . . . . . . . . . . 80

3.3.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.8 Remarks and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Quantum error correction 84

4.1 Motivations for QEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Physical limitations of quantum computers . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.2 Depolarizing noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.3 Detecting quantum errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.4 The operator measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.5 Correcting error with syndrome measurements . . . . . . . . . . . . . . . . . . . . . 88

4.2 Running error corrected quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 The stabilizer formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Logical circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 The fault tolerance threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 The surface code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Surface code stabilizer and the decoding problem . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Logical qubits and logical gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 The color code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Application to large scale trapped ion devices . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Practical implementation of QEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1 Efficient simulation by importance based sampling . . . . . . . . . . . . . . . . . . . 98



12 CONTENTS

4.5.2 Experimental effort toward 17 surface code . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.3 Hardware requirements for testing QEC in a QCCD architecture . . . . . . . . . . . . 99

5 Quantum software compilation 102

5.1 Choosing a framework for writing and compiling quantum code . . . . . . . . . . . . . . . . 102

5.1.1 Stack representation of a trapped ion quantum computer . . . . . . . . . . . . . . . . 102

5.1.2 Choice of quantum framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.3 The ProjectQ syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.4 The ProjectQ syntax efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Adapting a quantum software framework to trapped ion quantum computers . . . . . . . . . . 106

5.3 Quantum circuit optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Gate reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.2 Gate decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Gate commutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Ion router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.1 Existing ion trap QPU provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 The QCCD syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.3 Routing in a X-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.4 Visualizing the QCCD code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.5 Routing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Hardware instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 The OpenPulse syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.2 The PulseSequence syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Compiling QEC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Toward large scale compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.2 Shuttling requirement for running a stabilizer . . . . . . . . . . . . . . . . . . . . . . 128

6 Automation for quantum experiments 130

6.1 Laser controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.2 Problem assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS 13

6.1.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Cryogenic controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.1 Hardware setup and controller goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.5 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Vacuum system oven controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.1 Problem assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Automated quantum experiment control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.1 Ion recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.2 Automated experiment integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.3 Long term automation and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 The logical qubit apparatus 144

7.1 Ultra high vacuum chamber and content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.1 Vacuum technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.2 Vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.1.3 Surface ion trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.4 Internal electronic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1.5 Helium cooling copper tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 ARTIQ setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.1 The ARTIQ framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2.2 Electronic hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.3 DAC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.4 Experimental operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.3 Atomic oven setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.1 Trapping on a surface chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.2 Design of a new atomic oven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.3 The fluorescence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



14 CONTENTS

7.3.4 Design of a new atomic oven mount . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3.5 Movable atomic oven structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.6 Atomic oven control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 Laser setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.1 Laser hardware in IQT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.2 Optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.1 Photon collection setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.2 Qubit readout fidelity estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5.3 Software ion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.5.4 Laser alignment protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5.5 Software laser beam detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Scalable shuttling architecture 178

8.1 Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.1.1 Ion lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.1.2 Secular frequency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.1.3 Micromotion compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Ion position control on a surface chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.2 Prototype model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.2.3 Shuttling on a X-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.2.4 Splitting and merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.3 Software integration toward a functional QPU . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.1 CPU limitations for shuttling instructions . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.2 Scalable shuttling via FPGA waveform control . . . . . . . . . . . . . . . . . . . . . 193

8.3.3 Full stack software integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.4 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9 Conclusion 195

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Bibliography 198



A Z stabilizer circuit in the QCCD syntax 217

B Shuttling waveform format 219

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

15



16



List of Tables

3.1 Summary of the calibration nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Error corresponding to the syndrome measurement of a 3 qubits bit-flip error codes . . . . . . 89

5.1 List of the most popular quantum software frameworks available . . . . . . . . . . . . . . . . 105

7.1 Numerical estimation of the ion lifetime in different pressure regimes . . . . . . . . . . . . . 145

17



18



List of Figures

1.1 Bloch sphere diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Generic quantum circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Quantum circuit for entangling qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Connectivity map of a superconducting quantum computer . . . . . . . . . . . . . . . . . . . 30

1.5 Main step for QUBO optimization in a quantum computer . . . . . . . . . . . . . . . . . . . 34

1.6 Scalable ion trap QPU module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Potential from hyperbolic RF electrodes in a Paul trap . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Stability diagram simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Surface trap geometry and rotation electrode influence on potential . . . . . . . . . . . . . . . 44

2.4 Sideband and carrier transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Ytterbium energy level for ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Pumping cycle for 174Yb+ and 171Yb+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Dressed state and noise representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Preparation and readout cycle for 171Yb+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Pulses to drive the Mølmer-Sørensen with magnetic field gradient . . . . . . . . . . . . . . . 61

2.10 Illustration of the advantages of long-wavelength radiations with surface chips containing three

X-junctions and six gate zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Pulses required for different number of tones of a polychromatic Mølmer-Sørensen gate . . . . 71

3.2 Blade trap experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Instantaneous RF power evolution in two tones Mølmer-Sørensen gate . . . . . . . . . . . . . 74

3.4 Experimental measurements of polychromatic Mølmer-Sørensen gate robustness against heat-

ing and frequency drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Calibration node description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

19



20 LIST OF FIGURES

3.6 Examples of calibration node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Calibration graph for configuring a magnetic field gradient entangling gate . . . . . . . . . . . 81

3.8 Simulation results of calibration impact on available computing time . . . . . . . . . . . . . . 82

4.1 Classical noise channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Depolarizing error channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Comparison between a physical quantum circuit and its logical equivalent . . . . . . . . . . . 91

4.4 Surface code representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Surface code decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Reduced single logical qubit encoded with the surface code . . . . . . . . . . . . . . . . . . . 95

4.7 Logical T and S gates by consuming a magic state . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Single logical qubit encoded with the color code . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Transversality of logical gates for color qubits . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Generic layer structure for quantum computers . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Adaptation of a quantum circuit into the ProjectQ quantum code syntax. . . . . . . . . . . . . 105

5.3 Layer structure of the quantum compilation architecture implemented in the research group . . 107

5.4 Quantum code decomposition of the GHZ function. . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Cancellation and merging identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 CNOT gate decomposition with the ion trap gateset. . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 H gate decomposition with the ion trap gateset. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 QCCD code illustration of a shuttling sequence, implementing an entangling gate in a X-

junction between two distant ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.9 QCCD code visualization software in a X-junction . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 Pulse and Command syntax in OpenPulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.11 Hardware compilation of quantum code into a Pulse sequence . . . . . . . . . . . . . . . . . 122

5.12 Example of allocation for a single qubit quantum circuit run on a three qubits quantum computer 126

5.13 ProjectQ extension to compile QEC code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Diagram representation of the laser control framework . . . . . . . . . . . . . . . . . . . . . 132

6.2 Laser controller front panel GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Master laser controller GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4 Cryogenic cooler hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Cryogenic temperature controller GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



LIST OF FIGURES 21

6.6 PT100 sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Screenshot of the cryogenic controller during trapping runs . . . . . . . . . . . . . . . . . . . 139

6.8 Screenshot of an online monitor covering a successful bake . . . . . . . . . . . . . . . . . . . 140

6.9 Baking software monitor GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.10 System diagram of the baking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1 Vacuum chamber picture and content description . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 X-junction picture and layout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3 Internal electronic setup of the vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Patch antenna simulation for in-vacuum MW emission . . . . . . . . . . . . . . . . . . . . . 149

7.5 Cooling copper tube in the vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6 Content of the vacuum chamber during assembly . . . . . . . . . . . . . . . . . . . . . . . . 151

7.7 Cooling sequence in the logical qubit apparatus in UHV conditions . . . . . . . . . . . . . . . 152

7.8 Automation levels for physics experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.9 Different atomic oven behaviors and their impact on trapping . . . . . . . . . . . . . . . . . . 159

7.10 Simulation of the atom ballistic behavior in the atomic oven . . . . . . . . . . . . . . . . . . 160

7.11 Final design of the atomic oven used in the experiment . . . . . . . . . . . . . . . . . . . . . 161

7.12 Fluorescence experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.13 Atomic oven characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.14 Atomic oven position adjustment via fluorescence measurement . . . . . . . . . . . . . . . . 164

7.15 Diagram of the atomic oven controller box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.16 Allan deviation plot for the different laser frequencies via a two-hour continuous measurement

of the wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.17 Optical setup of the laser beams sent to the vacuum system . . . . . . . . . . . . . . . . . . . 167

7.18 Detection fidelity estimation for the PMT setup . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.19 Single trapped 174Yb+ ion picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.20 Ion recognition via Hough circle feature detection . . . . . . . . . . . . . . . . . . . . . . . . 174

7.21 Alignment procedure diagram of a laser beam into a surface chip . . . . . . . . . . . . . . . . 175

7.22 Picture of the UV laser beam overlaid onto the chip . . . . . . . . . . . . . . . . . . . . . . . 176

7.23 Automatic scan over the camera focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.1 Ion statistic obtained from more than three hundred registered ions . . . . . . . . . . . . . . . 179

8.2 Secular frequency measurements against the RF voltage . . . . . . . . . . . . . . . . . . . . . 180



8.3 Micromotion impact on the linewidth spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.4 Micromotion compensation along the z axis . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.5 Example of concatenation of linear shuttling sequences . . . . . . . . . . . . . . . . . . . . . 185

8.6 Sequence diagram of compiling a shuttling order across an micro fabricated chip . . . . . . . 186

8.7 Waveform corrections between the generic and the required shuttling sequence . . . . . . . . 187

8.8 Syntax representation used for parsing shuttling instructions . . . . . . . . . . . . . . . . . . 189

8.9 Shuttling sequence to approach the X-junction center . . . . . . . . . . . . . . . . . . . . . . 190

8.10 Shuttling sequence to split a ion crystal of even numbers of ions . . . . . . . . . . . . . . . . 190

8.11 Splitting protocol measured by the EMCCD camera . . . . . . . . . . . . . . . . . . . . . . . 191

8.12 Compilation time taken by ARTIQ to upload shuttling waveforms into the FPGA . . . . . . . 192

9.1 Surface chip with buried current wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.1 Compilation of the Z stabilizer circuit into the trapped ion gate set . . . . . . . . . . . . . . . 217

22



Chapter 1

Introduction

1.1 Quantum computing

1.1.1 Quantum physics and qubits

We define qubits as a two level quantum systems whose states are defined by convention with a ground state

|0〉 and an excited state |1〉, similar to the classical bit of information encoded on the binary states 0 or 1.

Higher dimensional quantum systems are called qudits but will not be covered in this thesis. The qubit |Ψ〉 is

formulated as:

|Ψ〉 = α|0〉+ β|1〉 (1.1)

with α, β ∈ C and |α2| + |β2| = 1. A helpful illustration to represent individual qubits is by reformulating α

and β such as:

|Ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1.2)

with θ is the polar angle and φ the azimuthal angle of the spherical coordinates of a vector of radius 1. These

coordinates cover a sphere commonly called the Bloch sphere as illustrated in Figure 1.1. A single qubit

can occupy any position on this sphere, the top and bottom of the sphere being |0〉 and |1〉, and any other

intermediate position representing a superposition of those states.

Measuring a qubit is equivalent to projecting the qubit to either the |0〉 state with a probability |α|2 or the |1〉

state with a probability |β|2.

Measurements can be done on different basis. We associate the Z basis measurements, commonly the physical

measurement, with the projection on the |0〉 and |1〉 state. Projections on the X basis, associated with the

23



24 Chapter 1. Introduction

Figure 1.1: Bloch sphere representation of a two level quantum state. The quantum state can occupy any
position on the sphere and is only characterized by the two angles θ and φ. If the state is not fully |0〉 or |1〉,
then the quantum state is considered as being a superposition of those two levels. Figure taken from [3].

superposition states |+〉 =
1√
2

(|0〉+|1〉) and |−〉 =
1√
2

(|0〉−|1〉) are sometimes required in some algorithms.

Let’s define now two qubits |Ψ1〉 and |Ψ2〉. We can define the quantum register based on these two qubits as:

|Ψ1,Ψ2〉 = α|0, 0〉+ β|0, 1〉+ γ|1, 0〉+ δ|1, 1〉 (1.3)

Interestingly we can choose parameters such that this quantum state cannot be written as the tensor product of

two individual qubits: such a situation is a physical phenomena called entanglement. One such state can be

obtained for α = δ =
1√
2

and β = γ = 0:

Ψentangled =
1√
2

(|00〉+ |11〉) 6= (αa|0〉+ βa|1〉)⊗ (αb|0〉+ βb|1〉) (1.4)

An important consequence of entangled states is that measuring either of the two qubits will project both of

them simultaneously.

Numerical quantum computers can encode information in qubits similar to classical information. An integer

x =
∑N−1

i xi2
n−1−i with xi ∈ 0, 1 can for example be represented with N qubits |x0〉, ..., |xi〉, ..., |xn−1〉:

|x〉 =

N−1∑
i=0

xi|xi〉 (1.5)

It is possible to form a quantum register |Ψ〉 of size N as a superposition of every possible value of x:

|Ψ〉 =
1

2N−1

2N−1∑
x=0

|x〉

 (1.6)



1.1. Quantum computing 25

The superposition of a large quantum register is a powerful tool in quantum computation: by assuming the

evolution operator as a function f(x) with x being the encoded integer described above, a single application

of the evolution operator over a superposition state of the entire register will produce a superposition of all the

results f(x).

1.1.2 Quantum gates and quantum circuits

The time evolution of a quantum state |Ψ(t)〉 subject to a set of interactions represented by the Hamiltonian

operator H can be formulated with the Scrödinger equation:

i~
d

dt
|Ψ(t)〉 = H|Ψ(t)〉 (1.7)

By assuming a time independent Hamiltonian and knowing the initial state |Ψ(t0)〉 = |Ψ0〉 we can model the

time evolution of the quantum state at time t:

|Ψt〉 = e−iH.t/~|Ψ0〉 = U(t)|Ψ0〉 (1.8)

Where U(t) is the evolution operator after a time t. Using a quantum system to formulate and solve a problem

means encoding an algorithm in the evolution operator U of a quantum system, using a known input quantum

register. The solution of that problem is obtained by measuring the probability distribution of that quantum

register after application of the evolution operator. This direct approach of re-engineering the complete Hamil-

tonian for each new problem is called adiabatic quantum computing but presents scalability issues and an

absence of intermediate representations.

A very common approach is to decompose the total evolution operator U into a combination of primitives

that are supposed to be easier to physically implement. This gate based formulation mirrors greatly classical

computing and its use of logical NOT and AND gates as the foundation for building any possible algorithm.

Equivalent to its classical counterpart, a quantum device is capable of performing universal quantum computa-

tion if its available gate set allows to build any Utot for any qubit size register.

Gates are therefore unitary evolution operator applied to subset of qubits in the register. A gate applied to N

qubits is commonly called a N qubit gate and is characterized by a Matrix M ∈ SU(2N ). Gates are usually

represented in a diagram called a quantum circuit as illustrated in Figure 1.2, where horizontal lines represent

the quantum registers, usually defined in the |0〉 state on the left and measured on the right. For simplicity in

this section the horizontal line displayed will represent a single qubit.



26 Chapter 1. Introduction

|0〉 U1

U2

|0〉 U1

U2

|0〉

Figure 1.2: Generic representation of a quantum circuit. Qubits are usually initialized in the |0〉 state, then gates
are applied to evolve the quantum states according to the user intent. Here are displayed a single qubit gate U1

and a two qubit gate U2. The qubit measurement operation is represented on the right.

Important single qubit gates are the rotation gates Rx, Ry, Rz depending of a rotation angle θ:

Rx(θ) =

 cos
θ

2
−i sin

θ

2

−i sin
θ

2
cos

θ

2

 , Ry(θ) =

cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

 , Rz(θ) =

1 0

0 eiθ

 (1.9)

We define the Pauli matrices σx, σy, σz the corresponding rotation gates for an angle π up to a global phase:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz
1 0

0 −1

 (1.10)

Finally we consider the Hadamard gate H which translates between superposition states of the X basis and the

bare states of the Z basis:

H =
1√
2

1 1

1 −1

 (1.11)

More importantly, where single qubit gates can generate state superposition, two qubit gates can implement

entanglement. The most famous two qubit gate is the CNOT gate:

•
=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.12)

A useful entangling gate for trapped ions is called the Rxx gate:

Rxx(θ) =
1√
2



cos(θ) 0 0 −i sin(θ)

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

−i sin(θ) 0 0 cos(θ)


(1.13)



1.1. Quantum computing 27

The entangled state defined in equation 1.4 can be produced by a circuit composed of a Hadamard gate and a

CNOT gate as displayed Figure 1.3 (Left). Larger entangled states can be produced by increasing the number

of applied CNOT gates (Right).

|0〉 H •

|0〉

1√
2

(|00〉+ |11〉)

|0〉 H • •

· · ·

•

|0〉

|0〉

|0〉

1√
2

(|0〉⊗N + |1〉⊗N )

Figure 1.3: Quantum circuit generating (Left) the entangled state defined in equation 1.4 and (Right) the gen-
eralized version for N entangled qubits.

The CNOT entangling gate can be reformulated as a Control(σx) gate, where Control indicates the application

of a gate to a set of qubits only if a qubit selected to be the control qubit is in the |1〉 state. Furthermore any N

qubit gate U can be transformed into a “Controlled” version as illustrated below in equation 1.14:

|ψ〉 •

· · · U

|Ψ〉 =

I⊗N 0⊗N

0⊗N U

 (1.14)

with 0 the 2*2 null matrix and I the 2*2 identity matrix. Decomposing such control gate, and more generally

decomposing any N qubit gates into single and two qubit gates is outside the scope of this thesis but efficient

algorithms can be found in [4].

Two common gate sets capable of universal quantum computations are the superconducting gate set containing

CNOT , H and Rz and the trapped ion gate set containing Rx,Ry and Rxx. Gate representation is the common

but not only approach taken for modeling and implementing quantum logic. Finally the capability of building

an operational quantum computer, using qubits and gate based interactions, can be reduced to a minimum list

of hardware requirement that are today known as the DiVicenzo criteria [5]:

• A scalable physical system with well characterized qubit: each qubit must be physically encoded on a

quantum phenomena that require proportionally less resource to build when increasing the system size.

• The ability to initialize the state of the qubits to a simple fiducial state: the qubits must be able to be reset,

with its simplest application being the initialization in the |0〉 state.

• Long relevant decoherence times: the qubit should keep its information for the duration of the quantum

computation. Quantum states are usually fragile and loose their properties after a defined amount of



28 Chapter 1. Introduction

time. Coherence is described in the next section, and its wider consequences for quantum computation

in Chapter 4.

• A “universal” set of quantum gates: as described above, the universal gate set allows to build up an

arbitrary evolution operator over any desired qubit register.

• A qubit-specific measurement capability: the physical system hosting the qubits needs to be able to

project the state of a chosen qubit at the required time and record that measurement.

1.1.3 Tools for characterizing quantum computers

Metrics of quality are required in order to build and characterize quantum computers. When attempting to

physically implement the evolution operator to replicate a quantum gate such as the ones above, imperfections

will occur, from both the qubit itself or from experimental limitations or errors. Physical states can no longer be

easily represented with the pure state braket notation |ψ〉 and are better described by switching to the Heisenberg

representation, where the operators are time dependent instead of the quantum states, described there with the

density matrix ρ. In order to evaluate a physical qubit compared to its pure state version we use a metric called

quantum Fidelity F defined [3, Section 9.2.2] as:

F (|ψ〉, ρ) =
√
〈ψ|ρ|ψ〉 (1.15)

Secondly, the qubit itself deteriorates in time due to the environmental noise. T1 is the relaxing time and is

associated with the spontaneous decay of the |1〉 state to the |0〉 state. the T2 time is the dephasing time and

represents the ability of the qubit to stay in a superposition state. Both terms are the half time coefficient

associated with an exponential decrease in time of the phenomena characterized.

Initialization and readout of a quantum state are also subject to errors and are usually considered together in

term of noise by using the term State Preparation And Measurement (SPAM) errors.

Gates as well need to be characterized for each input and output, and are usually be characterized by a Fidelity

metric for each gate type and the location where the gate occurs. Among many schemes available, the linear

gate set tomography [6] factors out SPAM errors. Regardless of the architecture, entangling gates are usually

harder to implement with high fidelity than single qubit gates.

Not only qubits and gates can be benchmarked but the quantum computer itself requires a metric allowing

comparison of the efficiency of different devices regardless of the choice of technology used to build the device.

For example, the number of qubits is not sufficient to represent a system capability, because it does not give



1.1. Quantum computing 29

information about gate fidelity and the time decay associated to the qubit properties. Gate fidelities are not good

enough as most architectures have different gate matrices with differing capabilities.

One of the most promising metric encompassing all of these difficulties is the Quantum Volume (QV) [7] which

requires a quantity called the achievable depth and measured as follow: the device runs quantum circuit layers

based on two components: the first step assigns the n qubits in pairs randomly, then each pair is required to

run a SU(4) unitary quantum gate, involving a decomposition into hardware compatible gates and additional

quantum gates for implementing SWAP operations if the two qubits are not directly connected. For each circuits

containing d layers the experimental device attempts to solve the Heavy Output problem [8]. The achievable

depth is defined as the maximum number of layers for which the problem is solved by the device.

The Quantum Volume metric depends on the width or number of qubit used, n, as well as the achievable depth

d(n) such as:

log2 QV = argmaxn [ min (n, d(n))] (1.16)

1.1.4 Qubit technology and connectivity

There is several technological approaches in the choice of physical qubit and how to drive the quantum gates.

The present thesis focuses in trapped ions but alternatives have also been actively pursued, with notably su-

perconducting qubits and optical qubits. Most architectures have unfortunately constraints in how and which

qubits can be interacted with by the experimental control. Some of the constraints are due to the device design

itself: for example early quantum computing prototypes with only one or two qubits will be designed to force

the quantum state readout on all qubits to simplify the software and hardware requirement.

Constraints can also be due to the nature of the physical qubit itself. One such constraint is the qubit connec-

tivity map. Let’s consider the worst case with superconducting qubits and silicon based qubits. The entangling

capability of these qubits has to be micro-fabricated alongside the qubits themselves. Most devices built by

IBM and Google for example have only nearest-neighbor connectivity maps: as displayed in Figure 1.4 with a

map of an IBM machine, qubits can only interact with up to their four closest qubits.

Connectivity limitations can be overcome at the cost of additional quantum gates in the circuit: Quantum states

can be swapped via a SWAP gate between two physical qubits to “translate” the qubits of interest where they



30 Chapter 1. Introduction

Figure 1.4: Connectivity map of the five qubits IBM quantum machine VIGO. Qubits not connected in the
Figure require additional swap gates before they can be entangled. Figure taken from [9].

can interact. A SWAP gate can be build with three CNOT gates:

×

×
=

• •

•
=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(1.17)

The low connectivity architectures described above require a significant overhead of entangling gates for run-

ning arbitrary quantum circuits. Trapped ion devices on the other hand, have by nature a fully connected map

but at the additional cost of ion displacement which will be described in 2. Connectivity is also constraining

the choice of quantum error correction scheme that can be implemented as described in Chapter 4.

1.2 Applications of quantum computing

This section will introduce the three main axes of application of quantum computing, by first introducing a tool

commonly used by all of them: the quantum Fourier transform.

1.2.1 Quantum Fourier transform and related tools

The Fourier transform is a widely used mathematical transformation. Its discrete formulation transforms a

vector X ∈ CN into a vector Y ∈ CN such as:

yk =
1√
N

N−1∑
j=0

xje
2πijk/N (1.18)



1.2. Applications of quantum computing 31

A quantum equivalent defined as an operator QFT can be defined by replacing X and Y with the quantum

register |X〉 =
∑N−1

j=0 xj |j〉 and |Y 〉 =
∑N−1

k=0 yj |k〉, with xi, yj ∈ C2 and |j〉, |k〉 quantum states each defined

with n qubits such as defined in equation 1.5 :

QFT |j〉 =
1√
N

N−1∑
k=0

e2πijk/N |k〉 (1.19)

the Quantum Fourier transform can be represented as a unitary gate in a quantum circuit, and can be efficiently

implemented with Hadamard gates and C(Rz) gates [3]. By defining the primitive Pn such as:

|φ0〉 H Rz(π/2) · · · Rz(π/2
n−2) Rz(π/2

n−1)

|φ1〉 • · · ·
· · · · · ·

|φn−2〉 · · · •
|φn−1〉 · · · •

(1.20)

We can concatenate those primitive and obtain the QFT gate:

|j0〉

Pn

· · · |kn−1〉

|j1〉

Pn−1

· · · |kn−2〉
· · · · · ·

|jn−2〉 · · ·
P2

|k1〉

|jn−1〉 · · · |k0〉

(1.21)

A direct application of QFT is the Quantum Phase Estimation (QPE) algorithm: if we consider an eigenstate |u〉

of an operator U with eigenvalue e2πiφ then we can directly retrieve the eigenvalue φ by encoding it in another

quantum register. By considering |u〉 a N qubits eigenstate of U , with U a N qubit operator and a register of t

qubits initialized at the |0〉 states, then the algorithm can be represented by the following circuit:

H · · · •

QFT †· · · · · · · · ·

H • · · ·

|0t〉

|u〉 U20 · · · U2t−1 |u〉

(1.22)

The accuracy of the measurement depends on the qubit quantity t used to encode the phase. This algorithm

is an important tool for designing quantum algorithms as it allows a direct and non probabilistic access to

eigenvalues of interest.



32 Chapter 1. Introduction

1.2.2 Quantum simulation

The idea of using controllable quantum systems to simulate the evolution of other quantum systems comes from

Feynman lectures [10] and represents the first formulation of quantum computers. Because the size of a quan-

tum system exponentially increases the total information size necessary to describe it, so only small quantum

systems can be modeled accurately by a classical simulation. To illustrate quantum simulation we will consider

the problem of simulating a molecule using a quantum computer.

The general approach is to first map the fermionic Hamiltonian representing the molecule in the spin Hamil-

tonian of quantum computers using for example the Jordan-Wigner transformation, then evolve the Hamilto-

nian in time using the Trotter decomposition and extract information of interest from the obtained eigenstates

[11, 12]. Energy eigenvalues can be extracted with the QPE tool in the full configuration interaction algorithm

[13]. This decomposition is unfortunately not realistically applicable to quantum hardware in the near future

due to the very large number of gates needed [14].

A more recent algorithmic tool emerged as a hybrid classical/quantum approach, designed for quantum chem-

istry simulation on near term quantum hardware: the Variational Quantum Eigensolver (VQE) [15]. The ground

state |φ0〉 of the fermionic Hamiltonian Htot =
∑

iHi is searched by minimizing
〈φ|Htot|φ〉
〈φ|φ〉

The variation of

|φ〉 for a parameter θ is implemented via an ansatz circuit, and the choice of θ is determined at each iteration

classically. The appeal of VQE for near term devices is that each element Hi can be run on a circuit inde-

pendently. It considerably reduces the circuit size at the expense of a having to run many more instances of

quantum circuits. VQE efficiency is strongly linked to the selected ansatz circuit, which can be improved by

building the ansatz itself inside the algorithm [16].

VQE simulation of small molecules have already been implemented on superconducting and trapped ion quan-

tum computers [17, 18] with the numerical accuracy required for practical application.

1.2.3 The Shor algorithm

Defining N = p1p2 with p1 and p2 two prime numbers, we consider the problem of finding those factors by

only knowing N . The best known classical algorithm runtime grows sub-exponentially when N gets larger

[19]. On the other hand the Shor algorithm [20] can find a factor with a high probability p = 3/4 with a

polynomial time growth, achieving therefore, an exponential speedup with quantum computers compared to

their classical counterpart.

The Shor algorithm works as follow: We first choose a positive integer x < N randomly. For most cases when



1.2. Applications of quantum computing 33

x is not a factor of N , we then search the smallest integer r for which xr = 1 mod N . Provided r is found

and even, then either the greatest common divisor (gcd) of (N, xr/2 − 1) or gcd(N, xr/2 + 1) will be a factor

of N [3].

Finding r is achieved via Quantum phase estimation, applied on the modular exponentiation operator Ux,N

with parameter x and N :

Ux,N |y〉 ≡ |xy mod N〉 (1.23)

Its eigenstates |us〉 have for eigenvalues exp(2πis/r) but as we do not know how to implement them, the

algorithm is run with the input state |1n〉 state which is straightforward to produce and is as a matter of fact the

superposition of all the |us〉 states [3]. The measurement will provide several s/r with s a variable integer and

r constant, allowing to deduce r. The circuit construction for Ux,N is outside the scope of this thesis but several

recipes can be found in [21].

A direct consequence of the Shor algorithm is that asymmetric encryption, which is at the foundation of most

security protocols on the internet, becomes vulnerable: The RSA encryption [22] builds its keys based on a

product of two prime numbers, and the standard 2048 bit keys would be compromised with quantum computers

having at least 4096 qubits.

1.2.4 Oracles and the Grover algorithm

Quantum computers can be used to find solutions to an optimization problem with faster polynomial speed

to their classical counterpart with a quantum search algorithm called the Grover algorithm. We define a set

of possible solutions x where only an unknown subset satisfy a given problem. We define an Oracle O as an

operator associated to a function f(x), returning 1 if x is a solution and 0 otherwise. The operator has the

following effects [3]:

O|x〉|q〉 = |x〉|q ⊕ f(x)〉 (1.24)

We also define the conditional phase shift gate D over a qubit register such as D|x〉 = −|x〉 if x > 0. For

example the one qubit gate version of D is the Pauli operator σz . Provided a construction of O is given, we

can build a Grover iterate G = H⊗nDH⊗nO. The Grover algorithm extracts with high probability the state

|φi〉 satisfying the solution f(x) from a general superposition |φ〉 =
∑

i|φi〉 by applying a number of Grover

iterates dependent on the initial amplitude of |φi〉 [3].

Although remarkable in itself, this algorithm can be extended to two other tools. The first one is Quantum

amplitude algorithm, which is a Quantum phase estimation algorithm applied to the Grover iterate. This algo-



34 Chapter 1. Introduction

rithm measures the amplitude probability of the set of states associated with the oracle. It is straightforward

to recognize that Quantum amplitude estimation is a natural first step to configure the Grover algorithm itself.

The second tool is the Quantum counting algorithm, which is simply the Quantum amplitude estimation output

multiplied by the number of possible states, producing the number of states which are associated to the oracle.

1.2.5 Numerical optimization

The abstract concept of the oracle can be exploited for numerical optimization problems as long as it can be re-

liably built. A profound generalization of the optimization problem, which is of particular interest for quantum

computing, is the Quadratic Unconstrained Binary Optimization problem (QUBO) which can be formulated as

follows:

for n ∈ N, M ∈ Zn∗n, find min(xtMx)∀x ∈ Zn.

The above definition can also be reformulated as a maximization problem. There is a wide range of optimiza-

tion problems that can be reformulated in the QUBO syntax, such as the maximum cut problem or the graph

coloring problem [23].

Generic mapping of QUBO problems into quantum oracles is possible via canonical oracle construction [24],

allowing a full algorithmic implementation and resolution of modern day optimization problems in a quantum

computer as displayed in Figure 1.5.

Figure 1.5: Schematic representation on solving a QUBO optimization problem with a quantum computer.
Orange blocks are algorithms run by classical computer while blue blocks are run by quantum computers.



1.3. Building quantum computers 35

1.3 Building quantum computers

1.3.1 The full stack model

As hinted above, quantum computer operations can be represented with quantum circuits by implementing

instructions on a physical device only using a restricted gate set of single and two qubit gates but it may lead, for

problems unreachable by classical computers, to thousands and even millions of quantum gates. Additionally

translating efficiently problems from highly abstracted representations to low level circuits to hardware systems

requires a set of compilation tools operated by classical computers. The high fragility of quantum systems will

require schemes detailed in Chapter 4. Correcting errors is mainly achieved through additional qubits and

repeated calibration to maintain its capabilities and reducing its operational time. This thesis intends to explore

how to build a fully operational quantum computer using a layer based approach from high level algorithms

down to running gates, and test the tools developed by implementing the single instance of a quantum error

correcting code. Similarly to classical computing where a complete approach, called full stack model, considers

the entire stack of technological layers from the front end to the back end, a full stack model of the ion trap

quantum computer will be considered in the thesis.

1.3.2 Quantum computers are not classical computers

The above section about possible application of quantum computers illustrates that quantum computers will

probably never replace day-to-day computers Central Processing Units (CPU): being more efficient at very

specific type of problems they will act as specialized hardware extension similar to Graphical Processing Units

(GPU), therefore quantum computers are being increasingly called Quantum Processing Units (QPU). This

thesis will use both terms equivalently.

A second remark is that there is a large variety of technological choices for building a digital quantum com-

puters, including superconducting circuits, trapped ions, trapped atoms, photonic circuits, quantum dots and

NV-center. The first four technologies have already been adopted by companies working in the field, but no

devices are yet capable of providing useful calculation unreachable to classical computers. This situation can

be compared to the early digital computer era, where the general technological trend moved from mechanical

calculators to electromechanical calculators, to electronic calculators based on vacuum tubes. Each steps repre-

sented an improvement in computing speed and device reliability. The replacement of vacuum tubes by much

more reliable and power-efficient transistors started the race toward miniaturization and the Moore law. Quan-

tum computers are still in their infancy and the concept of a “quantum transitor”, a technological ingredient



36 Chapter 1. Introduction

simplifying the operation of a quantum computers, does not exist yet.

1.3.3 Toward large scale computation

The IQT group published in 2017, a blueprint [1] gathering key solutions to enable the fabrication of a large

scale quantum computer. The main element concerns the microwave scheme described further in Chapter 2

2.4.2, allowing a single source to target an arbitrarily high number of qubits for conducting quantum gates in

parallel. The magnetic field gradient would be generated via a high current sent into wires, micro-fabricated

below the surface chip at the gate zone. The estimated current that needs to be applied is around 10 A, which

would likely require cryogenic cooling in order to remove excess heat. All electronics, such as the DACs,

FPGAs and control of the integrated features, will be integrated into lower layers of the chip with vertical

integrated access.

Figure 1.6: Module description of the IQT blueprint: the chip is a stack composed of the cooling structures,
electronic modules and on top is the surface ion trap. The module is hosted on piezo modules for enabling
position alignment to neighbour modules. Figure taken from [1]

Such integration is estimated to allow the construction of modules hosting 36*36 junctions such as displayed

in Figure 1.6 which, considering a dozen ions per junction, will produce a few thousand qubits device. A single

module will surpass the noisy intermediate-scale quantum (NISQ) regime [25], limited to approximately one

hundred qubit. The second key feature would be to connect those modules by aligning them together via piezo

modules at a micrometer scale and shuttle ions through the gap between them. This would then provide means

for an arbitrarily large device to be built, allowing for large scale quantum computation.. Those key features

need to be tested individually so the research group is divided into projects focusing into a subset of technology

which requires experimental verification:



1.3. Building quantum computers 37

• A linear chip with a high magnetic field gradient to test high speed and high fidelity quantum gates

• A double surface chip system separated from each other with a piezo module to test chip-to-chip shuttling

• A cryogenic surface chip with quick chip turnover for chip benchmarking and shortcuts to adiabatic

shuttling.

• An x-junction surface chip to test buried current wires for quantum gates and circuits run with position

dependent quantum gates

This thesis work is centered around the X-junction surface chip experiment, but most theoretical and experi-

mental considerations mentioned here can be applied to the others systems.

1.3.4 Thesis outline

This thesis has the following structure: Chapter 2 introduces the theoretical framework to drive quantum gates

with ions using magnetic field gradients. The scalable gate architecture is presented. Chapter 3 details the

implementation of a robust entangling gate and its impact on the availability of a quantum computer is mod-

eled with a simulation of calibration scheduling. Once the theoretical foundation to build scalable and robust

quantum computer is presented, Chapter 4 introduces an overview of Quantum Error Correction (QEC) codes

and in particular the topological surface code, allowing the quantum computer to run the large scale quantum

algorithms described in this Chapter. A review of simulation tools and early experiments is presented. Chap-

ter 5 details the software frameworks used for implementing quantum code circuits in physical devices; basic

structures and algorithm are presented for compiling arbitrary quantum circuits into hardware compatible code.

Contributions to an open source framework are listed. Finally a new quantum code syntax is presented adapting

the quantum circuit level of abstraction to a shuttled ion architecture and its importance in a full stack archi-

tecture is discussed. Chapter 6 describes automation projects built for improving the work efficiency of every

experiment in the research group, including supervisory control and data acquisition (SCADA) projects and

a list of automation tasks for calibrating the system described in Chapter 3. Chapter 7 presents the apparatus

designed for testing QEC experiments. A new atomic oven structure is described and tools for software assisted

measurement and calibration are considered. Chapter 8 presents early results of the apparatus. The ion trap is

characterized, ion shuttling protocols are implemented and a scalable approach for a large scale ion shuttling

router is detailed. Routing instructions built from Chapter 5 are discussed. Finally, the Conclusion discusses

ongoing experimental preparations for implementing logic gates with a magnetic field gradient.



Chapter 2

Trapped ion quantum computing with

magnetic field gradients

The type of quantum computer studied and experimentally developed in this thesis employs individual trapped

ions used as single quantum bits or qubits and belong therefore to the quantum charged coupled device (QCCD)

category [26]. This chapter will introduce the theory behind ion trapping and the implementation of quantum

computing with trapped ions. Then the research group specialized scheme replacing laser beams by microwave

(MW) and RF signals in combination with magnetic field gradients will be introduced [27], as well as the

strategy adopted to build a large scale quantum computer [1].

2.1 Trapped ion technology

Single ions have electronic quantum states suitable to encode qubits. In order to control them as such, those

ions need to be confined and eventually moved into specifically designed positions. This section will describe

the fundamentals about trapped ion technology and its application to quantum computing.

2.1.1 Earnshaw theorem

Ions can be considered as charged particles in space. In a 1 dimensional case, a charged particle c1 with charge

q1 will give rise to an electric potential at any position r equal to:

V (r) =
1

4πε0

q1

r
(2.1)

38



2.1. Trapped ion technology 39

A particle c2 with charge q2 at a position r will experience a force equal to:

~Fc2(q2, r) = q2
~E(r) = −q2∇V (r) ∝ q1q2

r2
(2.2)

With ~E the electric field which is a vector related to the electric potential via ~E(r) = −∇V (r). Confining

a charged particle to a single point in space using only static electric fields is not possible for the following

reason: the point in space in which the particle would be confined would require repulsive forces from all

directions in space, which implies that ∇ · ~E < 0. However by applying the first equation of Maxwell for the

field generated by a density of charge ρ:

∇ · ~E =
ρ

ε0
(2.3)

the field confinement not being generated at the particle position, we therefore obtain at the particle position

ρ = 0 and so ∇ · ~E = 0. This contradiction leads to Earnshaw’s theorem, stipulating that electrostatic

confinement of a particle in space is impossible.

2.1.2 Paul traps

There are two different approaches regarding confining ions in space. The first one is based on initial discoveries

from Penning [28] and later formalized by Dehmelt [29] and consist of combining a heavy magnetic field in

combination with static electric fields and is called Penning traps. This technology does not require high RF

voltage fields but generating the B field has been a major obstacle over the last years toward scalability and

micro chip integration. New schemes [30] have however been proposed recently to overcome those challenges

but will not be studied in this thesis.

The second technology, first proposed by Paul et al. [31] back in 1953 and later on called Paul traps, uses a

combination of RF electric fields combined with static fields. The effect of the RF electric field is studied when

a charged particle at location ~r = (x, y, z) of charge e and mass m is exposed to a RF field of frequency Ω/2π

and amplitude VRF . the equation of motion is then expressed as:

m
d2~r

dt2
= −e∇V (~r, t) (2.4)

On a 2 dimensional plane (x,y) as represented in Figure 2.1, we consider 4 hyperbolic electrodes situated at a

distance r0 from the trap center. Different electrode geometries are accounted for via a geometric factor ηRF

with each pair of opposite electrodes applying a RF field VRF with a π phase with the other pair, then the field



40 Chapter 2. Trapped ion quantum computing with magnetic field gradients

Figure 2.1: 2-D representation of the hyperbolic RF electrodes in a Paul trap and its potential in the trapping
region at a certain instant in time. The neighbor electrodes have an opposite phase to each other. The endcap
electrodes, allowing confinement in the third dimension, are not represented here. The displayed scale is
arbitrary.

potential near the center is equal to:

VRF (x, y, t) = ηRF
x2 − y2

2r2
0

VRF cos(Ωt) (2.5)

We then apply a static field potential VDC on the z axis with 2 endcap electrodes with hyperbolic shapes situated

at (0,0,z0) and (0,0,-z0). As for the RF electrodes, different geometries are simplified by the geometric factor

ηDC . The static potential near the center is equal to:

VDC(x, y, z) = ηDC
2z2 − (x2 + y2)

2z2
0

VDC (2.6)



2.1. Trapped ion technology 41

We can now solve the equation of motion for the two contributions V (x, y, z, t) = VRF (x, y, t)+VDC(x, y, z):

dx2

dt2
= − e

m
x

(
ηRFVRF cos(Ωt)

r2
− ηDCVDC

z2
0

)
(2.7)

dy2

dt2
=

e

m
y

(
ηRFVRF cos(Ωt)

r2
+
ηDCVDC

z2
0

)
(2.8)

dz2

dt2
= − e

m

2z

z2
0

ηDCVDC (2.9)

The z axis can be solved as a harmonic oscillation z(t) = zamp cos(ωzt) with ωz being called the axial fre-

quency and being defined as:

ωz =

√
2eηDCVDC

mz2
0

(2.10)

the x and y axis equations of motion are equivalent to the Mathieu equation [32] formulated as:

dx2

dt2
+ (ax − 2qx cos(2τ))x = 0 (2.11)

By identifying equation 2.7 with equation 2.11 we calculate:

ax =
4eηDCVDC
mΩ2z2

0

(2.12)

qx =
2eηRFVRF
mΩ2r2

0

(2.13)

τ =
Ωt

2
(2.14)

A very useful solution of the Mathieu equations for ax = 0 and qx small is:

x(τ) = x0 cos(
qxτ√

2
)(1− qx

2
cos(2τ)) (2.15)

This solution contains a main oscillation term, called secular oscillation and an additional oscillation, faster and

smaller in amplitude, which is commonly called micromotion oscillation. The radial secular frequency ωr is

deduced from equation 2.13 and 2.14 and is equal to:

ωr =
eηRFVRF
mΩr2

0

(2.16)

When an ion is confined in a Paul trap, micromotion is, in general, a detrimental factor and needs to be mini-

mized.

More generally, the solution space covered by ax and qx contains two types of solutions [33] as shown in Figure



42 Chapter 2. Trapped ion quantum computing with magnetic field gradients

2.2: there are aperiodic solutions which corresponds to unstable ion trap configurations where no ions can be

trapped and confined, and periodic solutions with a behavior similar to the solution described in equation 2.15

where ions oscillate and stay confined in the trap.

Figure 2.2: Simulation of the stability diagram in the space (a,q) for a hyperbolic linear trap: solutions of the
Mathieu equations in the shaded area are aperiodic or unstable, whereas the white area is periodic/stable. The
green point represents the experimental configuration used to trap ions in the experimental setup described in
Chapter 7. The simulation was written by Dr Sam Hile based on [34].

2.1.3 Ion crystals

The solutions described above only considered a single ion, however a single harmonic potential can trap

multiple ions simultaneously. Each ion will be affected both by the trapping potentials and by the Coulomb

force of equation 2.2 from every other ions. By only considering the weak axial confinement alongside the

z axis, we can calculate [35] the ion positions xn(t) by considering the potential energy of each individual

oscillator Vind,m =
1

2
ω2
zxm(t)2, with ωz the trap axial frequency and the potential energy for each interaction

Vint,n,m =
e2

8πε0

1

| xn(t)− xm(t) |
. The total potential energy over a chain of N ions is written as:

Vtot =
N∑
m=1

1

2
ω2
zxm(t)2 +

N∑
n,m=1;m 6=n

e2

8πε0

1

| xn(t)− xm(t) |
(2.17)



2.1. Trapped ion technology 43

We solve those positions at equilibrium for xm(t) = x0
mwhen

[
∂V

∂xm

]
xm=x0m

= 0 with M the ion mass.

Analytic solutions give chains of static positions called ion chains or Coulomb crystals. Among the noticeable

outcomes we can observe that first, the inter-ion distance is not homogeneous as ions in the center of the chain

are closer together than at its extremities. Secondly, we can see that the minimum inter-ion distance dmin

decreases with the number of ions N in the chain with the following relation [35]:

dmin(N) =

(
e2

4πε0Mω2
z

)1/3
2.018

N0.559
(2.18)

Dynamic study of an ion chain reveals additional vibrational eigenmodes due to the Coulomb interactions. The

number of additional eigenmodes scales linearly with the number of ion and their frequencies can be calculated

analytically as well. In the simple case of a two ion chain, the center of mass (COM) mode with frequency ωz

is in phase with the movement of the two ions. The additional mode is called the stretch mode and corresponds

to out-of-phase movements between the two ions and its frequency is calculated as ωs =
√

3ωz .

Using large single ion chains as a Quantum processing unit is a straightforward application of the concepts

detailed above, with existing systems being able to entangle ion chains of up to 24 ions without single ion

control [36], up to 20 ions with single ion control [37] and single qubit addressing in a single ion crystal of up

to 79 ion [38]. Individual ions in the chain are usually interacted with dedicated laser beams [39]. Cooling and

preparation time can remain constant regardless of the ion chain [40] as well as gate fidelity [41], but the gate

time scales unfavorably with it. A quantum computer defined as a single ion chain has a full connectivity map

although gates have fidelities and speed improving as the involved ions are closer inside the chain [42]. The

choice of qubit position in the chain is optimized before the circuit is run.

Larger ion chains require larger laser setup as well as a higher level of control to maintain gate fidelity and

readout. Finally collision rates, which will be detailed later in Chapter 7, constrain the ion chain lifetime,

which has been assessed to scale inversely with the ion chain size [43]. Trapped ion devices with a qubit

register above a few hundred cannot be trapped in a single harmonic potential, therefore an alternative trapping

geometry is required.

2.1.4 Surface traps

A surface trap is an electrode geometry defined in a plane or surface, comprising all RF and DC electrodes

necessary for trapping, with the trapping region being above it. First implemented in 2006 [44, 45], they use

micro-fabrication technologies to achieve electrode dimensions down to the micrometer. The most common



44 Chapter 2. Trapped ion quantum computing with magnetic field gradients

geometry as displayed in Figure 2.3 A is the two RF electrode trap, where the quadrupole RF potential is

generated via only two RF electrodes separated by grounding electrodes. The RF potential above the trap is

shown in Figure 2.3 B where the trapping position is above the ground electrode. Axial confinement is achieved

via external DC electrodes on both sides of the RF electrodes, whose applied voltage generates a field equivalent

to the harmonic potential described above with the static endcap electrodes.

As described in [46], the RF electrode geometry is chosen to adjust the ion height. The DC electrodes still

implement the harmonic potential on the axial axis, but can now be numerous enough to manipulate the ion

position across the axial axis. The dimensions can be adjusted to optimize ion displacement as detailed in

2.4.1. Surface geometry has however a cost due its non hyperbolic shape. The trap depth, which is the potential

barrier at the ion position preventing it to escape the trap and formed by the RF and DC fields, is for equivalent

applied voltages between 30 and 200 lower than for the original hyperbolic trap [47]. The stability region of a

surface trap is also smaller than for the hyperbolic equivalent [48].

Figure 2.3: A) Top view of the 5 wires surface chip geometry identical to the linear sections of the X-junction
trap used in Chapter 4. B) Simulation of the DC potential without using rotation electrodes. the eigenvectors of
the DC potential at the ion height are represented in red. One axis is orthogonal to the chip so the ion motion
in this direction cannot be efficiently Doppler cooled. C) By applying an asymmetric voltage on the rotation
electrodes (from left to right: +3.4V/-1V/+1V/-3.4V) obtained by numerical optimization, the modified DC
potential has no eigen-axis orthogonal to the chip: all of the ion axes of motion are accessible to the Doppler
cooling laser beam.

It has been shown in 2.1.2 that the ion oscillates with 3 frequencies in the 3 axes of space. Laser Doppler cooling



2.2. Quantum logic with trapped ions 45

involves cooling every of those axes. It means that the laser beam chosen for cooling cannot be orthogonal to

any eigen-axis of the ion trap. The axial eigen-axis is colinear to the RF tracks, which constrains the laser beam

to be at an angle of 45◦ with it. One of the two eigen-axis from the RF potentials, orthogonal to the RF tracks,

will also be cooled by the 45◦ beam. However the second one, as illustrated in Figure 2.3 B, is orthogonal to

the chip therefore hardly accessible to the laser beam. A solution is to implement additional DC electrodes

along the RF tracks called rotation electrodes. These electrodes are meant to produce an asymmetric field such

that the ion height is maintained but the trap eigen-axis are rotated enough, as shown in Figure 2.3 C to be both

covered by Doppler cooling by a laser beam colinear to the chip. Asymmetric trapping field does not decrease

the trapping stability region of a surface trap, and interestingly is enlarged at the angle of 45◦ [48].

2.2 Quantum logic with trapped ions

This section will first summarize the essential concepts of atomic physics, then, the basics of light-matter

interactions, used to implement the single and two qubit gates in most ion trap devices will be covered. We will

not use the operator symbol ˆ for simplicity.

2.2.1 Electronic states

We first describe a two level system representing two spin states of an ion and determine its Hamiltonian:

the ground state will be represented as |0〉 and the excited state will be represented as |1〉. In anticipation of

quantum computing application later in the section we consider those two states the basis to encode a qubit. We

define the energy separation between the two states by E0 = ~ω0. The Hamiltonian of this two level system,

which we will call the spin state Hamiltonian Hs, is then defined as:

Hs =
~ω0

2

(
|0〉〈0| − |1〉〈1|

)
(2.19)

we recognize the Pauli operator σz in the basis |0〉, |1〉 defined in Chapter 1:

Hs =
~ω0

2
σz (2.20)

The eigenstates of this Hamiltonian are simply |0〉 and |1〉. The two eigenenergies are two midpoints separated

by ~ω0.



46 Chapter 2. Trapped ion quantum computing with magnetic field gradients

2.2.2 Quantum harmonic oscillator

The quantum version of the harmonic oscillator is well known in quantum physics and can be applied for ions

confined in the quadratic potential of an ion trap :

We consider an ion of mass m defined by the position and moment operators x and p inside an harmonic

potential of quadratic coefficient k. The motional state Hamiltonian Hm is therefore:

Hm =
~
2

(
p2

m
+ kx2

)
(2.21)

The energy solutions are determined by the Schrödinger equation:

En = ~ω
(

1

2
+ n

)
(2.22)

with n an integer, and ω =
√
k/m. We identify ω as being the axial secular frequency ωz when the harmonic

potential is in the axial axis. The position operator is also renamed z. The different n represents the different

energy levels of the ion motional state |n〉 which can be operated on by means of the destruction and creation

operators a and a†, also known as the ladder operators and defined as:

a =

√
m~ωz

2

(
z +

ip

m~ωz

)
(2.23)

a|n〉 =
√
n|n− 1〉 (2.24)

a† =

√
m~ωz

2

(
z − ip

m~ωz

)
(2.25)

a†|n〉 =
√
n+ 1|n+ 1〉 (2.26)

a†a|n〉 = n|n〉 (2.27)

2.2.3 The interaction Hamiltonian

When using trapped ions for quantum information experiments, either hyperfine or Zeeman states are chosen as

the basis of the qubit. the qubit is manipulated by interacting the trapped ion with an external coherent source.

Let us consider a system where a coherent electromagnetic source Bei(kz+φ−ωt) of phase φ, frequency ω and

magnetic field amplitude B is applied on an ion characterized by a motional state |n〉 in a harmonic potential

of frequency ωz and a 2 level spin state |s〉=[|0〉, |1〉] of transition frequency ω0 and can be represented by the



2.2. Quantum logic with trapped ions 47

state ψ:

|ψ〉 = |s, n〉 (2.28)

The ion dipole moment being ~µ = gµB ~S, with g the g-factor, µB the Bohr magneton and S the electron-spin

angular momentum. For a two level system we have S = σx/2. The interaction with the magnetic field source

is based on the magnetic dipole interaction Hi = −~µ. ~B. We rewrite the position operator z of the ion by

defining z0 as the ion’s spatial extent of the ion wavefunction along the axial axis of the ion trap:

z = z0(a† + a) (2.29)

A few quantities are important to define before displaying the simplified Hamiltonian. the coupling between

the internal and motional states of the ion, also called spin-motion coupling, is defined by the Lamb-Dicke

parameter:

η = kz0 =
ω.z0

c
(2.30)

We further define σ± =
σx ± iσy

2
with σx,σy,σz the Pauli matrices. In the Lamb-Dicke approximation defined

as :

nη2 < 1 (2.31)

and by suppressing the fast oscillating terms with the Rotating Wave Approximation, the interaction Hamilto-

nian Hi can be developed as [3]:

Hi(t) =
~Ω

2
(σ+e

i(φ−ωt) +σ−e
−i(φ−ωt)) + i

η~Ω

2
(σ+a+σ−a

†+σ+a
†+σ−a)(ei(φ−ωt)− e−i(φ−ωt)) (2.32)

With the strength of the dipole interaction defined by the Rabi frequency Ω:

Ω =
gµBB

2
(2.33)

2.2.4 The Jaynes-Cummings Hamiltonian

The Hamiltonian of this entire system, commonly called the Jaynes-Cummings Hamiltonian is therefore:

Htot = Hs +Hm +Hi (2.34)



48 Chapter 2. Trapped ion quantum computing with magnetic field gradients

This Hamiltonian contains a well known part Hs +Hm whose eigenstates are known and a more complex term

Hi. The Hamiltonian can therefore be transformed in the interaction picture with:

HI = ei(Hs+Hm)tHie
−i(Hs+Hm)t (2.35)

This Hamiltonian, once expended to first order then simplified further by using again the Rotating Wave Ap-

proximation in the Lamb-Dicke approximation defined in equation 2.31, leads to three cases, displayed in

Figure 2.4 and forming a toolbox at the basis of any quantum state manipulation with trapped ions. All three

are oscillations between the |0〉 and the |1〉 state in a phenomenon called Rabi oscillation. The first one happens

when the field is resonant with the transition, a.k.a ω = ω0 and only involve the states |0, n〉 and |1, n〉. The

rate of oscillation is given by the Rabi frequency Ω.

Hc =
~Ω

2
(σ+e

iφ + σ−e
−iφ) = ~Ω (σx cos(φ)− σy sin(φ)) (2.36)

The two others results involve spin-motion coupling as the Rabi oscillations also involve in those cases the

motional modes, with a slower rate given by ηΩ. The first one, occuring for ω = ω0 − ωz , is called the red

sideband and coherently oscillates between |0, n〉 and |1, n− 1〉:

Hr = i
η~Ω

2
(σ+ae

iφ − σ−a†e−iφ) (2.37)

The last occurs at ω = ω0 +ωz , is called the blue sideband. Similar to the red sideband losing a phonon during

the oscillation, it involves the gain of a phonon when reaching the upper spin state:

Hb = i
η~Ω

2
(σ+a

†eiφ − σ−ae−iφ) (2.38)

2.2.5 Single qubit gates

The final goal in studying the Jaynes-Cumming Hamiltonian for quantum computing is to extract a set of

evolution operator U(t) = e−iHI t which can be used as quantum logic gates such as the ones previously

described in Chapter 1 and allowing the construction of a ion trapped based quantum computer.

For single qubit gates, the carrier interaction H ′c is used. For the first gate studied, the phase φ is set to zero



2.2. Quantum logic with trapped ions 49

Figure 2.4: Energy levels from the spin and motional states of an ion and the transitions associated with the
carrier (green), the red sideband (red) and the blue sideband (blue). Those three transitions are applicable for
most n except n=0 which has no red sideband transition allowed.

which gives the following evolution function:

Uc,φ=0(t) = e−it~Ωσx/2 (2.39)

by replacing t with θ = t/~Ω we define a rotation gate around the X axis:

RX(θ) = Uc,φ=0(θ) = e−iθσx/2 (2.40)

The matrix representation for RX is:

RX(θ) =

 cos
θ

2
−i sin

θ

2

−i sin
θ

2
cos

θ

2

 (2.41)

A second single qubit gate orthogonal to RX can be found for φ = π/2, which leads to a similar rotation gate

but over the Y axis:

RY (θ) = Uc,φ=π/2(θ) = e−iθσy/2 (2.42)

The rotation gate can similarly be written on a matrix form:

RY (θ) =

cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

 (2.43)



50 Chapter 2. Trapped ion quantum computing with magnetic field gradients

These two rotation gates are enough to reach any points on the Bloch sphere. The physical implementation is

quite straightforward: the angle θ is physically adjusted by the duration t of the pulse compared to the Rabi

frequency, while the choice over the axis of rotation is controlled by the phase of the pulse sent. A particular

angle of interest is θ = π, commonly called π pulse where the gates are equal to the Pauli matrices up to a

global phase:

RX(π) = −i.σx (2.44)

RY (π) = i.σy (2.45)

2.2.6 The geometric gate

The approach toward an entangling gate with trapped ions involves multiple ions trapped in the same ion chain

in a harmonic potential and therefore sharing the same motional mode. It is therefore possible, by encoding a

qubit in the internal levels, to interact multiple qubits by using the common motional mode of ion as a “quantum

bus” and achieve entanglement. The spin-motion coupling is available via the red and blue sidebands but a

usable two qubit gate needs both maximal entanglement of the spin states and no residual spin-motion coupling

at the end of the pulse so that the qubits stay isolated after the gate. The asymmetry between the red and blue

sideband on the motional ground state was used to design the first entangling gate called the Cirac-Zoller gate

[49]. The scheme is a controlled phase gate which has been implemented [50] but remains experimentally

challenging as it requires a pure motional ground state, which is never fully reached and worsens rapidly with

time due to heating.

The most important scheme used nowadays for entangling trapped ions is the geometric phase gate, which by

driving a spin dependent interaction, achieves an evolution operator:

U(θ) = e−iS
2
φθ (2.46)

where Sφ is the spin operator defined as:

Sφ = i
(
σ+e

iφ − σ−e−iφ
)

(2.47)

where φ is a phase related to the pulses driving the spin operator. This phase can be used to construct different

geometric gate but it will now be simplified to φ=0 and referred to the ion k such as Sφ=0,k = σy,k for clarity.



2.2. Quantum logic with trapped ions 51

The evolution operator of an ideal geometric gate is the following:

U(θ) =
1√
2



cos(θ) 0 0 −i sin(θ)

0 cos(θ) −i sin(θ) 0

0 −i sin(θ) cos(θ) 0

−i sin(θ) 0 0 cos(θ)


(2.48)

By driving this interaction for a time such as the θ = π/4, Bell states can be produced out of the bare states:

|0〉|0〉 → 1√
2

(|0〉|0〉 − i|1〉|1〉) (2.49)

|1〉|1〉 → 1√
2

(−i|0〉|0〉+ |1〉|1〉) (2.50)

2.2.7 The Mølmer-Sørensen gate

One interaction able to drive such geometric phase gates is called the Mølmer-Sørensen [51, 52] gate, a gate

similar to an earlier theoretical scheme [53] proposing to interact with spin states independently from the initial

motional state. This gate works by applying pulses which can only be driving coherently ions when combined

and not individualy. By applying equally intense fields of Rabi frequency Ω near the blue and red sidebands,

ωfield1 = ωr − δ and ωfield2 = ωb + δ, the two fields can be used for a coherent two photon interaction:

ωfield1 + ωfield2 = ωc − ωz − δ + ωc + ωz + δ = 2ωc (2.51)

The Mølmer-Sørensen Hamiltonian is the sum of the red and blue sideband Hamiltonians with an additional

off resonant term eiδt. When simultaneously applied to two ions of index k ∈ [0, 1], sharing the same motional

mode, with the fields red and blue detuned on the center of mass mode, the resulting Hamiltonian is:

HMS =

N=2∑
k=1

i~ηΩ

2
σy,k

(
a†eiδt − ae−iδt

)
(2.52)

The evolution operator of this time varying Hamiltonian is extracted via the Magnus expansion and can be

written as:

UMS(t) = eσy,[0,1](α(t)a†−α∗(t)a)e
−4χ(t)σ2

y,[0,1] (2.53)



52 Chapter 2. Trapped ion quantum computing with magnetic field gradients

with σy,[0,1] = σy,0 + σy,1 the collective spin operator and:

α(t) =
iηΩ

2δ

(
eiδt − 1

)
(2.54)

χ(t) =
η2Ω2

4δ2
(δt− sin(δt)) (2.55)

The ideal geometric gate defined in equation 2.46 is obtained for α(t) = 0 and therefore with the smallest non

zero gate time duration is tg = 2π/δ. The gate is characterized by its effective Rabi frequency Ω̃:

Ω̃ =
η2Ω2

2δ
(2.56)

The phase gate θ is equal to 4χ(tg) and is controlled by the detuning δ. Full entanglement when θ = π/4 is

obtained for δ = ±2ηΩ. Different geomtric phase θ can be applied by adjusting the detuning and the gate time:

δ(θ) = ±ηΩ

√
π

θ
(2.57)

tg(θ) =
2
√
πθ

ηΩ
(2.58)

We can therefore define the Mølmer-Sørensen gate as a rotation gate Ryy: U(θ) = Ryy(θ). The Rxx can be

similarly implemented by adjusting the relative phases of the fields driving the gate. An important remark is

that contrary to the Cirac-Zoller gate which requires the motional ground state, the Mølmer-Sørensen can be

applied with any motional state, although the sensitivity to errors does increase with the initial motional state

eigenvalue.

2.3 Ytterbium as a qubit

As the general framework to build quantum computer with trapped ions was presented, this section will detail

the specific solution used in the research group with ytterbium ions and the technological tools implemented

to enable the quantum gates previously described. A recent improvement on entangling gate will be explained,

then the application for large scale quantum computing will be described with its key challenges as well as the

solutions conceived to overcome them.



2.3. Ytterbium as a qubit 53

2.3.1 The ytterbium atoms

Ions used for trapped ion quantum computers need to be easy to trap and to possess long coherent states suitable

for being used as qubits. Ytterbium is a rare earth metallic element with a photo-ionization energy of 6.25 eV

which is equivalent to a radiation of 198 nm. However it is possible to ionize Ytterbium ions via a 2 photon

absorption process as represented in Figure 2.5: first, displayed by the blue arrow, a radiation coherently excites

an isotope dependent transition from 1S0 to 1P1, then a non resonant photon with any wavelength below 394

nm, represented by the purple arrow, ionize the atom. Most further operations regarding cooling, preparation

and detection will involve a 369 nm laser. For practicality the 369 nm source will be used for the non-resonant

ionization process.

Figure 2.5: Energy level diagram for neutral Ytterbium, showing the two photons ionization process. The first
transition from 1S0 to 1P1 is isotope dependent, therefore the first laser wavelength can be tuned to selectively
excite only the isotope required for the experiment. Numerical values for the transitions are taken from [54].
Multiple transitions are available for 171Yb and 173Yb because they have non integer spins. The diagram is not
at scale.



54 Chapter 2. Trapped ion quantum computing with magnetic field gradients

2.3.2 The ytterbium ions

The largest lived coherent states in atomic physics can be identified in hyperfine states, resulting from the

coupling between the nuclear spin and the electron spin. Hyperfine states only appear for isotopes with a

non zero nuclear spin, therefore an odd isotope number. The first isotope of interest, 174Yb+, has no nuclear

spin and by extension cannot be used for quantum information processing. However, this isotope is the most

abundant in nature (around 34%), and has transitions very close to the isotope chosen for quantum logic in the

research group, 171Yb+. It is usual to start trapping experiment with the 174 isotope to reduce any experimental

errors such as micromotion and identify key parameter such as the trap secular frequencies or the optimal power

settings for the atomic oven.

Figure 2.6: Simplified electronic energy level diagram for 174Yb+ (Left) and 171Yb+ (Right). 171Yb+ has
additional hyperfine state which are not represented at scale and are shown with no external magnetic field
applied. The wavelengths are very similar and the same lasers can be used to trap the two different isotopes. The
dashed lines represent the allowed transition from spontaneous decay. Glowing arrows represent the addressed
transitions for the pumping cycle: The purple arrow represents the 369 nm laser, the red arrowS the 935 nm
and the 638 nm repump lasers while the green arrow represents the microwave addressing the |2S1/2, F = 1〉
hyperfine states.

As shown in Figure 2.6, both isotopes need two lasers aligned at the ion trapping position for cooling. The first

one, the 369 nm laser, does the Doppler cooling by pumping the state 2S1/2 to 2P1/2 which will then emit 369

nm light by fluoresence. With a 0.5% probability the 2P1/2 will instead decay to the 2D3/2. By pumping it to

the 3[3/2]1/2 state with a 935 nm laser beam, it will decay back to the initial 2S1/2 and close the cooling cycle.

On rare occasions due to inelastic scattering due to collision, the 2D3/2 state can transition to the 2F7/2 state

via the 2D5/2 state. This “dark state” cannot emit 369 fluorescence, and unless repumping, will look on the

imaging setup as if the ion left the trap. A third laser at 638 nm but can pump the 2F7/2 state to the 2D3/2 state



2.3. Ytterbium as a qubit 55

via the 1D5/2 state but it can be neglected for most experiments: the phenomena was observed on another ion

trap to occur in average less than daily. In order to treat dark ions and ions leaving the trap on the same level,

every new attempt to trap ions is preceded by a reset of the RF applied to the chip.

For 171Yb+, the hyperfine states generate more transitions to cover in order to close the repumping cycle. 2S1/2

is covered by continuously emitting a microwave field at the transition between F=0 and F=1 at f = 12.64 GHz.

The states 2D3/2 and 3[3/2]1/2 are covered by increasing the 935 nm laser beam power such as the transitions

get power broadened enough to be addressed with it, therefore closing the pumping cycle.

2.3.3 Dressed state configuration

The state 2S1/2, F = 1 can be further split in the presence of a magnetic field into 3 states with each having

their own magnetic moment due to the Normal Zeeman effect: mF = −1, mF = 0 and mF = 1. For weak

magnetic fields, B, mF = 0 is insensitive to first order, while the -1 and +1 Zeeman states can be approximated

as linearly dependent on B. From now on the states from 2S1/2 will be defined as:

|0〉 = |2S1/2, F = 0〉

|−1〉 = |2S1/2, F = 1,mF = −1〉

|0′〉 = |2S1/2, F = 1,mF = 0〉

|+1〉 = |2S1/2, F = 1,mF = +1〉

It is possible to encode a qubit with |0〉 and any of the Zeeman triplet states. we define the Zeeman shift δB

defined as:

δB = µBB/~ (2.59)

with µB being the Bohr magneton. By defining the |0〉 ↔ |0′〉 transition as ω0 = 12.64 GHz, we can write the

other transitions as:

ω+1 = ω|0〉↔|+1〉 = ω0 + δB (2.60)

ω−1 = ω|0〉↔|−1〉 = ω0 − δB (2.61)

The second order dependency on the |0′〉 state is defined as:

ω0′ = ω|0〉↔|0′〉 =

√
ω2

0 +
g2
Jµ

2
BB

2

~2
(2.62)



56 Chapter 2. Trapped ion quantum computing with magnetic field gradients

If we assume that a MW field generator is setup to control a qubit but its frequency cannot be adjusted , then

it is possible to encode the qubit on |0〉 ↔ |+1〉 by modifying the magnetic field B at the ion position to tune

the transition in resonance. Rabi oscillations with the |+1〉 state have been demonstrated [55], however the

decoherence time happens to be much smaller compared to non-magnetic field sensitive qubits: the |0〉 ↔ |0′〉

basic qubit encoding reported a T2 time of 2.5 seconds [56] whereas a qubit encoded in |0〉 ↔ |+1〉 in the

research group had a measured T2 time of 2.2 ms [55]. This instability originates from the environmental

magnetic field noise: any magnetic field noise is directly equivalent to a noise on the |+1〉 and |−1〉 energy

levels. The overall effect on Rabi oscillations when driven by a fixed frequency is a reduced coherence time.

T2 time in general is mainly constrained by experimental factors: a recent experiment encoding the |0〉 ↔ |0′〉

qubit reducing external noise, applying more complex pulses and continuously cooling with other species had

reported a T2 time of 4235 seconds [57], which is 3 orders of magnitude above the first reported measurement.

To prevent the noise from affecting the qubit, a scheme called state dressing can be employed which will keep

the magnetic field tunability while protecting the qubit from magnetic field noise. By applying a field ω+1 at

the |0〉 → |+1〉 transition and ω−1 at |0〉 → |−1〉 with the same intensity Ω and phase φ = 0, we obtain a sum

of the Hamiltonian representing a coherently driven transition in equation 2.36:

HD =
~Ω

2
(σ+1

+ + σ+1
− + σ−1

+ + σ−1
− ) (2.63)

where σ±1
± are the operators σ± defined earlier but associated to transitions between |0〉 and |±1〉. The dressed

states are the eigenstates of this Hamiltonian [55]:

|D〉 =
1√
2

(|+1〉 − |−1〉)

|u〉 =
1

2
(|+1〉+ |−1〉) +

1√
2
|0〉

|d〉 =
1

2
(|+1〉+ |−1〉)− 1√

2
|0〉

The dressed state representation is illustrated in Figure 2.7: The hyperfine state energy levels are represented

on the left while the dressed state is shown on the right. The qubit defined by |0′〉 ↔ |D〉 is not affected by

magnetic field noise to first order because its transition ω|0′〉↔|D〉 is magnetic field insensitive to first order as

well. Interestingly, driving the qubit is still magnetic field sensitive because it is addressed via the ω|0′〉↔|+1〉

transition. Experimental coherence time measurement for |D〉 was measured at 650 ms, which is two orders of

magnitude above the non protected states |±1〉. The rest of this thesis will therefore assume the qubit as being



2.3. Ytterbium as a qubit 57

Figure 2.7: Dressed state qubits diagram compared to the bare hyperfine states of 171Yb+. The noise spectrum,
assumed to be 1/f, is displayed with the bandwidths which influence the bare qubit and the dressed qubit
representation.

defined on the |0′〉, |D〉 states.

Once the state dressing is in effect, an RF field can be applied on the |0′〉 to |+1〉 or |−1〉 transition to achieve

the single qubit gate operation. It is important to remark that due to the second order component of the Zeeman

splitting from equation 2.62, these two transitions do not have exactly the same frequency, guaranteeing only

one “access” to the dressed state.

The |u〉 and |d〉 dressed states are however still magnetic field sensitive and their energy levels are separated

from |D〉 by
Ω√
2

[55]. Therefore the magnetic field noise still affects the qubit coherence time, but as illustrated

in the bottom diagram of Figure 2.7, the magnetic field noise bandwidth affecting the qubit is restrained around

the transition frequency
Ω√
2

. As higher frequency components of the magnetic field noise have lower ampli-

tudes [58], a simple procedure to improve the dressed qubit coherence time would be to increase the microwave

field power dressing the states.

In order to use this result with the single qubit gate scheme described in Section 2.2.5, the dressed state |D〉

needs to be coherently mapped to the bare state |0〉 when no dressing fields nor magnetic fields are applied

to conserve the qubit during shuttling. A standard method is the partial stimulated Raman adiabatic transition

(STIRAP)[59] which shapes the amplitude of the dressing fields to coherently transfer the state between |0〉

and |D〉. However Randall et al. [60] elaborated a more generic control toolbox to adapt two level controls to

any multi-level systems, including robust gates detailed in Chapter 3, and as an application designed a robust



58 Chapter 2. Trapped ion quantum computing with magnetic field gradients

and coherent state mapping between |0〉 and |D〉 adapted from the two-level BB1 composite pulse [61].

2.3.4 Ion Doppler cooling

An ion is trapped in the trap center when a neutral atom is brought into the trapping potential and then photo-

ionized. Neutral atoms are usually sent via a device called atomic ovens. Being thermalized by sublimation on

a solid source they retain kinetic energy when being trapped. Furthermore, heating sources constantly affect

trapped ions such as electric and magnetic noise as well as anomalous heating on surface traps. In order to

cool down initial ions, then maintain them cold in the trap, RF and DC fields are not sufficient and a cooling

technology called Doppler cooling has to be employed [62], combining the Doppler effect and conservation of

momentum.

By the Doppler effect, ions in motion have an absorption spectrum shifted from an idle case. Defining a single

photon source, the absorption spectrum is broadened covering both cases where the ion moves toward the

source and away from it. Assuming a light source bandwidth smaller than the ion bandwidth, it is possible to

adjust the photon wavelength λ so that ions absorb photons only when moving toward the source, a process

called “red detuning”.

By conservation of momentum, the ion momentum is modified by h/λ away from the light source for each

photon absorbed. Spontaneous emission of the absorbed photon however can occur in any direction which has

less impact on the ion kinetic energy. Therefore, by red detuning the light source the average added momentum

over time will always be negative or null, meaning that the ion kinetic energy will decrease until a minimum

EDoppler determined by the natural transition bandwith Γ of the ion:

EDoppler = ~Γ/2 (2.64)

2.3.5 Preparation and detection

In 171Yb+ ions, the qubit is usually defined on |2S1/2, F = 0〉 and one or more of the Zeeman states from

|2S1/2, F = 1〉. Before being able to discuss how one can manipulate a qubit defined on the hyperfine states

of trapped ion systems, two Di Vicenzo criteria need to be addressed with the ytterbium ion: the ability to

initialize a quantum state and the ability to measure the quantum state at the end of the experiment.

The two mechanisms are shown Figure 2.8: For quantum state preparation, the 369 nm laser beam, usually

used for Doppler cooling through the |2S1/2, F = 1〉 → |2P1/2, F = 0〉 transition is detuned to reach the

|2P1/2, F = 1〉 as shown by the purple arrow on the left diagram, while the microwave fields resonantly



2.3. Ytterbium as a qubit 59

Figure 2.8: Electronic energy level diagram for 171Yb+ for quantum state preparation (Left) and readout
(Right). Both steps require the microwave fields off. The large red arrow represents the high power 935
nm addressing simultaneously the two possible transitions between the 2D3/2 and 3[3/2]1/2 states by power
broadening.

addressing the |2S1/2, F = 0〉 → |2S1/2, F = 1〉 transitions are turned off. The |2P1/2, F = 1〉 state can, with

a decay rate of 19.6 MHz, either decay spontaneously to the |2S1/2, F = 0〉 state which is then repumped, or

to the |2S1/2, F = 0〉 state, as represented by the dotted grey arrow, which cannot be re-pumped anymore by

microwave fields. Therefore any initial qubit configuration in 2S1/2 will inevitably end up in |2S1/2, F = 0〉.

While running a quantum information experiment with ytterbium, the 369 nm laser beam is switched off to not

interact with the qubits. For measuring the qubit and projecting it in either F=0 or F=1, the 369 nm laser beam

is switched on again as displayed on the right of Figure 2.8; because it will only bring F=1 population to the P

state, only the F=1 state will start emitting fluorescence. Because the targeted P state can only decay back to

the F=1 state, the ion can continuously emit fluorescence, while a qubit projected on the F=0 will stay dark.

The photon distribution for a given measurement time follows a Poissonian statistics, where the mean photon

number is limited by both the readout time and the quality of the experimental setup. Several experimental

procedures exist to determine the projected state during measurement. The methods range in complexity from

the threshold method which determines the number of photons received above which the logical state |1〉 is

more likely to be measured, to neural network based decision integrating both space and time resolution of the

photon emission [63].



60 Chapter 2. Trapped ion quantum computing with magnetic field gradients

2.3.6 The effective Lamb-Dicke parameter

The rate at which the Mølmer-Sørensen gate is driven is the Lamb-Dicke parameter defined in equation 2.30

which is inversely proportional to the wavelength of the field driving the gate. Common gate implementation

uses 355 nm Raman mode locked lasers [64] to drive the MW and RF based transitions in ytterbium to provide

a Lamb-Dicke parameter above 0.1. Directly driving a Mølmer-Sørensen gate with microwave fields results in

a parameter using microwave wavelengths instead of optical ones and therefore is reduced by four orders of

magnitude, preventing any direct use of global fields for generating entanglement.

There is however the possibility to use magnetic field gradients with magnetic field sensitive quantum states to

enhance the spin-motion coupling. First proposed by Mintert et al. [27], it was implemented for the first time by

Ospelkaus et al. [65] and then improved near fault tolerance in the research group by Weidt et al. [66, 55]. This

new framework provides the resonant as well as the red and blue sideband Hamiltonian with a new effective

Lamb-Dicke parameter ηeff . by considering the magnetic field influence on the Zeeman state at first order

being ω±1 = ω0′ ± µBB, and by assuming a magnetic field gradient along the axial secular frequency axis z
δB

δz
, then we obtain [27]:

ηeff =
µB
ωz

√
1

2mωz

δB

δz
(2.65)

This new Lamb-Dicke parameter has the remarkable property of not depending on the electromagnetic wave-

length used to drive the interaction. Therefore, by engineering a field gradient strong enough, it becomes

possible to drive a spin-motion interaction with global fields and therefore drive a Mølmer-Sørensen gate. This

effective interaction can be associated with the dressed state scheme to drive an entangling gate between |0′〉

and |D〉, enabling entangling gates only based on a magnetic field gradient, microwave and radio-frequency

fields.

An important difference with laser based spin-motion interaction is that each ion does not have the same tran-

sition frequencies anymore as they sit at a different position in the gradient. As illustrated in Figure 2.9, two

ions of an ion chain placed inside a gradient share the same motional frequency ωz but the |+1〉 and |−1〉 are

different, constraining to duplicate both the microwave fields represented in green to drive the dressing fields

for each ion. The RF fields driving the Mølmer-Sørensen interaction, represented by blue and red arrows, need

also to be duplicated for each ion. In total eight fields are therefore needed to implement a Mølmer-Sørensen

gate with global fields on dressed qubits.

It was introduced earlier in 2.3.3 than the |+1〉 and |−1〉 are linearly dependent on the magnetic field, but

there is a small asymmetric quadratic dependence allowing to distinguish the |0′〉 ↔ |+1〉 transition from

|0〉 ↔ |−1〉. While this dependency is not necessary to cover most of the above gate scheme consideration, it



2.3. Ytterbium as a qubit 61

Figure 2.9: Pulses neeeded to drive a Mølmer-Sørensen entangling gate with dressed state qubits in a magnetic
field gradients. The two ions have different state transitions for |−1〉 and |+1〉 which need custom MW (Green)
for state dressing and RF for driving the spin-motion interaction near the red and blue sidebands (Red & Blue).

does however induce a small AC-Stark energy shift δAC−S when driving the Mølmer-Sørensen gate. This shift

can be calculated with the quadratic magnetic field shift ∆ω± and the radio frequency power applied to the gate

ΩRF [55]:

δAC−S =
3ΩRF∆ω±

4ωz
(2.66)

and needs to be applied near the red and blue detuning such as:

δr = −δ + δAC−S (2.67)

δb = δ + δAC−S (2.68)

2.3.7 Sideband cooling

The Mølmer-Sørensen gate was previously mentioned to be insensitive to the initial motional state however its

sensitivity to errors such as parameter mis-set or heating increases with the initial n̄. Doppler cooling described

in 2.3.4 is not sufficient for implementing high fidelity gates and an additional cooling mechanism is required,

employing sideband Hamiltonian interaction to bring the motional state of the qubit to as close as possible to

zero before starting the quantum circuit: sideband cooling.

Sideband cooling [67, 68] is a succession of cooling steps, applied on the |0, ni〉 logical ground state. Each



62 Chapter 2. Trapped ion quantum computing with magnetic field gradients

step i is composed of two pulses: a π pulse on the red sideband bringing the qubit to |1, ni − 1〉 state and

a repump pulse, implemented similarly to the state preparation sequence mentioned in 2.3.5, conserving the

motional state while bringing the internal state to |0, ni − 1〉. The π pulse duration for a given Rabi frequency

is dependent on the initial motional state related to the Rabi frequency Ω of the carrier and the Lamb-Dicke η

parameter:

tπ,n =
π√
nηΩ

(2.69)

The complete sideband cooling sequence apply these steps in series starting with an arbitrary nmax chosen as a

compromise between cooling power and time duration of the sequence itself. Values of n̄ below 1 are reachable

with this technology.

In the case of MW/RF implementation of sideband cooling via magnetic field gradient, cooling the dressed state

instead of the bare state is necessary to maintain the qubit state coherence during the entire cooling process.

Because the repump pulse can only happen on the |0〉 state of the Yb ion, cooling the dressed state adds as

additional steps the transition between the |0′〉 and |0〉 states before the repump pulse and the transition back

after it [69].

Interestingly measuring the effect of sideband cooling can be implemented by sideband spectroscopy: the mean

phonon value n̄ can be calculated by measuring the ratio of the red and blue sideband amplitude [55].

2.4 The QCCD architecture

The ion position control enabled by surface chip can be coupled to quantum logic operations to form a type of

quantum processing unit called QCCD [26]. A short summary of ion position manipulation will be introduced,

then the concept of QCCD devices with magnetic field gradients will be presented.

2.4.1 Ion manipulations

Manipulating ions above a surface chip consists of varying the voltages applied to the electrodes confining the

ion to move the DC harmonic potential and therefore the ion. Any shuttling protocols need to leave the qubit

state unchanged, which involves 2 conditions:

• The ion internal state defining the qubit as defined in 2.3.5 has to be maintained

• The ion motional state needs to remain near the motional ground state |0〉



2.4. The QCCD architecture 63

The internal qubit state can be affected if it is sensitive to external fields such as a magnetic field. Shuttling

a magnetic field sensitive qubit across an unknown constant magnetic field adds a phase which needs to be

compensated for [70]. A motional state different from the ground state does not directly affect the gate fidelity

described in 2.2.7 but increase the sensitivity to any parameter misset, causing the gate fidelity to deteriorate

faster with time. All designed shuttling solutions need to maintain a motional state as small as possible to

implement high fidelity quantum gates. Heating is, however, not entirely due to shuttling: increase in the

ion motional mode is also a static phenomena from the electrode noise which, being not entirely explained,

is commonly called “anomalous heating” and follows an empirical law of increasing with the ion-electrode

distance by a 1/d4 factor [71].

Most shuttling protocols designed until today can be organized into two categories. The first one is called

adiabatic shuttling and defines shuttling sequences where the ion movement caused by the modification of the

DC voltages, represented by the DAC update rate fV , is slower than the ion periodic motion ωz in the axial

direction:

fV � ωz (2.70)

The ion can be approximated as static along every point of the trajectory and a shuttling sequence is designed

by calculating a DC static confinement potential in every position the ion will take along the path. Heating

in the adiabatic regime occurs when the axial secular frequency, directly determined by the DC harmonic

potential in the axial direction, changes across the shuttling sequence and adds perturbation to the ion motion.

Shuttling in this regime is slow and by definition bounded by the axial secular frequency. As most ion traps

have axial secular frequency ranging between a few hundred kilohertz to a few megahertz, shuttling protocol

durations are between a millisecond and a few microseconds. The second category has many appellations

from diabatic shuttling, non-adiabatic shuttling, shortcut to adiabacity or superadiabatic regime, and consists

of faster shuttling protocols coherently controlling the ion motional state. Some protocols such as the “Bang

Bang” protocol have shuttling time in the hundreds of nanoseconds [72] but are much harder to implement

because they are more susceptible to ion loss and demand much faster and less noisier hardware.

2.4.2 Position dependent quantum logic

By combining the gate scheme using magnetic field gradients to tune the ion ability to be driven by a gate and

the previous description of surface ion traps capability in Section 2.4.1, we can introduce the concept of zones.

Zones are localized section of the microfabricated trap dedicated to a set of functions of a quantum computer. A

memory zone would be for example located away to all RF and MW fields as well as laser beams. A gate zone



64 Chapter 2. Trapped ion quantum computing with magnetic field gradients

is where a magnetic field gradient is present over localized sections of an ion trap. Ions are shuttled between

zones when the current zone is not capable of accomplishing the requested function on the chosen ion. When

it is required for the experiment to apply a gate operation; we can consider as an example an ion located in a

memory zone; the ion is first shuttled to the nearest available gate zone, then the global fields are broadcasted

to drive the gate interaction. The QCCD architecture is fully connected: all gates applied have similar speed

and fidelities at the cost of additional dephasing and heating of the qubit during shuttling.

At first glance this organization looks like a microwave alternative to laser based ion processors, where lasers

are carefully aligned to one specific trapping zone. However the real advantage lies in the fact that the radio-

frequency and microwave radiation fields can target any qubits in a system that have their transitions tuned

correctly via the magnetic field. In other words, regardless of the number of gate zones built with their magnetic

field gradient, the set of 8 fields needed to drive one gate will actually drive all the Mølmer-Sørensen gates in

the system, assuming the fields have constant power and phase across the entire chip. Early simulations from

the research group shows spatial inhomogeneities from microwave and radiofrequency fields when sent into

a vacuum system [73, Section 4.6.3], which has been experimentally observed in a QCCD prototype where

different positions on the chip could experience a different microwave power of up to 3% [74]. Such differences

is acceptable for dressed states, as it has a negligible impact on the AC-Stark shift mentioned in Section 2.3.6,

and can be mitigated for coherent state transfer using robust pulses [60]. Additional fields corresponding to

different positions in the gradients can also be emitted to correspond to additional quantum gates. Considering

two single qubit gates in addition of the entangling gates are enough to reach universal quantum computation,

a total of fourteen microwave and radiofrequency fields would be enough to achieve any quantum circuits on

any number of qubits, as displayed in Figure 2.10.

While the laser complexity employed to drive gates is substantially reduced, they are still required for trapping,

cooling, repumping and detection. There is already a wide variety of trap features implemented for trapping

and detection [75], as larger surface chips will require more integrated features for scalability.



2.4. The QCCD architecture 65

Figure 2.10: Illustration of the advantages of long-wavelength radiations with surface chips containing three
X-junctions and six gate zones (delimited in red). The dressing microwave and driving radio-frequency fields
emitted correspond to two different single qubit gates (blue and green) and the entangling gate (orange). Based
on the position of the ions in the gate zones, its transitions will have different frequencies due to the magnetic
field gradient. The selected gate is applied by bringing the ion at the physical position where the transition is
equal to the frequency of the radio-frequency fields assigned to this gate. Figure inspired from [66]



Chapter 3

Robust quantum computing

The main obstacle towards building a quantum computers is the quality of the entangling gates. As described

previously in Chapter 2, entangling gates with trapped ions are commonly slower and implemented with a fi-

delity lower than the single qubit gates. This limitation is due to the higher sensitivity to experimental noise

and parameter errors. Engineering entangling gates more robust to these constraints can not only increase the

gate fidelity but more importantly reduce the calibration procedures required to keep them operational.

First of all, this chapter will focus on formulating the robustness of an entangling gate, discuss the limita-

tions of the Mølmer-Sørensen gate, and provide examples of inherently robust entangling schemes. Then the

Polychromatic Mølmer-Sørensen gate will be introduced and its physical implementation described. Finally a

reflection into quantifying the entangling gate robustness on the broader scope of calibration is considered, and

a simulation is run to illustrate the benefits from using robust gates.

3.1 Robust quantum gates

Before introducing a new entangling gate scheme, a set of tools needs to be presented to analyze gate robustness.

These tools will be presented alongside the Mølmer-Sørensen gate, and a few examples of more robust schemes

will be presented to illustrate the difference in robustness.

66



3.1. Robust quantum gates 67

3.1.1 The phase space representation

The general evolution operator of the Mølmer-Sørensen gate, described in equation 2.53, can be reformulated

[2] as:

UMS = eiχ(t) (|←φ〉〈←φ|D(α(t)) + |→φ〉〈→φ|D(−α(t))) (3.1)

where |←φ〉〈←φ| and |→φ〉〈→φ| are the eigenstates of the collective spin operator Sφ,[0,1] and D is the dis-

placement operator:

D(α) = eαa
†−α?a (3.2)

The term α(t) can thus be represented as the motional evolution of the qubit in phase space (position x and

momentum p). This evolution is conditional to the initial qubit states and a projection on the bare states will

produce the matrix defined in equation 2.48.

The Mølmer-Sørensen gate’s phase space trajectory can be described as starting at (0,0), evolving along a circle

of radius r and center c which is dependent on the initial qubit state, and coming back to (0,0) at the end of the

gate time tg with [2]:

r =
ηΩ

2δ
(3.3)

c|←φ〉〈←φ| =
iηΩ

2δ
e−iφ (3.4)

c|→φ〉〈→φ| = −
iηΩ

2δ
e−iφ (3.5)

The space covered by the trajectory is the phase θ associated with the entangling gate. This geometric approach

allows to reformulate the requirements of a geometric gate to implement entanglement: the state has to start

and finish at the center (0,0) to keep the motional state decoupled from the spin state before and after the gate,

and the trajectory needs to cover a surface equal to θ.

3.1.2 Gate robustness characterization

This geometric representation being available to all geometric gates, it will now be used as the basis to discuss

the sensitivity to different types of errors.

As previously discussed in Section 2.2.7, the trajectory α(t) needs to reach 0 at t=tg, as any non zero value

will result in residual spin motion entanglement. A timing error ∆t can be protected for example by slowly

approaching the phase space origin at the gate time such that α(tg + ∆t) ' α(tg) = 0.

When driving a Mølmer-Sørensen gate two main sources of errors can arise from the RF applied field frequen-



68 Chapter 3. Robust quantum computing

cies: a symmetric detuning error ∆ωsym due to a drift of the secular frequency ωz such that the red and blue

fields are detuned equally by ∆ωsym, and asymmetric detuning errors, although less common, which are an

unequal detuning error in the red and blue fields applied. The impact of these errors in phase space are similar

to the previous timing errors in the sense that the trajectory does not fully come back to the phase space origin,

and therefore also results in residual spin-motion entanglement.

A generic toolbox for minimizing sensitivity to errors using the phase space trajectory was established over

the key requirement [76]: the average or center of mass of the trajectory 〈α(t)〉 should be minimized to 0, and

is derived from formulating errors generated by zero mean dephasing noise. Both symmetric and asymmetric

detuning errors are attenuated the closer this term approaches 0.

This condition explains the high sensitivity of the Mølmer-Sørensen gate to noise, with the center of the trajec-

tory being half way between the origin and the largest |α(t)| distance.

The regularly mentioned sensitivity of the geometric gate fidelity F to the initial mean phonon occupation n̄

is also illustrated with the trajectory α(t) by quantifying the error E when the phase space trajectory does not

come back to the origin at t = τ [76]:

Eα(τ)6=0 ∝ |α(τ)|2 (n̄+ 1/2) (3.6)

Sideband cooling, which occurs before the quantum circuit and minimizes the mean phonon of the qubit, is

effectively improving the robustness of any driven geometric gates. Sideband cooling is counteracted by heat-

ing, which progressively increases the mean phonon number and therefore the gate sensitivity. The influence

of heating while the gate is being driven is considered in the next section. As a final remark, assessing the

robustness of a quantum gate by evaluating only a single metric linked to the phase space trajectory is efficient

but however does not provide any information nor indication on how to physically drive the qubits.

3.1.3 Dynamical decoupling and gate robustness

Before considering the robustness to experimental drift and/or parameter misset, most new gates were designed

to be resilient against coherent errors. While robustness was presented above relative to the phase space trajec-

tory, the efficiency metric of these dynamical decoupling gates to suppress coherent errors was modeled as a

filter function filtering a generic 1/f noise spectrum [77]. A more resilient gate will have a smaller filter band-

width. Dynamical decoupling schemes can be labeled in two broad categories: pulse dynamical decoupling

(PDD) and continuous dynamical decoupling.

Pulse dynamical decoupling is an extension of the Hahn spin echo [78], in which the qubit is left to freely



3.2. The polychromatic Mølmer-Sørensen gate 69

evolve during the time τ/2 after which a π pulse is applied to refocus noise in the second half of the evolution.

Series of π pulses can be implemented on a qubit gate to minimize dephasing [79], one such scheme being the

BB1 composite pulse [61] mentioned in Chapter 2. A decomposition of the Mølmer-Sørensen gate with Walsh

modulation enabled dynamical decoupling to be applied to entangling gates [80]. The phase space trajectory

was decomposed into multiple smaller loops such that π pulses could be applied at every origin crossing. Al-

ternatively, a fast PDD scheme involves applying π pulses even when the spin and motion are entangled and

careful timing still results in the trajectory ending at the origin [81]. PDD gates require generally a longer gate

time and the capability to implement short π pulses, or in other words high powered fields.

Continuous Dynamical Decoupling (CDD) which involves continuously driving a qubit’s transition to decouple

it from noise has already been introduced in Chapter 2 in the context of dressed states. Continuous drivings

effectively introduce a new dressed state picture in which only noise with a frequency matching the new en-

ergy gap will decohere the system. The energy gap opened by the dressing fields is usually proportional to the

driving power, therefore amplitude noise may also result in a dephasing mechanism. Such amplitude fluctua-

tions can be made insensitive by dressing the dressed states themselves, resulting in a “double-dressed states”

configuration [82].

3.2 The polychromatic Mølmer-Sørensen gate

The tools outlined in the previous section indicate that numerous schemes can accomplish entangling gates, and

their characterization should use new metrics on top of the gate fidelity, such as duration and robustness. In this

section the work on a novel entangling gate is presented, called the polychromatic gate, starting with the theo-

retical construction of the gate scheme to provide robustness, and then followed by its physical implementation

and characterization.

3.2.1 Theory

An extension of the Mølmer-Sørensen gate was proposed by Haddadfarshi et al. [83], adding more harmonics

to drive the gate to provide degrees of freedom with which gate robustness can be engineered. With ω0 being

the resonant transition, ωz the secular frequency and δ the frequency detuning from the sideband as defined in

equation 2.57, one can formulate as displayed in Figure 3.1 the polychromatic pulses of order T as :

fb/r(t) =
T∑
j=1

cj cos((ω0 ± ωz ± jδ)t) (3.7)



70 Chapter 3. Robust quantum computing

with cj being the amplitude of the jth harmonic, a negative value corresponding to a 180 degrees phase added to

the tone. The original gate is obtained with T = 1 and c1 = 1. For T > 1, a similar derivation of the evolution

operator written in equation 2.53 leads to additional displacement and phase terms for each tone. A global

displacement and phase functions can be derived as [2]:

α(t) =

T∑
j=1

αj(t) (3.8)

χ(t) =
T∑

m,k=1

χm,k(t) (3.9)

With the displacement and phase contributions of each tone being defined as [2]:

αj(t) =
iηcjΩ

2jδ
e−iφ

(
eikδt − 1

)
(3.10)

χm,k,m6=k(t) =
η2cmckΩ

2

4δ2

(
1

k(m− k)
sin(δ(m− k)t)− 1

mk
sin(δmt)

)
(3.11)

χm,m(t) =
η2c2

mΩ2

4δ2m2
(mδt− sin(δmt)) (3.12)

Generating a fully entangled state at the gate time tg, equivalent to 4χ(tg) = π/2, provides a first constraint on

the parameters cj :
T∑
j=1

|cj |2

j2
= 1 (3.13)

Haddadfarshi et al. [83] derived an analytic expression to measure the impact of heating on the gate fidelity

based on the Master equation. Their finding anticipates the condition described in Section 3.1.2 for general

gate robustness: the most efficient attenuation of heating errors occurs for 〈α(t)〉 = 0, but also for minimizing

〈|α(t)|2〉. It provides two additional constraints, and combined with the equation 3.13, the recipe to calculate

the parameters is:

T∑
j=1

cj
j

= 0 (3.14)

Minimize
T∑
j=1

c2
j

j2
(3.15)

In the simplest case, for two tones, the amplitude coefficient are calculated to be c1 = −0.576 and c2 = 1.152

[83]. The experimental interest toward this new entangling gate rose from the work of Collingbourne [84] who

discovered by simulation a high robustness of the gate to symmetric detuning errors or secular frequency drifts.



3.2. The polychromatic Mølmer-Sørensen gate 71

Figure 3.1: Energy level representing the pulses ci required to drive a polychromatic Mølmer-Sørensen for one
tone (Left), two tones (Center) and tree tones (Right). The one tone gate is identical to the standard Mølmer-
Sørensen gate. The bottom table indicates the power necessary for each pulse, in units of the effective Rabi
frequency defined in equation 2.56. Negative numbers indicates that the pulses have an opposite phase.

3.2.2 Experimental apparatus

The theoretical construction of this gate proposes in theory a simple extension of the Mølmer-Sørensen gate.

The predicted robustness of this new gate scheme needs to be confirmed experimentally. The experimental

apparatus used to implement both the classic and polychromatic Mølmer-Sørensen gates in the research group

is now described, then the steps required to experimentally implement the polychromatic gate are detailed.

The ion trap

The ion trap is a gold-plated blade trap including two blades for RF fields and two blades each divided in three

sections for DC fields. The ion position is further adjusted by three additional compensation electrodes, located

near the blades. The trap is located in a vacuum chamber with a ion gauge1 to monitor the pressure and an ion

pump2 to maintain it. The pressure remains at 10−11 mbar. The RF field is controlled by an RF field generator3

and the signal is filtered with a homemade helical resonator. The DC fields are generated by a high voltage

1Varian 9715015
2Varian StarCell 9191145
3HP8640



72 Chapter 3. Robust quantum computing

digital to analog converter4 (DAC) and sent to a 30Hz low pass filter adjacent to the vacuum system connectors

linked to the trap electrodes [2].

As displayed in Figure 3.2, on each side of the blade trap are located two pairs of permanent samarium cobalt

(SmCo) magnets, all coated with nickel and copper to prevent outgassing from the magnets themselves. The

magnets are aligned to maximize the magnetic field gradient while minimizing the magnetic field offset at the

ion position. The static magnetic field gradient was measured to be 23.6(3) T/m, but a residual magnetic field

offset still exists. Furthermore, during the ion trapping procedure, the magnetic field offset was measured to

drift likely due to temperature fluctuation associated with the atomic oven operation. Therefore the magnetic

field offset is compensated to reach 10 G with three Helmholtz coils located outside the vacuum system [85]

and is adjusted during each step of every experiments [55]. The effective Lamb-Dicke parameter when driving

the stretch mode ωz
√

3/2π = 461 kHz is measured as η = 0.004 [2].

Figure 3.2: Blade trap experiment diagram (Left) and photo (Right) of the apparatus installed in the ultra high
vacuum system. The magnets are represented in Purple and the electrodes in Orange. Figure taken from [55].

Optical setup

The 369 nm laser is sampled from a 1W Ti-sapphire laser5 doubled in frequency6 whereas the 399, 638 and

935 nm lasers are all homemade external cavity diode lasers (EDCL). The 369nm and 399nm are combined via

a 369nm filter and the 638nm and 935nm beams are combined via a cold mirror [2]. The laser control interface

is the one described in Section 6.1 and the optical setup for measuring the ion fluorescence is identical to the

one later build for the logical qubit apparatus in Section 7.5.

4Stahl HV40-16
5Msquared Solstis
6Msquared ECD-X



3.2. The polychromatic Mølmer-Sørensen gate 73

Electronic setup

The MW and RF fields are emitted with antennas outside the vacuum system. Both signals are generated with

a single two channels arbitrary waveform generator7 (AWG). Because the frequency range generated is in the

MHz, the MW field is generated by combining the AWG waveform with a fixed MW signal generated by a

vector signal generator8 (VSG). The mode of interest is filtered with a narrow band pass filter. The signal is

then amplified by a MW amplifier and finally emitted by a MW horn antenna9. The RF signal is generated

directly by the AWG, is amplified by a RF amplifier and sent by a helical antenna wrapped around the imaging

tube.

The AWG waveform is generated by a dedicated computer connected to the computer running the experiment

[86]. The experiment is run by an FPGA10 controlled by a LabVIEW program synchronizing the imaging

setup, the AWG and the laser control via TTL pulses following the PulseSequence syntax described in Section

5.5.2.

3.2.3 Gate implementation

The gate was implemented with a carrier Ω/2π = 36 kHz and a gate time tg = 3.4 ms. Two important drawbacks

from this scheme is the field power required to drive the gate. Although the tones are applied with a fixed

amplitude cj , their spectral proximity is close enough so that constructive and destructive interference affect

the instantaneous field power during the gate time. This phenomena, as displayed in Figure 3.3, is unavoidable

because the spectral distance is the same parameter δ characterizing the gate time tg. This time dependent

instantaneous power has two consequences: first of all, the instantaneous power was evaluated, in equation

2.66, to have a direct impact on the field detuning due to second order AC Stark shifts. The polychromatic gate

therefore requires, a modulation of the gate field’s frequencies in order to counteract the time dependent Stark

shift.

Finally the RF supply chain containing the amplifier and antenna are required, at the middle of the gate time for

two tones, to emit a higher peak power. Power ratings required to drive a polychromatic gate are therefore 70%

higher. The maximum peak field power is an important “budget” or limitation when building and operating a

quantum computer. In other words at equivalent power budget, the two tones gate time will be on average 70%

slower than the original gate.

7Keysight M8190A
8Keysight E8267D
9Flann Microwave 18240-10

10National Instruments PXI-7842R



74 Chapter 3. Robust quantum computing

Figure 3.3: Instantaneous RF field power when driving a single tone Mølmer-Sørensen entangling gate (Orange)
and a two tone gate (Blue). the instantaneous power modulation appearing from two tones is due to their spectral
proximity. The peak power for two tones is

√
3 times the peak power for a standard entangling gate. Figure

taken from [2].

3.2.4 Gate characterization

A systematic study of the impact on heating rate compared between the polychromatic gate and the original

Mølmer-Sørensen gate involves a controllable heat source coupled to the ion crystal. Heating was injected

via an external signal generator producing a bandpass noise signal centered at the ion’s secular frequency and

applied on one of the DC electrodes used to trap the ion crystal. The heat injected was calibrated by measuring

sideband heating rates as mentioned in 2.3.7 for a set of different noise amplitudes.

As displayed in Figure 3.4, I contributed to Webb et al. [87] in studying the polychromatic gate’s robustness

against heating (Left) and secular frequency drifts (Right). A similar work was published simultaneously by

Shapira et al. [88]. The power budget consideration mentioned above was tested by measuring the fidelity

against the heating rate of a single tone gate with the equivalent peak power to the one used for the two

tone gates. The result is plotted with the legend “1 tone, high power” and demonstrates the advantage of

polychromatic gates over the standard gate for both heating and secular frequency drifts.

3.2.5 Outlook and further work

The polychromatic gate satisfies the robustness conditions described in 3.1.2 and was demonstrated in 3.2.4.

The addition of amplitude varying tones at fixed phase allows enough degrees of freedom to minimize heating



3.3. Calibrating a trapped ion based quantum computer 75

Figure 3.4: Robustness of a two tones polychromatic gate compared to the original Mølmer-Sørensen, by arti-
ficially inducing heating (Left) and shifts in the axial secular frequency commonly called symmetric detuning,
formulated as the ratio between the drift ∆ and the detuning δ defined in equation 2.57 (Right). The fidelities
are displayed relative to their 0 induced noise equivalent, because of the additional experimental constraints on
the fidelity. The 1 tone, high power on the left is a single tone gate with peak Rabi frequency equivalent to the
one used to drive the two tone gate. The two tone gate is visibly more robust in gate fidelity to heating and
symmetric detuning than the original gate, even at equivalent power budget. Figures taken from [87].

rate errors but other alternatives to the Mølmer Sørensen gate have since been devised. Because the initial

polychromatic gate was constrained over a binary choice of phase and the amplitudes adjusted for compensating

heating only, a more agnostic approach has been taken by Lishman et al. [89] by enabling every tone to have

its own phase: the tone calculation is achieved by maximizing the gate fidelity including most empirical errors

encountered with trapped ion qubits.

Alternative robust gates can be employed. By applying phase modulated fields in combination of spin echoes,

simulations with a set of physical parameters reasonable improved compared to the system described in Section

3.2.2, predict a gate fidelity above 99.9% [90].

3.3 Calibrating a trapped ion based quantum computer

The reasons motivating the construction of robust gates is their higher fidelity and their easier implementation

in hardware. However the obstacles preventing the construction of quantum computers are not only speed,

fidelity and scalability: calibration is a commonly underestimated process which is time consuming and needs

to be applied frequently. Robust gates, being resilient against experimental drifts, will ensure that a quantum

computer remains operational for longer periods of time and reduce the required amount of calibrations.

This section will attempt to quantify the global impact of a polychromatic gate over a standard Mølmer-

Sørensen gate when operating a quantum computer, instead of the impact over a single gate application. We

will first describe in this section a framework to identify and correct calibration drift of an experimental quan-



76 Chapter 3. Robust quantum computing

tum computer. From there, a simulation of the device used in the previous section will enable to quantify how

the gate choice influences the device’s ability to run experiments.

3.3.1 Definitions

Before detailing calibration procedures, we need to introduce the following definitions:

1. Calibration: experiment designed to return a set of parameters

2. Parameter: physical quantity necessary for operating a quantum computer.

For a given parameter P , we only know its value after calibration but it does drift across time. As a quantum

computer involves multiple sets of parameters with different sensitivities to drift, a model is therefore required

to handle efficiently when and which calibration to run.

3.3.2 Introduction to the calibration problem

The most complete yet hardware agnostic approach to formalize and solve the choice of a calibration routine

is called Optimus [91] and defines all required calibrations as nodes of a directed acyclic graph. A calibration

Cp1 dependent of another one Cp2 is represented in Figure 3.5 on the left.

Figure 3.5: Node representation for calibration procedures.(Left) Calibration dependency is indicated by ar-
rows, showing as an example a parent node Cp2 over which a children node Cp1 is dependent (Right). Each
calibration node represents a calibration procedure containing information about its parameter, a boolean char-
acterizing the calibration status and a set of physical information to run both the calibration procedure and a
faster version to check if the previous calibration still is effective. Figure inspired from [91].

Each node (Right Figure) has a binary working state representing if it is calibrated or not. Interestingly each

node is defined as being capable of running two types of experiments: the standard calibration which usually



3.3. Calibrating a trapped ion based quantum computer 77

consists in scanning a parameter until some condition is matched, as well as a much faster experiment only

querying if the known parameter is still the correct one, which we define as a verification experiment.

This dual approach allows fast estimation of an entire system’s working state. Because an uncalibrated parent

node will have a negative effect on a child node, the main algorithm to verify the graph is to apply verification

experiments from the root nodes to the end of the chain. When a verification fails at a node, then its calibration

is applied and the verification procedure resumes. A special status is also covered when both verification and

calibration for a node do not generate good enough data, indicating a wider problem. In this case, its parent

node is considered next and not its child node.

The only timing consideration is addressed by adding to each calibration node, a timeout after which a verifi-

cation is required.

3.3.3 Weak node dependency

This calibration strategy is both flexible and efficient with its two levels of calibrating experiments, but can be

further improved by increasing the detail of the relationships between nodes: indeed while some nodes have

dependencies for any variation of parameters, some other nodes only require a basic level of calibration from

a parent and are not affected in case the later experiences drift. In order to illustrate this we will build on the

example given in [91] but applied to trapped ions.

Figure 3.6: Example of three nodes of a calibration system for a single qubit gate. While the state detection
calibration is necessary for subsequent experiments, drifts loosely affect further calibrations. However the time
scan is directly dependent on the frequency scan and needs to be more closely monitored. Experimental scans
are taken from [55].

In order to drive a transition between ground and excited states, an Hamiltonian similar to equation 2.39 is



78 Chapter 3. Robust quantum computing

required, implying both a knowledge of the Rabi frequency and the transition frequency. The classic approach

is therefore to calibrate first the state detection mechanism Csd mentioned in section 2.3.5, then to scan the

transition frequencyCf and finally at this frequency, scan the pulse lengthCt and measure the Rabi oscillations.

The node representation defined above is displayed in Figure 3.6.

However the dependencies between those nodes are not the same: while Ct is utterly dependent on Cf and any

drift in the latter will cause errors in the former, Cf is only loosely dependent on Csd, as the frequency peak

of the scan will not be modified by it. We define this loose dependency as a weak dependency: we display

it as a dotted arrows and represent it in a node via a new status called “Loosely calibrated” and given by the

verification procedure with another goal parameter. The timeout does not need to be changed. If an experiment

needs to be run and only has as parent node a weak dependency, then the “Loosely calibrated” status is enough.

In the case where there is a strong dependency, the calibration routine has to be called.

3.3.4 Time based calibration simulation

This model described above formulates time resources using timeouts but does not provide answers regarding

the total time needed and which calibration may represent a bottleneck in the calibration chain. I designed a

simulation tool to better understand the dynamic of calibration and provide an estimation of its impact on the

time available for running a quantum computer.

We first define a fidelity function FP (t) representing the efficiency of the calibrated value p from the calibration

node Cp after a time t. This simulation is intended to describe a trapped ion system and will be based on the

following assumptions:

1. The number of qubits is small enough so that single and two qubit gate calibrations apply to all qubits

2. Each parameter to calibrate needs only one experiment to run

3. The ion loss rate is neglected

4. The fidelity function after calibration decreases linearly in time

5. When calibrated a fidelity function has a value of 100%

6. Only one calibration can be conducted at a time

We consider the functions to calibrate based loosely on the DiVicenzo criteria [5]. The fidelity function in a

node Cp can be described with two properties: the time taken for calibration Tp and the fidelity decay rate



3.3. Calibrating a trapped ion based quantum computer 79

Γp. If we consider t0 the time after which a calibration was just conducted, then we can write the fidelity

function FP (t) as: FP (t) = 100− (t− t0)Γp. We distinguish a node status with its fidelity function, defining

FP (t) > 99% as calibrated, 99% > FP (t) > 90% as loosely calibrated and below as not calibrated. Knowing

the fidelity function removes the constraint of chaining calibrations and applying verification functions from

the directed acyclic graph model. We consider the quantum computer calibrated if all of its calibration nodes

are calibrated. The time for which a quantum computer is considered calibrated is called TA whereas the time

used to run any calibration is defined as TC .

When running a simulation of the calibration needed to maintain a quantum computer, we will consider two

metrics to estimate the device robustness: the average time available before having to run calibration measure-

ments, < TA >, and the percentage of time available to run circuits, which we define as A:

A =
TA

TA + TC
(3.16)

Increasing a quantum computer’s productivity is now formulated as maximizing < TA > and A. These two

metrics have different applications: A is the immediate time ratio of how long a quantum computer can be

used to run quantum circuits. Businesses employing Quantum as a Service (QaaS), already deployed with for

example Azure Quantum and Amazon Braket 11, are billing each quantum circuits being run and therefore the

amount of time being used. Increasing A directly increases the rentability of a quantum computer following

this model.

< TA > represents the ability to run quantum circuits with high depth but without including qubit associated

errors such as decoherence. Even by assuming slow gates of 3.4 ms such as the polychromatic gate implemented

in Section 3.2, a required 5 ms sideband cooling and a 1 ms quantum state readout, a < TA > equal to a second

would still be sufficient to run a quantum circuit with a depth above a hundred. While not representing much

interest for NISQ devices, large scale quantum computers on the other hand have much different requirements,

having to use Quantum Error Correction codes on millions of qubits on large time scales. Using the magnetic

field gradient of the research group, an estimation of the time required to successfully run the Shor algorithm

was calculated to be TA = 110 days [1].

3.3.5 Remarks on the calibration model

We can identify two extreme regimes for those simulations. The first one is when
1

Γp
� Tp, which allows a

simplified A ≈ 100%. The device will be mostly available and the different calibrations will not interfere with

11https://aws.amazon.com/braket/pricing/



80 Chapter 3. Robust quantum computing

each other. On the opposite side of the spectrum we can study a much worse scenario for two nodes i and j

defined as:
1

Γi
< Tj (3.17)

1

Γj
< Ti (3.18)

meaning that every time a node i is calibrated, the node j will be out of calibration and vice versa, so in

consequence A=0%. Most devices hopefully do not have such loss rate compared to the calibration time, but

because they will have many processes experiencing decay, one can question the availability of a quantum

computer be on a day to day basis.

This model is a poor approximation of real deterioration happening in most quantum computing experiments

as the real fidelity threshold for calibration experiments may vary, the decay in fidelity is non-linear and can

impact several calibration nodes simultaneously, so scenarios where a system is assessed calibrated but was

not experimentally calibrated may occur and must be taken into account. Verification experiments also take

time and further reduce the available time TA. However if the most important time scales at which processes

need recalibration is known, then a first order estimation on time scale available to run a quantum circuit can

be deduced.

3.3.6 Calibration of an experimental entangling gate

The Mølmer-Sørensen gate in the magnetic field gradient scheme is composed of several pulses of different

power, length and frequency [66] and some of those settings need to be measured up to several times a day. The

recipe to prepare the experimental setup to implement a two qubit gates is greatly inspired from Randall [55]

and follows the graph displayed in Figure 3.7:

the first set of parameters regards the operation and calibration of the experiment itself. Before trapping ions,

lasers need to be adjusted and wavemeters need to be calibrated. These processes are gathered in the node

Claser. The acceptable drift is represented by the AOM range, 60MHz via the double pass setup described

in Chapter 7, available to maintain the 369 nm wavelength on the ion. Recalibration involves adjusting laser

locking and the AOM settings. Ion trapping and ion monitoring is represented by Cion. Long term drifts in

the fluorescence are due to mechanical instabilities, but the term Cion also covers the rare events when the ion

leaves the trap and new ions have to be trapped. Recalibration is based on the average time in the experiment

to trap a new ion and optimize the fluorescence.

The next parameters correspond to calibrating the qubits. The calibrating time is for all the nodes involved



3.3. Calibrating a trapped ion based quantum computer 81

Figure 3.7: Directed acyclic graph representing the calibration nodes needed to calibrate a Mølmer-Sørensen
gate.

directly linked to the number of experiments to be run and the number of shot per experiments. Assessing the

quantum state detection is in the node Csd. Drifts above a few percents change the photon count threshold to

estimate the quantum state readout and will affect the measurements of all subsequent experiments. Adjusting

the frequency and amplitude of the microwave and radio-frequency fields is gathered in one node Cfield for

simplicity but fine tuned simulation should consider the extended chain considering each transitions. Among

these fields the RF frequency calibration is the most regularly required as errors directly translate in the entan-

gling gate as asymmetric detuning errors. The secular frequency node Cωz is the final step before considering

a gate calibrated, although extracting fidelity metrics from the gate itself would require two additional exper-

iments. The difference between the Mølmer-Sørensen gate and the polychromatic gate are illustrated by their

sensitivity to secular frequency drifts and are therefore associated to different nodes: Cωz ,MS for the Mølmer-

Sørensen gate, and Cωz ,PMS for the polychromatic gate. The acceptable drifts of 10 Hz and 100 Hz correspond

to the gate fidelity dropping by around 5 %. While this large range can be considered as unacceptable for most

large devices, they correspond to a NISQ scale with limited qubits and quantum circuit depth. All those nodes

and their numerical estimations are summarized in the table 3.1.

3.3.7 Simulation results

Based on the model summarized in Table 3.1, a python simulation is run over a full virtual week with a one

minute step. As mentioned above the knowledge of the fidelity function allows for the removal of any depen-

dencies between the nodes and to run them independently. We therefore evolve the fidelity functions at each

time step. When a fidelity function goes under 99%, the system occupies a “calibrating” status during the cali-



82 Chapter 3. Robust quantum computing

Node parametrization

Name Typical values acceptable drifts
1

Γ
drift timescale Calibration time (s)

Claser 369.52506nm 0.03pm 1 day 300
Cion 2k counts/s 100 counts/s 1 day 600
Csd 85% for two ions 1% 2 hours 300
Cfields 14.1MHz 20Hz 12 hours 1800
Cωz ,MS 272kHz 10Hz 20 mins 300
Cωz ,PMS 272kHz 100Hz 3 hours 300

Table 3.1: Summary of the calibration nodes considered for the simulation. Most of the quantities represented
are empirical estimations. Two different versions of the secular frequency calibration node are given to represent
the robustness of the polychromatic gate Cωz ,PMS described in 3.2.4 compared to the Mølmer-Sørensen gate
Cωz ,MS .

bration time associated to the node. When two fidelity functions both go under the threshold the worst fidelity

function is chosen to be re-calibrated. Other fidelity functions still evolve with time during calibration. The

outcome is a list of times during which the system was fully calibrated. The histograms are displayed in Figure

3.8.

Figure 3.8: Histograms of the time available to run quantum circuits before requiring calibration, for the orig-
inal Mølmer-Sørensen gate (Left) and the polychromatic gate (Right). The higher sensitivity to experimental
drift for standard gates reduces the time available and increase the required number of calibration. While not
affecting noticeably the gate fidelity as defined in Chapter 1, the polychromatic attenuates the effect from ωz ,
the biggest parameter instability in the device.

For standard Mølmer-Sørensen gates (left), the average time available was simulated to be < TA > = 16 min-

utes, with the device being available for A = 71% of the time. The polychromatic gate (Right), introduced in

Section 3.2.4, was not only efficient to reduce heating and therefore increasing the gate’s maximum fidelity,

but also towards reducing the error due to the shift in the secular frequency mentioned in the above model.

The fluctuations of the secular frequency observed in this system are completely within range of the shielding

capabilities of this new gate. This improves the simulation by outputting a mean available time of < TA > =

80 mins with a A = 88% availability. This new protocol alone, with a modest overhaul complexity increase in

the entire system, was able to increase the capabilities of this two qubits quantum computer device by 17%.



3.3. Calibrating a trapped ion based quantum computer 83

3.3.8 Remarks and outlook

The simulation illustrates that robust gates have effectively more impact on a quantum computer than its im-

proved fidelity. The polychromatic gate was shown to both improve< TA > and A, demonstrating therefore an

advantage for both NISQ and large scale devices. However, the simulated value of < TA > with the polychro-

matic gate is still orders of magnitude lower than the 110 days value estimated with running the Shor algorithm

in a large scale quantum computers. The difference is large enough to question if improving gate robustness

will be sufficient for large scale quantum computing.

In addition to more robust gates such as the polychromatic gates with more tones, further physical improve-

ments of a quantum computer can participate in increasing productivity. More stable and robust locking of the

lasers is achievable by using more stable references and automating the locking mechanism. Ion lifetime can be

increased by reducing the pressure via cryogenic cooling. Cooling will also reduce the anomalous heating rate

and will increase as a consequence the gate fidelity. Transition stability can be improved by better stabilizing

the magnetic field, for example by increasing the stability of the mechanism described by Randall [55]. Drifts

in the antenna power can be reduced by actively locking the output power with feedback measurements from a

probe. Drifts in the axial secular frequency can be reduced with more stable DACs and better low-pass filters.

Alternately, allowing calibration procedures to run in only local sections of a device while the quantum circuit

is running elsewhere, could, in some extent, brings A to a 100%. The trapped ions will regularly move between

sections of the trap so that each section stays calibrated. A new calibration metric can then be defined as the

largest quantum register that can be used in a quantum circuit, while maintaining calibrated quantum control at

all time.

While this simulation displays the importance of error robustness and time budget necessary for calibrations, it

does not yet reflect experimental realities where fidelity functions are hidden and cross-dependent, and where

interplay between verification and calibration needs to be setup. More refined simulations will provide further

insight into the effect of gate robustness and the impact of scalability. In conclusion, designing an operational

quantum computer will require, in addition to optimizing the gate fidelities as well as the number of qubits,

the identification of the calibration experiments and their timescale in order to maintain the device to its full

capacity.



Chapter 4

Quantum error correction

Large scale quantum computing is a regime in which most quantum algorithms, like the Shor algorithm de-

scribed in Chapter 1, can be implemented. The physical gate schemes described in Chapter 2 and their robust

upgrades detailed in Chapter 3, are still limited by the physical qubits and their coherence time. For large

enough quantum circuits, the physical qubits have to be replaced by more robust logical qubits which are built

by Quantum Error Correction (QEC) codes. This chapter will review the fundamentals of Quantum Error

Correction codes, and present the theoretical and experimental efforts to implement one of its most promising

schemes, the surface code. The focus is set on answering the following problem: How do QEC codes work,

and how can we implement them on a physical device?

4.1 Motivations for QEC

4.1.1 Physical limitations of quantum computers

The algorithms described in Chapter 1, which are to provide a quantum advantage over classical computers,

have limitations due to the challenges of building a physical device: the number of qubits available, their coher-

ence and the residual noise/error in running gates, state preparation and measurement. The Quantum Volume

metric also covered in Chapter 1 encompasses these limitations. A quick overview of running the Shor al-

gorithm for a 2048 bit key with a standard Quantum Fourier Transform would need at least 4096 qubit and

therefore log2QV = 4096, which is three orders of magnitude above the best systems available today with

log2QV = 8 [24]. This gap between current and expected performance is hardly expected to be crossed by

using the physical qubits as logical qubits of the quantum circuit. The biggest limitation will not come from

84



4.1. Motivations for QEC 85

the qubit number but rather the achievable circuit depth - the number of gates that can be performed in series

before the output is indistinct from noise. Large quantum circuits like the Shor algorithm, require a circuit

depth polynomial with the qubit size [92] and cannot therefore rely on the quantum volume metric, which only

certifies a depth linear with the qubit size.

Error correction encompasses sets of techniques to protect classical bits of information from a noisy environ-

ment. As a simplistic illustration we will consider one classical bit of information being transmitted with a

probability p� 1 of being affected by noise under the form of a bit-flip operation. This can be represented as

a noise channel such as displayed in Figure 4.1.

0 0

1 1

1− p

1− p

p

Figure 4.1: Bit-flip error channel with probability p.

We can encode a single logical bit over multiple physical qubits and determine pL, the probability the logical

qubit suffers an error. A basic strategy to encode the information is to duplicate it three times, into for example

[0L] → [0][0][0] and [1L] → [1][1][1]. Then if a single bit flip error happens it is still possible to deduce the

correct bit by a majority vote strategy. The probability for the logical bit to actually experience an error is

now pL = p2, assuming independent errors, as at least 2 are necessary to cause a logical error. Therefore as

long as p < 1/2, the logical bit is more resistant to noise than the physical bit. More importantly, this logical

encoding can be extended to as many bits as needed to reduce pL: using an n (odd) bit repetition code we have

pL = 2−(n−1) and the code can correct up to (n− 1)/2 errors.

Because of the non-cloning theorem [93], an arbitrary quantum state Ψ cannot be duplicated into another regis-

ter. The duplicating code just described above is therefore not applicable to quantum states thus other schemes

are needed. This chapter will describe the tools to similarly encode logical qubits over multiple physical qubits,

to reduce error rates and improve coherence times.

4.1.2 Depolarizing noise model

While more hardware specific noise models will be described later, a very useful and generic model is the

depolarizing channel. Any qubit with a state |Ψ〉 going through a depolarizing channel will have an additional



86 Chapter 4. Quantum error correction

Pauli σi gate applied to it with probability pi as displayed in Figure 4.2. σx is a bit flip error, σz is a phase flip

error and σy is a combination of the first two. With a probability p0 = 1 − px − py − pz the state will not

be affected. If the noise channels are further simplified with equal probability then the depolarizing channel

is considered homogeneous. This channel can be applied for each single qubit gate applied. For multi-qubit

gates each qubit involved independently experiences the depolarizing channel, e.g. in the case of a 2 qubit gate

15 error combinations are possible: {σxσx, σxσy, σxσz , σxI , σyσx, σyσy, σyσz , σyI , σzσx, σzσy, σzσz , σzI ,

Iσx, Iσy, Iσz}.

|ψ〉 |ψ〉

σx|ψ〉

σy|ψ〉

σz|ψ〉

1− px − py − pz

px

py

pz

Figure 4.2: Depolarizing error channel with probabilities px, py and pz .

One of the strengths of the depolarizing model is the ability to model even small noise effects such as the

equivalent of a rotation gate over a small angle. This can be understood by considering a circuit composed of a

single qubit gate Rx(θ) before measurement. If a systematic but small angle error δθ is applied every time at

the gate, the projection over the measurement basis will only result in an error with probability sin2 δθ. When

sampled many times, the output distribution is equivalent to a circuit with a perfect rotation gate over which an

additional σx is added to the circuit with probability px = sin2 δθ. Depolarizing channel parameters are usually

obtained empirically based on the experimental gate fidelity values. It is also possible to apply this channel for

idle qubits when gates are being applied to other ones. One can use the coherence times T1,T2 of a qubit and

define the depolarizing noise with probabilities [94]:

px = py =
1− e−t/T1

4
, pz =

1− e−t/T2
2

− 1− e−t/T1
4

(4.1)



4.1. Motivations for QEC 87

4.1.3 Detecting quantum errors

We will consider now an example of quantum error detection, which means the ability to notice an error that

occurred on the qubits but without the ability to correct that error. We will then extend this to an error correction

scheme, where the errors must be determined non-destructively.

We consider now the three qubit code: the data qubit |φ〉 is encoded with two other qubits via entanglement for

protection against σx errors:

|ψ〉 = a|0〉+ b|1〉 • •

|0〉

|0〉

|ψL,bf 〉 = a|000〉+ b|111〉 (4.2)

A Bit-flip error only flips a single qubit which can be detected. This code looks similar to the three bits cor-

rection code mentioned in 4.1.1, but duplication is here replaced by entanglement. This logical code has for

basis |0L,bf 〉 = |000〉 and |1L,bf 〉 = |111〉. It is interesting to mention that phase flip errors do not change the

measurement distribution, and therefore can not be detected with this circuit. By adding Hadamard gates at the

end of the circuit we can map the qubit from the |0〉,|1〉 basis to the |+〉,|−〉 basis, making the circuit sensitive

to phase-flip errors instead:

|ψ〉 = a|0〉+ b|1〉 • • H

|0〉 H

|0〉 H

|ψL,pf 〉 = a|+ + +〉+ b|− − −〉 (4.3)

Physical measurement happening in the Z basis, a final Hadamard gate will be required before measurement to

sample in the |+〉,|−〉 basis. This new logical qubit has for basis |0L,pf 〉 = |− − −〉 and |1L,pf 〉 = |+ + +〉.

The interesting problem, when the logical qubit is formed, is to detect errors without measuring its state. After

readout, detecting an error on a physical qubit is straightforward like the classical code but the quantum state is

lost.

4.1.4 The operator measurement

In order to extract information from the logical qubit without changing it, a circuit called the operator measure-

ment is used. For any unitary Hermitian matrix U of size 2n, and any arbitrary quantum state |Ψ〉 composed of

n qubits, |Ψ〉 can be projected as an eigenstate of U by the use of an additional qubit named an ancilla qubit,



88 Chapter 4. Quantum error correction

prepared in |0〉 and measured for the sole purpose of this circuit:

ancilla |0〉 H • H

U|Ψ〉 · · · · · · |Ψo〉
(4.4)

The output state |Ψo〉 depends on the ancilla measurements M:

M = +1→ |Ψo〉 ∝ |Ψ〉+ U |Ψ〉 (4.5)

M = −1→ |Ψo〉 ∝ |Ψ〉 − U |Ψ〉 (4.6)

In both cases |Ψo〉 is an eigenstate of U because of the property U × U = I . This circuit can be repeatedly

applied to “maintain” |Ψ〉 as an eigenstate of U if that state is exposed to perturbation such as in the depolarizing

model described in Section 4.1.2.

4.1.5 Correcting error with syndrome measurements

In the code described in Section 4.1.3, it is possible to extract information about errors with operator measure-

ments and ancilla qubits. We consider the case where a single bit-flip error occurs on a three entangled qubit

state. Two ancilla and CNOT gates are enough to measure the Z1⊗Z2 and Z2⊗Z3 operators. The eigenstates

common to the operators Z1⊗Z2 and Z2⊗Z3, by using the formulation in Section 4.1.4, are the logical states

|0L〉 = |000〉 and |1L〉 = |111〉. The sequence of the two measurement operators is the following circuit:

Encoding Syndrome measurement

|ψ〉 = a|0〉+ b|1〉 • • •

|0〉 • •

|0〉 •

|a0〉 = |0〉

|a1〉 = |0〉

(4.7)

Each ancilla qubit assesses if a set of two neighboring qubits have experienced a bit flip error on one of them.

Two ancilla qubits are therefore enough to deduce which qubit may have been affected as is represented in



4.2. Running error corrected quantum circuits 89

Table 4.1. Measuring ancilla qubits to determine error patterns is called a syndrome measurement. An ancilla

is called “flagged” if its measurement is different form the one expected for no error. If more than one error

occurs in these 3 qubit codes, then either the wrong qubit will be flagged, which will lead to a wrong correction,

or, for three errors, the code will indicate no errors. The result is, in both case, defined as a logical error.

Syndrome measurement of a 3 qubits bit flip error code
Syndrome Error Qubit index
0,0 None N.A
1,0 σx 1
1,1 σx 2
0,1 σx 3

Table 4.1: Error corresponding to the syndrome measurement of a 3 qubits bit-flip error codes. Two bits are
enough to determine if and where an σx error occurred but no other errors can be distinguished.

This five qubit circuit can correct specific errors without affecting the qubit state by only measuring the ancilla

prior to correction. As mentioned in the depolarizing model, both bit-flip and phase-flip, as well as a combi-

nation of both can happen. The two different error detection circuits can however be concatenated to define

the Shor code, with nine data qubits for encoding the logical qubit and with eight ancilla qubits to provide the

measurement syndrome. This syndrome is capable of correcting any single arbitrary error happening on the

nine data qubits. This logical qubit, using the basis |0L〉 = |0L,pf0L,pf0L,pf 〉 and |1L〉 = |1L,pf1L,pf1L,pf 〉, is

robust to one arbitrary error.

4.2 Running error corrected quantum circuits

The main problems are now defined: multiple types of errors are possible in qubits and schemes combining

entangled data and ancilla qubits enable detection and correction of a limited occurrence of those errors. To

satisfy the DiVicenzo criteria and build logical quantum computers, those newly defined logical qubits also

require logical gates as well as logical preparations and measurements. We now generalize the previous example

and define how to run quantum circuits based on logical qubits.

4.2.1 The stabilizer formalism

The Shor code possesses two remarkable properties: The measurement syndrome used to detect errors does not

modify the information encoded in the logical qubit and logical gates manipulating this logical qubit commute

with the measurement syndrome circuit. The Shor code is actually part of a class of quantum code sharing the

same properties, the stabilizer codes.



90 Chapter 4. Quantum error correction

A stabilizer code is described as follow [95]: For Hilbert spaces of dimension 2n defined by n qubits we define

a coding space T encoding k logical qubits on a 2k Hilbert space generated by the stabilizer S, a subgroup of

Pauli matrices of 2n−k elements, such that

T = {|ψ〉, such that M |ψ〉 = |ψ〉∀M ∈ S} (4.8)

Any state |ψ〉 can be projected in S by sequentially applying all the stabilizers M belonging to S using the

operator measurement circuit described in Section 4.1.4. As previously encountered in Section 4.1.5, each

stabilizer measurement will provide an outcome of eigenvalues +1 or -1. A cycle of stabilizer measurements, in

which each stabilizer of the logical qubit is measured, provides a syndrome, a list of the measurement results for

all the ancilla qubits. Repeatedly measuring the stabilizers in these cycles allows for monitoring the appearance

of errors, which will cause a local sign change in the syndrome. The stabilizer measurements “stabilize” the

code space, projecting the system either back into the space spanned by the logical qubit basis states, or into

a state having a bit-flip or phase-flip error with a corresponding measurement syndrome. If the errors are

below the maximum number of correctable errors, the measurement syndrome will indicate the error location

and type, and can then be corrected by applying additional gates to restore the logical qubit. Stabilizers are

characterized by the concept of weight:

• Operator weight : number of non-unity Pauli matrices present in the operator.

As an example, let us consider the circuit in 4.7 protecting from at most one bit flip error. The codewords

are the |000〉 and |111〉 states, and the two stabilizers are Z1 ⊗ Z2 and Z2 ⊗ Z3, which are both weight-2

stabilizers. If we consider a superposition between a codeword |000〉, and a non codeword state |100〉 - due

to an over-rotation or a small error probability for a bit flip error to happen - the stabilizer measurement will

project the state into either |000〉, with no resulting correction to apply, or the non codeword |100〉 with the

syndrome measurement indicating the first qubit being the location of the error which needs to be corrected. In

both cases, after measurement and correction, the state is again the codeword |000〉.

Additionally, we can find operators not in S but which commute with every element of S. They therefore share

the same eigenvectors in T but can transform between any states within. This “degree of freedom” in the code

space enables the selection of logical qubit eigenvectors and logical operators acting on those qubits which we

call logical gates. A logical qubit is characterized by its distance:

• Code distance : Minimum weight of the logical operators defining the logical qubit gates.



4.2. Running error corrected quantum circuits 91

A code of distance n can correct at most (n − 1)/2 arbitrary errors: a distance 3 logical qubit is the minimum

distance, therefore, to be capable of correcting one arbitrary error.

As a final remark, in addition to representing stabilizer codes by the basis |0L〉 and |1L〉 encoding the logical

qubit, an alternative representation consists of listing the stabilizer operators. This representation is both more

concise and more practical for implementing quantum error corrections circuits.

4.2.2 Logical circuits

In order for logical qubits to replace physical ones, each operation of a quantum computers, such as single

qubit gates, entangling qubits, preparation and measurements would need their own logical version. Each

logical operation would be followed by an error measurement cycle using ancilla qubits to detect any occurring

errors. Errors can be corrected physically after each cycle, or a recording of every error can be stored to deduce

the expected data qubit state after their measurement. The second method, while increasing the complexity of

the classical data processing, does not add additional sources of errors to the quantum circuits.

|0〉 U1

U2

|0〉 U1

U2

|0〉

|0〉⊗n E U1,L D D
U2,L

D L

|0〉⊗n E U1,L D
U2,L

D D L

|0〉⊗n E D D D L

Figure 4.3: Comparison between a physical quantum circuit (Left) and its logical equivalent (Right). The
logical circuit is considered here to have an identical logical gate set Ui,L to the physical gate set Ui. Each
logical qubit needs to be encoded before applying logical gates (here represented with the E operator). After
each step in the circuit, the stabilizers D are applied to determine any errors which have occurred.

The logical gate set needs to be diverse enough to enable universal quantum computation, but does not need to

represent the same gates as its physical counterparts. An abstract example is given Figure 4.3: The circuit is

similar to the one described in Chapter 1 but with logical operations applied to sets of physical qubits and with

additional quantum error correction cycles using ancilla qubits.

4.2.3 The fault tolerance threshold

QEC codes are aimed at running logical circuits with logical qubits with lower error rates than their physical

equivalent. Similar to the concatenation of classical error code to arbitrarily increase the quality of the logical



92 Chapter 4. Quantum error correction

bit, we search quantum error code whose robustness to noise increases with the number of physical qubits.

Each logical operation needs to be fault tolerant: if an error occurs on a physical qubit in or before a logical

operation then the error cannot propagate to more than one physical qubit per logical qubit involved. This

condition prevents errors propagating faster than they can be corrected [3, 96] . A fault tolerant logical single

qubit gates applied to a logical qubit with one faulty physical qubit in input should output a logical qubit with

at most one faulty physical qubit. In the case of a fault tolerant logical two qubit gates between two logical

qubits, one having a faulty physical qubit, the two logical qubits in output should have each, at most, one faulty

physical qubit.

A two qubit gate example is illustrated [97] with two logical qubits |1L〉 = |111〉 and |0L〉 = |000〉 entan-

gled via a logical CNOT gate to form a logical Bell state. The following circuits represent two different logical

CNOT gates, and the propagation of a bit-flip error equivalent to a σX gate when a single bit-flip error is present

on |1L〉:

Errors in Errors out

|1〉 σX • σX

|1〉 •

|1〉 •

|0〉 σX

|0〉

|0〉

Errors in Errors out

|1〉 σX • • • σX

|1〉
|1〉

|0〉 σX

|0〉 σX

|0〉 σX

(4.9)

The first logical CNOT gate leads to one single additional error in the other logical qubit, and thus is fault

tolerant. The second logical CNOT gate leads however, to several additional errors and does not satisfy the

criteria for fault tolerance.

For each of these fault tolerant codes and for a given error model, a figure of interest is the error rate below

which a logical circuit has lower error rates than their physical equivalent. We can define a value pth - the fault

tolerance threshold - for a given QEC scheme and error model: the physical error rate below which any desired

logical error rate can be achieved, by enlisting more physical qubits per logical qubit. Intuitively this is the

physical error rate the code can “deal” with, where the errors introduced by the added complexity of the QEC

circuits is in balance with the rate errors are corrected.

This value is an approximation of the several error probabilities involved in the error model, but gives an

efficient target for physical devices to reach. Once a device is capable of implementing beneficial quantum



4.3. The surface code 93

error code correction, any circuit depth can be implemented by increasing the number of qubits involved in the

logical qubit.

4.3 The surface code

Now that most of the tools necessary to understand fault tolerant quantum computation and quantum error cor-

rection have been introduced, the most promising scheme to implement on quantum hardware, the surface code,

is considered. The surface code shows a very high error rate threshold of 1% for homogeneous depolarizing

error models [98].

4.3.1 Surface code stabilizer and the decoding problem

The surface code is a topological quantum error correction scheme with only nearest neighbor interaction which

can therefore be used by virtually all quantum computing architectures, even those with limited connectivity as

mentioned in Section 1.1.4. It is represented as a 2-D grid containing data qubits, with an ancilla qubit in the

center of each square as displayed in Figure 4.4. Each square, commonly called a plaquette, is associated with

a single weight 4 stabilizer with which the ancilla qubit is used to measure the syndrome. There are two types

of plaquette, measuring in the Z and X basis, and are therefore called Z and X plaquettes.

Unfortunately the inital register |0〉⊗n is not a simultaneous eigenstate of all of the stabilizers, and thus is not

a suitable choice for the basis state |0L〉,|1L〉. Initialization of a logical qubit consists of applying a cycle of

syndrome measurements on this register. The initial ancilla measurement will output a sequence of random bits,

but it will also project the data qubits into the stabilizer eigenspace, providing a suitable basis state |0L〉. This

logical state, is commonly called the quiescent state, and is associated with bit string from the first syndrome

measurement. Any subsequent syndrome measurements will provide the same bit string unless errors occur.

Similarly to Section 4.1.5, we will consider an ancilla qubit being “flagged” if it detects an error, defined as its

measurement being different from the expected measurement from the initial quiescent state.

When multiple cycles are run in time, a 3-D syndrome map in space and time is obtained. Different types of

errors such as σx, σz or measurement errors can then be deduced as displayed in Figure 4.5: σx(σz) errors

are flagged by 2 neighbor ancilla qubits of a Z(X) stabilizer near the data qubit. σy errors flag both X and Z

stabilizers. Measurement errors flag only a single ancilla qubit over multiple cycles. However for large and

noisy systems running surface codes, more complex features can appear in the syndrome map due to multiple



94 Chapter 4. Quantum error correction

Z stabilizer
= |0〉

•
•
•
•

X stabilizer = |0〉 H • • • • H

Figure 4.4: Surface code representation using data qubits (Grey circles) and ancilla qubits (Black circles). Each
ancilla qubit is either in a Z stabilizer (Orange) or in an X stabilizer (Green), for which the quantum circuits
are represented on the right. The red square on the left represents the surface needed to encode a logical qubit
resistant to at most one error. The logical qubit is ”cut” from the surface code by not applying the stabilizing
operations on ancilla qubit outside the red area. These cut along the Z stabilizer and X stabilizer introduce a
degree of freedom in the space of states contained in the red area, thus defining the logical qubit.

σx error σz error σy error Measurement error

Figure 4.5: Decoding of a Surface code for a single data qubit, assuming no errors occurring on any other data
qubits nor on the ancilla qubits. Standard syndrome measurements show the ancilla qubit in black, while ancilla
qubits measuring a sign flip are displayed in red. In these single error scenarios, the different Pauli errors are
distinguishable as well as SPAM errors.

errors occuring on neighboring qubits.

Designing a fast and accurate decoder is still an active field of research due to the large amount of data accu-

mulated at each cycle and the high dependence of the error model. Among a large variety of schemes one can

use minimum weight matching [99], maximum likelihood [100] and neural-network decoders [101].

4.3.2 Logical qubits and logical gates

We now describe a way to define single logical qubits and how to implement a universal gate set with the

surface code QEC.

Individual qubits are defined by introducing degrees of freedom in the stabilizer grid. Among the different



4.3. The surface code 95

6

3

0

7

4

1

8

5

2

σx,L

σz,L

X stabilizers Z stabilizers
X0X1X3X4 Z1Z2Z4Z5

X4X5X7X8 Z3Z4Z6Z7

X1X2 Z0Z3

X6X7 Z5Z8

Figure 4.6: Reduced single logical qubit encoded with the surface code. This configuration only needs nine
data qubits and eight ancilla qubits, by using weight-2 stabilizers in addition of the standard weight-4 stabilizers
considered earlier. The stabilizers are represented on the right. The logical operators σx,L and σz,L can be
applied by running physical σx,L (σz,L) in the data qubits delimited by the dashed Blue (Red) box.

approaches available, a popular one consists in isolating the stabilizers inside a delimited area of the surface

code. The surface delimited depends on the number of errors the logical qubit is designed to be resilient against:

a distance 3 code can correct 1 physical error per QEC cycle. The minimal logical qubit, correcting at most one

error, is shown in red in Figure 4.4 and uses twenty-five qubits with weight-3 and weight-4 stabilizers. Some

ancilla qubits can be removed at the cost of reducing to weight-2 some stabilizers, while maintaining the same

distance 3. The resulting logical qubit has its rearranged stabilizers displayed in Figure 4.6.

This logical qubit uses nine data qubits and eight ancilla qubits. Two Pauli gates σx,L and σz,L are implemented

by running a sequence of σx (or σz) on three neighboring data qubits. Logical Hadamard gates can be encoded

by deformations in the surface encoding the logical qubits [102]. CNOT gates are encoded via a third ancilla

logical qubit in a surface deformation process called lattice surgery [103].

Not all gates can be performed fault tolerantly within the surface code to complete a fault tolerant universal

gate set: Instead those gates are constructed first by building, with a high enough fidelity, a specific state in

a process called magic state distillation [104], then, as displayed Figure 4.7, by mapping the magical state to

the logical state, the desired logical quantum gate can be applied effectively. Two important gates requiring

magic states are the phase gates T=Rz(π/4) and S=Rz(π/2). They require the magic states, also called logical

auxiliary states initialized in |SL〉 =
1√
2

(|0L〉+ i|1L〉) and in |TL〉 =
1√
2

(|0L〉+ eiπ/4|1L〉). The Magic state

distillation is one of the most costly ressources in a fault-tolerant quantum computation with a surface code, as

many physical |S〉/|T 〉 states are required produce high enough quality |SL〉/|TL〉 states [105].



96 Chapter 4. Quantum error correction

|TL〉

|ψL〉 • SL TL|ψL〉

|SL〉

|ψL〉 • ZL SL|ψL〉

Figure 4.7: Logical T and S gates by consuming a magic state. Both schemes use logical CNOT gates and
on-the-fly measurements. The T gate is more costly in space and time resources because it itself requires an S
gate. Both |SL〉 and |TL〉 states are obtained via the costly state distillation process.

4.4 The color code

The surface code, with its nearest neighbor interaction only feature, is a promising QEC code for every archi-

tectures. But because QCCD architectures are virtually globally connected via shuttling, a similar QEC code is

getting attention due its transversal gate capabilities: the color code [106].

4.4.1 Description

The color code is a topological QEC code, using data qubits as vertices. Each vertex is connected to three other

vertices, allowing the plaquettes, the surfaces delimited by the vertices, to have three different and non-adjacent

colors. Each plaquette is associated with two measurement operators requiring therefore two ancilla qubit per

plaquette. Similarly to the surface code, the color code consists in running periodically the measuring operators

to deduce and correct, via measurement of the ancilla qubits, errors occurring on the data qubit.

A derivative of the color code, called the triangular code, starts from a static and fully define color code on a

sphere and removes a single vertex and its three surrounding plaquettes. The resulting code has a single degree

of freedom used to encode the logical qubit. The minimal amount of qubits needed for this logical qubit is

seven data qubits and six ancilla qubits, and both its representation and the associated stabilizers are displayed

in Figure 4.8.

With the exception of T gates, requiring state distillation similarly to the surface code, all logical gates are

transversal, which means logical operations can be implemented by simply applying the equivalent physical

operation to each data qubit encoding the logical qubit, as illustrated in Figure 4.9. A logical CNOT gate

is implemented similarly, in running physical CNOT gates between the corresponding data qubits of the two

logical qubits.

Such considerable simplification comes at the cost of a more constraining error threshold of 0.08% [107] and,

in the QCCD architecture described in Section 2.4.2, an increase in the amount of shuttling sequences needed

to run. Indeed, any logical qubit on a surface trap could be directly entangled at the cost of shuttling all their



4.4. The color code 97

2

1 3

0

54 6

X stabilizers Z stabilizers
X0X1X2X3 Z0Z1Z2Z3

X1X2X4X5 Z1Z2Z4Z5

X2X3X5X6 Z2Z3Z5Z6

Figure 4.8: Single logical qubit encoded with the color code. This configuration only needs seven data qubits
and six ancilla qubits, by using six weight-4 stabilizers as displayed on the right.

σi,L =

σi

σi

σi

σi

σi

σi

σi

Figure 4.9: Transversality of logical gates for color qubits. A logical single qubit gate, for σi ∈ [σx, σz], H and
S, consists of applying the equivalent physical gate to each data qubit belonging to that logical qubit.

corresponding physical qubits to the same zone. As mentioned in Section 2.4.1, shuttling ions adds heating

and unwanted phase rotations. The advantages of transversal gates can easily be lost due to noisy shuttling

parameters [108], but recent high fidelity shuttling of trapped ion qubits [70] indicate it could be implemented

in the near future. Few experiments on the color code have yet been conducted [109].

4.4.2 Application to large scale trapped ion devices

The transversal representation of color codes is conceptually easier to represent, but in the case of the gate

architecture using magnetic field gradients described in Chapter 2, it is also efficient to implement in hardware.

The applied RF and MW field can, in principle, drive the same gate at multiple gate zones simultaneously

therefore, a device with at least one gate zone per qubit does not require modifying the antenna hardware when

scaling circuits from physical qubits to logical qubits. A set of fields driving gates on a physical qubit will also

drive the entire logical qubit.

For devices satisfying the condition for this efficient scaling of the driving field, the experimental control can be



98 Chapter 4. Quantum error correction

further abstracted. The trap area delimiting the zones containing the logical qubit can be abstracted, similarly

to how logical qubits are constructed from physical qubits, into a logical zone. Each logical zone would host

one logical qubit by default, and be able to prepare, measure, and apply single logical qubit gates. These zones

can apply entangling logical gates by “shuttling” a second logical qubit into the same logical zone by shuttling

all the corresponding physical qubits.

4.5 Practical implementation of QEC

After describing the fundamentals of QEC and detailing the implementation of two particular schemes, we now

consider two additional problems associated with QEC which are how to effectively simulate such codes and

how to experimentally implement such codes into hardware.

4.5.1 Efficient simulation by importance based sampling

When simulating logical qubits with an error model such as the depolarizing noise, the circuit encoding the

qubit is run with noise gates inserted with a probability associated to the noise parameters. For low noise

behavior, most simulations run without error gates and therefore waste computing time without giving any

information about code performance.

An efficient alternative is called importance based sampling [110]: an error rate pL(n) is found for a fixed

number of errors, n, placed randomly in a circuit. By calculating this rate for multiple values of n and summing

these with weights An(pe) corresponding to the number of ways each number of errors can happen associated

with the probability for the error to happen, we can find a logical error rate pL(pe). We can define a cut off

at a certain value of n, the total probability of having this many errors or more in a cycle being very small, by

assuming all weight n and above errors result in a logical error. The final error rate pL is deduced from [110]:

pL(pe) =

Narb∑
n

An(pe)pL(n) (4.10)

Importance sampling has two interesting features for logical code simulations: firstly, when simulating the

circuit no error probability is considered, which means that for the same error model, a different error rate can

be considered just in post-processing and not in running new simulation. Secondly, this model can be extended

to more error parameters, such as the distinction between single qubit gate errors and two qubit gates error, but

also rotation errors, heating [42] and shuttling [108] effects.



4.5. Practical implementation of QEC 99

4.5.2 Experimental effort toward 17 surface code

Experimental demonstrations are far from demonstrating beneficial quantum error correction and careful con-

sideration of experimental implementation decomposes progress toward fully beneficial QEC into two main

steps [111]. Firstly, a logical qubit undergoing error detection and correction cycles should remain coherent

longer than the physical qubits of which it is comprised of. Syndrome measurement cycles in QEC adds com-

plexity to the quantum circuit and therefore opportunities for errors to occur. Beneficial corrections cycles

would indicate that the syndrome measurements correct more errors than they introduce. This step is funda-

mental for longer lasting quantum memory but does not involve the use of fault tolerant operation and fault

tolerant circuits. The second step is to demonstrate that not only logical qubits have better lifetimes than phys-

ical qubits but that they can also be coherently controlled with logical gates.

Despite very focused consideration of running a 17 qubit surface code [112, 113], no experiments have yet

been fully conducted. Most results were obtained for individual stabilizers [114, 115], but promising results on

experimental lattice surgery with smaller encoding [116], combined with the increase in quantum volume of

available devices indicate that such experiments are now within reach.

4.5.3 Hardware requirements for testing QEC in a QCCD architecture

A fully functional large scale QCCD quantum computer is not required to study QEC protocols. The needed

functionalities can be summarized as:

• A segmented ion trap. Each electrode should be individually controlled to enable shuttling between

trapping zones. The smallest trapping unit described in the blueprint from the research group [1] is

the X-junction surface trap which provides at least an independent zone for each arm of the X-junction,

therefore allowing enough space to run circuits from a single stabilizer up to a full logical qubit. Shuttling

across the junction, shuttling in the corner of the junction, splitting and merging an ion crystal, and linear

shuttling are the required waveforms to fully manipulate a chain of trapped ions in an X-junctions.

• A quantum logic control capability. At least one zone where a magnetic field gradient can be generated

on demand to drive, via MW and RF fields, the desired quantum gates. The device also needs to achieve

quantum state preparation and readout on selected zones while maintaining qubits in other zones to

protect the data qubits while the ancilla qubits are measured. Single and two qubit gate fidelity should

remain above 99% after a full stabilizer circuit involving shuttling. QEC codes do not have constraints



100 Chapter 4. Quantum error correction

on the measurement time [117], but the state detection efficiency is required to be at least equivalent to

the gate fidelity for the surface code [98], and therefore is also required to be above 99%.

• A compilation interface to translate the quantum circuits representing the QEC into a series of physical

pulses representing shuttling and logic state control. The hardware needs to be able to sustain long

and diverse shuttling sequences and gate pulses to enable high depth quantum circuits generated by the

multiple cycles of stabilizer measurements. As a first objective with a static compiler, the apparatus

should be capable of running a single stabilizer measurement involving five qubits.

• A feed-forward capability to adjust the quantum circuit on the fly based on in-circuit measurements.

While feed-forward is not fundamentally needed for compensating errors detected with the stabilizers;

only tracking the errors is required; losing ions is a perturbation event that can only be compensated

by bringing new ions into the quantum circuit. Feed-forwarding involves therefore, the integration of

the quantum state readout analysis and the compiler into the real-time experimental control. This final

functionality will enable us to run multiple series of stabilizer measurements with a correction step after

each error detection, as well as being able to inject a new ion in the circuit when detecting an ion loss.

The gate fidelity requirement enables the deduction of an additional constraint on the ion trap heating rate, in

order to maintain the entangling gate error below 1%, and assuming a negligible contribution from the other

sources of noise. For a two-tone polychromatic gate, the error is defined as [2]:

ε ˙̄n ' 1− 1

8

3 + 4e
−

˙̄ntg
6 + e

−
2 ˙̄ntg

3

 (4.11)

Considering the previously implemented polychromatic gate having tg = 3.4 ms for δB/δz = 23.6 T/m, an ideal

gradient of 140 T/m enables tg = 570 μs. The trap heating rate can be constrained to be:

˙̄n < 11s−1 (4.12)

Additional hardware requirements can be obtained when taking shuttling into account and will be facilitated

once the compiler is formulated. Heating and time constraints associated with shuttling can be deduced from

the compiled circuit of a single stabilizer, in order to maintain gate fidelities, across the entire circuit, above

99%.

The timing requirements associated with the feed-forward capability are associated with, first, the time taken

to estimate the measured state in real-time and secondly, the time taken to decode the error syndrome and the



4.5. Practical implementation of QEC 101

choice of the subsequent quantum circuit to apply. The measurement is not a constraint due to the existence of

low-resource approaches such as the threshold method as already considered in Section 2.3.5. More expensive

methods, such as machine learning assisted readout, will slow down the total readout operation and therefore

may impact the gate fidelity considered just above.

The error syndrome decoding will require, for large scale architecture and large error rates, dedicated time to

compute the most probable syndrome following the schemes mentioned in Section 4.3.1. However in the case

of an experiment only involving the logical qubit composed of seventeen physical qubit, detailed in Section

4.3.2, eight ancilla qubits are used and therefore only 256 different syndromes exist. All the resulting errors

and resulting correction can be calibrated by the experiment and would then be cost-less to read in real-time

[113]. Time constraints can in conclusion be neglected for experiments up to a few logical qubits. The physical

implementation of feed-forward still needs to be considered, first in the compiler, then in each hardware device

handling the quantum control fields and the shuttling waveforms.



Chapter 5

Quantum software compilation

This section will detail more abstract software levels of a quantum computer in the context of trapped ion Noisy

intermediate scale quantum (NISQ) devices based on trapped ions. The quantum circuit representation detailed

in Chapter 1 is both still too low level for general users to fully exploit quantum computers and too high level

to represent the physical operation to achieve in the hardware. More intermediate representations are required

so that each compilation step can be studied, implemented and updated independently. While those software

layers can be avoided in most prototypes with very low qubit counts, medium size circuits such as the one

needed for QEC codes detailed in Chapter 4, will have its output quality significantly increased depending on

the optimization achieved in software. On the long term with larger device continuously employing topological

QEC codes, such layers will become indispensable. A full stack implementation at NISQ level consisting of a

gate decomposition layer, a compilation to hardware layer and a pure hardware layer is detailed and illustrated

with important user cases. Implementing QEC codes in the above framework, not as the main circuit to run but

as a layer itself, is also considered.

5.1 Choosing a framework for writing and compiling quantum code

5.1.1 Stack representation of a trapped ion quantum computer

For clarity we adopt the following definitions:

• Quantum code: Text representation of a quantum circuit

102



5.1. Choosing a framework for writing and compiling quantum code 103

• Syntax: Literal representation of quantum code. Any algorithm in two different syntaxes must still have

the same probability distribution if run on a perfect simulator.

• Command: Single instruction of quantum code

• Layer: Code that receives a quantum code of syntax A and emits a quantum code with syntax B; A and

B can be the same.

• Compiler: Layer adapting the quantum code to a subset of physical constraints associated with quantum

computing hardware

• Backend: Layer running the quantum code and producing the measurements. Backends are mostly either

a simulator or quantum hardware, but alternative backends can for example draw circuits as images or

perform circuit analysis.

• Framework: Code capable of handling a set of several layers. They can handle several quantum code

syntaxes as well as a choice of several backends. They allow users to run arbitrary code on arbitrary

backends and get the probability distribution outcome effortlessly from a user point of view.

We also need to distinguish the different denominations given to qubits:

• Physical qubit: Physical entity encoding the qubit in the quantum hardware. In this thesis the physical

qubits are individual 171Yb+ ions.

• Computational qubit: Qubit defined in a circuit and attached to a physical qubit via a map handled by

the framework.

• Logical qubit: Qubit used for quantum computation. If a quantum error correction scheme is used then

the framework handles a mapping of one-to-many map to decompose logical qubits into circuits made

of computational qubits. If no scheme is used then the logical qubits are the same as the computational

qubits.

The framework structure used in this chapter is illustrated in Figure 5.1 and is the widely adopted representation

in the community for running code on quantum computer [118, 119]. Each layer is defined as an optimizer

which receives the code written in a certain syntax as input, and produces the equivalent code written in a more

hardware dependent syntax. Such organization allows a clear separation of tasks between layers. Defining the

several syntaxes used in between for the quantum code will provide clear objectives for the development of

those layers.



104 Chapter 5. Quantum software compilation

Figure 5.1: Generic framework structure for quantum computers. A generic quantum program is first translated
in a quantum code (Syntax A) and progressively adapted to the hardware by successive layers of compila-
tion (Syntax B). The outcome (Syntax C) is a quantum code that can be directly implemented in a quantum
hardware. The number of layers as well as the choice of syntax can be adjusted.

5.1.2 Choice of quantum framework

Nowadays a great number of softwares for quantum computation are available to formulate quantum circuits,

but still few of them are able to act as a full framework [120]: they not only need a layer structure but also at

least one syntax for interacting with a backend. We can quickly summarize them in Table 5.1: First of all, most

of them are open source python modules, aimed mainly for education and research purposes, and all provide

both access to simulators and to a quantum hardware. Most frameworks have recently acquired the capacity

to interact with different QPU architectures demonstrating the flexibility required from a quantum software

framework. The last two elements of the table are more intriguing as they represent purely private efforts to

monetize quantum computing via their cloud platform, and are only available yet as early access. However

they aim to reach the same level as the other frameworks as they can compile the customer’s quantum code

to different quantum computing architectures. The list presented in Table 5.1 is not exhaustive and alternative

frameworks can be found [121, 122].

ProjectQ [123] was selected amongst the other frameworks for its easier internal mechanism and its better in-

dependence from existing quantum hardware companies. The departure of the original founders of the project

occurring the same year in which we started to write updates was on one hand detrimental to its popularity but

permitted a greater freedom in implementing new features.

1https://github.com/Qiskit/qiskit
2https://github.com/quantumlib/cirq



5.1. Choosing a framework for writing and compiling quantum code 105

Quantum software framework
Name Company Backends available Hardware based syntax name
Qiskit1 [124] IBM IBM, AQT OpenQASM
Cirq2 Google Google, AQT, Pasqal N.A.
Forest3 Rigetti Rigetti QUIL
ProjectQ4[123] N.A. IBM, AQT N.A.
Azure Quantum5 Microsoft IonQ, Honeywell, 1QBit and QCI Q#
Amazon Braket6 Amazon IonQ, Rigetti and D-Wave Unknown

Table 5.1: List of the main quantum software frameworks available. The first four elements are open source
python modules whereas the last two are cloud based frameworks in early access. No descriptions for them are
currently available.

5.1.3 The ProjectQ syntax

ProjectQ works with layer objects called engines, which are the main components. They are wrapped in a

special engine object, called the MainEngine, holding information about the qubits and the list of engines to

handle. The MainEngine is the entry point for any commands, holds the list of engines chosen to compile the

circuit and also handle the qubit register. All commands circulate through the engines down to the backend. A

command has the following syntax which will be used for the rest of the thesis:

{command name} | {qubit number}

A Bell state formed by one Hadamard gate followed by a CNOT gate is expressed in the ProjectQ syntax in

Figure 5.2.

|0〉 H •

|0〉

1 eng=projectq.MainEngine()
2 #Qubit initialization
3 qureg = eng.allocate_qureg(2)
4 #Quantum circuit
5 H | qureg[0]
6 CNOT | (qureg[0],qureg[1])
7 All(Measure) | qureg

Figure 5.2: Adaptation of a quantum circuit (Left) into the ProjectQ quantum code syntax (Right). The frame-
work main object called the MainEngine (Line 1) contains the qubit information (Line 3). The circuit itself is
implemented by overriding the python OR operator “|” (Line 5-7).

Engines requiring the knowledge of multiple commands, like a circuit optimizer, can buffer the incoming
3https://github.com/rigetti/pyquil
4https://github.com/ProjectQ-Framework/ProjectQ
5https://azure.microsoft.com/en-us/services/quantum/
6https://aws.amazon.com/braket/



106 Chapter 5. Quantum software compilation

commands. Storing and releasing commands is controlled by each engine, so to avoid any potential stop in

the flow of commands through the engines, a special command called “flush” forces all engines to release all

buffered commands down to the backend. I acquired experience on the ProjectQ framework by writing two

updates on the IBMQ backend7,8 to match the corresponding API updates in Qiskit, to interact with the IBM

quantum machines, as well as implementing the backend for the Alpine Quantum Technology (AQT) quantum

machines9.

5.1.4 The ProjectQ syntax efficiency

The choice of the syntax shown above is to stay coherent with the python code used in ProjectQ and was

not defined nor particularly studied to be an efficient hardware based quantum code. Several languages ex-

ist, and are usually co-designed with existing frameworks: among many examples there is QUIL[125] with

Forest, OpenQASM[126] with Qiskit and cQASM[127] with OpenQL. Some provide powerful functionality

such as lambda functions, variable parameters for VQE circuits [128] as well as in-circuit measurement with

subsequent logic decision making. This plurality of quantum code syntax was recently acknowledged by San-

dia National Laboratories with the introduction of their own syntax called Just Another Quantum Assembly

Language (JAQAL)[129]. The ProjectQ syntax is limited but the framework is easy to reconfigure allowing

extensions.

5.2 Adapting a quantum software framework to trapped ion quantum com-

puters

A quantum compilation architecture has been developed in the research group using ProjectQ. This explicit

focus on the technologies used enables a more detailed description of the needed layers and is displayed in

Figure 5.3: At the highest level, functions consists of entire quantum algorithms, such as the Shor algorithm.

The Quantum code decomposer then translates these algorithms into quantum circuits, as well as the logical

qubits into sets of physical qubits. NISQ devices have a low qubit count and thus being usually too small

for such a feature, this layer will not be a priority in this project and will remain ignored. The second layer

optimizes the circuit and adapts it to the gate operation implementable by the quantum hardware. The third layer

adapts the quantum circuit to a set of gate and shuttling operations characteristic of QCCD devices. Finally,
7https://github.com/ProjectQ-Framework/ProjectQ/pull/349
8https://github.com/ProjectQ-Framework/ProjectQ/pull/366
9https://github.com/ProjectQ-Framework/ProjectQ/pull/353



5.2. Adapting a quantum software framework to trapped ion quantum computers 107

Figure 5.3: Layer structure of the quantum compilation architecture implemented in the research group. Layers
are represented by the orange blocks summarizing their function while the blue arrows indicate an intermediate
syntax to host the quantum code. The first layer translates high level function into computational qubits. The
second layer optimizes the circuit by reducing the gate count and adapting the gate set to the hardware. The
third layer translates computational qubit into physical qubits by adding shuttling commands to the quantum
code. The last layer translates the commands into hardware instructions.

gates and shuttling sequences are transformed into the relevant set of hardware pulses to be implemented by the

experiment. All syntaxes are aimed to be common for all experiments across the research group and detailed

enough to be reused by other ion trapping groups or companies.

In order to illustrate all the layers in the following sections the simple example of a Greenberger - Horne -

- Zeilinger (GHZ) state with three qubits [130] will be used. A GHZ state in the abstract quantum code

formalism, can be formed with a high level gate we will define simply as the GHZ gate and with three qubits



108 Chapter 5. Quantum software compilation

initialized in a register q. The evolution operator of this GHZ gate is:

GHZ =
1

2



1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 −1

0 1 0 0 1 0 −1 0

0 0 1 0 1 −1 0 0

0 0 0 1 −1 0 0 0



(5.1)

The first layer, ignoring QEC code, decomposes this gate into single and two qubit gates as shown in Figure

5.4:

1 #High level circuit
2 q = eng.allocate_qureg(3)
3 GHZ | (q[0],q[1],q[2])

→

1 #Decomposed circuit
2 q = eng.allocate_qureg(3)
3 H | q[0]
4 CNOT | (q[0],q[1])
5 CNOT | (q[1],q[2])

Figure 5.4: Quantum code decomposition of the GHZ function. The GHZ state (Left) is common enough to
be defined as a single command in a quantum code (Center). A decomposition layer should translate this high
level command into single and two qubit gates (Right) for facilitating hardware implementation.

This decomposition is classic and can be found in almost all the quantum frameworks previously mentioned.

5.3 Quantum circuit optimization

Layer 2 from Figure 5.3 is at the quantum circuit level and focuses first into reducing the number of gates ap-

plied in the circuit while keeping the total evolution operator equivalent. Simultaneously, it adapts the arbitrary

gate set to one which can be physically implemented in hardware. The ProjectQ framework introduced above is

able to do some optimization but independent quantum software developed in the physics community are also

capable of such tasks, some being compatible with existing frameworks [131]. Exotic compilation methods,

such as using neural network circuit generation [132] or circuit compilation assisted by quantum computers

[133] are not considered here as they require too much computing power for the small increased gain in com-

pilation efficiency. Some tools are architecture specific, such as the crosstalk optimizer for superconducting

architectures [134]. Gate optimization is particularly useful for NISQ devices where quantum resources are



5.3. Quantum circuit optimization 109

sparse and noisy. Running the same algorithm with fewer gates have considerable impact on the result quality:

the run time is faster, thus reducing the impact of decoherence and by applying less gates the total error rate of

the evolution operator will be reduced.

5.3.1 Gate reduction

A simple optimizing protocol in ProjectQ as displayed in Figure 5.5 is to cancel self inverse gates if they are

next to each other, and merge consecutive rotation gates of the same rotation axis:

1 #Cancelling example 1
2 H | q[i]
3 H | q[i]
4 #Cancelling example 2
5 Rx(theta) | q[j]
6 Rx(-theta) | q[j]

1 #Merging example
2 Rx(theta) | q[i]
3 Rx(gamma) | q[i]
4 #the two above gates will
5 #merge so that they can cancel
6 #the gate below
7 Rx(-(theta+gamma)) | q[i]

Figure 5.5: Cancellation (Left) and merging (Right) identities. Cancelling happens when consecutive gates are
equivalent to the identity gate, while merging proceeds when consecutive rotation gates of the same type are
identified.

5.3.2 Gate decomposition

The gate replacer tool is a fundamental compilation operation adapting a circuit from a gate-set to another.

Adapting circuits is required due to the limited gate-set available in QEC codes, and in the physical architecture

of quantum computers. In the case of trapped ion quantum computers, it was already mentioned in Chapter

2 that only three gate types were physically implementable: the Rotation X gate Rx(θ), the Rotation Y gate

Ry(θ) and the Mølmer-Sørensen Rxx(θ) gate. Arbitrary quantum circuits can be translated and optimized on

this gate subset [135]. In the architecture considered at the Ion Quantum Technology research group, only

Mølmer-Sørensen interactions over two qubits are used but it is possible to extend this entangling gate up to

any number of ions, reducing the gate count of most circuits such as the surface code stabilizers [116].

Let us consider two examples: The CNOT gate can be decomposed in several different circuits as represented

in Figure 5.6, with additional Rotation gates. The decomposition choice is represented by freedom parameters

s and v being freely chosen on {+1,-1}. Similarly the Hadamard gate can be decomposed into two possible

circuits as shown in Figure 5.7.



110 Chapter 5. Quantum software compilation

•

→

Ry(vπ/2) Rx(−sπ/2)

Rxx(sπ/4)

Ry(−vπ/2)

Rx(−vsπ/2)

1 CNOT | (q[i],q[j]) →

1 #Decomposed CNOT gate:
2 Ry(v*pi/2) | q[i]
3 Rx(-s*pi/2) | q[i]
4 Rx(-v*s*pi/2) | q[j]
5 Rxx(s*pi/4) | (q[i],q[j])
6 Ry(-v*pi/2) | q[i]

Figure 5.6: CNOT gate decomposition with the ion trap gateset with the quantum circuit representation (Top)
and the quantum code representation (Bottom).

1 H | q[i] →
1 #Decomposition 1
2 Rx(pi) | q[i]
3 Ry(-pi/2) | q[i]

=
1 #Decomposition 2
2 Ry(pi/2) | q[i]
3 Rx(-pi) | q[i]

Figure 5.7: H gate decomposition with the ion trap gateset. The choice among the possible decomposition
should be made to merge and/or cancel more gates.

The different possible combinations of gate decomposition can be used to cancel successive rotation gates to

reduce the gate count.

5.3.3 Gate commutation

The commutation optimizer [136] is a tool which permits additional merging and cancelling operations by ex-

ploiting commutation rules between some quantum gates. The trapped ion compatible gate set is interesting in

that regard because:

1) the Rx gate commutes with the Rxx gate:

1 Rxx(gamma) | (q[i],q[j])

2 Rx(theta) | q[i] =
1 Rx(theta) | q[i]

2 Rxx(gamma) | (q[i],q[j])

2) the Rxx gate is symmetric:

1 Rxx(gamma) | (q[i],q[j]) = 1 Rxx(gamma) | (q[j],q[i])

3) the Rxx gate commutes with itself:



5.4. Ion router 111

1 Rxx(theta) | (q[i],q[j])

2 Rxx(gamma) | (q[i],q[k]) =
1 Rxx(gamma) | (q[i],q[k])

2 Rxx(theta) | (q[i],q[j])

Those three commutation rules allow a larger set of cases for which optimization is possible. The software

implementation in ProjectQ was written by Daisy Smith10 under my supervision. It was written to also cover

superconducting circuits using Rz and CNOT gates.

The three compilation tools can be tested as an example on the GHZ gate toy model described earlier. It pro-

duces the following code for trapped ion quantum computing architecture:

1 #High level code

2 GHZ | (q[i],q[j],q[k]) →

1 #Generic 1 & 2 qubit

gates

2 H | q[i]

3 CNOT | (q[i],q[j])

4 CNOT | (q[i],q[k])

→

1 #Circuit optimization

2 Ry(pi/2) | q[i]

3 Rx(3*pi) | q[i]

4 Ry(pi/2) | q[i]

5 Rx(3*pi) | q[i]

6 Rx(7*pi/2) | q[j]

7 Rxx(pi/4) | (q[i],q[j])

8 Ry(7*pi/2) | q[k]

9 Rxx(pi/4) | (q[i],q[k])

10 Ry(7*pi/2) | q[i]

This output is not yet optimal. In particular the qubit q[i] has four consecutive single qubit gates applied to

it. As any unitary SU(2) can be decomposed into at most 3 rotation gates, a further compilation tool that could

be implemented would identify large chain of single qubit gates and replace them by a 3 single qubit gate

sequence.

5.4 Ion router

Most frameworks detailed in 5.1.2 were initially conceived with superconducting architectures in mind, where

qubits are fixed and connectivity is limited to nearest-neighbor maps. Artificial global connectivity is achieved

by swapping quantum states between neighbor qubits via sequences of three CNOT gates, as already men-

tioned in Section 1.1.4. Such overhead is obviously detrimental to the algorithm fidelity. Mapping computa-

tional qubits into physical qubits by minimizing the swapping operations is still an active subject of research

[137, 131, 138]. The quantum code reaching the backend layer of the chosen framework is a quantum circuit

code with the additional CNOT gates due to swapping operations coupled to a map between computational and

10https://github.com/ProjectQ-Framework/ProjectQ/pull/386



112 Chapter 5. Quantum software compilation

physical qubits, to assign the measurement to the appropriate qubit.

Mapping computational qubits to physical qubits is usually one of the final layers of compilation for most

known frameworks described above. The final layer, the backend, sends the quantum code to a server online

controlling an existing quantum computer. Most available quantum hardware have their own Application Pro-

gramming Interface (API) protocol to which they communicate data, so quantum frameworks usually contain

different backends depending on the targeted hardware to run the quantum circuit. Most quantum hardware

APIs only accept quantum code corresponding to layer 2 from Figure 5.3, running all the more hardware-

related compilation internally. Most APIs are therefore relatively easy to understand as it stays at the quantum

circuit level.

5.4.1 Existing ion trap QPU provider

The only public API for trapped ion quantum computers is AQT. Their device has global qubit connectivity

and does not mention ion shuttling11. Their architecture does not involve shuttling operations as they consist

of static ion chains in which selected entangling gates are achieved by sending laser beams for each individual

ion [139].

The company IonQ, similarly to AQT, has a quantum hardware consisting only of ion chains12. Honeywell is

the only ion trap based QPU provider which employs shuttling protocols, but their API restricts the access to

quantum circuits only, staying in layer 2 of compilation13. It indicates that they compile their routing sequence

internally.

5.4.2 The QCCD syntax

All of the above, representing the state of the art of existing quantum computers, is unfortunately not applicable

to the research group because our trap designs require that the ions, representing the qubits, can only be inter-

acted for specific operations in specific zones. Global connectivity is effectively possible however it comes at

the cost of implementing a series of shuttling operations described in Chapter 2 that themselves induce noise

and time latency [140].

The following section outlines the ProjectQ backend implemented to describe the circuit associated with shut-

tling instructions. It will require a new formalism bringing the quantum circuit code outside of the ProjectQ

11https://www.aqt.eu/aqt-json-tutorial/# json-syntax
12https://ionq.com/technology
13https://www.honeywell.com/en-us/company/quantum/quantum-computer



5.4. Ion router 113

framework which will be used as a gateway for hardware implementation.

This shuttling approach is fundamentally different from the mapping procedure between computational qubits

and static physical qubits from superconducting architectures. Unfortunately most if not all quantum code

frameworks, including ProjectQ, were initially designed for these superconducting architectures. Efficient code

for QCCD devices will require an extension of the available set of commands by including shuttling related op-

erations. Such hybrid quantum circuits with shuttling syntax has already been considered in the past. They

are however mostly unbalanced, between syntax focused on quantum operations [141] and syntax focusing on

shuttling operations [142]. The most recent approach mixes shuttling, quantum operations and even sympa-

thetic cooling via ancillary species [111], although the syntax of quantum operations are still written with the

index of the qubit register. Indeed using the QCCD toolbox mixes in the same syntax two opposite concepts:

• gate commands that are applied to qubits, which need to be subsequently identified as physical ions in a

gate zone

• shuttling commands, although mentioning qubit number, mainly concerns ion positions on the trap

This confusion between the computational qubits and the physical ion position hosting the qubit is amplified

by the fact that most operations in QCCD architectures, such as preparation and gate pulses, are physical pro-

cesses targeting a physical position. The action of sending a laser or microwave field is independent of the qubit

number in the quantum circuit but entirely depends on the ion position representing the qubit.

Position based commands

We now define a new syntax for representing a sequence of gates and shuttling operations applied to a trapped

ion quantum processor, called “QCCD code”. It reuses the ProjectQ syntax with the “|” separator but will be

applied to physical positions on the trap instead of qubit numbers. This syntax allows a direct representation of

the physical tasks to be run by the hardware through the entire quantum circuit, covering both quantum logic

and ion transport operations. Removing qubit indexes which is not directly understandable nor controllable by

the hardware enables the QCCD code to be the first pure Quantum Assembly Language for QCCD architectures

which can be run as such by the hardware via one-to-one equivalence between commands and physical pulses,

without further compilation.

For clarity we will define a trapping zone as a section on the microtrap able to hold and manipulate an ion



114 Chapter 5. Quantum software compilation

crystal. This definition is common and has been used by all the other QCCD syntax mentioned above. Zones are

connected between them by a routing map hosted by the quantum framework. Zones are attributed parameters,

such as the maximum number of ions in a chain that can be held in the zone, as well as a list of quantum

operations that can be applied in the zone. An ion can be identified on the trap using two pieces of information:

The name of the zone in which the ion crystal is placed, and its position in the ion crystal. To distinguish the

first from the last position in a crystal, a reference point has to be defined by the framework.

Static commands

Quantum gates are executed as a resonant RF/MW pulse in a magnetic field gradient. Therefore correct ad-

dressing depends on the exact position of the ions involved:

{Gate} | {Position on trap}[{ion position}/{crystal size}]

Quantum logic operations involving laser beams, such as Preparation and Measurement, cover an entire trap-

ping zone and therefore cover every ion in the ion crystal of the trapping zone:

Prepare | {Position on trap}

Measure | {Position on trap} {Qubits ids being measured}

To trap new ions or index them in the quantum framework, we use the Init function:

Init | {Position on trap}

A single Init function is used with a list of arm names representing the ordered list of qubits being used. If a

zone is mentioned multiple times ions are piled up in the same crystal.

For simplicity we omit sympathetic cooling, but later iteration of the compilation layer could simply trigger

this operation before entangling gates: either in forcing it before each two qubit gates, or by assessing the heat

level induced by all previous gates and shuttling operations. In both cases new commands need to be created

for handling shuttling and state preparation of the second type of ions.

The map between computational qubits from the quantum framework with the physical positions used in the

QCCD code is implemented with the Init and Measurement commands: In the Preparation command the qubit

index is registered in the quantum framework but does not need to be mentioned in the QCCD code itself.

However the Measurement operation directly links the zone to be measured with the classical bits in which



5.4. Ion router 115

the qubit measurements will be stored. Those readout bits are stored by the QPU and returned to the quantum

framework which is aware of the map between the classical bits and the computational qubits.

Reconfiguring commands

Shuttling protocols are assumed to integrate splitting and merging operations. This integration is a direct

consequence of the ratio of ions that can be trapped compared to the number of trapping zones available in

a trap, which is always greater than 1. However splitting and merging operations can only be implemented

successfully if there is a knowledge of the number of ions in the crystal. As illustrated in Figure 5.8, every

shuttling command involves the ion position in the departing arm and the crystal length in both the departing

and targeted arm:

Shuttle | {Leaving arm}[{ion position}/{crystal size}] {Arriving arm}[{crystal size before arriving}]

We want to distinguish the swap operation from the splitting and merging operations which rotates the ion

crystal in the arm. This separation is intended to allow the routing algorithm to use or not use this feature if it

is physically implemented:

Swap | {Position on trap}

5.4.3 Routing in a X-junction

We have now defined the QCCD syntax and can now use it to implement logic based quantum circuits, where

1) the number of ions that is allowed in an arm is far less than the total number of ions in the trap, and 2) the

different operations required for quantum computation ,such as preparation, measurement and gates, are not all

available in the same arms. We will use for example a single X-junction incorporating a single gate zone as

displayed in Figure 5.8. We will assume that the maximum number of ions per arm is two, as it relaxes the

complexity on implementing splitting and merging protocols. Two arms can apply readout, since they are on

the same 369 nm laser beam path, but only one arm can apply preparation and gates. We will also assume that

all arms can split, merge and swap crystals. Finally we will restrict quantum circuits to initialize all qubits at the

beginning as well as only doing measurements at the end of the circuit. This last constraint will considerably

simplify the algorithm and initial physical implementation, but we are aiming to remove it in the near future.



116 Chapter 5. Quantum software compilation

Figure 5.8: QCCD code illustration of a shuttling sequence, implementing an entangling gate in a X-junction
between two distant ions. (Orange) The ions are the physical qubits, and each qubit is identified by its own
ID number in the ProjectQ syntax. (Blue) Zones in which ions can be trapped and interacted with. Each zone
is associated with a name (N ,E,W ,S) for the QCCD syntax, and a list of available controls to interact with
the ions inside of each zone. (Top right) An entangling gate command, in the ProjectQ syntax, between two
ions in two different zones, is decomposed into a QCCD code (Bottom right). The QCCD code contains all the
required information to shuttle one ion in the zone containing the second one. The red arrow represents the ion
trajectory resulting from the shuttling command.

We will now describe the algorithm involved when a qubit is required for a single qubit gate but is not located

in a gate zone. Firstly, the compiler assesses the gate zone to see if there is a place for the incoming ions. If the

zone is full the compiler will preemptively shuttle an ion to an available memory zone. Shuttling of the targeted

ion can then proceed.

All commands from the quantum circuit involving shuttling are extended from this basic algorithm, although

both preparation and measurement, named here P/M for simplification, presents an additional challenge un-

known to superconducting architectures. Since there are more ions than the number of places available in the

zone capable of applying the P/M command, a single “P/M — All” will involve multiple cycles of shuttling and

P/M applications. Lets consider a simple numerical example with the X-junction: 5 ions in this trap containing

only one preparation zone hosting at most 2 ions will have to apply three cycles of shuttling and preparations

to initialize all qubits. The GHZ gate example is illustrated on the X-junction with the compiler providing the

following QCCD code:



5.4. Ion router 117

1 #Generic quantum

circuit

2 q = eng.

allocate_qureg(3)

3 H | q[i]

4 CNOT | (q[i],q[j])

5 CNOT | (q[i],q[k])

−→

1 #Native quantum circuit

2 q = eng.allocate_qureg(3)

3 Ry(pi/2) | q[i]

4 Rx(3*pi) | q[i]

5 Ry(pi/2) | q[i]

6 Rx(3*pi) | q[i]

7 Rx(7*pi/2) | q[j]

8 Rxx(pi/4) | (q[i],q[j])

9 Ry(7*pi/2) | q[k]

10 Rxx(pi/4) | (q[i],q[k])

11 Ry(7*pi/2) | q[i]

−→

1 #QCCD code

2 Init | N N E

3 Shuttle | E[1/1]_W[0]

4 Shuttle | N[1/2]_E[0]

5 Shuttle | N[1/1]_E[1]

6 Prepare | E[2]

7 Shuttle | E[1/2]_S[0]

8 Shuttle | W[1/1]_E[1]

9 Prepare | E[2]

10 Ry(pi/2) | E[2/2]

11 Rx(3*pi) | E[2/2]

12 Ry(pi/2) | E[2/2]

13 Rx(3*pi) | E[2/2]

14 Shuttle | E[1/2]_W[0]

15 Shuttle | S[1/1]_E[1]

16 Rx(7*pi/2) | E[1/2]

17 Rxx(pi/2) | ( E[2/2], E[1/2])

18 Shuttle | E[1/2]_S[0]

19 Shuttle | W[1/1]_E[1]

20 Rx(7*pi/2) | E[1/2]

21 Rxx(pi/2) | ( E[2/2], E[1/2])

22 Ry(7*pi/2) | E[2/2]

23 Shuttle | S[1/1]_N[0]

24 Measure | N 1

25 Measure | E 2 0

The noticeable increase in the number of commands, even for simple circuits, comes from the constraints

in place on the chip, forcing multiple shuttling and swap operations to appropriately send ions to their desired

place. This observation has already been made for Y-junctions [108] when comparing different implementa-

tions of logical qubit gates. Shuttling through the junction does not have the same time duration and noise

model than splitting, swapping or simply shuttling across a zone, the compiler needs to be adapted to those

physical characteristics and minimize the amount of noisy shuttling operations when possible.

In particular for zones capable of hosting large ion chains the impact of topology has an impact on the fidelity.

Swapping two specific qubits located in a n>2 ion crystal, equivalent to a ion crystal reordering, involves

splitting, merging and ion crystal rotation operations, adding more errors for ions located further apart. For the

unusual case of ion chains above 10 qubits and with a noise model including state-of-the-art shuttling protocols,

swapping operations are recommended to be implemented by quantum gates [143], similar to superconducting

architectures with three inverted CNOT gates rather than by position control.



118 Chapter 5. Quantum software compilation

5.4.4 Visualizing the QCCD code

Further improvements and debugging require a clear visualization tool to read the QCCD into a dynamic display

of shuttled ions in a chip. This visualization tool was developed using the python module PyQtGraph and an

example of a stabilizer measurement with five qubits on the chip is displayed in Figure 5.9, the module choice

allowing a future integration inside the ARTIQ framework.

Figure 5.9: QCCD code visualization software in a X-junction: QCCD instructions (Left) are dynamically read
and represented in the 3-D model (Right)

5.4.5 Routing problems

Running shuttling based quantum circuits raises problems on the initial and final ion positions when running a

quantum circuit:

• The initial position assignment will probably not correspond to the current positions in the trap.

• Most circuits will be run multiple times, forcing the ions to return to their initial positions.

• Ions need to be trapped again to match the required number for the algorithm.



5.5. Hardware instructions 119

The position mismatch between what is required and the physical position will be resolved by applying a

shuttling sequence that will be named “pre-shuttling” and “post-shuttling”, for bringing the ion in position

before running the circuit and bringing the ion back to the required position between two runs. While the

logic and syntax is the same as for compiling the quantum circuit itself, the instructions are handled and stored

separately by the compiler.

5.4.6 Future work

The QCCD syntax was elaborated with the aim of compiling small circuits in a very confined space where

a sequential execution is the only possibility. Very few tasks could be run in parallel and would not have

much impact on the ability to run the circuit. However by considering traps containing more than one junction

substantial speed gain could be made if the multiple gate zones are used at the same time.

Furthermore the routing algorithm to translate quantum circuits into QCCD code may be inefficient as ion

positions are only considered for one command at a time: ions that are used more often than others could be

more appropriately handled by storing them in or near the gate zone preferably to other ions.

Finally the QCCD syntax should handle logical “if” statements so that corrections of quantum errors and

ion loss could be dynamically implemented in real-time. The most direct approach is to extend the ProjectQ

framework to conditional logic, and later adapt the QCCD syntax with the new ProjectQ commands.

5.5 Hardware instructions

The QCCD syntax described above can be considered as a minimal representation of the hardware instructions

having to be run on our shuttling based trapped ion architecture. However, while the overarching logical steps of

a quantum circuit have been well defined, there is still a gap in mapping these onto actual hardware. Converting

a circuit pulse to a hardware pulse requires encoding RF and MW waveforms, the time control of laser beams

and programmable TTL signals. Every individual command of the QCCD syntax needs to be decomposed into

an exact series of hardware pulses that physically implement the command.

Describing a quantum circuit at the hardware level as a pulse sequence allows for modularity. The compilation

of the pulse sequence is designed such that the resulting instructions are hardware agnostic. Therefore, a given

pulse sequence syntax can be employed across many different experiments that contain different hardware.

This syntax is intended for use in the research group but is reproducible enough to be adopted by any quantum

computing teams.



120 Chapter 5. Quantum software compilation

It is important to specify for clarity that the hardware syntaxes presented in this section are not the lowest

hardware layer that operate a quantum computer. The waveforms shuttling ions and/or driving the gates are,

fundamentally, the lowest hardware representation. The role of the presented syntax is to gather all the required

information so that the AWG, the FPGA and the DACs can generate the exact waveforms needed to run the

requested quantum circuit and at the right time. The AWG to generate the quantum control waveforms, the

DAC to generate the ion shuttling waveforms and the FPGA for triggering and synchronizing.

5.5.1 The OpenPulse syntax

Figure 5.10: Pulse and Command syntax in OpenPulse. (Top) The pulse syntax has its amplitude, frequency and
phase information encoded in the list of complex numbers representing each point of the waveform. (Bottom)
The command syntax consists in building the sequence of pulses via the “sequence” keyword, and indicates
which qubit is affected via the “qubits” keyword. Each pulse from the sequence provides additional information
such as (“ch”) which indicates which hardware will apply the waveform and (“t0”) for when the waveform is
applied. The particular pulse “fc” represented in this command shifts the phase of all subsequent waveforms
by the amount “p0”, which is a practical approach for superconducting devices to implement Rz gates. Phase
shifts are not practical for qubits driven by global microwave as every qubit would be affected by the shift.
Figures taken from [144].

While much less common than the quantum circuit representation, pulse sequence syntaxes are gaining more at-

tention recently for their ability to switch the hardware implementation of gates and use noise resilient schemes.

The most famous pulse syntax is OpenPulse [144] from IBM and is integrated with OpenQASM in Qiskit

[124]. The OpenPulse specificiation is an extension of the existing OpenQASM syntax which formulates quan-

tum circuits with JSON objects. This extension, as illustrated in Figure 5.10, gives a more direct access to the

hardware: there is the ability to define new gates by assembling JSON objects representing pulses. Each pulse

object contains frequency, phase and time information that can be directly produced by a waveform genera-

tor. Furthermore, gates can be compiled by choosing a sequence from a predefined pulse library. The robust

gates considered in Chapter 3 can be constructed from such pulses using sequences of amplitudes, frequencies



5.5. Hardware instructions 121

and phases. The OpenPulse syntax is flexible enough to accommodate different QPU architectures including

trapped ions, although shuttling is not explicitly mentioned. Improvements in circuit fidelity exploiting the

pulse sequence syntax have already been shown [145, 146].

5.5.2 The PulseSequence syntax

The syntax used in the research group, simply called PulseSequence, is a syntax designed by Dr Simon Webster

and Dr Adam Lawrence. It is also a JSON object but contrary to OpenPulse, is not extended from a quantum

circuit JSON representation. It is produced by a python program accepting either quantum circuit instructions

or calibrations mentioned in Section 3.3, and I later adapted it to read QCCD code. As illustrated in Figure

5.11, The PulseSequence consists therefore of a frontend to configure the sequence of pulses to apply, and a

backend which is the compiled representation of these pulses. The compiled instructions are split in sections to

be sent to the FPGA, the AWG and the DAC’s drivers.

On the frontend, each physical action is represented via pulses. Triggering TTL channels are added with the

addPulse() function, MW and RF signals are generated with a addRFShapedPulse() function, and Shuttling op-

erations are implemented with the addDCPulse() function. Additional information for running the experiment,

automatic logging and data analysis are added with the addParam() function. Any sequence is initialized with

a initPulseList() function and once the sequence is completed, a makeSequence() function is called to return a

compiled version, the backend. The functions are built using the following parameters:

1 initPulseList()

2 addPulse(name=’name’, time=0, step=0, count = 0, opts = {})

3 addRFShapedPulse(name=’name’, time=0, step=0, timeps=0, IQ=0, channels=[NULL_FCHAN])

4 addDCPulse(name=’name’,params=’’)

5 makeSequence()

with “name” a label for debugging, “time” the pulse duration, “step” the time step for implementing a scan,

the non-zero “count” is the index of the memory register in which a light measurement is recorded, opts is a

dictionary containing TTL and analog output channels to use. “timeps” indicates the time to ramp up and down

the field, “IQ” indicates if the pulse is a MW or RF pulse. “channels” is a list of channel JSON objects, each

channel representing a single AC field, with additional stepping parameters for the frequency, the amplitude

and the phase:

1 channel(’freq’=0, ’freq step’=0, ’amp’=0, ’amp step’=0, ’phase’=0, ’phase step’=0, ’channel

inv’=True)



122 Chapter 5. Quantum software compilation

Figure 5.11: Hardware compilation of quantum code into a Pulse sequence. (Yellow) The code is flexible
enough to accept both QCCD code and calibration experiments. (Blue) Due to the QCCD architecture, calibra-
tion of pulses are associated to the ion position in the gate zone (e.g. N[1/2], the first ion in a two ion crystals
in the gate zone N) so the configuration file, indicating which physical values the pulse has to be built with,
is categorized by the ion position. (Orange) The compiler associates the gate definition to a series of pulses,
replacing the time/frequency/amplitude/phase information from the configuration file. (Green) The output is
a JSON code containing all the physical information required to run the circuit/scan. Information aimed at
specific hardware (e.g. RFPulse for the AWG) is gathered together and transmitted to that device.

here “channel inv” is a keyword to help reduce the time cost associated to build the pulse waveform for the

AWG. A single RFPulse can generate any desired fields at the same time, by increasing the number of chan-

nels being used, which is required for state dressing considered in Section 2.3.3 and the Mølmer-Sørensen gate

scheme detailed in Section 2.2.7.

The RFPulse defined above, “shapedPulse”, is one option to generate a RF or MW waveform and involves

slowly ramping the signal at the start and at the end of the pulse. More waveform shapes are available, such

as the “rfMappingPulse” which has a frequency oscillating in time, required for matching the oscillating AC-

Stark shift of the polychromatic gate detailed in Section 3.2.3, or “blackmanPulse” to implement high-fidelity

quantum state transfer as mentioned in Section 2.3.3.

Both RFPulse and DCPulse are always accompanied by a Pulse for triggering, with the duration equal to the

AWG/DAC delay time if there is any, followed by an empty pulse of duration equal to the RFPulse/DCPulse



5.5. Hardware instructions 123

duration, to keep every devices synchronized. For example:

1 addRFShapedPulse(’Pi pulse on ’ + state1.name, state1.time, 0, 0, MWOUT, state1.fchan())

2 addPulse(’AWG trig delay’, AWG_TRIG_DELAY, 0, opts = OPTS_AWG_TRIG)

3 addPulse(’Pi pulse ion 1’, state1.time, 0, opts = OPTS_AWG_MW_PULSE)

where “state1”, obtained from the configuration file, indicates the relevant name, time and channels informa-

tions. The trigger delay time is indicated by “AWG TRIG DELAY”, and the TTL map associated with

triggering the AWG is represented by “OPTS AWG TRIG”. “OPTS AWG MW PULSE” is the idle TTL

map while the AWG is running.

All these pulses can be called by higher level functions, such as state preparation, readout, quantum gate and

calibration scans, enabling an easy access for the experimental user to control the calibration process, and an

easy translation of QCCD circuit code into a PulseSequence object. A very common function for calibration is

the frequency scan function freqscan():

1 def freqscan(state = "", det = 0, step = 0, steps = 0, runs = 0) :

2 state = eval(state)

3 initPulseList()

4 addPrepPulse()

5 addRFShapedPulse(’Freq scan ’ + state.name, state.time, 0, 0, MWOUT, state.fchan(freqdet

= det, freqstep = step))

6 addPulse(’AWG trig delay’, AWG_TRIG_DELAY, 0, opts = OPTS_AWG_TRIG)

7 addPulse(’Freq scan ’ + state.name, state.time, 0, opts = OPTS_AWG_MW_PULSE)

8 addReadoutPulse(DET_COUNT_1)

9 addParam("steps", steps)

10 addParam("runs", runs)

11 return makeSequence()

with “det” the initial frequency detuning from the current calibrated value, “step” the frequency value to add

to the field at each step of the scan, “steps” the maximum number of steps to apply, runs is the number of time

the same step is repeated to accumulate good enough quantum state readout statistics. This function also calls

another high-level function addPrepPulse(), which is a sequence of RFPulses and Pulses to prepare the ion in

the |0〉 state. The “steps” and “runs” parameters are outside the scope of the PulseSequence, and are added via

addParam() to be accessed directly by the software supervising the experiment.

An important feature is the configuration file which is assigned to each experiment, updated after each cali-

bration and which defines all the physical values needed to run any commands in a quantum circuit, such as

measured transition frequencies or measured Rabi frequencies. It is an easier but less organized approach than

OpenPulse which uses several JSON configuration objects for each gates and qubits. As displayed in Figure



124 Chapter 5. Quantum software compilation

5.11, the configuration file contains meta-data about the experiment architecture for local compilation of shut-

tling sequences detailed in Section 5.4, but also contains the information necessary to address any ion within

the crystal. That information requires continuous calibration as was discussed in Chapter 3. Each call to a

gate or a calibration simply needs to mention which ion position is addressed to access the relevant physical

parameters.

When the makeSequence() function is called, the PulseSequence generates a JSON object containing three

main components, built from each of the Pulses, RFPulses and DCPulses:

• TTL information: List of JSON objects aimed at the FPGA controlling the experiment. Each object

of the list indicates when and which TTL channel is to be triggered, or a time delay associated with the

use of another device. Triggering is an essential part of a QPU as preparation, pulses and readout have

to be scheduled in time as precisely as possible. Most experimental devices, such as the camera or the

waveform generator, are triggered by the FPGA. A simple example is given for state preparation:

1 {"string":"PREP", "time":500.0,"step":0,"dio":131075,"count":1,"AO":8}

In addition of the previously mentioned parameters of the Pulse, “dio” represents the binary list of TTL

that needs to be off or on to physically activate electronic switches or trigger external devices and “AO”

is the analog output control from the FPGA, mainly dedicated to controlling the AOM settings.

• Pulse information: String representing a list of waveforms to be generated by the waveform generator.

Generating the waveform from the pulse information is a slow process that has to happen before the start

of the experiment. The framework to use the AWG with the OpenPulse syntax was developed by Dr

Adam Lawrence [86], and consists, in the apparatus described in Section 3.2.2, in formating the String

as a LabVIEW variant, transmitting the variant to a second computer directly connected to the AWG,

generating the waveform in that second computer from the variant and with the assistance of a GPU, and

finally uploading the waveform to the AWG. By generating the waveform in the second computer, only

a small amount of information is transmitted over the network, compared to OpenPulse encoding the

entire waveform in the same object. The AWG framework can be easily adapted to any other architecture

by replacing the LabVIEW variant communication to a language agnostic communication based on json

objects.

• Shuttling information: Shuttling ions across a surface microtrap is a process sharing similar difficulties

with the AWG: multi-channel DC waveforms have to be generated to manipulate the ions, and then need



5.5. Hardware instructions 125

to be triggered later on at specific times. The information is similar to the QCCD syntax but only includes

ion displacement sequences and not any quantum state manipulation.

The apparatus from the research group uses OpenPulse due to its simplicity: firstly it was elaborated years

before the IBM specification and all the hardware needed to drive quantum gates with trapped ions in the lab-

oratory was configured in it. For more details, a full presentation of the software and hardware organization

and compiling a PulseSequence into a waveform generated by the AWG, is described in [86]. Secondly, while

being less exhaustive in terms of controlled parameters, the PulseSequence was originally conceived for driving

scans and was only later adapted by Christophe Valahu to run quantum circuits. OpenPulse needs to define new

pulse objects for each step of a scan, requiring for example, for a frequency scan, to define a new pulse for

each step. However, a PulseSequence object contains step information of amplitude, frequency and phase for

each pulse signal. A single PulseSequence object can implement most scans, making this syntax efficient for

calibrating the device as detailed in Chapter 3.

Such a syntax is therefore adaptable to any QCCD trap geometry and usable with any hardware, while simpli-

fying calibration scans by sharing the same syntax used for quantum circuits.

5.5.3 Future work

The PulseSequence syntax, as well as the QCCD syntax, first require a white paper or document formalizing

their capabilities. They will then require the ability to implement parallel instructions and conditional logic.

Parallelism in the PulseSequence which is so close to the hardware presents the additional challenge that two

simultaneous instructions may each take a different time to complete. Parallelism may also impact quantum

operations. For shuttling instructions, a DAC may share the same update bandwidth for multiple electrodes.

For gates, using too many tones can reach the power limit of the amplifier. Such situations can be mitigated in

hardware by having better DACs and amplifiers, and in software by restricting the number of allowed parallel

instructions for each type of command, in the backend engine of ProjectQ.

The conditional logic functionality should be added by replicating or taking inspiration from the OpenPulse

syntax. It first requires the ability to read the quantum state in real-time, and OpenPulse already standardizes

the measurement result as a JSON object, its encoding in a memory register and its reuse for subsequent gates.

Conditional pulses are written by adding a keyword “conditional” on the qubit register of interest, and is then

applied only if that register was measured to be 1. By extending this keyword to commands, entire circuits can

be easily triggered by a single measurement.

As mentioned in Section 5.5.2, the current PulseSequence is static because the waveform to be applied needs



126 Chapter 5. Quantum software compilation

to be generated first on time scales that are much larger than the run-time of a quantum circuit. Extending the

hardware to support conditional logic consists of extending the waveform generation to all possible pulses that

may be applied in the circuit. The choice of the waveform to apply in real-time will also require an additional

triggering sequence, sent by the hardware which determined the qubit measurement, to the device. The shuttling

compilation and its extension to conditional logic is commented in Chapter 8. Extending the AWG framework

to enable continuous RF/MW signal generation with conditional logic has been partially solved for situations

where phase control is not required, such as sideband cooling [86]: The AWG has an internal memory that can

be addressed, in real-time, with a signal generated from the FPGA. The RFPulse will be replaced by a loading

signal to load the requested waveform on the AWG, and a subsequent Pulse for triggering will still be required.

5.6 Compiling QEC codes

5.6.1 Toward large scale compilation

Compiling QEC codes in a quantum framework involves major changes from a NISQ based architecture. The

first required feature which is appearing in recent frameworks such as Q# is qubit allocation. The hardware

compiler needs to be aware of available ions to be used as ancilla or auxiliary qubits, as displayed in Figure

5.12, and be able to reuse them as another qubit later during the computation. It also involves the hardware

capability of preparing and measuring selected qubits while not affecting the rest of the quantum register. This

feature is required for the ancilla qubits, the auxiliary logical qubits, and to handle ion losses in the trap. This

hardware compiler can be at first written, for static circuits, as a small extension of the backend compiling the

QCCD code.

Figure 5.12: Example of allocation for a single qubit quantum circuit run on a three qubits quantum computer:
the allocating command interacts with an allocation manager to decide which available qubit should be allocated
for this circuit. Once the qubit is measured, the ion does not belong to the circuit anymore, joins back the list
of available qubits and can be reused later in the quantum circuit.



5.6. Compiling QEC codes 127

A second feature is a mapping between logical qubits used for the algorithms and the physical qubits of the

device. Instead of a one-to-one mapping of the computational qubits to the physical qubits, both the maps of

the computational qubits to physical qubits and the computational circuit itself is translated into a new physical

circuit, with data and ancilla qubits, in which logical gates and stabilizer measurements are encoded. The com-

putational qubits have to adapt to the gate-set required in input for the QEC code, but the physical circuit still

needs to be translated to hardware. An integration in ProjectQ could be achieved by assigning a MainEngine

for each logical layer as represented in 5.13. Each of those would have its own circuit representation and its

engine list adapted to compile into the next required gate set. The backend engines, hosting the encoding and

decoding functions, will convert the computational qubits and circuits from one layer to a lower one based on

the requested QEC code. The new circuit, and qubit register, is then sent to the new MainEngine. The final

MainEngine will translate as before the circuit into the chosen hardware device. Once the circuit is run and the

qubit measured, the measurements are returned to the upper backend which will decode the logical qubit and

carry the logical measurement to a further upper layer if there is one. This approach minimizes the required

amount of software development by taking advantage of the flexible nature of the engines objects, and would

enable immediately QEC code concatenation via increasing the number of MainEngines.

Figure 5.13: ProjectQ extension to compile QEC codes. The MainEngine structure is conserved but is extended
to QEC compilation Backends. The new circuit generated by this MainEngine is sent to another MainEngine
dedicated to compiling code for trapped ion devices. A FullStackEngine object would supervise the flow of
quantum code between MainEngines similarly to the MainEngine supervising the flow between its Engines.
This organization is adaptable to any level of concatenation of QEC as well as to any quantum hardware
architecture.



128 Chapter 5. Quantum software compilation

Finally the allocation of logical resources, including the positioning of logical qubits and state distillation

spaces, will require its own compilation tool similarly to the physical qubit allocation tool described above.

Depending on the number of logical qubits involved and on the number of physical qubits available, the logical

resource allocator would assign positions of logical qubits and auxiliary qubits such that the total logical circuit

depth is minimized. Such strategies have already been formulated [147], and could be implemented in ProjectQ

via dedicated engines.

5.6.2 Shuttling requirement for running a stabilizer

The compilation chain presented in this chapter can be used, as a short term application, to further define the

hardware requirements in order to experimentally implement quantum error correction codes. Entangling gate

fidelities, susceptible to the initial motional mode, will degrade in time due to both the natural heating rate of

the chip, and also due to additional heating induced by each shuttling sequence. In polychromatic gates, n̄ does

not influence symmetric errors and is therefore only affecting the asymmetric detuning. A numerical simulation

of the polychromatic gate fidelity indicates a resistance to most expected asymmetric detuning errors at n̄ = 20,

remaining above 99% [2].

By detailing the QCCD syntax representing a single stabilizer measurement, time and heating constraints can

be obtained for shuttling. We assume a maximum of two ions per zone, with only the East arm able to apply

the prepare, readout and gates functions. The QCCD code is available in Appendix A.

The last and worst entangling gate has, when the fields start being applied, an initial n̄ composed of the heating

tfinalgate × ˙̄n and of the additional heat from the shuttling sequences n̄shuttling. The time tfinalgate, between

the initial preparation and the time at which the final entangling gate is applied, can be formulated as:

tfinalgate = 3tg + 11tsq + 7tm + 16tsplit/merge + 12tjunction + tswap (5.2)

with tg the two qubit gate duration, tsq the single qubit gate duration, tm the mapping duration between dressed

states and clock states to switch between quantum gates and shuttling sequences, tsplit/merge the splitting and

merging sequence duration, tswap the swapping sequence duration and tjunction the duration to shuttle across

the X-junction. By reusing the predicted tg from Chapter 4, an average single qubit gate equal to the mapping

time tsq = tm = 21 μs [2], splitting and swapping duration approximated to a hundred microsecond, and the

heating rate requirement from equation 4.12, a time limit can be imposed for shuttling across the X-junction,

limited by the coherence time of the dressed state of 650 ms as mentioned in Section 2.3.3. The slowest



5.6. Compiling QEC codes 129

shuttling time is estimated to be:

tjunction < 50 ms (5.3)

with the contribution to n̄ being n̄T ime = 6.7. This constraint does relax the hardware requirement for the

DACs update rate: Assuming fifteen electrodes need to be updated on average for each step, with a 2 μm step

and with the shuttling distance, between two arms of the X-junction, being 2.2 mm, the minimum channel

update rate, assuming a shared bandwidth for a single DAC module, is therefore:

fDACupdaterate > 330 kHz (5.4)

The constraint on extra heating due to shuttling is now considered with the budget left on n̄:

12n̄junction + 16n̄split + n̄swap < 13.3 (5.5)

Assuming the different sequences contribute heat to the ion equally, the heat induced by ion position control

can be simplified as:

n̄shuttling < 0.46 (5.6)

The physical system that will test QEC codes is now constrained for both quantum control and ion shuttling

capabilities. The framework for compiling quantum code was demonstrated in this chapter as suitable for initial

studies of QEC codes as well as having clear solutions toward operating larger devices.



Chapter 6

Automation for quantum experiments

As the requirements are now defined to build the experiment dedicated to test QEC codes, the hardware archi-

tecture can now be detailed. As mentioned in Chapter 1, several apparatus are operating in the research group

in parallel and share multiple experimental requirements, such as the control and monitoring of the lasers used

to trap ytterbium ions, cooling down the vacuum system, preparing the vacuum system containing the ion trap,

and finally running the experimental calibrations.

This chapter describes three supervisory control and data acquisition (SCADA) projects built with the aim of

being used by every experiment in the research group, and a set of software improvements in the experiment

described in Section 3.2.2. These projects mitigate complex tasks previously developed for each experiment in

providing functional black boxes accessed via a simple and ergonomic interface.

6.1 Laser controller

6.1.1 Introduction

Lasers are a fundamental part of the ion trapping process. In selecting high power laser units, they can be

shared by several experiments simultaneously. However for local experimental control, such sharing represents

a design issue. Either concurrent experiments can all control the laser, which would be a regular source of

conflict and disruption, or, only one experiment assumes control forcing the others to rely on it; giving more

responsibilities and forming an inter-experiment hierarchy.

This dilemma was solved by designing and implementing a global laser controller framework, detached from

every local experiment controller but reachable by them to provide monitoring and control. By abstracting

130



6.1. Laser controller 131

away the considerations of hardware instrumentation, disparities between laser technologies, calibration, and

locking, controlling an ion trap device is simplified which increases productivity and efficiency.

6.1.2 Problem assessment

Laser control usually relies on sending a analog signal to a dedicated laser controller unit. However for resilient

control of a laser both piezo-actuator control and laser current control are required, both being sensitive and

fragile: large current or voltage changes could permanently damage the laser diode.

A more specific issue comes from the complexity of such a controller, which has to remotely access and control

several computers, wavemeters, lasers and DAC systems. The ability to override the framework with manual

access at any layer needs to be simple and practical: such an ecosystem may require regular maintenance and

code upgrade impairing the controller behavior, or on-the-fly wavelength tuning of a laser may be needed for

specific experiments.

6.1.3 Organization

The projects are written entirely in LabVIEW, and consists of two main layers: the hardware controllers and

the controller manager.

Hardware controller

The controllers are individual LabVIEW projects dedicated to control a specific element of hardware. There is

two categories of controllers. The first is the wavemeter controller, a simple interface to the High Finesse SDK.

The second is the DAC card controller, which can lock diode lasers with a PID loop between the wavelength

information from the wavemeter and the analog control of its piezo-actuators and current source. The number

of lasers that can be locked with a DAC card only depends on the number of channels available.

Each controller GUI is designed so that the controllers can be operated individually. In the case of the DAC

card, the interface as displayed in Figure 6.2 allows, among other parameters, the modification of the PID gain

settings or the choice of the DAC channel being used. The DAC channel can even be modified manually without

locking mechanism in case mode hops are interfering with the PID loop. The code is reusable to most DACs,

with as many channels as needed with small adjustments, and has already been deployed on three different

DAC cards.



132 Chapter 6. Automation for quantum experiments

Figure 6.1: Diagram representation of the laser control framework. Experiments and users interact with the top
layer software either through the built in GUI interface or remotely via a web server API which relays request
to the appropriate laser controller and displays the laser wavelength.

The wavemeter controller broadcasts the wavelength information as shared variables over the research group

network and are accessed by the required software such as the DAC controllers.

Controller manager

The controller manager acts as a central point for interacting with all controllers within the framework in the

laboratory. It identifies each laser with a cluster of information such as its wavelength and its DAC controller

channels. This information is setup in a configuration file, read when the program starts. The program stores

data for long term monitoring, where the wavelength of each laser is saved in log files every two seconds. The

data is also sent to a ThingSpeak server so that the laser information can be accessed in real time online. The

configuration file used by the controller manager is also written as a shared variable so all DAC controllers can

quickly update their map between laser and wavemeter channels. It limits the effort expected from the user to

update the framework when new lasers are added.

As displayed in Figure 6.3, the GUI provides locking and monitoring capability over all lasers within the

framework. By pressing the locking button, the wavelength target and the locking command will be sent to

the appropriate channel and DAC controller over the local network. The controller manager is also capable of

interacting with the M Squared Solstis laser SDK. The M Squared was considered to be already controlled by

its own hardware controller with only an abstracted set of functions being available via TCP/IP based requests.

Therefore the access to the M Squared lasers are directly integrated to the controller manager code and not via



6.1. Laser controller 133

Figure 6.2: Laser controller GUI. Each tab displays all information corresponding to a single laser. On the top
left the laser name as well as the target and current wavelength are shown. On the right are located accumulation
scans of both the wavelength and the voltage applied to the piezo-actuator controller to lock the laser. On the
bottom left is the control panel where the DAC channels can be modified as well as offset values to those
channels can be manually added. the wavelength target can be adjusted and locking is achieved via the locking
button. The number of laser connected is dependent of the number of DAC channels available.

another hardware controller project.

The distinctions between all categories of lasers are abstracted away in the controller manager with a state

machine representation for each controlled laser. The “locked” and “unlocked” states are accessed via a multi-

step sequence whose code content depends of the type of laser considered.

API

The controller manager also deploys a LabVIEW web server accessible on the internal network. A REST API,

using HTTP requests as interface, was developed so that experiments can remotely access both monitoring and

control features. Each HTTP request is associated with its experiment via the sender IP address. The request is

then added to a custom FIFO buffer tracking “non-completed” requests. The buffer is available as a LabVIEW



134 Chapter 6. Automation for quantum experiments

global variable to be accessed asynchronously by the controller manager and protected by semaphores to avoid

data corruption. Once the request is completed the request in the buffer is updated to a “completed” mode

which triggers the answer to the HTTP request from the server. Finally, the request in the buffer is deleted.

The API requires the experiment to “subscribe” to specific lasers. Once subscribed to a laser the experiment can

monitor its wavelength, power seen by the wavemeter and can also send new locking targets. Subscription from

an experiment to a laser can be seen in the controller manager GUI in Figure 6.3 next to the laser wavelength

and power: Each laser lists all the experiments subscribed to it.

Figure 6.3: Master laser controller GUI. Laser controls seen in Figure 6.2 are also available here. Informa-
tion about laser power are also displayed in addition of the wavelength. Additional displays regarding the
wavemeters status and the command logging box enables quick debugging.

6.1.4 Future work

Laser control and monitoring are the objectives of this framework which is now deployed and working. How-

ever such a complex software architecture may require several improvements in the future both increasing the

resilience of laser control and its scale. Two main updates are therefore recommended for future developers of



6.2. Cryogenic controller 135

this framework:

• PID controllers would greatly benefit from an auto-calibration feature. Indeed simultaneously applying

voltage and current based on a experimentally measured ratio, called feed-forward, significantly improves

the wavelength range attainable for a laser without mode-jumping. While Toptica lasers are usually

already calibrated, home made diode lasers have very sensitive coefficient and set points, which would

need to be measured regularly. It unfortunately involves long scans, and heavy post-treatment analysis

which are non trivial tasks for robust automation.

• Concurrent control of a shared laser can have serious disruptive effect on an experiment. Therefore

the controller should be updated with a “policy” warning of a change, or forbidding changes of a laser

wavelength as long as more than 1 local experiment controller is subscribed to it.

6.2 Cryogenic controller

This section will cover the distributed cryogenic controller providing the cold Helium distribution lines men-

tioned in Chapter 7, software developed with the help of Christophe Valahu.

6.2.1 Hardware setup and controller goals

In order to explain fully some of the design decision associated with this controller a brief overview of the

cryogenic system itself, designed by Raphaël Le Brun-Ricalens [148], will be presented first: The system is

decomposed, as displayed Figure 6.4, into two main parts being the cooling reservoir, the cryostat, and the

distribution lines. The cooling element is composed of two parallel cold heads. The distribution lines connect

up to four experiments across the laboratory with an output feed line providing the cold Helium from the

cryostat and a return feed line bringing the warmer Helium back to the cryostat.

6.2.2 Risk assessment

The short introduction above highlights two main aspects requiring a software automation process: a passive

routine monitoring the temperatures in the cryogenic cooler and in the several experiments as well as an active

control of the valves connecting the laboratory distribution lines to the experiment distribution lines. This

active part is rarely active as most experiments stay warm or cold for long periods of time. On the contrary,



136 Chapter 6. Automation for quantum experiments

Figure 6.4: Cryogenic cooler hardware. (Top) Cooling reservoir providing cold Helium via distribution lines
up to (Bottom) four experiments. The distribution lines form a closed loop: the cold helium (Gray) is sent from
the reservoir to the experiment, while the warmer Helium (Red) is sent back to the reservoir. Figure taken from
[149].

passive temperature monitoring is used for both the cooling procedure and stable regimes for the experiments.

Continuous data acquisition over long periods of time is required.

6.2.3 Organization

The software organization is mainly centered on the passive monitoring and logging of all temperature sensors

in the laboratory related to the cryogenic system. As the number of experiments simultaneously requiring

cryogenic cooling is variable and that the number and placement of temperature sensors in each of those systems

is left to the experiment team, the software was designed with two degrees of freedom:

• the number of experiments that can be monitored should be adjustable quickly as well as the number of

temperature sensors in each experiment;

• the system should be device-agnostic, due to different hardware modules being used in different experi-

ments, to measure temperatures.

This flexibility is integrated via a configuration file which enables a static mapping between a temperature sen-

sor and its location in an experiment. It allows different sensors from different experiments to be connected to



6.2. Cryogenic controller 137

Figure 6.5: Cryogenic temperature controller GUI. (Left) Main panel displaying all temperatures in the system,
with the cryogenic system on top and the experiments at the bottom. The bottom left logging display informs the
user of any hardware communication issues. (Right) Individual experimental tab. Temperatures are displayed
on top while the position of the sensors are represented in the experiment diagram at the bottom.

the same hardware data logger without any inconvenience, as well as saving temperature data in files organized

per experiment and not per data logger. For long term operation and resilience to hardware errors, the software

can attempt to reconnect to any logging device having communication issues. It enables uninterrupted moni-

toring for months without software crashes.

All temperatures are saved at a two second intervals and are sent to a ThingSpeak account for remote online

monitoring.

6.2.4 Calibration

The standard IEC 751 concerns platinum resistance temperature sensors, which includes the PT100 sensor, and

defines tolerances and resistance-to-temperature conversion tables. This standard covers down to 70 kelvin, as

at lower temperature the sensitivity of platinium sensors considerably degrades as illustrated in Figure 6.6. The

common module used in this architecture1 therefore stops providing temperature measurements outside of this

standard temperature range.

It is however possible to access the physical resistance measurements instead at a faster rate and deduce the

1Pico Technology PT-104 Data Logger



138 Chapter 6. Automation for quantum experiments

Figure 6.6: PT100 sensitivity. Below around 70 kelvin the sensitivity decreases and reduces the measurement
accuracy. Individual calibration are needed at lower temperature to provide accurate measurements. Figure
taken from [150].

temperature later in software. Measurement below 70 kelvin becomes possible, although not accurate up to

a few degrees. This inaccuracy can be compensated by buying individually calibrated sensors which provide

a dedicated resistance to temperature map per sensor: The software was extended to enable the use of such

sensors: by indicating in the configuration file which sensor is calibrated and its calibration file number, the

controller will be able to access the conversion table and provide accurate temperature measurement without

additional post processing.

6.2.5 Use case

This cryogenic monitoring system is also useful for diagnostic situations which it was not originally designed

for. The example described here occurred during the early trapping runs in the logical qubit apparatus shortly

after baking. The signal sent to the RF electrodes of the chip is strong enough to affect the chip temperature

and can therefore be monitored by the PT100 located under it. As shown in Figure 6.7, the software logging

provided evidence that the chip stopped resonating following a trapping run.

6.2.6 Future work

The major challenge yet to be faced is to safely integrate the valve control opening the helium feed line to

each experiment into the monitoring software. The remote control itself of the valves, implemented by Raphaël

LeBrun-Ricalens, consists of a high torque and low speed DC motor directly connected to each valve, with the

motor being controlled by an Arduino module.



6.3. Vacuum system oven controller 139

Figure 6.7: Screenshot of the cryogenic controller during trapping runs. The temperature at the chip when
resonating with a 200 V amplitude RF signal is displayed in (I). When the atomic oven is used, the temperature
of the chip can be seen to increase as shown in (II). In this case, a longer and more intense run of the atomic
oven was attempted resulting in a higher temperature measured at the chip (III). The subsequent temperature in
(IV) after the oven was turned off indicates the chip was not resonating anymore.

These has not been integrated yet because the valve control does not provide feedback over how much the valve

is opened. Translating a command to the Arduino module regarding the aperture percentage of the valve, will

require a very careful calibration for each valve. Any error happening during or after this calibration may result

in opening cold helium lines which may have catastrophic consequences to the laboratory, the experiment and

the cryogenic system itself. Therefore a protocol to guarantee the working condition of the valve controller is

still being developed and verified.

6.3 Vacuum system oven controller

In order to reach UHV conditions vacuum systems are often “baked” as described in Chapter 7 by increasing

their temperature to accelerate the release of adsorbed elements.

6.3.1 Problem assessment

The software control of the baking chamber is a PID loop adjusting a heater based on a temperature measure-

ment of the system. This active control system does not present much danger for the user, even at the maximum

achievable temperature of approximately 200 ◦C. However the vacuum system is fragile as its windows are

quite sensitive to temperature fluctuations of more than 50 ◦C/h. A software or hardware incident leading to

a sudden change on the PID loop output, such as stopping the heater entirely, or switching it to 100% of its

capacity, is assumed to apply a temperature shock large enough to permanently damage the vacuum system and

should be avoided at all costs.



140 Chapter 6. Automation for quantum experiments

Figure 6.8: Screenshot of an online monitor covering a successful bake. The temperature (black) ramp is
stabilized at 10 degrees per hour, while the high temperature target was maintained for a week. After a few
days the ion pump is turned on allowing to monitor and log the pressure (blue). The pressure slowly decrease
during the bake then goes down when the system is cooled down. The further pressure peaks at the end of the
bake corresponds to the use of the TSP.

6.3.2 Organization

The software control itself was written by Dr Sam Hile and uses a state machine to easily distinguish the differ-

ent program behavior. Logging information is saved regularly both locally and online for remote monitoring,

and include information including the heater state, the applied heater power, the system pressure and its temper-

ature. A GUI was developed in python as a wrapper around the state machine code and is displayed in Figure

6.9.

The heater is controlled by a custom made switch between the current source and the heating elements. This

switch is activated via a TTL signal: the current flows to the heater as long as a logical “1” is received. The

TTL signal is generated from a Raspberry pi 3b on which the software control code is hosted, and the heating

power modulation is achieved via PWM signaling with a 0.1Hz clock frequency.

It was observed that incidents with the Raspberry pi itself, although extremely rare, are susceptible to hap-

pen when such a control code is run uninterrupted for more than two weeks. In order to mitigate any risk of

hardware failure a backup module was designed using an Arduino and implemented in the system as shown in

Figure 6.10. It controls the TTL output signal of the Raspberry pi and receives regular updates on the PWM cy-

cle values via serial communication from the Raspberry pi. If the main control software were to malfunction in

any way, the Arduino will cut the TTL connection between the Raspberry pi and the heater module and replace

it by its own, and will send a constant signal modulation based on the last received heater value. Therefore the

system should stay at the same temperature until a user notices the situation and manually intervenes to restart

the software itself.



6.3. Vacuum system oven controller 141

Figure 6.9: Screenshot of the baking software monitor (Vulcan). The GUI is organized in three sections: the
logging on the top left allows the read the most recent information on the system, the top right hosts all the
controls, and the bottom contains a web browser directly accessing the online monitoring tool.

Figure 6.10: System diagram of the baking system. The feedback loop is based on the system temperature, and
is controlled by a Raspberry pi. The Arduino monitors the Raspberry pi activity and remains passive. The heater
is controlled by modulating the incoming current. If the Raspberry pi stops being operational for any reason,
the Arduino will keep sending the last modulated current to the heater to maintain the system temperature.

An additional short code was written in python to be run on an external computer to monitor the online logging

information from the software controller. Lack of updates after a certain preconfigured timeout will trigger



142 Chapter 6. Automation for quantum experiments

emails being sent to the user for quickly responding to the situation. This code is hosted by a different host than

the pi so that that alert message can be sent despite an internet failure on campus.

6.3.3 Future work

The layers of protection installed are sufficient to circumvent most major issues that could occur during a

bake but a clearer documentation, and more automated recognition of the different interfaces for pressure

measurement devices and an updated GUI interface to assist baking procedures will greatly help future users.

6.4 Automated quantum experiment control

The experimental apparatus in which the polychromatic gate was implemented and characterized in Section

3.2.3 uses a home made LabVIEW program developed and maintained by the research group. I implemented

a series of quality of life improvements to increase automation and productivity which are detailed in this

section. Although written for this particular framework, the ideas presented here are generic and could be de-

ployed in any trapped ion quantum experiment if applicable, and improved following the calibration framework

formulated in Section 3.3.

6.4.1 Ion recrystallization

Ions in Quantum experiments regularly decrystalise, due to a collision or when staying too long without Doppler

cooling. For high enough trap depth the ions do not leave the trap immediately and can be cooled down to

recrystalise again by momentarily red detuning the Doppler cooling laser.

Ion decrystallization was the only reason experimental users were required to monitor the apparatus during

experimental scans. A recrystallization module was installed to trigger, both at rest or at run time at a step

N or in the preparation step, when the ion fluorescence would drop to zero. If it happens at run time the

experiment would pause. The Doppler cooling laser would then be red detuned and switched to high power via

the AOM until the ions appear again or a timeout is reached after which the ion is considered definitely lost. If

an experiment was running, then the scan restarts at step N-1 erasing the previous datapoint.

The ability to pause and stop experiments can be further improved by additional monitoring of the wavelength

or the applied RF voltage on the electrode for more precise diagnostic of the situation.



6.4. Automated quantum experiment control 143

6.4.2 Automated experiment integration

The LabVIEW experimental code, as described in Chapter 5, uses a Python framework for compiling pulse

sequences into hardware. The interaction between python and LabVIEW is automatic, although the data anal-

ysis, via a separate Mathematica notebook, was not. I integrated most post-experiment analysis by converting

existing Mathematica notebooks into .wla Mathematica scripts that can be called remotely by LabVIEW code

for automatic evaluation of the scan data. The script also returns the fit quality allowing to the main LabVIEW

code running the experiment to monitor if the scan is already satisfactory, and then to automatically stop the

scan. This architecture was further improved by Christophe Valahu who replaced the Mathematica code by

Python scripts, and facilitated in the LabVIEW main program the exploration, visualization and analysis of

previously taken data.

I separated the calibration parameters from the Python experiment scripts by defining them in a dedicated con-

figuration file, readable by the experiment scripts, and settable by the post-experiment scripts if a fit is found

for the desired scan. By combining these two features, experiments can stop and upgrade their calibration

parameters by themselves.

6.4.3 Long term automation and outlook

A final improvement was made by adding a server-client python script on top of the experiment scripting

interface for scheduling experiments automatically. The server runs a python script of commands, representing

scans but that could be effortlessly adapted to quantum circuits, translating into asynchronous commands to the

LabVIEW experiment scripting interface, as the client. Once a scan is run, its success is returned to the server.

Because the server script is pure python, dynamical calibration can be programmed without requiring any user

intervention. This server-client structure is similar to the scheduler which was later used in the logical qubit

experiment in Chapter 7, and could be used as the foundation for the efficient calibration routine detailed in

Chapter 3.



Chapter 7

The logical qubit apparatus

Conducting a seventeen qubit surface code experiment requires trapping, maintaining, shuttling and coherently

manipulating seventeen ions on a trap. There are only few experimental quantum processors on this scale: the

53 qubits Rochester device by IBM [151], the 53 qubits Sycamore devices with Google [152] and the 28 qubits

Aspen-7 device by Rigetti [153]. At the time of writing this chapter, the best commercial system with ions

are the IonQ 32 and 11 qubit devices [38]. It is a significant challenge to build an experimental setup with the

capacity of handling multiple ions as well as the robustness to calibrate and maintain all quantum operations.

This chapter will describe the initial hardware built to prepare for the seventeen qubit surface code experiment,

as well as the development process for some of the technologies implemented in our setup.

7.1 Ultra high vacuum chamber and content

7.1.1 Vacuum technology

It is vital to reduce the pressure in the environment of a trapped ion device. While the ion may be confined by

the trap itself flying molecules and particles in the air will regularly collide with the ion and push it out of the

trap, or transition the ion via inelastic scattering to a state not repumped by the available lasers. A simplistic

model of ion lifetime is therefore presented.

The mean free path λ is the average distance traveled by a particle of radius r before entering into a collision

with a gas of pressure p and temperature T with another particle. It is calculated via:

λ =
kT

4
√

2pπr2
(7.1)

144



7.1. Ultra high vacuum chamber and content 145

where k is the Boltzmann constant. We will assume a worst case scenario and define this value as the average

distance traveled by particles in the vacuum before a collision with the trapped ion. The next approximation

is to consider the gas to be made of H2 molecules only, because they are the main outgassing component

from stainless steel [154], giving the kinetic diameter rH2 = 2.10−10 m. We approximate the vacuum system

to be at room temperature T = 300 K. The time before a collision is then the mean free path divided by

the speed at which the H2 are traveling. The probability of different velocities is given by the Boltzman

distribution. We assume that the velocity is given by the average of the Boltzman distribution vp =

√
2kT

m
.

With mH2 = 3.35.10−26 kg the Hydrogen mass we calculate vp = 1570 m/s. The average lifetime τion of the

ion can finally be estimated as:

τion =
λ

vp
=

√
kTmN2

8pπr2
H2

(7.2)

While much better refinement to this model can be developed, this first overview allows to clearly distinguish

an inverse relationship between ion lifetime and pressure as illustrated in Table 7.1.1: There is a threshold

around 10−9 mbar or 10−7 Pa, called Ultrahigh vacuum (UHV) regime, below which it becomes possible to

confine ions for more than a few minutes.

Ion lifetime estimation
Regime Pressure P (Pa) Mean free path of

the gas particles in
the vacuum cham-
ber (m)

Lifetime of the
trapped ion (s)

Air 105 2.79× 10−8 1.77× 10−11

Rotary pump 10−1 2.79× 10−2 1.77× 10−5

UHV threshold 10−7 2.79× 104 1.77× 101

Common ion traps 10−10 2.79× 107 1.77× 104

Table 7.1: Numerical estimation of the ion lifetime in different pressure regimes. The passage down to the
Ultra High Vacuum (UHV) regime mirrors lifetime growing above a second. The usual target of 10−11 mbar
regularly mentioned in the literature gives hour long lifetimes.

When considering a quantum circuit running a number of ions, n, we can estimate the lifetime of the qubit

register, defined as the average time before a single ion in the register is lost, to be:

τregister(n, τion) = ln

(
n

n− 1

)
τion (7.3)

where we have assumed an average ion lifetime of τion. Good vacuum conditions will limit the difficulties of

re-trapping and/or keeps the ions in the trap longer. A seventeen qubit register - the required register size for

one surface code based logical qubit - can be used as an example. If we use ions with a lifetime of one day, our

register will be disturbed (by the loss of an ion) approximately every 90 minutes.



146 Chapter 7. The logical qubit apparatus

7.1.2 Vacuum chamber

Such a pressure regime involves the use of a specialized chamber called a vacuum chamber in combination

with at least one initial baking around 180◦C and thereafter continuous pumping. One important obstacle

regarding UHV experiments is the choice of materials: they need to be able to first survive the baking condition

then not outgas in the chamber when the pressure drops. Many components such as organic materials will

continuously outgas in low pressure environment, considerably reducing the capacity of the chamber to stay in

UHV conditions. UHV compatible materials include most metallic and ceramic components [155].

Figure 7.1: Picture with false colors of the vacuum chamber used for the logical qubit apparatus, with distin-
guished areas for UHV control (yellow), ion control (blue), trapping (red) and optical access (orange).

The complete system to operate the ion trap in a vacuum system is displayed in Figure 7.1: areas in yellow

correspond to the components necessary to reach and maintain UHV conditions inside the vacuum chamber.

The ion pump1 actively maintains the UHV conditions and the ion gauge2 gives the pressure reading. The

Titanium sublimation pump (TSP) is used during the baking process and the metallic valve, not visible in the

1Agilent 4UHV controller
2Agilent XGS-600



7.1. Ultra high vacuum chamber and content 147

Figure and behind the ion pump, is used before baking for initial pumping with a turbo-molecular pump. The

two elbows in green are the Connectors between the internal cooling line in the chamber and the distributed

cryogenic Helium line. The sections in blue represent the RF and DC signal connectors which are used to trap

and manipulate the ions. The red structure in the atomic oven setup is used for ion trapping. Finally the optics

are represented in orange and surround the main chamber which contains the ion trap. The side-windows are

used for laser access while the main chamber is used for ion imaging.

7.1.3 Surface ion trap

The Paul trap geometry used for the experiment is a micro-fabricated X-junction surface trap as shown in

Figure 7.2. The trap has a size of 10 × 12 mm2 and contains 80 DC electrodes, 2 RF electrodes and 2 ground

planes. The chip geometry was designed to trap at 125 μm height and was build by the external contractor

INEX Microtechnology Ltd using micro-fabrication processes described in [75, Chapter 3].

Figure 7.2: (Left) High resolution picture with false colors of the previous generation of the X-junction surface
chip used in the vacuum chamber. The electrodes in blue reaching the corners of the X-junction are the DC
electrodes. The red electrodes drawing the X-junction shape are the RF electrodes. The green electrodes at
the top and bottom of the image reducing in size to follow the RF electrodes are the rotation electrodes. The
grounded electrodes are in black and all the blue area represents the DC electrodes. (Right) Diagram of the
chip layers for two neighbor electrodes. the gold layer at the top is slightly larger to shield the dielectric layer
from being charged by the UV lasers. The dimensions are not at scale.

As represented on the right of Figure 7.2 the chip is built on a silicon substrate with a two level gold electrode

layers separated by a dielectric structure consisting of alternating layers of silicon nitride and silicon dioxide.

Every new chip is benchmarked on the maximum sustainable RF voltage applied by running a destructive test

on one sample. Every chip considered for use is visually inspected and checked for shorts or disconnected

electrodes. Chips with shorted electrodes but with no visible obvious damage are first cleaned with a sonic

bath in acetone. It is observed that for some chips shorted electrodes happen after the integration in the vacuum



148 Chapter 7. The logical qubit apparatus

system. Such shorts are removed by applying large current, on the order of 1 A over a few seconds, on the

shorted connection. The location of the short, assumed to be small compared to the dimension of the electrodes,

is heated up and vaporizes.

The chip heating rate can be estimated from the previous chip generation, measured at a temperature of 8 K and

ion height hion = 98 μm by Dr Anton Grounds to be ˙̄n = 423 s−1 for a single ion [156]. At room temperature

and ion height hion = 125 μm, the heating rate is projected to be ˙̄n300K ≈ 1600 s−1. For entangling gates being

driven on the stretch mode, the effective heating rate constrained in equation 4.12 is calculated by dividing the

measured heating rate, for a single ion, by a factor of at least 40 [2]. The projected heating rate on the stretch

mode ˙̄nst,300K ∼ 40 s−1 is, at room temperature, above the specification calculated in equation 4.12, but will

be within specification at 70 K.

7.1.4 Internal electronic setup

All electrical channels on the chip need to be brought inside the vacuum system via special flanges containing

electrical connectors while maintaining vacuum. The RF interfaces were chosen to be SMA connections, and

inside the vacuum chamber the signal is carried with a coaxial cable. The DC signals are sent via two DD-50

connectors, and the signal is carried via individual Kapton insulated wires.

The connection between the in-vacuum wires and the chip is a three-layer PCB setup adapted from [157]. The

DC signals are connected to a PCB called the “Back PCB” which contains an RC filter at a frequency cutoff of

260 kHz to suppress the noise accumulated in the vacuum via the RF signal lines. The back PCB carries the

DC signals to a “front PCB” via spring loaded pins. The front PCB also has SMP connectors to receive the

RF trapping signal as well as the coherent RF and MW signals described below. Both DC and RF signals are

carried in close proximity to the chip and connected to it via wirebonds. The back PCB is fixed to the stainless

steel frame attached to the vacuum system, while the front PCB is fixed via both bolts to the chip holder and

the spring loaded pins from the back PCB.

The two separate branches of RF electrodes on the X-junction chips are fed from a single connector on the front

PCB. The RF tracks are designed to have equal signal path lengths and therefore phase matching between the

two branches, which will avoid phase induced micro-motion of the ions.

The front PCB was redesigned from [157] to host the third PCB layer and the current channels in prevision

for the next generation of surface chips, which will have micro-fabricated current wires below the trapping

electrodes to generate the magnetic field gradient required for quantum control.



7.1. Ultra high vacuum chamber and content 149

Figure 7.3: (Left) Internal electronic setup seen from the main window flange. We can recognize the surface
chip in the center with the RF and MW antenna above it. The front PCB connecting MMX connectors is
visible at the top and bottom of the picture. (Right) Zoomed in photo of the surface chip in the vacuum system.
Wirebonds between the chip and the front PCB can be seen.

The third and top layer is a new PCB3 containing two RF and MW antenna that can emit the signals required

to coherently control the ytterbium ions. The RF antenna was milled in the side facing the viewport and is

visible in Figure 7.3. The MW antenna is a patch antenna, designed with simulations in EMPro displayed in

Figure 7.4, to emit at 12.6 GHz and with a central aperture large enough to not block the ion fluorescence to

the imaging setup. The patch antenna is milled on the side facing the ion. This top PCB is fixed on top of the

front PCB and the chip, as is illustrated in Figure 7.3, with SMP connectors which carry the RF and MW signal

from the front PCB to the antennas.

Figure 7.4: Patch antenna simulation for in-vacuum MW emission. (Left) Patch antenna model in EMPro. The
design is adjusted to allow the ion fluorescence through the center, and to emit at 12.6 GHz. (Right) Simulated
reflection factor S11. The emission peak at 12.6 GHz is broadened due to asymmetries added to the patch
antenna design.

3conceived by Dr Sam Hile



150 Chapter 7. The logical qubit apparatus

7.1.5 Helium cooling copper tube

Bringing down the temperature below 70 K will remove one order of magnitude of anomalous heating from the

chip and therefore considerably increase the quantum computation fidelities [158]. Cryogenic ion traps have

been demonstrated successfully below 10 K but with special apparatus including heat shields and vibration

compensation [159, 156, 160]. The research group distributed cryogenic system however targets only 70 K

following the blueprint requirements [1], enabling cooling of room temperature ion traps via a single helium

circulation line positioned inside the vacuum system.

Figure 7.5: Copper tube installation inside the vacuum chamber. (Left) The chip mount, the temperature
sensors, copper braids and the ion chip mount have not been installed at the time where the photo was taken.
We can recognize the shape given to the copper tube to avoid the center of the chamber, as well as the three
clamps installed to attach temperature sensors. (Right) diagram of the connection between the copper line and
the ion trap mounting structure.

As displayed in Figure 7.5 the Helium circulation is implemented with a copper tube so that the shape can

be adapted to avoid collision with the chip holder. Two copper structures are clamped on each side of the

vacuum system with bolted PT100 temperature sensors for heat absorption measurement by the apparatus. A

main clamping structure in the middle of the copper tube also hosts a 50 Ohm heater for local temperature

stabilization as well as a welded set of thick copper wires, commonly called copper braids, for conducting the

cooling power to the chip.

The connection between the chip holding structure and the cooling setup is illustrated in Figure 7.6. Those

copper braids are bolted into a “bottom” copper block. A “top” copper block is bolted into the bottom one

within the central aperture of a stainless steel frame fixed to the vacuum system. Therefore the copper blocks

are fixed in place. The top copper block also hosts a fourth temperature sensor, the closest one to the chip, and

connects to a final copper block hosting the chip via melted indium.



7.1. Ultra high vacuum chamber and content 151

Figure 7.6: Content of the vaccum chamber while being assembled. The copper tube, its copper clamps and
sensors can be seen in the back. The stainless steel frame attached to the vacuum system has been installed
with the first copper block containing a PT100 sensor.

The temperature sensors are uncalibrated PT100 as they are cheap and reliable at the target temperature of 70

K, and are all thermally anchored to the cooling tube [161, Chapter 4.4]. However, as detailed in Section 6.2.4,

when reaching lower temperatures every sensor follows a distinguishable resistivity curve and uncertainties up

to ± 5 K can be expected. A cooling cycle is presented Figure 7.7 starting when the distributed cooling system

is cold but the distribution lines are closed at the beginning. The final temperature measured near the chip is

higher than the expected 70 K, but the copper tube circulating the Helium is measured to reach 50 K: it indicates

that the distribution lines are working and that the high temperature at the chip may be due to a bad thermal

contact with the copper tube.



152 Chapter 7. The logical qubit apparatus

Figure 7.7: Cooling sequence in the logical qubit apparatus in UHV conditions. At the beginning in (I) the
valves connecting the cryocooler to the experiment are closed and the helium is confined in the cold heads.
(II) The first step is to turn on the cryofan sending the helium gas to the distribution lines in the laboratory,
leading to a quick decrease in temperature of the cryocooler. (III) Then the valve between the helium lines and
the experiment is opened leading to a temperature drop in the copper tube sensors. The heat absorbed by the
crycooler can be seen in the increase in temperature of the cold head as well as the very late decrease (IV) in
temperature of the returned helium to the cryocooler at the inlet. (V) The two systems stabilize after more than
an hour. the short increase in temperature in the cold heads corresponds to the manual injection of warm helium
in the system to maintain the helium pressure constant at 20 bar.

7.2 ARTIQ setup

Quantum logic with trapped ions requires real-time control of several devices such as RF signal switches for

quantum control, DAC waveforms implementation for fast shuttling and accurate triggering for high fidelity

quantum state detection. The essential tool for real-time control is a specialized type of computer called a

Field-Programmable Gate Array (FPGA). It is a device hosting re-programmable logical units enabling the

implementation of hardware efficient code enabling fast, reliable control and monitoring.

Choosing the FPGA is not only a choice of speed, memory and available input/output channels but also in-

volves choosing the language to interact with it. One of the most common languages is called Verilog and is a

hardware description language: it involves a steep learning curve and time consuming specialization. Higher

level language programming do however exist with hidden compilation tools transcribing the code into Verilog

or equivalent hardware description language. Such processes allow easier development of experiments relying

on both the CPU and the FPGA. The Advanced Real-Time Infrastructure for Quantum physics (ARTIQ) project

was developed by a company called M-labs in collaboration with ion trapping groups and aims to provide a

fully open source real-time experimental control framework [162]. It includes a software environment, ARTIQ,



7.2. ARTIQ setup 153

and a hardware architecture called Sinara. Sinara devices are organized around an FPGA board called Kasli

containing the FPGA4, data connectors to the CPU operating system and to other Sinara devices. This section

will describe the electronic and software control from the ARTIQ framework used for operating the experiment.

7.2.1 The ARTIQ framework

The ARTIQ software is a python framework that allows us to write real-time control experiments into the Kasli

FPGA with pure python code. In addition it provides a unified interface to interact with external devices so that

not only Sinara modules but any piece of hardware can be accessed asynchronously through an interface such

as Serial or REST API. An asynchronous dataset system is used to write and read python data objects across

multiple experiments. Finally, plotting is implemented via a custom concept of applets adapted from PyQtgraph

plots connected to the datasets to display in real time newly obtained information. This entire structure was

designed to interact with a command line system. A GUI is built on top using the command line layer to display

all the information and provide a central access point to every functionality.

Additional devices were added to the logical qubit apparatus for the purpose of increased automation. The

drivers were written in python and the interface to ARTIQ is achieved via automatically building network-

based asynchronous objects on the same computer, therefore using the IP address 127.0.0.1, and automatically

converting any calls in the Experiment script to asyncio-based communication to the driver. In addition to

writing drivers to home-built devices such as the laser control system described in Section 6.1, the cryogenic

temperature monitor detailed in Section 6.2 and arduino projects such as the laser shutters, the following drivers

have been written and implemented: the Andor SDK tools to control the EMCCD camera, Agilent 2000 series

for the oscilloscopes, Picolog tc08 data logger for measuring the oven temperature, the IPS2010 power supply

for powering the atomic oven, the NEXTorr ion pump, the Varian XGS-600 ion gauge and the Agilent 33522A

RF generator for micromotion detection via parametric excititation.

Experiments are run via a Scheduler which maintains a queue of submitted experiments and decides which

one to run. Multiple experiments can be run at the same time via different “pipelines” when they use different

devices. Experiments in a particular pipeline can have different priority levels depending on the urgency of

the situation. Finally, Experiments can in their own script submit themselves or other Experiments to the

Scheduler, which will be a key point for the automation architecture. Experiments automatically save data and

configuration in the hdf5 format [163].

4Xilinx XC7A100T-2FGG484I



154 Chapter 7. The logical qubit apparatus

7.2.2 Electronic hardware

Kasli is the master controller that interacts with the computer hosting ARTIQ. Kasli can be connected with

additional real-time hardware modules with specially designed interfaces called Eurocard Extension Modules

(EEM) which are controlled by the computer via Kasli.

The logical qubit apparatus needs three categories of hardware real-time control: DC signals, RF signals and

TTL signals. The variety of hardware devices available in the Sinara architecture allows full customization of

the experiment to meet the criteria detailed in Section 4.5.3.

• DC signals:

DC signals correspond to the voltages applied to the chip for axial confinement and shuttling. The

ARTIQ module for DAC cards is called Zotino and hosts 32 channels of 16-bit precision DAC with a

shared bandwidth of 1 Msample/s, which is three times above the minimum requirement calculated in

equation 5.4. As the chip has 80 DC electrodes three Zotino cards were installed to enable individual

electrode control for shuttling ions in separate zones. By splitting the neighboring electrode channels to

the different DACs, the apparatus can shuttle with a maximum speed improved by a factor of three. An

ADC card was also installed to provide DC measurements with a shared bandwidth of 1.5 Msample/s.

• RF signals:

We can split technologies of RF signal generation in two categories, firstly the Arbitrary Waveform Gen-

erator (AWG) which allows step-by-step construction of the time waveform permitting complex multi-

mode signals to be generated. The AWG is a key component for driving complex pulses for quantum

gates. These pulses are computationally expensive and involve heavy memory management although a

homemade framework was developed in the research group to integrate them in running quantum control

experiments [86, Chapter 4]. As the current chip is not capable of quantum logic experiments the AWG

installation was not prioritized. On the other hand the Direct Digital Synthetiser (DDS) allows low-cost

generation of single sinusoidal waveforms of arbitrary frequency and phase. While much less capable

than an AWG, it can still provide the waveform needed for 1) generating the RF trapping potential via

combination with an RF amplifier and a custom made RF helical cavity resonator [164] tuned to trap

resonance and 2) operating external devices such as the Acoustic-Optic-Modulator (AOM). One module

using the ARTIQ card for DDS signal generation was implemented providing 4 independent channels.

• TTL signals:

Transistor−transistor logic (TTL) is a widespread logic representation in electronics where a voltage



7.2. ARTIQ setup 155

line VTTL is considered to be a logical 0 for VTTL . 2V and a logical 1 otherwise. It enables hard-

ware switches controlling for example laser power or long-wavelength radiation emission to be switched

on and off with nanosecond accuracy which is sufficient to implement the PulseSequence framework

detailed in Section 5.5.2 for running quantum experiments. It can also be used as a trigger signal for

real-time control of complex devices. A device such as a camera or an oscilloscope may for example be

configured on a slow-CPU channel but the device activation can be triggered by a TTL signal controlled

by a real-time channel. Two ARTIQ TTL cards were integrated into the experiments, one with BNC and

the other with SMA connectors. Each card has four input and four output channels.

In order to lock the laser power by modulating the AOM drive signal amplitude to the photodiode measuring

the 369 nm beam leaving the vacuum system, an ADC and DDS card were installed together to form a PID

locking mechanism with a fast 1 MHz update rate.

This real-time hardware configuration is enough trap ions and implement test-shuttling experiments. Quantum

logic will require the AWG and a homemade low-noise and high-stability current generator developed in the

research group by Harry Godwin. This real-time hardware update will only be capable of testing static quantum

circuits compiled and implemented as laid out in this thesis, but the FPGA ability to run python code in real

time allows the implementation of conditional logic, feature described in Chapter 5.

7.2.3 DAC configuration

The Zotino cards employed in the logical qubit experiment, like most DAC systems employed by ion trapping

experiments, do not have enough stability for reliable ion trapping: much of the noise both inherent to DAC

itself and picked up by the cable when going to the chip needs to be removed by additional filtering. An easy

and robust filter for DACs is the passive low pass filter which removes all voltage dynamics greater than the

cut-off frequency of the filter. Such noise protection is a direct obstacle for ion shuttling which relies on the

speed at which the DAC signals can be modified. A compromise needs to be found to both account for noise

removal and fast shuttling operations.

All DAC channels go through a custom-built filter box5 containing a two-stage low pass filter with a frequency

cutoff of 72kHz allowing a rise time of 10μs. The box receives as input the three 32 DAC channel cables, and

outputs two DD-50 connector cables via easily re-configurable jumper wires. The noise accumulated between

this filter and the chip is handled by the back PCB as described in 7.1.4.

5Designed by Dr Sam Hile



156 Chapter 7. The logical qubit apparatus

7.2.4 Experimental operating system

Software architecture and automation

The ARTIQ framework is a toolbox capable of handling both small and large experimental setups. In a basic

case the user runs one experiment which calls all required devices, saves data in an array which is plotted in

real time for feedback but is properly analyzed later. This method, although efficient, does not include full-time

information monitoring, as the experiment, usually a scan, only covers the data specifically requested for the

occasion. A classic experiment is centered on the scan to be taken and does not consider secondary values such

as for example the presence of an ion in the trap or the laser wavelengths. These pieces of necessary information

are manually handled by the user, who must trap ions prior to the scan as well as adjust the lasers and all

other parameters necessary to run the experiment itself. Full automation of a quantum computing experiment,

including choosing which experiment to set up and run, as well as analyzing the results, is possible with ARTIQ

but not straightforward. Automating an experiment is time consuming but increases the experiment reliability

and productivity. It also allows continuous operation in the unfortunate case of a worldwide pandemic.

Figure 7.8: Automation levels for physics experiments. Following the syntax used for self-driving cars, those
levels define mainly the level of controls given to the computer of preparing, maintaining, conducting and
choosing experiments. The levels range from fully manual experiments where the user intervention is constant
to a fully automated experiments, where the user input is only required once for the global experiment goal
to achieve. Remote control of an experiment is only feasible from level 3 where only occasional presence is
required.

The idea of having an “automatic” experimental organization can be argued to be impossible because there

is always a need for the user to be manually involved in the experimental setup, especially in the case of

trapped-ion technology. The answer is actually more nuanced than a dichotomy between manual and automatic

experiments, as a very similar problem was studied in the industry regarding self-driving cars. A classification

was created by SAE International for autonomous cars with levels called SAE levels: 0 being fully manual and 5



7.2. ARTIQ setup 157

being fully automated. A similar table such as that shown in Figure 7.8 could be used regarding automation in an

experiment, decomposing the problem into the experimental setup and conducting the experiments themselves.

The priority in this apparatus was given to automating the experiments which only focus on controlling the main

sensors and signal generators. Maintaining the setup in a workable state involves control and monitoring of any

secondary devices necessary to trap and maintain ions such as the laser control, laser shutters, temperature

monitoring, trap RF control and pressure monitoring. The final step is to start the system and calibrate it

automatically, involving complex mechanical controls such as automatic laser beam alignment, camera focus

control and automatic fiber coupling. Although not yet implemented, some tools toward full automation will

be presented.

Automation in the logical apparatus

As mentioned above the software organization was focused on monitoring and operating the experiment in

software assuming some initial preparations were realized in person, such as aligning the laser beam to the chip

or coupling from the main laser heads with the right amount of power into the optical fibers.

The experimental code is decomposed into three layers:

• passive monitoring: multiple pipelines running in parallel individually monitoring devices. In case of a

lost connection or a need for changing the monitoring parameters those experiments can easily be stopped

and restarted without cascading errors.

• active monitoring: ARTIQ code reading existing measurements from the passive monitoring experi-

ments via datasets and acting on them by updating its own datasets or triggering experiments. As an

example the camera code and the atomic oven power supply code are active: the camera code assesses if

there is a trapped ion and updates the corresponding dataset. The atomic oven code runs on a loop but

does not activate the power supply if there is already a trapped ion.

• experiment: These experiment files represent the experimental code run by the user and can rely on

active monitoring to take longer and more complex measurements. Following the previous example,

assuming an ion stays in the trap for ten minutes in average, then by checking the active datasets for

confirming the presence of an ion before each measurement, the code can either take the measurement

and move on or wait until the atomic oven power supply activates, trap an ion and stop. Thus even with

a ten-minutes lifetime, experiments taking hours can be run.



158 Chapter 7. The logical qubit apparatus

The jump from level 3 to level 4 automation as described Figure 7.8 would involve both more hardware control

and the integration of quantum logic calibration as detailed in Chapter 3, with experimental calibration code

capable of both fast-but-basic verification and slow-but-standard calibration. More hardware control does not

require a reorganization of the three previously mentioned software layers but simply a larger number of active

monitoring experiments running. Efficient quantum logic calibration however will involve the design of a

fourth layer, the scheduler, which will decide which experiments to run and in which order. Each calibration

experiment in the third layer would need to be normalized to include the verification and calibration functions.

7.3 Atomic oven setup

An atomic oven is a vital element required for trapping as it provides the neutral atomic flux that will be used to

trap the ion with. This section describes the limitations that previous designs in the research group were having

and their significance for the logical qubit apparatus in particular. The design steps for a more efficient and

useful atomic oven is then presented with its calibration tests.

7.3.1 Trapping on a surface chip

As described in Chapter 2, ions can be trapped by ionizing neutral ytterbium atoms with a two-photons absorp-

tion process at the trapping position. The technology used to react neutral atoms is called an atomic oven. An

atomic oven is a tube containing the block of ytterbium oriented toward the trapping position. It is activated

by heating the tube to a temperature high enough for vapor to be emitted. The main issue presented by atomic

ovens is deposits of ytterbium atoms on the electrodes: they react with the laser beam, become electrically

charged and progressively deteriorate trapping capability. Surface chips are considerably more susceptible to

such phenomena as atomic ovens require pairs of antagonistic conditions:

• The ytterbium atom flux must reach the trapping position but it must not reach the chip

• The ytterbium atom flux must be dense enough to trap quickly and reliably but sparse enough to avoid

collisions with already trapped ions

While the second pair of conditions are achieved via control of the heat applied to the ovens the first pair of

conditions have two different design solutions: The first one is to emit the ytterbium atom flux orthogonal to

the chip via a loading hole designed in a region of the surface chip [165]. This integration of a micro-fabricated



7.3. Atomic oven setup 159

atomic oven in the chip itself is a complex design task but would enable clear scalability features and avoids all

contact between the ytterbium flux and the electrodes. An alternative approach is to position the oven parallel

to the chip and engineer the flux to be ballistic, as summarized in Figure 7.9. By positioning the oven slightly

below the chip level [157, Chapter 5.5.3], the flux will both reach the ion height and not make contact with the

chip.

Figure 7.9: Different atomic oven behaviors and their impact on trapping. a) Molecular effusion model : each
ytterbium atom can be approximated flying in straight line without interacting with other ytterbium atoms. The
atomic flux dispersion is fully determined by the atomic oven dimensions. b) Hydrodynamic flow : the flux
becomes broader because of collisions between the ytterbium atoms. The flux density decreases and the flight
direction from the ytterbium atoms may change after leaving the oven. For the same oven geometry, transition
between these two regimes is possible by increasing the vapour pressure via increasing the oven temperature.
c) The oven is positioned below the chip to shield atoms from being deposited on the surface. Shielding is only
possible if the oven are in the molecular effusion model.

At low enough temperatures and in a UHV environment, the emitted vapor will follow the regime of molecular

effusion where no collisions are considered: the emitted atoms will have a ballistic behavior. To characterize

the molecular effusion regime the mean free path λ of the emitted vapor has to be compared to the atomic oven

diameter as well as its length [166]. λ is calculated by adapting equation 7.1 in using rY b = 2.42 × 10−10 m

and by taking the pressure value to be the vapor pressure produced by the heated atomic oven and defined as

[167]:

log(pvapour(T )) = 14.117− 8111

T
− 1.0859 log(T ) (7.4)

where pvapour(T ) is in Pa and the constants are given for ytterbium atoms specifically. An estimation of both the

vapor pressure and the mean free path for ytterbium ovens is displayed in Figure 7.10 with the point of interest

being 10−2 mmHg or 1.333 Pa, which is a recognized threshold for considering the oven being activated [166].

As shown in Figure 7.10, for temperatures at which an ion can be trapped in the apparatus, the mean free path

appears to be longer than the diameter of the oven, indicating that molecular effusion actually takes place.

However the dimensions of the atomic oven, in the same order of magnitude as the estimated value of the mean



160 Chapter 7. The logical qubit apparatus

free path, translates into a bigger dispersion radius at the oven output.

Figure 7.10: (top) Ytterbium vapour pressure against the temperature applied to the atomic oven. (bottom)
Mean free path of ytterbium vapour against the oven temperature. We know that the activation threshold for
trapping is ∼ 10−2 mmHg. From the top graph we this translates to a temperature of 620 K which is confirmed
by the experiment. Using the bottom graph we can see that a temperature of 620 K corresponds to a mean free
path smaller than the oven length and greater than the oven diameter. This size of mean free path places us in
the ballistic regime but with additional dispersion.

7.3.2 Design of a new atomic oven

A new generation of atomic oven was designed with the double objective of monitoring the temperature for fast

ramping cycles and increasing the ytterbium precision to maximize the chance of trapping emitted ytterbium in

one arm of the X-junction surface chip and minimize the probability of collisions with previously-trapped ions

in the other arms.

The new design shown Figure 7.11 uses a stainless steel tube clamped on one side of a type K thermocouple

which is the most appropriate sensor from 300 K to 800 K. The heating is provided by a Nichrome wire

surrounding the stainless steel tube and clamped to copper wires. The current flow in this design does not travel

through the thermocouple and thus avoids offset measurements [168]. Being clamped inside the steel tube,

the thermocouple is touching or in close proximity with the ytterbium material. The final ovens built into the

system had a stainless steel tube of length L = 6 cm and tube diameter, D = 1.5 mm.



7.3. Atomic oven setup 161

Figure 7.11: Final design of the atomic oven used in the experiment. The stainless steel tube (Left) is con-
nected via clamping to the thermocouple wire. The tube is wrapped with chromium wire fixed in place via the
thermocouple clamping. The Ytterbium material is inserted at the bottom of the oven, entering in contact with
the thermocouple. All control and monitoring wires (Right) connect to a single DA-15 connector

7.3.3 The fluorescence test

The fluorescence test is a fundamental experiment to validate the integrity of an atomic oven setup. We use

only the first of the two lasers required for trapping. The neutral ytterbium beam will fluoresce if illuminated

at the wavelength resonant with the 1S0 ↔1 P1 transition.

In the logical qubit apparatus, the atomic oven design and the oven integration in its mounting structure were

tested in a bell jar. The 399 nm laser beam was sent at a 0 degree angle directly into the stainless steel tube to

maximize the fluorescence visibility. Such an angle shifts the absorption frequency due to the Doppler effect

and needs to be compensated by red detuning the laser away from the known fluorescence frequency [54]. As

seen in Figure 7.12 the tests were both successful so the complete atomic oven setup was integrated into the

logical qubit apparatus.

7.3.4 Design of a new atomic oven mount

In order to reduce heat dissipation and noise coupling from the atomic oven ground to the RF and DC signals

ground, the atomic oven mount hosting all the atomic ovens was decoupled electrically and thermically from

the vacuum system. The material selected for this decoupling was Macor because of its excellent thermal and

electrical properties and its UHV compatibility. The atomic oven is connected to the vacuum system via a

DA-15 connector flange. Each oven uses two channels for the thermocouple reading and two channels for the

heating circuit. Since there were four ovens to connect to the vacuum system, each with four channels, it was

decided to merge together all the grounding cables for the heating circuits. This allowed us to connect four



162 Chapter 7. The logical qubit apparatus

Figure 7.12: Fluorescence experiment diagram (top) and experimental observation (bottom) with a camera.
The stainless steel tube can be seen partially illuminated by the 399 nm laser beam entering it. When the oven
temperature goes above the fluorescence threshold, ytterbium atomic flux is emitted in enough quantities to
visualize fluorescence along the shared path between its trajectory and the laser beam.

independent atomic ovens with twelve connections.

Figure 7.13: Atomic oven characterization. (Left) Temperatures above 400 ◦C are reached at 4 W of electrical
power. (Right) The high atomic oven resistivity is essentially due to the Nichrome wire. Small changes due to
the heat load are measured but stabilize for trapping operations at 400 ◦C.



7.3. Atomic oven setup 163

Electronic testing of one of the atomic oven is displayed in Figure 7.13 and indicates a 4W power consumption

to reach above 400 K, which is three times lower than existing ovens used in the research group but still two

times higher than stainless steel ovens opened on the side [168]. Improvements on the temperature/power

efficiency can be achieved by better thermal contact between the Nichrome wire and the stainless steel.

7.3.5 Movable atomic oven structure

The ability to control the position and orientation of the atomic oven would allow us to maximize the neutral

atom flux sent at the selected trapping position. The current system was designed and assembled by Alex

Owens. First of all the oven position flexibility is assured by connecting the Macor element holding the oven

mount to a movable bellows. The control over the position was implemented via length-adjustable rods bolted

across the two sides of the movable bellow in a “hexapod” configuration.

Alignment of the atomic oven is illustrated in Figure 7.14 by adjustments of the adjustable rods, across multi-

ple fluorescence tests for keeping the pressure below a fixed level. The difference between a roughly aligned

oven before baking and a fluorescence adjusted calibration was observed to be around two orders of magni-

tude. It is a usual rule of thumb to attempt trapping runs at temperatures below the value at which fluorescence

from the neutral atom beam becomes visible. Adjusting the oven orientation brought down the target tem-

perature for trapping runs from near 450 ◦C to 350 ◦C, value roughly estimated in 7.3.1 to be the activation

temperature of the oven. The efficiency of the oven position is therefore concluded to be maximally optimized.

7.3.6 Atomic oven control

The DA-15 connector from the vacuum flange connecting to the heating elements and the power supply needs

to be manually mapped to a thermocouple reader module and a power supply. The setup was organized as

represented in Figure 7.15, with 2 USB connectors to the experimental computer for driving devices, a DA-15

connector to connect to the vacuum chamber connector via a single cable, and 2 input current supply connectors

from the power supply. The atomic oven controller contains the temperature data logger and a relay switch

connected to an arduino module, connecting the chosen oven to the power supply line. The power supply itself

is controlled via a serial connection to the computer and the three devices are incorporated in ARTIQ.



164 Chapter 7. The logical qubit apparatus

Figure 7.14: Atomic oven position adjustment via fluorescence measurement. The fluorescence was measured
using a fluorescence test at the trapping position taken by the EMCCD camera. The y (top) scale is the total
pixel sum on the image (arbitrary units) and the x scale is time. The middle and bottom y scales indicate the
oven and laser settings respectively. The oven being set at high power causes an increase in both ytterbium
fluorescence and light noise from the oven being set above 400 ◦C (II) compared to the noise floor at rest (I).
The first gap in brightness (III) corresponds to the 399 nm laser shifted in frequency away from the fluorescence
wavelength to assess the presence of ytterbium fluorescence among the light noise. The subsequent increase in
brightness (IV) comes from the manual adjustment of the adjustable rods on the oven mounts. The final decay
(V) corresponds to switching off the power applied to the atomic oven at the end of the fluorescence test.

7.4 Laser setup

This section will focus on the laser setup used by the logical qubit apparatus, describe the hardware, the optical

layout and the strategies deployed toward more reliable trapping. The description will not focus on the ability

to trap barium nor ytterbium 171 as those tasks have not been achieved at the time of writing the thesis.

7.4.1 Laser hardware in IQT

The research group shares laser resources between the different projects for cost and size efficiency. Each

project either traps 174Yb+ or 171Yb+, and thus needs three lasers emitting at 369 nm, 399 nm and 935 nm as



7.4. Laser setup 165

Figure 7.15: Diagram of the atomic oven controller box. The power supply was not integrated into the atomic
oven controller, but interfaces the controller via the computer. A single cable is required to connect the atomic
oven controller to the atomic oven flange.

described in Chapter 2. Some projects require a 638 nm laser for repumping after a collision event. Sharing

lasers is possible using high powered laser units which are sampled via glass windows or beam-splitters and

sent to an experiment table via fiber optic. Using fiber optics to connect the laser head and experiment allows us

to treat experimental and laser issues independently. If there are issues with a laser we can recouple the fiber to

a different laser without touching the experimental set-up. The experiment is at the time of writing connected

by optical fiber to a source of 15mW 369 nm light. To produce the 369 nm light, we start with a Continuous

Wave (CW) diode laser of 532 nm light, which is fed to a Ti-sapphire crystal to generate 739 nm light. The

739 light is converted by a doubling cavity into the desired 369 light. The other lasers are also high power CW

diode lasers, with 250 µW from The 399 nm laser and 6 mW of 935 nm laser6.

All lasers are locked in frequency by a central Laser controller described in Section 6.1. The 399 nm and 935

nm are locked with a PID loop between the wavemeter reading and the piezo actuator controller. The 369 nm

laser is also locked, before the doubling cavity. Some of the 739 nm beam is fed through an external optical

cavity which was built by Dr Thomas Navickas. This cavity uses low thermal expansion mirrors and is located

in a vacuum system for maximum stability. It has a measured linewidth of 6.2 MHz [169]. The laser control

setup is stable enough to trap reliably over at least 24 hours without manually interacting with the 369 nm laser.

The laser wavelengths in the logic apparatus are stable enough to trap reliably for at least 24 hours, therefore this

wavelength stability could be a useful benchmark when building similar experiments. Accurately measuring

the wavelength however is limited by the accuracy of the commercial wavemeter 7. The wavemeter used in

the research group is rated with a 60 MHz absolute accuracy and a 2 MHz relative accuracy. This wavemeter

is calibrated several times a week to a rubidium vapour cell via saturated absorption spectroscopy, although

6both are Toptica DL pro units
7High Finesse WS7-60 Series



166 Chapter 7. The logical qubit apparatus

a more regular calibration is planned and described in 6.1. A continuous measurement across two hours was

conducted (Figure 7.16) with a 0.56 second interval sampling time using the HighFinesse Longterm software

to identify any measurable drifts that didn’t halt trapping operations. The measurement was conducted on all

three lasers although stability is most important for the two UV lasers [169, Chapter 1]. The Allan deviation

plot for all lasers remains below the 2 MHz accuracy threshold because of the wavemeter so no further analysis

can be conducted.

Figure 7.16: Allan Deviation plot for the lasers frequencies via a 2 hours continuous measurement of the
wavelength. The measurements are taken at 1.8 Hz for the 399 and 935 lasers and 8 Hz for the 369 nm laser,
although this measurement was taken using the 739 nm laser head i.e. before the laser goes through the doubling
cavity. The wavelengths are converted to frequency in software. The drift in calibration is only visible on the
369 nm laser because the 399 nm and 935 nm lasers are locked to the wavemeter value itself. The relative
sensitivity of the wavemeter being 2 MHz, we interpret the measured fluctuation of the wavelengths as noise.

7.4.2 Optical setup

The optical setup is represented in Figure 7.17. It starts with the couplers converting the laser beam from

the optical fibers to colimated free space beams, followed by an iris for laser safety and free space optics and

translation stages which send the beams to the trap.

The 369 nm first goes through an acousto-optic-modulator8 (AOM) double-pass setup. An AOM converts a

laser beam of frequency f0 into multiple beams of order n whose frequency is modulated by the driving signal

f and is equal to f±n = f0 ± nf . By adjusting the power and frequency of the RF signal sent to the AOM, we
8Isomet 1206C-833



7.4. Laser setup 167

Figure 7.17: Optical setup of the laser beams sent to the vacuum system. (Top) Birds-eye view of the optical
setup showing the paths each laser takes from its coupler to the vacuum chamber. All lasers are positioned
vertically above the chip via translation stages and UV laser beams can also translate horizontally. (Bottom)
Side-view of the vacuum system illustrating the 45◦ angle orientation of the incoming laser beams to the chip.
For clarity, output beams are not represented.

can precisely control the amplitude and frequency of an order n beam. However each n-order beam exits the

AOM with an angle which depends on the frequency modulation. This angle dependency can be removed by

sending the beam back into the AOM and extracting the generated n-order beam a second time. This “double

pass” setup means the angle of the second pass can be compensated by the angle of the first pass [170, 171],

while maintaining frequency control. In our apparatus the double pass is configured to extract the positive first



168 Chapter 7. The logical qubit apparatus

order beam n = 1, therefore the 369 nm beam frequency fdp after the double pass is written as fdp = f0 + 2f ,

where f0 is the frequency of the original beam that enters the AOM, and f is the driving signal applied to the

AOM.

The 369 nm and 399 nm beam are co-aligned via a narrow 369 nm filter9, which lets through the 369 nm beam

but entirely reflects the 399 nm laser beam. The two beams then go through a telescope setup which cleans

the Gaussian mode using a pinhole at the focus point of the telescope and increases the beam diameter. The

diameter of the UV beams above the chip has to be smaller than the ion height to avoid light scatter off the chip,

which would reduce the ion visibility and charge the dielectric layers of the chip via the photoelectric effect.

The relation between the beam diameter ω1 at the focal length f at a wavelength λ with an input colimated

beam diameter ω0 is as follow:

ω1 =
fλ

ω0π
(7.5)

The telescope magnification M is the ratio of the two lenses’ focal length. The two lenses we started to use had

the same focal length, therefore the beams arrived at the chip with a magnification of 1. The beam waist at the

chip can be changed by switching these lenses. In this setup the 369 nm and 399 nm beams was expanded by a

factor of 4 to reduce the beam waist at the chip to below 100 μm.

The final step consists of a two axis translation stage with micrometer adjustment screws, upon which is

mounted a 15 cm lens followed by a mirror for angle adjustment. The 369 nm and 399 nm beams are sent

at an angle of 45◦ compared to the RF electrode axis to enable Doppler cooling of the ion as described in

Chapter 2. As the chip’s X junction is positioned orthogonal to the optical table it was decided to send the 369

nm beam from underneath the vacuum system via a mirror placed on the table. The 935 nm beam is not filtered

nor combined with any other beams and is sent at 45◦ in the opposite direction to the coaligned 369 nm and

399 nm beams. The 369 nm laser beam intensity is locked: a photodiode is installed in the return path of the

369 nm beam with a 369 nm filter similar to the one used to combine the 369 nm and 399 nm beams, to factor

out any non-369 nm light. This photodiode feeds a PID loop which controls the RF signal applied to the AOM.

Thus the second order beam going in the vacuum system and cooling the ion can be maintained at the desired

power.

9Semrock FF01-370/36-25



7.5. Imaging setup 169

7.5 Imaging setup

7.5.1 Photon collection setup

As briefly mentioned in Chapter 2, Ytterbium ions can be detected when emitting fluorescence in the 2S1/2-

2P1/2 transition. We will define now the fluorescence rate and evaluate each of its components [172]. A

measured ion fluorescence rate is determined by:

Frate = ηγP (7.6)

where η is the photon collection efficiency of the imaging system, γ = 2π× 19.6 MHz is the 2S1/2-2P1/2 decay

rate and P is the population of the excited state. We define s to be the saturation parameter calculated from the

laser power p via the following relation:

s =
p

3psat

γ2

γ2 + 4∆2
(7.7)

where psat is the saturation intensity and ∆ is the laser detuning from the S-P transition. We also define s0

as the saturation parameter for ∆ = 0. Equation 7.7 however ignores both the effect of power broadening, by

considering p small, and the effect of the magnetic field and laser beam polarization on Zeeman broadening.

The fluorescence rate for 174Yb+ is then proportional to:

Frate ∝
s

1 + (1 + ξ/2)s
(7.8)

where ξ is the repumping factor due to the 935 nm repumping, which is commonly chosen to be 0.1 for this

isotope. The main conclusion is that for 174Yb+ the fluorescence rate never decreases due to an increase in

the laser power, and that detuning the laser frequency only slows down the rate at which fluorescence increases

with laser power.

We will now consider the photon collection efficiency which depends on the optical efficiency of collecting light

from the ion, the transmission coefficients of the optics at the wavelength considered and finally the quantum

efficiency (QE) of the light sensor. The setup reuses most concepts from [173, Chapter 6].

Fluorescence emitted by the ion is at a random orientation. The first requirement of the imaging setup is to be

able to collect light from the widest solid angle at the ion position. The main constraint is to keep the focal

length longer than the ion-window length so that the imaging setup can be installed outside the vacuum. This

is commonly accomplished using triplet lenses, but a more optimized setup using custom-made optics has been



170 Chapter 7. The logical qubit apparatus

able to increase collection efficiency considerably [174]. The current triplet lens10 has a numerical aperture

(NA) of 0.293, which translates to a collection efficiency of:

ηcollection =
1− cos(arcsin(NA))

2
= 2.2% (7.9)

The collected light is focused by an additional lens onto the light sensor. The window and the doublet lens

are both estimated to have a 97% transmission efficiency, along the triplet lens is rated with T = 97%. The

fluorescence is recorded by an EMCCD camera11 using 13 um pixels and a QE for 369 nm ηEMCCD = 30%.

In order to distinguish between multiple ions and to obtain enough information to align the laser beams on the

chip, the image at the ion position needs to be magnified. Considering the ion-ion distance in a Coulomb crystal

is typically in the order of 10 μm, a minimum magnification factor of 2 is needed.

The total magnification is the product of the triplet lens magnification, which is a fixed value, and the second

lens magnification which is the main adjustable parameter. The second lens focal length and position was

adjusted to match a DC electrode diameter of 200 μm to 320 pixels, corresponding to a magnification of around

22.

The camera is situated in an optical black box to filter out light noise. In close proximity to the camera a flipper

mechanism12 holding a narrow bandwith Semrock 369 nm filter can quickly switch the imaging setup between

either laser alignment or ion trapping. The 369 nm filter has 90% transmission efficiency. A second equivalent

flipper mechanism can also redirect the light to a Photomultiplier tube (PMT)13 as a backup detection system.

This PMT has a count sensitivity of 4.7× 105 s−1.pW−1 which is equivalent to a QE of ηPMT = 25%.

The total photon collection efficiency is therefore estimated to be η = ηcollection×ηoptics×ηEMCCD = 0.54%

for the EMCCD setup, and η = 0.44% for the PMT.

7.5.2 Qubit readout fidelity estimation

The presented imaging system has not yet been used to trap 171Yb+ but an estimation of fidelity of the quantum

state readout, steps described in Section 2.3.5 of Chapter 2, can still be calculated. As indicated in Section 4.5.3,

we require a minimum readout fidelity of 99%.

The model of the ion fluorescence readout by Acton et al. [175] requires the fluorescence rate of 171Yb+

arriving on the sensor, the noise associated to the sensor and the leakage parameters associated to the ion

10Special Optics 54-17-29-369
11Andor iXon Ultra 888
12New Focus 8892
13Hamamatsu Photon counting head H10682-110



7.5. Imaging setup 171

species. The fluorescence rate for 171Yb+ ions, assuming an optimal angle θo between the applied magnetic

field and the laser beam electric field of θo = arccos

(
1√
3

)
, is defined as [172]:

Frate =
γ

36

Ω2

∆2 +

(
Γ171

2

)2 (7.10)

(
Γ171

2

)2

=
γ

2

2
+

1

6

(
Ω4

36δ2
B

+ 4δ2
B

)
(7.11)

With δB the Zeeman splitting already defined in equation 2.59 and Ω the Rabi frequency of the laser beam

linked to the linewidth γ and the saturation parameter at zero detuning s0 by [172]:

Ω =

√
s0

2
γ (7.12)

For s0 = 2, ∆ = 2π× 2 MHz and δB = 2π× 10 MHz, we calculate Frate = 7.57× 106 photons/s.

In an ideal case, both the bright state and the dark state configurations are closed loops and increasing the time

readout directly increases the readout fidelity. However, small leakages from the bright state to the dark state

and vice versa, are characterized by the two rates per scattered photon Cb→d and Cd→b [172], dependent on δB

and Ω via Γ171:

Cb→d =
2

3

(
Γ171

2∆HFP

)2(
1− Frate

γ

)
= 2.40× 10−5 (7.13)

Cd→b = 2

(
Γ171

2 (∆HFP + ∆HFS)

)2

= 1.56× 10−6 (7.14)

where ∆HFP = 2π× 2.1 GHz is the hyperfine splitting of the 2P1/2 state and ∆HFS = 2π× 12.64 GHz is

the hyperfine splitting of the 2S1/2 state. The Poisson statistics briefly introduced in Section 2.3.5 is, in reality,

coupled to the exponential decay due to state leakage. The probability distributions for the bright and dark

states can be written as [175]:

Pbright(n, t) =
e−(1+Cb→d/η)λ0(t)λ0(t)n

n!
+

Cb→d/η

(1 + Cb→d/η)n+1
P (n+ 1, (1 + Cb→d/η)λ0(t)) (7.15)

Pdark(n, t) = e−(1+Cd→bλ0(t)/η)

[
δn +

Cd→b/η

(1− Cd→b/η)n+1
P (n+ 1, (1− Cd→b/η)λ0(t))

]
(7.16)

where δn is the single-argument Kronecker delta, P(a,x) the incomplete Gamma function and λ0(t) the mean

photon value readable by the sensor during the detection time t and defined as λ0(t) = Frate × t.

The noise sources on the PMT, the dark noise and background noise, are Poissonian, therefore the measured

dark and bright state distributions can be simulated by applying a convolution with the distribution representing



172 Chapter 7. The logical qubit apparatus

the sensor noise rate. Noise rates for this PMT are estimated to be 640 s−1. The best threshold n to distinguish

dark states and bright states is calculated by finding the minimum detection error and is recalculated for each

measurement time. A set of detection error values is accumulated against different detection times to find the

best measurement time and the highest readout fidelity accessible.

Simulating the noise for an EMCCD camera requires a more involved model, for which a characterization is

outside the scope of this thesis. The key points to understand the EMCCD behavior are summarized from

Burrell [176] and Tubbs [177]:

• The pixels convert the incoming photons into electrons, which are amplified via an electron-multiplier

process which has its own Poissonian distribution dependent on the gain setting.

• The electron distribution before readout is a weighted sum over the incoming photon count, between the

incoming photon distribution and the electron-multiplier distribution.

• The readout noise, which is convoluted with the electron distribution to form the final readout measure-

ment, is Gaussian and needs to be experimentally characterized.

• In addition to the dark count rate, negligible for these devices when using the electron-multiplier feature,

the EMCCD cameras have a clock-induced charge noise which is independent of the measurement time,

and needs to be characterized experimentally for each pixel.

• Injecting leakage errors between bright and dark states in camera readout simulations, while not practical

to implement analytically, can be simplified in time-bin simulations where the leakage probability is

“digitized” over the time bins.

The simulations for the PMT are displayed in Figure 7.18: The optimum readout fidelity of F1qb = 99.2% is

acceptable for QEC schemes. This simulation confirms the current imaging-optical setup is capable of quan-

tum state measurements satisfying the requirement to run QEC protocols. An experimental setup, with lower

transmission path efficiency but with calcium ions, has already been demonstrated, using an EMCCD camera,

to reach a quantum state readout fidelity of 99.99%, while being able to spatially distinguishing multiple qubits

[178]. Quantum state readout has also been demonstrated with ytterbium in the research group, with the appa-

ratus mentioned in Chapter 3 having a transmission efficiency five times lower than the logical apparatus [179],

with a 96.8% fidelity for single ion readout with a PMT [55] and 93.4% fidelity for two qubit readout with an

EMCCD camera [86].

Finally, quantum state detection fidelity decreases when reading simultaneously the state of two qubits with



7.5. Imaging setup 173

the PMT, as the Poissonian distribution of mean value 2λ0 has more overlap with a distribution of mean value

λ0 than the distribution of a dark state. This reduction is overcome with shuttling: by splitting the ion crystal

before a measurement, two ions can be read sequentially with a fidelity of F2qb = F 2
1qb = 98.4% for a PMT.

Figure 7.18: Readout error simulation for PMT setup. (Left) Histogram of the probability distributions for the
dark (Red) and bright (Blue) state during the detection time. The value n* represents the optimal photon count
which minimizes the readout error when using the threshold readout method. (Right) Optimal detection error
against detection time. The minimum error value e, represented by the maximum readout fidelity F = 1 − e
and the corresponding optimal detection time t*.

7.5.3 Software ion analysis

The camera is mostly controlled by the Andor Solis software for initial trapping and for laser alignment. How-

ever for the purpose of automation it was more appropriate to write a driver to directly obtain and analyze the

images with ARTIQ, attaining level 2 in the automation scale shown in Figure 7.8. The camera driver was

implemented both in LabVIEW and with python wrappers14

Once the first ions were trapped with the full camera resolution, a compact signal for automatic monitoring

was used by taking a 5×5 super-pixel image where each super-pixel accumulates the fluorescence of a 12×12

physical pixels area as shown in Figure 7.19. The binning size was chosen so that the center pixel of the image

is the only one measuring the fluorescence emitted by the ion while the other pixels provide information about

background noise as well as radial and axial excitation. Binning also reduces readout noise from the camera and

thus increases the signal over noise (SNR) ratio. Once an ion is trapped the brightness is high enough compared

to the background noise that we could implement a fluorescence threshold above which ARTIQ considers an

ion to be trapped. Such a configuration is robust enough to reliably trap ions using software over a period of

more than 24 hours to take long scan measurements of the secular frequencies.

14https://pypi.org/project/andor/



174 Chapter 7. The logical qubit apparatus

Figure 7.19: (Left) Picture at magnification of 22 (0.6μm/pixel) of a single trapped 174Yb+ ion using the full
resolution of the camera, with a SNR of 2. (Right) Picture of an ytterbium ion using a binning of 12 pixels, and
an increased SNR of 4. Both pictures were taken with the same 300 ms exposure time.

A second automation module was written to distinguish between multiple ions, and, concurrent to measuring

the fluorescence, obtain position information to handle imaging setup drifts and cover new experiments such

as shuttling. This image recognition module, mainly based on the Hough circle detection algorithm [180], is

implemented and shown in Figure 7.20.

Figure 7.20: Ion recognition via Hough circle feature detection. The image taken by the camera (a) is cleaned by
applying first a small blur (b) followed by a Non-local Means Denoising algorithm (c). The ion is transformed
into a hollow circle by a Canny filtering (d) to increase the quality of the Hough algorithm. The recognized ion
and its information are obtained (e) by adjusting initial parameters depending on the expected ion diameter.

7.5.4 Laser alignment protocol

The UV laser beams for ionization, cooling and readout must be focused and aligned to the trap location with a

∼ 10μm precision. The beam waists must also be smaller than the ion height because any scattering of UV light

on the chip surface may charge the dielectrics layers via the photoelectric effect and add detrimental offsets to

the trapping potentials [181]. Furthermore, if the 369 nm laser beam scatters off the chip near the trapping



7.5. Imaging setup 175

Figure 7.21: Diagram of the alignment procedure of a laser beam onto a surface chip. (a) The beam must be
scattered off the chip so that light gets collected by the camera. (b) The camera is then adjusted in focus so
that the chip electrodes can be seen clearly. The laser beam waist can be estimated and the laser position is
known. The orientation of the beam is adjusted until it is parallel to the chip by repeatedly (c) moving the beam
position toward the chip then (d) adjusting the beam orientation to get the maximum brightness on the camera.
With small adjustments the operator should eventually notice a decrease in the maximum brightness that can
be obtained. This means that the laser beam is clipping the chip (e) meaning that the laser beam is covering the
chip as much as possible and is therefore parallel to it.

position then the scattering will appear on the camera and considerably reduce the signal over noise ratio when

detecting a trapped ion. As the chip was designed with an ion height of 125 μm, the 369 nm and 399 nm laser

beam waist at the trapping region must be smaller than this value. The methods to reach such a laser beam

waist are explained in Section 7.4.2.

The method for aligning each laser beam is illustrated in Figure 7.21 and consists of progressively clipping the

laser beam on the chip by iteratively adjusting the laser beam incident angle. The aligned beam as seen by the

camera is shown in Figure 7.22.

7.5.5 Software laser beam detection

Although less important than the algorithm in 7.5.3, the ability to automatically align the laser beams at the ion

trapping position following the procedure shown in 7.5.4 would be a major step toward level 5 of automation

as discussed in section 7.2.4.

Control can be implemented by replacing the manual travel micrometer head by a piezo-actuator controlled

version15, allowing both manual and remote control of translation stages. These piezo actuators were tested on

15Thorlabs travel piezo inertia actuator



176 Chapter 7. The logical qubit apparatus

Figure 7.22: Picture of the UV laser beam overlaid onto the chip. False color and labels are added to provide
better understanding of the chip position. The two beams in this photo are parallel to each other and not fully
superposed. Scattering on the chip allows visualization of the beam position by identifying the electrodes of the
chip. The top three DC electrodes combined with the ground and rotation electrodes surrounding the trapping
position are enough to finely align the beam for trapping.

the z-axis control of the imaging tube which controls the focus: by bringing the focus onto the chip and recog-

nizing the laser beam position, more piezo actuators would enable complete automation of the laser alignment.

Therefore two image recognition algorithms are to be tested in relation to the remote control of the camera

focus: one to identify the laser beam position and the other to recognize the camera focus.

The beam is identified on the camera by fitting the camera image B(x,y) with a Gaussian beam of width ω,

direction y = ax+ b, amplitude C and background noise N :

B(x, y) = C × exp
−

(a.x− y + b)2

2ω2(a2 + 1) +N (7.17)

The focus can be deduced from a scan, such as the one shown in Figure 7.23. The focus will correspond to the

imaging tube position with the smallest ω fit.

Another algorithm is still required to complete the identification of the laser beam position on the chip: rec-

ognizing the location on the chip that the camera is pointing at. A successful algorithm has not yet been

implemented and is still being investigated. There are two main difficulties for implementing this feature: the



7.5. Imaging setup 177

Figure 7.23: Automatic scan over the camera focus. (x-axis) The piezo actuator scans with a step size accurate
to 20 nm, over the imaging tube position toward the chip. (y-axis) For each step, an image is taken by the
camera and the laser beam width on the trap if fitted with equation 7.17. The focus is at the position for which
the laser beam width fit is minimized.

first obstacle is identifying the chip features, which are mostly straight lines either parallel or at right angles to

each other, is impacted by large amount of noise. A robust denoising procedure specifically dedicated to this

issue would enable the use of the Hough line feature recognition algorithm. The second obstacle is that even if

the features are recognized, this doesn’t necessarily tell us which section of the chip the camera is looking at.

Either a user input or a more extensive control over the camera position, to enable the detection of an unique

feature such as the center of the X-junction, would allow the program to deduce the absolute position on the

chip that the camera is pointing at.



Chapter 8

Scalable shuttling architecture

The sequence of experiments from initial trapping to shuttling implementations is now described. The aim of

these experiments is to use the system presented in Chapter 7 to implement the QPU primitive operations from

Chapter 2, incorporated with shuttling based instructions via the QCCD syntax introduced in Chapter 5. This

setup can then be used to perform key building blocks of QEC codes mentioned in Chapter 4. As chips with

current carrying wires have been delayed by fabrication challenges, we are focusing on the implementation of

shuttling sequences useful for QCCD architectures. Each tool described in this chapter is made to be modular

and reusable in order to speed up the implementation of low to medium scale quantum algorithms in the research

group.

8.1 Trapping

This section is focused on initial trapping experiments and metrics measured to characterize the trap. Hardware

limitations which will impact further experiments are detailed here, while new tools are presented to give the

experimental user more control and feedback over the ion trap.

8.1.1 Ion lifetime

The software detection tools presented in Chapter 7 allow us to monitor the trapped ion and retrap in the

eventual loss of an ion. The software tools also allow us, as illustrated in Figure 8.1, to record several metric

pertaining to the performance of the ion trap. Since ion detection is based on a fluorescence threshold method,

several successive ions may be falsely registered due to laser power or frequency fluctuations as well as laser

178



8.1. Trapping 179

locking faults. Such duplicates can be identified with enough logging information from the apparatus.

The survival of ions in the trap is limited to less than five minutes and could be explained by the vacuum

system’s pressure. Ion lifetimes below a minute were omitted as they do not reflect the performance of the

chip, but are rather due to other unfavorable conditions such undetected laser power fluctuations and bad laser

beam alignment. The measured pressure from the ion gauge of 1.5.10−10 mbar gives via equation 7.2 an

estimated lifetime of twelve minutes, which is slightly higher than the fitted decay time, however on the same

order of magnitude. The monitoring can be improved by systematic calibration of the lasers in the laser control

framework detailed in Section 6.1 which will remove the frequency fluctuations, and by also recording the laser

powers.

Figure 8.1: Ion statistic obtained from more than three hundred registered ions. The trapping time is mainly
consistent but raises slowly due to the choice of slowly decreasing the 369 nm power. The ion lifetime has
both unstable period and good trapping conditions period, due to drifts in the experimental calibration of the
trapping conditions. The laser wavelengths (Bottom) are fluctuating due to drifts of the wavemeter’s calibra-
tion. However the strong overlap of 369 nm wavelengths from trapped and lost ions suggest that frequency
fluctuations do not account for the poor ion lifetimes.

The high pressure in the system is associated with a high collision rate, and therefore increases the likelihood

of the ion falling in the 2F7/2 state that can only be repumped with a 638 nm laser. A few short experiments

with a 638 nm laser did not seem to increase the ion lifetime but would require further tests to confirm it.

Increasing the RF trapping voltage, which provides a better radial confinement, did not have significant effect

either. Activating the Helium cryogenic cooling is expected to both reduce heating due to the electrodes and

reduce the pressure and should have a significant impact on the ion lifetime.



180 Chapter 8. Scalable shuttling architecture

8.1.2 Secular frequency measurements

The radial and axial secular frequency determined in equations 2.10 and 2.16 from Chapter 2 were experimen-

tally measured by adding an electric field oscillating near the estimated secular frequency. On resonance, the

ion motion is amplified in the secular frequency’s axis so that it becomes noticeable on the imaging system, and

the spatial extent of the elongated ion is then recorded as illustrated on the left plot in Figure 8.2. The radial

secular frequencies were stimulated with an RF signal sent via the in-vacuum PCB antenna. The axial secular

frequencies were excited by driving an RF signal directly onto an on-chip DC electrode, since the in-vacuum

antenna did not provide a sufficiently strong electric field component in the axis.

Radial secular frequency measurements are displayed in Figure 8.2: For every trapping RF voltage applied to

the chip, a very strong signal can be measured at resonance. The linear fit matches the theory and provides an

experimental validation of the ion radial secular frequency.

Figure 8.2: Secular frequency measurements against the RF voltage. (Left) Secular frequency measurements
scans: an external RF field is applied (y axis) and the ion brightness is recorded (x axis). When the applied field
matches the secular frequency, the ion motion is enhanced which translates into a brightness peak. (Colors) For
each scan, a different AC voltage is applied on the RF electrodes, changing the radial secular frequency. (Right)
The fits between the trapping RF amplitude applied on the RF electrodes and the resulting secular frequency
confirms the expected linear relation.



8.1. Trapping 181

8.1.3 Micromotion compensation

When the DC null is not located at the RF null the ion will be influenced by extrinsic micro-motion which can

have detrimental effects on the ion line-shape, affecting the ion cooling rate, distorting the ion fluorescence and

ultimately the ion lifetime. The two main causes are an straight static field Eext or a phase difference between

the two RF electrodes φac. The phase difference is ruled out due to the geometry of the front PCB which was

designed to have the same RF track length between the single input RF connector and the two wirebonding

locations for the RF electrodes. The RF wavelength is more than twenty meters while the RF track length

difference is estimated to be below a few millimeters.

The normalized absorption spectrum can be modeled [182] at low saturation by :

Pe′(ωlaser) =
1

4

∞∑
n=−∞

J2
n (β)(

ωatom − ωlaser + nΩ

γ

)2

+
1

4

(8.1)

where ωlaser is the laser frequency, ωatom is the ion’s transition frequency, Jn is the Bessel function of order n,

γ the natural linewidth of the transition and β the effective micromotion parameter. It can be observed in Figure

8.3 that because Ω and γ have the same order of magnitude in this apparatus, both the frequency and amplitude

of the maximum brightness peak are highly dependent on the amount of micro-motion which prevents further

characterization of the system.

Figure 8.3: Micromotion impact on the linewidth spectrum. The simulation used the ratio from the apparatus
Ω

γ
= 0.66 for different amounts of micromotion β.



182 Chapter 8. Scalable shuttling architecture

Figure 8.4: Micromotion compensation along the z axis. (Top) Scans of the external RF applied field (x axis)
and resulting ion brightness (y axis). The scans are normalized to the ion brightness at rest. The center peaks of
the parametric excitation are close to each other and not constantly at the same frequency, which is attributed to
fluctuations of the RF trapping amplitude. (Bottom) Peak from the parametric excitation scans against the ion
height, controlled by the voltage applied on the pair of central electrodes displayed in the chip representation
in blue. The datapoints are normalized at each parametric excitation scan. The decrease in peak amplitude
is considered as a decrease of the micromotion parameter. The optimal ion position is when the parametric
excitation peaks disappear.

There are several techniques to minimize excessive micromotion in ion traps [183], including photon-correlation

[182], sideband spectroscopy [184] and ultracold atoms probing [185]. Initial experiments to observe micro-

motion consisted in varying the amplitude of the field applied to the RF electrodes. Axial micromotion would

result in visible ion displacement along the axial axis. The absence of any measured displacement indicated that

the only possible micromotions was either due to phase mismatch, which was ruled out, or from micromotion

in the ion height axis which would not be visible on the camera for such amplitude scans. Micromotion was

then more accurately measured with parametric excitation [186], in which the RF electric field Ω applied to



8.2. Ion position control on a surface chip 183

the RF electrode is modulated with an external RF field Ω′ = Ω + ∆. When ∆ is equal to the radial secular

frequency and if the system is suffering from micromotion, then the ion’s motion will be amplified, commonly

called being “tickled”. Micromotion is compensated by adjusting the potentials applied to the DC electrodes, in

order to minimize the observed tickle. Thus the tickle scan was run for different voltages applied to the central

pair of electrodes and resulted in different ion heights.

The results of these scans are shown in Figure 8.4: by detuning the voltage applied on the pair of central

electrodes which control the ion height, the tickle amplitude gradually decreases until micromotion becomes

too weak for the ion tickle to be observed. The electrode voltage at which the micromotion peaks becomes

indistinguishable from the ion fluorescence at rest represents the optimal ion height for which micromotion is

minimized.

8.2 Ion position control on a surface chip

In parallel of the characterization work, the second category of experiments available to this chip is ion shut-

tling. As previously mentioned from Chapter 2, a shuttling waveform consist of applying in series a list of

voltages, each step confining the ion in a given position of the trajectory. Successful shuttling consists of over-

coming two challenges: simulating the waveform to be applied to the chip based on the knowledge of the chip

geometry, and successfully applying the waveform with the required speed and accuracy, limited by the hard-

ware.

Two important shuttling operations are considered in this section, as they represent key components for the

QCCD syntax defined in Chapter 5 and by extension most QCCD architectures: the X-junction shuttling and

the splitting/merging operations. Junction shuttling is the cornerstone technology to scale microfabricated traps

on 2-D architectures, while splitting and merging enables individual ions to be brought together in a single

ion crystal and execute entangling gates, and reciprocally to separate them after the gate is applied. Shuttling

across a junction has been demonstrated for a T-junction [187], Y-junctions [165] and 3-D traps X-junctions

[188, 189]. The surface X-junction sequence is much harder to simulate and the only working X-junction sur-

face chip known to date has only shuttled around the corner of the junction but not through it [190].

This section will describe the developed simulation tools and hardware compilation steps regarding the imple-

mentation of shuttling on the logical qubit apparatus.



184 Chapter 8. Scalable shuttling architecture

8.2.1 Simulations

DC trapping voltages for initial trapping and early shuttling were based on the House equations [46]. Solving

ion position’s with an arbitrary shaped ion trap for a set of DC and RF electrode voltages is a process involving

the following steps [191]:

1. An electrostatic model of the DC electrodes is simulated. The potential of every electrodes n, at any

point of the trap r=
( x
y
z

)
and defined as φn(r), is recorded. The collection of these electric potential grids

is named the basis potential. The total potential at a position r from the DC electrodes with an applied

voltage Vn, is equal to
∑N

n=1 φn(r)Vn.

2. The RF electric field is by nature not static, but the time-independent pseudopotential φPS(r) of the RF

potential can be calculated by similarly evaluating the static potential of the RF electrode. The total

potential φ(r) at any point r is defined as the sum of the RF pseudopotentials with the DC potentials:

φ(r) = φPS(r) +

N∑
n=1

φn(r)Vn (8.2)

3. Solving the ion position at r0 for a set of voltages [V0,...,VN ] consists in finding the minimum potential

via enforcing the following equation:

∇φ(r0) = 0 (8.3)

The flexibility needed for simulating multiple positions for shuttling protocol, as well as the ability to quickly

change electrode geometries to study multiple types of chips led to the development of a dedicated python mod-

ule1. An external python file defines multiple geometries over which the one of interest is chosen. The trapping

potentials are solved at a given position by a minimizer algorithm based on configurable conditions, such as the

secular frequency, residual stray fields and total sum of the squared voltages or the symmetry between electrode

pairs. Those conditions can also be adjusted for each positions depending on the desired shuttling waveform.

High numbers of shuttling sequences are simulated and tested across on the chip, thus requiring a formatting

standard for shuttling waveform files. The standard used in the research group is a JSON based object, with

mandatory fields for the voltages solutions and allows optional fields depending on the user need, and is de-

scribed in Appendix B. Fast and simple turnaround between different sequences is made possible by having

the python simulation module producing sequences with this syntax and the ARTIQ experiment extended to be

able to read them.
1developed by Dr Sam Hile



8.2. Ion position control on a surface chip 185

8.2.2 Prototype model implementation

The voltage sequence simulated in Section 8.2.1, or waveform, corresponds to a large array of data and only

shuttles the ion along the requested trajectory. While these solutions allow us to minimize shuttling-induced

heating, they cannot be scaled up due to the exponential size of the simulation as the number of electrodes

increases. Furthermore, increasing the number of controlled electrodes increases the memory size taken by the

shuttling sequence. Future chips with several X-junctions, and potentially thousands of electrodes cannot be

simulated with this approach. Devising an architecture controlling the ion position by only using a local set of

electrodes is required. This section considers a prototyping solution of implementing ion position control over

larger distances via a concatenation of local sequences at the appropriate electrodes such as displayed in Figure

8.5: in this example local files containing only 5 pairs of electrodes are concatenated together to shuttle an ion

across a trajectory that would require globally 9 pairs of electrodes. The calculation cost improvement can be

quickly estimated by considering each pair of electrode as an additional dimension to minimize in the search

space: the difference is therefore an exponential improvement of exponent 1/4.

Figure 8.5: Example of concatenation of linear shuttling sequences. (Left) Local sequence determined by the
simulations. Each curve represents a pair of electrode voltages when shuttling an ion across the two borders of
the middle electrode. (Right) By requesting a longer linear shuttling sequence the local sequence is duplicated
at the appropriate electrodes and the sequences over the different electrodes are concatenated together.

In order to enable such a scheme the files containing local sequences must be complemented by a file containing

hardware information on the electrodes as illustrated Figure 8.6: Based on a description of the trap, the software

decomposes a shuttling instruction into the necessary local sequences, assigns in each of them every voltage

instructions to the correct electrodes in the trap, and finally concatenates it all into one ARTIQ instruction.

The concatenation requires from the local sequences that they share the same voltages over the concatenation

point so that no heating or loss occurs between two regions. Local sequences however do not take into account

a specific electrode shape on the chip: the deviation of the duplicated waveform with the required one may lead



186 Chapter 8. Scalable shuttling architecture

Figure 8.6: Sequence diagram of compiling a shuttling order across an micro fabricated chip, with the X-
junction as an example. Sequences in green represent the steps taken by the ARTIQ software between first
receiving a single shuttling command and its final hardware implementation with the DACs. The use of lo-
cal sequences (Blue) combined with information of the trap (Orange) allows flexible reconfiguration and low
memory usage.

to additional risks, such as ion loss and heating as well as significant drifts in the ion’s position. Therefore the

file containing the mapping of electrodes and their hardware address has to be extended to include correction

parameters to take into account geometry variations.

In order to theoretically demonstrate the effectiveness of waveform compensation, a set of waveforms were

simulated over one arm of the X-junction trap used in the project. As displayed in the concatenation example

in Figure 8.5, there are five distinctive regions using five pairs of electrodes each. The simulated waveforms

obtained for each specific regions are plotted in Figure 8.7 against the simulated central waveform which we

will define as the standard one. Over the twenty waveforms considered nineteen can be reasonably compen-

sated by a second order polynomial correction factor. The problematic waveform is in the closest region to the

X-junction which has a stronger geometry difference. An experimental validation is still required, as imple-

menting such corrections may require to take into account imperfections of the chip or impurities deposited on

it. Higher order polynomial corrections may therefore be needed.

Waveform compensation is therefore validated by simulation over most regions on the chip, but first requires

for each region an assessment of its validity. The volume of data manipulated is still however considerably

reduced regardless of the addition of those factors: in the above case of linear shuttling on the arm, each region



8.2. Ion position control on a surface chip 187

encompasses five waveforms of a hundred points each, while a set of five second order polynomial factors only

represents fifteen data points.

Figure 8.7: Waveform corrections between simulations of the generic and required shuttling sequence. Each
row represents a shuttling region on the linear arm, with the region zero defining the standard waveform and thus
not being plotted, while each column represents the shuttling waveform to apply to the local pair of electrode.
Each graph displays the required simulated waveform (y axis) compared to the waveform simulated in the
central zone 0 (x axis). The red curve is a second order polynomial fit. A good fit across all waveform of a
region indicates that this region can be in theory implemented with the standard waveform in combination of
the correction factor determined by the fit.

In conclusion a globally efficient shuttling can be implemented with small local sequences with a minimal

added cost. The polynomial factors are at least an order of magnitude smaller than a local sequence. Recalling



188 Chapter 8. Scalable shuttling architecture

the fact that a single X-junction includes around 80 DC electrodes, we can estimate that each added X-junction

in a quantum computer processor will increase the required data size for shuttling by the equivalent of only one

local sequence. This scaling of the data size is within reach of virtually every CPU for NISQ devices of less

than a thousand junctions but may not prove sufficient for larger devices.

A second advantage of local sequence concatenation is the ability to run parallel shuttling sequences, an im-

portant next step toward scalability, as long as these sequences do not share a common electrode at the same

time of the sequence. Implementing parallel shuttling will require an extension of the QCCD syntax to support

parallel statements. Shuttling speed with parallel ion control will be limited by the DAC bandwidth, which

is the hardware limit on how fast a DAC card can modify the voltage of a DAC channel. Most DAC cards,

including the Zotino card used in the logical qubit apparatus, share the same bandwidth for all its channels.

Increasing the bandwidth per channel is either achieved by increasing the number of DAC cards being used or

by using DAC cards with a higher bandwidth.

8.2.3 Shuttling on a X-junction

Shuttling ions on an X junction can be decomposed via local shuttling solutions down to two sequences: a

linear shuttling sequence requiring five pairs of electrodes and covering the position control over the central

electrode pair, and the shuttling across the X junction. Shuttling sequences are simply a concatenation of

trapping solutions. The distance between two points of a sequence is required to be below the scale in which

the electric potential, in the axial axis, remains harmonic [192, Appendix D] and was thus chosen to be 2 µm.

They are saved as JSON files with electrode labels chosen by convention to be easily adaptable by the software

running the sequence concatenation. All motion control available on the chip is displayed in Figure 8.8.

By symmetry it is only required to solve the trajectory from one arm to the center. There are major obstacles

toward shuttling in an X-junction : first of all the DC electrodes are further away from the center of the junction

than from an arm on the chip, reducing the influence of the electrostatic field. This can be seen Figure 8.9 where

the simulated waveform reaches the maximally allowed DC voltages near the center. Secondly, the secular eigen

axis at the center have degenerate solutions for the axial and radial components if all fields around the junction

are symmetric, therefore a change in the secular frequency and an unavoidable increase of the motional mode.

[192, Section 5.6]. The sequence was implemented for shuttling between the west and the east arm by bringing

down all rotation electrodes to zero volt while shuttling. The sequence was confirmed by seeing the ion leaving

the area observed by the camera and coming back at the end of the sequence. While unlikely, it remains possible

that the ion stays stuck near the junction and does not cross it before being brought back. Stronger experimental



8.2. Ion position control on a surface chip 189

Figure 8.8: Syntax representation used for parsing shuttling instructions.(Red) area covered by local X-junction
shuttling sequence. (Blue) area covered by local linear shuttling sequence. (Green) hardly accessible area due
to electrodes shorted and/or wirebonded in pairs. (Black) inaccessible areas due to the lack of electrodes on the
sides. The default position to trap ions was chosen to be W3.

confirmation of the shuttling sequence is needed such as observing the ion in the other arm.

8.2.4 Splitting and merging

By adding a quadratic term to the trapping potential [193], a single potential well containing an ion crystal

can be progressively split into two separate wells. With fine tuning adjustment of the electrode voltages one

can select which section of the ion crystal is split. Reciprocally, a merging operation consists of running the

splitting operation in reverse, leading to the merging multiple ion crystals into one. Therefore the two processes

follow the same voltage sequence and associated errors and are investigated as a single process.

Splitting sequences are simulated, as displayed in Figure 8.10, by extending the python simulation module

mentioned above to incorporate a quadratic potential as well as solving the minimizer over multiple points of



190 Chapter 8. Scalable shuttling architecture

Figure 8.9: Shuttling sequence to approach the X-junction center. The trajectory mapped by this sequence is
represented on the left, with the sequence itself displayed on the right. The waveform was simulated on the
North-South axis due to the simulation software architecture, assuming each electrodes could be controlled
individually, and was run experimentally in the West-East axis. Each waveform represents a pair of one or
multiple electrodes on the chip. The increased distance between the ion and the electrodes can be seen near the
center of the chip at the end of the waveform, where the required DC voltages are much higher in general and
even reach for some electrodes the maximum value achievable in hardware.

Figure 8.10: Shuttling sequence to split an ion crystal of even numbers of ions. The two different end states
“merged” and “split” controlled by this sequence are represented on the left with I and II. The sequence itself is
displayed on the right. Each waveform represents a pair of electrodes on the chip. The sequence is applicable on
any linear section of the surface chip conditional to a single offset field applied on an adjacent pair of electrodes
to compensate the small local geometry difference.

interest instead of one. A slow splitting and merging protocol is measured with the EMCCD camera in Figure

8.11, illustrating the separation of the two ions.



8.3. Software integration toward a functional QPU 191

Figure 8.11: Splitting protocol measured by the EMCCD camera. The steps displayed in Figure 8.10 are
implemented with a 50 ms step delay, which leads to a splitting time of 2.5 s. The camera has an integration
time of 130 ms. The first three measures up to t = 0.58 s demonstrate the separation process of the ion crystal.
Once split, at t = 4.08 s, the ions are too far away form the laser beam to be visible. Finally, after a 3 seconds
delay the merging sequence is run, and the ions are recrystallized again, at t = 7.58 s, in the same ion crystal.

8.3 Software integration toward a functional QPU

The physical protocols to shuttle ions on a surface chip have been detailed and implemented. Combining

those results with the organization used in other experiments of the research group to implement quantum logic

operations, it becomes possible to envision with the next generation of the apparatus how to running quantum

circuit algorithm. The remaining hardware challenges are considered in detail at the conclusion.

8.3.1 CPU limitations for shuttling instructions

We consider quantum algorithms as being sequences of operations such as those defined in Chapter 5. In this

context we identify two types of operations: quantum control sequences, which are equivalent to a time delay,

and shuttling sequences. The design and implementation of complex shuttling sequences was split into a two

step process, starting with the prototyping model. As described in Section 8.2.2, the DC waveform is calculated

in the CPU, and the resulting commands are sent to the FPGA as lists of arrays. This model allows the user



192 Chapter 8. Scalable shuttling architecture

to quickly change any desired local sequences by adding new files and arbitrary speed ramps can be added via

interpolation on the concatenated waveform in order to minimize heating. Unfortunately, the compilation time

of the resulting arrays to be sent to the FPGA is very large. From Figure 8.12, we can see that the threshold

after which the compilation becomes problematic is between one and two round trips across the X-junction,

which is much less than most algorithmic requirements discussed earlier in Chapter 5.

Figure 8.12: Compilation time taken by ARTIQ to upload shuttling waveform into the FPGA. For small wave-
forms a first linear trend is observed. When the data size to be sent reaches a certain threshold a much steeper
linear trend appears. Larger data sizes crash the FPGA compiler.

Furthermore, larger shuttling files also lead to compilation error. This limit arises purely from the chosen

architecture due to the choice of assembling all the shuttling waveforms in the CPU. Even the compression

method detailed in Section 8.2.2, allows at best dozen of round trip across two arms of the X-junction. Such a

limit is big enough to allow for a complete study of any local sequences, as well as initial testing of combination

of sequences. This compiler can be used to select the best waveform maximizing shuttling speed and fidelity,

while minimizing heating. It is however not applicable for running arbitrary large scale circuits with high

fidelity, and another approach to run shuttling sequences is required.



8.3. Software integration toward a functional QPU 193

8.3.2 Scalable shuttling via FPGA waveform control

A second version of the compiler would consist in integrating the DC waveforms in the FPGA. The waveforms

stored locally in the FPGA would be the same building block used to build a concatenated shuttling sequence

described in Section 8.2.2. With the sequences directly available in the FPGA instead of being calculated in the

CPU, the compilation overhead is removed and arbitrarily long sequences can be run. For Sinara devices, the

access to the FPGA memory is accessed via the DMA module2. The next steps to enable such an architecture

are to compress all the required waveforms for controlling the ions in QCCD code in the FPGA memory, and

to demonstrate real-time concatenation of waveforms by the FPGA, by sequentially loading the waveforms,

without impacting the shuttling speed.

8.3.3 Full stack software integration

The logical qubit apparatus was integrated to the software stack described in Chapter 5. The integration oc-

curred while the sequence limited shuttling compiler was still in use, as the ARTIQ syntax is aimed to remain

the same.

The latest layer of the full stack software organization consists in translating the pulse sequence JSON dic-

tionary into the relevant experiment for the experimental controller to run. The organisation needs to handle

loop calibrations as described in Chapter 3, as well as running most of the compiler stack asynchronously from

the experimental computer. The concept of running experiments is already simplified in ARTIQ with python

objects called EnvExperiment which prepare the experiment, run real time operations and analyze the obtained

data; more importantly, Python files can already be transmitted and submitted to the ARTIQ schedule over a

network.

The hardware layer is therefore a python script first translating the pulse sequence data into an ARTIQ experi-

ment python file, then submitting it to the computer running the targeted quantum processing unit. This solution

allows us to clearly store the physical process behind the quantum circuit for debugging and reusability, and

provides little additional work since we are reusing most of the ARTIQ framework.

2https://m-labs.hk/artiq/manual/core drivers reference.html# module-artiq.coredevice.dma



194 Chapter 8. Scalable shuttling architecture

8.4 Conclusion and future work

This chapter presented some investigation of the shuttling aspect of trapped ion technology, and further demon-

strated that one of the main obstacles to build quantum computers is scalability. More than just running gates

across large scale devices, multiple technological aspects, such as calibration, compilation and as seen in this

chapter shuttling ions, are relatively straightforward to demonstrate but require very efficient approaches when

running on a longer time scale.

The work presented in this chapter can be further developed in multiple directions. The pressure estimated in

Section 7.1.1 and measured with the ion pump can be further characterized by observing ion hopping and ion

crystal reordering on a double-well potential [194] similar to the one created in the splitting sequence. The

surface chip still needs to be characterized for heating rates and shuttling around the corner protocols still need

to be implemented. A second step would be to apply an external magnetic field so that 171Yb+ can be trapped.

Although the lack of a gradient would prevent the implementation of entangling gates, having access to single

qubit quantum logic would allow us to characterize the phase accumulated from each shuttling sequence. Heat-

ing rate characterization of each type of shuttling sequence would further help estimate the capabilities of the

prototype once fully operational. A prototype of scalable shuttling compilation in the FPGA is still required

but a potential solution has been described.

A major update hinted at in most of the previous sections consists in replacing the existing chip in the near

future with a surface chip containing micro-fabricated current coils, allowing magnetic fields and magnetic

field gradients to be generated on demand. This would allow for the implementation of entangling gates on the

apparatus, the last remaining element in the way of achieving a fully functional quantum computer prototype.



Chapter 9

Conclusion

9.1 Summary

This thesis represents a full stack approach on developing a quantum computer prototype, from software to

hardware considerations, with the objective of studying physical implementations of quantum error correcting

codes.

In Chapter 1 the main algorithms aimed to be implemented on quantum computers are quickly reviewed, out-

lining the circuit size involved and the struggle to define a correct metric evaluating a quantum computer’s

efficiency.

Chapter 2 contained the detailed theoretical framework used to build quantum computers in the Ion Quantum

Technology group. The advantages in terms of scalability of this framework are explained and the hardware

organization for large scale devices is illustrated.

Chapter 3 focuses on the importance of gate robustness in the control of a quantum computer. After shortly

reviewing the concept of robustness, a robust gate scheme is described, implemented and characterized. A

different approach on estimating gate robustness is then conducted to further illustrate advantages when cali-

brating and operating a quantum computer. They show that gate robustness not only increases the circuit fidelity

but also increases the duty cycle between operations and calibrations and the average available time.

In Chapter 4 the fundamentals of Quantum Error Correction are presented and in particular the surface code

which is today the most promising scheme to realize in the near future. Tools to evaluate and implement those

schemes and reflections about the impact of ion shuttling are outlined. A first set of requirements is outlined

for experimentally test QEC codes.

In Chapter 5 is considered the software stack of a quantum computer. The main elements to compile a generic

195



196 Chapter 9. Conclusion

quantum circuit into hardware instructions are presented. In particular a new hardware quantum code syntax is

introduced, specifically designed for quantum computers with shuttling ion architectures. The stack is merged

with the existing pulse sequence layer already used in the research group with the aim of integrating older

experiments under the same framework. Quantum Error Correction in this framework is also considered, and

additional requirements are established regarding shuttling protocols.

In Chapter 6 a set of automation software is presented, controlling and monitoring different experimental tasks

common to ion trapping experiments. The built-in interfaces are important in providing individual apparatus

automated access to monitored data and complex control capabilities.

In Chapter 7 the experimental apparatus to demonstrate quantum error correction schemes on trapped ions is

detailed, including in particular, the design of a new adjustable atomic oven and an overall development on

automating the ion trapping device.

In Chapter 8 the early operations and measurements of the experiment, oriented toward the physical shuttling

architecture, are presented. The experimental implementation of several shuttling protocols is described, no-

tably ion shuttling through an X-junction and splitting and merging operations on two ion crystals, outlining

some challenges and presenting an architecture toward larger devices and larger shuttling sequence operations

required for quantum circuits.

9.2 Future work

The most essential component missing in the experiment as already described in Chapter 8 is the ability to

generate a magnetic field gradient that is required to implement entangling gates. A new generation of micro-

fabricated X-junction surface traps with buried copper channels that can generate the magnetic field gradients,

are in development, with a first prototype being characterized in the research group and displayed in Figure 9.1.

The steps toward implementing a fully working quantum computer prototype are as follow:

1. The new chip needs to be characterized. We will measure the maximum current that can be applied so

that the cooling power is sufficient to prevent run-away effects from thermal dissipation. If run-away

occurs below the desired current level, a similar study can be run for shortly applied current, as high

gradients are only required during the gate time. Crosstalk measurements between the copper channels

and the DC and RF electrodes will then be conducted to confirm the independence between the trapping

layer and the gradient layer of the chip.

2. The chip will be inserted in the vacuum system along with the additional current connectors for the



9.2. Future work 197

Figure 9.1: Surface chip with buried current wires. The existing PCB from Chapter 7 are reused. The picture
displays initial characterizations of a buried current wire by connecting clamps (corner of the chip) as input and
output of the current path.

copper channels, and baked as mentioned in 7. Initial trapping of 174Yb+ will be conducted similarly to

the current apparatus, to confirm the working state of the optic setup, the imaging setup and the shuttling

architecture.

3. 171Yb+ will be trapped following the same protocol as described in [157], using small currents applied to

the buried copper wire to generate the required magnetic field.This step is followed by the optimization

of the fluorescence, and the installation of the AWG for driving the external fields for quantum control.

4. Quantum control is at this stage implemented, starting by the calibration described in Chapter 3, and

followed by quantum gates. The current applied to the copper channel will be gradually increased to

characterize the magnetic field gradient and the qubit stability at these gradients.

5. Once the quantum control toolbox is characterized, heating and phase errors due to shuttling protocols

can be finely measured and minimized. From that stage onwards, quantum circuits involving quantum



198 Chapter 9. Conclusion

gates and shuttling operations studied in Chapter 5 can be implemented, and initial studies of QEC codes

described in Chapter 4 can be conducted.

Several engineering aspects were considered in this thesis, demonstrating the shift of quantum computing from

an academic curiosity towards a robust industrial technology. The heavy use of frameworks, calibrations and

automation tools, as outlined on several occasions, is indispensable to facilitate and speed up common experi-

ments in order to build up quantum control of trapped ions into a fully functional quantum computer. Among the

subjects approached in this thesis, some need further investigation to bring further improvement to a quantum

computing system:

• The QCCD syntax introduced in Chapter 5 needs to be tested experimentally, and extended such as to in-

corporate parallel instructions and conditional logic. ProjectQ and the PulseSequence should be similarly

extended to reach capabilities similar to the OpenQASM 3.0 syntax [195]. The routing algorithm used to

demonstrate the use of the QCCD syntax was not efficient and will require a dedicated investigation.

• The quantum code framework used in this does not yet fully integrate quantum error correction. The

challenges to integrate concatenated logical operations have been shortly described in Section 5.6.1 and

will require additional software engineering.



Bibliography

[1] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger,

“Blueprint for a microwave trapped ion quantum computer,” Science Advances, vol. 3, no. 2,

p. e1601540, 2017.

[2] A. E. Webb, Robust quantum logic for trapped ion quantum computers. PhD thesis, University of Sussex,

2018.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary

Edition. USA: Cambridge University Press, 10th ed., 2011.

[4] M. Mttnen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quantum circuits for general multiqubit

gates,” Physical Review Letters, vol. 93, p. 130502, Sep 2004.

[5] D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik,

vol. 48, no. 9-11, pp. 771–783, 2000.

[6] R. Blume-Kohout, J. Gamble, E. Nielsen, J. Mizrahi, J. Sterk, and P. Maunz, “Robust, self-consistent,

closed-form tomography of quantum logic gates on a trapped ion qubit,” arXiv:1310.4492, 2013.

[7] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers

using randomized model circuits,” Physical Review A, vol. 100, p. 032328, Sep 2019.

[8] S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy experiments,” in

Proceedings of the 32nd Computational Complexity Conference, CCC ’17, (Dagstuhl, DEU), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[9] “System configuration.” https://quantum-computing.ibm.com/docs/manage/systems/configuration. Ac-

cessed: 2021-03-16.

199



200 BIBLIOGRAPHY

[10] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics,

vol. 21, pp. 467–488, Jun 1982.

[11] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no. 5278, pp. 1073–1078, 1996.

[12] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Simulating physical phenomena by

quantum networks,” Physical Review A, vol. 65, p. 042323, Apr 2002.

[13] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, “Simulation of electronic structure Hamiltonians

using quantum computers,” Molecular Physics, vol. 109, pp. 735–750, Mar 2011.

[14] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, “Gate-count estimates for performing

quantum chemistry on small quantum computers,” Physical Review A, vol. 90, p. 022305, Aug 2014.

[15] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L.

O’Brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications,

vol. 5, p. 4213, Jul 2014.

[16] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An adaptive variational algorithm for

exact molecular simulations on a quantum computer,” Nature Communications, vol. 10, p. 3007, Jul

2019.

[17] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta,

“Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Na-

ture, vol. 549, pp. 242–246, Sep 2017.

[18] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love,

R. Babbush, and et al., “Quantum chemistry calculations on a trapped-ion quantum simulator,” Physical

Review X, vol. 8, p. 031022, Jul 2018.

[19] M. E. Briggs, An introduction to the general number field sieve. PhD thesis, Virginia Tech, 1998.

[20] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer,” SIAM Journal on Computing, vol. 26, pp. 1484–1509, Oct 1997.

[21] I. L. Markov and M. Saeedi, “Constant-optimized quantum circuits for modular multiplication and ex-

ponentiation,” Quantum Info. Comput., vol. 12, pp. 361–394, May 2012.

[22] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key

cryptosystems,” Commun. ACM, vol. 21, pp. 120–126, Feb 1978.



BIBLIOGRAPHY 201

[23] F. Glover, G. Kochenberger, and Y. Du, “Quantum Bridge Analytics I: a tutorial on formulating and

using QUBO models,” 4OR, vol. 17, pp. 335–371, Dec 2019.

[24] A. Gilliam, M. Pistoia, and C. Gonciulea, “Canonical construction of quantum oracles,”

arXiv:2006.10656, 2020.

[25] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug 2018.

[26] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum com-

puter,” Nature, vol. 417, pp. 709–711, Jun 2002.

[27] F. Mintert and C. Wunderlich, “Ion-trap quantum logic using long-wavelength radiation,” Physical Re-

view Letters, vol. 87, p. 257904, Nov 2001.

[28] F. M. Penning, “Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen

magnetfeld,” Physica, vol. 3, no. 9, pp. 873–894, 1936.

[29] H. Dehmelt, “Radiofrequency spectroscopy of stored ions I: Storage,” vol. 3 of Advances in Atomic and

Molecular Physics, pp. 53–72, Academic Press, 1968.

[30] S. Jain, J. Alonso, M. Grau, and J. P. Home, “Scalable arrays of micro-Penning traps for quantum

computing and simulation,” Physical Review X, vol. 10, p. 031027, Aug 2020.

[31] W. Paul and H. Steinwedel, “Ein neues massenspektrometer ohne magnetfeld,” Zeitschrift Natur-

forschung Teil A, vol. 8, p. 448, Jul 1953.

[32] E. Mathieu, “Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique,” Journal de

Mathématiques Pures et Appliquées, vol. 13, pp. 137–203, 1868.

[33] R. F. Wuerker, H. Shelton, and R. V. Langmuir, “Electrodynamic containment of charged particles,”

Journal of Applied Physics, vol. 30, no. 3, pp. 342–349, 1959.

[34] I. Kovacic, R. Rand, and S. Sah, “Mathieu’s equation and its generalizations: Overview of stability charts

and their features,” Applied Mechanics Reviews, vol. 70, 2018. 020802.

[35] D. F. V. James, “Quantum dynamics of cold trapped ions with application to quantum computation,”

Applied Physics B, vol. 66, pp. 181–190, Feb 1998.

[36] I. Pogorelov, T. Feldker, C. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth,

V. Negnevitsky, M. Stadler, et al., “Compact ion-trap quantum computing demonstrator,” PRX Quantum,

vol. 2, no. 2, p. 020343, 2021.



202 BIBLIOGRAPHY

[37] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos,

R. Blatt, and B. Lanyon, “Observation of entangled states of a fully controlled 20-qubit system,” Physical

Review X, vol. 8, p. 021012, Apr 2018.

[38] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti,

M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf,

P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Mon-

roe, and J. Kim, “Benchmarking an 11-qubit quantum computer,” Nature Communications, vol. 10, no. 1,

p. 5464, 2019.

[39] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, “Demonstration of a

small programmable quantum computer with atomic qubits,” Nature, vol. 536, pp. 63–66, Aug 2016.

[40] L. Feng, W. L. Tan, A. De, A. Menon, A. Chu, G. Pagano, and C. Monroe, “Efficient ground-state

cooling of large trapped-ion chains with an electromagnetically-induced-transparency tripod scheme,”

Physical Review Letters, vol. 125, p. 053001, Jul 2020.

[41] Y. Wu, Quantum Computation in Large Ion Crystals. PhD thesis, University of Michigan, 2019.

[42] C. J. Trout, M. Li, M. Gutirrez, Y. Wu, S.-T. Wang, L. Duan, and K. R. Brown, “Simulating the perfor-

mance of a distance-3 surface code in a linear ion trap,” New Journal of Physics, vol. 20, p. 043038, Apr

2018.

[43] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and

C. Monroe, “Observation of a many-body dynamical phase transition with a 53-qubit quantum simula-

tor,” Nature, vol. 551, pp. 601–604, Nov 2017.

[44] D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a

semiconductor chip,” Nature Physics, vol. 2, p. 36, Jan 2006.

[45] S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B.

Blakestad, R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J.

Wineland, “Microfabricated surface-electrode ion trap for scalable quantum information processing,”

Physical Review Letters, vol. 96, p. 253003, Jun 2006.

[46] M. G. House, “Analytic model for electrostatic fields in surface-electrode ion traps,” Physical Review A,

vol. 78, p. 033402, Sep 2008.



BIBLIOGRAPHY 203

[47] J. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland,

“Surface-electrode architecture for ion-trap quantum information processing,” Quantum Info. Comput.,

vol. 5, pp. 419–439, Sep 2005.

[48] F. A. Shaikh and A. Ozakin, “Stability analysis of ion motion in asymmetric planar ion traps,” Journal

of Applied Physics, vol. 112, p. 074904, Oct 2012.

[49] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Physical Review Letters,

vol. 74, pp. 4091–4094, May 1995.

[50] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J.

Wineland, “Deterministic entanglement of two trapped ions,” Physical Review Letters, vol. 81, pp. 3631–

3634, Oct 1998.

[51] K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Physical Review Letters,

vol. 82, pp. 1835–1838, Mar 1999.

[52] A. Sørensen and K. Mølmer, “Entanglement and quantum computation with ions in thermal motion,”

Physical Review A, vol. 62, p. 022311, Jul 2000.

[53] G. J. Milburn, “Simulating nonlinear spin models in an ion trap,” arXiv:quant-ph/9908037, 1999.

[54] A. H. Nizamani, J. J. McLoughlin, and W. K. Hensinger, “Doppler-free yb spectroscopy with the fluo-

rescence spot technique,” Physical Review A, vol. 82, p. 043408, Oct 2010.

[55] J. Randall, High-Fidelity Entanglement of Trapped Ions using Long-Wavelength Radiation. PhD thesis,

Imperial College London, 2016.

[56] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, “Manip-

ulation and detection of a trapped yb+ hyperfine qubit,” Physical Review A, vol. 76, p. 052314, Nov

2007.

[57] P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim,

“Single ion qubit with estimated coherence time exceeding one hour,” Nature Communications, vol. 12,

p. 233, Jan 2021.

[58] D. Reagor, Yan Fan, C. Mombourquette, Quanxi Jia, and L. Stolarczyk, “A high-temperature super-

conducting receiver for low-frequency radio waves,” IEEE Transactions on Applied Superconductivity,

vol. 7, no. 4, pp. 3845–3849, 1997.



204 BIBLIOGRAPHY

[59] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vi-

brational levels by stimulated raman scattering with partially overlapping laser fields. a new concept and

experimental results,” The Journal of Chemical Physics, vol. 92, no. 9, pp. 5363–5376, 1990.

[60] J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, “Generation

of high-fidelity quantum control methods for multilevel systems,” Physical Review A, vol. 98, p. 043414,

Oct 2018.

[61] S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced nmr experi-

ments,” Journal of Magnetic Resonance, Series A, vol. 109, no. 2, pp. 221–231, 1994.

[62] J. H. Wesenberg, R. J. Epstein, D. Leibfried, R. B. Blakestad, J. Britton, J. P. Home, W. M. Itano,

J. D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Fluorescence during Doppler

cooling of a single trapped atom,” Physical Review A, vol. 76, p. 053416, Nov 2007.

[63] A. Seif, K. A. Landsman, N. M. Linke, C. Figgatt, C. Monroe, and M. Hafezi, “Machine learning assisted

readout of trapped-ion qubits,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 51,

p. 174006, Aug 2018.

[64] R. Islam, W. C. Campbell, T. Choi, S. M. Clark, C. W. S. Conover, S. Debnath, E. E. Edwards, B. Fields,

D. Hayes, D. Hucul, I. V. Inlek, K. G. Johnson, S. Korenblit, A. Lee, K. W. Lee, T. A. Manning, D. N.

Matsukevich, J. Mizrahi, Q. Quraishi, C. Senko, J. Smith, and C. Monroe, “Beat note stabilization of

mode-locked lasers for quantum information processing,” Optics Letters, vol. 39, pp. 3238–3241, Jun

2014.

[65] C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland,

“Microwave quantum logic gates for trapped ions,” Nature, vol. 476, pp. 181–184, Aug 2011.

[66] S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E. Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker,

and W. K. Hensinger, “Trapped-ion quantum logic with global radiation fields,” Physical Review Letters,

vol. 117, p. 220501, Nov 2016.

[67] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of

motion,” Physical Review Letters, vol. 62, pp. 403–406, Jan 1989.

[68] F. Schmidt-Kaler, C. Roos, H. C. Ngerl, H. Rohde, S. Gulde, A. Mundt, M. Lederbauer, G. Thalham-

mer, T. Zeiger, P. Barton, and et al., “Ground state cooling, quantum state engineering and study of

decoherence of ions in Paul traps,” Journal of Modern Optics, vol. 47, pp. 2573–2582, Nov 2000.



BIBLIOGRAPHY 205

[69] S. Weidt, J. Randall, S. Webster, E. Standing, A. Rodriguez, A. Webb, B. Lekitsch, and W. Hensinger,

“Ground-state cooling of a trapped ion using long-wavelength radiation,” Physical Review Letters,

vol. 115, Jun 2015.

[70] Y. Wan, R. Jrdens, S. D. Erickson, J. J. Wu, R. Bowler, T. R. Tan, P.-Y. Hou, D. J. Wineland, A. C. Wilson,

and D. Leibfried, “Ion transport and reordering in a 2d trap array,” Advanced Quantum Technologies,

vol. 3, no. 11, p. 2000028, 2020.

[71] Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A.

Sackett, C. S. Wood, W. M. Itano, and et al., “Heating of trapped ions from the quantum ground state,”

Physical Review A, vol. 61, p. 063418, May 2000.

[72] H. A. Frst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero, T. Calarco, F. Schmidt-Kaler,

K. Singer, and C. P. Koch, “Controlling the transport of an ion: classical and quantum mechanical

solutions,” New Journal of Physics, vol. 16, p. 075007, Jul 2014.

[73] E. D. Standing, Design and fabrication of high magnetic eld gradients towards fault tolerant two-qubit

gates with trapped ions using long-wavelength radiation. PhD thesis, University of Sussex, 2016.

[74] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-

Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, “Demonstration of the trapped-ion

quantum ccd computer architecture,” Nature, vol. 592, pp. 209–213, Apr 2021.

[75] Z. D. Romaszko, S. Hong, M. Siegele, R. K. Puddy, F. R. Lebrun-Gallagher, S. Weidt, and W. K.

Hensinger, “Engineering of microfabricated ion traps and integration of advanced on-chip features,”

Nature Reviews Physics, vol. 2, pp. 285–299, Jun 2020.

[76] C. D. B. Bentley, H. Ball, M. J. Biercuk, A. R. R. Carvalho, M. R. Hush, and H. J. Slatyer, “Numeric

optimization for configurable, parallel, error-robust entangling gates in large ion registers,” Advanced

Quantum Technologies, vol. 3, no. 11, p. 2000044, 2020.

[77] T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk, “Arbitrary quantum control of qubits in the presence

of universal noise,” New Journal of Physics, vol. 15, no. 9, p. 095004, 2013.

[78] E. L. Hahn, “Spin echoes,” Physical Review, vol. 80, pp. 580–594, Nov 1950.

[79] L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Physical

Review A, vol. 58, pp. 2733–2744, Oct 1998.



206 BIBLIOGRAPHY

[80] D. Hayes, S. M. Clark, S. Debnath, D. Hucul, I. V. Inlek, K. W. Lee, Q. Quraishi, and C. Monroe, “Co-

herent error suppression in multiqubit entangling gates,” Physical Review Letters, vol. 109, p. 020503,

Jul 2012.

[81] T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira, N. Akerman, A. Retzker, and R. Ozeri, “Fast

dynamical decoupling of the mølmer-sørensen entangling gate,” Physical Review Letters, vol. 119,

p. 220505, Nov 2017.

[82] I. Cohen, S. Weidt, W. K. Hensinger, and A. Retzker, “Multi-qubit gate with trapped ions for microwave

and laser-based implementation,” New Journal of Physics, vol. 17, p. 043008, Apr 2015.

[83] F. Haddadfarshi and F. Mintert, “High fidelity quantum gates of trapped ions in the presence of motional

heating,” New Journal of Physics, vol. 18, p. 123007, Dec 2016.

[84] S. Collingbourne, “Entangling Gates For Quantum Computation,” Master’s thesis, Imperial College Lon-

don, UK, 2017.

[85] J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein,

S. Weidt, and W. K. Hensinger, “Versatile ytterbium ion trap experiment for operation of scalable ion-

trap chips with motional heating and transition-frequency measurements,” Physical Review A, vol. 83,

p. 013406, Jan 2011.

[86] A. M. Lawrence, High-delity quantum logic on trapped ions with microwave radiation. PhD thesis,

Imperial College London, 2019.

[87] A. E. Webb, S. C. Webster, S. Collingbourne, D. Bretaud, A. M. Lawrence, S. Weidt, F. Mintert,

and W. K. Hensinger, “Resilient entangling gates for trapped ions,” Physical Review Letters, vol. 121,

p. 180501, Nov 2018.

[88] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, and R. Ozeri, “Robust entanglement gates for trapped-

ion qubits,” Physical Review Letters, vol. 121, p. 180502, Nov 2018.

[89] J. Lishman and F. Mintert, “Trapped-ion entangling gates robust against qubit frequency errors,” Physical

Review Research, vol. 2, p. 033117, Jul 2020.

[90] I. Arrazola, M. Plenio, E. Solano, and J. Casanova, “Hybrid microwave-radiation patterns for high-

fidelity quantum gates with trapped ions,” Physical Review Applied, vol. 13, p. 024068, Feb 2020.



BIBLIOGRAPHY 207

[91] J. Kelly, P. O’Malley, M. Neeley, H. Neven, and J. M. Martinis, “Physical qubit calibration on a directed

acyclic graph,” arXiv:1803.03226, 2018.

[92] S. Beauregard, “Circuit for shor’s algorithm using 2n+ 3 qubits,” arXiv:quant-ph/0205095, 2002.

[93] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, pp. 802–803,

Oct 1982.

[94] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: constructions, bounds

and performance,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences, vol. 465, no. 2105, pp. 1645–1672, 2009.

[95] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of

Technology, 1997.

[96] J. Preskill, “Fault-tolerant quantum computation,” Introduction to Quantum Computation and Informa-

tion, pp. 213–269, Oct 1998.

[97] S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Reports on Progress

in Physics, vol. 76, p. 076001, Jun 2013.

[98] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical

large-scale quantum computation,” Physical Review A, vol. 86, p. 032324, Sep 2012.

[99] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, “Towards practical classical processing for the

surface code,” Physical Review Letters, vol. 108, p. 180501, May 2012.

[100] S. Bravyi, M. Suchara, and A. Vargo, “Efficient algorithms for maximum likelihood decoding in the

surface code,” Physical Review A, vol. 90, p. 032326, Sep 2014.

[101] S. Varsamopoulos, K. Bertels, and C. G. Almudever, “Decoding surface code with a distributed neural

networkbased decoder,” Quantum Machine Intelligence, vol. 2, pp. 1–12, Mar 2020.

[102] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R. Wootton, “Poking holes and cutting corners to

achieve clifford gates with the surface code,” Physical Review X, vol. 7, p. 021029, May 2017.

[103] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code quantum computing by lattice

surgery,” New Journal of Physics, vol. 14, p. 123011, Dec 2012.



208 BIBLIOGRAPHY

[104] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates and noisy ancillas,”

Physical Review A, vol. 71, p. 022316, Feb 2005.

[105] J. O’Gorman and E. T. Campbell, “Quantum computation with realistic magic-state factories,” Physical

Review A, vol. 95, p. 032338, Mar 2017.

[106] H. Bombin and M. A. Martin-Delgado, “Topological quantum distillation,” Physical Review Letters,

vol. 97, p. 180501, Oct 2006.

[107] A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant quantum computing with color codes,”

arXiv:1108.5738, 2011.

[108] M. Gutiérrez, M. Müller, and A. Bermúdez, “Transversality and lattice surgery: Exploring realistic

routes toward coupled logical qubits with trapped-ion quantum processors,” Physical Review A, vol. 99,

p. 022330, Feb 2019.

[109] D. Nigg, M. Muller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and

R. Blatt, “Quantum computations on a topologically encoded qubit,” Science, vol. 345, pp. 302–305, Jun

2014.

[110] M. Li, M. Gutiérrez, S. E. David, A. Hernandez, and K. R. Brown, “Fault tolerance with bare ancillary

qubits for a [[7,1,3]] code,” Physical Review A, vol. 96, p. 032341, Sep 2017.

[111] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G.

Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller,

“Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation,” Physical

Review X, vol. 7, p. 041061, Dec 2017.

[112] Y. Tomita and K. M. Svore, “Low-distance surface codes under realistic quantum noise,” Physical Review

A, vol. 90, p. 062320, Dec 2014.

[113] J. R. Wootton, A. Peter, J. R. Winkler, and D. Loss, “Proposal for a minimal surface code experiment,”

Physical Review A, vol. 96, p. 032338, Sep 2017.

[114] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Camp-

bell, Y. Chen, and et al., “State preservation by repetitive error detection in a superconducting quantum

circuit,” Nature, vol. 519, pp. 66–69, Mar 2015.



BIBLIOGRAPHY 209

[115] M. Takita, A. Crcoles, E. Magesan, B. Abdo, M. Brink, A. Cross, J. M. Chow, and J. M. Gambetta,

“Demonstration of weight-four parity measurements in the surface code architecture,” Physical Review

Letters, vol. 117, p. 210505, Nov 2016.

[116] A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, V. Negnevitsky, M. Ring-

bauer, P. Schindler, H. J. Briegel, R. Blatt, N. Friis, and T. Monz, “Entangling logical qubits with lattice

surgery,” Nature, vol. 589, pp. 220–224, Jan 2021.

[117] D. P. DiVincenzo and P. Aliferis, “Effective fault-tolerant quantum computation with slow measure-

ments,” Physical Review Letters, vol. 98, p. 020501, Jan 2007.

[118] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software methodology for compiling quantum

programs,” Quantum Science and Technology, vol. 3, p. 020501, Feb 2018.

[119] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages and compiler design for realistic

quantum hardware,” Nature, vol. 549, pp. 180–187, Sep 2017.

[120] R. LaRose, “Overview and Comparison of Gate Level Quantum Software Platforms,” Quantum, vol. 3,

p. 130, Mar 2019.

[121] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, “Scaffcc:

Scalable compilation and analysis of quantum programs,” Parallel Computing, vol. 45, p. 217, Jun 2015.

[122] S. Liu, X. Wang, L. Zhou, J. Guan, Y. Li, Y. He, R. Duan, and M. Ying, “q|si〉: a quantum programming

environment,” SCIENTIA SINICA Informationis, vol. 47, pp. 1300–1315, Oct 2017.

[123] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software framework for quantum

computing,” Quantum, vol. 2, p. 49, Jan 2018.

[124] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-

Hernndez, J. Carballo-Franquis, A. Chen, C.-F. Chen, J. M. Chow, A. D. Crcoles-Gonzales, A. J.

Cross, A. Cross, J. Cruz-Benito, C. Culver, S. D. L. P. Gonzlez, E. D. L. Torre, D. Ding, E. Du-

mitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago,

J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, ukasz Herok, H. Horii,

S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu,

Y. Luh, Y. Maeng, M. Marques, F. J. Martn-Fernndez, D. T. McClure, D. McKay, S. Meesala, A. Mez-

zacapo, N. Moll, D. M. Rodrguez, G. Nannicini, P. Nation, P. Ollitrault, L. J. O’Riordan, H. Paik,

J. Prez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu,



210 BIBLIOGRAPHY

N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y. Siraichi, S. Sivarajah, J. A. Smolin,

M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner,

D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Wrner, I. Y.

Akhalwaya, and C. Zoufal, “Qiskit: An Open-source Framework for Quantum Computing,” Jan 2019.

https://doi.org/10.5281/zenodo.2562111.

[125] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum instruction set architecture,”

arXiv:1608.03355, 2016.

[126] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open quantum assembly language,”

arXiv:1707.03429, 2017.

[127] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, and K. Bertels, “cqasm

v1.0: Towards a common quantum assembly language,” arXiv:1805.09607, 2018.

[128] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva, and R. S. Smith, “A quantum-

classical cloud platform optimized for variational hybrid algorithms,” Quantum Science and Technology,

vol. 5, p. 024003, Apr 2020.

[129] A. J. Landahl, D. Lobser, B. Morrison, K. M. Rudinger, A. Russo, J. W. Van Der Wall, and P. L. W.

Maunz, “Jaqal the quantum assembly language for qscout,” arXiv:2003.09382, 2020.

[130] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond bells theorem,” Bells Theorem,

Quantum Theory and Conceptions of the Universe, pp. 69–72, 1989.

[131] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket〉: a retargetable

compiler for nisq devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[132] M. Swaddle, L. Noakes, H. Smallbone, L. Salter, and J. Wang, “Generating three-qubit quantum circuits

with neural networks,” Physics Letters A, vol. 381, no. 39, pp. 3391–3395, 2017.

[133] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and P. J. Coles, “Quantum-assisted

quantum compiling,” Quantum, vol. 3, p. 140, May 2019.

[134] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of crosstalk on noisy

intermediate-scale quantum computers,” Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 1001–1016, Mar 2020.



BIBLIOGRAPHY 211

[135] D. Maslov, “Basic circuit compilation techniques for an ion-trap quantum machine,” New Journal of

Physics, vol. 19, p. 023035, Feb 2017.

[136] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated optimization of large quantum

circuits with continuous parameters,” npj Quantum Information, vol. 4, no. 1, pp. 1–12, 2018.

[137] R. S. Smith, E. C. Peterson, M. G. Skilbeck, and E. J. Davis, “An open-source, industrial-strength opti-

mizing compiler for quantum programs,” Quantum Science and Technology, vol. 5, p. 044001, Jul 2020.

[138] G. G. Guerreschi, “Scheduler of quantum circuits based on dynamical pattern improvement and its ap-

plication to hardware design,” arXiv:1912.00035, 2019.

[139] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint, M. F. Brandl, V. Neben-

dahl, C. F. Roos, and et al., “A quantum information processor with trapped ions,” New Journal of

Physics, vol. 15, p. 123012, Dec 2013.

[140] M. Webber, S. Herbert, S. Weidt, and W. K. Hensinger, “Efficient qubit routing for a globally connected

trapped ion quantum computer,” Advanced Quantum Technologies, vol. 3, p. 2000027, Jul 2020.

[141] S. Balensiefer, L. Kregor-Stickles, and M. Oskin, “An evaluation framework and instruction set ar-

chitecture for ion-trap based quantum micro-architectures,” SIGARCH Comput. Archit. News, vol. 33,

p. 186196, May 2005.

[142] K. E. Stevens, J. M. Amini, S. C. Doret, G. Mohler, and A. W. Volin, Curtisand Harter, “Automating

quantum experiment control,” Quantum Information Processing, vol. 16, p. 56, Jan 2017.

[143] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, Architecting Noisy Intermediate-Scale

Trapped Ion Quantum Computers, p. 529542. IEEE Press, 2020.

[144] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen, J. M. Chow, A. D. Crcoles,

D. Egger, S. Filipp, J. Gomez, M. Hush, A. Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks, E. Win-

ston, C. J. Wood, J. Wootton, and J. M. Gambetta, “Qiskit backend specifications for openqasm and

openpulse experiments,” arXiv:1809.03452, 2018.

[145] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Optimized quantum compilation

for near-term algorithms with openpulse,” in 2020 53rd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), (Los Alamitos, CA, USA), pp. 186–200, IEEE Computer Society, Oct

2020.



212 BIBLIOGRAPHY

[146] H. Ball, M. Biercuk, A. Carvalho, J. Chen, M. R. Hush, L. A. de Castro, L. Li, P. J. Liebermann,

H. Slatyer, C. Edmunds, V. Frey, C. Hempel, and A. Milne, “Software tools for quantum control: Im-

proving quantum computer performance through noise and error suppression,” Quantum Science and

Technology, vol. 6, no. 4, p. 044011, 2021.

[147] D. Litinski, “A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery,” Quan-

tum, vol. 3, p. 128, Mar 2019.

[148] F. R. Lebrun-Gallagher, N. Johnson, M. Akhtar, S. Weidt, D. Bretaud, S. J. Hile, A. Owens, and W. K.

Hensinger, “A scalable helium gas cooling system for trapped-ion applications,” arXiv:2106.07580,

2021.

[149] R. Lebrun-Ricalens, “Scalable closed cycle helium cryostat and in-vacuum electronics for fast ion trans-

port,” Master’s thesis, University of Sussex, UK, 2016.

[150] “Platinum.” https://www.lakeshore.com/products/categories/overview/temperature-products/cryogenic-

temperature-sensors/platinum. Accessed: 2021-01-13.

[151] “Quantum takes flight: Moving from laboratory demonstrations to building systems.”

https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/. Accessed: 2020-04-06.

[152] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.

Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,

E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,

M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,

K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark,

E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,

M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt,

C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung,

M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven,

and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature,

vol. 574, no. 7779, pp. 505–510, 2019.

[153] “Aspen-7.” https://www.rigetti.com/. Accessed: 2020-04-06.

[154] R. Calder and G. Lewin, “Reduction of stainless-steel outgassing in ultra-high vacuum,” British Journal

of Applied Physics, vol. 18, pp. 1459–1472, Oct 1967.



BIBLIOGRAPHY 213

[155] D. Coyne et al., “LIGO Vacuum Compatible Materials List,” tech. rep., LIGO Scientific Collaboration,

Jun 2014.

[156] A. Grounds, Cryogenic technologies for scalable trapped ion quantum computing. PhD thesis, Univer-

sity of Sussex, 2018.

[157] D. F. Murgia, Microchip ion traps with high magnetic field gradients for microwave quantum logic. PhD

thesis, Imperial College London, 2016.

[158] L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe, “Scaling and sup-

pression of anomalous heating in ion traps,” Physical Review Letters, vol. 97, p. 103007, Sep 2006.

[159] P. B. Antohi, D. Schuster, G. M. Akselrod, J. Labaziewicz, Y. Ge, Z. Lin, W. S. Bakr, and I. L. Chuang,

“Cryogenic ion trapping systems with surface-electrode traps,” Review of Scientific Instruments, vol. 80,

no. 1, p. 013103, 2009.

[160] G. Pagano, P. W. Hess, H. B. Kaplan, W. L. Tan, P. Richerme, P. Becker, A. Kyprianidis, J. Zhang,

E. Birckelbaw, M. R. Hernandez, Y. Wu, and C. Monroe, “Cryogenic trapped-ion system for large scale

quantum simulation,” Quantum Science and Technology, vol. 4, p. 014004, Oct 2018.

[161] J. W. Ekin, Experimental techniques for low-temperature measurements: cryostat design, material prop-

erties, and superconductor critical-current testing. Oxford University Press, 2015.

[162] S. Bourdeauducq, whitequark, R. Jördens, Y. Sionneau, enjoy digital, cjbe, D. Nadlinger, har-

tytp, JBoulder, D. Slichter, Drew, mntng, r srinivas, apatura iris, S. Mackenzie, Z. Smith,

P. K, M. Weber, kemstevens, F. Held, and D. Leibrandt, “m-labs/artiq: 4.0,” Nov 2018.

https://doi.org/10.5281/zenodo.1492176.

[163] T. H. group, “Hdf5.” https://portal.hdfgroup.org/display/HDF5/HDF5. Accessed: 2020-02-28.

[164] J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger, “Efficient preparation and detection of

microwave dressed-state qubits and qutrits with trapped ions,” Applied Physics B, vol. 107, p. 921, Jun

2012.

[165] D. L. Moehring, C. Highstrete, D. Stick, K. M. Fortier, R. Haltli, C. Tigges, and M. G. Blain, “De-

sign, fabrication and experimental demonstration of junction surface ion traps,” New Journal of Physics,

vol. 13, p. 075018, Jul 2011.



214 BIBLIOGRAPHY

[166] K. J. Ross and B. Sonntag, “High temperature metal atom beam sources,” Review of Scientific Instru-

ments, vol. 66, no. 9, pp. 4409–4433, 1995.

[167] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapour pressure equations for the metallic elements:

2982500k,” Canadian Metallurgical Quarterly, vol. 23, no. 3, pp. 309–313, 1984.

[168] T. G. Ballance, J. F. Goodwin, B. Nichol, L. J. Stephenson, C. J. Ballance, and D. M. Lucas, “A short

response time atomic source for trapped ion experiments,” Review of Scientific Instruments, vol. 89,

no. 5, p. 053102, 2018.

[169] T. Navickas, Towards high-delity microwave driven multi-qubit gates on microfabricated surface ion

traps. PhD thesis, University of Sussex, 2017.

[170] N. A. Riza, “Scanning heterodyne optical interferometers,” Review of Scientific Instruments, vol. 67,

no. 7, pp. 2466–2476, 1996.

[171] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modu-

lator system,” Review of Scientific Instruments, vol. 76, no. 6, p. 063112, 2005.

[172] S. Ejtemaee, R. Thomas, and P. C. Haljan, “Optimization of yb+ fluorescence and hyperfine-qubit de-

tection,” Physical Review A, vol. 82, p. 063419, Dec 2010.

[173] J. D. Siverns, Yb ion trap experimental set-up and two-dimensional ion trap surface array design towards

analogue quantum simulations. PhD thesis, University of Sussex, 2011.

[174] R. Noek, G. Vrijsen, D. Gaultney, E. Mount, T. Kim, P. Maunz, and J. Kim, “High speed, high fidelity

detection of an atomic hyperfine qubit,” Optics Letters, vol. 38, pp. 4735–4738, Nov 2013.

[175] M. Acton, K.-A. Brickman, P. C. Haljan, P. J. Lee, L. Deslauriers, and C. Monroe, “Near-perfect simul-

taneous measurement of a qubit register,” Quantum Info. Comput., vol. 6, p. 465482, Sep 2006.

[176] A. H. Burrell, High Fidelity Readout of Trapped Ion Qubits. PhD thesis, Exeter College, Oxford, 2010.

[177] R. N. Tubbs, Lucky Exposures: Diffraction limited astronomical imaging through the atmosphere. PhD

thesis, Cambridge University, 2003.

[178] A. H. Burrell, D. J. Szwer, S. C. Webster, and D. M. Lucas, “Scalable simultaneous multiqubit readout

with 99.99% single-shot fidelity,” Physical Review A, vol. 81, p. 040302, Apr 2010.



BIBLIOGRAPHY 215

[179] S. Weidt, Towards microwave based ion trap quantum technology. PhD thesis, University of Sussex,

2013.

[180] C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM,

vol. 18, pp. 120–122, Feb 1975.

[181] D. T. C. Allcock, T. P. Harty, H. A. Janacek, N. M. Linke, C. J. Ballance, A. M. Steane, D. M. Lucas,

R. L. Jarecki, S. D. Habermehl, M. G. Blain, D. Stick, and D. L. Moehring, “Heating rate and electrode

charging measurements in a scalable, microfabricated, surface-electrode ion trap,” Applied Physics B,

vol. 107, no. 4, pp. 913–919, 2012.

[182] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Minimization of ion

micromotion in a Paul trap,” Journal of Applied Physics, vol. 83, no. 10, pp. 5025–5033, 1998.

[183] J. Keller, H. Partner, T. Burgermeister, and T. Mehlstäubler, “Precise determination of micromotion for

trapped-ion optical clocks,” Journal of Applied Physics, vol. 118, no. 10, p. 104501, 2015.

[184] S. C. Doret, J. M. Amini, K. Wright, C. Volin, T. Killian, A. Ozakin, D. Denison, H. Hayden, C.-

S. Pai, R. E. Slusher, and A. W. Harter, “Controlling trapping potentials and stray electric fields in a

microfabricated ion trap through design and compensation,” New Journal of Physics, vol. 14, p. 073012,

Jul 2012.

[185] A. Härter, A. Krükow, A. Brunner, and J. Hecker Denschlag, “Minimization of ion micromotion using

ultracold atomic probes,” Applied Physics Letters, vol. 102, no. 22, p. 221115, 2013.

[186] U. Tanaka, K. Masuda, Y. Akimoto, K. Koda, Y. Ibaraki, and S. Urabe, “Micromotion compensation in

a surface electrode trap by parametric excitation of trapped ions,” Applied Physics B, vol. 107, pp. 907–

912, Jun 2012.

[187] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, and

J. Rabchuk, “T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation,”

Applied Physics Letters, vol. 88, no. 3, p. 034101, 2006.

[188] R. B. Blakestad, C. Ospelkaus, A. P. VanDevender, J. M. Amini, J. Britton, D. Leibfried, and D. J.

Wineland, “High-fidelity transport of trapped-ion qubits through an X-junction trap array,” Physical

Review Letters, vol. 102, p. 153002, Apr 2009.



216 BIBLIOGRAPHY

[189] C. Decaroli, R. Matt, R. Oswald, C. J. Axline, M. Ernzer, J. Flannery, S. Ragg, and J. P. Home, “Design,

fabrication and characterisation of a micro-fabricated stacked-wafer segmented ion trap with two x-

junctions.,” Quantum Science and Technology, vol. 6, p. 044001, Jul 2021.

[190] K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. C. Doret, H. Hayden, C.-S. Pai, D. W. Landgren,

D. Denison, T. Killian, R. E. Slusher, and A. W. Harter, “Reliable transport through a microfabricated x

-junction surface-electrode ion trap,” New Journal of Physics, vol. 15, no. 3, p. 033004, 2013.

[191] R. Blakestad, C. Ospelkaus, A. VanDevender, J. Wesenberg, M. Biercuk, D. Leibfried, and D. Wineland,

“Near-ground-state transport of trapped-ion qubits through a multidimensional array,” Physical Review

A, vol. 84, no. 3, p. 032314, 2011.

[192] R. B. Blakestad, Transport of Trapped-Ion Qubits within a Scalable Quantum Processor. PhD thesis,

University of Colorado, 2010.

[193] H. Kaufmann, T. Ruster, C. T. Schmiegelow, F. Schmidt-Kaler, and U. G. Poschinger, “Dynamics and

control of fast ion crystal splitting in segmented Paul traps,” New Journal of Physics, vol. 16, p. 073012,

Jul 2014.

[194] Y. Aikyo, G. Vrijsen, T. W. Noel, A. Kato, M. K. Ivory, and J. Kim, “Vacuum characterization of a

compact room-temperature trapped ion system,” Applied Physics Letters, vol. 117, no. 23, p. 234002,

2020.

[195] “Openqasm 3.x live specification.” https://qiskit.github.io/openqasm/. Accessed: 2021-03-25.



Appendix A

Z stabilizer circuit in the QCCD syntax

The most constraining stabilizer of the surface code to implement in a QCCD architecture, when limiting to

two ions per zone, is the Z stabilizer. The trapped ion compatible circuit, displayed in Figure A.1, is obtained

by applying the tools presented in Section 5.3:

|0〉

•
•
•
•⇓

|0〉
Rxx(π/2)

Rxx(π/2)
Rxx(π/2)

Rxx(π/2)

Ry(π/2) Rx(−π/2) Ry(−π/2)

Ry(π/2) Rx(−π/2) Ry(−π/2)

Ry(π/2) Rx(−π/2) Ry(−π/2)

Ry(π/2) Rx(−π/2) Ry(−π/2)

Figure A.1: Compilation of the Z stabilizer circuit, defined with CNOT gates, into the trapped ion gate set,
composed of Rx, Ry and Rxx gates.

Initially, all the qubits are prepared. To compile the stabilizer into QCCD code efficiently, the ancilla qubit is

assigned to the gate zone first. After this, each data qubit is sent to the gate zone where all the corresponding

gates are applied, after which the qubit is removed to a memory zone and the next data qubit is introduced to

the gate zone. This process repeats sequentially, one by one, for all of the data qubits.

217



218 Appendix A. Z stabilizer circuit in the QCCD syntax

1 #Initialization

2 Init | S N N E E #ancilla in South arm

3 Prepare | E[2]

4 Shuttle | E[1/2]_W[0]

5 Shuttle | E[1/1]_W[1]

6 Shuttle | N[1/2]_E[0]

7 Shuttle | N[1/1]_E[1]

8 Prepare | E[2]

9 Shuttle | E[1/2]_N[0]

10 Shuttle | S[1/1]_E[1]

11 Swap | E[2]

12 Prepare | E[2]

13 #Quantum circuit

14 Ry(pi/2) | E[1/2]

15 Rx(7*pi/2) | E[1/2]

16 Rxx(pi/2) | ( E[1/2], E[2/2])

17 Ry(7*pi/2) | E[1/2]

18 Shuttle | E[1/2]_S[0]

19 Shuttle | N[1/1]_E[1]

20 Ry(pi/2) | E[1/2]

21 Rx(7*pi/2) | E[1/2]

22 Rxx(pi/2) | ( E[1/2], E[2/2])

23 Ry(7*pi/2) | E[1/2]

24 Shuttle | E[1/2]_S[1]

25 Shuttle | W[1/2]_E[1]

26 Ry(pi/2) | E[1/2]

27 Rx(7*pi/2) | E[1/2]

28 Rxx(pi/2) | ( E[1/2], E[2/2])

29 Ry(7*pi/2) | E[1/2]

30 Shuttle | E[1/2]_N[1]

31 Shuttle | W[1/1]_E[1]

32 Ry(pi/2) | E[1/2]

33 Rx(7*pi/2) | E[1/2]

34 Rxx(pi/2) | ( E[1/2], E[2/2])

35 Ry(7*pi/2) | E[1/2]

36 #Measurement of the ancilla

37 Shuttle | E[1/2]_W[0]

38 Measure | E 0



Appendix B

Shuttling waveform format

This sections transcribes part of the document formatting the waveform files for ion shuttling, generated by

the simulation python framework written by Dr Sam Hile, and read by the DC concatenation module to as-

semble and upload the waveforms run by the DACs. That document was written by Sahra Kulmiya, under my

supervision and based on my format design.

B.1 Introduction

Although each chip is very unique, which makes specifying a general format difficult, a format is very important

for many reasons. There are many experimental control systems in the lab, therefore using the same code to

read shuttling sequences would be advantageous. We may also want to try multiple shuttling protocols for the

same chip, or concatenate them together, and we should be able to switch them easily.

The waveform consist of voltages applied to several electrodes and varying over time. Either for physical

reasons, due to electrodes wirebonded together, or due to optimization, to add more constraints on finding an

optimal solution, the key components for simulating the potential on the chip are not the electrodes, but a cluster

of electrodes called knobs.

A general specification is outlined in the next section, and an example is given further below.

B.2 Specification

Each shuttling sequence file should be named in the following way: ChipName TypeofShuttleVN.json.

219



220 Appendix B. Shuttling waveform format

1 {"Name_of_Chip" : *string_here*,

2 "Author" : *string_here* ,

3 "Number_of_Knobs" : *integer_here*, # 6

4 "Number_of_Steps" : *integer_here*, # 50

5 "Knob_to_Electrode_Example" : *dict_here*, # { K 1 :[e1,e4], K 2 :[e2,e5,e11] }

6 "Sequence_Description" : *string_here*,

7 "Generation_Time" : *datetime_here*,

8 "Comments" : *string_here*,

9

10 "Voltage_Values" : [{"key_1": float, # list of length *Number_of_Steps*

11 "key_2": float, # each element a dict matching the Knobs

12 "key_3": float, ..},

13 {..},{..}]

14 "Info_Values" : [{"position": float, # list of length *Number_of_Steps*

15 "sec_freq": float, # each element a dict matching the Knobs

16 },{..},{..},..]}

the entries are now detailed, with the distinction between mandatory, recommended and optional indicated by

the must, should and could keywords.

• The name/specification of the chip being tested must be included in the file and in the name of the file.

• The author/creator of the shuttling protocol must also be included.

• The “Knobs” key is a generic description of the number of electrodes used in the shuttling sequence.

The number of Knobs is arbitrary for each shuttling protocol. For example, a linear sequence can use 5

knobs, and an X junction can use between 8 to 12 Knobs. This must be included.

• The number of steps corresponds to the number of dictionaries generated. This must be included.

• The “knob to electrode example” entry should describe how the knobs and electrodes are grouped for

this sequence.

• “Sequence description” could give a short description of the shuttling sequence the file represents, i.e.

swapping, merging, corner shuttling etc.

• “Generation time” is where the date of creation of the shuttling file could be entered.

• The comments section is where the user could write further information about their chip and should be

as detailed as possible. This can also potentially include a link to a file that displays a labelled image of

the chip and the electrode and also a short description of the electrode labeling used as the keys.



B.3. Example 221

• “Voltage values”: The voltages are here introduced as key:value pairs, also known as dictionaries, in order

to lessen ambiguity in any shuttling file. This is vital because in particularly complex shuttling protocols,

several knobs are involved at a time and indicating which knobs are involved becomes important. The

size of this list should be the same as the number of steps indicated above. These must be included in

any file.

• “Info values”: describes further parameters that could be included in the shuttling sequence such as the

particular position of the shuttling path, e.g relative to the z,x,y directions, and the secular frequency of

the shuttling sequence, as well as any other information. The size of this list should be the same as the

number of steps indicated above. These must be included in any file.

B.3 Example

The following example is given for the linear shuttling waveform over the distance of one electrode, approxi-

mately 200 µm, thus involving five pairs of electrodes, or five knobs. Only the first points of the waveform are

represented:

1 {"Name_of_Chip" : "DazzaWP2W1XA2",

2 "Author" : "D. Bretaud",

3 "Number_of_Knobs": 5,

4 "Number_of_Steps" : 101,

5 "Knob_to_Electrode_Example" : {L1:[e1,e2],L2:[e3,e4],L3:[e5,e6],L4:[e7,e8], L5:[e9,e10]}

6 "Sequence_Description" : "This sequence describes a linear shuttle, starting between L3

and L4, and stopping between L2 and L3.",

7 "Generation_Time" : "March_2020",

8 "Comments" : "The labelled chip can be found in Directory/Filename/..",

9

10 "Voltage_Values" : [{"L_5":3.4167459035780268,

11 "L_4":-1.9404774268418745,

12 "L_3":-1.9639135757523316,

13 "L_2":3.4045037309378987,

14 "L_1":0.09814417877801251},..],

15 "Info_Values" : [{"zrelative": -100.0 ,

16 "sec_freq (kHz)": 110},..]}

the information e1,e2,... corresponds to the electrode label for one specific case although that waveform can be

applied to any section of a linear trap. In “Info Values”, each datapoint is associated to a “zrelative” keyword

indicating the relative spatial position in µm, and with “sec freq (kHz)”, the axial secular frequency.


