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Abstract

Graphene has been hailed as a material which is going to revolutionise myriad technologies

due to its extraordinary stability, mechanical strength yet flexibility, and remarkable transport

properties. Furthermore, it was recently discovered that if two graphene layers are stacked and

twisted relative to one another, referred to as twisted bilayer graphene (tBLG), correlated insu-

lating states and superconductivity are observed, even though graphene does not intrinsically

display these properties. These phases only emerge at twist angles close to the “magic angle”

of 1.1◦, and by tuning the temperature and doping level, the system can undergo electronic

phase transitions between these states.

I studied electron interactions and electronic screening in tBLG and other moiré graphene

multilayers. I found that in the absence of external and internal electronic screening, the on-site

Hubbard parameter of the flat bands of tBLG scales linearly with twist angle. Upon considering

internal screening, this linear scaling breaks down, where the Hubbard interaction energy de-

creases more rapidly towards the magic angle owing to increased screening. Moreover, external

screening, from proximity to metallic gates which dope tBLG, was found to substantially affect

these Hubbard interactions, owing to the moiré length scale of the magic-angle being compa-

rable to the distances to the metallic gates. For a sufficiently small separation to these gates, I

predicted that the correlated insulating states should be screened-out and the superconducting

phase should be stabilised.

Long-ranged Hartree interactions were found to induced doping-dependent band-flattening

in tBLG that was predicted to increase the magic-angle range of tBLG. For moiré graphene mul-

tilayers, the role of these Hartree interactions were found to sensitively depend on the stacking

sequence of the structure: systems with alternating twist angles have similar interaction-driven

band flattening, but systems where there are also adjacent layers that are aligned have no such

interaction-driven band flattening.
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Chapter 1

Introduction

The discovery of graphene

Carbon, in its pure form, has several well-known allotropes. In three dimensions (3D), diamond

is known for its mechanical strength, and graphite for its high electrical conductivity and use

in pencils [1, 2]. In the opposite limit, molecular or zero-dimensional (0D) carbon comes in

the form of the fullerenes [1, 2], where the carbon atoms form a closed surface, similar to a

balloon. Intermediate to these regimes, carbon nanotubes are a one-dimensional (1D) form of

carbon and two-dimensional (2D) carbon comes in the form of graphene†. The existence of

free-standing graphene, a single layer of carbon atoms arranged in a honeycomb lattice was not

thought to be possible, as it was presumed to be structurally unstable with respect to other

allotropes [1, 2].

To the surprise of many, graphene was first isolated and characterised by Novoselov et al. [4]

from mechanical exfoliation of graphite. Since graphene is a 2D material, its properties in-plane

and out-of-plane are quite different. One important property of a material is how it screens

electrostatic fields. In-plane fields created from edge-contacts are, eventually, screened, which

preserves the charge neutral state in the bulk of the graphene. Out-of-plane fields created

from a back-gate, however, causes the number of electrons in graphene to globally change‡.

Novoselov et al. [4] demonstrated that the conductivity of graphene was highly dependent on

the electrostatic gating, consistent with a semi-metal [1].

†Note that other allotropes of 2D carbon have also been predicted [3].
‡In contrast, 3D materials cannot be electrostatically gated.
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Figure 1.1: Electronic band structure of graphene along the high symmetry path (middle),
the high symmetry points of which have been indicated in the hexagonal Brillouin zone (left),
and a surface plot close to the Dirac point (right). The electronic structure is calculated with
the nearest-neighbour model of graphene with a hopping parameter of t = −2.7 eV [1]. The
crystal momentum in the surface plot (left) is relative to the Dirac cone at K.

Even though the first experimental realisation of graphene was only in 2004, a theoretical

model of the electronic structure of graphene was first developed by Wallace in 1947 [1, 5]. It

was noted by Wallace that the electronic structure of graphene has an unusual semi-metallic

character [5], where the valence and conduction bands have a linear dispersion which touch at

the K and K′ points at of the first Brillouin zone, as seen in Fig. 1.1 (middle). This feature is

referred to as a Dirac cone, a surface plot of which is shown in Fig. 1.1 (right). Interestingly, the

low-energy electrons in graphene behave as massless Dirac fermions, which move with a large

(Fermi) velocity∗ [1, 2]. This gives rise to many interesting electronic phenomena in graphene,

such as anomalous quantum Hall effect, high electron mobility and Klein tunnelling [1, 2].

In its normal state, then, graphene exhibits many interesting phenomena [1, 2]. Naturally,

theoretical predictions of broken symmetry phases in graphene were also made [1, 6–10]. At

charge neutrality, for example, antiferromagnetic order could exist in graphene, which would

break C2 and lift the degeneracy at the Dirac point [7]. In experiments of intrinsic graphene,

however, no such effects have been reported [11]. Moreover, superconductivity does not appear

to be intrinsic to graphene either [7].

Therefore, efforts turned to engineering the properties of graphene through charged de-

fects [12], periodic potentials [13], strain [14], suspending graphene [15, 16], alignment to sub-

∗The Fermi velocity of graphene is vF ≈ 1× 106 ms−1, which is approximately 300 times smaller than the
speed of light [1].
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strates [17–21], and stacking several layers of graphene [22–27], for example. In fact, the

latter approaches provided quite fruitful methods for engineering strongly correlated phases in

graphene-based systems. For example, Bernal-stacked bilayer graphene [28] and rhombohedral

trilayer graphene [26, 27] exhibit signatures of strong correlations as the density of states at the

Fermi level is finite [1, 7]. In these systems the crystallographic axes of the graphene layers are

aligned, but more generally, a relative twist angle can be introduced. For two graphene sheets,

this creates what is referred to as twisted bilayer graphene.

Figure 1.2: Schematic demonstration of the atomic structure of (a commensurate) twisted
bilayer graphene at a twist angle of ∼6◦. The top, rotated graphene layer is shown in black
and the bottom, unrotated graphene layer is shown in red. Different stacking sequences of the
bilayer have been indicated.

Magic angle of twisted bilayer graphene

The atomic and electronic structure of twisted bilayer graphene (tBLG) was first theoretically

investigated by Lopes dos Santos et al. [29]. A schematic of the atomic structure of tBLG with

a twist angle of ∼6◦ is shown in Fig. 1.2. As can be seen, there is an emergent honeycomb

moiré pattern∗ on a larger length scale than the underlying honeycomb lattice of graphene.

∗A moiré pattern is a term given to an interference effect caused by overlapping several patterns which
differ slightly. When the pattern is initially identical, a moiré pattern can either be created through one being
stretched relative to another or from rotational misalignment.
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This moiré pattern is characterised by the stacking order of the bilayer changing in real space.

The AA stacking regions create a triangular lattice, while the AB and BA stacked regions form

triangular lattices that can be interpreted as “moiré sublattices” of a moiré honeycomb pattern,

similar to the two carbon atoms (sublattice A and B) in the unit cell of graphene.

Upon rotating one graphene sheet relative to another, it is not guaranteed that spatial

periodicity will always be achieved [30]∗. In fact, only certain twist angles generate structures

which exhibit exact spatial periodicity†, as first derived in Ref. 29 for tBLG. The analysis

demonstrated that smaller twist angles are associated with larger moiré unit cells, and therefore,

also larger numbers of atoms in the moiré unit cell. These commensurate structures can be

investigated using atomistic electronic structure methods, but it was noted in Ref. 29 that even

modest twist angles of 2.1◦ had 2884 atoms in the unit cell which makes ab initio methods

impractical, motivating the development of simpler approaches.

In the absence of interlayer coupling between the graphene layers of tBLG, there are two

copies of the graphene electronic structure rotated in momentum space relative to each other, as

seen in Fig. 1.3. Upon switching on the interlayer coupling between these two rotated graphene

sheets, it was demonstrated [29] that the low-energy states of one graphene layer most strongly

couple to only a handful of low-energy states (at crystal momenta which differ to the first

graphene layer by integer multiples of moiré reciprocal lattice vectors) of the other graphene

layer. Therefore, an effective low-energy Hamiltonian only consisting of these minimal terms

could be constructed to investigate the electronic structure at low energies and large twist

angles. In contrast to Bernal stacked bilayer graphene (where the electronic dispersion is

quadratic at low energies [1]), it was found that the low-energy electronic structure of tBLG

exhibits linear Dirac cones at the Fermi level. Moreover, using perturbation theory (which was

valid down to a twist angle of ∼ 3◦), it was demonstrated that the Fermi velocity of these Dirac

cones was renormalised to smaller values.

This continuum model of Lopes dos Santos et al. [29] was further developed [33, 34] to

be applicable to small twist angles (< 3◦) and for incommensurate structures. For small

∗A notable example of which is the twist angle of 30◦, where a quasi-crystal forms with no spatial period-
icity [31].

†Details of a similar method which is employed here is outlined in Ref. 32 and the Methods.
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Figure 1.3: Schematic of moiré Brillouin zone of twisted bilayer graphene (left) and low-
energy electronic structure (right). (left) - the Brillouin zone of the individual graphene layers,
which are rotated by θ with respect to each other, are indicated by the large black hexagons,
with purple and red circles denoting the K and K′ points of these graphene layers, respectively.
The K valley of moiré Brillouin zone of tBLG originates from the K valley of graphene layer
1 and the K valley of graphene layer 2, i.e. K1 and K2, respectively. The Dirac cones from
K1 and K2 form the K and K′ points of the moiré Brillouin zone, as indicated by the magenta
and dark purple open circles, respectively. On the hand, the K′ valley of tBLG originates from
the the K′ valley of graphene layer 1 and the K′ valley of graphene layer 2, i.e. K′1 and K′2,
respectively. The Dirac cones from K′1 and K′2 form the K′ and K points of the moiré Brillouin
zone, as indicated by the dark red and light red open circles, respectively. (right) - the low-
energy electronic structure (right), is for a single valley of tBLG, say the K valley. The Dirac
cone located at K of the moiré Brillouin zone comes from layer 1, while the Dirac cone at K′

originates from layer 2. In the absence of interlayer tunnelling, these graphene Dirac cones cross
at M of the moiré Brillouin zone, as indicated by the red circles. In the presence of interlayer
tunnelling, the Fermi velocity of these Dirac cones can be strongly renormalised, forming the
flat electronic bands, as shown in light blue.

twist angles, the momentum difference between the K-point of layer 1 and layer 2 is much

smaller than the momentum difference between the K and K′ points of a single graphene layer.

Therefore, to a reasonable approximation, the K and K′ points do not couple to each other

in the low-energy electronic structure of tBLG, giving rise to valley separation in tBLG. As

depicted in Fig. 1.3 (left), the electronic structure of a single valley of tBLG originates from the

hybridisation of the same valley from each graphene sheet, i.e. the K-valleys of the graphene

layers form a single valley in tBLG. The other valley, originating from the K′ points of the

graphene layers, is related through time reversal symmetry. This means that tBLG has a valley

symmetry (in the normal state), with valley degeneracies in parts of the moiré Brillouin zone

of tBLG. This additional degree of freedom, the valley degree of freedom, has key differences

18



to that of graphene∗.

These Dirac cones of one valley cross at an energy of ~vF∆K, where vF is the Fermi

velocity of graphene and ∆K is the momentum shift of these Dirac cones [35]. Upon including

interlayer coupling, characterised by the interlayer coupling parameter w ≈ 0.1 eV [36], the

Dirac cones undergo an avoided crossing and generate a pair of van Hove singularities (VHS)

at energies ±(~vF∆K − 2w) [35], as schematically shown in Fig. 1.3 (right). At large angles

(∼ 5◦), these VHS are separated by large energy gaps, but for smaller twist angles the energy

gap between these VHS reduces as the momentum difference between the two Dirac cones

decreases. At a critical twist angle, referred to as the magic angle [33], there comes a point

where the momentum misalignment between these Dirac cones matches the hybridisation of

the layers, and the separation between the VHS vanishes. At this magic twist angle the Fermi

velocity of the low-energy Dirac cones were found to vanish, which causes the electronic bands

to become extremely flat in the Brillouin zone with a concomitant increase in the density of

states (DOS) [32–34, 37]. In fact, Bistritzer and MacDonald [33] predicted that a set of magic

angles should appear†, with the largest one occurring at a twist angle of ∼1.05◦.

At a similar time, Trambly de Laissardière et al. [32, 37], Shallcross et. al. [39] and Suárez

Morell et al. [40] investigated tBLG with atomistic tight-binding models, and found that the

Fermi velocity of the low-energy Dirac cones was strongly reduced at twist angles smaller than

5◦ [40–42], and an almost vanishing Fermi velocity was found close to ∼1◦. Moreover, Trambly

de Laissardière et al. [32, 37] also predicted that the local density of states (LDOS) of these

low-energy states is predominantly localised on the AA stacking regions of the moiré unit

cell [32, 42, 43].

Early experimental work was able to realise these remarkable electronic properties of tBLG [44–

49]. Samples of tBLG were grown using chemical vapour deposition (CVD), which resulted in

highly uniform samples with low strain and twist angle variation [44–47, 49]. This CVD growth

of tBLG did not permit control over the twist angle which was obtained, however [35].

These tBLG samples were experimentally investigated using scanning tunnelling microscopy

∗In graphene, the K and K′ valley are also related by time reversal symmetry, but they do not share the
same crystal momentum. To convert from one valley to another in graphene, a large crystal momentum is
required. Whereas in tBLG, there is a valley degeneracy, with zero momentum transitions being possible.

†The existence of magic-angle states has been further formalised [38].
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(STM) [44–49], a technique that measures the differential conductance locally, which is propor-

tional to the LDOS. Real space maps of the LDOS at a given Fermi level from STM demon-

strated that the low-energy states were indeed predominantly located in the AA regions of the

moiré unit cell. For a tBLG sample with a twist angle of 1.8◦, two large peaks in the LDOS

of the AA region where reported with an energy separation of 85 meV, consistent with the

picture of a pair of van Hove singularities emerging in the low-energy electronic structure [44].

For smaller angles, the energy separation between these VHS reduced further. At an angle of

1.16◦, the STM measurements found that these two VHS merged to form a single peak with

a width of only ∼32 meV with a pseudo-gap of ∼12 meV suggesting the onset of correlated-

insulating states [44]. These early experimental observations demonstrated the tunability of

the low-energy electronic structure of tBLG with twist angle.

Atomic reconstruction of twisted bilayer graphene

Up to this point, theoretical studies of tBLG considered the atomic positions to be rigid, being

defined by a pristine graphene lattice of each layer and a constant interlayer separation between

the layers. The moiré pattern of tBLG has stacking sequences of the bilayer range from AA to

AB/BA, as seen in Fig. 1.2. Importantly, the interlayer spacings of these stackings are known

to be approximately 3.6 Å and 3.35 Å, respectively [24]. Therefore, it might be expected that

the atomic positions in the moiré lattice do not retain this flat configuration.

An early theoretical work using ab initio methods by Uchida et al. [50] demonstrated that

the interlayer spacing between the two graphene layers was, in fact, not constant throughout

the moiré unit cell [51]. Rather, for angles smaller than 10◦ (structures down to 2◦ were

investigated), significant variations (0.1-0.2 Å) in the interlayer separation occurred [50]. While

for angles larger than this, the interlayer separation was relatively constant throughout the

moiré unit cell with a value of 3.42 Å. In the AA region of the moiré unit cell, it was found that

the interlayer separation would increase to values of 3.6 Å in the limit of small angles, whereas

the interlayer separation in the AB/BA regions decreased to values of 3.35 Å. This atomic

corrugation effect, as schematically shown in Fig. 1.4, was found to be accurately reproduced
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by a cosine series with the shortest seven Fourier components [50]∗.

Later, several works investigated these atomic corrugation effects in tBLG using empirical

force fields [54–57]. This method is significantly cheaper than ab initio calculations, which

permitted the investigation of small twist angles (< 2◦), where significant in-plane relaxations

were also found [54–56]. In particular, these works demonstrated that the atoms in each layer

rotate around the AA regions in opposite directions, causing the area of the AB/BA regions

to grow at the expense of the AA regions [54–56, 58]. This occurs because the AB stacking

configuration is lower in energy than the AA stacking configuration, and therefore, the total

energy is lowered by increasing the area of AB stacking [56]. While each atom can undergo

significant in-plane displacements (of the order of 0.5 Å at small angles [56]), the changes in the

bond lengths from equilibrium are still quite modest, with changes of the order of ∼0.1% [54, 59].

Therefore, the strain in the graphene layers remains relatively low.

In what is described above, the atoms in each layer move in opposite directions out-of-plane,

which is referred to as the breathing mode. At small twist angles (< 1◦), additional types of

atomic reconstruction become energetically favourable in tBLG. Specifically, a bending mode

can onset where the layers instead move in the same direction, causing a buckling of the whole

system [55, 60].

These atomic reconstruction effects have important consequences for the low-energy elec-

tronic structure of tBLG. Using an atomistic tight-binding model, Nam and Koshino [58], and

Gargiulo and Yazyev [56] demonstrated that the flat electronic bands near the Fermi level sepa-

rate in energy from all other remote bands, as seen in Fig. 1.4, with small energy gaps between

the flat bands and all others (near the magic angle) [61–65]. The atomic reconstruction also

affects the Fermi velocity renormalisation of these low-energy Dirac bands, which can clearly

be seen in Fig. 1.4.

This result motivated the development of a continuum model to reproduce these effects.

Instead of a single parameter, w, describing the interlayer coupling between the two graphene

layers, the magnitudes of the tunnelling matrix elements could be tuned [36, 66–68]. It was

found that a two-parameter model, one parameter w0 ≈ 0.08 eV represents the interlayer

∗Later ab initio calculations showed that this simple corrugation picture was over-simplified [52, 53].
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Figure 1.4: Schematic of out-of-plane atomic corrugation effects in twisted bilayer graphene
(left) and the affect this has on the low-energy electronic structure (right). Note the schematic
structure has greatly exaggerated the out-of-plane displacements to make the larger interlayer
spacing in the AA regions compared to the AB/BA regions obvious. The z-coordinates of
the schematic were generated using the cosine approximation (see Methods). The electronic
structure of 1.3◦ tBLG was calculated with pristine graphene layers, with no in-plane or out-
of-plane corrugation. The corrugated structure was generated from empirical force fields, as
discussed in the Methods.

tunnelling in the AA region and the other parameter w1 ≈ 0.1 eV the tunnelling in the AB/BA

regions, could reproduce the effects from these atomic relaxations (despite the atomic positions

not explicitly being included in the calculations) [66, 68]. The continuum model was further

developed by Carr et al. [69], using a k · p expansion of the atomistic tight-binding model,

which reproduces the atomistic model with remarkable accuracy. An interesting feature of the

model is that it only predicts a single magic angle at ∼1.1◦ [69].

Wannier functions of the isolated flat bands of twisted bilayer graphene

Since the low-energy electronic states are separated in energy from all other states, this mo-

tivated the development of Wannier Hamiltonians to describe these isolated flat bands∗. In

total, there are four (spin-degenerate) bands in tBLG (in the normal state). This means that

there are four Wannier functions which describe these states. To reproduce the degeneracies at

∗In the absence of energy isolated bands, the disentanglement procedure is required [70].
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high symmetry points of these flat bands∗, a number of symmetry analyses [68, 71–73]† showed

that the Wannier functions must be centred on the AB/BA regions of the moiré unit cell.

Therefore, the Wannier orbitals create a honeycomb lattice, with two of these Wannier orbitals

located on the AB region, while the other two are located on the BA region of the moiré unit

cell [74, 75]. This result appeared counter-intuitive, since the LDOS of these flat bands are

almost entirely centred on the AA regions of the moiré unit cell [32]. If the Wannier orbitals

were centred on the AA regions with s orbitals, which might be intuitively expected from the

LDOS, the eigenstates at Γ would be a singlet, which is not consistent with the observed band

structures [71]. Using an atomistic tight-binding method, Kang and Vafek [73] generated the

Wannier functions of these flat bands from a symmetry adapted Wannierisation procedure [76]

(to ensure the Wannier functions were located on the AB/BA regions). The resulting flat band

Wannier functions have a peculiar three-lobe structure from the closest AA regions to a AB

(or BA) region, as seen in Fig. 1.5.
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Figure 1.5: Wannier functions of the flat bands of twisted bilayer graphene, for the indicated
twist angles. The AA regions are shown by squares, and the AB and BA regions are shown by
diamonds and circles, respectively. Reproduced from Ref. 75.

Within a single valley of the continuum model, where there are only two isolated bands

in the low-energy spectrum, it was shown that the Wannier functions of these bands have a

fragile topology [72, 77–80]. The Berry curvature within a single valley of graphene is the

same, but the two valleys (K and K′) have the opposite curvature. For graphene, this means

Wannier functions of the bands of the pz orbitals can be constructed because there is an overall

∗Namely, at the Γ and M point two doublets were found, and at the K/K′ points a four-fold degeneracy
was found [71].

†An interesting finding from atomistic models is the emergent D6 symmetry of structures which only have
D3 in the underlying atomic structure at small relative twist angles (∼ 5◦ or lower). Moreover, relaxed structures
without explicit symmetries would also hold this 6-fold rotational symmetry [64].
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cancellation of the Berry curvature. In a single valley of tBLG, however, the K and K′ points

of the moiré Brillouin zone have the same Berry curvature, since they both derive from the

same valley of graphene. Therefore, these bands have a finite Chern number, which prevents

the generation of well-localised Wannier functions. To alleviate this fragile topology, additional

bands must be included [80, 81]. The two valleys of tBLG can be mixed and Wannier functions

of these four bands can be generated, which is essentially the approach used by the atomistic

tight-binding formalism [73–75].

On the other hand, if it is desired to keep the valley symmetry, additional bands must be

included from higher/lower-energy states. An 8-band model was proposed by Carr et al. [81],

from a projection method onto the bands of a single valley from the k ·p continuum model [69].

The Wannier orbitals with an s-character of these flat bands were centred on the AA regions of

the moiré unit cell [81], which offered a more natural approach to think about these electronic

states. A similar approach was proposed by Po et al. in a phenomenological 6-band and 10-

band model [80], which retained all of the necessary symmetries, where the orbitals of the model

have well-defined atomic analogues.

The tear and stack revolution

To experimentally investigate the predictions of flat electronic states, a method for reliably

fabricating a desired twist angle was required. Early experiments utilised CVD to grow tBLG

structures [44–49], or a single graphene sheet was folded onto itself using the tip of an atomic

force microscope (AFM) [82, 83]. While these fabrication methods would generate a tBLG

structure, there was a lack of controllability and reproducibility. Therefore, a method to con-

trollably and reproducibly fabricate a tBLG device with a known twist angle was desired.

The experimental breakthrough for fabricating moiré materials came with the invention

of the “tear and stack” method [84]. To outline this method, the steps to construct tBLG

shall briefly be described. Starting from a graphene flake on a SiO2 substrate (for example), a

hexagonal boron nitride (hBN) substrate supported from above would be manoeuvred over and

then lowered onto approximately half of the graphene flake. Because of graphene’s affinity to

hBN over SiO2, upon lifting the hBN substrate far enough away from the SiO2 substrate, the
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graphene flake would tear in half, with part of the graphene stuck to SiO2 and the other part

to hBN∗. This resulted in the generation of two graphene flakes, with aligned crystallographic

axes. The graphene-hBN structure could then be translated to reside above the graphene flake

on SiO2, and then a relative twist could be controllably introduced between the two structures.

Finally, the graphene-hBN structure could be lowered onto the graphene-SiO2 structure to gen-

erate the tBLG. This method permitted a twist angle control of ∼0.1◦. Further processing steps

to contact and encapsulate the device were required for the desired measurement technique [85].

Using the tear and stack method, Cao et al. fabricated a tBLG device and used transport

measurements to experimentally probe the material [86]. After preparing a tBLG sample, it

was contacted at the edges, and a top and back gate were added. The edge contacts were

used to measure the conductivity through the device [85]. As tBLG is a 2D material, the top

and back electrostatic gates can change the doping level (the number of electrons per unit cell)

through electrostatic forces alone. Using electrostatic gates, the surface density of electrons can

be varied by up to ±1013 cm−2, and owing to the large unit cells of small twist angle structures,

this carrier density is sufficiently large to completely fill/empty the flat bands of tBLG [86].

Therefore, this electrostatic gating can be used to investigate the conductivity in tBLG as a

function of doping level, which provides information about the low-energy electronic structure

of tBLG.

For a large twist angle sample (> 3◦), the conductivity was found to have the characteristic

V-shape of Dirac cones [4] as a function of doping away from charge neutrality. For a smaller

twist angle of 1.8◦, additional features appear in the conductivity as a function of doping

level [86]. Upon doping the tBLG device to ±2×1012 cm−2, past the V-shaped feature near

charge neutrality, the conductivity peaks and plateaus off until values of ±7-8×1012 cm−2, where

strong insulating states were found [86, 87]. The thermal activation gaps of these insulating

states were found to be ∼40 meV, with these insulating states being apparent even at relatively

large temperatures (∼100 K). These insulating states were identified to be consistent with the

trivial band insulating features that occur upon reaching doping levels of ν = ±4 electrons

∗Further development of the fabrication method to the “cut and stack”, where the graphene flake would
initially be cut in two before this procedure was undertaken. Cutting instead of tearing the graphene flake in
two reduces the strain endured by the graphene flake, which improves the uniformity of the twist angle.
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per moiré unit cell (measured from charge neutrality - the addition of electrons is denoted

by positive numbers, with negative values indicating the removal of electrons) when atomic

reconstruction effects are included in the electronic structure [86].

Furthermore, the work of Cao et al. [86] demonstrated that there was a reduction in the

Fermi velocity of these bands relative to graphene∗, and an extra valley degeneracy factor of 2

of tBLG relative to graphene was apparent from the Landau levels [86]. Therefore, the early

work of Cao et al. [86] was consistent with prior theoretical predictions of tBLG at twist angles

above the magic angle.

Strong correlations in magic-angle twisted bilayer graphene

In 2018, Cao et al. [88] reported the first conclusive results of correlated phases in magic

angle tBLG, as determined by electrical transport measurements. Initially, interaction-induced

insulating states appeared when the flat electronic states were doped by ν = ±2 electrons

per moiré unit cell at temperatures of ∼4 K for a twist angle of 1.08◦ [88]. At twist angles

further from the magic angle, in large perpendicular magnetic fields (∼6 T) and for larger

temperatures, the measured resistance for these doping levels increased to values similar to

the “normal” metallic state [88]. These correlated insulating states were interpreted as Mott-

like states, since the wavefunctions of the flat electronic bands exhibit a strong localisation on

the AA regions of the moiré unit cell. The Mott states occur when the electron interaction

energy becomes dominant over the kinetic energy of the electrons [88]. While the exact nature

of these correlated insulating states was not conclusively demonstrated by Cao et al. [88], it

was, however, clear that Cao et al. provided the first conclusive evidence of strong electron

correlations in magic angle tBLG.

Shortly after this, Cao et al. [89] also observed that superconductivity was found in proximity

to the correlated insulating states at ν = ±2. These superconducting phases were found upon

both electron and hole doping on either side of these insulating states at temperatures of up to

∼1 K [89]. Importantly, a number of key experimental signatures were reported to demonstrate

∗By fitting the temperature dependence of the Shubnikov-de Haas (SdH) oscillation amplitude to the
Lifshitz-Kosevich formula, an estimate for the Fermi velocity can be extracted. In addition, another estimate
can come from fitting the V-shape of the capacitance of the device [86].
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that this is a robust phase of tBLG [89]. Naturally, the first characteristic of superconductivity

is the observation of zero resistance which sharply onsets as the temperature is reduced to a

critical value. In addition, at low temperatures (∼0.7 mK), a sharp onset of resistive behaviour

occurs when the applied current reaches a threshold value [89].

Overall, the phase diagram of magic angle tBLG reported by Cao et al. [88, 89] was similar

to that of the high-temperature superconducting cuprates, which have an unconventional mech-

anism for superconductivity [90]. The cuprate materials also have a correlated insulating state

flanked by superconducting phases, with strange metallic behaviour at higher temperatures∗.

The analogy between tBLG and the cuprates was further strengthened by reports of strange

metallic behaviour in tBLG [91, 92], for doping levels close to ν = ±2 at temperatures up to

room temperature, although it was later shown that magic-angle samples were not necessary

for its observation [92].

These initial results of magic-angle tBLG, which were verified shortly afterwards by Yankowitz

et al. [93]†, indicated that strong correlations in a graphene-based system could be controllably

realised. In contrast to other strongly correlated materials, such as the cuprates‡, doping in

tBLG can be continuously and reproducibly varied through electrostatic gating, and other

physical parameters can be readily tuned too (as discussed later) [88, 89]. This generated huge

interest in both the theoretical and experimental communities, since tBLG suggested that it

could be the key to understanding high temperature unconventional superconductivity [89].

Theoretical understanding of correlated phases in twisted bilayer graphene

In the interpretation of the experimental results of magic-angle tBLG, it was initially suggested

that the insulating states could be Mott-like [88]. It was theoretically proposed by Padhi et

al. [94], however, that the insulating phases were, in fact, a Wigner crystal§. This conclusion was

∗A strange metal is referred to one in which the resistivity of a material is linear-in-T at low temperatures,
when it should have a quadratic temperature dependence (if it was a Fermi liquid).

†Note that Yankowitz et al. [93] did more than merely confirm the results of Cao et al. [88, 89], but the
discussion of their novel results are deferred until later.

‡Where the doping level is chemically changed through altering the chemistry of the sample, which results
in significant disorder and additional unknowns in the experiments.

§A Wigner crystal in 2D occurs when the potential energy of the electrons, which are assumed to reside
in a neutralising background, becomes dominant over the kinetic energy. When this ratio reaches a critical
value, the electrons condense into a triangular lattice, for example, to minimise the Coulomb repulsion between
electrons.
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drawn through computing the ratio of the kinetic energy to the potential energy for approximate

dispersion relations and screened Coulomb interactions [94]. For the estimates made, it was

found that only doping levels of ν = 2 and ν = 3 electrons per moiré unit cell would yield a

Wigner crystal (on a honeycomb and Kagome lattice, respectively), which, at the time, was

partially consistent with the experimental observations [88]. In addition, it was argued that a

dynamical criterion for the Mott-transition was only fulfilled for large twist angles ∼ 2◦ [94].

Another early theoretical work by Guinea and Walet [95] demonstrated that the energy

associated with long-ranged electron interactions was the dominant energy scale of magic-

angle tBLG. For twist angles close to the magic angle, the moiré length scale is approximately

Lm ≈ a/θ, where a is the lattice constant of graphene and θ is the twist angle (in units of

radians). Since the LDOS is mostly localised on the AA regions of the moiré unit cell, the

Coulomb energy can be approximated by point-like interactions between these regions. For a

twist angle of ∼1◦, which corresponds to a moiré length scale of Lm ≈ 10 − 20 nm, with a

dielectric constant of ε = 4, the Coulomb interaction energy is found to be V ≈ 50 meV [95].

On the other hand, the on-site Hubbard interactions parameter, U , of the pz orbitals which

describe the π bands of graphene can be considered. Projecting the wavefunctions of the moiré

system generates an effective interaction of the scale Ueff ∼1 meV [95]. Clearly, then, the long-

ranged Coulomb interaction is the dominant energy scale in the system, being several times the

bandwidth which can be ∼10 meV at the magic angle [95].

This motivated Guinea and Walet [95] to investigate the effects of these long-ranged electron-

electron interactions using a continuum model. Their analysis revealed that only the six shortest

Fourier components of the interaction needed to be included, which generated a potential energy

that varied with the same periodicity as the moiré unit cell [95]. This arose because electrons

added/removed from tBLG are predominantly added/removed from the AA regions of the moiré

unit cell [32], causing a peak/trough in the potential on these regions. This modulated Hartree

potential caused significant band deformations to the low-energy electronic structure [95]∗.

These Hartree interactions cannot explain the correlated insulating states of tBLG, however.

The next natural interaction to include in a continuum model is the exchange interaction. Xie

∗These band deformations shall be discussed in more detail later.
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and MacDonald [66] were the first∗ to report results of a self-consistent Hartree-Fock continuum

model. At charge neutrality, gapped states were predicted to occur over a wide range of twist

angles, provided the interaction strength was large enough†. Generally, these insulating states

broke the valley projected C2T symmetry [66], which can be achieved through either breaking

C2 or time reversal symmetry (T ). At the time, no insulating states at charge neutrality were

experimentally found in magic angle tBLG.

For all other integer doping levels in the flat bands of tBLG, insulating states were created

through breaking the spin and/or valley symmetry [66]. These broken symmetry phases could

only be found at twist angles close to the magic angle, unlike the gapped states at charge

neutrality. For insulating states at ±2 electrons per moiré unit cell, the valley and/or spin

symmetry needs to be broken [66]. Whereas, for ±1 and ±3 electrons per moiré unit cell, the

spin and valley symmetry must be broken to create an insulating state [66].

These theoretical works treated electron correlations on a mean-field level, which is known

to break down in the strongly correlated limit. Methods which can treat strong correlations

often need a Hubbard model description of the system. As previously mentioned, Wannier

Hamiltonians were constructed for the flat bands of tBLG [68, 73], which describe the kinetic

energy contribution to the Hubbard model. The interactions parameters of electrons in these

Wannier orbitals were also determined by a number of groups [68, 75, 96]. Due to the Wannier

orbitals’ peculiar three-lobed structure, the electron interactions beyond the on-site interaction

were non-negligible. The on-site Hubbard parameter of the Wannier functions can be con-

sidered as the interaction of 3 “lobes” of charges of e/3 located at the three AA regions of

the moiré unit cell, where there are “intralobe” and “interlobe” contributions to the on-site

interaction [68]. For the on-site Hubbard interaction, there are 3 intralobe interactions, which

are the dominant contribution to the interaction [68]. While for the Coulomb interaction be-

tween Wannier functions located on adjacent AB and BA sites, there are still two intralobe

interactions, meaning that the magnitude of nearest-neighbour interaction is approximately

2/3 of the on-site interaction [68]. Furthermore, the next two possible interactions still have

∗For a review of other works, see Results Chapter 2.
†This was characterised through the fine structure constant of tBLG, α∗ = e2/ε~v∗F , where ε is the dielectric

constant and v∗F is the renormalised Fermi velocity of the flat bands of tBLG. If α∗ > 0.4, insulating states were
found at charge neutrality.
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an intralobe contribution to the interaction, which means these interactions are approximately

1/3 the on-site interactions, and therefore, always significant in tBLG [68].

Therefore, methods which study strong correlations in tBLG must actually employ an ex-

tended Hubbard model for accurate descriptions of the interactions. An example of an exact

diagonalisation investigation into an extended Hubbard model of tBLG was performed by Ochi

et al. [97] at ν = −2 electrons per moiré unit cell. In the limit of the interaction strength

going to zero, the theory predicted no flavour symmetry breaking (flavour being defined as the

combination of the valley and spin degree of freedom), with the system remaining metallic [97].

In the opposite limit, a “spin and valley-ferromagnetic” state was found to be the ground state,

i.e. the system had polarised into a single flavour (one combination of spin and valley) [97].

For intermediate interaction strengths, the ground state becomes quite sensitive to the details

of the calculation [97]. An interesting example is when the electrons partially fill two of the

flavours, leaving the other two completely empty. This would yield a Dirac dispersion, but since

the Dirac cone weakly screens long-ranged electron interactions, the Fermi velocity of the Dirac

cones can anomalously increase, causing a suppression of the DOS near the Dirac point [97]. It

was suggested that this, in addition to proximity to VHS, could make this state appear to be

an insulator [97].

For the origin of the superconducting phase, many theoretical proposals have been put for-

ward [98]. The condensation of the superconducting phase, a “glue” which binds the electrons

is required, i.e. an attractive interaction between electrons [99]. In conventional superconduc-

tors, such as aluminium, the attractive interaction which binds Cooper pairs originates from

electron-phonon interactions. Unconventional mechanisms, on the other hand, have attractive

interactions from electronic origins. Another important question is whether the superconduct-

ing phase competes with the correlated insulating state, or if its existence is required for the

superconducting phase to emerge. The initial experiments of Cao et al. [89] suggested an un-

conventional mechanism, similar to the cuprates, where the superconducting phase arises in

proximity to insulating states.

Despite this indication, many works still investigated the possibility of a conventional mech-

anism of the superconducting phase [65, 100–103]. It was demonstrated using a tight-binding
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model that there is strong electron-phonon coupling in tBLG, especially for twist angles near

the magic angle and doping levels near the VHS (i.e. where the DOS is large) [65]. Moreover,

the estimates of the transition temperatures of the superconducting phase were of the order

of ∼10 K [65, 100], which was not far off from the 1 K superconducting transition tempera-

ture reported in the experiments of Cao et al. [89]. The doping dependence of the transition

temperature was predicted to be much broader than what was observed in experiments, how-

ever [100]. Instead of superconducting domes close to ν = ±2 electrons per moiré unit cell, it

was predicted that the superconducting phase could have transition temperatures of ∼10 K at

most doping levels in the flat bands of tBLG, which would compete with the insulating states

at ν = ±2 [100].

Many different origins of unconventional superconductivity were proposed [104], ranging

from electron-assisted hopping [95] to collective excitations [105]. An interesting example of

this was the Kohn-Luttinger instability proposed by Gonzàlez and Stauber [106]. An attractive

interaction was found from highly anisotropic screening that is provided by nearly perfect

nesting of the VHS [106]. Moreover, at angles close to the magic angle, it was found that the

number of VHS would double from 6 to 12, which further enhances this mechanism [106]. Their

results indicated that a superconducting phase emerges for doping levels slightly away from the

VHS, where a spin density wave insulating state was found at large interaction strengths [106].

In a similar spirit, Fischer et al. [107] found that spin-fluctuation-induced superconductivity

can occur at non-integer fillings in proximity to magnetic order which occurs at integer doping

levels.

These theories for different possible mechanisms for insulating and superconducting states

are constructed and independently evaluated, however, meaning that while indications of possi-

ble mechanisms are possible, identifying the leading instability is difficult. A method which can

simultaneously treat multiple possible instabilities and identify the leading instability without

bias is the functional renormalisation group. While this method is formally a weak coupling

method, with magic-angle tBLG presumably being well in the strong coupling regime, some

success came from this method. A study by Kennes et al. [108] demonstrated, using a simpli-

31



fied Hubbard model of tBLG∗, that a Mott-like insulating state at −2 electrons per moiré unit

cell was obtained at high temperatures, with an unconventional superconducting phase at the

same doping level but at lower temperatures [108]. At larger interaction strengths, a Mott-like

insulating state was also found to emerge at charge neutrality [108]. Their theoretically pre-

diction phase diagram had similarities to the initially experimentally obtained one by Cao et

al. [88, 89], and also gave indications of further correlated states.

Tuning twisted bilayer graphene

These experiments and theoretical studies worked hand-in-hand to generate further excitement

in the field, and the burgeoning field of twistronics [110] started to branch out in myriad

directions [111]. There were three main directions in which the field progressed since the works

of Cao et al. [88, 89]. One direction of study was to further tune tBLG through applied

hydrostatic pressure [112], alignment with substrates [113] and proximity to the electrostatic

gates [114]. Another direction was to further understand the phases of tBLG through different

experimental methods. Finally, moiré graphene multilayers beyond tBLG were investigated†.

Each of these directions shall be summarised in turn.

One of the first experiments after Cao et al. [88, 89] was by Yankowitz et al. [93], where

tBLG was further tuned through hydrostatic pressure. By applying hydrostatic pressure to

tBLG, the layers are squeezed closer to each other, which causes the interlayer separation to

decrease. This increases the hybridisation energy of the layers, which causes the magic angle to

increase slightly [112, 117]. Yankowitz et al. [93] found that a 1.27◦ twist angle device, which

does not have robust correlated insulating states or superconductivity at low temperatures, can

be tuned to exhibit correlated insulating states and superconductivity after the application of a

2.21 GPa hydrostatic pressure‡. Specifically, correlated insulating states were found at ν = ±2

∗The dispersion was assumed to be two copies (from the valley symmetry) of an ideal graphene dispersion [71]
with only nearest-neighbour hopping, t. Moreover, interactions were only treated through an on-site Hubbard
interaction, U . As discussed in the main text, there are long-ranged interactions of the Wannier orbitals of
tBLG. It has been shown [109] that long-ranged interactions can be included in an effective way through the
reduction of the on-site Hubbard parameter. Therefore, the ratio of U/t was the single parameter of the model.

†In fact, twistronics [110] has moved to other 2D materials beyond graphene, such as transition metal
dichalcogenides [115] and germanium selenide [116], for example. These materials shall not be reviewed here,
however.

‡Also found for a pressure of 1.33 GPa.
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electrons per moiré unit cell, as found by Cao et al. [88, 89], but in addition to these, resistive

peaks at doping levels of +1 and +3 electrons per moiré unit cell were also found [93]. In

addition, superconductivity was reported for the 1.27◦ device at 2.21 GPa for doping levels of

−2− δ, where δ is a small positively defined number [93]. In fact, the shift of the magic angle

to larger values was first theoretically predicted by Carr et al. [112] and Chittari et al. [117]

before the experimental measurements of Yankowitz et al. [93].

In the experiments of Yankowitz et al. [93], for a twist angle of 1.14◦ without applied

pressure, the phase diagram of magic angle tBLG was reported to have some differences to

the one measured by Cao et al. [88, 89]. Correlated insulating states were found at +2 and

+3 doping levels, but a well-developed insulating state was not observed at the −2 doping

level∗. Moreover, superconductivity was found between the +2 and +3 insulating states, but

not at 2− δ doping levels. Perhaps the most significant difference between Yankowitz et al. [93]

and Cao et al. [88, 89] was the presence of an extended superconducting dome between −2

and −3, without the presence of a well-developed insulating state. Upon turning on a positive

displacement field, a correlated insulating state at−2 develops, suppressing the superconducting

phase. Whereas, a negative displacement field further strengthened the superconducting phase

at −2. The effect of displacement field on the electronic structure of tBLG was predicted to be

quite weak†, which suggested these observations might be a consequence of twist angle disorder.

Overall, the experiments of Yankowitz et al. [93] suggested that the phase diagram of tBLG

was significantly more complex than originally thought.

This was most clearly demonstrated by experiments of Lu et al. [120]. Importantly, Lu et

al. [120] introduced an additional step in the fabrication of their tBLG devices. After performing

the tear-and-stack method, a relatively small pressure was applied to the device to “squeeze-

out” air bubbles between the graphene layers in tBLG [120]. This resulted in a tBLG sample

∗Note that this is in the absence of a displacement field.
†The effect of an electric field on the electronic structure was first predicted by Lopes dos Santos et al. [29].

It was shown that the Dirac cones of the low-energy states at K and K′ (of the moiré Brillouin zone) would
shift up/down in energy. This is occurs because the Dirac cone at K originates from one of the layers, while
the K′ Dirac cone originates from the other layer for a single valley. Since an electric field causes the layers
to have different energies, the Dirac cones from these layers are shifted in energy relative to each other [118].
The opposite effect happens to the other valley of tBLG. While the electronic structure is not drastically
changed by an electric field, it was shown that the magnetic order of magic angle tBLG could be tuned from
antiferromagnetic to ferromagnetic with an applied electric field [11, 119], which suggests that these observations
could have been intrinsic to tBLG.
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with a highly uniform twist angle of ∼1.10◦, with variations of less than 0.02◦∗. This device was

reported to have resistive features which were consistent with correlated insulating states at all

integer doping levels from −3 to +3 electrons per moiré unit cell, i.e. all integer doping levels

inside the flat bands [120]. In contrast to the previous works [88, 89, 93], an insulating state was

also observed at charge neutrality, which was found to be the strongest insulating state of them

all [120]. This was attributed to the fact that in previous devices twist angle heterogeneity

and strain mask the onset of correlated insulating states at charge neutrality [120]. In the

presence of a ∼4 T perpendicular magnetic field, the insulating state at ν = −1 exhibited

strong hysteretic behaviour consistent with a field stabilised orbital magnet [120].

Furthermore, the device of Lu et al. [120] exhibited superconducting domes between doping

levels of −3 and −2, −1 and 0, 0 and 1, and 1 and 2. The transition temperatures of some of

these superconducting domes were ∼3 K [120], which was higher than previous devices [89, 93].

Interestingly, the appearance of superconducting domes does not correspond to energies where

the DOS is largest [120], as could have been suggested for the devices of Cao et al. [89]. Instead,

superconducting domes close to charge neutrality were found, where the DOS is low in the

flat bands owing to the Dirac dispersion [120]. This, with the fact that the superconducting

domes were always in proximity to correlated insulating states, suggested that the origin of

superconductivity in their device could have been from an unconventional mechanism.

The debate about the origin of the superconductivity mechanism was further heated by the

observations of superconducting phases without correlated insulating states. In experiments

performed by Saito et al. [121] and Stepanov et al. [122], it was demonstrated that the proxim-

ity of the tBLG sample to the electrostatic gates could screen-out these correlated insulating

states†. These gates are essential for doping tBLG devices, with all previous experiments using

hexagonal boron nitride (hBN) substrates with thicknesses of 10-60 nm to separate tBLG from

these gates [88, 89, 93, 120]. At these separations from tBLG, the gates can dope tBLG, but

∗This was confirmed through comparing the resistive features of the tBLG sample through multiple different
contacts on the device. In addition, their data did not show the phase coherent Fraunhofer interference patterns,
which are a consequence of phase separation between normal and superconducting regions [120].

†Qualitatively similar results were also reported later by Liu et al. [123] where a tBLG device was separated
from a Bernal stacked bilayer graphene with an extremely thin hBN layer. The screening environment from the
Bernal stacked bilayer graphene could also be changed through electrostatic gating, which permitted further
control of the dielectric environment.
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the effect of screening from the induced image charges is minimal. It was only when a hBN

substrate with a thickness of ∼5 nm, [121, 122] which is shorter than the moiré length scale of

magic-angle tBLG, was used to fabricate a device that the effect of screening could be observed

in magic angle tBLG. In fact, this was first theoretically predicted to occur by Goodwin et

al. [75, 114].

The superconducting domes in the absence of correlated insulating states ranged over a

wide range of doping levels [121, 122]. These observations∗ suggested that the superconducting

phase was from a conventional mechanism [122], and that the correlated insulating states are

competing instabilities to the superconducting phase. While the superconducting domes were

found for both electron and hole doped systems, the peak in the critical transition tempera-

tures did not coincide well with the VHS that occur close to ν = ±2, which should occur if

the mechanism is conventional. Instead, the superconducting domes had the highest transition

temperatures at filling levels closer to ±1 or ±3 [121, 122]. In fact, there are some uncon-

ventional mechanisms of superconductivity which do not require correlated insulating states.

For example, the spin-fluctuation-induced superconductivity from the Hubbard interaction of

the pz orbitals does not require insulating states, but only magnetic order to be present [125].

Moreover, the Hubbard interaction of these atomic orbitals will not be strongly screened by

the gates, which indicates that magnetic order could still onset [126].

Another way in which tBLG can be tuned is through crystallographic alignment with the

substrate, as performed by Sharpe et al. [127] and Serlin et al. [128]. In the other experiments,

a large relative twist angle between the hBN substrates and tBLG was introduced to ensure

that the substrate was decoupled from tBLG [88, 89, 93, 120]. By aligning hBN to tBLG, the

C2 symmetry of tBLG is broken [113]. This causes an insulating state to emerge at charge

neutrality, which is not driven by correlations, but by the alignment to the substrate. In

addition, (correlated) insulating states were observed only for the electron-side bands, with the

insulating state at ν = 3 being particularly stable [127, 128]. Further analysis revealed that

this insulating state exhibits hysteretic resistance in a magnetic field, which indicates the onset

of ferromagnetic order [127, 128]. For a strong insulating state to occur at ν = 3, the valley

∗Superconductivity without correlated insulating states was also reported by Arora et al. [124] in a tBLG
device in proximity to WSe2 for twist angles from 0.97◦ to as low as 0.79◦.
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and spin degrees of freedom must be broken. This indicated that this insulating state should

be a Chern insulator∗, owing to an unequal population of the valleys.

Further experimental findings of twisted bilayer graphene

Next, the study of strongly correlated phases in tBLG through methods other than transport

measurements, and effects beyond correlated insulating states and superconductivity shall be

summarised. The use of STM measurements shall first be outlined, before moving on to ad-

ditional results from transport experiments, electron compressibility measurements, amongst

other techniques.

To investigate tBLG with an STM, the tear-and-stack method had to be modified to expose

one side of tBLG, making it accessible to the STM tip. This challenge was overcome quickly,

and devices with a single back gate were constructed to investigate the doping dependence of

tBLG [129–133]. Importantly, STM is an experimental technique that can measure a quantity

which is directly proportional to the LDOS. Therefore, this method can provide direct insight

into the local electronic structure of tBLG.

For angles around 1-3◦, two large peaks close to the Fermi energy in the LDOS of the AA

regions were reported, consistent with earlier work [44–49]. As the angle is decreased from

large angles ∼ 3◦ to small angles ∼ 0.8◦, significantly smaller than the magic angle predicted

by Bistritzer and MacDonald [33], Kerelsky et al. [129] reported a monotonic decrease in the

separation of these two peaks, which correspond to the VHS of the flat bands. This indicated

a discrepancy between the experimental results and the prior electronic structure calculations,

which predicted the separation of the VHS to vanish at the magic angle of 1.05◦ [33]. The

discrepancy suggested that the minimum in the bandwidth, i.e. the Fermi velocity of these

bands, actually occurred at angle of ∼ 0.8◦ [129]. In fact, it is well known that electronic struc-

ture methods based of DFT underestimate the Fermi velocity of graphene, with experiments

and GW calculations indicating a Fermi velocity which is ∼20-30% larger [129, 134]. Interest-

ingly, despite the Fermi velocity of the flat bands not being minimal at 1.1◦, the experiments

still reported this angle to be the magic-angle of the system, as defined by the observation of

∗The existence of Chern insulating states shall be discussed in more detail later.
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correlated phases (which shall be shortly discussed) [129].

At angles just slightly above the magic angle (1.15◦ and 1.72◦, respectively), Kerelsky et

al. [129] and Xie et al. [130] reported pinning of the VHS as a function of doping level in the

flat bands. Starting from a Fermi energy below the flat bands of tBLG (completely empty flat

bands), increasing the Fermi energy causes a rigid shift of the LDOS of the flat bands, with the

valence-side VHS peak being significantly larger than the conduction-side [129, 130]. This rigid-

shift is consistent with a non-interacting picture. Upon doping inside the flat bands, the Fermi

energy rapidly reaches the valence-side VHS, and is pinned there for a wide range of doping

levels, significantly larger than expected from non-interacting theories [129, 130]. Only when

the doping level has reached ν ≈ −2 electron per moiré unit cell does the Fermi level pinning

cease, and the LDOS exhibits the characteristic V-shape of the Dirac cones [129, 130]. The

Fermi level passes through the Dirac cone feature of the flat bands, but becomes pinned again

upon reaching the conduction-side VHS until the flat bands are completely filled [129, 130]. At

these Fermi energies, the peaks of the valence and conduction VHS are comparable, which is

in contrast to the case when the bands were completely empty [129, 130].

These experiments suggested that there is a sensitive doping-dependence of the electronic

structure of tBLG in the normal state. In fact, this was first predicted by Guinea and Walet [95]

using a mean-field Hartree theory based on a continuum model of tBLG. This motivated others

to theoretically study electron-electron interactions and Fermi level pinning from Hartree theory

in tBLG using various models. For example, Cea et al. [135] employed the continuum model,

Rademaker et al. [136] and Goodwin et al. [137] used the atomistic tight-binding model, and

Calderón and Bascones [138] employed the local 8-orbital model [81] of the flat bands.

Experiments performed by Xie et al. [130] indicated the break-down of mean-field approx-

imations at an angle of 1.01◦. For doping levels where the bands were completely filled or

empty, the LDOS comprised of two peaks, corresponding to the VHS. However, for doping

levels inside the flat bands, the LDOS underwent drastic distortions, changing significantly

with doping level, even at non-integer values [130]. At most doping levels, the LDOS looked

completely different from a singe-particle calculation, as three or four well defined peaks were

often present [130]. The only exception was at charge neutrality, where two peaks occurred in
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the LDOS, although with a separation several times larger than that was found in empty/filled

bands [130]. This indicated the formation of a correlated insulating state at charge neutral-

ity with a large gap [130], much larger than those reported from transport experiments [120].

The calculations performed by Xie et al. [130] demonstrated that these observations were not

consistent with mean-field calculations, even with symmetry breaking, but required strong cor-

relations to be accounted for using exact diagonalization of a phenomenological model of the

flat bands.

In contrast, the experiments of Kerelsky et al. [129], Jiang et al. [131], Choi et al. [139] and

Zhang et al. [140] found that their spectra where much closer to the single-particle picture for

angles near the magic angle. Moreover, they all reported that upon doping the flat bands by

±2 electrons per moiré unit cell, the VHS at these doping levels would split into two peaks,

indicating the onset of a broken symmetry phase [129, 131, 139, 140]. At this doping level,

real-space maps of the LDOS at the Fermi energy demonstrated that these correlated phases

exhibit nematic ordering. Namely, the (approximate) C3 rotational symmetry exhibited in the

AA regions of the moiré unit cell was broken, leaving only an (approximate) C2 rotational

symmetry at these points [129, 131, 139, 140]. While this rotational symmetry breaking could

occur because of residual strain in tBLG, it was noted by Choi et al. [139] that the effects of

strain were not sufficiently large enough to explain the extent of the symmetry breaking, which

indicates that this rotational symmetry breaking originates from interaction-driven nematic

ordering. It was also noted that the nematic order could be stabilised by the strain as in some

of the experiments the nematic axis and strain were aligned [129].

In fact, using transport experiments, Cao et al. [141] also found signs of nematicity [142, 143].

At high temperatures (∼10 K), anisotropic features in the “normal state” were observed at

ν = −2 − δ (again δ is defined as a small, positive number) in the resistivity [141]. Lowering

the temperature causes this anisotropic response to strengthen and shift towards doping levels

closer to ν = −2, where it eventually intersects the superconducting dome at doping levels just

under the correlated insulating state. Where these phases intersect in ν − T space, a reduction

in the superconducting transition temperature was observed [141]. Upon applying a perpen-

dicular magnetic field of 0.5 T, the superconducting phase was suppressed, and it was found
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that the anisotropic state persists at low temperatures. Therefore, this anisotropic “normal

phase” competes with the superconducting phase [141]. Moreover, nematic characteristics were

observed in the superconducting phase, the axis of which was highly sensitive to the doping

level [141]. These findings suggest that nematicity is a “normal”-state property of tBLG [141].

Further insight into tBLG came through STM [144, 145], local electronic compressibil-

ity measurements [146], and transport experiments [147, 148], where Chern numbers of C =

±1,±2,±3 at doping levels of ν = ±3,±2,±1 were observed. In transport experiments [147,

148], this can be deduced from the observation of the quantised Hall conductance, while in

STM [144, 145] and local electronic compressibility [146], this comes from the magnetic field

dependence of the gap. These observations were interpreted as spin and valley polarised Chern

insulators, which validate the topological nature of the bands which was theoretically predicted.

Moreover, Xie et al. [149] found evidence of fractional Chern insulators and Stepanov et al. [150]

found evidence for Chern insulators in zero magnetic field at ν = 1. While evidence for zero-

field Chern insulators was observed upon aligning tBLG to hBN at ν = 3 [127, 128], which

comes from explicit breaking of C2 from the alignment, these later observations where a direct

consequence of interactions, rather than a secondary effect.

These observations suggested a clear sequence of symmetry breaking transitions. Using

STM and local electronic compressibility measurements, respectively, Wong et al. [151] and

Zondiner et al. [152] reported the observation of a cascade of phase transitions, where Dirac-

like features emerge as integer doping levels in the flat bands are reached. For example, starting

from charge neutrality with all four flavours equally populated, consider adding electrons to

the system [151, 152]. Close to when a single additional electron per moiré unit cell has been

added beyond charge neutrality, a symmetry breaking phase transition occurs, causing the

electrons to fill one of the flavours, returning the other flavours to the Dirac-point, resulting

in Dirac features in the electronic compressibility measurements [97, 151, 152]. This transition

was observed to occur upon reaching each integer filling, although it was more pronounced in

the electron-doped systems, giving rise to a “cascade of Dirac revivals” [151, 152]. Interestingly,

these features arose for relatively high temperatures of ∼30 K, indicating that this Dirac cascade

is the high-temperature parent state from which the strongly correlated phases emerge at low
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temperatures [151, 152].

Using local and global electronic compressibility and entropy measurements, evidence of

the Pomeranchuk effect in magic angle tBLG was reported by Rozen et al. [153] and Saito et

al. [154]. Pomeranchuk [155] first predicted the counterintuitive effect of 3He freezing upon

heating, owning to the high excess spin entropy in the solid phase in comparison to the liquid

phase. In magic angle tBLG, an electronic analogue of the Pomeranchuk effect was found

to occur close to ν = ±1 electrons per moiré unit cell [153, 154]. At low temperatures, the

electrons were found to have Fermi liquid-like behaviour, which transitions to a free moment

phase with a large entropy at higher temperatures [153, 154]. Interestingly, this free moment

phase was observed to exist at low temperatures (∼ 3 K) without a thermodynamic gap, i.e.

it remains metallic [153, 154]. The resistive peaks at ν = 1 in most transport experiments

were always significantly less developed, which can presumably be attributed to this electronic

Pomeranchuk effect [155].

Finally, many other experiments on tBLG have also revealed interesting effects. For exam-

ple, superconducting quantum interference device measurements have been used to map out

the twist angle disorder [156] and local magnetic structure of tBLG [157], angle-resolved pho-

toemission spectroscopy with nanoscale resolution has directly probed the electronic structure

of magic angle tBLG [158, 159], collective excitations have been probed using AFM [160], and

enhancements to thermoelectricity [161] have also been found. The summary here is naturally

not exhaustive, and it is clear that this is not the end of the story for tBLG.

Overall, this part of the Introduction has provided some insight and evidence that strong

correlations give rise to many intriguing effects in magic angle tBLG. At the point of writing, it is

clear that there remains to be some experimental discrepancies between different measurements,

and that the origin of (some of) these reported phases further divides the theoretical community

that aims to understand these observations. It has, however, generated enormous excitement,

causing many others to explore moiré materials beyond tBLG.
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Twisted double bilayer graphene

In terms of moiré graphene multilayers [162], one of the first systems to be investigated after

tBLG was twisted double bilayer graphene (tDBLG), where instead of stacking and twisting two

graphene layers, two Bernal stacked graphene bilayers were stacked and twisted relative to each

other, as seen in Fig. 1.8. The electronic structure of Bernal stacked bilayer graphene consists

of parabolic bands which touch at the Fermi level of the neutral system [1]. In 2D, this gives

rise to a finite DOS at the Fermi level, in contrast to graphene where the DOS vanishes at the

Fermi level [32]. There has, in fact, been reports of strong correlations in Bernal stacked bilayer

graphene [24], which would intuitively suggest it is a good candidate of strong correlations as a

moiré material. Moreover, Bernal stacked bilayer graphene is quite sensitive to perpendicular

electric fields [1], which breaks the inversion symmetry, causing a gap to open up where the

parabolic bands touch.
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Figure 1.6: Moiré pattern of twisted double bilayer graphene (left). Electronic structure of
twisted double bilayer graphene (right) at a twist angle of 1.7◦ calculated from the atomistic
tight-binding model. A relaxed structure was utilised for the atomic positions, and no additional
on-site potentials were included.

Theoretically, the electronic structure of tDBLG was investigated using ab initio meth-

ods [163–165], atomistic tight-binding approaches [163] and the low-energy continuum mod-

els [166]. The latter approaches found that tDBLG also exhibits a magic angle, albeit at a

slightly larger angle of ∼1.3◦ in comparison to tBLG [163, 167]. The flat electronic states of

tDBLG were found to resemble those of tBLG, as seen in Fig. 1.8, with the key difference being
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the presence of parabolic bands (touching) at the K/K′ points instead of a Dirac cone∗. As

alluded to earlier, the electronic structure of tDBLG was found to be extremely sensitive to

perpendicular electric fields [166, 168], owing to the sensitivity of each Bernal bilayer to the

field.

Using the tear-and-stack method†, Shen et al. [169], Liu et al. [170], Burg et al. [171] and

Cao et al. [172] fabricated magic-angle tDBLG and investigated its properties using transport

experiments. In the absence of a perpendicular displacement field, trivial band insulating states

were found upon completely filling/emptying the isolated flat bands [169–172]. In the presence

of a perpendicular displacement field, a strong insulating state occured at charge neutrality,

owing to inversion symmetry breaking of the Bernal bilayers [1]. In addition, a correlated

insulating state was found to occur upon the addition of ν = +2 electrons per moiré unit cell

(in the presence of a finite displacement fields) at a temperature of ∼4 K [169–172]. The gaps

associated with these correlated insulating states were found to increase upon application of

an in-plane magnetic field, suggesting these states have a ferromagnetic character [169–173].

These transport experiments also found indications of superconductivity‡, and in the presence

of ferromagnetic order, the mechanism could well be unconventional [174].

Using STM experiments, Zhang et al. [175] and Liu et al. [176] investigated the correlated

phases of tDBLG at the magic angle. The observations of these local measurements were found

to be consistent with the transport measurements. Correlated insulating states were only found

upon doping tDBLG by +2 electrons per moiré unit cell, and a perpendicular displacement field

is always present in the single-gated devices upon doping [175, 176]. The electronic structure

of tDBLG was found to be sensitive to the doping level, which changes with the back-gate

voltage. This effect, however, is not intrinsically due to the doping level change in tDBLG [177].

A continuum model calculation by Pantaleón et al. [178] showed that Hartree interactions are

quite weak in the normal state of tDBLG, and therefore, these doping-dependent changes to the

electronic structure are solely caused from changes to the perpendicular displacement field [177].

∗Note this was actually for large angles where this feature was evident. At angles closer to the magic angle,
the features of the electronic structure is not so clear, and depend sensitively on the model.

†Note that the tear and stack method naturally creates and AB-AB quad-layer system. While a AB-BA
system is also possible, this system is harder to fabricate. In fact, calculations have shown there is little difference
between these two [166].

‡This is not well agreed upon, however [98].
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In addition, Rubio-Verdé et al. [177] found evidence of nematic order in tDBLG close to the

magic-angle from STM experiments. Similar to tBLG, a breaking of the C3 rotational symmetry

occurred, which was found not to be associated with strain in the material. In fact, it was also

not induced through changes in the perpendicular displacement field, and was observed for a

range of doping levels in the flat electronic states (but not the remote bands) [177]. At very

small twist angles of tDBLG, Kerelsky et al. [179] found evidence of strong correlations in the

ABCA stacking regions but not the ABAB stacking regions.

Also at large twist angles, tDBLG was found to exhibit interesting properties in transport

experiments performed by Rickhaus et al. [164, 180]. At an angle of 2.36◦ in moderate displace-

ment fields, tDBLG was found to exhibit charge density waves [180]. These states could be

realised in this system, in contrast to tBLG, because of the nesting which can be achieved in the

electronic structure of tDBLG in the presence of a displacement field. In addition, at a large

twist angle, but in the absence of a displacement field, their transport experiments revealed the

existence of a gap at charge neutrality [164]. While the predictions of the continuum model and

atomistic tight-binding theories indicated there should be a quadratic band touching at charge

neutrality, DFT calculations were found to have a small gap at charge neutrality [163–165].

In theoretical calculations of Haddadi et al. [163] and Rickhaus et al. [164], the existence of a

gap at charge neutrality was interpreted as the presence of a “intrinsic symmetry polarisation”

or a “crystal field”, respectively. This crystal field is an intrinsic potential difference which

occurs in this quad-layer system, as the outer layers are inequivalent to the inner layers∗.

The outer layers were found to have a larger potential energy than the inner layers, which

suggested that the electrons accumulate on the inner layers of the quad-layer system [163–165].

To reproduce the DFT calculations, it was found that the potential felt by the electrons on

the inner layers used in a tight-binding calculation needed to be approximately 30 meV lower

on the inner layer relative to the outer layers [163–165]. The origin of this field is not well

understood, however.

∗The outer layers in a DFT calculation either face a vacuum, or a substrate such as hBN. Whereas, the
inner layers only have adjacent graphene layers. Therefore, the graphene layers are in chemically different
environments.
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Twisted mono-bilayer graphene

In a similar spirit, a moiré graphene multilayer comprising of a monolayer of graphene twisted

relative to a Bernal-stacked bilayer graphene, the structure of which is shown in Fig. 1.7, referred

to as mono-bilayer graphene or AtAB, has also been investigated in some depth. This material

is conceptually interesting, as it was not a priori evident if it was going to behave more similar

to graphene, bilayer graphene, a trilayer graphene, or even something entirely different.
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Figure 1.7: Moiré pattern of mono-trilayer graphene (left). Electronic structure of mono-
trilayer graphene (right) at a twist angle of 1.7◦ calculated from the atomistic tight-binding
model. A relaxed structure was utilised for the atomic positions, and no additional on-site
potentials were included.

It was shown using a continuum model [181, 182] that the electronic structure of AtAB

is similar to that of tBLG, as seen in Fig. 1.7. A magic angle was found to occur at a twist

angle of ∼1.2◦, where the isolated flat bands reach a minimum bandwidth [181, 182]. Instead

of there being a set of Dirac cones with a valley degeneracy at the K/K′ points (as is the case

for tBLG), there is a set of parabolic bands from the AB bilayer and a Dirac cone from the

monolayer [182]. Within the low-energy electronic structure of a single valley of the continuum

model approximation, the K-points of the moiré Brillouin zone host a Dirac cone from the

twisted graphene layer, and the K′-points have a set of parabolic bands from the Bernal bilayer;

with the other valley having the opposite ordering of the K/K′ points for the features in the

electronic structure, because of time reversal symmetry [182]. This is an interesting difference

to the cases of tBLG and tDBLG, where the K/K′ points within a valley had the same features
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in the electronic structure. Similar to these materials, the low-energy electronic structure of

AtAB was found to be topologically non-trivial [181, 182]. In the presence of an electric field,

the electronic structure deforms drastically, presumably because the inversion symmetry of the

bilayer is broken [181, 182].

Using transport experiments, Chen et al. [183], Polshyn et al. [184] and Shi et al. [185] found

evidence of strong correlations in this moiré material near its magic angle, which was quite

sensitive to the sign of the displacement field which was applied. At charge neutrality, semi-

metallic behaviour was found at small displacement fields, which transitions to a trivial band

insulator when the displacement field is large enough [183–185]. For the hole-doped system,

independent of displacement field, no evidence of interaction-induced broken symmetry phases

was found [183–185]. This observation is similar to tDBLG [169–172], but is not consistent

with the measurements of tBLG [98]. For a displacement field which lowers the energy of

the AB bilayer with respect to the twisted graphene layer, a correlated insulating state at

ν = 2 electrons per moiré unit cell is reported over a narrow range of displacement fields, again

consistent with the reports of tDBLG [183]. Moreover, evidence of ferromagnetism was found

at ν = 1 when the displacement field lowers the energy of the AB bilayer [183]. On the other

hand, for displacement fields which lower the energy of the twisted graphene sheet relative

to the AB bilayer, the system becomes more similar to tBLG [183]. Resistive peaks at each

electron-doped integer doping are found. While transport experiments did not find conclusive

evidence of superconductivity, STM experiments of Shi et al. [185] found a superconducting

gap at non-integer fillings (between ν = 1 and ν = 2) in the presence of a displacement field.

Twisted trilayer graphene

These moiré graphene multilayers, namely tDBLG and AtAB, have adjacent layers of graphene

in which the crystallographic axes are aligned and twisted, i.e. Bernal stacked bilayer graphene.

The experimental community was able to quickly fabricate such moiré materials, as the moiré

material could be constructed in a single step, similar to tBLG. It was theoretically proposed by

Khalaf et al. [186], however, that perhaps a more interesting moiré graphene trilayer (and quad-

layer) system might exist if there are no adjacent layers of graphene where the crystallographic
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Figure 1.8: Moiré pattern of twisted trilayer graphene (left). Electronic structure of twisted
trilayer graphene (right) at a twist angle of 1.7◦ calculated from the atomistic tight-binding
model. A relaxed structure was utilised for the atomic positions, and no additional on-site
potentials were included.

axes are aligned, i.e. Bernal or rhombohedral stacked graphene layers. More specifically, they

proposed a moiré graphene multilayer where the twist angle alternates by ±θ between adjacent

sheets∗, since this protects the C2T symmetry, which is present in tBLG, but not tDBLG or

AtAB [186]. Actually, this symmetry only holds for these alternating-twist-angle structures

if the graphene layers which are not adjacent are aligned, and do not have a relative shift of

positions, i.e. they are “AA” stacked. For twisted trilayer graphene (tTLG), Carr et al. [190]

demonstrated that the lowest energy structure occurs when the middle layer of an AAA† stack

is twisted relative to the encapsulating graphene layers. Therefore, starting from an initial

AAB/BBA/ABC stack and twisting the middle layer causes the structure to have a larger en-

ergy than if the initial stacking was AAA [190]. This occurs because in the AAA system, upon

twisting the middle layer, the moiré patterns of the upper and middle graphene layer, and the

lower and middle graphene layer align, permitting coherent reconstruction effects [190]. There-

fore, it is this “AtAtA” system, as seen in Fig. 1.8, which we refer to as tTLG and continue to

summarise.

It was found, from a minimal continuum model, that the low-energy electronic structure of

∗Generally, the twist angles do not need to be symmetric, which leads to multiple moiré patterns, which
can also have interesting effects [187–189].

†The relative shift of the middle layer to the encapsulating outer layers is actually inconsequential, as this
simply shift the positions of the different stacking orders. Therefore, an ABA starting configuration is equivalent.
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tTLG can be mapped onto a tBLG and graphene layer that are decouple from each other [186].

Therefore, the low-energy electronic structure consists of a Dirac cone with a large Fermi

velocity, and a set of flat electronic bands which are analogous to tBLG [126, 190–193], as

shown in Fig. 1.8. One key difference between the flat bands of tTLG and tBLG is that the

magic angle of tTLG is
√

2 larger than in tBLG. Therefore, the magic angle of tTLG occurs

at approximately 1.5◦. It was also shown that the LDOS is peaked in the AAA regions of

the moiré unit cell, with a larger weight on the middle layer relative to the outer layers for

the wavefunctions of the flat electronic bands at the edge of the hexagonal moiré Brillouin

zone [126, 194, 195]. It was theoretically shown by Fischer et al. [126] that tTLG exhibits

similar effects from Hartree interactions as tBLG. In contrast to tBLG, however, tTLG was

predicted to be quite sensitive to a perpendicular electric field. It was found by Lopez-Bezanilla

and Lado [192] that the two VHS of the flat bands merge at a critical electric field, causing a

massive enhancement of the DOS.

It was found by Park et al. [196] and Hao et al. [197] that magic-angle tTLG is perhaps

the most correlated and tunable moiré graphene multilayer fabricated to date. In the absence

of a displacement field, the results of their transport experiments resembled those of tBLG. In

particular, resistive peaks near integer doping levels per moiré unit cell∗, and robust supercon-

ductivity was observed between ν = −3 and ν = −2 [196, 197]. Note that while signatures

of superconductivity have been found in moiré graphene multilayers other than tBLG, tTLG

is the only other system where its existence is not debated. Moreover, signatures of the Dirac

revival features were also observed [196].

In the presence of a perpendicular displacement field, the superconducting phase was found

to be further stabilised. In fact, Hao et al. [197] reported an additional superconducting dome

to appear at ν = +2 and ν = +3 in the presence of a large displacement field. While Park et

al. [196] actually found superconducting domes between these fillings in the absence of a dis-

placement field, they also reported superconducting domes to appear between ν = 1 and ν = 2.

Moreover, the largest critical transition temperature for superconductivity was found in the

presence of a moderate displacement field [196, 197]. Interestingly, their transport experiments

∗Note that these were not referred to correlated insulating states, however, since the dispersive Dirac cone
persists.
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indicated that these superconducting phases were bounded by VHS [196]. Therefore, the super-

conductivity appears to occur at doping levels where the DOS is not the largest, which suggests

an unconventional mechanism for superconductivity [196]. It was later found by Cao et al. [198]

that superconductivity in magic-angle tTLG close to ν = −2 in a displacement field violates

the Pauli limit for conventional spin-singlet superconductivity. In other words, superconduc-

tivity was only destroyed by an in-plane magnetic field of 8 T, which is 2-3 times larger than

expected for a conventional spin-singlet superconductor [198]. At even larger in-plane fields

(of ∼10 T), the superconducting phase is stable again, indicating re-entrant superconductiv-

ity [198]. These measurements suggest that superconductivity in tTLG is not a conventional

spin-singlet mechanism [198].

Trends in moiré graphene multilayers

It appears, then, that moiré graphene multilayers with alternating twist angles between adjacent

graphene layers are a more promising route to study strong correlations than moiré graphene

multilayers in which there are adjacent layers that are aligned. In this spirt, some researchers

have started to make predictions of the trends of these different systems. In other words,

the qualitative differences between these two classes of moiré graphene multilayers, and how

these properties change with the number of graphene layers. For example, Choi and Choi [199]

have studied the electron-phonon coupling of various moiré graphene multilayers. Their results

clearly show that alternating twist angle structures exhibit significantly stronger coupling than

ones with adjacent aligned layers [199]. Moreover, from comparing tBLG and tLTG, one might

wonder if moiré graphene multilayers with more layers are more promising. Moiré materials in

3D has been theoretically studied by Cea et al. [200] and Xian et al. [201].

In summary, moiré graphene multilayers have been shown to exhibit a wide range of in-

teresting phenomena. Given the recent experimental advances and activity in the theoretical

community, it is timely to investigate these materials. In this work, we take the perspective of

an atomistic model. In this approach, there are two length scales: the length scale associated

with the underlying graphene layers, and the longer moiré length scale arising from twisting.

Here we investigate the interplay of these two length scales.
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Chapter 2

Methods

Atomistic methods have exclusively been used to investigate moiré graphene multilayers in the

work described here [30]. The advantage of atomistic methods is that the interplay between

the carbon-carbon bond length and the moiré length scale can be investigated. These meth-

ods, however, are typically significantly more computationally expensive than others, such as

continuum model approaches [30]. As such, the computational expense of the methods re-

stricts our analysis of moiré graphene multilayers to have only one moiré pattern from a twist

angle (down to ∼1◦, which is sufficient to probe magic angle systems), with systems of up

to 4 layers†. Furthermore, we do not account for any disorder effects [202], such as heteros-

train [203, 204], defects [205, 206], or consider any additional moiré patterns created from the

substrates [20, 21, 113, 207].

This chapter has the following structure. Firstly, we outline the convention used to define

the lattice structure of moiré graphene multilayers with a single twist angle. We then briefly give

details of the methods employed to model the atomic reconstruction effects of these materials.

Next we describe the methods used to investigate the electronic properties of moiré graphene

multilayers. Starting with a brief summary of the employed ab initio methods, we move onto

describing the “non-interacting” atomistic tight-binding method (since this is the main starting

point for our calculations). We then describe how to calculate the Wannier functions and

†When there are more than two layers in the moiré graphene multilayer, multiple twist angles can exist.
Such structures often have unit cells with length scales that are extremely long [187]. The atomistic methods
cannot be employed with reasonable computational expense to investigate these systems, owing to the number
of atoms being too large, as beyond 20,000 atoms these atomistic methods become prohibitively expensive.
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screened interactions from this model. Finally, we move onto including interactions in this

model, where we outline an atomistic Hartree tight-binding theory, an atomistic Hubbard

tight-binding theory, and the extended Hubbard model of the flat bands. Details of the spin

susceptibility calculations carried out in a collaboration with Lennart Klebl and Dante Kennes

are also provided [208].

2.1 Commensurate moiré graphene multilayers

In pristine graphene, the primitive unit cell contains two atoms, with all other atoms in an

infinite sheet of graphene being reached by translations given by the unit cell vectors (a1 and

a2 are defined later), as demonstrated in Fig. 2.1 [1]. These two atoms in the unit cell belong to

different sublattices, referred to as the A and B sublattice, as indicated by red and black circles,

respectively, in Fig. 2.1. Individually, each of these sublattices form a triangular lattice, but

when considered together they form a honeycomb lattice. Since graphene is a 2D material, we

shall use the convention of defining it to be in the x− y plane throughout. When considering

more than one layer of graphene, the layers reside at different values of z.

For two (or more) layers of graphene, additional degrees of freedom arise from the relative

registry between the layers and the alignment of the crystallographic axes of each graphene

layer [209]. In the case of perfect alignment of the crystallographic axes, or a symmetry equiva-

lent structure, only the stacking registry remains as a degree of freedom. As the lattice vectors

of each graphene layer are identical (in the absence of strain), the unit cell of bilayer graphene

is the same as that of graphene [1, 24]. When there is not perfect alignment between crys-

tallographic axes of each graphene layer (but still ignoring strain), translational symmetry is

not always present. Translational symmetry is only present when there is a relative twist an-

gle between the two graphene sheets that can be expressed in terms of integer multiples of

graphene unit cell vectors [29, 32, 37]. These are referred to as commensurate structures, where

the relative twist angle between the two graphene sheets generates a honeycomb moiré pattern

with a well defined length scale that is larger than the length scale of the underlying graphene

honeycomb lattice.

Since moiré graphene multilayers with only a single twist angle are considered here, the
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a1
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Figure 2.1: Schematic of graphene lattice demonstrating the different sublattices (as shown
by red for A and black for B), the lattice vectors of graphene (a1 and a2), the nearest neighbour
carbon atoms (as shown, a sublattice A carbon has only sublattice B carbon atoms for nearest
neighbours), and next nearest neighbour atoms (as shown, a sublattice A carbon has only
sublattice A carbon atoms for next nearest neighbours).

method for defining commensurate moiré structures of Trambly de Laissardière et al. [32, 37]

was employed∗. In this method, one starts with a graphene multilayer system with all graphene

lattice vectors being aligned (different stacking configurations can be considered, but this does

not affect the definition of the commensurate moiré structure). A twist angle with a commen-

surate moiré structure is created through choosing a vector

V (m,n) = ma1 + na2, (2.1)

where a1 and a2 are the lattice vectors of graphene [1] given by

a1 =
a0

2



√

3

−1


 , a2 =

a0

2



√

3

1


 , (2.2)

∗See also Ref. 29.

51



V′(n,m)

V(m,n)

Figure 2.2: Schematic demonstration of how to construct commensurate unit cells when a
relative twist angle exists between two graphene sheets. (left) - Defining vector which gen-
erates a commensurate structure, as explained in the text for n = 3 and m = 4. (right) -
Corresponding commensurate moiré unit cell, with black dashed line indicating the moié unit
cell. Again, grey lines correspond to bonds between atoms in the top, twisted layer, with black
lines corresponding to bonds in the bottom, untwisted layer.

with a0 denoting the lattice parameter of graphene, and n and m are non-equal integers which

multiply these graphene lattice vectors. The origin of this vector is chosen as the rotation

center, and a layer of graphene is rotated such that the lattice point at V (m,n) now resides at

V ′(n,m). This procedure is demonstrated in Fig. 2.2. The commensurate moiré lattice vectors

are given by

R1 = na1 +ma2, R2 = −ma1 + (n+m)a2. (2.3)

These vectors connect the intrinsic length scale associated with the atomic structure of graphene

to the moiré length scale that is constructed through introducing a twist angle between graphene

sheets. Here we only consider m = n+ 1 structures.

The number of atoms in the moiré unit cell is given by

N = 2Nl(n
2 + nm+m2), (2.4)

where Nl is the number of layers in the moiré graphene multilayer (with a single twist angle).
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Therefore, the total number of atoms increases approximately quadratically with n and m, but

linearly in the number of layers in the moiré graphene multilayer.

The corresponding twist angle, θ, for the commensurate moiré structure is

cos θ =
n2 + 4nm+m2

2 (n2 + nm+m2)
. (2.5)

For increasingly large values of n and m, and small values of the difference between these

integers, the twist angle tends to zero, as both numerator and denominator tend towards the

same value (∼ 6n2, if m ≈ n for large n). The moiré length scale [95] can be connected to the

twist angle through

Lm =
a0

2 sin(θ/2)
. (2.6)

Therefore, at small angles, the moiré length scale increases as a0θ
−1, which is a key relationship.

The reciprocal space vectors [209] of a crystal are determined by

Ri ·Gj = 2πδij, (2.7)

where δij is a Kronecker delta function. For 2D structures, the reciprocal lattice vectors are

given by

G1 =
2πR2 × ez
|R1 ×R2|

, G2 =
2πez ×R2

|R1 ×R2|
. (2.8)

Therefore, the reciprocal lattice vectors become shorter with the decreasing twist angle.

In the above description, commensurate moiré graphene multilayers were defined, but the

convention does not require information about the origin of the rotation and the relative stacking

of the layers. To generate a moiré graphene multilayer, this information is required, with

different choices leading to moiré structures with different symmetries. In Fig. 2.2 we display

the convention which is used throughout. For layers which are being twisted relative to each

other, we initially stack the layers in an AA configuration, and choose an axis of rotation

which passes through atoms in both layers and that is perpendicular to the graphene sheets.
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This generates structures with D3 symmetry, but there is an emergent D6 symmetry at small

angles [64].

2.2 Structural relaxations

The moiré pattern causes the stacking order of the graphene multilayer to change throughout

the moiré unit cell: there are regions where adjacent layers have AA, AB/BA and saddle point

stacking, as shown in Fig. 2.3. These regions have different energies and interlayer spacings [1,

24, 210], which causes the atomic positions of a (suspended) moiré graphene multilayer to

change from the pristine coordinates outlined in the previous section. As summarised in the

Introduction, these atomic reconstructions lower the energy in the system and only introduce

modest strain of approximately 0.1% in the graphene layers [54, 59], and are important for the

electronic properties of moiré graphene multilayers.

Figure 2.3: Schematic demonstration of bilayer graphene systems with different stacking
order: AA (left), AB (middle) and saddle (right). Again, sublattice A is indicated in red and
sublattice B in black, with bonds of the top layer being shown in grey and bonds in the bottom
layer being shown in black.

To include atomic reconstruction effects of the moiré graphene multilayer, we employ several

approaches: (1) - approximate expressions for the z-displacements to mimic relaxations effects.

(2) - empirical force fields to obtain the minimum energy structure. Both of these methods

were employed here for tBLG (which approach was taken will be stated, in a footnote, each

time different results are presented), while for other moiré graphene multilayers only the latter

approach was taken.
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For tBLG at twist angles down to (approximately) 1◦, it was found to a good accuracy [42,

50, 54, 55, 67], the z-displacements of the carbon atoms followed the expression

z(rxy) = d0 + d1

∑

i=1,2,3

cos(Gi · rxy), (2.9)

where rxy are the (pristine) in-plane x−y coordinates and Gi are the shortest 3 reciprocal lattice

vectors (G3 = G1 + G2), and d0 = (dAA + 2dAB)/3 and d1 = 2(dAA − dAB)/9, with dAB and

dAA corresponding to the chosen interlayer spacing in the AB and AA regions, respectively [68].

The exact values of dAB and dAA depend on the twist angle. As shown by Uchida et al. [50], the

magnitude of the corrugation parameters changes with twist angle according to exp{−0.009θ2}

[implemented in Eq. (2.9) through dAA = dAB + (dAA − dAB) exp{−0.009θ2}].

For graphene-based systems, there are well known and tested empirical potentials to describe

the intralayer and interlayer interactions [54, 55, 67]. For the intralayer potential, we utilised

the AIREBO potential [211], which contains three main contributions [212]

EAIREBO = EREBO + ELJ/M + ETORS. (2.10)

Here EREBO is the REBO bonding energy contribution between carbon atoms that are separated

by less than 2 Å (therefore only nearest neighbours), which is the main chemical bonding

contribution to the potential [212]. The ELJ/M term is either a Lennard-Jones (LJ) or Morse

(M) intermolecular potential which contains information about the short-ranged repulsion and

attraction between carbon atoms [212]. Finally, ETORS is a torsional component which describes

how the energy changes with respect to the rotation of bonds [212]. The AIREBO potential can

describe quite well the structures which graphene can form, but to obtain accurate structures

with more than one layer an interlayer potential also needs to be included. Here we utilised the

Kolmogorov-Crespi (KC) [213] potential which can accurately describe the registry-dependent

interlayer interactions between graphene layers.

These potentials are implemented in the LAMMPS software package [214], which was used

to relax the structures (using the FIRE minimisation algorithm [215]) of tBLG and other moiré

graphene multilayers. A cut-off distance of 2.5 Å was used for the AIREBO-Morse potential,
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and a cut-off distance of 20 Å was used for the KC potential. The equilibrium set of atomic

positions, τi, for a moiré graphene multilayer would then be used in the atomistic methods to

calculate the electronic structure.

2.3 Density functional theory

Density functional theory (DFT) is a widely used method to investigate the properties of

materials [99, 216, 217]. In principle, DFT is an exact formalism, which determines the ground

state energy and electron density of a material through solving a set of one-electron Kohn-

Sham [218] equations

[T̂ + V̂KS] |φi〉 = εi |φi〉 . (2.11)

Here T̂ , V̂KS, |φi〉 and εi are the kinetic energy operator, the Kohn-Sham potential, the Kohn-

Sham one-electron wavefunctions and the Kohn-Sham energies, respectively. The Kohn-Sham

potential, which is the effective potential felt by the “non-interacting” electrons in the presence

of all other electrons, is given by

V̂KS = V̂ext + V̂H + V̂xc, (2.12)

where V̂ext is the external potential which contains the information of the atomic nuclei, V̂H is the

Hartree potential and V̂xc is the exchange-correlation potential. The latter is not exactly known,

however, and needs to be approximated. There are many approximations to the exchange-

correlation potential, with varying degrees of accuracy and computational expense. In addition,

the exact V̂ext is often approximated as a pseudopotential [99, 216]. This latter approximation is

more controllable and accurate, and reduces the computational cost of the calculation [99, 216].

For large systems, such as small twist angle moiré graphene multilayers, the use of accurate

electronic structure methods, such as GW [216, 219], is not reasonably accessible. Therefore,

performing DFT calculations with the local density approximation or generalised gradient ap-

proximation functionals is typically the route to investigate the electronic structure of these

materials [217, 220]. Even with these “cheap functionals”, the cost of performing a conven-
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tional plane-wave electronic structure calculation scales as O(N3
e ), where Ne is the number of

electrons [221]. Thus, even performing a calculation for a relatively large twist angle structure

can be extremely computationally expensive. There are, however, electronic structure methods

which take advantage of the “nearsightedness of electronic matter” [222, 223], which can permit

a linear scaling with the number of electrons (for large systems) [224].

2.3.1 Linear-scaling DFT

ONETEP [222, 224] is linear-scaling DFT code which was employed to efficiently investigate

the electronic structure of moiré graphene multilayers with relatively large unit cells (∼3,000

atoms). In ONETEP, O(Ne) scaling is achieved through the optimisation of a minimal set of

non-orthogonal generalised Wannier functions (NGWFs) [222, 224]. These local orbitals are

expanded in terms of periodic basis functions, which permits “plane wave accuracy” to be

achieved [222, 224]. For detailed reviews of the specifics of ONETEP, the reader is referred to

Refs. 222, 224.

For graphene based systems, we utilise 4 NGWFs per carbon atom to calculate the electronic

structure of moiré graphene multilayers. The PBE exchange-correlation functional [225] with

projector-augmented-wave pseudopotentials [226, 227] was utilised for these calculations with a

kinetic energy cut-off of 800 eV. The ensemble-DFT approach was used because of the metallic

nature of the studied systems [228, 229]. We perform these calculations using the positions

generated from the classically relaxed moiré graphene multilayers described in Section 2.2.

With the ONETEP code, we are able to study the electronic band structure [230] of systems

with twist angles as low as 2.45◦ with up to 4 layers.

2.4 Non-interacting atomistic tight-binding

In the tight-binding approximation, it is assumed that the electronic structure of a material can

be treated perturbatively to the comprising atomic states [216, 231, 232]. Therefore, the total

Hamiltonian, Ĥ, is approximated as the sum of contributions from the isolated atoms, Ĥatom,

and a perturbative term from the bringing the atoms from isolation into a material, ∆V̂tb. The

57



time-independent Schrödinger equation to be solved for a crystal is then

[Ĥatom + ∆V̂tb] |ψnk〉 ≈ Ĥ |ψnk〉 = εnk |ψnk〉 . (2.13)

Here εnk and |ψnk〉 are the eigenvalues and associated Bloch eigenstates, with n corresponding

to a band index and k is the crystal momentum (both of which are good quantum numbers for

the atomistic methods employed here). Note we suppress the spin index σ when there is a spin

degeneracy for clarity of notation.

The assumption of the electronic structure of a crystal being described as a perturbation

from atomic states means that the Bloch eigenstates can be expressed as a linear combination

of atomic states [216, 231, 232]. Since the electronic structure of graphene near the Fermi

energy can be approximated with only the pz atomic orbitals of carbon [1], we shall only need

to consider one type of orbital in the employed tight-binding method. Therefore, the Bloch

states are given by

|ψnk〉 =
∑

i

cnki |χki〉 , (2.14)

where |χki〉 and cnki are, respectively, the atomic states which are being linearly combined and

the associated coefficients which describe the weight of each atomic orbital to the Bloch state,

with the index i corresponding to an atom in the moiré unit cell. The atomic states can be

expressed as

|χki〉 =
1√
Nk

∑

R

eik·R |φz(r− τ i −R)〉 , (2.15)

where Nk, R, φz(r) and τ i are, respectively, the number of unit cells in the crystal, the lattice

vectors of the unit cell (defined in Section 2.1), the pz atomic orbitals of carbon (the expression

for which shall be introduced later) and the position of each carbon atom in the unit cell of the

moiré material (these are determined from Sections 2.1 and 2.2). Inserting the atomic states

into the linear combination yields
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|ψnk〉 =
1√
Nk

∑

i

cnkie
ik·R |φz(r− τ i −R)〉 . (2.16)

This form of the Bloch states have the convenient property of the coefficients being periodic

with respect to reciprocal lattice vectors, cnki = cnk+Gi.

Having established the Hamiltonian and trial Bloch wavefunction, we insert the trial Bloch

wavefunction of Eq. (2.14) into the Hamiltonian of Eq. (2.13) and pre-multiply by 〈χkj|. This

yields a set of N equations to be solved

∑

i

[〈χkj|Ĥ|χki〉 − εnk 〈χkj|χki〉]cnki = 0. (2.17)

This is achieved by diagonalising the Hamiltonian in matrix form for each value of k, which

yields the eigenvalues and coefficients of the Bloch eigenstates.

The second term in Eq. (2.17) is the overlap of the atomic orbitals, 〈χkj|χki〉. Using

Eq. (2.15) we have for the overlap

〈χkj|χki〉 =
1

Nk

∑

RR′

eik·(R−R
′) 〈φz(r− τ j −R

′
)|φz(r− τ i −R)〉 . (2.18)

Introducing the transformation ∆R = R − R′ and shifting the coordinates with r′ = r − R′

yields

〈χkj|χki〉 =
∑

∆R

eik·∆R 〈φz(r′ − τ j)|φz(r′ − τ i −∆R)〉 =
∑

∆R

eik·∆RSji∆R, (2.19)

where Sji∆R is the overlap matrix between orbitals located at j and i∆R. Generally, Sji∆R is

not a diagonal matrix, but often off-diagonal terms are ignored as the contributions are typically

smaller, such that only the diagonal terms (Sji∆R = I) are retained in the Hamiltonian.

The first term in Eq. (2.17) is the Hamiltonian matrix elements. Performing a similar

analysis, we arrive at

〈χkj|Ĥ|χki〉 =
∑

∆R

eik·∆R[δijδ∆R,0εi + t(τ i − τ j −∆R)δτ i,τ j+∆R]. (2.20)

Here εi is the on-site energy of atom i, and t(r) is the tunnelling matrix element between atom
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i and j, which is often referred to as the hopping of electrons between atoms. In the two-centre

tight-binding model, the hopping parameters only depend on the coordinates of the two carbon

atoms. In the following section, the details of these hopping parameters are given in full.

2.4.1 Slater-Koster hopping parameters

The hopping parameters t(r) between atoms i and j are determined using the expressions de-

rived by Slater and Koster based on the two-centre approximation [233]. The Slater-Koster

equations determine how the hopping parameters change as a function of separation and ori-

entation of the two orbitals. The expression for the hopping between two pz orbitals is given

by

t(r) = tπe
qπ(1−|r|/a)F (r) sin2 ϕ+ tσe

qσ(1−|r|/d)F (r) cos2 ϕ. (2.21)

Here tπ/σ, qπ/σ, a, d, ϕ and F (r) are, respectively, the magnitudes of the π/σ hopping pa-

rameters, the decay lengths of the π/σ hopping parameters, the pristine carbon bond length

(a = a0/
√

3), interlayer spacing, the angle of inclination between the two orbitals and an

additional function for the truncation of hopping parameters [37].

The two structural parameters, a and d are typically based on the lattice constant of

graphene and the smallest interlayer spacing between adjacent graphene layers, respectively.

Given these parameters, the remaining parameters (tπ/σ and qπ/σ) are chosen to best fit a DFT

calculation of graphene, AB bilayer graphene and AA bilayer graphene [32, 37], or alternatively

chosen to fit the electronic structure of a moiré graphene multilayer of interest [163]. In the

former case, a graphene calculation is used to determine tπ, since there are no σ hoppings for

flat graphene [1]. The π hopping parameter is chosen to obtain the correct Fermi velocity of

graphene, vF = 3~tπa/2, assuming that the intralayer decay parameter (of flat graphene) is

such that the second nearest neighbour hopping is 0.1tπ. Based on this, assuming the same

decay qπ/a = qσ/d, the AB and AA bilayer calculations are used to determine the σ hopping

parameter.

Here we mainly employ the parameters of Trambly de Laissardière et al. [32, 37], where

tπ = −2.7 eV and tσ = 0.48 eV. In each calculation, the parameters of the model will be stated.
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We further assume that all of the pz-orbitals are aligned with the z-axis, ignoring any tilting

effects from atomic reconstruction (as the effect was shown to be negligible [64]). We take F (r)

to be a Heaviside step function with a cut-off of 3−10 Å, which is taken for numerical efficiency

as the hopping parameters after third nearest neighbour become insignificantly small [64].

2.4.2 On-site energies

The other contribution to the tight-binding Hamiltonian is the on-site energy of each pz orbital,

εi. The total energy in the tight-binding formalism is arbitrary, which means an on-site energy

contribution (to all pz orbitals) is chosen such that the Fermi energy is at zero energy [32, 37].

For moiré graphene multilayers studied here, there are three other contributions to the on-site

energy in the atomistic model: (1) - Electrostatic energy contributions from perpendicular elec-

tric fields. (2) - Intrinsic differences in layer environments (for systems with more than two

layers) which are included through layer-dependent on-site energies [163, 164]. (3) - Electron

interactions, such as Hartree interactions [136]. The former (1) is included through the elec-

trostatic potential energy an electron feels in the field through ∝ E · z. Since the variations

of the displacements of the z positions within a layer are small in comparison to the interlayer

separation, electric fields are often included through a layer-dependent on-site potential. The

layer-dependent on-site energies of (2) were reviewed in the Introduction. The inclusion of

electron-electron interactions (3) is discussed in Section 2.7.1.

2.4.3 Hamiltonian in second quantisation

A convenient and transparent formulation of the tight-binding approximation can be established

using second quantisation [234], where the Hamiltonian reads

Ĥ0 =
∑

i

εiĉ
†
i ĉi +

∑

RR′

∑

ij

t(τ i + R′ − τ j −R)ĉ†Rj ĉR′i, (2.22)

where ĉ†i and ĉi are, respectively, the electron creation and annihilation operators associated

with the pz-orbital on atom i. The Fourier transformation of the field operators to/from

momentum space are given by
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ĉki =
1√
Nk

∑

R

e−iR·kĉRi ĉRi =
1√
Nk

∑

k

eiR·kĉki. (2.23)

The non-interacting Hamiltonian in reciprocal space is then

Ĥ0 =
∑

i

εiĉ
†
i ĉi +

∑

k

∑

∆R

∑

ij

t(τ i − τ j −∆R)e−i∆R·kĉ†kj ĉki. (2.24)

For crystals, this is the form of the Hamiltonian that is commonly used.

2.4.4 Coulomb interaction of pz orbitals

The pseudo-hydrogenic pz orbital which is utilised for the atomistic tight-binding model of

moiré graphene multilayers is given by

φz(r) = φz(r, θ̃) =
cos θ̃

4
√

2πã
3/2
B

r

ãB

e−r/2ãB , (2.25)

where θ̃ is the polar angle in this expression and ãB is the effective Bohr radius of the pseudo-

hydrogenic pz orbital (related by ãB = aB/Zeff to the Bohr radius, aB, and the effective charge of

the nucleus, Zeff ≈ 3.18 [235]). This pseudo-hydrogenic function was used to derive the Slater-

Koster hopping expressions [233]. It is also required when evaluating a number of response

functions or when considering interactions. In this section, expressions which rely on evaluating

an integral of the pz orbital shall be derived, such that it is not repeated.

A common object which needs to be evaluated is the Coulomb scattering element of the pz

orbitals, as given by

〈φz(r)|e±iq·r|φz(r)〉 , (2.26)

where q is a crystal momentum. The result [235] is well known to be

〈φz(r)|e±iq·r|φz(r)〉 = I(q) =
[
1 + (|q|ãB)2

]−3

. (2.27)

Since the effective Bohr radius is of the order of 3× smaller than the Bohr radius, and the

moiré unit cells have small Brillouin zones because of the large real space structure, it is often
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sufficient to take 〈φz(r)|e±iq·r|φz(r)〉 = 1.

The on-site Hubbard parameter for pz orbitals is given by

U = 〈φz(r)φz(r
′)|W (r, r′)|φz(r′)φz(r)〉 . (2.28)

Let us assume W (r, r′) = V (r − r′), where we assume a bare potential, and introduce the

Fourier transform of the Coulomb potential

U =
1

(2π)3

∫
dqV (q) 〈φz(r′)|e−iq·r

′ |φz(r′)〉 〈φz(r)|eiq·r|φz(r)〉 . (2.29)

Using Eq. (2.27), we arrive at

U =
1

(2π)3

∫
dqV (q)I(q)2. (2.30)

Introducing the Coulomb potential explicitly, and evaluating the angular dependence, we obtain

U =
1

2π2

e2

ε0

∫ ∞

0

dqI(q)2 =
1

2π

e2

ε0ãB

63

512
≈ 21 eV. (2.31)

This is approximately equal to what is reported in literature for a bare Coulomb interaction

(17 eV) of the pz orbitals of graphene [236].

2.4.5 Valley polarisation

In the tight-binding formalism, unlike the continuum model, the valley index is not an explicit

quantum number. However, in the tight-binding formalism, the valley polarisation can be

computed from the valley operator introduced by Lado and co-workers [192, 205, 237]

V̂ =
i

3
√

3

∑

〈〈ij〉〉
ηijσ

ij
z ĉ
†
i ĉj. (2.32)

Here 〈〈ij〉〉 is a summation over second nearest neighbours, ηij = ± is a sign associated with

clock-wise or anti-clockwise hopping between second nearest neighbours, and σijz = ± is the

Pauli matrix associated with the sublattices of graphene (sign difference between A and B). To

clearly demonstrate the structure of ηijσ
ij
z , Fig. 2.4 displays the sign convention [192, 205, 237].

63



+

−−

+

+

−

−

++

−

−

+

Figure 2.4: Schematic demonstration of the sign convention of ηijσ
ij
z for each sublattice.

Taking the expectation value of the valley operator yields a value of ±1 for perfectly polarised

states, but a value closer to zero means there is some valley mixing.

For a non-degenerate state, the valley index can be calculated through

〈ψnk|V̂|ψnk〉 =
i

3
√

3

∑

∆R

∑

〈〈ij〉〉
ei∆R·kηijσ

ij
z c
∗
nkicnkj. (2.33)

In the case of degenerate states, a valley matrix must be constructed

〈ψnk|V̂|ψmk〉 = 〈V〉knm , (2.34)

and diagonalised for each k-point to obtain the valley polarisation. The unitary transformation

which diagonalises this matrix can be used to obtain the valley polarised states.

2.5 Wannier functions

Bloch states are the natural form of wavefunctions in periodic systems, since they are the

eigenstates of the Hamiltonian which commutes with the lattice translation operator [216, 231].
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These extended wavefunctions are characterised by a (unit cell) periodic function multiplied by

a crystal periodic plane wave

|ψnk〉 = eik·r |unk〉 . (2.35)

There are, however, different representations of the states, such as the Wannier functions [70,

238, 239]. In the Wannier representation (for an isolated band), the Fourier transform of the

Bloch eigenstates (for a given band index n) is taken

|wnR〉 =
1√
Nk

∑

k

e−ik·R |ψnk〉 , (2.36)

which generates a localised Wannier function, |wnR〉, in unit cell R of the crystal∗. The Wannier

function is localised in real space, but it is no longer an eigenstate of the Hamiltonian [70].

Despite this, since Wannier functions are unitary transformations of the Bloch states, they can

still provide a valid description of the electronic structure.

There are, however, issues with the generation of Wannier functions, as they are non-unique

functions [70]. The issue of non-uniqueness arises from the “gauge freedom” of Bloch states

|ψ̃nk〉 = eiφn(k) |ψnk〉 , (2.37)

where φn(k) is a real and periodic function in k-space [φn(k + G) = φn(k) + 2π] [70]. While

this complex number changes the exact values of the Bloch wavefunctions, it does not affect the

physical observables of the system, and therefore, |ψ̃nk〉 and |ψnk〉 are essentially equivalent [70].

However, changing the gauge of the Bloch states can result in completely different Wannier

functions [70]. In particular, to generate localised Wannier functions, one needs the Bloch

states to have a “smooth gauge” in k-space, since the Fourier transform of a smooth function

in k-space is well localised in real-space [70]. Therefore, the extent of localisation of the Wannier

functions is highly dependent on how smooth the gauge is [70].

For a manifold of J bands, which are isolated in energy from all other bands, where internal

band crossings and degeneracies can occur, the issue with the gauge invariance remains [70].

∗Note that there are periodic images of these Wannier functions, the separation of which is determined by
the number of k-points in the Fourier transform
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However, since traces of the manifold are invariant with respect to unitary transformations [70],

one can generalise the “gauge transformation” to

|ψ̃nk〉 =
J∑

m=1

U (k)
mn |ψmk〉 , (2.38)

where U
(k)
mn is a unitary matrix for each k-point (that is also periodic in k-space). Note that

these gauge transformed Bloch states are also not generally eigenstates of the Hamiltonian,

with n in |ψ̃nk〉 no longer explicitly corresponding to a band index. To obtain the Wannier

functions of the manifold of J bands, the following unitary transformation is made

|wnR〉 =
1√
Nk

∑

k

∑

m

e−ikRU (k)
mn |ψmk〉 . (2.39)

Typically, a smooth gauge for the Bloch states can be generated through projection of these

states onto an initial guess for what the Wannier function should be, |gn〉 [70]. This projection

is given by

|φnk〉 =
J∑

m=1

|ψmk〉 〈ψmk|gn〉 , (2.40)

where the following matrix is introduced

Ak
mn = 〈ψmk|gn〉 . (2.41)

As shall be discussed later, this is one of the key objects which needs to be specified for the

generation of Wannier functions. The Löwdin-orthonormalised Bloch-like states

|ψ̃nk〉 =
J∑

m=1

|φmk〉 (S−1/2
k )mn (2.42)

can be generated from the overlap matrix

(Sk)mn = (Ak†Ak)mn. (2.43)

The states of Eq. (2.42), which are unitary transformed from the original Bloch states, now
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have a smooth gauge, and well localised Wannier functions can be generated from them [70].

The Wannier functions generated from Eq. (2.42) would, however, still depend on the initial

guess that was used to generate them [70]. To fix this issue, the U
(k)
mn can be optimised subject to

some criterion. One of the most commonly used criterions is to maximally localise the Wannier

functions [70, 239]. The spread, Ω, of the Wannier functions is defined by

Ω =
∑

n

[
〈wn0|r2|wn0〉 − | 〈wn0|r|wn0〉 |2

]
, (2.44)

which is minimised with respect to U
(k)
mn to generate the maximally localised Wannier func-

tions [70]. The spread of the Wannier functions can be decomposed into two parts

Ω = ΩI + Ω̃. (2.45)

Here ΩI is the gauge invariant part

ΩI =
∑

n

[
〈wn0|r2|wn0〉 −

∑

mR

| 〈wmR|r|wn0〉 |2
]
, (2.46)

and the gauge dependent part is given by

Ω̃ =
∑

n

∑

mR6=n0
| 〈wmR|r|wn0〉 |2. (2.47)

It is solely the minimisation of the this gauge dependent spread which determines the maximal

localisation of the Wannier functions [70].

The definition of the position operator takes the form

〈wmR|r|wn0〉 = i
V

(2π)3

∫
dkeik·R 〈umk|∇k|unk〉 . (2.48)

To compute this, one discretises the derivatives on the finite grid of k-points and uses

∇ |unk〉 ≈
∑

q

wqq[|unk+q〉 − |unk〉], (2.49)

where q is a vector connecting two points and wq is a geometric weighting factor [70]. Therefore,
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the only other essential piece of information is the overlap of the unit cell periodic parts of the

Bloch states

Mk,q
mn = 〈umk|unk+q〉 . (2.50)

Provided Mk,q
mn and Ak

mn are specified, the generation of maximally localised Wannier functions

can be achieved as a post-processing step using the Wannier90 [238] code (for more information

of the minimisation algorithm see Refs. 70, 239). Therefore, these matrices can be generated

from the atomistic tight-binding formalism to generate Wannier functions of isolated flat bands

of moiré graphene multilayers.

2.5.1 Wannier functions from atomistic tight-binding

In the employed tight-binding formalism, as summarised in Section 2.4, the unit-cell periodic

function can be expressed as

|unk〉 =
1√
Nk

∑

i

∑

R

cnkie
ik·(R−r) |φz(r− τ i −R)〉 . (2.51)

The matrix elements of Mk,q
mn can be calculated from inserting the above expression into

Eq. (2.50) to give

〈umk|unk+q〉 =
1

Nk

∑

ij

∑

RR′

c∗mkicnk+qje
−ik·Rei(k+q)·R′

× 〈φz(r− τ i −R)|e−iq·r|φz(r− τ j −R′)〉 . (2.52)

Shifting coordinate systems with the transformation r′ = r−R, we have

〈umk|unk+q〉 =
∑

ij

∑

R′′

c∗mkicnk+qje
i(k+q)·R′′ 〈φ∗z(r′ − τ i)|e−iq·r

′ |φz(r′ − τ j −R′′)〉 , (2.53)

where R′′ = R′ −R. Assuming contributions only come from the overlap of the same orbital
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yields

〈umk|unk+q〉 =
∑

i

c∗mkicnk+qie
iq·τ iI(q), (2.54)

where I(q) was defined in Eq. (2.27). Note that the eiq·τ i phase factor comes from making

the integral independent of the position of each atom. Since the tight-binding coefficients are

periodic in k-space, which Brillouin zone k + q resides in is not a concern.

To calculate Ak
mn, an initial guess for the Wannier function is required. Here we outline how

the matrix Ak
mn is constructed based on two types of initial guesses.

The first type of initial guess is based on fixing the gauge of the Bloch states to be real and

positive where the Wannier function should be localised [68]. Upon Fourier transforming those

Bloch states, a well localised Wannier function should be generated, since the Bloch states

constructively interfere at this location. This initial guess (for a Wannier function at R = 0) is

given by

|gn〉 =
1√
Nk

∑

k′

Uk′

np |ψpk′〉 . (2.55)

The overlap element with the Bloch states can then be readily calculated

〈ψmk|gn〉 =
1√
Nk

∑

k′

Uk′

np 〈ψmk|ψpk′〉 . (2.56)

From the orthonormality of Bloch states, we arrive at

〈ψmk|gn〉 = Uk
nm. (2.57)

Another approach is to use the Γ-point Bloch state and a real-space cut-off to localise the

Bloch state [73]. The guess for the Wannier function is then given by

|gn〉 =
∑

n′

f(r− ri) |ψn′Γ〉 , (2.58)

where f(r − ri) is a Gaussian function centred at ri. The task now is to calculate the Ak
mn

matrix
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〈ψmk|gn〉 =
∑

n′

〈ψmk|f(r− ri)|ψn′Γ〉 . (2.59)

Introducing the Bloch states, we arrive at

〈ψmk|gn〉 =
1

Nk

∑

n′

∑

RR′

∑

ij

c∗mkicn′Γje
−ik·R 〈φz(r− τ i −R)|f(r− ri)|φz(r− τ j −R′)〉 . (2.60)

Furthermore, assuming that the only non-vanishing contributions come from the same pz or-

bital, and that the Gaussian function is slowly varying (on the scale of the pz orbital - since the

decay length is taken to be of the order of |R| this is a reasonable approximation) such that it

can be brought outside of the integral. After evaluating these assumptions, we have

〈ψmk|gn〉 =
1

Nk

∑

n′

∑

R

∑

i

c∗mkicn′Γie
−ik·Rf(τ i + R− ri). (2.61)

2.5.2 Wannier function centres

To construct the Wannier functions for a manifold of J bands, the final key piece of information

is the centres of the Wannier functions. Having the centres of the Wannier functions in the

correct position is key because, if they are not, the Wannier functions might not be a faithful

representation of the electronic band structure [68, 71–73]. Moreover, the Wannier functions

which are (the most) maximally localised might not actually occur in the positions which are

required to reproduce the electronic structure. This has motivated the development of methods

where the symmetry, and therefore centre, of the Wannier functions can be enforced [76], and a

selective localisation method where the centres of some Wannier functions are constrained [240].

These constrained minimisation procedures ensure a faithful representation of the electronic

structure at the cost of increasing the spread of the Wannier functions (slightly).

Both methods are implemented in Wannier90 v3.0 [238]. The symmetry adapted Wannier

functions requires the specification of an additional matrix for how the Bloch states of the band

manifold transform under the symmetry representations of the point group [76]. This method

was not employed here. The selective localisation of Wannier functions with constrained centres
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was employed here instead [240]. It has been found that by constraining the centre of a Wannier

function to a point which has a certain point group symmetry produces a Wannier function

which transforms as an irreducible representation of that point group [240]. Therefore, Wannier

functions with the correct symmetry can also be generated with this selective localisation

method by only specifying the centre of the Wannier functions. Note that this comes at the

cost of only being able to generate a sub-set of the Wannier functions for a manifold. For

example, in a four band system only two Wannier functions can be generated if their centres

are constrained. Further details of this method see Ref. 240.

2.5.3 Wannier functions of tBLG

For tBLG, the Wannier function centres were found to reside on the AB/BA sites of the moiré

unit cell [68, 71–73]. Therefore, two Wannier functions (of the total of four) could be generated

with the selective localisation procedure. Both methods for generating initial guesses were

utilised [68, 73]. A 30×30 set of k-points were utilised for the generation of the Wannier

functions.

2.6 Screened interactions

To investigate the interacting properties of a material, it is important to know the screened

Coulomb potential between the electrons of interest [216]. Screening can arise intrinsically

from the material, and in moiré graphene multilayers the screened interaction between different

layers, i.e. interlayer compared to intralayer, could be important. Moreover, when developing a

downfolded Hamiltonian, the electrons should interact with each other accounting for degrees

of freedom that are not included in the downfolded Hamiltonian [236, 241–243]. Screening can

also arise from external sources, such as the supporting dielectric substrate [244] or proximity

to metallic gates [245]. Methods to determine screening based on these sources shall be outlined

in this section.
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2.6.1 Internal screening

We are interested in the static internal screening of moiré graphene multilayers. Since the

screening of graphene is known to be relatively isotropic [235, 246], we shall mainly employ

the convention for isotropic systems and note how to investigate anisotropic screening could be

investigated. These moiré materials comprise of at least two layers of graphene, which means

that these materials can have non-vanishing thicknesses. Therefore, we shall outline the theory

for screening which accounts for the finite width of graphene and the different layers in the

moiré material, and investigate if these terms are needed [247–251].

The extended-zone scheme [99] shall be utilised and local field effects neglected under the

assumption that the polarizability only depends on r − r′. Hence, the dielectric response is a

function of q + G rather than a matrix of G and G′ as a function of q, where q and G are

the wave vector in the first Brillouin zone and reciprocal lattice vector, respectively [252]. The

screened interaction in Fourier space between electrons in layers l and l′ in the random phase

approximation (RPA) [247–251] is then given by

Wll′(q + G) = εll′(q + G)−1vll′(q + G), (2.62)

where εll′(q + G) is the static isotropic dielectric matrix which describes screening between

layers, and vll′(q + G) is the 2D Fourier transform of bare Coulomb interaction between layers

l and l′. The static dielectric function which describes screening between layers l and l′ for an

isotropic moiré graphene multilayer is

εll′(q + G) = ε0δll′ −
∑

m

vlm(q + G)Π0
ml′(q + G). (2.63)

Here ε0 is the permittivity of free space and Π0
ml′(q+G) is the independent particle polarizability

from layers m and l′ [247–251]. The 2D Coulomb potential, taking into account the finite width

of graphene, is

vlm(q + G) =
e2

2ε0|q + G|e
−|q||zm−zl|Flm(q + G). (2.64)

Interactions between electrons in different sheets is account for by the exponential term, where
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|zm − zl| is the distance between layers of the moiré graphene multilayer [235, 250]. Here

Flm(q+G) is a form factor that takes into account the finite width of the graphene sheets [250].

The independent particle polarizability of Bloch states, also known as the Alder-Wiser

equation [216, 252], which can be derived from time-independent perturbation theory, is given

by

Π0
ll′(q + G) =

2

V

∑

k

∑

nn′

f(εnk)− f(εn′k+q)

εnk − εn′k+q

〈ψnkl|e−i(q+G)r|ψn′k+ql〉

× 〈ψn′k+ql′ |ei(q+G)r′ |ψnkl′〉 . (2.65)

The summation occurs over all possible transitions between n and n′, which have Fermi occu-

pations of f(εn) and f(εn′), respectively. Here, V is the crystal area, which is related to the

number of k-points in the summation over the first Brillouin zone; the summation over spin

has been explicitly performed which yields the factor of 2.

Further simplifications can be made to the study of screening in moiré graphene multilayers.

There is a general expression for F (q+G) [250], but typically this is a small effect and it can be

approximated by 1 in the first instance. Moreover, in moiré graphene multilayers where there are

not large separations between layers and the twist angle is sufficiently small, such that only small

values of q are of interest, another reasonable approximation is to take e−|q||zm−zl| ≈ 1 [253].

This causes the formalism to reduce down from a matrix form to a function, which treats the

moiré graphene multilayer as a 2D material without different layers. In this limit, the screened

interaction is given by

W (q + G) =
v(q + G)

ε(q + G)
, (2.66)

where the dielectric function is given by

ε(q + G) = ε0 − v(q + G)Π0(q + G). (2.67)

Moreover, the limit of zero temperature can be taken, which permits the summation over n
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and n′ to be simplified to a summation over all occupied valence states (v) and unoccupied

conduction states (c). In this limit, the polarizability is given by

Π0(q + G) =
4

V

∑

k

∑

cv

| 〈ψck+q|ei(q+G)r′ |ψvk〉 |2
εvk − εck+q

. (2.68)

Hence, a scattering element needs to be determined in the atomistic tight-binding model.

A similar derivation was performed in Section 2.5, and therefore, it shall not be repeated. The

employed result is

〈ψck+q|ei(q+G)r|ψvk〉 =
∑

i

c∗ck+qicvkie
i(q+G)·τ iI(q + G) (2.69)

where I(q+G) is defined by Eq. (2.27). To be consistent with neglecting the layer separations,

I(q + G) ≈ 1.

Internal screening for downfolded Hamiltonian

In the construction of a downfolded Hamiltonian, such as a Wannier model of the flat electronic

bands of moiré graphene multilayers, screening from the other electronic states should also be

included. This can be achieved with what is called the constrained RPA (cRPA) approach,

where the interaction between electrons in the bands of interest are screened by all transitions

apart from between the bands of interest [236, 241–243]. This ensures that screening from

states of interest are not double counted - once from the screened interaction and again from a

solution of the interacting model of the bands of interest∗.

In the cRPA approach [241–243], the total RPA polarizability is partitioned into two con-

tributions

Π0(q + G) = Πf (q + G) + Πr(q + G), (2.70)

where Πf denotes the polarizability contribution from electronic transitions between the bands

of interest (the superscript f is used to denote transitions between flat bands, as these are the

states of most interest in moiré graphene multilayers), and Πr are the rest of the transitions

∗Note that this method still has limitations [254], and tends to overestimate screening.
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which is the cRPA polarizability. Note that Πr contains transitions from all other states to the

unoccupied states of interest, and also transitions from the occupied states of interest to all

other unoccupied states [241–243].

The total screened interaction can be written as

W (q + G) = [1− Πf (q + G)W r(q + G)]−1W r(q + G), (2.71)

where

W r(q + G) = [1− Πr(q + G)v(q + G)]−1v(q + G) (2.72)

is the cRPA screened interaction between electrons in the bands of interest. With the cRPA

dielectric function being defined as

εr(q + G) = ε0 − v(q + G)Πr(q + G). (2.73)

Internal screened interaction in real space

The screened interaction in real space is calculated via a 2D Fourier transform according to

W (r) =
1

(2π)2

∫
dq
v(q)

ε(q)
e−iq·r. (2.74)

As the polarizability is assumed to be isotropic, the angular part of the Fourier transform can

be carried out analytically

W (r) =
e2

4πε0

∫ ∞

0

dq
J0(qr)

ε(q)
, (2.75)

where q and r denote the magnitudes of the in-plane momentum and the in-plane distance,

respectively, and J0 is a Bessel function of the first kind with zeroth order.

The polarizability of moiré graphene multilayers exhibit two main regimes: at large mo-

menta (i.e. those larger than twice the length of the primitive reciprocal lattice vectors), the

responds similar to decoupled graphene layers, whereas at small momenta, there can be signif-

icant deviations from the graphene response [255, 256]. Therefore, the integral of Eq. (2.75)
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can be separated into two parts

W (r) =
e2

4πε0

[∫ 2|G|

0

dq
J0(qr)

ε(q)
+

∫ ∞

2|G|
dq
J0(qr)

ε(q)

]

= Ws(r) +Wl(r),

(2.76)

The first contribution, Ws, stems from the response at small wavevectors, which can be nu-

merically integrated and readily converged. The second contribution, Wl, is the contribution

from large momenta, which is essentially that of decoupled graphene layers. Since the dielectric

function is approximately a constant in the latter regime, ε(q & 2|G|) ≈ εni, the integral can

be transformed to

Wl =
e2

4πε0εnir

[
1−

∫ 2|G|r

0

dyJ0(y)

]
, (2.77)

which can also be readily evaluated. This circumvents the difficult problem of converging an

integral of J0 which is highly oscillatory. Note provided the cut-off point is chosen in the

graphene regime, the exact point at which this integral is split into two makes no difference to

the final result [256].

2.6.2 External screening

As summarised in the Introduction, external screening comes from proximity to metallic gates

and the supporting dielectric substate. To include the effects of these gates, a number of

approximations are taken: (1) - The metallic gate is considered to be a perfectly flat, ideal

metallic conductor. (2) - The dielectric substrate can be considered on the level of an effective

dielectric constant [244]. (3) - The distance to the metallic gate from the moiré graphene

multilayer is significantly longer than the thickness of the moiré material, such that the moiré

graphene multilayer can be considered as having no width. (4) - When there are two metallic

gates, the moiré material resides exactly between the two of them [257]. We shall outline the

so-called single and double metallic gate interactions in real-space [245].

For a single metallic gate [245] located underneath the moiré graphene multilayer, the
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screened Coulomb interaction between charges is given by

W (r) =
e2

4πε0ε

[
1

|r| −
1

|r− 2ξez|

]
. (2.78)

Here ξ is the (shortest) distance from the moiré graphene multilayer to the ideal metallic gate,

and ez is the unit vector in the z direction. This screened interaction can be derived from the

method of image charges, where the second term in the equation is the “image charge” located

−ξez underneath the interface between the metallic gate and the dielectric substrate. At large

separations of electrons in the moiré graphene multilayer, the screened interaction decays as

∝ 1/|r|2 which is shorter ranged than the bare Coulomb potential.

For a double metallic gate interaction [245, 257], the screened interaction reads as

W (r) =
e2

4πε0ε

∞∑

m=−∞

(−)m

|r + 2mξez|
. (2.79)

Here m is an integer which corresponds to an image charge in the infinite set of images which

are created through image charges in one metallic gate inducing images charges in the opposite

metallic gate. At large separations (|r| � ξ) [245] of electrons in the moiré graphene multilayer,

the screened interaction can be approximated as

W (r) =
e2

2πε0ε

e−π|r|/ξ√
|r|ξ

. (2.80)

Therefore, the electron interactions are exponentially screened at large distances.

2.7 Interacting atomistic Hamiltonians

In the previous sections, we have outlined methods to investigate the “non-interacting” Hamil-

tonian, H0, at charge neutrality in the normal state (no broken symmetries) [99]. To investigate

the effects of doping and the possible broken symmetry phases, the interactions between elec-

trons must also be accounted for. The Hamiltonian with interactions then reads

H = H0 +Hint, (2.81)
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where Hint is the interacting contribution that accompanies the “non-interacting” contribution.

In this section, different approximations for Hint are outlined. The effect of doping the normal

state is investigated with an atomistic tight-binding theory which accounts for Hartree inter-

actions [95]. Also in an atomistic tight-binding approach, we investigate magnetic ordering in

a Hubbard model [11]. For a H0 which only accounts for the flat bands of interest in the moiré

graphene multilayers, we investigate Hint in the Wannier representation.

2.7.1 Hartree interactions in atomistic tight-binding

In second quantisation, Hartree interactions are included through [99]

Hint =
1

2

∑

σσ′

∑

RR′

∑

ij

WijRR′ ĉ†iRσ ĉ
†
jR′σ′ ĉjR′σ′ ĉiRσ. (2.82)

Taking the mean-field limit of the operators in the normal state [99], the long-ranged electron-

electron interaction contribution to the Hamiltonian can be included through an on-site term

to the atomistic tight-binding model

εi = 〈φz(r− τ i)|VH(r)|φz(r− τ i)〉 , (2.83)

where VH(r) is the Hartree potential. The Hartree potential is determined from the electron

density n(r) and the screened electron-electron interaction W (r), as seen by

VH(r) =

∫
dr′W (r− r′)[n(r′)− n0(r′)], (2.84)

where n0(r) is a reference electron density of the uniform system. The electron density is

determined through

n(r) =
∑

nk

fnk|ψnk(r)|2, (2.85)

where fnk = 2Θ(εF− εnk) is the spin-degenerate occupancy with εF denoting the Fermi energy.

Inserting the Bloch states gives
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n(r) =
∑

j

njχj(r), (2.86)

where χj(r) =
∑

R φ
2
z(r− τ j −R) and the total number of electrons on the j-th pz-orbital in

the unit cell being determined by nj =
∑

nk fnk|cnkj|2/Nk.

The reference density is taken to be that of a uniform system, n0(r) = n̄
∑

j χj(r), where n̄ is

the average of nj over all atoms in the unit cell, which is related to the filling per moiré unit cell

ν through n̄ = 1 + ν/N , where N is the total number of atoms in a moiré unit cell [136]. This

reference density is taken to prevent over-counting the intrinsic graphene Hartree contribution

which should be included in the Slater-Koster hopping parameters that are fitted to DFT band

structures [32, 37].

In our atomistic model, we neglect contributions to the electron density from overlapping

pz-orbitals that do not belong to the same carbon atom, which is equivalent to treating φ2
z(r)

as a Kronecker delta function. Therefore, we calculate the Hartree on-site energies using

εi =
∑

jR

(nj − n̄)WRij, (2.87)

where WRij = W (R +τ j−τ i). If R = 0 and i = j, we set W0,ii = U/εbg with U = 17 eV [236],

where ε is the background dielectric constant of the interaction. The screened interaction is

taken to be the double metallic gate interaction from Section 2.6.2, or simply be a Coulomb

interaction WRij = e2/4πε0ε|R + τ j − τ i|.

To obtain the mean-field solution of the Hartree atomistic tight-binding, a linear mixing

scheme is employed and in each iteration the Fermi energy is determined from enforcing the

total number of electrons to be N + ν. To converge the electron density, a Monkhorst-Pack

k-point grid, which includes the Γ-point, of at least 4×4 is required. Typically, 6×6 to 12×12

grids were utilised. For each calculation, the k-point grid sampling and dielectric environment

shall be stated. Initially, we perform a tight-binding calculation without an on-site energy from

Hartree interactions. This permits the “non-interacting” Hartree potential to be found. This

initial potential was rescaled by a scalar (0.1-1) to obtain a better initial guess to the converged

solution based on experience. For all proceeding iterations, a linear mixing parameter of 0.1-0.01
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was taken to mix in the new iteration with that of the previous mixed iteration. A convergence

criterion in the Hartree potential or electron density was used to decide when to finish the

calculation. Typically, the eigenvalues can be converged to 0.1 meV or better within less than

100 iterations. Due to the lack of smearing in the calculation, smaller mixing values are larger

numbers of iterations were sometimes required to smooth-out the “flickering” potential that

prevents the calculation from converging to this threshold.

2.7.2 Hubbard interactions in atomistic tight-binding

In second quantisation, the collinear Hubbard interaction contribution to the atomistic tight-

binding Hamiltonian [11, 99] is given by

Hint =
1

2

∑

σσ′

∑

i

Uĉ†iσ ĉ
†
iσ′ ĉiσ′ ĉiσ. (2.88)

Taking the mean-field limit the on-site energy is determined by the mean-field Hubbard inter-

action

εiσ = U 〈φz(r− τ i)|nσ′(r)|φz(r− τ i)〉 , (2.89)

where U is the Hubbard parameter of the carbon atoms, and 〈niσ′〉 is the mean-field electron

density on atom i with the spin σ′ being the opposite to σ.

The electron density can be determined from the Bloch eigenstates according to

nσ(r) =
∑

nk

fnkσ|ψnkσ(r)|2

=
∑

j

njσχj(r),

(2.90)

where fnkσ = Θ(εF − εnkσ) is the occupancy of state ψnkσ and njσ =
∑

nkσ fnkσ|cnkσj|2/Nk is

the total number of electrons in the j-th orbital with spin σ.

εiσ = Uniσ′ . (2.91)
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The Hubbard parameter, U , for the on-site interactions of the pz orbitals shall be considered

as a parameter of the model.

The magnetic order parameter is defined by

ζi =
ni↑ − ni↓
ni↑ + ni↓

, (2.92)

which is used to characterise the ordering. Ferromagnetic or ferrimagnetic order has a non-zero
∑

i ζi, but for antiferromagnetic order this summation is zero.

To obtain a self-consistent solution, a very similar procedure to the Hartree theory is taken.

Therefore, we shall not repeat the details that are the same. Practically the only difference in

these mean-field Hubbard calculations is that a Hamiltonian for the up and down spin need

to be diagonalised in each iteration. When determining the Fermi energy, the total electron

density is again forced to be N + ν, but this does not restrict the spin densities to be the same.

2.7.3 Constrained Hubbard calculations

To investigate excited magnetic states, constrained calculations must be performed. Several

approximate methods were employed to investigate these states. These methods utilised an

analytical form for the magnetic order, ζ
(j)
i [where (j) is an index denoting the type of magnetic

order]. Since we are investigating collinear magnetic order with the periodicity of a moiré unit

cell, i.e. q = 0 instabilities, this significantly restricts the type of magnetic order that can occur.

To generate the scale of the ordering, one can simply project the ordering onto the magnetic

order parameter

Aj =

∑
i ζi · ζ

(j)
i∑

i ζ
(j)
i · ζ(j)

i

. (2.93)

The on-site energy term is then given by

εiσ = ±U
2
ζ

(j)
i . (2.94)

A self-consistent solution is obtained through a linear mixing of the spin densities. Alternatively,

a non-self-consistent route to determine the ground state is through computing the total energy
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E(j) =
1

Nk

∑

nkσ

fnkσε
(j)
nkσ +

U

4

∑

i

ζ
(j)
i ζ

(j)
i (2.95)

as a function of Aj in order to determine the Aj which corresponds to the minimum in the

energy. As the on-site energies only depend on the product of U and ζ
(j)
i , this can mean the

space of U − Aj can be explored efficiently.

2.7.4 Hubbard parameters of Wannier functions

In second quantisation, the Wannier-Hubbard interaction contribution to the Hamiltonian

reads [99]

Hint =
1

2

∑

σσ′

∑

{ni}

∑

{Ri}
Uσσ′,{ni},{Ri}ĉ

†
n4R4σ

ĉ†n3R3σ′ ĉn2R2σ′ ĉn1R1σ. (2.96)

Here the Hubbard parameters associated with Wannier functions are given by

Uσσ′,{ni},{Ri} = 〈wn4R4σ(r)wn3R3σ′(r′)|W (r, r′)|wn2R2σ′(r′)wn1R1σ(r)〉 . (2.97)

The generated Wannier functions are in the normal state, and therefore, we drop the spin index

from now.

The general form of the Wannier functions is

|wnR〉 =
1√
Nk

∑

mk

e−ik·RU (k)
nm |ψmk〉 , (2.98)

as described in detail in Section 2.5. Inserting the Bloch states into the Wannier function gives

|wnR〉 =
1

Nk

∑

mk

∑

iR′

eik·(R
′−R)cmkiU

(k)
nm |φz(r− τ i −R′)〉 . (2.99)

If we then introduce a new set of coefficients, we have

|wnR〉 =
∑

iR′

cnRR′i |φz(r− τ i −R′)〉 , (2.100)

where
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cnRR′i =
1

Nk

∑

mk

U (k)
nme

ik·(R′−R)cmki. (2.101)

Hence, the atomistic Wannier functions of the bands can be expressed as a linear combination

of atomic orbitals too.

The pz orbitals are highly localised on each carbon atom, so it is often approximated that

they do not overlap significantly. This means that we approximate these p2
z orbitals as Kronecker

delta functions, and work on a grid which is composed of the centres of the carbon atoms of

the moiré graphene multilayer. Under this approximation, the integral of the Wannier function

squared is given by

〈wnR|wnR〉 =
∑

iR′

c∗nRR′icnRR′i = 1. (2.102)

We restrict our analysis to the Coulomb Hubbard parameters, such that R4 = R1 and

R3 = R2. Therefore, the object which needs to be calculated is

Un1R1n2R2 =

∫ ∫
drdr′|wn1R1(r)|2W (r, r′)|wn2R2(r

′)|2. (2.103)

Inserting the expressions for the Wannier functions and assuming translational invariance, our

final equation is

Un1R1n2R2 =
∑

RR′

∑

ij

|cn1R1Ri|2|cn2R2R
′j|2WiRjR′ , (2.104)

where WiRjR′ = W (R + τ j − R′ − τ i). If R = R′ and i = j, we set W0,ii = U/ε with

U = 17 eV [236].

The form of Eq. (2.104) has a clear physical meaning. The summations of the coefficients

represent the fractional charges of the Wannier functions that reside on each of the pz orbitals.

The total interaction of the Wannier functions is simply given by the sum of all of these

interactions.
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2.8 Spin susceptibility

Following Refs. 125, 208 to analyse the magnetic ordering tendencies of graphitic moiré sys-

tems∗, we calculate the spin susceptibility χij(q, q0) in its long-wavelength, static limit q =

q0 = 0

χ̂ = χ̂(q = 0, q0 = 0) =
T

Nk

∑

k,k0

Ĝ(k, k0)ĜT (k, k0). (2.105)

The Matsubara Green’s function reads Ĝ(k, k0) = [ik0 − Ĥ(k)]−1 with the non-interacting

part of the Hamiltonian Ĥ(k). Since we approximate the interacting part of the Hamiltonian

by a local Hubbard interaction, the renormalised interaction reads

Ŵ =
U2χ̂

1 + Uχ̂
. (2.106)

Employing Stoner’s criterion, we find an ordered state if the smallest eigenvalue χ0 of the

matrix χ̂ reaches −1/U , or, vice versa, we can investigate the critical interaction strength Uc =

−1/χ0 below which the system will go into an ordered state. The eigenvector corresponding

to the eigenvalue χ0 is proportional to the system’s magnetisation in its ordered state. The

numerical evaluation procedure is identical to the one presented in Ref. 125 – we use Nk0 = 500

Matsubara frequencies and Nk = 24 momentum points at a temperature of T = 10−4 eV.

∗This method was implemented and executed by Lennart Klebl on joint projects.
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Chapter 3

Screening of electron-electron

interactions in twisted bilayer graphene

The observation of strongly correlated phases in magic angle tBLG [88, 89] generated significant

attention, as summarised in the Introduction. In particular, these observations piqued the

interest of the theoretical community, as the mechanism for superconductivity was suggested

to be unconventional in nature [89], which has been a long-studied problem in context of the

cuprates [90]. There are, however, many methods, with drastically different assumptions, that

a theorist can utilise to make predictions for the broken symmetry phases of tBLG. Specifically,

methods often differ in their treatment of electron-electron interactions. In a material, the bare

Coulomb interaction is screened, and an accurate description of screening is challenging, with

simplifying assumptions often being taken [99, 231].

One method that has been utilised numerous times to investigate the phase diagram of tBLG

is the Hartree-Fock theory based on the continuum model [66, 143, 258–261]. It is well known,

however, that Hartree-Fock can lead to unphysical results, such as a diverging Fermi velocity

in metals [216], because the Coulomb interaction in the exchange term is not screened [99,

231]. In these works [66, 143, 258–261] the exchange was sometimes screened by an internal

dielectric constant with a fairly modest value [66], approximately twice the static response of

graphene at charge neutrality [235, 246]. Stauber and Kohler [262] calculated the static random

phase approximation (RPA) dielectric function from a continuum model and found a massive
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enhancement in screening for twist angles close to the magic angle, however. Therefore, a

detailed understanding of the RPA response function of tBLG is required if accurately screened

exchange interactions are to be used in calculations.

Internal electronic screening is also important for the construction of Wannier Hamilto-

nians [68, 72–75, 96] of the flat bands∗, as screening from bands excluded in the Wannier

Hamiltonian renormalises the interaction between flat band electrons [256]. In the context of

the construction of low-energy Hamiltonians, it has been shown that the constrained random

phase approximation (cRPA), in which transitions among the low-energy bands are excluded

in the polarizability, should be used for the screened interactions between electrons in the flat

bands [236, 241–243]. This is to ensure that screening of the electrons in the flat bands is not

double-counted [241]. Recently, Pizarro et al. [255] calculated the static cRPA polarizability

of undoped tBLG at a single twist angle of 1.05◦ using a continuum model, where a dielectric

function with a magnitude approximately twice the response of graphene was found.

Another important source of screening can originate from external factors. The surround-

ing dielectric environment is controlled by the device setup. For gated tBLG devices, the

potential created by an electron in the tBLG is reduced by the image charge(s) in the metallic

gate(s) [73, 96, 245]. The strength of the resulting effective interaction between electrons in

the tBLG is determined by the separation of the metallic gate(s) from tBLG, which can be

experimentally controlled via the thickness of a dielectric spacer. In the experimental devices,

there has been significant variations in the device setup. For example, Cao et al. [88, 89] used

devices in which the tBLG was encapsulated by hexagonal boron nitride (hBN) slabs of 10-

30 nm thickness with gold gates above/below tBLG. In contrast, Yankowitz et al. [93] used

thicker hBN slabs (30-60 nm) sandwiched between two graphite gates, and the device of Lu et

al. [120] only had a single graphite gate separated from the tBLG by a hBN layer of ∼ 10 nm

thickness. Therefore, understanding how external screening influences the electron interactions

is extremely important for understanding the phase diagrams of these tBLG devices.

In this chapter, results for how electrons interact and screen in tBLG is outlined. In Sec-

tion 3.1, the Wannier functions of the low energy states of tBLG are briefly presented, as these

∗Which can be used in methods such as quantum Monte Carlo [263], functional renormalisation group [108]
and exact diagonalization [97], as reviewed in the Introduction.
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orbitals are used in the subsequent sections. Next the internal screening of tBLG is investigated,

where the screened interactions of electrons in the flat band states are presented. Subsequently,

the role of external screening on the electron interactions of these states is investigated. This

chapter is mainly based on three papers which have been published. In the first of these,

Ref. 75 [Goodwin et al. Phys. Rev. B 100:121106(R) 2019], was where the Wannier functions

of the flat bands were generated, and initial results for the interaction between these states

were presented∗. Section 3.1 on the Wannier functions and flat bands of tBLG is based on

Ref. 75. Section 3.2 focuses on internal screening and the interaction parameters screened by

internal responses of these states, and is heavily based on Ref. 256 [Goodwin et al. Phys. Rev.

B 100:245424 2019]. Finally, Section 3.3 investigates the effect of external screening on these

states, and is substantially based on Ref. 114 [Goodwin et al. Phys. Rev. B 101:165110 2020].

These works were done in collaboration with other members of the Mostofi-Lischner group.

Therefore, the contributions of my collaborators shall be explicitly described, with everything

else being what I contributed (a brief description also given). Fabiano Corsetti contributed

an initial code for the atomistic tight-binding model of graphitic based-systems (based on

previous work of graphene with large unit cells [264]), which I generalised to account for atomic

corrugation effects of tBLG. Valerio Vitale contributed in the development of the interface

with Wannier90-3.0 [238], with particular help in the use of the selective localisation procedure.

Arash Mostofi and Johannes Lischner initiated these projects, guided their progression and

significantly helped in writing the papers. I wrote codes to interface with Wannier90-3.0 [238],

to calculate the static polarizability of tBLG and the screened interactions, and the Hubbard

parameters of the flat bands. I generated all results presented in this chapter.

∗These results shall not be summarised in full for brevity, as the latter papers investigate this aspect in
more depth
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Figure 3.1: (a) - Band structure of tBLG for a twist angle of 1.05◦. The black arrow indicates
the width of the flat bands, and the red arrow denotes the energy gap between non-flat bands
at Γ. (b) - Bandwidths of flat bands [black arrow in (a)] and band gaps at Γ between non-flat
bands [red arrow in (a)] as function of twist angle.

3.1 Flat band electronic structure

Fig. 3.1 shows the electronic band structure∗ of tBLG at a twist angle of 1.05◦, which exhibits

four flat bands near the Fermi level that are separated from all other bands by energy gaps. The

undoped system is a semimetal as the flat valence and conduction bands touch at the K and K′

points of the moiré Brillouin zone. As the twist angle approaches the magic angle (θ = 1.18◦

in our calculations), the width of the flat bands decreases, see black circles in Fig. 3.1(b).

Also, the energy gaps that separate the non-flat bands decrease as the twist angle is reduced,

see red circles in Fig. 3.1(b). Note that in a narrow twist-angle window (1.12-1.20◦), we find

qualitatively different band structures with a metallic character for undoped tBLG (similar

band structures are shown in Refs. 69 and 65).

3.1.1 Wannier functions of flat bands

To obtain a Wannier-transformed Hamiltonian that reproduces the symmetries of the band

structure of tBLG, as summarised in the Introduction, the Wannier functions must be centred

at the AB or the BA positions of the moiré unit cell [68, 71–73]. We use the approach of

∗The structure was generated from pristine tBLG with corrugation effects being approximated by the cosine
series. The tight-binding parameters for these calculations were a = 1.42 Å, d = 3.35 Å, qπ = 7.43 and qπ = 3.14,
with a cylindrical Heaviside step function with cut-off of third nearest neighbour in-plane being used to truncate
hopping parameters.

88



θ = 2.13o, |R| = 66.1 Å
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0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32

|w
|2

x
10
−

6

θ = 1.25o, |R| = 112.9 Å
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Figure 3.2: Flat-band Wannier functions of tBLG at several twist angles, as indicated in the
title of each sub-plot. Shown is the square modulus of the coefficients of the Wannier functions
on each carbon atom. The squares, diamonds and circles denote the centres of the AA, AB
and BA regions of tBLG, respectively.

Ref. 240 to selectively localise two Wannier functions with constrained centres, one on each of

these positions, as outlined in the Methods. Note that the method of Ref. 240 only permits

the calculation of two of the four Wannier functions if their centres are constrained. If all four

Wannier functions are required the symmetry constrained method must instead be used [76].

In Fig. 3.2 we display the obtained Wannier functions on the AB and BA positions of the

moiré unit cell at a number of twist angles. In agreement with previous work [68, 72–74], we

find the Wannier functions exhibit three lobes that reside on the closest AA regions of the

moiré unit cell, with very little weight on the AB/BA positions where the Wannier functions

are centred. For smaller twist angles, as the moiré length scale increases, the lobes which reside
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on the AA regions become increasingly separated. These Wannier functions shall be utilised in

the subsequent sections to study the Hubbard interactions of the flat bands.

3.2 Internal screening

3.2.1 Polarizability and screened interaction

Figure 3.3(a) shows the RPA polarizability of tBLG as function of crystal momentum (in the

extended zone scheme) for several twist angles in the vicinity of the magic angle. For these

twist angles, we find that ΠRPA
0 ∝ q/vF at small wavevectors as expected from the linear

dispersion of the flat bands near K and K′. The slope of ΠRPA
0 at small q depends sensitively

on twist angle [262] because of the strong renormalisation of the Fermi velocity, vF(θ), which

approaches zero at the magic angle [32, 33, 37]. At wavevectors larger than the second reciprocal

lattice vector of the moiré lattice, ΠRPA
0 of tBLG is very similar to that of decoupled graphene

sheets [255]. In particular, it is linear in wave vector with a slope that is determined by the

unrenormalised Fermi velocity of graphene [255].

Cutting out transitions between flat bands from the RPA yields the cRPA polarizability,

which is displayed in Fig. 3.3(b). The cRPA polarizability is highly isotropic and quadratic

in |q| for small q. This is characteristic of 2D semiconductors [265], such as molybdenum

disulfide [266], and a consequence of the finite energy gap for electronic transitions in the

cRPA. The polarizability at small wavevectors increases with decreasing twist angle because

the energy gap between the non-flat bands decreases [63, 75], as seen in Fig. 3.1(b). It was

found that

ΠcRPA
0 ≈ a|q|2

1 + b|q| +
c|q|2

1 + d|q|3 (3.1)

fits the cRPA polarizability remarkably well, where a, b, c and d were fitting parameters. In

the limit of small q we recover the correct quadratic dependence, and for large q this formula

recovers the linear dependence as the second term is only finite for relatively small q. Not

all the parameters are free, however. In the large q limit, the gradient must be twice that of

graphene, which puts a constraint on a and b. Furthermore, we found little doping dependence
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Figure 3.3: (a) and (b): RPA and cRPA polarizability of tBLG as a function of momentum
transfer (in the extended zone scheme) for several twist angles near the magic angle. Verti-
cal stubs indicate the magnitude of the moiré reciprocal lattice vectors for each twist angle.
(c) - RPA dielectric function of tBLG encapsulated in hBN as a function of wavevector. (d)
- RPA screened interaction of tBLG encapsulated in hBN in momentum space (solid lines).
Dash-dotted lines denote the long wavelength limit, and the dotted line denotes the screened
interaction divided by a dielectric constant with contributions from non-interacting graphene
bilayers and hBN. (e) and (f): RPA and cRPA screened interaction in real space for tBLG
encapsulated by hBN (solid lines). The red dash-dotted line indicates bare the Coulomb inter-
action. Vertical stubs denote moiré lattice constant for each twist angle.

of the cRPA polarizability, especially near the magic angle.

Table 3.1 shows the twist-angle dependent value of the screening parameter α(θ), obtained

from fitting the quadratic polarizability at small q, that enters the widely used Keldysh model

for the dielectric function of 2D semiconductors, ε(q) = 1 + αq [265] (note in this section,
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ε is used to denote total or just internal dielectric responses, with εenv being used to denote

external dielectric responses). At small twist angles, we find a dramatic increase of the screening

parameter reaching values of more than 1000 Å. This indicates that the Coulomb interaction

is screened already for very small wavevectors (those larger than 1/α). At crystal momenta

larger than the first moiré reciprocal lattice vector, ΠcRPA
0 also becomes linear in |q| and very

similar to the polarizability of uncoupled graphene bilayers [255].

θ / degree ε (RPA) α / Å (cRPA)
2.13 18.1 155.4
1.70 30.6 255.2
1.54 44.1 327.8
1.41 71.4 430.4
1.25 237.5 889.3
1.05 256.3 1292.0

Table 3.1: Long wavelength dielectric constants of tBLG from linear fits to Fig. 3.3(a) (with
εenv is taken to be 1) and Keldysh parameters from quadratic fits to Fig. 3.3(b) as a function
of twist angle.

The RPA dielectric functions (in the extended zone scheme) are displayed in Fig. 3.3(c).

For angles close to the magic angle, the large linear slope of the polarizability at small wave

vectors gives rise to a large dielectric constant. At larger wave vectors, the reduced slope of ΠRPA
0

results in a significantly smaller dielectric constant. The crossover between these two regimes of

approximately constant dielectric functions occurs on the scale of the first two reciprocal moiré

lattice vectors. Table 3.1 shows the resulting long-wavelength dielectric constants ε(θ) of tBLG

in air (εenv = 1). All angles exhibit enhanced dielectric constants relative to decoupled graphene

bilayers (εni = 8.86 [1, 262], where the subscript is to denote it being the non-interacting case).

Near the magic angle, the dielectric constant of tBLG increases dramatically and reaches values

larger than 250 - a factor of 20 larger than decoupled graphene bilayers [262].

The RPA screened interaction in momentum space of tBLG encapsulated by a dielectric

substrate (εenv = 5) is shown in Fig. 3.3(d). The effective interaction crosses over from a

strongly screened small wave vector regime to a less strongly screened large wave vector regime.

As a consequence of this crossover, the interaction exhibits a well-like feature for twist angles

near the magic angle. Fig. 3.3(e) shows the interaction after Fourier transformation to real
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space. At several twist angles near the magic angle, the screened interaction in real space

exhibits an attractive region. Specifically, the minimum of the screened interaction occurs near

40 Å with a well depth of up to ∼ 10 meV. At larger separations, the screened interaction

decays as 1/(ε(θ)|r|), i.e. it is repulsive and significantly weaker than the screened interaction

of uncoupled graphene bilayers. At small separations, the screened interaction of tBLG is

similar to that of uncoupled bilayers.

Fig. 3.3(f) shows the real-space cRPA screened interaction. At small distances, the interac-

tion is similar to that of uncoupled graphene bilayers, while at large distances it proportional

to 1/(εenv|r|), i.e., the bare interaction screened by the dielectric constant of the environment

(red dotted line). The distance at which the crossover between these two regimes occurs is

determined by the twist-angle dependent Keldysh parameter α(θ) [265], see discussion above.

3.2.2 Hubbard parameters

The increased internal screening combined with the emergence of attractive regions in the RPA

interaction leads to a significant reduction of the on-site and extended interaction parame-

ters [75]. Fig. 3.4(a) shows the screened on-site Hubbard parameters, V00, as function of twist

angle for different values of the environmental dielectric constant εenv, and compares them to

the linear fits to the on-site Hubbard parameters calculated with a Coulomb potential screened

by a dielectric constant with contributions from the environment and uncoupled bilayers (solid

lines). In contrast to the case of screening from a constant dielectric response [75], the RPA

on-site Hubbard parameters are relatively small near the magic angle (only a few meV instead

of tens of meV [75]), and they are a non-linear functions of twist angle.

Similarly, the extended Hubbard parameters for tBLG, shown in Fig. 3.4(c), are strongly

reduced near the magic angle compared to the case of screening from a constant [75]. The

calculated Hubbard parameters are well described by an analytical Ohno-like [267] expression

V (r) = V00/
4
√

1 + (V00/WRPA(r))4, where WRPA(r) denotes the screened RPA interaction in the

long wavelength limit and r is the separation between Wannier function centres.

The Hubbard parameters obtained from the cRPA interaction are shown in Figs. 3.4(b) and

(d). The on-site Hubbard parameters from the cRPA interaction, as displayed in Fig. 3.4(b),
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Figure 3.4: (a) and (b): RPA and cRPA screened on-site Hubbard parameters (symbols)
as a function of twist angle for several environmental dielectric constants. Solid lines denote
fits to bare on-site Hubbard parameters from Ref. 75 divided by a dielectric constant with
contributions from environmental screening plus decoupled graphene bilayers. (c) and (d): RPA
and cRPA screened extended Hubbard parameters (symbols) as a function of Wannier function
separation for several twist angles. Dash-dotted lines denote generalised Ohno potential fits;
the dotted red line denotes the hBN screened Coulomb potential and vertical stubs denote the
size of the moiré lattice vector.

are approximately one order of magnitude larger than the RPA values, but again display a non-

linear dependence on twist angle (when the external screening environment is not present). In

contrast, the simplified screening model exhibits a linear dependence [75]. The extended cRPA

Hubbard parameters, shown in Fig. 3.4(d), approach the bare Coulomb interaction divided by

the environmental dielectric constant (red dotted line) at large Wannier function separations,

and are well-described by the analytical Ohno-like [267] model V (r) = V00/
n
√

1 + (V00/Wenv(r))n,

where the exponent n is fitted for each twist angle separately and Wenv(r) ∝ 1/(εenvr) [256].

3.2.3 Discussion

Attractive regions in the screened interaction are also found in the two-dimensional and three-

dimensional electron gas where they are a consequence of Friedel oscillations [268]. These
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real-space oscillations of the induced charge density are caused by the discontinuity of the

Bloch state occupancy at the Fermi level in k-space. Importantly, undoped graphene and

undoped tBLG (at the twist angles we study) do not exhibit Friedel oscillations because the

density of states at the Fermi level vanishes∗. Instead, the attractive regions in tBLG have a

different origin: they are caused by the abrupt change of the band velocity as a function of the

band energy which gives rise to the peaks in the RPA polarizability, see Fig. 3.3(a). At small

wave vectors, the RPA polarizability exhibits a large slope as a consequence of the strongly

renormalised Fermi velocity of the flat bands [32, 33, 37, 262]. At larger wave vectors, the slope

of ΠRPA
0 reflects the unrenormalised Fermi velocity of uncoupled graphene sheets [255]. Fourier

transformation of the resulting screened interaction to real space then results in oscillatory

behaviour and attractive regions.

The screened interaction influences many properties of tBLG. For example, it determines

the interaction of charged defects with the electrons in tBLG which can be studied with trans-

port measurements and scanning tunnelling spectroscopy and microscopy techniques [264, 269].

Moreover, photo-excited electron-hole pairs interact via the screened interaction giving rise to

excitonic effects in the optical properties of tBLG [270]. Attractive regions in the screened in-

teraction can also induce electronic phase transitions. It is well known that Friedel oscillations

in 2D and 3D electron gases can give rise to Cooper pairing and superconductivity via the

Kohn-Luttinger mechanism [106, 271, 272]. Similarly, superconductivity due to polarisation

induced electron pairing has been suggested to occur in long organic molecules with polarizable

side chains [273–275]. Finally, electrons can reduce their potential energy by localising in the

attractive regions of the screened interaction leading to the formation of charge density waves.

The resulting energy gaps could explain the recently observed correlated insulator behaviour in

undoped tBLG [120]. Our calculations demonstrate that internal screening strongly reduces the

on-site Hubbard parameter, see Fig. 3.4(c). For graphene, Jung and MacDonald have shown

that this favours the formation of charge density waves [9].

Spin density waves have also been suggested as candidates for the correlated insulator

states [11, 104, 108, 263, 276–278]. These phases are expected to occur when the ratio of the

∗Recall, however, that we do find metallic band structures of undoped tBLG for certain twist angles, and
tBLG away from charge neutrality might be expected to exhibit such oscillations.
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on-site Hubbard parameter V00 (commonly denoted as U) and the hopping integral t is large.

Based on Quantum Monte Carlo calculations, Scalettar et al. [279] suggested that undoped

tBLG undergoes a transition to a spin density wave at a U/t value of about two. This agrees

well with the critical value of U/t = 2.2 obtained for Bernal stacked bilayers [280]. Here, we use

a critical value of U/t = 2.2, but stress that our qualitative conclusions do not depend on the

precise choice for this value. As discussed above, the on-site Hubbard parameter that enters a

downfolded Hamiltonian for the flat-band electrons should be screened by all transitions except

those between flat bands. Fig. 3.5 shows the ratio of U calculated within the cRPA and the

hopping parameter (approximated as ∆/6 [75]) as function of the twist angle. U/t exceeds the

critical value of 2.2 in a significant twist-angle range (θ = 1.02◦ to θ = 1.52◦ corresponding to

the light shaded region in the figure). It is well known, however, that long-ranged interactions

reduce electron correlations. This effect can be approximately incorporated by replacing V cRPA
00

by U∗ = V00 − V01, i.e. the difference between the on-site and nearest neighbour Hubbard

parameters [75, 109]. The resulting measure for the strength of electron correlations U∗/t

exceeds the critical value only in a very narrow range of twist angles (dark shaded region in

the figure) indicating that spin density wave states can only be found in a narrow twist-angle
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Figure 3.6: (a) - On-site Hubbard parameter V00 as a function of distance between tBLG and
the metallic gate(s) ξ for a twist angle of 1.12◦ for the single-gate and double-gate device. (b) -
Long-range corrected on-site Hubbard parameter U∗ as a function of ξ for a twist angle of 1.12◦

for the single-gate and double-gate device. The horizontal dotted-dashed lines denote critical
values of U∗ obtained by multiplying the critical U∗/t values from atomistic RPA calculations
of tBLG [208] with the hopping parameter for neighbouring moiré Wannier functions. Dotted
lines through the data points correspond to fits that are used to extract critical gate separations
in Fig. 3.7. The solid vertical line denotes to the length of the moiré unit cell.

window [75].

3.3 External screening

Next, we turn to the role of external screening on the cRPA Hubbard parameters of the flat

bands of tBLG. The external screening should come from the supporting dielectric substrate

(hBN in this case) in addition to the proximity of the metallic gates (which dope tBLG through

electrostatic gating). The effect of the dielectric substrate can be assumed to occur through a

constant, in addition to the cRPA response function. As shown in Fig. 3.4 the cRPA Hubbard

parameters with an environmental dielectric constant of 5 actually changes relatively linearly

with the twist angle, which is not far off the values for the environment plus decoupled bilayer

response. Therefore, to simplify matters, we introduce the effect of cRPA screening and the

environment through a constant (taken to be 10 in this section), and use the analytical equations

for the image-charge-induced screening from metallic gates [245].
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3.3.1 Hubbard parameters

Figure 3.6(a) shows the on-site Hubbard parameter V00 of tBLG as a function of the gate

separation ξ for a twist angle of 1.12◦, for both single-gate and double-gate device configurations.

The largest values of V00 are obtained for large gate separations, and there is a substantial

reduction in V00 as the gate separation decreases below the moiré length (indicated by the

vertical line in Fig. 3.6). This can be understood as the image charge contribution arising from

the induced charge density at the surface of the gate to reduce the Coulomb interaction between

electrons in the tBLG. In the case of the single-gate device, when ξ is small, the electron in the

tBLG and its image charge effectively interact with other electrons via a weak dipolar potential

(instead of the usual monopole charge-charge interaction). For the double-gate setup, the image

charges in both gates give rise to an exponentially screened interaction between electrons in the

tBLG. The results for V00 in the two different device configurations are qualitatively similar,

but the Hubbard parameters are somewhat smaller for the double-gate setup since both of the

gates contribute to the screening.

In the Hubbard model [281, 282], electron-electron interactions are assumed to be short-

ranged and the strength of electron correlations is usually measured by the ratio of the on-site

Hubbard parameter V00 and the nearest-neighbour hopping parameter t. A system with long-

ranged electron-electron interactions can be mapped onto an effective Hubbard model with

an on-site Hubbard parameter U∗ = V00 − V01 (reflecting the energy required to hop from an

empty Wannier orbital to an occupied neighbour site [109]), where V01 is the interaction between

Wannier functions centred on neighbouring AB/BA regions [75, 256]. Figure 3.6(b) shows U∗

for tBLG as function of ξ for a twist angle of 1.12◦ for both device configurations. It can be

seen that U∗ is significantly smaller than V00, indicating that interactions between neighbouring

Wannier functions play an important role even in the presence of metallic gates [75, 256]. This is

expected as there is significant overlap between lobes of neighbouring Wannier functions [68, 75].

Similarly to V00, U∗ approaches a constant value in the limit of distant gates, but does so more

rapidly once ξ becomes larger than the moiré length. Moreover, U∗ exhibits a significantly

sharper reduction as the distance decreases. Naively, one might expect that the presence of

gates should lead to an increase in U∗ if the screened interaction is sufficiently short-ranged
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Figure 3.7: Critical value of gate distance as a function of twist angle for (a) two additional
electrons per moiré unit cell (−2e), (b) charge neutrality (0e) and (c) two additional holes per
moiré unit cell (2e) for a device with a single gate. The grey regions indicate correlated insulator
states [either ferromagnetic insulators (FMI) or anti-ferromagnetic insulators (AFMI)], while
the white regions denotes either metallic (M) or semi-metallic (SM) phases. Note that we
employ the critical U∗/t values obtained from atomistic RPA calculations of tBLG [208].

such that V01 is strongly reduced. We find indeed that V01 decreases more quickly than V00, but

this relative reduction of V01 compared to V00 is not sufficient to overcome the large absolute

reduction of V00 and, therefore, the overall balance is such that U∗ decreases with decreasing ξ.

3.3.2 Correlated insulators

When U∗/t reaches a critical value, a phase transition from a (semi-)metallic phase to a corre-

lated insulator state is expected. For tBLG, no consensus has yet been reached regarding the

nature of the correlated insulator states, nor the corresponding value of the critical U∗/t. For

Bernal stacked bilayer graphene, Quantum Monte Carlo calculations have found a critical value

of 2.2 for a phase transition to a gapped antiferromagnetic phase [280]. Recently, Klebl and

Honerkamp calculated the phase diagram of tBLG using an atomistic RPA approach [208]. For

undoped tBLG (denoted 0e), they find a transition from a semi-metal to an antiferromagnetic

insulator, and for doping levels corresponding to two extra electrons (−2e) or holes (+2e) per

moiré cell, a transition from a metallic phase to a ferromagnetic insulator is predicted. The

RPA value for the critical U∗/t in tBLG is smaller than in the Bernal stacked bilayer, and

depends both on temperature and doping. Because of the lack of self-energy corrections, the

critical U∗/t values from the RPA should be considered as lower bounds [208].

In Fig. 3.6(b), the critical values of U∗ for the cases of 0e, −2e and +2e doping are indicated
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by horizontal dotted-dashed lines. Here, we have multiplied the critical Upz/tpz values (where

Upz and tpz denote the Hubbard and hopping parameters of carbon pz-orbitals in tBLG) from

Klebl and Honerkamp [208] at a temperature T ≈ 0.3 K with the hopping parameter t between

neighbouring Wannier functions (calculated from the width ∆ of the flat bands in our atomistic

tight-binding model using t = ∆/6, which is the relation between bandwidth and hopping in

graphene). While this procedure is not rigorous, we believe that the resulting critical U∗/t

values for the flat-band electrons are useful estimates as there is a close connection between

atomistic and low-energy Hamiltonians in tBLG [71]. Moreover, we note that our results for the

critical gate distances that are derived from the critical U∗/t values are in good agreement with

recent measurements [121, 122]. Future work should be carried out to determine the critical

U∗/t values of the flat-band electrons in tBLG.

For the single-gate (double-gate) device, as the gate separation is reduced to ξc = 5.86 nm

(ξc = 8.14 nm), U∗ crosses the critical value for zero doping, indicating that tBLG would

exhibit a semi-metallic phase at zero doping, but the correlated insulator states at −2e and

+2e doping would remain. At ξc = 2.21 nm (ξc = 3.56 nm), the critical U∗ for −2e doping is

crossed and finally, at ξc = 0.89 nm (ξc = 1.74 nm) the critical value for +2e doping is reached.

For even smaller values of ξ, the tBLG is either metallic or semi-metallic at the doping levels

considered here. These results demonstrate that the phase diagram of tBLG can be controlled

via the thickness of the dielectric substrate that separates the tBLG from the metallic gates and,

hence, determines the degree to which the gate is able to screen electron-electron interactions

in tBLG. The critical separations for phase transitions depend on the device configuration,

with smaller values for single-gate devices because the screening is weaker than in double-gate

devices.

The critical gate separation ξc also depends on the twist angle. Fig. 3.7 shows this depen-

dence as a function of twist angle from the magic angle θ∗ = 1.18◦ for the single-gate device

configuration and for three doping levels: −2e (left panel), 0e (middle panel) and +2e (right

panel) at T ≈ 0.3 K. For all doping levels, ξc decreases as the magic angle is approached.

Close to the magic angle, the hopping approaches zero and extremely small values of U∗ must

be achieved to reach the critical value of U∗/t. This is only possible for very small values of
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ξ. Comparing the three doping levels, we find that ξc for the undoped system increases most

rapidly away from the magic angle. At twist angles larger than 0.1◦ from the magic angle, the

undoped system is always metallic and no phase transition to a correlated insulator phase can

be induced. For −2e doping, the critical twist angle window is larger than for zero doping.

For +2e doping, a critical thickness can be found for all considered twist angles near the magic

angle. At larger temperatures, the critical value of U∗/t is smallest at charge neutrality [208],

which means that charge neutrality will require the thinnest hBN slabs to reach the critical

value for a phase transition to a (semi-)metallic state.

3.3.3 Superconductivity

The thickness ξ of the dielectric spacer layer also influences the stability of the superconducting

state which competes with the correlated insulator states discussed above. To bind electrons

into Cooper pairs, the effective electron-electron interaction must contain an attractive part Vatt

(this could arise either from electron-phonon coupling, exchange or spin fluctuations, plasmons

or any other glue). The total interaction can be expressed as the sum of the bare Coulomb

interaction and Vatt. The superconducting transition temperature is approximately given by

Tc ∝ Eglue/kB × exp(−1/(λ− µ∗)), where λ describes the coupling of the electrons to the glue

(which has an energy scale Eglue) and µ∗ is the Coulomb pseudopotential, which describes the

repulsion due to the bare Coulomb interaction [283] (kB is the Boltzmann constant). In the

presence of metallic gates, the repulsive bare interaction is reduced by the image charge in-

teraction. As a consequence, µ∗ is also reduced and has a dependence on the gate separation

ξ. The presence of gates, therefore, should enhance the stability of the superconducting phase

and increase the superconducting transition temperature, while reducing the stability of the

correlated insulator states. Further calculations are required to quantitatively study the com-

petition between superconductivity and correlated insulator states in the presence of metallic

gates.
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Chapter 4

Hartree interactions and magnetic

order of twisted bilayer graphene

Not long after the initial discovery of correlated phases in tBLG [88, 89], Guinea and Walet

demonstrated that Hartree interactions are the dominant energy scale in magic-angle tBLG [95].

Using a Hartree continuum model it was shown that the electronic structure is extremely

sensitive to the doping level within the flat electronic bands, and that the van Hove singularities

(VHS) are pinned at the Fermi level [95]. Interestingly, this is in contrast to graphene, where

the electronic structure does not undergo qualitative changes, but electron interactions can

renormalise the Fermi velocity [7, 9, 10].

For angles close to, but not exactly at, the magic angle, scanning tunnelling microscopy

(STM) studies [129–131, 139] confirmed the predictions of Guinea and Walet [95]. Clear sig-

natures of VHS pinning in the AA regions of tBLG were found from these STM measure-

ments [129–131, 139]. At, or very close to, the magic angle, exchange interactions also become

significant and cause the onset of correlated insulating states, which were also clearly seen in

the STM experiments [129, 130, 139]. Moreover, close to the correlated insulating state at ±2

doping level, nematic order was observed which clearly broke the (approximate) C3 rotational

symmetry [129, 131, 139].

These findings demonstrated the importance of long-ranged electron-electron interactions

for understanding tBLG [98, 111]. Subsequent work by several other groups [135–138] demon-
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strated that these long-ranged Hartree interactions result in significant interaction driven flat-

tening of the bands (in addition to the band flattening induced by twisting [29, 32, 33, 37]).

However, short-ranged electron-electron interactions are also extremely important in under-

standing strongly correlated systems [99].

The quintessential model for strongly interacting electrons is the Hubbard model [281, 282],

in which electrons only interact when they are on the same “site” (typically assumed to be

an atom). In tBLG near the magic angle, the moiré pattern results in the emergence of eight

flat bands (including a factor of two from spin degeneracy) near the Fermi energy which are

separated from all other bands by energy gaps [52, 55, 56, 67, 69]. Starting from atomistic

tight-binding approaches∗, Hubbard models for tBLG can be obtained by constructing Wan-

nier functions† of the flat bands [73, 75]. The properties of such models have been studied

using Quantum Monte Carlo [263], functional renormalisation group [108] and exact diagonal-

ization [97] resulting in many important insights into the origin of superconductivity and corre-

lated insulator states. Instead of using flat-band Wannier functions as a basis, it is also possible

to construct atomistic Hubbard models using a basis of carbon pz orbitals [11, 205, 208, 284].

Accurate models of tBLG should, however, capture both short-ranged and long-ranged

electron-electron interactions [125]. Several groups used Hartree-Fock calculations based on

a continuum model of the electronic structure [66, 143, 258–261]. These calculations have

yielded many useful insights, but they do not capture atomic-scale interactions (such as on-

site interactions within carbon pz-orbitals) and often only include a few bands near the Fermi

level with the effect of all other bands being described by an effective dielectric constant. Few

groups have attempted to capture the interplay of long-ranged and short-ranged interactions

using atomistic calculations: González and Stauber [285, 286] studied the properties of tBLG

in different dielectric environments using atomistic Hartree-Fock theory, and Sboychakov et

al. [287, 288] developed an atomistic Hubbard model with electron-electron interactions up to

nearest neighbour. These studies only considered the properties of tBLG at a single twist angle

∗Note that the flat band Wannier functions cannot be constructed from a continuum model of a single valley
because of the fragile topology of these bands [72, 77–80]. In that case, additional bands must be included in the
Wannierization procedure, either through remote bands of a single valley or from mixing the two valleys [80, 81].

†Note that Hubbard models using a basis of flat-band Wannier functions account for some long-ranged
interactions because of the large size of the Wannier orbitals [68, 73, 75].
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and, therefore, did not study in detail the interplay of long-ranged and short-range interactions

as a function of doping and twist-angle.

In this chapter, results for how electron interactions affect the magnetic order of tBLG

are presented. Initially, the normal state of tBLG is investigated, with a focus on the effects

of Hartree interactions when the system is doped, where significant interaction-induced band-

flattening occurs. This leads to the investigation of how the interaction-driven band-flattening

affects the prevalence of magnetic phases in tBLG. Section 4.1 on Hartree interactions in the

normal state of tBLG is heavily based on Ref. 137 [Goodwin et al. Electron. Struct. 2:034001,

2020]. While Section 4.2 is mainly based on Ref. 125 [Klebl, Goodwin et al. Phys. Rev. B

103:195127, 2021]. The final section of this chapter presents mean-field Hubbard calculations

of tBLG. Below I summarise my contribution and those of my collaborators of Refs. 125, 137.

In Ref. 137, I performed practically all of the work that was published. I shall mainly

summarise what was done by others, with the remaining work being my own contribution (a

brief description shall be given). Valerio Vitale helped to write the initial version of the script for

the self-consistency algorithm for numerically evaluating the atomistic Hartree theory. He also

helped with discussions of the results. Xia Liang∗ contributed the relaxed structures which were

used in the calculations. Johannes Lischner and Arash Mostofi conceived the project, guided its

progression and helped in writing the paper. I wrote all other modules of the code for evaluation

of the self-consistency algorithm (generating lattice parameters and importing atomic positions,

building and diagonalising the Hamiltonian, finding the Fermi energy, calculating the electron

density, and computing the Hartree potential). I also tested and modified the code substantially

from the first version on my own, and then generated all results shown in the paper.

In Ref. 125, I was the second author of the paper, with Lennart Klebl being the first author.

Lennart performed the calculations of the RPA spin-susceptibility and generated the figures

related to those calculations (this was the main novel part of that paper). He also helped write

the paper and contributed to discussions. I initiated the project with Lennart following the

work described in Ref. 137, after self-consistent Hubbard calculations (some results of which are

shown in Section 4.3) proved too computationally demanding to achieve our goals. I contributed

∗A UROP and MEng project student who was predominantly under my supervision.
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the figures related to Hartree theory and wrote most of the paper. Dante Kennes, Johannes

Lischner and Arash Mostofi helped in the discussion of the results and writing the paper.

It is worth noting that slightly different tight-binding parameters have been used in Sec-

tion 4.1 compared to Sections 4.2 and 4.3. Whilst this does not qualitatively change any of

our conclusions, it does cause a slight change in the magic angle. Therefore, care should be

taken when making comparisons between the electronic structure calculations of Section 4.1,

and Sections 4.2 and 4.3.

4.1 Hartree interactions in twisted bilayer graphene

4.1.1 Band structure

Figure 4.1 shows the band structures∗ of tBLG suspended in air† from Hartree theory at six

twist angles between θ = 1.54◦ and θ = 1.05◦. Only the four flat bands closest to the Fermi

energy are shown. We refer to the lower two of the flat bands as the flat valence bands and the

upper two as the flat conduction bands. These four bands are separated from all other bands

by energy gaps that result from the atomic corrugation of tBLG [53, 58, 64, 68, 69, 75]. The

width of the flat band manifold is smallest at θ = 1.16◦ and we refer to this twist angle as the

magic angle.

We first discuss the band structures of undoped tBLG, corresponding to ν = 0 (black curves

in Fig. 4.1). The band structures at all twist angles except the magic angle are semi-metallic

and feature linear bands at the K and K′ points. As the magic angle is approached, the total

width of the flat band manifold decreases rapidly, see Fig. 4.2(a). Interestingly, at charge

neutrality, the valence band widths are always smaller than the conduction band widths, see

Figs. 4.2(c) and (d).

At the magic angle, the band structure of undoped tBLG is qualitatively different as com-

pared to the other twist angles [65, 69]. In particular, the two valence bands at Γ are pushed

∗The structure was generated from LAMMPS with a 2.42 Å lattice constant of graphene. The tight-binding
parameters for these calculations were a = 1.39 Å, d = 3.35 Å, qπ = 7.43 and qπ = 3.14, with a spherical
Heaviside step function with cut-off of 10 Å being used to truncate hopping parameters, which gave a magic
angle of tBLG at 1.16◦.

†As introduced by a dielectric constant of ε = 1. Later we show that a dielectric substrate only leads to
small change in the Hartree band structures.
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Figure 4.1: Atomistic Hartree band structures of twisted bilayer graphene for various twist
angles θ and doping levels ν, assuming Coulomb interaction with dielectric constant of ε = 1.
Band structures of electron-doped (hole-doped) tBLG are shown in the upper (lower) two rows;
the undoped case (black line) is shown in all panels. The Fermi level is denoted by horizontal
dash-dotted lines. For clarity, the energy at the K-point is used as reference in all graphs and
only the four flat bands near the Fermi level are shown. Note that the width of the flat band
manifold, and therefore also the scale of the vertical axis, depends sensitively on the twist angle,
as shown in Fig. 4.2. The width of the flat band manifold is smallest at θ = 1.16◦.

up and are now higher in energy than the states at K and K′. As a consequence, at this level

of theory, tBLG is metallic at the magic angle, even without doping with additional carriers.
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Figure 4.2: (a) - Width of the flat band manifold ∆Etot as a function of twist angle for
different doping levels. (b) - Energy separation of the valence and conduction VHS ∆EVHS as
function of twist angle for different doping levels. (c) - Width of the flat conduction bands
∆Ec as function of twist angle for different doping levels ν ≥ 0. (d) - Width of the flat valence
bands ∆Ev as function of twist angle for different doping levels ν ≥ 0. In all cases we assume
dielectric screening of ε = 1.

The Hartree band structures of undoped tBLG are very similar to the non-interacting tight-

binding band structures [95, 136, 137]. This can be understood by analysing the charge density

and the corresponding Hartree potential. Without doping each region of the moiré unit cell is

approximately charge neutral (when the atomic oscillations are averaged over a region) [136]

resulting in a small Hartree potential, as we shall discuss further later.

Figure 4.1 also shows Hartree band structures for electron-doped (upper two rows) and hole-

doped (lower two rows) tBLG. In agreement with previous Hartree calculations [95, 135, 136],

we observe that doping results in significant changes in the band structures. In contrast, the

tight-binding band structures that are widely used to understand the electronic properties of

doped tBLG do not change upon doping. Focusing first on the largest twist angle considered,

θ = 1.54◦, electron doping (corresponding to ν = 1, 2 or 3) flattens the conduction bands, while
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the valence bands become more dispersive. Figure 4.2(c) shows that the conduction band width

decreases by approximately 5 meV for each added electron. However, the valence band width

increases by the same amount [Fig. 4.2(d)] and the total band width of the flat band manifold

remains constant at this twist angle, as shown in Fig. 4.2(a). For hole doping (ν = −1, −2 and

−3), the situation is similar but the valence bands flatten and the conduction bands become

more dispersive.

To understand why electron-electron interactions are more relevant for the doped system,

we analyse again the charge density and the corresponding Hartree potential (the explanation

here follows that outlined by Rademaker et al. in Ref. 136). As the local density of states is

larger in the AA regions than in the AB/BA regions, additional carriers (both electrons and

holes) preferentially localise in the AA regions [136]. This creates a highly non-uniform charge

distribution, which gives rise a strong Hartree potential [136]. Fig. 4.6(a) shows that ∆VH (the

difference between the Hartree potential in the centres of the AA and AB regions) increases by

approximately 30 meV for each added electron. States near the K and K′ points are localised in

the AA regions and are pushed up in energy relative to the states at Γ (which have a ring-like

shape surrounding the AA regions) for electron-doped systems [136, 289]. In contrast, the K/K′

states are pushed down in energy relative to the Γ-states for hole-doped systems [136].

For smaller twist angles, doping induces even more significant changes in the band structure.

At θ = 1.41◦, the valence bands are almost completely flat between Γ and M for ν = −3. In

contrast, the flattening of the conduction bands upon electron doping is not quite as pronounced

at this twist angle. For θ = 1.2◦, the Γ-states have moved past the K/K′-states so that the

curvature of the conduction band at Γ changes sign at all doping levels (both electron and hole

doping) except ν = 1. For this doping level, the conduction band is very flat in the vicinity

of the Γ-point. Interestingly, for ν = 2 the width of the conduction bands exhibits a local

minimum at θ = 1.2◦, see Fig. 4.2(c), and is even smaller than at the magic angle. Similarly,

for ν = 3 the width of the conduction bands exhibits a local minimum at θ = 1.3◦. This

suggests that long-ranged Coulomb interactions between electrons can modify the twist angle

at which electron correlation phenomena are strongest and that this may not necessarily be at

the magic angle.
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These qualitative changes in the band structures of doped tBLG close to the magic angle

can be understood by analysing the twist angle dependence of the Hartree potential. Fig. 4.6(a)

shows that ∆VH only depends weakly on the twist angle. In contrast, the band widths decrease

rapidly as the magic angle is approached and therefore the importance of long-ranged electron-

electron increases strongly.

At the magic angle (θ = 1.16◦), the band structures of hole-doped tBLG (ν = −1, −2 and

−3) look qualitatively similar to the undoped band structure, but with a significantly larger

band width. For example, for ν = −2 we find a band width of 13 meV (compared to 1 meV

for the undoped system). For electron-doped systems, the conduction bands ‘invert’ such that

both the valence and conduction bands at Γ are at lower energies than the states at K and K′.

For twist angles smaller than the magic angle, the band structures of doped tBLG are quite

similar to those of twist angles larger than the magic angle. In particular, the band structures

at θ = 1.12◦ correspond closely to those of θ = 1.2◦ (both differ from the magic angle by 0.04◦)

and the band structures of θ = 1.05◦ are similar to those of θ = 1.3◦ (which differ from the

magic angle by 0.11◦ and 0.14◦, respectively).

4.1.2 DOS and LDOS

Figures 4.3 and 4.4 show the DOS and LDOS∗ from Hartree theory for three twist angles:

θ = 1.54◦ [panel (a)], θ = 1.41◦ [panel (b)] and θ = 1.2◦ [panel (c)]. The LDOS is shown both for

the AA (solid lines) and AB (dash-dotted lines) regions, averaged over a region around the centre

of the respective region†. When the tunnelling matrix elements are constant (which is likely

a good approximation for the flat bands of tBLG), the LDOS is proportional to the measured

tunnelling spectrum and thus directly accessible in experiments. Several STM studies of tBLG

have been reported recently [129–131] and we will discuss the similarities and differences of our

calculations with these experimental measurements. Below, we analyse each of the three twist

angles in turn.

∗In order to calculate the DOS, we sample the first Brillouin zone using approximately 6,000 k-points and
represent the contribution from each energy level as a gaussian. A similar procedure is used for the LDOS.

†The LDOS is averaged over atoms within a radius of 15 Å [we found that the results do not depend
qualitatively on the radius chosen, provided it is larger than the length scale of the carbon-carbon bond length
O(1 Å) and smaller than the moiré length scale O(10 nm)].
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Figure 4.3: Doping-dependent densities of states (DOS) of twisted bilayer graphene (sus-
pended in air) for three twist angles near the magic angle. The dotted vertical line denotes the
Fermi level.
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Figure 4.4: Doping-dependent local densities of states (LDOS) in the AA (solid curves) and
AB (dash-dotted curves) regions of twisted bilayer graphene (suspended in air) for three twist
angles near the magic angle. The dotted vertical line denotes the Fermi level.

For θ = 1.54◦, the DOS exhibits two pronounced peaks at all doping levels. At zero doping,

these VHS are located at ±20 meV on both sides of the Fermi energy. Comparing the DOS to

the LDOS, we find that the dominant contribution to the DOS derives from the AA regions [32].

The LDOS in the AB regions also exhibits small peaks in the vicinity of the VHS. The valence

band VHS is somewhat larger than the conduction band one because the valence bands are

flatter than the conduction bands, see Fig. 4.1. These findings are in agreement with several

recent experimental STM measurements [129–131]. Note, however, that our values for the

energy difference between valence and conduction VHS are smaller (for the same twist angle)
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than the experimental results. In Ref. 129, this was attributed to the use of DFT-derived

tight-binding parameters for the intralayer hopping which are about 20 percent smaller than

more accurate GW values.

Upon electron doping, the conduction VHS becomes larger while the valence VHS becomes

smaller. This is a consequence of the doping-induced band flattening of the conduction bands,

while the valence bands become more dispersive, see Fig. 4.1. In contrast, hole doping increases

the valence VHS while the conduction VHS becomes smaller. Again, these findings are in

agreement with several recent experimental measurements [129, 130] and cannot be explained

by tight-binding theory. Note that at this twist angle the Fermi level of the doped system is

not pinned at the VHS.

At θ = 1.41◦, the separation between the VHS is reduced to 30 meV. Upon hole doping,

the difference between valence and conduction band VHS is much clearer than at 1.54◦. This is

caused by the strong distortion of the doped valence bands resulting in extremely flat valence

bands throughout large regions of the Brillouin zone∗, see Fig. 4.1. For ν = −2 and ν = −3,

we observe that the Fermi level is pinned at the valence VHS. This Fermi level pinning has also

been reported in several experimental STM studies and is a consequence of electron-electron

interaction induced changes in the band structure. The LDOS in the AA region is again very

similar to the DOS. However, we find that the valence peak of the LDOS in the AB regions

grows upon hole doping. This is because the wave functions of the flat valence bands are partly

localised in the AB regions (in particular, the valence states near Γ). This prediction can be

tested by STM measurements and would provide direct evidence of the doping-induced band

flattening in Hartree theory. Figure 4.2(b) shows that the separation of the VHS is reduced

by hole doping for twist angles larger than the magic angle and increased by electron doping.

The opposite trend is observed for twist angles smaller than the magic angle. While this is in

qualitative agreement with some experimental measurements, the absolute magnitude of the

change in VHS separation is typically smaller than in experiments [44, 46, 47, 49, 87, 129–

131, 139, 140].

Besides Fermi level pinning, the enhancement of the DOS at the Fermi level due to the

∗Recall that the distortion of the valence bands is always more pronounced than that of the conduction
bands because the valence bands usually have a smaller width.
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doping-induced flattening of the partially occupied bands is also relevant for understanding

broken-symmetry phases, such as correlated insulator or superconducting states [98]. In partic-

ular, the values of the transition temperatures to these states are usually very sensitive to the

DOS at the Fermi energy [98], DOS(EF). For example, the superconducting critical transition

temperature is given by Tc ∝ exp (−1/[DOS(EF)V ]) with V describing the coupling strength

of the electrons to the superconducting glue (e.g., phonons or spin waves). The doping-induced

increase of the DOS at the Fermi level should therefore result in a dramatic increase of the

critical temperature.

At θ = 1.2◦, very close to the magic angle, the VHS separation is only 5 meV in the undoped

system and the valence VHS is much larger than the conduction VHS. Fermi level pinning is

observed both for electron and hole doping. In the DOS, the shape of the VHS of the partially

filled band is highly asymmetric. In particular, the leading edge of the peak (i.e., the side of

the peak facing towards the other VHS) rises more sharply than the trailing edge (i.e., the side

facing away from the other VHS). Interestingly, we also observe a double peak in the conduction

VHS at ν = 1. The second peak is caused by a peak of the LDOS in the AB regions which

does not coincide with the main peak of the LDOS in the AA regions. Again, this double peak

structure is caused by the electron-electron interaction induced distortion of the conduction

band near Γ. Figure 4.1 shows that the conduction bands are extremely flat near Γ, but have

a slightly higher energy than the states at M which give rise to the main peak of the VHS.

4.1.3 Environmental screening

So far, we have presented results for tBLG suspended in air (ε = 1). In experiments, however,

the tBLG is placed on or sandwiched by a dielectric substrate, typically hexagonal boron nitride

(hBN), and the presence of this dielectric environment screens the interaction between electrons

in the tBLG [88, 89, 93, 114, 120, 129–131]. In transport experiments, the dielectric substrate

separates the tBLG from a metallic gate which is used to control the charge density in the

tBLG and the presence of gates further modifies the effective interaction between the electrons

in the tBLG.

Figure 4.5(a) compares Hartree band structures of electron-doped tBLG (ν = 2) at θ = 1.54◦
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Figure 4.5: (a) - Band structure of electron-doped (ν = 2) twisted bilayer graphene sus-
pended in air (ε = 1; red solid lines), encapsulated by hBN (ε = 3.9; black dashed lines) and
encapsulated by hBN with metallic gates at a distance of 10 Å (purple dash-dotted line). (b)
- Corresponding values of ∆VH defined as the difference of the Hartree potential energy in the
centres of the AA and the AB regions. The twist angle is θ = 1.54◦.

(similar band width to that of the experiments in Ref. 129) with ε = 1 (tBLG suspended in air)

and ε = 3.9 (tBLG sandwiched by thick layers of hBN). Surprisingly, the difference between

the two band structures is small on the scale of the band width of the flat bands (similar

band widths to those in experiments too). To understand this finding, we analyse the Hartree

potentials of the two systems. Fig. 4.5(b) shows ∆VH (the difference between the Hartree

potential in the centres of the AA and AB regions) as a function of doping for the two cases.

While one might naively expect that the slope of ∆VH should be reduced by a factor of εbg = 3.9

when the dielectric environment is included, we find that the reduction is much smaller (∆VH

is only reduced by 30% when the dielectric environment is included).

The inclusion of metallic gates on both sides of hBN-encapsulated tBLG at a distance

of 10 nm for a twist angle of 1.54◦ also has little effect on the band structure [Fig. 4.5(a),

purple dash-dotted line] because the Hartree potential does not change significantly, as shown

in Fig. 4.5(b). It is worth noting that most experiments use larger gate distances than 10 nm

which would result in an even smaller effect. Recently, experiments employing very small

gate distances reported dramatic changes of the electronic phase diagram and suggested that

these were induced by changes in the environmental screening [122]. While further work is

required to study the effect of metallic gates for small gate distances and twist angles very close

to the magic angle, we stress that the phase diagram is determined by the relative stability
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Figure 4.6: (a) - Hartree potential difference ∆VH between the AA and AB region as a
function of twist angle for undoped (black) and electron-doped twisted bilayer graphene for
ν = 1 (cyan), ν = 2 (blue) and ν = 3 (purple). (b) - ∆VH as function of doping for three twist
angles near the magic angle and linear fits obtained from Eq. (4.1).

θ◦ V(θ) / meV ν0(θ)

1.54 6.57 −0.080
1.41 6.63 −0.087
1.30 5.98 −0.174
1.20 5.23 −0.192
1.16 — —
1.12 5.22 −0.236
1.05 5.51 −0.240

Table 4.1: Coefficients for the Hartree potential fit, Eq. (4.1). The magic angle cannot be
accurately reproduced with this fit so we do not provide parameters here.

of the competing phase, i.e. the total energy differences. It is possible that relatively small

changes in the dielectric screening can change the relative stability of the competing phases and

thereby lead to drastic changes in the phase diagram, while only mildly affecting quasiparticle

properties.

This surprising robustness of the Hartree band structure of tBLG towards changes in the

dielectric environment has two reasons. First, the weakening of the Coulomb repulsion by the

dielectric substrate allows for a greater inhomogeneity of the charge density. This results in

a larger Hartree potential energy than the one that would have been obtained if the charge

density had been frozen in its unscreened configuration. Second, the change in the dielectric

environment only leads to small changes in the total screening response because the internal

screening of the tBLG is already quite strong [255, 256].

In Fig. 4.6 we show how ∆VH changes as a function of twist angle and doping. It can be seen
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that there is little change as a function of twist angle (with the exception of the magic angle)

and that ∆VH changes approximately linearly with doping. Except at the magic angle, the

doping and twist-angle dependent atomistic Hartree potential energy is accurately described

by∗

VH(r) ≈ V (θ)(ν − ν0(θ))
∑

j=1,2,3

cos(Gj · r), (4.1)

where ν0(θ) is the doping level where the Hartree potential vanishes, V (θ) is a twist angle

dependent energy parameter and Gj denote the three reciprocal lattice vectors that are used

to describe the out-of-plane corrugation of tBLG in Ref. 68. Interestingly, this equation is very

similar to the continuum model of Refs. 95, 135, where only the shortest Fourier components

are retained in the Hartree potential. Therefore, the continuum model and atomistic model

are in excellent agreement. Table 4.1 shows the optimal values of these parameters for the

twist angles that we have studied and Fig. 4.6(b) compares the fit to the calculated Hartree

potential as function of doping for different twist angles. Using Eq. (4.1) as an on-site energy in

a tight-binding calculation allows the determination of Hartree-theory band structures without

the need for self-consistent calculations. We believe that this approach is a useful starting point

for understanding broken symmetry phases in doped tBLG.

4.2 Importance of Hartree interactions for magnetic or-

der

To investigate magnetic ordering tendencies of tBLG including the effect of long-ranged interac-

tions, we calculate the interacting static spin susceptibility in the normal state using a Hartree

theory plus U (Hartree+U) approach. In this approach, Hubbard interactions within the carbon

pz-orbitals are captured by adding a Hubbard contribution U
∑

i ni↑ni↓, with U denoting the

Hubbard parameter and ni↑ (ni↓) denoting the occupancy of the up (down)-spin pz-orbital on

carbon atom i [11], to the Hartree theory [we use Eq. (4.1) with V (θ) = 5 meV and ν0(θ) = 0].

∗Note that Eq. (4.1) assumes that the AA regions reside in the corners of the rhombus-shaped moiré unit
cell.
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This approach assumes that the spatial range of the exchange interaction is strongly reduced as

a result of electronic screening induced by the flat bands [255, 256, 290]. Moreover, it has been

shown that models with short-ranged Hubbard-type exchange interactions accurately describe

the magnetic phase diagram of graphene and bilayer graphene bilayer [6, 280, 291], which can

be viewed as “parent” systems whose ordering tendencies are inherited by the tBLG [208].

4.2.1 Band structures

Figure 4.7 shows the band structures∗ from Hartree theory at three twist angles near the magic

angle (θ = 1.41◦, 1.20◦ and 1.05◦) at various doping levels. For comparison, we also show the

corresponding tight-binding results. For the two larger twist angles, both the Hartree and tight-

binding band structures exhibit Dirac cones at the K and K′ points. While the non-interacting

tight-binding band structure does not depend on the doping level, long-ranged electron-electron

interactions captured by Hartree theory give rise to a significant doping-dependent distortion

of the band structure [95, 135–138]. In particular, Hartree interactions result in a flattening of

the doped bands. For example, at θ = 1.20◦ and ν = 3 the two higher-energy bands are much

flatter than the corresponding tight-binding bands.

The magic angle (defined as the twist angle with the smallest width of the flat band manifold

from tight-binding) is found to be 1.05◦. At this twist angle, the tight-binding band structure

differs qualitatively from the result at larger (and smaller) twist angles. In particular, the

lower-energy bands are inverted and have a similar shape to the higher-energy bands. Including

long-ranged interactions again results in drastic changes to the band structure with Hartree

theory predicting an increase of the overall flat band width when the system is doped. Also,

the overall shape of the flat band manifold is flipped when comparing hole-doped and electron-

doped systems.

∗The structure was generated from LAMMPS with a 2.42 Å lattice constant of graphene. The tight-binding
parameters for these calculations were a = 1.39 Å, d = 3.2912 Å, qπ = 7.39 and qπ = 3.13, with a spherical
Heaviside step function with cut-off of 10 Å being used to truncate hopping parameters, which gave a magic
angle of tBLG at 1.05◦.
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Figure 4.7: Band structures of tBLG at twist angles of 1.41◦, 1.20◦ and 1.05◦ for integer
fillings ν of the flat bands from tight-binding (denoted TB, see upper panels) and Hartree
theory (denoted Hart., see lower panels). Fermi levels are indicated by horizontal lines. In
contrast to Hartree theory, the tight-binding band structure does not depend on ν. Note that
the energy scale on the y-axis is different in each panel. The zero of energy for each plot is
taken to be the Dirac point energy from tight-binding.

4.2.2 Magnetic phase diagram

Next, we calculate the interacting spin susceptibility from Hartree+U theory as function of

doping at a wide range of twist angles near the magic angle (0.96◦, 0.99◦, 1.02◦, 1.05◦, 1.08◦,

1.12◦, 1.16◦ and 1.20◦). Figure 4.8 compares the critical Hubbard parameter Uc without Hartree

interactions (left panel) and with Hartree interactions (right panel) as function of twist angle

and doping. To assess if the system undergoes a phase transition, Uc must be compared with

the actual value of U for a carbon pz-orbital. In graphene, Wehling et al. [236] and Schuler et

al. [109] found that U ≈ 4 eV. We expect that screening from tBLG does not significantly alter

this value, as the flat bands mainly screen long-ranged interactions [255, 256]. Therefore, we

assume a doping and twist angle independent value of U ≈ 4 eV in the following analysis.

Without Hartree interactions (left panel of Fig. 4.8), magnetic instabilities are found at

twist angles ranging from 0.99◦ to 1.12◦. At the magic angle (θ = 1.05◦), instabilities occur

at all integer doping levels except ν = 2. At twist angles smaller or larger than the magic

angle, instabilities are observed for a smaller set of doping levels. In particular, for θ = 0.99◦

and θ = 1.12◦, they only occur at ν = −1. In general, the critical Hubbard parameters are

smaller for hole doped systems because the lower-energy flat bands are somewhat flatter than
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Figure 4.8: Critical Hubbard interaction strength Uc required for the onset of magnetic
instabilities as a function of flat band filling ν and twist angle θ. Left panel: without Hartree
interactions (tight-binding). Right panel: with Hartree interactions.

the higher-energy ones in tight-binding. For twist angles larger than 1.2◦, we find Uc ≈ 5.5 eV,

which is similar to the value predicted for untwisted bilayer graphene [208].

When Hartree interactions are included (right panel of Fig. 4.8), a qualitatively different

behaviour of Uc is observed near the magic angle. In particular, the lowest values of Uc are now

found for electron-doped systems. Very close to the magic angle, Uc is lowest for ν = 1. At

twist angles somewhat smaller or larger than the magic angle, the lowest value of Uc is at ν = 2

and at θ = 0.96◦ or 1.16◦ the minimum is at ν = 3. These findings can be understood from

the Hartree theory band structures, as seen in Fig. 4.7, which show that the doping level which

gives rise to the flattest bands depends on the twist angle: at the magic angle the flattest bands

are found at ν = ±1, while at θ = 1.20◦ the higher-energy bands are extremely flat at ν = ±3.

Figure 4.8 also shows that magnetic instabilities occur over a larger twist angle range when

long-ranged Hartree interactions are included. Specifically, the Hartree+U approach predicts

such instabilities for a twist-angle window from θ = 0.96◦ to θ = 1.16◦. This larger critical

twist angle window is consistent with experimental findings: recent transport and tunnelling

experiments reported correlated phases in a twist angle range from 1.0◦ to 1.2◦ [98, 141].

Next, we analyse the spatial structure of the magnetic phases: the leading magnetic in-

stabilities are either Ångström scale anti-ferromagnetic with a modulation on the moiré scale

(MAFM), Ångström scale anti-ferromagnetic with nodes in the AB and BA regions (NAFM)
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Figure 4.9: Leading magnetic orderings in twisted bilayer graphene near the magic angle.
Shown is a line-cut of the magnetic order parameter (spin density) along the diagonal of the
rhombus-shaped moiré unit cell. The line-cut is chosen to include the atoms that are closest
to the actual line connecting one AA region with the next. Thus, at some point, there will
always be a switch from an A sublattice site to yet another A sublattice site which produces a
slip in the ordering. Top panel: Ångström scale anti-ferromagnetic with a modulation on the
moiré scale (MAFM). Middle panel: Ångström scale anti-ferromagnetic with nodes in the AB
and BA regions (NAFM). Bottom panel: mostly ferromagnetic (FM) order.

or mostly ferromagnetic (FM), see Fig. 4.9. Figure 4.10 shows the magnetic phase diagram as

function of twist angle and doping near the magic angle. Without Hartree interactions, the

hole doped system is typically FM. Ferromagnetism is found to coincide with small values of

Uc. In contrast, the undoped and electron doped system always exhibits MAFM, with NAFM

only occurring at ν = 0 and ν = 1 at the magic angle.

Dramatic qualitative changes in the magnetic phase diagram are observed when Hartree

interactions are included, see right panel of Fig. 4.9. The region of NAFM order in ν − θ-space

is larger, while MAFM is only found for the undoped system at θ = 1.02◦ and θ = 1.08◦.

Everywhere else the ordering is FM. Again, occurrence of FM is correlated with low values of

Uc, which occur because of the interplay between the enhancement of the density of states from

the long-ranged Hartree interactions upon doping and the enhancement of the density of states
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magnetic phases with Uc > 4 eV are experimentally not relevant (hatched regions).

from changing the twist angle towards the magic angle.

4.2.3 Discussion of phase diagram

Here, we compare our calculated magnetic phase diagram to experimental findings. Many ex-

perimental techniques, including transport and tunnelling measurements, probe quasiparticle

properties of tBLG. While our approach does not directly yield such properties, our analysis

below reveals a strong correlation between the calculated value of the critical Hubbard parame-

ter Uc and the measured quasiparticle gap in the correlated insulator phases, with small values

of Uc corresponding to large gaps associated with pronounced resistive peaks in transport ex-

periments. We stress that this correlation cannot be viewed as conclusive evidence that the

experimentally observed correlated insulator states have a magnetic origin, because the large

density of states at the Fermi which gives rise to the small values of Uc also promotes other

instabilities (such as valley-ordered or nematic states).

At charge neutrality, our calculations predict small values of Uc near the magic angle with

NAFM/MAFM order. Experimentally, the situation is not clear, however, with some experi-

ments reporting semi-metallic behaviour near the magic angle [88, 89, 93], while others (for very

similar twist angles) observe a strong insulating state [120]. These conflicting results could arise
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from different levels of strain in the samples: Liu et al. [143] demonstrated that a C3 broken

symmetry state that is stabilised by strain retains its semi-metallic character because of the

topological properties of the flat bands of tBLG.

Next, we consider the effect of doping. While at ν = −1 insulating states are not often

observed in experiments, some signatures of insulating states have been found at ν = +1 [92,

93, 123, 147]. This is consistent with our Hartree+U results, which yield lower values of Uc for

ν = +1 than for ν = −1. Note that the opposite result is obtained when long-ranged Hartree

interactions are neglected.

Experiments typically observe the strongest insulating states at ν = ±2 [88, 89, 93, 120].

Without Hartree interactions, our calculations predict no broken-symmetry states at ν = +2.

In contrast, Hartree+U theory predicts magnetic states for both ν = +2 and ν = −2. In recent

experiments [121, 122], a thin dielectric spacer layer that separates the tBLG from metallic

gates was used to enhance the screening of the electron-electron interactions in tBLG [114].

This results in significant changes to the electronic phase diagram with correlated insulator

states being “screened out” for most twist angles and doping levels [114]. Interestingly, these

experiments often find the insulating state at ν = +2 to be most robust. Naively, one might

expect that this system should be described by the magnetic phase diagram obtained without

long-ranged Hartree interactions. However, changes in external screening only result in small

changes to the Hartree theory band structure [135, 137] and therefore we expect that the

Hartree+U result should be more relevant to experiments with thin dielectric spacer layers.

At ν = +3, a strong insulating state is observed in experiments, especially when the tBLG

is aligned with the hexagonal boron nitride substrate [127, 128]. In contrast, the ν = −3

insulating state is almost never observed [88, 93, 120, 147]. For insulating phases to emerge at

these doping levels both valley and spin symmetries must be broken, i.e., the insulating state

must be FM [127, 128]. This is consistent with the Hartree+U results which predict FM order

at ν = +3 at several twist angles near the magic angle. Ferromagnetic order at ν = −3 is only

found at θ = 0.96◦. Without Hartree interactions, our calculations do not predict FM order at

ν = +3 and instead we find relatively strong FM states at ν = −3.

Hartree+U theory also predicts that magnetic order at ν = +3 should occur over a relatively
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large twist angle range, while those at ν = +1 are only found very close to the magic angle.

This finding also appears to be consistent with experiments. For example, Yankowitz et al. [93]

observed an insulating state at ν = +3 for a twist angle of 1.14◦, but no insulating state was

found at ν = +1. Interestingly, there are also clear signatures of this trend from recent scanning

tunnelling microscopy experiments of Choi et al. [292]. At large twist angles, they observe that

the ν = +3 insulating state occurs before the ν = +1 or ν = +2. At slightly smaller twist

angles, an additional insulating state at ν = +2 occurs, with even smaller angles very close

to the magic angle exhibiting insulating states for all integer electron doped systems. This

observation is in very good agreement with our Hartree+U results. Whereas, without Hartree

interactions the opposite trend is observed: the leading instabilities occur closer to ν = −1 for

the largest angles away from the magic angle.

In summary, we observe a strong correlation between the critical values of the Hubbard

interactions obtained from Hartree+U calculations and the experimentally measured quasipar-

ticle gaps of the correlated insulator states. In contrast, no such correlation is observed when

long-ranged Hartree interactions are neglected.

As mentioned above, our current linear-response approach does not yield quasiparticle band

structures of the broken-symmetry phases. In principle, such band structures can be obtained

from self-consistent Hartree+U calculations, but a qualitative picture can be derived from a

symmetry analysis of the spatial structure of the leading magnetic instabilities. Importantly,

neither the explicit mean-field calculations nor the symmetry analysis fully capture the effect

of strong electron correlations on the quasiparticle band structure. With this caveat in mind,

we find that both MAFM and NAFM break the C2 symmetry of tBLG, and therefore gap

the flat band Dirac cone, which means NAFM and MAFM yield insulating states at charge

neutrality [208]. Doping the MAFM and NAFM states with electrons or holes does not induce

additional gaps and therefore the system is found to be metallic in agreement with explicit

Hartree-Fock calculations [261]. The FM instability does not break C2 (because the slight AFM

character of the instability has a node between the AB and BA regions), but the spin degeneracy

can be lifted and the bands can split to create an insulating state at charge neutrality. If the

bands are spin split and doped away from charge neutrality, the system remains metallic as
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the C2 symmetry is not broken. Therefore, this analysis only leads to insulating states at

charge neutrality, while the doped magnetic states are found to be metallic. These results

are in agreement with another atomistic calculation which found that only retaining Hubbard

interactions can only yield insulating states at charge neutrality [287, 288], and also continuum

model Hartree-Fock calculations that break C2 [261]. To overcome the limitations of the current

approach, future research should investigate longer-ranged exchange interactions [66, 143, 258,

259, 261, 285] and the influence of ordering tendencies with q 6= 0 which could give rise to

alternative symmetry breaking mechanisms such as valley [151] and rotational [131] symmetry.

Finally, our Hartree+U results for the magnetic phase diagram also have important impli-

cations for superconductivity in tBLG. First, band flattening induced by Hartree interactions

enhances the density of states at the Fermi level and therefore increases the transition tem-

perature irrespective of the nature of the superconducting glue. In addition, this mechanism

also increases the range of twist angles where superconductivity can be observed [290, 293].

Note that superconductivity is typically observed in the vicinity of correlated insulator states

at non-integer doping levels. Naively, one would expect that in this doping regime damped spin

fluctuations from the magnetic parent state play an important role. However, Fischer et al. [107]

recently demonstrated the possibility of pairing by AFM spin fluctuations in the vicinity of a

FM phase. Future work will investigate the predictions of Hartree+U theory at non-integer

doping levels to realise if long-ranged electron-electron interactions can also facilitate pairing

by AFM spin fluctuations [126].

4.3 Hubbard calculations

Finally, mean-field Hubbard calculations of the magnetic instabilities of tBLG are presented∗.

These mean-field calculations proved to be extremely computationally expensive to perform at

the magic angle. Therefore, the results here are limited, and entirely focus on a twist angle of

1.54◦ at charge neutrality. In such a system, Hartree interactions do not qualitatively change the

∗The structure was generated from LAMMPS with a 2.42 Å lattice constant of graphene. The tight-binding
parameters for these calculations were a = 1.39 Å, d = 3.2912 Å, qπ = 7.39 and qπ = 3.13, with a spherical
Heaviside step function with cut-off of 10 Å being used to truncate hopping parameters, which gave a magic
angle of tBLG at 1.05◦.

123



electronic structure, and therefore, these interactions are also neglected for simplicity. Despite

this, constrained calculations are employed to investigate magnetic instabilities that are not

leading, which gives insight into the magnetic phases of tBLG, and which could form the basis

of future investigation.

Before the discussion of these results, it is interesting to note how magnetic order has

been investigated in tBLG. Within tight-binding and DFT calculations, rescaling schemes have

typically been employed to efficiently investigate magnetism in tBLG, since performing the cal-

culations explicitly is generally too expensive. For tight-binding calculations [11], flat electronic

bands near the Fermi energy can be created at larger twist angles by reducing the π hopping pa-

rameter, i.e. effectively changing the magic angle condition. It has been shown in Ref. 284 that

this method can give qualitatively correct results, but it does not quantitatively reproduce the

full calculation. We performed these rescaled tight-binding calculations too, and found quali-

tative agreement with the spin-susceptibility calculations, but not quantitative agreement. For

DFT calculations [294], the interlayer spacing is rescaled to smaller values (from pressure, for

example) to increase the coupling between the layers, which causes the magic angle condition

to occur at larger angles. Ferromagnetic order has been found, but the quantitative accuracy of

these calculations remains to be validated. Predominately, continuum model calculations are

performed to investigate the broken symmetry phases of tBLG. These methods, however, have

not shed light onto the real-space structure of the magnetic order.

4.3.1 Leading instability

At charge neutrality with a twist angle of 1.54◦, the leading instability is modulated antiferro-

magnetic (MAFM) order [11, 208]. The critical Hubbard interaction of this system was found

to be Uc ≈ 2.06t (where t = 2.7 eV is the π hopping parameter of graphene in the tight-binding

model) from the RPA spin susceptibility [208]. For values of U < 2t, the mean-field calculations

could not stabilise an ordering with finite magnetic order parameter. Therefore, the critical

Hubbard interaction for the onset of magnetic order agrees reasonably well between mean-field

and RPA analysis.

In Fig. 4.11, the electronic band structure for the leading instability obtained from the mean-
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Figure 4.11: Electronic band structure (upper) and corresponding magnetic structure (lower)
obtained from the mean-field solution of the atomistic Hubbard model of the MAFM order,
which is the leading instability, of 1.54◦ at charge neutrality for a number of U ’s [left - U = 2t,
middle - U = 2.1t, right - U = 2.2t]. The K and K′ valleys have been denoted by red and blue,
respectively. The magnetic structure shows ζ = (nσ′−nσ)/(nσ′+nσ) for one layer, where the size
of the circle increases with |ζ| and the colour red/blue corresponds to large positive/negative
values of ζ. The size and colour are normalised to the maximum in each case. The magnitude
of ζ increases with U . The real-space structure has been normalised by the moiré length scale,
Lm, with the AA region located at the origin.

field solution of the Hubbard model at a number of U ’s is shown. Note that the K and K′ valleys

of the flat bands have been determined from the valley operator and coloured in red and blue,

respectively, in Fig. 4.11. As discussed in Section 4.3, the MAFM order breaks C2. Therefore,

this ordering gaps out the Dirac cone at the K/K′ points. For U = 2t, the gap at the K/K′ points

are of the order of 20 meV, as shown in Fig. 4.11(left), which is significantly smaller than the

bandwidth at this twist angle. The magnetic order, displayed underneath the electronic band

structure, corresponds well to the ordering obtained from the spin-susceptibility calculations.

A larger on-site Hubbard parameter of U = 2.1t causes the gap between the K/K′ points to

increase to 100 meV, with a concomitant increase in the total bandwidth. The magnetic order

is still peaked in the AA regions, but the structure is becoming more uniform throughout the

moiré unit cell. Finally, for U = 2.2t, the gap between the valence and conduction bands is of

the order of 500 meV, where these bands are now extremely flat. The magnetic structure is

almost completely uniform throughout the moiré unit cell. A U = 2.2t is not far off what is
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required to cause an insulating state in graphene [1, 11], which is presumably the origin of the

dramatically increasing bandwidth and uniform order.

4.3.2 Excited antiferromagnetic instabilities

The RPA spin-susceptibility gives N , the number of atoms in the moiré unit cell, different

magnetic instabilities. At charge neutrality for 1.54◦ tBLG, none of the instabilities with Uc

larger than the leading instability could be converged in mean-field. In every case, even for U ’s

much larger than Uc for that instability, the ordering would revert to the MAFM order, which

was found to be the leading instability in the RPA analysis (for undoped 1.54◦). Therefore,

to investigate the quasiparticle properties of the excited magnetic instabilities, a constrained

mean-field analysis is required, where the form of the magnetic order was fixed but its magnitude

could vary.
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Figure 4.12: Electronic band structure (left) and NAFM magnetic ordering (right) obtained
from the constrained mean-field solution of the atomistic Hubbard calculations; at a twist angle
of 1.54◦, for charge neutrality, with U = 2.2t. The K and K′ valleys have been denoted by red
and blue, respectively. See caption of Fig. 4.11 for a description of how the magnetic order plot
is generated.

The nodal antiferromagnetic order (NAFM) order is found to be a leading instability close

to the magic angle, as shown in Fig. 4.10 of Section 4.2. At 1.54◦ for charge neutral tBLG, it

has one of the lowest critical on-site Hubbard interactions Uc = 2.17(986)t. The form of NAFM

is shown in Fig. 4.12, and is composed of a sublattice oscillation
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ζ(1) ≈





α, if A1 or A2

−α, if B1 or B2

(4.2)

where A/B stand of the sublattices and 1/2 represent each layer, that is modulated throughout

the moiré unit cell as given by

ζ(2) ≈ ζ(1)
∑

i=1,2,3

cos(Gi · r), (4.3)

where the reciprocal lattice vectors are again the three shortest moiré vectors, as described

in Section 4.1. The constrained mean-field analysis finds α self-consistently through a linear

mixing scheme. In Fig. 4.12(left), the constrained mean-field quasiparticle band structure with

U = 2.2t is shown. The NAFM order breaks C2 which causes the Dirac cone at the K/K′ points

to be gapped-out, similar to the MAFM order. This ordering also causes an inversion of the

conduction and valence bands, such that the K/K′ points are the further in energy from each

other in comparison to the states at Γ. This inversion would cause additional features in the

LDOS to emerge, which could be detected from STM measurements.
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Figure 4.13: Electronic band structure (left) and HAFM magnetic ordering (right) obtained
from the constrained mean-field solution of the atomistic Hubbard calculations; at a twist angle
of 1.54◦, for charge neutrality, with U = 2.2t. The K and K′ valleys have been denoted by red
and blue, respectively. See caption of Fig. 4.11 for a description of how the magnetic order plot
is generated.

Another instability with a critical on-site Hubbard parameter not much larger than the
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leading instability, Uc = 2.17(998)t, can be described by

ζ(3) ≈ ζ(1)
∑

i=1,2,3

sin(Gi · r), (4.4)

where G3 = −(G1 + G2). This magnetic instability has a sublattice oscillation, in addition to

a moiré modulation where the peaks of the magnetic order occur on the AB/BA regions of the

moiré unit cell, i.e. it is a honeycomb antiferromagnetic (HAFM) order. This is in contrast to

the previously described orderings which are peaked on the AA regions of the moiré unit cell,

which might be intuitively expected from the fact the LDOS is localised on the AA regions of

the moiré unit cell. Note this ordering was not discussed in the previous sections.

In Fig. 4.13(left), the constrained mean-field quasiparticle band structure with U = 2.2t is

shown; the corresponding magnetic structure is shown in Fig. 4.13(right). Interestingly, this

magnetic ordering has a drastically different quasiparticle dispersion in comparison to NAFM.

While the sublattice symmetry of each layer is broken (in some regions of space), which would

gap the Dirac cone of the individual layers, it does not break C2 on the moiré length scale,

owing to the modulation of the sublattice oscillation on the moiré length scale. Therefore, this

magnetic ordering does not gap the Dirac cones of the flat bands of tBLG.

Instead it causes the valley degeneracy to be broken throughout most of the moiré Brillouin

zone. This splitting of the valleys is analogous to the effect of a perpendicular electric field on

the electronic structure [11]. Therefore, this magnetic order should couple to an electric field

too, and in fact, we find that this instability is stabilised by a perpendicular electric field. This

breaking of the valley degeneracy causes the Dirac cones of the two valleys to be nested, similar

to AA stacked bilayer graphene [24, 295]. It is well known that such nesting is particularly

susceptible to excitonic instabilities [24]. It has been shown that heterostrain causes a similar

splitting of the valleys [143], and also causes the onset of an excitonic gap [296]. Therefore, this

instability could also couple to heterostrain too, although we do not investigate this here.

4.3.3 Ferromagnetic order

At a twist angle of 1.54◦, ferromagnetic (FM) order is not found close to the leading instability.

This ordering tendency only occurs close to the magic angle, as seen in Fig. 4.10 of Section 4.2.
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Figure 4.14: Real-space plot of the FM order of tBLG at a twist angle of 1.12◦ from the spin
susceptibility calculations. See caption of Fig. 4.11 for a description of how the magnetic order
plot is generated.

In Fig. 4.14 the real-space ordering is shown in full, where it can clearly be seen that the FM

order peaks in the AA regions of the moiré unit cell. A feature that becomes more apparent

from this plot is the residual AFM order, which can be seen to correspond to HAFM. Therefore,

to a reasonable approximation

ζFM ≈ β
∑

i=1,2,3

cos(Gi · r) + γ + ζ(1)
∑

i=1,2,3

sin(Gi · r), (4.5)

where β and γ are additional parameters which need to be obtained in addition to α. Note

that β � α and γ � α, so it could be sufficient to approximate α = 0, but γ ≈ 3β/2, with the

sign of these two parameters being the same.

From inspecting Eq. 4.5 the effect of FM order on the electronic structure can be readily

deduced. Since the real-space structure of the FM is analogous to the Hartree potential, it

becomes evident that this magnetic structure should distort the electronic structure in a similar

manner to the Hartree potential. For the FM order, the up spin will correspond to hole

(electron) doping the system and the down spin will correspond to electron (hole) doping.

Therefore, the up and down spin bands will be strongly split at the edge of the moiré Brillouin

zone, but at the centre of the Brillouin zone the band splitting will be smaller.

Interestingly, other DFT and tight-binding calculations have found FM order which is

peaked in the AA regions of the moiré unit cell [11, 294]. The quasi-particle band struc-
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ture which corresponds to this FM order was clearly demonstrated by Lopez-Bezanilla [294].

For a twist angle of 3.89◦ with an interlayer spacing of 2.5 Å, magnetic order similar to that

shown in Fig. 4.14 was obtained, and the electronic band structure was spin split as previously

described. At charge neutrality for this structure, the splitting of the bands was relatively small

compared to the bandwidth, and the system remained to be metallic.
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Chapter 5

Moiré graphene multilayers beyond

twisted bilayer graphene

The observation of strong correlation phenomena in moiré graphene multilayers has driven

efforts to understand their electronic structure and behaviour [30, 98, 111]. A key prerequisite

for the emergence of correlated states are flat electronic bands that give rise to a high density of

states (DOS) at the Fermi level. The total energy of these flat-band electrons is dominated by

the contribution from electron-electron interactions, which favours states that break symmetries

of the Hamiltonian, opening gaps at the Fermi level to lower the total energy of the electrons [99].

In moiré materials [110], it is possible to “engineer” a high DOS at the Fermi energy through

tuning the relative twist angle to values where very flat electronic bands emerge.

In principle the space of graphitic moiré systems is very large, but so far experimental studies

have focussed on four systems: twisted bilayer graphene (tBLG) [88, 89, 91–93, 120–122, 124,

127–131, 139, 141, 144, 147, 148, 151, 152, 292], twisted double bilayer graphene (tDBLG)

comprised of two AB stacked bilayers [164, 169–172, 177, 179], twisted mono-bilayer graphene

(AtAB) [183–185], and different twisted trilayer graphene structures (tTLG) [189, 196–198].

Experimentally, all these systems have been found to exhibit correlated insulator states, and

theoretically all of these systems have been predicted to feature flat electronic bands†. Of

particular interest are tBLG and tTLG (with an alternating twist angle between each graphene

†tBLG [11, 29, 32, 33, 37, 65, 66, 71, 106–108, 205, 208, 258, 259, 261, 285, 287], tDBLG [59, 165–168, 173,
174], AtAB [181, 182, 187, 191], tTLG [126, 186, 187, 190–195].
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sheet) because - in addition to correlated insulator states - robust superconductivity has been

observed in these systems [89, 93, 120, 196–198].

In tBLG [95, 135–138], long-ranged electron-electron interactions lead to an additional en-

hancement of the DOS which increases the robustness of electronic correlations, and could be

one reason why robust superconductivity is observed [290, 293]. In contrast, tDBLG requires

electric fields to further flatten the electronic bands and increase the DOS to drive the onset

of broken symmetry phases [169–172, 183, 185]. Therefore, when investigating new graphitic

moiré systems, it is important to investigate both the effect of electron-electron interactions on

the band structure in the normal state and the response to external fields.

In this chapter, the effect of electron-electron interactions are investigated in moiré graphene

multilayers beyond tBLG. In Section 5.1, moiré graphene multilayers in which there are al-

ternating twists (±θ) between adjacent graphene layers are presented. These structures are

generalisations of tBLG, and the effects of electron-electron interactions are found to be anal-

ogous. In the Section 5.2, moiré graphene multilayers in which there are adjacent layers of

graphene which are twisted and also aligned (θ and 0◦) are investigated. For this class of moiré

graphene multilayers, the effect of electron-electron interactions on the electronic structure are

found to be significantly weaker than in tBLG. This chapter is mainly based on three publica-

tions. Section 5.1 is based on part of Ref. 126 [Fischer, Goodwin et al. arXiv:2104.10176] of

tTLG, with additional unpublished results for a quad-layer system too. Section 5.2 is based

on two publications. The first part is based on tDBLG of Ref. 297 [Cheung, Goodwin et al.

arXiv:2111.03019] and the second part is based on the topic of a new mono-trilayer system of

Ref. 298 [Goodwin, Klebl et al. Phys. Rev. Materials 5:084008 2021].

In Ref. 126, the main focus on the paper was on the unconventional superconductivity of

tTLG from spin fluctuations, which was carried out by Ammon Fischer. My contributions to

the paper were to determine the atomic structure of tTLG, electronic structure, Hartree inter-

actions, and performing DFT calculations. Lennart Klebl contributed the spin susceptibility

calculations which were used for the spin fluctuation calculations. All authors contributed to

discussions and writing the manuscript.
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In Ref. 297, I co-supervised Christopher Cheung∗ in the study of Hartree interactions in

tDBLG. Christopher performed all the Hartree calculations using the code I developed. Vale-

rio Vitale performed the DFT calculations which were used to investigate the electronic band

structure and local potential. I plotted and helped to analyse the results from the Hartree cal-

culations performed by Christopher Cheung and DFT calculations performed by Valerio Vitale.

Arash Mostofi and Johannes Lischner guided the investigated and significantly contributed to

writing the paper.

In Ref. 298, the work was a highly collaborative effort. I instigated the research, and organ-

ised most of the work with guidance from Johannes Lischner and Arash Mostofi. I performed

all tight-binding and density of states calculations, and helped to analysed the results for the

Hartree and magnetic calculations. Vivek Gogtay and Xavier van Gorp† utilised the Hartree

code I wrote to investigate Hartree interactions in this mono-trilayer graphene, the figures of

which I generated. Lennart Klebl performed the spin-susceptibility calculations, generated the

figures for these results and also interpreted the results of these calculations. Valerio Vitale

performed DFT calculations, which were not used in the manuscript. Xia Liang‡ generated

the atomic structures of these systems. Arash Mostofi, Dante Kennes and Johannes Lischner

helped guide the project and significantly contributed to writing the paper.

5.1 Alternating twist angle structures

5.1.1 Twisted trilayer graphene

In this section, a twisted trilayer graphene (tTLG) system is investigated where the middle

layer is twisted by θ relative to the encapsulating graphene layers, i.e. between adjacent layers

of graphene there is an alternating twist angle of ±θ. It was shown by Carr et al. [190] that

the lowest energy structure of tTLG occurs when the encapsulating graphene layers are AA

stacked relative to each other. This occurs because the moiré patterns created between the

middle and upper graphene layers, and middle and lower graphene layers are coherent, i.e. the

∗Christopher was a UROP student in the summer of 2020. I was substantially involved in his supervision.
†Vivek and Xavier were MSci Physics students I helped to supervise in 2020-2021.
‡Xia was a UROP and MEng student I supervised in 2019-2020.

133



AA regions of both moiré patterns share the same x − y positions, which permits significant

atomic reconstruction effects [190]. From the mirror symmetry of this structure, the middle

twisted layer remains almost entirely flat upon relaxation, but the encapsulating layers have

corrugation effects reminiscent of tBLG [190, 192, 195].

As shown in Fig. 5.1, the low-energy electronic structure∗ of tTLG consists of a set of

flat bands which are intersected by a Dirac cone with a large Fermi velocity, similar to that

of graphene [186, 187, 190, 192]. The flat band states are remarkably similar to those of

tBLG [186], as evident from the Dirac cone (with renormalised Fermi velocity) at K/K′, van

Hove singularity near M and the different valley degeneracies along the Γ-M and Γ-K paths [192].

In the our tight-binding model (at charge neutrality), the minimum band width of the flat bands

occurs at a twist angle of ∼1.54◦, which is approximately 0.5◦ larger than the magic angle of

tBLG†.
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Figure 5.1: Electronic band structure of tTLG along the highly symmetry path from Hartree
theory for twist angles of 2◦, 1.79◦ and 1.54◦, and doping levels (number of electrons added/re-
moved per moiré unit cell) of 0 and ±3, as indicated.

Moreover, as shown in Fig. 5.1, the dispersion of the flat bands of tTLG are very sensitive

to long-ranged electron interactions, analogous to tBLG [126]. The removal of electrons causes

the K-point energies of the flat bands to lower relative to the Γ-point, and is accompanied by a

global shift of the flat bands relative to the Dirac cone to more negative energies. Conversely,

the addition of electrons causes the K-point energies of the flat bands to increase relative to the

Γ-point, and shifts the whole flat band manifold to higher energies relative to the Dirac cone.

The Dirac cone with its large Fermi velocity is insensitive to long-ranged electron interactions.

∗The structure was generated from LAMMPS with a 2.42 Å lattice constant of graphene. The tight-binding
parameters for these calculations were a = 1.39 Å, d = 3.2912 Å, qπ = 7.43 and qπ = 3.14, with a spherical
Heaviside step function with cut-off of 10 Å being used to truncate hopping parameters.

†According to a minimal model [186], the magic angle of tTLG should occur at
√

2 times the magic angle
of tBLG.
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The band deformations are completely analogous to those found in tBLG, as discussed in

Refs. 95, 135–138.

These strong band deformations arise because of the strongly peaked local density of states

(LDOS) in the AAA regions of the moiré unit cell, with the strongest weights on the inner

layer [126]. Upon removing (adding) electrons, they are almost entirely taken from (added

to) the AAA regions. This localisation of the flat band LDOS gives rise to a strongly varying

Hartree potential, similar to tBLG. In Fig. 5.2(c) and (d) the Hartree potential is shown to

be strongly peaked in the AAA regions when 3 electrons are removed from 1.61◦ tTLG. This

Hartree potential substantially varies with doping level but does not change significantly with

twist angle, as summarised in Fig. 5.2(a) and (b).
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Figure 5.2: (a) - Constant contribution [determined by the mean] to the Hartree potential
on each layer as a function of doping level for a number of twist angles. Legend shows the
layer (1/3 or 2) and the twist angle convention used for the symbols. (b) - Cosine contribution
[determined from Eq. (5.1)] to the Hartree potential on each layer as a function of doping level
for several twist angles. (c) - Hartree potential on the outer layers for 1.61◦ at ν = −3. (d) -
Hartree potential on the inner layer for 1.61◦ at ν = −3.

In Fig. 5.2(a) we plot how the layer-dependent constant contribution to the Hartree poten-

tial (∆l) changes with doping level for several twist angles. Interestingly, we find that the outer
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layers (1/3) have an almost zero constant contribution (∆1/3 = 0) for all doping levels and twist

angles. However, the central layer (2) has a constant contribution which changes significantly

with doping level, but hardly changes with twist angle. When doping within the flat bands, we

find that the constant contribution increases when electrons are added, but it becomes more

negative when electrons are removed. This occurs because of electrons mainly being added/re-

moved from the central layer. The change in this constant contribution is approximately linear

(∆2 ≈ ∆′2ν) when doping inside of the flat bands. Doping the system outside of the flat bands

causes the magnitude of the constant contribution to decrease, which reflects the fact that

electrons are now being removed/added from the outer layers where the Dirac cone with large

Fermi velocity resides [195].

In Fig. 5.2(b) we plot the scale of the cosine contribution to the Hartree potential, as

calculated by

Vl(ν) =

∑
i VH(ν, τ il) · vc(τ il)∑
j vc(τ jl) · vc(τ jl)

, (5.1)

where

vc(τ il) =
∑

j

cos(Gj · τ il). (5.2)

Here Gj are the three shortest reciprocal moiré lattice vectors and the summations only run

over the atoms in layer l [68]. The scale of the cosine contribution to the Hartree potential is

largest on the inner layer (2), as this is where electrons are mainly being added to/removed

from. Doping tTLG within the flat bands causes an approximately linear change on the cosine

contribution to the Hartree potential (Vl ≈ V ′l ν), which is similar to tBLG [95, 135–138]. Upon

doping outside of the flat bands, the cosine contribution stops changing significantly as electrons

are no longer being added to/removed from the AAA regions.

Naturally, one might ask how the Hartree theory band structure compares against ab initio

calculations. In Fig. 5.3 the electronic structure from charge neutral DFT calculations of tTLG

systems at twist angles of 3.15◦ and 2.45◦ are displayed. Overall, the agreement is qualitatively

and quantitatively good [192]. The main discrepancy occurs in the relative positioning of the
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Figure 5.3: Electronic band structure of tTLG along the highly symmetry path from DFT
for twist angles of 3.15◦ and 2.45◦, as indicated, at charge neutrality.

flat bands and the Dirac cone (with large Fermi velocity). As seen in Fig. 5.2, tight-binding

predicts the flat bands to intersect the Dirac cone with a large Fermi velocity at energies

higher than the Dirac point (of the large Fermi velocity Dirac cone). Whereas, the ab initio

method predicts that the flat bands should intersect at energies lower than the Dirac point. As

indicated in Ref. 192 this discrepancy can be rectified through the use of an on-site potential of

∼ −35 meV on the inner layer relative to the outer layers. The origin of this layer dependent

potential, and the discrepancy between the Hartree theory and DFT, shall be discussed in detail

later in the Section 5.2.1 on twisted double bilayer graphene.

5.1.2 Double twisted bilayer graphene

In this section, a quad-layer system with alternating twist angles between adjacent graphene

layers is investigated [186]. Starting from an AAAA stack, layers 1/3 (2/4) are rotated relative

to 2/4 (1/3), where labels 1-4 correspond to consecutive layers in the graphene multilayer.

We refer to this system as double twisted bilayer graphene (DtBLG). Again, there are other

possible quad-layer structures from the initial alignment of layers, but these are not considered

here as they are assumed to be higher in energy [190].

In Fig. 5.4 the low-energy electronic structure∗ of DtBLG is shown for a number of twist

angles (and doping levels, but we shall focus on charge neutrality for now). Similarly to tTLG,

∗The structure was generated from LAMMPS, with a 2.42 Å lattice constant of graphene. The tight-
binding parameters for these calculations were a = 1.39 Å, d = 3.35 Å, qπ = 7.43 and qπ = 3.14, with a
spherical Heaviside step function with cut-off of 10 Å being used to truncate hopping parameters.
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Figure 5.4: Electronic band structure of DtBLG along the highly symmetry path from Hartree
theory for twist angles of 2◦, 1.79◦ and 1.54◦, and doping levels (number of electrons added/re-
moved per moiré unit cell) of 0 and ±3, as indicated.

the flat bands which emerge are reminiscent of tBLG bands [186] but, for a given twist angle,

the Fermi velocity of the bands is smaller in comparison to tBLG (for twist angles above the

magic angle of DtBLG). We find that the magic angle of the lowest energy states occurs at an

angle of ∼1.79◦, which is larger than both tBLG and tTLG∗. Moreover, these flat bands are not

isolated from all other bands but intersect a set of bands which are also reminiscent of tBLG

bands (with a larger Fermi velocity than the flattest band). In the tight-binding model, the

extremely flat bands cross the other flat bands slightly higher in energy than the Dirac point of

the other tBLG-like bands. Interestingly, unlike tTLG, the flattest bands do not simply cross

the other bands, but seem to undergo an avoided crossing, to then merge with the other bands

asymptotically. In contrast to tTLG, where the Dirac cone that is intersected by the flat bands

is not affected by twist angle much, these other tBLG-like bands significantly change with twist

angle.

Analogously to tBLG and tTLG, the electronic structure of DtBLG is extremely sensitive

to the doping level within Hartree theory. Upon removing electrons, the extremely flat band

states near K shift down in energy relative to the states at Γ, in addition to a global shift of the

extremely flat bands relative to the other bands. Again, the converse is true for electron-doped

systems. The effect of the interactions is most pronounced at the magic angle of 1.79◦, where

the band width of the lowest states is minimised. Similarly, to the other alternating twist angle

structures, the sensitive dependence of the electronic structure arises from the clean localisation

of states in real space (where the flattest bands are predominantly located on the AA regions

∗According to a minimal model [186], the magic angle of DtBLG should occur at the golden ratio (
√

5+1)/2 ≈
1.62 times the magic angle of tBLG.
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Figure 5.5: (a) - Constant contribution to the Hartree potential on each layer as a function
of doping level for a number of twist angles. Legend shows the layer (1/4 or 2/3) and the twist
angle convention used for the symbols. (b) - Cosine contribution to the Hartree potential on
each layer as a function of doping level for several twist angles. (c) - Hartree potential on the
outer layers for 1.61◦ at ν = −3. (d) - Hartree potential on the inner layer for 1.61◦ at ν = −3.

of the inner layers) and in the hexagonal Brillouin zone (where states at the edge are mainly

localised in the AA regions of the inner layers, with the states at the centre being localised on

the AB/BA regions of the inner layers). Therefore, it appears that sensitive doping dependent

electronic structures of alternating twist angle moiré structures could be a universal property.
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Figure 5.6: Electronic band structure of DtBLG along the highly symmetry path from DFT
for a single twist angle of 3.15◦.

In Fig. 5.5(a) and (b) the constant and cosine contribution to the Hartree potential as a
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function of doping level for a number of twist angles are displayed. The results are very similar

to tTLG, and therefore, shall not described here. In Fig. 5.5(c) and (d) an example Hartree

potential in real space is displayed for 1.61◦ at ν = −3.

Finally, the electronic structure of DtBLG from DFT for a twist angle of 3.15◦ is shown

in Fig. 5.6. Again, there is good agreement between the DFT and atomistic tight-binding

model, with the main difference between the two methods being where the flattest most bands

intersect the other tBLG-like bands. In the tight-binding model, we find that the flattest bands

intersect the other bands at energies slightly higher than the Dirac point of the more dispersive

tBLG-like states. Whereas, DFT finds that the flattest bands intersect the other bands at

lower energies than the Dirac point of the other bands. This also suggests the inclusion of

an additional on-site potential on the inner two layers (of approximately −30 meV) to obtain

better agreement with DFT. This shall be discussed in more detail in Section 5.2.1 for another

quad-layer system.

5.2 Moiré structures with twisted and aligned layers

5.2.1 Twisted double bilayer graphene

Here twisted double bilayer graphene (tDBLG) is investigated: a moiré materials composed

of Bernal stacked bilayers, where there is a relative twist angle between the two bilayers. For

more details of the structure of this system, see Ref. 59.

In tDBLG, a set of four bands emerge in the low energy electronic structure∗, which become

extremely flat close to the magic angle of ∼1.3◦ [59, 163, 165–167, 173, 174, 299]. These bands

are not entangled with the other bands close to this magic angle as a consequence of the atomic

relaxations. The dispersion inherits the quadratic band dispersion of the parent AB bilayers,

but there is a band gap at the K and K′ points. In Fig. 5.7 we show the Hartree theory band

structure of tDBLG for a twist angle of θ = 1.89◦ and for different integer doping levels per

moiré unit cell, −3 ≤ ν ≤ 3, where ν represents the number of electrons (ν > 0) or holes (ν < 0)

∗The methods for this work can be found in the Methods. The structure was generated from LAMMPS,
as outlined in the Methods. The tight-binding parameters for these calculations were a = 1.39 Å, d = 3.35 Å,
qπ = 7.43 and qπ = 3.14, with a spherical Heaviside step function with cut-off of 10 Å being used to truncate
hopping parameters.
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Figure 5.7: Band structure of θ =1.89◦ tDBLG with εbg = 4, along the high-symmetry path
of the Brillouin zone of the moiré unit cell, for different integer doping levels per moiré unit cell
(−3 ≤ ν ≤ 3), where the horizontal lines denote the Fermi energy at each doping level. The
case of charge neutrality is shown in black, and all other integer doping levels are practically
identical to it. Note all bands are aligned such that the zero of energy occurs in the middle of
the band-gap at the K-point.

added. We have used an effective dielectric constant εbg=4, which corresponds to experiments

in which tDBLG is encapsulated in hBN [244]. In stark contrast with tBLG [95, 135–138], it

can be seen that the dispersion does not significantly change upon doping (all doping levels

have been aligned such that the zero energy occurs at the mid-point between the upper and

lower bands at K-point). The bands distort by up to only a few meV relative to the charge

neutral case (black lines), which is insignificant compared to the bandwidth of these flat bands.

In tDBLG there are several reasons why the bands do not distort significantly upon doping.

Firstly, the strength of the Hartree potential and how it varies with doping is relatively small.

In Fig. 5.8, we show the locally-averaged Hartree potential along the diagonal of the moiré unit

cell on an outer (left panels) and inner (right panels) graphene layer. We find that the in-plane

variation reaches values of ±25 meV on the inner layers, but only of the order of ±10 meV on

the outer layers. These variations are significantly smaller than the bandwidth of the flat bands.

In contrast, the Hartree potential of tBLG and twisted trilayer graphene (tTLG) reaches values

of ±100 meV.

Upon electron doping tDBLG (ν > 0, top panels of Fig. 5.8), a positive peak in the Hartree

potential emerges in the AA regions (located 2/3 of the way along the diagonal of the moiré

unit cell), and when electrons are removed (ν < 0, bottom panels of Fig. 5.8) this becomes a

negative trough. This is due to the flat bands having significant localisation in the AA regions
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Figure 5.8: Locally-averaged Hartree potential along the diagonal of the moiré unit cell for
electron and hole doped tDBLG with θ =1.89◦ and εbg = 4. The variable |s| is the distance
from the BA site of the moiré unit cell to a point s along its long diagonal. The vertical solid
lines correspond to BA stacking of the inner layers, dotted-dashed lines to the AB stacking,
and dotted lines for AA stacking. The left panels shows results for the outer layers and the
right panels are for the inner layers. Results for electron doped systems (ν > 0) are shown in
the upper panels and results for hole doped systems (ν < 0) are shown in the lower panels. The
Hartree potential in each layer has been locally averaged: the value at each atomic position
is obtained by taking the average of the Hartree potentials on that atom its three nearest
neighbours. The averaging smooths the oscillations that occur between the two sublattices of
each graphene layer.

of the inner layers, similar to tBLG [95, 125, 135–138] and tTLG [126]. However, in contrast

to tBLG and tTLG, we do not find a clean separation of electronic states in real and reciprocal

space [178]. At the Γ-point, the states are peaked on the AB/BA regions of the inner layers,

and the states at the M-point are mainly localised on the AA regions of the inner layers. The

localisation of the states at the K-point, however, is not well-separated between these two

regions. One of the valley degenerate states is localised on the AA regions of the inner layer,

but the other is mainly localised on the outer layer with a small peak in the AB/BA region

of the inner layer. Therefore, the in-plane variations of the Hartree potential are not capable

of causing significant band deformations in tDBLG∗. In tBLG and tTLG, on the other hand,

∗A similar explanation was also offered in the continuum model of Ref. 178, where it was noted that the
states in the Brillouin zone are not as cleanly separated in tDBLG as they are in tBLG [298].
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there is a clean separation of states in real and reciprocal space: states at the edge of the

hexagonal Brillouin zone are localised on the AA regions of the moiré unit cell in real space,

whereas states at the middle of the Brillouin zone are localised on the AB/BA regions of the

moiré unit cell. This separation couples with the spatial variations in the Hartree potential to

give rise to significant deformations of the electronic band structure and is the main origin of

the qualitative difference observed with tDBLG.

As we do not observe significant distortions in the bands with doping in tDBLG, this means

that we do not expect to observe pinning of the van Hove singularities in tunneling experiments.

In fact, recent tunneling experiments have shown that there is, in fact, no pinning of the van

Hove singularities in tDBLG [175–177]. The bands were not completely rigid, however, and

continuous distortions to the electronic structure were observed with doping. But in the STM

experiments doping is accompanied by a concomitant increase in the perpendicular electric

field (because of the single-gated devices). In Ref. 177 it was shown that these distortions are

well-described by including the effect of a perpendicular electric field.
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Figure 5.9: Band structure along the high symmetry path of θ =1.89◦ tDBLG with εbg = 4

and ν = 0 in an electric field of 10 meVÅ
−1

(left) and 30 meVÅ
−1

(right). The results of both
the tight-binding approximation (red) and self-consistent Hartree theory (black) calculations
are shown.

In Fig. 5.9 we show the Hartree (black) and tight-binding (red) band structures of 1.89◦

tDBLG at charge neutrality with εbg = 4 for two different electric field strengths. Upon applying

a perpendicular electric field, the gap between the valence and conduction band increases

dramatically with the strength of the field. Moreover, the valley degeneracy of both the valence

and conduction bands is lifted in the electric field, apart from at the Γ and M points. This
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splitting of the conduction and valence bands increases substantially with the field, with the

valence bands undergoing more significant distortions than the conduction bands.

In the tight-binding approximation (without any additional intrinsic symmetric polarisation

fields) the band distortions are significantly more pronounced than in Hartree theory. The

electric field causes the system to polarise such that in one of the bilayers there is an enrichment

of electrons and in the other bilayer there is a depletion of electrons, with the outer layers

exhibiting larger enrichment/depletion than the inner layers. When Hartree interactions are

included the Hartree potential opposes the external electric field to reduce its effect.

The extent by which the Hartree potential screens the electric field can be determined by

computing an effective dielectric constant for each layer

ε(α) =
V

(α)
ext

V
(α)

ext + V
(α)

H

, (5.3)

where V
(α)

ext = 〈Ez(α)
i 〉 is the average potential due to the electric field in layer α, with E

denoting the electric field strength, z
(α)
i the z-coordinate of atom i in layer α, and 〈· · ·〉 an

average over i in layer α, and V
(α)

H = 〈V (α)
Hi 〉 is the averaged Hartree potential in each layer

α. For the electric field of 10 meVÅ
−1

, we found that the average of the dielectric constant in

each layer has a value of 2.60, but an electric field of 30 meVÅ
−1

only gives a value of 1.94.

This reflects the fact that the electrons do not screen larger electric fields as effectively. Note

that these values were obtained with εbg = 4. For free-standing tDBLG, the effective dielectric

constant would be slightly larger. It has been found from DFT calculations of different numbers

of layers of stacked (untwisted) graphene, that the effective perpendicular dielectric constant

is approximately 3 [300, 301]. Therefore, these values of dielectric constant for tDBLG are

qualitatively consistent with that found in DFT calculations in layers of stacked (untwisted)

graphene.

In Fig. 5.10, we show the band structures of free-standing (εbg = 1) 2.45◦ tDBLG, comparing

a number of different models. Both panels include the band structure obtained from DFT at

charge neutrality as a reference (purple). The left panel also shows the tight-binding band

structure (red). We find, as others also have [163], that the tight-binding band structure

matches reasonably well with that of DFT. There is, however, a slight discrepancy in the band

144



−300

−200

−100

0

100

200

300

E
/

m
eV

Γ K M Γ

DFT

TB

TB+ISP

−300

−200

−100

0

100

200

300

E
/

m
eV

Γ K M Γ

DFT

Hartree

TB+HCF

Figure 5.10: Band structure along the high-symmetry path of a θ =2.45◦ tDBLG with εbg = 1
and ν = 0. (Left) comparison of DFT with the tight-binding (TB) model (with no layer-
dependent potential) and a tight-binding model in which a layer-dependent on-site potential of
−30 meV on the inner layers relative to the outer layers is included, which is referred to as the
tight-binding plus intrinsic symmetric potential model (TB+ISP). (Right) comparison of DFT
with self-consistent Hartree theory and with a tight-binding model in which a layer-dependent
on-site potential is included that is determined by the average of the Hartree potential in that
layer, the interlayer potential difference resulting from which is 8 meV. This is referred to as
the tight-binding plus Hartree crystal field model (TB+HCF).

width of the flat bands and the gap between the conduction and valence bands at the K and K′

points. The difference in the band width is simply a consequence of the chosen decay parameters

in the Slater-Koster rules of our tight-binding model, and this does not affect the gap between

the bands significantly. As shown in Ref. 163, the tight-binding band gap can be corrected

by including an empirical on-site and layer-dependent intrinsic symmetric polarisation (ISP)

potential to the tight-binding model, as seen in the TB+ISP band structure (black) in the left

panel of Fig. 5.10. The value of −30 meV on the inner layers relative to the outer layers that

we have used for the ISP potential is that used in Ref. 163, which was determined by fitting

the gap in the band structure at the K-point to that computed with DFT over a range of twist

angles. It can be seen that the ISP does not change the band width significantly and gives rise

to better quantitative agreement with DFT.

To explore the origin of the ISP, in the right panel of Fig. 5.10, we compare the Hartree

band structure (red) to DFT (purple). Compared to the TB bandstructure in the left panel,

we find that including long-range electron interactions has a very small effect on the dispersion

at charge neutrality, and the most prominent difference is a slight reduction of the gap between

the valence and conduction bands at the K and K′ points, where the valence and conduction
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Figure 5.12: (Left) The average Hartree potential difference between the outer and inner
layers, δ, for several dielectric constants as a function of twist angle θ. We refer to this quantity
as the Hartree crystal field (HCF). (Right) The total excess number of electrons ∆n(1/4) on one
of the outer layers (which we refer to as layers 1 and 4) within the moiré unit cell at various
dielectric constants εbg as a function of moiré unit cell area A.

bands now touch. Interestingly, overall, the Hartree band structure appears to be in worse

agreement with DFT than the TB results, even without the ISP.

To understand the observed band distortions, we plot the locally-averaged Hartree potential

in Fig. 5.11. The Hartree potential has significant variations within the inner layers, whereas

it remains approximately constant in the outer layers. Overall, the Hartree potential is more

negative on the inner layers than the outer layers; hence, there are more electrons localised on

the outer layers than the inner layers. Adapting the definition of Ref. 164 for the crystal field,

we define δ to be the difference between the layer-averaged on-site Hartree potential on the

outer and inner layers of tDBLG. We refer to this quantity as the Hartree crystal field (HCF)
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and it is given by

δ = 〈εel
out〉 − 〈εel

in〉, (5.4)

where 〈εel
out〉 and 〈εel

in〉 are the on-site energies averaged over atoms in the outer and inner layer

of a bilayer, respectively. The two bilayers in tDBLG are equivalent by symmetry. In the right

panel of Fig. 5.10, we show the band structure from a tight-binding calculation in which δ (taken

as 8 meV for εbg = 1) is added to the outer layers as a layer-dependent on-site energy (referred

to as TB+HCF, black lines). Comparing to the self-consistent Hartree approach shown in

the same panel (red lines), it can be seen that the band structures almost lie on top of one

another except at the K-point where there is a shifting of about 5 meV. Therefore, the in-plane

variations of the Hartree potential do not appear to alter the band structure in any way, and

it is the average difference between the Hartree potential on the inner and outer layers which

determines the (small) band distortions.

Upon including the ISP or Hartree potential, we observe two effects: the Γ-point energies

shifts down and a gap opens/closes at the K-point. The former can be understood from the

fact that the states at the Γ-point are mainly localised on the inner layers. The latter can

be understood from an analysis of the localisation of the states at the conduction and valence

sides of the K-point. In the TB model, the conduction states are mainly localised on the inner

layers and the valence states are mainly localised on the outer layers. The addition of the ISP

or HCF reduces the energy of the conduction states and increases the energy of the valence

states. These states cross in energy with an avoided crossing.

The left panel of Fig. 5.12 shows that, for a given εbg, δ remains approximately constant for

the twist angles studied here. δ should be directly proportional to the surface charge density

of the layers within a bilayer, assuming an idealised parallel plate capacitor model. Therefore,

we can understand the twist angle dependence of δ by analysing the number of transferred

electrons between the layers of the AB stacked bilayers per moiré unit area. If the number

of transferred electrons between the layers of the bilayer remains constant with twist angle,

one would expect that δ decreases inversely with the area of the moiré unit cell, and hence as

θ−2, as the area of the moiré unit cell scales quadratically with the twist angle. As shown in
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Fig. 5.12, we don’t observe a θ−2 decrease in δ. Therefore, the layer polarisation of the bilayers

must increase with decreasing twist angle too. The total number of polarized charges in a layer

is calculated from

∆n(α) =
∑

j∈α
(nj − n0), (5.5)

where j runs through all the atoms in one of the layers α. By symmetry ∆n is equal and

opposite in the outer and inner layer of the bilayers [∆n(1) = −∆n(2) = −∆n(3) = ∆n(4)]. In

the right panel of Fig. 5.12 we show how the number of transferred electrons increases with

the moiré unit cell area, which explains the approximately constant value of δ over the studied

twist angles.

The screened Hartree interaction depends on the dielectric screening due to the environ-

ment. The dependence of δ and ∆n on εbg is also reported in Fig. 5.12. For a given twist

angle, we find that δ reduces as the dielectric constant increases. In experiments, tBDLG is

typically encapsulated by thick layers of hBN. Such encapsulation approximately translates to

a screened interaction with a dielectric constant of approximately 4 [244]. We find that in-

creasing the dielectric constant from εbg=1 to εbg=4 decreases the magnitude of δ by a factor

of two (Fig. 5.12, left panel). A simple 1/εbg argument would overestimate this by a factor of

two. From the right panel of Fig. 5.12, however, we find that the layer polarisation ∆n is itself

dependent on εbg, as the larger dielectric constant permits more charges to be transferred. The

failure of the simple 1/εbg argument was also shown to be the case for tBLG, where it was

argued that tBLG itself already has a large dielectric constant, so increasing the environmental

screening by a small amount does not have a large overall effect [137, 256].

In Refs. 163, 164 and 165 it was shown that to obtain DFT accurate low-energy band

structures at charge neutrality of free-standing tDBLG, the atomistic tight-binding model which

uses the Slater-Koster rules requires a layer-dependent on-site energy. Empirically, it was found

that the on-site energy of the inner layers had to be approximately 30 meV lower than that of

the outer layers. This is equivalent to the electrons sitting in an electric field which points from

inner layers of tDBLG towards the outer layers, which causes the electrons to prefer to reside

on the inner layers [164, 165].
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We find that the bands predicted by TB+HCF model distort in a very similar manner to

those caused by the on-site potential from Refs. 163, 164 and 165. As can be seen from the left

panel of Fig. 5.12, the value of δ we obtain from our layer-dependent average of the Hartree

potential is approximately one-third of the value found by Ref. 163 for free-standing tDBLG

(εbg=1). In our Hartree theory there is an excess of electrons on the outer layers that causes the

potential to be larger on the outer layers, which is consistent with the empirically determined

ISP. If there were an accumulation of electrons on the inner layers, Hartree theory would give

a more positive potential on the inner layers, which is the opposite sign of the ISP that was

found in Refs. 163, 164 and 165. Therefore, it does not appear that the Hartree potential alone

can fully explain the crystal field.
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Figure 5.13: (Left) Sum of Hartree potential and ion-electron potential (referred to as the
electrostatic potential) from DFT as a function of z (a coordinate perpendicular to the plane of
the tDBLG system) in 2.45◦ tDBLG. (Right) Sum of the electrostatic potential and the local
exchange-correlation potential as a function of z in 2.45◦ tDBLG. In both plots, the potentials
are first averaged over the x and y coordinates, and the resulting function of z is smoothed
by taking its convolution with a rectangular function of width 3.20 Å. The dotted vertical
lines correspond to the z-averaged atomic positions of each layer. The horizontal lines indicate
where the potential crosses the z-averaged atomic positions of each layer.

To further investigate the origin of the ISP we perform large-scale first-principles DFT calcu-

lations on tDBLG with a twist angle of 2.45◦and analyse the Kohn-Sham potential. The Kohn-

Sham potential in a DFT calculation has three main contributions: (1) the ion-electron (ion-el)

potential, which is often approximated with a pseudo potential; (2) the Hartree contribution

from electron-electron (el-el) interactions; and (3) the exchange and correlation contribution.

To obtain the on-site energies of the tight-binding model, i.e., what gives rise to the ISP, one

needs to integrate the Hamiltonian with the pz orbital on a carbon atom. The Hamiltonian

will have contributions from the kinetic energy and the potential energies. Provided the kinetic
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energy of the orbitals does not vary between the layers, and it is sufficient to use the local

potentials, the local Kohn-Sham potential should give an estimate of the on-site energies of

these pz orbitals. Instead of integrating the potential with the pz orbitals, we perform spatial

averaging of the potential in the x-y plane, and then smooth this resulting potential in the

z-direction with a rectangular function. Provided the width of this rectangular function is of

the order of an interlayer spacing, reasonable values for the potential difference between the

layers are expected.

We find that the ion-el potential is substantially more negative on the inner layers than

the outer layers. The inner layers are on average closer to more carbon nuclei than the outer

layers, which therefore, produces a more negative potential on the inner layers than the outer

layers. Conversely, the Hartree potential is significantly more positive on the inner layers in

comparison to the outer layers because the electrons are on average closer to more electrons on

the inner layers.

In Fig. 5.13 (left panel), we show the sum of the ion-el and Hartree potential as a function

of z, where the potential has been averaged over the x and y directions, and the resulting

function of z has been smoothed by taking its convolution with a rectangular function of width

3.20 Å. We find that the sum of these potentials is approximately −30 meV more negative

on the inner layers than the outer layers, as indicated with the horizontal lines. This value

does not change significantly provided the smoothing function is of the order of the interlayer

spacing between adjacent layers. Our atomistic Hartree theory could not capture this value

quantitatively. Moreover, if the layer-dependent potential was from charge transfer with just

the Hartree potential, we would find more electrons on the outer layers than the inner layers, as

found in our tight-binding model (see Fig. 5.12). Ours and other DFT calculations [164, 165]

found that there was an accumulation of electrons on the inner layers, however. Therefore, this

layer-dependent potential from electrostatic interactions must arise from subtle differences in

the ion-el and el-el interactions.

In Fig. 5.13 (right panel) we show the sum of the electrostatic potential and the local part of

the exchange-correlation potential, where again the potentials have been smoothed according

to the procedure described earlier. When the exchange-correlation potential is included, the
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precise value of for the difference in potential energy of the inner layers relative to the outer

layers has a slight dependence on the width of the smoothing function used, but when the

width is of the order of the interlayer spacing we find that including exchange-correlation effects

enhance the difference, resulting in values of approximately −40 meV. This is in reasonable

agreement with those calculations in Refs. 163, 164 and 165.

5.2.2 Mono-trilayer graphene

In this section, a new mono-trilayer graphene system, where a graphene sheet it is twisted

relative to a trilayer graphene (which has aligned layers, i.e. 0◦), is investigated. For the trilayer

graphene, ABA and ABC stacks are considered since both are experimentally accessible [26, 27].

Recently, ABC trilayer graphene aligned to a hBN substrate has attracted interested because

of the reported correlated phases [302–304]. The mono-trilayer system with ABC stacking

is ostensibly similar to tBLG and ABC trilayer graphene, which suggests it is a promising

candidate for the observation of broken symmetry phases, which motivates us to focus on this

moiré material.

In this section, the electronic band structure of graphene twisted on ABC trilayer graphene

(referred to as AtABC) and graphene twisted on ABA trilayer graphene (AtABA) is investi-

gated. In Fig. 5.14 the electronic structure∗ of these systems are shown at different twist angles

using the atomistic tight-binding approach. For both systems, a set of extremely flat electronic

bands emerges as the twist angle approaches the magic-angle of 1.16◦.

At twist angles larger than the magic angle (2.0◦ and 1.47◦), the band structure of AtABA

[in Fig. 5.14 (top panels)] exhibits a set of four bands with a bandwidth of the order of 100 meV.

Two of these form a Dirac cone at the K-point while the other two have a parabolic dispersion

near K. At the magic angle of 1.16◦ (and also at smaller twist angles) the bands no longer form

a Dirac cone. The low-energy bands in AtABA are not isolated in energy from the remote

bands because they are intersected by a pair of linear bands whose Fermi velocity is similar

to that of monolayer graphene. These bands form a second Dirac cone at K which exhibits a

∗The structure was generated from LAMMPS, as outlined in the Methods. The tight-binding parameters
for these calculations were a = 1.39 Å, d = 3.35 Å, qπ = 7.43 and qπ = 3.14, with a spherical Heaviside step
function with cut-off of 10 Å being used to truncate hopping parameters.
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Figure 5.14: Tight-binding band structure of AtABA and AtABC at three twist angles: 2.0◦,
1.47◦ and the magic-angle of 1.16◦.

small gap of ∼ 1− 5 meV.

Additional insight can be gained by comparing the band structure of AtABA to that of

the constituent ABA trilayer. The latter system features a set of parabolic bands which are

also intersected by a Dirac cone [305]. This suggests that the addition of the twisted graphene

monolayer on top of the ABA trilayer induces the “flat” Dirac cone (whose Dirac point lies is

slightly higher in energy than that of the dispersive Dirac cone) and also modifies the band

width of the parabolic bands. Finally, it is also interesting to note that the band structure of

AtABA is quite similar to that of twisted trilayer graphene in which the middle layer of an

AAA-stacked trilayer is twisted relative to the outer layers [126, 187, 190, 191]. Figure 5.14

(bottom panels) also shows the band structure of AtABC as a function of twist angle. For

this system we also find a set of four flat bands near the Fermi level. Whilst these bands look

qualitatively similar to those of AtABA, there are some important differences. As in AtABA,

the low-energy electronic structure of AtABC has one pair of bands that form a Dirac cone

at K at twist angles larger than the magic angle. The other pair of bands, however, now has

a cubic dispersion near K, and there is no additional Dirac cone that intersects these bands,
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Figure 5.15: Density of states (DOS) as a function of energy for AtABC, AtAB and tBLG at
a twist angle of 2.0◦. The zero of energy is set to the Fermi level at charge neutrality for each
system, and the zero in the DOS is at the bottom of the y-axis.

which are entirely separated from the remote bands in this system near the magic angle.

Again, it is instructive to compare the band structure of AtABC to that of the constituent

parts. In ABC trilayer graphene, there is a set of cubic bands near the Fermi level [306], which

AtABC retains in the the low-energy dispersion of the isolated bands with the twist angle

controlling their width. Finally, it is worth noting that the band structure of AtABC is similar

to that of twisted monolayer-AB bilayer graphene (AtAB), with the important difference that

the dispersion in AtAB is parabolic [182] instead of cubic at the K point.

This difference in the power law of the dispersion has important consequences for the DOS.

In Fig. 5.15, we show the DOS of the flat bands of AtABC, AtAB and tBLG at an angle of 2.0◦.

All systems have a pair of van Hove singularities at an energy corresponding to a doping level

of ±2 electrons (relative to charge neutrality) per moiré unit cell. The linear dispersion of the

tBLG bands close to charge neutrality gives rise to a linear DOS close to the Dirac point where

the DOS vanishes. In contrast, for AtAB, the DOS is always finite and exhibits a step-like

feature at approximately −5 meV where the parabolic bands touch. Importantly, the AtABC

system has an additional van Hove singularity arising from the bands with a cubic dispersion.

Based on the tight-binding calculations, AtABC is clearly a promising candidate for hosting

strongly correlated electrons in isolated flat bands. We therefore study the effect of electron-

electron interactions in this system. To capture the effect of long-ranged Coulomb interactions,

self-consistent atomistic Hartree theory calculations at integer doping levels per moiré unit

cell were carrier out. However, in contrast to tBLG and tTLG, such interactions only have a

negligible effect on the electronic band structure of AtABC, as seen in Fig. 5.16.
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Figure 5.16: Hartree theory band structures of AtABC at 1.7◦ for integer doping levels per
moiré unit cell from ν = 3 (blue) to ν = −3 (red).

This can be understood by analysing the spatial character of the wavefunctions at different

points in the first Brillouin zone. In tBLG [136] and tTLG [126], it was shown that there

is a strong correlation between a state’s position in k-space and its localisation in real space.

For example, the states at the edge of the hexagonal Brillouin zone are localised on the AA

regions while states at the centre of the Brillouin zone are localised on the AB regions. When

the occupancy of these states changes due to electron or hole doping a highly inhomogeneous

charge density is induced which in turn results in a strong Hartree potential. In contrast, we do

not observe a similar correlation between k-space position and real-space localisation of states

in AtABC and as a consequence the charge density induced by doping is relatively uniform

resulting in a much weaker Hartree potential. This result is consistent with other Hartree

calculations of moiré materials containing untwisted graphene layers [178].

In the absence of significant Hartree interactions, we next consider the effect of exchange

interactions. It is well known that the exchange interaction should be screened [231] which

reduces its strength and modifies its spatial form. In moiré materials, the presence of flat

bands greatly enhances the internal screening [255, 256], and external screening arising from

the presence of nearby metallic gates further suppresses long-ranged interactions [114]. As a

consequence of screening, the range of the exchange interaction is significantly shorter than

the moiré length scale and we therefore employ an atomic Hubbard interaction for electrons

in the carbon pz-orbitals [11, 107, 125, 126, 205, 208, 287] to calculate the interacting spin

susceptibility using the random phase approximation (RPA) as function of doping, twist angle

and value of the Hubbard U parameter. This approach was also employed in Ref. 125 for tBLG,

154



(a)

−2
−1
0
1
2

At

antiferromagnetic (AFM)

−2
−1
0
1
2

A

−2
−1
0
1
2

B

AABC BABC DW-ABC ABCA AABC
−2
−1
0
1
2

C

(b)

−5.0

−2.5

0.0

2.5

At

twisted ferromagnetic (tFM)

−5.0

−2.5

0.0

2.5

A

−5.0

−2.5

0.0

2.5

B

AABC BABC DW-ABC ABCA AABC
−5.0

−2.5

0.0

2.5

C

(c)

−2.5

0.0

2.5

5.0

At

twisted ferrimagnetic (tFIM)

−2.5

0.0

2.5

5.0

A

−2.5

0.0

2.5

5.0

B

AABC BABC DW-ABC ABCA AABC
−2.5

0.0

2.5

5.0

C

(d)

−10

−5

0

5

At

modulated ferrimagnetic (mFIM)

−10

−5

0

5

A

−10

−5

0

5

B

AABC BABC DW-ABC ABCA AABC
−10

−5

0

5

C

Figure 5.17: Layer-resolved line-cuts of the normalised magnetisation for different magnetic
instabilities of AtABC along the diagonal of the moiré unit cell at the magic angle of θ = 1.16◦.
The local stacking sequence is shown at the bottom of each panel, where DW stands for the
domain wall region of the moiré pattern. (a) Anti-ferromagnetic state with mild modulations
on the moiré scale. (b) A state with ferromagnetic order in the twisted layers and ferrimagnetic
order in the lower layers. (c) A state with modulated ferrimagnetic order in the twisted layers
and relatively uniform anti-ferromagnetic order in the lower layers. (d) A state with modulated
ferrimagnetic order in all layers.

where excellent agreement between the experimental and theoretical phase diagram was found,

and functional renormalisation group calculations [307] have shown that the phase diagram is

not sensitive to the range of interactions provided it is short. Therefore, we are confident that

this approach can reliably identify the onset of broken symmetry phases in graphitic moiré

systems.

From these RPA calculations, we identify the critical value of the Hubbard parameter Uc

at which the susceptibility diverges [125, 208]. If Uc is smaller than the physical value of the

Hubbard parameter, we expect the system to undergo a phase transition into a magnetically

ordered state whose spatial structure is determined by the leading eigenvector of the spin

response function. In this work, we use a Hubbard value of U = 4 eV, which has been shown
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Figure 5.18: (a) - Magnetic phase diagram of AtABC as a function of twist angle θ and
integer doping level ν per moiré unit cell. Blue corresponds to ferromagnetic order, orange
corresponds to ferrimagnetic order, and red corresponds to anti-ferromagnetic order. Regions
where the critical value of the Hubbard parameter is smaller than its physical value are hatched.
(b) - Critical interaction strength Uc required for the onset of magnetic instabilities in AtABC
as a function of twist angle θ and integer doping levels in the flat bands ν.

to be a realistic value of the onsite Hubbard interaction of graphene [109, 236]. Moreover,

in Ref. 125, it was shown that U = 4 eV for tBLG yields good agreement with the available

experimental data.

Figure 5.17 shows the structure of various low-energy magnetic states of AtABC at the

magic-angle of 1.16◦. In each of the plots, we display a normalised eigenvector from the magnetic

susceptibility calculations as a function of position along the diagonal of the moiré unit cell

(different stacking regions are indicated on the x-axis). Other leading instabilities were also

found, but they are either variations of the ones shown in Fig. 5.17 with a different nodal

structure or mixtures of these orderings. Overall, we find that there is a rich variety of magnetic

ordering tendencies that can either be dominant in the twisted layers or in the untwisted layers.

Figure 5.17(a) shows an antiferromagnetic (AFM) state which is mostly uniform over the

whole AtABC structure and only exhibits a mild modulation on the moiré scale. The mag-

netisation differs slightly in each layer with the largest variations occurring in the graphene

sheet that is twisted on top of the ABC trilayer. This layer also exhibits a somewhat smaller

magnitude of the magnetisation than in the other layers, suggesting that this AFM state is

inherited from the AFM state of the ABC trilayer which “spills” into the top layer.

Figure 5.17(b) shows a state with a modulated ferromagnetic (FM) structure in the top

two layers and ferrimagnetic structure in the bottom two layers. We refer to this ordering as

tFM (for twisted FM, as the FM order is found in the twisted layers). In the upper layers the
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magnetisation has peaks in the AABC regions which are separated by a node. A similar state

has been found in tBLG [125, 208]. Finally, Figs. 5.17(c) and (d) show two examples of ferri-

magnetic (FIM) states. The state in Fig. 5.17(c) is mostly AFM with some FIM character and

exhibits nodes in the top two layers. We shall refer to this ordering as tFIM (for twisted FIM,

as the FIM order is mainly in the twisted layers). The state in Fig. 5.17(d) is predominantly

FIM and has significant modulations in each layer, which we refer to as mFIM (for modulated

FIM).

Having described in detail the different types of magnetic states in AtABC, we now discuss

the magnetic phase diagram as function of twist angle and doping, denoted by ν for the number

of additional electrons/holes per moiré unit cell, shown in Fig. 5.18(a). Magnetic states with

Uc < U = 4 eV are found for a range of doping levels and twist angles. When Uc > U = 4 eV,

we hatch over the magnetic order to indicate that we do not expect it to occur. In Fig. 5.18(b)

we plot the corresponding value of Uc for each θ− ν combination and if Uc > U = 4 eV we use

a grey scale. The FM state is only found at the magic angle at charge neutrality or at slightly

smaller twist angles for ν = −1 (i.e., when one hole is added per moiré unit cell). Interestingly,

the character of the FM state for ν = −1 slowly transitions from purely FM to a mixture of

FM and FIM as a function of the twist angle.

The other broken symmetry states in the phase diagram are of FIM type and occur at

ν = −1 at and very close to the magic-angle, but also for the electron doped systems (ν = 1

or ν = 2) over a range of twist angles. In contrast, AFM order is never found in the phase

diagram. While this type of order is the leading instability for a range of θ − ν values, the

corresponding critical values of the Hubbard parameter are always larger than the physical

value (Uc > U = 4 eV) and therefore this order is not realised. This can be attributed to the

fact that the AFM order is inherited from the parent ABC trilayer system which has a high

value of Uc [291].

Having presented the band structure, effects of electron-electron interactions and magnetic

order of AtABC, a natural question to ask is: how promising is AtABC for the observation

of strong correlation phenomena in comparison to other graphitic moiré materials? Among

the graphene-based moiré materials that have been studied experimentally to date, only tBLG
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Figure 5.19: (a) - Magnetic phase diagram of 1.16◦ AtABC as a function of potential difference
between adjacent layers ∆ (which is proportional to a perpendicular electric field) and integer
doping level ν per moiré unit cell. Blue corresponds to ferromagnetic order, orange corresponds
to ferrimagnetic order, and red corresponds to anti-ferromagnetic order. Regions where the
critical value of the Hubbard parameter is smaller than its physical value are hatched. (b) -
Critical interaction strength Uc required for the onset of magnetic instabilities in 1.16◦ AtABC
as a function of layer-dependent onsite potential difference ∆ and integer doping levels in the
flat bands ν.

and tTLG exhibit robust superconductivity [89, 196]. In contrast to AtABC, the long-ranged

Coulomb interaction plays an important role in these systems and enlarges the size of the region

in the θ− ν phase diagram where broken symmetry states occur [125, 293]. Based on this em-

pirical evidence, one could argue that moiré systems that do not contain any untwisted pairs of

neighbouring layers [186] are more promising candidates for the observation of strongly corre-

lated phases than moiré materials that contain untwisted layers [199]. While this might be true

in the absence of electric fields, recent reports suggest that magic-angle mono-bilayer (AtAB)

graphene exhibits both correlated insulating states [183] as well as signatures of superconduc-

tivity when an electric field is applied perpendicular to the layers [185]. Our analysis reveals

that these systems, AtAB and AtABC, exhibit qualitatively electronic structure, which sug-

gests that AtABC may also be a promising candidate for the observation of strong correlation

phenomena in the presence of applied electric fields.

To put this prediction on a stronger footing, we calculated the interacting spin susceptibility

of magic-angle (1.16◦) AtABC as a function of applied electric field and doping, as shown in

Fig. 5.19. A perpendicular electric field introduces an additional onsite potential, which is

approximately constant within a layer, but that varies linearly between the layer. We define

∆ as the potential difference between two adjacent layers, such that the onsite potential of

158



layer l (where l = 1, 2, 3, 4 with 1 corresponding to the twisted monolayer) is given by −∆ · l.

Negative values of ∆ mean that the potential energy of the electrons is lowest in the twisted

monolayer. This potential difference is directly proportional to the applied electric field, with

values of |∆| = 30 meV being well within experimental reach [126].

In the absence of a field, we only expect magnetic order to occur at charge neutrality or

ν = −1 at 1.16◦ [see Fig. 5.18(a)]. Upon applying an electric field which lowers the energy of

electrons in the twisted layers (∆ < 0), we find that the system is more susceptible to magnetic

ordering. Overall, we find mainly FIM order in electron-doped systems, but the hole-doped

systems do not generally become more susceptible to magnetic ordering, with the exception

of ν = −1 at ∆ = −5 meV [see Fig. 5.19(b)]. Therefore, the electron-hole asymmetry of the

magnetic phase diagram becomes more pronounced in an electric field which lowers the energy

of the electrons in the twisted layers relative to the other layers. On the other hand, electric

fields which increase the energy of the electrons in the twisted layers (∆ > 0) generally cause

the system to be less susceptible to magnetic ordering. For electron-doped ∆ > 0 systems in a

small field, we find that FIM occurs at ν = 1, 2, but for larger field strengths this magnetic order

disappears. In experiments on magic-angle AtAB performed by Chen et al. [183], there were

similar trends in terms of where the correlated insulating states occur in the space of doping

level and electric field. For an electric field which lowers the energy of the monolayer (relative

to the AB bilayer), correlated insulating states were found at all integer electron doping levels,

similar to tBLG [183]. Whereas, for an electric field which lowers the energy of the AB stacked

bilayer (relative to the monolayer), a correlated insulating state was only observed at ν = 2,

similar to tDBLG [183]. As we have found that AtABC has a similar electronic structure and

electron interactions to AtAB, this also suggests similarities in their broken symmetry phases.
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Chapter 6

Conclusions and Outlook

The observation of correlated insulating states and superconductivity in magic-angle tBLG

generated tremendous interest in the field of twistronics. This motivated many to further

investigate and understand tBLG, and other moiré graphene multilayers. In what follows, a

brief summary of the contributions made to this field in this thesis shall be given. The chapter

and publication in which the finding was presented shall be indicted.

To understand these correlated phases of tBLG, it is useful to have a minimal model of

the low-energy physics. Near this magic angle of 1.1◦, the (Fermi) velocity of the electrons

become vanishingly small (creating extremely flat electronic bands). In such a regime, the

kinetic energy of these electrons, described by the hopping parameter t, is greatly diminished

and the potential energy, described by the Hubbard interaction U , prevails as the dominant

energy scale. I found that these Hubbard interaction parameters change linearly with the twist

angle and that there is a twist angle window in which these emergent electronic phases are

expected to be observable [Chapter 3; Goodwin et al. PRB 100:121106(R) 2019]. Moreover,

in experiments tBLG resides in proximity to metallic gates, which can affect how electrons in

tBLG interact with each other. I studied how the distances from tBLG to these metallic gates

affect the Hubbard parameters [Chapter 3; Goodwin et al. PRB 101:165110 2020]. I found the

scale of the potential energy reduces upon bringing tBLG closer to the metallic gates, and if

the correlated insulating states and superconductivity are independent phases which compete,

I predicted there should no longer be correlated insulating phases and the superconducting

state should be stabilised. Shortly after, experimentalists confirmed my predictions with the
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observation of higher superconductivity transition temperatures without correlated insulators

when the gates were close enough to tBLG.

The electronic screening from internal degrees of freedom must also be accounted for in the

low-energy model of tBLG [Chapter 3; Goodwin et al. PRB 100:235424 2019]. Screening from

tBLG dramatically increases as the twist angle is reduced towards the magic angle, as it scales

with the inverse of the Fermi velocity. I found near the magic angle, the screened interaction

between electrons changes from being purely repulsive, to one with attractive regions too. I

proposed that this attractive interaction between electrons, of a purely electronic origin, could

act as the glue which binds the electrons into a superconducting phase.

At the magic angle, “off-the-shelf” ab initio methods cannot efficiently investigate the elec-

tronic properties of tBLG because the system is too large. I developed self-consistent electronic

structure codes to investigate different phases in tBLG. I found, in agreement with previous

work, strong distortions to the low-energy physics occurs upon adding/removing electrons from

tBLG [Chapter 4; Goodwin et al. Electron. Struct. 2:034001 2020]. This results in a special,

and quite unusual, type of pinning of electronic states that was observed in pioneering scanning

tunnelling experiments of tBLG. These long-ranged Hartree interactions are responsible for ex-

tending the range of twist angles in which tBLG exhibits emergent, correlated phases [Chapter

4 and Klebl, Goodwin et al. PRB 103:195127 2021].

Using these methods, I investigated other moiré graphene multilayers beyond tBLG [Chap-

ter 5; Liang, Goodwin et al. PRB 102:155146 2020]. When the moiré material has twist

angles of the same magnitude but alternating sign between adjacent graphene layers, such as

twisted trilayer graphene [Chapter 5; Fischer, Goodwin et al. arXiv:2104.10176] and double

twisted bilayer graphene, the effects of long-ranged electron-electron interactions are found to

be analogous to tBLG. Specifically, these interactions cause a sensitive doping-dependence to

the electronic structure, which pins the van Hove singularities. In contrast, moiré graphene

multilayers in which there is at least one set of adjacent layers that are aligned, such as twisted

double bilayer graphene [Chapter 5; Cheung, Goodwin et al. arXiv:2111.03019] and mono-

trilayer graphene [Chapter 5; Goodwin, Klebl et al. PRM 5:084008 2021], there is little effect

of these long-ranged electron-electron interactions on the electronic structure. These trends
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could prove to be important in explaining experimental differences between different moiré

graphene multilayers.

These calculations were entirely performed with atomistic methods. In this approach, there

are two well defined length scales: the length scale associated with the carbon-carbon bond

of graphene, and the moiré length scale from twisting the graphene sheets relative to each

other. The interplay between these two lengths scales has been evident in our results. The

long-ranged electron-electron interactions, on the length scale of the moiré pattern, can cause

the onset of magnetic order which modulates on the scale of the carbon-carbon bond length.

Conversely, such antiferromagnetic order on the honeycomb lattice of graphene can cause the

AB and BA regions of the moiré unit cell to become inequivalent, resulting in gaps to form at

charge neutrality in the low-energy electronic structure of tBLG. On the other hand, simply by

aligning two adjacent graphene sheets in a moiré graphene multilayer, such there are sublattice

variations in the underlying aligned graphene layers, the effect of long-ranged electron-electron

(Hartree) interactions on the moiré length scale can be almost completely suppressed.

Looking forward, there are myriad directions in which the field of twistronics could expand

into. One of the main questions which the field must answers for tBLG is the mechanism

of superconductivity and the role of electron interactions for this phase. Within the work

presented here, there are a number of avenues of research which directly follow on.

The internal screening response of tBLG is extremely important in predicting the phases

using a beyond mean-field method. Therefore, it would be highly interesting to use the screened

Hubbard parameters in methods such as exact diagonalization or quantum Monte Carlo. Al-

ternatively, the dielectric function in momentum space could be used for an interaction vertex

in momentum space which could, for example, be used in a functional renormalisation group

approach.

The developed Hartree+U theory yielded good agreement with experiments in terms of

where broken symmetry phases were expected in the doping and twist angle space. However,

it had limitations in its predictions of the broken symmetry phases, especially in terms of

correlated insulating states at doping levels away from charge neutrality. Therefore, further

development of this theory in the direction of a screened Hartree-Fock theory would be highly

162



promising. The screened interaction in real space from the internal electronic degrees of freedom

of the moiré graphene multilayer could be used to screen the exchange interaction in a Hartree-

Fock approach. Computing the dielectric function in each iteration of the self-consistent cycle

would be computationally extremely expensive. Instead, a more phenomenological approach

based on fits to analytical polarizability functions from the electronic structure could provide

a computationally cheaper route to investigate these effects.

The role of these long-ranged Hartree interactions could also be highly interesting to in-

vestigate in the context of superconductivity. For example, in the context of the conventional

mechanism, these long-ranged electron interactions induce additional band flattening which

can enhance the density of states (DOS). This is obviously favourable for the conventional

mechanism, and it could cause the peak of the superconducting dome to occur away from half-

filling as the Hartree interactions can peak the DOS away from this doping level. Alternatively,

and perhaps more promising, is a spin-fluctuation mechanism. We demonstrated that these

long-ranged electron-electron interactions clearly increase the prevalence of magnetic order in

tBLG, and therefore, also the possibility for spin fluctuation superconductivity. Moreover, in

this mechanism, the highest transition temperatures always occur away from integer doping

levels, which is what is known from experiments.

Finally, further research on moiré graphene multilayers would also be quite fruitful. Here

a qualitative difference between systems with alternating twist angle structures to those with

at least one set of adjacent graphene layers that are aligned were identified in terms of the

long-ranged Hartree interactions. It would be interesting to see if any general trends emerge

with multiple twist angles, for example. Only by further investigating these different moiré

graphene multilayers with different methodologies will the extent of the difference between

these two classes of moiré graphene multilayers be revealed.
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[104] B. Roy and V. Juric̆ić. Unconventional superconductivity in nearly flat bands in twisted

bilayer graphene. Phys. Rev. B, 99:121407(R), 2019.

[105] G. Sharma, M. Trushin, O. P. Sushkov, G. Vignale, and S. Adam. Superconductivity

from collective excitations in magic angle twisted bilayer graphene. Phys. Rev. Research,

2:022040(R), 2020.
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Nature, 597:353–358, 2020.

[116] D.M. Kennes, L. Xian, M. Claassen, and A. Rubio. One-dimensional flat bands in twisted

bilayer germanium selenide. Nat. Commun., 11:1124, 2020.

[117] B. L. Chittari, N. Leconte, S. Javvaji, and J. Jung. Pressure induced compression of

flatbands in twisted bilayer graphene. Electron. Struct., 1:015001, 2018.
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[207] M. Andelković, S. P. Milovanović, L. Covaci, and F. M. Peeters. Double moiré with a
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