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Rough Path Perspectives on the Itô-Stratonovich Dilemma

Abstract
This thesis is comprised of six distinct research projects which share the theme of rough and stochastic integra-
tion theory.

Chapter 1Chapter 1 deals with the problem of approximating an SDE X in Rd with one Y de�ned on a speci�ed
submanifold, so as to minimise quantities such as E[|Yt −Xt|2] for small t: this is seen to be best performed
when using Itô instead of Stratonovich calculus.

Chapter 2Chapter 2 develops the theory of not necessarily geometric 3 > p-rough paths on manifolds. Drawing on
[FH14FH14, É89É89, É90É90] we de�ne controlled rough integration and RDEs both in the local and extrinsic framework,
with the latter generalising [CDL15CDL15]. Finally, we lay out the theory of parallel transport and Cartan develop-
ment, for which non-geometricity results in second-order conditions and corrections to the classical formulae.

In Chapter 3Chapter 3 we treat the theory of geometric rough paths of arbitrary roughness in the framework of
controlled paths of [Gub04Gub04], from an algebraic and combinatorial point of view, and avoiding the smooth
approximation arguments used in [FV10bFV10b]. As an application, we show how our emphasis on functoriality
allows for a simple transposition of the theory to the manifold setting.

The goal of Chapter 4Chapter 4 is to treat the theory of branched rough paths on manifolds. Drawing on [HK15HK15,
Kel12Kel12], we show how to lift a controlled path to a rough path. The “transfer principle”, intended in the sense
of Malliavin and Emery, refers to the expression of a connection-dependent “intrinsic di�erential” d∇X that
de�nes integration in a coordinate-invariant manner, which we derive by combining Kelly’s bracket corrections
with certain higher-order Christo�el symbols. In reviewing branched rough paths, special attention is given to
those that can be de�ned on Ho�man’s quasi-shu�e algebra [Hof00Hof00], for which some of the relations simplify.

The �nal two chapters do not involve any di�erential geometry. Chapter 5Chapter 5 is a report on work in progress,
the aim of which is to compute the Wiener chaos decomposition (and in particular the expectation) of the sig-
nature of certain multidimensional Gaussian processes such as 1/3 < H-fractional Brownian motion (fBm).
This generalises the results of [BC07BC07], arrived at through a piecewise-linear approximation argument which
fails when 1/4 < H ≤ 1/2. Furthermore, our calculation restricts to that of [Bau04Bau04] in the case of Brownian
motion, and can be applied to other semimartingales, such as the Brownian bridge. Our novel approach makes
use of Malliavin calculus and the recent rough-Skorokhod conversion formula of [CL19CL19].

Finally, in Chapter 6Chapter 6 we combine the topics of the previous two to de�ne a branched rough path above
multidimensional 1/4 < H-fBm, and compute its terms and correction terms. Our rough path is de�ned in-
trinsically and canonically in terms of the stochastic process, restricts to the Itô rough path whenH = 1/2, has
the property that its integrals of one-forms vanish in mean, and is not quasi-geometric whenH ∈ (1/4, 1/3].
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Preface

The tale of stochastic integration begins with Kiyoshi Itô, who in [Itô44Itô44] de�ned the integral that now bears his
name, with the relative notion of di�erential equation [Itô46Itô46] and his famous second-order change of variables
formula [Itô51Itô51] following shortly thereafter. A little over a decade later it was discovered, by Donald Fisk in his
PhD thesis [Fis63Fis63] and independently by Ruslan Stratonovich [Str66Str66], that a di�erent de�nition of stochastic
integral was available. While Itô had de�ned his integral using Riemann-Stieltjes approximations with evalua-
tions of the integrand at the initial point in each interval of the partition (which for the integral

∫

HdX would
look like

∑
iHti(Xti+1−Xti)), the integrand in the Fisk-Stratonovich de�nition is evaluated at the midpoint

(
∑

iH ti+ti+1
2

(Xti+1 −Xti) for continuousH).

Figure 1: Riemann sums approximations for the integral of a smooth function with initial point evaluation
(on the left), and with midpoint evaluation (on the right); since this is a classical Riemann integral, the two
de�nitions of integral coincide.

The Itô integral has clear advantages from the standpoint of probability theory: it is (under reasonable assump-
tions) a martingale when the integrator is such, and its variance can be computed easily thanks to an isometry
property. While Stratonovich and Fisk’s integral does not satisfy these properties (since it “looks into the fu-
ture”), it has the great bene�t of satisfying the same laws as ordinary calculus, such as integration by parts and
the fundamental theorem of calculus. Furthermore, around the same time Wong and Zakai realised that de�n-
ing integration [WZ65aWZ65a] and SDEs [WZ65bWZ65b] by smoothly approximating the noise, integrating in the usual
Riemann sense, and taking limits, the result coincided not with Itô’s integral but with what would soon af-
ter be named the Stratonovich integral. These two competing de�nitions gave rise to a dilemma: which is the
correct way to integrate?

The Itô-Stratonovich dilemma does not, of course, admit a clear resolution. Both theories are perfectly
valid, can be converted into one another, and the choice of which to use became contingent on the branch
of stochastic analysis under consideration: the Itô integral remained the weapon of choice of probabilists and
researchers in the nascent discipline of mathematical �nance, while physicists and di�erential geometers grav-
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itated towards the Stratonovich integral, due to its good behaviour under change of coordinates. Indeed, it is
this property that makes it possible to de�ne geometric constructions involving stochastic processes just as one
would de�ne them for smooth curves, simply by replacing ordinary calculus with Stratonovich calculus: this
is what Malliavin later called the “transfer principle”. It is not true, however, that Itô calculus on manifolds is
impossible to carry out. An early attempt was made by Itô himself [Itô50Itô50], who asked the very natural question
of how to de�ne SDEs on smooth manifolds. While this paper focused on existence, uniqueness and Markov
property of the solution, Itô’s description of SDEs had the drawback of depending on the chart (a problem
that does not arise for Stratonovich SDEs). It was not until much later that Laurent Schwartz [Sch82Sch82] and
Paul-André Meyer [Mey81Mey81, Mey82Mey82] independently worked out the correct framework needed to make Itô cal-
culus coordinate-invariant. Their ideas were carefully compiled by Michel Emery, one of Meyer’s students, in
the very accessible [É89É89]. He followed this textbook up a year later with a paper [É90É90] in which he established
that the “Itô di�erential” dX could be conceived of not only as a formal element of a second-order tangent
space (as Schwartz had regarded it), but, alternatively, as an in�nitesimal tangent vector (an idea already present
in Meyer’s work), the only caveat being that the resulting de�nitions would depend on a covariant derivative on
the manifold. This, at least in theory, put Itô and Stratonovich on an equal footing as stochastic calculi on Rie-
mannian manifolds, since they were now both capable of integrating one-forms and de�ning SDEs in terms of
vector �elds. In practice, in the geometric setting Stratonovich calculus continued to be used almost exclusively,
and still today Itô calculus carries, rather unfairly, the reputation of being unsuitable for such purposes.

Around the same time that Schwartz and Meyer were developing their calculus of second-order vectors and
forms, a di�erent contribution to stochastic calculus came from Hans Föllmer. In fact, Föllmer’s idea was not
so much an addition to probability theory as it was a recognition of the fact that certain aspects of it did not
actually have to be stochastic. In [Föl81Föl81] he showed that the Itô formula could be derived without reference to a
probability space or measure, as long as one accepted that the quadratic variation would depend on a sequence
of partitions. Many authors continued to investigate the delicate interplay between probability and analysis
in the context of stochastic integration, which turned out to be related to the study of iterated path integrals
valued in nilpotent Lie groups and to Kuo-Tsai Chen’s earlier work on loop space cohomology [Che77Che77]. This
line of research led to a series of papers of Terry Lyons [Lyo94Lyo94], some of which written with Zhongmin Qian
[LQ98LQ98], culminating in the paper [Lyo98Lyo98] (written at Imperial College London!), in which the theory of rough
paths was established.

In a nutshell, a rough path consists of a structure “above” a path X : [0, T ] → Rd which emulates the
�rst few iterated integrals on the simplexXst =

∫

s<u1<...<un<t
dXu1 ⊗ · · · ⊗ dXun , the exact number re-

quired depending on the regularity ofX . When the pathX is too rough (as is the case for Brownian motion),
these integrals are not de�ned in the sense of Riemann-Stieltjes, and must therefore be postulated through
other methods, subject to certain analytic and algebraic constraints. The purpose of a rough path is to de-
�ne an integration theory forX via Taylor-type expansions, which in turn gives meaning to multidimensional
rough ODEs (or rough di�erential equations — RDEs) dY = V (Y )dX . When X is a stochastic process,
X is usually constructed using probabilistic notions of convergence; however, onceX is de�ned, all the cen-
tral constructions of rough path theory follow from pathwise and deterministic analysis. This separation of
probability and analysis is crucial for one of the main contributions of rough path theory: that of making
the RDE solution map X 7→ Y continuous under appropriate norms, thus conferring “robustness” to the
theory. This is not achievable in ordinary stochastic analysis, since probability is involved in the de�nition of
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integral: the map sending X to the solution to the Itô equation dY = V (Y )dX (or Stratonovich equation
dY = V (Y ) ◦ dX) cannot be made continuous. Another aspect that makes Lyons’ theory so appealing is its
generality, and the ease with which it can be used to generate new integration theories: not only is it capable
of reproducing the Itô and Stratonovich integrals, but many other types of processes, such as certain Gaussian
and Markov processes that are not semimartingales, admit lifts to rough paths too. Of course, when X is of
bounded 2 > p-variation, everything reduces to Young integration [You36You36].

A rough path canonically de�nes its signature, i.e. the full stack of iterated integrals, which is already of
interest when the path is of bounded variation. Indeed, it was under this assumption that Lyons, together with
Ben Hambly, proved the main result that establishes the importance of the signature: in [HL10HL10] (later gener-
alised to rough paths in [BGLY16BGLY16]) it was shown that the signature of a path, evaluated at its �xed initial and
terminal times, characterises the path up to “retracings”. In dimensions greater than 1, a generic path can be
expected to almost never retrace itself: this remarkable characterisation therefore yields a way of translating
the entirety of the data contained in the path into a formal series of tensors. A probabilistic version of this
result [CL16CL16] states that, under certain hypotheses, the law of a stochastic process is determined by the pro-
cess’s expected signature, which therefore plays the same role that moments do for random variables. Recently,
these ideas have found numerous applications in machine learning for sequential, multimodal data streams,
e.g. [PAGG+18PAGG+18].

Since its inception, the theory of rough paths has bene�ted from numerous additions and reformulations.
In [Gub04Gub04] Massimiliano Gubinelli gave the de�nition of controlled rough paths: enriched paths which can
be integrated against the reference rough path. Controlled paths play a role dual to that of rough paths and
make it possible for much of the theory to be expressed in linear terms, which is not possible when dealing
solely with rough paths, which are non-linear objects. In [Gub10Gub10] Gubinelli de�ned branched rough paths,
the most general type possible: unlike the better-known geometric ones, the integration theories de�ned by
branched rough paths need not satisfy the rules of ordinary calculus, such as integration by parts. His ideas
were reformulated by David Kelly in his PhD thesis [Kel12Kel12], in part published jointly with his supervisor
in [HK15HK15], in which it is shown that branched rough paths can be reduced to geometric ones, albeit via a
non-canonical procedure. Many di�erent authors worked on Gaussian rough paths, and their relationship
with Malliavin calculus [CQ02CQ02, LQ02LQ02, FV10aFV10a]; the best known result in this area, a Hörmander condition for
Gaussian (non-Markovian) rough paths was proved by Thomas Cass and Peter Friz in [CF10CF10]. Recently, the
area of “rough analysis” has enjoyed a phenomenal boost in recognition and popularity due to its relationship
with Martin Hairer’s acclaimed theory of regularity structures [Hai14Hai14], and thanks to the textbook [FH14FH14],
aimed at a broad readership.

When I arrived in London to start my MRes+PhD I held a master’s with a focus in algebraic and di�eren-
tial topology, and very little higher knowledge of probability theory. The idea for my PhD loosely consisted of
leveraging my “non-standard background” as an aspiring probabilist, in particular my familiarity with smooth
manifolds, to take further certain novel viewpoints on Itô calculus on manifolds [AB18AB18] and ensuing approxi-
mation problems [AB16AB16] that Damiano Brigo and John Armstrong (my supervisor and co-supervisor) had been
working on, and to relate their ideas to the analysis of rough paths, of which my other supervisor, Tom Cass,
was a specialist. As I began to learn about stochastic calculus, the distinction between Itô and Stratonovich
integration immediately caught my eye, and I became curious about how these subtleties could be couched in
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the language of rough paths in a maximally general manner, especially in the setting of smooth manifolds. One
of the very �rst people I met in London was Michel Emery, who had been invited to give a talk on the Schwartz-
Meyer approach to Itô calculus, about which he also spoke to me at length in private. When I returned home
to Italy for Christmas that year, I found that he had mailed me a copy of his textbook with a thoughtful in-
scription. Upon reading it, I developed a soft spot for Emery’s treatment of stochastic calculus on manifolds,
which went on to become one of the major sources of inspiration in my studies.

After concluding the taught portion of my MRes, I identi�ed my foothold in graduate research as Damiano
and John’s work on projections of SDEs onto submanifolds, an approximation problem that points towards
Itô, not Stratonovich, calculus in the setting of di�erential geometry. In my attempt to understand their paper,
I found myself rewriting it by using ambient coordinates instead of local ones. This reformulation, which in-
cluded several other improvements and additions, turned into a paper, and Chapter 1 of this thesis. Some of my
contributions were included in the paper [ABRF19ABRF19], now published in the Proceedings of the London Math-
ematical Society. In the meantime, my interest had shifted from stochastic calculus to rough paths. Having
studied [FH14FH14], which treats non-geometric rough paths as well as geometric ones, and read the recent paper
[CDL15CDL15] about geometric rough paths on manifolds, I decided to merge my supervisors’ areas of interest and
study the behaviour of non-geometric rough paths on manifolds. This project, which begins by applying the
ideas of [É89É89, É90É90], and goes on to investigate the more advanced topics of parallel transport and development,
is contained in Chapter 2. While writing this paper, I had been taking some notes on how the structural aspects
of rough paths (and their controlled paths), which are easy to describe in the case of bounded 3 < p-variation,
work for geometric rough paths of low regularity. Spelling these out would constitute an approach to the fun-
damentals of geometric rough path theory, which, within its scope, is alternative to the one of [FV10bFV10b], that
relies on smooth approximation arguments and does not consider controlled paths. When I told Tom about
my ideas, he invited me to join an ongoing project with Bruce Driver and Christian Litterer. This led to a visit to
Christian in York, and a fruitful collaboration that resulted in the content of Chapter 3. This and the previous
chapters are �nished papers, both accepted for publication in the Journal of the London Mathematical Society.

The second part of the thesis concerns more advanced topics. I recalled Damiano telling me, at the very
beginning of my PhD, that in my study of stochastic processes on manifolds I should try and “go as low as
possible” in terms of regularity. This had already been done, in the previous chapter, for geometric rough paths.
Damiano, however, had made his comment in the context of Itô calculus, which is not geometric. On Tom’s
advice, I began to read about branched rough paths, since these are able to describe non-geometric integration
theories of arbitrary roughness. After a long and careful study of the main reference on this topic [HK15HK15] and
the lesser known PhD thesis [Kel12Kel12], which nevertheless contains results that proved essential to my goal, I was
able to lay out what I believe can be called the natural generalisation of Meyer and Emery’s work to branched
rough paths. This project is the subject matter of Chapter 4.

While I was writing Chapters 2 and 3, I realised that my thesis did not contain much probability theory,
something which did not seem aligned with the spirit of the original plan. I knew about the connection be-
tween rough paths and Malliavin calculus, and about Tom’s recent formula [CL19CL19, CL20CL20] obtained jointly
with his former student Nengli Lim, relating rough and Skorokhod integration, the natural (but not pathwise)
extension of the Itô integral to more general Gaussian processes. Tom had told me that he saw a possible ap-
plication of his work in computing the expected signature of a large class of Gaussian processes, a complicated
task which had not be achieved via elementary methods. The preliminary results of this study are contained in
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Chapter 5: while the formal calculation, leading to the desired result, is provided in full, there are still details
missing, which are clearly highlighted. Of the six chapters, this is the only one of which the main results rest on
unproved technical assertions. While writing the previous two chapters, I wondered whether it was possible to
use Skorokhod integration to generate a non-trivial example of a stochastic branched rough path, something I
could not �nd in the literature. While the naïve approach to this fails, there is a workaround that satis�es the
needed regularity condition, described in Chapter 6.

Writing this thesis has given me the opportunity to immerse myself in a thriving area of modern mathe-
matics, to take a glimpse at how higher knowledge is formed and evolves in a research community, and to o�er
a few of my own perspectives on a famous dilemma; one which, I suspect, will not be settled anytime soon.

How this thesis is structured. Each of the �rst �ve chapters of this thesis consists of a self-contained project,
which introduces its own de�nitions and conventions; Chapter 6, instead, uses the notation and some of the
results of the previous two. Since the chapters are on closely related topics, a little “code duplication” was in-
evitable: some de�nitions and proofs are revisited in di�erent contexts, mostly across Chapters 2,3 and 4. This
is partly necessary, since the theory requires minor (but non-trivial) modi�cations in each chapter, and in any
case has the bene�t of not requiring the reader to constantly refer to other parts of this manuscript. Moreover,
despite having part of the setup in common, the main results in the chapters are distinct. In Chapter 2 these
are on the extrinsic approach and the theory of non-geometric parallel transport and Cartan development, in
Chapter 3 the main focus is on the combinatorics of shu�es and ordered shu�es applied to geometric (con-
trolled) rough paths, and in Chapter 4 the goal is to de�ne integration on manifolds. While this had been done
for the other two chapters, it was not their main focus, since for 3 > p-geometric rough paths the integral
is structurally identical to the one de�ned by Emery, and for geometric rough paths there is no di�culty in
integrating on manifolds. Similarly, while there is some overlap between Chapter 3 and Chapter 4 in terms of
the combinatorics, the lemmata of the former is developed more systematically, which would have been much
more di�cult to do for the latter, due to the greater complexity of tree algebras.

At the very beginning of each chapter there is a “Project status” paragraph, in which it is stated whether the
contents of the chapter are entirely or in part contained in an arXiv preprint or a submitted/published paper,
and it is disclosed whether there are any co-authors, and if so, who they are. To summarise the situation very
brie�y here, Chapters 1,2 and 3 consist of �nished papers; the �rst has contributed to a published article, and the
other two have recently been accepted for publication. Chapter 4 can be considered a �nished project, but has
not yet been posted to arXiv or submitted for publication. Chapter 5 is a report on work in progress: the case
for its inclusion in this thesis is made in the chapter’s introduction and the precise details of what is still missing
are stated precisely. Chapter 6 can be considered a �nished short project, although there are no current plans
for it to be posted or submitted. All chapters except for the fourth and sixth are projects written jointly with my
supervisors and/or other senior academics, all of whom are aware of the work’s inclusion in this thesis. These
collaborations were carried out in the manner in which supervision of PhD students is customarily conducted.

Each chapter begins with an introduction that announces and motivates its contents. The body of each
of the �rst �ve chapters begins with one or two background sections. These sections are meant to establish the
notation, “import” and review the theory that is essential to the rest of the chapter, possibly with minor refor-
mulations and accompanying examples; they generally do not contain, unless otherwise mentioned, what may
be called original research. These are Section 1.1Section 1.1, Section 1.2Section 1.2; Section 2.1Section 2.1, Section 2.2Section 2.2; to some extent Section 3.1Section 3.1
(in which, however, the main two lemmas are original); Section 4.1Section 4.1; Section 5.1Section 5.1 and to some extent Section 5.2Section 5.2

9



(in which the result referenced at the beginning is reformulated). At the end of each chapter there is a “Con-
clusions and further directions” section, which contains re�ections on the ideas that have been presented, on
any aspects that might deserve further attention, and problems left open that could form the basis for future
research.

A word on notation. While each chapter was written individually (and with di�erent supervisors and col-
laborators), I have attempted to keep the notation as uniform as possible throughout. Any discrepancies should
not cause ambiguity, since chapters do not use symbols introduced elsewhere without explicit mention. Since
some of the formulae are quite long, I have preferred compact notation when possible. This involves using the
Einstein summation convention, which is only implied when one of the indices is a subscript and the other a
superscript. Another convention adopted for similar reasons involves only writing the evaluation of a product
of functions once, e.g. fgh(x) instead of f(x)g(x)h(x). In general, I have attempted not to clutter equations
with redundant information: for example, the partial derivative ∂αβγf is written without the superscript “3”,
since the fact that it is a third derivative is already clear from the presence of three indices. A few di�erent fonts
are used, which have the bene�t of making global notation for recurring symbols symbols possible: for example,
N is used in Chapter 4 to denote the number of symmetries of a forest and δ is used in the last two chapters for
Skorokhod integration; neither is used for other purposes. Other global symbols include p, the rough path’s
variation regularity, related to the Hurst parameterH when considering fractional Brownian motions, and d,
usually the dimension of the Euclidean space, which is di�erent to d, used to denote di�erentials. When writ-
ing stochastic or rough di�erential equations, Greek indices are usually used for the driving signal, while latin
letters index the solution.
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1
Projections of SDEs onto submanifolds

Project status. The work presented in this chapter originated from my attempt to understand and improve
certain aspects of a paper of my supervisors [AB16AB16], a project that had begun before I started my studies in Lon-
don. This resulted in the independent preprint [ABF18ABF18], of which this chapter is an edited version. Since some
of my work was deemed relevant to the original project, it was included in the version that was submitted to,
and eventually published in the Proceedings of the London Mathematical Society, [ABRF19ABRF19]. My contribution
to this publication consists of expressing and proving optimality without resorting to stochastic Taylor expan-
sions, but directly in terms of the SDEs, and dealing with the resulting complications (namely that the solution
can explode or exit a tubular neighbourhood of the manifold). Another di�erence between the two papers is
that [AB16AB16] uses local coordinates, while this chapter uses ambient ones, a choice that I viewed as more natural,
given that the manifold M is always embedded, and indeed preferable, since the formulae for the projections
do not depend on the chart and are therefore more easily interpretable. Finally, it should be mentioned that
both papers cover material that the other does not: here we show how the projections emerge naturally from
di�erent versions of stochastic calculus before showing their optimality, while [AB16AB16] additionally considers
applications to non-linear �ltering. Speci�c examples or observations present in [AB16AB16] that are readapted to
the di�erent setting of this chapter are explicitly referenced; this is not done for the main theory, the core ideas
of which are original to [AB16AB16].

Introduction

Consider the following problem: we are given an autonomous ODE

Ẋt = F (Xt) (1.1)
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inRd, and a smooth embedded manifoldM ↪→ Rd. Letπ be the metric projection of a tubular neighbourhood
ofM ontoM (see (1.521.52) below). We seek anM -valued ODE, i.e. a vector �eld F onM , tangent at each point
toM , with the property that the solution to

Ẏt = F (Yt) (1.2)

is optimal in the sense that the �rst coe�cient of the Taylor expansion in t = 0 of either

|Yt −Xt|2 or |Yt − π(Xt)|2 (1.3)

is minimised for any initial conditionX0 = Y0 = y0 ∈ M . This requirement represents the slowest possible
divergence ofY from the original solutionX (resp. from its metric projection onM ), subject to the constraint
of Y arising as the solution of a closed form ODE onM . It is an easy exercise (using (1.551.55) below) to check that
these optimisation problems both result in the same solution, which consists in F (y) being the orthogonal
projection of the vector F (y) onto the tangent space TyM .

The paper [AB16AB16], which is motivated by applications to non-linear �ltering, explores an extension of this
problem to the case of SDEs. The optimality criteria (1.31.3) do not carry over in a straightforward fashion, and
are formulated through the machinery of weak and strong Itô-Taylor expansions. In this chapter we tackle the
same problem through a di�erent perspective, which we proceed to describe.

In Section 1.1Section 1.1 we begin with a survey of SDEs on manifolds. Here we introduce three ways of represent-
ing them: the Stratonovich, Schwartz-Meyer (or 2-jet) and Itô representations. The �rst and second have the
advantage of not requiring a connection on the tangent bundle of the manifold, the second and third are de-
�ned in terms of the Itô integral, while the �rst and third have vector coe�cients. Focusing on the di�usion
case, we show how to pass from one representation to another. In Section 1.2Section 1.2 we prepare the framework for
manifoldsM embedded in Rd. These are entirely general Riemannian manifolds, due to the Nash embedding
theorem, and have the advantage of being describable using ambient coordinates. We use this framework to
study the equations introduced in the previous section, on embedded manifolds. In Section 1.3Section 1.3 we associate to
each manifold-valued SDE representation a natural projection, which gives rise to an SDE on a submanifold:
the Stratonovich projection (de�ned by projecting the Stratonovich coe�cients), the Itô-jet projection (de�ned
by projecting the Schwartz morphism, or 2-jet, which de�nes the SDE), and the Itô-vector projection (de�ned
by projecting the Itô coe�cients, and interpreting the resulting equation w.r.t. the Riemannian connection on
the embedded submanifold). These projections coincide with the ones introduced in [AB16AB16], but are given a
more solid theoretical underpinning, which sheds light on their analytic and probabilistic properties. We then
derive formulae for the three projections, preferring ambient coordinates to local coordinates. In Section 1.4Section 1.4 we
formulate the optimality criteria satis�ed by the Itô-vector and Itô-jet projections using respectively an explicit
weak and mean-square formulation, instead of invoking Itô-Taylor expansions as done in [AB16AB16]. This has the
advantage of representing a more tangible property of the solution, and is accompanied by an argument, based
on martingale estimates, used to deal with the problem of the solution exiting the tubular neighbourhood of
M . Our main theorems Theorem 1.16Theorem 1.16 and Theorem 1.19Theorem 1.19 replicate the �ndings [AB16AB16, Theorem 2, Theorem 3]
in this new setting. The fact that the Stratonovich projection does not satisfy either of these optimality criteria
is a con�rmation of the fact that Itô calculus on manifolds can be of great interest. In Section 1.5Section 1.5 we provide
examples showing that the three projections are genuinely distinct, we prove the Itô projections are optimal
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also when formulating the optimality criteria usingM ’s intrinsic geometry, and explore notions of optimality
that are satis�ed by the more naïve Stratonovich projection.

Although the material presented here overlaps to a signi�cant degree with the ideas of [AB16AB16], this chapter
is entirely self-contained. Moreover, we believe the framework chosen here has a number of advantages of which
we hope to make use in future work, as described in Conclusions and further directionsConclusions and further directions.

1.1 SDEs on manifolds

We begin this chapter with a primer on manifold-valued SDEs. Since manifolds, unlike Euclidean space, do
not come naturally equipped with coordinates, especially not global ones, the challenge is to express an SDE
using intrinsic, coordinate-free notions. Equivalently, one can de�ne an SDE locally in an arbitrary chart, and
show that the property of a process of being a solution does not depend on the chart. The coordinate-free
de�nition of a time-homogeneous ODE on a smooth,m-dimensional manifoldM is well known: this consists
of a tangent vector �eld, i.e. a section of the tangent bundle of M , V ∈ ΓTM . We will denote Γ the set
of sections of a �bre bundle, i.e. the smooth right inverses to the bundle projection. A solution to the ODE
de�ned by V is a smooth curve X , de�ned on some interval of R, with the property that Ẋt = VXt for all t.
This is a coordinate-free de�nition, and in a chartϕ : U → Rm (U open set inM ) it corresponds to requiring
that, writing ϕ(Xt) = ϕXt and Vx = ϕV k

x ∂xϕk, we have ϕẊk
t = ϕV k

Xt
for all t for which both sides are

de�ned. Notice the sum over k: this is the Einstein summation convention, which we will use throughout this
thesis whenever possible; also, ∂xϕk are the elements of the basis of TxM de�ned by the chart ϕ:

∂xϕk(f) :=
∂(f ◦ ϕ−1)

∂xk
(ϕ(x)) for f ∈ C∞M (1.4)

In this section we will give similar descriptions of Stratonovich and Itô (non path-dependent) SDEs on mani-
folds. From now on we will avoid the ϕ superscripts when no ambiguity occurs, e.g. the previous identity will
be written Ẋk

t = V k
Xt

.
We begin with the Stratonovich case, following mainly [É89É89, Ch. VII], although the topic is well known.

As for the familiar Rd-valued case we will also need a driving semimartingale, which, given the context we
are working in can be taken to be valued in another manifold N , of dimension n. Given a stochastic setup
(Ω,F·, P ) satisfying the usual conditions, a continuous adapted stochastic process Z : Ω × R≥0 → N

is said to be a semimartingale if, for all f ∈ C∞N , f(Z) is a semimartingale. Just as for the ODE case,
what is needed to de�ne a Stratonovich SDE in M driven by Z is a section of some vector bundle: in this
case, however, the bundle is no longer just TM , but Hom(TN, TM) → M × N , i.e. the vector bun-
dle of linear maps from TN to TM . An element F ∈ ΓHom(TN, TM) corresponds to a smooth map
M ×N 3 (x, z) 7→ F (x, z) ∈ Hom(TzN,TxM). The Stratonovich SDE

dXt = F (Xt, Zt) ◦ dZt (1.5)

in local coordinates (this requires choosing a chart both on N and on M ) as dXk
t = F kγ (Xt, Zt) ◦ dZγt

on random intervals that make both sides of the expression well de�ned. We will always use Greek letters as
indices for the driving process, and Latin letters as indices for the solution. The key property that allows one
to prove that the coordinate formulation of Stratonovich SDEs holds for all other charts (on the intersection
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of their respective domains) is that Stratonovich equations satisfy the �rst order chain rule: clearly (1.51.5) would
not be similarly well de�ned with Itô integration. One can also de�ne a solution without invoking charts: this
entails de�ning a Stratonovich integral taking as integrator anM -valued semimartingaleX and as integrand a
previsible processH with values in the cotangent bundle ofM and relatively compact image (locally bounded),
s.t. at each t,Ht is in the �bre atXt: this yields an R-valued semimartingale which we can write as

∫ ·

0
〈Hs, ◦dXs〉 (1.6)

The angle brackets refer to dual pairing of vectors and covectors. This integral is characterised as being the
unique map satisfying the following three properties

Additivity. For all locally bounded previsibleH,G aboveX

∫ ·

0
〈Hs +Gs, ◦dXs〉 =

∫ ·

0
〈Hs, ◦dXs〉+

∫ ·

0
〈Gs, ◦dXs〉

Associativity. For a real-valued, locally bounded adapted process λ

∫ ·

0
〈λsHs, ◦dXs〉 =

∫ ·

0
λs ◦ d
∫ s

0 〈Hu, ◦dXu〉

Change of variable formula. For all f ∈ C∞M
∫ ·

0
〈dXsf, ◦dXs〉 = f(X)− f(X0)

where df is the one-form given by taking the di�erential of f . One can then use this integral to say that X
solves (1.51.5) if for all admissible integrandsH (even just those arising as the evaluation of a one-form atX)

∫ ·

0
〈Hs, ◦dXs〉 =

∫ ·

0
〈F (Xs, Zs)

∗Hs, ◦dZs〉 (1.7)

where the ∗ denotes dualisation.

Remark 1.1 (Autonomousness and explicitness). If N = Rn we can call (1.51.5) autonomous if F (z, x) does not
depend on z, and ifM = Rm we can call it explicit if F (z, x) does not depend on x. However, in the general
manifold setting these two concepts do not carry over, at least not unless N (resp. M ) is parallelisable, with
a chosen trivialisation of its tangent bundle. An analogous consideration applies to other �avours of SDEs
introduced in this section.

Example 1.2 (Stratonovich di�usion). An important example is the case where N = R≥0 × Rn and
Zt = (t,Wt), W an n-dimensional Brownian motion, and F not depending explicitly on W . This means
(1.51.5) becomes

dXt = σγ(Xt, t) ◦ dW γ
t + b(Xt, t)dt (1.8)

for σγ , b ∈ ΓHom(TR≥0, TM) = C∞(R≥0,ΓTM), γ = 1, . . . , n. Stratonovich di�usions are sections
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of the vector bundle

Diff n
Strat := {F ∈ Hom(T (R≥0 ⊕ Rn), TM) : ∀w1, w2 ∈ Rn F (t, w1;x) = F (t, w2;x)}

→M × R≥0

(1.9)

i.e. elements of the vector space ΓDiff n
Strat. Notice that the base space is notM × (R≥0×Rn), since indepen-

dence of the Brownian motion allows us to forget the Rn component.

We note that no additional structure on N and M , apart from their smooth atlas, is needed to de�ne
Stratonovich equations. Stratonovich SDEs are the most used in stochastic di�erential geometry, as they behave
well w.r.t. notions of �rst order calculus: for instance, if there exists an embedded submanifoldM ′ ofM such
thatF (y, z) maps toTyM ′ for all z ∈ N and ally ∈M ′, then the solution to the Stratonovich SDE de�ned by
F started onM ′ will remain onM ′ for the duration of its lifetime. This is evident from our intrinsic approach,
by consideringF |M ′×N , but some authors who develop Stratonovich calculus on manifolds extrinsically prove
this by showing that the distance between the solution and the manifold (embedded in Euclidean space) is zero
[Hsu02Hsu02, Prop. 1.2.8]. The existence and uniqueness of solutions to Stratonovich SDEs can be treated by using
the Whitney embedding theorem to embed N and M in Euclidean spaces of high enough dimension, and
smoothly extending F so that it vanishes outside a compact set containing the manifolds. Invoking the usual
existence and uniqueness theorem (e.g. [Pro05Pro05, Theorems 38-40]), and the good behaviour of Stratonovich
SDEs w.r.t. submanifolds, immediately proves that a unique solution exists up to a positive stopping time,
provided F is smooth. We will mostly not be concerned with global-in-time existence in this thesis, although
su�cient conditions for such behaviour can usually be obtained by requiring global Lipschitz continuity w.r.t.
complete Riemannian metrics.

We now pass to Itô theory on manifolds, as developed in [É89É89, Ch.VI]. The di�culty lies in the second
order chain rule of the Itô integral. For this reason, we need to invoke structures of order higher than 1. Let
the second order tangent bundle ofM , TM , denote the bundle of second order di�erential operators without
a constant term, i.e. given a local chart ϕ containing x in its domain, an element of Lx ∈ TxM consists of a
map

Lx : C∞M → R, Lxf = Lkx
∂f

∂ϕk
+ Lijx

∂2f

∂ϕi∂ϕj
(1.10)

The coe�cients Lkx, Lijx obviously depend on ϕ, but their existence does not; moreover, requiring Lijx = Ljix

ensures their uniqueness for the given chart ϕ. Note that if the Lijx ’s vanish Lx ∈ TxM . TM is given
the unique topology and smooth structure that makes the projection TM → M , Lx 7→ x a locally triv-
ial surjective submersion. Just as for the �rst order case, there is an obvious notion of induced bundle map
Tf : TN → TM for f ∈ C∞(N,M). A chart ϕ containing x in its domain de�nes the basis

{∂xϕk, ∂2
xϕij = ∂2

xϕji | k, i, j = 1, . . . , n} (1.11)

so the dimension of TM (as a vector bundle) is m + m(m + 1)/2. The fundamental properties of TM are
summarised the short exact sequence of vector bundles overM

0 TM TM TM � TM 0i p (1.12)
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with the third term denoting symmetric tensor product, the �rst map the obvious inclusion and the second
map given by

Lx 7→
(
f, g 7→ 1

2
(Lx(fg)− f(x)Lxg − g(x)Lxf)

)
(1.13)

Roughly speaking, this means that TM is “noncanonically the direct sum of TM and TM � TM”. This
short exact sequence of course dualises to a short exact sequence of dual bundles. Elements ofT∗xM can always
be represented as dxf , de�ned by

〈dxf, Lx〉 := Lx(f) (1.14)

for some f ∈ C∞M (this is of course only true at a point: not all sections ofTM are of the form df ). We now
wish to de�ne an Itô-type equation using second order tangent bundles instead of ordinary tangent bundles.
For this we need a notion of �eld of maps F(x, z) : TzN → TxM . Since the bundles in question are linear,
it is tempting to allow F(x, z) to be an arbitrary linear map, but a more stringent condition is necessary to
guarantee well-posedness: the correct requirement is that F(x, z) de�ne a morphism of short exact sequences,
i.e. a commutative diagram

0 TzN TzN TzN � TzN 0

0 TxM TxM TxM � TxM 0

F (x,z) F(x,z) F (x,z)⊗F (x,z) (1.15)

withF (x, z) = F(x, z)|TzN . F(x, z) is then called a Schwartz morphism, and we can then viewF as being the
section of a sub-�bre bundle Sch(N,M) of Hom(TN,TM) overM ×N consisting of such maps, which we
call the Schwartz bundle. Note that Sch(N,M) is not closed under sum and scalar multiplication taken in the
vector bundle Hom(TN,TM), and thus can only be treated as a �bre bundle. Now, givenF ∈ ΓSch(N,M),
we will give a meaning to the SDE

dXt = F(Xt, Zt)dZt (1.16)

which we will call a Schwartz-Meyer equation. Heuristically, if X is an M -valued semimartingale the second
order di�erential dXt should be interpreted in local coordinates ϕ as

dXt = dXk
t ∂Xtϕk + 1

2d[Xi, Xj ]t∂
2
Xtϕij ∈ TXtM (1.17)

where the �rst di�erential is an Itô di�erential; this expression is seen to be invariant under change of charts,
thanks to the Itô formula. Then, given charts ϕ inM and ϑ onN , and writing

F(x, z)∂zϑγ = Fkγ(x, z)∂xϕk + Fijγ (x, z)∂2
xϕij

F(x, z)∂2
zϑαβ = Fkαβ(x, z)∂xϕk + Fijαβ(x, z)∂2

xϕij
(1.18)

(1.161.16) becomes the systemdXk
t = Fkγ(Xt, Zt)dZ

γ
t + 1

2F
k
αβ(Xt, Zt)d[Zα, Zβ]t

1
2d[Xi, Xj ]t = Fijγ (Xt, Zt)dZ

γ
t + 1

2F
ij
αβ(Xt, Zt)d[Zα, Zβ]t

(1.19)

Computing the quadratic covariation matrix of X from the �rst equation above, using the Kunita-Watanabe
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identity, and comparing with the second results in the requirement that

Fijγ ≡ 0; Fijαβ ≡
1
2

(
FiαF

j
β + FjαFiβ

)
(1.20)

which correspond precisely to the Schwartz condition (1.151.15), and justi�es this requirement. (1.191.19) now reduces
to its �rst line, i.e. the Itô SDE

dXk
t = Fkγ(Xt, Zt)dZ

γ
t + 1

2F
k
αβ(Xt, Zt)d[Zα, Zβ]t (1.21)

on random intervals that make both sides of the expression well-de�ned.

Example 1.3 (Schwartz-Meyer di�usion). Proceeding as in Example 1.2Example 1.2, but with Schwartz-Meyer equations,
we can de�ne the Schwartz-Meyer SDE

dXt = F(Xt, t)dZt

= σγ(Xt, t)dW
γ
t +

(
F0 +

1

2

n∑
γ=1

Fγγ
)

(Xt, t)dt
(1.22)

where we can call Fγ = σγ the di�usion coe�cients, since they are elements of C∞(R≥0,ΓTM); this also
holds for γ = 0, but not for Fαβ ∈ C∞(R≥0,ΓTM). Therefore the coe�cient of dt, the “drift”, cannot be
interpreted as a vector. Note that setting Fγγ ≡ 0 does not guarantee that such coe�cients will vanish w.r.t.
another chart, since the transformation rule for them involves the Fijαβ ’s which cannot vanish by the second
Schwartz condition (1.201.20); in other words, there is no way to do away with the non vector-valued drift in (1.221.22).
We can consider Schwartz Meyer di�usions as being sections of the �bre bundle

Diff n
SchM :=

{F ∈ Sch(R≥0 × Rn,M) : ∀w1, w2 ∈ Rn F(t, w1;x) = F(t, w2;x)}
F ∼ G⇔ Fγ≥1 = Gγ , F0 + 1

2

∑n
γ=1 Fγγ = G0 + 1

2

∑n
γ=1 Gγγ

→M × R≥0

(1.23)

This means that, similarly to the case of (1.91.9) we are only considering F’s that do not depend explicitly on the
Brownian motion, and we are quotienting out the part that is not relevant for (1.221.22).

Just as for Stratonovich SDEs, Schwartz-Meyer equations can also be seen to come from an integral

∫ ·

0
〈Hs, dXs〉 (1.24)

where the process H is now valued in T∗M . The axioms for this Schwartz-Meyer integral are similar:

Additivity. For all locally bounded previsible H,G aboveX

∫ ·

0
〈Hs + Gs, dXs〉 =

∫ ·

0
〈Hs, dXs〉+

∫ ·

0
〈Gs, dXs〉

Associativity. For a real-valued, locally bounded adapted process λ

∫ ·

0
〈λsHs, dXs〉 =

∫ ·

0
λsd
∫ s

0 〈Hu, dXu〉
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Change of variable formula. For all f ∈ C∞M
∫ ·

0
〈dXsf, dXs〉 = f(X)− f(X0)

Notice how Itô integration is used in the associativity axiom. The property of a process of being a solution of
(1.161.16) is then de�ned in complete analogy to (1.71.7).

The recent paper [AB18AB18] treats SDEs on manifolds using a representation which is similar to that of (1.161.16),
but which has a distinct advantage when it comes to numerical schemes. Here the authors focus on the au-
tonomous di�usion case, without explicitly taking time as a driver (N = Rn, Zt = Wt), and take the �eld of
Schwartz morphismsF to be induced by a field of maps i.e. a smooth functionf : Rn×M →M , fx := f(·, x),
s.t. for all x ∈M , fx(0) = x: this means

F(x) = T0fx (1.25)

In coordinates ϕ onM this amounts to

σkγ(x) =
∂(ϕk ◦ fx)

∂wγ
(0), Fkαβ(x) =

∂2(ϕk ◦ fx)

∂wα∂wβ
(0) (1.26)

with F0 = 0 (note how the drift comes from the quadratic variation of Brownian motion, without having to
require time as a driving process). This particular form ofF is useful because it automatically de�nes a numerical
scheme for the solution of the SDE, similar to the Euler scheme, which cannot be de�ned in a coordinate-free
way on a manifold: the linear structure lacked by M is replaced with iterative interpolations along the fx’s.
This also has the advantage of guaranteeing that if the maps are valued inM , so are all the approximations.

“Itô-type” Di�usions on manifolds have also been investigated by other authors, most notably by [BD90BD90,
Ch.4] (although we refer to the more recent exposition [Gli11Gli11, §7.2]), who call the bundle Diff n

SchM the Itô
bundle, and give a local description of it. Although we will not need this formulation in the following sections,
we include a description of it to establish the link with the other approach. There are (at least) two ways of
describing a �bre bundle π : E → M : one is by simply exhibiting the manifolds E,M and the surjective
submersion π, and by checking local triviality; this is the approach taken here. The second approach involves
declaring the base spaceM , the structure groupG (a Lie group), the typical �breF (a smooth manifold, carry-
ing a left action ofG by smooth maps) and a covering {Uλ}λ ofM together with maps gνµ : Uµ ∩ Uν → G

satisfying the cocycle conditions ∀λ, µ, ν gνµgµλ = gνλ. Then the total space and bundle projection can be
reconstructed by gluing all theUλ × F ’s together according to the gνµ’s:

E :=

⋃
λ{λ} × Uλ × F

(µ, x, e) ∼ (ν, y, f)⇔ x = y, f = gνµ(x).e

π−→M, [µ, x, e] 7→ x (1.27)

Of course, the local description can be obtained from the ordinary one by �xing a local trivialisation, a model
for the �bre, a Lie group capturing all transformations of the �bres, etc. Now, we de�ne the candidate bundle of
Schwartz-Meyer di�usions to have base spaceM×R≥0 and typical �bre Hom(Rn,Rm)⊕Rm. Recall that we
observed that the Schwartz bundle is not linear: this should rule out the usual choicesG = GL(n,R), O(n),
valid for vector bundles. Indeed, the transformation laws for Diff n

SchM are succinctly modelled by the Itô group

Im := GL(m,R)×Hom(Rm � Rm,Rm) (1.28)
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(A, a)(B, b) := (A ◦B,A ◦ b+ a ◦ (B ⊗B)) (1.29)

with identity (Im, 0), acting on Hom(Rn,Rm)⊕ Rm from the left by

(A, a).(σ, η) :=
(
A ◦ σ,Aη + 1

2tr(a ◦ (σ ⊗ σ))
)

(1.30)

where the trace is taken componentwise. Given an open covering {Uλ}λ (consisting of, say, open balls) ofM ,
and charts ϕλ : Uλ → Rm, we de�ne

gνµ(x ∈ Uµ ∩ Uν) :=
(
J(ϕν ◦ ϕ−1

µ )(x), H(ϕν ◦ ϕ−1
µ )(x)

)
(1.31)

the Jacobian and Hessian of the change of coordinates. The isomorphism between the bundle that we have just
described and Diff n

SchM is given by (notation as in (1.271.27)) [λ, (t, x), (σ, η)] 7→ [F(x, t)], the class represented
by any F(t, x) in the numerator of (1.231.23) s.t. Fkγ = σkγ for γ = 1, . . . , n and Fk0 +

∑n
γ=1 Fkγγ = ηk w.r.t. the

chart ϕλ.
There is a way of writing Itô equations on a manifold so that all the coe�cients, drift included, are vectors.

It involves considering the additional structure of a linear connection∇ onM , i.e. a covariant derivative

∇ : TM × ΓTM → TM (1.32)

which is a smooth function that maps TxM × ΓTM to TxM , is R-bilinear, and satis�es the Leibniz rule
∇Ux(fV ) = f(x)∇UxV + (Uxf)Vx. Equivalently, a connection is described through its Hessian

∇2 : C∞M → Γ(T ∗M ⊗ T ∗M) (1.33)

which is an R-linear map satisfying∇2(fg) = f∇2g + g∇2f + df ⊗ dg + dg ⊗ df for all f, g ∈ C∞M .
These two data are equivalent and related by

〈∇2
xf, V ⊗ U〉 = Ux(V f)− (∇UxV )f (1.34)

If Γijk are the Christo�el symbols of∇ w.r.t. a chart ϕ (this means∇∂xϕi∂ϕj = Γkij(x)∂xϕk), the Hessian
can be written as

∇2
xf = (∂2

xϕij − Γkij(x)∂xϕk)(f)dxϕ
i ⊗ dxϕ

j (1.35)

We will only be interested in connections modulo torsion, so it is not limiting for us to assume that a connection
is symmetric or torsion-free, i.e. that its torsion tensor 〈τ∇, U ⊗ V 〉 = ∇UV −∇V U − [U, V ] vanishes, or
equivalently that its Hessian is valued in Γ(T ∗M � T ∗M). By far the most important example of such a
connection is the Levi-Civita connection of a Riemannian metric g; in this case the Hessian takes the form
〈∇2

xf, Ux ⊗ Vx〉 = g(∇Uxgradgf, Vx). Torsion-free connections are relevant to our study of SDEs in that
they correspond to the splittings of (1.121.12), i.e. a linear left inverse q to i or a linear right inverse j to p

0 TM TM TM � TM 0i
p

q

j

(1.36)
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The existence of the bundle maps j and q are equivalent to one another and to the the isomorphism
(q,p) : TM → TM ⊕ (TM � TM) (this is the well-known splitting lemma [Hat02Hat02, p.147], valid in the
category of vector bundles). A torsion-free connection∇ onM is equivalent to a splitting by setting

(qxLx)f := Lxf − 〈∇2
xf,pxLx〉 (1.37)

We recall that, given V ∈ ΓTM , Wx ∈ TxM , the “composition” Ux(V ) ∈ TxM is de�ned by
Ux(V )f := Ux(y 7→ Vyf), and we have

px(Ux(V )) = Ux � Vx, qx(Ux(V )) = ∇UxV (1.38)

Using that ∂2
xϕij = ∂xϕi(∂ϕj) and (1.351.35) we have

px∂
2
xϕij = ∂xϕi � ∂xϕj , qx∂

2
xϕij = Γkij(x)∂xϕk (1.39)

Another way to view this correspondence is byj∗dxf = ∇2
xf .

Now, given symmetric connections on N and M , a �eld of Schwartz morphisms F ∈ ΓSch(N,M) can
be viewed as a �eld of block matrices[

F G
0 F ⊗ F

]
(x, z) : TzN ⊕ (TzN � TzN)→ TxM ⊕ (TxM � TxM) (1.40)

One can then require thatG ≡ 0, so that F reduces to F , which de�nes the Itô equation

dXt = F (Xt, Zt)dZt (1.41)

Such equations have been considered in [É90É90]. The data needed to de�ne this equation is the same as that
involved in the de�nition of the Stratonovich equation (1.51.5), namely an element of ΓHom(TN, TM), but the
meaning of the equation depends on the connections onN andM . In local coordinates, using (1.391.39) to specify
Fkαβ in (1.211.21) to the caseG ≡ 0, this equation takes the form

dXk
t = F kγ (Xt, Zt)dZ

γ
t

+1
2

(
NΓγαβ(Zt)F

k
γ (Xt, Zt)−MΓkij(Xt)F

i
αF

j
β(Xt, Zt)

)
d[Zα, Zβ]t

(1.42)

Note that if the Christo�el symbols on both manifolds vanish the above equation reduces to its �rst line; how-
ever, unless a manifold is �at a chart cannot in general be chosen so that the Christo�el symbols vanish (except
for at a single chosen point: these are called normal coordinates). Itô equations can be equivalently de�ned
through the Itô integral

∫ ·

0
〈Hs,dXs〉 :=

∫ ·

0
〈q∗Hs, dXs〉 (1.43)

by proceeding as in (1.71.7).
Recall that an (M,∇)-valued semimartingale is a local martingale if for all f ∈ C∞M

f(X)−
∫ ·

0
〈p∗∇2

Xsf, dXs〉 (1.44)
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is a real-valued local martingale (the integral is to be interpreted as half the quadratic variation ofX along the
bilinear form∇2f ); this property coincides with the usual local martingale property whenM is a vector space.
In local coordinates an application of (1.351.35) and (1.171.17) shows that the local martingale property corresponds to
the requirement that

dXk
t + 1

2Γkij(Xt)d[Xi, Xj ]t (1.45)

be a real-valued local martingale for each k. The Itô integral (1.431.43) and Itô equations (1.411.41) on manifolds behave
well w.r.t. local martingales: if the integrand or driver is a local martingale, so is the integral or solution; this is
again seen in local coordinates (1.421.42).

In the following example we examine the case of di�usions, de�ned using Itô equations, in which the issue
of the drift not being a vector is (partially) resolved:

Example 1.4 (Itô di�usion). Example 1.3Example 1.3 speci�ed to the above case (M has a symmetric connection, G ≡ 0

in (1.401.40)) becomes the equation

dXt = σγ(Xt, t)dW
γ
t + µ(Xt, t)dt (1.46)

where now µ(x, t) = F(x, t) ∈ TxM can legitimately be referred to as the “drift vector”. Note however that
in an arbitrary chart ϕ the drift will still carry a correction term:

dXk
t = σkγ(Xt, t)dW

γ
t +

(
µk(Xt, t)−

1

2

n∑
γ=1

Γkij(Xt)σ
i
γσ

j
γ(Xt, t)

)
dt (1.47)

which reduces to the ordinary Itô lemma ifM = Rm and the chartϕ is a di�eomorphism of Rm. The NΓγαβ ’s
do not appear since the driver is already valued in a Euclidean space. The data needed to de�ne such an equation
coincides with that needed for (1.51.5), so we can de�ne the bundle

Diff n
ItoM := Diff n

StratM →M × R≥0 (1.48)

already de�ned in (1.91.9). Crucially, however, the Stratonovich and Itô calculi give di�erent meanings to the
equation de�ned by a section of this bundle; in particular, a torsion-free connection on M is required in the
latter case. The “Itô” and “Strat” therefore do not represent di�erences in the bundles, which are identical, but
only serve as a reminder of which calculus is being used to give the section the meaning of an SDE.

Itô equations on manifolds are the true generalisation of their Euclidean space-valued counterparts, but
have the disadvantage of only being de�ned w.r.t. a speci�c connection. For instance, if F ∈ ΓDiff n

Ito, M is
Riemannian with M ′ a Riemannian submanifold s.t. for all z and x ∈ M ′, F (z, x) maps to TxM ′, F does
not in general de�ne an Itô equation on M ′, since the Riemannian connection on M ′ is not in general the
restriction of that of M . However, F , seen as a �eld of Schwartz morphisms, does de�ne a Schwartz-Meyer
equation onM ′ (with aG term that is in general non-zero w.r.t. to the Riemannian connection onM ′).

In the following table we summarise the advantages of these three ways of representing SDEs on manifolds:
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Stratonovich Schwartz-Meyer/2-jet Itô
Does not require∇ X X

Uses Itô integration X X

Coe�cients are vectors X X

It is natural to ask how these three types of equations are related to one another. In the case of di�usions, there
exists a commutative diagram of bijections

ΓDiff n
SchM

ΓDiff n
StratM ΓDiff n

ItoM

ba

c

(1.49)

All three a, b, c are the identity on the di�usion coe�cients. The behaviour of a, b, con the Stratonovich,
Schwartz-Meyer and Itô drifts is explained below

ab := b+
1

2

n∑
γ=1

σγ(σγ), bη := qη, cb := b+
1

2

n∑
γ=1

∇σγσγ (1.50)

Note that, while b and c depend on the connection, a does not. If η = F0 + 1
2

∑n
γ=1 Fγγ is a Schwartz-

Meyer drift, (1.151.15) and (1.381.38) force η− 1
2

∑n
γ=1 σγ(σγ) to lie in TxM , which is thus a−1η. Moreover, we have

b−1µ = iµ + 1
2

∑n
γ=1 j(σγ � σγ) and c−1µ = b − 1

2

∑n
γ=1∇σγσγ . a, b, cde�ne correspondences of

SDEs in the sense that solutions are preserved (e.g. X is a solution of F ∈ Diff n
StratM if and only if X is a

solution of aF , and the same for b, c). This is immediate by the expression of such equations in charts, by
(1.381.38) and the usual Itô-Stratonovich conversion formula.

Remark 1.5. What makes Itô-Stratonovich conversion formulae di�cult to state in the case of a general
manifold-valued semimartingale driverZ , is that the change of calculus involves the emergence of new drivers
which are not naturally valued in the manifold where Z is valued (the quadratic covariation ofZ). Nevertheless,
the map a can be de�ned in this general setting [É89É89, Lemma 7.22], though its inverse cannot canonically.

1.2 Manifolds embedded in Rd

In this chapter we will mostly be concerned with manifolds embedded in Rd: these can be studied using
the extrinsic, canonical, Rd-coordinates instead of non-canonical local ones. Let M be an m-dimensional
smooth manifold embedded in Rd. We assume M to be locally given by a non-degenerate Cartesian equa-
tion F (x) = 0: M can be described globally in this way if and only if it is closed and its embedding has trivial
normal bundle; therefore, to preserve generality, we only assume F to be local. Throughout this chapter the
letter xwill denote a point in Rd and the letter y a point inM . ThusF : Rd → Rd−m is a submersion, which
implies JF (x)JF (x)ᵀ ∈ GL(R, d−m) for all x ∈ Rd (JF (x) ∈ R(d−m)×d the Jacobian of F at x):

JF (x)JF (x)ᵀvᵀ = 0 ⇒ (vJF (x))(vJF (x))ᵀ = vJF (x)JF (x)ᵀvᵀ = 0 ⇒ v = 0 (1.51)
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Let π, de�ned on a tubular neighbourhood T ofM in Rd be the Riemannian submersion

π(x) := arg min{|x− y| : y ∈M} (1.52)

This map can be seen to exist by using the normal exponential map de�ned in [Pet06Pet06, p.132], and is constant
on the a�ne (d−m)-dimensional slices ofT which intersectM orthogonally: this is because the �breπ−1(y)

coincides with the union of all geodesics in Rd (i.e. straight line segments) which start at y, with initial velocity
orthogonal toM , each taken for t in some open interval containing 0. It is important also to remember thatπ is
unique given the embedding ofM (on a thin enoughT such that it is well de�ned), whereasF is not canonically
determined. In what follows we will be concerned with understanding which quantities are dependent on the
chosenF and which instead only depend on the embedding ofM . The only properties of π that we will need
are that

F ◦ π ≡ 0, π|M = 1M ⇒ π ◦ π ≡ π (1.53)

Di�erentiating these (the second up to order 2) we obtain

∂F

∂xh
(π(x))

∂πh

∂xk
(x) = 0

∂π

∂xh
(π(x))

∂πh

∂xk
(x) =

∂π

∂xk
(x)

∂2π

∂xa∂xb
(π(x))

∂πa

∂xi
∂πb

∂xj
(x) +

∂π

∂xh
(π(x))

∂2πh

∂xi∂xj
(x) =

∂2π

∂xi∂xj
(x)

(1.54)

If Vy ∈ TM and X is a smooth curve s.t. X0 = y and Ẋ0 = V (y), di�erentiating π(Xt) = Xt results in
Jπ(y) = Vy: this shows that Jπ|TM = 1TM . By a similar argument, the fact that π−1(y) is a straight line
segment that intersects M orthogonally implies that Jπ|T⊥M = 1T⊥M (T⊥y M the normal bundle of M at
y). These two statements mean that

P (y) = Jπ(y) for y ∈M (1.55)

whereP (y) : TyRd → TyM is the orthogonal projection onto the tangent bundle ofM , which can be de�ned
in terms of F as

P (x) := 1−Q(x) where

Q(x) := JF ᵀ(x)(JF (x)JF ᵀ(x))−1JF (x) ∈ Rd×d and we have

PQ(x) = 0 = QP (x), QQ(x) = Q(x) = Qᵀ(x), PP (x) = P (x) = P ᵀ(x)

(1.56)

The notation is borrowed from [CDL15CDL15]. Note that we can useF to de�neP,Q on a tubular neighbourhood
of M , but these will only be independent of F on M . Q(y) : TyRd → T⊥y M is the orthogonal projection
onto the normal bundle. Another consequence of (1.541.54) (evaluated at y ∈ M ) that will be useful is that, for
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Vy,Wy ∈ TyRd, and denotingUy = P (y)Uy, qUy = Q(y)Uy

∂2π

∂xi∂xj
(y)V

i
yW

j
y ∈ T⊥y M,

∂2π

∂xi∂xj
(y)V

i
y
|W j
y ∈ TyM,

∂2π

∂xi∂xj
(y)qV i

y
|W j
y = 0

=⇒ ∂2π

∂xi∂xj
(y)V i

yW
j
y =

∂2π

∂xi∂xj
(y)
(
V
i
yW

j
y

)
︸ ︷︷ ︸

∈T⊥y M

+
∂2π

∂xi∂xj
(y)
(
V
i
y
|W j
y + qV i

yW
j
y

)
︸ ︷︷ ︸

both terms∈TyM

(1.57)

Actually, to show that the third term statement in the �rst line, we need a separate argument:

Remark 1.6. LetU ⊆ Rd, f : U → Re, y ∈ U ,Ay, By ∈ TyRd. Then

∂2f

∂xi∂xj
(y)AiyB

j
y (1.58)

only depends on f restricted to the a�ne plane (or line) centred in y and spanned byAy, By . Indeed, intending
withA the extension ofAy to a constant vector �eld onU , we can write

∂2f

∂xi∂xj
(y)AiyB

j
y =

∂

∂xj

∣∣∣∣
y

(
∂f

∂xi
(x)Aix︸ ︷︷ ︸

=:g(x)

)
Bj
y (1.59)

This is the directional derivative of g at y in the direction By , and therefore only depends on the re-
striction of g to the a�ne line span{By}. But g(x) is itself a directional derivative, and only depends
on f restricted to the a�ne line span{Ax}. Thus the whole expression only depends on f restricted to⋃
x∈span{By} span{Ax} = span{Ay, By}.

This shows that the term in question only depends onπ restricted to span{qVy,|Wy}, which is the constant
y map, whose derivatives therefore vanish.

Remark 1.7. The other terms appearing in (1.571.57) have a description that should be more familiar to di�erential
geometers:

∂2π

∂xi∂xj
(y)V

i
yW

j
y = Rd∇⊥

V y
W := Q(y)R

d∇V yW = II
(
V y,W y

)
− ∂2π

∂xi∂xj
(y)V

i
y
|W j
y = Rd∇>

V y
|W := P (y)R

d∇V y|W

(1.60)

where Rd∇ denotes covariant di�erentiation inRd (i.e. just directional di�erentiation). Notice this is true inde-
pendently of the chosen extension ofW,|W to local vector �elds, a priori needed to give the RHSs a meaning.
The �rst term is the second fundamental form ofV y,W y [Lee97Lee97, p.134], whereas the second term is the second
fundamental tensor [Jos05Jos05, Def. 3.6.1]. If M is an open set of an a�ne subspace of M , π is a linear map and
both terms vanish. We prove the �rst of the two equalities in (1.601.60), the second is proved similarly:

Q(y)R
d∇V yW = Qj(y)

∂W
j

∂xi
(y)V

i
y = −∂Qj

∂xi
(y)W

j
yV

i
y =

∂2π

∂xi∂xj
(y)V

i
yW

j
y (1.61)

where the second equality follows from the fact thatQW = 0 (and that the derivative is taken in a tangential
direction, i.e. V y ∈ TyM ), and the last equality is given by (1.641.64) below. Note that the terms of (1.601.60) are
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extrinsic, in the sense that they depend on the embedding ofM , unlike

M∇V yW y = P (y)R
d∇V yW (1.62)

the Levi-Civita connection of the Riemannian metric onM , which is intrinsic toM .

Finally, it will be necessary to consider the relationship between the derivatives of P,Q and the sec-
ond derivatives of π. We di�erentiate (1.551.55) at time 0 along a smooth curve Yt in M with Y0 = 0 and
Ẏ0 = V y ∈ TyM and obtain

∂Pk
∂xh

(y)V
h
y =

∂2π

∂xi∂xj
(y)V

i
y (1.63)

from which we obtain, forW ∈ TyM

−∂Qk
∂xh

(y)V
h
yW

k
y =

∂Pk
∂xh

(y)V
h
yW

k
y =

∂2πk

∂xi∂xj
(y)V

i
yW

j
y ∈ T⊥y M

−∂Qk
∂xh

(y)V
h
y

|W k
y =

∂Pk
∂xh

(y)V
h
y

|W k
y =

∂2π

∂xi∂xj
(y)V

i
y
|W j
y ∈ TyM

(1.64)

where we have used (1.571.57).

We now consider a setup S= (Ω,F , P ) satisfying the usual conditions, W an n-dimensional Brownian
motion de�ned on S. Consider theW -driven di�usion Stratonovich SDE

dXk
t = σkγ(Xt, t) ◦ dW γ

t + bk(Xt, t)dt, X0 = y0 ∈M (1.65)

As already discussed in Section 1.1Section 1.1, the natural condition on σγ , bwhich guarantees thatX will stay onM for
its lifetime is their tangency toM :

Q(y)σγ(y, t) = 0 = Q(y)b(y, t) for all y ∈M, t ≥ 0, γ = 1, . . . , n (1.66)

Our focus, however, will be mostly on the Itô SDE

dXk
t = σkγ(Xt, t)dW

γ
t + µk(Xt, t)dt, X0 = y0 ∈M (1.67)

with smooth coe�cients de�ned in [0,+∞) × Rd; we do not assume them to be globally Lipschitz, so the
solution might only exist up to a positive stopping time, not in general bounded from below by a positive de-
terministic constant. We are interested in deriving the “tangency condition” for the above SDE, i.e. a condition
on the coe�cients that will guarantee that the solution will not leaveM . One way to impose this is to convert
(1.671.67) to Stratonovich form

dXk
t = σkγ(Xt, t) ◦ dW γ

t +

(
µk − 1

2

n∑
γ=1

σhγ
∂σkγ
∂xh

)
(Xt, t)dt, X0 = y0 ∈M (1.68)
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and require (1.661.66): 
Qk(y)σkγ(y, t) = 0

Qk(y)

(
µk − 1

2

n∑
γ=1

σhγ
∂σkγ
∂xh

)
(y, t) = 0

(1.69)

Now, given that Qσα vanishes on M , all its directional derivatives along the tangent directions σβ will too,
which gives, using (1.641.64)

0 =
∂(Qσα)

∂xh
σhβ =

∂Qi
∂xj

σiασ
j
β +Qk

∂σkα
∂xh

σhβ =⇒ Qk
∂σkα
∂xh

σhβ =
∂2π

∂xi∂xj
σiασ

j
β onM (1.70)

We can thus reformulate the second equation in (1.691.69) to obtain
Qk(y)σkγ(y, t) = 0

Qk(y)µk(y, t) =
1

2

n∑
γ=1

∂2π

∂xi∂xj
(y)σiγσ

j
γ(y, t)

(1.71)

This is useful because it removes the reliance of this constraint on the derivatives of σ, and can be interpreted
as saying that the di�usion coe�cients must be tangent to M and the Itô drift must instead lie on the space
parallel to the tangent space of M , displaced by an amount which depends on the second fundamental form
ofM applied to the di�usion coe�cients.

Remark 1.8 (Tangency of a second-order di�erential operator). (1.711.71) can also be derived by writing the second
order tangency condition for Lky∂yxk + Lijy ∂2

yxij = Ly ∈ TyRd to belong to TyM : this is done by writing
TyπLy = Ly in Rd-coordinates as

[
Lhy
Laby

]
=

[
∂πh

∂xk
∂2πh

∂xi∂xj

0 ∂πa

∂xi
∂πb

∂xj

]
(y)

[
Lky
Lijy

]
(1.72)

and then applying it toLy = σγ(y, t), η(y, t), given in terms a �eld of Schwartz morphisms F as

σkγ = Fkγ , ηk = Fk0 +
1

2

n∑
γ=1

Fkγγ (1.73)

Note that it would instead be incorrect to split F according to the Euclidean connection into a matrix with F
and G terms as in (1.401.40), and then to require that F and G map to TM , since the splitting of F according to
the connection onM will be di�erent, i.e. the diagram

TRd TRd ⊕ (TRd � TRd)

TM TM ⊕ (TM � TM)

∼=

∼=

(1.74)

does not commute.
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We now compute the Hessian for embeddedM : for f ∈ C∞M we have〈
M∇2

yf, V y ⊗ Uy
〉

=
〈Rd∇2

y(f ◦ π), V y ⊗ Uy
〉

(1.75)

where we have used (1.341.34), (1.621.62) to reduce this to a computation of directional derivatives, and �nally (1.641.64)
(the argument is similar to (1.611.61)). Rd∇2 of course is just the ordinary Hessian. We can now compute Mq, the
splitting appearing in (1.361.36) w.r.t. the connection on M : if TyM 3 Ly = Lky∂yxk + Lijy ∂2

yxij , using (1.371.37)
yields

(MqyLy)f = Ly(f)−
〈
M∇2

yf,pyLy
〉

= Ly(f ◦ π)−
〈Rd∇2

y(f ◦ π), Lijy ∂
2
yxij

〉
=

∂f

∂xh
(y)

∂πh

∂xk
(y)Lky

(1.76)

which means
Mqy = P (y) ◦ Rdqy : TyM → TyM (1.77)

Therefore the condition on an arbitrary Schwartz morphism of being Itô w.r.t. to the Riemannian connection
onM in the sense of Example 1.4Example 1.4 is Mq ◦ F ◦ Rdj= 0, or MqFαβ = 0, which in Rd-coordinates is

Pk(y)Fkαβ(y, t) = 0 (1.78)

Compare this with the stronger condition of F of being Itô w.r.t. to the connection on Rd, which is
Fkαβ(y, t) = 0. Thus, given an Itô equation F on M , de�ned as in (1.461.46) (σγ = Fγ , µ = F0) we have
that the drift in Rd of such equation is given by µk + 1

2

∑n
γ=1 Fkγγ , with the �rst term tangent to M and

the second orthogonal to M , and equal to 1
2

∑n
γ=1

∂πh

∂xi∂xj
σiσjγ , by Remark 1.8Remark 1.8 and (1.781.78). Therefore an Itô

equation onM with coe�cients σγ , µ is read in ambient coordinates as

dXk
t = σkγ(Yt, t)dW

γ
t +

(
µk +

1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ

)
(Yt, t)dt (1.79)

Notice that the tangential part of the Rd-drift, µ, is arbitrary, while its orthogonal part is determined by the
di�usion coe�cients, and the condition that the solution remain onM . The notion ofM -valued local martin-
gale also has a description in terms of ambient coordinates [É89É89, ¶4.10]: for anM -valued Itô process (such as
the solution to (1.791.79)) the local martingale property is equivalent to requiring that the drift be orthogonal toM
at each point (and thus determined by the di�usion coe�cients; for (1.791.79) this means µ = 0). This condition
is very reminiscent of the property of geodesics of having acceleration orthogonal toM [Lee97Lee97, Lemma 8.5].

Using all (1.501.50) and (1.771.77) it is easy to verify that converting between Stratonovich, Schwartz-Meyer and Itô
equations on M is equivalent when treating the equations as being valued in M or in Rd. By this we mean
that, denoting with Diff n

Strat,MRd the bundle of Stratonovich equations onRd which restrict to equations on
M (and analogously for the other two di�usion bundles) the maps a, b, cof (1.491.49) �t into the commutative

29



Figure 1.1: On the left a sample path of the solution to the Itô equation (blue) with the two di�usion coe�cients
2(x2 + y2 + z2)−1(−y, x, 0), 2(x2 + y2 + z2)−1(0,−z, y), which are tangent to S2 ↪→ R3, zero drift and
initial condition (0, 1, 0); in the same plot a sample path (using the same random seed) of the solution to the
Stratonovich equation (green) de�ned by the same vector �elds and initial condition. The solution to the Itô
equation drifts radially outwards, while the solution to the Stratonovich equation remains onS2. On the right
we compare the same Stratonovich path with a sample path of the solution to the Itô equation (red) with the
same di�usion coe�cients and initial condition, but with the orthogonal drift term necessary to keep the solu-
tion onS2 (1.711.71). The resulting solution is anS2-valued local martingale, while the solution to the Stratonovich
equation is not: this is illustrated by plotting the vector �eld on S2 given by tangential component of the Itô
drift possessed by the Stratonovich equation: this can be viewed as a manifold-valued drift component.

diagram
ΓDiff n

Sch,MRd

ΓDiff n
Strat,MRd ΓDiff n

Ito,MRd

ΓDiff n
SchM

ΓDiff n
StratM ΓDiff n

ItoM

RdbRda

Rdc

MbMa

Mc

(1.80)

where vertical arrows denote restriction. An embedding argument immediately allows us to extend this asser-
tion to the case whereRd is substituted with a Riemannian manifold of whichM is a Riemannian submanifold.
This con�rms there is no ambiguity in converting anM -valued SDE between its various forms.

Example 1.9 (Time dependent submanifold). Observe that the tangency conditions (1.661.66) and (1.711.71) can be
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written respectively as

(1− Jπ̃)σγ = 0

(1− Jπ̃)b = 0


(1− Jπ̃)σγ = 0

(1− Jπ̃)µ =
1

2

n∑
γ=1

∂2π̃

∂xi∂xj
(y)σiγσ

j
γ

(1.81)

for any smooth map π̃ de�ned on a tubular neighbourhood of M , with values in M , s.t. π̃|M = 1M , by the
same exact reasoning (for the Itô case we argue as in Remark 1.8Remark 1.8). Jπ̃(y) is no longer the orthogonal projection
P (y), but still restricts to the identity on TyM for y ∈ M , i.e. it has the property that ker(1 − Jπ̃) = TM

on M . Allowing ourselves to consider all such tubular neighbourhood projections is useful in the following
application. Given that we are considering time-dependent equations, it is very natural to also allow the sub-
manifold M to be time-dependent. Making this precise entails considering a smooth (m + 1)-dimensional
manifold M̃ embedded inR1+d, s.t.Mt := M̃ ∩{x0 = t} is a smoothm-dimensional manifold embedded in
{x0 = t} × Rd. We are looking for conditions on σ, b (resp. µ) which are su�cient to guarantee the solution
to (1.651.65) (resp. (1.671.67)) Xt to belong to Mt for all t for which it is de�ned. We then consider the R1+d-valued
process (t,Xt), which satis�es the dynamics

d

[
t
Xt

]
=

[
0

σ(Xt, t)

]
◦ dWt +

[
1

b(Xt, t)

]
dt resp. =

[
0

σ(Xt, t)

]
dWt +

[
1

µ(Xt, t)

]
dt (1.82)

Then, given a thin enough tubular neighbourhood of M̃ in R1+d consider the map

π̃ : T̃ → M̃, π̃(t, x) = πt(x) (1.83)

where πt is de�ned as in (1.521.52) for the manifold Mt. Notice that this does not in general coincide with the
Riemannian projection of a tubular neighbourhood onto M̃ , which in general has no reason to preserve time,
i.e. be expressible as a union of πt’s. The identity Jπ̃Jπ̃ = Jπ̃ can be written in block matrix form as

1 0 · · · 0

Jπtπ̇t + π̇t JπtJπt

 =


1 0 · · · 0

π̇t Jπt

 (1.84)

where we are denoting π̇t(y) = d
dtπt(y): this implies that at each point y ∈Mt, π̇t(y) ∈ T⊥y Mt. This choice

of the tubular neighbourhood projection will be further motivated later on, in Example 1.14Example 1.14, Example 1.20Example 1.20.
In view of the above considerations, we can use it anyway to impose tangency of the SDE: this results in an
unmodi�ed condition on the di�usion coe�cients, and the conditions on the orthogonal components of the
Stratonovich and Itô drifts are given respectively by

(1− Jπt)b(y, t) = π̇t(y)

(1− Jπt)µ(y, t) =
1

2

n∑
γ=1

∂2πt
∂xi∂xj

(y)σiγσ
j
γ + π̇t(y)

(1.85)
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which keep track of the evolution ofMt in time.

1.3 Projecting SDEs

In Section 1.1Section 1.1 we discussed three ways of representing SDEs on manifolds: Stratonovich, Schwartz-Meyer and
Itô. In this section we will de�ne, for each one of these representations, a natural projection of the SDE onto a
submanifold. We will mostly take the ambient manifold to be Rd, which will allow us to use the theory of the
previous section to derive formulae for the projections in ambient coordinates.

Let M be a smooth submanifold of the smooth manifold D, let T be a tubular neighbourhood of M in
D and

π : T →M a smooth map which restricts to the identity onM (1.86)

If D is Riemannian π can be chosen as in (1.521.52), but this is not necessary. Let F ∈ ΓHom(TN, TD) be a
Stratonovich equation driven by an N -valued semimartingale Z , where N is another smooth manifold. We
can then de�ne theM -valued Stratonovich equation

M ×N 3 (y, z) 7→ F̃ (y, z) := Tyπ ◦ F (y, z) ∈ Hom(TzN,TyM) (1.87)

We call this Stratonovich SDE the Stratonovich projection of F .
Now consider the Z-driven, D-valued Schwartz-Meyer equation F ∈ ΓSch(N,M). We can project this

SDE to an SDE onM too, by

M ×N 3 (y, z) 7→ F̂(y, z) := Tyπ ◦ F(y, z) ∈ Schz,y(N,M) (1.88)

We call this Schwartz-Meyer SDE the Itô-jet projection of F.
IfN ,D andM all carry torsion-free connections we can interpret a section F ∈ ΓHom(TN, TD) as an

Itô equation, and similarly for

M ×N 3 (y, z) 7→
−→
F (y, z) := Tyπ ◦ F (y, z) ∈ Hom(TzN,TyM) (1.89)

We call this Itô SDE the Itô-vector projection of F . Most often D will be Riemannian, so that Levi-Civita
connections are de�ned on bothD andM . Note that the Itô-vector projection is identical to the Stratonovich
projection as a map, but the interpretations of the resulting sections as SDEs di�er (and the Itô-vector projected
SDE depends explicitly on the connections on all three manifolds). The names of these three projections are
taken from [AB16AB16], where they were �rst de�ned.

Remark 1.10 (Naturality of the SDE projections). Assume we have a commutative square

D D′

M M ′

φ

π π′

φ|M

(1.90)

where φ a di�eomorphism, D,M, π as above, and similarly for D′,M ′, π′. Then functoriality of T and T

32



imply that the Stratonovich and Itô-jet projections are natural in the sense that the squares

Hom(TN, TD) Hom(TN, TD′) Sch(N,D) Sch(N,D′)

Hom(TN, TM) Hom(TN, TM ′) Sch(N,M) Sch(N,M ′)

Tφ

˜ ˜
Tφ

̂ ̂
Tφ|M Tφ|M

(1.91)

commute. The Itô-vector projection cannot be natural in the same way, since we are still free to modify the
connections on all four manifolds. However, if D,D′ are Riemannian and φ is a global isometry, the cor-
responding statement does hold for the Itô-vector projection as well: this is by naturality of the Levi-Civita
connection [Lee97Lee97, Proposition 5.6].

Remark 1.11 (The Itô-vector projection preserves local martingales). Although the Itô-vector projection is nat-
ural w.r.t. a smaller class of maps, it has the advantage of preserving the local martingale property: by this we
mean that if the driver is a local martingale, so must the solution to the Itô-vector-projected SDE be. This is
shown simply by the good behaviour of Itô equations w.r.t. manifold-valued local martingales.

Remark 1.12. One might wonder whether it is possible to “push forward” SDEs according to an arbitrary
smooth and surjective map f : D → D′. If f is a surjective function admitting a smooth right inverse ι, then
we may write the pushforward of, say, the Stratonovich SDE dX = F (X,Z)◦dZ as dY = F (Z, ι(Y ))◦dY .
This condition on f essentially corresponds to the condition (1.861.86). For general smooth surjective f (such as
the bundle projection of a non-trivial principal bundle), however, we do not see a way of de�ning a new closed
form SDE onD′.

We will now restrict our attention to the projections of Rd-valued di�usions onto the embedded manifold
M . Focusing on di�usions has the advantage of allowing us to use the maps (1.491.49) to compare the projections.
In other words we can ask if the vertical rectangles in the diagram

ΓDiff n
SchRd

ΓDiff n
StratRd ΓDiff n

ItoRd

ΓDiff n
SchM

ΓDiff n
StratM ΓDiff n

ItoM

Rdb

̂

Rda

˜

Rdc

−→

MbMa

Mc

(1.92)

commute (compare with (1.801.80), in which the equations on top already restrict to equations on M ). We will
show that they do not, and that all combinations of possibilities regarding their non-commutativity are possi-
ble. Examples of these cases are to be found in Subsection 1.5.1Subsection 1.5.1 below. We recall the notation V y := P (y)Vy ,
qVy := Q(y)Vy and begin by considering the Rd-valued Stratonovich SDE (1.651.65). By (1.551.55) the coe�cients of
the Stratonovich projection of this SDE will just be the projected coe�cients: σ̃γ = σγ , b̃ = b, so that the
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resulting Stratonovich equation is

dYt = σγ(Yt, t) ◦ dW γ
t + b(Yt, t)dt, Y0 = y0 ∈M

=
∂π

∂xk
(Yt)σ

k
γ(Yt, t) ◦ dW γ

t +
∂π

∂xk
(Yt)b

k(Yt, t)dt
(1.93)

Throughout this chapter we will use X for the initial SDE and Y to denote the projected SDE. Now assume
we start with (1.671.67), and want an Itô SDE onM . We can still use the Stratonovich projection by converting the
SDE to Stratonovich form as in (1.681.68), projecting as above, and converting back to Itô form (by (1.801.80) this last
conversion can be seen to occur interchangeably inM or in Rd). We have

dYt = σγ(Yt, t) ◦ dW γ
t + Pk(Yt)

(
µk − 1

2

n∑
γ=1

σhγ
∂σkγ
∂xh

)
(Yt, t)dt

= σγ(Yt, t)dW
γ
t +

(
µ+

1

2

n∑
γ=1

(
σlγ
∂σγ
∂xl
− σhγPk

∂σkγ
∂xh

)
︸ ︷︷ ︸

µ̃

)
(Yt, t)dt

(1.94)

Using (1.641.64) we can split µ̃ in its orthogonal and tangential components: onM we have

µ̃ = µ+
1

2

n∑
γ=1

(
σlγ

(
∂Pk
∂xl

σkγ + Pk
∂σkγ
∂xl

)
− σhγPk

∂σkγ
∂xh

)

= µ+
1

2

n∑
γ=1

(
∂Pk
∂xl

σlγqσkγ +
∂Pk
∂xl

σlγσ
k
γ + σlγPk

∂σkγ
∂xl
− σhγPk

∂σkγ
∂xh

)

= µ+
1

2

n∑
γ=1

(
∂2π

∂xi∂xj
σiγqσjγ − qσhγPk

∂σkγ
∂xh

)
︸ ︷︷ ︸

∈TM

+
1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ︸ ︷︷ ︸

∈T⊥M

(1.95)

with implied evaluation of all terms at (y, t).
We now move on to the Itô-jet projection. Let F ∈ ΓDiff n

SchRd as in (1.731.73), so that the Schwartz-Meyer
equation it de�nes coincides with the Itô equation (1.671.67). We can then write (1.881.88) using matrix notation as[

dYt
1
2d[Y ]t

]
=

[
∂π
∂x

∂2π
∂x2

0 ∂π
∂x �

∂π
∂x

]
(Yt)

[
F G
0 F � F

]
(Yt, t)

[
dWt

1
2d[W ]t

]
(1.96)

of which the �rst line reads

dYt =
∂π

∂xk
(Yt)

(
F kγ (Yt, t)dW

γ
t + F k0 (Yt, t)dt+

1

2

n∑
γ=1

Gγγ(Yt, t)dt

)

+
1

2

n∑
γ=1

∂2π

∂xi∂xj
(Yt)F

i
γF

j
γ (Yt, t)dt

= σγ(Yt, t)dW
γ
t +

(
µ+

1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ︸ ︷︷ ︸

µ̂

)
(Yt, t)dt

(1.97)
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Remark 1.13. We can write the Itô-jet-projected drift µ̂ as the generator of the SDE, applied to the tubular
neighbourhood projection π:

µ̂(y, t) =
∂π

∂xk
µk(t, y) +

1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ(t, y) = (Ltπ)(y) (1.98)

In [AB16AB16] the �eld of Schwartz morphismsF is taken to be induced by a (time-homogeneous) �eld of maps
f as in (1.251.25). In this approach we can use functoriality of T to write

F̂(y) = Tyπ ◦ F(y) = Tyπ ◦ T0fy = T0(π ◦ fy) (1.99)

thus obtaining an SDE de�ned by the �eld of (2-jets of) maps given by projecting the original �eld of maps
ontoM with the tubular neighbourhood projection π.

Finally, we consider the Itô-vector projection of (1.671.67). By (1.791.79), in coordinates this amounts to projecting
(1.671.67) to the Itô SDE onM with di�usion coe�cients given by σγ and drift

−→µ = µ︸︷︷︸
∈TM

+
1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ︸ ︷︷ ︸

∈T⊥M

(1.100)

To summarise, all three projections of the Itô equation (1.671.67) agree on how to map the di�usion coe�cients,
and the orthogonal components of the drift terms will all be �xed by the constraint (1.711.71), while their tangential
projections are given by (respectively Stratonovich, Itô-jet, Itô-vector)

Pµ̃ µ+
1

2

n∑
γ=1

(
∂2π

∂xi∂xj
σiγqσjγ − qσhγPk

∂σkγ
∂xh

)
Pµ̂ µ+

n∑
γ=1

∂2π

∂xi∂xj
σiγqσjγ

P−→µ µ

(1.101)

By calculations similar to (1.951.95) we can compute the projections of (1.651.65) in Stratonovich form: again, all
three projections will orthogonally project the di�usion coe�cients, and behave as follows on the Stratonovich
drifts.

b̃ b

b̂ b+
1

2

n∑
γ=1

(
qσhγPk

∂σkγ
∂xh

+
∂2π

∂xi∂xj
σiγqσjγ

)
−→
b b+

1

2

n∑
γ=1

(
qσhγPk

∂σkγ
∂xh
− ∂2π

∂xi∂xj
σiγqσjγ

) (1.102)

From now on we will consider (1.671.67) as being our starting point, unless otherwise mentioned, and thus refer to
(1.1011.101) when comparing the three projections.
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We end this section with a brief comparison of the three projections, leaving a detailed analysis of their
di�erences to Subsection 1.5.1Subsection 1.5.1. The three projections coincide if σγ ∈ TM for γ = 1, . . . , n (which includes
the ODE case σγ = 0), in which case the di�usion coe�cients remain una�ected, and the tangent component
of the projected drift is simply given by µ. If σγ ∈ T⊥M for γ = 1, . . . , n all three projections result in
an ODE on M , and the Itô-jet and Itô-vector projections coincide. Another case in which the Itô-jet and
Itô-vector projections coincide is when the second derivatives of π vanish: this occurs in particular if M is
embedded a�nely, i.e. it coincides with some open set of an a�ne space of Rd. All three projections forget
the orthogonal part of the (Itô or Stratonovich) drift. We observe from (1.1011.101) that the Itô-jet and Itô-vector
projections of (1.671.67) only depend on the values of the Itô-coe�cients on M . The Stratonovich projection,
instead, could additionally depend on the tangential components of the derivatives of the di�usion coe�cients
in the direction of their normal components. Naturally, the situation is reversed when projecting (1.651.65): here
it is the Stratonovich projection that only depends on the values of the coe�cients onM , while the Itô-jet and
-vector projections might depend on the mentioned derivative term.

Example 1.14 (The projections in the case M time-dependent). Recalling Example 1.9Example 1.9 (and the map π̃ de-
�ned therein) we may ask whether there is a way to consider the three SDE projections in the case ofM time-
dependent. The most natural way to de�ne this is to consider, as done in (1.821.82), the joint equation satis�ed by
(t,Xt), project its coe�cients in the three ways onto M̃ , thus obtaining a solution of the form (t, Yt): this
uses that π̃0(t, y) = t (with time the 0th coordinate), which is instead not necessarily satis�ed by the Rieman-
nian tubular neighbourhood projection onto M̃ . It is easily checked that the formulae (1.1011.101) for the tangential
component of the drift of Yt continue to hold with the substitution of πt for π (so that also the projection
onto the tangent space P is now time-dependent), whereas in all three cases the orthogonal component of the
drift picks up the term π̇t, needed to keep the process on the evolving manifoldMt. In particular, in the Itô-jet
case we have

µ̂(y, t) = (Ltπt)(y) + π̇t(y) = L̃π̃(t, y) (1.103)

where Lt is the generator ofX and L̃ is that of (t,Xt) (which can be considered as being a time-homogeneous
Markov process). This identity extends the observation made in Remark 1.13Remark 1.13. The same term π̇t should be
added to the Stratonovich drifts (1.1021.102) for the extension to the case ofM time-dependent.

1.4 The optimal projection

In the previous section we showed how to abstractly project manifold-valued SDEs onto submanifolds in three
(possibly) di�erent ways, and specialised these constructions to the case ofM ↪→ Rd-valued di�usions. In this
section we will seek the optimal projection of an SDE forXt, which we write in Itô form as (1.671.67). Let

dY k
t =

◦
σkγ(Yt, t)dW

γ
t +

◦
µk(Yt, t)dt, X0 = y0 ∈M (1.104)

be theM -valued SDE to be de�ned, which we write inRd-coordinates. Its coe�cients ◦σγ and ◦µ are to be treated
as unknowns, to be determined by the optimisation criteria that involve the minimisation of the quantities

E[|Yt −Xt|2], E[|Yt − π(Xt)|2], |E[Yt −Xt]|2 (1.105)
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asymptotically for small t. Before we de�ne the optimality criteria precisely, it is important to note that such
expectations are unde�ned if the solution to either SDE is explosive, or, in the second case, even if it exits the
tubular neighbourhood ofM on whichπ is de�ned. The problem must be slightly changed so as to ensure that
we are minimising a well-de�ned quantity. One option is to take the above expectations on the event {t ≤ τr},
where

τr := min{t ≥ 0 : |(Xt, Yt)− (y0, y0)|2 ≥ r2} (1.106)

for some suitable r > 0. However, since for such optimality criteria the values of the vector �elds of both
SDEs outside the ball B(y0,y0)(r) ⊆ R2d are irrelevant, it is simpler to just assume that they vanish outside
B(y0,y0)(2r). Since the optimisation criteria will only determine the value of ◦σ, ◦µ at the initial condition, this
is really only an assumption on σ and µ. The following proposition reassures us that, at least in well-behaved
cases, this does not alter the problem in a way that interferes with the optimisation (which, as will be seen
shortly, only involves the Taylor expansions of order 2 of (1.1051.105) in t = 0).

Lemma 1.15. LetX,Y, y0, τr be as above,U a neighbourhood of (y0, y0) in R2d and assume that there exists de-
terministic ε > 0 s.t.Xt, Yt ∈ U for t ∈ [0, ε]. Let f : U × [0, ε]→ R be continuous s.t. f(y0, y0, 0) = 0, and
assume moreover that E[max0≤t≤ε |f(Xt, Yt, t)|] < ∞ (this holds, in particular, under the global Lipschitz
assumptions that guarantee SDE exactness [RW00RW00, Theorem 11.2]). Then for any r > 0 withBr(y0, y0) ⊆ U

E[f(Xt, Yt, t)]− E[f(Xt, Yt, t); t < τr] (1.107)

belongs toO(tn) for all n ∈ N as t→ 0.

Proof. Fix r, and let τ := τr. The Itô formula yields the a decomposition |(Xt, Yt)− (y0, y0)|2 = Lt + At

with Lt sum of Brownian integrals and At time integral, all of which for t ≤ τ ∧ ε have bounded integrand
(by continuity of the SDE coe�cients and compactness ofBr(y0, y0)× [0, ε]). [L]t can be expressed as a time
integral with bounded integrand: letR > 0 bound the sum of the absolute values of all integrands mentioned
for t ∈ [0, τ ∧ ε]. Then, still for t ≤ τ ∧ ε we have |At|, [L]t ≤ Rt, and for any ξ > 0 it holds that
|(Xt, Yt)− (y0, y0)|2 ≤ Lt +Rξ for 0 ≤ t ≤ ε ∧ ξ. Letting ξ := r2/(3R), on [0, ε ∧ ξ] we have

P [t ≥ τ ] = P
[

max
0≤s≤t

|(Xs, Ys)− (y0, y0)|2 ≥ r2
]

= P
[

max
0≤s≤τ∧t

|(Xs, Ys)− (y0, y0)|2 ≥ r2
]

≤ P
[

max
0≤s≤τ∧t

Ls > r2/2
]

= P
[

max
0≤s≤t

Lτ∧s > r2/2
]

≤ exp

(
− r4

4Rt

)
(1.108)
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by the tail estimate [RW00RW00, Theorem 37.8 p.77]. Now, for t ∈ [0, ε ∧ ξ] by Cauchy-Schwarz∣∣E[f(Xt, Yt, t)]− E[f(Xt, Yt, t); t < τ ]
∣∣

=
∣∣E[f(Xt, Yt, t); t ≥ τ ]

∣∣
≤ E[f(Xt, Yt, t)

2]1/2P [t ≥ τ ]1/2

≤ E
[

max
[0,t]

f(Xs, Ys, s)
2
]1/2

P [t ≥ τ ]1/2

. exp

(
− r4

4Rt

)
(1.109)

since the �rst factor also vanishes as t→ 0, by the hypotheses on f,X, Y and dominated convergence. �

We proceed with the constrained optimisation problem, assuming all SDE coe�cients to be compactly
supported; this means all local martingales involved will be martingales, and that we may use Fubini to pass to
the expectation inside integrals in dt. If we can write the Taylor expansion of the strong error

E
[
|Yt −Xt|2

]
= a1t+ a2t

2 + o(t2) (1.110)

a �rst goal could be to minimise the leading coe�cient a1 (of course there is no constant term because
Y0 = y0 = X0). Using Itô’s formula, and intending with ' equality of di�erentials up to di�erentials of
martingales, we have

d|Yt −Xt|2

= d
d∑

k=1

(Y k
t −Xk

t )2

= 2
d∑

k=1

(
(Y k
t −Xk

t )dY k
t − (Y k

t −Xk
t )dXk

t

)
+

d∑
k=1

(
dY k

t dY k
t + dXk

t dXk
t − 2dXk

t dY k
t

)
'

d∑
k=1

[
2

( n∑
γ=1

∫ t

0

( ◦
σkγ(Ys, s)− σkγ(Xs, s)

)
dW γ

s

+

∫ t

0

( ◦
µk(Ys, s)− µk(Xs, s)

)
ds

)( ◦
µk(Yt, t)− µk(Xt, t)

)
+

n∑
γ=1

( ◦
σkγ(Yt, t)

2 + σkγ(Xt, t)
2 − 2σkγ(Xt, t)

◦
σkγ(Yt, t)

)]
dt

We now compute the expectation:

E
[
|Yt −Xt|2

]
=

d∑
k=1

2E

[
∫ t

0

( n∑
γ=1

∫ s

0

( ◦
σkγ(Yu, u)− σkγ(Xu, u)

)
dW γ

u

)( ◦
µk(Ys, s)− µk(Xs, s)

)
ds

]

+2E

[
∫ t

0

(
∫ s

0

( ◦
µk(Yu, u)− µk(Xu, u)

)
du

)( ◦
µk(Ys, s)− µk(Xs, s)

)
ds

]
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+E

[ n∑
γ=1

∫ t

0

( ◦
σkγ
◦
σkγ(Ys, s) + σkγσ

k
γ(Xs, s)− 2σkγ(Xs, s)

◦
σkγ(Ys, s)

)
ds

]

=

∫ t

0
E

[ d∑
k=1

2

( n∑
γ=1

∫ s

0

( ◦
σkγ(Yu, u)− σkγ(Xu, u)

)
dW γ

u

)( ◦
µk(Ys, s)− µk(Xs, s)

)
+2

(
∫ s

0

( ◦
µk(Yu, u)− µk(Xu, u)

)
du

)( ◦
µk(Ys, s)− µk(Xs, s)

)
+

n∑
γ=1

( ◦
σkγ(Ys, s)− σkγ(Xs, s)

)2]
ds

=:
∫ t

0
E[Zs]ds

and di�erentiating, with reference to (1.1101.110) we have

a1 =
d

dt

∣∣∣∣+
0

∫ t

0
E[Zs]ds =

n∑
γ=1

| ◦σγ(y0, 0)− σγ(y0, 0)|2 (1.111)

Since a1 only depends on the di�usion coe�cients, its minimisation is expressed by the constrained optimisa-
tion problem whose solution is simply given by projecting the σγ ’s onto TM :

minimise
n∑
γ=1

| ◦σγ − σγ |2

subject toQkh
◦
σhγ = 0

⇐⇒ ◦
σ = σ = Pσ (1.112)

Here we have omitted evaluation at the initial condition (0, y0). Since we have not obtained a condition on ◦µ
our SDE (1.1041.104) is still underdetermined, and the condition would be satis�ed by the Stratonovich projection
of (1.671.67).

One idea to obtain a condition on ◦
µ would be to minimise a2 in (1.1101.110). This attempt, however, has the

drawback that we are minimising the second Taylor coe�cient of a function without its �rst vanishing (unless
the σγ ’s are already tangent to start with: in this case the minimisation of a2 can be seen to result in the three
projections, which all coincide). Although this approach is discussed in [AB16AB16], we will not do so here, as there
are more sound optimisation criteria. Indeed, we can look at the Taylor expansion of the weak error

|E[Yt −Xt]|2 = b2t
2 + o(t2) as t→ 0+ (1.113)

We compute the term on the left as

|E[Yt −Xt]|2 =

∣∣∣∣ ∫ t
0
E[
◦
µ(Ys, s)− µ(Xs, s)]ds

∣∣∣∣2 (1.114)
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and

d

dt

∣∣∣∣ ∫ t
0
E[
◦
µ(Ys, s)− µ(Xs, s)]ds

∣∣∣∣2
= 2E[

◦
µ(Yt, t)− µ(Xt, t)]

∫ t

0
E[
◦
µ(Ys, s)− µ(Xs, s)]ds

d2

dt2

∣∣∣∣
0

∣∣∣∣ ∫ t
0
E[
◦
µ(Ys, s)− µ(Xs, s)]ds

∣∣∣∣2 = 2| ◦µ(y0, 0)− µ(y0, 0)|2

(1.115)

which con�rms that (1.1131.113) lacks a linear term, and we have

b2 = | ◦µ− µ|2 (1.116)

Requiring the minimisation of b2 is thus independent of the minimisation of a1 above, and results in the
constrained optimisation problem

minimise | ◦µ− µ|2

subject toQkh
◦
µhγ =

1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ

⇐⇒ ◦
µ = µ+

1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ (1.117)

A quick glance at (1.1011.101) shows we have proven the following

Theorem 1.16 (Optimality of the Itô-vector projection). The coefficients ◦σγ ,
◦
µ of the M -valued SDE (1.1041.104)

that solve the constrained optimisation problem{
minimise a1 in (1.1101.110) and b2 in (1.1131.113)

subject to (1.711.71)
(1.118)

for all initial conditions X0 = Y0 = y0 ∈ M are given (uniquely for t = 0) by the Itô-vector projection of the
original SDE (1.671.67).

Remark 1.17. In de�ning the three projections in Section 1.3Section 1.3 we intended for the projected coe�cients to still
be time-dependent if the original ones were. The optimality requirement only �xes the coe�cients at the initial
condition, at time 0, i.e. ◦σγ(y0, 0),

◦
µ(y0, 0). To retain the time-dependence we may consider the optimisation

involving all time-translated initial conditions Yt0 = y0.

Remark 1.18. Note that the form (Itô or Stratonovich) the initial SDE is provided in is irrelevant: if we had
begun with (1.651.65) instead of (1.671.67) the optimality criterion would still have led us to the Itô-vector projection,
which for the Stratonovich drift would have taken the form

−→
b in (1.1021.102). The only reason to start with an Itô

SDE is that the calculations are simpler, and it is possible to express the optimal coe�cients as functions of the
values of the coe�cients of the original SDE, without reference to their derivatives.

The optimisation of Theorem 1.16Theorem 1.16 has the disadvantage of coming from the two separate minimisations of
a1 and b2, which are Taylor coe�cients of di�erent quantities. There is a di�erent way of arriving at coe�cients
by successively minimising the Taylor coe�cients of the same quantity, with the �rst minimisation resulting in
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a null term. The idea is to consider

E
[
|Yt − π(Xt)|2

]
= c1t+ c2t

2 + o(t2) (1.119)

whereX,Y, τ are respectively as in (1.671.67), (1.1041.104),(1.1061.106), with the requirement on r thatBr(y0) be contained
in the domain of π. The map π is the one de�ned in (1.521.52), although it can more generally satisfy (1.861.86). Letting
◦
σγ ,

◦
µ resume their status as unknowns, we proceed with the calculations.

d|Yt − π(Xt)|2

= d

d∑
k=1

(Y k
t − πk(Xt))

2

=

d∑
k=1

[
2(Y k

t − π(Xk
t ))dY k

t − 2(Y k
t − π(Xk

t ))
∂πk

∂xh
(Xt)dX

h
t + dY k

t dY k
t

+

(
∂πk

∂xi
∂πk

∂xj
(Xt)− (Y k

t − πk(Xt))
∂2πk

∂xi∂xj
(Xt)

)
dXi

tdX
j
t − 2

∂πk

∂xh
(Xt)dX

h
t dY k

t

]
'

d∑
k=1

[
2
(
Y k
t − πk(Xt)

)( ◦
µk(t, Yt)−

∂πk

∂xh
µh(t,Xt)−

1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ(Xt, t)

)

+

n∑
γ=1

(
◦
σkγ
◦
σkγ(t, Yt) +

∂πk

∂xi
∂πk

∂xj
σiγσ

j
γ(t,Xt)− 2

∂πk

∂xh
σhγ (t,Xt)

◦
σkγ(t, Yt)

)]
dt

=: Ztdt

and

d

dt
E

[
∫ t

0
Zsds

]
= E

[ d∑
k=1

2
(
Y k
t − πk(Xt)

)( ◦
µk(t, Yt)−

∂πk

∂xh
µh(t,Xt)−

1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ(Xt, t)

)

+
n∑
γ=1

(
◦
σkγ(Yt, t)−

∂πk

∂xh
σhγ (Xt, t)

)2]
(1.120)

and therefore

c1 =
d

dt

∣∣∣∣+
0

E

[
∫ t

0
Zsds

]
=

n∑
γ=1

| ◦σγ − Pσγ |2 (1.121)
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(evaluation at (y0, 0) is implied). Thus c1 vanishes if and only if ◦σ := Pσ. Continuing as before and we have

dZt '
d∑

k=1

2
(
Y k
t − πk(Xt)

)
d(. . .)

+2

(
◦
µk(t, Yt)−

∂πk

∂xh
µh(t,Xt)−

1

2

∂2πk

∂xi∂xj
σiγσ

j
γ(Xt, t)

)2

dt

+2

n∑
γ=1

(
◦
σkγ(Yt, t)−

∂πk

∂xh
σhγ (Xt, t)

)
d(. . .)

+2f(σ, Jσ,Hσ;
◦
σ, J

◦
σ,H

◦
σ;µ, Jµ)|Xt,Yt,tdt

(1.122)

for some smooth function f (J denotes Jacobian andH Hessian), which we denote ft for short; the di�eren-
tials d(. . .) can be ignored, since their factors will vanish when evaluated below.

c2 =
1

2

d2

dt2

∣∣∣∣+
0

E
[
Zt
]

=
∑
γ,k

(
◦
µk − ∂π

∂xh
µh − 1

2

∂2π

∂xi∂xj
σiγσ

j
γ

)2

+ ft

(1.123)

The constrained optimisation problem for the minimisation of c2 conditional on the previous minimisation
of c1 is thus given by 

minimise
d∑

k=1

(
◦
µk − ∂πk

∂xh
µh − 1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ

)2

subject toQkh
◦
µh − 1

2

n∑
γ=1

∂2πk

∂xi∂xj
◦
σiγ
◦
σjγ = 0


2

(
◦
µh − ∂πh

∂xl
µl − 1

2

n∑
γ=1

∂2πh

∂xi∂xj
σiγσ

j
γ

)
−

d∑
k=1

Qkhλ
k = 0

Qkh
◦
µh − 1

2

n∑
γ=1

∂2πk

∂xi∂xj
◦
σiγ
◦
σjγ = 0

λ ∈ TyM, µ = P
◦
µ+

1

2

n∑
γ=1

∂2π

∂xi∂xj
σiγσ

j
γ

(1.124)

Comparing with (1.981.98) we see that we have proven the following

Theorem 1.19 (Optimality of the Itô-jet projection). The coefficients ◦σγ ,
◦
µ of the M -valued SDE (1.1041.104) that

solve the constrained optimisation problem{
minimise c1 and c2, conditionally on the minimisation of c1, in (1.1191.119)

subject to (1.711.71)
(1.125)

for all initial conditions X0 = Y0 = y0 ∈ M are given (uniquely for t = 0) by the Itô-jet projection of the
original SDE (1.671.67).
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Remarks analogous to Remark 1.17Remark 1.17 and Remark 1.18Remark 1.18 hold for Theorem 1.19Theorem 1.19. The Itô-vector and Itô-jet pro-
jection therefore satisfy di�erent optimality properties, while the Stratonovich projection is suboptimal in both
senses. We end the section with the extension of the optimisations to the case ofM time-dependent.

Example 1.20 (Optimality for M time-dependent). Recall the case in which the submanifold M depends
smoothly on time, for which we can de�ne similar versions of all three projections Example 1.14Example 1.14. For
Theorem 1.16Theorem 1.16 the optimisation criterion does not require reformulation, while the constraint is modi�ed
as described in Example 1.9Example 1.9: therefore the Itô-vector projection remains optimal in the case of M time-
dependent. For Theorem 1.16Theorem 1.16 the natural generalisation is given by substituting πt for π in (1.1191.119). Since
|y − πt(x)| = |(t, y) − π̃(t, x)|, by the de�nition of the Itô-jet projection in the case of M time-dependent
(and since the calculations in this section never relied on π being the Riemannian tubular neighbourhood pro-
jection), we have that the time-dependent Itô-jet projection (1.1031.103) is optimal in this case too.

1.5 Further considerations

In this �nal section we dig deeper into the details surrounding the Itô and Stratonovich projections of SDEs,
and answer a few lingering questions.

1.5.1 Di�erences between the projections

In this subsection we will provide examples to justify our claim that the vertical rectangles of (1.921.92) do not
commute.

We begin with an example in which the Itô-jet and -vector projections coincide, but are di�erent from the
Stratonovich projection. This example also shows how the dependence of the Stratonovich projection of (1.671.67)
on the derivatives of the di�usion coe�cients can be non-trivial.

Example 1.21. TakeM = {(x, 0) : x ∈ R} ↪→ R2, n = 1 and the Itô SDEs

d

[
Xt

Yt

]
=

[
Yt
Xt

]
dWt, d

[
Xt

Yt

]
=

[
0
Xt

]
dWt (1.126)

whose di�usion coe�cients coincide, and are orthogonal to M , on M . Their Stratonovich projections onto
the a�ne subspaceM = R are respectively given by the ODEs

Ẋt = −1

2
Xt, Ẋt = 0 (1.127)

The Itô-jet and -vector projections of the two SDEs above coincide (since their coe�cients onM coincide) and
are trivial. An example where Itô-jet = Itô-vector 6= Stratonovich, and where the Itô projections are non-trivial
can be obtained from this by increasing n to 2 and adding a tangent di�usion coe�cient.

Next, we ask the question of when the Stratonovich and Itô-jet projections coincide. The following crite-
rion is a rephrasing of [AB16AB16, Theorem 4].

Remark 1.22 (Fibering property). In general the di�erence of the Stratonovich- and Itô-jet-projected drift can
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be written as

TM 3 µ̂− µ̃ =
1

2

n∑
γ=1

(
∂2π

∂xi∂xj
σiγqσjγ + qσkγ

∂π

∂xh
∂σhγ
∂xk

)
=

1

2

n∑
γ=1

∂

∂xk

(
∂π

∂xh
σhγ

)
qσkγ (1.128)

Therefore, if we assume that

∂π

∂xh
(x)σhγ (x, t) is independent of x ∈ π−1(π(x)) (1.129)

for x in a neighbourhood of M (again, if we are only interested in starting our equation at time zero, the
above requirement only needs to be considered for t = 0), the derivative of the above quantity along any
vector tangent to the �bre of π (which at points in M means orthogonal to M ) vanishes: this means (1.1281.128)
vanishes and the Itô jet and Stratonovich projections are equal. Moreover, if, representing the original SDE in
Stratonovich form as (1.651.65), we additionally have that

∂π

∂xk
(x)bk(x, t) is independent of x ∈ π−1(π(x)) (1.130)

then it is immediate to verify thatπ(Xt) is a solution of the Stratonovich projection, and therefore that, letting
Y be the solution to the Stratonovich=Itô-jet projection

Yt = π(Xt) (1.131)

up to the exit time ofXt from the tubular neighbourhood in which π is de�ned. Observe that in the absence
of these conditions we cannot expect, in general, to obtain a closed form SDE for π(Xt), as the coe�cients
will depend explicitly on Xt. This is even true if (1.1291.129) holds but (1.1301.130) does not, as can be shown simply by
considering the ODE case σγ = 0.

Example 1.23. Let M = {(x, y) ∈ R2 : x2 + y2 = 1} ↪→ R2. π is de�ned in R2 \ {0} as
π(x, y) = (x2 + y2)−1/2(x, y). Consider the SDE, dependent on the real parameter a

d

[
Xt

Yt

]
= (X2

t + Y 2
t )a

[
Yt
Xt

]
dWt (1.132)

There is a single di�usion coe�cient σ, decomposed as

σ(x, y) = (x2 + y2)a−1(x2 − y2)

[
−y
x

]
︸ ︷︷ ︸

σ(x,y)∈T(x,y)M

+ (x2 + y2)a−12xy

[
x
y

]
︸ ︷︷ ︸

qσ(x,y)∈T⊥
(x,y)

M

(1.133)

Moreover, for (x, y) ∈M we have

Jσ(x, y) =

[
2axy 2ay2 + 1

2ax2 + 1 2axy

]
(1.134)

44



We have

Jπ(x, y) = (x2 + y2)−3/2

[
y2 −xy
−xy x2

]
Hπ1(x, y) = (x2 + y2)−5/2

[
−3xy2 2x2y − y3

2x2y − y3 2xy2 − x3

]
Hπ2(x, y) = (x2 + y2)−5/2

[
2x2y − y3 2xy2 − x3

2xy2 − x3 −3x2y

] (1.135)

We compute, for (x, y) ∈M

∂2π

∂xi∂xj
σiqσj = −2xy(x2 − y2)

[
−y
x

]
qσhPk

∂σk

∂xh
= 2xy(2ax4 − 2ay4 + x2 − y2)

[
−y
x

] (1.136)

We examine more closely the cases a = 0, a = −1 and a = 1. In the �rst case (already examined in [AB16AB16,
§4]), the two terms of (1.1361.136) sum to zero, so that (1.1281.128) vanishes and the Stratonovich and Itô-jet projections
coincide. Indeed, the �bering property of (1.1291.129) is veri�ed, as it is easy to see Jπ(λx, λy)σ(λx, λy) does not
depend on λ > 0. Moreover, since the Stratonovich drift of the equation is given by −1

2(x, y) also (1.1301.130)
holds and the solution to the Stratonovich=Itô-jet-projected SDE equals the projection of the solution of the
original SDE up to the (a.s. in�nite) time it hits the origin. However the Itô-vector projection is distinct, which
can be seen by observing that Pµ̃ = Pµ̂ (given by the �rst term in (1.1361.136)) does not vanish, e.g. at the point
(cos(π/6), sin(π/6)). If a = −1 the two terms in (1.1361.136) coincide on M and therefore the Stratonovich
projection is identical to the Itô-vector projection. The Itô-jet projection, however, is di�erent, again by the
nonvanishing of the �rst term in (1.1361.136) at (cos(π/6), sin(π/6)). To generate a case where all three projections
are distinct take a = 1: all identities can be seen not to hold at the point (cos(π/6), sin(π/6)). This case
shows that the only projection that preserves the local martingale property is the Itô-vector.

Example 1.24. Consider the case in which σγ(x, t) = σγ(t) do not depend on the state of the solution. In
this case, even if (1.671.67) and (1.651.65) are equivalent, the projections may still be all di�erent. (1.1011.101) however shows
that

µ̂−−→µ = 2(µ̃−−→µ ) (1.137)

so that if any two projections coincide, they must all. An example where all projections are di�erent is given by
takingM , d as in Example 1.23Example 1.23 and the single, constant di�usion coe�cient σ = (1, 1): all projections di�er,
for instance at the point (1, 0). An example where the projections all coincide is when n = d and σkγ = δkγ :

∑
γ σ

i
γqσjγ =

∑
γ P

i
αδ

α
γQ

j
βδ

β
γ =

∑
γ P

i
γQ

j
γ = P iγQ

γ
j = 0 (1.138)

If the original drift also vanishes, we are in the presence of the trivial SDE for Brownian motion, whose Itô and
Stratonovich projections coincide with the process π(Wt) up to the exit time ofW from the domain of π, by
the same reasoning of Remark 1.22Remark 1.22.
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Figure 1.2: In these �gures we focus on [Example 1.23Example 1.23, a = 1], with initial condition (cos(π/6), sin(π/6)), so
that all projections are distinct. The two graphs above are respectively plots of the errors |E[Yt − Xt]|2 and
E[|Yt − π(Xt)|2] for Yt the solution to the Stratonovich, Itô-vector and Itô-jet projections, with the expecta-
tion taken over 104 sample paths. We see con�rmation of the fact that the Itô-vector projection performs better
in the �rst error metric, that the Itô-jet projection does so in the second, and that the Stratonovich projection
is markedly suboptimal in both senses (especially in the �rst, while in the second case it performs very similarly
to the Itô-vector projection). The analogous plot for the error (1.1101.110) is not included, as the results for the three
projections are visually indistinguishable, in accordance with the fact that all three projections minimise a1

(without it vanishing in this case). The �gure below displays one sample path (t, Yt) where Yt is each of the
following processes: the solution to the original SDE, to the three projected SDEs, and the metric projection π
applied to the original solution. All sample paths are derived from the same random seed. Since the optimality
criteria all involve taking expectation, we do not expect to be able to derive meaningful intuition from a single
path, but it is nonetheless informative to have visual con�rmation that all projections are distinct, but related.

In this section we have developed examples that cover all possible situations involving identities, and lack
thereof, between the three projections. We summarise them in the table below:
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µ̃ = µ̂ = −→µ σγ ∈ TM and [Example 1.24Example 1.24, second case]
µ̃ 6= µ̂ = −→µ [Example 1.21Example 1.21, �rst SDE]
µ̃ = µ̂ 6= −→µ [Example 1.23Example 1.23, a = 0]
µ̃ = −→µ 6= µ̂ [Example 1.23Example 1.23, a = −1]
µ̃ 6= µ̂ 6= −→µ 6= µ̃ [Example 1.23Example 1.23, a = 1] and [Example 1.24Example 1.24, �rst case]

1.5.2 Intrinsic optimality of the Itô projections

The fact that in (1.1191.119) we are comparing two points, Yt and π(Xt), which lie inM opens up the possibility of
substituting the Euclidean distance with the Riemannian distance ofM , dM , inside the expectation. One can
then ask whether this leads to a di�erent optimisation. Let U be a neighbourhood of the initial condition y0

in Rd, V := U ∩M , ϕ : V → Rm a normal chart centred in y0, ϕ := ϕ ◦ π : U → Rm. This means that
if Gt is a geodesic in M starting at y0, ϕ(Gt) = vt where Rm 3 v = Ty0ϕ(Ġ0). As a consequence we have
that, ifWy0 ∈ Ty0M , picking the geodesicGwithG0 = y0, Ġy0 = Wy0 , we have that

0 =
d2

dt2

∣∣∣∣
0

ϕ(Gt) =
d2

dt2

∣∣∣∣
0

ϕ(Gt) =
∂2ϕ

∂xi∂xj
(y0)Ġi0Ġ

j
0 +

∂ϕ

∂xk
(y0)G̈k0 =

∂2ϕ

∂xi∂xj
(y0)W i

y0W
j
y0 (1.139)

since the acceleration ofG is orthogonal toM . Now, the problem consists of choosing ◦σγ and ◦µ in such a way
that c′1 vanishes and c′2 is minimal in

E
[
ϕdM

(
ϕ(Yt), ϕ(π(Xt))

)2]
= c′1t+ c′2t

2 + o(t2) (1.140)

where ϕdM (a, b) := dM (ϕ−1(a), ϕ−1(b)). We have expressed dM in normal coordinates in order to be able
to use the estimates of [Nic12Nic12, Appendix A], which tell us that the derivatives of orders≤ 3 of ϕdM agree with
those of the squared distance function of Rm (in particular those of order 1 and 3 vanish). Since we are only
interested in c′1 and c′2, this means we can substitute the LHS of (1.1401.140) with

E
[
|ϕ(Yt), ϕ(π(Xt))|2

]
(1.141)

Proceeding as in the computations of Section 1.4Section 1.4, we see that

c1 =
n∑
γ=1

|Jϕ ◦σγ − JϕPσγ |2 (1.142)

This quantity is made to vanish exactly as before, namely in the unique case ◦σγ = σγ = σ̂γ . As for the drift,
notice that sinceϕ is a chart inM , minimising c2 will only involve a condition on the tangential part of ◦µ, and
is thus an unconstrained optimisation problem (the constraint (1.711.71) is then ful�lled by separately adding the
required orthogonal term). Proceeding as in Section 1.4Section 1.4, we see that the quantity to be minimised is given by

m∑
p=1

(
∂ϕp

∂xk
◦
µk − ∂ϕp

∂xk
∂πk

∂xh
µh − 1

2

n∑
γ=1

∂2(ϕp ◦ π)

∂xi∂xj
σiγσ

j
γ

)2

(1.143)
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which results in

∂ϕ

∂xk
◦
µk =

∂ϕ

∂xk
∂πk

∂xh
µh +

1

2

n∑
γ=1

∂ϕ

∂xh
∂2πh

∂xi∂xj
σiγσ

j
γ +

∂2ϕ

∂xi∂xj
σiγσ

j
γ (1.144)

Since the last term vanishes by (1.1391.139) we have that this formula for ◦µ coincides with the Itô-jet projection µ̂.

Remark 1.25 (Optimality for Riemannian ambient manifolds). This reformulation of the optimality crite-
rion allows us to generalise the statement of Theorem 1.19Theorem 1.19 to the case where Rd is substituted with a general
Riemannian manifold D, of which M is a Riemannian submanifold, (1.671.67) with a di�usion-type SDE on D
(in any one of the three equivalent formulations), and the squared Euclidean norm in (1.1191.119) is substituted
with dD(Yt, π(Xt))

2. By considering a Nash embedding ofD (and hence, transitively, ofM ) in Rr for large
enough r, and extending the di�usion to a di�usion in Rr, we have that the dM -optimal projection and the
dRd -optimal projection both coincide with the Itô-jet projection. But since dRd ≤ dD ≤ dM , this projec-
tion must also be dD-optimal, as is immediate by comparing Taylor expansions.

We may also ask whether Theorem 1.16Theorem 1.16 admits a generalisation to the Riemannian case. This can be done
by substituting the di�erence Yt −Xt with ψ(Yt)− ψ(Xt) in both (1.1101.110) and (1.1131.113), where ψ is any normal
chart for the ambient Riemannian manifold D centred at the initial condition y0, and the radius r appearing
in (1.1061.106) is chosen so that the ball of radius r centred in y0 is contained in the domain of ψ. The proof of
optimality is straightforward from Theorem 1.16Theorem 1.16 and the fact that Ty0ψ is a linear isometry, thus making the
square

Ty0D Ty0Rd

Ty0M Ty0M
′

Ty0ψ

P (y0) P ′(y0)

Ty0ψ|M

(1.145)

(whereM ′ = Imψ, and P (y0), P ′(y0) are the metric projections) commute.

We have thus shown that both Theorem 1.16Theorem 1.16 and Theorem 1.19Theorem 1.19 can be reformulated so as to apply to the
case of the ambient manifold being Riemannian.

1.5.3 Optimality criteria for the Stratonovich projection

It is surprising that the most naïve way to project the coe�cients of an SDE is suboptimal according to the
criteria introduced in this chapter. In this subsection we a (somewhat less compelling) way in which the
Stratonovich projection can be considered optimal. This idea is already present in [AB16AB16, §3.4].

As before, we start with the Stratonovich SDE (1.651.65). De�ne a second SDE

dΞt = −σγ(Ξt, t) ◦ dBγ
t − b(Ξt, t)dt, Ξ0 = y0 (1.146)

where B is another n-dimensional Brownian motion, with no speci�c relationship with W . Assume we are
looking for coe�cients ◦σγ and

◦
b s.t., de�ning

dYt =
◦
σγ(Yt, t) ◦ dW γ

t +
◦
b(Yt, t)dt, Y0 = y0

dΥt = − ◦σγ(Υt, t) ◦ dBγ
t −

◦
b(Υt, t)dt, Υ0 = y0

(1.147)
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the following quantity is minimised for small t (in the same sense as in Theorem 1.19Theorem 1.19):

1

2
E
[
|Yt − π(Xt)|2

]
+

1

2
E
[
|Υt − π(Ξt)|2

]
(1.148)

Note that the original input of the problem is the same as before, i.e. σγ and µ, but the quantity to be opti-
mised is di�erent. In [AB16AB16] the SDEs with re�ected Stratonovich coe�cients are interpreted as representing a
solution going backward in time: this �ts in nicely with the interpretation of the Stratonovich integral of being
time-symmetric (e.g. in the sense of the midpoint-evaluated Riemann sums that converge in L2 to it). This
interpretation is backed up by the fact that, if µ and ◦µ denote the Itô drifts forX and Y , the SDE for Ξ,Υ can
be equivalently written using the backwards Itô integral db (de�ned by endpoint evaluation)

dbΞt = −σγ(Ξt, t)d
bBγ

t − µ(Ξt, t)dt, dbΥt = − ◦σγ(Υt, t)d
bBγ

t −
◦
µ(Υt, t)dt (1.149)

so that (1.1481.148) can be viewed as averaging an SDE going forward in time with one going backwards. This heuris-
tic interpretation, however, is not necessary in the computations, and we can proceed by optimising (1.1481.148)
as is. Proceeding as above, this leads to the the di�usion coe�cients being, as always, orthogonally projected
( ◦σγ = σγ) and the constrained optimisation problem for the drift µ̃ given by

minimise
1

2

m∑
k=1

(
µ̃k − ∂πk

∂xh
µh − 1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ

)2

+
1

2

m∑
k=1

(
− µ̃k +

n∑
γ=1

σlγ
∂σkγ
∂xl
− ∂πk

∂xh

(
− µh +

n∑
γ=1

σlγ
∂σhγ
∂xl

)
− 1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ

)2

subject to Qkhµ̃
h − 1

2

n∑
γ=1

∂2πk

∂xi∂xj
σiγσ

j
γ = 0

(1.150)

which is checked, by using Lagrange multipliers as above, to have solution the Stratonovich-projected drift
(1.951.95). Therefore, the Stratonovich projection is optimal in this “time-symmetric” sense.

Conclusions and further directions

In this chapter we have shown, re-expressing and improving on the ideas of [AB16AB16], how a concrete optimisation
problem involving SDEs points towards the use of Itô calculus on manifolds, while the results given by adopting
the more commonly used Stratonovich calculus are suboptimal. We believe that, apart from being of interest
in their own right, these results o�er some motivation for Chapter 2Chapter 2 and Chapter 4Chapter 4 below.

It would be interesting to extend this optimisation result to the case where the equation is driven by
(1/4, 1) 3 H-fractional Brownian motion, in the sense of rough paths (which for H > 1/2 means in the
sense of Young). Although this would amount to a generalisation of a Stratonovich equation, as seen in (1.1021.102)
the optimal coe�cients can still be expressed as a function of the original ones and their derivatives, and similar
formulae could be shown to hold in the case of fractional noise. The rough-Skorokhod conversion formula
[CL19CL19, CL20CL20] could be of help here, although it would have to �rst be extended to cover the case in which
the RDE has drift for the problem to be interesting. The considerations on Euler expansions discussed in
Remark 5.5Remark 5.5, once made precise, could also be of aid.
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2
Non-geometric rough paths on manifolds

Project status. This chapter consists of a lightly edited version of the preprint [ABCRF20ABCRF20], co-authored
with Damiano Brigo, Thomas Cass and John Armstrong. An abridged version of it has very recently been
accepted for publication in the Journal of the London Mathematical Society.

Introduction

The theory of rough paths, �rst introduced in [Lyo98Lyo98], has as its primary goal that of providing a rigorous
mathematical framework for the study of di�erential equations driven by highly irregular inputs. The rough-
ness of such signals renders the traditional de�nition of di�erentiation and integration inapplicable, and moti-
vates the de�nition of rough path, a pathX accompanied by functions, satisfying certain algebraic and analytic
constraints, which postulate the values of its (otherwise unde�ned) iterated integrals. This concept leads to
de�nitions of rough integration against the rough pathX and of rough di�erential equation (RDE) driven by
X , which bear the important feature of being continuous in the signalX , according to appropriately de�ned
p-variation norms. Rough path theory applies to a wide variety of settings, including to the case in which X
is given by the realisation of a stochastic process, for which it constitutes a pathwise approach to stochastic
integration, extending the classical stochastic analysis of semimartingales.

An important feature that a rough path can satisfy is that of being geometric: this can be interpreted as the
statement that it obeys the integration by parts and change of variable laws of �rst-order calculus, its irregularity
notwithstanding. The theory of geometric rough paths has been the most studied [FV10bFV10b], and applies to
semimartingales through the use of the Stratonovich integral. Other notions of stochastic integration, however,
cannot be modelled by geometric rough paths, the Itô integral being the prime (but not the only [ER03ER03])
example.

Since smooth manifolds are meant to provide a general setting for ordinary di�erential calculus to be carried
out, it is natural to ask how “rougher” calculi can be de�ned in the curved setting. In the context of stochastic
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calculus, this question has led to a rich literature on Brownian motion on manifolds. More recently, it has been
raised a number of times with regards to rough paths [CLL12CLL12, DS17DS17, CDL15CDL15, BL15BL15, Bai19Bai19]. In all cases, however,
only the case of geometric rough paths has been discussed.

The main goal of this chapter is to construct a theory of manifold-valued rough paths of bounded p-
variation, with p < 3, which are not assumed to be geometric. We will often refer to such rough paths as
“non-geometric”, as we have in the title of the chapter, even though what we actually mean is that they are not
necessarily geometric. The regularity assumption ensures that we may draw on the familiar setting of [FH14FH14] for
vector space-valued rough paths; dropping this requirement would require the more complex algebraic tools of
[HK15HK15]. Our theory includes de�ning rough integration and di�erential equations, both from the intrinsic and
extrinsic points of view, and showing how the classical notions of parallel transport and Cartan development
can be extended to the case of non-geometric rough paths.

Although the de�nition of the Itô integral on manifolds has been known for decades, Stratonovich calculus
has been preferred in the vast majority of the literature on stochastic di�erential geometry. Nevertheless, there
are phenomena that are best captured by Itô calculus, particularly those which relate to the martingale prop-
erty. In this spirit, Chapter 1Chapter 1 focuses on how a concrete problem involving the approximation of SDEs with
ones de�ned on submanifolds necessitates the use of Itô notation, and that the result naturally provided by
projecting the Stratonovich coe�cients is suboptimal in general. The reason that Stratonovich integration and
geometric rough paths are preferred in di�erential geometry is that they admit a simple coordinate-free descrip-
tion, as is also remarked on [Lyo98Lyo98, p.219]. An important point, however, that we wish to make in this chapter
is the following: an invariant theory of integration against non-geometric rough paths may also be given, albeit
one that depends on the choice of a linear connection on the tangent bundle of the manifold. Although ge-
ometric rough path theory still retains the important property of being connection-invariant, all rough paths
may be treated in a coordinate-free manner, since, while manifolds may not admit global coordinate systems,
they always admit covariant derivatives. Overlooking this principle leads to the common misconception that
Itô calculus/non-geometric rough integration cannot be carried out on manifolds, even in cases where a con-
nection is already independently and canonically speci�ed, e.g. when the manifold is Riemannian. In much of
stochastic di�erential geometry the focus is not on the stochastic integral per se, which is viewed as a tool to
investigate laws of processes de�ned on Riemannian Wiener space: in this context it is certainly justi�able to
only work with the Stratonovich integral. Our emphasis here, however, is on pathwise integration itself: for
this reason we believe it to be of value to build up the theory in a way that is faithful to the choice of the calculus,
as speci�ed through the rough pathX .

This chapter is organised as follows: in Section 2.1Section 2.1 we review the theory of vector space-valued rough paths
of bounded 3 > p-variation, controlled rough integrations and RDEs, relying (with a few modi�cations and
additions) on [FH14FH14].

In Section 2.2Section 2.2 we review the di�erential geometry which is necessary in the following sections.
In Section 2.3Section 2.3 we develop the theory at the heart of the chapter: this entails de�ning rough paths on mani-

folds and their controlled integrands in a coordinate-free manner by using pushforwards and pullbacks through
charts, showing how the choice of a linear connection gives rise to a de�nition of rough integral, and de�ning
RDEs in a similar spirit. We follow the “transfer principle” philosophy [É90É90] of replacing all instances of Eu-
clidean spaces with smooth manifolds, which means that both the driving rough path and the solution are
valued in (possibly di�erent) manifolds. When we restrict our theory to semimartingales we recover the known
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framework for Itô integration and stochastic di�erential equations (SDEs) on manifolds [É89É89].
The next two sections contain the main contribution of this chapter. In Section 2.4Section 2.4 we switch from the

local to the extrinsic framework, and show how our theory extends that of [CDL15CDL15] to non-geometric inte-
grators and controlled integrands more general than one-forms. Our broader assumptions require us to make
additional non-degeneracy requirements on the pathX , which are not needed in the local setting. We also re-
mark that in this section we are con�ning ourselves to the Riemannian case (with the metric being induced by
an embedding), while in the rest of the chapter we allow for general connections.

Finally, in Section 2.5Section 2.5 we return to our local coordinate framework to carry out the constructions of parallel
transport along rough paths and the resulting notion of Cartan development, or “rolling without slipping”, a
cornerstone of stochastic di�erential geometry which yields a convenient way of moving back and forth be-
tween the linear and curved setting. Since we are dealing with parallel transport as a TM -valued RDE driven
by anM -valued rough pathX , the lack of geometricity leads us to require the choice of a connection not just
on the tangent bundle of M but also of one on the tangent bundle of the manifold TM . The latter connec-
tion may not be chosen arbitrarily, and we identify criteria (formulated in terms of the former connection)
that guarantee well-de�nedness, linearity, and, if M is Riemannian, isometricity of parallel transport. Di�er-
ent choices of such connection give rise to di�erent de�nitions of parallel transport and Cartan development,
which are only detectable at a second-order level, and all collapse to the same RDE when the rough path is geo-
metric. Though we develop the theory in the most general way possible, three examples for how a connection
onTM may be lifted to one onTTM are drawn from the literature; a case not analysed until now concerns the
Levi-Civita connection of the Sasaki metric, which results in parallel transport coinciding with Stratonovich
parallel transport. We end by seizing the opportunity to explore a few additional topics in stochastic analysis
on manifolds, such as Cartan development in the presence of torsion, with a pathwise emphasis.

We hope that the framework laid out in this chapter may be used in the future to extend our understanding
of manifold-valued rough paths, both deterministic and stochastic, and in Conclusions and further directionsConclusions and further directions
o�er some ideas in this direction.

2.1 Background on rough paths

In this section we review the core theory of �nite-dimensional vector space-valued (controlled) rough paths, and
the corresponding notions of rough integrals and RDEs. We refer mainly to [FH14FH14], with the caveat that we are
in the setting of arbitrary control functions, as opposed to Hölder regularity. The former has has the advantage
of being a parametrisation-invariant framework, and of allowing us to consider a larger class of paths (e.g. all
semimartingales, and not just Brownian motion). Other authors have already been treating controlled rough
paths in the setting of bounded p-variation [CL19CL19, §2.4]. When a result in this �rst section is stated without
proof, it is understood that the proof can be found in [FH14FH14, Ch. 1-10]. Many of the more quantitative aspects
of rough paths are left out, as they will not be relevant for the transposition of the theory to manifolds. Since
our vector spaces are �nite-dimensional, and since we will rely on arbitrary charts to make the manifold-valued
theory coordinate-free, we will use �xed coordinates to express all of our formulae.
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2.1.1 Rd-valued rough paths

Throughout this chapter p will be a real number ∈ [1, 3); we will not exclude the case of p ∈ [1, 2) in which
the theory reduces to Young integration, and remains valid with trivial adjustments. A control on [0, T ] is a
continuous function ω de�ned on the subdiagonal ∆T := {(s, t) ∈ [0, T ]2 | s ≤ t}, s.t. ω(t, t) = 0

for 0 ≤ t ≤ T and ω(s, u) + ω(u, t) ≤ ω(s, t) for 0 ≤ s ≤ u ≤ t ≤ T . ω will denote a control
throughout this chapter, and should be thought of as being a �xed property of the (rough) path which relates
to its parametrisation; the main example is the Hölder control ω(s, t) = t− s. Given a pathX : [0, T ]→ Rd

we will denote its increment Xst := Xt − Xs. Let Cpω([0, T ],Rd) denote the set of Rd-valued continuous
pathsX : [0, T ]→ Rd with

sup
0≤s<t≤T

|Xst|
ω(s, t)1/p

<∞ (2.1)

For there to exist a controlω s.t. the above holds is equivalent to saying thatX is a path of bounded p-variation
[FV10bFV10b, Proposition 5.10]; if ω is the Hölder control we recover the de�nition of Hölder regularity. This kind
of regularity is preserved by smooth maps [FV10bFV10b, §9.3].

Recall that if X ∈ Cpω([0, T ],Rd), H ∈ Cqω([0, T ],Re×d) with 1/p + 1/q > 1 (which happens, in
particular, when p = q ∈ [1, 2)) we may de�ne the Young integral

∫ t

s
HdX := lim

n→∞

∑
[u,v]∈πn

HuXuv (2.2)

where (πn)n is a sequence of partitions on [s, t] with vanishing step size; the resulting path
∫ ·

0HdX belongs to
Cpω([0, T ],Rd). When the regularity requirement is no longer satis�ed the Riemann sums no longer converge,
and the de�nition of integral will requireX andH to carry additional structure.

De�nition 2.1 (Rough path). A p-rough path controlled by ω on [0, T ], valued in Rd consists of a pair
X = (X,X) with X ∈ Cpω([0, T ],Rd) (the trace) and a continuous function X : ∆T → (Rd)⊗2 = Rd×d

(the second order part) satisfying the regularity condition

sup
0≤s<t≤T

|Xst|
ω(s, t)2/p

<∞ (2.3)

with the property that the Chen identity holds: for all 0 ≤ s ≤ u ≤ t ≤ T and α, β = 1, . . . , d

Xαβst = Xαβsu +Xα
suX

β
ut + Xαβut (2.4)

We denote the set of all suchX as C
p
ω([0, T ],Rd) (note the di�erence in font with C, used for simple paths).

Its bracket path is given by
[X]αβst := Xα

stX
β
st − (Xαβst + Xβαst ) (2.5)

These are indeed the increments of an element ofCp/2ω ([0, T ], (Rd)�2)-valued path, where�denotes symmet-
ric tensor product. We will say thatX is geometric if [X] = 0, and denote the set of these with G

p
ω([0, T ],Rd).
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The idea is that Xst represents the value of the (otherwise unde�ned) integral

∫ t

s

∫ u

s
dXr ⊗ dXu =

∫ t

s
Xsu ⊗ dXu (2.6)

In this interpretation it is easily checked that the Chen relation is simply the statement that the integral
∫

Xu⊗dXu is additive on consecutive time intervals, and the property ofX of being geometric represents an
integration by parts formula. Relaxing the Chen identity to

Xαβst = Xαβsu +Xα
suX

β
ut + Xαβut + εαβst (2.7)

for some function of two parameters εst ∈ o(ω(s, t)) as t ↘ s for all s gives us the de�nition of almost
(geometric) rough path and space of these denoted C̃(and G̃for almost geometric rough paths); this de�nition
is motivated by the fact that the εst’s vanish in the limit of a sum over a sequence of partitions:

∑
[s,t]∈π

εst =
∑

[s,t]∈π

εst
ω(s, t)

ω(s, t) ≤ ω(0, T ) sup
[s,t]∈π

εst
ω(s, t)

|π|→0−−−−→ 0 (2.8)

since p < 3 and O(ω(s, t)3/p) ⊆ o(ω(s, t)). The same reasoning is also at the root of the following lemma
[Lyo98Lyo98, Theorem 3.3.1] [CDLL16CDLL16, Proposition 3.5]. We write≈ for equality up to an εst ∈ o(ω(s, t)) as t↘ s.

Lemma 2.2.

1. IfX,Y ∈ C
p
ω([0, T ],Rd),X ≈ Y ⇒X = Y ;

2. Given X̃ ∈ C̃
p
ω([0, T ],Rd), there exists a uniqueX ∈ C

p
ω([0, T ],Rd) withX ≈ X̃ , which is given by

Xst = lim
n→∞

⊗
[u,v]∈πn

X̃uv (2.9)

where πn is any sequence of partitions of [s, t] with vanishing step size. Moreover, if X̃ ∈ G̃
p
ω([0, T ],Rd),

X ∈ G
p
ω([0, T ],Rd).

Both statements also hold when restricted to the level of paths∈ Cpω([0, T ],Rd).

IfX and X̃ are related as in Lemma 2.2Lemma 2.2 we will say that latter is the rough path associated to the former.
GivenX ∈ C

p
ω([0, T ],Rd) we may associate a canonical element gX ∈ G

p
ω([0, T ],Rd), which we call

its geometrisation, with trace equal to that ofX and

gXαβst := 1
2(Xαβst − Xβαst ) + 1

2X
α
stX

β
st (2.10)

In other words, gX has the same antisymmetric part as X and symmetric part �xed by the trace and the geo-
metricity condition, and it is easily checked that the Chen identity continues to hold.

2.1.2 Controlled paths and rough integration

We proceed to de�ne the objects which are, in some sense, dual to rough paths, and are original to [Gub04Gub04]:
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De�nition 2.3 (Controlled path). LetX ∈ Cpω([0, T ],Rd). An Re-valued,X-controlled path, or element of
D
p
X([0, T ],Re) is a pairH = (H,H ′), whereH ∈ Cpω([0, T ],Re) (the trace), H ′ ∈ Cpω([0, T ],Re×d) (the

Gubinelli derivative ofH w.r.t.X), and

Rkst := Hk
st −H ′kγ;sX

γ
st, sup

0≤s<t≤T

|Rst|
ω(s, t)2/p

<∞, (2.11)

Here Re×d should be thought of as L(Rd,Re) (where L means “linear maps”). We will identify Rn-
valued expressions with their coordinate expression throughout this chapter, e.g. we will write X = (Xγ),
X = (Xγ ,Xαβ),H = (Hk, H ′kγ ). We will use≈2 as a shorthand for equality up toO(ω(s, t)2/p), i.e. (2.112.11)
may be written asHk

st ≈2 H
′k
γ X

γ
st.

The following de�nition and theorem establishes that rough paths function as integrators, and that their
controlled paths should be thought of as their admissible integrands.

De�nition/Theorem 2.4 (Rough integral). Let X ∈ C
p
ω([0, T ],Rd) and H ∈ DX(Re×d). We then

de�ne, for 0 ≤ s ≤ t ≤ T
∫ t

s
HdX := lim

n→∞

∑
[u,v]∈πn

Hγ;uX
γ
uv +H ′αβ;uXαβuv (2.12)

where (πn)n is a sequence of partitions on [s, t] with vanishing step size. This limit exists, is independent of
such sequence and is obtained by applying Lemma 2.2Lemma 2.2 to

Hγ;sX
γ
st +H ′αβ;sX

αβ
st (2.13)

Here Ht is an Re×d-valued path and H ′t is a Re×d×d-valued path, with superscripts denoting Re-
coordinates and subscripts denoting Rd-coordinates; in H ′kαβ the coordinate of the Gubinelli derivative is α,
i.e. the controlled path property now reads Hk

β;st − H ′kαβ;sX
α
st ∈ O(ω(s, t)2/p). We will often refer to con-

trolled paths with trace valued in Re×d as controlled integrands. Clearly if X̃ ∈ C̃
p
ω([0, T ],Rd) we may have

substituted it forX in (2.122.12) and (2.132.13). We will often omit the integration extrema: in this case identities are to
be intended to hold when the integral is taken on any interval. Also notice that it is obvious from the de�nition
that the integral is linear in the integrand and additive on consecutive time intervals.

The condition ofH admitting a Gubinelli derivative w.r.t.X is a strong condition, and one can only expect
it to be satis�ed when H bears a special relationship with X . One may also ask whether there are conditions
onX under which any Gubinelli derivativeH ′ is unique: this is not always true, since ifX is too regular inside
Cpω([0, T ],Rd) the regularity requirement onH ′ becomes less stringent. A condition onX that rules this out,
and guarantees uniqueness of the Gubinelli derivative is given by true roughness ofX : this means that for all s
in a dense set of [0, T ] and for all φ ∈ (Rd)∗

lim sup
t↘s

|〈φ,Xst〉|
ω(s, t)2/p

=∞ (2.14)

It is satis�ed, for instance, by a.a. sample paths of fractional Brownian motion with Hurst parameter
1/3 < H ≤ 1/2, when considered as elements of Cp, 1/H < p < 3.
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Theorem 2.5 (Uniqueness of the Gubinelli derivative). Let X ∈ C
p
ω([0, T ],Rd) with trace X truly rough,

(H, 1H ′), (H, 2H ′) ∈ DX(Rd). Then 1H ′ = 2H ′.

A corollary of this result is the uniqueness of the decomposition of the sum of a Young integral and a rough
integral:

Theorem 2.6 (Doob-Meyer for rough paths). Let X ∈ C
p
ω([0, T ],Rd) with trace X truly rough,

Y ∈ Cp/2([0, T ],Rd), 1H, 2H ∈ DX(Re×d), 1K, 2K ∈ Cp([0, T ],Re×d) then
∫

1HdX +

∫

1KdY =

∫

2HdX +

∫

2KdY (2.15)

implies 1H = 2H and 1K = 2K .

In most cases, as for Example 2.7Example 2.7 below, the Gubinelli derivative is de�ned in a canonical manner, and is
intended to be computed accordingly, regardless of whether uniqueness holds or not.

Example 2.7 (Examples of canonically controlled paths).

1. The simplest example of an X-controlled path is a smooth function f ∈ C∞(Rd,Re) applied to X :
its Gubinelli derivative is given by Df(X) (where Df ∈ C∞(Rd,Re×d) is the di�erential of f , with
coordinates ∂γfk) since

fk(X)st − ∂γfk(Xs)X
γ
st ∈ O(|Xst|2) ⊆ O(ω(s, t)2/p) (2.16)

by Taylor’s theorem. We call this X-controlled path f(X), but may omit the bold font if there is no
ambiguity;

2. LetX,H be as in De�nition/Theorem 2.4De�nition/Theorem 2.4, then the rough integral
∫ ·

0HdX admits Gubinelli deriva-
tive H . We will sometimes denote the resulting element of DX(Re) by

∫

HdX (note the bold font
used for the integral) if we want to emphasise that we are considering it a controlled path, but may omit
the bold font if no ambiguity is possible;

3. AssumeH ∈ DX(Re) and thatK ∈ Cp/2ω ([0, T ],Re), then we may useH ′ as the Gubinelli derivative
ofH +K and we have that (H +K,H ′) ∈ DX(Re).

Example 2.8 (Di�erence of rough integrals against rough paths with common trace).
Let 1X = (X, 1X), 2X = (X, 2X) ∈ C

p
ω([0, T ],Rd),H ∈ D

p
X(Re×d). Then it is easy to verify that there

must exist a pathD ∈ Cp/2ω (Rd×d) s.t. 2Xst = 1Xst +Dst, and it is easily deduced from the (2.132.13)
∫

Hd2X =

∫

Hd1X +

∫

H ′dD (2.17)

where the second integral on the right is intended in the sense of Young. An important special case is when
2X = gX for a rough path X , in which case D = 1

2 [X]. Note that this identity also holds at the level of
controlled paths, since the Gubinelli derivatives (taken according to Example 2.7Example 2.7) both coincide with H . We
will often use the notation

◦ dX := dgX (2.18)

which is motivated by Stratonovich calculus (see Remark 2.24Remark 2.24 below).
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A controlled path may be transformed into a rough path in a canonical fashion:

De�nition 2.9 (Lift of a controlled path). LetX ∈ C
p
ω([0, T ],Rd),H ∈ DX(Re). De�ne ↑XH to be the

rough path associated to �XH , de�ned as

(�XH)st := (Hk
st, H

′i
α;sH

′j
β;sX

αβ
st ) (2.19)

which is easily veri�ed to belong to C̃
p
ω([0, T ],Re) (and G̃

p
ω([0, T ],Re) ifX is geometric).

We would also like to show that the operation of lifting restricts to geometric rough paths: this is accom-
plished in the following

Lemma 2.10. IfX ∈ Gp([0, T ],Rd) then ↑XH ∈ Gp([0, T ],Re).

Proof. We cannot apply Lemma 2.2Lemma 2.2 directly to �XH , since it only satis�es [�XH] ≈ 0:

(̃�XH)ijst + (̃�XH)ijst = H ′iα;sH
′j
β;s(X

αβ
st + Xβαst )

= H ′iα;sX
α
stH

′j
β;sX

β
st

= (H i
st −Rist)(H

j
st −R

j
st)

= H i
stH

j
st −H i

stR
j
st −H

j
stR

i
st +RistR

j
st

whereR is as in (2.112.11). We may therefore de�ne �̃XH by (̃�XH)k := (�XH)k and

(̃�XH)ijst := (�XH)ijst +H i
stR

j
st − 1

2R
i
stR

j
st (2.20)

Then (̃�XH)st ≈ (�XH)st (and is therefore still almost multiplicative), and [�XH] = 0 from which we
conclude by the aforementioned lemma. �

Example 2.11 (Lifts of controlled paths).

1. Given af ∈ C∞(Rd,Re) we de�nef∗X :=↑Xf(X) the pushforward ofX throughf , and by Taylor’s
formula we have

(f∗X)st ≈ (∂γf
k(Xs)X

γ
st + 1

2∂αβf
k(Xs)X

α
stX

β
st, ∂αf

i∂βf
j(Xs)Xαβst ) (2.21)

2. Rough integrals may be lifted to rough paths: if H is as in De�nition/Theorem 2.4De�nition/Theorem 2.4 we set
∫ t
sHdX := (↑X

∫

HdX)st and we have

∫ t

s
HdX ≈ (Hk

γ;sX
γ
st +H ′kαβ;sX

αβ
st , H

i
α;sH

j
β;sX

αβ
st ) (2.22)

Note, however, that (2.172.17) does not hold at the rough path level, since the lift on the LHS would be
computed using 2X, and the one on the RHS using 1X, and this would a�ect the second order part of
the rough integrals. For this reason we will mostly consider Itô-Stratonovich type corrections only at the
trace level.
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Whenever there is an ambiguity as to whether a function on ∆T is a controlled or rough path we will rely
on coordinate notation to distinguish these two possibilities, e.g. (

∫

HdX)k are the coordinates of the trace of
the controlled/rough path, (

∫

HdX)kγ = Hk
γ are the coordinates of the Gubinelli derivative of the controlled

path (corresponding to the trace ofH) and (
∫ t
sHdX)ij ≈ H i

α;sH
j
β;sX

αβ
st those of the second order part of the

rough path. We will often use coordinate notation inside the integral too, to track the action of the integrand
on the integrator, e.g. (

∫

HdX)k =:
∫

Hk
γdXγ , with the understanding that we also need the second-order

coordinates ofX andH to compute this integral.

Proposition 2.12 (Operations on controlled paths). LetX ∈ Cpω([0, T ],Rd).

Change of controlling path. LetH ∈ DX(Re),K ∈ DH(Rf ), then

K ∗H ′ := (Kc,K ′ck H
′k
γ ) ∈ DX(Rf ) (2.23)

In particular, ifK = f(H) for f ∈ C∞(Re,Rf ) we denote this f∗H and call it the pushforward of
H through f ;

Leibniz rule. LetH ∈ DX(Rf×e) andK ∈ DX(Rg×f ), then

K ·H := (Kr
cH

c
k,K

′r
γcH

c
k +Kr

cH
′c
γk) ∈ DX(Rg×e) (2.24)

Pullback. Let g ∈ C∞(Rd,Re),H ∈ Dg(X)(Rf×e), then

g∗H := (H ∗Dg(X)︸ ︷︷ ︸
=g(X)′

) ·Dg(X) ∈ DX(Rf×d)

= (Hc
k∂γg

k(X), H ′cij∂αg
i∂βg

j(X) +Hc
k∂αβg

k(X))

(2.25)

Proof. Clearly all three paths belong to Cpω . We need to check that (2.112.11) holds in all three cases. In the case of
the change of controlling path we have

Kc
st −K ′ck;sH

′k
γ;sX

γ
st ≈2 K

c
st −K ′ck;sH

k
st ≈2 0 (2.26)

As for the Leibniz rule, consider the matrix multiplication function

m: Rg×f × Rf×e → Rg×e, (zrc , y
c
k) 7→ (zrcy

c
k) (2.27)

It is easily veri�ed thatK ·H = m∗(H,K), the pushforward of controlled paths being de�ned in the step
above.

The case of the pullback readily follows from its expression as a combination of the two above construc-
tions. �

Proposition 2.13 (Compatibility). LetX ∈ C
p
ω([0, T ],Rd) andH ∈ DX(Re):

1. Lifting is compatible with change of controlling path in the sense that, forK ∈ DH(Rf ) we have

↑HK =↑X(K ∗H ′) (2.28)
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where H denotes the second order part of the rough path ↑X H . In particular, for f ∈ C∞(Re,Rf )

pushforward of rough and controlled paths are related through lift by f∗ ↑XH =↑X f∗H . Moreover,
f∗(g∗X) = (f ◦ g)∗X for appropriately valued smooth maps f, g;

2. Lifting is compatible with geometrisation in the sense that

g(↑XH) =↑gXH (2.29)

In particular, pushforward of rough paths and rough integration preserve geometricity;

3. For appropriately value smooth maps f, g and controlled integrandsK we have

(f ◦ g)∗K = g∗(f∗K) (2.30)

Proof. As for the �rst claim, the two rough paths agree on the traceK and second order part

(↑HK)abst ≈ K ′ai;sK ′bj;sH
ij
st ≈ K ′ai;sK ′bj;sH ′iα;sH

′j
β;sX

αβ
st = (↑X(K ∗H ′))ab (2.31)

Identity of the two rough paths therefore holds by Lemma 2.2Lemma 2.2. Now, takingK = f(H) and the de�nitions
of pushforward this yields

f∗↑XH =↑H(f(H)) =↑Xf∗H (2.32)

Taking, furthermore,H = g(X) we obtain

f∗(g∗X) = f∗↑Xg(X) =↑X(f∗g(X)) =↑X(f ◦ g(X)) = (f ◦ g)∗X (2.33)

As for the second claim, the two rough paths have the same trace, and therefore the same symmetric part
of the second order part, and antisymmetric part equal to half of

g(↑XH)ij − g(↑XH)ji = (↑XH)ij − (↑XH)ji

≈ H ′iα;sH
′j
β;s(X

αβ
st − Xβαst )

≈ (↑gXH)ij − (↑gXH)ji

(2.34)

Therefore g(↑XH) ≈↑gXH and we conclude again by Lemma 2.2Lemma 2.2.
The �nal statement is veri�ed using a similar comparison of the expressions in coordinates. �

The following is a rough path version of the Itô lemma. Note how the formula simpli�es to a �rst order
chain rule in the case ofX geometric. It is followed by the rough path-version of the Kunita-Watanabe identity,
where the bracket path plays the role of quadratic covariation matrix.

Theorem 2.14 (Itô lemma for rough paths). LetX ∈ C
p
ω([0, T ],Rd) and f ∈ C∞(Rd,Re). Then

f(X) = f(X0) +

∫ ·

0
Df(X)dX +

1

2

∫ ·

0
D2f(X)d[X] (2.35)

Moreover, the Gubinelli derivatives of the LHS and RHS, computed canonically according to Example 2.7Example 2.7 agree,
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thus giving rise to an identity in DX(Re), and after applying ↑X, to one in C
p
ω([0, T ],Re) (with the term f(X0)

only influencing the trace).

Proof. The path-level statement is proved in [FH14FH14, Proposition 5.6]. The Gubinelli derivative of the LHS
according to [Example 2.7Example 2.7, 1.] isDf(X), which coincides with the Gubinelli derivative of the LHS according
to [Example 2.7Example 2.7, 2.,3.] (since the bracket path, and thus the Young integral has higher regularity). �

Note how the integral of the exact one-form Df(X) does not require the whole ofX : this is because its
Gubinelli derivative,D2f(X), is symmetric. Only the symmetric part of X is needed: the pair (X,�X) (with
� denoting the symmetrisation operator) is called a reduced rough path.

Proposition 2.15 (Kunita-Watanabe identity for rough paths). Let X ∈ C
p
ω([0, T ],Rd), H ∈ DX(Re).

Then
[↑XH]ijst ≈ H i

stH
j
st −H ′iα;sH

′j
β;s(X

αβ
st + Xβαst ) (2.36)

so in particular (if e = f × d in the second case below)

[f∗X]ijst =

∫ t

s
∂αf

i(X)∂βf
j(X)d[X]αβ,

[
∫

HdX

]ij
st

=

∫ t

s
H i
αH

j
βd[X]αβ (2.37)

Proof. The �rst claim is immediate from (2.52.5), Example 2.11Example 2.11. The bracket of a pushforward is computed as

[f∗X]ijst ≈ f i(X)stf
j(X)st − ∂αf i(Xs)∂βf

j(Xs)(Xαβst + Xβαst )

≈ ∂αf i(Xs)∂βf
j(Xs)(X

α
stX

β
st − (Xαβst + Xβαst ))

= ∂αf
i(Xs)∂βf

j(Xs)[X]αβst

≈
∫

∂if(X)∂jf(X)d[X]ij

(2.38)

and since the integral is additive on consecutive intervals we conclude that we have equality by uniqueness in
Lemma 2.2Lemma 2.2. As for the rough integral[
∫

HdX

]ij
st

≈ (H i
γ;sX

γ
st +H ′iαβ;sX

αβ
st )(Hj

γ;sX
γ
st +H ′jαβ;sX

αβ
st )−H i

α;sH
j
β;sX

αβ
st

≈ H i
α;sH

j
β;s(X

α
stX

β
st − (Xαβst + Xβαst ))

= H i
α;sH

j
β;s[X]αβst

≈
∫ t

s
H i
αH

j
βd[X]αβ

(2.39)

and conclude as before that equality holds. �

The fact that the rough integral can be canonically considered a rough path in its own right naturally leads
to the question of associativity, which is answered in the a�rmative:

Theorem 2.16 (Associativity of the rough integral). Let X ∈ C
p
ω([0, T ],Rd), H ∈ DX(Re×d),
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I :=
∫

HdX ∈ DX(Re),Y :=↑XI ,K ∈ DI(Rf×e). Then(
∫

KdY

)
∗ I ′ =
∫

(K ∗ I ′) ·HdX ∈ DX(Rf ) (2.40)

As a result, the identity
∫

KdY =
∫

(K ∗H) ·HdX also holds in C
p
ω([0, T ],Rf ).

Proof. At the level of the trace we have

∫ t

s
Kc

kdY
k ≈ Kc

k;sY
k
st +K ′cij;sY

ij
st

≈ Kc
k;s(H

k
γ;sX

γ
st +H ′kαβ;sX

αβ
st ) +K ′cij;sH

i
α;sH

j
β;sX

αβ
st

≈
∫ t

s
(K ∗H) ·HdX

(2.41)

which proves the identity of the traces, since I ′ = H . Their Gubinelli derivatives w.r.t. X , as computed
according to [Example 2.7Example 2.7, 2.] and Proposition 2.12Proposition 2.12 both coincide with (Kc

kH
k
γ ). Passing to the lift on this

identity we have x
X

∫

(K ∗H) ·HdX =

x
X

∫

KdY ∗H =

x
Y

∫

KdY (2.42)

where we have used [Proposition 2.13Proposition 2.13, 1.] in the second identity. This is the identity required in the second
statement. �

The next proposition expresses the degree to which pushforward of rough paths and pullback of controlled
paths fail to be adjoint operators under the rough integral pairing; in particular the adjunction does hold when
the integrator is geometric or when g is an a�ne map.

Corollary 2.17. LetX,H, g be as in [Proposition 2.12Proposition 2.12, Pullback]. Then(
∫

Hd(g∗X)

)
∗Dg(X) =

∫

g∗HdX +
1

2

∫

H ·D2g(X)d[X] (2.43)

where, as usual, the identity holds in DX(Re) according to Example 2.7Example 2.7 and thus in C
p
ω([0, T ],Re).

Proof. Plugging in the the expression for g∗X given by Theorem 2.14Theorem 2.14 and applying Theorem 2.16Theorem 2.16 we have(
∫

Hd(g∗X)

)
∗Dg(X) =

(
∫

Hd(
∫

Dg(X)dX + 1
2

∫

D2g(X)d[X])

)
∗Dg(X)

=

∫

(H ∗Dg(X)) ·Dg(X)dX +
1

2

∫

H ·D2g(X)d[X]

=

∫

g∗HdX +
1

2

∫

H ·D2g(X)d[X]

(2.44)

As usual, the more regular Young integral only contributes to the trace of the X-controlled/rough paths in
question. �

2.1.3 Rough di�erential equations

We proceed to discuss a central theme of rough path theory: that of rough di�erential equations, or RDEs.
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De�nition 2.18. LetX ∈ C
p
ω([0, T ],Rd), F ∈ C∞(Re+d,Re×d). A controlled solution to the RDE

dY = F (Y,X)dX, Y0 = y0 (2.45)

(which we will write in coordinates as dY k = F kγ (Y,X)dXγ when we wish to emphasise the action of the
�eld of linear maps F on the driverX) is an elementY ∈ DX(Re) s.t.

Y = y0 +

∫

F∗(Y ,X)dX ∈ DX(Re) (2.46)

where F∗(Y ,X) is the pushforward of the Re+d-valuedX-controlled path with trace (Y,X) and Gubinelli
derivative (Y ′, 1). We will call ↑XY (which we will denote againY ) a rough path solution to (2.452.45).

We will sometimes write dY (without the bold font for Y ) on the LHS of (2.452.45) when only referring
to the trace level of the solution. Note that the de�nition of controlled solution implies the requirement
Y ′ = F (Y,X) and

F∗(Y ,X) = (F kγ (Y,X), ∂αF
k
β (Y,X) + F hα∂hF

k
β (Y,X)) (2.47)

Since a solution of either type is entirely determined by its trace andF ,X we will often just use the term solution
without specifying which type we intend.

Remark 2.19. Usually only RDEs of the form dY = F (Y )dX are considered. (2.452.45) can be considered as a
special case of this by simply “doubling the variables”, i.e. considering the joint RDE

d

(
X
Y

)
=

(
1

F (Y,X)

)
dX (2.48)

We have chosen to consider RDEs that also depend on X since this will become a compulsory requirement
whenX is manifold-valued; this framework is taken from [É89É89], where it is used in the context of manifolds-
valued SDEs. A side bene�t of introducing this dependence is that rough integrals may now be seen as a par-
ticular case of RDEs, namely when F is independent of Y . In particular, thanks to Theorem 2.14Theorem 2.14, controlled
paths given by one-forms may be viewed as particular cases of solutions to RDEs driven by the rough path
(X, [X]).

Example 2.20 (RDEs driven by rough paths with common trace). Let 1X, 2X, D be as in Example 2.8Example 2.8. Then,
recalling the convention used in the previous chapter whereby Greek letters index the driver and Latin ones the
solution, we have the following identity of controlled solutions

dY k = F kγ (Y,X)d2X
γ ⇐⇒ dY k = F kγ (Y,X)d1X

k + (∂αF
k
β + F hα∂hF

k
β )(Y,X)dDαβ (2.49)

Note this identity does not hold for rough path solutions, for the reason provided in Example 2.11Example 2.11. The second
expression is an RDE driven by the rough path with trace (X,D) and second order part X. This is particularly
important when 2X = gX ,D = 1

2 [X] for a rough pathX , as it informs us that every RDE may be rewritten
as an RDE driven by the geometric rough path (gX, [X]).

The following theorem is proved in [CDL15CDL15, Corollary 2.17, Theorem 4.2], and its proof carries over to
the case ofX non-geometric (thanks to Example 2.20Example 2.20) and with F depending onX (thanks to Remark 2.19Remark 2.19).
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We will say that Y is a controlled/rough path solution up to time S ≤ T if it is a solution to (2.452.45) where the
driving rough path is substituted with X|[0,R] ∈ C

p
ω([0, R],Rd), for all R < S. Note that, according to

this terminology, a solution up to time T is a not necessarily a solution on the whole of [0, T ] (the former may
explode precisely at time T , while for the latter we have YT = y0 +

∫ T
0 F∗(Y ,X)dX): to distinguish the two

we will call the latter a global solution.

Theorem 2.21 (Local existence and uniqueness). Precisely one of the following two possibility holds w.r.t. (2.452.45)

1. A global solution exists;

2. There exists an S ≤ T and a solution up to time S, with Y[0,S) not contained in any compact set of Re.

Moreover, in either case, the solution is unique on the interval on which it is defined.

The following lemma further speci�es that the exit time from an open neighbourhood is bounded from
below, uniformly in the initial time and initial condition (ranging in a precompact neighbourhood) of an RDE
with �xed driverX . It can be found in [CDL15CDL15, Corollary 2.17], and its proof carries over to the setting con-
sidered here once again by Example 2.20Example 2.20 and Remark 2.19Remark 2.19 (and using the obvious fact thatX[0,T ] is compact).

Lemma 2.22. Let U, V ⊆ Re be open with V ⊇ U compact. Then there exists a δ > 0 s.t. for all t0 ∈ [0, T ]

and y0 ∈ U the unique solution to

dY = F (Y,X)dX, Yt0 = y0 (2.50)

is defined and satisfies Y ∈ V on [t0, (t0 + δ) ∧ T ].

Although this thesis is not about global existence, we will need the following lemma that guarantees it in
an important special case.

Lemma 2.23. Let F be as in Definition 2.18Definition 2.18 with

F kγ (y, x) = Akγh(x)yh + bkγ(x) (2.51)

for someA ∈ C∞(Rd,Re×e×d), b ∈ C∞(Rd,Re×d). Then (2.452.45) admits a global solution.

Proof. First of all, observe that

(∂αF
k
β + F hα∂hF

k
β )(y, x) = (∂αA

k
βh +AlαhA

k
βl)(x)yh + (∂αb

k
β + bhαA

k
hβ)(x) (2.52)

has the same form as F : by Example 2.20Example 2.20 we may therefore assume X is geometric. Now, by Theorem 2.16Theorem 2.16,
we may view the equation as linear, driven by the rough path

∫

(A(X), b(X))dX , and may therefore directly
apply the result for global existence of linear RDEs [FV10bFV10b, Theorem 10.53]. �

2.1.4 Stochastic rough paths

Finally, we address the topic of stochastic processes lifted to rough paths. We denote S(Ω, [0, T ],Rd)
the set of Rd-valued continuous adapted semimartingales de�ned up to time T on some stochastic setup
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(Ω, (Ft)t∈[0,T ],P) satisfying the usual conditions. We may de�ne X, X̂ ∈ Cp([0, T ],Rd) a.s. by
Stratonovich and Itô integration respectively

Xαβst :=

∫ t

s
Xα
su ◦ dXβ

u , X̂αβst :=

∫ t

s
Xα
sudXβ

u , Xαβst = X̂αβst + 1
2 [X]αβst (2.53)

where [X] denotes the quadratic covariation tensor ofX .

Remark 2.24. We have [X̂] = [X] and [X] = 0 a.s., so ĝX = X . In general, rough path theory applied to
semimartingales extends the usual stochastic calculus, i.e. Itô/Stratonovich stochastic integrals agree a.s. with
the path-by-path computed rough integrals w.r.t. the Itô/Stratonovich lifts [FH14FH14, Proposition 5.1, Corollary
5.2], and the strong solution to an Itô/Stratonovich SDE coincides a.s. with the path-by-path computed so-
lution to the RDE driven by the Itô/Stratonovich-enhanced rough path [FH14FH14, Theorem 9.1] (these results
are only shown for Brownian integrators, but may be extended to general continuous semimartingales, e.g. by
reducing to the Brownian case by splitting the integrator into its bounded variation and local martingale parts
and applying the Dubins-Schwarz theorem to the latter).

The following statement made in the same spirit, which we could not �nd in the literature, will be impor-
tant later on.

Proposition 2.25. Let X ∈ S(Ω, [0, T ]) and f ∈ C∞(Rd,Re). Then f∗X and f∗X̂ coincide a.s. with the
lifts of the semimartingale f(X) computed respectively through Stratonovich and Itô integration.

Proof. We begin with the Itô case. By the classical Itô formula and Remark 2.24Remark 2.24 we have that, a.s.

∫ t

s
f i(X)df j(X) =

∫ t

s
f i(X)∂γf

j(X)dX +
1

2

∫ t

s
f i(X)∂αβf(X)d[X]αβ

=

∫ t

s
f i∂γf

j(X)dX̂
γ

+
1

2

∫ t

s
f i∂αβf(X)d[X̂]αβ

≈ f i∂γf j(Xs)X
γ
st + (∂αf

i∂βf
j + f i∂αβf

j)(Xs)X̂αβst
+1

2f
i∂αβf

j(Xs)[X̂]αβst

= f i∂γf
j(Xs)X

γ
st + ∂αf

i∂βf
jX̂αβst + 1

2f
i∂αβf

j(Xs)X
α
stX

β
st

≈ f i(Xs)f
j(X)st + ∂αf

i∂βf
jX̂αβst

(2.54)

Therefore a.s.
∫ t

s
f i(X)sudf j(Xu) =

∫ t

s
f i(X)df j(X)− f i(Xs)f

j(X)st ≈ ∂αf i∂βf jX̂αβst (2.55)

and we conclude by Lemma 2.2Lemma 2.2. The Stratonovich case is handled analogously, with the only di�erence that
the �rst order change of variable formula holds, and that brackets vanish. �

For other examples of stochastic rough paths, which include lifts of Gaussian and Markov processes, we
refer to [FV10bFV10b, Ch. III]. Though these rough paths are mostly geometric, examples of non-geometric, non-
semimartingale stochastic rough paths also exist in the literature [QX18QX18].
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2.2 Background on di�erential geometry

In this section we review the di�erential geometry needed in the rest of this chapter. We begin by recalling
various equivalent notions of connections on manifolds, and proceed to specialise this study to the case where
M is a Riemannian submanifold ofRd. We follow [Lee97Lee97] and [KN96KN96] for classical di�erential geometry (with
an occasional glance at [Nak03Nak03] for expressions in local coordinates), and [Lee97Lee97, Ch. 8], [CDL15CDL15], Section 1.2Section 1.2
and [Dri04Dri04] for the extrinsic theory.

2.2.1 Linear connections

Let M be a smooth m-dimensional manifold, and τM : TM → M its tangent bundle; throughout this
chapter we will identify �bre bundles with their projection. We will denote the tangent map of a smooth map
of manifolds f : M → N by τf : τM → τN (a morphism in the category of vector bundles), the map of
total spaces by Tf : TM → TN (a smooth map), and by Txf its restriction to the tangent space TxM (a
linear map). In this subsection we review equivalent notions of a connection on a manifold. Given a smooth
�bre bundle π : E → M we denote Γπ its C∞M -module of sections and EA := π−1(A) for A ⊆ M ,
Ex := E{x} for x ∈M .

De�nition 2.26 (Covariant derivative). A linear connection, or covariant derivative on a smooth vector bundle
π : E →M is a map

∇ : ΓτM × Γπ → Γπ, (U, e) 7→ ∇Ue, (∇Ue)(x) =: ∇U(x)e (2.56)

which is linear in both arguments and which satis�es the Leibniz rule
∇U(x)(fe) = f(x)∇U(x)e+ (U(x)f)e(x) for f ∈ C∞M .

The notation∇U(x)e is justi�ed by the fact that the value of the section∇Ue only depends on the value
of U(x) (and on the value of e on any curve whose tangent vector at x is U(x)); in general we will denote
vectors based at x ∈ M as U(x), V (x), . . ., reserving U, V, . . . for vector �elds (or just vectors based at an
unspeci�ed point). Covariant derivatives will mainly be considered on the tangent bundle τM : in this case
it is automatically extended to the whole of

⊕
k,l∈N τM

⊗k ⊗ τ∗M⊗l given a few compatibility conditions
[Lee97Lee97, Lemma 4.6]. A linear connection on τM is equivalently de�ned by a Hessian, as described in (1.341.34).
Given a chart ϕ, recall that we denote ∂kϕ(x) the basis elements of the tangent space TxM de�ned by ϕ, and
we abbreviate ∂k := ∂kϕ if there is no risk of ambiguity. Moreover, we denote Γkij the Christo�el symbols of
∇w.r.t. ϕ: this means∇∂i∂j = Γkij∂k, and therefore

∇UV = (Uh∂hV
k + U iV jΓkij)∂k (2.57)

and if ω ∈ Γτ∗M

∇Uω = (U i∂iωj − U iωkΓkij)dj (2.58)

where dk := dϕk are the elements of the dual basis of {∂kϕ}k. Given two chartsϕ,ϕ de�ned on overlapping
domains, the (non-tensorial) transformation rule of the Christo�el symbols is

Γk
ij

= ∂kk∂
i
i
∂j
j
Γkij + ∂kh∂

h
ij

(2.59)
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where overlined indices refer to ϕ and simple indices to ϕ, and the ∂’s refer to the derivatives of the change of
chart, e.g. ∂h

ij
(x) := ∂ij(ϕ

h ◦ ϕ−1)(x). The Hessian can be written in coordinates as

∇2f = (∂ij − Γkij∂k)f dϕi ⊗ dϕj (2.60)

Those connections whose Hessians are valued in Γ(τ∗M�2), or equivalently with vanishing torsion tensor
〈T, U ⊗ V 〉 := ∇UV − ∇V U − [U, V ] are called torsion-free. In local coordinates Tk

ij = Γkij − Γkji. We
can associate to any connection ∇ a torsion-free one by �∇UV := ∇UV − 1

2〈T, U ⊗ V 〉 or equivalently
by projecting its Hessian onto T ∗M � T ∗M : the symmetrised connection will then de�ne the same set of
(parametrised) geodesics.

Let g be a Riemannian metric, i.e. an element of Γ(τ∗M�2) which is nowhere vanishing and positive-
de�nite at all points (many, but not all, of the considerations made in this chapter about Riemannian metrics
can be extended to pseudo-Riemannian ones). A connection ∇ is metric w.r.t. g if ∇g = 0, or in local
coordinates

gij,k − ghjΓ
h
ki − gihΓhkj = 0 (2.61)

where indices after the comma denote coordinate partial di�erentiation, i.e. gij,k := ∂kgij , and gij the
components of the metric in the same chart (gij will denote the inverse of gij , i.e. gikgkj = δij). We will
also use indices after a semicolon to denote covariant di�erentiation, e.g. gij;k := (∇g)ijk. There is precisely
one such connection which is also torsion-free, called the Levi-Civita connection of g, which we denote g∇,
and its Christo�el symbols are given by

gΓkij = 1
2g

kh(ghj,i + gih,j − gij,h) (2.62)

When on a Riemannian manifold we will sometimes use the musical isomorphisms [ : τM → τ∗M with
inverse ]. In coordinates these are given by performing “index gymnastics” w.r.t. g, i.e. Vi := V [

i := gijV
j ,

ωi := (ω])i = ωjg
ij . Similar raising and lowering of indices will be performed with arbitrary tensors.

Remark 2.27. If∇ is g-metric, it is not true in general that �∇ is metric. Denoting Tk
ij the components of

the torsion tensor, we have that the di�erence between∇ and g∇ is quanti�ed by the contorsion tensor

Kk
ij := 1

2(Tk
ij + T k

i j + T k
j i ) = Γkij − gΓkij (2.63)

which has symmetric part 1
2(T k

i j + T k
j i ).

The curvature tensor associated to a connection∇ is

R(U, V )W := ∇U∇VW −∇V∇UW −∇[U,V ]W (2.64)

where [U, V ] denotes the Lie bracket of vector �elds, which vanishes if the vectors are given by the local basis
sections ∂k de�ned by a chart. We denote the coe�cients

R h
ijk := 〈R(∂i, ∂j)∂k, d

h〉 = Γhjk,i − Γhik,j + ΓhilΓ
l
jk − ΓhjlΓ

l
ik (2.65)

and warn the reader that the ordering of the indices is not standard in the literature (this convention is, for
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instance, the one followed by [Lee97Lee97, YI73YI73]). The curvature tensor satis�es the symmetry

R h
ijk = −R h

jik (2.66)

Moreover, if∇ is torsion-free
R h
ijk + R h

jki + R h
kij = 0 (2.67)

Moreover, if∇ is g-metric (but not necessarily torsion-free)

Rijkh = −Rijhk (2.68)

and �nally if∇ = g∇
Rijkh = Rkhij (2.69)

These symmetries are often stated directly in the Levi-Civita case, but hold under the more general hypotheses
stated above, as can be seen from a careful reading of their proof [Lee97Lee97, Proposition 7.4]. We also recall the
de�nition of Ricci tensor a symmetric tensor �eld de�ned as a contraction of the curvature tensor, and whose
components we still denote (without ambiguity, thanks to the di�erent number of indices) by the symbol R:

Rij = −R k
ki j = −Rhikjg

hk (2.70)

Given a smooth �bre bundle π : E → M with typical �bre the smooth n-dimensional manifold R, its
vertical bundle V π is the subbundle of τE with total space V E := ker(Tπ : TE → TM), and we have
Ve(x)E = Te(x)Ex, i.e. elements of the total space of V π are vectors tangent to the �bres of π. Recall that for
a smooth map of manifolds f ∈ C∞(P,Q) and a �bre bundle ρ : D → Q, we de�ne the pullback bundle

f∗ρ : {(p, d) ∈ P ×D | f(p) = ρ(d)} := f∗Q→ P, (p, d) 7→ p (2.71)

and there is a bundle map f∗ρ→ ρ

f∗Q D

P Q

f∗ρ

pr2

ρ

f

(2.72)

The vertical lift of π is de�ned as the �bre bundle isomorphism

π∗π → V π, Ex × Ex 3 (e(x), U(x)) 7→ v(e(x))U(x)

v(e(x))U(x)(f ∈ C∞E) :=
d

dt

∣∣∣∣
0

f(e(x) + tU(x))
(2.73)

An Ehresmann connection is a vector bundle η : H → E which is complementary toV π, i.e.H⊕V E = TE.
When π is a vector bundle, Ehresmann connections and a covariant derivatives are equivalent by further re-
quiring of the former that, denoting the sum and scalar multiplication map by

Σ: E ⊕ E → E, Λa : E → E, a ∈ R (2.74)
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TΣ map the subbundle {(α(e), β(e)) ∈ He ⊕ He | e ∈ E} ≤ T (E ⊕ E) to H and that TΛa map H
to itself for all a ∈ R. This in particular implies that H0x = TxM where we are identifying M with the
zero section of TM . In order to describe the correspondence we �rst de�ne the horizontal lift (relative to an
Ehresmann connection η : H →M on the �bre bundle π) as the �bre bundle isomorphism

h: π∗τM → η, Ex × TxM 3 (e(x), U(x)) 7→ h(e(x))U(x) := Te(x)π
∣∣−1

He(x)
(U(x)) (2.75)

i.e. h is a splitting of the short exact sequence of vector bundles:

0 V π τE π∗τM 0
Tπ

h

(2.76)

The Ehresmann connection associated to a covariant derivative (where π now is a vector bundle) is given in
terms of its horizontal lift as

h(e(x))U(x) := Txe(U(x))− v(e(x))∇U(x)e (2.77)

for any section e ∈ Γπ whose value at x is e(x) (the independence on the section e is
checked by using the usual characterisation of tensoriality [Lee97Lee97, Lemma 2.4], i.e. by showing that
h(fe(x))U(x) = f(x)h(e(x))U(x): this is easily done in local coordinates).

If we have a chart ϕ : A → Rm for A ⊆ M , a chart φ : B → Rn for B ⊆ R (the typical �bre of π, an
arbitrary n-dimensional manifold) and a trivialisation Φ: EA → A×R, the triple (ϕ, φ,Φ) de�nes a chart

(ϕ× φ) ◦ Φ: Φ−1(A×B)→ Rm × Rn (2.78)

We will call the resulting coordinates product coordinates. If π is a vector bundle, R can (and always will) be
taken equal to Rn and φ to the identity, and if π = τM or τ∗M , Φ can be de�ned canonically in terms of ϕ
as Tϕ or T ∗ϕ−1. In these cases we will speak of induced coordinates.

Convention 2.28. In what follows we will be working on the manifoldsTM (orT ∗M ) andE. It will therefore
be helpful to establish conventions regarding indexing of the product and induced coordinates. In the absence
of other manifolds, ambiguities as to the chart, etc. we will denote with Greek indicesα, β, γ, . . . = 1, . . . ,m

the coordinates on M , with Latin indices i, j, k, . . . = m + 1, . . . ,m + n the coordinates on E in excess
of the aforementioned coordinates of the base spaceM and with α̃, β̃, γ̃, . . . = m+ 1, . . . , 2m the induced
coordinates on TM in excess of those onM . More speci�cally, γ̃ := m+γ, and we will take this into account
when using the Einstein convention, e.g. aαβbβ̃γ =

∑m
β=1 aαβb

(m+β)γ . Moreover, we will use capital letters
I, J,K, . . . = 1, . . . ,m + n to denote indices that run through all coordinates on E, and capital letters
A,B,C, . . . = 1, . . . , 2m to denote indices that run through all the coordinates on TM . The following
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diagrams should help explain this arrangement:

E : (

α,β,γ,...︷ ︸︸ ︷
x1, . . . , xm,

i,j,k,...︷ ︸︸ ︷
y1, . . . , yn︸ ︷︷ ︸

I,J,K,...

)

TM : (

α,β,γ,...︷ ︸︸ ︷
x1, . . . , xm,

α̃,β̃,γ̃,...︷ ︸︸ ︷
x̃1̃, . . . , x̃m̃︸ ︷︷ ︸

A,B,C,...

)

(2.79)

A similar convention is followed when T ∗M is replaced with TM .
It is important to point out the following potential source of confusion. If V (x) ∈ TxM it can be either

viewed as a vector in the vector space TxM , with coordinates V γ(x), or as a point in the manifold TM , with
coordinates

(V (x)γ , V (x)γ̃) = (xγ , V γ(x)) (2.80)

Note the di�erent meaning of V (x)γ and V γ(x); in any case, this ambiguity will be avoided by always con-
sidering elements as vectors whenever otherwise mentioned. The use of the twiddled indices is seen when
considering vectors in TTM and TT ∗M .

Finally, we mention that the use of Greek/Latin indices will also be used in the separate case in which we
are dealing with two di�erent manifoldsM andN , to distinguish between coordinates on the two manifolds.

In the case of π a vector bundle the change of product coordinates from ϕ,Φ to ϕ,Φ can be written as

∂KK (y) =

(
∂γγ (x) 0

∂γλ
k
k(x)yk λkk(x)

)
, (Φ ◦ Φ−1)(x, y) = (x, λ(x)y) (2.81)

for x = π(y) and λ ∈ C∞(ϕ(A),L(Rn,Rn)). It is worthwhile to specify this to the cases of π = τM

(where Φ = Tϕ) and τ∗M (Φ = T ∗ϕ−1), so λγ̃γ̃ = ∂γγ and λγ̃γ̃ = ∂γγ respectively, and

π = τM : ∂CC (y) =

(
∂γγ ∂γγ̃

∂γ̃γ ∂γ̃γ̃

)
(y) =

(
∂γγ (x) 0

∂γγα(x)yα ∂γγ (x)

)
(2.82)

π = τ∗M : ∂CC (y) =

(
∂γγ ∂γγ̃

∂γ̃γ ∂γ̃γ̃

)
(y) =

(
∂γγ (x) 0

∂α
βγ
∂βγ (x)yα ∂γγ (x)

)
(2.83)

The expression of the horizontal lift in induced coordinates in the case of π = τM is well known and given by
(see for example [É89É89, p.115])

(h(V )U)γ = Uγ , (h(V )U)γ̃ = −ΓγαβV
βUα (2.84)

Note that the coordinates of a horizontal lift are not only linear in the vector being lifted, but in the point in
TM (or T ∗M ) at which the lift is based: this is a consequence of the linearity of the connection, and will be
important to guarantee linearity of parallel transport in Section 2.5Section 2.5.

It will be helpful to de�ne the frame bundle φM : FM → M , the subbundle of τM⊕m whose �bre at
x ∈ M is given by all m-frames (i.e. ordered bases) of TxM . Since FM is an open subspace of TM⊕m it
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makes sense to use the product coordinates of the latter for the former: these are canonically de�ned in terms
of a chart on M by pairs (λ, γ) ∈ {1, . . . ,m}2 with the �rst referring to the copy of TM , i.e. if y ∈ FxM
then yλ := prλ(y) ∈ TxM has coordinates yγλ = y(λ,γ). If M is Riemannian we may additionally consider
the orthonormal frame bundle oM : OM → M , i.e. the subbundle of φM with total space consisting of
orthonormal frames.

We de�ne the fundamental horizontal vector fields Hλ ∈ ΓτFM , λ = 1, . . . ,m [Hsu02Hsu02, p.39] by the
property Typrγ(Hλ(y)) = h(yγ)yλ, or in coordinates

H
γ
λ (y) = yγ , H(µ,γ)

ν (y) = −Γγαβ(x)yβµy
α
ν (2.85)

with y ∈ FxM . IfM is Riemannian and∇ is metric these vector �elds restrict to elements of ΓτOM .
To end this subsection, we brie�y describe what it means for a smooth map of manifolds to preserve con-

nections. Here we are following [É89É89].

De�nition 2.29 (A�ne map). Let M∇ (N∇) be a linear connection on the tangent bundle of the smooth
manifoldM (N ). We will say that f ∈ C∞(M,N) is affine if

∀U, V ∈ ΓτM Txf(M∇U(x)V ) = N∇Txf(U(x))Tf(V ) (2.86)

Note that the RHS is well de�ned, as Tf(V ) need only be de�ned on a curve tangent to U(x) at x. The
name is justi�ed by the fact that the terminology coincides with the usual notion of a�nity for smooth maps
of Euclidean spaces. Other examples of a�ne maps are isometries of Riemannian manifolds (Riemannian iso-
morphisms that is — local isometries are not a�ne in general). In terms of the Hessians a�nity of f reads

T ∗xf
⊗2(N∇2g)(f(x)) = M∇(g ◦ f)(x), g ∈ C∞N (2.87)

Symmetrising this identity yields the notion of symmetric affinity: this is equivalent to the requirement
that f preserve parametrised geodesics, with full a�nity holding if f additionally preserves torsion. The most
useful characterisation of a�nity, however, is the local one

(M,N∇2f)kαβ(x) := ∂αβf
k(x) + NΓkij(f(x))∂αf

i∂βf
j(x)−MΓγαβ∂γf

k(x) = 0 (2.88)

which symmetrised yields the condition for symmetric a�nity:

∂αβf
k(x) = 1

2(MΓγαβ + MΓγβα)∂γf
k(x)− 1

2(NΓkij + NΓkji)(f(x))∂αf
i∂βf

j(x) (2.89)

Of course, there is no di�erence between the two if both connections are torsion-free. Symmetrised expressions
will be of interest to us because of the symmetry of the bracket of a rough path; to lighten the notation we will
add (αβ) in an expression to mean that we are symmetrising it w.r.t. to the indicesα, β. For instance, symmetric

a�nity can be written as (M,N∇2f)kαβ(x)
(αβ)
= 0 or more succinctly still as (M,N∇2f)k(αβ)(x) = 0.

Example 2.30 (A�nity and �bre bundles). It will be important to consider whether the projection map of a
�bre bundle π : E →M is an a�ne map w.r.t. to chosen linear connections ∇̃ onE and∇ onM . By (2.882.88),
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the condition of π of being a�ne reads in coordinates

∂IJπ
γ = ∂Kπ

γΓ̃KIJ − Γγαβ∂IτM
α∂JτM

β (2.90)

where the Γ̃’s denote the Christo�el symbols of ∇̃. Keeping in mind that (ϕ ◦ π ◦ Tϕ−1) is the map
(x1, . . . , xm, y1, . . . , yn) 7→ (x1, . . . , xm) we compute

∂IJπ
γ = 0, ∂βπ

α = δαβ , ∂kπ
γ = 0 (2.91)

and (2.902.90) becomes
Γ̃γαβ = Γγαβ, Γ̃γ

αβ̃
= 0, Γ̃γα̃β = 0, Γ̃γ

α̃β̃
= 0 (2.92)

It is similarly checked that if π is a vector bundle the condition of the inclusions of the �bres (as �at spaces) of
being a�ne reads

Γ̃K
α̃β̃

= 0 (2.93)

and the condition of the inclusion ofM (as the zero section) of being a�ne reads

Γ̃γαβ(0x) = Γγαβ(x) (2.94)

Replacing symmetric a�nity with a�nity results in the above coordinate expressions being symmetrised in the
bottom two indices of each Christo�el symbol, e.g. the symmetrisation of Γ̃γ

αβ̃
= 0 is Γ̃γ

αβ̃
+ Γ̃γ

β̃α
= 0 (not

Γ̃γ
αβ̃

+ Γ̃γα̃β = 0).

2.2.2 Embedded manifolds

Although we have chosen to write this chapter mainly in the framework of intrinsic manifolds and local co-
ordinates, we will relate our work to [CDL15CDL15], in which manifolds are embedded in Euclidean space. In this
subsection we revisit some of the notions of the previous subsection, assuming that M is Riemannian and
isometrically embedded in Rd, ı : M ↪→ Rd (this is always possible by the Nash embedding theorem, for
high enough d). This means that the connection on M will always be the Levi-Civita connection of the in-
duced metric: this setting is less general than the one considered in the previous subsection, where non-metric
connections with torsion were considered. In order to precisely distinguish between extrinsic and intrinsic for-
mulae, we will always distinguish between objects onM (which will be treated using local coordinates, indexed
by Greek letters α, β, γ, . . .) and their counterparts onM := ı(M) (treated using ambient coordinates, in-
dexed by Latin letters a, b, c, . . .). For instance TyM and T⊥y M (the normal space) are subspaces of TyRd,
TyRd = TyM⊕ T⊥y M, and Txı : TxM → Tı(x)M is an isomorphism.

The projection maps P and Q are de�ned ambiently as in Section 1.2Section 1.2. As for the Riemannian tubular
neighbourhood projection, also de�ned therein, we make the following distinction: π : A → M takes values
in the intrinsic manifold, and Π := ı◦π : A→M for some tubular neighbourhoodA ofM. The important
features of π and Π are

π ◦ ı = 1M , Π ◦Π = Π, ı = Π ◦ ı (2.95)
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We may express the Levi-Civita covariant derivative∇ ofM in ambient coordinates as follows:

Txı∇U(x)V = P (ı(x))d∇TxıU(x)(T ıV ), ∇U(x)ω = d∇TxıU(x)(ω ◦ Tπ) (2.96)

for U(x) ∈ TxM , V ∈ ΓτM , ω ∈ Γτ∗M , where we have extended T ı(V ) to a vector �eld on A in an
arbitrary smooth way, and d∇ is the canonical covariant derivative onRd given by taking directional derivatives.
We emphasise once again that computations are carried out in ambient coordinates, i.e. ∂c is di�erentiation in
the c-th variable of Rd, and sums go from 1 to d. The Levi-Civita Hessian is the given by [É89É89, (4.9)]

∇2f = T ∗ı⊗2 d∇2(f ◦ π), f ∈ C∞M (2.97)

where d∇ is the usual Hessian in Rd.
We now express the Christo�el symbols according to some local chart in terms of ı, π. (1.631.63) can be restated

as
∂aPbP

a(y) = ∂abΠP
a(y), y ∈M (2.98)

(and in particular the LHS is independent of the extension ofP to a tubular neighbourhood). Another useful
fact about the second derivatives of Π is the following identity, obtained by di�erentiating the second identity
in (2.952.95) twice at y ∈M :

∂ceΠP
c
aP

e
b (y) + Pc∂abΠ

c(y) = ∂abΠ(y) (2.99)

We will now show that, according to any chart onM

Γγαβ(x) = ∂cπ
γ(ı(x))∂αβı

c(x) (2.100)

To prove this identity, let ∂̃α, ∂̃β be extensions toA of T ı∂α = ∂αı, T ı∂β = ∂βı respectively. (2.962.96) implies

Γγαβ(x) = ∂cπ
γ(d∇

∂̃α
∂̃β)c(ı(x))

and

(d∇
∂̃α
∂̃β)(ı(x)) = ∂e(∂̃βı)(ı(x))∂αı

e(x)

= ∂e(∂βı ◦ π)(ı(x))∂αı
e(x)

= ∂γβı(x)∂eπ
γ(ı(x))∂αı

e(x)

= ∂γβı(x)δγα

= ∂αβı(x)

which concludes the argument.

2.3 Rough paths, rough integration and RDEs on manifolds

In this section M and N will denote smooth m- and n-dimensional manifolds respectively. Given a control
ω on [0, T ] we say that a continuous path X : [0, T ] → M lies in Cpω([0, T ],M) if for all f ∈ C∞M ,
f(X) ∈ Cp([0, T ],R); on vector spaces, on vector spaces, this agrees with the ordinary de�nition by in-
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variance of bounded p-variation under smooth maps. Equivalently, X ∈ Cpω([0, T ],M) if for all charts ϕ,
ϕ(X) ∈ Cp([a, b],Rm) wheneverX|[a,b] is contained in the domain of ϕ.

Example 2.31 (Path in a �bre bundle). Let π : E → M be a smooth �bre bundle with typical �bre R.
A path H ∈ Cpω([0, T ], E) is characterised as follows: for every local trivialisation Φ: EA → A × R

and for every 0 ≤ a ≤ b ≤ T s.t. H|[a,b] ⊆ EA, we have pr1 ◦ Φ(H|[a,b]) ∈ C
p
ω([a, b], A) and

pr2 ◦ Φ(H|[a,b]) ∈ C
p
ω([a, b], R). Examples of such paths are given by smooth sections σ ∈ Γπ evaluated at

X ∈ Cpω([a, b],M).

Young integration on a manifolds is simple to perform. Let p ∈ [1, 2), X ∈ Cpω([0, T ],M),
H ∈ Cpω([0, T ],L(τM,Re)) in the �bre ofX . We can then de�ne the Young integral

∫ T

0
HkdX := lim

|π|→0

∑
[s,t]∈π

Hk
γ;sX

γ
st (2.101)

where Xγ := ϕγ(X) and Hk
γ := (H ◦ (TXϕ)−1)kγ for any chart ϕ : A → Rm with X[s,t] ⊆ A.

It is simple to check with a change of charts that Riemann summands do not depend on the chart up to
O(ω(s, t)2/p) ⊆ o(ω(s, t)), and the limit is well de�ned and converges, since it converges in every chart.
Similarly, given a �eld of linear homomorphisms V ∈ ΓL(τM, τN) (here L(τM, τN) is the bundle
L(TM, TN) → N × M with �bres L(TM, TN)y,x := L(TxM,TyN)) we can de�ne the Young dif-
ferential equation by

dY = V (Y,X)dX ⇐⇒ dY k = V k
γ (Y,X)dXγ (2.102)

where the coordinates are taken to be w.r.t. arbitrary charts on M and N . We will give de�nitions of rough
paths, their controlled paths, rough integrals and RDEs in the same spirit, relying on the theory of Section 2.1Section 2.1.

De�nition 2.32 (Rough path on a manifold). Given an atlas (ϕ : Aϕ → Rm)ϕ of M , an M -valued
[2, 3) 3 p-rough path controlled by ω on [0, T ], X ∈ C

p
ω([0, T ],M), consists of a collection of rough

paths ϕX = (ϕX, ϕX) ∈ Cαω ([aϕ, bϕ],Rm), where the intervals [aϕ, bϕ] are chosen so that their union
is [0, T ] and no two overlap in a single point, and with the property that for all charts ϕ,ϕ in the atlas s.t.
[aϕ, bϕ] ∩ [aϕ, bϕ] 6= ∅

(ϕ ◦ ϕ−1)∗
ϕX = ϕX ∈ Cpω([aϕ, bϕ] ∩ [aϕ, bϕ],Rm) (2.103)

The trace of X is the path t 7→ Xt := ϕ−1(ϕXt) ∈ M whenever t ∈ [aϕ, bϕ] (independently of ϕ),
X ∈ Cp([0, T ],M).X is geometric,X ∈ G

p
ω([0, T ],M), if ϕX is geometric for all ϕ.

It makes sense to allow the mappingsϕ 7→ ϕX andϕ 7→ [aϕ, bϕ] to be multi-valued, so that the same chart
can be used multiple times (e.g. if the traceX goes back and forth between charts). To de�ne a rough path onM
with traceX we only need as many charts as it takes to coverX[0,T ]: once the compatibility condition (2.1032.103) is
satis�ed for one such cover, for any further chartψ, ψX is unambiguously de�ned thanks to [Proposition 2.13Proposition 2.13,
1.]: indeed, for charts ϕ,ϕ in the original covering

(ψ ◦ ϕ−1)∗
ϕX = (ψ ◦ ϕ−1 ◦ ϕ ◦ ϕ−1)∗

ϕX = (ψ ◦ ϕ−1)∗(ϕ ◦ ϕ−1)∗
ϕX = (ψ ◦ ϕ−1)∗

ϕX (2.104)
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The de�nitions of Gpω([0, T ],M) and of the geometrisation map C
p
ω([0, T ],M) → G

p
ω([0, T ],M) are well

de�ned in charts, thanks to the fact that pushforward commutes with geometrisation [Proposition 2.13Proposition 2.13, 2.].
The bracket of a manifold-valued rough path is de�ned in charts, i.e.

ϕ[X]st := [ϕX]st,
ϕ[X]αβst ≈ ∂αα∂

β
β (ϕXs)

ϕ[X]αβst (2.105)

for charts ϕ,ϕ, thanks to Proposition 2.15Proposition 2.15. It should be noted that [X] is not anM -valued path; rather it can
be viewed as a path valued in TM ⊗ TM with [X]t in the �bre ofXt.

A very similar de�nition given at the end of [BL15BL15], where the authors allow for more general than smooth
(e.g. only Lipschitz) transition maps, focusing on geometric rough paths. Here we will not be concerned with
�nding the minimal working framework for de�ning rough paths on manifolds, rather we develop this theory
in the familiar context of smooth manifolds (in certain cases endowed with extra structure), keeping in mind
that many results can be generalised to theC2 or Lipschitz setting.

Rough paths on manifolds can be pushed forward by smooth maps: if f ∈ C∞(M,N) and
X ∈ C

p
ω([0, T ],M), f∗X ∈ C

p
ω([0, T ], N) is de�ned by, for a chart ψ onN

ψ(f∗X) := (ψ ◦ f ◦ ϕ−1)∗
ϕX (2.106)

independently of the chartϕ onM . Following [É89É89] we de�ne anM -valued semimartingale to be a stochastic
process de�ned on some setup (Ω,F , P ) satisfying the usual conditions with the property that f(X) is a
real-valued semimartingale for all f ∈ C∞M , and denote the set of those de�ned on the interval [0, T ] as
S(Ω, [0, T ];M). If M is a �nite-dimensional R-vector space the two notions of S(Ω, [0, T ];V ) coincide
thanks to Itô’s formula.

Example 2.33 (Itô and Stratonovich rough paths on M ). Let X ∈ S(Ω, [0, T ];M). We can de�ne its
Stratonovich and Itô lifts respectively by lifting ϕX to ϕX and ϕX̂ de�ned in (2.532.53) on all stochastic intervals
[a, b] s.t.X[a,b] ⊆ Aϕ (the domain of ϕ) for t ∈ [a, b]. Crucially, these a.s. de�neM -valued stochastic rough
paths thanks to Proposition 2.25Proposition 2.25, and just as in the linear case we have ĝX = X . These de�nitions, together
with Remark 2.24Remark 2.24 allow us to restrict all the rough path theory that follows to the semimartingale context and
recover the theory of stochastic calculus on manifolds (Stratonovich and Itô integrals, SDEs, etc.) as presented
in [É89É89].

We proceed with the de�nition of controlled paths, speci�cally in the case of integrands. While for the
de�nition of rough path we used pushforward to force compatibility, for controlled paths we require it through
pullbacks.

De�nition 2.34 (Controlled integrand). Let X ∈ Cpω([0, T ],M). We de�ne an Re-valued X-controlled
integrandH = (ϕH, ϕH ′) ∈ DX(L(τM,Re)) to be a collection ϕH ∈ DϕX|[aϕ,bϕ](R

m×e) with ϕ, aϕ, bϕ
as in De�nition 2.32De�nition 2.32 and

(ϕ ◦ ϕ−1)∗ϕH = ϕH, i.e. Hγ = Hγ∂
γ
γ , H

′
αβ

= H ′αβ∂
α
α∂

β

β
+Hγ∂

γ

αβ
(2.107)

The trace of H is the path H := ϕH ◦ TXϕ, which is valued in the �bre of X of the bundle
L(τM,Re) = (τ∗M)e.
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As for Rd-valued controlled paths, the most immediate example is given by the evaluation of a one-form
σ ∈ ΓL(τM,Re): in coordinates this amounts toσ(X) = (σkγ(X), ∂ασ

k
β(X)).

A smooth map of manifolds f ∈ C∞(M,N) de�nes the pullback of controlled integrands: if
X ∈ Cpω([0, T ],M) andH ∈ Df(X)(L(τN,Re))

ϕ(f∗H) := (ψ ◦ f ◦ ϕ−1)∗ψH (2.108)

is de�ned independently of the chart ϕ on M by Proposition 2.12Proposition 2.12 and is checked to be an element of
DX(L(τM,Re)).

Remark 2.35 (General controlled paths). More in general, let π : E → M be a smooth �bre bundle with
typical �bre then-dimensional manifoldR. We may de�neπ-valuedX-controlled path as a pairH = (H,H ′)

with H ∈ Cpω([0, T ], E) in the �bre of X , H ′ ∈ Cpω([0, T ],L(TM, TE)) in the �bre of (X,H), with
H ′t a section of THtπ for all t ∈ [0, T ], i.e. THtπ ◦ H ′t = 1TM . Moreover, we require that for all charts
ϕ : A → Rm, φ : B → Rn with A ⊆ M , B ⊆ R open and local trivialisations Φ: EA → A × R, calling,
for all [a, b] ⊆ [0, T ] s.t.X[a,b] ⊆ A, Φ(H[a,b]) ⊆ A×B, and s ∈ [a, b]

F := (ϕ, φ,Φ), ϕXs := ϕ(Xs) ∈ Rm, (ϕXs,
FHs) := (ϕ× φ) ◦ Φ(Hs) ∈ Rm × Rn,

(1Rm ,
FH ′s) := TΦ(Hs)(ϕ× φ) ◦ THsΦ ◦H ′s ◦ (TXsϕ)−1 ∈ L(Rm,Rm ⊕ Rn)

(2.109)

(the assumptions onH imply that the above coordinate expressions have this form) we have

FH ∈ D
p
ϕX([a, b],Rn), i.e. FHst − FH ′s

ϕXst ∈ O(ω(s, t)2/p) (2.110)

This requirement can be checked to not depend on the choice of F. Moreover, this de�nition can be seen to
restrict to De�nition 2.34De�nition 2.34 for the choice π = L(τ∗M,Re), for which the charts φ and the trivialisation Φ can
be chosen canonically in terms ofϕ. In practice, however, there are no applications of this more general notion
of controlled path within our scope, and we will rely solely on the de�nition of controlled integrand.

We now give the de�nition of rough integral on manifolds. Note that this de�nition already exists for the
Stratonovich and Itô integral of semimartingale [É89É89, p.93, p.109] (already covered in this thesis in Section 1.1Section 1.1),
and thanks to Remark 2.24Remark 2.24 the notion below extends these when applied to Example 2.33Example 2.33. We will avoid deriv-
ing the integral using Schwartz-Meyer theory, which is cumbersome to formulate for rough paths, and de�ne
the rough integral directly in coordinates, without appeals to second-order forms. It is easily checked that the
naïve de�nition of the rough integral in charts

∫

HdX :=
∫

HγdXγ fails to be coordinate-invariant due to
the bracket correction in the change of variable formula; to come up with an intrinsic notion we must rely on
a connection on τM .

De�nition 2.36. Assume τM is endowed with a linear connection ∇ and let X ∈ C
p
ω([0, T ],M),

H ∈ DX(L(τM,Re)). We de�ne the rough integral

∫ ·

0
Hd∇X :=

∑
[sϕ,tϕ]

∫ tϕ

sϕ

HγdXγ +
1

2

∫ tϕ

sϕ

HγΓγαβ(X)d[X]αβ ∈ Cpω([0, T ],Re) (2.111)

where we are summing over a �nite partition of [0, ·] whose intervals [sϕ, tϕ] are indexed by charts ϕwith the
property that each [sϕ, tϕ] is contained in the domain ofϕ, and the coordinates in the integrals are taken w.r.t.
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to these charts. Moreover, this path can be augmented with the unique second order part ≈ H i
α;sH

j
β;sX

αβ
st

where the coordinates α, β are taken w.r.t. to any chart that contains X[s,t], thus de�ning an element of
C
p
ω([0, T ],Re).

We will often write dM for d∇, especially when more than one manifold is involved. Note how we have
de�ned the rough integral directly as a rough path, without passing through the notion of controlled path. To
do so would have required to de�ne what it means for an Re-valued path to be controlled by anM -valued one:
this is possible by applying the generalised de�nition of Remark 2.35Remark 2.35 to the trivial vector bundle over M with
�bre Re. However, it is much simpler to bypass this step, and we shall do so for solutions of RDEs as well.

Theorem 2.37. Definition 2.36Definition 2.36 is sound: it depends neither on the partition or on the charts chosen for each inter-
val.

Proof. We begin by dealing with the trace. The �rst assertion immediately follows from the second by compar-
ing two integrals taken w.r.t. two di�erent partitions with that taken w.r.t. their common re�nement (identity
holds by additivity of the rough integral on consecutive time intervals). We then consider two charts ϕ, ϕ, the
latter of whose indices we denote using overlines. Then by Corollary 2.17Corollary 2.17 we have

∫

HγdXγ =

∫

HγdXγ +
1

2

∫

Hγ∂
γ
αβ(X)d[X]αβ (2.112)

Moreover, using Proposition 2.15Proposition 2.15 and (2.592.59) we have
∫

HγΓγ
αβ

(X)d[X]αβ =

∫

(Hγ∂
γ
γ (X)) · (∂γλ∂

µ
α∂

ν
β
Γλµν + ∂λ

αβ
∂γλ)(X) · (∂αα∂

β
β (X)d[X]αβ)

=

∫

(HγΓγαβ(X) +Hγ∂
γ

αβ
∂αα∂

β
β (X))d[X]αβ

(2.113)

Putting these two identities together, we have
∫

HγdXγ +

∫

HγΓγαβ(X)d[X]αβ =

∫

HγdXγ +

∫

HγΓγαβ(X)d[X]αβ

+

∫

Hγ(∂γγ∂
γ
αβ + ∂γ

αβ
∂αα∂

β
β )(X)d[X]αβ

(2.114)

But
∂γγ∂

γ
αβ + ∂γγ∂

δ
αβ
∂γδ ∂

α
α∂

β
β = ∂αβ((ϕγ ◦ ϕ−1) ◦ (ϕ ◦ ϕ−1)) = ∂αβϕ

γ = 0 (2.115)

which yields the desired identity. As for the second order part, we have

H i
α;sH

j

β;s
Xαβst ≈ (H i

γ;s∂
γ
α(Xs)H

j
δ;s∂

δ
β
(Xs)) · (∂αα∂

β
β (Xs)Xαβst ) = H i

α;sH
j
β;sX

αβ
st (2.116)

This concludes the proof. �

We proceed by proving a few properties of the rough integral on manifolds. The �rst of these (cf. [É89É89,
p.109] in the case of the Itô integral) tells us that the de�nition of the rough integral is indeed the one that
yields the correct change of variable formula, i.e. in which the second derivative is replaced with the Hessian.
Note that Proposition 2.15Proposition 2.15 allows us to de�ne the integral of an element of K ∈ Cp([0, T ],L(τM⊗2,Re))
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aboveX , against [X] in coordinates as
∫

Kd[X] :=

∫

Kαβd[X]αβ (2.117)

This is the analogue of [É89É89, De�nition 3.9] in the rough path context.

Proposition 2.38 (Properties of the rough integral on manifolds).

Exact integrands. For f ∈ C∞(M,Re) f(X)− f(X0) =

∫ ·

0
df(X)d∇X +

1

2

∫ ·

0
∇2f(X)d[X];

Geometric integrators.
∫

Hd∇X does not depend on the torsion of∇, and ifX is geometric it is altogether
independent of∇;

Pushforward-pullback behaviour. ForX ∈ Cp(M), f ∈ C∞(M,N),H ∈ D
p
f(X)(L(τN,Re)), M∇,

N∇ connections onN andM respectively

∫

HdNf∗X −
∫

f∗HdMX =
1

2

∫

Hk(
M,N∇2f)kαβ(X)d[X]αβ (2.118)

where M,N∇2f is defined in (2.882.88). In particular the RHS above vanishes wheneverX is geometric or f is
symmetrically affine.

Proof. It su�ces to show all three statements in a single chart. The �rst follows immediately from (2.602.60) and
Theorem 2.14Theorem 2.14. The second is evident from the fact that the bracket of a geometric rough path vanishes, and
that even when it does not it is a symmetric tensor. The third is handled by using Corollary 2.17Corollary 2.17. �

Example 2.39 (Tensorial expansion of the rough integral). The Taylor-type approximation

∫ t

s
Hd∇X ≈ Hγ;sX

γ
st +H ′αβ;sX

αβ
st + 1

2Hγ;sΓ
γ
αβ(Xs)[X]αβst (2.119)

is coordinate-invariant up to o(ω(s, t)), but the single terms in it are not. We may rewrite it as

∫ t

s
Hd∇X ≈ Hγ;s(X

γ
st + 1

2Γγαβ(Xs)X
α
stX

β
st) + (�∇H)αβ;sXαβst (2.120)

where for a connection∇
(∇H)kαβ := H ′kαβ −Hk

γΓγαβ(X) (2.121)

(and therefore (�∇H)αβ = H ′kαβ−Hk
γΓγ(αβ)(X), where we are symmetrising the bottom two indices).∇H

is de�ned by analogy with (2.582.58), i.e. ifH = ω(X) for a one-form ω ∈ ΓL(τM,Re), then∇H = ∇ω(X).
Now all four individual terms Hγ;s, (�∇H)αβ;s (and even (∇H)αβ;s), Xst + 1

2Γγαβ(Xs)X
αXβ and Xαβst

transform as tensors, in the latter two cases up to an o(ω(s, t)). Note that omitting the symmetrisation in
�∇H will result in an incorrect expansion, since the accordingly modi�ed expansion (2.1202.120) will not be almost
additive, due to the extra term involving the evaluation of the torsion againstXsu ∧Xut:

Γγαβ(Xs)(X
α
suX

β
ut −Xβ

suX
α
ut) (2.122)
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If X is geometric, the symmetrisation can be omitted by writing the expansion as
Hγ;s(X

γ
st + 1

2Γγαβ(Xs)Xαβst ) + (∇H)αβ;sXαβst (in this case, of course, the connection is purely auxil-
iary). All of this seems to suggest that manifolds endowed with non-torsionfree connections are not the correct
environment for non-geometric rough integration.

Example 2.40 (Itô-Stratonovich correction on manifolds). We compare the integral of
H ∈ DX(L(τM,Re)) against X ∈ C

p
ω([0, T ],M) and its geometrisation: by Example 2.8Example 2.8 we have,

at the path level
∫

H ◦ dX −
∫

Hd∇X =
1

2

∫

∇Hd[X] (2.123)

This identity is the analogue of [Dri04Dri04, Theorem 5.17] in the context of rough paths. Note how our ability of
writing the above Itô-Stratonovich correction formula in terms of an integral against d[X] is due to the fact
that we are integrating controlled paths. In our context of rough integration this is a necessity, but in stochastic
calculus on manifolds one can integrate a much larger class ofL(TM,Re)-valued processes aboveX , and for
these the correction formula will involve the quadratic covariations ofH andX .

Example 2.41 (Riemannian rough integral). We may de�ne a τM -valuedX-controlled pathP ∈ DX(τM)

by a collection of ϕP ∈ DϕX(Rm) satisfying the change of coordinates

P γ = ∂γγP
γ , P ′βα = ∂ββP

′β
α ∂

α
α + ∂βγαP

γ∂αα (2.124)

where we are writing the �rst index as a superscript since we view P ∈ TXM (this de�nition would fall under
the more general Remark 2.35Remark 2.35). Vector �elds evaluated at X (along with their coordinate partial derivatives)
are obvious examples. Now, if g is a Riemannian metric onM , it is natural to de�ne, forP ∈ DX(τM) the
controlled integrand

P [ = (P [γ , P
[′
αβ) := (gγδ(X)P δ,gβδ,α(X)P δ + gβδ(X)P ′δα ) ∈ DX(τ∗M) (2.125)

and if ∇ is a connection on M (which need not be metric) we may integrate P thanks to the Riemannian
metric:

∫

g(P ,d∇X) :=

∫

P [d∇X (2.126)

These de�nitions can be extended to the multivariate case, i.e. when we replace τM with τM⊕e.

We will now de�ne RDEs driven by manifold-valued rough paths and with solutions valued in a sec-
ond manifold. The semimartingale-analogue of the de�nition below can be found in [É90É90, p.428]. A
heuristic derivation of the coordinate expression can be derived by writing the “intrinsic di�erential” on a
manifold P endowed with a connection as dPZ

k := dZc + 1
2Γcab(Z)d[Z]ab and writing the identity

dNY
k = F kγ (Y,X)dMX

γ :

dY k + NΓkij(Y )d[Y ]ij = F kγ (Y,X)(dXγ + MΓγαβ(X)d[X]αβ) (2.127)

Swapping in d[Y ]ij = F iαF
j
β(Y,X)d[X]αβ (which can be done since the terms of regularity p/2 do not

contribute to the bracket) then yields (2.1292.129) below.
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De�nition 2.42 (RDEs on manifolds). Let F ∈ ΓL(τM, τN), X ∈ C
p
ω([0, T ],M) and y0 ∈ N . We

de�ne a solution to the RDE
dNY = F (Y,X)dMX, Y0 = y0 (2.128)

to mean a N -valued rough path Y with Y0 = y0 s.t. for any two charts on M and N , and on any inter-
val restricted to which X and Y are contained in the respective domains, the following RDE (in the sense of
De�nition 2.18De�nition 2.18)

dY k = F kγ (Y,X)dXγ + 1
2(F kγ (Y,X)MΓγαβ(X)− NΓkij(Y )F iαF

j
β(Y,X))d[X]αβ (2.129)

where coordinates are taken (invariantly) w.r.t. the two charts, holds. Note that this implies
Yijst ≈ F iαF

j
β(Ys, Xs)Xαβst .

The coordinate-independence check is analogous to that performed in Theorem 2.37Theorem 2.37 and is therefore omit-
ted. Analogously to the vector space-valued case, notions of global and local solutions can be de�ned and dis-
tinguished, and the smoothness ofF ensures local existence and uniqueness of the solution. These results can,
as usual, be proved via “patching” and applying Theorem 2.21Theorem 2.21. Also note that, just as for the rough integral,
only the connection modulo its torsion is relevant, and is not relevant at all when X is geometric, in which
case the usual coordinate expression dY k = F kγ (Y,X)dXγ holds: for this reason we shall omit the M and
N subscripts to the di�erentials in this case.

Remark 2.43 (Local existence and uniqueness). The local existence and uniqueness theorem Theorem 2.21Theorem 2.21
extends verbatim to the case of RDEs on manifolds De�nition 2.42De�nition 2.42 (where compacts are determined by the
manifold topology), by an embedding argument (the only think to keep in mind is that the embedding must be
proper, so that explosion inM is synonymous with explosion in the ambient Rd). A similar (though stronger)
theorem for semimartingales can be found in [É90É90, Theorem 4].

The next two examples only deals with manifold-valued semimartingales SDEs, but can be viewed in con-
text of RDEs thanks to Example 2.33Example 2.33.

Example 2.44 (Local martingales). Recall that if M is endowed with a connection ∇, an M -valued local
martingale X is an M -valued semimartingale s.t. for all f ∈ C∞M , f(X) − 1

2

∫

∇2f(X)d[X] is a local
martingale in Rd, or in local coordinates

d∇X = dXγ + 1
2Γγαβ(X)d[X]αβ (2.130)

is the di�erential of a local martingale inRd. As observed in [É90É90], it is easy to see that the martingale-preserving
property of Itô SDEs carries over to the manifold setting: if X is an M -valued local martingale and Y is the
solution to (2.1292.129) (whereX is given by the Itô lift ofX) is anN -valued local martingale.

Example 2.45 (Itô di�usions). LetM = R1+m,Xt = (t, Bt) whereB is anm-dimensional Brownian mo-
tion. Then F can be viewed as a collection of 1 +m vector �elds F0, F1, . . . , Fm ∈ ΓτM , which we take to
not depend onX . It is well known that the solution to the Stratonovich SDE dY = F0(Y )dt+Fγ(Y )◦dBγ

t

is a di�usion with generator L := F0 + 1
2

∑m
γ=1 F

2
γ (where F 2

γ denotes the di�erential operator
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F 2
γ f(x) := Fγ(y 7→ Fγf(y))): this means that for all f ∈ C∞M

f(Y )−
∫ ·

0
Lf(Y )dt (2.131)

is a local martingale. Itô di�usions on manifolds can also be considered: the solution to
d∇Y = F0(Y )dt + F (Y )dB (intended in the same intrinsic sense as De�nition 2.42De�nition 2.42) is a di�usion
with generator L := F0 + 1

2

∑m
γ=1〈∇2·, Fγ ⊗ Fγ〉. We may verify this claim in local coordinates:

df(Y ) = ∂kf(Y )dY k + ∂2
ijf(Y )d[Y ]ij

= ∂kf(Y )
(
F kγ (Y )dBγ

t + (F k0 − 1
2Γkij

∑
γ F

i
γF

j
γ )(Y )dt

)
+ 1

2

∑
γ ∂ijfF

i
γF

j
γ (Y )dt

= ∂kf(Y )F kγ (Y )dBγ
t + (F k0 + 1

2

∑
γ(∂ijf − ∂kfΓkij)F

i
γF

j
γ )(Y )dt

(2.132)

from which the conclusion follows using (2.602.60). This example carries over to the case in which F depends on
t, in which case Lwill also be time-dependent.

2.4 The extrinsic viewpoint

In this chapter we have mostly chosen to adopt a local perspective on di�erential geometry. This choice is
motivated by the fact that the most natural de�nition of rough and controlled paths involve charts, and that
therefore the resulting theory would most easily be handled using local coordinates. While we shall continue
with this approach in the next section, one of our objectives is to compare our results with those of the other
main paper on this topic, [CDL15CDL15], in which manifolds are handled using an extrinsic approach. To do this,
we will revisit the main de�nitions of the previous section assuming that all manifolds are smoothly embedded
in Euclidean space, and using ambient Euclidean coordinates to express our formulae. We will show that our
results do indeed extend those of [CDL15CDL15], in which only geometric rough paths and one-form integrands are
considered. One of the most interesting aspect of this section, however, is that for things to generalise in the
correct manner to the case of general controlled integrands, additional non-degeneracy hypotheses will have to
be placed on the class of integrands; these are always satis�ed ifX is truly rough.

We will use the notation introduced and referenced in Subsection 2.2.2Subsection 2.2.2 for embedded manifolds endowed
with the Levi-Civita connection of the induced Riemannian metric. We begin by stating when an Rd-valued
rough path may be considered to lie onM: this will entail not only the obvious requirement on the trace, but
also a condition on the second order part.

De�nition 2.46 (Constrained rough path). LetX ∈ C
p
ω([0, T ],Rd). We will sayX is constrained toM if

Π∗X = X , and denote the set ofM-constrained p-rough paths controlled by ω with C
p
ω([0, T ],M) and its

subset of geometric ones with G
p
ω([0, T ],M).

ı∗ de�nes bijections Cpω([0, T ],M)→ C
p
ω([0, T ],M) with inverse π∗, but we still choose to distinguish

the two notions, since local coordinates are used in the former case, while C
p
ω([0, T ],M) ⊆ C

p
ω([0, T ],Rd).

An equivalent way of stating De�nition 2.46De�nition 2.46 for an Rd-valued rough path X is as follows:
X ∈ Cpω([0, T ],M), or equivalently by Taylor’s formula

Xc
st = Πc(X)st ≈ P cd (Xs)X

d
st + 1

2∂abΠ
c(Xs)X

a
stX

b
st (2.133)
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and
Xcdst ≈ P caP db (Xs)Xabst ⇔ Qca(Xs)Xabst ≈ 0⇔ Qdb(Xs)Xabst ≈ 0 (2.134)

Moreover, these imply
[X]cdst ≈ P caP db (Xs)[X]abst (2.135)

We note straight away that this de�nition extends the characterisation [CDL15CDL15, Corollary 3.32 (2)]
to the non-geometric setting; the characterisation [CDL15CDL15, Corlollary 3.32 (1)] (which states that
QaIb(Xs)(Xabst − Xbast ) ≈ 0) does not hold, however, for non-geometric rough paths, as the symmetric
part of their second order part is not determined by their trace (a counterexample is easily found by taking
X ∈ C

p
ω([0, T ],M) and then adding to X any pathZ ∈ Cp/2ω ([0, T ], (Rd)�2) s.t.Qdb(Xs)Z

ab
st 6≈ 0).

Instead of de�ning a notion of “constrained controlled path” we directly de�ne a notion of rough integral
“onM” which is valid for any path in Re×d that is controlled by the trace of the integrator. We will then
show that, under an additional hypothesis on the integrand, this integral only depends on the restriction of the
integrand (and indeed just of its trace) to TXM .

De�nition 2.47 (Constrained rough integral). LetX ∈ C
p
ω([0, T ],M),H ∈ DX(Re×d). We de�ne the

M-constrained rough integral ofH againstX (both as an element of DX(Re) and as one of Cpω([0, T ],Re))
as

∫

HdMX :=

∫

Π∗HdX =

∫

(H · P (X))dX (2.136)

The identity above is shown by the following simple calculation (we will reuse the letters e, d as indices
without the risk of ambiguity)

∫ t

s
Π∗HdX ≈ Hd;sP

d
c (Xs)X

c
st +

(
H ′ef ;sP

e
aP

f
b (Xs) +Hd;s∂abΠ

d(Xs)
)
Xabst

≈ Hd;sP
d
c (Xs)X

c
st +

(
H ′eh;sP

h
f (Xs) +Hd;s∂ehΠdP hf (Xs)

)
P eaP

f
b (Xs)Xabst

≈ Hd;sP
d
c (Xs)X

c
st +

(
H ′eh;sP

h
f (Xs) +Hd;s∂eP

d
hP

h
f (Xs)

)
P eaP

f
b (Xs)Xabst

≈ Hd;sP
d
c (Xs)X

c
st +

(
H ′ah;sP

h
b (Xs) +Hd;s∂aP

d
b (Xs)

)
Xabst

≈
∫ t

s
(H · P (X))dX

(2.137)

where we have used thatX is constrained toM , the properties ofP and (2.982.98); at the level of Gubinelli deriva-
tives/second order parts the identity is obvious.

Using Corollary 2.17Corollary 2.17 we compute the correction formula for the traces of the ordinary and constrained
rough integrals
∫

HdX −
∫

HdMX =

∫

HdΠ∗X −
∫

Π∗HdX =
1

2

∫

Hc∂abΠ
c(X)d[X] (2.138)

while their second-order parts both agree with

Yijst ≈ H i
c;sH

j
d;sP

c
aP

d
b (Xs)Xabst ≈ H i

a;sH
j
b;sX

ab
st (2.139)

In particular, ifX is geometric
∫

HdMX =

∫

HdX (2.140)
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and hence agrees with [CDL15CDL15, De�nition 3.24] when restricted to the case of one-forms (see Example 2.49Example 2.49
below).

Also note that if X is the Itô or Stratonovich stochastic rough path associated to a semimartingale, the
above de�nition coincides, thanks to Remark 2.24Remark 2.24, with the usual Itô and Stratonovich integrals, given in ex-
trinsic form in [Dri04Dri04, De�nition 5.13].

Now, it is clear that if Π∗H (or equivalently π∗H , since ı∗ is injective) vanishes,
∫

HdMX also van-
ishes, and we may conclude that the integral depends only on the restriction of H toM in the sense that
Π∗H = Π∗K ⇒

∫

KdMX =
∫

HdMX . This, however, falls short of our goal of generalising [CDL15CDL15,
Corollary 3.35] (or rather one implication — we will address the second one in Remark 2.52Remark 2.52 below), which states,
in our notation, that ifX ∈ G

p
ω([0, T ],M) then

∫

f(X)dX = 0 for all f ∈ ΓL(Rd,Re) s.t. ı∗f = 0. The
point is that the requirement is only placed on the trace f(X) of the integrand, not on the whole controlled
path. Unfortunately, without further assumptions, the obvious generalisation to the setting of general con-
trolled integrands of this statement fails. The example below exhibits two ways in which this can occur.

Example 2.48. TakeM to be the unit circle S1 in R2, so Π is given by

Π: R2 \ {(0, 0)} → R2, (x, y) 7→ (x, y)√
x2 + y2

(2.141)

LetZ ∈ C
p
ω([0, T ],R2) given by

Zt := (1, 0), Zst :=

(
t− s 0

0 t− s

)
(2.142)

which satis�es the Chen identity thanks to the constancy of the trace. De�neX := Π∗Z ∈ C
p
ω([0, T ],M):

it is checked that
Xt = (1, 0), Xst ≈

(
0 0
0 t− s

)
(2.143)

Now let
Ht = (H1;t, H2;t) := (1, 0), H ′ := 02×2 (2.144)

Trivially, (H,H ′) =: H ∈ DX(R1×d), and we compute

∫ t

s
HdX ≈ Hd;sP

d
c (Xs)X

c
st + (H ′cd;sP

c
aP

d
b (Xs) +Hc;s∂abΠ

c(Xs))Xabst

= H1;s∂22Π1(Xs)X22
st

= s− t

(2.145)

despite the fact thatH|TXM = 0 (and evenH ′|TXM⊗2 = 0).
Another example is given as follows: letM = Rd with d = 2 (or embed in R3 if we want non-zero

codimension) and letX be the geometric rough path

Xt := (0, 0), Xst :=

(
0 t− s

t− s 0

)
(2.146)
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andH be given by

H := 0, H ′st :=

(
0 1
0 0

)
(2.147)

Again membership to DX(R2×1) is trivially satis�ed and proceeding as above we compute

∫ t

s
HdX = H ′cd;sP

c
aP

d
b (Xs)Xabst = H ′12X12

st = t− s (2.148)

To summarise, in the �rst example we were able to have H|TXM = 0, H ′|TXM⊗2 = 0, but the man-
ifold had to be non-�at (D2Π 6= 0) and the rough path had to be chosen to be non-geometric (if not
X22 = (X2

st)
2 ≈ 0, assuming X is chosen to be in Cp/2ω ([0, T ],Rd), which is necessary to produce a coun-

terexample). In the second example we were able to choose a geometric rough path, and even a �at manifold,
but it was not the case thatH ′|TXM⊗2 = 0 (although it still held thatH|TXM = 0). Finding a similar exam-
ple in whichX is geometric and H|TXM = 0, H ′|TXM⊗2 = 0 would be more di�cult, as is clear from the
fact that in this case

∫ t
sHdMX ≈ 1

2∂abΠ(Xs)X
a
stX

b
st (a consequence of (2.1402.140), (2.1332.133) and (2.1342.134)): for the

counterexample to workX cannot be truly rough, but at the same time not too regular either.

As will be shown later in Corollary 2.54Corollary 2.54, this type of behaviour can be ruled out wheneverX is truly rough
when viewed as beingM-valued — it is therefore not accidental that in the examples above X was chosen to
be constant (and in particular an element of Cp/2ω ([0, T ],Rd)). A case which is instead always well-behaved is
that of 1-form integrands:

Example 2.49 (1-form integrands). Let f ∈ ΓL(τRd,Re) be a 1-form de�ned on Rd, and assume for the
moment that f(X)|TXM = 0. Then, by di�erentiating f = fdQ

d we obtain

f(X) = (fdQ
d
c(X), ∂afdQ

d
b(X)− fd∂abΠd(X))

which implies

Π∗f(X) = (fdQ
d
eP

e
c (X), ∂efdQ

d
fP

e
aP

f
b (X)− fd∂efΠdP eaP

f
b (X) + fd∂abΠ

d(X))

= (0, fd∂efΠd(P eaQ
f
b +QeaP

f
b +QeaQ

f
b )(X))

so that
∫ t

s
f(X)dMX ≈ fd∂efΠd(P eaQ

f
b +QeaP

f
b +QeaQ

f
b )(Xs)Xabst ≈ 0

by (2.1342.134). By linearity, this implies that for a general 1-form f ,
∫

f(X)dMX only depends on f(X)|TXM .
The same conclusion follows if we realise that the formula [CDL15CDL15, (3.17)]

∫ t

s
f(X)dX ≈ fdP dc (Xs)X

c
st + (∇f)ef (Xs)P

e
aP

f
b (Xs)Xabst (2.149)

extends to the case of non-geometric rough paths and that ∇f(x) (de�ned in (2.962.96)) only depends on
f(x)|TxM for x ∈ M . This is the extrinsic version of (2.1202.120) applied to one-form integrands, and the same
expansion would hold for arbitrary controlled paths, by de�ning

(∇H)ab := H ′ab +Hc∂abΠ
c(X) (2.150)
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This shows that the true roughness assumption is not necessary to integrate ambient one-forms against con-
strained rough paths in a manner which is only dependent upon their restriction to τM . We have also shown
that De�nition 2.47De�nition 2.47 extends [CDL15CDL15, De�nition 3.24].

Example 2.50 (A�ne subspaces). IfM is an a�ne subspace of Rd then P is constant, and

∫ t

s
HdMX ≈ Hd;sP

d
cX

c
st +H ′ef ;sP

e
aP

f
b X

ab
st (2.151)

and in particular only depends on H|TXM , H ′|TXM⊗2 . The true roughness hypothesis is still necessary if we
want dependence only onH|TXM , as demonstrated by Example 2.48Example 2.48.

Example 2.51 (Itô-Stratonovich corrections on embedded manifolds). By Proposition 2.13Proposition 2.13 the geometrisation
of anM-constrained rough path is still constrained, and we may use Example 2.8Example 2.8 to compute the trace-level
di�erence of the constrained integrals againstX and its geometrisation as

∫

H ◦ dX −
∫

HdMX =
1

2

∫

(∇H)d[X] (2.152)

This is the extrinsic version of Example 2.40Example 2.40.

Remark 2.52. In [CDL15CDL15, Corollary 3.20] it is shown that, forX ∈ G
p
ω([0, T ],Rd) withX valued inM, the

condition
∫

f(X)dX = 0 ∀f ∈ ΓL(τRd,Re) s.t. Π∗f = 0 (2.153)

implies (2.1342.134) and thus X ∈ G
p
ω([0, T ],M). In order to attempt to generalise this statement to the non-

geometric case one would have to pick which of the integrals in (2.1362.136) to use; in both cases, however, the
statement becomes trivial since, and even replacing the quanti�er over one-forms with one over all controlled
integrandsH , we are dealing with the integral againstX of a controlled path with traceHcP

c(X) = 0: ifX is
truly rough this implies that the whole integrand, and thus the integral, vanishes, regardless of the behaviour of
X. Note that using the ordinaryRd-integral in place of the constrained integral (the two coincide for geometric
rough paths by (2.1402.140)) is not meaningful either: indeed, if (2.1532.153) implied X ∈ C

p
ω([0, T ],M) for non-

geometricX , by Example 2.8Example 2.8
∫

f(X) ◦ dX =

∫

f(X)dX +
1

2

∫

Df(X)d[X] =
1

2

∫

∂afb(X)d[X]ab (2.154)

which would have to be zero by Example 2.49Example 2.49 and the fact that Cpω([0, T ],M) is closed under geometrisation
(or by Theorem 2.6Theorem 2.6). But this is not the case if we pickM, X as in [Example 2.48Example 2.48, �rst example], e = 1

and f(x1, x2) = (x1, x2) (which restricts to 0 on TM) we have [X]abst = 2δa2δb2(s − t) and therefore
1
2

∫

∂afb(X)d[X]ab = s− t 6= 0, a contradiction.
The only way (that we can think of) to characterise non-geometric rough integrals in terms of ambient

ones would be to endow Rd with a connection s.t. ı is symmetrically a�ne (which can always be done [É90É90,
Lemma 15]) and replacing the integral in (2.1532.153) with the rough integral in Rd taken w.r.t. this connection, in
the intrinsic sense of De�nition 2.36De�nition 2.36. This, however, falls short of the goal of characterising constrained rough
paths in terms of notions that do not involve manifolds.
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We still have not related the constrained rough integral with its intrinsic counterpart, de�ned in
De�nition 2.36De�nition 2.36. This is done as follows:

Theorem 2.53. LetX ∈ C
p
ω([0, T ],M),H ∈ DX(Re×d). Then
∫

HdMX =

∫

ı∗HdMπ∗X (2.155)

Proof. Applying Proposition 2.38Proposition 2.38 to ıwe obtain
∫

HdMX =

∫

Π∗Hd(ı ◦ π)∗X

=

∫

ı∗Π∗Hdπ∗X +
1

2

∫

HdP
d
c (X)(M,Rd∇2ı)cαβ(π(X))d[π∗X]αβ

(2.156)

Now,
∫

ı∗Π∗Hdπ∗X =

∫

(Π ◦ ı)∗Hdπ∗X =

∫

ı∗Hdπ∗X (2.157)

and applying (2.882.88) and (2.1002.100), for x ∈M , y := ı(x)

(M,Rd∇2ı)cαβ(x) = ∂αβı
c(x)− Γγαβ∂γ(y)ıc(x)

= ∂αβı
c(x)− ∂eπγ(y)∂αβı

e∂γı
c(x)

= ∂αβı
c(x)− ∂e(ı ◦ π)c(y)∂αβı

e(x)

= ∂αβı
c(x)− P ce (x)∂αβı

e(y)

= Qce(y)∂αβı
e(x)

(2.158)

which implies
HdP

d
c (X)(M,Rd∇2ı)cαβ(π(X)) = HdP

d
c Q

c
e(X)∂αβı

e(π(X)) = 0 (2.159)

concluding the proof. �

The following corollary makes sense in light of the fact that true roughness (2.142.14) is invariant under di�eo-
morphisms and can thus be de�ned for manifold-valued paths, in charts.

Corollary 2.54. IfX is s.t. π(X) is truly rough,
∫

HdMX only depends onH|TXM .

Proof. LetH,K be s.t.H|TXM = K|TXM . Then by Theorem 2.53Theorem 2.53
∫

KdMX −
∫

HdMX =

∫

ı∗(K −H)dMπ∗X = 0

since (K −H) ◦ T ı = 0 and true roughness ofX imply ı∗(K −H) = 0. �

We now turn to the extrinsic treatment of RDEs. Let Nı := N ↪→ Re be a Nash embedding of an-
other Riemannian manifold N , Nı(N) =: N , and Nπ,NΠ its Riemannian tubular neighbourhood pro-
jections (we will also left superscripts to denote the inclusion/projections relative to M accordingly). Let
F ∈ ΓL(τRd, τRe) restrict to an element of ΓL(τM, τN ) (this means F (y, x) maps TxM to TyN for
x ∈ M , y ∈ N ): just as in the intrinsic setting the expression dY k = F kc (Y,X)dXc is ill-de�ned, in the
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extrinsic settingY will, forX non-geometric, exitMwhen the equation is started onM. Proceeding heuristi-
cally to derive the extrinsic counterpart to the local RDE formula (2.1292.129), with the idea that dLZ = Pc(Z)dZc

for an embedded manifoldL andZ ∈ C
p
ω([0, T ],L), we interpret

dNY
k = F kc (Y,X)dMX

c (2.160)

as NP kh (Y )dY h = F kd (Y,X)MP dc (X)dXc or in Davie form (using X ∈ C
p
ω([0, T ],M), imposing

Y ∈ C
p
ω([0, T ],N ) and using (2.982.98)) as

NP kh (Ys)Y
h
st + ∂ij

NΠk(Ys)Yijst ≈ F kd (Y,X)MP dc (X)Xc
st

Yijst ≈ F idF
j
b (Ys, Xs)Xabst

(2.161)

Note that we have chosen not to expand the RHS of the �rst line into �rst and second-order parts. Now, by
(2.1332.133) applied to Y , we may rewrite this as

Y k
st − 1

2∂ij
NΠk(Ys)Y

i
stY

j
st + ∂ij

NΠk(Ys)Yijst ≈ F kd (Y,X)MP dc (X)Xc
st (2.162)

or as (2.1642.164) in the de�nition below.

De�nition 2.55 (Constrained RDE). GivenX ∈ C
p
ω([0, T ],M), y0 ∈ N and F ∈ ΓL(τRd, τRe) which

restricts to an element of ΓL(τM, τN ) we will write

dNY
k = F kc (Y,X)dMX

c, Y0 = y0 (2.163)

to mean

dY k = F kd (Y,X)MP dc (X)dXc + 1
2∂ij

NΠk(Y )F iaF
j
b (Y,X)d[X]ab, Y0 = y0 (2.164)

and say thatY solves theN -constrained RDE driven by theM-constrained rough pathX .

The next proposition legitimises this formula.

Theorem 2.56. LetX, y0, F be as in Definition 2.55Definition 2.55.

1. The solution to (2.1642.164) only depends on (F (y, x)|TxM)x∈M,y∈N and belongs to C
p
ω([0, T ],N );

2. IfX is geometric, so isY and the equation can be rewritten as dY k = F kc (Y,X)dXc;

3. Y ∈ C
p
ω([0, T ],Re) satisfies (2.1642.164) if and only if Nπ∗Y solves the RDE driven byW := Mπ∗X

dZ = (TNπ ◦ F (Nı(Z),Mı(W )) ◦ TMı)dW (2.165)

in the sense of Definition 2.42Definition 2.42.

Proof. In this proof we will draw on the entirety of the theory of Subsection 2.2.2Subsection 2.2.2 and the present section, and
will therefore omit the precise equations which motivate our computations. The �rst part of 1. follows from
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3.; we therefore proceed to show thatY isN -constrained. We have, omitting all evaluations at Ys andXs and
relying on indices to distinguish maps referring toM andN (e.g. P cd := MP cd (Xs), ∂ijΠk := ∂ij

NΠk(Ys))

P khY
h
st + 1

2∂ijΠ
kY i

stY
j
st

≈ P kh
[
F hd P

d
cX

c
st + (∂aF

h
c P

c
b + F la∂lF

h
c P

c
b + F hc ∂aP

c
b )Xabst + 1

2∂ijΠ
kF iaF

j
b [X]ab

]
+1

2∂ijΠ
kF iaF

j
bX

a
stX

b
st

(2.166)

We calculate

P khF
h
d P

d
c = F kd P

d
c

P kh (∂aF
h
c P

c
b + F hc ∂aP

c
b ) = ∂a(F

k
c P

c
b )−Qkh∂a(F hc P cb )

= ∂a(F
k
c P

c
b )− ∂a(QkhF hc P cb )

= ∂a(F
k
c P

c
b )

= ∂aF
k
c P

c
b + F kc ∂aP

c
b

P khF
l
a∂lF

h
c P

c
b = F la∂l(P

k
hF

h
c P

c
b )− F la∂lP khF hc P cb

= F la∂l(F
k
c P

c
b )− ∂ijΠkF iaF

j
b

= F la∂lF
k
c P

c
b − ∂ijΠkF iaF

j
b

P kh ∂ijΠ
hF iaF

j
b [X]abst ≈ P kh ∂ijΠhF icF

j
dP

c
aP

d
b [X]abst

≈ P kh ∂ijΠhP il P
j
pF

l
cF

p
dP

c
aP

d
b [X]abst

≈ 0

(2.167)

Substituting these in (2.1662.166)

P khY
h
st + 1

2∂ijΠ
kY i

stY
j
st

≈ F kd P dcXc
st + (∂aF

k
c P

c
b + F kc ∂aP

c
b + F la∂lF

h
c P

c
b )Xabst + 1

2∂ijΠ
kF iaF

j
b (Xa

stX
b
st − 2Xabst )

≈ Y k
st

(2.168)

To prove 2. we proceed in a similar fashion: ifX is geometric, we have

Y k
st ≈ F kd P dcXc

st + (∂aF
k
c P

c
b + F kc ∂aP

c
b + F la∂lF

h
c P

c
b )Xabst

≈ F kd (Xd
st − 1

2∂abΠ
dXa

stX
b
st) + (∂aF

k
b + F la∂lF

h
b )Xabst + F kd ∂abΠ

d(1
2X

a
stX

b
st)

≈ F kdXd
st + (∂aF

k
b + F la∂lF

h
b )Xabst

(2.169)

andY is geometric because it is the solution to an RDE driven by an Rd-valued geometric rough path.
The proof of 3. is analogous to that of Theorem 2.53Theorem 2.53. �

RDEs can be used to generate elements of Cpω([0, T ],M) starting from any unconstrained rough path (cf.
[CDL15CDL15, Example 4.12, Proposition 4.13] for the geometric case):

Example 2.57 (Projection construction of constrained rough paths). Let Z ∈ C
p
ω([0, T ],Rd). Then the

solutionX to
dMX

k = P kc (X)dRdZ
c, X0 = x0 ∈M (2.170)
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i.e.
dXk = P kc (X)dZc + 1

2∂ijΠ
kP iaP

j
b (X)d[Z]ab (2.171)

belongs to C
p
ω([0, T ],M) by Theorem 2.56Theorem 2.56. Here P and Π refer to the embedded manifoldM. Moreover it

is checked, using (2.1332.133) and (2.1342.134) that ifZ ∈ C
p
ω([0, T ],M) with Z0 = x0, thenX = Z , i.e. this de�nes

a projection C
p
ω([0, T ],Rd)� C

p
ω([0, T ],M).

2.5 Parallel transport and Cartan development

In this section we will discuss parallel transport and Cartan development (or “rolling without slipping”)
along/of non-geometric rough paths on manifolds. The topic has already been addressed in the geometric case
(in the extrinsic setting) in [CDL15CDL15]; not assuming geometricity however introduces several complications. The
literature on Itô calculus of semimartingales on manifolds also features similar topics [É90É90, p.435-440]; how-
ever, because of the adjustments that need to be made for the rough path setting, and because of the greater gen-
erality with which the theory is approached (even when restricted to semimartingales), the material presented
in this chapter will only use the material introduced in its �rst three sections. We will rely on local coordinates
for our computations, and will not explore parallel transport and development in the extrinsic context.

We will tackle parallel transport along non-geometric rough paths by �rst studying the more general case of
RDEs with solutions valued in �bre bundles above the manifold in which the driver is valued; we will progres-
sively restrict our attention to more tractable and interesting cases until we reach the case of the horizontal lift,
i.e. in which the equation is the natural generalisation of the parallel transport equation; this will then be used
to de�ne Cartan (anti)development, a technique �rst used to give an intrinsic de�nition of Brownian motion
on Riemannian manifolds [EE71EE71]. We will see that treating non-geometric rough paths entails adding Itô-type
corrections to the classical formulae, and that the terms appearing in the resulting equations will have to satisfy
second-order conditions for properties that are usually taken for granted (well-de�nedness, linearity, metricity)
to hold.

More precisely, we will consider anm-dimensional smooth manifoldM whose tangent bundle is endowed
with a linear connection ∇ which we will think of as �xed throughout this section; given a �bre bundle
π : E → M and a linear connection ∇̃ on τE (note we do not require a connection on the bundle π), we
are interested in equations of the form

d∇̃Y = F (Y )d∇X, Y0 = y0 ∈ Eo (2.172)

where F is a section of the bundle LE(τM, τE) (the E subscript denotes the base space: this means we
are dealing with a bundle over E, not E × M , i.e. the �bre at y ∈ E is given by L(Tπ(y)M,TyE)) and
where X0 = o ∈ M is a basepoint on the manifold which will be �xed throughout this section. The �rst
thing to notice is that such equations are not of the form De�nition 2.42De�nition 2.42, since F is not de�ned for all pairs
(y, x) ∈ E ×M ; we proceed to introduce the tools that are needed to give this type of equation a meaning.
Throughout this section we will use the notation in Subsection 2.2.1Subsection 2.2.1, and in particular Convention 2.28Convention 2.28 for
indexing vectors based in the total space of �bre bundles.

Since we want the solutionY to stay in the �bre ofX , the very �rst thing to require ofF is that it be a right
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inverse to Tπ:

Tyπ ◦ F (y) = 1TxM ⇐⇒ δαβ = (Tyπ ◦ F (y))αβ = (Tyπ)αKF
K
β (y) = δαKF

K
β = Fαβ (y) (2.173)

We will assume this condition to hold throughout this section unless otherwise stated. ForW ∈ ΓτM

we de�ne
FW ∈ ΓτE, (FW )(y) := F (y)W (π(y)) (2.174)

In this section we will understand all expressions as being evaluated at (x, y) with y ∈ Ex unless otherwise
speci�ed. The following de�nition will be of importance in the study of non-geometric RDEs on �bre bundles:

De�nition 2.58. We de�ne F̃ := F̃ (∇̃, F ) by

〈F̃ , U ⊗ V 〉 := F∇UV − ∇̃FUFV ∈ TE, forU, V ∈ ΓτM (2.175)

Lemma 2.59. ForU, V ∈ ΓτM we have

(∇̃FUFV )γ = Uα∂αV
γ + UαV βΓ̃γαβ + F iαU

αV βΓ̃γiβ + UαF jβV
βΓ̃γαj + F iαF

j
βU

αV βΓ̃γij

(∇̃FUFV )k = Uα(∂αF
k
γ V

γ + F kγ ∂αV
γ) + F iαU

α∂iF
k
γ V

γ

+UαV βΓ̃kαβ + F iαU
αV βΓ̃kiβ + UαF jβV

βΓ̃kαj + F iαF
j
βU

αV βΓ̃kij

(2.176)

so we have F̃ ∈ ΓLE(τM⊗2, τE), and

F̃ γ
αβ = Γγαβ − (Γ̃γαβ + F iαΓ̃γiβ + F jβ Γ̃γαj + F iαF

j
β Γ̃γij) (2.177)

F̃ k
αβ = F kγ Γγαβ − (∂αF

k
β + F hα∂hF

k
β + Γ̃kαβ + F iαΓ̃kiβ + F jβ Γ̃kαj + Γ̃kijF

i
αF

j
β) (2.178)

Proof. We compute

∂I(FV )K = ∂I(F
K
γ (V γ ◦ π))

= ∂IF
K
γ V

γ + FKγ ∂βV
γ∂Iπ

β

=



∂αV
γ K = γ ≤ m, I = α ≤ m

0 K = γ ≤ m, I = i > m

∂αF
k
γ V

γ + F kγ ∂αV
γ K = k > m, I = α ≤ m

∂iF
k
γ V

γ K = k > m, I = i > m

(2.179)

Substituting these terms in

(∇̃FUFV )K = (FU)I∂I(FV )K + (FU)I(FV )J Γ̃KIJ (2.180)

yields the desired expressions.
We must now show that F̃ is bilinear, thus legitimising our use of the notation 〈F̃ , U ⊗ V 〉: this is easily

done by computing the RHS of (2.1752.175) thanks to the previously computed expression, and seeing that the
derivatives of V cancel out, leaving us with the desired expressions for F̃ γ

αβ and F̃ k
αβ . �
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The task is now to extend F to all pairs (y, x) where y does not necessarily lie inEx (the existence of such
extensions is not hard to show: see [É89É89, Lemma 8.16, Proof of Proposition 8.15]), and to investigate when the
resulting (2.1722.172), which can now be understood as in De�nition 2.42De�nition 2.42, is independent of the extension. To do
so we introduce the following condition on ∇̃ and F (with∇ thought of as �xed).

Condition 2.60. Assuming (2.1732.173) holds, for allU ∈ ΓτM we have

Tπ∇̃FU (FU) = ∇UU (2.181)

i.e. Tπ〈F̃ , U ⊗ U〉 = 0.

We have purposefully stated the condition with two copies of the same vector �eld U , instead of
Tπ∇̃FU (FV ) = ∇UV : this is motivated by the fact that we only need the symmetrisation of the latter
identity (obtained through polarisation), since these terms will turn out to be the coe�cients of the bracket.
Requiring the unsymmetrised version of the condition would perhaps have been more natural, but is not as
sharp; similar comments hold for Condition 2.67Condition 2.67 and Condition 2.79Condition 2.79 below. Recall the round bracket nota-
tion for symmetrisation.

Lemma 2.61. Condition 2.60Condition 2.60 is equivalent to F̃ restricting to an element of ΓLE(τM�2, V π), or in product
coordinates to F̃ γ

(αβ) = 0, i.e.

Γ̃γαβ + Γ̃γiβF
i
α + Γ̃γαjF

j
β + Γ̃γijF

i
αF

j
β

(αβ)
= Γγαβ (2.182)

Moreover, the condition being satisfied for all choices of F is equivalent to τM being symmetrically affine w.r.t.
∇̃,∇ (with the “only if” statement only valid form ≥ 2).

Proof. The �rst characterisation of Condition 2.60Condition 2.60 is obvious, and the expression in local coordinates is a direct
consequence of Lemma 2.59Lemma 2.59 and polarisation.

As for the second statement, we must check that the conditions on the symmetrised Christo�el symbols
stated in Example 2.30Example 2.30 hold. The “if” part is immediate. For the converse, �rst of all reading the identity with

F = 0 yields Γ̃γαβ
(αβ)
= Γγαβ , and the identity may be rewritten as

(Γ̃γαj + Γ̃γjα)F jβ + (Γ̃γiβ + Γ̃γβi)F
i
α + (Γ̃γij + Γ̃γji)F

i
αF

j
β = 0 (2.183)

Now read the identity for arbitrary but �xed α 6= β (which is possible since m ≥ 2) and j, and with
F kγ := δkjδγβ (this is possible since the coe�cients F kγ are completely arbitrary: we do not even have to
argue coordinate-independence, as everything is local and we may takeF to be supported in the domain of the

chart): this yields Γ̃γαj
(αj)
= 0, reducing our identity to (Γ̃γij + Γ̃γji)F

i
αF

j
β = 0. We may then �x arbitrary i, j

and pick F exactly as above to conclude Γγij
(ij)
= 0. �

The next result establishes the link between the condition and well-de�nedness of RDEs in �bre bundles.

Theorem 2.62. If Condition 2.60Condition 2.60 holds (2.1722.172) is well defined, i.e. it is independent of the extension of F to an
element of ΓLE×M (τM, τE). In this case π(Y ) = X and the coordinate expression of the RDE reduces to its
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vertical component and is given by

dY k = F kγ (Y )dXγ

+1
2

(
F kγ (Y )Γγαβ(X)− (Γ̃kαβ + Γ̃kαjF

j
β + Γ̃kiβF

i
α + Γ̃kijF

i
αF

j
β)(Y )

)
d[X]αβ

(2.184)

which may be written at the trace level as

dY k = F kγ (Y ) ◦ dXγ + 1
2 F̃

k
αβ (Y )d[X]αβ (2.185)

Moreover, ifX is geometric the equation is always well defined and independent of the connections∇ and ∇̃.

Proof. Denoting still with F = F (y, x) an arbitrary extension of F as a section of the bundle
LE×M (τM, τE) (i.e. F (y, π(y)) = F (y)), we have that the �rst m coordinates of the local form of (2.1722.172)
is given by

dY γ = F γα (Y,X)dXα + 1
2

(
Γγ(αβ)(X)− Γ̃γ(IJ)(Y )F IαF

J
β (Y,X)

)
d[X]αβ (2.186)

where we have symmetrised the second order part thanks to the symmetry of the tensor [X]. Notice that by
(2.1732.173), by hypothesis and Lemma 2.61Lemma 2.61 we have that on pairs (Y,X) s.t. Y ∈ TXM the coe�cient of dXα

equals δαγ and that of d[X]αβ vanishes. Now consider the RDE de�ned only locally in the domain of the chart
(i.e. without the claim that the following is a coordinate-invariant expression)

d

(
Y γ

Y k

)
=

(
dXγ

F kγ (Y,X)dXγ + 1
2(F kγ (Y,X)Γγαβ(X)− Γ̃kIJ(Y )F IαF

J
β (Y,X))d[X]αβ

)
(2.187)

The solution to this RDE stays in the �bre of the trace of the driverX . But the solution to this RDE must also
solve (2.1862.186), since it takes its values in the locus in which the coe�cients of the two coincide (here we are using
the obvious principle that the solution of an RDE does not change if the coe�cients are modi�ed away from
the solution).

IfX is geometric [X] vanishes altogether and we may show well-de�nedness in the same manner, and is
independent of the connections on the source and target manifolds since the driver is geometric. �

For the remainder of this section we assume Condition 2.60Condition 2.60 is satis�ed unless otherwise stated. An
even stronger requirement, which we will instead not assume to hold by default, is:

Condition 2.63. F∇UU = ∇̃FUFU for all U ∈ ΓτM , i.e. F̃ = 0, or in local coordinates (assuming
Condition 2.60Condition 2.60 already holds)

F kγ Γγαβ
(αβ)
= ∂αF

k
β + F hα∂hF

k
β + Γ̃kαβ + F iαΓ̃kiβ + F jβ Γ̃kαj + Γ̃kijF

i
αF

j
β (2.188)

The following is immediately inferred through Theorem 2.62Theorem 2.62.

Corollary 2.64. If Condition 2.63Condition 2.63 holds then the trace-level of (2.1722.172) is well defined and equivalent to

dY = F (Y ) ◦ dX (2.189)
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We will mostly use the geometrised form of our �bre bundle-valued RDEs, regardless of whether
Condition 2.63Condition 2.63 holds or not, keeping in mind that the second-order part of the solution is given in terms of
the original rough pathX as Yijst ≈ F iaF

j
b (Ys)Xabst .

In the following example we show how it is possible to generate integrands by solving cotangent bundle-
valued RDEs.

Example 2.65 (Solutions to RDEs as controlled integrands). Ifπ = τ∗M we may make the solution to (2.1722.172)
into an element of DX(τ∗M) = DX(L(τM,R)) (on any interval [0, S] on which the solution is de�ned)
as follows. Working in induced coordinates, it is natural to de�ne Y ′αβ := F β̃α (Y ): since the resulting Y is a
controlled path in each coordinate chart, we need only check that it satis�es the transformation rule required
in De�nition 2.34De�nition 2.34 to conclude it is a controlled integrand. At the path level this is already guaranteed by the
soundness of De�nition 2.42De�nition 2.42, but for Gubinelli derivatives it must be veri�ed, as we have not de�ned solutions
to RDEs on manifolds as controlled paths: by (2.832.83) we have

Y ′
αβ

= F β̃α (Y )

= ∂β̃BF
B
α (Y )∂αα

= ∂β̃βδ
β
α∂

α
α + ∂β̃

β̃
F β̃α (Y )∂αα

= ∂γ
αβ
Yγ + ∂αα∂

β

β
Y ′αβ

(2.190)

which is precisely the transformation rule required to be satis�ed by Gubinelli derivatives under
[Proposition 2.12Proposition 2.12, Pullback]. We have thus given a meaning to the scalar rough integral

∫

Y dX . Examples
of connections on the cotangent bundle, analogous to the complete, horizontal and Sasaki lifts, de�ned be-
low for the tangent bundle, are given in [YI73YI73, p.269, p.286] and [SA11SA11]; it would be interesting to verify that
Condition 2.60Condition 2.60 holds for these connections. If we start with the bundleL(τM,Re) = (τ∗M)⊕e, we may sim-
ilarly de�ne Re-valued rough integrals (here we need a connection on τL(TM,Re)). It is similarly checked
that taking π = τM (as done below) results in the solution of (2.1722.172) being a τM -valued controlled path in
the sense of Example 2.41Example 2.41 (with Gubinelli derivativesY ′βα = F β̃α ), which can then be integrated againstX once
a Riemannian metric on τM is given.

We proceed with the main theory. For the remainder of this section we letπ be a vector bundle unless
otherwise stated. We will say that Ũ ∈ ΓτE is linear if

Ũγ(y) = Uγ(x), Ũk(y) = Ũkh (x)yh (2.191)

with x = π(y) and for locally de�ned functions Uγ , Ũkh . We will say that F (which we are assuming satis�es
(2.1732.173) and Condition 2.60Condition 2.60) is linear ifFU is a linear vector �eld for allU ∈ ΓτM . We will continue to assume
x := π(y) below.

Lemma 2.66. The condition of U ∈ ΓτE of being linear is intrinsic. Therefore that of F of being such is too,
and in coordinates it amounts to

F kγ (y) = F kγh(x)yh (2.192)

for locally defined functions F kγh.
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Proof. With the notations of (2.812.81) we have

Ũγ(y) = ∂γK(x)ŨK(y) = ∂γγU
γ(x)

Ũk(y) = ∂kK(x)ŨK(y)

= ∂γλ
k
k(x)ykUγ(x) + λkk(x)Ũkh (y)yh

= (∂γλ
k
k(λ
−1)k

h
Uγ + λkkŨ

k
h (λ−1)h

h
)(x)yh

(2.193)

and we may therefore setUγ = ∂γγUγ , Ũk
h

= ∂γλ
k
k(λ
−1)k

h
Uγ +λkkŨ

k
h (λ−1)h

h
. The linearity condition onF

is not stated with reference to a particular coordinate system, and is therefore invariant under change of coordi-
nates because linearity of vector �elds is. Finally picking an arbitraryU ∈ ΓτM , we have (FU)γ(y) = Uγ(x)

by (2.1732.173) and for (FU)k(y) = F kγ (y)Uγ(x) to be of the form Ũkh (x)yh for allU we needF kγ (y) to be of the
form F kγh(x)yh (for the “only if” implication simply pickUγ = δ

γ
β with β = 1, . . . ,m). �

Note that the k index in F kγh(x)yh represents a coordinate in TyE, whereas h represents a coordinate in
Ex; following Convention 2.28Convention 2.28 we will not place a twiddle on the upper index, as we viewF kγh as the coordinates
of a linear map between vector spaces. For the remainder of this section we will assumeF to be linear, and
we will be concerned with the question of whether this implies that the resulting (2.1722.172) is also linear, i.e. that
its coordinate expression is linear in the conventional sense. To this end, we introduce the following condition
onF and ∇̃ (which does not involve the connection∇ at all, to the extent that ∇̃ is not de�ned in terms of it).

Condition 2.67. Assume F is linear. ∇̃FU (FU), or equivalently 〈F̃ , U ⊗ U〉, is a linear vector �eld for all
U ∈ ΓτM .

Lemma 2.68. Let F be linear and Condition 2.60Condition 2.60 hold. Then Condition 2.67Condition 2.67 is equivalent to F̃ |TM�2 lying in
the image of the map

Γ(τ∗M�2 ⊗ π∗ ⊗ π) = ΓLM (τM�2 ⊗ π, π)→ ΓLE(τM�2, V π)

G 7→
(
e 7→ (U � V 7→ v(e)〈G,U � V ⊗ e〉)

) (2.194)

where v(e) : E → Veπ denotes the vertical lift isomorphism based at e. In other words, we may write its coordi-
nates (symmetrising in the first two indices) as F̃ γ

(αβ)h = 0 and

F̃ k
αβh yh

(αβ)
= F kγhΓγαβy

h − (∂αF
k
βhy

h + F lαhF
k
βly

h

+Γ̃kijF
i
αhF

j
βly

hyl + Γ̃kαβ + F iαhΓ̃kiβy
h + F jβhΓ̃kαjy

h)
(2.195)

and it follows that an equivalent formulation of the condition is that the expression

Γ̃kαβ + Γ̃kαjF
j
βhy

h + Γ̃kiβF
i
αhy

h + Γ̃kijF
i
αhF

j
βly

hyl, (αβ) (2.196)

is linear in the y coordinates.
Moreover, the condition being satisfied for all choices of F as above (without assuming Condition 2.60Condition 2.60 is) is

equivalent to the stronger requirement that ∇̃
Ũ
Ũ be linear for all linear Ũ ∈ ΓτE (with the “only if” statement
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only valid form ≥ 2), which in coordinates reads

Γ̃γ(αβ) constant in y, Γ̃γ(iβ) = Γ̃γ(αj) = Γ̃γ(ij) = 0

Γ̃k(αβ) linear in y, Γ̃k(αj), Γ̃
k
(iβ) constant in y, Γ̃k(ij) = 0

(2.197)

Note that in (2.1952.195) we are not able to provide an expression for F̃ k
αβh , since some of the terms on the

RHS are non-linear (recall that the Γγαβ ’s andF kγh are evaluated at x, but the Γ̃KIJ are non-linearly evaluated at
y, and moreover there are quadratic terms).

Proof of Lemma 2.68Lemma 2.68. The �rst characterisation of Condition 2.67Condition 2.67 is just a reformulation of the second, which
is evident by (2.1782.178), Lemma 2.61Lemma 2.61 and the de�nition of linear vector �eld. The third follows from the second by
subtracting terms that are already linear in y.

As for the second statement, we �rst observe that linearity of ∇̃FUFU without requiring Condition 2.60Condition 2.60
entails the additional requirement that (by (2.1772.177), rewritten to account for the linearity of F ) the expression

Γγαβ − (Γ̃γαβ + F iαhΓ̃γiβy
h + F jβhΓ̃γαjy

h + F iαhF
j
βlΓ̃

γ
ijy

hyl), (αβ) (2.198)

be constant in y. Then by arguing as in the proof of Lemma 2.61Lemma 2.61 by progressively disregarding constant (resp.
linear) terms in (2.1982.198) (resp. (2.1962.196)) we may conclude that linearity of ∇̃FUFU for all F and U as above is
equivalent to (2.1972.197).

Now, writing (∇
Ũ
Ṽ )K = Ũ I∂I Ṽ

K + Ũ I Ṽ J Γ̃KIJ for Ũ , Ṽ linear (with notation as in (2.1912.191)) we obtain

(∇
Ũ
Ṽ )γ = Uα∂αV

γ + UαV βΓ̃γαβ + UαṼ j
h Γ̃γαjy

h + Ũ ihV
βΓ̃γiβy

h + Ũ ihṼ
j
l Γ̃γijy

hyl

(∇
Ũ
Ṽ )k = Uα∂αṼ

k
h y

h + Ũ ihṼ
k
i y

h + UαV βΓ̃kαβ + UαṼ j
h Γ̃kαjy

h + Ũ ihV
βΓ̃kiβy

h

+Ũ ihṼ
j
l Γ̃kijy

hyl

(2.199)

As usual, we rely on the symbols involved to infer whether a function is evaluated at y ∈ E or at x = π(y).
We then see, by arbitrarity of Uγ , V γ , Ũkh , Ṽ

k
h ∈ C∞M , polarisation, and the usual elimination procedure,

that linearity of∇
Ũ
Ũ is equivalent to (2.1972.197). �

Assuming Condition 2.60Condition 2.60 is satis�ed we may consider the flow map associated to F and X at times
0 ≤ s ≤ t ≤ T

Φts = Φ(F,X)ts : EXs → EXt , y 7→ Yt

where dY = F (Y )dX, Ys = y
(2.200)

which is de�ned as long as Yt is de�ned, and by uniqueness we have

Φtu ◦ Φus = Φts (2.201)

for 0 ≤ s ≤ u ≤ t ≤ T whenever one of the two sides is de�ned. The following theorem justi�es our interest
in the linearity condition.
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Theorem 2.69. Let F be linear and satisfy Condition 2.60Condition 2.60 and Condition 2.67Condition 2.67. Then (2.1722.172) can be written in
coordinates as

dY k = F kγh(X)Y h ◦ dXγ + 1
2 F̃

k
(αβ)h (X)Y hd[X]αβ (2.202)

and admits a global solution. Moreover, Φts defines linear isomorphismsEXs ∼= EXt for all 0 ≤ s ≤ t ≤ T .
These statements also hold, independently of F̃ , ifX is geometric.

Proof. The �rst statement is a restatement of (2.1842.184) to the case in which Condition 2.67Condition 2.67 is satis�ed. We
may argue global existence by Theorem 2.21Theorem 2.21 and Remark 2.43Remark 2.43: indeed, assume that there exists S ≤ T such
that Y[0,S) is not contained in any compact set of M . Since π(Y ) = X on [0, S), we must have that
limt→S− π(Yt) = XS , i.e. Y must “explode vertically”. This, however, is not possible either, since if we
may pick a system of product coordinates which contains XS , this would mean that the coordinate solution
to (2.1842.184) must only be de�ned for t < S, which is ruled out by Lemma 2.23Lemma 2.23.

Standard uniqueness arguments apply in charts to show that Φts is a linear monomorphism (and thus an
isomorphism, by dimensionality) when Xs, Xt are contained in a single chart, and these can be combined to
yield the global statement by “patching”X[0,T ] with �nitely many charts and applying (2.2012.201). �

We will denote Φst := Φ−1
ts for 0 ≤ s ≤ t ≤ T . We proceed to study the local dynamics satis�ed

by t 7→ Φt0 and t 7→ Φ0t. Fix coordinates for the vector space Eo = EX0 , which we denote with the
symbols i◦, j◦, k◦, . . .; we continue to denote withα, β, γ . . . and i, j, k . . . the local coordinates in and above
a neighbourhood containingXt; we do not intend for the former indices to bear any relationship with the latter
(e.g. k◦ and k appearing in a common expression have nothing to do with each other).

Proposition 2.70. The coordinate expressions Φk
k◦;t0 and Φk◦

k;0t respectively solve the RDEs (at the trace level)
driven by (gX, [X])

dΦk
k◦;t0 = F kγh(Xt)Φ

h
k◦;t0 ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Φ

h
k◦;t0d[X]αβt

dΦk◦
k;0t = −Φk◦

h;0tF
h
γk(Xt) ◦ dXγ

t − 1
2Φk◦

h;0tF̃
h

(αβ)k (Xt)d[X]αβt
(2.203)

Proof. The statement is local, and we may con�ne ourselves to the domain of a single set of product coordinates
containingXt. By Theorem 2.69Theorem 2.69 we have

(dΦk
k◦;t0)y = d(Φk

k◦;t0y)

= dYt

= F kγh(Xt)Y
h
t ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Y

h
t d[X]αβt

= F kγh(Xt)Φ
k
h◦;t0y ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Φ

h
k◦;t0yd[X]αβt

= (F kγh(Xt)Φ
k
h◦;t0 ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Φ

h
k◦;t0d[X]αβt )y

(2.204)

We may therefore conclude, by arbitrarity of y ∈ Eo, that the �rst of the two RDEs holds. As for the second,
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we have

0 = dδk
◦
h◦

= d(Φk◦
k;0tΦ

k
h◦;t0)

= (dΦk◦
k;0t)Φ

k
h◦;t0 + Φk◦

k;0t(F
k
γh(Xt)Φ

h
h◦;t0 ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Φ

h
h◦;t0d[X]αβt )

(2.205)

which we rewrite as

dΦk◦
l;0t = −Φk◦

k;0t(F
k
γh(Xt)Φ

h
h◦;t0 ◦ dXγ

t + 1
2 F̃

k
(αβ)h (Xt)Φ

h
h◦;t0d[X]αβt )Φh◦

l;0t

= −Φk◦
k;0tF

k
γl(Xt) ◦ dXγ

t − 1
2Φk◦

k;0tF̃
k

(αβ)l (Xt)d[X]αβt
(2.206)

thus concluding the proof. �

For the remainder of this section we will let π = τM unless otherwise stated. An important
feature of the equation in this case is that we can integrate the inverse of the �ow map to obtain a ToM -
valued rough path. Note that, although we have not explicitly de�ned controlled integrands with values
in an arbitrary �nite-dimensional vector space V , this is done simply by choosing a basis of V and setting
DX(L(τM, V )) := DX(L(τM,Rm)) under the corresponding isomorphism V ∼= Rm (all the needed
constructions are easily seen not to depend on the choice of the basis). The next lemma states the change of
coordinate formula satis�ed by F γαβ :

Lemma 2.71.
F γ̃
αβ

= ∂γγ∂
α
α∂

β

β
F γαβ − ∂

γ
γ∂

γ

αβ
(2.207)

Proof. By (2.822.82) we have

F γ̃αβ∂
β

β
yβ = F γ̃αβy

β

= F γ̃α

= ∂γ̃
C
FCα ∂

α
α

= ∂γ̃γδ
γ
α∂

α
α + ∂γ̃

γ̃
F γ̃α∂

α
α

= ∂γ
γβ
yβδγα∂

α
α + ∂γγF

γ̃

αβ
yβ∂αα

= (∂γ
αβ
∂αα + ∂γγF

γ̃

αβ
∂αα)yβ

(2.208)

from which
F γ̃αβ∂

β

β
= ∂γ

αβ
∂αα + ∂γγF

γ̃

αβ
∂αα (2.209)

thanks to the arbitrarity of y, and we may conclude. �

As there will be we no risk of ambiguity, we shall reassign F γαβ := F γ̃αβ , and since now, in view of
Lemma 2.68Lemma 2.68, F̃ may be viewed as restricting to an element of Γ(τ∗M�2 ⊗ τ∗M ⊗ τM) it also makes sense
to set F̃ δ

(αβ)γ
:= F̃ δ̃

(αβ)γ . The tensor �eld F̃ may now be given the following interpretation: its evaluation
against (U � V ) ⊗ W consists of taking the (symmetrisation of the) defect in commutativity between co-
variant derivatives and horizontal lift, F∇UV − ∇̃FUFV and mapping its vertical part at W ∈ TM down
isomorphically onto TM .
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Proposition 2.72. Φ0· ∈ DX(L(τM, ToM)), where Φ′γ
◦

αβ;0t := −Φγ◦

γ;0tF
γ
αβ(Xt).

Proof. The local condition is satis�ed in each coordinate chart thanks to Proposition 2.70Proposition 2.70. We must check that
the compatibility condition of De�nition 2.34De�nition 2.34 is met: again, this is obvious at the trace level, and for Gubinelli
derivatives we have, by Lemma 2.71Lemma 2.71

Φ′γ
◦

αβ
= −Φγ◦

γ F
γ

αβ

= −Φγ◦

γ F
γ

αβ

= −Φγ◦
γ ∂

γ
γ (∂γδ ∂

α
α∂

β

β
F δαβ − ∂

γ
δ ∂

δ
αβ

)

= −Φγ◦
γ (∂αα∂

β

β
F γαβ − ∂

γ

αβ
)

= Φ′γ
◦

αβ ∂
α
α∂

β

β
+ Φγ◦

γ ∂
γ

αβ

(2.210)

Thus concluding the proof. �

We now restrict our attention for the last time: from now on we will consider the case in which F
is given by the horizontal lift h unless otherwise stated. This means we are interested in ∇̃-di�erentiating
horizontal vector �elds w.r.t. horizontal directions, with Condition 2.60Condition 2.60 �xing the horizontal part of such co-
variant derivatives, while Condition 2.67Condition 2.67 and the optional Condition 2.63Condition 2.63 impose limitations on their verti-
cal part. Here we should remark on the similarity with horizontal connections in sub-Riemannian geometry
[CC09CC09, De�nition 7.4.1], although our setting is more speci�c (i.e. not all sub-Riemannian manifolds arise as
the total space of a vector or even �bre bundle), and the requirements on the connection is somewhat di�erent
(on the one hand we are only interested in ∇̃U with U horizontal, and on the other also consider the vertical
components of such covariant derivatives). In coordinates

F γαβ = −Γγαβ

F̃ γ
αβδ yδ

(αβ)
= −ΓγεδΓ

ε
αβy

δ − (−Γγβδ,αy
δ + ΓεαδΓ

γ
βεy

δ

+Γ̃γ̃
ξ̃η̃

ΓξαδΓ
η
βεy

δyε + Γ̃γ̃αβ − ΓξαδΓ̃
γ̃

ξ̃β
yδ − ΓηβδΓ̃

γ̃
αη̃y

δ)

(2.211)

Note how Lemma 2.71Lemma 2.71 agrees with (2.592.59).
We are now in a position to be able to provide the natural generalisation of parallel transport of vectors

and Cartan (anti)development to the setting of non-geometric rough paths, with τTM endowed with a lin-
ear connection. Since the development of a path is not guaranteed to remain in the manifold for all time, it
will be helpful to de�ne the following variations of the rough path spaces (note the use of the double closing
parenthesis):

Cpω([0, T )],M) := Cpω([0, T ],M) ∪ {X ∈ Cpω([0, S),M) for some S ≤ T

and @ compactK ⊆M s.t.X[0,S) ⊆ K}

Cpω([0,≤ T )],M) := Cpω([0, T ],M) ∪
⋃

0≤S≤T
Cpω([0, S),M)

(2.212)

Note that C
p
ω([0, T )],M) ⊆ C

p
ω([0,≤ T )],M), and we also will use these notations when M is a vector
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space. Moreover, we will add a modi�er in the rough path sets to denote those rough paths which are started at
a speci�c point. The following notions are de�ned whenever Condition 2.60Condition 2.60 and Condition 2.67Condition 2.67 are met.

De�nition 2.73. LetX ∈ C
p
ω([0, T )],M, o). We will denote

//(X)ts := Φ(h,X)ts : TXsM
∼=−→ TXtM (2.213)

which by (2.2022.202) is well de�ned for all s, t at whichX is de�ned, and call it parallel transport of vectors along
the rough path X . We will denote //ts := //(X)ts, //t := //(X)t := //(X)t0 : ToM → TXtM and
\\t := //(X)0t = //−1

t when there is no ambiguity as to the rough path.

Remark 2.74 (There is no alternate notion of “backward parallel transport”). A rough path X canonically
de�nes a rough path

←−
X = (

←−
X,
←−
X ) above the inverted path

←−
X t := XT−t. This is done by imposing the Chen

identity to hold for all 0 ≤ s, u, t ≤ T (not just s ≤ u ≤ t), and results in
←−
X st = −XT−t,T−s +X⊗2

T−t,T−s

for 0 ≤ s ≤ t ≤ T . It is shown that ifH ∈ DX then
←−
H ∈ D←−

X
, where

←−
Ht := HT−t, and that

∫ T

0

←−
Hd
←−
X = −
∫ T

0
HdX (2.214)

at the trace level. It can then be concluded (by a uniqueness argument) thatdY = y0 +
∫

F (Y )dX

d
←−
Y = YT +
∫

F (
←−
Y )d
←−
X

=⇒
←−
Y t = YT−t (2.215)

which implies that, denoting with Φ the �ow map of the RDE de�ned byF,X and with
←−
Φ the one de�ned by

F,
←−
X ,
←−
Φ = Φ−1. Therefore, once a rough path is �xed, the de�nition of \\ given above and the one obtained

by de�ning the parallel transport RDE w.r.t.
←−
X coincide.

De�nition 2.75. LetX ∈ C
p
ω([0, T )],M, o). Using Proposition 2.72Proposition 2.72 we will denote

©(X)· :=

∫ ·

0
\\(X)sd∇Xs ∈ Cpω([0,≤ T )], ToM, 0o) (2.216)

which we call the antidevelopment ofX . IfZ =©(X) (up to the time at whichX is de�ned) we will denote
X =©(Z) and callX the development ofZ .

In coordinates (2.2162.216) amounts to

d©γ◦(X) = \\γ
◦

γ dXγ
t + 1

2\\
γ◦

γ Γγαβd[X]αβ (2.217)

For the moment we have only de�ned development of a rough path which already is the antidevelopment
of an M -valued one. If we start from an arbitraryZ ∈ C

p
ω([0, T ], ToM, 0o) with Z0 = 0o we would like to

invert De�nition 2.75De�nition 2.75 and de�ne its development as the solution to the path-dependent RDE

d∇©(Z) = //(©(Z))dZ, ©(Z)0 = o (2.218)

Heuristically, this means that in an in�nitesimal time interval [t0, t0 + dt] we are translating the di�erential
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dZt0 ∈ TZt0ToM so that it is based at the origin 0o, parallel-transporting it along the already-developed por-
tion of the rough pathX [0,t0] :=©(Z)[0,t0] so that it is now based atXt0 , and then using it to “roll ToM on
M alongZ without slipping” for time dt. The problem, of course, is that we have not de�ned such (adaptedly)
path-dependent RDEs. Moreover, it should be noted that even once this equation is given a meaning, contrary
to the case of parallel transport there is no reason why the solution should not explode (see [Dri18Dri18, Corollary
1.36] for general criteria that rule this out forX geometric).

Figure 2.1: A 2-dimensional Brownian path in T(1,0,0)S
2, plotted in dark blue, and its Stratonovich develop-

ment onto S2, plotted in light blue. The “rolling without slipping” motion is shown at the initial time (on the
left) and at a later time (on the right), with the parallel frame based at the point of contact between the tangent
space and the manifold.

The trick (already well-known for geometric rough paths) to give (2.2182.218) a meaning is to consider it jointly
with a parallel frame: this transforms the path-dependent RDE into a state-dependent one.

Theorem 2.76. LetZ ∈ C
p
ω([0, T ], ToM). ThenX =©(Z) ∈ C

p
ω([0, T ],M) (possibly up to its exit time

fromM ) if and only ifX is the unique solution to

d//γγ◦ = h
γ
αβ//

β
γ◦//

α
δ◦ ◦ dZδ◦ + 1

2 F̃ (∇̃,h) γ
αβδ //

α
α◦//

β
β◦//

δ
γ◦d[Z]α

◦β◦

= −Γγαβ//
β
γ◦//

α
δ◦ ◦ dZδ◦

+1
2

[
− ΓγεδΓ

ε
αβ//

δ
γ◦ − (−Γγβδ,α//

δ
γ◦ + ΓεαδΓ

γ
βε//

δ
γ◦

+Γ̃γ̃
ξ̃η̃

ΓξαδΓ
η
βε//

δ
γ◦//

ε
γ◦ + Γ̃γ̃αβ − ΓξαδΓ̃

γ̃

ξ̃β
//δγ◦ − ΓηβδΓ̃

γ̃
αη̃//

δ
γ◦)
]
//αα◦//

β
β◦d[Z]α

◦β◦

dXγ = //γγ◦dZ
γ◦ − 1

2Γγαβ//
α
α◦//

β
β◦d[Z]α

◦β◦

X0 = o, {//γ◦;0}γ◦=1,...,m any basis of ToM

(2.219)

with the Γ’s evaluated atXt and the Γ̃’s evaluated at //γ◦;t = //γ◦(X)t.
© therefore defines a surjective map C

p
ω([0, T ], ToM, 0o) � C

p
ω([0, T )],M, o) with right inverse

© : C
p
ω([0, T )],M, o) ↪→ C

p
ω([0,≤ T )], ToM, 0o) (composed with any map prolonging an element
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of C
p
ω([0, S), ToM, 0o) up to time T , e.g. trivially). In particular, if M is compact © takes values in

C
p
ω([0, T ],M, o), i.e. development exists for all time.

If Z is geometric this equation may be stated more elegantly as taking values in the frame bundle
φM : FM →M , and de�ned by the fundamental horizontal vector �elds (2.852.85), i.e.

dY = Hλ◦(Y )dZλ◦ , Y0 ∈ FoM =⇒ ©(Z) = φM∗Y , Y = //(X) (2.220)

In this context, compare (2.2192.219) with [Hsu02Hsu02, (3.3.9) p.86], which is stated in the case ofX a Brownian motion,
although the formula generalises to more general processes/geometric rough paths. We have decided not to
consider frame bundle-valued RDEs in the non-geometric case, since this would require de�ning a connection
on FM , which is a delicate matter (some comments to this e�ect are provided in [É90É90, p.439] in the case of
the complete lift, though these do not contain an exhaustive description of the connection on τFM ). We have
preferred to de�ne development in a coordinate-free manner by simply declaring X to be the development
ofZ ifZ is the antidevelopment ofX (as done in De�nition 2.75De�nition 2.75), and only relying on the local description
involving the parallel frame (seen as m vectors which are parallel-transported individually) as an alternative
characterisation, useful for explicit computations; in this approach only parallel transport of vectors is needed.

Proof of Theorem 2.76Theorem 2.76. By (2.2172.217)X =©(Z) means

dZγ◦

t = \\γ
◦

γ dXγ + 1
2\\

γ◦

γ Γγαβd[X]αβ, Z0 = 0o

⇒ d[Z]α
◦β◦ = \\α

◦

α \\
β◦

β d[X]αβ
(2.221)

and we have

//γγ◦dZ
γ◦ − 1

2Γγαβ//
α
α◦//

β
β◦d[Z]α

◦β◦

t

= //γγ◦\\
γ◦

δ dXδ + 1
2//

γ
γ◦\\

γ◦

δ Γδαβd[X]αβ − 1
2Γγαβ//

α
α◦//

β
β◦\\

α◦

µ \\
β◦

ν d[X]µν

= dXγ
t

(2.222)

By Proposition 2.70Proposition 2.70 and (2.2112.211) we have

d//γγ◦ = F γεδ//
δ
γ◦ ◦ dXε + 1

2 F̃
γ

(αβ)δ //δγ◦d[X]αβ

= F γεδ//
δ
γ◦dX

ε + 1
2

[
F̃ γ

(αβ)δ + ∂αF
γ
βδ + F εαδF

γ
βε

]
//δγ◦d[X]αβ

= −Γγεδ//
δ
γ◦//

ε
ε◦dZ

ε◦

+1
2

[
F̃ γ

(αβ)δ − Γγβδ,α + ΓεαδΓ
γ
βε + ΓγεδΓ

ε
αβ

]
//δγ◦//

α
α◦//

β
β◦d[X]αβ

= −Γγεδ//
δ
γ◦//

ε
ε◦ ◦ dZε◦ + 1

2 F̃
γ

(αβ)δ //δγ◦//
α
α◦//

β
β◦d[X]αβ

(2.223)

where in the last step the Gubinelli derivative of−Γγβδ(X)//δγ◦//
ε
ε◦ w.r.t.Zα is computed thanks to the previ-

ous step and (2.2222.222). Retracing these steps proves the converse. Note that we do not need to show the coordi-
nate invariance of (2.2192.219), as we have shown it is equivalent toZ =©(X), which is de�ned in De�nition 2.75De�nition 2.75
without reference to a coordinate system.

The map© is then well de�ned by uniqueness of RDE solutions applied to the (m + m2)-dimensional
system in each coordinate patch, and its right inverse is© by de�nition. It only remains to show that©(Z) is
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either de�ned up to timeT or that it is de�ned up to and excluding someS ≤ T with the image of its trace not
contained in any compact ofM . Assume (X, //) is de�ned up to timeS withX[0,S) contained in a compactK
ofM . Therefore there exists tn ↘ S s.t. limXtn = x ∈ K . We now show that for any neighbourhoodV ofx
there exists s0 s.t.X[s0,S) ⊆ V . Consider the image of (2.2192.219) (de�ned in V ) through a change of coordinates
Φ that maps the // components to a compact, and extend the resulting coe�cients smoothly. Now picking a
second neighbourhood U of x s.t. Im(U) ⊆ U , U ⊆ V , an application of Lemma 2.22Lemma 2.22 proves the claim by
picking s0 s.t. s0 < S < s0 + δ. (The change of coordinates was necessary because we need to be able to start
the equation for (X, //) at an arbitrary point in TUm.) We may then reason as in the proof of Theorem 2.69Theorem 2.69
to conclude that (X, //)[0,S) must also lie in a compact of TMm, and a second application of Lemma 2.22Lemma 2.22
(arguing as in [CDL15CDL15, Theorem 4.2]) then shows that the solution may be prolonged past S (or with its limit
if S = T ). This concludes the proof. �

The following result is proven in [É89É89, Theorem 8.22] in the case of Stratonovich parallel transport, and,
interestingly, it carries over to the non-geometric case.

Corollary 2.77. At the trace level we have

©(X)· :=

∫ ·

0
\\s ◦ dXs (2.224)

and we may replace
dXγ = //γγ◦ ◦ dZγ◦ (2.225)

for the second equation of (2.2192.219).

Remark 2.78. We emphasise that this does not mean that the (anti)development of a rough path coincides
with that of its geometrisation (including at the trace level): in (2.2242.224) parallel transport is still carried out
with reference to the original non-geometric X (and thus depends on the choice of ∇̃), and in the case of
development, the �rst equation of (2.2192.219) still has the d[Z] terms, which are not present when developing gZ .
Moreover, at the second order level Xαβst ≈ //αα◦;s//

β
β◦;sZ

α◦β◦

st locally in terms of the original rough pathZ .

Proof of Corollary 2.77Corollary 2.77. By Proposition 2.70Proposition 2.70 and (2.2172.217) we have, at the trace level

\\γ
◦

γ ◦ dX = \\γ
◦

γ dXγ
t + 1

2\\
γ◦

γ Γγαβd[X]αβ = \\γ
◦

γ d∇X
γ (2.226)

and the second claim is proved analogously by using (2.2192.219). �

IfM is Riemannian and∇ is metric we may further ask under what hypotheses the //ts’s are linear isome-
tries TXsM ∼= TXtM . The following condition does not actually require F to be given by horizontal lift,
although we will only apply it in that case.

Condition 2.79. Let g be a Riemannian metric on M and∇ be g-metric: 〈F̃ , U ⊗ U ⊗ V 〉 ∈ ΓτM is
g-orthogonal to V for allU, V ∈ ΓτM .

Note that we are not requiring ∇̃ to be metric w.r.t. a Riemannian metric on the manifold TM . The
statement of this condition in coordinates is given in the following lemma, whose proof is immediate by polar-
isation.
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Lemma 2.80. In coordinates Condition 2.79Condition 2.79 corresponds to

F̃(αβ)(γδ) = 0 (2.227)

Theorem 2.81. If Condition 2.79Condition 2.79 holds, or ifX is geometric, //(X)ts is a linear isometry for all 0 ≤ s, t ≤ T .

The following pattern has emerged: for each property (well-de�nedness, linearity, and metricity, each re-
quired at the level of generality considered) we have a �rst-order condition (respectively (2.1732.173), F linear, and
∇ g-metric — as shall be seen in the proof below) and a second order condition (respectively Condition 2.60Condition 2.60,
Condition 2.67Condition 2.67, Condition 2.79Condition 2.79). The �rst-order conditions are necessary when considering the geometric (or
even smooth) case, whereas the second-order conditions become relevant once the driving rough path is no
longer geometric. All three conditions are automatically satis�ed when Condition 2.63Condition 2.63 holds.

Proof of Theorem 2.81Theorem 2.81. We may assume s = 0; then for y, z ∈ ToM by Proposition 2.70Proposition 2.70 we have

d〈g(X), //α◦ ⊗ //β◦〉

= d(gαβ//
α
α◦//

β
β◦)

= gαβ,γ//
α
α◦//

β
β◦ ◦ dXγ

+gαβ//
δ
α◦//

β
β◦(−Γαγδ ◦ dXγ + 1

2 F̃
α

(ξη)δ d[X]ξη)

+gαβ//
α
α◦//

δ
β◦(−Γβγδ ◦ dXγ + 1

2 F̃
β

(ξη)δ d[X]ξη)

= //αα◦//
β
β◦
[
(gαβ,γ − gαδΓ

δ
γβ − gδβΓδγα) ◦ dXγ + F̃(ξη)(αβ) d[X]ξη

]
(2.228)

which vanishes by metricity of∇, (2.612.61) and Condition 2.79Condition 2.79 or by vanishing of the bracket in the case of X
geometric (note how by Theorem 2.6Theorem 2.6 the hypotheses are sharp in the case ofX truly rough). �

We will now provide three examples of connections ∇̃ on τM which it makes sense to consider. The �rst
two, for which we refer to [YI73YI73], can be viewed as “lifts” of the connection ∇ (which is not assumed to be
metric or torsion-free), while the third consists of assumingM is Riemannian, de�ning a Riemannian metric
on the manifold TM , and taking its Levi-Civita connection.

Example 2.82 (The complete lift of∇). The complete lift ∇̃ of∇ is the linear connection on τTM whose
Christo�el symbols in induced coordinates are given as functions of the Christo�el symbols Γkij of∇w.r.t. to
ϕ as follows:

Γ̃γαβ(x, y) = Γγαβ(x), Γ̃γ
αβ̃

(x, y) = Γ̃γα̃β(x, y) = Γ̃γ
α̃β̃

(x, y) = 0

Γ̃γ̃αβ(x, y) = ∂λΓγαβ(x)yλ, Γ̃γ̃
αβ̃

(x, y) = Γγαβ(x), Γ̃γ̃α̃β(x, y) = Γγαβ(x), Γ̃γ̃
α̃β̃

(x, y) = 0
(2.229)

From these and Example 2.30Example 2.30 it follows that τM is an a�ne map w.r.t. ∇̃, ∇. This connection admits the
following simple description: having de�ned the complete lift of V ∈ ΓτM as Ṽ ∈ ΓτTM given in induced
coordinates by

Ṽ γ(x, y) := V γ(x), Ṽ γ̃(x, y) := yλ∂λV
γ(x) (2.230)

(this is checked to be a sound de�nition; note that no further connection is needed to perform this lift) ∇̃ is
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characterised by the condition
∇̃
Ũ
Ṽ = ∇̃UV , U, V ∈ ΓτM (2.231)

We will only need the local description of ∇̃. However, we remark that the complete lift can be extended to
tensor �elds, and in particular to Riemannian metrics g, thus yielding a pseudo-Riemannian metric g̃onTM
(with metric signature (m,m)) whose components are given by(

g̃αβ g
αβ̃

gα̃β g
α̃β̃

)
(x, y) =

(
∂λgαβ(x)yλ gαβ(x)

gαβ(x) 0

)
(2.232)

If∇ is g-metric, then ∇̃ is g̃-metric, and if∇ is torsion-free then so is ∇̃; therefore g̃∇ = g̃∇. In general, ∇̃
has the property that its geodesics are given by the Jacobi �elds of∇.

It is easily checked using the theory in this section that Condition 2.60Condition 2.60 and Condition 2.67Condition 2.67 are satis�ed for
all F in the case of the complete lift, and in the case of parallel transport with∇ torsion-free we have

F̃ γ
αβδ = R

γ
αδβ (2.233)

Condition 2.79Condition 2.79, however, is not satis�ed even when∇ is Levi-Civita, since

F̃(αβ)(δγ) = 1
4(Rαδβγ + Rβδαγ + Rαγβδ + Rβγαδ)

= 1
2(Rαδβγ + Rαγβδ)

(2.234)

which does not vanish in general. The resulting parallel transport equation was �rst studied, for semimartin-
gales, in [DG78DG78] and subsequently in [Mey82Mey82, (27)] (we caution the reader that the convention regarding the
indices of the curvature tensor di�er from the ones used in (2.652.65)), and it was realised in [É90É90, p.437] that this
type of parallel transport �ts into the framework of SDEs of the type de�ned in De�nition 2.42De�nition 2.42.

Example 2.83 (The horizontal lift of∇). The second lift of a connection which we examine is the horizontal
lift of∇, which we also denote ∇̃ (ambiguity will easily be avoided, since we will always use each connection
separately). Its Christo�el symbols in induced coordinates are similar to those of the complete lift, with one
important di�erence:

Γ̃γαβ(x, y) = Γγαβ(x), Γ̃γ
αβ̃

(x, y) = Γ̃γα̃β(x, y) = Γ̃γ
α̃β̃

(x, y) = Γ̃γ̃
α̃β̃

(x, y) = 0

Γ̃γ̃αβ(x, y) = (∂λΓγαβ −R
γ

λαβ )(x)yλ, Γ̃γ̃
αβ̃

(x, y) = Γγαβ(x), Γ̃γ̃α̃β(x, y) = Γγαβ(x)
(2.235)

As for the complete lift, τM is an a�ne map w.r.t. ∇̃,∇; the extra term appearing in Γ̃γ̃αβ , however, causes ∇̃
to have non-vanishing torsion in general even if∇ is torsion-free. Just as for the complete lift, the horizontal
lift of a connection is motivated by a broader construction which involves lifting other objects de�ned onM ,
such as vector �elds. However, unlike the case of the complete lift, these lifts require a connection on τM to
begin with, and are performed in a way which is related to (2.772.77); we do not provide more details here. If∇ is
g-metric, then ∇̃ is g̃-metric, where g̃ is the pseudo-Riemannian metric (2.2322.232) (although, unlike the case of
the complete lift, g̃∇ 6= g̃∇ because the former has torsion in general). The characterisation of geodesics of
the horizontal lift of a connection is more complicated than that of its complete lift, but it still holds that τM
maps ∇̃-geodesics to∇-geodesics. Moreover, it holds that horizontal lifts of geodesics (namely curves in TM
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above geodesics whose tangent vectors are horizontal, i.e. parallel transports above geodesics) de�ne geodesics
w.r.t. the horizontal lift: this is seen from [YI73YI73, (9.4) p.115].

Like the complete lift, the horizontal lift results in Condition 2.60Condition 2.60 and Condition 2.67Condition 2.67 being satis�ed for all
F , but in the case of F given by horizontal lift it additionally satis�es Condition 2.63Condition 2.63. Therefore the resulting
parallel transport is, at the trace level, the same as geometric/Stratonovich parallel transport, a conclusion which
is also noted in [Mey82Mey82, É90É90].

Example 2.84 (The Sasaki metric). Let gbe a Riemannian metric onM . We can lift g to a Riemannian metric
g̃on TM , called the Sasaki metric in the following way: recalling the notations introduced in Subsection 2.2.1Subsection 2.2.1
for vertical and horizontal bundles, we declare for allU(x) ∈ TxM

VU(x)τM ⊥HU(x), g̃|VU(x)τM := (v(U(x))−1)∗g, g̃|HU(x)
:= (h(U(x))−1)∗g (2.236)

In induced coordinates, this is amounts to(
g̃αβ g̃

αβ̃

g̃α̃β g̃
α̃β̃

)
(x, y) =

(
gαβ(x) + gδεΓ

δ
µαΓενβ(x)yµyν Γγαλgγβ(x)yλ

Γγλβgαγ(x)yλ gαβ(x)

)
(2.237)

and (
g̃αβ g̃αβ̃

g̃α̃β g̃α̃β̃

)
(x, y) =

(
gαβ(x) −Γβλγg

αγ(x)yλ

−Γαγλg
γβ(x)yλ gαβ(x) + gδεΓαδµΓβεν(x)yµyν

)
(2.238)

where the Γ’s are the Christo�el symbols of g∇. The horizontal lift of g∇ is g̃-metric, but does not coincide
with g̃∇ due to torsion. We will call g̃∇ the Sasaki lift of g∇ (even though, strictly speaking, it is the metric
that we are lifting). The Christo�el symbols of g̃∇ in induced coordinates have more complex expressions than
the ones for the other two lifts of connections, and are given as functions of the Christo�el symbols of g∇ and
of the components of its curvature tensor by

Γ̃γαβ(x, y) = Γγαβ(x) + 1
2(R γ

µδα Γδλβ + R
γ

µδβ Γδαλ)(x)yλyµ

Γ̃γα̃β(x, y) = 1
2R

γ
λαβ (x)yλ, Γ̃γ

αβ̃
(x, y) = 1

2R
γ

λβα (x)yλ, Γ̃γ
α̃β̃

(x, y) = Γγ̃
α̃β̃

(x, y) = 0

Γ̃γ̃αβ(x, y) = 1
2(R γ

αλβ + R
γ

βλα + 2∂λΓγαβ)(x)yλ

+1
2Γγνδ(R

δ
εµα Γελβ + R δ

εµβ Γεαλ)(x)yλyµyν

Γ̃γ̃α̃β(x, y) = Γγαβ(x)− 1
2ΓγµδR

δ
λαβ (x)yλyµ,

Γ̃γ̃
αβ̃

(x, y) = Γγαβ(x)− 1
2ΓγµδR

δ
λβα (x)yλyµ

(2.239)

These symbols are taken from [Sas58Sas58] with one important caveat: the R δ
αβγ ’s therein have been transcribed

into R δ
γβα ’s here. This is because the author follows a di�erent ordering in the coordinate expression of the

curvature tensor. This convention is not stated in the paper, but it can be deduced by computing any one of
the Christo�el symbols involving a curvature term. This check can be performed by using the fact that the
horizontal lift of∇ is ĝ-metric and (2.632.63). Let T̃denote the torsion tensor of the horizontal lift of∇: its only
non-zero component is given by

T̃
γ̃
αβ (x, y) = (R γ

λβα −R
γ

λαβ )(x)yλ (2.240)
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Thus T̃ γ

α β̃
(x, y) = 0 and, performing index gymnastics w.r.t. g̃ and using (2.662.66), (2.672.67), (2.682.68) and (2.692.69)

we obtain

T̃
γ

α̃ β (x, y) = ĝα̃ε̃ĝ
γδ(x, y)(R ε

λβδ −R ε
λδβ )(x)yλ

= gαεg
γδ(R ε

λβδ −R ε
λδβ )(x)yλ

= gαεg
γδ(R ε

λβδ + R ε
δλβ )(x)yλ

= −gαεgγδR ε
βδλ (x)yλ

= −gγδRβδλα(x)yλ

= −gγδRλαβδ(x)yλ

= −R γ
λαβ (x)yλ

(2.241)

Then, since K̃γ
α̃β = 1

2 T̃
γ

α̃ β (where K is the contorsion tensor de�ned in (2.632.63)), (2.2352.235) yield the value of
Γ̃γα̃β in (2.2392.239). Similarly to the case of the horizontal lift of a connection, the horizontal lift of a Riemannian
geodesic is a geodesic w.r.t. Sasaki metric.

“Sasaki parallel transport” has not, to our knowledge, been considered in the literature. Like for the hor-
izontal lift, Condition 2.63Condition 2.63 is satis�ed w.r.t. to the Sasaki lift of∇ when F is given by horizontal lift, and the
resulting de�nition of parallel transport is therefore equivalent to the geometrised one. However, unlike the
complete and horizontal lifts, Condition 2.60Condition 2.60 cannot be expected to hold for general F , since the Sasaki lift
does not make τM symmetrically a�ne: this can be seen, again with reference to Example 2.30Example 2.30, by noting that,
for instance Γ̃γα̃β(x, y) = 1

2R
γ

λαβ (x)yλ is not, in general, antisymmetric inα, β. This means we may not, in
general, de�ne arbitrary equations (2.1722.172) whenE = TM is given the Sasaki lift of∇.

Example 2.85 (Local martingales and Brownian motion). It is well known that Stratonovich
(anti)development preserves local martingales and if M is Riemannian it preserves Brownian motions.
In our setting the �rst statement always holds in all cases (assuming Condition 2.60Condition 2.60 and Condition 2.67Condition 2.67 hold,
so that (anti)development is de�ned), as can be easily seen from the local characterisation of manifold-valued
martingales (2.1302.130), and the local expressions (2.2172.217), (2.2192.219). This is also observed (by a di�erent argument) in
[É90É90, p.440].

As for the preservation of Brownian motion, we �rst recall that the Levy criterion on manifolds [É89É89,
Proposition 5.18] immediately implies the following local characterisation of Brownian motion of a Rieman-
nian manifold (M,g): X is a Brownian motion onM if and only if it is a local martingale and

d[X]αβ = gαβ(X)dt (2.242)

IfZ is a ToM -valued Brownian motion, then if Condition 2.79Condition 2.79 holds, we have forX = d©(Z)

d[X]αβ = //αα◦//
β
β◦d[Z]α

◦β◦ = //αα◦//
β
β◦δ

α◦β◦dt = gαβ(X)dt (2.243)

where the last identity holds thanks to the fact that gα◦β◦(o) = δα
◦β◦ and Theorem 2.81Theorem 2.81. That antidevelop-

ment maps Brownian motions to Brownian motions under the same hypotheses is checked analogously.
We may therefore conclude that (anti)development de�ned w.r.t. the complete, horizontal and Sasaki lifts

to preserve local martingales, but only that de�ned w.r.t. the horizontal and Sasaki lifts to preserve Brownian
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motion.
We also note that we should expect (anti)development taken w.r.t. two di�erent ∇̃’s to be di�erent path-

wise, even when both satisfy the linearity and metricity conditions. For Brownian motion this might mean that
the law of the (anti)developments coincide (i.e. they are both Brownian motions), despite the paths de�ned by
the same stateω ∈ Ω being di�erent. Another way of generating pathwise-distinct Brownian motions through
(anti)development of the same Brownian motion is by adding a contorsion term (see Remark 2.27Remark 2.27) to the Levi-
Civita connection∇ and taking Stratonovich development. In general, by the Itô isometry the cross-covariance
matrix of the Itô antidevelopments 1©(X) and 2©(X) of the sameM -valued semimartingaleX taken w.r.t.
1∇, 1∇̃ on the one hand and 2∇, 2∇̃ on the other is given byE[1©α◦(X)2©β◦(X)] = E[

∫

1\\α
◦

α
2\\β

◦

β d[X]αβ],
with k\\, k = 1, 2 denoting the respective parallel transports aboveX .

Example 2.86 (// along Brownian motion on Einstein manifolds w.r.t. the complete lift). We assume (M,g)

is an Einstein manifold, i.e. a Riemannian manifold whose Ricci tensor is proportional to the metric tensor,
Rαβ = λgαβ withλ ∈ R (the best known such example is the sphere, in all dimensions). LetZ be a Brownian
motion on ToM and X its Stratonovich development, an M -valued Brownian motion, and we compare the
behaviour of Stratonovich parallel transport //(X) with parallel transport de�ned w.r.t. to the complete lift ∇̃
of the Levi-Civita connection∇, which we denote /̃/(X). By proceeding as in the proof ofTheorem 2.81Theorem 2.81 and
Example 2.85Example 2.85 we compute

dg(//α◦ , /̃/β◦) = 1
2gαβ//

α
α◦R

β
ξγη /̃/

γ

β◦g
ξηdt

= −1
2Rαβ//

α
α◦ /̃/

β

β◦dt

= −λ
2 g(//α◦ , /̃/β◦)dt

(2.244)

which implies g(//α◦ , /̃/β◦) = exp(−λt/2)δα
◦β◦ , and similarly g(/̃/α◦ , /̃/β◦) = exp(−λt)δα◦β◦ . In

other words /̃/(X) preserves orthogonality, but not orthonormality, since it consists of a scaling by the above
exponential factor. Note that this behaviour of /̃/ can only be expected to hold along the Brownian mo-
tion X , and not along X̃ := ©̃(Z), the development of Z taken according to the complete lift of ∇̃,
which is not in general a Brownian motion (even given the Einstein assumption): this can be seen by writ-

ing dX̃ =
∑

γ◦ /̃/
α

γ◦(X̃)/̃/
β

γ◦(X̃)dt and by showing that the SDE satis�ed by
∑

γ◦ /̃/
α

γ◦(X̃)/̃/
β

γ◦(X̃) has an
extra drift term when compared to that satis�ed by gαβ(X̃).

Example 2.87 (Linearising rough integrals and rewriting Driver’s integration by parts formula). Antidevelop-
ment can be used to write rough integrals againstM -valued rough paths as ones against ToM -valued ones. Let
X ∈ C

p
ω([0, T ],M, o) andH ∈ DX(L(τM,Re)). Then it is checked that

//∗H = ((//∗H)cγ◦ , (//
∗H)′cα◦β◦) := (Hc

γ//
γ
γ◦ , H

′c
αβ//

α
α◦//

β
β◦ −H

c
γΓγαβ//

α
α◦//

β
β◦)

∈ DZ(L(ToM,Re))
(2.245)

withZ :=©(X) (independently of the chart used for the coordinates α, β, γ) and that
∫

Hd∇X =

∫

//∗Hd©(X) (2.246)

Note how, in particular, this is independent of the connection ∇̃ on τTM used to de�ne // and©. Now,
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assume that M is Riemannian, ∇ is metric and Condition 2.79Condition 2.79 holds. Then for P ∈ DX(τM⊕e), and
referring to Example 2.41Example 2.41 for the notation

∫

g(P , d∇X) =

∫

P [d∇X

=

∫

//∗P [d©(X)

=

∫

(\\P )[d©(X)

=

∫

\\P · d©(X)

(2.247)

where the dot product denotes the metric at o and

\\P =
(
(\\P )γ

◦
, (\\P )′β

◦

α◦ ) := (\\γ
◦

γ P
γ ,
∑

β,η(Γ
β
ξη\\

β◦

η //
ξ
α◦P

β + \\β
◦

β P
β
α //αα◦)

)
(2.248)

The converses of these statements, i.e.
∫

KdZ =

∫

\\∗Kd©(X),

∫

Q · dZ =

∫

g(//Q, d©(Z))

with \\∗K = ((\\∗K)γ , (\\∗K)αβ) := (Kγ◦\\γ
◦

γ ,Kα◦β◦\\α
◦

α \\
β◦

β +Kβ◦
∑

η Γβαη//
β◦
η )

and //Q =
(
(//Q)γ , (//Q)βα

)
:= (//γγ◦Q

γ◦ ,Γβαη//
η
β◦Q

β◦ + //ββ◦Q
β◦

α◦\\
α◦

α )

forK ∈ DZ(L(ToM,Re)), Q ∈ DZ(ToM
⊕e)

(2.249)

are similarly shown to hold.
As an application of the latter, we show how the integration by parts formula [Dri04Dri04, Theorem 7.32] can be

rewritten as an Itô integral onM . LetZ be aToM -valued Brownian motion,X its Stratonovich development,
H a Cameron-Martin process above X , h := \\H with h =

∫

udt, U := //u (for the precise terminology
pertaining to curved Wiener space see the above reference). Then we may write the integration by parts formula,
i.e. a formula for the adjoint of the gradient operator

D∗H =

∫ (
u· +

1

2
\\·γR

γ
β (X)//ββ◦h

β◦
)
· dZ

=

∫

g
(
U +

1

2
R·γ (X)Hγ ,d∇X

) (2.250)

as an Itô integral on M . Moreover, if u admits a Gubinelli derivative w.r.t. Z , so does U w.r.t. X , and
Example 2.40Example 2.40, Example 2.41Example 2.41 may be combined to yield the expression of this as a Stratonovich integral onM ,
plus a correction term involving the covariant derivative of Ricci tensor.
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Example 2.88 (Torsion). In general, RDEs of the form De�nition 2.42De�nition 2.42 are independent of the torsion of the
connections on the source and target manifolds. For parallel transport, however, torsion of∇ directly a�ects
the �eld F = h that de�nes the RDE, and to that extent it in�uences the de�nition of // and therefore that
of© and© (both for the trace and second order levels of the rough paths considered). The torsion of ∇̃,

instead, plays no role. To exhibit the relevance of torsion for parallel transport and devel-

Figure 2.2

opment we need only focus on smooth paths. TakeM = R3 with its canonical coordi-
nates, and∇ with constant Christo�el symbols Γ1

23 = 1 = −Γ1
32, Γ2

31 = 1 = −Γ2
13,

Γ3
12 = 1 = −Γ3

21 and Γkij = 0 otherwise. This connection has the same geodesics as the
Euclidean connection (straight lines), but, as described in [uaua], parallel transport along
geodesics looks like a spinning rugby ball, as illustrated in Figure 2.2Figure 2.2 for an orthonormal
frame. While the Euclidean connection and∇ agree on geodesics, they de�ne di�erent
notions of developments: identifying T0R3 = R3 we have© = 1 according to the
former, while this is not the case for the latter, as shown in Figure 2.3Figure 2.3.

Figure 2.3: This �gure relates to Example 2.88Example 2.88. The two plots are analogous to those of Figure 2.1Figure 2.1, with the
manifold in question being R3, endowed with the connection de�ned above, and the path being developed (in
dark blue) is the parametrised smooth curveXt := (2t cos(t), 10 sin(t), 3t). The two copiesM and T0M of
R3 are superimposed, with coinciding axes in the �rst plot. We observe how the two curves are not identical,
which would be the case if the connection on R3 were the Euclidean one. Also note how X and©(X) are
tangent curves at their point of contact.
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Example 2.89. In this example we con�ne ourselves to geometric/Stratonovich development, and we consider
the question of whether, given a sub-vector space P ⊆ ToM , there exists a submanifoldN ⊆ M of the same
dimension as P and tangent to it at o, at least de�ned in a neighbourhood of o, with the property that for all
P -valued (rough) paths Z taking values in P and starting at 0o,©(Z) is valued in N . Since this must hold
when Z is a straight line, and since straight lines develop to geodesics, if suchN exists it must (at least locally)
be given by exp(P ). More generally, segments of a�ne line segments also develop to geodesic segments, and
considering the case ofZ a piecewise linear path leads to the conclusion that exp(P ) must be a totally-geodesic
submanifold ofM , since it must contain every piecewise geodesic path started at o.

At the other extreme, we may be interested in showing that, when Z is a P -valued Brownian motion,
©(Z) admits a density w.r.t. to a (hence any) Lebesgue measure onM . IfP = ToM we should expect this to
hold in view of the fact that the vectors TyφM(Hλ◦(y)) (with φM the projection map of frame bundle) span
TxM for any y ∈ FxM . Now let P be of dimension k < m. It is possible to show that the �rst two orders
of the iterated Lie brackets of the fundamental horizontal vector �elds, projected down onto TM , are given
respectively by torsion and curvature:

TyφM
γ [Hµ◦ ,Hν◦ ] = T

γ
βα(x)y(α,µ◦)y(β,ν◦)

TyφM
γ [Hλ◦ , [Hµ◦ ,Hν◦ ]] = R

γ
αβδ (x)y(α,µ◦)y(β,ν◦)y(δ,λ◦)

(2.251)

What is needed, in concrete cases, to conclude that©(Z) admits a smooth density is a version of the Hörman-
der condition which, stated in coordinates, only applies to the �rst e1 components of an (e1 +e2)-dimensional
SDE dY = Fγ(Y )dZγ , and correspondingly only requires that Lie(Fγ : γ = 1, . . . , d)(y) span Re1 . This
is because we are only interested in the existence of the density of©(Z), and not of the parallel frame above
it, with which the development SDE is jointly written. The full solution is not going to admit a density in the
frame bundle in general, regardless of the dimension of the Brownian motion: for example, if∇ is Rieman-
nian the parallel frame will be constrained to the orthonormal frame bundle. Even restricting to orthonormal
frames, it is not clear to us that a density exists for arbitrary stochastic processes (a rather degenerate counterex-
ample goes as follows: take M = R2 and take the stochastic process given by a random straight line out of
the origin: the orthonormal basis will then be constant). See Figure 2.4Figure 2.4 for an example of what this condition
holding at di�erent orders or not holding looks like. Note that there are possible intermediate answers to the
questions above, i.e. there may be a submanifoldN of dimension anywhere between that of P and that ofM
which contains all developments of P -valued rough paths. In view of [CF10CF10] we can expect all these consider-
ations, once made rigorous, to carry over to the case of Gaussian RDEs.
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Figure 2.4: The purpose of these plots is the study of di�erent behaviours of the development of a 2-dimensional
Brownian motion within a 3-dimensional manifold M , speci�cally with regards to the question of whether
it remains constrained to a 2 dimensional submanifold, or whether it admits a density. In the upper left we
are considering M = R3 with the antisymmetric connection of Example 2.88Example 2.88, while in the other three cases
M = R3\{0}with the connection whose Christo�el symbols are given by taking those for the Euclidean met-
ric, written in spherical coordinates, and setting the Γr’s to zero (the geodesics in this connection are therefore
circles centred at the origin and rays out of the origin, andM admits the foliation into the a�ne submanifolds
given by concentric 2-spheres centred at the origin). In each case we have plotted one 2-dimensional Brown-
ian path valued in some subplane P of ToM (in dark blue), its development onto M (in light blue), a cloud
of∼ 500 points consisting of the developments of the Brownian motion at a terminal time (in green; for im-
proved visibility this time is less than the terminal time of the blue paths), and the locally nondegenerate surface
parametrised by the exponential map applied to P . In the �rst case o is the origin and P = exp(P ) is just the
xy-plane, and we see how the point cloud (as well as the developed path) takes up three-dimensional space well:
this is consistent with the Hörmander condition being satis�ed at order 1, thanks to torsion (2.2512.251). In the other
three plots o = (1, 0, 0) andP is a plane intersecting the xy-plane in the line (0, t, 0) and with di�erent incli-
nations w.r.t. the z-axis: π/4 in the upper right, 0 in the bottom left and π/2 in the bottom right (this means
in latter two cases P is respectively tangent to the unit sphere, and coincides with the xy-plane). Note that
we have rotated the plots for improved visibility of all the components. In the plot on the upper right we see
how the point cloud and the developed path do not quite adhere to exp(P ), consistent with the Hörmander
condition being satis�ed at order 2, thanks to curvature, but not at order 1, since the connection is torsion-free.
In the other two cases exp(P ) is an a�ne submanifold of M (in the �rst case a sphere with the Levi-Civita
connection — a leaf in the aforementioned foliation — and in the second case the punctured xy-plane with a
non-Euclidean connection), and therefore development remains constrained to the surface plotted in orange,
and does not admit a density w.r.t. 3-dimensional Lebesgue measure.

Conclusions and further directions

In this chapter we have developed the basic theory of non-geometric rough paths on manifolds, both in the
intrinsic and extrinsic frameworks, and shown how the classical notions of parallel transport and Cartan devel-
opment carry over in a natural manner, but with non-trivial modi�cation, to our setting.

We believe a couple of topics of the last section deserve closer attention. It would be interesting to explore
additional examples of connections on τTM which may result in de�nitions of parallel transport di�erent
from the geometric/Stratonovich one: the Levi-Civita connection of the Cheeger-Gromoll metric [MT88MT88] and
the connections de�ned in [AT03AT03, §5] could be worthwhile to test. Secondly, we would like to study the laws of
developments of positive codimension Brownian motion, as discussed in Example 2.89Example 2.89, and to formulate the
version of Hörmander’s theorem necessary to show (in certain cases) the existence of the density.
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3
A combinatorial approach to geometric
rough paths and their controlled paths

Project status. This a chapter consists of a paper, written jointly with Thomas Cass, Christian Litterer and
Bruce Driver, an almost identical version of which has very recently been accepted for publication in the Journal
of the London Mathematical Society.

Introduction

In this chapter we use algebraic and combinatorial methods to explore the basic structure theory of weakly
geometric rough paths of arbitrary roughness. Our approach allows us to work directly with the rough paths
and leads to a clean separation of analysis and algebra, yielding explicit combinatorial descriptions of the result-
ing objects. The theory of geometric rough paths is well known and is usually deduced from the corresponding
properties of the (lifts of) smooth paths, by taking closures in a suitable rough path metric. In �nite dimensions,
this means that identities for geometric rough paths readily extend to the weakly geometric setting. However,
this extension is predicated on the close relation of weakly geometric and geometric rough paths established by
Friz and Victoir [FV10bFV10b] for paths with values in �nite-dimensional spaces. It is presently not clear if a similar
relation holds in in�nite dimensions. Similarly, the smooth approximation arguments are not available when
studying more general branched rough paths.

Another goal of this chapter is to unify Lyons’s original approach and Gubinelli’s “linearised” version
[Gub04Gub04] which deals with controlled rough paths, or controlled paths as we call them here, to avoid ambi-
guity. This is widely considered to be the most general and modern approach to rough path theory. Many
fundamental results, such as the de�nition and convergence of controlled-rough integrals, are not present in
the literature, stated in this setting. The fact that we work with controlled paths provides further motivation
to avoid smooth approximation: controlled paths are only indirectly de�ned in terms of their reference rough
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path, and a smooth approximation of the rough path does not automatically yield one of the controlled path.
The structure theory for [2, 3) 3 p-rough paths is well known [FH14FH14] and has been developed with the

manifold-valued theory in mind [CDL15CDL15]. These identities, however, do not extend in a straightforward man-
ner to more irregular geometric rough paths. The most important example is the formula for the rough path
lift of an controlled path. The idea of lifting controlled paths goes back to Gubinelli, who obtained an induc-
tive formula valid for branched rough paths [Gub10Gub10, Remark 8.7]. The closed-form formula involving ordered
shu�es �rst appeared in [LCL07LCL07], but is not stated in the controlled setting and is not maximally general, as it
is only stated for integrals of symmetric Lip(γ−1) functions. Our de�nition and proof works for an arbitrary
controlled path, without assumptions on the symmetries of the derivatives, which are not present, for instance,
in general RDE solutions. Many other identities involving rough and controlled paths follow from this, and
lay the groundwork for the basic theory of arbitrarily irregular geometric rough paths on manifolds. Although
the fact that we are dealing with geometric rough paths means that many of the identities involving integration
will resemble their counterparts in ordinary calculus, the underlying rough path theory that makes it possible
to prove them requires some combinatorics which is, at times, quite complex. For this reason, we have made
it a priority to state all results in a clear, coordinate-free manner, without resorting to the coordinate notation
that is used only in some of the proofs. This way, our formulae can more easily be referenced, and extended to
new settings, such as in�nite-dimensional vector spaces.

The chapter is structured as follows: in Section 3.1Section 3.1 we introduce algebraic preliminaries and notations, in
particular the shu�e and ordered shu�e, and prove two technical lemmas that will be needed in the next sec-
tion. Section 3.2Section 3.2 is the main section, in which we prove the fundamental structural identities of geometric
rough path theory, such as associativity of rough integration. In Section 3.3Section 3.3 we give a very brief account of how
the results of the previous can be used to transfer the theory of rough paths to manifolds, both in the intrinsic
and extrinsic frameworks, and in Conclusions and further directionsConclusions and further directions we mention a couple of extensions/appli-
cations that could follow from the work of this chapter.

3.1 Tensor bialgebras

We begin with a concise review of bialgebras de�ned on tensor algebras, for which we refer to [Man06Man06, Chapter
I] [Wei18Wei18, Chapter 2]. Given n1, . . . , nm ∈ N (which may be 0) we de�ne Sh(n1, . . . , nm) to be the subset
of the permutation group Sn1+...+nm of (n1, . . . , nm)-shuffles, i.e. permutations σ with the property that

σ(n1 + . . .+ ni−1 + 1) < σ(n1 + . . .+ ni−1 + 2) < . . . < σ(n1 + . . .+ ni) (3.1)

for i = 1, . . . ,m (with n0 := 0). We will additionally call σ an (n1, . . . , nm)-ordered shuffle if

σ(n1) ≤ σ(n1 + n2) ≤ . . . ≤ σ(n1 + . . .+ nm) (3.2)

and we denote the set of these with Sh(n1, . . . , nm). If ni = 0 for some i we have
Sh(n1, . . . , nm) = Sh(n1, . . . , n̂i, . . . , nm), Sh(n1, . . . , nm) = Sh(n1, . . . , n̂i, . . . , nm) (with ̂
denoting omission).

In this chapter the letters U, V,W, . . . will always be �nite-dimensional R-vector spaces. Given such a
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vector space V , a permutation σ ∈ Sn induces a linear isomorphism

σ∗ : V ⊗n → V ⊗n, v1 ⊗ · · · ⊗ vn 7→ vσ(1) ⊗ · · · ⊗ vσ(n) (3.3)

If {ei}i∈I is a basis of V we may write a ∈ V ⊗n uniquely as a(i1,...,in)ei1 ⊗ · · · ⊗ ein =: aiei where there is
a sum on the ordered n-tuple of basis indices i := (i1, . . . , in) (following the Einstein convention), and

σ∗(a) = aieσ∗i = aσ
−1
∗ jej

where
ρ∗i := (iρ(1), . . . , iρ(n)) for ρ ∈ Sn (3.4)

We let I• :=
⋃
n∈N I

n be the set of I-valued tuples; this includes the empty tuple (), and we use I•∗ to denote
the set of all such non-empty tuples. We will sometimes identify a tuple (k1, . . . , kn) with the corresponding
tensor ek1 ⊗ · · · ⊗ ekn according to the chosen basis. Note that σ−1

∗ i is the tuple obtained by “permuting i
according to σ”, e.g. if

σ =

(
1 2 3 4 5
1 3 5 2 4

)
∈ Sh(3, 2), σ−1 =

(
1 2 3 4 5
1 4 2 5 3

)
∈ S5

then
σ−1
∗ (i1, i2, i3, i4, i5) = (i1, i4, i2, i5, i3)

Note that the composition rule (both for tensors and tuples) is

(σ ◦ ρ)∗ = ρ∗σ∗ (3.5)

Indeed, denotingwk := vσ(k) we have

(σ ◦ ρ)∗(v1 ⊗ · · · ⊗ vn) = vσ(ρ(1)) ⊗ · · · ⊗ vσ(ρ(n))

= wρ(1) ⊗ · · · ⊗ wρ(n)

= ρ∗(w1 ⊗ · · · ⊗ wn)

= ρ∗σ∗(v1 ⊗ · · · ⊗ vn)

For a tuple i = (i1, . . . , in) we will denote |i| := n its length, and given two tuples i, j we write ij for their
concatenation. We will denote T (V ) :=

⊕∞
n=0 V

⊗n and for a ∈ T (V ), with an its projection onto V ⊗n;
this has a distinct meaning to the notation ai for tuples i ∈ I•, explained above. When we are considering the
tensor products of the dual V ∗ of a vector space V , or more generally the space of linear mapsL(V,W ) from
V to another vector spaceW , we will replace superscripts with subscripts and vice-versa.

We denote by (T (V ),⊗,∆�) the tensor bialgebra of V , i.e. the product is given by the ordinary tensor
product, which in coordinates reads

(a⊗ b)k =
∑
ij=k

aibj (3.6)
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and the shuffle coproduct is de�ned on elementary tensors (and extended linearly) as

∆� : T (V )→ T (V )� T (V )

v1 ⊗ · · · ⊗ vn 7→
∑

k=0,...,n
σ∈Sh(k,n−k)

(vσ(1) ⊗ · · · ⊗ vσ(k))� (vσ(k+1) ⊗ · · · ⊗ vσ(n)) (3.7)

Here use the symbol� to denote external tensor product, reserving⊗ for the algebra product. In coordinates
this reads, for a ∈ T (V )

(∆�a)i,j =
∑

σ∈Sh(|i|,|j|)
k=σ−1

∗ (ij)

ak =:
∑

k∈Sh(i,j)

ak (3.8)

where i denotes the index of the �rst �-factor and j that of the second. In order to give a precise meaning
to Sh(i, j) we must introduce multiset notation. Recall that a multiset is like a set (in that the order of its
elements is not taken into account), but with the di�erence that the same element may appear more than once;
we will denote multisets with double braces, e.g. {{1, 2, 2, 2, 3, 3}}. IfA andB are multisets we writeA ⊆ B
if each element of A belongs to B counted with its multiplicity, e.g. {{2, 2, 3, 3}} ⊆ {{1, 2, 2, 2, 3, 3}} but
{{1, 1, 2, 2, 3, 3}} 6⊆ {{1, 2, 2, 2, 3, 3}}, and A = B is de�ned to mean A ⊆ B and B ⊆ A. With this in
mind, we are de�ning

Sh(i, j) := {{σ−1
∗ (ij) | σ ∈ Sh(|i|, |j|)}} (3.9)

This means that the tuplek appears as many times as there areσ’s with the property thatk = σ−1
∗ (ij). Similar

multisets will be de�ned without explicit mention from now on.
The bialgebra that is graded dual to (T (V ),⊗,∆�) is given by (T (V ∗),�,∆⊗). Note that we are us-

ing the notion of graded duality for bialgebras (see [Foi13Foi13, §1.5]), which is di�erent to ordinary duality: in a
nutshell, this just means that we are taking the dual of each (�nite-dimensional) direct summand and that the
product (coproduct) in one bialgebra is the dual to the product (coproduct) in the other; “dual” here makes
sense because products and coproducts respect the grading. This allows us to avoid considering formal series
of tensors, which are unnecessary when considering rough paths without their full signatures, and retain most
of the usual properties of duality.� = ∆∗

�
is the shuffle product given by

� : T (V ∗)� T (V ∗)→ T (V ∗),

(v1 ⊗ · · · ⊗ vn)� (vn+1 ⊗ · · · ⊗ vn+m) 7→
∑

σ∈Sh(n,m)

vσ
−1(1) ⊗ · · · ⊗ vσ−1(n+m) (3.10)

which in coordinates (using subscripts, since we are working in V ∗) reads

(a� b)k =
∑

|i|=0,...,|k|
σ∈Sh(|i|,|k|−|i|)

ij=σ∗k

aibj =:
∑

(i,j)∈Sh−1(k)

aibj (3.11)

Note that with this notation (i, j) ∈ Sh−1(k) ⇔ k ∈ Sh(ij); in particular i or j may be empty. The
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coproduct ∆⊗ = ⊗∗ is the deconcatenation coproduct given by

∆⊗ : T (V ∗)→ T (V ∗)� T (V ∗)

v1 ⊗ · · · ⊗ vn 7→
n∑
k=0

(v1 ⊗ · · · ⊗ vk)� (vk+1 ⊗ · · · ⊗ vn)
(3.12)

or in coordinates
(∆⊗a)i,j = aij (3.13)

Recall that in every bialgebra with coproduct ∆ we may de�ne its reduced coproduct ∆̃a := ∆a−a�1−1�a,
which is also coassociative. Also recall that in a coalgebra (C,∆) (for usC will always be a tensor algebra) the
(reduced) coproduct can be iterated, as coassociativity guarantees that ∆m : C → C�m has a unique meaning
(note that under this convention ∆2 = ∆, ∆1 := 1C , ∆0 := 1R). Since the above bialgebras are graded and
connected the reduced (iterated) coproduct factors as

∆̃m = π�m≥1 ◦∆m (3.14)

where π≥1 : T (V )�
⊕

n≥1 V
⊗n is the projection onto tensor products of positive order.

We may de�ne the ordered shuffle coproduct ∆� and the ordered shuffle product� by requiring shu�es in
(3.73.7) and (3.103.10) to be ordered. This does not, in fact, de�ne a real (co)product, because� fails to be associative:
indeed, it satis�es the alternative relation

a�(b�c) = (a�b+ b�a)�c

This property makes (T (V ),�) a Zinbiel algebra [EFP15EFP15]. Whenever we iterate� or ∆� we will be carrying
out composition from left to right, i.e. inductively

a1� · · ·�an := (a1�a2)�a3� · · ·�an

∆m
�
a :=

∑
(a)m
�

a(1) � · · ·� a(m)

:=
∑

(a)m−1
�

(
∆�a(1)

)
� a(2) � · · ·� a(m−1)

(3.15)

This guarantees that the coordinate expression provided for the unordered shu�e carries over to the ordered
case, with Sh instead of Sh, e.g.

(∆̃m
�
a)k

1,...,km = [|k1|, . . . , |km| ≥ 1]
∑

σ∈Sh(|k1|,...,|km|)
k=σ−1

∗ (k1...km)

ak

=: [|k1|, . . . , |km| ≥ 1]
∑

k∈Sh(k1,...,km)

ak
(3.16)

Here the square bracket has binary value depending on the truth value of the proposition it contains, and
is present because the coproduct is reduced; the set of permutations over which the sum is taken is given by
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ordered shu�es, re�ecting the fact that we are dealing with the ordered shu�e coproduct.
Before proceeding, we take a moment to motivate our interest in shu�es and ordered shu�es, although

this will become much clearer in Section 3.2Section 3.2. While it is well known that the former are used to express products
of iterated integrals of a (smooth) pathX(

∫

s<u1<...<un<t
dXi1

u1 · · · dX
im
um

)(
∫

s<v1<...<vn<t
dXj1

v1 · · · dX
jn
vn

)
=

∑
k∈Sh(i,j)

∫

s<r1<...<rn+m<t
dXk1

r1 · · · dX
km+n
rm+n

the role of ordered shu�es in the study of iterated integrals of paths is less appreciated. One way to motivate
their signi�cance is as follows: let Y be the solution to the ODE

dY = V (Y )dX = V (Y )Ẋdt

withX V -valued and Y W -valued. We �x bases on both vector spaces and use Greek indices for V and Latin
ones forW — this will be the convention later on as well. Substituting formal Euler expansions, and de�ning
V k
γ (y) := Vγ1 · · ·V k

γn(y) for a tuple γ = (γ1, · · · , γn), with the product denoting iterated composition of
vector �elds (i.e. Vγf(y) := ∂kf(y)V k

γ (y) for a function f of y)

∫

s<u1<...<um<t
dY k1

u1 · · · dY
km
um

=

∫

s<u1<...<um<t
d
(
V k1
γ1 (Ys)X

γ1

su1

)
· · · d

(
V km
γm (Ys)X

γm

sum

)
= V k1

γ1 (Ys) · · ·V km
γm (Ys)

∫

s<u1<...<um<t
d(
∫

s<r11<...<r
1
n1
<un

dX
γ11
r11
· · · dXγ1n1

r1n1

) · · ·

· · · d(
∫

s<rm1 <...<r
m
nm
<um

dX
γm1
rm1
· · · dXγmnm

rmnm
)

= V k1
γ1 (Ys) · · ·V km

γm (Ys) (3.17)

·
∫

s<r11<...<r
1
n1−1<r

1
n1

...
s<rm1 <...<r

m
nm−1<r

m
nm

s<r1n1
<...<rmnm<t

dX
γ11
r11
· · · dXγ1n1

r1n1

· · · · · · dXγmn1

rm1
· · · dXγmnm

rmnm

=
∑

γ1,...,γm

V k
γ1(Ys) · · ·V k

γm(Ys)
∑

γ∈Sh(γ1,...,γm)

∫

s<v1<...<vn:=
∑
ini

dXγ1
v1 · · · dX

γn
vn

In other words, ordered shu�es index the sum involved in the expression of the iterated integrals of Y in terms
of those ofX . The relevance of ordered shu�es in the similar cases of linear RDEs and Lip(γ − 1) functions
was observed in [LCL07LCL07, p.72-75].

We will now prove a couple of technical results that will be used in Section 3.2Section 3.2; these are of our own for-
mulation and cannot be found in the literature referenced at the beginning. They will be stated in terms of
tuples (although they are essentially statements about shu�es), so they can be readily deployed when dealing
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with rough paths. Unshu�ing and concatenating satisfy the following commutativity relation:

T (V ) T (V )�m

T (V )�2 T (V )�2m

∆m
�

⊗ ⊗1,m+1�···�⊗m,2m
∆m
�
�∆m

�

The following lemma can be viewed as the counterpart to this statement in the context of ordered shu�es.
Since it is essentially combinatorial in nature, we will state it in terms of tuples. Recall that I•∗ denotes the set
of all I-valued tuples of any positive order.

Lemma 3.1. Let k1, . . . ,km ∈ I•∗ . The following identity of multisets holds:

{{(i, j) ∈ I• × I• | ij ∈ Sh(k1, . . . ,km)}}

= {{(i, j) ∈ I• × I• | j ∈ Sh(jl+1, . . . , jm);

i ∈ Sh(Sh(i1, . . . , il), Sh(il+1, . . . , im));

where ih = kh for h ≤ l;

ihjh = kh and |jh| ≥ 1, for h ≥ l + 1;

with l = 0, . . . ,m}}

(3.18)

The following picture is meant to illustrate the idea of the statement: the horizontal lines represent tuples,
and the red bullet points represent their terminal elements.

l

ih = kh

ih jh

�

Note that we are taking into account multiplicities in the multisetk ∈ Sh(k1, . . . ,km), i.e. if the same tuplek
belongs twice to Sh(k1, . . . ,km), then any pair (i, j) such that ij = k appears twice in the multiset; an anal-
ogous remark holds for the RHS and for all similarly de�ned multisets. Sh(Sh(i1, . . . , il),Sh(il+1, . . . , im))

here stands for
{{i ∈ Sh(a, b) | a ∈ Sh(i1, . . . , il), b ∈ Sh(il+1, . . . , im)}}

the multiset of tuples obtained by shu�ing i1, . . . , im, the �rst l with order. When l = 0 or m this reduces
respectively to Sh(Sh(i1, . . . , im)) = Sh(i1, . . . , im), Sh(Sh(i1, . . . , im)) = Sh(i1, . . . , im), since the
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only possible way of shu�ing a single is to leave it unchanged. The proof of this lemma is most easily understood
when going through its steps with reference to the example that immediately follows it.

Proof of Lemma 3.1Lemma 3.1. LetA(k1, . . . ,km) denote the �rst multiset de�ned above andB(k1, . . . ,km) the sec-
ond. For tuples `1, . . . , `n and 1 ≤ a ≤ b ≤ n de�ne `a:b := `a . . . `b ∈ I• (juxtaposition) and for a
tuple ` and 1 < c ≤ d ≤ |`| `c:d := (`c, . . . , `d), and let (i, j) ∈ A(k1, . . . ,km). This means there exists
σ ∈ Sh(|k1|, . . . , |km|) with ij = σ−1

∗ k
1:m. Let

l :=


0 if |i| < σ(|k1|)

m if j = ()

s.t. σ(|k1:l|) ≤ |i| < σ(|k1:l+1|) otherwise

which is exists and is unique since σ is an ordered shu�e. We then let ih := kh for h ≤ l and for h ≥ l + 1

ihjh := kh, σ(|k1:h−1|+ |ih|) ≤ |i| < σ(|k1:h−1|+ |ih|+ 1) (3.19)

where |ih| (and hence ih) is unique since σ is a shu�e. Now, it cannot be the case that for h ≥ l + 1 we have
|ih| = |kh|, for this would violate the de�nition of l: this implies |jh| ≥ 1. Moreover, we have i = σ−1

∗ i
1:m

and j = σ−1
∗ j

l+1:m, where we are de�ning the right hand sides using the same expression as before (3.43.4),
but by considering the numberings on i1:m, jl+1:m to be those inherited as subtuples of k1:m: this is be-
cause ih occupies the segment of k1:m numbered with [|k1:h−1| + 1, |k1:h−1| + |ih|], all of which σ maps
into [1, |i|], by (3.193.19) and again by the shu�e property of σ; similarly, jh occupies the segment numbered
[|k1:h−1|+ |ih|+ 1, |k1:h|] which gets mapped above |i|. By construction σ (once domains are renumbered)
shu�es i1:l and jl+1:m with order, since these are the tuples that contain thekh|kh|’s, and il+1,m without order.
If ρ ∈ Sh(n1, . . . , nm) and S ⊆ {1, . . . , n1 + . . . + nm}, ρ|S is still a shu�e, with the additional order
constraints on those (n1 + . . . + nq)’s that belong to S: therefore, we have that j ∈ Sh(jl+1, . . . , jm) and
i ∈ Sh(Sh(i1, . . . , il),Sh(il+1, . . . , im)). This showsA(k1, . . . ,km) ⊆ B(k1, . . . ,km).

Conversely, let (i, j) ∈ B(k1, . . . ,km), with l, ih, jh as in (3.183.18). ij is obtained by an ordered shuf-
�e of k1, . . . ,km: that the order of each kh, h ≤ l is preserved is immediate since ih = kh; that the
order of each kh, h > l is preserved is a consequence of the fact that the order of ih is preserved, that the
order of jh is preserved, and that i comes before j in the juxtaposition ij; that the shu�e of the kh’s is or-
dered is a consequence of the fact that the shu�es of i1, . . . , il and jl+1, . . . , jl+1 are ordered. This shows
B(k1, . . . ,km) ⊆ A(k1, . . . ,km); also note that in both inclusions multiplicities are indeed counted, since
the correspondence between the underlying permutation in A(k1, . . . ,km) and the pair of underlying per-
mutations inB(k1, . . . ,km) is bijective. �

Example 3.2. We illustrate the idea behind this lemma with an example. Let

m = 4; |k1| = 2, |k2| = 3, |k3| = 4, |k4| = 4

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
4 6 3 5 8 7 9 11 12 1 2 10 13

)
∈ Sh(2, 3, 4, 4)

σ−1
∗ (k1k2k3k4) = (k4

1, k
4
2, k

2
1, k

1
1, k

2
2, k

1
2, k

3
1, k

2
3︸ ︷︷ ︸

=:i

, k3
2, k

4
3, k

3
3, k

3
4, k

4
4︸ ︷︷ ︸

=:j

)
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(i, j) ∈ A(k1,k2,k3,k4)

where we have coloured in red the terminal elements of the kh’s (and recall that it is necessary to renumber
k1k2k3k4 from 1 to 13 before applying (3.43.4), and then change the numbering back) and we have

(i, j) ∈ B(k1,k2,k3,k4) with l = 2;

i1 = (k1
1, k

1
2), i2 = (k2

1, k
2
2, k

2
3), i3 = (k3

1), i4 = (k4
1, k

4
2);

j1 = (k3
2, k

3
3, k

3
4), j2 = (k4

3, k
4
4)

since kh = ih for h = 1, 2, kh = ihjh for h = 3, 4, and

j ∈ Sh(j1, j2); i ∈ Sh(a, b)

with a := (k2
1, k

1
1, k

2
2, k

1
2, k

2
3) ∈ Sh(i1, i2)

b := (k4
1, k

4
2, k

3
1) ∈ Sh(i3, i4)

Note that neither of the two Sh’s above can be replaced with Sh.

The reduced version of this Lemma 3.1Lemma 3.1 would involve restricting it to non-empty tu-
ples k1, . . . ,km; we will need the dual of this statement. We will use the notation
((i1, . . . , il), (il+1, . . . , im)) ∈ (Sh

−1
,Sh−1)(Sh−1(i)) as a shorthand for (i1, . . . , il) ∈ Sh

−1
(a),

(il+1, . . . , im) ∈ Sh−1(b) : (a, b) ∈ Sh−1(i), andm is �xed.

Corollary 3.3. For I-valued tuples i, j the following identity of multisets holds:

{{(k1, . . . ,km) ∈ Sh
−1

(ij) | |k1|, . . . , |km| ≥ 1}}

={{(k1, . . . ,km) ∈ (I•∗ )
m | (jl+1, . . . , jm) ∈ Sh

−1
(j);

((i1, . . . , il), (il+1, . . . , im)) ∈ (Sh
−1
, Sh−1)(Sh−1(i));

kh = ih, h ≤ l; kh = ihjh, |jh| ≥ 1, h ≥ l + 1;

l = 0, . . . ,m}}

(3.20)

Proof of Corollary 3.3Corollary 3.3. LetC(i, j) denote the �rst multiset above andD(i, j) the second, and recall the names
A(k1, . . . ,km),B(k1, . . . ,km) for the sets of Lemma 3.1Lemma 3.1. We then have (taking into account multiplicities)

(k1, . . . ,km) ∈ C(i, j) ⇐⇒ (i, j) ∈ A(k1, . . . ,km)

⇐⇒ (i, j) ∈ B(k1, . . . ,km)

⇐⇒ (k1, . . . ,km) ∈ D(i, j)

thus concluding the proof. �

Next we discuss another combinatorial relation involving ordered and unordered shu�es; similarly to the
earlier lemma, an example is provided after the proof that helps to .
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Lemma 3.4. Let n := n1 + . . . + nm, nl := n1 + . . . + nl for l = 1, . . . ,m, and k1, . . . ,kn ∈ I•∗ . We
have

Sh(Sh(k1, . . . ,kn1), . . . ,Sh(kn
m−1+1, . . . ,kn))

=
⊔

π∈Sh(n1,...,nm)

Sh(kπ
−1(1), . . . ,kπ

−1(n)) (3.21)

Here
⊔

denotes disjoint union of multisets, e.g. if the same tuple appears in sets corresponding to two
di�erent σ’s it should be counted twice.

Proof of Lemma 3.4Lemma 3.4. Let Nl := |knl−1+1| + . . . + |knl | for l = 1, . . . ,m, and N l := N1 + . . . + Nl for
l = 1, . . . ,m, andN := Nm. We have

Sh(Sh(k1, . . . ,kn1), . . . ,Sh(kn
m−1+1, . . . ,kn))

={{σ−1
∗ (h1 . . .hm) | σ ∈ Sh(N1, . . . , Nm);

hl ∈ Sh(kn
l−1+1, . . . ,kn

l
), l = 1, . . . ,m}}

={{σ−1
∗ (h1 . . .hm) | σ ∈ Sh(N1, . . . , Nm);

hl = ρ−1
l∗ (kn

l−1+1 . . .kn
l
);

ρl ∈ Sh(|knl−1+1|, . . . , |knl |), l = 1, . . . ,m}}

Now, denoting (ρ1, . . . , ρm) the element of SN which acts on {N l−1 + 1, . . . , N l} with ρl, we continue
the chain of identities

={{σ−1
∗ (ρ1, . . . , ρm)−1

∗ (k1 . . .knm) | σ ∈ Sh(N1, . . . , Nm);

ρl ∈ Sh(|knl−1+1|, . . . , |knl |), l = 1, . . . ,m}}

={{(σ ◦ (ρ1, . . . , ρm))−1
∗ (k1 . . .knm) | σ ∈ Sh(N1, . . . , Nm);

ρl ∈ Sh(|knl−1+1|, . . . , |knl |), l = 1, . . . ,m}}

since (ρ−1
1 , . . . , ρ−1

m ) = (ρ1, . . . , ρm)−1 and thanks to the composition rule (3.53.5). Letπ denote the restriction
of σ ◦ (ρ1, . . . , ρm) to the set

T := {t1, . . . , tn}, tl := |k1|+ . . .+ |kl|

Since the kh’s are all non-empty, T is a subset of {1, . . . , N} of cardinality n, so after renumbering
it we can consider π as an element of Sn. Now, since ρl is an ordered shu�e, it preserves the or-
dering of {|knl−1+1|, . . . , |knl−1+1| + . . . + |knl |}, and since σ is a shu�e it preserves the ordering
{ρl(|kn

l−1+1|), . . . , ρl(|kn
l |)} ⊆ {N l−1 + 1, . . . , N l}. These two facts imply π ∈ Sh(n1, . . . , nm), and

we have

{σ ◦ (ρ1, . . . , ρm) | ρl ∈ Sh(|knl−1+1|, . . . , |knl |), l = 1, . . . ,m}

= {τ ∈ Sh(|k1|, . . . , |kn|) | τ(tπ−1(1)) < . . . < τ(tπ−1(n))}

=: Shπ(|k1|, . . . , |kn|)
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since any τ ∈ Sh(|k1|, . . . , |kn|) with τ(tπ−1(1)) < . . . < τ(tπ−1(n)) for some π ∈ Sn factors uniquely
as σ ◦ (ρ1, . . . , ρm) with σ acting on T with π: this is evident from the fact that each ρl acts on the segment
[N l−1 +1, N l] andσ acts on the whole segment [1, N ] but without altering the order in each [N l−1 +1, N l].
This implies

{σ ◦ (ρ1, . . . , ρm) | σ ∈ Sh(N1, . . . , Nm);

ρl ∈ Sh(|knl−1+1|, . . . , |knl |), l = 1, . . . ,m}

=
⊔

π∈Sh(n1,...,nm)

Shπ(|k1|, . . . , |kn|)

because asσ ranges over Sh(N1, . . . , Nm) all Sh(n1, . . . , nm) 3 π’s are obtained, and the Shπ’s are mutually
disjoint since the ordered shu�e relations imposed by di�erent π’s are mutually exclusive. Since

Sh(kπ
−1(1), . . . ,kπ

−1(n)) = {{τ−1
∗ (k1 . . .kn) | τ ∈ Shπ(|k1|, . . . , |kn|)}}

the proof is concluded. �

Example 3.5. We illustrate the idea behind this lemma with an example. Let

n1 = 2, n2 = 1; |k1| = 3, |k2| = 2, |k3| = 3 (3.22)

and with the notations of the proof let

ρ1 =

(
1 2 3 4 5
1 3 4 2 5

)
∈ Sh(3, 2), ρ2 =

(
1 2 3
1 2 3

)
∈ Sh(3),

⇒ (ρ1, ρ2) =

(
1 2 3 4 5 6 7 8
1 3 4 2 5 6 7 8

)
σ =

(
1 2 3 4 5 6 7 8
2 3 6 7 8 1 4 5

)
∈ Sh(5, 3)

⇒ τ := σ ◦ (ρ1, ρ2) =

(
1 2 3 4 5 6 7 8
2 6 7 3 8 1 4 5

)
∈ Shπ(3, 2, 3)

with π =

(
1 2 3
2 3 1

)
∈ Sh(2, 1)

because the restriction of σ ◦ (ρ1, ρ2) to {|k1|, |k1 + k2|, |k1 + k2 + k3|} is
(

3 5 8
7 8 5

)
, which coincides

with π after renumbering domain and codomain. Also note how, given τ and the numbers (3.223.22) one can
recover σ, ρ1, ρ2: �rst obtain ρ1, ρ2 considering how τ orders the segments [1, 5], [6, 8] (and renumbering)
and σ = τ ◦ (ρ1, . . . , ρm). We therefore have, writing terminal elements in red

(σ ◦ (ρ1, ρ2))−1
∗ (k1k2k3) = (k3

1, k
1
1, k

2
1, k

3
2, k

3
3, k

1
2, k

1
3, k

2
2)

∈ Sh(Sh(k1,k2),Sh(k3))

∈ Sh(k3,k1,k2) = Sh(kπ
−1(1),kπ

−1(2),kπ
−1(3))
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which can also be written as

(k3
1, k

1
1, k

2
1, k

3
2, k

3
3, k

1
2, k

1
3, k

2
2) = η−1

∗ (k3,k1,k2) ∈ Sh(k3,k1,k2)

with η =

(
1 2 3 4 5 6 7 8
1 4 5 2 6 7 3 8

)
∈ Sh(3, 3, 2)

We primarily use Lemma 3.4Lemma 3.4 in the two cases n1 = . . . = nm = 1 with m arbitrary, and m = 2 with
n1, n2 arbitrary; the former admits the following concise reformulation. Given a vector spaceW , let� denote
symmetric tensor product, and

�m :=
1

m!

∑
π∈Sm

π∗ : W⊗m �W�m, w1 ⊗ · · · ⊗ wm 7→ w1 � · · · � wm (3.23)

denote the symmetrisation map. When referring to the external tensor product we will replace the symbol�
with�.

Corollary 3.6. The diagram
T (V )�m

T (V )

T (V )�m

m!�m

∆̃m
�

∆̃m
�

(3.24)

commutes.

Proof. The statement in coordinates reads∑
π∈Sm

h∈Sh(kπ(1),...,kπ(m))

ah =
∑

k∈Sh(k1,...,km)

ak

for non-empty tuples k1, . . . ,km. Indeed, we have

(m!� ∆̃�a)k
1,...,km =

( ∑
π∈Sm
(ã)m
�

π∗(a(1) � · · ·� a(m))
)k1,...,km

=
∑
π∈Sm

∑
(ã)m
�

ak
1

(π(1)) · · · a
km

(π(m))

=
∑
π∈Sm

∑
(ã)m
�

ak
π(1)

(1) · · · ak
π(m)

(m)

=
∑
π∈Sm

(∆̃m
�
a)k

π(1),...,kπ(m)

=
∑
π∈Sm

h∈Sh(kπ(1),...,kπ(m))

ah
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To prove the claim in coordinates we must show the identity of sets⊔
π∈Sm

Sh(kπ(1), . . . ,kπ(m)) = Sh(k1, . . . ,km)

for tuples k1, . . . ,km of positive order. This is precisely Lemma 3.4Lemma 3.4 with n1 = . . . = nm = 1, since
Sh(n1, . . . , nm) = Sm and we may replace π−1 with π. �

3.2 Geometric rough paths

We denote TN (V ) the vector subspace of T (V ) given by all tensors of degree ≤ N , and super/subscripts
of ≤ N , ≥ M denote truncations of the algebra to tensors of the degrees expressed (e.g. for a ∈ T (V ) to
belong to TN (V ) it means that an = 0 for n > N , or equivalently a = a≤N ). We will similarly use [M,N ]

as a super/subscript to denote tensors of degrees n with M ≤ n ≤ N . Control functions (as de�ned in
Subsection 2.1.1Subsection 2.1.1) will be denoted ω.

De�nition 3.7 (Weakly geometric rough path). Let T > 0, p ≥ 1 and ω be a control on [0, T ]. A p-weakly
geometric rough pathX controlled byω, de�ned on [0, T ] and with values inV may be de�ned as a continuous
map

X : ∆T → T bpc(V ) (3.25)

with X0 = 1 and satisfying the following properties, which we �rst present in coordinate-free form and
subsequently in coordinates w.r.t. a basis of V :

Regularity. sup
0≤s<t≤T

|Xn
st|

ω(s, t)n/p
<∞, or sup

0≤s<t≤T

|Xk
st|

ω(s, t)|k|/p
<∞ for n = |k| = 1, . . . bpc;

Multiplicativity. (Xsu ⊗ Xut)
≤bpc = Xst, i.e. Xk

st =
∑

(i,j)=k

Xi
suX

j
ut for |k| ≤ bpc and

0 ≤ s ≤ u ≤ t ≤ T ;

Integration by parts. Xst �Xst = ∆�Xst, orXi
stX

j
st =

∑
k∈Sh(i,j)

Xk
st for all 0 ≤ s ≤ t ≤ T .

Let Cpω([0, T ], V ) denote the set of all such maps.

In the following we will refer to such objects as “rough paths”, dropping the “weakly geometric”, since
these are the only rough paths that we will be considering in this chapter. We will sometimes refer to the third
property above as geometricity, since it distinguishes weakly geometric rough paths among the more general
branched rough paths, which are treated in Chapter 4Chapter 4 since they require a di�erent algebra. We will always
denote rough paths in bold. The last condition is usually stated by saying that X takes values in the group
Gbpc(V ), de�ned in [CDLL16CDLL16, De�nition 2.9]. We will denote X := X1 the trace of X: when equipped
with an initial value X0 (which will often be provided) this is an element of Cpω([0, T ], V ) de�ned as the set
of continuous paths Y : [0, T ] → V s.t., denoting Yst := Yt − Ys (a notation that will be used for paths
throughout)

sup
0≤s<t≤T

|Yst|
ω(s, t)1/p

<∞ (3.26)
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It is su�cient to de�neX to take values inT bpc(V ), as [Lyo98Lyo98, Theorem 2.2.1] shows that there exists a unique
extension of X̂ ofX to T (V ) which satis�es the above three properties, and form > bpc is given by

X̂m
st = lim

n→∞

( ⊗
[u,v]∈πn

Xuv

)m
(3.27)

where (πn)n is any sequence of partitions on [s, t] with vanishing step size as n→∞.
The following proposition states that the symmetric part of a weakly geometric rough path is entirely de-

termined by its trace. Given ` ∈ L(TN (V ), U) (L denotes the space of linear maps) and a ∈ T (V ) we will
denote 〈`, a〉 = `(a) the evaluation of ` on a. We will always identifyL(R, U) = U by setting ` 7→ `(1).

Proposition 3.8. ForX ∈ C
p
ω([0, T ], V ) we have n!�nXn

st = X⊗nst .

Proof. We proceed by induction on n. For n = 0, 1 there is nothing to prove. For the inductive step we will
need the following fact: each π ∈ Sn+1 can be expressed uniquely as σ ◦ ρwith ρ in the stabiliser of n+ 1 (a
subgroup of Sn+1 isomorphic to Sn) and σ ∈ Sh(n, 1): indeed, ifm := π(n+ 1) we may set

σ(k) :=


k 1 ≤ k ≤ m− 1

k + 1 m ≤ k ≤ n

m k = n+ 1

ρ(k) :=


π(k) 1 ≤ π(k) ≤ m− 1

π(k)− 1 m ≤ π(k) ≤ n

n+ 1 k = n+ 1

Uniqueness follows from a counting argument, since there are n! choices for ρ and n + 1 for σ. We then
compute

(n+ 1)!�n+1 X
n+1
st =

∑
π∈Sn+1

π∗X
n+1
st

=
∑
ρ∈Sn

ρ∗
∑

σ∈Sh(n,1)

σ∗X
n+1
st

=
∑
ρ∈Sn

ρ∗(∆�Xst)
n,1

=
∑
ρ∈Sn

ρ∗X
n
st ⊗Xst

= X
⊗(n+1)
st

where we have used the geometricity axiom and the inductive hypothesis. �

We proceed to de�ne the objects that can be regarded as dual to rough paths, original to [Gub04Gub04]. In what
follows we will write≈m between two real-valued quantities dependent on 0 ≤ s ≤ t ≤ T to mean that their
di�erence lies inO(ω(s, t)m/p) as t↘ s, and simply≈ to mean≈bpc+1. We will frequently use the following
properties, which are trivial to check:

ast ≈m bst ≈n cst ⇒ ast ≈n∧m cst

ast ≈m bst, cst ≈n 0⇒ astcst ≈m+n bstcst
(3.28)
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from which we deduce more generally

ast ≈m1 bst, ast, bst ≈n1 0, cst ≈m2 dst, cst, dst ≈n2 0

⇒ astcst ≈m1+n2 bstcst ≈m2+n1 bstdst

⇒ astcst ≈(m1+n2)∧(m2+n1) bstdst

(3.29)

If a continuous map X̃ : ∆T → T bpc(V ) satis�es the regularity and integration by parts conditions, and
satis�es the multiplicativity condition with a “≈” replacing the “=” (almost multiplicative), it de�nes a rough
path by [Lyo98Lyo98, Theorem 3.3.1], by taking the limit (3.273.27) (w.r.t. X̃), and this rough path X is unique with
the property that X̃st ≈ Xst. The following lemma tells us that this is also true if the integration by parts
condition only holds with an≈ (almost geometric). In light of this, we will break with the literature in de�ning
an almost rough path as an X̃ that satis�es the regularity condition in De�nition 3.7De�nition 3.7 and is almost multiplicative
and almost geometric.

Proposition 3.9 (Almost rough paths). Let X̃ be a V -valued almost p-rough path. Then there exists a unique
p-rough pathX with the property thatXst ≈ X̃st.

Proof. We use that the shu�e algebra is free abelian on the Lyndon words (e.g. over the rationals) [Reu93Reu93,
Theorem 6.1] to de�ne an intermediateX : setXh := X̃h if h is a Lyndon word with |h| ≤ bpc, and for a
tuple k with |k| < bpc expressed (uniquely up to order of factors) as

∑
λ cλk

1
λ � · · ·� k

nλ
λ with cλ ∈ R

and the kjλ’s (not necessarily distinct) Lyndon words, set

Xk :=
∑
λ

cλX
k1λ · · ·Xknλλ =

∑
λ

cλX̃
k1λ · · · X̃knλλ ≈

∑
λ

cλ〈k1
λ � · · ·� k

nλ
λ , X̃〉 = X̃k

since X̃ is almost geometric. X is then≈ X̃ , it satis�es integration by parts (exactly) by construction, and is
still almost multiplicative since

Xk ≈Xk
st =

∑
(i,j)=k

Xi
suX

j
ut ≈

∑
(i,j)=k

Xi
suX

j
ut

Existence ofX then follows immediately by applying the above-referenced result toX and uniqueness follows
from the fact that if X ′ is a second p-rough path satisfying the statement of this proposition, then we have
X ′ ≈ X̃ ≈X ⇒ X ′ = X again by the same result. �

De�nition 3.10. Let X be as above and U another vector space. An U -valued X-controlled path H is an
element of Cpω([0, T ],L(T bpc−1(V ), U)) (whereω is the control forX) s.t. for n = 0, . . . , bpc− 2 and each
a ∈ V ⊗n

〈Hn;t, a〉 ≈bpc−n 〈H [n,bpc−1];s,X
≤bpc−1−n
st ⊗ a〉 (3.30)

HereHn denotes the n-th level ofH . Denote DX(U) the vector space of allU -valuedX-controlled paths.

The mapsHn := H|V ⊗n are known as the Gubinelli derivatives of H and H := H0 ∈ U is called the
trace ofH (note the discrepancy with rough paths: for these the trace is the order-1 component). Note that
the de�ning condition only involvesX≤bpc−1, and that it holds automatically at level bpc− 1 by regularity of
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H . In coordinates it reads

Hk
β;t ≈bpc−|β|

bpc−1−|β|∑
|α|=0

Hk
(α,β);sX

α
st, 0 ≤ |β| ≤ bpc − 2 (3.31)

Here the superscript k refers to the value ofH inU (and will often be omitted when unnecessary), and the sum
is not only on the length |α| of the tupleα, but on the tuple itself. For the branched version of this de�nition,
see [HK15HK15].

An important case is when U = L(V,W ) for another vector spaceW : by the tensor-hom adjunction we
then have

L(T bpc−1(V ),L(V,W )) = L(T bpc−1(V )⊗ V,W ) = L
( bpc⊕
n=1

V ⊗n,W
)

(3.32)

We will use angle brackets and coordinate notation for linear maps accordingly, i.e. the last slot in a bracket or
in a tuple will refer to the copy of V in the target space of the original linear map. We will call controlled paths
valued inL(V,W )W -valued controlled integrands, and we may rewrite (3.303.30) as

〈Ht, b〉 ≈bpc−n+1 〈H [n,bpc];s,X
[0,bpc−n]
st ⊗ b〉 ∈W, b ∈ V ⊗n, n = 1, . . . , bpc − 1 (3.33)

or in coordinates

Hk
β;t ≈bpc−|β|+1

bpc−|β|∑
|α|=0

Hk
(α,β);sX

α
st, 1 ≤ |β| ≤ bpc − 1 (3.34)

The next example contains a very important example of controlled path.

Example 3.11 (Smooth functions ofX). Let F ∈ C∞(V,U), then

t 7→ (F (Xt), DF (Xt), . . . , D
bpc−1F (Xt)) ∈ L(T bpc−1(V ), U) (3.35)

is anX-controlled path, which we denote simplyF (X), orF (X) if we want to emphasise that we are consid-
ering the full controlled path, not just its trace. Indeed, denoting by ∂γF the order-|γ| partial derivative of F
in the directions of the chosen basis determined by the tuple γ, we have, for 0 ≤ |β| ≤ bpc − 2

F (Xt)β −
bpc−1−|β|∑
|α|=0

F (Xs)(α,β)X
α
st

= ∂βF (Xt)−
bpc−1−|β|∑
|α|=0

∂α,βF (Xs)X
α
st

= ∂βF (Xt)−
bpc−1−|β|∑

n=0

1

n!
∂α,βF (Xs)X

α1
st · · ·X

αn
st

≈bpc−|β| 0

where we have used Proposition 3.8Proposition 3.8 together with the symmetry of higher di�erentials and Taylor’s approxi-
mation. Note that the symmetry of Gubinelli derivatives is a special feature of this kind of controlled path, and
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cannot be expected to hold in general. When U = L(V,W ) we shall call F an W -valued one-form, and we
adopt the convention

〈F (X), v1 ⊗ · · · ⊗ vn+1〉 = DnF (X)(v1, . . . , vn)(vn+1) ∈W

or in coordinates F (X)α,β = ∂αFβ(X).

The next lemma is necessary for the de�nition of rough integral.

Lemma 3.12. LetX ∈ C
p
ω([0, T ], V ) andH ∈ DX(L(V,W )). Define, for 0 ≤ s ≤ t ≤ T

Ξst := 〈Hs,X
≥1
st 〉 ∈W (3.36)

where the evaluation is taken under the identification (3.323.32). Then Ξ is almost additive: for all
0 ≤ s ≤ u ≤ t ≤ T

Ξst − Ξsu − Ξut ≈ 0 (3.37)

Proof. Using the multiplicativity axiom, the regularity ofH and (3.343.34) (together with (3.283.28)) we may write

Ξst − Ξsu − Ξut

=

bpc∑
|γ|=1

(Hγ;sX
γ
st −Hγ;sX

γ
su −Hγ;uX

γ
ut)

=

bpc∑
|γ|=1

(Hγ;s(X
γ
st −Xγ

su −X
γ
ut)−Hγ;suX

γ
ut)

=

bpc∑
|γ|=1

(
Hγ;s

∑
(α,β)=γ
|α|,|β|≥1

Xα
suX

β
ut −Hγ;suX

γ
ut

)

≈
∑

|α|,|β|≥1
|α|+|β|≤bpc

H(α,β);sX
α
suX

β
ut −

bpc−1∑
|ε|=1

Hε;suX
ε
ut

≈
∑

|α|,|β|≥1
|α|+|β|≤bpc

H(α,β);sX
α
suX

β
ut −

bpc−1∑
|ε|=1

bpc−|ε|∑
|δ|=1

H(δ,ε);sX
δ
suX

ε
ut

= 0

�

De�nition 3.13 (Rough integral). LetX ∈ C
p
ω([0, T ], V ),H ∈ DX(L(V,W )) be as above. We de�ne

∫ ·

0
HdX : [0, T ]→W (3.38)

to be the unique path I ∈ Cω([0, T ],W ) with the property that Ist ≈ Ξst, which exists by [Lyo98Lyo98, Theorem
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3.3.1], and is given by
Ist = lim

n→∞

∑
[u,v]∈πn

Ξuv

for a sequence of partitions (πn)n with vanishing step size. We can make
∫

HdX into anX-controlled path
by de�ning, for 1 ≤ n ≤ bpc − 1(

∫

HdX

)
n

:= Hn−1 ∈ L(V ⊗n−1,L(V,W )) = L(V ⊗n,W )

Note the use of bold font for the integral sign, which emphasises membership to DX(W ).

AnX-controlled path can be made into a rough path in its own right. We use (3.173.17) as a blueprint for the
following de�nition, where we truncate at the correct order to avoid in�nite sums.

De�nition 3.14 (Lift of a controlled path). Let X ∈ C
p
ω([0, T ], V ), H ∈ DX(U). De�ne

�XH : ∆T → T bpc(U) (notice the partial arrow notation to indicate almost multiplicativity & geometricity)
by

(�XH)0
st := 1, (�XH)1

st := Hst (3.39)

and for 2 ≤ m ≤ bpc

(�XH)mst := 〈H�ms , ∆̃m
�
Xst〉

=
∑

n1,...,nm≥1
n:=n1+...+nm≤bpc

〈Hn1;s � · · ·�Hnm;s, (∆̃�X)n1,...,nm
st 〉 (3.40)

As it is shown in Theorem 3.15Theorem 3.15 below, [Lyo98Lyo98, Theorem 3.3.1] applies to this functional, and given any sequence
of partitions (πn)n with vanishing step size

(↑XH)st := lim
n→∞

( ⊗
[u,v]∈πn

(�XH)uv

)
(3.41)

de�nes an element of Cpω([0, T ], U), which we call the lift ofH to rough path w.r.t.X .

Note how it was necessary to distinguish the case m = 1 above: this is due to the fact that we do not
have the bpcth Gubinelli derivative, and therefore (3.403.40) would only be accurate at order bpc (though in all
explicit cases presented here these are known, and (3.403.40) is applicable for m = 1 too; an example where the
case distinction is essential would be Example 3.11Example 3.11 with F only (bpc − 1)-times di�erentiable). (3.403.40) can be
written dually as

(�XH)mst = 〈H�m
≥1;s,Xst〉 =

∑
n1,...,nm≥1

n:=n1+...+nm≤bpc

〈Hn1
s � · · ·�Hnm

s ,Xn
st〉 (3.42)
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and in coordinates as

(�XH)() = 1, (�XH)k = Hk

(�XH)
(k1,...,km)
st =

∑
|γ1|,...,|γm|≥1
|γ1|+...+|γm|≤bpc
γ∈Sh(γ1,...,γm)

Hk1
γ1;s
· · ·Hkm

γm;sX
γ
st (3.43)

In explicit calculations we will use �XH , for which we have a combinatorial expression, as a proxy for the true
lift ↑XH .

The following is one of the main theorems in this chapter. It can be compared with [LCL07LCL07, Theorem
4.6], which applies to the special case of integrals of Lip(γ) forms, covered in Example 3.17Example 3.17 below. Their proof
makes use of the symmetry of Lip(γ) forms, while the lemma below does not require it.

Theorem 3.15. �XH is an almost rough path. Therefore the limit taken in (3.413.41) exists and defines aU -valued
p-weakly geometric rough path, controlled by ω on [0, T ], with traceH .

Proof. We begin by showing almost multiplicativity, i.e. that for |k| = 0, . . . , bpc and 0 ≤ s ≤ u ≤ t ≤ T∑
(i,j)=k

(�XH)isu(�XH)jut ≈ (�XH)kst

For |k| = 0 this is trivial and for |k| = 1 it coincides with the statement thatH is a path. For |k| = 2 (which
presupposes bpc ≥ 2) we have∑

(i,j)=(k1,k2)

(�XH)isu(�XH)jut

= (�XH)(k1,k2)
su + (�XH)k1su(�XH)k2ut + (�XH)

(k1,k2)
ut

=
∑

|α1|,|α2|≥1
|α1|+|α2|≤bpc
α∈Sh(α1,α2)

(Hk1
α1;s

Hk2
α2;s

Xα
su) +Hk1

suH
k2
ut +

∑
|β1|,|β2|≥1

|β1|+|β2|≤bpc
β∈Sh(β1,β2)

(Hk1
β1;u

Hk2
β2;u

Xβ
ut)

(3.44)

We continue the calculation by re-expanding all theH terms at s and using (3.283.28):

Hk1
su ≈bpc

bpc−1∑
|α1|=1

Hk1
α1;s

Xα1

su

Hk2
ut ≈bpc

bpc−1∑
|β|=1

Hβ;uX
β
ut ≈bpc

∑
|β|=1,...,bpc−1

|α2|=0,...,bpc−1−|β|

Hk2
(α2,β);s

Xα2

suX
β
ut
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These two identities, the fact thatHsu, Hut ≈1 0 and (3.293.29) imply

Hk1
suH

k2
ut ≈

∑
|β|=1,...,bpc−1
|α1|=1,...,bpc−1

|α2|=0,...,bpc−1−|β|
α∈Sh(α1,α2)

Hk1
α1;s

Hk2
(α2,β);s

Xα
suX

β
ut

Similarly
Hk1
β1;u

Hk2
β2;u

Xβ
ut ≈

∑
|α1|=0,...,bpc−1−|β1|
|α2|=0,...,bpc−1−|β2|

α∈Sh(α1,α2)

Hk1
(α1,β1);s

Hk2
(α2,β2);s

Xα
suX

β
ut

Incorporating these computations in (3.443.44) we obtain∑
(i,j)=(k1,k2)

(�XH)isu(�XH)jut

≈
∑

|α1|,|α2|≥1
|α1|+|α2|≤bpc
α∈Sh(α1,α2)

(Hk1
α1;s

Hk2
α2;s

Xα
su) +

∑
|β|=1,...,bpc−1
|α1|=1,...,bpc−1

|α2|=1,...,bpc−1−|β|
α∈Sh(α1,α2)

(Hk1
α1;s

Hk2
(α2,β);s

Xα
suX

β
ut)

+
∑

|β1|,|β2|≥1

|β1|+|β2|≤bpc
|α1|=0,...,bpc−1−|β1|
|α2|=0,...,bpc−1−|β2|

α∈Sh(α1,α2)

β∈Sh(β1,β2)

(Hk1
(α1,β1);s

Hk2
(α2,β2);s

Xα
suX

β
ut)

=
∑

|γ1|,|γ2|≥1
|γ1|+|γ2|≤bpc

Hk1
γ1;s
Hk2
γ2;s

∑
l=0,1,2

αh=γh, h≤l
(αh,βh)=γh, |βh|≥1, h≥l+1

α∈Sh(Sh(α1,...,αl),Sh(αl+1,...,α2))

β∈Sh(βl+1,...,β2)

Xα
suX

β
ut

=
∑

|γ1|,|γ2|≥1
|γ1|+|γ2|≤bpc

Hk1
γ1;s
Hk2
γ2;s

∑
γ∈Sh(γ1,γ2)

(α,β)=γ

Xα
suX

β
ut

= (�XH)
(k1,k2)
st

where we have used Lemma 3.1Lemma 3.1 in the second-last identity and multiplicativity of X in the last. The case of
m := |k| ≥ 3 (which presupposes bpc ≥ 3) is handled similarly, but has to be distinguished from the
previous case since the middle terms are not the same.∑

(i,j)=k

(�XH)isu(�XH)jut

=
∑

|α1|,...,|αm|≥1
|α1|+...+|αm|≤bpc
α∈Sh(α1,...,αm)

Hk1
α1;s
· · ·Hkm

αm;sX
α
su +

( ∑
|α1|,...,|αm−1|≥1
|α1|+...+|αm−1|≤bpc
α∈Sh(α1,...,αm−1)

Hk1
α1;s
· · ·Hkm−1

αm−1;s
Xα

su

)
Hkm
ut
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+

m−2∑
l=2

( ∑
|α1|,...,|αl|≥1

|α1|+...+|αl|≤bpc
α∈Sh(α1,...,αl)

Hk1
α1;s
· · ·Hkl

αl;s
Xα

su

)( ∑
|βl+1|,...,|βm|≥1

|βl+1|+...+|βm|≤bpc
β∈Sh(βl+1,...,βm)

H
kl+1

βl+1;u
· · ·Hkm

βm;uX
β
ut

)

+Hk1
su

( ∑
|β2|,...,|βm|≥1

|β2|+...+|βm|≤bpc
β∈Sh(β2,...,βm)

Hk2
β2;u
· · ·Hkm

βm;uX
β
ut

)
+

∑
|β1|,...,|βm|≥1

|β1|+...+|βm|≤bpc
β∈Sh(β1,...,βm)

Hk1
β1;u
· · ·Hkm

βm;uX
β
ut

≈
∑

|α1|,...,|αm|≥1
|α1|+...+|αm|≤bpc
α∈Sh(α1,...,αm)

Hk1
α1;s
· · ·Hkm

αm;sX
α
su

+
( ∑
|α1|,...,|αm−1|≥1
|α1|+...+|αm−1|≤bpc
α∈Sh(α1,...,αm−1)

Hk1
α1;s
· · ·Hkm−1

αm−1;s
Xα

su

)( ∑
|βm|=1,...,bpc−1

|αm|=0,...,bpc−1−|β|

Hkm
(αm,βm);sX

αm

su X
βm

ut

)

+
m−2∑
l=2

[( ∑
|α1|,...,|αl|≥1

|α1|+...+|αl|≤bpc
α∈Sh(α1,...,αl)

Hk1
α1;s
· · ·Hkl

αl;s
Xα

su

)

·
( ∑

|βl+1|,...,|βm|≥1

|βl+1|+...+|βm|≤bpc
|αh|=0,...,bpc−1−|βh|, h≥l+1

α∈Sh(αl+1,...,αm)

β∈Sh(βl+1,...,βm)

H
kl+1

(αl+1,βl+1);s
· · ·Hkm

(αm,βm);sX
α
suX

β
ut

)]

+
( bpc−1∑
|α1|=1

Hk1
α1;s

Xα1

su

)( ∑
|β2|,...,|βm|≥1

|β2|+...+|βm|≤bpc
|αh|=0,...,bpc−1−|βh|, h≥2

α∈Sh(α2,...,αm)

β∈Sh(β2,...,βm)

Hk2
(α2,β2);s

· · ·Hkm
(αm,βm);sX

α
suX

β
ut

)
+

+
∑

|β1|,...,|βm|≥1

|β1|+...+|βm|≤bpc
|αh|=0,...,bpc−1−|βh|
α∈Sh(α1,...,αm)

β∈Sh(β1,...,βm)

Hk1
(α1,β1);s

· · ·Hkm
(αm,βm);sX

α
suX

β
ut

=
∑

|γ1|,...,|γm|≥1
|γ1|+...+|γm|≤bpc

Hk1
γ1;s
· · ·Hkm

γm;s

∑
l=0,...,m

αh=γh, h≤l
(αh,βh)=γh, |βh|≥1, h≥l+1

α∈Sh(Sh(α1,...,αl),Sh(αl+1,...,α2))

β∈Sh(βl+1,...,β2)

Xα
suX

β
ut

=
∑

|γ1|,...,|γm|≥1
|γ1|+...+|γm|≤bpc

Hk1
γ1;s
· · ·Hkm

γm;s

∑
γ∈Sh(γ1,...,γm)

(α,β)=γ

Xα
suX

β
ut

= (�XH)kst
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We proceed with the proof of geometricity. Again using (3.293.29) we have

(�XH)ist(�XH)jst

≈
∑

|α1|,...,|αm|,|β1|,...,|βn|≥1

|α1|+...+|αm|+|β1|+...+|βn|≤bpc
α∈Sh(α1,...,αm)

β∈Sh(β1,...,βn)

H i1
α1;s
· · ·H im

αm;sH
j1
β1;s
· · ·Hjn

βn;sX
α
stX

β
st

=
∑

|α1|,...,|αm|,|β1|,...,|βn|≥1

|α1|+...+|αm|+|β1|+...+|βn|≤bpc

H i1
α1;s
· · ·H im

αm;sH
j1
β1;s
· · ·Hjn

βn;s

·
∑

γ∈Sh(Sh(α1,...,αm),Sh(β1,...,βn))

Xγ
st

=
∑

k∈Sh(i,j)

∑
|γ1|,...,|γm+n|≥1
|γ1|+...+|γm+n|≤bpc

Hk1
γ1;s
· · ·Hkm+n

γm+n;s

∑
γ∈Sh(γ1,...,γm+n)

Xγ
st

=
∑

k∈Sh(i,j)

(�XH)kst

where we have used Lemma 3.4Lemma 3.4 (with m = 2) in the second last identity. We may therefore apply
Proposition 3.9Proposition 3.9 to conclude the proof. �

This construction immediately yields a couple of important examples of rough path:

Example 3.16 (Pushforward of rough paths). LetX, F be as in Example 3.11Example 3.11. We denote

F∗X :=↑XF (X) (3.45)

and call it the pushforward ofX through F . This is a rough path with trace F (X).

Example 3.17 (Rough integrals as rough paths). Let X,H be as in De�nition 3.13De�nition 3.13. We continue to denote
∫

HdX :=↑X
∫

HdX (relying on context to distinguish between whether we intend the integral as a con-
trolled or rough path).

We can use these notions to reinterpret the following well-known fact about weakly geometric rough paths.
Notice how, in particular, this implies that the rough integral of an exact one-form is entirely determined by
its trace. (Incidentally, arbitrary one-forms do not require the whole rough path for the integral to be de�ned
either, just the terms (�n−1 ⊗ 1)Xn for n = 1, . . . , bpc.)

Proposition 3.18 (Change of variable formula). LetX be as above, F ∈ C∞(V,W ), then the following iden-
tity

F (X) = F (X0) +

∫

DF (X)dX (3.46)

holds in DX(W ). Therefore, the corresponding identity in C
p
ω([0, T ],W ) holds as well:

F∗X = F (X0) +

∫

DF (X)dX (3.47)

where in both cases the constant F (X0) is only added to the trace of the integral.

133



Proof. For the trace we have, by Taylor’s formula and Proposition 3.8Proposition 3.8

F (X)st ≈
bpc∑
n=1

1

n!
〈DnF (Xs), X

⊗n
st 〉

=

bpc∑
n=1

〈DnF (Xs),X
n
st〉

≈
∫ t

s
DF (X)dX

and therefore [Lyo98Lyo98, Theorem 3.3.1] implies F (X)0t =
∫ t

0 DF (X)dX . The other claims follow triv-
ially. �

Remark 3.19. A similar formula would hold for more general controlled paths, i.e.

H = H0 +

∫

H ′dX (3.48)

(together with its rough path counterpart, given by passing to the ↑X on both sides), provided that we have a
bpc-th Gubinelli derivative, needed to de�ne the controlled integrandH ′.

We would now like to show that a path controlled by the lift of a controlled path is controlled by the original
rough path in a canonical fashion.

De�nition 3.20 (Change of controlling rough path). LetX ∈ C
p
ω([0, T ], V ),H ∈ DX(U) (also used to

denote its rough path lift), S another vector space andK ∈ DH(S). We then de�ne

(K ∗H)n :=
n∑

m=1

Km ◦H�m ◦ ∆̃m
�
|V ⊗n (3.49)

which for n = 0 reduces to (K ∗H)0 := K . In coordinates this means

(K ∗H)cγ :=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

Kc
kH

k1
γ1 · · ·Hkm

γm , |γ| ≥ 1 (3.50)

and (K ∗H)c() = Kc.
In Proposition 3.22Proposition 3.22 below we show that this de�nes a controlled path. The next example features a case in

which the reduced ordered shu�e coproduct can be replaced with its unordered counterpart; this however is
not the general case.

Example 3.21. Let X,H,K be as above, with K := F (H) for F ∈ C∞(U, S). Then, since Km is
symmetric we may rewrite (3.493.49) by using the unordered shu�e coproduct: by Corollary 3.6Corollary 3.6

(F (H) ∗H)n =
∑
m≥1

1

m!
DmF (H) ◦H�m ◦ ∆̃m

�
|V ⊗n , n ≥ 1 (3.51)
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or in coordinates

(F (H) ∗H)cγ :=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh−1(γ)
|γ1|,...,|γm|≥1

1

m!
∂kF

c(H)Hk1
γ1 · · ·Hkm

γm , |γ| ≥ 1 (3.52)

WhenH is also given by a smooth function this is known as the Faà di Bruno formula for the higher derivatives
of a composition of functions

∂γ(F ◦G)c(X) :=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh−1(γ)
|γ1|,...,|γm|≥1

1

m!
∂kF

c(H)∂γ1Gk1 · · · ∂γmGkm(X) (3.53)

We will denote the X-controlled path F (H) ∗ H := F∗H ∈ DX(S) and call it the pushforward of H
through F . Note how this is distinct from F (H) ∈ DH(S), and note how F∗X = F (X) where X de-
notes the controlled pathX with zero Gubinelli derivatives. An easy application of Proposition 3.18Proposition 3.18 shows the
following change of variable formula for controlled paths:

F∗H =

(
F (H0) +

∫

DF (H)d(↑XH)

)
∗H (3.54)

Proposition 3.22. The mapK ∗H ∈ L(T bpc−1(V ), S) of Definition 3.20Definition 3.20 is an element of DX(S).

Proof. ClearlyK ∗H ∈ Cpω([0, T ],L(T bpc−1(V ), U)), so it remains to show (3.313.31). We preliminarily write

Kc
j;st ≈bpc−|j|

bpc−|j|−1∑
|i|=1

Kc
(i,j);sH

i
st

≈
∑

m=1,...,bpc−|j|−1
|α1|,...,|αm|≥1
|α1|+...+|αm|≤bpc
α∈Sh(α1,...,αm)

Kc
(i,j);sH

i1
α1;s
· · ·H im

αm;sX
α
st (3.55)

and

Hj
δ;st ≈bpc−|δ|

bpc−|δ|−1∑
|α|=1

Hj
(α,δ);sX

α
st (3.56)

Now, let 1 ≤ |β| ≤ bpc − 2:

(K ∗H)cβ;t

=
∑

n=1,...,|β|
|β1|,...,|βn|≥1

(β1,...,βn)∈Sh
−1

(β)

Kc
j;tH

j1
β1;t
· · ·Hjn

βn;t
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=
∑

n=1,...,|β|
|β1|,...,|βn|≥1

(β1,...,βn)∈Sh
−1

(β)

(Kc
j;s +Kc

j;st)(H
j1
β1;s

+Hj1
β1;st

) · · · (Hjn
βn;s +Hjn

βn;st)

≈bpc−|β|
∑

n=1,...,|β|
|β1|,...,|βn|≥1

(β1,...,βn)∈Sh
−1

(β)

(
Kc
j;sH

j1
β1;s
· · ·Hjn

βn;s +
∑

ε0,...,εn=0,1
(ε0,...,εn)6=(0,...,0)

ξε0η
1
ε1 · · · η

n
εn

)

where ξ0 := Kc
j;s, ηl0 := Hjl

βl;s
, and ξ1, η

l
1 are given by the RHSs of (3.553.55) and (3.563.56) (with δ := βl)

respectively; the≈bpc−|β| in the last line above holds since |j|, |βl| ≤ |β| and the εl’s are not all zero. We can
rewrite this as

(K ∗H)cβ;t

≈bpc−|β|
∑

n=1,...,|β|
|β1|,...,|βn|≥1

(β1,...,βn)∈Sh
−1

(β)
m=0,...,bpc−n−1
|α1|,...,|αm|≥1
|α1|+...+|αm|≤bpc
δ∈Sh(α1,...,αm)

αm+l=0,...,bpc−|βl|−1

(Kc
(i,j);sH

i1
α1;s
· · ·H im

αm;sX
δ
st)·

·(Hj1
(αm+1,β1);s

Xαm+1

st ) · · · (Hjn
(αm+n,βn);s

Xαm+n

st )

≈bpc−|β|
∑

q=1,...,bpc−1
n=1,...,|β|

|α1|,...,|αq−n|≥1
|α1|+...+|αq |≤bpc−|β|−1

|β1|,...,|βn|≥1

α∈Sh(Sh(α1,...,αq−n),Sh(αq−n+1,...,αq))

(β1,...,βn)∈Sh
−1

(β)

γl=αl, l≤q−n
γl=(αl,βl), l≥q−n+1

Kc
k;sH

k1
γ1;s
· · ·Hkq

γq ;sX
α
st

=

bpc−|β|−1∑
|α|=0

Kc
k;s

( ∑
q=1,...,|α|+|β|

l=0,...,q

((α1,...,αl),(αl+1,...,αq))∈(Sh
−1
,Sh−1)(Sh−1(α))

(βl+1,...,βq)∈Sh
−1

(β)

γh=αh, |αh|≥1, h≤l
γh=(αh,βh), |βh|≥1, h≥l+1

Hk1
γ1;s
· · ·Hkq

γq ;s

)
Xα

st

=

bpc−|β|−1∑
|α|=0

( ∑
(γ1,...,γq)∈Sh

−1
(α,β)

|γ1|,...,|γq |≥1

Kc
k;sH

k1
γ1;s
· · ·Hkq

γq ;s

)
Xα

st

=

bpc−|β|−1∑
|α|=0

(K ∗H)c(α,β);sX
α
st

as needed. The second-last identity above is given by Corollary 3.3Corollary 3.3. The proof of (3.313.31) for (K ∗H)0 = K is
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a much simpli�ed version of the proof above. �

Another application of the change of controlling path construction is a Leibniz rule for controlled paths.

De�nition 3.23 (Leibniz rule for controlled paths). Let X ∈ C
p
ω([0, T ], V ), Ui be vector spaces for

i = 1, 2, 3, H ∈ DX(L(U1, U2)), K ∈ DX(L(U2, U3)). De�ne (K · H)0 := K ◦ H and for
n = 1, . . . , bpc − 1

(K ·H)n := × ◦ (K �H) ◦∆� (3.57)

where× : L(U2, U3)� L(U1, U2)→ L(U1, U3) is ordinary composition of linear maps.

In coordinates
(K ·H)

(ij)
γ =

∑
(α,β)∈Sh−1(γ)

K
(ik)
α H

(kj)
β (3.58)

Here we are using the notation
(
h
l

)
to denote indices in spaces of linear maps, the upper index referring to the

codomain and the lower to the domain; this allows us to use the Einstein convention on such superscripts.
When the domain coincides with V (i.e. it is a controlled integrand) we will often place it after the bottom

tuple, e.g.H(kδ)
γ = Hk

(γ,δ), as done previously. The presence of the unreduced ∆� in the previous de�nition
might seem strange at �rst, but it is easily justi�ed as follows:

Proposition 3.24. K ·H defines an element of DX(L(U1, U3)) which coincides with×(K,H) ∗ (K,H).
In particular, ifH = A(X),K = B(X) for smooth functionsA,B then

H ·K = A(·)B(·)(X) (3.59)

withA(·)B(·) denoting the function x 7→ A(x)B(x).

Proof. We apply Example 3.21Example 3.21 with the function × and the controlled path
(K,H) ∈ DX(L(U2, U3) ⊕ L(U1, U2)). Denoting by

(
h
·
)

coordinates for the second direct sum-
mand and by

( ·
k

)
those for the �rst, we have

×(ij)(κ, η) = η(il)κ(lj)

∂(hp)
×(ij) (κ, η) = δihκ(pj), ∂(qk)

×(ij) (κ, η) = δjkη(iq)

∂(hp),(
p
k)
×(ij) (κ, η) = δjkδhi = ∂(pk),(

h
p)
×(ij) (κ, η)

and all other derivatives vanish. Therefore

(×(K,H) ∗ (K,H))
(ij)
γ = K

(il)
γ H(lj) +K(il)H

(lj)
γ +

∑
(α,β)∈Sh−1(γ)
|α|,|β|≥1

K
(il)
α H

( lk)
β

The factor 1/2! is not present in the sum, since each non-vanishing second derivative is counted
twice, as emphasised above. This expression coincides with (3.583.58). The last statement holds since
A(·)B(·) = ×(A,B). �

Next we de�ne a notion of pullback for controlled integrands.
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De�nition 3.25. LetX be as above, F ∈ C∞(V,W ),H ∈ DF∗X(L(W,U)). Let

F ∗H := (H ∗ F (X)) ·DF (X) ∈ DX(L(V,U)) (3.60)

We will not need the coordinate expression of the pullback of a controlled path, although it can still be
derived as done in other cases. The next proposition reassures us of the compatibility and associativity of some
of the operations de�ned up to now.

Proposition 3.26.

1. LetX,H,H,K be as in Example 3.21Example 3.21, then

↑X(K ∗H) =↑HK ∈ Cpω([0, T ], S) (3.61)

In particular lifting commutes with pushforwards

F∗(↑XH) =↑X(F∗H) (3.62)

and furthermore F∗(G∗X) = (F ◦G)∗X for appropriately valued smooth functions F,G;

2. (J ∗K) ∗H =: J ∗K ∗H := J ∗ (K ∗H) for appropriately valued controlled pathsH,K,J ,
and in particular F∗G∗H = (F ◦G)∗H for appropriately valued smooth functions F,G;

3. (J ·K) ∗H = (J ∗H) · (K ∗H) for appropriately valued controlled pathsH,K,J ; in particular,
taking J = A(H),K = B(H) we have (A(·)B(·))∗H = A∗H ·B∗H ;

4. (J ·K) ·H =: J ·K ·H := J · (K ·H) for appropriately valued controlled pathsH,K,J ;

5. F ∗(G∗H) = (G ◦ F )∗H for appropriately valued smooth maps F,G.

Proof. We begin with 1.:

�X(K ∗H)
(c1,...,cm)
st

=
∑

|γ1|,...,|γm|≥1
|γ1|+...+|γm|≤bpc
γ∈Sh(γ1,...,γm)

(K ∗H)c1
γ1;s
· · · (K ∗H)cmγm;sX

γ
st

=
∑

|γ1|,...,|γm|≥1
|γ1|+...+|γm|≤bpc
γ∈Sh(γ1,...,γm)

nl=1,...,|γl|
(γl1,...,γlnl )∈Sh

−1
(γl)

(Kc1
k1;s
H

k11
γ11;s

· · ·Hk1n1

γ1n1 ;s
) · · · (Kcm

km;sH
km1
γm1;s

· · ·Hkmnm
γmnm ;s)X

γ
st

=
∑

|k1|,...,|km|≥1

|k1|+...+|km|≤bpc
h∈Sh(k1,...,km)

Kc1
k1;s
· · ·Kcm

km;s

∑
|δ1|,...,|δq |≥1

|δ1|+...+|δq |≤bpc
δ∈Sh(δ1,...,δq)

Hh1
δ1;s
· · ·Hhq

δq ;sX
δ
st

= (�HK)c1,...,cm

138



and the statement follows by [Lyo98Lyo98, Theorem 3.3.1]. As for the second statement

F∗(↑XH) =↑HF (H) =↑X(F (H) ∗H) =↑X(F∗H)

and
F∗(G∗X) = F∗(↑XG(X)) =↑X(F∗G(X)) =↑X(F∗G∗X) =↑X((F ◦G)∗X)

(whereX is theX-controlled path with traceX and zero Gubinelli derivatives) and the conclusion is implied
by 2. below.

The proof of 2. is straightforward (with the second claim deduced from the Faà di Bruno formula (3.533.53)).
As for 3., we have

((J ·K) ∗H))
(ab)
γ =

∑
m=1,...,|γ|

(γ1,...,γm)∈Sh
−1

(γ)
|γ1|,...,|γm|≥1

(J ·K)
(ab)
k Hk1

γ1 · · ·Hkm
γm

=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

(i,j)∈Sh−1(k)

J
(ac)
i K

(cb)
j Hk1

γ1 · · ·Hkm
γm

=
∑

l+q=1,...,|γ|
(α,β)∈Sh−1(γ)

(α1,...,αl)∈Sh
−1

(α)

(β1,...,βq)∈Sh
−1

(β)

|α1|,...,|αl|,|β1|,...,|βq |≥1

J
(ac)
i K

(cb)
j H i1

α1 · · ·H il
αl
Hj1
β1 · · ·H

jq
βq

= (J ∗H) · (K ∗H)

where the second last identity follows from Lemma 3.4Lemma 3.4 (withm = 2).
As for 4., it is easy to show, using associativity of composition and of ∆�, that both sides coincide with

×3 ◦ (J �K �H) ◦∆3
�

where×3 denotes composition of three linear maps.
Finally, 5. is shown as follows:

F ∗G∗H = (G∗H ∗ F (X)) ·DF (X)

= (((H ∗G(F (X))) ·DG(F (X))) ∗ F (X)) ·DF (X)

= (H ∗G(F (X)) ∗ F (X)) · (DG(F (X)) ∗ F (X)) ·DF (X)

= ((H ∗G ◦ F (X)) ·D(G ◦ F )(X)

= (G ◦ F )∗H

Here, we have used the previous points 2., 3. and 4. in the proposition, as well as the fact that

G(F (X)) ∗ F (X) = G∗F (X) = G∗F∗X = (G ◦ F )∗X = G ◦ F (X)
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and similarly that

(DG(F (X)) ∗ F (X)) ·DF (X) = DG ◦ F (X) ·DF (X)

= DG ◦ F (·)DF (·)(X)

= D(G ◦ F )(X)

where we have used Proposition 3.24Proposition 3.24. �

In the next theorem we prove the property, well-known in both ordinary and stochastic calculus, which
allows to “substitute the di�erential”. This will be especially convenient when manipulating RDEs. We have
only introduced the theory necessary to handle weakly geometric rough paths, and the theorem is therefore
stated in this context, but one can expect this type of result to also hold true in other settings, such as Itô
calculus and branched rough paths.

Theorem 3.27 (Associativity of the rough integral). Let X ∈ C
p
ω([0, T ], V ), H ∈ DX(L(V,W )),

I :=
∫

HdX , I the canonical controlled/rough path above I ,K ∈ DI(L(W,U)). Then(
∫

KdI

)
∗ I =

∫

(K ∗ I) ·HdX ∈ DX(U) (3.63)

and therefore
∫

KdI =

∫

(K ∗ I) ·HdX ∈ Cpω([0, T ], U) (3.64)

Proof. In this proof we will denote, for a tuple γ, γ· its last entry and γ− the tuple obtained by removing γ·,
so γ = (γ−, γ·). Moreover, we will interchangeably use the two indexing notations for controlled integrands,

e.g.Hk
γ = H

( kγ·)
γ− . For |γ| ≥ 1 we then have

(
∫

(K ∗ I) ·HdX

)c
γ

= ((K ∗ I) ·H)cγ

=
∑

(α,β)∈Sh−1(γ−)

(K ∗ I)
(ch)
α H

( hγ·)
β

=
∑

(α,β)∈Sh−1(γ−)

(α1,...,αn)∈Sh
−1

(α)
|α1|,...,|αn|≥1

K
(ch)
k Hk1

α1 · · ·Hkn
αnH

( hγ·)
β

=
∑

(α,β)∈Sh−1(γ−)

(α1,...,αn)∈Sh
−1

(α)
|α1|,...,|αn|≥1

Kc
(k,h)H

k1
α1 · · ·Hkn

αnH
h
(β,γ·)

=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

Kc
kH

k1
γ1 · · ·Hkm

γm
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=
∑

m=1,...,|γ|
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

(
∫

KdI

)c
k

Ik1
γ1 · · · Ikmγm

=

((
∫

KdI

)
∗ I
)c
γ

At the trace level, we have, through a similar argument

(
∫

(K ∗ I) ·HdX

)c
γ;st

≈
bpc∑
|γ|=1

((K ∗ I) ·H)cγ;sX
γ
st

=
∑

|γ|=1,...bpc
m=1,...,|γ|

(γ1,...,γm)∈Sh
−1

(γ)
|γ1|,...,|γm|≥1

Kc
k;sH

k1
γ1;s
· · ·Hkm

γm;sX
γ
st

≈
∫

KcdI

As for the statement at the level of rough paths, we have

∫

KdI =
x
I

∫

KdI

=
x
X

[(
∫

KdI

)
∗ I
]

=
x
X

[
∫

(K ∗ I) ·HdX

]
=

∫

(K ∗ I) ·HdX

where we have used 1. in Proposition 3.26Proposition 3.26 and the previous statement. �

The next result, for which geometricity is essential, tells us that F∗ and F ∗ behave as adjoint operators
under the rough integral pairing. Its proof is an immediate consequence of Proposition 3.18Proposition 3.18 and Theorem 3.27Theorem 3.27.

Theorem 3.28 (Pushforward-pullback adjunction). Let X,H, F be as above, then the identity of controlled
paths (

∫

HdF∗X

)
∗ F (X) =

∫

F ∗HdX (3.65)

holds, and therefore so does the corresponding one of rough paths

∫

HdF∗X =

∫

F ∗HdX (3.66)

Next we move on to the topic of rough di�erential equations (RDEs). We will introduce two equivalent
notions of solution to an RDE. Given a �eld of linear maps F ∈ C∞(W,L(V,W )) and a smooth map
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g ∈ C∞(W,U) we de�ne, for y ∈W

Fg(y) := Dg(y) ◦ F (y) ∈ L(V,U) (3.67)

and inductively

Fng(y) := F (η 7→ Fn−1g(η))|η=y ∈ L(V,L(V ⊗n−1, U)) = L(V ⊗n, U) (3.68)

In coordinates we denote

Fγg
c(y) := Fg(y)cγ = ∂kg(y)F kγ (y) ⇒ Fng(y)c(γ1,...,γn) = Fγ1 · · ·Fγngc(y)

We will also use the compact notation Fγgc(y) for the latter.

Remark 3.29. Note that Fγ1 · · ·Fγngc(y) can be read right to left as well as left to right, i.e. it is equal to
Fγ1 · · ·Fγn−1(Fγng

c)(y) for n ≥ 2. This can be seen by induction on n (with the quanti�er ∀g inside the
inductive hypothesis). For n = 2 the statement is tautological. For the inductive step we have

Fγ1 · · ·Fγn+1g
c(y) = Fγ1(Fγ2 · · ·Fγn+1g

c)(y)

= Fγ1(Fγ2 · · ·Fγn(Fγn+1g
c))(y)

= Fγ1 · · ·Fγn(Fγn+1g
c)(y)

where in the second identity we have used the inductive hypothesis.

De�nition 3.30 (Davie solution to an RDE). Let F ∈ C∞(W,L(V,W )). A solution to the RDE

dY = F (Y )dX, Y0 = y0 (3.69)

is a path Y ∈ C([0, T ],W ) starting at y0 with the property that for all g ∈ C∞(W ).

g(Y )st ≈
bpc∑
n=1

〈Fng(Ys),X
n
st〉 (3.70)

Proposition 3.31 (Gubinelli solution to an RDE). Let Y be a solution to (5.265.26). Then

Y := (Y, F (Y ) = F1(Y ), . . . , F bpc−11(Y )) ∈ DX(W ) (3.71)

and moreover
Y = y0 +

∫

F∗Y dX ∈ DX(W ) (3.72)

Conversely, if anX-controlled controlled path satisfying the above identity, its trace satisfies Definition 3.30Definition 3.30.

In order to prove this proposition we will make use of the following

Lemma 3.32. The X-controlled path Y has the form (3.713.71) if and only if Y n = (F∗Y )n−1 for n ≥ 1.
Moreover, in this case

((Fg)∗Y )n−1 = Fng(Y ), n ≥ 1
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with g as above.

Proof. If we prove
(Fg)∗(Y, F (Y ), . . . , F bpc−11(Y ))n−1 = Fng(Y )

we will have shown both the second statement and the “only if” part of the �rst (just choose g = 1). In order
to show this, we �rst establish the identity

Fγg
c(y) =

∑
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

∂kg
cFγ11k1 · · ·Fγm1km(y) (3.73)

Note that this is not a closed form formula for Fng, since iterated compositions of the vector �elds Fγ also
appear on the RHS, but it will be useful for us nonetheless. We proceed by induction on |γ|. For |γ| = 1 there
is nothing to show. For the inductive step, using Remark 3.29Remark 3.29 we have

F(γ1,...,γn+1)g
c(y)

= Fγ1(Fγ2,...,γn+1g
c)(y)

= Fγ1
∑

(γ1,...,γm)∈Sh
−1

(γ2,...,γn+1)
|γ1|,...,|γm|≥1

∂kg
cFγ11k1 · · ·Fγm1km(y)

=
∑

(γ1,...,γm)∈Sh
−1

(γ2,...,γn+1)
|γ1|,...,|γm|≥1

(
∂h,kg

cFγ11k1 · · ·Fγm1km

+

m∑
l=1

∂kg
cFγ11k1 · · · ∂h(Fγl1

kl) · · ·Fγm1km
)
F hγ1(y)

=
∑

(γ1,...,γm)∈Sh
−1

(γ2,...,γn+1)
|γ1|,...,|γm|≥1

(
∂h,kg

cF hγ1Fγ11k1 · · ·Fγm1km

+

m∑
l=1

∂kg
cFγ11k1 · · ·Fγ1,γl1

kl · · ·Fγm1km
)
(y)

=
∑

(γ1,...,γm)∈Sh
−1

(γ1,...,γn+1)
|γ1|,...,|γm|≥1

∂kg
cFγ11k1 · · ·Fγm1km(y)

Now, for n = |γ| ≥ 1 we have

((Fg)∗Y )cγ =
∑

(γ1,...,γm)∈Sh
−1

(γ1,...,γn−1)

∂k(Fγng
c)Fγ11k1 · · ·Fγm1km(Y )

= F(γ1,...,γn−1)(Fγng
c)(y)

= Fγg
c(y)

where we have used Remark 3.29Remark 3.29 and (3.733.73).
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We now show the “if” implication of the �rst statement. Namely, we need to show that if Y ∈ DX(W )

has the property thatY n = (F∗Y )n−1 forn = 1, . . . , bpc thenY n = Fn1(Y ). We show this by induction
on n. For n = 1 the assertion is obvious. For the inductive step we have

Y h
γ =

∑
(γ1,...,γm)∈Sh

−1
(γ)

|γ1|,...,|γm|≥1

∂kF
h(Y )Y k1

γ1 · · ·Y k1
γ1

=
∑

(γ1,...,γm)∈Sh
−1

(γ)
|γ1|,...,|γm|≥1

∂kF
hFγ11k1 · · ·Fγ11k1(Y )

= Fγ1h(Y )

where we have used (3.733.73) and the inductive hypothesis. �

Proof of Proposition 3.31Proposition 3.31. Let Y be a Davie solution to the RDE. Taking g in (4.304.30) to be 1, F, . . . , F bpc−21

proves that Y de�ned in (3.713.71) is indeed an element of DX(W ). By Lemma 3.32Lemma 3.32 we then have
F∗Y = (F (Y ), . . . , F bpc1(Y )) and by De�nition 3.13De�nition 3.13

∫ t

s
F∗Y dX ≈ 〈(F∗Y )s,X

≥1
st 〉 ≈ Yst

again by the Davie de�nition. Since both the left and RHSs are increments of paths, we conclude by [Lyo98Lyo98,
Theorem 3.3.1] that identity must hold. Therefore, since Y0 = y0, (3.723.72) holds at the trace level, and for n ≥ 1(

y0 +

∫

F∗Y dX

)
n

= (F∗Y )n−1 = Y n

Conversely, assume that there exists someY ∈ DX(W ) s.t. (3.723.72) holds: this implies that form ≥ 0

(F∗Y )m =

(
y0 +

∫

F∗Y dX

)
m+1

= Y m+1

and therefore by Lemma 3.32Lemma 3.32 Y must have the form (3.713.71). Finally, Y0 = y0 and for g ∈ C∞(W ) and
Y :=↑XY

g(Y )st =

∫ t

s
Dg(Y )dY

=

∫ t

s
(Dg(Y ) ∗ Y ) · (F (Y ) ∗ Y )dX

=

∫ t

s
(Dg(Y ) · F (Y )) ∗ Y dX

=

∫ t

s
(Dg(·)F (·))(Y ) ∗ Y dX

=

∫ t

s
(Fg)∗Y dX
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≈
bpc∑
n=1

〈Fng(Ys),X
n
st〉

where we have used Theorem 3.27Theorem 3.27, Proposition 3.26Proposition 3.26 and Lemma 3.32Lemma 3.32. This concludes the proof. �

The above proposition tells us that once we have the solution in the sense of De�nition 3.30De�nition 3.30 we can obtain
anX-controlled path, and thus by De�nition 3.14De�nition 3.14 a rough path. If we want to emphasise the existence of one
of these superstructures we will write

dY = F (Y )dX and, Y0 = y0 (3.74)

i.e. Y :=↑XY , again abusing notation by denoting Y both the controlled and the rough path. Notice that
the initial condition only involves the trace.

The next result will be instrumental in de�ning RDEs on manifolds in a coordinate-invariant manner.

Theorem 3.33 (Change of variable formula for RDE solutions). LetX, F,Y be as above, g ∈ C∞(W,U).
Then (Y , g∗Y ) jointly solve the RDE

d

(
Y
Z

)
=

(
F (Y )

Dg(Y )F (Y )

)
dX (3.75)

In particular, if g is invertible, DefiningC∞(U,L(V,U)) 3 Fg(z) := Dg(g−1(Z))F (g−1(Z)), g∗Y coin-
cides with the rough path solution to

dZ = Fg(Z)dX (3.76)

Proof. Using Proposition 3.18Proposition 3.18, Theorem 3.27Theorem 3.27 and Proposition 3.26Proposition 3.26 we have

d(g∗Y ) = y0 +

∫

Dg(Y )dY

= y0 +

∫

Dg∗Y · F∗Y dX

= y0 +

∫

(Dg(·)F (·))∗Y dX

This proves the �rst claim; as for the second, we continue

d(g∗Y ) =

∫

(Dg(·)F (·))∗Y dX

=

∫

(Dg(g−1(·))F (g−1(·)))∗g∗Y dX

where we have again used Proposition 3.26Proposition 3.26. This concludes the proof. �

3.3 Geometric rough paths on manifolds

In this short section we comment very brie�y on how the theory of the previous can be used to de�ne geometric
[1,∞) 3 p-rough paths on manifolds, and the corresponding notions of rough integral and RDE. We omit
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all details except for those that pertain to the extrinsic formulation, since the local theory proceeds in complete
analogy with that for geometric [1, 3) 3 p-rough paths, a special case treated in Chapter 2Chapter 2.

Geometric [1,∞) 3 p-rough paths on manifolds are de�ned in charts as in De�nition 2.32De�nition 2.32, using push-
forwards to enforce compatibility, with associativity of pushforwards Proposition 3.26Proposition 3.26 guaranteeing indepen-
dence of the atlas. Controlled integrands are also de�ned in charts, using pullbacks, as in De�nition 2.34De�nition 2.34. The
rough integral is de�ned as in De�nition 2.36De�nition 2.36, but without the extra term involving the connection and bracket
term. The independence of the integral of the coordinate system can be shown using the pushforward-pullback
adjunction Theorem 3.28Theorem 3.28. RDEs driven by anM -valued rough path with solution in a second manifoldN are
also de�ned as in (2.1292.129), again, without a dependence on covariant derivatives onM andN , with the solution
well-de�ned as a rough path thanks to Theorem 3.33Theorem 3.33. As usual, we have local existence and uniqueness since
the coe�cients (and atlas) are C∞. The formulae for parallel transport and Cartan development are classical,
and the latter can be de�ned by the fundamental horizontal vector �elds (2.2202.220). The well-known equations
in local coordinates read

dAγ = −Γγαβ(X)AβdXα (3.77)

for parallel transport of the vectorA aboveX anddY k = AkγdZγ

dAkγ = −Γkij(Y )AiαA
j
γdZα

(3.78)

for development of the ToM -valued rough pathZ .
In [CDL15CDL15] the topic of manifold-valued theory of rough paths, rough integration (speci�cally of one-

forms) and RDEs was treated from the extrinsic point of view. HereX ∈ C
p
ω([0, T ],Rd) is de�ned in [CDL15CDL15,

De�nition 3.17] to be constrained to a smoothly embedded manifoldM if its trace isM -valued and for all one-
forms F ∈ ΓL(TRd,W ) (Γ denoting the space of sections)

∀x ∈M F (x)|TxM = 0 ⇒
∫

F (X)dX = 0 ∈ Cpω([0, T ],W ) (3.79)

In [CDL15CDL15, Corollary 3.32, Proposition 3.35] this is shown to be equivalent to the trace X being M -valued
and (I ⊗ Q(Xs))X

2
st ≈ 0, or equivalently to (P (Xs) ⊗ P (Xs))X

2
st ≈ X2

st, where for x ∈ M P (x)

is the orthogonal projection TxRd � TxM and Q := 1 − P . Moreover, one may replace X2
st with its

antisymmetric part (∧X2)st in these identities (because�X2 is already �xed by the trace).
This approach carries over to the case of higher p considered here. IfX ∈ C

p
ω([0, T ],Rd) we may say that

it is constrained to the smoothly embedded manifoldM if π∗X = X , where π is the Riemannian projection
of a tubular neighbourhood U of M onto M (i.e. it maps a point in U to the unique point on M closest to
it — this is well de�ned and smooth on a thin enough tubular neighbourhood). This extends the de�nition
of [CDL15CDL15] since Dxπ = P (x). In order to generalise the equivalent condition (I ⊗ Q(Xs))(∧X)st we
can take the log of our original condition, i.e. log π∗X = logX : this has the advantage of eliminating all the
redundancies of the former (as explained in [LS06LS06, p.767]), and its precise coordinate expression can be derived
by using [FV10bFV10b, De�nition 7.20], but at higher orders cannot be described in terms of antisymmetric tensors.
The Chen-Strichartz formula [Bau04Bau04, Theorem 1.1] expresses logX as a Lie polynomial; the task of expressing
it in a basis of the Lie algebra is more complex still [Rei17Rei17].
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Care must be taken when de�ning the rough integral of a controlled integrand, since it is no longer the
case that for anX-controlled integrandH ,

∫

HdX (de�ned in the ordinary sense, whereX is considered an
element of Cpω([0, T ],Rd)) does not always only depend on the traceH ofX restricted to TM , although this
is indeed the case whenH is given by a one-form: this is because if F ∈ ΓL(TRd,W ) (Γ denoting the space
of sections) vanishes on TM (i.e. F (x)P (x) = 0 for x ∈M ) by Theorem 3.28Theorem 3.28 we have
∫

F (X)dX =

∫

F (X)dπ∗X =

∫

π∗F (X)dX = 0

since π∗F (X) = (F (X) ∗ π(X)) ·Dπ(X) = F (X) · P (X) = F (·)P (·)(X) = 0

(3.80)

where we have used Proposition 3.24Proposition 3.24. This then implies that if F,G ∈ ΓL(TRd,W ) restrict to
the same element of ΓL(TM,W ) then

∫

F (X)dX =
∫

G(X)dX . Similarly, we have that if
H,K ∈ DX(L(TM,W )) are such that π∗H = π∗K then

∫

HdX =
∫

KdX , but this involves condi-
tions on all levels ofH , not just the trace.

Finally, the original de�nition of constrained rough path given by integration (3.793.79) also carries over to
higher p. The fact that this is implied by π∗X = X was shown in (3.803.80). For the converse, we rewrite the
identity as (1 − π)∗X = 0: the trace level is implied by the fact that X is M -valued, and at orders≥ 1 the
identity
∫

Q(X)dX = (1− π)∗X is straightforward to check.

Conclusions and further directions

In this chapter we have provided a self-contained treatment of all the basic structural aspects of �nite-
dimensional geometric rough paths and their controlled paths. Our combinatorial approach combines Lyons’
original theory with Gubinelli’s subsequent approach, and is applied to show how rough path theory naturally
extends to intrinsic and extrinsic manifolds.

Although we believe that spelling out all the algebraic relations between rough and controlled paths is
already of interesting in the �nite-dimensional case, it is really in in�nite dimensions that this becomes necessary,
due to the impracticability of the approach via smooth approximations. For this reason, further value could be
added to the material of this chapter if it were to be extended to the case in which the vector spaces are Banach.
While we expect all the fundamental identities (expressed without reference to a basis) to carry over, their proofs
would require non-trivial modi�cation, since they make use of coordinates, duality, etc. Some of the delicate
aspects of rough paths in in�nite dimensions are considered in [Wei18Wei18].

It would also be interesting to leverage the identities of this chapter to see whether Markovian rough paths
[FV10bFV10b, Ch.16] can be expressed in a more explicit manner. One could then apply such a representation to
study the Cartan development of these rough paths on manifolds, in particular with regards to the question of
whether Markovianity is preserved (as it does in the case of Brownian motion) and, if so, how the expression of
the generator of the developed rough path relates to that of that of the rough path being developed.
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4
Atransfer principle for branched rough paths

Project status. This chapter may be considered a �nished project, though I have not yet uploaded it to arXiv
or submitted it to a journal at the time of writing.

Introduction

As we have already mentioned a number of times in this thesis, Malliavin’s original transfer principle con-
sists of the formal equivalence between ordinary calculus of manifold-valued smooth curves and Stratonvich
calculus of manifold-valued semimartingales. Building on results of Meyer [Mey81Mey81, Mey82Mey82], in [É90É90] Emery
discovered the Itô transfer principle, the rule that makes it possible to de�ne Itô integration and RDEs on
a manifold with connection: condensed into a single formula, this consists of de�ning the Itô di�erential
d∇X

γ := dXγ + 1
2Γγαβ(X)d[X]αβ . In Chapter 2Chapter 2 we readapted this idea to non-geometric rough paths

of bounded [2, 3) 3 p-variation, additionally exploring its extrinsic formulation and the local theory of par-
allel transport and development. In Chapter 3Chapter 3 we instead studied the combinatorial structure of rough paths
and their controlled paths, and used this to derive the trivial transfer principle for geometric rough paths. The
goal of this chapter is to combine the challenges stemming from non-geometricity with those due to low path
regularity, in order to formulate a transfer principle that is valid for general branched rough paths.

Formulating the transfer principle in this context is signi�cantly more complex than in the 2 ≤ p < 3

case. This is mainly due to the way in which branched rough paths and the solutions to their RDEs transform
under the action of a smooth function. Such change of variable formulae were discovered by Kelly in his PhD
thesis [Kel12Kel12], and are the main technical tool needed here. An interesting, but complicating feature of these
is that RDE solutions transform in a strictly more complex manner than the trace of the branched rough path
does, something which only becomes visible when p ≥ 3. As a result, one should expect a transfer principle
for RDEs on manifolds to be more complex than the one that su�ces for rough integration. For this reason,
we have only focused on the latter, leaving the former for future investigation.
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In Section 4.1Section 4.1 we begin by reviewing the background on branched rough paths, introduced by Gubinelli
in [Gub10Gub10]. This includes a discussion of Kelly’s bracket extension, needed for the change of variable for-
mula. Next, in Section 4.2Section 4.2 we de�ne the lift of a controlled path: the proof that this de�nes a rough path is
more involved than its counterpart in the geometric case, and requires some delicate manipulations of rooted
forests. When pushing forward a branched rough path, it is necessary (for the �nal goal of this chapter) to also
push forward the simple bracket extension. This can be viewed as a generalisation of the rule for obtaining the
quadratic covariation of Itô integrals, and requires an additional consistency relation on the simple bracket.
Section 4.3Section 4.3 is a digression into a topic that has received relatively little attention in the literature, but which
has potentially interesting consequences within our scope. Quasi-geometric rough paths [Bel20Bel20] constitute a
class of rough paths that lie somewhere between geometric ones and the most general branched ones. They
are compact enough to be de�ned on the tensor algebra, but do not obey the ordinary integration by parts
rule formulated in terms of shu�es: rather, they are de�ned on Ho�man’s quasi-shu�e algebra [Hof00Hof00]. The
main result of this section is a characterisation of them which, in a nutshell, says that they are precisely those
branched rough paths for which RDE solutions do not transform in a more complicated way than the trace
of the original rough path does. We take the opportunity to give a brief survey on some facts about geometric,
quasi-geometric and branched rough paths that are likely known by experts, but not easy to �nd in the liter-
ature. In Section 4.4Section 4.4 we de�ne the transfer principle necessary to de�ne rough integrals of one-forms against
branched rough paths valued in a manifold carrying a covariant derivative. This entails de�ning certain higher-
order Christo�el symbols (which are nevertheless completely determined by the connection), and involves a
few subtleties pertaining to their symmetry (or lack thereof). While this chapter may be considered �nished
work, the section Conclusions and further directionsConclusions and further directions is unusually long. In it, we mention several ways to build
on the material covered, some within fairly easy reach and others which would require signi�cant further e�ort.

4.1 Background on Rd-valued branched rough paths

4.1.1 The Connes-Kreimer and Grossman-Larson Hopf algebras

In this subsection we will go over the algebraic prerequisites to the rest of the chapter. We will follow mainly
[Foi13Foi13] (see also [Hof03Hof03]) for Hopf algebras of forests and [MM65MM65, Man06Man06] for the more general theory of
Hopf algebras; when details and proofs are omitted it is intended that they are to be found therein. Most of the
choices in setup and notation will follow [HK15HK15] (for instance in the decision to de�ne the Grossman-Larson
Hopf algebra using forests rather than trees with unlabelled root, as done in most of the literature), but will
deviate from in some aspects that will be motivated later on (for instance in the use of inhomogeneous gradings,
see for instance [TZ20TZ20]).

In this chapter we will be interested in A-decorated non-planar rooted forests, where A is a �nite alphabet.
These are �nite acyclic graphs with a �nite number of vertices, which are labelled with elements ofA, and each
connected component of which - a tree - has a preferred vertex, its root. In graphical representations the root of
a tree will be identi�ed as its single lowermost vertex. The term “non-planar” refers to the fact that the trees in
a forest, and the children of each vertex (the vertices attached to it that are further away from the root) are not
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given an order. An example is

a

b c

d

e
f

g

= d

e
f

g

a

c b

6= d

f

e

g

a

c b

in general for a, . . . , g ∈ A. The �rst and second terms are equal by non-planarity, and the third is di�erent
(unless e = f ). Trees such as this term - ones in which each vertex has at most one child - are called ladders.

Call the set of such forests FA and its subset of trees T A; note that we are considering an empty forest
∅ ∈ FA (which is not considered a tree, as it has no root). We will say that a non-empty forest is proper if it
is not a tree. We will denote forests using lettersf,g,h, . . . and trees with r,s, t, . . .We will write ν ∈ fto
mean that ν is a vertex offand we denote `(ν) its label. We will assume thatA comes with a weighting, i.e. each
element a ∈ A has a weight |a| ∈ N∗. This induces a grading onFA by setting |f| :=

∑
ν∈f |`(ν)|, the degree

off. We will instead denote #fthe number of vertices off; more in general, throughout this chapter, we will
use # to denote cardinality, reserving | · | for weightings and gradings. It will sometimes be helpful to write
f= t1 · · · tn when the forestfis composed of the individual trees t1, . . . , tn, which are called its factors; note
that this product, which will also be de�ned between forests and denoted simply · , is the free abelian one. It
will also be helpful to use the notation t= [f]a when the tree t is given by joining each root in the forestfto
a new root labelled a ∈ A, and note that [∅]a := a .

An important case for the alphabet is

[d] := {1, . . . , d} (4.1)

for some d ∈ N∗, with the homogeneous grading |γ| ≡ 1 for γ = 1, . . . , d. In this case we will denote
FA =: Fd, and similarly replace all A superscripts with d’s. We will usually use Greek letters for elements of
[d], reserving a, b, c, . . . for more general labels.

We will now introduce algebraic operations on R〈FA〉, the graded R-vector space generated by FA, of
which we identify the subspace generated by the empty forest withR, by∅ = 1. A non-total cutC of t∈ T A

is a subset of its edges. It is called admissible if it has the property that every increasing path in t contains at
most one element ofC . For example

a
b

cd

, a
b

cd

both de�ne cuts of the underlying tree, but only the �rst is admissible. The admissible cut∅ is called the trivial
cut. Deleting the edges in a non-total cutC transforms t into a forest tC ; ifC is admissible we call tC the tree
containing its root (think of the portion of tbelow the cut) and tC the forest comprised of all other factors
off(think of the portion of tabove the cut). The trivial cut can be thought of as a cut above the leaves, since
t∅ = t, t∅ = ∅. We also consider the total cut ∀, which is declared admissible and for which we set t∀ = ∅,
t∀ = t; this cut, which does not correspond to any set of edges, should be thought of as a cut below the root.
The set of cuts of t ∈ T A (including ∀) is denoted Cut(t) and its subset of admissible ones Cut∗(t). We
will also speak of cuts of a forest t1 · · · tn: this is just a collection of cuts, one for each tk. The Connes-Kreimer
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coproduct is given by

∆CK : R〈FA〉 → R〈FA〉 ⊗ R〈FA〉, ∆CKt :=
∑

C∈Cut∗(t)

tC ⊗ tC for t∈ T A (4.2)

and required to be an algebra morphism according to the free abelian product of trees, i.e.
∆CK(t1 · · · tn) = ∆CKt1 · · ·∆CKtn with the product on the right given factor-wise, and extending
linearly. For example

∆CK a
b

cd

= 1⊗ a
b

cd

+ d ⊗ a

b c

+ d c ⊗ a
b

+ b
d
⊗ a

c
+ c

b
d
⊗ a + a

b
d

⊗ c + a
b

cd

⊗1

We now de�ne the operation that is dual to ∆CK, in a sense that will be made precise below. For
t1 · · · tn = f,g ∈ FA we will say that h is obtained by grafting fonto g, denoted h ∈ f g, if h is
obtained by taking each factor tk and either joining its root to a vertex of g (by adding an extra edge) or mul-
tiplying it with g (i.e. making it one of the factors of h). Note that when we sum over h ∈ f g we are not
doing so over all distinct forests that are given by graftingfonto g, but over distinct ways of grafting: the point
is that there may be two distinct vertices in g s.t. graftingfonto them results in two identical labelled forests;
for this reasonf g is best thought as a multiset, not a set. Also note that ∅ g and g ∅ both consist of
the singleton {g}. We then de�ne the Grossman-Larson product

? : R〈FA〉 ⊗ R〈FA〉 → 〈FA〉, f? g :=
∑

h∈f g

h (4.3)

and extending linearly. An example is

d ? a

b c

= d a

b c

+ a

b c d

+ a
b

cd

+ a
c

bd

Note how the last two summands are the same if b = c. There is one operation that is left to de�ne: the
coproduct dual to the free abelian product of forests. We de�ne the Grossman-Larson coproduct

∆GL : R〈FA〉 → R〈FA〉 ⊗ R〈FA〉, ∆GL(t1 · · · tn) :=
∑

ItJ={1,...,n}

tI ⊗ tJ (4.4)

where we are summing over all subsets I of the set with n elements, with J its complement, and for
K ⊆ {1, . . . , n} we are de�ning tK :=

∏
k∈K tk. We now de�ne the algebraic structure into which we

would like these operations to �t.

De�nition 4.1 (Connected graded bialgebra). A connected graded Hopf algebra is a triple (H,×,∆) where
H =

⊕
n∈NH

n is a graded real vector space, × : H ⊗ H → H (the product) and ∆: H → H ⊗ H (the
coproduct) are linear functions, and the following axioms are satis�ed for all x, y, z ∈ H :

Associativity. (x× y)× z = x× (y × z);

Unit. There exists a unit, i.e. a linear map ι : R→ H s.t. x× ι(1) = x = ι(1)× x and ∆ ◦ ι = ι⊗ ι;
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Coassociativity. (1H ⊗∆) ◦∆ = (∆⊗ 1H) ◦∆;

Counit. There exists a counit, i.e. a linear map ε : H → R s.t.
(ε⊗ 1H) ◦∆ = 1H = (1H ⊗ ε) ◦∆ and ε(x× y) = εx× εy;

Compatibility. ∆(x× y) = ∆x×∆y and ε ◦ ι = 1R;

Grading. H i ×Hj ⊆ H i+j and ∆Hn ⊆
⊕

i+j=nH
i ⊗Hj ;

Connectedness. H0 ∼= R.

From these axioms, which de�ne a connected graded bialgebra, it is possible to show the following further
property, that turnsH into a Hopf algebra:

Antipode. There exists an antipode, i.e. a linear map S : H → H s.t.
× ◦ (S⊗ 1H) ◦∆ = ι ◦ ε = × ◦ (1H ⊗ S) ◦∆.

We also consider the following two optional properties, denoting τ : H ⊗H → H ⊗H the switch of factors:

Commutativity × ◦ τ = ×;

Cocommutativity τ ◦∆ = ∆.

If the unit and co-unit exist they are unique, and moreover we have Im ι = H0, Ker ε =
⊕

n≥1H
n, and

we will use ι to identifyH0 = R. Less trivially, uniqueness also holds for the antipode: this fact, the proof of
which uses the grading in an essential way, means that the antipode does not constitute additional structure; in
a similar spirit, it can be shown that a bialgebra morphism, de�ned in the obvious way, automatically preserves
the antipode. The reduced coproduct is de�ned by

∆̃x := ∆x− x⊗ 1− 1⊗ x ∈
⊕
i,j≥1

H i ⊗Hj (4.5)

We may also iterate the coproduct by de�ning

∆m : H → H⊗m, ∆0 := 1R, ∆1 := 1, ∆2 := ∆,

∆m := (1H ⊗∆m−1) ◦∆ = (∆m−1 ⊗ 1H) ◦∆ form ≥ 3
(4.6)

with the last identity holding by coassociativity. We can similarly iterate the reduced coproduct, ∆̃m. We will
use Sweedler notation

∆mx =:
∑
(x)m

x(1) ⊗ · · · ⊗ x(m) (4.7)

and we can modify the subscript (x)m to re�ect whether we are reducing the coproduct, i.e. (x̃)m, and/or to
specify the speci�c coproduct used, e.g. (x)mCK, (x)mGL, and the superscript m will be omitted when it is 2.

An element x ∈ H is primitive if ∆x = 1⊗x+x⊗ 1 and grouplike if ∆x = x⊗x. The set of primitive
elements will be denoted P(H) and forms a Lie algebra with bracket [x, y] := x × y − y × x, in which
Sx = −x. The set of grouplike elements will be denoted G(H) and forms a group in which Sx = x−1. Such
statements are not di�cult to prove, e.g. for x ∈ G(H)

Sx× x = × ◦ (S⊗ 1H)(x⊗ x) = (× ◦ (S⊗ 1H) ◦∆)x = 1
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We will adopt contractions in notation with obvious meaning such as GAGL := G(HAGL) (withHAGL de�ned
below).

De�nition 4.2 (The Connes-Kreimer and Grossman-Larson bialgebras). We call the triple
HACK := (R〈FA〉, ·,∆CK) (where · denotes the free abelian product of forests) the Connes-Kreimer
Hopf algebra, and the tripleHAGL := (R〈FA〉, ?,∆GL) the Grossman-Larson Hopf algebra.

ThatHACK andHAGL are bialgebras is non-trivial. Before stating this result, we de�ne the pairing that es-
tablishesHACK andHAGL as dual to one another. Forf∈ FA de�neN(f) to be the number of label-preserving
order automorphisms off: this is recursively given by

N(∅) = 1, N([f]a) = N(f), N(sk11 · · ·s
km
m ) =

m∏
i=1

ki!N(si)
ki (4.8)

where s1 · · ·sm are pairwise distinct trees when taking the labelling into account. We de�ne the pairing

〈·, ·〉 : HACK ⊗HAGL → R, 〈f,g〉 := N(f)δfg (4.9)

where δ denotes Kronecker delta, and we are extending with bilinearity. This induces a corresponding pairing
on R〈FA〉⊗n by applying the above pairing factorwise on elementary tensors, and multiplying. The purpose
of this pairing is for ? to be dual to ∆CK and · to ∆GL with respect to it. The reason for the N(f) factor is
explained by the following example: calling δ(·, ·) the pairing induced by the Kronecker delta on basis elements,
we have

δ
(
∆CK b

a a

, a ⊗ b

a )
= 2 6= 1 = δ

(
b

a a

, a ? b

a )
since there are two distinct cuts that result in a non-zero evaluation on the left, but only one way of grafting
that does so on the right. The pairing which takes into account the order of the automorphism group instead
works: 〈

∆CK b

a a

, a ⊗ b

a 〉
= 2 =

〈
b

a a

, a ? b

a 〉
It can be observed that something similar thing occurs with the operations · and ∆GL. We now state the result
that summarises the content of this subsection:

Theorem 4.3 (The pair (HACK,HAGL)). HACK andHAGL are connected graded Hopf algebras, the former com-
mutative and the latter cocommutative, and the map (4.94.9) defines a graded bialgebra pairing, i.e.

〈∆CKz, x⊗ y〉 = 〈z, x ? y〉, 〈x⊗ y,∆GLz〉 = 〈xy, z〉 (4.10)

and

i 6= j ⇒ 〈(HACK)i, (HAGL)j〉 = 0, 〈x, (HAGL)|x|〉 = 0⇒ x = 0, 〈(HACK)|y|, y〉 = 0⇒ y = 0 (4.11)

Note how the above notion of graded duality is di�erent from ordinary duality: the former is equivalent to
an isomorphism

⊕
n∈NH

n ∼=
⊕

n∈NHn, whereHn is the dualHn, de�ned unambiguously ifHn is �nite-
dimensional, as is the case here. Graded duality has the advantage of not introducing direct products (which
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would be needed in the study of full signatures, but are not when only dealing with rough paths), while still
maintaining a lot of the necessary functoriality. For example, if f :

⊕
n∈NH

n →
⊕

n∈NK
n is a linear for

which there exists m s.t. f(Hn) ⊆ Kn+m for all n, it induces a unique map f∗ :
⊕

n∈NKn →
⊕

n∈NHn

s.t. 〈f∗(y), x〉 = 〈y, f(x)〉.
The (uniquely determined) Connes-Kreimer antipode is given by

SCK(t) =
∑

∀6=C∈Cut(t)

(−1)|C|+1tC , t∈ T A (4.12)

(note that we are summing over all non-total cuts, not just the admissible ones) and extended as an algebra
morphism. In a graded dual pair of Hopf algebras, the antipodes are graded dual to one another, so we can
obtain the Grossman-Larson antipode as SGL = S∗CK.

Note that the fact that the pairing ofHACK andHAGL is not the Kronecker one implies that covariant and
contravariant components no longer coincide: we reserve sub/super-scripting for the former, i.e. we denote

xf := 〈f, x〉, yf := 〈y,f〉 for x ∈ HAGL, y ∈ HACK, f∈ FA (4.13)

The contravariant component of xw.r.t.f, on the other hand, is δ(f, x), meaning that we can express x as the
�nite sum

∑
f∈FA δ(f, x)f(and similarly for y ∈ HAGL). As a consequence 〈y, x〉 6= yfx

f, rather

〈y, x〉 =
〈 ∑

g∈FA
δ(y,g)g,

∑
f∈FA

δ(x,f)f
〉

=
〈 ∑

g∈FA
N(g)−1〈g, y〉g,

∑
f∈FA

N(f)−1〈f, x〉f
〉

=
∑

f,g∈FA
N(g)−1N(f)−1ygx

f〈g,f〉

=
∑
f∈FA

N(f)−1yfx
f

(4.14)

We conclude this subsection with a couple of remarks.

Remark 4.4 (Di�erent pairing used in [Kel12Kel12, HK15HK15]). In these worksHACK andHAGL are paired using δ(·, ·),
not the pairing (4.94.9) that takes into account order automorphisms. For this reason, some of their identities will
require minor modi�cation for them to �t into the framework used here.

Remark 4.5 (Forest bialgebras over abstract vector spaces). HACK andHAGL may be considered “bialgebras over
RA”, in the sense that (HACK)1 = RA = (HAGL)1 canonically. The theory needed to replaceRA with a possibly
in�nite-dimensional (locally-convex) abstract vector space is developed in [Wei18Wei18]. Since we con�ne ourselves
to the �nite-dimensional case, for our purposes it makes more sense to begin by �xing coordinates, and later
make the manifold-valued theory coordinate-free by considering suitably compatible families of rough paths
de�ned w.r.t. arbitrary charts.

4.1.2 Rough paths, their controlled paths, rough integration and RDEs

In this subsection we introduce the topic of branched rough paths, original to [Gub10Gub10]. We will follow [HK15HK15],
and omit proofs and details that can be found therein; in light of Remark 4.4Remark 4.4 we will make small adjustments
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to some formulae, without modifying their meaning in any signi�cant way. We preface the main de�nition
with a couple of preliminary ones. For T ≥ 0 let ∆T := {(s, t) ∈ [0, T ]2 | s ≤ t}. A control on [0, T ]

is a continuous function ω : ∆T → [0,+∞) s.t. ω(t, t) = 0 for 0 ≤ t ≤ T and is superadditive, i.e.
ω(s, u) + ω(u, t) ≤ ω(s, t) for 0 ≤ s ≤ u ≤ t ≤ T . Throughout this chapter p will denote a real
number∈ [1,+∞). We will denote (HAGL)n the sub-vector space ofHAGL generated by forest of weightn and
(HAGL)≤n that generated by forest of degree k ≤ n. We will also use similar sub/superscripts for projection on
such subspaces, e.g. x≤n is the projection of x ∈ HAGL onto (HAGL)≤n. When referring toHACK we will use
subscripts instead of superscripts, to emphasize duality.

De�nition 4.6 (Branched rough path). An RA-valued p-branched rough path (of inhomogeneous regularity
given by the weighting onA) on [0, T ] controlled by ω is a continuous map

X : ∆T → (HAGL)≤bpc, (s, t) 7→Xst (4.15)

s.t.X∅ ≡ 1 and satisfying the following three axioms:

Regularity. sup
0≤s<t≤T

|Xf
st|

ω(s, t)|f|/p
<∞ forf∈ (FA)|≤p|;

Multiplicativity. Xst = (Xsu ?Xut)
≤bpc, or in coordinatesXf

st =
∑

(f)CK

X
f(1)
su X

f(2)
ut forf∈ (Fd)≤bpc,

and 0 ≤ s ≤ u ≤ t ≤ T ;

Grouplikeness. ∆GLXst = Xst ⊗ Xst, or in coordinates Xfg
st = Xf

stX
g
st for f,g ∈ FA with

|f|+ |g| ≤ bpc, and 0 ≤ s ≤ t ≤ T .

We denote the set of these C
p
ω([0, T ],RA).

The intuitive meaning of a branched rough path is given by the following recursive set of identities:

X∅
st = 1, X t1···tn

st = X t1
st · · ·X

tn
st , X

[f]a
st =

∫ t

s
Xf

sudXa
u (4.16)

for tk ∈ T A,f ∈ FA. While the second identity is implied by the de�nition (and the �rst is actually re-
quired), the second is only to be taken heuristically, as the integral is not well de�ned in general. Of course,
when |f| ≥ bpc the termX

[f]a
st could be de�ned by taking the above identity literally in the sense of Young:

this, together with the identity for products, would automatically de�ne Xg
st for any g ∈ FA and is called

the Lyons extension of X ; in this chapter, however, we will always consider X to be truncated at order bpc:
this will ensure that all of our sums are �nite, yet precise at the necessary order. When equipped with an initial
valueX0, the components ofX indexed by single labelled vertices are the increments of componentsXa of a
continuous functionX : [0, T ]→ RA called the trace;X is a member of Cpω([0, T ],RA), the set of functions
Y : [0, T ]→ RA with the property that for a ∈ A

sup
0≤s<t≤T

|Y a
st|

ω(s, t)|a|/p
(4.17)

where Yst := Yt − Ys is the increment. Note that the de�nitions of C
p
ω([0, T ],RA) and C depend on the

weights assigned to elements of A. Also note that our setup accommodates rough paths of inhomogeneous
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ω-Hölder regularity, but only ones that are integer multiples of a given p−1: this choice is justi�ed by the fact
that the bracket terms considered in Subsection 4.1.3Subsection 4.1.3 (the only reason that has prompted us to consider inho-
mogeneous regularities) satis�es this property.

In what follows we will write≈m between two real-valued quantities dependent on 0 ≤ s ≤ t ≤ T to
mean that their di�erence lies in O(ω(s, t)m/p) as t ↘ s, and simply ≈ (almost equal) to mean ≈bpc+1.
We will need the following simple readaptation of a well-known principle: its proof is identical to that of
Proposition 3.9Proposition 3.9 (the basis of trees ofHACK plays the role of the Lyndon basis).

Proposition 4.7 (Almost rough paths). Let X̃ be as in Definition 4.6Definition 4.6, with the di�erence that the =’s signs in
the multiplicativity and grouplikeness axioms are replaced with≈’s. Then there exists a unique p-rough pathX
with the property thatXst ≈ X̃st.

We now give the de�nition of path controlled by a branched rough path.

De�nition 4.8. Let X ∈ C
p
ω([0, T ],RA). An Re-valued X-controlled path H is an element of

Cp([0, T ], (HACK
≤bpc−1

)×e) with homogeneous grading≡ 1 on the target, and s.t. for n = 0, . . . , bpc − 2

Re 3 〈Hn;t, y〉 ≈bpc−n 〈Hs,Xst ? y〉, y ∈ (HAGL)n (4.18)

Call the set of these DX(Re).

Note that H is a vector space-valued path; the homogeneous grading on the e-fold cartesian product of
(HACK)≤bpc−1 just re�ects the fact that its components, indexed by [e] × (FA)≤bpc−1 (recall that we are de-
noting [e] := {1, . . . , e}), all have regularity p: this is because in all cases of interest H will be de�ned ex-
plicitly in terms of the whole ofX and will therefore be, in general, as regular as the least regular component
of X . We will denote the components of H as Hk

f where f ∈ (FA)≤bpc−1 and k = 1, . . . , e; the terms
H := H∅ ∈ Cp([0, T ],Re) will be called the trace, and the rest its Gubinelli derivatives. Note that in (4.184.18)
the pairing is intended as componentwise on the upper index, which we will often omit. Using (4.144.14) we can
express (4.184.18) as

Hf;t ≈bpc−|f| 〈Hs,Xst ?f〉

= 〈∆CKHs,Xst ⊗f〉

=
∑

g,h∈FA
N(f)−1N(g)−1〈∆CKHs,g⊗ h〉〈g⊗ h,Xst ⊗f〉

=
∑

g,h∈FA
N(f)−1N(g)−1〈Hs,g ? h〉Xg

st〈h,f〉

≈bpc−|f|
∑

g∈FA
|g|≤bpc−|f|

N(g)−1〈Hs,g ?f〉Xg
st

or in other words
Hf;t ≈bpc−|f|

∑
g∈FA

|g|≤bpc−|f|
h∈g f

N(g)−1Hh;sX
g
st (4.19)
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which at the trace level reads

Ht ≈bpc 〈Hs,Xst〉 =
∑

g∈FA, |g|≤bpc

N(f)−1Hg;sX
g
st (4.20)

Example 4.9. To convince oneself that this is indeed the form of the expansion that is self-consistent at higher
orders, consider the ODE

dY = V (Y )dX, V ∈ C∞(Re,Re×d) (4.21)

The order-4 expansion of Y in terms of the branched iterated integrals ofX (obtained by performing iterated
substitutions Yst ←

∫ t
s V (Y )dX and Taylor expansions of V (Y ) of the necessary order) is given by

Y k
t ≈ Y k

s X
1
st + V k

γ (Ys)Xst

γ

+ ∂hV
k
β V

h
α (Ys)Xst

β
α

+ ∂hV
k
γ ∂lV

h
β V

l
α(Ys)Xst

γ
β
α

+ 1
2∂ijV

k
γ V

i
αV

j
β (Ys)Xst

γ

α β

+1
6∂ijhV

k
δ V

i
αV

j
β V

h
γ (Ys)Xst

δ

αβγ

+ ∂ijV
k
δ ∂hV

i
βV

j
γ V

h
α (Ys)Xst

δ
β

γα

+∂hV
k
δ ∂lV

h
γ ∂pV

l
βV

p
α (Ys)Xst

δ

γ
β
α

+ 1
2∂hV

k
δ ∂ijV

h
γ V

j
αV

j
β (Ys)Xst

δ

γ

α β

with the Einstein convention implying a sum on the single indices (not on distinct labelled trees - this is what
the fractions are for). We therefore have

coe�cient ofXst
γ

α β

=

∂ijV k
γ V

i
αV

j
β (Ys) α 6= β

1
2∂ijV

k
γ V

i
αV

j
β (Ys) α = β

coe�cient ofXst
δ

αβγ

=


1
6∂ijhV

k
δ V

i
αV

j
β V

h
γ (Ys) α = β = γ

1
2∂ijhV

k
δ V

i
αV

j
β V

h
γ (Ys) α 6= β = γ ∨ α = β 6= γ ∨ α = γ 6= β

∂ijhV
k
δ V

i
αV

j
β V

h
γ (Ys) α 6= β 6= γ 6= α

and a statement similar to the �rst for the last term in the expansion. Now, setting this expression equal to (4.194.19)
withf= ∅ already �xes all the Y g’s to be equal to the terms above involving derivatives and products of the
V h
c ’s without the fractions, e.g.

Y
k

γ

αα = ∂ijV
k
γ V

i
αV

j
α (Y )

Re-expanding this term, we have

Y
k

γ

αα;t ≈ ∂ijV k
γ V

i
αV

j
α (Ys) + (∂ijhV

k
γ V

i
αV

j
αV

h
β (Ys) + 2∂ijV

k
γ ∂hV

i
αV

j
αV

h
β (Ys))X

β
st

= Y
k

γ

αα;sX
1
st + (Y

k

γ

ααβ;s + 2Y
k

γ
α

α
β ;s)Xst

β

which is precisely the expression predicted by (4.194.19).

Remark 4.10. As exempli�ed by the calculations above, sums of the sort
∑

fN(f)−1ϕ(f) can be replaced with
ones

∑
f̃

∑
`N(f̃)−1ϕ(f̃̀ ), where f̃are unlabelled forests (ranging in the set corresponding to that of thef’s),

we are additionally summing over all possible labellings ` on each f̃(i.e. maps from the set of vertices of each f̃
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toA), N(f̃) is the number of unlabelled order automorphisms of f̃, and f̃̀ is the forest f̃ labelled with `. This
is because in the latter type of sum each term N(f̃)−1ϕ(f) appears |Aut(f̃)/Aut(f)| = N(f̃)/N(f) times.

Example 4.11 (Smooth functions of controlled paths). IfH ∈ DX(Re) and f ∈ C∞(Re,Rc) we can de�ne
anX-controlled path with trace f(H) by

(f∗H)f :=
∑

f1···fn=f

∂k1,...,knf(H)Hk1
f1
· · ·Hkn

fn
(4.22)

where we are summing on all distinct ways of expressing the forest fas a product of forests f1 · · ·fn. Again,
here “distinct” is intended in the sense of multisets: iff is the product of trees t1 · · · tn, each term in the sum
corresponds to a partition of the multiset {{t1, . . . , tn}}; for instance if f = sstwith s, t ∈ T A, the term
corresponding tof= s · stappears not once, but twice. Note that the absence of the 1/n! factor, present in
[HK15HK15], is due to the di�erent dual pairing, as explained in Remark 4.4Remark 4.4 (and exempli�ed in Example 4.9Example 4.9). In
particular, if e = d and we takeH to be theX-controlled path de�ned by X itself, i.e.Xa

f = δ•
a

f , we have
the expression for a controlled path given by a function of the trace ofX :

〈f(X), a1 · · · an 〉 := ∂a1,...,anf(X) (4.23)

and zero on all other forests; in this case (4.194.19) reduces to the usual Taylor expansion. In this case we will often
just write f(X) to denote the above controlled path, since it only depends on f and the traceX .

We continue by de�ning rough integration. We will call elements of DX(Re×A)X-controlled integrands,
and we will use subscripts for theA index, i.e.Hk

f,a for k ∈ [e], a ∈ A, f∈ FA. Setting, for a ∈ A

〈f,Xa
st〉 := 〈[f]a,Xst〉, f∈ FA

It is shown that
〈Ha;s,X

a
st〉 − 〈Ha;s,X

a
su〉 − 〈Ha;u,X

a
ut〉 ≈ 0

for s ≤ u ≤ t, enabling the following

De�nition 4.12 (Rough integral). We de�ne the rough integral as the unique path with increments
≈ 〈Ha;s,X

a
st〉, i.e.

∫ t

s
HdX := lim

n→∞

∑
[u,v]∈πn

〈Ha;u,X
a
uv〉 (4.24)

where (πn)n is any sequence of partitions on [s, t] with vanishing step size as n→∞.

This limit is shown to be well de�ned, independently of (πn)n, and taking s = 0, t ∈ [0, T ] above yields
an element of Cp([0, T ],Re). In coordinates we have, again by (4.64.6)

∫ t

s
HdX ≈

∑
f∈FA, a∈A
|f|+|a|≤bpc

N(f)−1Hf,a;sX
[f]a
st (4.25)
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This becomes an element
∫ ·

0HdX ∈ DX(Re) by setting (
∫ ·

0HdX)∅ to the above path, and(
∫ ·

0
HdX

)
[f]a

:= Hf,a,

(
∫ ·

0
HdX

)
g

:= 0, for g ∈ FA \ (T A ∪ {∅}) (4.26)

We move on to the topic of rough di�erential equations, or RDEs. Let F ∈ C∞(Re,Re×d). We wish to
give meaning to the expression

dY = F (Y )dX, Y0 = y0 ∈ Re (4.27)

De�nition 4.13 (RDE). We will sayY ∈ DX(Re) is a controlled solution to (4.274.27) if

Y t = y0 +

∫ t

0
F∗Y dX (4.28)

where theX-controlled paths Y and F∗Y are de�ned by the rules (4.264.26) and (4.224.22).

Note that if such a Y exists all its Gubinelli derivatives are automatically �xed by the trace Y and the
smooth functionF . Their expression can be computed more explicitly in terms of recursively-de�ned smooth
functions of Y as

Y [f]a;t = F[f]a(Yt), Y g = 0 for g ∈ FA \ (T A ∪ {∅})

where F∅ := 1Re , F[t1···tn]a := ∂k1···knFaF
k1
t1
· · ·F kntn

(4.29)

We can use this and (4.254.25) to express the trace level of (4.284.28) as

Yst ≈
∑

t∈T A, |t|≤bpc

N(t)−1Ft(Ys)X
t
st, Y0 = y0 (4.30)

This is known as the Davie solution, and it is equivalent to the notion of controlled solution in the sense that
(4.304.30) holds if and only if there exists a controlled solution, which is necessarily given by (4.294.29). Another inter-
esting feature of the coe�cients Ft is how they behave when evaluated against Grossman-Larson products: it
can be shown that

F(t1···tn)?s = ∂k1···knFsF
k1
t1
· · ·F k1tn , t1, . . . , tn,s ∈ T A (4.31)

Taking s = c (and setting F to be zero on proper non-empty forests) reduces this identity to (4.294.29).

4.1.3 Kelly’s bracket extension

The lack of constraints on the product structure of branched rough paths results in rough integration against
X not being su�ciently rich to express increments of functions ofX-driven RDEs, not even of X itself. In
this section we will review the material of [Kel12Kel12, Ch. 5], which remedies this lack of a change of variable formula
by means of an ingenious procedure that consists of enlargingX by recursively adding new trace components
and coherently lifting to a rough path; details and proofs not included here are intended to be found therein.

Given the weighted alphabetAwe consider the enlarged alphabet consisting of adding toA all non-trivial
proper forests inFA

Â := A t (FA \ (T A t {∅})) (4.32)
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and its subalphabet consisting of commutative sequences, i.e. multisets, of letters inA

Ã := {(a1 · · · an) | n ∈ N, a1, . . . , an ∈ A} (4.33)

We are consideringA ⊆ Ã ⊆ Â, with the second inclusion given by identifying a1 · · · an = a1 · · · an . We
denote the sets and Hopf algebras constructed w.r.t. Ã, Â correspondingly, e.g. H̃ACK and ĤdCK. Elements of
F̃A are forests labelled with commutative products of elements of A, and elements of F̂d are forests labelled
withA andA-labelled non-trivial proper forests or single vertices. We will use round brackets to denote these
new types of labels. The weighting on F̂d (and accordingly that on its subset F̃A) is just given by summing the
weights of the labels as elements ofFA, i.e. counting up the total number of elements inA.

De�ne the bilinear “root labelling” map

J : R〈FA〉 ⊗ R〈FA〉 → R〈F̂d〉, f⊗ g 7→

0 g = ∅ ∨ (g ∈ T A ∧#g > 1)

[f](g) otherwise
(4.34)

and the bracket polynomial maps

�·�:= 1− J ◦ ∆̃CK : R〈FA〉 → R〈FA〉 (4.35)

where recall that ∆̃CK denotes the reduced Connes-Kreimer coproduct. For products of single vertices (which
we identify with their labels) this reduces to

�c1 · · · cn�:= c1 · · · cn −
∑

ItJ={1,...,n}

[ a1 · · · ar ](b1···bq)

I = {i1, . . . , ir}, J = {j1, . . . , jq}, ak := cik , bk := cjk

(4.36)

De�nition 4.14 (Bracket extension). A (full) bracket extension X̂ ofX ∈ C
p
ω([0, T ],RA) is a p-rough path

over the alphabet Â extending the existing one overA, and with the property that

X̂(f) = 〈� f�, X̂〉, f∈ FA (4.37)

A simple bracket extension ofX is a p-rough pathX over the alphabet Ãwith the property that

X̃(a1···an) = 〈�a1 · · · an�, X̃〉, a1, . . . , an ∈ A (4.38)

All of this is equivalent to expressing the evaluation of X against a forest in terms of evaluations of X̂
against trees as

Xf = 〈J ◦∆CK(f), X̂〉 (4.39)

(with the simple case obtained by pickingf= a1 · · · an ) where we are using the unreduced coproduct, with

[∅](g) =
(g) ; note that this reduces to the trivial identity X t = X t when t ∈ T A, since the only term

considered on the RHS is the one corresponding to the cut that separates the root from everything else.
A full bracket extension automatically de�nes a simple bracket extension by taking the trees in the for-

est f of (4.374.37) to be given by a product of single vertices. The way bracket extensions are shown to exist
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is by noticing that the de�ning condition �xes the trace term X(t1···tn) as being canonically determined by
X t1···tn = X t1 · · ·X tn (part of the original rough path) and lower degree rough path terms in the exten-
sion. In [Kel12Kel12, Proposition 5.3.9] it is proved that every branched rough path admits a full bracket extension.
The proof works by recursively performing the following two steps: (i) show that theX(t1···tn)

st ’s of some �xed
degree are actually path increments and (ii) lift them jointly and consistently with the rough path de�ned in
previous iterations. Note that the second step is highly non-canonical: there are many di�erent choices of a
bracket extension. The point of view taken in this chapter is slightly di�erent: the bracket extension, simple or
full, will be �xed and part of the original data, since subsequent constructions will explicitly depend on it. In
practical (stochastic) cases it is realistic to hope that the bracket terms can be de�ned canonically through the
same mechanism which is used to de�ne the original branched rough path. The main purpose of the bracket
extension is the following result, which we state directly for signal-dependent RDEs:

Theorem 4.15 (Change of variable formula for RDE solutions [Kel12Kel12, Theorem 5.3.11]).
Let X̂ be a bracket extension ofX ∈ C

p
ω([0, T ],RA), andY be a solution to (4.274.27) (driven by the original rough

pathX). For g ∈ C∞Re we have (at the trace level)

g(Y )st =

∫ t

s
∂kg(Y )F ka (Y )dXa

+

bpc∑
n=2

1

n!

∫ t

s
∂k1,...,kng(Y )F k1t1 · · ·F

kn
tn

(Y )dX̂(t1···tn)

(4.40)

where the ti’s range in T A, the ki’s in [e] and the controlled integrands are defined using (4.294.29). In particular,
for a simple bracket extension X̃ ofX and g ∈ C∞Rd

g(X)st =

bpc∑
n=1

1

n!

∫ t

s
∂a1,...,ang(X)dX̃(a1···an) (4.41)

where the ai’s range inA.

Note how in the above change of variable formulae the only terms of X̂ (and X̃) that are needed to de�ne
the rough integrals are those X̂f̂ with f̂∈ F̂d in which the only new possible vertex labelled with an element
of Â \A is the root: this is because the trace of X̂ is only de�ned in terms of forests with such a labelling, and
because integrands are X-controlled (as opposed to, more generally, X̂-controlled). However, it still makes
more sense to consider the whole bracket extension - which enables us to consider X̂f for anyf∈ F̂d — since
the terms in which the new labels appear in higher vertices offwill become relevant in the next section when
de�ning the lift of a controlled path.

Remark 4.16. Note how, in light of (4.264.26), (4.404.40) and (4.414.41) respectively de�ne X̂- and X̃-controlled paths
that are distinct to the X-controlled ones given by the formulae (4.224.22) and (4.234.23). Although the latter do
not require the bracket extension, the former have the advantage of vanishing on proper forests, precisely the
property that is required to represent them as integrals. In the second case g(X) can be X̃-controlled as

〈g(X), [ a1 · · · ai ](b1···bj)〉 = N(b1 · · · bj)−1∂a1,...,ai,b1,...,bjf(X) (4.42)

and zero on other types of trees. Here N(b1 · · · bj) is the order of the automorphism group of the correspond-
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ing forest with j single nodes. In expansions, we will often be summing not on the label (b1 · · · bj) (i.e. the
multiset), but on the tuple (b1, . . . , bj), which means that the N(b1 · · · bj)−1 will be replaced with j!−1. This
is a special case of Remark 4.10Remark 4.10.

Example 4.17. We provide the expression of all bracket polynomials of up to order 3, which are su�cient for
the above change of variable formula when p < 4.

�ab� = a b − a
b
− b

a

�abc� = a b c − a

b c

− b

a c

− c

a b

− (bc)

a
− (ac)

b
− (ab)

c

� c
b

a
� = c

b

a
− c

b

a

− b

a c

− (bc)

a

(4.43)

In order to see trees with labels in Â \ Ã (forests that are not products of single vertices, that is) one must go
one level higher: here is an example in which the forest has 4 vertices.

� b d

a c
� = b d

a c
− b
d

a
c

− d
b

c
a

− d
b
a

c
− b

d
c

a
− bd

a c

4.2 The extended lift of a controlled path

In this section we will show how, givenX ∈ C
p
ω([0, T ],RA) endowed with bracket extension X̂ , one can lift

H ∈ DX(Re) to a rough path ↑
X̂
H ∈ C

p
ω([0, T ],Re) in a canonical fashion. Since this lift depends not

only onX but also on X̂ , we will assume the bracket extension to be �xed and part of the initial data; we will
denote X̃ the simple bracket extension determined by X̂ , which will be su�cient for certain constructions.
Special attention will be given to the case of pushforwards, i.e. in whichH is given by a smooth function of
the traceX , for which a canonical simple bracket extension can be de�ned which only depends on X̃ .

We must begin by imposing a new condition on our bracket extension: the relations that de�ne it need to
be required not only when the new label is on the root, but also higher up. For instance, one might expect it
to be the case that

〈 a

c
b
a

, X̂〉 = 〈 d
b

c
a

− d

c
b

a

− d
b

a c

− d

(bc)

a

, X̂〉

Given labelled forests f,g we denote f νg the forest obtained by grafting each root of fonto the vertex ν
of g; when we write ν ∈ g we allow for the additional case ν = − which means we are simply multiplying
fg. Note that by taking g = ∅, ν = − below we recover the de�nition of ordinary bracket (4.394.39).

Bracket consistency. 〈f νg, X̂〉 =
∑

(f)CK

〈[f(1)](f(2)) νg, X̂〉 forf,g ∈ FA, and ν ∈ g.
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The condition can be rewritten as

〈 (f)
νg, X̂〉 =

〈
f νg−

∑
(f̃)CK

[f(1)](f(2)) νg, X̂
〉

= 〈�f� νg, X̂〉

(4.44)

where the last expression is de�ned by extending the ν operator linearly. We will refer to bracket extensions
that satisfy this property as consistent, and denote respectively

Ĉpω([0, T ],RA), C̃pω([0, T ],RA) (4.45)

the set of consistent bracket extensions and the set of consistent simple bracket extensions (i.e. in which
the de�ning relation is only required with f a product of single vertices) of their restriction to elements of
C
p
ω([0, T ],RA). These sets are respectively contained in C

p
ω([0, T ],RÃ) and C

p
ω([0, T ],RÂ). It is not dif-

�cult to construct bracket extensions that violate consistency: indeed, given any consistent bracket extension
of a (homogeneously graded) [3, 4) 3 p-rough path, it is possible to generate an inconsistent one simply by
adding non-trivial paths of bounded p/3-variation to the terms indexed with trees c

(ab). The condition must
therefore be required. We will henceforth assume X̂ (X̃) to be a consistent (simple) bracket extension ofX ;
while this will not be needed in Theorem 4.24Theorem 4.24, it will in the other main theorem of this section, Theorem 4.25Theorem 4.25,
and in general is a desirable property.

Example 4.18 (Consistency for 3 ≤ p < 4). WhenA = [d] and 3 ≤ p < 4 the only requirement needed for
a bracket extension to be consistent is

〈 γ
(αβ)

, X̃〉 = 〈 γ

α β

− γ
β

α

− γ
α
β

,X〉 (4.46)

If we begin with an arbitrary bracket extension, it is possible to simply replace the RHS above with the left.
Indeed, it is easily checked that the Chen identity holds for 〈 γ(αβ),X〉, and this is the only term that needs
checking because there are no higher-order ones that could be a�ected by the substitution. For general p this is
no longer true, and an existence theorem similar to [Kel12Kel12, Proposition 5.3.9] should be proved. Such a result
would be, however, of little practical importance, since in explicit examples one would expect consistency to
follow automatically. This will be the case for the rough path de�ned in Chapter 6Chapter 6.

Let H ∈ DX(Re) and assume we want to postulate the rough path term 〈 k

i j

,Hst〉 for some
i, j, k ∈ {1, . . . , e}. The idea is to de�ne it by expandingH using (4.204.20). Proceeding formally, we set

Hst
k

i j

:=

∫

s<u,v<w<t
dH i

udHj
vdHk

w

=
∑

f,g,h∈FA
|f|+|g|+|h|≤bpc

H i
f;sH

j
g;sH

k
h;s

N(f)N(g)N(h)

∫

s<u,v<w<t
dXf

sudXg
svdX

h
sw

We now need to simplify the terms such as dXf
u: if f = [k]a is a tree, (4.164.16) suggests substituting

dXf
su = Xk

sudXa
u . If f is not a tree we can use the bracket extension to express Xf as a sum of terms of
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the form X̂ t with t∈ T̂ A, using (4.394.39). We can therefore perform the substitution

dXf
su = d

∑
(f)CK

〈[f(1)](f(2)), X̂su〉 =
∑

(f)CK

X
f(1)
su dX̂

(f(2))
u

where, as usual,X(t) = 0 if t ∈ T A is not a single vertex. Doing the same for g,hwe are can conclude the
calculation above as

Hst
k

i j

=
∑

f,g,h∈FA
|f|+|g|+|h|≤bpc

(f)CK,(g)CK,(h)CK

H i
f;sH

j
g;sH

k
h;s

N(f)N(g)N(h)

∫

s<u,v<w<t
X

f(1)
su X

g(1)
sv X

h(1)
sw dX̂

(f(2))
u dX̂

(g(2))
v dX̂

(h(2))
w

=
∑

f,g,h∈FA
|f|+|g|+|h|≤bpc

(f)CK,(g)CK,(h)CK

H i
f;sH

j
g;sH

k
h;s

N(f)N(g)N(h)
〈

(h(2))

(f(2)) (g(2))

f(1) g(1)

h(1)

, X̂st〉

Where the tree in the last expression is constructed by joining the roots of each of the forestsf(1),g(1),h(1) to
the vertices below each, and we are only summing over terms in which all off(2),g(2),h(2) are proper forests
or single labels in A, i.e. in which they are labels in the alphabet Â. Note how, by bracket consistency, we can
replace this expression with

∑
f,g,h∈FA

|f|+|g|+|h|≤bpc
(h)CK

H i
f;sH

j
g;sH

k
h;s

N(f)N(g)N(h)
〈

(h(2))

f gh(1)

, X̂st〉 (4.47)

The use of the bracket labels (h(2)) cannot avoided: this is because the vertex is not a leaf.

Remark 4.19 (Ordered shu�e). It is instructive to see how this construction speci�es to the ordered shu�e
when X is geometric rough path: in this case we only need to sum over ladder trees, and the above formula
becomes

〈 kn

kn−1

k1

,Y st〉 =
∑
aij

〈Y k1
s , am1

1

am1−1
1

a11

〉 · · · 〈Y kn
s , amn

n

amn−1
n

a1n

〉〈 amn
n

am1
1

amn−1
n

a1n

am1−1
1

a11

,Xst〉

and the ordered shu�e emerges by applying integration by parts, i.e. summing over all possible ways of col-
lapsing the last tree onto linear trees in ways that maintain the ordering (this is the map φg de�ned in [HK15HK15,
(4.9)], named φ in (4.734.73) below): in this case this means respecting the ordering of each diagonal segment and
the vertical segment of red vertices, which corresponds to the ordered indices in the ordered shu�e.

Remark 4.20. The procedure sketched above (and more precisely De�nition 4.21De�nition 4.21 below) continues to work
without modi�cation whenH is an X̂-controlled path s.t.Hf = 0 forf∈ F̂A \ (T̂ A ∪ FA). This means,
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for example, that X̂-driven RDE solutions can be lifted (note that ∅ ∈ FA, so we are allowing H∅ 6= 0).
Another example of this idea will be used when constructing bracket extensions of the lift.

However, whenHf 6= 0 for some proper forest with at least one label in Â \A, or even Ã \A, we do not
see a way in which the lift can be performed with X̂ alone. An example would be whenH is given by a smooth
function of X̂ , or even of X̃ . What would be needed in this case is a bracket extension of a bracket extension
ofX , and there is no reason why the data of such a rough path, whose terms are indexed by “forests labelled
with forests labelled withA-labelled forests” should be contained in X̂ . For instance, the following identity

X̃st

γ(αβ)

= 〈 (αβ)

γ

+ γ
(αβ)

+
(αβγ) −

((γ α
β)

+
(γ β

α) )
, X̂〉 (4.48)

which is easy to show directly using (4.434.43), shows how “bracketing” cannot be considered an associative opera-
tion (though it is for quasi-geometric rough paths, discussed in Section 4.3Section 4.3 below). Similar examples with more
indices suggest that even X̂ is not su�cient to express evaluations of X̃ against forests in terms of ones against
trees.

In order to obtain a rough path that is rich enough to de�ne lifts of all of its controlled paths, one would
have to iterate the bracket extension only a �nite number of times, after which further bracket extensions would
be negligible (this is because the minimum regularity of the new trace terms in each iteration always increases
by one). This, however, is not needed in the applications we have in mind.

We are ready to de�ne the lift construction precisely. This will take some work, and it is convenient to
establish some notation. Denote the labelling of a forest g by ν 7→ `g(ν). Given a forest g, forests hν

and labels aν for each vertex ν ∈ g we denote∗{g; (aν ,hν)ν} the forest constructed by performing the
following for each vertex ν ∈ g: (re)label it aν and then graft the forest hν onto it (i.e. connect the root of
each tree in hν to ν by adding an edge). To make calculations more readable, we will omit the upper bound on
collections of forests, with the understanding that our sums are �nite since they only contain terms X̂f

st with
|f| ≤ bpc. The following result should be compared with the recursive formula [Gub10Gub10, Remark 8.7], which
however does not use the bracket extension, and cannot therefore apply to the case in which the controlled path
being lifted does not vanish on proper forests.

De�nition 4.21 (Branched lift of a controlled path). Let X̂ ∈ Ĉ
p
ω([0, T ],RA) restricting to

X ∈ C
p
ω([0, T ],RA) andH ∈ DX(Re) we de�neH•

k
= Hk and for t∈ T e with #t≥ 2(

�
X̂
H
)t
st

:=
∑

{fν}ν∈t⊆FA\{∅}
(fν)CK

(∏
ν∈t

N(fν)−1H
`t(ν)
fν ;s

)〈∗{t; ((fν(2)),f
ν
(1))

ν∈t}, X̂st

〉
(4.49)

and extending toFe with products. We de�ne ↑
X̂
H to be the unique rough path close to �

X̂
H (this requires

Theorem 4.24Theorem 4.24 below).

The sum in (4.494.49) is taken over allA-labelled forestsfν such that
∑

ν∈t |fν | ≤ bpc, with ν a vertex of t,
and additionally using Sweedler notation for eachfν , i.e. summing over all admissible cuts of each. Also note
that (fν(2)) is a label in Â, while fν(1) is an A-labelled forest, and we are only summing over terms for which
fν(2) is a single vertex or a non-trivial proper forest. Before proving the main result of this section we focus on
a couple of special cases in which the full bracket extension is actually not needed; for an example in which it
generally is, one can take the controlled path to be given by a smooth function of an RDE solution.
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Example 4.22 (Lifts of rough integrals and RDEs). When the controlled path is given by a rough integral
againstX , and in particular anX-driven RDE solution, its rough path lift only requiresX and not its bracket
extension; this is because the controlled path vanishes on proper forests. Therefore, the only fν ’s considered
in the sum of (4.494.49) are trees, and the only cuts considered in the (fν)CK’s are those that disconnect the root
from the rest of the treefν . The∗ terms are then just given by growing [e]-labelled trees out of all vertices of
t: (
∫ t

s
HdX

)t

=
∑

{fν}ν∈t⊆FA\{∅}
aν∈A

(∏
ν∈t

N(fν)−1H
`t(ν)
[fν ]aν ;s

)〈∗{t; (aν ,fν)ν∈t
}
, X̂st

〉
(4.50)

The expression for theX-controlled path of an RDE Y in terms of its trace (4.294.29) can be substituted in this
formula. RDE lifts have been studied in a more quantitative manner for geometric rough paths [FV10bFV10b, §10.4]
under the name full RDE solutions, by de�ning them via smooth approximation of the trace. While such tech-
nique permits one to sidestep the algebra in the geometric (�nite-dimensional) case, this is not possible for
non-geometric branched rough paths, whose terms cannot be realised as limits of Stieltjes integrals of regulari-
sations of the underlying path.

Example 4.23 (Pushforwards). When the controlled path is f(X) (4.234.23) we call its rough path lift the pushfor-
ward f∗X . It only depends on the simple bracket extension X̃ : this is because the only forestsfover which we
need to sum in (4.494.49) are products of single vertices, and as a consequence all the trees∗ are already indexed by
letters in Ã. Using the alternative controlled path of (4.164.16) results in the same de�nition of f∗X : this identity
actually holds at the level of almost rough paths, which in both cases is given by

�
X̃
f(X)tst =

∑
αν ,βν

|βν |>0

(∏
ν∈t

1

|αν |!|βν |!
∂ανβνf

`t(ν)(Xs)
)
〈X̃st,∗{t; ((βν), α

ν
)ν∈t}〉

(4.51)

where we are summing over tuplesαν and βν , one each for each ν ∈ t, ανβν denotes their concatenation,
and αν denotes the forest αν1 · · · α

ν
n whereαν = (αν1 , . . . , α

ν
n). The presence of the factorials is due to

the fact that we are summing over tuples, not forests, and that overαν ,βν individually: this change of variable
and factor uses an argument involving binomial coe�cients explained in the proof of Theorem 4.25Theorem 4.25.

Theorem 4.24. �
X̂
H is almost multiplicative, and ↑

X̂
H therefore defines a branched rough path.

Proof. This does not require bracket consistency. We write out the string of identities that prove the �rst claim,
and then carefully comment on each one (this includes explaining the notation used). When tis a single vertex,
the statement reduces to that ofH being a path. For t∈ T A with #t≥ 2 we have∑

(t)CK

(
�
X̂
H
)t(1)
su

(
�
X̂
H
)t(2)
ut

≈
∑

(t)CK,(gµ)CK,(hν)CK

( ∏
µ∈t(1)

N(gµ)−1H
`t(µ)
gµ;s

)〈∗{t(1); ((gµ(2)),g
µ
(1))

µ
}
, X̂su

〉
(4.52)( ∏

ν∈t(2)

N(hν)−1H
`t(ν)
hν ;u

)〈∗{t(2); ((hν(2)),h
ν
(1))

ν
}
, X̂ut

〉
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≈
∑

(t)CK,(gµ)CK,(hν)CK

( ∏
µ∈t(1)

N(gµ)−1H
`t(µ)
gµ;s

)〈∗{t(1); ((gµ(2)),g
µ
(1))

µ
}
, X̂su

〉
(4.53)( ∏

ν∈t(2)

N(hν)−1
∑

jν ; kν∈jν hν

N(jν)−1H
`t(ν)
kν ;sX

jν

su

)
〈∗{t(2); ((hν(2)),h

ν
(1))

ν
}
, X̂ut

〉
=

∑
(t)CK,(g

µ)CK(kν)3CK

( ∏
µ∈t(1)

N(gµ)−1H
`t(µ)
gµ;s

)〈∗{t(1); ((gµ(2)),g
µ
(1))

µ
}
, X̂su

〉
(4.54)

( ∏
ν∈t(2)

N(kν)−1H
`t(ν)
kν ;sX

kν
(1)
su

)〈∗{t(2); ((kν(3)),k
ν
(2))

ν
}
, X̂ut

〉
=

∑
(fλ)CK

C∈Cut∗(t)
Dλ∈Cut∗C(fλ

(1)
)

(∏
λ∈t

N(fλ)−1H
`t(λ)

fλ;s

)〈∗{tC ; ((fµ(2)),f
µ
(1))

µ
} ∏
ν∈tC

fν(1)
Dν
, X̂su

〉
(4.55)

〈∗{tC ; ((fν(2)),f
ν
(1)Dν

)ν}, X̂ut

〉
=

∑
(fλ)CK

(∏
λ∈t

N(fλ)−1H
`t(λ)

fλ;s

)〈
∆CK∗{t; ((fλ(2)),f

λ
(1))

λ
}
, X̂su ⊗ X̂ut

〉
(4.56)

=
∑

(fλ)CK

(∏
λ∈t

N(fλ)−1H
`t(λ)

fλ;s

)〈∗{t; ((fλ(2)),f
λ
(1))

λ
}
, X̂st

〉
(4.57)

=
(
�
X̂
H
)t
st

(4.58)

(4.524.52) Here we are summing not just over cuts but over the non-empty forests gµ and hν , with µ ranging
over the vertices of t(1) and ν over those of t(2). A similar comment holds for subsequent identities.
This step consists of substituting the de�nition of

(
�
X̂
H
)

, with the caveat that if t(1) or t(2) have a
single vertex we are instead expanding the trace of the controlled path H according to (4.194.19), and using
the de�nition of bracket extension (4.394.39) to express evaluations of X̂ against a forest. The identity does
indeed hold approximately, since we are assuming thas at least two vertices: if in one summand, for one
of the factors it only holds that ≈bpc, the presence of a second factor (which has at least one order of
regularity, since the∗’s are de�ned by summing over non-empty forests) means that ≈ holds for the
summand as a whole.

(4.534.53) In this step we are re-expanding eachH`t(ν)
hν ;u at s, again using (4.194.19). Once again, the≈ holds thanks to

the presence of the other factor.

(4.544.54) uses the following combinatorial fact: de�ning multisets

A := {{(k,j,h) | h,j∈ FA, k ∈ j h}}, B := {{(k, C) | k ∈ FA, C ∈ Cut∗(k)}}

and the map
f : B → A, (k, C) 7→ (k,kC ,kC)

(recall the notation for cuts used in (4.24.2), and that # denotes cardinality) it holds that for (k,j,h) ∈ A

#f−1(k,j,h) = δ(∆CKk,j⊗ h)

= N(j)−1N(h)−1〈∆CKk,j⊗ h〉
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= N(j)−1N(h)−1〈k,j? h〉

=
N(k)

N(j)N(h)
δ(k,j? h)

and δ(k,j?h) is the number of times that (k,j,h) ∈ A. This means that when we go from summing
over∅ 6= hν ,jν ,kν ∈ jν hν tokν , (kν)CK we must replace the factorN(jν)N(hν) withN(kν).
The sum over each ∅ 6= hν , jν and (hν)CK becomes a sum over ∅ 6= kν , (kν)CK and (kν(2))CK,
which by coassociativity we may more simply as one over (k)3

CK (notation as in (4.74.7)). Since hwas non-
empty, we should disallow the total cut in the �rst of these coproducts; however, since this would result
in k(3) = ∅ (and thus (k(3)) not being a valid label), the corresponding term would be null, so it is not
incorrect to sum over (k)3

CK.

(4.554.55) Hereλ ranges over all the vertices of t, and we writefλ = gλ ifλ ∈ t(1),fλ = hλ ifλ ∈ t(2). We have
written out the coproduct on tmore explicitly by summing over admissible cutsC . The thing to keep in
mind with this substitution is that there was a double coproduct on kν but only an ordinary coproduct
on gµ. To re�ect this when summing over thefλ’s, we additionally sum overDλ ∈ Cut∗C(fλ(1)): this set
denotes the set of admissible cuts of the forestfλ(1) ifC contains no edges below λ— i.e. λ ∈ tC — and
∅ otherwise (which includes the caseC = ∀) — i.e. λ ∈ tC . This means thatDλ is the trivial cut if the
vertex λ has a cut below it — whereas it ranges over all admissible cuts offλ(1) when λ has no cut below
it. The following diagram illustrates the changes of variable that have occurred in the last two steps; the
vertical bars represents a forest cut in two or three places, and theµ, ν superscripts are omitted for brevity.

h
h(2)

h(1)

j

 k

k(3)

k(2)

k(1)

 f

f(2)

f(1)D

f(1)
DD

,
g

g(2)

g(1)

 f
f(2)

f(1)

Note that we have also moved the term that previously wasX
kν
(1)
su into the �rst factor by including the

product
∏
ν∈tC f

ν
(1)

Dν
in the angle bracket.

(4.564.56) is based on the following fact regarding admissible cuts of a ∗: for labels aλ and forests bλ,
Cut∗(∗{t; (aλ, bλ)λ}) is in one-to-one correspondence with

⋃
C∈Cut∗(t)(C ∪

⊔
λ∈tCut∗C(bλ)).

Therefore

∆CK∗{t; (aλ, bλ)λ
}

=
∑

C∈Cut∗(t)
Dλ∈Cut∗C(bλ)

∗{t; (aλ, bλ)λ
}
C∪

⋃
λD

λ ⊗∗{t; (aλ, bλ)λ
}
C∪

⋃
λD

λ

=
∑

C∈Cut∗(t)
Dλ∈Cut∗C(bλ)

(∗{tC ; (aµ, bµ)µ
}∏
ν∈tC

bνDν

)
⊗∗{tC ; (aν , bνDν )ν

}

Here is an example of a term in this calculation, in which t is black, the cut is red, and the fλ are
di�erent shades of green to better distinguish them:
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⊗

(4.574.57) is multiplicativity of X̂ and �nally,

(4.584.58) is the de�nition, keeping in mind once again that #t≥ 2.

As for the second claim, regularity and the fact that �
X̂
H is de�ned onFe by extending with products, making

it grouplike, allows us to apply Proposition 4.7Proposition 4.7 to conclude the proof. �

It would be nice to de�ne a canonical bracket extension for ↑
X̂
H using X̂ , but the description of such

a rough path appears to be quite complicated in general. However, in the special case of pushforwards — the
only case that will be needed later on — the simple bracket extension admits a concise integral representation,
de�ned in terms of X̃ alone. From now until the end of this chapter we will takeA = [d]. Note how bracket
consistency is crucial for the following result.

Theorem 4.25 (Simple bracket extension of pushforwards). Let f ∈ C∞(Rd,Re), then we can define a simple
bracket extension of f∗X by

f∗X̃
(k1···km) =

∑
|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!

∫

∂γmf
k1 · · · ∂γmfkm(X)dX̃(γ1...γm) (4.59)

where we are summing over tuples (with |γ1|+ · · ·+ |γm| ≤ bpc), γ1 . . .γm denotes their concatenation, and
the lift of the integral is performed according to Example 4.22Example 4.22.

Proof. That f∗X̃ agrees with f∗X on Fd has already been checked in Example 4.23Example 4.23. Also note that, even
though the integral in (4.594.59) is X̃-controlled, it can be lifted using X̃ alone, since it is an integral — no bracket
terms in excess of those already contained in X̃ are needed. What remains to be shown is that

〈�k1 · · · km� νt, f∗X̃〉 = 〈 (k1···km)
νt, f∗X̃〉

Since the same proof works independently of the position of the vertex ν, we will prove it only at the ground
level, i.e.

〈�k1 · · · km�, f∗X̃〉 = f∗X̃
(k1···km)

First of all, we write the controlled path components: the only non-zero components of (4.594.59) (recall the no-
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tation α := α1 · · · αn forα = (α1 · · ·αn), and note that this is distinct from (α) :=
(α1···αn) )( ∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!

∫

∂γmf
k1 · · · ∂γmfkm(X)dX̃(γ1...γm)

)
[ α ](β)

=
∑

(β1...βm)=(β)

|β1|,...,|βm|>0

1

|β1|! · · · |βm|!
∂β1fk1 · · · ∂βmfkm(X)α

=
∑

(β1...βm)=(β)

|β1|,...,|βm|>0

(α1,...,αm)∈Sh−1(α)

1

|β1|! · · · |βm|!
∂α1β1fk1 · · · ∂αmβmfkm(X)

(4.60)

where recall that there is a sum on non-empty tuples γl in the integral on the left. In the last sum,β1, . . . ,βm

range over all tuples s.t. the multiset given by their concatenation coincides with the multiset de�ned byβ, and
the notation for unshu�es is explained in Chapter 3Chapter 3 (and note that the Sh−1’s should be considered multisets,
e.g. (1, 1) appears twice in Sh−1(1, 1)). In the following calculation, on which we comment below, we omit
evaluations of functions at (Xs) and the subscripts st to the rough paths

〈�k1 · · · km�, f∗X̃〉

= 〈 k −
∑

(i,j)∈Sh−1k
|i|,|j|>0

[ i ](j), f∗X̃〉 (4.61)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!
〈 γ

1...γm ,X〉

−
∑

(i,j)∈Sh−1k
|i|,|j|>0

|γ1|,...,|γh|>0
δ;|ε|>0

(δ1...δm−h)=(δ)

|δ1|,...,|δm−h|>0

(ε1,...,εm−h)∈Sh−1(ε)

1

|γ1|! · · · |γh|!|ε|!
∂γ1f i1 · · · ∂γhf ih

· 1

|δ1|! · · · |δm−h|!
∂δ1ε1f

j1 · · · ∂δm−hεm−hf
jm−h〈[γ1 . . .γhε](δ), X̃〉 (4.62)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!
〈 γ

1...γm ,X〉

−
∑

α1,...,αm

β1,...,βm

|α|,|β|>0

∃l |βl|=0

1

|α1|!|β1|! · · · |αm|!|βm|!
∂α1β1fk1 · · · ∂αmβmfkm〈[ α ](β), X̃〉 (4.63)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!
〈 γ

1...γm ,X〉

+
∑

|γ1|,...,|γm|>0

δ1,...,δm

|δ|>0

1

|γ1|!|δ1|! · · · |γm|!|δm|!
∂γ1δ1f

k1 · · · ∂γmδmfkm〈[ δ ](γ), X̃〉
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−
∑

α1,...,αm

β1,...,βm

|γ1|,...,|γm|>0

1

|α1|!|β1|! · · · |αm|!|βm|!
∂γ1fk1 · · · ∂γmfkm〈[ α ](β), X̃〉 (4.64)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!

[
∂γ1fk1 · · · ∂γmfkm〈 γ −

∑
(α,β)∈Sh−1(γ)
|α|,|β|>0

[ α ](β), X̃〉

+
∑

δ1,...,δm

|δ|>0

1

|δ1|! · · · |δm|!
∂γ1δ1f

k1 · · · ∂γmδmfkm〈[ δ ](γ), X̃〉
]

(4.65)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!

∫

∂γmf
k1 · · · ∂γmfkmdX̃(γ1···γm) (4.66)

= f∗X̃
(k1···km)

We begin from the end, going up:

(4.664.66) is the de�nition in the statement.

(4.654.65) Here we have expanded the integral: on the �rst line we have written the zero-th order term in its ex-
pansion, and the sum in the second line, in which δ is the concatenation δ1 . . . δm, is the sum of it’s
Gubinelli derivatives. Note that the δl’s are allowed to be empty, as long as their concatenation is not.
The missing step is

∑
|δ|>0

(δ1,...,δm)∈Sh−1(δ)

1

|δ|!
∂γ1δ1f

k1 · · · ∂γmδmfkm(Xs)〈[ δ ](γ), X̃〉

=
∑

δ1,...,δm

|δ|>0

(
|δ|

|δ1|, . . . , |δm|

)
1

|δ|!
∂γ1δ1f

k1 · · · ∂γmδmfkm(Xs)〈[ δ ](γ), X̃〉

where we went from summing on δ to summing on the individual tuples δl: the multinomial coe�cient
is the cardinality of Sh(δ1, . . . , δm).

(4.644.64) Here we have separated the two summands in the �rst term, the second of which has become the
sum that appears on the third line, with a negative sign. Since each (α,β) ∈ Sh−1(γ) restricts to a
(αl,βl) ∈ Sh−1(γl), we may argue as above (this time we needm binomial coe�cients) and go from
summing over the γl’s to theαl,βl’s, with the condition that γl := αlβl be non-empty.

(4.634.63) is a consequence of the following observation: in the sum on the second line in the previous step (4.654.65)
the γl’s are all non-empty, while this is not the case for the βl’s in the last sum. The sum on the second
line of (4.634.63) is given by this di�erence.

The remaining identities are best understood by starting at the top and going down.

(4.614.61) Is the de�nition of bracket polynomial.

(4.624.62) In this sum we are setting h := |i| and expanding out the controlled path terms, using bracket consis-
tency on the leaves as described in (4.474.47), and using (4.604.60) on the root.
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(4.634.63) In this sumα := α1 . . .αh replaceγ1, . . .γh, and the sum over ε and (ε1, . . . , εm−h) ∈ Sh−1(ε) is
replaced with one overαh+1, . . . ,αm, using the usual trick involving binomial coe�cients. The sum
over δ and δ1, . . . , δm−h s.t. (δ1, . . . , δm−h) = δ is equivalent to a sum on δ1, . . . , δm−h, since each
arrangement of such tuples appears exactly once, and is replaced with a sum over βh, . . . ,βm. Under
this correspondence of old and new tuples, β1, . . . ,βh are all empty, and since h = |i| was always
positive, the condition in the new sum is satis�ed.

This concludes the proof. �

In light of the above, we can push forward not only rough paths, but also simple bracket extensions:

De�nition 4.26 (Pushforward of a simple bracket extension). We will call f∗X̃ the pushforward of the simple
bracket extension X̃ .

Example 4.27 (Bracket purshforward for 3 ≤ p < 4). In this case the second and third levels of (4.594.59) read
(sums on single indices)

f∗X̃
(ij)
st =

∫ t

s

[
∂αf

i∂βf
j(X)dX̃(αβ) +

1

2

(
∂f iαγ∂f

j
β(X) + ∂f iα∂f

j
βγ(X)

)]
dX̃(αβγ)

f∗X̃
(ijk)
st =

∫ t

s
∂αf

i∂βf
j∂γf

k(X)dX̃(αβγ)

The next lemma guarantees that “di�erentials and integrals cancel out”. It is not stated in the most general
terms, only in a way that will be strictly required in Section 4.4Section 4.4. It is checked by expanding the (f∗X̃)st terms
in the integral on the LHS by using (4.594.59) and (4.234.23) to express Gubinelli derivatives of the integrands, arguing
as for the geometric case Theorem 3.27Theorem 3.27.

Lemma 4.28 (Associativity of the integral of one-forms against pushforwards). Given smooth functions
gk1,...,km and f , X̃ as in Theorem 4.25Theorem 4.25,

∫

gk1,...,km(f(X))d(f∗X̃)(k1···km)

=
∑

|γ1|,...,|γm|>0

1

|γ1|! · · · |γm|!

∫

(gk1,...,km ◦ f)∂γ1fk1 · · · ∂γmfkm(X)dX̃(γ1···γm)
(4.67)

This holds, in particular, when g does not depend on Y .

4.3 A characterisation of quasi-geometric rough paths

While most of the literature on rough paths distinguishes between geometric and branched rough paths, there
is an intermediate type that is general enough to include Itô integration, but de�ned on a Hopf algebra that is
simpler to describe than the Connes-Kreimer one: the quasi-shuffle algebra, original to [Hof00Hof00]. Rough paths
de�ned on the quasi shu�e algebra are called quasi-geometric. Although the topic has been known about for
some time [HK13HK13], it has only recently appeared in the literature [Bel20Bel20].

In this section we show how quasi-geometric rough paths can be characterised as consistent bracket ex-
tensions of branched rough paths whose non-simple terms vanish. Geometric rough paths admit a similar
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characterisation (alternative to the one provided in [HK15HK15, §4.1]), namely, they coincide with those branched
rough paths that admit a consistent bracket extension that is trivial. The main reason for which we are inter-
ested in quasi-geometric rough paths is that the change of variable formula for RDE solutions simpli�es into
one that is analogous to the change of variable formula for functions, which could make it possible to adapt
the transfer principle of Section 4.4Section 4.4 to de�ne RDEs on manifolds.

We begin with a very brief review of the quasi-shu�e algebra of [Hof00Hof00]. While these are usually de�ned
w.r.t. a bracket, we will treat the most general case of the free bracket; any rough path that is de�ned on the
quasi-shu�e algebra w.r.t. a particular bracket can be de�ned on the free quasi-shu�e algebra, with the only
drawback that we may have some redundant coordinates (e.g. if X is a d-dimensional Brownian motion and
we want to de�ne a rough path by Itô integration we have to set X(αβ) = [X]αβ = 0 when α 6= β instead
of just setting (αβ) = 0). The advantage is that we can speak of the quasi-shu�e algebra, without having to
specify a bracket. In this section the core components of our rough path will have trace valued inRd. All of this
means that our quasi-shu�e algebra T (R̃d)

�̃
has as its underlying set the tensor algebra not over Rd, but over

R̃d := R[̃d] (notation for [̃d] as in (4.14.1),(4.334.33)). Note that [̃d] is a countably in�nite set despite [d] being a �nite
one; this will not be an issue once we are dealing with rough paths, since they will be de�ned on the algebra
truncated at some order, considering that the weighting on [̃d] is given by cardinality of multisets (counting
repetitions). We will use round brackets to denote multisets, unless the multiset only has one element, in which
case brackets will be omitted. Generators (i.e. elementary tensors) of T (R̃d)

�̃
are words of multisets, e.g. for

the following words of weight 9

α(αβ)γδε(ζζη) = α(βα)γδε(ζηζ) 6= α(βα)γεδ(ζηζ), α, . . . , η ∈ [d]

The quasi-shu�e product is de�ned recursively by declaring the empty word to be the identity element for it,
and forw, z words in the alphabet [̃d] and a, b ∈ [̃d]

wa �̃ zb = {wa �̃ z}b+ {w �̃ zb}a+ {w �̃ z}(ab) (4.68)

where braces are used to specify the order of operations (quasi-shu�e and concatenation). Here (ab) := a∪ b
as multisets, e.g. if a = (ααβ), b = (ββγ) we have (ab) = (ααβββγ); the same notation will be used for
n-fold unions. The shu�e product admits the following non-recursive expression [EFMPW15EFMPW15, p.9]:

a1 . . . am �̃ am+1 . . . am+n :=
∑

m∨n≤k≤m+n
f : [m+n]�[k]

f |[1,m],f |[m+1,n]↗

( ⋃
i∈f−1(1)

ai

)
. . .
( ⋃
i∈f−1(k)

ai

)
, ai ∈ [̃d] (4.69)

where we are summing over all surjections from the set withm+n elements to the set of k elements, k ranging
fromm ∨ n tom+ n, and s.t. f(1) < . . . < f(m) and f(m+ 1) < . . . < f(m+ n). An example is

α1(α2α3) �̃β1β2 =α1(α2α3)β1β2 + α1β1(α2α3)β2 + β1α1(α2α3)β2 + α1β1β2(α2α3)

+ β1α1β2(α2α3) + β1β2α1(α2α3)

+ α1β1(α2α3β2) + β1α1(α2α3β2) + α1(α2α3β1)β2 + β1(β2α1)(α2α3)

+ (α1β1)(α2α3)β2 + (α1β1)β2(α2α3)
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+ (α1β1)(α2α3β2)

where we have used indentation to separate the sum by cardinality of the codomain’s surjection: 4 (shu�es), 3
and 2.

The coproduct on T (R̃d)
�̃

is identical to the one for the shu�e algebra, i.e. deconcatenation ∆⊗, and so
are the unit and counit. These turns T (R̃d)

�̃
into a Hopf algebra, whose antipode is described explicitly in

[Hof00Hof00, Theorem 3.2], in which the following fundamental fact is proved: the quasi shu�e algebra is isomor-
phic, as a graded Hopf algebra, to the shu�e algebra over R̃d. The isomorphism, Ho�man’s exponential, is
given explicitly by

exp: T (R̃d)�
∼=−→ T (R̃d)

�̃

a 7→
∑

a1...am=a

1

(#a1)! · · · (#am)!
(a1) . . . (am)

(4.70)

with inverse

log : T (R̃d)
�̃

∼=−→ T (R̃d)�

a 7→
∑

a1...am=a

(−1)|a|−m

#a1 · · ·#am
(a1) . . . (am)

(4.71)

Here # denotes the number of letters in the word (whose letters belong to the alphabet [̃d]) and in both cases
we are summing over all possible ways of expressing a as a concatenation a1 . . .am = awithm variable. For
words of length≤ 3 these read

exp(a) = a, exp(ab) = ab+
1

2
(ab), exp(abc) = abc+

1

2

[
(ab)c+ a(bc)

]
+

1

6
(abc)

log(a) = a, log(ab) = ab− 1

2
(ab), log(abc) = abc− 1

2

[
(ab)c+ a(bc)

]
+

1

3
(abc)

(4.72)

Note that these maps are (at least in this thesis) unrelated to the exponential and logarithm mapping the Lie
algebra of primitives to the Lie group of grouplike elements in a Hopf algebra.

For a self-contained treatment of quasi-geometric rough paths we refer to [Bel20Bel20]; we will not, for the
sake of conciseness, give yet another rough path de�nition. After all, it has been shown that rough paths
can be de�ned in a uniform manner on a large class of Hopf algebras, with the core theorems remaining true
[CEFMMK20CEFMMK20, §4.2]; quasi-geometric rough paths are just another instance of this principle, with the quasi-
shu�e algebra playing the same role as that of the shu�e or of the Connes-Kreimer Hopf algebra. Also, it will
be convenient to keep thinking of quasi-geometric rough paths as branched rough paths, so that we do not have
to switch settings, but may simply make use of the simpli�cations that the quasi-shu�e algebra makes possi-
ble. How this is done will become clear after we give brief survey of the maps between shu�e, quasi-shu�e
and nonplanar forest Hopf algebras that appear in the following commutative diagram of graded Hopf algebra
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morphisms:

T (RT d)� HdCK H̃dCK H̃dCK

T (Rd)� T (R̃d)� T (R̃d)
�̃

ψ

φ

Aexp
∼=

φ φ̃

exp
∼=

(4.73)

The epimorphism φ on the left is used in [HK15HK15, §4.1] to show how geometric rough paths canonically de�ne
branched rough paths: namely, given a geometric rough path Z we can de�ne a branched one X := φ∗Z ,
i.e. Xf := Zφ(f); this amounts to expressing the branched components using integration by parts. In the
following we will be using the convenient notationZφ := φ∗Z and similar. φ is characterised as the unique
algebra morphism s.t.

φ([f]γ) = φ(f)γ, f∈ Fd (4.74)

where φ(f)γ denotes the word obtained by juxtaposing the word φ(f) and γ. The other map labelled φ is
de�ned in the same way on the enlarged alphabet. Intuitively, these maps sum over all ways of collapsing a
forest onto the vertical axis in ways that preserve the ordering, and then reading o� the labels from top to
bottom to obtain a word. There is also an inclusion (not drawn) ι : T (Rd)� ↪→ HdCK (and a similar one
T (R̃d)� ↪→ H̃dCK), which maps the word γ1 · · · γn to the ladder tree with vertices labelled γ1, . . . , γn from
top to bottom; ι is a right inverse to φ and a coalgebra morphism but not an algebra one. ι is used to check
weather a branched rough path comes from a geometric one, which occurs if and only ifX = Xι◦φ. The Hopf
algebra monomorphism ψ is used in [HK15HK15, §4.2] for the following purpose: given an Rd-valued branched
rough path X , it is of interest to de�ne a geometric rough path X on the larger space RT d (this means that
its trace is indexed by [d]-labelled trees) with the property thatX-driven RDEs can be equivalently expressed
asX-driven ones. ψ is used to formulate the condition, namelyXψ(f) = Xf, thatX must satisfy forX to
contain the data encoded inX . It is characterised as the unique algebra morphism s.t.

ψ(t) = t+
∑

(t̃)CK

ψ(t(1))⊗ t(2), t∈ T d (4.75)

where we emphasise that the coproduct is reduced. This map cannot be used to actually de�neX , a task �rst
achieved through a recursive procedure (similar to the one used for de�ning the bracket X̂) with calls to the
non-constructive Lyons-Victoir extension theorem; a constructive (but still non-canonical) one was de�ned in
[TZ20TZ20]. Another method to obtain a constructive Itô-Stratonovich formula was identi�ed in [BC19BC19], where
the authors use the surprising fact, proved independently in [Foi02aFoi02a, Cha10Cha10], that the Grossman-Larson Hopf
algebra is free, i.e. isomorphic to the tensor algebra, over some set of trees. The explicit description of a (non-
unique) free ?-basis ofHdGL is not given in the aforecited articles; this task is dual to that of �nding a basis of the
Lie algebra PdCK. These problems appear to lie beyond the current state of the art in algebraic combinatorics;
moreover, it is to be expected that such bases, and therefore the resulting de�nition ofX , will be non-canonical.
A detailed comparison of the various Itô-Stratonovich formulae in branched rough path theory is performed
in [Bru20Bru20]. Onto the right side of the diagram, the map φ̃ is the unique algebra morphism satisfying the same
condition as (4.744.74), but is distinct from φ in that φ̃(fg) = φ(f)�̃φ(g) with the quasi-shu�e product. The
Hopf algebra automorphism Aexp that makes the square commute is the arborified exponential described
[BCEF20BCEF20, Theorem 2]. The signi�cance of Ho�man’s exponential (and of its arbori�ed version) for rough
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paths will be discussed below. Arrows that have not been mentioned are obvious inclusions/projections.
We now transition to the main focus of this section: describing those branched rough paths that are

(quasi-)geometric, in terms of their brackets. To preliminarily identify those branched rough paths that come
from a quasi-geometric one we can proceed as done for geometric ones, but using the map φ̃ of (4.734.73): namely,
a branched rough path X̃ ∈ C

p
ω([0, T ], R̃d) is quasi-geometric if X̃ = X̃ι◦φ̃. This is equivalent to the de�ni-

tion of [Bel20Bel20], i.e. we can de�ne it as a functional on the quasi-shu�e Hopf algebra as Z̃ := X̃ι, and it holds
that X̃ = X̃ι◦φ̃ = Z̃ φ̃ (X̃ is determined by Z̃ by a quasi-integration by parts rule). Indeed,Z is group-valued
since, for wordsw, z

Z̃wZ̃z = X̃ι(w)X̃ι(z) = X̃ι(w)ι(z) = Z̃φ(ι(w)ι(z)) = Z̃φ◦ι(w)�̃φ◦ι(z) = Z̃w�̃z

asφ is a left inverse to ι. Z̃ is multiplicative because the Connes-Kreimer coproduct on ladder trees corresponds
to deconcatenation of the corresponding word. The next result states that a branched rough path de�ned on
R̃d is quasi-geometric if and only if it is closed under taking the simple bracket extension, and admits trivial non-
simple bracket extension. The statement will explain these assertions. We will preliminarily need to consider

forests indexed by multisets of the set [̃d], i.e. ˜̃[d]; an example of such a label is (α(βγ))ε. The set of forests
indexed by such labels may be denoted F̃ [̃d]. Also, recall the notation (4.454.45).

Theorem 4.29 (Characterisation of (quasi-)geometric rough paths). The following are equivalent:

1. X̃ ∈ C
p
ω([0, T ], R̃d) is quasi-geometric;

2. X̃ ∈ C
p
ω([0, T ], R̃d) defines an element of Ĉpω([0, T ],Rd) in the following way: X̂f = 0 for allf that

have at least one label in ̂̃[d] \ ˜̃[d], and the simple bracket extension is given by joining labels, i.e. a label
of the form (a1 · · · an) with ak = (α1

k · · ·α
mk
k ), αij ∈ [d], are set to (α1

1 · · ·α
m1
1 · · · · · ·α1

n · · ·αmnn ).

Performing such substitutions at all vertices of f ∈ F̃ [̃d] yields a forest in F̃d, against which X̃ can be
evaluated.

Similarly, the following are equivalent:

1. X ∈ C
p
ω([0, T ],Rd) is geometric;

2. Setting X̂f = 0 forfhaving at least one label in [̂d] \ [d] defines an element of Ĉpω([0, T ],Rd).

Proof. We will only give a proof of the characterisation of quasi-geometric rough paths; the characterisation
of geometric ones follows an analogous, and simpli�ed, procedure. We begin with 1⇒ 2. We must show the
bracket relations, which in this case read

〈f νg, X̂〉 =
∑

C∈Cut•(f)

〈[f
C

](fC) νg, X̂〉, f,g ∈ F̃d, ν ∈ f(or− )

where, lettingf = s1 · · ·sn with sk ∈ T̃ d, Cut•(f) denotes the elements of Cut(f) with the property that
fC is a non-empty product of single vertices: these are characterised as restricting to each sk as either the total
cut or the cut disconnecting the root from the rest of the tree, with at least one cut of the latter type overall.
Moreover, the label (fC) is de�ned by the label-joining rule expressed in the statement. By quasi-geometricity,
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these relations can be written as

〈ι ◦ φ̃(f νt), X̂〉 =
∑

C∈Cut•(f)

〈ι ◦ φ̃([f
C

](fC) νt), X̂〉 (4.76)

and since, by the fact that φ̃ is linear in · νt, the left and right hand sides are identical expressions in φ̃(f)

and φ̃
(∑

C∈Cut•(f)[fC ](fC)

)
respectively, it will su�ce to show the �rst identity in

φ̃(f) =
∑

C∈Cut•(f)

φ̃(f
C

)(fC) = φ̃
( ∑
C∈Cut•(f)

[f
C

](fC)

)
(4.77)

the second of which follows from the de�nition of φ̃. Letting f = [g1]a1 · · · [gn]an , for gk ∈ F̃d and
ak ∈ [̃d], we have

φ̃([g1]a1 · · · [gn]an)

= φ̃(g1)a1 �̃ · · · �̃ φ̃(gn)an

=
∑

{i1,...,ik}t{j1,...,jn−k}=[n]
k<n

{
φ̃(gi1)ai1 �̃ · · · �̃ φ̃(gik)aik �̃ φ̃(gj1) �̃ · · · �̃ φ̃(gjn−k)

}
(aj1 · · · ajn−k)

=
∑

{i1,...,ik}t{j1,...,jn−k}=[n]
k<n

φ̃([gi1 ]ai1 · · · [gik ]aikgj1 · · ·gjn−k)(aj1 · · · ajn−k)

(4.78)

which uses an n-factor version of the recursive de�nition of �̃ (4.684.68) (easily shown by induction): this is pre-
cisely the identity needed in (4.774.77), expressed in terms of Cut•. That this bracket extension is a rough path
descends directly from the fact that X̃ is, and from the general fact that extending a rough path to a new alpha-
bet trivially also preserves the rough path properties.

We now prove 2⇒ 1. We show

〈f νg, X̃〉 = 〈ι ◦ φ̃(f) νg, X̃〉, f,g ∈ F̃d, ν ∈ g or−

by induction on the height off∈ F̃ , i.e. the maximum number of edges connecting a leaf and the root. The
statement of quasi-geometricity can be recovered by taking g = ∅, ν = −. For height 0, f is a single vertex
and the assertion is obvious. For the inductive step

〈f νg, X̃〉 =
〈 ∑
C∈Cut•(f)

[f
C

](fC) νg, X̃
〉

=
〈 ∑
C∈Cut•(f)

[ι ◦ φ̃(f
C

)](fC) νg, X̃
〉

=
〈 ∑
C∈Cut•(f)

ι ◦ φ̃
(
[f
C

](fC)

)
νg, X̃

〉
= 〈ι ◦ φ̃(f) νg, X̃〉

where we have used the consistent bracket relations (4.764.76), the inductive hypothesis, and in the last step
(4.784.78). �
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Example 4.30 (Quasi-geometricity for 3 ≤ p < 4). When 3 ≤ p < 4 the only obstruction to quasi geo-
metricity of a consistent full bracket extension is its evaluations on the labels γ

α
β : these vanish if and only if

X̃ is quasi-geometric, by (4.484.48) and the above theorem.

As a consequence we have the next change of variable formula. This statement restricted to the case in
which the RDE is driven byX is stated in [HK13HK13, p.25], whereas a self-contained proof of the change of variable
formula for functions ofX can be found in [Bel20Bel20]. We will be considering equations

dY =
∑
γ

1

|γ|!
F(γ)(Y )dX̃(γ) (4.79)

driven by the whole of X̃ , but F only depends on the traceX (not that of the bracket extensions). Note that
we are summing on tuples, not multisets, and the |γ|!−1 included for convenience. This is a particular case of
(4.274.27) withA = [̃d].

Corollary 4.31 (Change of variable formula for quasi-geometric RDEs). Let X̃ ∈ C̃
p
ω([0, T ],Rd) restricting

toX ∈ C
p
ω([0, T ],Rd) be quasi-geometric, and Y be a solution to (4.794.79). For g ∈ C∞Re we have

g(Y )st =
∑

|γ1|,...,|γm|>0

1

n!|γ1|! · · · |γn|!

∫ t

s
∂k1,...,kng(Y )F r1

(γ1)
· · ·F rn(γn)(Y )dX̃(γ1...γn) (4.80)

Proof. This is a straightforward application of [Theorem 4.29Theorem 4.29, 1.⇒2.] to (4.404.40), where in the latter we are
takingA to be [̃d]. �

The last theoretical topic of this section is the Itô-Stratonovich correction for quasi-geometric RDEs. This
is made possible by Ho�man’s exponential, which yields an Itô-Stratonovich conversion formula that, unlike
the ones valid for general branched rough paths, is canonical. Given a quasi-geometric (branched) rough path
X̃ ∈ C

p
ω([0, T ], R̃d), recall that X̃ι denotes its restriction to the quasi-shu�e algebra. Since exp (see (4.734.73))

is a Hopf algebra isomorphism, X̃ι◦exp de�nes a geometric one, still on the enlarged alphabet [̃d]. The arbori-
�ed exponential Aexp can be used to obtain the branched components of X̃ι◦exp from X̃ , i.e. it holds that
X̃Aexp = X̃ι◦exp ◦φ (despite Aexp 6= ι ◦ exp ◦φ— the latter is not even an algebra morphism). Ho�man’s
exponential can be used, as stated in [HK13HK13, p.21], to write RDEs driven by a quasi-geometric rough path X̃ in
terms of the geometric one X̃exp. We emphasize that X̃must already be de�ned on the extended alphabet, and
in general the new RDE will depend on this extension regardless of whether the old one does. The following
type of result is likely known to experts but is not, as far as we can tell, present in the literature.

Theorem 4.32 (Itô-Stratonovich for quasi-geometric RDEs). The RDE

dY = Fa(Y )dX̃a

driven by a quasi-geometric rough path X̃ ∈ C
p
ω([0, T ], R̃d) is equivalent to

dY =
(−1)#a−1

#a
Fa(Y )dX(a) (4.81)

178



driven by the geometric rough pathX := X̃exp. If the original RDE was driven byX alone, this becomes

dY =
(−1)|γ|−1

|γ|
Fγ(Y )dX(γ)

A few comments: a denotes a word in the alphabet [̃d], while γ is one using letters of [d] (for which #

and | · | agree). (a) is, as usual, de�ned by joining labels. Fa is de�ned by composition of vector �elds, i.e.
Fa1...an = Fa1 . . . Fan ; in particular, note that Fa and F(a) (which does not appear) are distinct.

Proof of Theorem 4.32Theorem 4.32. The Davie expansion of (4.814.81) is

Yst ≈
∑

#a1,...,#an>0

(−1)#a1+...+#an−n

#a1 · · ·#an
Fa1 . . . Fan(Ys)X

(a1)...(an)
st

=
∑

#a≥1
a1...an=a

#a1,...,#an>0

(−1)#a−1

#a1 · · ·#an
Fa(Ys)X

(a1)...(an)
st

= Fa(Ys)X
log(a)
st

= Fa(Ys)X̃
a
st

where we have used associativity of composition of vector �elds. This is the Davie expansion of original RDE,
where X̃ is intended as being de�ned directly on T (R̃d)

�̃
. �

Example 4.33 (Theorem 4.32Theorem 4.32 for p < 4). When p < 4 the above theorem reads

dY = Fγ(Y )dXγ +
1

2
F(αβ)(Y )dX̃(αβ) +

1

6
F(αβγ)(Y )dX̃(αβγ)

⇐⇒ dY = Fγ(Y )dX
γ

+
1

2
(F(αβ) − FαFβ)(Y )dX(αβ)

+

[
1

3
FαFβFγ −

1

4

(
F(αβ)Fγ + FγF(αβ)

)
+

1

6
F(αβγ)

]
(Y )dX(αβγ)

where the sums, unlike that of (4.814.81), is on single indices (this is the reason for the presence of the factor 1/4).
Note that we have included factors in the initial RDE, since the resulting formula appears more natural with
them. Truncated at order 2, this reduces to the usual Itô-Stratonovich formula valid for semimartingales.

We end this section with a few stochastic examples. The next two are meant as a very brief overview of some
interesting cases of random quasi-geometric rough paths.

Example 4.34 (2 ≤ p < 3). We mention this example for the sake of completeness, but do not delve into
the details, which have been described elsewhere (e.g. [Bel20Bel20, §3.3]). While Young integration against paths
of bounded 2 > p-variation is vacuously geometric, every [2, 3) 3 p-rough path is quasi-geometric, since
the terms X(αβ) can be de�ned canonically in terms of the Xγ ’s as in (4.434.43), with no extra lifts involved; this
is the bracket of [FH20FH20, De�nition 5.5]. Iterated Itô integrals and their relationship with Stratonovich ones
�t into this case; these topics were treated prior to the introduction of quasi-shu�es by using Wick products
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[Gai94Gai94, Gai95Gai95]. Iterated Itô and Stratonovich integrals can be obtained from one another by using the exp and
log, and similarly their branched counterparts by using the arbori�ed versions of exp and log.

Example 4.35 (Itô formulae for the 1-dimensional heat equation, [Bel19Bel19, Ch. 4]). The cited PhD thesis con-
siders the solution of the 1-dimensional stochastic heat equation with additive noise∂tu = 1

2∂xxu+ ξ

u(0, x) = 0
Xt := u(t, x), x ∈ R

although it is stated that the same techniques would work for many other Gaussian processes, such as fractional
Brownian motion with Hurst parameter 1/4. The author is then able to reproduce and shed new light on Itô-
type formulae for X present in the literature, by de�ning three distinct 4 = p-quasi-geometric rough paths
above X , in addition to the geometric rough path de�ned canonically by powers of X thanks to unidimen-
sionality. X̃BS is a quasi-geometric rough path above with X̃1

BS = X and X̃2
BS = B, where B is a certain

Brownian motion independent ofX . Then (4.414.41) becomes the Burdzy-Swanson formula

f(X)st =

∫ t

s
f ′(X)dX1

BS +
κ

2

∫ t

s
f ′′(X)dB

where the second is an Itô integral and κ is a certain deterministic constant. Similarly, a quasi-geometric rough
path X̃CN with X̃1

CN = X and X̃2
CN = σ2 := E[X2

· ] reproduces the Cheridito-Nualart formula

f(X)st =

∫ t

s
f ′(X)dX1

CN +
1

2

∫ t

s
f ′′(X)dσ2

where the second integral is intended in the sense of Young. These two change of variable formulae only have
terms of order≤ 2 because the rough integrals of orders 3 and 4 cancel out, despite them not vanishing indi-
vidually. There is a quasi-geometric rough path X̃QV with X̃1

QV = X and X̃2
QV = 6t/π the quartic variation

ofX . The corresponding change of variable is a quartic variation formula

f(X)st =

∫ t

s

[
f ′(X)dXQV +

1

2
f ′′(X)dX̃

(11)
QV +

1

6
f (3)(X)dX̃

(111)
QV

]
+

1

4π

∫ t

s
f (4)(Xu)du

where the second and third integrals do not vanish even though X̃(11) = 0 = X̃(111). This example demon-
strates the rich variety of identities that quasi-geometric rough paths are able to generate in stochastic analysis.

Not all stochastic integration theories, however, are compatible with the algebra of quasi-shu�es, as
demonstrated by the following sketched example.

Example 4.36 (Processes of �nite cubic variation). These stochastic processes were studied in [ER03ER03]. The
possible link with this type of process was already spotted in [Kel12Kel12, p.121]. In this example we wish to make a
further observation on its potential compatibility with branched rough paths; while a full reconciliation of the
two integration theories lies beyond the scope of this chapter, at the end of this example we list the steps needed
to make the connection precise. AnRd-valued processX de�ned on [0, T ] is said to be of finite cubic variation
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if for α, β, γ = 1, . . . , d

UCPlim
h→0

1

h

∫ ·

0
Xα
s,s+hX

β
s,s+hX

γ
s,s+hds =: [X]αβγ exists, and

sup
h>0

1

h

∫ ·

0
|Xα

s,s+hX
β
s,s+hX

γ
s,s+h|ds <∞ a.s.

where the limit is taken uniformly on compacts in probability; if these conditions are ful�lled [X] is an (Rd)⊗3-
valued process of bounded variation. The symmetric integral [RV93RV93] of another stochastic process H against
X is de�ned as

∫ ·

0
Hd◦X := UCPlim

h→0

1

2h

∫ ·

0
HsXs−h,s+hds

whenever the UCP limit exists; whenX is a continuous semimartingale this is the Stratonovich integral, but it
is de�ned in greater generality. It is then proven in [ER03ER03, Remark 3.6] that for f ∈ C∞Rd

f(X)st =

∫ t

s
∂γf(X)d◦Xγ − 1

12

∫ t

s
∂αβγf(X)d[X]αβγ (4.82)

where the second integral is Stieltjes. The following integration by parts formulae are also shown [ER03ER03,
p.277,281]

(XαXβ)st =

∫ t

s
Xαd◦Xβ +

∫ t

s
Xβd◦Xα (4.83)

[X]αβγst = 2

(
∫ t

s
XγXβd◦Xα +

∫ t

s
XγXαd◦Xβ −

∫ t

s
Xγd◦(XαXβ)

)
(4.84)

whenever all integrals exist.
We now perform some formal calculations aimed at computing the values of the bracket terms of a hy-

pothetical rough path above a �nite cubic variation process which is de�ned via symmetric integration using
(4.164.16); we later comment on what our calculations mean and on what is needed to make them rigorous. (4.834.83)
is an order-2 integration by parts formula, equivalent to

Xα
stX

β
st =

∫ t

s
Xα
sud◦Xβ

u +

∫ t

s
Xβ
sud◦Xα

u , or X̃
(αβ)
st = X�αβ�st = 0

in branched rough path notation. (4.844.84) in rough path notation reads, setting f(x) := xαxβ and using asso-
ciativity Lemma 4.28Lemma 4.28

− [X]αβγst

2
=

∫ t

s
Xγ
sudf∗Xu −
∫ t

s
Xγ
suX

α
u dXβ

u −
∫ t

s
Xγ
suX

β
udXα

u

=

∫ t

s
Xγ
udX̃(αβ)

u

=

∫ t

s
Xγ
sudX̃(αβ)

u

= X̃st
(αβ)

γ
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where we have used that X̃αβ = 0. Now, comparing (4.414.41) with (4.824.82) for the function f(x) = xαxβxγ we
obtain
∫ t

s
XαXβdXγ +XαXγdXβ +XβXγdXα +XαdX(βγ) +XβdX(αγ) +XγdX(αβ) + dXαβγ

= (XαXβXγ)st

=

∫ t

s
XαXβd◦Xγ +XαXγd◦Xβ +XβXγd◦Xα − 6

12
[X]

(αβγ)
st

Cancelling corresponding rough/symmetric integrals, and using the expression for X̃st
(αβ)

γ

, we obtain

−3

2
[X]αβγst +X

(αβγ)
st = −1

2
[X]αβγst , or X

(αβγ)
st = [X]αβγst

The last term left to compute is X̂(
γ
β
α

), which by Example 4.30Example 4.30 is the only obstruction to quasi-geometricity
for (3, 4] 3 p-branched rough paths. Since by (4.834.83)

Xγ
st

∫ t

s
Xα
sud◦Xβ

u = Xst
γ
β
α

+

∫ t

s
Xγ
sud◦
∫ u
s X

β
srd◦Xα

r

and therefore by (4.434.43)

X̂
(
γ
β
α

)

st =

∫ t

s
Xγ
sud◦
∫ u
s X

α
srd
◦Xβ

r −Xst
β

α γ

− X̃st
(βγ)
α

While we did not see a way of computing this term fully without delving into the speci�cs of symmetric in-
tegration, it is not di�cult to see that its symmetrisation in α, β does not vanish if X has non-trivial cubic
variation: by additivity in the integrand and integrator and the previous formulae we have

〈� γ
β

α
� +� γ

α
β
�,Xst〉

= 〈 γ β

α
+

γ
α
β
− γ

β

α

− γ
α
β

− α

β γ

− β

α γ

− (βγ)

α
− (αγ)

β
,Xst〉

= 〈 α β γ − α

β γ

− β

α γ

− γ

β α

− (βγ)

α
− (αγ)

β
,Xst〉

= X̃
(αβγ)
st + X̃st

(αβ)

γ

=
[X]αβγst

2

Here is a sketch of what needs to be shown in order to make this a precise example of a stochastic branched
rough path, and what our calculations will imply once this is carried out:

• Currently, no examples of stochastic processes with �nite, non-trivial cubic variation are known (the
closest thing to this is that fractional Brownian motion with Hurst parameter 1/6 has cubic variation
converging in law, but not UCP [NRS10NRS10]). For this example to be interesting, one such process must be
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produced.

• It must be shown that the branched iterated integrals of such a process de�ned via symmetric integra-
tion de�ne a branched rough path with bracket extension, with the only caveat that 〈 (αβ)

γ
, X̃st〉 is not

de�ned by
∫ t
s X

γ
sudX̃

(αβ)
u = 0, but by

∫ t

s
Xγ
sud◦(XαXβ)u −

∫ t

s
Xγ
suX

β
sud◦Xα

u −
∫ t

s
Xγ
suX

α
sud◦Xβ

u

Note that while this failure of associativity may seem strange, it would neither contradict bracket consis-
tency (which only implies 〈 γ(αβ) ,Xst〉 = 0, compatibly with the value of the corresponding symmetric
integral), nor would it compromise associativity of integration against this rough path. Such behaviour
is not even ruled out for geometric rough paths, for which it is perfectly possible for the rough path not
to be zero above a zero component, and this does indeed happen in the third rough path in Example 4.35Example 4.35
above.

• One would also need to show that, for a suitable class of integrands that includes functions ofX , rough
integration against this rough path coincides a.s. with symmetric integration (i.e. the analogue of the
statements [FH20FH20, Proposition 5.1, Corollary 5.2] in the context of Itô and Stratonovich integration),
which has been used in the formal calculations above.

• We will then have a stochastic branched rough path extended with a bracket satisfying

X̃(αβ) ≡ 0, X
(αβγ)
st = [X]αβγst , X̃st

(αβ)

γ

=
[X]αβγst

2
, X̂

1
2

(
γ
β
α

+
γ
α
β

)

st =
[X]αβγst

4

the last of which implies that this rough path cannot be quasi-geometric if it has non-zero cubic variation.

4.4 Integration against branched rough paths on manifolds

The de�nition of branched rough paths on manifolds is almost identical to those given for non-geometric
3 > p-rough paths in Chapter 2Chapter 2 and for geometric rough paths in Chapter 3Chapter 3. The only signi�cant di�erence is
that we must push forward not only the branched rough path, but also a consistent simple bracket extension,
which is done using the augmented de�nition of pushforwards De�nition 4.26De�nition 4.26. This is because, �rst of all, a
de�nition that does not carry these data would not be possible, since the simple bracket is even necessary to
de�ne the non-bracketed pushforward; moreover, it will be needed when de�ning rough integration. We will
call the set of such objects C̃

p
ω([0, T ],M). It is helpful to continue to think of X as being manifold-valued

(since its traceX literally is), with the additional data of the simple bracket X̃ (whose trace does not take values
in the manifold) also being carried from one chart to the other.

Before discussing integration, we begin with some background and notation. From now on we assumeM
is endowed with a covariant derivative on its tangent bundle; we will not assumeM to be Levi-Civita, or even
torsion-free. The notions that we will need about covariant derivatives are not advanced and, unless otherwise
speci�ed, can all be found in [Lee97Lee97, Ch.4]; some care is, however, required, since we will often be considering
the nth iterated covariant derivative, something that is not done often. We adopt the convention that, if S, T
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are tensor �elds and V is a vector �eld

〈∇V T, S〉 = 〈∇T, V ⊗ S〉 (4.85)

i.e. the direction of covariant di�erentiation occupies the “�rst slot”; this is the only instance in which we di�er
from [Lee97Lee97, Ch.4] in terms of notation. Our choice works well with the convention that, in the expression of a
tensor, the contravariant part (i.e. a tensor product of the tangent spaceTM ) always comes before the covariant
part. Furthermore, it has the bene�t of not reversing the order of covariant di�erentiation when iterating∇,
e.g. for another vector �eldU we have

〈∇2T,U ⊗ V ⊗ S〉 := 〈∇∇T,U ⊗ V ⊗ S〉 = 〈∇U∇T, V ⊗ S〉

Note that this is not equal to 〈∇U∇V T, S〉: by the Leibniz rules for∇ w.r.t. to the dual pairing and tensor
product

〈∇∇T,U ⊗ V ⊗ S〉 = ∇U 〈∇T, V ⊗ S〉 − 〈∇T,∇U (V ⊗ S)〉

= ∇U 〈∇T, V ⊗ S〉 − 〈∇T,∇UV ⊗ S〉 − 〈∇T, V ⊗∇US〉

while

〈∇U∇V T, S〉 = ∇U 〈∇V T, S〉 − 〈∇V T,∇US〉

so that

〈∇U∇V T, S〉 − 〈∇∇T,U ⊗ V ⊗ S〉 = 〈∇∇UV T, S〉

For a tensor �eld T we de�ne ∇nT inductively by ∇∇n−1T ; this is obviously associative, i.e.
∇∇nT = ∇n∇T . The most important case is when T is a function f ∈ C∞M , for which
∇nf ∈ Γ(T ∗M⊗n), Γ denoting the C∞M -module of sections. While it is well known that∇2f is a sym-
metric tensor if and only if∇ is torsion-free, the same does not hold at higher orders: indeed, even assuming
torsion-freeness,∇3f is symmetric (for general f ) if and only if∇ is �at [Kum05Kum05, Theorem 2.3] (incidentally,
simple examples show that the torsion may contribute to the symmetric part of∇3f ). It is not possible, there-
fore, to assume symmetry of higher order covariant derivatives of functions, without restricting our attention
to trivial cases. For this reason, while symmetry will play an important and delicate role in this section, torsion
will not.

In keeping with the rest of this chapter, we will mostly compute things in coordinates, which on manifolds
are local. Given a chart, we denote ∂γ the basis elements of TM that they de�ne at each point, and dγ the
elements of the dual basis. For a tuple γ = (γ1, . . . , γn) we will denote the operator

∇γ− := 〈∇n−, ∂γ1 ⊗ · · · ⊗ ∂γn〉

Given two charts, we will denote the “new” coordinates using Latin indices. We will use the symbol∂ to denote
the basis vectors∂γ , to denote the Jacobian of the change of coordinates∂kγ (so∂i = ∂γi ∂γ), and more generally
∂γ will denote the operator consisting of partial di�erentiation according to the tuple γ in the given chart ϕ,
with ∂αβ := ∂βϕ

α. We will often use manipulations such as ∂k∂αβ = ∂γk∂
α
γβ .

We are now ready to discuss the transfer principle. Let X̃ ∈ C̃
p
ω([0, T ],M). We are looking for an expres-
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sion in local coordinates
d∇X̃

α =
|α|!
|β|!

Sαβ (X)dX̃(β) (4.86)

for tuples α, where we are summing over the tuple β, Sαβ are locally-de�ned smooth functions on M and
dX̃(β) are the local expressions of the di�erentials of X̃ . As in the rest of the chapter, in this section too we
are only taking sums on tuples of length≤ bpc. (4.864.86) is meant to extend the usual di�erential of the simply
bracketed X̃ to the curved setting. Whenγ is a single index γ, we will denote d∇X̃

γ = d∇X
γ , while keeping

in mind that this still depends on the simple bracket. The �rst thing to notice is thatS is only determined up to
symmetry in the bottom indices, since it is being evaluated against dX̃ . On the other hand, there is no particular
reason to assume S to be symmetric in the top indices: this means that the d∇X̃

γ ’s may not be symmetric,
which is why we have omitted the round brackets for the tupleγ. While this may seem counterintuitive at �rst,
one should remember that∇n is also generally not a symmetric operator whenM is not �at. (4.864.86) will then
locally de�ne a rough path (by lifting the integrals of the RHS) whose trace is indexed not by [̃d] but by tuples
in [d] (of length≤ bpc).

We require two conditions of (4.864.86):

Itô-Kelly formula on manifolds. For g ∈ C∞M the formula (4.414.41) holds with covariant di�erentiation
replacing ordinary di�erentiation:

g(X)st =
1

|γ|!

∫ t

s
∇γg(X)d∇X̃

(γ) (4.87)

Contravariance. d∇X (i.e. the di�erentials indexed by single indices) transforms like a tangent vector: the
change of coordinates reads

d∇X
k = ∂kγd∇X

γ (4.88)

While both requirements may seem to fall under the category change of variable formulae, the second cannot
in general be inferred from the �rst: a counterexample to the general case is provided in Example 4.41Example 4.41 below.
Moreover, we see no way to solve the second condition for S, while doing so for the �rst will be the �rst step
performed to obtain conditions on it. It should also be remarked that, although it would seem natural to require
that the whole of d∇X̃ transform as a tensor, this is not in general compatible with the �rst requirement, also
shown in Example 4.41Example 4.41 below. The above change of variable formula is not the main function of the bracket
integrators d∇X̃ (in excess of d∇X), which has to do with de�ning RDEs; this will not be explained fully, but
is mentioned in Conclusions and further directionsConclusions and further directions below.

We proceed by writing (4.874.87) by expanding the LHS using the ordinary change of variable formula (4.414.41),
and the RHS by using the ansatz (4.864.86): we have

1

|β|!
∂βg(X)dX̃(β) =

1

|β|!
∇αg(X)Sαβ (X)dX̃(β)

from which, matching coe�cients up to symmetry of β, and requiring the resulting identity to hold on the
whole ofM

∂βg = ∇αgSαβ (4.89)

for allg ∈ C∞M . This identity has the bene�t of not containing di�erentials, and is the natural condition onS
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that guarantees (4.874.87) for arbitrary elements of C̃pω([0, T ],M). It immediately impliesSαβ = 0 for |α| > |β|,
since∇αg is a sum that does not contain derivatives of g of order higher than |α|: indeed, if |β| < |α| = bpc
then Sαβ must vanish, since otherwise the RHS of (4.894.89) would contain a derivative of order higher than |β|;
this implies that if |β| < |α| = bpc − 1 again Sαβ = 0, and so on until we reach |β| = |α|. Since ∇γg
contains exactly one term involving order-|γ| derivatives, and it is ∂γg, Sαβ is forced equal to δα(β) = δ

(α)
(β)

when |β| = |α|, with round brackets denoting the multiset corresponding to the tuple (so “on diagonal” it
actually is true that Sαβ may be considered symmetric in the upper indices). As a nice consequence, we have
that d∇X̃

(β) will always be an integrator of regularity |γ|. The terms Sαβ with |α| < |β| are more complex
to describe, and underdetermined without further assumptions. One idea might be to require them to be
symmetric in the upper indices, which �xes them uniquely: indeed, if |α| = |β| − 1, since Sαβ multiplies the
only remaining derivatives of order |α| apart from the one present in∇βg, it is �xed, up to symmetry, by the
requirement that none appear on the LHS, and this continues to hold inductively all the way down to |α| = 1.
Another way of viewing all of this is to think of∇γg, ∂γg as a row vectors,

∇βg = ∂αgL
α
β (4.90)

for a block matrixL (whose upper indices are only determined up to symmetry since they multiply coordinate
partial derivatives): (4.894.89) now becomes ∂γg = ∂αgL

α
βS

β
γ or

L
(α)
β Sβ(γ) = δ

(α)
(γ) (4.91)

In other words, S must be a left inverse to L (viewed as acting on row vectors - this reverses order of composi-
tion), which exists since L is upper triangular with identity maps on the diagonal and therefore injective. We
will call the unique S’s that are all symmetric in the upper indices the symmetric solution.

Remark 4.37. Note that the uniqueness statement about the symmetric solution does not mean that the general
solution to (4.894.89) is determined up to symmetry in the upper indices: it is neither true that two solutions must
have identical symmetric part, nor that adding arbitrary asymmetric functions to a solution will still result in a
solution. This is because asymmetries in the upper indices of some order may a�ect the symmetric part at lower
orders, as will be exempli�ed in Example 4.41Example 4.41 below. (Note: we have use the term asymmetric to mean “having
zero symmetric part”, which at order> 2 is di�erent to “antisymmetric”, which means alternating).

While the symmetric solution might seem like the most natural one, it will not work for our purposes, since
it fails to transform like a vector, as shown below in Example 4.41Example 4.41; we will instead need the following

De�nition 4.38 (Higher Christo�el symbols). In a chart de�ne tensor �elds Γmγ ∈ ΓlocTM
⊗m for m ∈ N

and non-empty tuples of indices γ recursively by
Γ1
γ := ∂γ

Γmγ1,...,γn := 0 m > n ∨m = 0

Γmγ1,...,γn := ∇γ1Γmγ2,...,γn + ∂γ1 ⊗ Γm−1
γ2,...,γn 2 ≤ m ≤ n

(4.92)

Letting Γmβ =: Γαβ∂α, we call the Γαβ ’s the Higher Christo�el symbols.

We will always be careful that using the superscript to denote tuples (or single indices) or orders does not
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introduce ambiguities. The most important of these symbols are the ΓlocTM 3 Γ1’s, which are given by

Γ1
β1...βn = ∇β1 · · · ∇βn−1∂βn (4.93)

from which it is clear that they restrict to the ordinary Christo�el symbols when n = 2. The recursive de�ni-
tion in coordinates reads

Γα1,...,αm
β1,...,βn

= ∂β1Γα1,...,αm
β2,...,βn

+

m∑
k=1

Γαkβ1γΓα1,...,γ,...,αm
β2,...,βn

+ δα1
β1

Γα2,...,αm
β2,...,βn

(4.94)

which whenm = 1 reads
Γαβ1,...,βn = ∂β1Γαβ2,...,βn + Γαβ1γΓγβ2,...,βn (4.95)

Note that although they are de�ned as tensors, the Γ’s are not tensorial in the bottom indices: this is already
clear from the case m = 1, n = 2. Also, these coe�cients are completely determined by the connection, and
therefore by the ordinary Christo�el symbols. If we were to de�ne the Γ’s without referring to coordinates,
they would take values in complicated jet bundles; for this reason we prefer the coordinate description.

Proposition 4.39 (Γ is a solution). The higher Christo�el symbols (4.924.92) solve (4.894.89).

Proof. The claim can be rewritten as

n∑
k=1

〈∇kg,Γkγ1,...,γn〉 = ∂γ1,...,γng

for n ≥ 1 and indices γ1, . . . , γn. We proceed by induction. For n = 1 there is nothing to show. Using the
Leibniz rule for dual pairings, we have

n+1∑
k=1

〈∇kg,Γkγ1,...,γn+1
〉

= 〈∇1g,∇γ1Γ1
γ2,...,γn+1

〉+
n∑
k=2

〈∇kg,∇γ1Γkγ2,...,γn+1
+ ∂γ1 ⊗ Γk−1

γ2,...,γn+1
〉+ 〈∇n+1g, ∂γ1 ⊗ Γnγ2,...,γn+1

〉

= ∇γ1
n∑
k=1

〈∇kg,Γkγ2,...,γn+1
〉 −

n∑
k=1

〈∇γ1∇kg,Γkγ2,...,γn+1
〉+

n+1∑
k=2

〈∇kg, ∂γ1 ⊗ Γk−1
γ2,...,γn+1

〉

= ∇γ1∂γ2,...,γn+1g −
n∑
k=1

〈∇k+1g, ∂γ1 ⊗ Γkγ2,...,γn+1
〉+

n+1∑
k=2

〈∇kg, ∂γ1 ⊗ Γk−1
γ2,...,γn+1

〉

= ∂γ1,...,γn+1g

This concludes the proof. �

We now turn our attention to the contravariance condition: this is what will allow us to integrate in a way
that does not depend on the system of local coordinates. As done before, we seek a formulation of it that does
not involve rough paths. Substituting in the ansatz (4.864.86) and applying the formula for pushforwards of simple
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brackets (4.594.59) to the RHS

1

|j|!
Sij(X)dX̃(j) =

1

|β|!
∂iαS

α
β(X)dX̃(β)

=
1

|β|!|j1|! · · · |jm|!
∂iαS

α
β∂

β1
j1
· · · ∂βmjm (X)dX̃(j1...jm)

The transformation law that must hold therefore is

Sij
(j)
=

∑
j1...jm=j
|j1|,...,|jm|>0

|j|!
|β|!|j1|! · · · |jm|!

∂iαS
α
β∂

β1
j1
· · · ∂βmjm (4.96)

where the (j) is meant as a reminder that the identity is only considered up to symmetry in j, which will be
crucial in the next proof. Note, however, that since we are indexing S with tuples, we are summing over all
non-empty tuples j1, . . . , jm whose concatenation (without taking multisets) equals j.

Proposition 4.40. The higher Christo�el symbols with single upper index satisfy the change of coordinates (4.964.96).

Proof. We proceed by induction. For |j| = 1 the assertion reduces to the obvious identity δij = ∂iαδ
α
β∂

β
j .

In all the following expressions we denote j = (j0, . . . , jn), j− = (j1, . . . , jn) and the variable tuples
β = (β0, . . . , βm), β− = (β1, . . . , βm) over which we will be summing. Using (4.954.95), we have

Γij0...jn = ∂j0Γij1,...,jn + Γij0kΓ
k
j1,...,jn

=
∑

j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!
∂j0(∂iαΓα

β−
∂β1
j1
· · · ∂βmjm )

+ (∂iαΓαβ0γ∂
β0
j0
∂γk + ∂iα∂

α
j0k) ·

∑
j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!
∂kαΓα

β−
∂β1
j1
· · · ∂βmjm

=
∑

j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!

[
∂iβ0α∂

β0
j0

Γα
β−
∂β1
j1
· · · ∂βmjm + ∂iα∂β0Γα

β−
∂β0j0 ∂

β1
j1
· · · ∂βmjm

+ ∂iαΓα
β−

m∑
l=1

∂β1
j1
· · · ∂βl

j0j
l · · · ∂βmjm

]
+

∑
j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!

[
∂iαΓαβ0γΓγ

β−
∂β0j0 ∂

β1
j1
· · · ∂βmjm + ∂iγ∂

γ
j0k
∂kαΓα

β−
∂β1
j1
· · · ∂βmjm

]

Since ∂iβ0α∂
β0
j0

+ ∂iγ∂
γ
j0k
∂kα = ∂α(∂iβ0∂

β0
j0

) = ∂αδ
i
j0 = 0 the �rst and last terms cancel out, and we continue,

using (4.954.95) again

=
∑

j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!

[
∂iα∂β0Γα

β−
∂β0j0 ∂

β1
j1
· · · ∂βmjm + ∂iαΓα

β−

m∑
l=1

∂β1
j1
· · · ∂βl

j0j
l · · · ∂βmjm

+ ∂iαΓαβ0γΓγ
β−
∂β0j0 ∂

β1
j1
· · · ∂βmjm

]
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=
∑

j1...jm=j−

|j1|,...,|jm|>0

n!

m!|j1|! · · · |jm|!

[
∂iαΓαβ∂

β0
j0
∂β1
j1
· · · ∂βmjm + ∂iαΓα

β−

m∑
l=1

∂β1
j1
· · · ∂βl

j0j
l · · · ∂βmjm

]

Now, recall that the ways of writing a positive integer as a sum of other positive integers is called a composition
when order of summands is taken into account, and partition when it is not. Since j is �xed, summing over
j1 . . . jm = j− is the same as summing over compositions of n. To proceed, however, we will need to make
use of the fact that the above expression only needs to be considered up to symmetry in j: this means that
summands of one of the two types

∂iαΓαβ∂
β0
j0
∂β1
j1
· · · ∂βmjm , ∂iαΓα

β−
∂β1
j1
· · · ∂βl

j0j
l · · · ∂βmjm (4.97)

corresponding to distinct compositions of n+ 1 that de�ne the same partition must be merged into the same
summand.

LetP (k) denote the set of integer partitions of k,Ph(k) denote the set of those consisting ofh summands,
P 1
h (k) those that have at least one summand that is 1, and P>1

h (k) those for which each summand is greater
than 1. We proceed to express the expression obtained for Γij0...jn by summing over ρ ∈ P (n + 1). This
means that in each summand we will pick one composition whose corresponding partition is ρ (it does not
matter which one), and we will multiply by the number of such compositions. In the following, ρ will be the
partition ofn+1 given by

∑q
l=1 λlnl withn1 < . . . < nq andλl ∈ N∗ s.t.

∑q
l=1 λl = m. If ρ ∈ P 1

m(n+1)

then both types of term (4.974.97) contribute to the corresponding summand, while if ρ ∈ P>1
m (n+ 1) only the

second does. We will imply that in each summand, k1, . . . ,km realises the partition ρ as described above: we
are not summing over thekl’s, but just picking one such collection of tuples in each summand. The expression
obtained is (setting the variable tuple γ = (γ1, . . . , γm))

=
∑

m=1,...,n+1
ρ∈P 1

m(n+1)

[
(m− 1)!

(λ1 − 1)!λ2! · · ·λq!
n!

(m− 1)!n1!λ1 · · ·nq!λq

+m

q∑
r=2

λr(m− 1)!

λ1! · · ·λq!
n!

m!n1!λ1n2!λ2 · · · (nr − 1)!nr!λr−1 · · ·nq!λq

]
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

+
∑

m=1,...,n+1
ρ∈P>1

m (n+1)

m

q∑
r=1

λr(m− 1)!

λ1! · · ·λq!
n!

m!n1!λ1n2!λ2 · · · (nr − 1)!nr!λr−1 · · ·nq!λq
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

The two summands in the square bracket correspond to the two types of terms in (4.974.97), while in the single term
in the second sum corresponds to the second type. In each product of two fractions, the �rst is the number of
multiset partitions realisingρ, and the second is the old term n!

m!|j1|!···|jm|! written with the updated parameters.
The precise expressions are the result of standard counting arguments. We elaborate on the least trivial, the
term on the second line; the explanations for the other two follow similar arguments. Here we are counting,
given

∑q
l=1 λlnl = ρ ∈ P 1

m(n+1), how many times one of the old terms ∂iαΓα
β−
∂β1
j1
· · · ∂βl

j0j
l · · · ∂βmjm , with

j1 . . . jm = j− represent the partitionρ. Again by symmetry, we may assume l = 1, i.e.∂iαΓα
β−
∂β1
j0j

1 · · · ∂βmjm ;
however, since the previous expression had a sum

∑m
l=1 we must multiply by a factor of m (immediately to
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the left of
∑q

r=2 in the new expression). Now, the tuple j0j1 has length≥ 2: this means it cannot correspond
to any of the �rst λ1 summands of ρ, since n1 = 1. We sum, therefore, over l = λ1 + 1, . . . ,m, which is
the same as summing over r = 2, . . . , q and multiplying each term by λr, which is in the numerator of the
�rst fraction. The (m− 1)! in the same numerator re�ects the fact that, once the tuple j0j1 has been assigned
length nr, the remaining ones can be permuted, factoring out permutations between those of the same length
— this explains the denominator λ1! · · ·λq!. The reason for the terms in the second fraction is now obvious.
The inductive step can now be concluded:

=
∑

m=1,...,n+1
ρ∈P 1

m(n+1)

[
(m− 1)!

(λ1 − 1)!λ2! · · ·λq!
n!

(m− 1)!n1!λ1 · · ·nq!λq

+m

q∑
r=2

(m− 1)!

λ1! · · ·λq!
λrn!

m!n1!λ1n2!λ2 · · · (nr − 1)!nr!λr−1 · · ·nq!λq

]
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

+
∑

m=1,...,n+1
ρ∈P>1

m (n+1)

m

q∑
r=1

λrn!

m!n1!λ1n2!λ2 · · · (nr − 1)!nr!λr−1 · · ·nq!λq
(m− 1)!

λ1! · · ·λq!
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

=
∑

m=1,...,n+1
ρ∈P 1

m(n+1)

n!
(
λ1 +

∑q
r=2 λrnr

)
n1!λ1 · · ·nq!λqλ1!λ2! · · ·λq!

∂iαΓαγ∂
γ1
k1
· · · ∂γmkm

+
∑

m=1,...,n+1
ρ∈P>1

m (n+1)

n!
∑q

r=1 λrnr
n1!λ1 · · ·nq!λqλ1!λ2! · · ·λq!

∂iαΓαγ∂
γ1
k1
· · · ∂γmkm

=
∑

m=1,...,n+1
ρ∈Pm(n+1)

(n+ 1)!

n1!λ1 · · ·nq!λqλ1!λ2! · · ·λq!
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

=
∑

k1...km=j

(n+ 1)!

m!|k1|! · · · |km|!
∂iαΓαγ∂

γ1
k1
· · · ∂γmkm

concluding the proof. �

Before stating the main theorem we lay out some of the above calculations in the �rst interesting case, which
is already complex enough to illustrate many of the subtleties that have been brought up.

Example 4.41 (Christo�el symbols of order≤ 3). We solve (4.894.89) up to level 3, which reads

∂αβγg = ∇λgSλαβγ +∇µνgSµναβγ +∇λµνgSλµναβγ (4.98)

A couple of interesting observations will follow. For g ∈ C∞M we compute

∇γg = ∂γg

∇αβg = ∂αβg − ∂δgΓδαβ

∇αβγg = ∂αβγg − ∂δg∂αΓδβγ − Γδαβ∂γδf − Γδαγ∂βδg − Γδβγ∂αδg + ∂εgΓεδγΓδαβ + ∂εgΓεβδΓ
δ
αγ
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The presence of the term ∂αβγg in the expression for∇αβγ implies

Sλµναβγ =
∑
σ∈S6

εσδ
σ∗(λµν)
αβγ with

∑
σ∈S6

εσ = 1

=
∑
σ∈S6

εσδ
λµν
σ∗(αβγ) = δ

λµν
αβγ

up to symmetry in the bottom indices. Substituting into (4.984.98) we get

∂λgS
λ
αβγ + (∂µνg − ∂λgΓλµν)Γµναβγ

− ∂δg∂αΓδβγ − Γδαβ∂δγg − Γδαγ∂βδg − Γδβγ∂αδg + ∂εgΓεδγΓδαβ + ∂εgΓεβδΓ
δ
αγ = 0

Setting the sum of all the second derivatives to zero implies

Sµναβγ = cΓµαβδ
ν
γ + (3− c)Γναβδµγ , c ∈ R

up to symmetry in the bottom indices. The presence of the parameter c is due to the fact that this multiplies
∂µνg, which is symmetric in µ, ν, while we are not assuming Γµναβγ to be symmetric in the upper indices. Re-
substituting, we can solve for Γλαβγ . The full, general solution is given by

Sλγ Sλαβ Sλαβγ

Sµνγ Sµναβ Sµναβγ

Sλµνγ Sλµναβ Sλµναβγ

 =


δλγ Γλαβ ∂αΓλβγ + ΓλγσΓσαβ + 2(c− 1)Γλ[σγ]Γ

σ
αβ

0 δ
µν
αβ cΓµαβδ

ν
γ + (3− c)Γναβδ

µ
γ

0 0 δ
λµν
αβγ

 , c ∈ R

where the square brackets denote antisymmetrisation. Two important cases of the parameter are c = 1, cor-
responding to De�nition 4.38De�nition 4.38 (as can be seen by computing terms with (4.944.94)), and c = 3/2, corresponding
to the symmetric solution (since it makes Γµναβγ symmetric in the upper two indices). We emphasise once more
that the above expression is considered up to symmetry in the lower indices α, β, γ. Since the term Γλ[µγ]Γ

µ
αβ

vanishes if and only if c = 1, Proposition 4.40Proposition 4.40 implies that Γλαβγ = ∂αΓλβγ + ΓλγσΓσαβ has the correct trans-
formation rule,

Γlijk = ∂lλΓλαβγ∂
α
i ∂

β
j ∂

γ
k + 2∂lλΓλαβ∂

α
i ∂

β
jk + ∂lλ∂

λ
ijk (4.99)

which in turn implies that, when c 6= 1, Sλαβγ has the same transformation rule if and only if Γλ[σγ]Γ
σ
αβ does.

We can check that this is not the case: recalling that torsion is a tensor, we have

Γl[hk]Γ
h
ij = ∂lλΓλ[σγ]∂

σ
h∂

γ
k (∂hτ Γταβ∂

α
i ∂

β
j + ∂hδ ∂

δ
ij) = ∂lλΓλ[σγ]Γ

σ
αβ∂

α
i ∂

β
j ∂

γ
k + ∂lλΓλ[σγ]∂

σ
ij∂

γ
k

This is clearly di�erent from (4.994.99) (even after symmetrising), which has a third derivative that is not present
here. This shows us that the only choice for S that satis�es both desiderata (4.874.87), (4.884.88) is De�nition 4.38De�nition 4.38.
In particular, the symmetric solution fails the latter condition. This counterexample continues to work when
considering solutions to (4.894.89) up to arbitrary orders, since the procedure restricts to the above for the portion
of the solution with 3 lower indices Sαβγ .

Continuing with the example of Γ up to order 3, another interesting consequence is the following. A
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natural extension of the contravariance condition would be to require that not only d∇X
γ transform as a

vector, but the whole of d∇X̃ as a tensor. This, however, cannot be the case: arguing as in (4.964.96) and using
Example 4.27Example 4.27 we see that S2

3 must satisfy the transformation rule

Shlijk = ∂hµ∂
l
νS

µν
αβγ∂

α
i ∂

β
j ∂

γ
k +

3

2
∂hµ∂

l
ν(∂µij∂

ν
k + ∂νij∂

µ
k )

On the other hand,

cΓhijδ
l
k + (3− c)Γlijδhk = ∂hµ∂

l
ν

(
cΓµαβδ

ν
γ + (3− c)Γναβδµγ

)
∂αi ∂

β
j ∂

γ
k + ∂hµ∂

l
ν

(
c∂µij∂

ν
k + (3− c)∂νij∂

µ
k

)
implying that for tensoriality to hold, we must be in the symmetric case c = 3/2, not the Christo�el case
c = 1. Symmetrising in the bottom indices does not a�ect this assertion.

Proposition 4.39Proposition 4.39, Proposition 4.40Proposition 4.40 and one of the conclusions of the above example can be summarised in
the following statement:

Theorem 4.42 (Existence and uniqueness of the transfer principle). The higher Christo�el symbols are the
unique solution to the two conditions (4.874.87) and (4.884.88).

Rough integration can now be de�ned unambiguously. For simplicity, we will state it only for integrands
given by one-forms, though it can be expected to hold for more general controlled integrands (as done in
Chapter 2Chapter 2 in the 2 ≤ p < 3 case).

Theorem 4.43 (Integration against branched rough paths on manifolds).
LetX ∈ C̃

p
ω([0, T ],M) and f ∈ ΓT ∗M . The expression

∫

fγ(X)d∇X
γ :=

1

|β|!

∫

fαΓαβ(X)dX̃(β)

(with sums on α,β) does not depend on the system of local coordinates. Moreover, for g ∈ C∞M ,

g(X)st =
1

|γ|!

∫ t

s
∇γg(X)d∇X̃

(γ)

Proof. This is a straightforward conclusion of all the theory developed in this section; it should be pointed out
that Lemma 4.28Lemma 4.28 is necessary when integrating against the transformed rough path. �

Conclusions and further directions

In this chapter we hope to have convinced the reader that non-geometric rough paths are not, after all, incom-
patible with di�erential geometry, even at low regularity. Nonetheless, the additional technical baggage needed
to formulate a theory of branched rough paths on manifolds is certainly not light, and for this reason we have,
admittedly, only formulated some of the results that one could envisage including in such a discussion.

A goal that appears achievable without too much additional e�ort would involve using our transfer prin-
ciple to give meaning to RDEs driven by quasi-geometric rough paths, as done in De�nition 2.42De�nition 2.42 in the
2 ≤ p < 3 case. This was actually our motivation for discussing quasi-geometric rough paths in the �rst
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place, and for proving their characterisation in terms of the bracket. The point is that the same transfer prin-
ciple should apply for RDEs, since transformations of quasi-geometric RDEs only require the simple bracket.
The only complicating factor in de�ning

dNY = F (Y,X)dMX (4.100)

for quasi-geometric X̃ , is that its the local expression

1

|j|!
NΓij(Y )dỸ (j) =

1

|β|!
F iα(Y,X)MΓαβ(X)dX̃(β)

is not a closed-form RDE. To turn it into one, F ∈ ΓHom(TM, TN) must be extended to a �eld of maps F̃
that locally drive an RDE for the whole of Ỹ , and this must be done compatibly with the condition that Ỹ be a
quasi-geometric bracket extension ofY . Ideally, it should be shown that F̃ is unique with this property. A few
preparatory lemmas are needed to set up these results, e.g. a version of the bracket pushforwards Theorem 4.25Theorem 4.25
for quasi-geometric RDEs, which should also make clear that pushforwards preserve quasi-geometricity (this
is necessary to make the term “quasi-geometric” apply in a well-de�ned way to rough paths on manifolds in the
�rst place). Once this is achieved, one could additionally show an analogue of the Itô-Stratonovich conversion
Theorem 4.32Theorem 4.32 in the manifold case; this would require �rst showing that pushing forward commutes with
Ho�man’s exponential.

Writing out a transfer principle for RDEs driven by general branched rough paths is a much more ambitious
goal. As discussed in (4.204.20), even full bracket extensions are not closed under lifts of their controlled paths. For
this reason, such a transfer principle would have to depend on an iterated bracket extension. A �rst step in this
direction would be to work out the formula for d∇X̂ when 3 ≤ p < 4: since the regularity is low enough,
this actually only requires a single iteration of the bracket extension. Moreover, this case would be su�cient to
give meaning to manifold-valued RDEs driven by the rough path of Chapter 6Chapter 6 below.

A Hopf algebra conspicuously absent from the discussion on page 175page 175 is that of planar rooted trees. This
comes in two �avours: the one de�ned independently in [Foi02bFoi02b] and [Hol03Hol03], in which the product is given
by juxtaposing forests, and the one introduced in [MKW08MKW08], where the product is instead de�ned by shu�ing
them. The latter, which has the advantage over the former of being commutative, is used in [CEFMMK20CEFMMK20] to
de�ne a particular type of di�erential equation: given a Lie group G, with associated Lie algebra g = T1GG,
a smooth manifold M acted on transitively by G, smooth maps Fγ : M → g, and de�ning vector �elds
#Fγ ∈ ΓTM by

#Fγ(x) :=
d

dt

∣∣∣∣
0

exp(tFγ(x)).x

where exp: g→ G is the Lie-algebraic exponential map, the authors are interested in giving meaning to

dY = #Fγ(Y )dXγ

whereX is an Rd-valued planarly branched rough path. It would be interesting, especially once our transfer
principle is extended to RDEs as detailed above, to compare our de�nition of RDE with theirs, and in particular
to see whether/how the additional data of the connection needed in our case corresponds to the planar structure
required in theirs. It should be said, however, that we do not expect planar forests to be particularly helpful for
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the type of RDE (4.1004.100) (which does not involve Lie group actions). This can already be seen from the case
of 2 ≤ p < 3, in which the only di�erence between non-planar and planar labelled forests is that the latter
distinguishes between αβ and βα ; their symmetrisation αβ + βα , the shu�e of α and β , would already
be occupied byXαXβ . The only excess terms given by planar forests are therefore αβ − βα , which cannot
be of help when it comes to indexing the symmetric bracket termX(αβ).

The last idea we wish to mention, very brie�y, is a little vague. It has to do with relating the bracket exten-
sion of [Kel12Kel12] with the geometric rough path of [HK15HK15] that is built to drive RDEs equivalent to ones driven by
a speci�ed branched rough path. These accomplish distinct goals, but have some points in common: for exam-
ple, when it comes to quasi-geometric rough paths, which are simple bracket extensions, the Itô-Stratonovich
formula of [HK15HK15] seems to reduce to Ho�man’s exponential. The type of result that we have in mind is a
canonical mapping sending the iterated bracket extension (in the sense of (4.204.20)) of a branched rough path to
a geometric rough path, expressed algebraically as a map of Hopf algebras. This should then be compared with
the isomorphism of [BC19BC19], which does not need a bracket extension, but appears to be non-canonical, and
possibly not invariant under permutations of indices.
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5
Computing theWiener chaos expansion
of the signature of a Gaussian process

Project status. This chapter consists of a report on work in progress, carried out jointly with Thomas Cass.
While the formal calculation is present in its entirety, there are non-trivial technical aspects that need further
attention, before the project can be considered complete. These are highlighted in eight Assumption envi-
ronments, in which we state what must be assumed for the computation to proceed, and often o�er ideas on
how we plan on tackling these problems. In at least one case, Assumption 2Assumption 2, signi�cant progress towards the
solution has already been made (not included in this thesis, since it is the work of my supervisor). Once these
questions are resolved, and modulo some reorganisation, we believe this chapter will be ready for journal sub-
mission. The validity of our results is independently corroborated by several examples, in which we show how
our results agree with those in the literature.

Introduction

The signature of a bounded variation path X : [0, T ] → Rd, namely its formal series of iterated Riemann-
Stieltjes integrals

∞∑
n=0

∫

0<u1<...<un<T
dXu1 ⊗ · · · ⊗ dXun ∈ T ((Rd))

is an almost complete invariant of the path’s trace: as shown in the landmark paper [HL10HL10], later extended
to rough paths in [BGLY16BGLY16], it characterises Im(X) up to tree-like excursions, i.e. sections in which the path
retraces itself (a type of behaviour that a “generic” path does not exhibit when d > 1). In [CL16CL16] it was
shown that this remarkable fact admits a probabilistic counterpart: under reasonably general assumptions, the
expected signature of a stochastic process characterises its law. In other words, expected signatures can be viewed
as the moments of the process.
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The importance of expected signatures was already known earlier. The formula for the expected
Stratonovich signature of Brownian motion is original to [Faw03Faw03], but can be computed in several ways
[FS17FS17]. Of most relevance to this chapter is the method of [Bau04Bau04], which consists of performing an iterated
Stratonovich-Itô conversion, and using the martingale property and the Itô isometry to simplify the expression.
In [BC07BC07] the authors compute and study the asymptotics of the expected signature of fractional Brownian
motion (fBm) with Hurst parameter H > 1/2 as a way of describing the geometry of di�erential equations
driven by it for small times. The calculation is not performed through a conversion of integrals, but by a simple
linear interpolation method. The result, though not as explicit as that of the Brownian case, is still a closed-form
expression involving multiple integrals of products of fractional powers (v − u)2H . When 1/4 < H ≤ 1/2,
however, while the signature is still de�ned in the rough path sense and integrable (see [CL16CL16, Example 6.7]),
this linear approximation fails to converge. Through an alternative method, [BC07BC07] manage to compute the
expected signature up to level 4, but their formula does not appear to generalise straightforwardly to higher
levels, nor to di�erent types of Gaussian processes.

The terms of the signature of a path X , or more generally of a rough path X , can be used to expand, at
arbitrary order, the solution of a rough di�erential equation (RDE) driven by X . In [CQ02CQ02] it was shown
that H < 1/4-fBm admits a canonical rough path lift, and lifts of more general Gaussian processes were
introduced in [LQ02LQ02, FV10aFV10a]. On the other hand, there is another method for decomposing a functional of
Gaussian noise: the Wiener chaos expansion. The terms of this decomposition are orthogonal in L2 and the
zero-th Wiener chaos projection corresponds to taking the expectation. In the Brownian case, the canonical
basis for this expansion is also given by iterated integrals, but ones taken in the sense of Itô, not Stratonovich. For
more general Gaussian processes the elements of this basis are de�ned via the divergence operator of Malliavin
calculus, or Skorokhod integral. This operator has the drawback of not being de�ned in a pathwise sense, but
has the advantage of retaining some of the properties of Itô integration, most notably that it vanishes in mean.
Given that a Gaussian Wiener functional admits two di�erent expansions, one pathwise and one probabilistic,
it is natural to ask how these two expansions �t together.

The planned purpose of this chapter, which is work in progress, is to compute the Wiener chaos expansion
of the signature for a broad class of centred Gaussian processes lifted to rough paths, which include 1/3 < H-
fBm and the Brownian bridge returning to the origin. At level zero, we obtain a formula for the expected signa-
ture. Our results can also be conjectured to hold for 1/4 < H-fBm, and for many other processes with paths
of bounded 4 > p-variation that admit rough path lifts, although additional subtleties emerge in this regime.
The formula that we obtain for the expected signature is similar to that obtained by [BC07BC07] for 1/2 < H-fBm,
but di�ers in a fundamental aspect, which ensures that the integrals in it converge, and our description of the
higher chaos levels follows similar lines. Our strategy is quite di�erent to those employed previously, although
for Brownian motion, and more generally Gaussian martingales, it simpli�es signi�cantly and reduces to the
Stratonovich-Itô method mentioned above. The key result which we use is the rough integral-Skorokhod inte-
gral conversion formula of [CL19CL19], which expresses the rough integral of an RDE solution against the driving
Gaussian rough path as the sum of the Skorokhod integral of Y and correction terms consisting of Young and
2D Young integrals against the variance and covariance functions of the process. An extension of our results
to the p ∈ [3, 4) case would use the formally analogous formula of [CL20CL20], in which, however, the 2D Young
integral may not converge a.s. Relying on the framework of Malliavin calculus for Gaussian rough paths (in-
troduced in Section 5.1Section 5.1), we apply this formula to the exponential RDE satis�ed by the signature (Section 5.2Section 5.2).
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This results in a recursive formula relating each level of the signature to Skorokhod integrals and Young in-
tegrals against the variance and covariance functions of the signature terms of lower order and their products
(Section 5.3Section 5.3). We are then able to derive a non-recursive formula which expresses the signature as a sum of mixed
Skorokhod/Young iterated integrals (Section 5.4Section 5.4). Next, we show how to take Malliavin derivatives and expec-
tations of this identity, from which, after some intricate combinatorial manipulations of terms, it is possible
obtain the main result by using Stroock’s formula for the Wiener chaos projections (Section 5.5Section 5.5). Our mixed
iterated integrals are represented using diagrams which play a role similar to that of rooted forests in branched
rough path theory, and the operations of taking the expectation and Malliavin derivative are given a precise
graphical description in terms of such diagrams. A crucial ingredient of this calculation involves proving an n-
factor Itô-Skorokhod isometry formula. We conclude with some examples of computations of low levels of the
signature, which include checking that our formula at level 4 coincides with that of [BC07BC07] for 1/4 < H-fBm,
and in Conclusions and further directionsConclusions and further directions o�er some ideas on how to extend and apply our results.

While our method is quite lengthy and complicated, we believe it is justi�ed for the following reasons. First
and most simply, we do not see an alternative way to prove our identity, since all other methods for computing
expected signatures use properties that are not available for (1/3, 1/2] 3 H-fBm. Indeed, it was only applying
[CL19CL19] that it was possible for us to even discover the correct formula for the expected signature (and its higher
chaos), which was not known to us and does not seem to appear in the literature: the formula at level 4 of
[BC07BC07] has quite a di�erent presentation, and showing equivalence with ours is not trivial. Moreover, our
result applies to a general class of Gaussian processes, which need not satisfy properties such as stationarity of
increments. This means that our results are interesting and novel even for Gaussian semimartingales that are not
martingales, such as the Brownian bridge returning to the starting point. For such processes, Itô and Skorokhod
integration do not agree, and it is the latter that results in the cleanest way of obtaining our end results, while
the calculation performed using classical stochastic calculus would rely in an inessential way on the Bichteler-
Dellacherie decomposition of the process. Finally, our proposed method for computing the expected signature
extends without additional di�culty to the computation of the Wiener chaos expansion. As argued in the
conclusions, this could lead to important results on numerical schemes for RDEs.

As already mentioned, this chapter does not consist of a �nished paper. At present, it can only be said to
consist of the formal calculation involved in the proof, since several key technical lemmas of Gaussian analysis
remain unproven. However, the validity of our results is corroborated by the fact that our formula for the
expected signature coincides with the one of [BC07BC07] for (i) 1/2 < H-fBm, for (ii) 1/4 < H-fBm at level 2

and 4, and with (iii) the well-known Brownian case. The precise details of what is missing are clearly spelt out
in a series of Assumptions, in many of which we also give our idea of the proposed way forward.

5.1 Background on Malliavin calculus for Gaussian processes

In this section we give a brief overview of the tools of Malliavin calculus that apply to the study of multidimen-
sional Gaussian processes. This is by no means meant as an exhaustive treatment of the topic. In this section
we follow [Nua06Nua06, NP12NP12] for the general Malliavin calculus framework and [CL19CL19] for certain aspects that are
speci�c to the case of 1-parameter Gaussian processes and their rough paths.

Throughout this chapter we will be working with a Gaussian process with i.i.d. components
X : Ω × [0, T ] → Rd where Ω = C([0, T ],Rd), Xt(ω) := ω(t), Ft := σ(Xs : 0 ≤ s ≤ t). In the
following we will write Ω to denote the �ltered probability space (Ω,F•,P) where, by Gaussianity, the proba-
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bility measure P on Ω is characterised by the covariance function ofX

R : [0, T ]2 → Rd ⊗ Rd, R(s, t) := E[Xs ⊗Xt] (5.1)

We will denote

R(t) := R(t, t), R(∆(s, t)) := R(t)−R(s)

R(s,∆(u, v)) := R(s, v)−R(s, u) = E[Xs ⊗Xuv], R(∆(u, v), s) := R(s,∆(u, v))

R(∆(s, u),∆(t, v)) := R

(
s u
t v

)
:= R(s, t) +R(u, v)−R(t, u)−R(s, v) = E[Xst ⊗Xuv]

(5.2)

for u, v, s, t ∈ [0, T ]. Note that R(∆(s, t)) 6= R(∆(s, t),∆(s, t)). Under the i.i.d. hypothesis we will use
R to denote the scalar covariance function.

Remark 5.1. We have assumed the thatX has i.i.d. components mostly because the results in the literature on
Gaussian processes and rough paths are proven under this hypothesis. Nevertheless, we will make as many as
possible of our statements using notation that preserves its meaning to the non-i.i.d. case, should the underlying
theory for it become available. For instance, when we write Vαβ(y)Rαβ(t) using the Einstein convention,
the reader should be aware that this simpli�es to

∑d
γ=1 Vγγ(y)R11(t), since Rαβ = δαβR11 in the present

setting.

We need to impose regularity hypotheses on R, which are taken from [CL19CL19]. We assume that one of the
following two cases holds:

1 ≤ p < 2. There existM ≥ 0, 0 < % < 1 s.t. for all s, t ∈ [0, T ]

|R(∆(s, t),∆(s, t))| ≤M |t− s|1/%

This implies X admits a 1/p-Hölder modi�cation for any p > 2%, and in particular for some p < 2.
Moreover, we require ‖R(·)‖q-var <∞ for some q s.t. 1/p+ 1/q > 1.

2 ≤ p < 3. There existM ≥ 0, 1 ≤ % < 3/2 s.t. for all s, t ∈ [0, T ]

‖R(t, ·)−R(s, ·)‖%-var ≤M |t− s|1/%

This implies that X admits a 1/p-Hölder modi�cation and can be lifted to a p-rough path, for any
p > 2% and in particular for some p ∈ [2, 3).

Furthermore, we introduce the following hypothesis, which we do not believe to be essential, but which sim-
pli�es matters considerably:

Smoothness. R(·) ∈ C1((0, T ], (Rd)⊗2), and R(·, ·) restricts to an element of C2(∆2[0, T ], (Rd)⊗2),
∆2[0, T ] the open 2-simplex {(s, t) ∈ [0, T ]2 | s < t}.

Note that we are not requiring smoothness ofR(·, ·) on [0, T ]2, which would exclude all examples of interest,
but only o�-diagonal. From now on we assume X satis�es these requirements.
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We move onto the treatment of Malliavin calculus for X . We let H be the Hilbert space given by the
completion of the R-linear span of functions [0, T ]→ Rd, or equivalently [0, T ]× [d]→ R ([d] the set with
d elements)

{1γ[0,t) | t ∈ [0, T ], γ = 1, . . . , d} (5.3)

w.r.t. the inner product
〈1α[0,s),1

β
[0,t)〉H := Rαβ(s, t) (5.4)

Under the i.i.d. hypothesis,H = H1 ⊕ . . .⊕Hn, with theHγ ’s all canonically isomorphic. This framework
allows us to view the process as an isometry

X : H → L2Ω, 1γ[0,t) 7→ Xγ
t (5.5)

often called an isonormal Gaussian process. Although H is de�ned abstractly as the completion of a set of
basis functions under an inner product, it is possible to identify a dense subspace H̃ of it that is constituted of
functions [0, T ]→ Rd:

H̃ :=
⋃

r< %
%−1

Cr-var
pw ([0, T ],Rd) (5.6)

where the % is the parameter appearing in the conditions on X , and the subscript pw means “piecewise con-
tinuous”. H̃ is shown to be continuously embedded intoH when equipped with inner product

〈f, g〉H̃ =

∫

[0,T ]2
fα(s)gβ(t)Rαβ(ds, dt) (5.7)

after quotienting modulo the equivalence relation f ∼ g ⇔ ‖f − g‖H̃ = 0, which is just a.e. equality under
a suitable non-degeneracy hypothesis onR. In practice, we will always be dealing with paths in H̃ as opposed
to abstract elements ofH.

Assumption 1 . Throughout this chapter we are going to assume that the elements of tensor powers ofH that
we are dealing with in fact lie in tensor powers of H̃. In many cases this is not obvious and must be shown.
Alternatively, it should be argued that these elements are/can be manipulated as functions, which is the reason
we are proceeding with this assumption.

The integral in (5.75.7) is a 2D Young integral: for F : [0, T ]2 → R the it is de�ned as the limit

∫

[0,T ]2
F (s, t)R(ds, dt) := lim

|π|→0

∑
[s,u],[t,v]∈π

F (s, t)R

(
s u
t v

)
(5.8)

when it exists; su�cient conditions for convergence can be found in [CL19CL19]. Since we are assuming the covari-
ance function to be C2 o�-diagonal, it holds that 2D Young and Lebesgue integrals coincide when both are
well de�ned:

∫

0<s<t<T
F (s, t)R(ds, dt) =

∫

0<s<t<T
F (s, t)∂12R(s, t)dsdt (5.9)

where the integration domain 0 < s < t < T just means the integrand is multiplied by the indicator function
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1s<t in both cases. On the other hand, the relationship between
∫

[0,T ]2
F (s, t)R(ds, dt),

∫

[0,T ]2\{s=t}
F (s, t)∂12R(s, t)dsdt

is more complicated. For example, when X is a Brownian motion the �rst is equal to
∫ T

0 F (t, t)R(dt) =
∫ T

0 F (t, t)R′(t)dt, while the second vanishes. If F = 1[a,b]×[c,d], the �rst is
equal to R(∆(a, b),∆(c, d)) while the integrand of the second may fail to be in L1([0, T ] \ {s = t}), as is
the case whenX is a 1/2 > H-fBm (see Example 5.7Example 5.7 below) and c < b.

Let V be a separable Hilbert space; in all cases considered here V will be Hilbert tensor powers ofH, often
the zero-th power R. The derivative operator D is de�ned by setting

DmF :=

n∑
k1,...,km=1

∂k1,...,kmf(Xγ1
t1
, . . . , Xγn

tn )1
γk1
[0,tk1 ] ⊗ · · · ⊗ 1

γkn
[0,tkn ] F = f(Xγ1

t1
, . . . , Xγn

tn )

where f ∈ C∞(Rn) has all derivatives of polynomial growth; more in general, for vi ∈ V and the Fi’s of the
same form as F above we set

DmZ :=

l∑
i=1

DmFi ⊗ vi ∈ Lq(Ω,H�m ⊗ V ), Z =

l∑
i=1

Fivi ∈ Lq(Ω, V ) (5.10)

Let SV denote the set of random variables of the form of Z above. Dm is shown to be a closable operator, i.e.
we have that for every sequence of random variables Zn of the form of Z above s.t. Zn → 0 in Lq(Ω, V ) and
DmZn → D inLq(Ω,H�m⊗V ) it must be the case thatD = 0. De�ning Dm,q(V ) ⊆ Lq(Ω, V ) to be the
closure of SV w.r.t. to the norm

‖Z‖Dm,q(V ) = E
[ m∑
k=0

‖DkZ‖qH�k⊗V
]1/q

(5.11)

(where D0 = 1Lq(Ω,V )) which de�nes them-th Malliavin derivative of V -valued random variables.

Dm : Dm,q(V )→ Lq(Ω,H�m ⊗ V ) (5.12)

When m = 1 or V = R they will be omitted from the notation. We will almost always take q = 2.
Dm is, by construction, closed: this means that if Dm,q(V ) 3 Zn → Z in Lq(Ω, V ) and DmZn → D

in Lq(Ω,H�m ⊗ V ) then Z ∈ Dm,q(V ) and DmZ = D. Very often DmZ will actually belong
to Lq(Ω, H̃m ⊗ V ), which means it will be a random variable valued in a space of symmetric functions
([0, T ] × [d])m → V , i.e. a function of m indices and m times. D satis�es a Leibniz rule, proved on SV

and extended: for Y ∈ D1,q andZ ∈ D1,q(V ) s.t. Y Z ∈ D1,q(V )

D(Y Z) = YDZ + ZDY (5.13)

Remark 5.2 (Cameron-Martin space). There is an alternative, more variational approach to Malliavin Calculus,
which bases the de�nitions of derivative and divergence on the Cameron-Martin space Hinstead of onH. The
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former is de�ned as the closure of the linear span of

{Rγ(t, ·) | t ∈ [0, T ], γ = 1, . . . , d} w.r.t. 〈Rα(s, ·), Rβ(t, ·)〉H := Rαβ(s, t)

and is isometric toH by the obvious mapping of basis elements

R∗ : H → H, 1γ[0,t) 7→ Rγ(t, ·)

The main di�erence betweenH and His that the former contains discontinuous functions, whereas the latter
is densely and continuously embedded in Ω with the sup norm. Indeed, one advantage of the Cameron-Martin
space approach is that it allows us to interpret the Malliavin derivative as a directional derivative, i.e. roughly
speaking it holds that

〈DZ(ω), f〉H =
d

dr

∣∣∣∣
0

Z(ω + rR∗f)

On the other hand the divergence operator, which is more important for our purposes, is more nicely inter-
preted in the isonormal framework adopted in this chapter, as explained below. For a more detailed comparison
of the two approaches see [CL19CL19, p.14-15].

The m-th order divergence operator or Skorokhod integral is de�ned as the adjoint of the unbounded op-
erator Dm. We will not de�ne its domain explicitly, rather use the (non-trivial) fact that it is not only de�ned
but even continuous on the corresponding domain of the derivative:

δm : Dm,q(H�m ⊗ V )→ Lq(Ω, V ) (5.14)

and extended to Dm,q(H⊗m ⊗ V ) via the projectionH⊗m � H�m; we take the norm on symmetric tensor
spaces to be just the restriction of the Hilbert tensor norm, without any scaling factor. δm is characterised by
the adjoint property

∀Z ∈ Dm,q(V ) E[〈Z, δmH〉V ] = E[〈DmZ,H〉H�m⊗V ] (5.15)

according to which δ0 = 1 and δ the isometry X (5.55.5). Both derivative and divergence are associative in the
sense that Di ◦Dj = Di+j and δi ◦ δj = δi+j . TakingZ = 1 ∈ R in (5.155.15) immediately implies that δ (and
therefore δm) satis�es the zero mean property

E ◦ δ = 0 (5.16)

which will be of fundamental importance in this chapter. Another consequence of (5.155.15) is the following ex-
pression, valid forH ∈ D1,2(H⊗ V ) andZ ∈ D1,2 s.t.ZH ∈ D1,2(H⊗ V )

δ(ZH) = ZδH − 〈DZ,H〉H (5.17)

This is shown by testing against arbitrary Y ∈ D1,2:

E[Y δ(ZH)] = E[〈DY,ZH〉H]

= E[〈ZDY,H〉H]
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= E[〈D(Y Z)− YDZ,H〉H]

= E[Y (ZδH − 〈DZ,H〉H)]

by the Leibniz rule for D. (5.175.17) shows how random constants cannot be taken out of the Skorokhod inte-
gral without a non-trivial correction term being generated. For example, when Z = X(f) and H = g for
f, g ∈ H the above identity reduces to δ(X(f)g) = X(f)X(g) − 〈f, g〉H, with deterministic correction
term. Another important identity is Heisenberg’s commutativity relation

DδH = H + δ(DH), H ∈ D1,2(H⊗ V ) (5.18)

which in particular impliesDX(f) = f . It is instructive to compute the divergence of an “elementary adapted
integrand”: for 0 ≤ u1 ≤ . . . ≤ un ≤ s ≤ t ≤ T and F = f(Xβ1

u1 , . . . , X
βn
un ) ∈ Sby (5.175.17) we have

δ(F1α[s,t)) = FXα
st − 〈DF,1α[s,t)〉H

= FXα
st −

n∑
k=1

∂kf(Xβ1
u1 , . . . , X

βn
un )Rαβk

(
0 uk
s t

)
If X is a Gaussian martingale (but not necessarily if it is only a semimartingale) the second term vanishes by
orthogonality of increments over disjoint intervals, and in this case the divergence operator actually agrees with
the Itô integral for adapted processes that are integrable in both senses. For non-trivial covariance structures,
however, the correction above implies that δ does not behave like a true integration operator, since, for in-
stance, one cannot take out random constants. Because we will compare it with other types of integrals, it will
nevertheless be helpful to use integral notation: forH ∈ D1,2(Hγ) we interchangeably denote

∫ t

s
HuδXγ

u = δγu(Hu) = δγ(H) = δ(H1γ[s,t)) (5.19)

and similar notation will also be used at higher orders of the divergence operator, through the use of multiple
jointly ordered time and index sub/superscripts.

Remark 5.3 (Symmetry). It is important to note that, although Dm is symmetric tensor-valued and δm is
invariant under symmetries of its integrand, these properties only hold when times and indices are permuted
jointly. For instance, while it is true that δαβuv (1∆[s,t]) = δβαvu (1∆[s,t]), the di�erence

δαβuv (1∆[s,t])− δβαuv (1∆[s,t]) =

∫

s<u<v<t

(
δXα

u δXβ
v − δXβ

uδXα
v

)
does not vanish, and equals the — equivalently Itô or Stratonovich — Lévy area increment Aαβst when X is a
martingale, a statement we will later show to carry over to Gaussian rough paths.

A special class of Skorokhod integrand is given by deterministic, i.e. elements of
H⊗m ⊗ V ⊆ Dm,2(H⊗m ⊗ V ). For this class of integrands the Skorokhod integral is called the mul-
tiple Wiener integral. A remarkable feature of multiple Wiener integration is that for f ∈ H�m and
g ∈ H�n

E[δm(f)δn(g)] = δmnm!〈f, g〉H⊗m (5.20)
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so if f, g ∈ H̃⊗m are not necessarily symmetric

E[δm(f)δm(g)] =
∑
σ∈Sm

∫

[0,T ]2m
fα1,...,αm(s1, . . . , sm)gβσ(1),...,βσ(m)

(tσ(1), . . . , tσ(m))

Rα1βσ(1)(ds1,dtσ(1)) · · ·Rαmβσ(m)(dsm,dtσ(m))

This tells us that multiple Wiener integration de�nes an isometry

δ• :
∞⊕
m=0

H�m
∼=−→ L2Ω (5.21)

where the source is given the rescaled inner product (f, g) 7→ m!〈f, g〉H⊗m for f, g in the sameH�m and
zero otherwise, and recall that L2Ω is given the sigma algebra generated by the process X . The image of the
m-th Wiener integral operator, the space of the random variables δmf with f ranging inH�m, is called the
m-th Wiener chaos ofX . We denote it Wm and them-th Wiener chaos projection wm : L2Ω� Wm. Note
that w0 = E with values in W0 = R, while W1 is given by linear functions of X . We therefore have the
Wiener chaos decomposition

L2Ω =

∞⊕
m=0

Wm (5.22)

which means we may represent anyL2Ω random variable as anL2-absolutely convergent series

L2Ω 3 Z =
∞∑
m=0

wmZ, ‖Z‖2L2Ω =
∞∑
m=0

‖wmZ‖2L2Ω =
∞∑
m=0

m!‖fm‖2H⊗m (5.23)

where fm = (δm)−1 ◦wm(Z). This decomposition is useful to generateL2-convergent numerical schemes.
The map (δm)−1 ◦ wm admits an expression in terms of the Malliavin derivative: this is Stroock’s formula,
which states that forZ ∈ Dm,2

(δm)−1 ◦ wm(Z) =
1

m!
E[DmZ] = E[1∆m[0,T ]D

mZ] (5.24)

where ∆m[0, T ] is them-simplex over the interval [0, T ]. As a consequence, ifZ ∈ D∞,2 :=
⋂∞
m=0 Dm,2 we

can write its Wiener chaos decomposition as the series

Z =
∞∑
m=0

δmE[1∆m[0,T ]D
mZ] (5.25)

5.2 The rough-Skorokhod conversion formula for RDE solutions

In this section we state the main recent result which underlies the rest of this chapter, the rough-Skorokhod
integral conversion formula [CL19CL19, Theorem 6.1], or rather a slight generalisation of it. All assumptions and
notation is as in Section 5.1Section 5.1, and we consider a matrix-valued RDE

dY k
α = V k

αβ(Y )dXβ, Y0 = y0 (5.26)
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Here X takes values in Rd, Y in Re×d, and we use Greek indices to denote the coordinates of Rd and Latin
ones for Re. We will denote V k,α

β := V k
αβ when it is convenient in order to apply the Einstein summation

convention correctly. The conversion formula then reads

∫ T

0
Y k
γ dXγ =

∫ T

0
Y k
γ δXγ +

1

2

∫ T

0
V k
αβ(Yt)R

αβ(dt)

+

∫

0<s<t<T

(
(JtsV )(Ys)− V (Yt)

)k
αβ
Rαβ(ds, dt)

(5.27)

Here the integral against δ is a Skorokhod integral, Rαβ(dt) is a Young integral and the one against
Rαβ(ds, dt) is a 2D Young integral. By the smoothness hypotheses on the variance and covariance functions
and (5.95.9) we can write

R(ds, dt) = ∂12R(s, t)dsdt, R(dt) = R′(t)dt, R(s, dt) = ∂2R(s, t)dt (5.28)

where ∂2 denotes partial di�erentiation w.r.t. to the second argument (not a second derivative) and ∂1 partial
di�erentiation w.r.t. to the �rst argument. Jts(Ys) is the Jacobian of the �ow of the RDE, evaluated at the
solution with initial condition Y0 = y0, from time s to time t. It is de�ned by

J i,αj,β;ts :=
d

dr

∣∣∣∣
r=0

(solution of dY i
α = V i

αγ(Y )dXγ at time t, started at Ys + r∂j,β at time s)

with Y as in (5.265.26) and {∂k,γ | γ = 1, . . . , d; k = 1, . . . , e} the canonical basis of Re×d, and
(JtsV )kαβ(y) := (JtsV )k,αβ (y) := Jk,αh,γ;tsV

h,γ
β (y). All that is necessary to know about Jts is that is satis-

�es the linear RDE [CL19CL19, (42)]

dtJ
i,α
j,β;ts(Ys) = ∂k,γV

i,α
δ (Yt)J

k,γ
j,β;ts(Ys)dX

δ
t , J i,αj,β;ss(Ys) = δijδ

α
β

which implies (JtsV )i,αβ (Ys) satis�es the linear RDE

dtA
i,α
β;ts = ∂k,γV

i,α
δ (Yt)A

k,γ
β;tsdX

δ
t , Ai,αβ;ss = V i,α

β (Ys) (5.29)

Remark 5.4. It is important to stress that the 2D Young integral in (5.275.27) cannot in general be split as the
di�erence of two integrals, as is shown in [CL19CL19, p.53], as the integrand must vanish on the diagonal (at the
correct order) for convergence to hold.

For some more regular processes, however, R(·, ·) is once di�erentiable on the diagonal: an important
example is 1/2 < H-fBm (see Example 5.7Example 5.7 below), for which

∂2R(s, t) = H(s2H−1 − (t− s)2H−1), s ≤ t (5.30)

and therefore
R′(t) = ∂1R(t, t) + ∂2R(t, t) = 2∂2R(t, t) (5.31)

204



so that (using thatR(0, ·) = 0) Remark 5.4Remark 5.4 does not apply and we may write
∫

0<s<t<T

(
(JtsV )(Ys)− V (Yt)

)k
αβ
Rαβ(ds, dt)

=

∫

0<s<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt)−
∫ T

0
V k
αβ(Yt)R

αβ(t,dt)

=

∫

0<s<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt)− 1

2

∫ T

0
V k
αβ(Yt)R

αβ(dt)

and (5.275.27) reduces to

∫ T

0
Y k
γ dXγ =

∫ T

0
Y k
γ δXγ +

∫

0<s<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt) (5.32)

Assumption 2 . We will need to assume that (5.275.27) (which includes Skorokhod-integrability of the solution
and (2D) Young integrability of the other terms) holds in a slightly more general case than is stated in [CL20CL20]:

1. We need to allow for V to be linear (as opposed to only bounded);

2. We need to consider an integrand Y which is a piecewise solution to two RDEs, i.e.

dY k
α;t =

1V k
αβ(Yt)dX

β
t , Y0 = y0, 0 ≤ t ≤ S

2V k
αβ(Yt)dX

β
t , YS = Y −S , S ≤ t ≤ T

(5.33)

where we intend (5.275.27) to hold with

V (Yt) =

1V (Yt), 0 ≤ t ≤ S
2V (Yt), S ≤ t ≤ T

, J(Yt) =


1Jts(Ys), 0 ≤ s ≤ t ≤ S
2JtS(YS)1JSs(Ys), 0 ≤ s ≤ S ≤ t ≤ T
2Jts(Ys), S ≤ s ≤ t ≤ T

(5.34)

where 1J and 2J the Jacobians of the �ows of the respective RDEs.

The �rst generalisation above will be needed to consider the RDE for the signature, and the second will be
necessary to do so when the signature is started at some S ≥ 0. Indeed, it is not possible to simply apply the
original formula to an RDE started at S > 0 since X·≥S | FS is no longer zero mean, as con�rmed by the
presence of the additional term in the next formula: this is obtained by subtracting (5.275.27) written from 0 to S
from the same formula written from 0 to T , with V, J as in (5.345.34)

∫ T

S
Y k
γ dXγ =

∫ T

S
Y k
γ δXγ +

1

2

∫ T

S
V k
αβ(Yt)R

αβ(dt)

+

∫

S<s<t<T

(
(JtsV )(Ys)− V (Yt)

)k
αβ
Rαβ(ds, dt)

+

∫

0<s<S<t<T

(
(JtsV )(Ys)− V (Yt)

)k
αβ
Rαβ(ds, dt)

(5.35)
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Now, the last integral may be split, and we have
∫

0<s<S<t<T

(
(JtsV )(Ys)− V (Yt)

)k
αβ
Rαβ(ds, dt) (5.36)

=

∫

0<s<S<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt)−
∫

0<s<S<t<T
V k
αβ(Yt)R

αβ(S,dt) (5.37)

Assumption 3 . The simpli�cation (5.325.32) is not mentioned in [CL19CL19] and must shown. Also, it should be
clari�ed whether it holds for all processes with a.a. paths of bounded 2 > p-variation. This could also be
handled directly for our �nal results and be omitted for the moment. Similarly, it we must show that (for
the most general type of Gaussian process considered here) the separation of integrals performed in (5.365.36) is
admissible. The point is that the integral being split is improper only at a point and not on a diagonal, which
should be enough for it to converge. Examples involving (1/3, 1/2) 3 H-fBm con�rm this: for instance, the
integral
∫

0<s<t<T R(ds, dt) =
∫

0<s<t<T (t− s)2H−2dsdt does not converge, but

∫

0<s<S<t<T
(t− s)2H−2dsdt = (2H − 1)−1

∫ S

0

[
(T − s)2H−1 − (S − s)2H−1

]
ds

does. On the other hand, whenH > 1/2 the integral
∫

0<s<t<T (t−s)2H−2dsdtdoes converge, which is what
motivates our �rst assertion. See Remark 5.13Remark 5.13 below for a proper introduction to these kinds of computation.

The second case of the following de�nition is motivated by (5.315.31), since in general the covariance function
is not di�erentiable on the diagonal:

R(∆(u, v),dw) :=

R(v,dw)−R(u,dw) for v 6= w

1
2R(dw)−R(u,dw) for v = w

(5.38)

which, by smoothness and (5.285.28), is equal to ∂2R(∆(u, v), w)dw with

∂2R(∆(u, v), w) :=

∂2R(v, w)− ∂2R(u,w) for v 6= w

1
2R
′(w)− ∂2R(u,w) for v = w

(5.39)

We have shown

Theorem 5.5 (Rough-Skorokhod integral conversion formula from S to T ). With V and J as in (5.345.34) we
have

∫ T

S
Y k
γ dXγ =

∫ T

S
Y k
γ δXγ +

∫ T

S
V k
αβ(Yt)R

αβ(∆(S, t), dt)

+

∫

S<s<t<T
((JtsV )(Ys)− V (Yt))

k
αβR

αβ(ds, dt)

+

∫

0<s<S<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt)

(5.40)
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If the simplification discussed in Assumption 3Assumption 3 holds, this reduces to

∫ T

S
Y k
γ dXγ =

∫ T

S
Y k
γ δXγ +

∫

S<s<t<T
(JtsV )kαβ(Ys)(ds, dt)

+

∫

0<s<S<t<T
(JtsV )kαβ(Ys)R

αβ(ds, dt)

(5.41)

Moreover, if the first RDE is the trivial one 1V = 0, the last integral in both expressions above vanishes.

Example 5.6 (Gaussian semimartingales). Assume X is additionally a semimartingale with decomposition
X = M + A, M a continuous local martingale and A a process of bounded variation; in fact, by [BO10BO10,
Theorem 4.5]A andM are both Gaussian and the latter is a true martingale, and in particular a martingale in
its own �ltrationFM . In general the increments of a martingale are orthogonal inL2, and Gaussianity implies
they are independent, soMst ⊥⊥ FMs for 0 ≤ s ≤ t ≤ T . Therefore, denotingRM the covariance function
ofM , we have

E[Mα
t M

β
t −R

αβ
M (t))|FMs ] = Mα

s M
β
s + E[(MαMβ)st|FMs ]−RαβM (t)

= Mα
s M

β
s + E[(MαMβ)st]−RαβM (t)

= Mα
s M

β
s + (RαβM (t)−RαβM (s))−RαβM (t)

= Mα
s M

β
s −R

αβ
M (s)

RαβM (·) is thus the unique continuous process H s.t. Mα
t M

β
t − Ht is a local martingale, which implies

[X]t = [M ]t = RM (t). The classical Stratonovich-Itô conversion formula then reads

∫ T

S
Y k
γ ◦ dXγ =

∫ T

S
Y k
γ dMγ +

∫ T

S
Y k
γ dAγ +

1

2

∫ T

S
V k
αβ(Y )RαβM (dt) (5.42)

We compare this with (5.275.27): sinceX is now given by Stratonovich integration, it is well known that the LHSs
are equal. While the individual terms on the right are not pairwise equal, in each equation the �rst term on
the RHS has zero mean. If X is a (local) martingale then X = M , A = 0, RM = R, and R(ds, dt) = 0

on s < t again by L2-orthogonality of martingale increments (the setup for Skorokhod integration is very
similar to the classical white noise case [Nua06Nua06, §. 1.3.2]). This implies

∫

Y δX =
∫

Y dX =
∫

Y dM (as can
also be seen directly, for more general integrands), and the two conversion formulae are one and the same. For
general centred Gaussian semimartingales, however, (5.405.40) and (5.425.42) yield distinct ways of representing the
rough/Stratonovich integral of Y againstX as the sum of a zero mean random variable and corrections given
by pathwise-de�ned integrals. Even though the classical Itô-Stratonovich seems advantageous, both because it is
more concise and because the zero-mean term is additionally a martingale, we will see that the rough-Skorokhod
formula is better suited for out purposes.

Example 5.7 (Fractional Brownian motion). Arguably the best known example of a stochastic process that is
not semimartingale is fractional Brownian motion with Hurst parameterH ∈ (0, 1) (H-fBm), introduced in
[MN68MN68]. It is a scalar centred Gaussian process with covariance function

R(s, t) =
1

2
(t2H + s2H − (t− s)2H), s ≤ t (5.43)
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and, still for s ≤ t the integrators of interest are given by

R(ds, dt) = H(2H − 1)(t− s)2H−2dsdt, R(∆(s, t), dt) = H(t− s)2H−1dt (5.44)

WhenH ∈ (1/3, 1) fBm satis�es the hypotheses required in Section 5.1Section 5.1; in particular,H-fBm is a.s.α-Hölder
regular for all α > H . We call a d-dimensionalH-fBm a vector of d independent scalarH-fBms.

Example 5.8 (The Riemann-Liouville process). Another centred continuous Gaussian process, originally
introduced in [Lév53Lév53] and subsequently in [MN68MN68], is the Riemann-Liouville process with Hurst parameter
H ∈ (0, 1) (sometimes called type-II fBm), is a centred Gaussian process with covariance function [MR99MR99,
p.116-117]

R(s, t) =
s<t

1

2

[
t2H + s2H − 2H(t− s)2H

(
1

2H
+

∫ s/(t−s)

0

(
(1 + u)H−1/2 − uH−1/2

)2
du

)]
R(t) = t2H

(5.45)

Like fBm, this process speci�es to Brownian motion when H = 1/2. Their main di�erence is that fBm has
jointly stationary increments (see Example 5.9Example 5.9 below) while for the Riemann-Liouville process not even single
increments are stationary. We were not able to �nd a concise expression for the derivatives of the covariance
function of this process.

Example 5.9 (Stationarity and joint stationarity of increments). X is stationary if and only if we may write

R(s, t) = R(t− s) (5.46)

for some functionR : [0, T ]→ Rd×d. IfR is smooth we may use (5.285.28) to write

R(ds, dt) = −R′′(t− s)dsdt, R(dt) = 0, R(s, dt) = R′(t− s)dt

⇒ R(∆(s, t),dt) = −R′(t− s)dt
(5.47)

An example of a centred stationary Gaussian process is the Ornstein-Uhlenbeck process exp(−t/2)Wexp(t)

where W is a Brownian motion and t ∈ [0, T ]: its covariance function is R(s, t) = exp(−(t − s)/2) for
s ≤ t.

There is a weaker property that results in a similar simpli�cation. We will say that a stochastic process X
has jointly stationary increments if for all s1 ≤ t1, . . . , sn ≤ tn the distribution of the random vector of incre-
ments (Xs1t1 , . . . , Xsntn) only depends on the di�erences t1− s1, . . . , tn− sn and s2− s1, . . . , sn− sn−1

(if n = 1 the latter condition vanishes, and ordinary stationarity of increments is recovered). IfX is Gaussian
this need only be required for n = 2, and if it holds we may write

R

(
s u
t v

)
= E[Xsu ⊗Xtv] = R̂(u− s, v − t, t− s) (5.48)

for some function R̂ : [0, T ]3 → Rd×d. This property is satis�ed by fBm, since if H is the Hurst parameter
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we have

R

(
s u
t v

)
=

1

2

[
(t− u)2H + (v − s)2H − (t− s)2H − (v − u)2H

]
=

1

2

[(
(t− s)− (u− s)

)2H
+
(
(v − t) + (t− s)

)2H − (t− s)2H − ((v − t) + (t− s)− (u− s)
)2H]

IfX has jointly stationary increments

∂12R(s, t) = lim
u→s
v→t

R

(
s u
t v

)
(v − t)(u− s)

= ∂12R̂(0, 0, t− s) (5.49)

Although similar simpli�cations are not available for ∂2R(s, t) and R′(t) individually (as they are in the sta-
tionary case), they are once we consider the integratorR(∆(s, t),dt): indeed, we have

R(∆(s, t), v)−R(∆(s, t), t) = R

(
s t
t v

)
= R̂(t− s, v − t, t− s)

=⇒ R(∆(s, t),dt) = ∂2R̂(t− s, 0, t− s)dt

We therefore conclude that joint stationarity of increments, though a much more general property than sta-
tionarity, results in the same simpli�cations that are of relevance to this chapter, namely that R(ds, dt) and
R(∆(s, t),dt) only depend on t− s. This is because these are the only two deterministic integrators consid-
ered in all our end results.

5.3 The recursive formula

We are interested in applying the Skorokhod-rough integral formula to the RDE for the signature of X
from S to T . We will be denoting the signature from S to T by XST ∈ T (Rd), and its components
Xγ1,...,γn

ST := 〈XST , ∂γ1⊗· · ·⊗∂γn〉. Note that, although this is written as an RDE in an in�nite-dimensional
vector space, it can always be reduced to one in a �nite-dimensional one by truncating the tensor algebra at an
appropriately high order; for this reason, we will keep working with the whole tensor algebra, keeping in mind
that all results pertaining to rough paths in �nite-dimensional vector spaces apply. The �rst RDE will be the
trivial one, i.e.

1V = 0, Y0 = 1 ∈ T (Rd)⊗ Rd =

∞⊕
n=1

(Rd)⊗n, J i,αj,β;ts ≡ δijδ
α
β (5.50)

Here δ is a Kronecker delta (note the di�erence between the characters δ, δ and δ, with the second being used
for Skorokhod integration and with the third which will �gure as an index). Now, since we have

Xγ1,...,γn
ST =

∫ T

S
X

γ1,...,γn−1

St dXγn
t
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we would like Y γ1,...,γn
γ;t = X

γ1,...,γn−1

St δγnγ , which solves

dtY
γ1,...,γn
γ;St = 2V

(γ1,...,γn),γ
δ (Yt)dX

δ
t , with 2V

(α1,...,αn),α
β (y) = yα1,...,αn−2,αn

α δ
αn−1

β

i.e. 2V
(α1,...,αn)
αβ (Yt) = X

α1,...,αn−2

St δ
αn−1

β δαnα

(5.51)

(5.295.29) now becomes, for S ≤ s ≤ t ≤ T

dtA
(α1,...,αn),α
β;ts = ∂(γ1,...,γm),γV

(α1,...,αn),α
δ (Yt)A

(γ1,...,γm),γ
β;ts dXδ

t

= δ
(α1,...,αn−2,αn)
(γ1,...,γm) δαγδ

αn−1

δ A
(γ1,...,γm),γ
β;ts dXδ

t

= A
(α1,...,αn−2,αn),α
β;ts dX

αn−1

t , A
(α1,...,αn),α
β;ss = X

α1,...,αn−2

Ss δ
αn−1

β δαn,α

We conclude that

(2JtsV )
(α1,...,αn),α
β (Ys) =

n−1∑
l=1

X
α1,...,αl−1

Ss δαlβ X
αl+1,...,αn−1

st δαn,α (5.52)

by checking that it satis�es this RDE and initial condition. We have now proven the following theorem, which
is the result of applying Theorem 5.5Theorem 5.5 to the signature (we replace s, twith u, v and S, T with s, t):

Theorem 5.10 (Recursive formula).

Xγ1,...,γn
st =

∫ t

s
Xγ1,...,γn−1

sv δXγn
v +

∫ t

s
Xγ1,...,γn−2

sv Rγn−1γn(∆(s, v), dv)

+
n−2∑
l=1

∫

s<u<v<t
X

γ1,...,γl−1
su X

γl+1,...,γn−1
uv Rγl,γn(du,dv)

−
∫

s<u<v<t
(Xγ1,...,γn−2

sv −Xγ1,...,γn−2
su )Rγn−1γn(du,dv)

(5.53)

If the simplification discussed in Assumption 3Assumption 3 holds, this reduces to

Xγ1,...,γn
st =

∫ t

s
Xγ1,...,γn−1

sv δXγn
v +

n−1∑
l=1

∫

s<u<v<t
X

γ1,...,γl−1
su X

γl+1,...,γn−1
uv Rγlγn(du,dv) (5.54)

Assumption 4 . In the above theorem we have taken �nite sums out of the integral, following the only rule
that, in all double integrals, the integrand must vanish on the diagonalu = v (see Remark 5.4Remark 5.4). This would not
be the case if we separated the di�erence in the last integral, which is why it has been kept inside the integral sign,
separately from the previous sum, in which all terms do vanish thanks to the fact thatXγl+1,...,γn−1

uv carries a
positive number of indices. It must still be shown that all other integrals converge, since this does not follow
automatically from the conversion formula. That this can be done can be understood by picking γl = γn or
γn−1 = γn, and observing that the other terms must converge, but this argument must be made precise.

What we see from the above theorem is that the term
∫

s<u<v<t
Xγ1,...,γn−2

su Rγlγn(du,dv)
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which is present in the case of p < 2, but ill-de�ned in the general p < 4 case, is replaced with the term

∫ t

s
Xγ1,...,γn−2

sv Rγn−1γn(∆(s, v), dv)−
∫

s<u<v<t
(Xγ1,...,γn−2

sv −Xγ1,...,γn−2
su )Rγn−1γn(du,dv)

Remark 5.11 (An alternative recursive formula). It is tempting to try to improve (5.535.53) by applying the Chen
identity to the last term:

Xγ1,...,γn
st =

∫ t

s
Xγ1,...,γn−1

sv δXγn
v +

∫ t

s
Xγ1,...,γn−2

sv Rγn−1γn(∆(s, v),dv)

+
n−2∑
l=1

∫

s<u<v<t
X

γ1,...,γl−1
su X

γl+1,...,γn−1
uv Rγl,γn(du,dv)

−
n−3∑
l=0

∫

s<u<v<t
Xγ1,...,γl

su X
γl+1,...,γn−2
uv Rγn−1γn(du,dv)

(5.55)

This formula has the advantage of not containing inseparable di�erences as integrands, but has the drawback
of having more terms, some of which carry a negative sign.

Example 5.12 (Gaussian semimartingales). The classical Stratonovich-Itô formula for Gaussian semimartin-
gales (5.425.42) similarly yields an alternate formula (notation as in Example 5.6Example 5.6):

Xγ1,...,γn
st =

∫ t

s
Xγ1,...,γn−1

sv dMγn
v +

∫ t

s
Xγ1,...,γn−1

sv dAγnv +
1

2

∫ t

s
Xγ1,...,γn−2

sv R
γn−1γn
M (dv) (5.56)

5.4 The closed-form representation

Since solving the recursion of Theorem 5.10Theorem 5.10 will involve mixed iterated integrals, it will be helpful to develop
some graphical notation that keeps track of all the di�erent types of integrator. Consider diagrams formed by
an ordered set of nodes with some arcs drawn (above the list of nodes) between pairs of nodes (the left and
right endpoints of the arc), and straight lines (edges) beginning at some nodes (the endpoint of the edge) and
going straight up. Each node may be the endpoint of at most one arc or edge (not both). We do not allow arcs
between consecutive nodes: as is explained in Remark 5.13Remark 5.13 below, this is what guarantees convergence, at least
when 2 ≤ p < 3. Nodes that are not the endpoint of an arc or edge may be circled; if they are not they will
be called single. Nodes are labelled with elements of {1, . . . , d}: more precisely, an uncircled node has two
labels if and only if it is the endpoint of an edge, and precisely one otherwise. We will refer to the last node of
a diagram as its terminal node and say that the diagram ends in/with it, and if it is the endpoint of an arc or
edge, we will call this the leading arc or edge, and say that the diagram ends in/with an arc/edge. The degree of a
diagram is the number of labels (which is the same as the number of nodes plus the number of edges). We will
call the set of all such diagramsKd, the set of those withm circled nodesKdm, andKdm(γ1, . . . , γn) the subset
of these of degree n labelled γ1, . . . , γn from left to right (with double labels counted as two single labels). We
also consider an empty diagram ∅ ∈ Kd. An example is

α β γ δ ε ζ η ϑ ι κ λ µ νξ o
∈ Kd1(α, . . . , o) (5.57)
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We now explain what these diagrams represent: single nodes stand for Skorokhod integration, arcs for double
integration against the covariance function, edges for integration against R(∆(u, v),dv) (5.385.38), nodes that
are circled for free (time variable, index) pairs (i.e. the resulting diagram will be a function of such times
and indices) with the label standing for a Kronecker delta, and we are integrating over the simplex of order
the number of nodes between two times 0 ≤ s ≤ t ≤ T to be speci�ed. This approximate description,
however, is not enough to give these random variables an unequivocal meaning: the problem is that mixed
Skorokhod/Young integration on the simplex is not associative. We illustrate this with an example: omitting
the labelling (or taking d = 1) for simplicity,

( )st =

∫

∆4[s,t]
∂12R(u2, u4)δXu1du2δXu3du4

=

∫ t

s

∫ u4

s

∫

s<u1<u2<u3

∂12R(u2, u4)δXu1du2δXu3 du4

=

∫ t

s
δu3
(

1(s,u4)(u3)

∫

s<u1<u2<u3

∂12R(u2, u4)δXu1du2

)
du4

On the other hand, if we �rst resolve the Skorokhod integrals

( )st =

∫ t

s

∫

s<u2<u4<t
∂12R(u2, u4)

∫ u2

s
δXu1

∫ u4

u2

δXu3 du2du4

=

∫ t

s

∫

s<u2<u4<t
∂12R(u2, u4)Xsu2Xu2u4du2du4

These two quantities cannot be equal, since taking their expectation we should expect to obtain

E
∫ t

s
δu3
(

1(s,u4)(u3)

∫

s<u1<u2<u3

∂12R(u2, u4)δXu1du2

)
du4

=

∫ t

s
Eδu3

(
1(s,u4)(u3)

∫

s<u1<u2<u3

∂12R(u2, u4)δXu1du2

)
du4

= 0

6=
∫

∆4[s,t]
∂12R(u2, u4)∂12R(u1, u3)du1du2du3du4

= E
∫ t

s

∫

s<u2<u4<t
∂12R(u2, u4)Xsu2Xu2u4du2du4

(5.58)

with the 6= is intended in general (when X is a martingale equality does actually hold, by orthogonality of its
increments — this is precisely the case in which case Skorokhod integrals are Itô integrals, and mixed integration
over the simplex is associative). As will be clear in a moment, the de�nition that we want to hold is the second
one.

We now de�ne a random variable Cst for C ∈ Kd and 0 ≤ s ≤ t ≤ T . The de�nition we provide is a
recursive one, not for Cst but for the di�erential d̄Cst, which can be one of several types of di�erentials; we
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can then recover the former by

Cst :=


1 C = ∅

1γ(s,t)( · )Ds · C = D
γ
, D ∈ Kd

∫ t

s
d̄Csv otherwise

(5.59)

In the second case · is the time variable of whichCst is a function (and the index is evaluated against δγ). Note
that, although d̄Csv has no meaning on its own, it will always appear inside an integral as above. The meaning
of d̄ depends on the type of terminal node ofC:

1. d̄(C
γ

)sv = CsvδXγ
v ;

2. d̄(A
α
B

β
)sv :=

∫

s<u<v
(w1,...,wm)∈∆m[s,u]
(z1,...,zm)∈∆m[u,v]

ÅsuB̊uv

m∏
k=1

Rγkδk(dwk, dzk)R
αβ(du,dv),

where Å and B̊ are the diagrams respectively given by taking A and B and circling all nodes that
are endpoints of arcs (represented, in the initial diagram, by the dashed line) that intersect the lead-
ing arc. These nodes have associated (time variable, index) pairs (w1, γ1), . . . , (wm, γm) for A and
(z1, δ1), . . . , (zm, δm) forB, in that order. All in all, this is an integral on ∆2m+1[s, v] (along with the
extra variable v, yet to be integrated);

3. d̄(C
αβ

)sv :=


Rαβ(∆(s, v), dv) C = ∅

1γ(s,v)( · )Ds ·R(∆( · , v),dv) C = D
γ
, D ∈ Kd

∫ v

s
d̄CsuR

αβ(∆(u, v),dv) otherwise

Note how, in order to make sense of d̄CsuR
αβ(∆(u, v),dv), we can use smoothness and write

∂2R
αβ(∆(u, v), v)d̄Csudv, so that all instances of the variable u appear before du; without the smooth-

ness assumption this de�nition would be more di�cult to make sense of. Following the assumptions of
Assumption 1Assumption 1, we will continue by consideringCst elements of H̃ whenC ∈ Kd.

Assumption 5 . It must be shown that the integrals de�ned by (5.595.59) converge for the class of stochastic pro-
cesses that we are considering. This task is closely related to that of Assumption 4Assumption 4, and the two should be
handled together. Also, this should be accomplished in a way that makes it obvious that all manipulations of
these integrals, e.g. those performed in Lemma 5.15Lemma 5.15 below, are sound. The next two remarks are meant to clarify
some of these aspects, but the general task remains outstanding.

Remark 5.13. The main reason why this de�nition is so involved is the presence of edges, whose purpose is to
replace arcs between consecutive nodes. The reason why these are disallowed is that, in general, they cause the
integral not to converge. If it were possible to replace each endpoint of an edge with two nodes, and the edge
with an arc between them, the above de�nition would not need to involve the multi-purpose di�erential d̄ and
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would be much simpler to state: we would only have to set

(A
α
B

β
)st :=

∫

s<u<v<t
(w1,...,wm)∈∆m[s,u]
(z1,...,zm)∈∆m[u,v]

ÅsuB̊uv

m∏
k=1

Rγkδk(dwk, dzk)R
αβ(du,dv)

(C
γ

)st =

∫ t

s
CsuδXγ

u

(D
γ

)st = 1γ(s,t)( · )Ds ·

(5.60)

with all symbols as above. It is checked that, when these integrals converge, they coincide with the ones de�ned
above, with arcs between consecutive nodes replaced with edges. This second de�nition is possible in certain
cases, such as 1/2 < H-fBm (see Assumption 3Assumption 3), but not for 1/2 ≥ H-fBm: for instance, we have (omitting
labels)

( )st =

∫

s<u<v<t
R(du,dv)

= H(2H − 1)

∫

s<u<v<t
(v − u)2H−2dudv

H 6=1/2
= −H
∫ t

s

[
(v − u)2H−1

]v
u=s

dv

in which the square bracket is only �nite forH > 1/2, and the integral diverges to−∞whenH < 1/4. On
the other hand

( )st =

∫ t

s
R(∆(s, u), du) =

R(s) +R(t)

2
−R(s, t) (5.61)

= H

∫ t

s
(u− s)2H−1du =

1

2
(t− s)2H

converges forH > 1/4 (and indeed forH > 0, but this is of little relevance, since the rough path is not de�ned
for H ≤ 1/4), and coincides with the above quantity when H > 1/2. At the threshold H = 1/2 both
integrals converge, but to di�erent values, and it is the latter that coincides with E

∫ t
s Xsv ◦dXv = (t− s)/2,

while the �rst vanishes.

Remark 5.14 (3 ≤ p < 4). It is well known that fBm can be lifted to a rough path even when 1/4 < H ≤ 1/3.
Indeed, in [CL20CL20] the same conversion formula as (5.275.27) is proved, with one caveat: the 2D integral is de�ned
as a certain limit inL2 and may not converge almost surely in the 2D Young sense (see [CL20CL20, Remark 5.3]). A
manifestation of this issue is that, when 1/4 < H ≤ 1/3, there is another problematic type of integral: using
Hölder regularity of fBm (and a− meaning ∀b 0 < b < a) the best we can do is

|( )st| =
∣∣∣∣H(2H − 1)

∫

s<u<v<t
Xuv(v − u)2H−2dudv

∣∣∣∣
.
∫

s<u<v<t
(v − u)3H−−2dudv

.
∫ t

s

[
(v − u)3H−−1

]t
v=u

du
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and the square bracket is only �nite forH > 1/3. A similar comments holds for the diagram ( ). We will say
more about this problem at the end, since some of our �nal results actually seem not to have problems even for
1/4 < H ≤ 1/3, even though the arguments needed to reach them do.

We provide an example of an integral de�ned by (5.595.59). IfC is the diagram (5.575.57),Cst is given by (recalling
(5.395.39))
∫

s<u1<u4<u5<u10<u12<u14

∂12R
ακ(u1, u10)∂12R

δµ(u4, u12)∂12R
εo(du5,du14)

(
β γ

)su5(
ζ η ϑ ι λ νξ

)u5u14du1du4du5du10du12du14

with

(
β γ

)su5 =

∫

s<u1<u2<u3<u4<u5

δXβ
u2δXγ

u3 ,

(
ζ η ϑ ι λ νξ

)u5u14 =δζ
∫

u5<u6<u7<u9<u10<u12<u13<u14

Xϑ
u7u9X

λ
u10u12

∂12R
ηι(u7, u9)∂2R

νξ(∆(u12, u13), u13)du7du9du13

where we have removed some labels from the circled nodes and instead placed them directly onto the R’s. u6

is the free time variable, with associated index to be evaluated against δζ .
We now introduce the subset

Id := {C ∈ Kd | arcs do not intersect} (5.62)

The notation regarding subscripts and indexing carries over. Before we proceed we will need the following
technical lemma, in which we suppress the labelling (which does not interact with the statement).

Lemma 5.15. ForC ∈ Id0 = Id ∩ Kd0 we have

∫ t

s
CsvR(∆(s, v), dv)−

∫

s<u<v<t
(Csv − Csu)R(du,dv) =

∫

s<u<v<t
d̄CsuR(∆(u, v),dv)

Proof. For s < u < v < twe have

Csv − Csu =

∫ v

u
d̄Csw (5.63)

We check this by distinguishing the three cases for the last type of node in C and using standard additivity
properties. For the case in which the last endpoint ofC ends in an arc, using that this is not intersected by any
other arcs (sinceC ∈ Id)

( A B )sv − ( A B )su

=

∫

s<r<w<v
AsrBrwR(dr, dw)−

∫

s<r<w<u
AsrBrwR(dr, dw)

=

∫

u<w<v

∫

s<r<w
AsrBrwR(dr, dw)
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=

∫ v

u
d̄( A B )sw

The case in whichC ends in a node that is the endpoint of an edge is handled similarly:

(D )sv − (D )su

=

∫ v

s

∫ w

s
d̄DsrR(∆(r, w),dw)−

∫ u

s

∫ w

s
d̄DsrR(∆(r, w), dw)

=

∫

u<w<v

∫

s<r<w
d̄DsrR(∆(r, w), dw)

=

∫ v

u
d̄(D )sw

The case in which the last node is single follows trivially from additivity of the Skorokhod integral. Using (5.635.63),
we have
∫ t

s
CsvR(∆(s, v), dv)−

∫

s<u<v<t
(Csv − Csu)R(du,dv)

=
1

2

∫ t

s
CsvR(dv)−

∫ t

s
CsvR(s, dv)−

∫

s<u<w<v<t
d̄CswR(du,dv)

=
1

2

∫ t

s
CsvR(dv)−

∫ t

s
CsvR(s, dv)−

∫

s<w<v<t
d̄CswR(∆(s, w),dv)

=
1

2

∫ t

s
CsvR(dv)−

∫ t

s
CsvR(s, dv) +

∫

s<w<v<t
d̄CswR(s, dv)−

∫

s<w<v<t
d̄CswR(w,dv)

=
1

2

∫ t

s
CsvR(dv)−

∫

s<w<v<t
d̄CswR(w,dv)

concluding the proof. �

We are now ready to prove the main theorem of this section.

Theorem 5.16 (Closed-form representation of the signature).

Xγ1,...,γn
st =

∑
C∈Id0 (γ1,...,γn)

Cst (5.64)

Proof. For the �rst statement we proceed by induction on n. For n = 0, 1 the statement is obvious (Id0 (γ)

is the singleton containing the diagram with a single node labelled γ). Assume the statement holds up to level
n− 1. By Theorem 5.10Theorem 5.10, the inductive hypothesis and Lemma 5.15Lemma 5.15 we have

Xγ1,...,γn
st

=
∑

C∈Id0 (γ1,...,γn−1)

∫ t

s
CsvδXγn

v

+
∑

l=1,...,n−2
A∈Id0 (γ1,...,γl−1)

B∈Id0 (γl+1,...,γn−1)

∫

s<u<v<t
AsuBuvR

γl,γn(du,dv)
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+
∑

D∈Id0 (γ1,...,γn−2)

[
∫ t

s
DsvR

γn−1γn(∆(s, v), dv)−
∫

s<u<v<t
(Dsv −Dsu)Rγn−1γn(du,dv)

]

=
∑

C∈Id0 (γ1,...,γn−1)

(C
γn

)st +
∑

l=1,...,n−2
A∈Id0 (γ1,...,γl−1)

B∈Id0 (γl+1,...,γn−1)

(A
γl
B
γn

)st +
∑

D∈Id0 (γ1,...,γn−2)

(D
γn−1γn

)st

=
∑

C∈Id0 (γ1,...,γn)

Cst

concluding the proof. �

Example 5.17 (Representation formulae for n = 3). At level 3 the representation formula (5.645.64) reads

Xαβγ
st = (

α β γ
)st + (

αβ γ
)st + (

αβγ
)st + (

α β γ
)st

=

∫

s<u<v<w<t
δXα

u δXβ
v δXγ

w +

∫ t

s

(
Rαβ(s) +Rαβ(u)

2
−Rαβ(s, u)

)
δXγ

u

+

∫

s<u<v<t
∂2R

βγ(∆(u, v), du)δXα
sudv +

∫

s<u<v<t
Xβ
uvR

αγ(du,dv)

(5.65)

where we have used the expression of
∫ v
s R(∆(s, u), du) as the di�erence between the average of the variances

and the covariance (5.615.61).
In Remark 5.11Remark 5.11 it was mentioned that a di�erent method was available for obtaining a recursion that, simi-

larly as done above, can be resolved to yield a closed-form expression of the signature. The symbols involved in
this expression are a little easier to describe than the ones used, since we may simply take the modi�ed de�nition
(5.605.60), disallow arcs between consecutive nodes to ensure convergence, and introduce the additional symbol

( C
αβ

)st :=

∫ t

s
CsvR

αβ(∆(s, v),dv)

that replaces edges. The resulting representation formula is analogous to (5.165.16) and easier to show (it does not
require Lemma 5.15Lemma 5.15). For n = 3 it reads

Xαβγ
st = (

α β γ
)st + (

αβ γ
)st + (

αβγ
)st + (

α β γ
)st − (

β α γ
)st

=

∫

s<u<v<w<t
δXα

u δXβ
v δXγ

w +

∫ t

s

(
Rαβ(s) +Rαβ(u)

2
−Rαβ(s, u)

)
δXγ

u

+

∫ t

s
Xα
svR

βγ(s, dv) +

∫

s<u<v<t
Xβ
uvR

αγ(du,dv)−
∫

s<u<v<t
Xα
uvR

βγ(du,dv)

(which can also be checked directly to be equal to (5.655.65)). The problem with this alternative formula is that it
becomes quite complex for higher n, and while it is still possible to write it in closed form, we could not �nd a
satisfactory way to collect all the terms generated when passing to the expectation in it. For this reason, we will
continue to use Theorem 5.16Theorem 5.16, which is easier to work with for this purpose.

Example 5.18 (Gaussian semimartingales). If X is a Gaussian semimartingale, we can alternatively use
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Example 5.12Example 5.12 to obtain an expression for the signature in terms of iterated Itô integrals instead of Skorokhod
integrals (notation as in Example 5.6Example 5.6):

Xγ1,...,γn
st =

∑
c1...cm=γ1...γn

∫

∆m[s,t]
dZc1u1 · · · dZ

cm
um (5.66)

where we de�ne
Cd :=

(
{1, . . . , d} × {{0}, {1}}

)
t {1, . . . , d}2 (5.67)

and

for c ∈ Cd Zct :=


Mγ
t c = (γ, {0})

Aγt c = (γ, {1})
1
2R

αβ
M (t) c = (α, β)

(5.68)

and the identity c1 . . . cm = γ1 . . . γn means we are summing over all distinct words c1 . . . cm over the al-
phabet Cd with the property that, stripping each ci of its second factor if it belongs to the �rst term in the
disjoint union of (5.675.67), or juxtaposing its two entries in {1, . . . , d} if it belongs to the second, we obtain the
word γ1, . . . , γn. For example, c1 . . . cm = αβγ means we are considering the following 12 possibilities for
c1 . . . cm:

c1 = (α, i), c2 = (β, j), c3 = (γ, k) with i, j, k ∈ {0, 1};

c1 = (α, i), c2 = βγ with i ∈ {0, 1};

c1 = αβ, c2 = (γ, j) with j ∈ {0, 1}

When X is additionally a martingale (A = 0) we obtain a formula analogous to that obtained for Brownian
motion in [Bau04Bau04, Proposition 2.4] which is the same formula obtained by using Theorem 5.16Theorem 5.16, essentially
because Skorokhod and Itô integration agree andRM = R.

Example 5.19 (The Brownian bridge). We illustrate the di�erence between the two representation formulae
Theorem 5.16Theorem 5.16 and Example 5.18Example 5.18 with an example of a centred Gaussian semimartingale that is not a martingale:
letX be a d-dimensional Brownian bridge returning to the origin at time 1. This is a centred Gaussian process
with covariance function

Rαβ(s, t) = s(1− t)δαβ, 0 ≤ s ≤ t ≤ 1 (5.69)

The general formula for Gaussian processes should be therefore read by substituting in (5.645.64)

Rαβ(ds, dt) = −δαβdsdt, Rαβ(∆(s, t),dt) =
1 + 2(s− t)

2
dt (5.70)

Note that these are polynomials, and not di�cult to integrate explicitly.
As for the formula for Gaussian semimartingales, we use the well-known expression forX as an Itô process:

Xt :=

Wt +

∫ t

0

∫ s

0

dWu

u− 1
ds t ∈ [0, 1)

0 t = 1

(5.71)
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We can therefore substitute

dMγ
t = dW γ

t , dAγt =

∫ t

0

dW γ
u

u− 1
dt, RαβM (dt) = δαβdt (5.72)

in (5.665.66).

5.5 Passing to the expectation

The main ingredient that will be used in the computation of expectations is a formula that generalises the Itô-
Skorokhod isometry, to the case of n factors. To do this, we introduce some notation that will be used in the
proof of this result. We will use placeholders •, ?, � . . . to denote (time, index) pairs, that will be integrated
away when passing to the scalar product onH. The precise position of the placeholders will determine which
variables are paired. For example, given Rd-valued processesH,K , to denote

∫

[0,T ]4
E[Dγ;uHα;sDδ;vKβ;t]R

αβ(ds, dt)Rγδ(du,dv)

we will use the compact notation
〈E[D•H?D•K?]〉•,?

The 2-factor Itô-Skorokhod isometry [CL19CL19, Theorem 4.8] can then be written

E[δHδK] = 〈E[H•K•]〉• + 〈E[D•H?D?K•]〉•,? (5.73)

Note the di�erent pairing of the placeholders in the second term above and in the previous example. Sometimes,
when we want to use a single symbol to denote multiple placeholders, we will use tuples of placeholders, denoted
by underlying a symbol: for instance, when considering the order-m Malliavin derivative we may write D? to
mean D?1...?m . In this case we will not directly specify the order of the derivative, which is determined by
the number of placeholders, in this case m. The next proposition expresses the expectation of a product of
Skorokhod integrals as a multiple integral of the Malliavin derivatives of the integrands.

Assumption 6 . Here and below we pass to the expectation inside 2D Young integrals. That this is possible is
non-trivial, and must be shown. In fact, even the referenced case of two factors (5.735.73) appears with the expecta-
tion outside the integral. While this is not essential for the proposition below (which could even be stated for
abstract Wiener spaces), it will be necessary when the statement is applied. One option is to �rst establish that
the 2D Young integrals are not only an a.s. limit, but a limit inL2 as well (cf. [CL19CL19, Proposition 4.10, Theorem
6.1], [CL20CL20, Theorem 5.1]). Another is to use that all integrals avoid the diagonal and therefore are Lebesgue
(5.95.9), so that one can try and apply Fubini’s theorem.

Furthermore, the precise integrability hypotheses in the proposition below, which are similar to those of
the 2-factor case [Nua06Nua06, Proposition 1.3.1], are likely required to be made more precise, especially in view of
the above commutation requirement.
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Proposition 5.20 (n-factor Itô-Skorokhod isometry). GivenH1, . . . ,Hn ∈ Dn,2(H) it holds that

E[δH1 · · · δHn] =
∑
•_?
•_•

〈E[D?1H
1
•1 · · ·D?nH

n
•n ] 〉•,? (5.74)

where ?k is an unordered tuple ?k1 . . . ?kmk (of variable length mk) for k = 1, . . . , n, •1, . . . , •n are single
placeholders, and we are summing over all possible combinations of pairings between placeholders (without taking
the order of the ?k ’s into account) s.t.

– All placeholders are paired;

– Each pairing (denoted_) is of one of the following two types: ?il _ •j with i 6= j or •h _ •k withh 6= k.

A few clarifying remarks are in order before beginning the proof. Note that there is a �xed number of •
placeholders,n, while the number of ? placeholders (or more precisely the length of each ?k) varies across terms
in the sum. This number is bounded by n, since the ?’s may only be paired with the •’s, and not with other
?’s (in particular, the sum is �nite). A ?k tuple may have length zero, in which case the corresponding term is
just the undi�erentiated Hk

•k . For n = 2 this identity reduces to (5.735.73), while for higher n it rapidly increases
in complexity (see Example 5.21Example 5.21 below for the case of 3 factors, which involves 14 summands).

Proof of Proposition 5.20Proposition 5.20. We prove the following slight generalisation in whichZ ∈ Dn,2

E[ZδH1 · · · δHn] =
∑
•_?
•_•

〈E[D?0ZD?1H
1
•1 · · ·D?nH

n
•n ] 〉•,? (5.75)

(the sum is de�ned similarly, with the inclusion of ?0 tuple) by induction on n; taking Z = 1 then yields the
statement of the lemma. Forn = 0 the statement is trivial. For the inductive step, using the adjoint property of
the Skorokhod integral (5.155.15), Heisenberg’s commutativity relation (5.185.18) and the inductive hypothesis applied
with di�erent choices of theZ term, we have

E[ZδH1 · · · δHn+1]

= 〈E[D�Z · δH1 · · · δHn ·Hn+1
� ] 〉� +

n∑
k=1

〈E[ZδH1 · · · δHk−1 ·D�δHk · δHk+1 · · · δHn ·Hn+1
� ] 〉�

= 〈E[(D�ZH
n+1
� )δH1 · · · δHn] 〉�

+

n∑
k=1

〈E[(ZHn+1
� )δH1 · · · δHk−1 · δD�Hk · δHk+1 · · · δHn] 〉�

+

n∑
k=1

〈E[(ZHk
�H

n+1
� )δH1 · · · δ̂Hk · · · δHn] 〉�

=
∑
•_?
•_•

〈E[D?0(D�ZH
n+1
� )D?1H

1
•1 · · ·D?nH

n
•n ] 〉�,•,?

+
∑

k=1,...,n
•_?
•_•

〈E[D?0(ZHn+1
� )D?1H

1
•1 · · ·D?k−1Hk−1

•k−1
·D?k,�H

k
•k ·D?k+1Hk+1

•k+1
· · ·D?nH

n
•n ] 〉�,•,?
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+
∑

k=1,...,n
•_?
•_•

〈E[D?0(ZHk
�H

n+1
� )D?1H

1
•1 · · · D̂?kH

k
•k · · ·D?nH

n
•n ] 〉�,•,?

=
∑
•_?
•_•

〈E[D?0,�Z ·D?n+1Hn+1
� ·D?1H

1
•1 · · ·D?nH

n
•n ] 〉�,•,?

+
∑

k=1,...,n
•_?
•_•

〈E[D?0Z ·D?n+1Hn+1
� ·D?1H

1
•1 · · ·D?k−1Hk−1

•k−1
·D?k,�H

k
•k ·D?k+1Hk+1

•k+1
· · ·D?nH

n
•n ] 〉�,•,?

+
∑

k=1,...,n
•_?
•_•

〈E[D?0Z ·D?kH
k
� ·D?n+1Hn+1

� ·H1
•1 · · · D̂?kH

k
•k · · ·D?nH

n
•n ] 〉�,•,?

where in the last identity we have applied the iterated Leibniz rule for Malliavin derivatives (a consequence of
the ordinary Leibniz rule (5.135.13))

D?0(Y1 · · ·Yn) =
∑

(?1,...,?n)∈Sh−1(?0)

D?1Y1 · · ·D?nYn

to the terms D?0(D�ZH
n+1
� ), D?0(ZHn+1

� ) and D?0(ZHk
�H

n+1
� ), relying on the initial sum of each line

to regroup terms, with the sum now extending to pairings that include placeholders in ?n+1 (see Chapter 3Chapter 3
for the de�nition of unshu�es). Now the proof is concluded by a simple counting argument, which involves
incorporating the � in the •’s and ?’s. �

We will now transition back to the symbolic notation used in the previous section, consisting of nodes,
arcs, edges, etc., to which we add two new elements. Underlining corresponds to taking the expectation, and
when there are multiple terms that are underlined in the same expression, this means we are taking the expec-
tation of their product. Overlining corresponds to taking Malliavin derivatives, with higher-order derivatives
represented by multiple (commuting) overlines. For example, (5.735.73) becomes

H K = H K + H K (5.76)

Note how we have not labelled the two nodes: this re�ects the fact that H and K are Rd-valued. Somewhat
more involved is the case of 3 factors:

Example 5.21 (3-factor Itô-Skorokhod isometry.). ForH,K,LRd-valued processes, Proposition 5.20Proposition 5.20 reads

H K L

= H K L + H K L + H K L + H K L

+ H K L + H K L + H K L + H K L

+ H K L + H K L + H K L + H K L

+ H K L + H K L
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The LHS represents the expression E[δHδKδL], while the terms on the RHS represent double integrals of
the expectation of products of order 0,1, and 2 Malliavin derivatives ofH,K,L, with the pairings given by the
arcs. For example, the second term on the third line (counting the LHS as the �rst line) represents the expres-
sion 〈E[(D•H?)(D?�K•)L�]〉•,?,� in placeholder notation. An arc with endpoint on an overline represents
a double integral where one (time, index) integration pair is the one belonging to the Malliavin derivative
represented by the overline.

Since the formula of Proposition 5.20Proposition 5.20 generates expressions involving Malliavin derivatives, and since these
are, in any case, present in Stroock’s formula for the Wiener chaos expansion, we need to establish a formula for
the Malliavin derivative of the random variables represented by elements ofKd. ForC ∈ Kd, let (C)k denote
the set of diagrams inKd obtained by circling k single nodes that are single inC ; this means (C)k ⊆ Kdm+k.

Proposition 5.22 (Malliavin derivatives of diagrams). ForC ∈ Kd we have

1∆k[s,t]D
kCst =

∑
D∈(C)k

Dst (5.77)

In words, the k-the Malliavin derivative taken on the k-simplex is given by summing over all possible ways
of circling k single nodes ofC . Each resulting term will then be a function of (u1, . . . , uk) ∈ ∆k[s, t], respec-
tively matched with k indices.

Assumption 7 . In the next proof and below, we use that it is possible to pass to the Malliavin derivative inside
deterministic integrals. That this is possible is non-trivial, and must be shown. Our plan is to show that both
the (2D-)Riemann-Stieljes approximations of the integrals and of their derivatives converge in L2, and that
indeed the latter (which are elementary to compute) converge to the integral of the Malliavin derivative. The
statement will then follow from closedness of D.

Proof of Proposition 5.22Proposition 5.22. To prove the casek = 1 we proceed by induction on the number of nodes ofC . Once
again, we omit the labelling, which is irrelevant to this task. The case C = ∅ is trivial. For the inductive step
we distinguish cases with regards to the last node inC: passing to the Malliavin derivative inside deterministic
integrals

C . . . = C . . .

where there arem edges. More precisely, the diagram on the RHS, evaluated at st, stands for

∫

s<v1<...<vm<t
D

(
∫ v1

s
∂2R(∆(u, v1), v1)d̄Csu

)
∂2R(∆(v1, v2), v2)dv1 · · · ∂2R(∆(vm−1, vm), vm)dvm−1dvm

ifC ends in an uncircled node,
∫

s<·<v1<...<vm<t
D(Bs ·)∂2R(∆(u, v1), v1)

∂2R(∆(v1, v2), v2)dv1 · · · ∂2R(∆(vm−1, vm), vm)dvm−1dvm

ifC = B (with · standing for the free time variable corresponding to the circled node), and 0 ifC = ∅. By
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the Leibniz rule for Malliavin derivatives (5.135.13) we have

A B = A B + A B (5.78)

where, as before, the dashed arc means we are allowing for arcs between nodes ofA and nodes ofB. The case
of the terminal node being circled is similar:

C = C (5.79)

For the case in which the terminal node is single, Heisenberg’s commutativity relation (5.185.18) reads

C = C + C (5.80)

In (5.785.78), (5.795.79) and (5.805.80) we must allow respectivelyB,C andC to be multiplied by a function f(v), where
v is the integration/free variable corresponding to the terminal node: this is because, in the induction, f(v)

must be be set to ∂2R(∆(v, w), w) for somew > v. For example, the last case reads

Dr

∫ t

s
Csvf(v)δXv = Csrf(r) +

∫ t

s
DrCsvf(v)δXv

Using these facts and arguing as in the proof of Theorem 5.16Theorem 5.16 we complete the inductive step and obtain the
formula for k = 1.

We now prove the general case by induction on k:

Dk+1Cst = [uk < uk+1 < t]D(1∆k[s,t]D
kCst)

= [uk < uk+1 < t]D
∑

D∈(C)k

Dst

= [uk < uk+1 < t]
∑

D∈(C)k
E∈(D)1

Est

where the square brackets denote a binary condition, uk and uk+1 are the last two arguments of the indicator
function 1∆k+1[s,t], and in the last identity we have used the base case once again. The conclusion now fol-
lows from the fact that the condition [uk < uk+1 < t] results in us only counting terms corresponding to
E ∈ (D)1 where the newly circled node comes after the k that become circled inD ∈ (C)k. �

We now ask the question of what taking the expectation of a random variable Cst, with C ∈ Kd, corre-
sponds to in terms of symbolic operations on the diagramC . This will involve adding arcs, in a precise manner,
between single nodes inC until there are no single nodes left. Here other examples below we continue to omit
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the labelling. For instance

E( )st = E
∫

s<u2<u4<t
Xsu2Xu2u4R(du2, du4)

=

∫

s<u2<u4<t
E[Xsu2Xu2u4 ]R(du2,du4)

=

∫

s<u2<u4<t

∫

s<u1<u2
u2<u3<u4

R(du1, du3)R(du2,du4)

= ( )st

(5.81)

In the following case, instead, the two single nodes do not get linked:

E( )st = E
∫ t

s
( )suδXu = 0

For larger diagrams the linking procedure becomes more complex; in order to describe this we will require
some more notation. We will be considering �nite formal sums of diagrams C =

∑p
k=1C

k, and we set
Cst :=

∑p
k=1C

k
st and in the case of an empty sum p = 0 we set Cst := 0 (not to be confused with the

evaluation of the empty diagram, ∅st = 1). We will use the notation Kd to denote the set of diagrams in
Kd where some nodes are underlined; the underline may be broken in several places, in which case we will call
the collections of consecutive nodes that are all underlined the diagram’s underlined factors (or simply factors).
These represent products of random terms of whose product we are taking the expectation, and will always be
placed in such a way that, when applying the de�nition (5.595.59) of the random variables associated to diagrams
in Kd, it will happen at some step of the recursion that the random variable will be expressed as a multiple
deterministic integral of a product of underlined factors (with some arcs deleted and some nodes circled, as
prescribed by item 2item 2): this means we are taking the expectation of their product. For example

( )st =

∫

s<u4<u5<u11<u12<u13<u14<t
E[( )su4( )u5u11 ]

R(du4,du11)R(du5,du14)R(∆(u11, u12),du12)R(du2, du8)

In particular, it will always be the case that all single nodes of an element ofKd will belong to some underlined
factor.

The procedure of taking the expectation of an element in Id is described by the following recursive algo-
rithm which we call link, whose crucial step is justi�ed by the n-factor Itô-Skorokhod isometry. Its initial
input will always be an element of C ∈ Id which is underlined from start to �nish, in which case we will
write link(C) to denote its output; it is necessary, however, to allow more general inputs inKd which will be
considered in the algorithm’s recursive calls. We introduce the subset

J d := {C ∈ Kd | no node ofC is single} (5.82)

These diagrams represent deterministic quantities and will constitute the outputs of link; notations regarding
the subscript and labelling carry over. More precisely, outputs of link will be formal sums of elements ofJ d,
and we will use the symbol∈ to mean that a diagram is a summand in one of these sums.
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Algorithm 1: link
input:C ∈ Kd.
while not all of the underlined factors ofC end with a single node do

for F an underlined factor ofC do
if the terminal node b of F is circled or the endpoint of an edge then

shorten the underline so that b is no longer underlined;
else if b is the endpoint of an arc then

shorten the underline so that b is no longer underlined, and if the other endpoint of the
arc was above the same underline, split it so that a is no longer underlined;

end
end

end
if C ∈ J d then

returnC .
end
Consider all possible combinations of additional arcs with the following two properties: the

rightmost node of each factor is linked to a single node belonging to a di�erent factor, and these are
the only new arcs introduced. Adding all such combinations of arcs yields a sum

∑
k Ck with

Ck ∈ Kd;
return

∑
k link(Ck).

We illustrate link’s mechanism of action and elaborate on some of the steps in the following

Example 5.23 (link). We begin with a fully underlined diagram and walk through all the steps of the algorithm
link, colouring light blue the arcs that are added in the process. For the purposes of conciseness, we “run the
code in parallel” on all diagrams generated during execution. Note that each description refers to the step
illustrated above it.

 

 

 

Up until here we have brought the underline inside arcs, edges and circled nodes; at this point we exit the while
clause, as both underlined factors now end with a single node.

 +

+ +
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We have executed the last section of the algorithm, corresponding to applying the Itô-Skorokhod isometry for
two factors (5.765.76).

 +

+ +

Now in the second iteration of the algorithm, we have once again shortened the underlines of the factors.

 +

Here we have again linked nodes: this means deleting the last two diagrams in the previous step, for which there
are no valid combinations of links, as there is only one factor (this can be viewed as the Itô-Skorokhod isometry
for one factor reducing to the zero mean property of δ).

 +

The �nal output. For the �rst diagram (which lagged one step behind the second) we have deleted underlines,
linked nodes, and deleted underlines again. For the second, which already had no single nodes left, we have
simply deleted residual underlines. The algorithm now exits at the if C ∈ J d clause.

Proposition 5.24. ECst = link(C)st forC ∈ Id.

Proof. The idea is illustrated by the above diagram. Deleting underlines corresponds to passing to the expecta-
tion inside the integrals againstR(du,dv) andR(∆(u, v),dv), which uses Assumption 6Assumption 6. The node linking
procedure is justi�ed by a combination of the n-factor Itô-Skorokhod isometry and the rule for Malliavin-
di�erentiating random variables associated to diagrams. (In the description of the algorithm, these two are
applied together: the graphical description of the intermediate step would involve drawing combinations of
overlines above the underlined factors.) Indeed, linking the rightmost node of a factor to the rightmost node
of another factor corresponds to the • _ •-type pairing in the statement of Proposition 5.20Proposition 5.20. Linking the
rightmost node of a factor to a single node in another factor that is not its rightmost node corresponds to the
•_ ?-type pairing, and conversely every type of pairing of this type is realised, by Proposition 5.22Proposition 5.22. �

For the proof of the main result we will need to count the all the outputs of link as the input varies in
Id. For this we need some extra notation and terminology. We will say that E is a subdiagram of D ∈ Kd,
written E ≤ D, if it is comprised of an ordered set of nodes that are consecutive in D, along with additional
data (labels, circles, arcs and edges) attached to those nodes: the only condition for a sequence of consecutive
nodes of D to de�ne a subdiagram is for there to be no arcs between such nodes and nodes elsewhere in D.
We consider the position of E ≤ D in D to be part of the de�nition of the subdiagram (so that diagrams
occurring at di�erent positions of D always constitute di�erent subdiagrams, even if they happen to be
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identical). When D ends with a node that is the endpoint of an arc, with endpoints a and b, and that is not
intersected by other arcs, we will call the subdiagram ofD whose nodes lie to the left of a the left subdiagram
of D, and the subdiagram whose nodes lie between a and b the right subdiagram of D. If D ends with any
other type of node c, we will call the subdiagram ofD formed by all nodes to the left of c the left subdiagram
of D (in these cases there is no right subdiagram). We will show that there is a recursive algorithm, which
we call unlink, that is the inverse of link (viewed as a multivalued function). unlink takes as input a
diagram inKd together with a collection of its subdiagrams and outputs a single element of Id; we will abbre-
viateunlink(D) := unlink(D, {D}) whenD ∈ J d, which will always be the case for the outermost input.

Algorithm 2: unlink
input: (D, E) withD ∈ Kd and E ⊆ {E | E ≤ D}.
if D ∈ Id then

returnD;
end
forE ∈ E that contain arc intersections do
E ← E \ {E};
if E ends with a node that is the endpoint of an arc λ then

D ← D \ {all arcs that intersect λ};
E ← E ∪ {the left and right subdiagrams ofE};

else
E ← E ∪ {the left subdiagram ofE};

end
return unlink(D, E).

We illustrate the procedure with an example.

Example 5.25. We colour orange the arc λ (a local variable) of the above algorithm. The braces indicate the
elements currently in E and that contain arc intersections (and that will therefore still be considered by the
algorithm). As before, descriptions refer to the diagram above.

We begin with an element ofD ∈ J d and compute unlink(D), which means E is now the singleton {D}.

 

At this point we are at the if inside the for: the clause is satis�ed, since the last node is the endpoint of an arc
λ. We have removed the brace, since E is now empty, its only element having been removed.
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Here we have deleted the two arcs that crossedλ (which we have re-coloured black). At the end of this iteration
E is the set comprised of the left and right subdiagrams of the diagram above.

 

The left subdiagram is no longer considered by the algorithm, since it contains no intersections. The right
subdiagram still does, so after 3 iterations which consist of skipping past nodes 13-11 from right to left (not
illustrated), we land on the marked subdiagram, which ends in a node that is the right endpoint of an arc λ.

 

We delete the only arc that crosses the orange arc (now again black), and since there are no more intersections
the algorithm returns the diagram above.

Let D ∈ J d denote the diagram with which we started, E = unlink(D) ∈ Id the output above, C ∈ Id

the input considered in Example 5.23Example 5.23 (without the underline) and link(C) = A + B its two outputs. Note
how, although D can be obtained from C by adding arcs, it coincides with neither A nor B, and indeed also
E 6= C . The reader may check that applying link toE results in a sum of two diagrams, one of which isD.
All of this makes sense in light of the following

Lemma 5.26. For D ∈ J d unlink(D) is the unique diagram C ∈ Id s.t. D ∈ link(C), and link(C)

contains precisely one copy ofD.

Proof. The fact that link(C) contains at most one copy of D is evident from the fact that link always
outputs a sum whose terms are distinct elements ofJ d (since, in the notation of Algorithm 1Algorithm 1, at each iteration
any two diagrams Ci and Cj on which the algorithm is recursively called will di�er in that there must exist at
least one node — the rightmost of a factor — which is linked to a di�erent node in each).

LetD ∈ J d. There are two things to show: (i)C ∈ Id, D ∈ link(C) ⇒ C = unlink(D), and (ii)
D ∈ link(unlink(D)).

We begin with the former; let D,C be as in (i). We will say that an arc µ left-intersects an arc ν if the two
arcs intersect, and the left endpoint of µ lies to the left of the left endpoint of ν (and therefore the same holds
for the right endpoints). Every arc introduced by link, applied to C ∈ Id, must left-intersect an arc that
was originally in C: this is because such an arc must have endpoints that, at some point in during execution,
belonged to di�erent underlined factors, which means (since link’s input has the single underlined factor
C) that between them there must be a node that is the left endpoint of an arc that was originally in C (since
left endpoints of arcs originally in C are the only places at which an underline can be split, and new factors
created). We now show, inductively, that at each iteration unlink removes arcs that do not belong toC . The
arcs removed in the �rst iteration cannot belong toC , since they intersect the rightmost arc inD, which must
be in C (since it cannot have been added by link). Now, referring to the notation in Algorithm 2Algorithm 2, at each
iteration the arc λ does not left-intersect any arc in the current state of D (since this would violate E ≤ D):
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this means that, if λ left-intersects an arc ν in the original input D, ν must have already been removed by
unlink, and therefore, inductively, ν is not present inC . This means that λ does not left-intersect any arc in
C , which implies that λmust be present inC , which in turn implies that all arcs µi that intersect λ (which are
about to be deleted) do not belong to C . The arcs in this argument are illustrated in the following picture, in
which the brace denotes the factor of which λ is the leading arc

µi
λ

ν

This proves the claim, since when the algorithm terminates all arcs remaining must belong toC , since there are
no intersections left.

We now prove existence; letD ∈ J d. We say that, givenA,B ∈ Kd that can be both obtained by adding
arcs to C ∈ Id, B is a C-refinement of A if B can be obtained from A by adding arcs that left-intersect arcs
that were present in C . We claim that link admits the following non-recursive formulation: when called on
C ∈ Id, it outputs the sum of all diagrams in J d that are C-re�nements of C . To this end, we show that,
if D ∈ J d is a C-re�nement of A ∈ Kd, there exists one diagram in the sum

∑
k Ck outputted by a single

iteration of link(A) of which D is still a C-re�nement. Indeed, proceeding inductively, the only reason this
could not be the case is that the rightmost node in one ofA’s factors is linked, inD, to a node inside the same
factor. But this cannot be the case, since if any such arc µ left-intersects an arc ν in the current state of D, ν
cannot be present inC and must have been added after: this is because it can never be the case, throughout the
execution of link(C), that an underlined factor contains the left endpoint, but not the right endpoint, of an
arc that is inC .

µ ν

Iterating, this implies that, if we begin with a C ∈ Id of which D is a C-re�nement, link(C) will ter-
minate with a sum of diagrams, one of which is D. But unlink(D) is obtained from D by removing arcs
that left-intersect arcs which are not considered in future iterations, and that will therefore still be present in
unlink(D): this implies unlink(D) is an unlink(D)-re�nement ofD, and the conclusion follows. �

Theorem 5.27 (Wiener chaos expansion of the signature of a Gaussian process).

wmXγ1,...,γn
st =

∑
E∈J dm(γ1,...,γn)

δmEst (5.83)

Proof. By Stroock’s identity (5.245.24), the representation theorem Theorem 5.16Theorem 5.16, and the rule for Malliavin deriva-
tives of diagrams Proposition 5.22Proposition 5.22

wmXγ1,...,γn
st = δm

(
1∆m[0,T ]E[DmXγ1,...,γn

st ]
)

= δm
( ∑
C∈Id0 (γ1,...,γn)

E[1∆m[0,T ]D
mCst]

)
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=
∑

C∈Id0 (γ1,...,γn)
D∈(C)m

δmEDst

=
∑

D∈Idm(γ1,...,γn)

δmEDst

=
∑

D∈Idm(γ1,...,γn)

δmlink(D)st

and for each E ∈ J dm(γ1, . . . , γn) the term Est appears exactly once in the sum, precisely in the summand
corresponding toD = unlink(E), by Lemma 5.26Lemma 5.26. �

Corollary 5.28 (Expected signature of a Gaussian process). In particular

EXγ1,...,γn
st =

∑
E∈J d0 (γ1,...,γn)

Est (5.84)

Remark 5.29. As a consequence we have con�rmation of the well-known fact that wmX
(n)
st = 0 if m > n

(since in this case there are no diagrams of degree n in J dm), and that the same holds if n 6≡ m (mod 2) (as
there must be an even number of nodes to link for there to be an output). In particular EX(n) = 0 for odd
n, as can already be inferred by arguing that X and the signature of the Gaussian rough path lift of −X are
equal in law.

Example 5.30 (Expected signature of 1/2 < H-fBm, cf. [BC07BC07]). The expected signature of fractional Brow-
nian motion with Hurst parameter H > 1/2 has already been calculated in [BC07BC07, Theorem 31]. That
Corollary 5.28Corollary 5.28 reduces to this result can be seen by Remark 5.13Remark 5.13 and the following fact. Letting n = 2k, if
A := {{i1, j1}, . . . , {ik, jk}} with the property that

⋃
A = {1, . . . , n} there exist precisely k!2k permuta-

tions σ ∈ Sn with the property thatA = {{σ(1), σ(2)}, . . . , {σ(n− 1), σ(n)}} (k! to order the pairs and
2k to choose an ordering within each pair).

It is interesting to see why their proof, which consists of passing to the limit on a linear interpolation ofX ,
does not work in the 1/4 < H < 1/2 case. For the reader’s convenience we reproduce the proof below, for
simplicity in the case of the signature at orde n = 2, which already captures the essence of the problem (the
case of higher n is treated using the Wick-Isserlis theorem on the higher moments of multivariate Gaussian
distributions). Also, it is not limiting to con�ne ourselves to the scalar case d = 1, and time horizon T = 1.
Let mX be the linear interpolation ofX on a partition πm of step size 2−m. Then since mX →X inL2

EX(2)
01 = lim

m→∞
E
∫

0<u<v<1

mẊu
mẊvdudv

= lim
m→∞

∫

0<u<v<1
E[mẊu

mẊv]dudv

This is still true for 1/4 < H ≤ 1/2. We now split the integral in o�- and on- (& “almost on”-) diagonal
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contributions:

= lim
m→∞

∑
[a,b],[c,d]∈πm

b<c

∫

[a,b]×[c,d]
E[mẊu

mẊv]dudv

+ lim
m→∞

∑
[a,b],[c,d]∈πm

c=b

∫

[a,b]×[c,d]
E[mẊu

mẊv]dudv

+ lim
m→∞

∑
[a,b]∈πm

∫

∆2[0,1]∩[a,b]2
E[mẊu

mẊv]dudv

(5.85)

Note that the 2D Young/Lebesgue integral
∫

0<u<v<1R(du,dv) =
∫

0<u<v<1 ∂12R(u, v)dudv is equal to
only the sum of the �rst two terms, since the on-diagonal terms do not get evaluated. If the indicator function
had been [u ≤ v], the last term would have been counted twice in the 2D Young integral (corresponding to the
area of squares [a, b]2 instead of triangles ∆2[0, 1] ∩ [a, b]2). Now,

E[mẊu
mẊv] = 22mE[XabXcd] with u ∈ [a, b] ∈ πm, v ∈ [c, d] ∈ πm

For b < cwe can write this as

E[XabXcd] = H(2H − 1)

∫

[a,b]×[c,d]
(v − u)2H−2dudv

and in all cases we have
|E[XabXcd]| ≤

√
E[X2

ab]E[X2
ab] = 2−2Hm

by Cauchy-Schwarz. It is therefore possible to control the last two terms in (5.855.85) by

∑
[a,b],[c,d]∈πm
c∈{a,b}

∫

∆2[0,1]∩([a,b]×[c,d])
E[mẊu

mẊv]dudv

≤
∑

[a,b],[c,d]∈πm
c∈{a,b}

∫

[a,b]×[c,d]
22m−2Hmdudv

=
∑

[a,b],[c,d]∈πm
c∈{a,b}

2−2Hm

≤ 2 · 2m−2Hm

This vanishes in the limit whenH > 1/2, and we conclude

EX(2)
01 = H(2H − 1)

∫

0<u<v<1
(v − u)2H−2dudv

by dominated convergence. This idea extends to the case ofEX(n) for highern. ForH = 1/2 the proof can be
readapted to account for the fact that the o�-diagonal contributions vanish and the on-diagonal ones converge
to [X]01 = 1. For H < 1/2, however this method is fundamentally unsuited to the computation of the

231



double integral, since the on- and o�-diagonal contributions diverge to opposite in�nities. For a determinate
result to emerge one must approximate the triangle with something other than a square mesh, and we see no
easy way of carrying out the calculation when n is arbitrary, since several pairs of linked consecutive nodes
may appear in succession (in our notation corresponding to a sequence of consecutive edges), so that it is not
possible to isolate each

∫

s<u<v<tR(du,dv) integral and substitute in the above calculation. That it is not an
easy task to do directly is con�rmed by the fact that several technical lemmas [BC07BC07, Theorem 34, Lemmas
35-38] are dedicated to the computation of EX(2)

01 and EX(4)
01 , and that these do not result in a formula that

generalises straightforwardly to higher n. Moreover, these arguments appear to be dependent on X being a
fBm, while our method applies to wmX

(n)
st for all n,m ∈ N, 0 ≤ s ≤ t ≤ T and a more general class of

processesX that need not even have stationary increments. We believe these considerations justify our reliance
on the more advanced tools of Malliavin calculus used in this chapter.

Figure 5.1: Here we compare the two behaviours, corresponding to H > 1/2 and H < 1/2, of
∫

0<u<v<1 Ė[mXu
mẊv]dudv with mX the sequence piecewise linear interpolations of X on a partition of

diadic step size. On the left we have chosen H = 2/3, and the sequence of integrals converges to a �nite
improper integral, whereas on the right H = 1/3 (any 1/4 < H < 1/2 would have exhibited the same
behaviour) and the on-diagonal contributions cannot be controlled, as re�ning the partition simply results in
the issue repeating itself, in a self-similar fashion, on each smaller triangle. (The plots are oriented in di�erent
ways and the z-axis is scaled with the cube root function, both for improved visibility.)

Example 5.31 (The Wiener chaos decomposition of X(≤3)). We give the explicit expression for the Wiener
chaos expansion of the signature truncated at level 3. We represent each signature term as a sum of their Wiener
chaos projections in ascending order; in particular the sum of all non-random terms constitutes the expectation
of the LHS.

X∅
st = ∅st = 1, Xγ

st = δ(
γ

)st = δ(1γ(s,t)) = Xγ
st

Xαβ
st =

αβ
+ δ2(

α β
)
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=
Rαβ(s) +Rαβ(t)

2
−Rαβ(s, t) +

∫

s<u<v<t
δXα

u δXβ
v

Xαβγ
st = δ(

αβ γ
)st + δ(

αβγ
)st + δ(

α β γ
)st + δ3(

α β γ
)st

=

∫ t

s

(
Rαβ(s) +Rαβ(u)

2
−Rαβ(s, u)

)
δXγ

u +

∫ t

s

(
Rβγ(u) +Rβγ(t)

2
−Rβγ(u, t)

)
δXα

u

+

∫ t

s
Rαγ

(
s u
u t

)
δXβ

u +

∫

s<u<v<w<t
δXα

u δXβ
v δXγ

w

In particular, notice how the statement that “the Itô and Stratonovich Lévy areas are equal” carries over to the
Skorokhod-rough setting, in the sense that

1

2

(
Xαβ

st −X
βα
st

)
=

1

2

∫

s<u<v<t
δXα

u δXβ
v − δXβ

uδXα
v ∈ W2 (5.86)

by symmetry of the covariance function.

Assumption 8 . Note how the above expressions, in particular the one for Xαβγ
st , make sense even for

1/4 < H ≤ 1/3: for the purposes of a result in the next chapter, we conjecture that it continues to hold
in this case.

Example 5.32 (EX(4)). The expected signature of level 4 is given by

EXαβγδ
st = (

αβγδ
)st + (

αβγ δ
)st + (

α β γ δ
)st

=

∫

s<u<v<t
Rαβ(∆(s, u),du)Rγδ(∆(u, v),dv)

+

∫

s<u<v<w<t
Rβγ(∆(u, v),dv)Rαδ(du,dw)

+

∫

s<u<v<w<z<t
Rαγ(du,dw)Rβδ(dv,dz)

(5.87)

Using a clever transformation, [BC07BC07, Theorem 34] are able to compute EX(2)
01 and EX(4)

01 for 1/4 < H-
fBm. Their formulae are speci�c to the cases n = 2, 4, s = 0, t = 1 and not the same as ours, so it is sensible
to check that the two coincide. This is immediate at level 2, using Example 5.31Example 5.31. We now check this at level 4

using (5.445.44): starting with the �rst integral above, we have
∫

0<u<v<1
R(∆(s, u), du)R(∆(u, v), dv)

= H2
∫

0<u<v<1
u2H−1(v − u)2H−1dudv

= H2
∫ 1

0
u2H−1

[
(v − u)2H−1

2H

]1

u=0

du

=
H2

2

∫ 1

0
u2H−1

[
(v − u)2H

2H

]1

v=u

du

=
H

2

∫ 1

0
u2H−1(1− u)2Hdu
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=
H

4

∫ 1

0
u2H−1(1− u)2H−1du

where the last identity can be veri�ed by showing that the di�erence of the two integrands is odd about the
point u = 1/2, which in turn is seen by observing that

H

4
u2H−1(1− u)2H−1 − H

2
u2H−1(1− u)2H +

H

4
(1− u)2H−1u2H−1 − H

2
(1− u)2H−1u2H

has zero derivative and vanishes at u = 1/2. This shows equality with [BC07BC07, coe�cient of the �rst term of
Γ2
H in Corollary 33]. We proceed with the second integral in Example 5.32Example 5.32:

∫

0<u<v<w<1
R(∆(u, v),dv)R(du,dw)

= H2(2H − 1)

∫

0<u<v<w<1
(w − u)2H−2(v − u)2H−1dudvdw

= H2
∫

0<u<v<1

[
(1− u)2H−1(v − u)2H−1 − (v − u)4H−2

]
dudv

=

(
H

2
− H2

4H − 1

)
∫ 1

0
(1− u)4H−1du

=
2H − 1

8(4H − 1)

For the third integral we have
∫

0<u<v<w<z<1
R(du,dw)R(dv,dz)

= H2(2H − 1)2
∫

0<u<v<w<z<1
(w − u)2H−2(z − v)2H−2dudvdwdz

= H2(2H − 1)

∫

0<u<v<z<1

[
(z − u)2H−1(z − v)2H−2 − (v − u)2H−1(z − v)2H−2

]
dudvdz

=
H(2H − 1)

2

∫

0<v<z<1

[
z2H(z − v)2H−2 − (z − v)4H−2 − v2H(z − v)2H−2

]
dvdz

=
H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H)(z − v)2H−2dvdz − H(2H − 1)

4H − 1

∫ 1

0
(1− v)4H−1dv

=
H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H)(z − v)2H−2dvdz − 2H − 1

4(4H − 1)

=
H

2

∫ 1

0
(1− v2H)(1− v)2H−1dv −H2

∫

0<v<z<1
z2H−1(z − v)2H−1 − 2H − 1

4(4H − 1)

=
H

4(4H − 1)
− H

4

∫ t

0
v2H−1(1− v)2H−1dv

In the integration by parts we have used that limz→v+(z2H − v2H)(z− v)2H−1 = 0 which can be shown by
using that for 1/4 < H < 1/2

0 ≤ (z2H − v2H)(z − v)2H−1 ≤ (z − v)4H−1 z→v+−−−−→ 0
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since z2H − v2H < (z − v)2H for 0 < v < z and H < 1/2. In the last identity we have used a similar
symmetry argument as the one used in the �rst calculation, solved trivial integrals and rearranged terms. Note
how this calculation would have been simpler ifH ≥ 1/2 since it would not have been necessary to integrate
by parts to avoid integrating (z − v)2H−2 (cf. [BC07BC07, Lemma 32]).

It is interesting that showing these identities is non-trivial, which is to be expected given how di�erent
the two methods (Malliavin calculus and integration by substitution) are. Also note that we have only used
H > 1/4 (in evaluating terms like (v−u)4H−1|u=v = 0), notH > 1/3. This shows, using [BC07BC07, Theorem
34] (and scaling of fBm for the case of arbitrary 0 ≤ s ≤ t ≤ T ) that (5.875.87) actually holds for 1/4 < H-fBm.

Remark 5.33 (Expected signature of a Gaussian semimartingale). Our strategy to prove Theorem 5.27Theorem 5.27 relies
on our being able to represent the signature using iterated Skorokhod integration and di�erent types of deter-
ministic integration, with the former satisfying the zero-mean property (and more in general the n-factor Itô-
Skorokhod isometry) and the latter commuting with the expectation operator, as assumed in Assumption 6Assumption 6.
The classical Itô-Stratonovich representation formula of Example 5.18Example 5.18 (of which we use the notation here) does
not separate deterministic and stochastic integration to the same extent, since integration against dA is neither
zero-mean nor deterministic. Though a classical proof speci�c to the Gaussian semimartingale case may be
available, it is not trivial and would rely on the decomposition of X into martingale and bounded variation
part, while our method only relies on the intrinsic Gaussian structure of X . The expected signature of the
Brownian bridge of (5.705.70) can, for instance, be computed using Theorem 5.27Theorem 5.27, the expressions for the di�er-
entials in Example 5.19Example 5.19 (and without the representation (5.715.71)), and the integrals can be computed explicitly as
polynomials in s, t. Therefore, while (5.665.66) may be more natural to work with in the context of semimartin-
gales, we do view it as being suboptimal for the purpose of computing expectations. The exception that proves
the rule is, of course, that of martingales, where the two methods coincide: this exact calculation is done in
[Bau04Bau04, Proposition 1.3] for Brownian motion, which is already representative of the more general case of
Gaussian martingales.

Conclusions and further directions

Once the missing technical details listed in theAssumptions are clari�ed, we will have proven a formula for the
expected signature (and Wiener chaos expansion) of a class of Gaussian processes for which it was not previously
known. In clarifying these aspects, we intend to pay special attention to what happens in the case in which the
Gaussian process is of bounded [3, 4) 3 p-variation, the prime example being (1/4, 1/3] 3 H-fBm. This is
because, as observed in Remark 5.14Remark 5.14, Assumption 8Assumption 8 and Example 5.32Example 5.32, while the integrals in Theorem 5.16Theorem 5.16 may
not converge a.s. the main theorem Theorem 5.27Theorem 5.27 can still be conjectured to hold. A careful reading of [CL20CL20]
is necessary to see whether the conversion formula in the p ∈ [3, 4) can be used as done for that of [CL19CL19], or
whether an entirely new approach is needed.

A task that was not considered in this chapter is the explicit calculation of the expected signature of the
Brownian bridge returning to the starting point. This is possible in principle, since the integrals to compute
are all polynomials, as seen in Example 5.19Example 5.19; the question is whether they can be collected is a nice formula,
similar to Fawcett’s one for the expected signature of Brownian motion.

Finally, we believe that Theorem 5.27Theorem 5.27 could have interesting numerical applications, speci�cally to compute
the mean square error of the Euler approximation of an RDE. This would involve using the isometry property
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of the multiple Wiener integral (5.215.21) and estimating ‖Dst‖Hm for D ∈ Jm, cf. [Pas20Pas20] for similar estimates
pertaining to the signature of 1/2 < H-fBm.

Such bounds could aid in generalising the results of Chapter 1Chapter 1, relating to the “L2/weak-optimality for
small times” of approximations of SDEs with ones intrinsic to submanifolds of Rd, to the case of RDEs driven
by fBm and a drift term given by t or t2H . It might be, however, that for this purpose, the signature terms of
X are not su�cient, and also the signature ofX jointly with the drift term must be considered.
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6
A branched rough path above

1/4 < H-fractional Brownian motion

Project status. This chapter consists of a short project which relies on the background notions and nota-
tion established in Chapter 4Chapter 4 and Chapter 5Chapter 5; it should also be noted that Theorem 6.15Theorem 6.15 relies on the unproven
Assumption 8Assumption 8 of the previous chapter. At the time of writing, I have not uploaded this material to arXiv or
submitted for publication.

Introduction

In this last chapter we will combine the topics of Chapter 5Chapter 5 and Chapter 4Chapter 4 to build a branched rough path
X̂ above d-dimensional fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/4, 1). When
H ∈ (1/4, 1/3] this constitutes an example of a stochastic, multidimensional, non-geometric branched rough
path, which may not be considered as taking values in the tensor algebra. Such an example, a similar one to
which we could not �nd in the literature, arguably provides important support for the theory of branched
rough paths, and opens up the possibility of studying a pathwise, non-geometric, stochastic integration theory
of lower regularity and greater structural complexity than Itô’s.

Our branched rough path X̂ exhibits the following characteristics:

• It is canonically and explicitly de�ned solely in terms of X and its intrinsic properties as a Gaussian
process, using Malliavin calculus.

• It is not geometric, or in general even quasi-geometric.

• At H = 1/2 it coincides with the Itô rough path. Moreover, for (1/3, 1/2) we obtain the rough path
de�ned in [QX18QX18] in the context of arbitrage-free pricing of simple (state-dependent) contingent claims.
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• The rough integral of a one-form coincides with its Skorokhod integral:
∫

f(X)dX̂ =

∫

f(X)δX

and in particular vanishes in mean. This does not hold for more general controlled integrands that are
also Skorokhod integrable, e.g. solutions to X̂-driven RDEs.

• While the proof of regularity is only carried out for the case of fBm, we believe the same construction to
work for many other Gaussian processes of bounded 4 > p-variation. This can be seen in the particular
case of the Brownian bridge returning to the origin, for which X̂ does not coincide with the Itô rough
path.

• In the scalar case d = 1, X̂ is quasi-geometric but not geometric, and its change of variable formula is
analogous to that of Cheridito-Nualart [CN05CN05].

• X̂ is adapted to the �ltration F generated by X , i.e. X̂st is Ft-measurable, and when H > 1/3

it is also the case that X̂st is measurable w.r.t. the sigma-algebra generated by increments
Fst := σ({Xsu | u ∈ [s, t]}). For H ∈ (1/4, 1/3] the latter is no longer true, as one of the terms
contains a path-dependency. However, it is still true that for a one-form f the integral

∫ t
s f(X)dX̂ is

measurable w.r.t. the sigma-algebra generated by the process between times s and t

Fs,t := σ({Xu | u ∈ [s, t]}) (6.1)

Since integrands that are not one-forms ofX , e.g. RDE solutions, are typically path-dependent, this can
be interpreted as meaning that rough integration against X̂ does not introduce additional path depen-
dency.

It is also worth mentioning that, even though Malliavin calculus can be carried out for rougher processes
than the ones we consider, e.g. (1, 1/4] 3 H-fBm, the method described in this chapter cannot work for these.
This is because their sample paths almost surely do not lie in the domain of the divergence operator [Nua06Nua06,
p.301].

This chapter is organised as follows. There is no background section, and we refer to Chapter 4Chapter 4 and
Chapter 5Chapter 5 for the notation. In Section 6.1Section 6.1 we de�ne the grouplike multiplicative functional X̂ and compute
its terms. In Section 6.2Section 6.2 we show that they satisfy the regularity requirement that make X̂ a rough path. In
Section 6.3Section 6.3 we compute the bracket extension of X̂ , which is de�ned canonically: this yields a change of vari-
able formula for functions of RDEs driven byX . In Section 6.4Section 6.4 we compare X̂ to the canonical Stratonovich
geometric rough path de�ned via smooth approximation, and compute the correction terms de�nd in [HK15HK15]
explicitly: this yields an Itô-Stratonovich formula for RDEs. Finally, in Conclusions and further directionsConclusions and further directions we
outline our plan for turning this short chapter into a paper, which involves a version of Hörmander’s theorem
for branched rough paths.

6.1 The multiplicative functional

Let X be a (1/4, 1) 3 H-fBm (of course, our construction will trivially reduce to Young integration when
H > 1/2, so it is only interesting to assume 1/4 < H ≤ 1/2). We will assume the background introduced in
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Section 5.1Section 5.1 and Section 4.1Section 4.1 and use notation therein. We will always state our results using notation that only
assumes X to be a Gaussian process (e.g. our formulae will feature a generic covariance function R), but we
will use thatX is a fBm in several places, andH will denote its Hurst parameter throughout.

A very natural question that follows from Chapter 5Chapter 5 is whether one can de�ne a branched rough path above
a Gaussian process by Skorokhod integration, i.e.

X
[f]γ
st =

∫ t

s
Xf

suδXγ
u

and extending to all forests with products. This is immediately answered in the negative: indeed, using the
formula for taking out random constants from the Skorokhod integral (5.175.17) we have, for 0 ≤ r ≤ s ≤ t ≤ T

Xrt
β
α

=

∫ t

r
Xα
ruδXβ

u

=

∫ t

r
Xα
u δXβ

u −
(
Xα
r X

β
rt −Rαβ(r,∆(r, t))

)
=

∫ s

r
Xα
u δXβ

u +

∫ t

s
Xα
u δXβ

u −Xα
r X

β
rs −Xα

s X
β
st +Xα

rsX
β
st

+Rαβ(r,∆(r, s)) +Rαβ(s,∆(s, t))−Rαβ(∆(r, s),∆(s, t))

= Xrs
β
α

+Xst
β
α

+Xα
rsX

β
st −Rαβ(∆(r, s),∆(s, t))

In other words,X fails the Chen identity because of the correction term in (5.175.17). NoteX is not even almost
multiplicative, since the best we can say is

|Rαβ(∆(r, s),∆(s, t))| . (t− r)2H

which is not enough whenH < 1/2, i.e. in all cases that matter.
We can, however, de�ne a multiplicative functional in violation of (5.175.17), i.e. by taking out random con-

stants without adding the correction term: for t ∈ [0, T ] set

X̂st
β
α

:=

∫ t

s
Xα
u δXβ

u −Xα
s X

β
st

=

∫ t

s
Xα
suδXβ

u −Rαβ(s,∆(s, t))

(6.2)

This is no longer equal to
∫ t
s X

α
suδXβ

u , but is multiplicative by de�nition. This idea generalises to X̂ evaluated
on arbitrary forests. The following lemma can be viewed as a generalisation of [FH20FH20, Exercise 2.4] to branched
rough path of inhomogeneous regularity. Recall that in a given Hopf algebra the symbol S is used to denote
the antipode and the symbol G is used to denote the group of elements in a Hopf algebra s.t. ∆x = x⊗ x.

Lemma 6.1 (De�ningXst in terms ofX0t). LetA be a finite weighted alphabet andX : [0, T ]→ HAGL be a
map that takes values in GAGL. Then setting

Xs0 := SGLX0s, Xst := Xs0 ?X0t (6.3)
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defines a multiplicative functionalX : ∆T → GAGL.

Proof. This is a direct consequence of the properties of Hopf algebras.X is multiplicative since

Xrs ?Xst = Xr0 ?X0s ? SGLX0s ?X0t = Xr0 ?X0t = Xrt (6.4)

because SGL is inversion in GAGL. To show thatX is group-valued we compute, forf,g ∈ FA

X
fg
st = 〈fg, SGLX0s ?X0t〉

=
〈
(SCK ⊗ 1) ◦∆CK(fg),X0s ⊗X0t

〉
=
〈
(SCK ⊗ 1)(∆CKf ·∆CKg),X0s ⊗X0t

〉
=

∑
(f)CK,(g)CK

〈SCK(f(1)g(1))⊗f(2)g(2),X0s ⊗X0t〉

=
∑

(f)CK,(g)CK

〈SCK(f(1))SCK(g(1)),X0s〉〈f(2)g(2),X0t〉

=
∑

(f)CK,(g)CK

〈SCK(f(1)),X0s〉X
f(2)
0t 〈SCK(g(1)),X0s〉X

g(2)

0t

=
∑

(f)CK,(g)CK

〈SCK(f(1))⊗f(2),X0s ⊗X0t〉〈SCK(g(1))⊗ g(2),X0s ⊗X0t〉

=
〈
(SCK ⊗ 1) ◦∆CK(f),X0s ⊗X0t

〉〈
(SCK ⊗ 1) ◦∆CK(g),X0s ⊗X0t

〉
= Xf

stX
g
st

where we have used that antipodes are algebra antihomomorphisms, i.e. homomorphisms in the case of com-
mutative Hopf algebras. �

De�nition 6.2 (The Skorokhod multiplicative functional X̂). We de�ne X̂ to be the group-valued multi-
plicative functional as in Lemma 6.1Lemma 6.1, withA = [d] and

X̂
[f]γ
0t :=

∫ t

0
Xf

0uδXγ
u (6.5)

for t ∈ [0, T ],f∈ Fd, γ = 1, . . . , d.

Remark 6.3. Note that the above de�nition depends only on the intrinsic properties of the Gaussian process
X , since the Malliavin calculus setup does.

Dualising (6.36.3) yields the explicit formula to compute the terms of X̂ :

X̂ t
st =

∑
(t)CK

〈SCKt(1), X̂0s〉X̂
t(2)
0t (6.6)

and using the expression (4.124.12) forSCK. We will only really need this formula when tis a tree, since forest terms
can more simply be computed by taking products, and we will only be interested in forests of weight≤ 3.

The next proposition contains the explicit expression of X̂ t with t ∈ (T d)≤3, presented so that each
summand has the needed regularity (as will be shown in the next section). The integrals are either Skorokhod
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or Young (and in some cases both — see Lemma 6.10Lemma 6.10 below), and will be shown to be well de�ned/convergent
in Theorem 6.9Theorem 6.9. Note how the path dependency in the last term vanishes if α = β (always the case when
d = 1).

Proposition 6.4 (Expression of X̂≤3).

X̂st

γ

= Xγ
st

X̂st
β
α

=

∫ t

s
Xα
suδXβ

u −Rαβ(s,∆(s, t))

X̂st
γ

α β

=

∫ t

s
Xα
suX

β
suδXγ

u −
∫ t

s
Xα
suR

βγ(s, du)−
∫ t

s
Xβ
suR

αγ(s, du)

X̂st
γ
β
α

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v −
∫ t

s
Rαβ(s,∆(s, u))δXγ

u −
∫ t

s
Xβ
suR

αγ(s, du)

+

∫ s

0
Xα
usR

βγ(du,∆(s, t))−
∫ s

0
Xβ
usR

αγ(du,∆(s, t))

(6.7)

Proof. We use (6.66.6), the expression for the Connes-Kreimer coproduct (4.24.2), the expression for the Connes-
Kreimer antipode (4.124.12) together with the fact that it is an algebra morphism, and the rule for Skorokhod-
integrating a random constant times a process (5.175.17) to compute all terms. At order 1 we have

X̂st

γ

= −X̂0s

γ

+ X̂0t

γ

= −Xγ
s +Xγ

t = Xγ
st

At order 2:

X̂st
β
α

= 〈SCK β

α
, X̂0s〉 −Xα

s X
β
t + X̂0t

β
α

= −X̂0s
β
α

+Xα
s X

β
s −Xα

s X
β
t + X̂0t

β
α

=

∫ t

s
Xα
u δXβ

u −Xα
s X

β
st

=

∫ t

s
Xα
suδXβ

u −Rαβ(s,∆(s, t))

At order 3:

X̂st
γ

α β

= 〈SCK γ

α β

, X̂0s〉+ 〈SCK
α , X̂0s〉X̂0t

γ
β

+ 〈SCK
β , X̂0s〉X̂0t

γ
α

+ 〈SCK( α β
), X̂0s〉Xγ

t + X̂0t
γ

α β

= − X̂0s
γ

α β

+ X̂0s
α γ
β

+ X̂0s

β
γ
α

−Xα
s X

β
sX

γ
s −Xα

s X̂0t
γ
β

−Xβ
s X̂0t

γ
α

+Xα
s X

β
sX

γ
t + X̂0t

γ

α β

= −
∫ s

0
Xα
uX

β
uδXγ

u +Xα
s

∫ s

0
Xβ
uδXγ

u +Xβ
s

∫ s

0
Xα
u δXγ

u +Xα
s X

β
sX

γ
st

−Xα
s

∫ t

0
Xβ
uδXγ

u −Xβ
s

∫ t

0
Xα
u δXγ

u +

∫ t

0
Xα
uX

β
uδXγ

u

=

∫ t

s
Xα
uX

β
uδXγ

u −Xα
s

∫ t

s
Xβ
uδXγ

u −Xβ
s

∫ t

s
Xα
u δXγ

u +Xα
s X

β
sX

γ
st
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=

∫ t

s
Xα
suX

β
suδXγ

u +

∫ t

s
Xα
uX

β
s δXγ

u +

∫ t

s
Xα
s X

β
uδXγ

u −
∫ t

s
Xα
s X

β
s δXγ

u

−Xα
s

∫ t

s
Xβ
uδXγ

u −Xβ
s

∫ t

s
Xα
u δXγ

u +Xα
s X

β
sX

γ
st

=

∫ t

s
Xα
suX

β
suδXγ

u − 〈1
β
[0,s), X

α1γ[s,t)〉H − 〈1
α
[0,s), X

β1γ[s,t)〉H −X
α
s X

β
sX

γ
st

+ 〈Xα
s 1β[0,s) +Xβ

s 1α[0,s), 1
γ
[s,t)〉H +Xα

s X
β
sX

γ
st

=

∫ t

s
Xα
suX

β
suδXγ

u −
∫ t

s
Xα
suR

βγ(s, du)−
∫ t

s
Xβ
suR

αγ(s, du)

For the last term,

X̂st
γ
β
α

= 〈SCK γ
β

α

, X̂0s〉+ 〈SCK β

α
, X̂0s〉Xγ

t + 〈SCK
α , X̂0s〉X̂0t

γ
β

+ X̂0t
γ
β
α

= 〈− γ
β

α

+
γ

β

α
+ α

γ
β
− α β γ

, X̂0s〉+ 〈− β

α
+ α β

, X̂0s〉Xγ
t −Xα

s X̂0t
γ
β

+ X̂0t
γ
β
α

= −
∫

0<u<v<s
Xα
u δXβ

uδXγ
v +Xγ

s

∫ s

0
Xα
u δXβ

u +Xα
s

∫ s

0
Xβ
uδXγ

u −Xα
s X

β
sX

γ
s

−Xγ
t

∫ s

0
Xα
u δXβ

u +Xα
s X

β
sX

γ
t −Xα

s

∫ t

0
Xβ
uδXγ

u +

∫

0<u<v<t
Xα
u δXβ

uδXγ
v

=

∫

s<u<v<t
Xα
u δXβ

uδXγ
v +

∫

0<u<s<v<t
Xα
u δXβ

uδXγ
v −X

γ
st

∫ s

0
Xα
u δXβ

u −Xα
s

∫ t

s
Xβ
uδXγ

u +Xα
s X

β
sX

γ
st

Now,
∫

s<u<v<t
Xα
u δXβ

uδXγ
v

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v +

∫

s<u<v<t
Xα
s δXβ

uδXγ
v

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v +

∫ t

s

(
Xα
s X

β
sv −Rαβ(s,∆(s, v))

)
δXγ

v

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v −
∫ t

s
Rαβ(s,∆(s, u))δXγ

u +Xα
s

∫ t

s
Xβ
suδXγ

u −
∫ t

s
Xβ
suR

αγ(s, du)

Also, using (5.185.18)
∫

0<u<s<v<t
Xα
u δXβ

uδXγ
v

= δβ,γu,v
(
Xα
u 1[0,s)(u)1[s,t)(v)

)
= δγv

(
δβu(Xα

u 1[0,s)(u))1[s,t)(v)
)

= Xγ
st

∫ s

0
Xα
u δXβ

u − 〈Dδβu(Xα
u 1[0,s)(u)), 1γ[s,t)〉H

= Xγ
st

∫ s

0
Xα
u δXβ

u − 〈Xα1β[0,s) + δβu(1α[0,u)1[0,s)(u)), 1γ[s,t)〉H
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= Xγ
st

∫ s

0
Xα
u δXβ

u −
∫ s

0
Xα
uR

βγ(du,∆(s, t))−
∫ s

0
Xβ
usR

αγ(du,∆(s, t))

where in the last identity we have used that δβu(1α[0,u)(r)1[0,s)(u)) = Xβ
rs1α[0,s)(r). The last substitution we

need to perform is

Xα
s

∫ t

s
Xβ
uδXγ

u = Xα
s

∫ t

s
Xβ
suδXγ

u +Xα
s X

β
sX

γ
st −Xα

s R
βγ(s,∆(s, t))

Putting everything together

X̂st
γ
β
α

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v −
∫ t

s
Rαβ(s,∆(s, u))δXγ

u +Xα
s

∫ t

s
Xβ
suδXγ

u −
∫ t

s
Xβ
suR

αγ(s, du)

+Xγ
st

∫ s

0
Xα
u δXβ

u −
∫ s

0
Xα
uR

βγ(du,∆(s, t))−
∫ s

0
Xβ
usR

αγ(du,∆(s, t))

−Xγ
st

∫ s

0
Xα
u δXβ

u −Xα
s

∫ t

s
Xβ
suδXγ

u −Xα
s X

β
sX

γ
st +Xα

s R
βγ(s,∆(s, t)) +Xα

s X
β
sX

γ
st

=

∫

s<r<u<v<t
δXα

r δXβ
uδXγ

v −
∫ t

s
Rαβ(s,∆(s, u))δXγ

u −
∫ t

s
Xβ
suR

αγ(s, du)

+

∫ s

0
Xα
usR

βγ(du,∆(s, t))−
∫ s

0
Xβ
usR

αγ(du,∆(s, t))

which completes the calculation. �

6.2 The rough path

In this section we will show that X̂ actually de�nes a rough paths, and show some of its properties.

Remark 6.5. The �rst thing to note is that, once we prove that X̂ is a rough path, the formula for computing
its terms of order≤ bpc does not extend to its signature terms of higher order, which are instead determined by
Lyons’s extension theorem (i.e. by taking Young integrals). This can already be seen in the case p < 2, in which
all signature terms of order ≥ 2 are given by Young integration, and are not given by (6.56.5), e.g. the signature

term X̂0t
β
α

is

∫ t

0
Xα
u dXβ

u =

∫ t

0
Xα
u δXβ

u +
1

2
Rαβ(t)

by [CL19CL19, CL20CL20].

The only thing left that is needed to show that X̂ is a rough path is that its sample paths and higher order
terms are regular enough. One of the main ingredients that we will need is Kolmogorov’s continuity criterion
[RY99RY99, Theorem 2.1], which we state in the precise form in which it will be applied.

Theorem 6.6 (Kolmogorov’s continuity criterion for 2-parameter processes).
Let Z : [0, T ]2 × Ω → R be a stochastic process taking two time variables and with the property that Zss = 0
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for s ∈ [0, T ]. Assume there exist a, b,K > 0 s.t. for all u, v ∈ [0, T ]

E[|Zst|a] ≤ K|t− s|2+b (6.8)

Then for every 0 < c < b/a, there exists a random variable J = J(K, b, c) ∈ LaΩ, with the property that

sup
0≤s<t≤T

|Zst| ≤ J(t− s)c a.s. (6.9)

Here we have have used that Zst can be written as Zst − Zss, so that (t, s) − (s, s) = (t − s, 0) in the
referenced statement.

In order to proceed we will need to derive explicit expressions for multiple Wiener integrals of products.
While it is well known that δn(f⊗n) for f ∈ H has a representation in terms of a degree-n polynomial in
X(f) = δ(f), we will need to deal with the slightly more general task of representing δn(f1 ⊗ · · · ⊗ fn)

for fk ∈ H. The fact that the integrand is a product still makes it possible to represent this as a polynomial,
but one in several variables, since the factors are di�erent. For this purpose we de�ne, given rij ∈ R for
i, j = 1, . . . , n, i 6= j, the multivariate Hermite polynomials Hn

r ∈ R[x1, . . . , xn] recursively by

H−1
r := 0, H0

r := 1

Hn+1
r (x1, . . . , xn+1) := Hn

r (x1, . . . , xn)xn+1 −
n∑
k=1

rk,n+1Hn−1(x1, . . . , x̂k, . . . , xn)
(6.10)

The �rst three are

H1
r(x

1) = x1

H2
r(x

1, x2) = x1x2 − r12

H3
r(x

1, x2, x3) = x1x2x3 − r23x1 − r13x2 − r12x3

(6.11)

The next proposition implies the corresponding one for the ordinary Hermite polynomials [NP12NP12, 2.7.7] (note
that the convention used to de�ne the Hermite polynomials is di�erent to the one adopted in [Nua06Nua06]), since
for f1 = · · · = fn with ‖f‖H = 1 we can pick r ≡ 1 and Hn

1 (x, . . . , x) becomes the ordinary Hermite
polynomial in the single variable x.

Proposition 6.7 (Polynomial representation of multiple Wiener integrals of products). Let f1, . . . , fn ∈ H.
We then have

δn(f1 ⊗ · · · ⊗ fn+1) = Hn
〈f ·,f ·〉H

(X(f1), . . . , X(fn)) (6.12)

with 〈f ·, f ·〉ijH := 〈f i, f j〉H. In particular, if 0 ≤ sk < tk ≤ T and γk ∈ {1, . . . , d} for k = 1, . . . , n we
have

∫

[s1,t1]×···×[sn,tn]
δXγ1

u1 · · · δX
γn
un = Hn

R(∆(s,t),∆(s,t))(X
γ1
s1t1

, . . . , Xγn
sntn) (6.13)

whereR(∆(s, t),∆(s, t))ij := Rγiγj (∆(si, ti),∆(sj , tj)) for i, j = 1, . . . , n.

Proof. Proceed by induction; the case n = 1 is obvious.

δn+1(f1 ⊗ · · · ⊗ fn+1)
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= δ(δn(f1 ⊗ · · · ⊗ fn)fn+1)

= Hn
r (X(f1), . . . , X(fn))X(fn+1)− 〈Dδn(f1 ⊗ · · · ⊗ fn), fn+1〉H1

= Hn
r (X(f1), . . . , X(fn))X(fn+1)−

n∑
k=0

δn−1(f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fn)〈fk, fn+1〉H

= Hn
r (X(f1), . . . , X(fn))X(fn+1)−

n∑
k=1

rk,n+1Hn−1
r (X(f1), . . . , X̂(fk), . . . , X(fn))

= Hn+1
r (X(f1), . . . , X(fn+1))

where the rule for Malliavin-di�erentiating the multiple Wiener integral is a simple induction on Heisenberg’s
commutativity relation (5.185.18). The second assertion follows from the �rst by picking fk := 1γk[sk,tk]. �

Next we discuss a slight generalisation of the scaling and increment stationarity properties of fBm. Recall
that for λ > 0 and s, t ∈ [0, t]

R(λs, λt) = λ2HR(s, t), Xλt ∼ λHXt (6.14)

(with∼ denoting identity in law), and

R

(
s t
s t

)
= R

(
0 t− s
0 t− s

)
, Xst ∼ Xt−s (6.15)

The next lemma will extend these properties to the multidimensional Wiener integral operator. For
0 ≤ s < t < T we de�ne Hst ⊂ H to be the span in H of {1γ[s,u) | u ∈ [s, t], γ = 1, . . . , d} (H⊗mst
should be interpreted as the subspace of elements ofH⊗m that are supported in the box [s, t)m). Let

`st : Hst → H, 1γ[s,v) 7→
(t− s)H

TH
1γ

[0, T
t−s (v−s))

for u ∈ [s, t]. For functions f : [s, t] → Rd, this is the transformation `stf(u) = (t−s)H
TH

f(s + t−s
T u) for

u ∈ [0, T ].

Lemma 6.8 (Scaling & translation invariance of the fractional multiple Wiener integral).
LetX be an (1/4, 1/2) 3 H -fBm defined on [0, T ]. For all 0 < s < t < T the diagram

H⊗mst H⊗m

L2Ω

δn

`⊗mst

δn
(6.16)

commutes in law.

Proof. We only need to show the identity in law on basis elements 1γ1,...,γn[s,v1)×···×[s,vn) for v1, . . . , vn ∈ [s, t]

(the conclusion will follow once again by continuity of δm). This can be shown by (6.136.13) and the fact that the
corresponding Hermite polynomials are homogeneous of degree nH , as is seen by induction on (6.106.10), using
(6.156.15) and (6.146.14) with λ = t− s. �
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Theorem 6.9. IfX is a 1/4 < H -fBm then X̂ of Definition 6.2Definition 6.2 is a.s. a p-rough path for p > 1/H .

Proof. We will show that each individual summand in the expressions of Proposition 6.4Proposition 6.4 is of the needed reg-
ularity. More precisely, we will consider each to be a process in the t parameter started at s, and show Hölder
bounds that hold uniformly in s ∈ [0, T ]. We will suppress indices in all bounds, and the Hurst parameterH
will be considered �xed (all constants will implicitly depend on it). It is well known (and a classical application
of the Kolmogorov criterion) that X has sample paths that are a.s. c-Hölder continuous for c < H , or H−

Hölder continuous, as we will write from now on. We will write.when the constant of proportionality only
depends on the process, i.e. the Hurst parameter H , and the time horizon T (and shall generally omit men-
tion of such dependencies); all other dependencies will be added as subscripts, e.g..n means that the constant
depends on n. For terms of higher order we have, for n ∈ N∗

∫ t

s
XsuδXu = δ2(1∆2[s,t]) ∼

(t− s)2nH

T 2nH
δ2(1∆2[0,T ])

and therefore

E

[∣∣∣∣ ∫ t
s
XsuδXu

∣∣∣∣n
]

=
(t− s)2nH

T 2nH
E
[
|δ2(1∆2[0,T ])|n

]
.n (t− s)2nH

since multiple Wiener integrals have moments of all orders, e.g. by Meyer’s inequalities [Nua06Nua06, Proposition
1.5.7]. Then by Kolmogorov’s criterion with a = n, b = 2nH − 2 andK the above constant in (6.86.8), we have
that for all n ∈ N and all 0 < c < (2nH − 2)/n, and therefore for all 0 < c < 2H , a.s.∣∣∣∣ ∫ t

s
XsuδXu

∣∣∣∣ ≤ J |t− s|c, s < t < T

with J = J(n) ∈ LnΩ. As for the other-2 summand

|R(s,∆(s, t))| ≤ |t2H − s2H − (t− s)2H | . (t− s)2H

since
t2H − s2H ≤ (t− s)2H forH < 1/2 and s ≤ t (6.17)

We now tackle the order-3 terms one by one. δ3(1∆3[s,t]) is handled in the same way as δ2(1∆2[s,t]). Using
that

XstXst = δ(1[s,t]δ(1[s,t]))− 〈1[s,t],DXst〉 = δ2(1∆[s,t])−R(∆(s, t),∆(s, t))

we compute

∫ t

s
XswXswδXw = δ3(1s<u,v<w<t) +

∫ t

s
R(∆(s, w),∆(s, w))δXw (6.18)

Again, the �rst term is handled which are both handled in the same way as δ2(1∆2[s,t]), and so can the second:

∫ t

s
(w − s)2HδXw ∼

(t− s)3H

T 3H

∫ T

0
u2HδXu
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where we have again used by scaling/translation invariance, with the conclusion now following, as before, by
taking the n-th moment and applying Kolmogorov’s criterion. (Alternatively, we could have used Lemma 6.10Lemma 6.10
below and the Young-Lóeve estimates.) The term

∫ t
s R(s,∆(s, u))δXu is handled similarly, using (6.176.17),

which is also helpful to control another term:∣∣∣∣ ∫ t
s
XsuR(s, du)

∣∣∣∣
.
∫ t

s
|Xsu|((u− s)2H−1 − u2H−1)du

. (t− s)H−((t− s)2H − (t2H − s2H))

. (t− s)3H−

where a− stands for “∀b < a”.
The last term that we must consider is the one that involves a path dependency,

∫ s
0 XusR(du,∆(s, t)).

The methods used up to now do not work here, since the interval [s, t] is only counted twice, and the presence
of the integral over [0, s] must be used. If 0 < a < b < T and the integral ranged from 0 to a, it would be
O(t − s) uniformly for b ≤ s ≤ T ; this cannot be said in our case since the integrator has a singularity at
u = s; what can, however, be exploited is that, as u ↗ s, |Xus| → 0 at order (s − u)H

− . By making the
substitution u = s− (t− s)v we proceed to bound∣∣∣∣ ∫ s

0
XusR(du,∆(s, t))

∣∣∣∣ . ∫ s
0

(s− u)H
−

((s− u)2H−1 − (t− u)2H−1)du

= (t− s)3H−
∫ s/(t−s)

0
vH
−

(v2H−1 − (v + 1)2H−1)dv

≤ (t− s)3H−
∫ +∞

0
vH
−

(v2H−1 − (v + 1)2H−1)dv

and the integral on the last line is obviously convergent at 0, and is also at +∞ sinceH < 1/3 and

v2H−1 − (v + 1)2H−1 = (1− 2H)η2H−2 ≤ (1− 2H)v2H−2

for some v < η < v + 1 by Lagrange’s theorem.
To conclude, we have shown that for all p > 1/H there exists a random constantC = C(p, T,H) s.t.

|X̂st

γ

| ≤ C(t− s)1/p, |X̂st
β
α

| ≤ C(t− s)2/p, |X̂st
γ

α β

| ≤ C(t− s)3/p, |X̂st
γ
β
α

| ≤ C(t− s)3/p

for all 0 ≤ s < t ≤ 0. �

6.3 The Itô formula

In this section we will show that it is possible to de�ne the bracket extension of X̂ , and we will compute all
bracket terms of order≤ 3. In particular, we will show that X̂ is not quasi-geometric.

We will need the following simple observation; note that one of the summands in the order-3 ladder term
in (6.46.4) can be reinterpreted correspondingly.
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Lemma 6.10. Iff : [0, T ]→ Rd is piecewise continuous and of bounded q-variation for some q s.t. q−1+H > 1.
Assume additionally f is λ-Hölder for some positive λ. Then f is both the Wiener- and Young-integrable, and
the integrals coincide:

∫ T

0
f(u)δXu =

∫ T

0
f(u)dXu (6.19)

Proof. The Hölder assumption and piecewise continuity and the results of [CL20CL20, §3.1] guarantee that f ∈ H
and that, for a sequence of partitions with vanishing mesh size πn,

∑
[s,t]∈πn f(s)1[s,t) → f inH. By conti-

nuity of δ : H ⊆ D1,2(H)→ L2Ω

δ(f) = L2 lim
n→∞

δ
( ∑

[s,t]∈πn

f(s)1[s,t)

)
= L2 lim

n→∞

∑
[s,t]∈πn

f(s)Xst

By the �nite q-variation assumption and piecewise continuity, f is also (piecewise-)Young integrable againstX .
This implies the same Riemann-Stieltjes sums converge a.s., necessarily to the same limit. �

Proposition 6.11 (Bracket extension of X̂). X̂ admits the following consistent (as defined in Section 4.2Section 4.2) bracket
extension:

X̂
(αβ)
st = Rαβ(∆(s, t))

X̂st
(αβ)

γ

=

∫ t

s
Xγ
suR

αβ(du)

X̂st
γ
(αβ)

=

∫ t

s
Rαβ(∆(s, u))dXγ

u

X̂
(αβγ)
st = 0

X̂
(
γ
β
α

)

st =

∫ t

s

(
Rαγ(u, t)dXβ

u +Xα
uR

βγ(du, t)
)
−
∫ t

s

(
Rαγ(u)dXβ

u +Xα
uR

βγ(du)
)

+

∫ s

0

(
Rαγ(u,∆(s, t))dXβ

u +Xα
uR

βγ(du,∆(s, t))
)

(6.20)

In particular, it holds a.s. that X̂ is quasi-geometric if and only if d = 1.

Proof. By Proposition 6.4Proposition 6.4, (6.136.13) and (6.116.11) we have

X̂
(αβ)
st = 〈 α β − α

β
− β

α
, X̂st〉

= Xα
stX

β
st −
∫ t

s
Xα
suδXβ

u −
∫ t

s
Xβ
suδXα

u + 2Rαβ(s,∆(s, t))

= Xα
stX

β
st −
∫

[s,t]2
δXα

u δXβ
v + 2Rαβ(s,∆(s, t))

= Rαβ(∆(s, t),∆(s, t)) + 2Rαβ(s,∆(s, t))

= Rαβ(∆(s, t))

The obvious choices for the two lifted terms are

X̂st
(αβ)

γ

=

∫ t

s
Xγ
suR

αβ(du)
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and using Lemma 6.10Lemma 6.10

X̂st
γ
(αβ)

=

∫ t

s
Rαβ(∆(s, u))dXγ

u =

∫ t

s
Rαβ(∆(s, u))δXγ

u = 〈 γ

α β

− γ
β

α

− γ
α
β

, X̂st〉

which guarantees consistency, by Example 4.18Example 4.18. The Chen identity is trivial to check in the �rst case and auto-
matic in the second. Both have the needed regularity, as can be inferred through the same methods used in the
proof of Theorem 6.9Theorem 6.9.

We now focus on the order-3 terms. Using (6.186.18), Lemma 6.10Lemma 6.10 (and integration by parts for Young integrals)
and Proposition 6.7Proposition 6.7, we have

X̂
(αβγ)
t

= 〈 α β γ − α

β γ

− β

α γ

− γ

α β

− (βγ)

α
− (αγ)

β
− (αβ)

γ

, X̂st〉

= Xα
t X

β
t X

γ
t −
∫

0<u,v<w<t

[
δXβ

uδXγ
v δXα

w + δXα
u δXγ

v δXβ
w + δXα

u δXβ
v δXγ

w

]
−
∫ t

0

[
Rαβ(u)dXγ

u +Rαγ(u)dXβ
u +Rβγ(u)dXα

u +Xγ
uR

αβ(du) +Xβ
uR

αγ(du) +Xα
uR

βγ(du)
]

= Rαβ(t)Xγ
t +Rαγ(t)Xβ

t +Rβγ(t)Xα
t −

[
Rαβ(t)Xγ

t +Rαγ(t)Xβ
t +Rβγ(t)Xα

t

]
= 0

As for the last term, we have

X̂
(
γ
β
α

)

t

= 〈 γ β

α
− γ

β

α

− β

α γ

− (βγ)

α
, X̂0t〉

= Xγ
t

∫ t

0
Xα
u δXβ

u −
∫

0<u<v<w<t
δXα

u δXβ
v δXγ

w −
∫ t

0
Xα
uX

γ
uδXβ

u −
∫ t

0
Xα
uR

βγ(du)
∗
=

Now,

Xγ
t

∫ t

0
Xα
u δXβ

u

=

∫ t

0
Xγ
t X

α
u δXβ

u +

∫ t

0
Xα
uR

βγ(t,du)

=

∫ t

0
δ(δ(1α[0,u))1

γ
[0,t))δX

β
u +

∫ t

0
Rαγ(u, t)δXβ

u +

∫ t

0
Xα
uR

βγ(t,du)

= δα,β,γr,u,v (1∆2[0,t](r, u)1[0,t](v)) +

∫ t

0
Rαγ(u, t)dXβ

u +

∫ t

0
Xα
uR

βγ(t,du)

=

∫

0<r<u<v<t
δXα

r δXβ
uδXγ

v +

∫

0<r<v<u<t
δXα

r δXγ
v δXβ

u +

∫

0<v<r<u<t
δXγ

v δXα
r δXβ

u

+

∫ t

0
Rαγ(u, t)dXβ

u +

∫ t

0
Xα
uR

βγ(t,du)
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so that

∗
=

∫

0<r<v<u<t
δXγ

v δXα
r δXβ

u +

∫

0<v<r<u<t
δXα

r δXγ
v δXβ

u +

∫ t

0
Rαγ(u, t)δXβ

u +

∫ t

0
Xα
uR

βγ(t,du)

−
∫ t

0

∫

0<r,u<v<t
δXα

r δXγ
v δXβ

u −
∫ t

0
Rαγ(u)dXβ

u −
∫ t

0
Xα
uR

βγ(du)

=

∫ t

0

(
Rαγ(u, t)−Rαγ(u)

)
dXβ

u +

∫ t

0
Xα
u

(
Rβγ(du, t)−Rβγ(du)

)
The statement is then just obtained by taking di�erences. This is clearly a.s. non-zero when d > 1: take for in-
stanceα = γ 6= β andX to be (4, 3] 3 H-fBm: the above expression reduces to a non-trivial Wiener integral.
On the other hand, when d = 1 the above expression vanishes thanks to integration by parts. Example 4.30Example 4.30
then implies the statement on quasi-geometricity. �

The following is an immediate consequence of the above and Kelly’s simple change of variable formula
(4.424.42). Note that the change of variable formula for RDE solutions, which we do not state but that can be
written directly using (4.404.40), is more complex, as it contains the non-simple term.

Corollary 6.12 (Simple Itô formula for X̂). For f ∈ C∞Rd it a.s. holds that

f(Xt)− f(Xs) =

∫ t

s
∂γf(Xu)dX̂γ

u +
1

2

∫ t

s
∂αβf(Xu)Rαβ(du)

Example 6.13 (The scalar case). When d = 1 the indices are suppressed, which results in signi�cant simpli-
�cations. Indeed, the path dependency in last term in (6.76.7) cancels out; moreover the last term in (6.206.20) also
vanishes, since taking s = 0 we have, integrating by parts

X̂
( )
t =

∫ t

0

(
R(u, t)−R(u)

)
dXβ

u +

∫ t

0
Xu

(
R(du, t)−R(du)

)
= XtR(t)−XtR(t) = 0

This implies the scalar rough path is quasi-geometric, and its terms have the simpli�ed expressions (using tuple
notation)

X̂1
st = Xst, X̂11

st =
1

2

(
(Xst)

2 −R(∆(s, t))
)
, X̂

1(11)
st =

∫ t

s
XsuR(du)

X̂
(11)1
st =

∫ t

s
R(∆(s, u))dXu, X̂111

st =
1

6
(Xst)

3 − 1

2
XstR(∆(s, t)), X̂(111) = 0

which can be deduced from Proposition 6.4Proposition 6.4 by applying Proposition 6.7Proposition 6.7, Lemma 6.10Lemma 6.10 and integration by parts.
It is simple to check that these terms satisfy the quasi-geometric relations. A 4-rough path that coincides with
this up to level 3 has already been studied in [Bel19Bel19, Proposition 4.3.12] (already discussed in Example 4.35Example 4.35),
where it is shown that its change of variable formula replicates the Cheridito-Nualart formula of [CN05CN05]. There
and in [LN05LN05] the authors investigate an extension of the domain of the fractional Skorokhod integral which
includes a.a. sample paths of the fBm even whenH ≤ 1/4. This suggests that this scalar rough path could be
extended to the regimeH ≤ 1/4, and the fact that the Cheridito-Nualart formula is the same as Corollary 6.12Corollary 6.12
suggests that all further bracket relations should vanish in this case as well. It should be noted that this frame-
work does not carry over to the multidimensional case, since it is apparent from [LN05LN05, Theorem 3.2] that
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∫

∆2[s,t] δXαδXβ fails to be de�ned even in the extended sense when α 6= β.

6.4 Itô vs. Stratonovich

To conclude this thesis, we derive the formulae that convert RDEs driven by X̂ into ones driven by the canoni-
cal geometric rough path, which from now on we denoteX . Note that we will use tuple notation for geometric
rough paths.

We begin with the case 2 ≤ p < 3, corresponding to 1/3 < H ≤ 1/2 for fBm, since this will also be
useful to treat the more general case. The algebra here is very simple, and the only thing that has to be computed
is the di�erence

Xαβ
st − X̂st

β
α

=
1

2
Rαβ(∆(s, t)) (6.21)

which is done by comparing (6.76.7) and the Wiener chaos expansion of the signature Example 5.31Example 5.31. This rough
path, which closely resembles Itô integration, has already been de�ned (speci�cally for fBm) in [QX18QX18]. As a
result we obtain that if H is a controlled integrand — a condition that is only de�ned in terms of X — the
usual Itô-Stratonovich formulae hold:

∫

HdX −
∫

HdX̂ =
1

2

∫

H ′αβdRαβ( · ) (6.22)

dY k = V k
γ (Y )dXγ ⇐⇒ dY k = V k

γ (Y )dX̂
γ

+
1

2
VαVβ1k(Y )dRαβ( · ) (6.23)

where VαVβ denotes composition of vector �elds and 1k is the projection on the kth coordinate.

Example 6.14 (Gaussian semimartingales). Although we have assumed up to now that X is a fBm, this hy-
pothesis is only really used, in addition to the properties of X as a Gaussian process, when 1/4 < H ≤ 1/3;
when p < 3 it is not di�cult to see that all statements (restricted to the case p < 3) carry over. For example, to
check regularity of δ2(1∆2[s,t]) one can use Example 5.31Example 5.31 together with regularity ofXst and an appropriate
estimate of 1

2(R(s) + R(t))− R(s, t). Semimartingales are particularly of interest in this regard, since there
is a third type of integral, the Itô integral, that can be considered. LetX = M +A be a continuous Gaussian
semimartingale with M a martingale (see Example 5.6Example 5.6) and A of bounded variation. As usual, R will denote
the covariance function of X , while RM will denote that of M , RA that of A, and RM,A(s, t) = E[MsAt]

with RM,A(t) := RM,A(t, t). Using (6.226.22), the fact that integration against X is the same as Stratonovich
integration, and the classical Itô-Stratonovich formula we compute
∫

HdX̂ =

∫

HdX − 1

2

∫

H ′αβ;t(R−RM )(dt) =

∫

HdX − 1

2

∫

H ′αβ;t(RA + 2RM,A)(dt)

As will be seen in a moment, when H = f(X) is a one-form, it is integration against X̂ that vanishes in
expectation, while the Itô integral does not. Of course, when X is a martingale the two integration theories
coincide. An example of a Gaussian semimartingale that is not a martingale, already explored in Chapter 5Chapter 5, is
the Brownian bridge returning to the origin at time 1 Example 5.19Example 5.19, for which the above becomes

∫

HdX̂ =

∫

HdX +
d∑

γ=1

∫

tH ′γγ;tdt
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Note how, in light of (6.276.27) below, this impliesE
∫

f(X)dX = −
∑

γ

∫

E[∂γfγ(Xu)]udu for suitably regular
f , which is not evident from elementary semimartingale theory.

We proceed to consider the general case p < 4. Our main goal is to apply the framework of [HK15HK15] to
write an RDE driven by X̂ in terms of one driven by an extensionX ofX . Unlike their main result, however,
X will be de�ned canonically, without using the Lyons-Victoir extension theorem: this is because we already
have a geometric rough path X that we want to compare X̂ to, and do not have to build one from scratch.
Recall thatX is a rough path with trace indexed by trees, which must satisfyXψ(t)

= X̂ t, whereψ is the map
(4.754.75). To index the higher order components we will use tuple notation for trees: for instance α β should no
longer be considered a nonplanar forest, but the 2-tuple ( α , β ). Since we will never consider the branched
components ofX , there will be no ambiguity. We may thus de�ne the terms

X
γ

:= Xγ , X
α β

:= Xαβ, X
αβ γ

:= Xαβγ , X β
α

:= −Rαβ( · )

Xst

γ
β
α

:= −1

2

∫ t

s
Xγ
suR

αβ(du), Xst

γ
β
α

:= −1

2

∫ t

s
Rαβ(∆(s, u))dXγ

u

(6.24)

where we have used (6.216.21), and de�ned the last two terms canonically via Young integration (which satisfy
the regularity condition by the same arguments used in Theorem 6.9Theorem 6.9). The calculation for the order-3 re-
quires the expression for the Wiener chaos representation of Xαβγ contained in Example 5.31Example 5.31, conjectured
in Assumption 8Assumption 8 to hold for p ∈ [3, 4); note that three of the integrals therein can be considered Young inte-
grals using Lemma 6.10Lemma 6.10. We do not reproduce the calculation here, which is long and uses the same techniques
used in Proposition 6.4Proposition 6.4 and Proposition 6.11Proposition 6.11. The expressions obtained are:

X
γ

α β

= X̂
γ

α β

−X
α γ
β

−X
β
γ
α

−X
αβ γ

−X
βαγ

= 0

Xst
γ
β
α

= X̂st
γ
β
α

−Xst
α γ
β

−Xst

γ
β
α

−Xst
αβ γ

=

∫ t

s
Rβγ(u,∆(u, t))dXα

u −
∫ t

s
Rαγ(u,∆(u, t))dXβ

u

+

∫ s

0
Rβγ(u,∆(s, t))dXα

u −
∫ s

0
Rαγ(u,∆(s, t))dXβ

u

(6.25)

Note how, similarly to what happens in the case of the bracket extension, the above term containing the path-
dependency vanishes in the scalar case and we re-obtain the formula (6.236.23). These calculations entered into
[HK15HK15, Theorem 5.8] yield

Theorem 6.15 (Hairer-Kelly formula for X̂). The RDEs

dY = Vγ(Y )dX̂γ , and

dYt = Vγ(Yt)dX
γ
t −

1

2
VαVβ(Yt)R

αβ(dt) + VαVβVγ(Yt)dXt
γ
β
α

where the last term is defined in (6.256.25), are equivalent. When d = 1 the last term vanishes and the formula
reduces to the one obtained via Ho�man’s exponential Theorem 4.32Theorem 4.32.

We end with a discussion of the following special case.
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Example 6.16 (Integrals of one-forms). The Hairer-Kelly formula is interesting even when applied to the case
of one-forms. Given f ∈ C∞b (Rd,Re×d), with the usual trick of doubling the variables, it is possible to view
the integral as an RDE solution jointly with the trivial RDE for X . Theorem 6.15Theorem 6.15 then yields the usual Itô-
Stratonovich formula

∫

f(X)dX̂ =

∫

f(X)dX − 1

2

∫

∂αfβ(X)dRαβ( · ) (6.26)

since the term in (6.256.25) is evaluated against the symmetry in α, β. Note that this holds only for one-forms, not
more general integrands as (6.226.22) does, but is valid forH > 1/4. Also, this could not have been inferred from
the very similar-looking Itô formula Corollary 6.12Corollary 6.12, which only works for exact one-forms.

A couple of interesting consequences follow. The conversion formula of [CL19CL19, CL20CL20] (see (5.275.27) above)
simpli�es, since the Jacobian of the �ow of the explicit RDE dY = f(X)dX is the identity. This means
that the 2D integral vanishes, and we are left with the usual Itô-Stratonovich formula, this time with the Sko-
rokhod integral playing the role of “Itô”. Matching terms with (6.266.26) implies that integration against dX̂ and
Skorokhod integration coincide for one-forms:

∫

f(X)dX̂ =

∫

f(X)dX − 1

2

∫

∂αfβ(X)dRαβ( · ) =

∫

f(X)δX (6.27)

Of course, this relationship does not hold for more general integrands. Consider the constant integrand Xr

(with zero Gubinelli derivatives): even assumingX scalar, r ≤ s < t, we have

∫ t

s
XrdX̂u −
∫ t

s
XrδXu = R(r,∆(s, t))

(6.276.27) immediately implies that integrals of one-forms againstX̂ vanish in expectation, a result already obtained
by [QX18QX18] for (1/3, 1/2] 3 H-fBm. It also implies that

∫ t
s f(X)dX̂ =

∫ t
s f(X)δX is measurable w.r.t. the

sigma-algebra generated by the process between times s, t (6.16.1), since the middle term in (6.276.27) has this property.

Conclusions and further directions

The main purpose of this chapter was to give an example of a multidimensional branched rough path that is
not (quasi-)geometric, of regularity p ≥ 3 (and that therefore cannot be viewed as a functional on the tensor
algebra), and that is de�ned above the paths of a stochastic process in a manner that takes probability theory
into account. Along the way, we have shown that our example actually has some interesting features: its change
of variable formula, its relationship to other integration theories, and its behaviour w.r.t. the �ltered probability
space.

It would be interesting to study the interaction between the algebra and stochastics pertaining to this ex-
ample, at a deeper level. The main instance of this that we have in mind concerns a Hörmander condition for
branched rough paths.

The original version of Hörmander’s theorem, which concerns the existence of a smooth density for solu-
tions to Stratonovich SDEs, can be deduced from the celebrated article [Hör67Hör67]. The search for a probabilistic
proof of the same result [Mal78Mal78] lead to the development of Malliavin calculus, and much later it was realised
that similar statements held true for Young di�erential equations [BH07BH07] and for rough ones [CF10CF10, CHLT15CHLT15]
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driven by non-Markovian processes.
It is clear that the same Hörmander condition cannot work for branched rough paths: its interpretation

as the negation of Frobenius’s theorem [HaillHaill, Introduction] no longer applies, since it is not true that if the
vector �elds of an RDE driven by a branched rough path are tangent to a submanifold, the solution will remain
on the submanifold (as can already be seen from Itô calculus). The question of whether an RDE solution still
admits a smooth density, however, still makes perfect sense. Optimally, the Hörmander condition should be
written in a purely algebraic way, perhaps using the Lie algebra of Grossman-Larson primitives, in a way that it
is conjecturable to imply existence and smoothness of the density for fairly general stochastic branched rough
paths (in particular geometric ones). Once this is achieved, the idea would be to test the condition by proving a
version of Hörmander’s theorem for the branched rough path of this chapter. An interpretation of this in terms
of the solution not remaining locally in any (time- or otherwise-dependent) positive-codimension subamifold
would require the transfer principle of Chapter 4Chapter 4 to be extended to RDEs and reformulated in extrinsic terms.

A more challenging goal would be to study Hörmander’s condition and theorem for branched rough paths
on manifolds, where equations are given meanings by using transfer principles.
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