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Abstract. We consider the problem of parameter estimation for a stochastic McKean-Vlasov equation, and
the associated system of weakly interacting particles. We first establish consistency and asymptotic
normality of the offline maximum likelihood estimator for the interacting particle system in the limit
as the number of particles N → ∞. We then propose an online estimator for the parameters of
the McKean-Vlasov SDE, which evolves according to a continuous-time stochastic gradient descent
algorithm on the asymptotic log-likelihood of the interacting particle system. We prove that this
estimator converges in L1 to the stationary points of the asymptotic log-likelihood of the McKean-
Vlasov SDE in the joint limit as N → ∞ and t → ∞, under suitable conditions which guarantee
ergodicity and uniform-in-time propagation of chaos. We then demonstrate, under the additional
condition of global strong concavity, that our estimator converges in L2 to the unique maximiser of
this asymptotic log-likelihood function, and establish an L2 convergence rate. We also obtain analo-
gous results under the condition that, rather than observing multiple trajectories of the interacting
particle system, we instead observe multiple independent replicates of the McKean-Vlasov SDE itself
or, less realistically, a single sample path of the McKean-Vlasov SDE and its law. Our theoretical
results are demonstrated via two numerical examples, a linear mean field model and a stochastic
opinion dynamics model.
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1. Introduction. In this paper, we consider a family of McKean-Vlasov stochastic differ-
ential equations (SDEs) on Rd, parametrised by θ ∈ Rp, of the form

dxθt = B(θ, xθt , µ
θ
t )dt+ σ(xθt )dwt, t ≥ 0(1.1)

µθt = L(xθt ),(1.2)

where B : Rp × Rd × P(Rd)→ Rd, σ : Rd → Rd×d are Borel measurable functions, (wt)t≥0 is
a Rd-valued standard Brownian motion, and L(xθt ) denotes the law of of xθt . We assume that
x0 ∈ Rd, or that x0 is a Rd-valued random variable with law µ0, independent of (wt)t≥0. This
equation is non-linear in the sense of McKean [60, 61, 79]; in particular, the coefficients depend
on the law of the solution, in addition to the solution itself. We will restrict our attention to
the case in which the dependence on the law only enters linearly in the drift, namely, that

(1.3) B(θ, x, µ) = b(θ, x) +

∫
Rd
φ(θ, x, y)µ(dy),
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for some Borel measurable functions b : Rp×Rd → Rd and φ : Rp×Rd×Rd → Rd. This choice
of dynamics, while not the most general possible, is sufficiently broad for many applications
of interest. Moreover, it includes the popular case in which b and φ both have gradient forms,
that is, b(θ, x) = ∇Vθ(x) and φ(θ, x, y) = ∇Wθ(x− y), in which case Vθ and Wθ are referred
to as the confinement potential and the interaction potential, respectively (e.g., [28, 58]).

The McKean-Vlasov SDE arises naturally as the hydrodynamical limit (N → ∞) of the
mean-field interacting particle system (IPS)

(1.4) dxθ,i,Nt = B(θ, xθ,i,Nt , µθ,Nt )dt+ σ(xθ,i,Nt )dwit , i = 1, . . . , N

where (wit)t≥0 are N independent Rd-valued independent standard Brownian motions, xi0 are a
family of i.i.d. Rd-valued random variables with common law µ0, independent of (wit)t≥0, and
µθ,Nt = 1

N

∑N
i=1 δxθ,i,Nt

is the empirical law of the interacting particles. In particular, under
relatively weak assumptions, it is well known that the empirical law µθ,Nt → µθt weakly as
N →∞ (e.g., [66]). This phenomenon is commonly known as the propagation of chaos [79].

The McKean-Vlasov SDE also has a natural connection to a non-linear, non-local partial
differential equation on the space of probability measures (e.g., [21]). In particular, under
some regularity conditions on b and φ, one can show that L(xθt ) is absolutely continuous with
respect to the Lebesgue measure for all t ≥ 0 [61, 80] and its density, which we will denote by
uθt , satisfies a non-linear partial differential equation of the form

(1.5)
∂uθt (x)

∂t
= ∇

[
1

2
σ(x)σT (x)∇uθt (x) + uθt (x)

[
b(θ, x) +

∫
Rd
φ(θ, x, y)uθt (y)dy

]]
.

In the particular case that b(x) = ∇V (x) and φ(x, y) = ∇W (x−y), this is commonly referred
to as the granular media equation or the kinetic Fokker-Planck equation (e.g., [4, 21]).

1.1. Literature Review. The systematic study of McKean-Vlasov SDEs was first initiated
by McKean [60] in the 1960s, inspired by Kac’s programme in Kinetic Theory [43]. We refer
to [31, 63, 79, 84] for some other classical references. In the last two decades, the study of
non-linear diffusions has continued to receive considerable attention, with extensive results
on well-posedness (e.g., [22, 40]), existence and uniqueness (e.g., [3, 42, 64]), ergodicity (e.g.,
[10, 20, 21, 29, 37, 58, 81]), and propagation of chaos (e.g., [4, 16, 28, 58, 59]). This has no
doubt been motivated, at least in part, by the increasing number of applications for McKean-
Vlasov SDEs, including in statistical physics [5], multi-agent systems [4], mean-field games
[18], stochastic control [14], filtering [26], mathematical biology (including neuroscience [1]
and structured models of population dynamics [15]), epidemic dynamics [2], social sciences
(including opinion dynamics [23] and cooperative behaviours [17]), financial mathematics [35],
and, perhaps most recently, high dimensional sampling [51] and neural networks [76].

Despite the recent renewed interest in the study of McKean-Vlasov SDEs, however, the
problem of parameter estimation for this class of equations has received relatively little at-
tention. This is contrast to the wealth of literature on parameter inference in linear (i.e.,
not measure dependent) diffusion processes (e.g., [8, 12, 46, 49]). Recently, Wen et al. [86]
established the asymptotic consistency and asymptotic normality of the (offline) maximum
likelihood estimator (MLE) for a broad class of McKean-Vlasov SDEs, based on continuous
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observation of (xt)t∈[0,T ]. These results have since been extended by Liu et al. to the path-
dependent case [50]. We also mention the work of Catalot and Laredo [33, 34], who have
studied parametric inference for a particular class of one-dimensional nonlinear self-stabilising
SDEs using an approximate log-likelihood function, again based on continuous observation
of the non-linear diffusion process, and established the asymptotic properties (consistency,
normality, convergence rates) of the resulting estimators in several asymptotic regimes (e.g.,
small noise and long time limit). More recently, Gomes et al. [36] have considered parame-
ter estimation for a McKean-Vlasov PDE, based on independent realisation of the associated
non-linear SDE, in the context of models for pedestrian dynamics.

In a slightly different framework, Maestra and Hoffmann [57] consider non-parametric
estimation of the drift-term in a McKean-Vlasov SDE, and the solution of the corresponding
non-linear Fokker-Planck equation, based on continuous observation of the associated IPS
over a fixed time horizon, namely (xi,Nt )i=1,...,N

t∈[0,T ] , in the limit as N →∞. The authors obtain
adaptive estimators based on the solution map of the Fokker-Planck equation, and prove their
optimality in a minimax sense. Moreover, in the case of the so-called Vlasov model, which in
our notation corresponds to the case in which b(x) = −∇V (x) and φ(x, y) = −∇W (x − y),
the authors derive an estimator of the interaction potential, and establish its consistency. We
also refer to [56, 54, 55] for some other recent contributions on non-parametric inference for
IPSs. While these approaches are interesting and potentially very useful, we should emphasise
that they are tangential and very different to this contribution.

Despite these recent contributions, however, to our knowledge there are no existing works
which tackle the problem of online parameter estimation for McKean-Vlasov SDEs. The main
purpose of this paper is to address this gap. There is significant motivation for this approach.
Indeed, in comparison to classical (offline) methods, which process observations in a batch
fashion, online methods perform inference in real time, can track changes in parameters over
time, are more computationally efficient, and have significantly smaller storage requirements.
Even for standard diffusion processes, literature on online parameter estimation is somewhat
sparse, with some notable recent exceptions [75, 77, 78]. The problem of recursive estimation
in continuous-time stochastic processes was first rigorously analysed by Levanony et al. [47],
who proposed an online MLE which, irrespective of initial conditions, was shown to be con-
sistent and asymptotically efficient. This estimator, however, involves computing gradients of
a Girsanov log-likelihood, Lt(θ), every time a new observation arrives; as a result, it is com-
putationally expensive, and cannot be implemented in a truly online fashion, since ∇θLt(θ)
depends on the entire trajectory of the process xt. This problem has recently been revisited
by Sirignano and Spiliopoulos [75, 77], who propose an online statistical learning algorithm
- ‘stochastic gradient descent in continuous time’ - for the estimation of the parameters in a
fully observed ergodic diffusion process. These authors establish the almost sure convergence
of this estimator in the sense that ||∇θg(θt)|| → 0 as t → ∞ a.s., for some suitably defined
objective function g(θ) [75], and, under additional assumptions, also obtain an Lp convergence
rate and a central limit theorem [77]. These results have since also been extended to partially
observed diffusion processes [78] and jump-diffusion processes [7].

There also exists relatively little previous literature on statistical inference for IPSs, in
the limit as the number of particles N → ∞. In the context of parameter estimation, the
mean field regime was first analysed by Kasonga [44], who considered a system of interacting
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diffusion processes, depending linearly on some unknown parameter, and established that
the MLE based on continuous observations over a fixed time interval [0, T ] is consistent and
asymptotically normal in the limit as N →∞. Bishwal [9] later extended these results to the
case in which the parameter to be estimated is a function of time, proving consistency and
asymptotic normality of the sieve estimator (in the case of continuous observations) and an
approximate MLE (in the case of discrete observations). In this paper, we extend the results
in [44] in another direction, establishing consistency and asymptotic normality of the offline
MLE when the parametrisation is not linear.

More recently, Giesecke et al. [35] have established the asymptotic properties (consistency,
asymptotic normality, and asymptotic efficiency) of an approximate MLE for a much broader
class of dynamic interacting stochastic systems, widely applicable in financial mathematics,
which additionally allow for discontinuous (i.e., jump) dynamics. In addition, Chen [24] has
established the optimal convergence rate for the MLE in an interacting parameter system with
linear interaction for φ, simultaneously in the large N (mean-field limit) and large T (long-
time dynamics) regimes. None of the these works, however, considers parameter estimation
for the IPS in the online setting.

1.2. Contributions. The main contributions of this paper relate to both the methodology
and the theory of parameter estimation for the McKean-Vlasov SDE (1.1) - (1.2). Regarding
methodology:

• We discuss how one can formulate an appropriate approximation to the true likelihood
function in this problem, under various modelling assumptions.
• We distinguish between cases in which the data consists of multiple paths of the IPS

(Case I), multiple independent samples of the McKean-Vlasov SDE (Case II), or, less
realistically, a single sample path of the McKean-Vlasov SDE and its law (Case III).

In each of these cases, we perform a rigorous asymptotic analysis of the MLE, with a focus
on online parameter estimation. Our main theoretical contributions can be summarised as
follows:

• In Case I, we establish asymptotic consistency and asymptotic normality of the offline
MLE, in the limit as the number of particles N →∞. Our results generalise those in
[44] to the case in which b and φ depend non-linearly on the parameter.
• In all three cases, we propose online estimators for the parameters of the McKean-

Vlasov SDE, which evolve according to continuous-time stochastic gradient descent
algorithms with respect to appropriate asymptotic log-likelihood functions.
• We prove that each of these estimators converges in L1 to the stationary points of

the asymptotic log-likelihood of the McKean-Vlasov SDE, under suitable conditions
which guarantee ergodicity and uniform-in-time propagation of chaos. In Cases I - II,
this convergence holds in the joint limit as N →∞ and t→∞. In Case III, it holds
solely in the limit as t→∞.
• We prove, under the additional condition that the asymptotic log-likelihood of the

McKean Vlasov SDE is strongly concave, that these estimators converge in L2 to its
unique global maximiser, in the same limits outlined above. In each case, we also
obtain explicit convergence rates.

Finally, we provide numerical examples to illustrate the application of these results to two
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cases of interest, namely, a linear mean-field model, and a stochastic opinion dynamics model.
It is worth emphasising that, given the connection between the McKean-Vlasov SDE (1.1) -
(1.2) and the non-linear, non-local PDE (1.5), the results of this paper are also applicable
when one is primarily interested in parameter estimation for the non-linear PDE (1.5).

1.3. Paper Organisation. The remainder of this paper is organised as follows. In Section
2, we formulate the estimation problem, and propose a recursive estimator for the McKean-
Vlasov SDE. In Section 3, we state our conditions and our main results regarding the asymp-
totic properties of the offline and online MLEs. In Section 4, we provide the proofs of these
results. In Section 5, we provide several numerical examples illustrating the performance of
the proposed algorithm. Finally, in Section 6, we provide some concluding remarks.

1.4. Additional Notation. We will assume throughout this paper that all stochastic pro-
cesses are defined canonically on a complete probability space (Ω,F ,P), equipped with filtra-
tion (Ft)t≥0. We will use 〈·, ·〉 and || · || to denote, respectively, the Euclidean inner product
and the corresponding norm on Rd. We write P(Rd) and Pp(Rd), p > 0, for the collection
of all probability measures on Rd, and the collection of all probability measures on Rd with
finite pth moment. In a slight abuse of notation, we will frequently write µ(|| · ||p) for the pth

moment of µ; that is, µ(|| · ||p) =
∫
Rd ||x||

pµ(dx). For µ, ν ∈ Pp(Rd), we write Wp(µ, ν) to
denote the Wasserstein distance between µ and ν, viz

Wp(µ, ν) = inf
π∈Π(µ,ν)

[∫
Rd×Rd

||x− y||pπ(dx, dy)

] 1
max{1,p}

.

where Π(µ, ν) for the set of all couplings of µ, ν. That is, if π ∈ Π(µ, ν), then π(A×Rd) = µ(A)
and π(Rd × A) = ν(A) for all A ∈ B(Rd). Finally, if (xt)t≥0 is a solution of the McKean-
Vlasov SDE with x0 = x ∈ Rd, we will occasionally make explicit the dependence on the
initial condition by writing µxt = L(xt) for the law of xt. We can also then write Ex [f(xt)] =∫
Rd f(y)µxt (dy).

2. Parameter Estimation for the McKean-Vlasov SDE. We will assume, throughout
this paper, that there exists a true (static) parameter θ0 ∈ Rp which generates observations
(xt)t≥0 := (xθ0t )t≥0 of the McKean-Vlasov SDE (1.1). Thus, we operate under the standard
well specified regime, and in our notation will suppress the dependence of the observed path on
the true parameter θ0. We will make the same condition when instead we observe trajectories
the IPS (1.4), in which case the observations are given by (xi,Nt )i=1,...,N

t≥0 = (xθ0,i,Nt )i=1,...,N
t≥0 .

2.1. The Likelihood Function. Let Pθt denote the probability measure induced by a path
(xθs)s∈[0,t] of the McKean-Vlasov SDE (1.1). Then, under certain regularity conditions, to be
specified below, one can use the Girsanov formula to obtain a likelihood function as (e.g., [86])

Lt(θ) = log
dPθt
dPθ0t

=

∫ t

0

〈[
B(θ, xs, µs)−B(θ0, xs, µs)

]
, (σ(xs)σ

T (xs))
−1dxs

〉
− 1

2

∫ t

0

[∣∣∣∣σ−1(xs)B(θ, xs, µs)
∣∣∣∣2 − ∣∣∣∣σ−1(xs)B(θ0, xs, µs)

∣∣∣∣2] ds.
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Suppose, for a moment, that the diffusion coefficient σ also depended on the parameter
θ. In this case, the measures {Pθ} would, in general, be mutually singular, and the likelihood
function would not be well defined. We thus adopt the standard condition of parameter
independence for the diffusion coefficient, and for convenience set σ = 1 (e.g., [12, 47, 86]).
In the case that σ is an unknown constant, it can be estimated separately using standard
methods (e.g., [32]). In fact, there are various different approaches in this case, including
those based on a quasi log-likelihood function [39], or on a least squares type function for the
diffusion coefficient [75]. The methods outlined in this paper can be extended to either of
these cases, as well as to parameter estimation under other criteria.

In order to proceed, it will be convenient to define the functions G : Rp×Rd×P(Rd)→ Rd
and L : Rp × Rd × P(Rd)→ R according to

G(θ, x, µ) := B(θ, x, µ)−B(θ0, x, µ)(2.1)

L(θ, x, µ) := −1

2
||G(θ, x, µ)||2.(2.2)

We are now ready to state our first basic assumption. This is Novikov-type condition
which ensures that

dPθt
dPθ0t

exists and is a martingale. We note that several slightly weaker
versions of this condition are also possible (e.g., [50, 86]).

Assumption A.1. For all θ ∈ Rp, t ≥ 0, the function G : Rp × Rd × P(Rd)→ Rd satisfies

E
[
exp

(
1

2

∫ t

0
||G(θ, xs, µs)||2ds

)]
<∞.

Under this assumption, it follows immediately from Girsanov’s Theorem that Pθt is abso-
lutely continuous with respect to Pθ0t for all θ ∈ Rp, t > 0 (e.g. [49, Theorem 7.19], [50, 86]),
and that the log-likelihood for an observed path of the McKean-Vlasov SDE (1.1) - (1.2) is
given by

Lt(θ) =

∫ t

0
L(θ, xs, µs)ds+

∫ t

0
〈G(θ, xs, µs),dws〉.(2.3)

While, in general, it is possible to observe a sample path (xt)t≥0 of a (McKean-Vlasov)
SDE, in general one does not have direct access to its law (µt)t≥0. As such, it is generally not
to possible to compute the likelihood function Lt(θ) in (2.3) directly. On this basis, even if
one is interested in fitting data to the McKean-Vlasov SDE, it will typically be necessary to
approximate the corresponding likelihood function.

In order to make such an approximation, we will henceforth assume that we can simul-
taneously observe multiple continuous sample paths, which is much more typical of the data
that we observe in practice. There are now two possibilities. The first is to assume that the
observed paths correspond to the trajectories of N particles (xi,Nt )i=1,...,N

t≥0 from the IPS (1.4).
In this case, we can approximate Lt(θ) by the Girsanov log-likelihood for the IPS, which is
given by (e.g., [9, 24, 44])

LNt (θ) :=
1

N

N∑
i=1

Li,Nt (θ) =
1

N

N∑
i=1

[ ∫ t

0
L(θ, xi,Ns , µNs )ds+

∫ t

0

〈
G(θ, xi,Ns , µNs ), dwis

〉]
,(2.4)
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Case Data-Generating Model Observation(s) Likelihood Function

Approximate Ideal

Case I IPS (1.4) (xi,Nt )i=1,...,N
t≥0 LNt (θ) in (2.4) Lt(θ) in (2.3)

Case II MVSDE (1.1) - (1.2) (xit)
i=1,...,N
t≥0 L[N ]

t (θ) in (2.5) Lt(θ) in (2.3)

Case III MVSDE (1.1) - (1.2) (xt, µt)t≥0 - Lt(θ) in (2.3)

Table 1
Parameter Estimation: Summary of Different Cases

where µNt = 1
N

∑N
j=1 δxj,Nt

denotes the empirical measure of the IPS, and we have included 1
N

as a normalisation factor. We will refer to this as Case I. The second possibility is to instead
assume the observed paths are N independent instances (xit)

i=1,...,N
t≥0 of the McKean-Vlasov

SDE (1.1). In this case, we can approximate Lt(θ) by

L[N ]
t (θ) :=

1

N

N∑
i=1

L[i,N ]
t (θ) =

1

N

N∑
i=1

[ ∫ t

0
L(θ, xis, µ

[N ]
s )ds+

∫ t

0

〈
G(θ, xis, µ

[N ]
s ),dwis

〉]
,(2.5)

where µ
[N ]
t = 1

N

∑N
i=1 δxit denotes the empirical measure of the sample paths. In this approx-

imation, the the functions L[i,N ]
t (θ), i = 1, . . . , N , correspond to N Monte Carlo approxima-

tions of Lt(θ), obtained by substituting µ
[N ]
t for µt. The approximation L[N ]

t (θ) then follows
by independence. We will refer to this case as Case II. Finally, we will refer to the rather
unrealistic case in which we directly observe a single path (xt)t≥0 of the McKean-Vlasov SDE
(1.1), as well as its law (µt)t≥0, as Case III. These cases are summarised in Table 1.

In what follows, our exposition will primarily focus on Case I, which provides the most
interesting and challenging case in which to perform asymptotic analysis in both N and t.
One can consider Case I and Case II as approximations to Case III that are amenable to
implementation. In the limit as N → ∞, standard propagation-of-chaos results (e.g., [58])
show that the dynamics of the observations in Cases I and II will coincide. In our results,
we will establish rigorously that this also holds for the different implied likelihood functions,
LNt (θ) and L[N ]

t (θ). This should not be a surprise given the similarities between these two
functions: in particular, they are identical as functions of x and µN . We will also demonstrate
that, as N → ∞, these two ‘approximations’ also coincide with Lt(θ), the ‘ideal’ likelihood
function implied by the less realistic Case III. Moreover, we show that the same is true of the
resulting parameter estimates.

2.2. Offline Parameter Estimation. In the offline setting, the objective is to estimate the
true parameter θ0 after receiving a batch of data over a fixed time interval [0, t]. Let us first
consider the ‘idealised’ framework of Case III, in which one directly observes both (xs)s∈[0,t]

and (µs)s∈[0,t] from the McKean-Vlasov SDE (1.1) - (1.2). In this case, one can achieve this
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objective directly by seeking to maximise the value of Lt(θ) in order to obtain the MLE

θ̂t = arg sup
θ∈Rp

Lt(θ).

The asymptotic properties (i.e., consistency, asymptotic normality) of this estimator in the
limit as t → ∞, under similar conditions to our own (see Section 3), have recently been
established [50, 86]. In this paper, we are more interested in Case I, in which we assume that
we observe N sample paths (xi,Nt )i=1,...,N

s∈[0,t] following the dynamics of the IPS (1.4). In this case,
we aim instead to maximise the value of LNt (θ), and are thus interested in the asymptotic
properties of the following MLE

θ̂Nt = arg sup
θ∈Rp

LNt (θ).

The asymptotic properties of this estimator as t → ∞, for fixed N , are covered by well
established results for parameter estimation in standard SDEs (e.g., [8, 47, 49]). Conversely,
there are very few results on the properties of this MLE in the limit as N →∞, aside from in
the case of a linear parametrisation [9, 44]. We thus find it instructive to revisit this problem.
In Theorems 3.1 - 3.2, we extend previous results to the more general and possible non-linear
setting (in the sense of parametrisation), establishing consistency and asymptotic normality
of this estimator as N →∞, for fixed t.

2.3. Online Parameter Estimation. In the online setting, our objective is to estimate the
true parameter θ0 in real time, using the continuous stream of observations. Once more, let
us begin in the ‘idealised’ framework of Case III. In this case, a standard approach to this
task would be to seek to recursively maximise the asymptotic log-likelihood function L̃(θ) of
the McKean-Vlasov SDE, which, provided the limit exists, could be defined according to

L̃(θ) = lim
t→∞

1

t
Lt(θ).

In the spirit of [7, 75, 78], this could be achieved using stochastic approximation by defining
an estimator θ = (θt)t≥0 which follows the gradient of the integrand of the log-likelihood in
(2.3), evaluated with the current parameter estimate. Thus, initialised at θinit ∈ Rp, θt evolves
according to a McKean-Vlasov SDE of the form

dθt = γt

(
∇θL(θt, xt, µt)dt︸ ︷︷ ︸
(noisy) ascent term

+∇θB(θt, xt, µt)dwt︸ ︷︷ ︸
noise term

)
(2.6)

where γt : R+ → Rp+ is a positive, non-increasing function known as the learning rate. One
also arrives at this estimator by considering a ‘least-squares’ type objective, i.e., minimisation
of the function ||G(θ, x, µ)||2 (see also [75]). This evolution equation represents a continuous-
time stochastic gradient ascent scheme on the asymptotic log-likelihood function. To see this,
let us rewrite the parameter update equation (2.6) in the form

dθt = γt

(
∇θL̃(θt)dt︸ ︷︷ ︸

(true) ascent term

+ (∇θL(θt, xt, µt)−∇θL̃(θt))dt︸ ︷︷ ︸
fluctuations term

+∇θB(θt, xt, µt)dwt︸ ︷︷ ︸
noise term

)
(2.7)
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The first term in this decomposition represents the true ascent direction ∇θL̃(θt), the second
term the deviation between the stochastic gradient ascent direction∇θL(θt, xt, µt) and the true
(deterministic) gradient ascent direction ∇θL̃(θt), while the third term is a zero-mean noise
term. Heuristically, we might expect that, provided the learning rate γt decreases (sufficiently
quickly) with time, the ascent term will dominate the fluctuations term and the noise term
when t is sufficiently large. If this is the case, we could then reasonably expect that θt will
converge to a local maximum of L̃(θ).

Similarly to the offline case, the ‘ideal’ online estimator (2.6) cannot typically be im-
plemented in practice, since we do not have access to the law (µt)t≥0. Instead, as remarked
previously, we will typically observe multiple continuous sample paths. Once again, let us first
consider the case in which the N sample paths (xt)

i=1,...,N
s∈[0,t] are assumed to correspond to the

trajectories of the IPS (1.4) (Case I). In this case, it is natural to consider the ‘approximate’
update equation

dθi,Nt = γt

[
∇θL(θt, x

i,N
t , µNt )dt+∇θB(θt, x

i,N
t , µNt )dwit

]
,(2.8)

for some i = 1, . . . , N , or, averaging over all of the interacting particles,

dθNt = γt
1

N

N∑
i=1

[
∇θL(θt, x

i,N
t , µNt )dt+∇θB(θt, x

i,N
t , µNt )dwit

]
.(2.9)

We can also use these update equations in Case II, in which we instead assume that the N
sample paths (xit)

i=1,...,N
t≥0 correspond to independent replicates of the McKean-Vlasov SDE

(1.1). This should not be surprising on the basis of our previous remarks: in particular, the
likelihood functions in Cases I and II are identical up to specification of the data. In Case
II, we must simply replace xi,Nt by xit, and µNt by µ

[N ]
t in (2.8) and (2.9). We will denote the

resulting estimates by (θ
[i,N ]
t )t≥0 and (θ

[N ]
t )t≥0.

Let us briefly remark on these two schemes. The advantage of (2.8) is that the computation
can be performed locally at each particle, following a message passing step for retrieving µNt .
It is thus convenient for a distributed implementation. On the other hand, (2.9) will typically
be more accurate, as we will later demonstrate (see Theorems 3.4 and 3.4∗). In Case I,
these two schemes can be seen as stochastic gradient descent algorithms for maximising the
‘partial’ asymptotic log-likelihood of the ith particle in the IPS, or the ‘complete’ asymptotic
log-likelihood of all of the particles, respectively. That is,

L̃i,N (θ) = lim
t→∞

1

t
Li,Nt (θ) or L̃N (θ) = lim

t→∞

1

t
LNt (θ).

Reasoning as before, we expect that, under suitable conditions on the learning rate, θNt and
θi,Nt will converge to local maxima of L̃N (θ) and L̃i,N (θ) as t → ∞. Moreover, assuming
uniform-in-time propagation of chaos, we can also now expect that L̃N (θ) and L̃i,N (θ) will
converge to L̃(θ) as N → ∞. Thus, in the joint limit as t → ∞ and N → ∞ it seems
reasonable to hypothesise that θNt and θi,Nt will in fact converge to local maxima of L̃(θ), the
asymptotic log-likelihood of the original McKean-Vlasov SDE. In Theorems 3.3 - 3.4, we will
establish rigorously that this is indeed the case.
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3. Main Results. In this section, we present our main results on the asymptotic properties
of the offline and online MLEs, as well as our assumptions.

3.1. Assumptions. Let us begin by stating our basic assumptions.

Assumption B.1. For all θ ∈ Rp, b(θ, ·) : Rd → Rd has the following properties.
(i) b(θ, ·) is locally Lipschitz. That is, for all x, x′ ∈ Rd such that ||x||, ||x′|| < R, there

exists 0 < L1 <∞ such that

||b(θ, x)− b(θ, x′)|| ≤ L1||x− x′||.

(ii) b(θ, ·) is ‘monotonic’. That is, for all x, x′ ∈ Rd, there exists α > 0 such that〈
x− x′, b(θ, x)− b(θ, x′)

〉
≤ −α||x− x′||2.

Assumption B.2. For all θ ∈ Rp, φ(θ, ·, ·) : Rd × Rd → Rd has the following properties.
(i) φ(θ, ·, ·) ∈ C2(Rd,Rd). That is, φ is twice continuously differentiable with respect to

both of its arguments.
(ii) φ(θ, ·, ·) is globally Lipschitz. In particular, there exists 0 < 2L2 < α such that, for all

x, y, x′, y′ ∈ Rd,

||φ(θ, x, y)− φ(θ, x′, y′)|| ≤ L2(||x− x′||+ ||y − y′||).

or, in place of (ii),

(ii)’ φ(θ, ·, ·) is ‘anti-symmetric’. That is, for all x, y ∈ Rd, φ(x, y) = φ(y, x).
(ii)” φ(θ, ·, ·) increases as a function of the distance between its arguments. That is, for all

x, y, x′, y′ ∈ Rd,

〈(x− y)− (x′ − y′), φ(x, y)− φ(x′, y′)〉 ≤ 0.

These two conditions are used to establish existence and uniqueness of the strong solution
to the McKean-Vlasov SDE, uniform moment bounds, uniform-in-time propagation of chaos,
and the existence of, and exponential convergence to, a unique invariant measure (e.g., [16,
83]). We provide a precise statement of these well known results in Appendix A, which we
will frequently make use of to prove the main results in this paper.

In the literature on non-linear diffusions, it is typical, as noted previously, to consider
the case in which b(θ, x) = −∇V (θ, x) for some confinement potential V , and φ(θ, x, y) =
−∇W (θ, x− y) for some interaction potential W . In this context, Condition B.1(ii) is equiva-
lent to the condition that V is strongly convex with parameter α, and Conditions B.2(ii)’-(ii)”
are equivalent to the conditions that W is symmetric and convex (see [58]). These are per-
haps the simplest and most well established conditions under which the results listed above
(uniform-in-time propagation of chaos, exponential convergence to a unique invariant measure)
can be obtained; we have thus adopted them here for ease of exposition.

This being said, let us remark briefly upon some weaker conditions under which these
results still hold, and therefore under which the main results of our paper will also still hold
(albeit with some additional technical overhead). In the case that there is no confinement
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potential (i.e. V ≡ 0), and the interaction potential is uniformly convex with gradient that is
locally Lipschitz with polynomial growth, Malrieu established uniform-in-time propagation of
chaos and exponential convergence to equilibrium [59]. Cattiaux et al. [21] later established
the same results in the case that the interaction potential is degenerately convex. Meanwhile,
in [19, 20], the authors establish exponential convergence to equilibrium under the strict
convexity condition Hess(V + 2W ) ≥ βId, for some β > 0.

In the case that V + 2W is not convex, far fewer results are available; indeed, without
additional conditions on V and W , even the existence of a unique stationary distribution is
not guaranteed (see, e.g., [37, 38, 81, 82]). This being said, Bolley et al. [10] proved uniform
exponential convergence to equilibrium in both degenerately convex, and weakly non-convex
cases. More recently, [28, 29] have established uniform-in-time propagation of chaos and
exponential convergence to equilibrium in the non-convex case, provided the confinement
potential V is strictly convex outside a ball, and the interaction potential is globally Lipschitz
with sufficiently small Lipschitz constant. For a recent extension of these results, see also [52].

We will also require the following regularity condition.

Assumption C.1. The functions b : Rp × Rd → Rd and φ : Rp × Rd × Rd → Rd have the
following properties.

(i) ∇θb(·, x),∇θφ(·, x, y) ∈ C2(Rp) for all x, y ∈ Rd, ∂2

∂x2
∇θb ∈ C(Rp,Rd), ∂2

∂x2
∇θφ ∈

C(Rp,Rd,Rd), and ∇iθb(θ, ·) ∈ C1+α(Rd), ∇iθφ(θ, ·, ·) ∈ C1+α(Rd,Rd), i = 1, 2, uni-
formly in θ ∈ Rp for some α ∈ (0, 1).1

(ii) The functions ∇iθb(θ, ·) and ∇iθφ(θ, ·, ·) are locally Lipschitz with polynomial growth.
That is, there exist constants q,K <∞ such that, for i = 0, 1, 2, 3,∣∣∣∣∇iθb(θ, x)−∇iθb(θ, x′)

∣∣∣∣ ≤ K||x− x′|| [1 + ||x||q + ||x′||q
]∣∣∣∣∇iθφ(θ, x, y)−∇iθφ(θ, x′, y′)

∣∣∣∣ ≤ K [||x− x′||+ ||y − y′||]
·
[
1 + ||x||q + ||x′||q + ||y||q + ||y′||q

]
.

(iii) b(θ0, ·) ∈ C2+α(Rd), φ(θ0, ·, ·) ∈ C2+α(Rd,Rd) with α ∈ (0, 1). Namely, these functions
have two derivatives, with all partial derivatives Hölder continuous with exponent α.

In the offline setting, these conditions are required in order to control the growth of the
log-likelihood function and its derivatives. In the online setting, they are required in order to
control the ergodic behaviour of the solution of the McKean-Vlasov SDE (and the associated
IPS), which is central to establishing convergence of the online MLE. In particular, they ensure
that fluctuations terms of the form

∫ t
0 γs(∇θL(θs, xs, µs)−∇θL̃(θs))ds, which arise due to the

noisy online estimate of the gradient of the asymptotic log-likelihood function ∇θL̃(θs), c.f.
(2.7), tend to zero sufficiently quickly as t → ∞. Using an approach which is now well
established in the analysis of stochastic approximation algorithms in continuous time (e.g.,
[7, 74, 75, 77, 78]), we control such terms by rewriting them in terms of the solutions of some
related Poisson equations. Condition C.1 ensures that these solutions are unique, and that
they grow at most polynomially in a suitable sense (see Lemma D.14 in Appendix D).

1In fact, we only require that these properties hold for the function L(θ, x, µ), as defined in (2.1) - (2.2).
We find it more convenient, however, to specify this condition in terms of the functions b(θ, x) and φ(θ, x, µ).
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We should remark that, for the sake of convenience and to remain in line with much of
the recent literature, we have restricted our attention to the case in which the measure enters
only linearly in the drift coefficient B(θ, x, µ). As such, our main conditions are stated in
terms of the functions b : Rp × Rd × Rd and φ : Rp × Rd × Rd → Rd. Our main results,
however, can be extended straightforwardly to more general choices of interaction function,
under suitable conditions on B : Rp × Rd × P(Rd)→ Rd. In particular, in the online setting,
we simple require conditions which guarantee the existence of a unique invariant measure, and
uniform-in-time propagation of chaos. As an example, we can replace Condition C.1(ii) by
||∇θB(θ, x, µ)|| ≤ K[1 + ||x||q + µ(|| · ||q)]. Finally, we will require the following assumption
on the initial condition.

Assumption D.1. The initial law satisfies µ0 ∈ Pk(Rd) for all k ∈ N.

This condition guarantees that the solutions of the McKean-Vlasov SDE and the associated
IPS have bounded moments of all orders (see Proposition A.2), and so do their invariant
measures (see Lemma D.1). In turn, this ensures that one can control the polynomial growth
of the log-likelihood and its derivatives (in the offline case), and the polynomial growth of the
solutions of the relevant Poisson equations (in the online case). We should remark that, in the
offline case, we can significantly weaken this assumption: in particular, we only require that
µ0 ∈ Pq(Rd), where q is the order of the polynomial growth of the functions b(θ, ·) and φ(θ, ·, ·)
(see Condition C.1). One can also slightly relax this condition in the online case, though in a
much more cumbersome fashion.2 We note that this condition is trivially satisfied in the case
that x0 ∈ Rd.

3.2. Offline Parameter Estimation. In the case of offline parameter estimation, we will
require the following additional assumptions.

Assumption E.1. For all t > 0, and for all θ ∈ Rp, the function mt : Rp → R, defined
according to

mt(θ) =

∫ t

0

∫
Rd
L(θ, x, µs)µs(dx)ds

satisfies sup||θ−θ0||>δmt(θ) < 0 a.s. ∀δ > 0.

Assumption E.2. For all t > 0, the matrix It(θ0) = [It(θ0)]k,l=1,...,p ∈ Rp×p, defined accord-
ing to

[It(θ0)]kl =

∫ t

0

∫
Rd

[∇θB(θ0, x, µs)]k[∇θB(θ0, x, µs)]lµs(dx)ds

is positive-definite, with λT It(θ0)λ increasing for all λ ∈ Rp, and I0(θ0) = 0.

The first of these two conditions relates to parameter identifiability, guaranteeing the
uniqueness of θ0 as the optimal parameter in the sense of some asymptotic cost, and is nec-
essary in order to establish consistency of the MLE as N → ∞. It can be seen, in some

2In particular, in the online case, one requires µ0 ∈ Pk(Rd), where k is the maximum order of polynomial
growth of a solution of any of the relevant Poisson equations appearing in the proofs of Theorem 3.3 and
Theorem 3.4.
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sense, as an analogue of the classical condition used to obtain consistency in the long-time
regime (e.g., [12], [53, pp. 137-139], [47, pp. 252 - 253] [69, Condition A5]). It is also closely
related to the so-called ‘coercivity condition’, introduced in [11], which appears in the study of
non-parametric inference for IPSs (see also [48, 54, 55, 56]). Meanwhile, the second condition
is necessary in order to establish asymptotic normality, and can be seen as a generalisation of
a similar condition introduced in [44] (see also [9]).

We are now ready to state our two main results in the offline case.

Theorem 3.1. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and E.1 hold. Let Θ ⊆ Rp
be a compact set, and suppose θ0 ∈ Θ. Then, for all t > 0, θ̂Nt is a weakly consistent estimator
of θ0 as N →∞. That is, as N →∞,

θ̂Nt
P−→ θ0.

Proof. See Section 4.1.

Theorem 3.2. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and E.1 - E.2 hold.
Let Θ ⊆ Rp be a compact set, and suppose θ0 ∈ Θ. Then, for all t > 0, N

1
2 (θ̂Nt − θ0) is

asymptotically normal with mean zero and variance I−1
t (θ0). That is, as N →∞,

N
1
2 (θ̂Nt − θ0)

D−→ N (0, I−1
t (θ0)).

Proof. See Section 4.2.

3.3. Online Parameter Estimation. In the online case, we will first require the following
standard condition on the learning rate.

Assumption F.1. The learning rate γt : R+ → R+ is a positive, non-increasing function
such that

∫∞
0 γtdt =∞,

∫∞
0 γ2

t dt <∞,
∫∞

0 γ′tdt <∞. Moreover, there exists p > 0 such that

limt→∞ γ
2
t t

2p+ 1
2 = 0.

This condition can be seen as the continuous-time analogue of the standard step-size
condition used in the convergence analysis of stochastic approximation algorithms in discrete
time (e.g., [72, 75]).

We now proceed with some additional assumptions, which will only be required for our
L2 convergence results (Theorems 3.4, 3.4∗, 3.4†, 3.4‡).

Assumption F.2. Let Φs,t = exp(−2η
∫ t
s γudu), for the constant η defined below in Condi-

tion H.1. The learning rate γt : R+ → R+ satisfies
∫ t

0 γ
2
sΦs,tds = O(γt),

∫ t
0 γ
′
tΦs,tds = O(γt),∫ t

0 γsΦs,tds = O(1),
∫ t

0 γsΦs,te
−λsds = O(γt), and Φ1,t = O(γt).

This is another condition on the learning rate, first introduced in [77], and is specific
to stochastic gradient descent in continuous time. A standard choice of learning rate which
satisfies both of these conditions is γt = Cγ(C0 + t)−1, where Cγ , C0 > 0 are positive constants
such that Cγη > 1.

In addition, we introduce the following two assumptions.

Assumption G.1. There exists a positive constant R <∞, and an almost everywhere posi-
tive function κ : Rd × P(Rd)→ R, such that, for all ||θ|| ≥ R,

〈∇θL(θ, x, µ), θ〉 ≤ −κ(x, µ)||θ||2.
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Assumption G.2. Define the function τ : Rp × Rd × P(Rd)→ R according to

τ(θ, x, µ) =
〈
∇θB(θ, x, µ)∇θBT (θ, x, µ)

θ

||θ||
,
θ

||θ||
〉 1

2

Then, there exists 0 < q,K <∞ such that, for all θ, θ′ ∈ Rp, for all x, y ∈ Rd,

|τ(θ, x)− τ(θ′, x)|| ≤ K||θ − θ′||(1 + ||x||q + ||µ(|| · ||2)||
q
2 )

These two conditions ensure, via the comparison theorem (e.g., [41, 87]), that the online
parameter estimates generated by the McKean-Vlasov SDE and the IPS, namely (θt)t≥0 and
(θi,Nt )t≥0, have uniformly bounded moments (see Lemma 4.1). We refer to [45] for some more
general conditions under which this result still holds. The first condition relates to the drift
terms in the two parameter update equations, and can be seen as a recurrence condition; the
second condition relates to the diffusion terms, and can be seen as an extension of Condition
B.2(ii). In particular, in the case that θ ∈ R, Condition G.2 essentially reduces to Condition
B.2(ii). This condition was introduced in [75], and has since also appeared in [7].

Finally, to establish consistency, we will require the following assumptions on the concavity
of the log-likelihood.

Assumption H.1. The function L̃(θ) is strongly concave. That is, there exists η > 0 such
that, for all θ, θ′ ∈ Rp,

L̃(θ′) ≤ L̃(θ) +∇L̃(θ)T (θ′ − θ)− η

2
||θ′ − θ||2.

Assumption H.1’. The function L̃i,N (θ) is strongly concave, for all N ∈ N, for all i =
1, . . . , N . That is, there exists ηi,N > 0 such that, for all θ, θ′ ∈ Rp,

L̃i,N (θ′) ≤ L̃i,N (θ) +∇L̃i,N (θ)T (θ′ − θ)− ηi,N

2
||θ′ − θ||2.

These conditions relate to the properties of the asymptotic log-likelihoods of the McKean
Vlasov SDE and the IPS, respectively. They imply, in particular, that L̃(θ) and L̃i,N (θ) have
unique maximisers, say θ∗ and θN∗ . Under certain identifiability assumptions, these must in
fact be equal to the true parameter θ0 (e.g., [47]). We note that the first of these conditions
is slightly weaker than the second: under the first assumption, we establish that θi,Nt

L2

→ θ0 as
t → ∞ and N → ∞ (Theorem 3.4), while under the second assumption, we establish that
θi,Nt

L2

→ θ0 as t→∞ for all N ∈ N (Theorem 3.4†). Thus, under the second assumption, there
is no requirement to take the limit as N →∞. We also obtain a sharper L2 convergence rate.

We are now ready to state our main results in the online case. These results, categorised
according to different cases introduced in Section 2, are summarised in Table 2.

Case I. In this case, we assume that we observe the trajectories of N particles (xit)
i=1,...,N
t≥0

of the IPS (1.4). We can thus generate online parameter estimates according to (2.8) or
(2.9). We here show that, in the limit as N →∞ and t→∞, these parameter estimates can
maximise L̃(θ), the asymptotic log-likelihood of the McKean-Vlasov SDE. Thus, the proposed
approach with finite N can be thought of as a principled approximate method for estimating
the unknown parameter θ of the McKean-Vlasov SDE in an online fashion. In our first result,
we establish L1 convergence of (2.8) and (2.9) to the stationary points of L̃(θ).



PARAMETER ESTIMATION 15

Case Theorems
Parameter
Estimates

Objective Function Convergence Rate

Case I 3.3 - 3.4
θi,Nt from (2.8)

L̃(θ) MSVDE
(K1 +K2)γt +

K3

N
1
2

θNt from (2.9) (K1 +
K2

N
)γt +

K3

N
1
2

Case II 3.3∗ - 3.4∗
θ
[i,N ]
t from (2.8)

L̃(θ) MSVDE
(K∗1 +K∗2 ) γt

θ
[N ]
t from (2.9) (K∗1 +

K∗2
N

)γt

Case III 3.3† - 3.4† θt from (2.6) L̃(θ) MSVDE (K†1 +K†2)γt

Case I
(finite N)

3.3‡ - 3.4‡
θi,Nt from (2.8) L̃i,N (θ)

IPS
(Partial)

(K‡1 +K‡2)γt

θNt from (2.9) L̃N (θ)
IPS

(Complete) (K‡1 +
K‡2
N

)γt

Table 2
Online Parameter Estimation: Summary of Main Results

Theorem 3.3. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then, in
L1, it holds that

lim
N→∞

lim
t→∞
||∇θL̃(θi,Nt )|| = lim

t→∞
lim
N→∞

||∇θL̃(θi,Nt )|| = 0,

lim
N→∞

lim
t→∞
||∇θL̃(θNt )|| = lim

t→∞
lim
N→∞

||∇θL̃(θNt )|| = 0.

Proof. See Section 4.3.

In our second result, under additional assumptions, we establish L2 convergence to the
unique maximiser of L̃(θ).

Theorem 3.4. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2,
and H.1 hold. Then, for sufficiently large t, and for N ≥ 1, 1 ≤ i ≤ N , there exist positive
constants K1,K2,K3 such that

E
[
||θi,Nt − θ0||2

]
≤ (K1 +K2) γt +

K3

N
1
2

,(3.1)

E
[
||θNt − θ0||2

]
≤ (K1 +

K2

N
)γt +

K3

N
1
2

,(3.2)

Proof. See Section 4.4.

Case II. In this case, we assume that we observe independent sample paths (xit)
i=1,...,N
t≥0

of the McKean-Vlasov SDE (1.1). We thus generate online parameter estimates according to
(2.8) or (2.9), replacing xi,Nt by xit, and µNt by µ

[N ]
t where appropriate. In this case, we obtain

the following statement of our results, similarly to Case I.
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Theorem 3.3∗. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then, in
L1, it holds that

lim
N→∞

lim
t→∞
||∇θL̃(θ

[i,N ]
t )|| = lim

t→∞
lim
N→∞

||∇θL̃(θ
[i,N ]
t )|| = 0,

lim
N→∞

lim
t→∞
||∇θL̃(θ

[N ]
t )|| = lim

t→∞
lim
N→∞

||∇θL̃(θ
[N ]
t )|| = 0.

Theorem 3.4∗. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2,
and H.1 hold. Then, for sufficiently large t, there exist positive constants K∗1 ,K

∗
2 , such that

E
[
||θ[i,N ]

t − θ0||2
]
≤ (K∗1 +K∗2 ) γt,

E
[
||θ[N ]

t − θ0||2
]
≤ (K∗1 +

K∗2
N

)γt.

Proof. See Appendix F.

Let us briefly compare the results obtained in Case I (Theorems 3.3 - 3.4) and in Case II
(Theorems 3.3∗ - 3.4∗). As remarked previously, the online parameter estimates in both of
these cases follow the same parameter update equations; the only difference is the assumed
form of the data-generating model. It is thus expected that the results obtained in these
two cases will be similar, if not identical. In Theorems 3.3 and 3.3∗, this is indeed seen
to be the case. These results establish that, regardless of the assumed form of the data-
generating mechanism, the online parameter estimates generated via (2.8) or (2.9) converge
to the stationary points of L̃(θ) as N →∞ and t→∞. On the other hand, in Theorems 3.4
and 3.4∗, a difference does arise between the two L2 convergence rates. In particular, in Case
I (Theorem 3.4) there is an additional O(N−

1
2 ) term. We can interpret this term as a penalty

for the mismatch between the likelihood implied by the assumed data-generating model in
Case I, namely the IPS (1.4), and the likelihood implied by the McKean-Vlasov SDE (1.1) -
(1.2), which is the function that we are seeking to optimise.

Case III. In this case, we assume that we can observe not only a sample path (xt)t≥0 of
the non-linear SDE, but also its law (µt)t≥0. We can thus generate online parameter estimates
according to (2.6). As remarked previously, this scenario is mainly of theoretical interest, since
in practice it is very rarely possible to measure the law of the non-linear process. Nonetheless,
we can still obtain the following statement of our results.

Theorem 3.3†. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 hold. Then, in L1,
it holds that

lim
t→∞
||∇θL̃(θt)|| = 0.

Theorem 3.4†. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2 and
H.1 hold. Then, for sufficiently large t, there exist positive constants K†1,K

†
2, such that

E
[
||θt − θ0||2

]
≤ (K†1 +K†2)γt.

Proof. See Appendix G.
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These results represent an extension of [75, Theorem 2.4] and [77, Proposition 2.13], respec-
tively, to the McKean-Vlasov case. We should remark that a rather more direct proof of these
results may be possible, which does not require us to pass between the McKean-Vlasov SDE
and the IPS, but which instead works directly with the non-linear equation. This approach
would require strong regularity results on the solutions of a non-linear, non-local Poisson
equation, similar to those recently obtained in [73]. We are not aware, however, of any such
results appropriate to our case.

Case I (finite N). For the sake of completeness, we conclude this section by revisiting
Case I, now under the condition that the number of particles N if fixed and finite, and that
we are only interested in long-time asymptotics. In particular, our objective is now simply to
maximise the asymptotic log-likelihood of the IPS, L̃i,N (θ). In this case, we have the following.

Theorem 3.3‡. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then, in
L1, it holds that

lim
t→∞
||∇θL̃i,N (θi,Nt )|| = 0.

lim
t→∞
||∇θL̃N (θNt )|| = 0.

Theorem 3.4‡. Assume that Conditions B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2, and
H.1’ hold. Then, for sufficiently large t, there exist positive constants K‡1,K

‡
2, such that

E
[
||θi,Nt − θ0||2

]
≤
(
K‡1 +K‡2

)
γt.(3.3)

E
[
||θNt − θ0||2

]
≤ (K‡1 +

K‡2
N

)γt.(3.4)

Proof. See Appendix H.

Theorem 3.4‡ demonstrates that, if the asymptotic log-likelihood of the IPS is sufficiently
well-behaved (i.e., strongly concave) for finite values of N ∈ N, then the parameter estimate
generated using the IPS is guaranteed to converge to the true parameter value as t→∞ for
all values of N ∈ N. In particular, it is not necessary to take the limit as N → ∞. This is
clear upon comparison of the bounds (3.1) - (3.2) in Theorem 3.4 with the bounds (3.3) - (3.4)
in Theorem 3.4†. Broadly speaking, the additional term appearing in the convergence rates
in Theorem 3.4 can be regarded as upper bounds on the difference between the maximisers
of L̃(·) and L̃i,N (·), which only arise if L̃(·) is strongly concave but L̃i,N (·) is not. That is, if
Condition H.1 is satisfied but Condition H.1’ is not.

4. Proof of Main Results. In this section, we provide proofs of our main results. Many of
these proofs will rely on additional auxiliary lemmas; in the interest of brevity, the statements
and proofs of these lemmas have been deferred to the appendices.

4.1. Proof of Theorem 3.1. We begin by establishing consistency of the offline MLE as
N → ∞. We should emphasise that, throughout this proof, the value of t will be fixed and
finite. This being said, our method of proof will broadly follow the classical approach for
establishing strong consistency of the MLE in a different asymptotic regime, namely, in the
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limit as t→∞ (e.g., [12]). Since we consider an entirely different asymptotic regime, however,
at times we will need to rely on slightly different arguments (e.g., Lemma C.1), and, of course,
different conditions (e.g., Condition E.1).

Proof. Let Pθt,N denote the probability measure induced by (xθ,i,Ns )i=1,...,N
s∈[0,t] . We begin with

the observation that, since Θ ⊆ Rp is compact, for all t ≥ 0, and for all N ∈ N, there exists
θ̂Nt ∈ Θ such that

dPθt,N
dPθ0t,N

∣∣∣∣∣
θ=θ̂Nt

≥
dPθ̃t,N
dPθ0t,N

a.s.

for all θ̃ ∈ Θ. We thus have, setting θ̃ = θ0, that dPθt,N/dP
θ0
t,N |θ=θ̂Nt ≥ 1 a.s., from which it

follows straightforwardly that LNt (θ̂Nt ) = log[dPθt,N/dP
θ0
t,N ]θ=θ̂Nt

≥ 0 a.s. It follows, using the
definition of the log-likelihood, that, almost surely,

1

N

N∑
i=1

∫ t

0

〈
G(θ, xi,Ns , µNs ), dwis

〉
θ=θ̂Nt

≥ 1

2N

N∑
i=1

∫ t

0

∣∣∣∣∣∣G(θ̂Nt , x
i,N
s , µNs )

∣∣∣∣∣∣2 ds ≥ 0.

In addition, by Lemma C.1, we have that 1
N

∑N
i=1

∫ t
0 〈G(θ, xi,Ns , µNs ), dwis〉θ=θ̂Nt

P→ 0 as N →∞.

It follows straightforwardly that, as N →∞,

lim
N→∞

1

N

N∑
i=1

∫ t

0

∣∣∣∣∣∣G(θ̂Nt , x
i,N
s , µNs )

∣∣∣∣∣∣2 ds
P→ 0.(4.1)

We next observe, making use of the Cauchy-Schwarz inequality, that∣∣∣∣ 1

N

N∑
i=1

∫ t

0

∣∣∣∣G(θ, xi,Ns , µNs )
∣∣∣∣2ds− 1

N

N∑
i=1

∫ t

0

∣∣∣∣G(θ′, xi,Ns , µNs )
∣∣∣∣2ds

∣∣∣∣
≤
[

1

N

N∑
i=1

∫ t

0

∣∣∣∣G(θ, xi,Ns , µNs )−G(θ′, xi,Ns , µNs )
∣∣∣∣2ds

] 1
2

·
[

1

N

N∑
i=1

∫ t

0

∣∣∣∣G(θ, xi,Ns , µNs ) +G(θ′, xi,Ns , µNs )
∣∣∣∣2ds

] 1
2

≤ K||θ − θ′||
[

1

N

N∑
i=1

∫ t

0

∣∣∣∣ 1

N

N∑
j=1

(1 + ||xi,Ns ||q + ||xj,Ns ||q)
∣∣∣∣2ds

] 1
2

·
[

2

N

N∑
i=1

[ ∫ t

0

∣∣∣∣G(θ, xi,Ns , µNs )
∣∣∣∣2ds+

∫ t

0

∣∣∣∣G(θ′, xi,Ns , µNs )
∣∣∣∣2ds

]] 1
2

where in the final line we have used Conditions C.1(i) - C.1(ii). In addition, the uniform
moment bounds on the IPS (Proposition A.2), which follow from Condition D.1, together
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with Condition C.1(ii), imply that all terms on the RHS of this inequality are bounded. It

follows immediately that the function 1
N

∑N
i=1

∫ t
0

∣∣∣∣G(θ, xi,Ns , µNs )
∣∣∣∣2ds is Lipschitz continuous

in θ, uniformly in N . Combining this with (4.1), we have that, as N →∞,

θ̂Nt
P→ DNt =

{
θ ∈ Θ : lim

N→∞

1

N

N∑
i=1

∫ t

0

∣∣∣∣G(θ, xi,Ns , µNs )
∣∣∣∣2ds = 0

}
(4.2)

by which we we mean more precisely that infθ∈Dt ||θ̂Nt − θ|| P→ 0 as N → ∞. It remains
to observe that, by a repeated application of the McKean-Vlasov Law of Large Numbers
(Proposition A.6), as N →∞, and for all t > 0, we have

DNt
P→ Dt =

{
θ ∈ Θ :

∫ t

0

[∫
Rd
||G(θ, x, µs)||2 µs(dx)

]
ds = 0

}
= {θ0},(4.3)

where in the second equality we have also made use of the identifiability condition in Condition
E.1. It follows immediately, combining (4.2) and (4.3) that, for all fixed t > 0, as N → ∞,

θ̂Nt
P−→ θ0.

4.2. Proof of Theorem 3.2. The proof of this theorem, similarly to the previous proof,
combines well known techniques used to establishing strong consistency of the MLE as t→∞
(e.g., [47]) with ideas relevant to the asymptotic regime as N → ∞ (e.g., [44]). Once again,
we emphasise that throughout this proof the value of t will be fixed and finite, and we will
consider the limit only as N →∞.

Proof. We begin by considering a Taylor expansion of ∇θLNt (θ) around the true value of
the parameter θ = θ0, viz,

0 = ∇θLNt (θ̂Nt ) = ∇θLNt (θ0) + (θNt − θ0)∇2
θLt(θ̄Nt )

where θ̄Nt is point in the segment connecting θ̂Nt and θ0. The validity of this expansion is
based on the sample path continuity of the log-likelihood and its derivatives. It follows that

N
1
2 (θ̂Nt − θ0)∇2

θLNt (θ̄Nt ) = −N
1
2∇θLNt (θ0)

To deal with the terms in this equation, we will rely extensively on a multivariate version of
Rebolledo’s Central Limit Theorem [70], as stated in [44, Corollary to Theorem 2]. Let us
begin by considering the RHS. First observe that

N
1
2∇θLNt (θ0) = N−

1
2

N∑
i=1

∫ t

0

〈
∇θB(θ0, x

i,N
s , µNs ), dwis

〉
+N−

1
2

N∑
i=1

∫ t

0
∇θB(θ0, x

i,N
s , µNs )G(θ0, x

i,N
s , µNs )ds

= N−
1
2

N∑
i=1

∫ t

0

〈
∇θB(θ0, x

i,N
s , µNs ), dwis

〉
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where in the second line we have used the fact that, by definition, G(θ0, ·, ·) = 0 is identically
equal to zero. It follows, using also Condition C.1(ii) (the polynomial growth property) and
Proposition A.2 (uniform moment bounds for the solutions of the IPS), that for all t ≥ 0,
(N

1
2∇θLNt (θ0))N∈N is a sequence of local square integrable martingales, which implies that

the first condition of [44, Corollary to Theorem 2] is satisfied.
Next, observe that the process (N

1
2∇θLNt (θ))t≥0 is continuous (in time), and thus the sec-

ond condition of [44, Corollary to Theorem 2] (the Lindenberg condition) is satisfied. Finally,
we have that, for all k, l = 1, . . . , p, as N →∞,〈[

N
1
2∇θLNt (θ0)

]
k
,
[
N

1
2∇θLNt (θ0)

]
l

〉
=

1

N

N∑
i=1

∫ t

0
[∇θB(θ0, x

i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds

P→
∫ t

0

[∫
Rd

[∇θB(θ0, x, µs)]k [∇θB(θ0, x, µs)]l µs(dx)

]
ds = [It(θ0)]kl ,(4.4)

where in the final line, we have used a repeated application of the weak law of large numbers
for the empirical distribution of the IPS (Proposition A.6), and the definition of It(θ) (see
Condition E.2). Thus, the final condition in [44, Corollary to Theorem 2] is satisfied. It
follows from this result that

−N
1
2∇θLNt (θ0)

D−→ Np(0, It(θ0)).

It remains to prove that ∇2
θLNt (θ̄Nt )

P−→ −It(θ0). In fact, since θ̂Nt
P→ θ0 as N →∞ by The-

orem 3.1, the continuity of {∇2
θLNt (·)}N∈N in θ implies that this limit holds provided we can

establish that ∇2
θLNt (θ0)

P−→ −It(θ0). To do so, let us begin with the observation, via a simple
calculation, we have that

[
∇2
θLNt (θ0)

]
kl

=
1

N

N∑
i=1

∫ t

0

[
∇2
θB(θ0, x

i,N
s , µNs )

]
kl

dwis(4.5)

− 1

N

N∑
i=1

∫ t

0
[∇θB(θ0, x

i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds

Arguing as in the proof of Lemma C.1 (see Appendix C), we can show that, as N → ∞, we
have

(4.6)
1

N

N∑
i=1

∫ t

0
∇2
θB(θ0, x

i,N
s , µNs )dwis

P−→ 0.

Moreover, we have already established, c.f. (4.4), that, as N →∞, we have

1

N

N∑
i=1

∫ t

0
[∇θB(θ0, x

i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds

P−→ [It(θ0)]kl.(4.7)

It follows, substituting (4.6) - (4.7) into (4.5), that ∇2
θLNt (θ0)

P−→ −It(θ0) as N →∞. By our
previous remarks, this completes the proof.
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4.3. Proof of Theorem 3.3. We will prove Theorem 3.3 via a sequence of intermediate
Lemmas. In fact, once these lemmas have been established, the proof itself follows straight-
forwardly.

Before we present this proof, it will first be necessary to introduce some additional nota-
tion. Recall from Section 2.1 (e.g., Table 1) that (xit)t≥0 denotes a solution of the McKean-
Vlasov SDE (1.1), where the Brownian motion (wt)t≥0 is replaced by (wit)t≥0. We will now
also write (µit)t≥0 to denote the law of this solution,3 and, for the corresponding log-likelihood
function, write

Lit(θ) =

∫ t

0
L(θ, xis, µ

i
s)ds+

∫ t

0
〈G(θ, xis, µ

i
s),dw

i
s〉.

We can now proceed to the proof of Theorem 3.3.

Proof. Using the triangle inequality, we can decompose the asymptotic log-likelihood of
interest as

||∇θL̃(θi,Nt )|| ≤ ||∇θL̃(θi,Nt )− 1
t∇θL

i
t(θ

i,N
t )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.A

+ ||1t∇θL
i
t(θ

i,N
t )− 1

t∇θL
i,N
t (θi,Nt )||︸ ︷︷ ︸

→0 as N →∞ ∀t ∈ R+ by Lemma 3.4.C

+ ||1t∇θL
i,N
t (θi,Nt )−∇θL̃i,N (θi,Nt )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.B

+ ||∇θL̃i,N (θi,Nt )||︸ ︷︷ ︸
→0 as t→∞ ∀N ∈ N by Lemma 3.4.D

.

or, almost identically,

||∇θL̃(θNt )|| ≤ ||∇θL̃(θNt )− 1
t∇θL

i
t(θ

N
t )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.A

+ ||1t∇θL
i
t(θ

N
t )− 1

t∇θL
N
t (θNt )||︸ ︷︷ ︸

→0 as N →∞ ∀t ∈ R+ by Lemma 3.4.C

+ ||1t∇θL
N
t (θNt )−∇θL̃N (θNt )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.B

+ ||∇θL̃N (θNt )||︸ ︷︷ ︸
→0 as t→∞ ∀N ∈ N by Lemma 3.4.D

.

where L̃i,N (θ) and L̃N (θ) are defined in Lemma 3.4.B. In both of these inequalities, all of the
stated limits hold in L1. This completes the proof.

Before we proceed to the proofs of the intermediate Lemmas 3.4.A - 3.4.D, it is instructive
to provide a brief high level overview.

(i) In Lemma 3.4.A, we establish the existence of L̃(θ), the asymptotic log-likelihood of
the McKean-Vlasov SDE, as well as its derivatives. We provide explicit expressions
for these functions in terms of the unique invariant measure of the McKean-Vlasov
SDE, prove an appropriate convergence result as t → ∞ (both a.s. and in L1), and
establish convergence rates.

(ii) In Lemma 3.4.B, we establish the existence of L̃i,N (θ) and L̃N (θ), the ‘marginal’ and
‘joint’ asymptotic log-likelihoods of the IPS, as well as their derivatives. As above,

3We remark that (µt)
i
t≥0 = (µt)t≥0 for all i = 1, . . . , N . Nonetheless, we will use this notation to emphasise

that we are considering solution of the McKean-Vlasov SDE with Brownian motion (wit)t≥0.
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we provide explicit expressions for these functions in terms of the unique invariant
measure of the IPS, prove an appropriate convergence result as t→∞ (both a.s. and
in L1), and establish convergence rates.

(iii) In Lemma 3.4.C, we prove that, for all t ≥ 0, the gradient of the asymptotic log-
likelihood(s) of the IPS converge to the gradient of the asymptotic log-likelihood of
the McKean-Vlasov SDE as N → ∞ (in L1). We also provide L1 convergence rates.
The proof of this result relies on classical uniform-in-time propagation of chaos results.

(iv) In Lemma 3.4.D, we establish that, for all N ∈ N, the gradient of the asymptotic log-
likelihood(s) of the IPS, evaluated at the relevant online parameter updates generated
by the IPS, converges to zero as t→∞ (both a.s. and in L1). This result can be seen
as a generalisation of [75, Theorem 2.4].

4.3.1. Proof of Lemma 3.4.A.

Lemma 3.4.A. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then the processes
1
t∇

m
θ Lit(θ), m = 0, 1, 2, converge, both a.s. and in L1, to the functions

∇mθ L̃(θ) =

∫
Rd
∇mθ L(θ, x, µ∞)µ∞(dx).

In addition, there exist positive constants K1
m, K2

m such that∣∣∣∣∣∣∣∣E [1

t
∇mθ Lit(θ)−∇mθ L̃(θ)

]∣∣∣∣∣∣∣∣ ≤ K1
m(1− e−λt)

λt
+
K2
m(1 +

√
t)

1
2

t
1
2

.

Proof. We will prove Lemma 3.4.A for m = 0, with m = 1, 2 proved similarly. For
m = 1, 2, we remark only that the processes 1

t∇
m
θ Lit(θ), and hence also ∇mθ L̃(θ), exist due to

Condition C.1. With this established, the proof when m = 1, 2 is essentially identical to the
proof when m = 0. Let us begin by recalling the definition of 1

tL
i
t(θ), viz

1

t
Lit(θ) =

1

t

∫ t

0
L(θ, xis, µ

i
s)ds︸ ︷︷ ︸

IN1 (θ,t)

+
1

t

∫ t

0
〈G(θ, xis, µ

i
s), dw

i
s︸ ︷︷ ︸

IN2 (θ,t)

〉(4.8)

We first consider the first term on the RHS. We will characterise the asymptotic behaviour of
this term via the following decomposition

1

t

∫ t

0
L(θ, xis, µ

i
s)ds︸ ︷︷ ︸

IN1 (θ,t)

=
1

t

∫ t

0

[
L(θ, xis, µ

i
s)− L(θ, xis, µ∞)

]
ds︸ ︷︷ ︸

IN1,1(θ,t)

+
1

t

∫ t

0
L(θ, xis, µ∞)ds︸ ︷︷ ︸
IN1,2(θ,t)

(4.9)

where µ∞ is the unique invariant measure of the McKean-Vlasov SDE, which exists via Propo-
sition A.3 (see Appendix A). We begin with the observation that, as t→∞,

1

t

∫ t

0
[L(θ, xis, µ

i
s)− L(θ, xis, µ∞)]ds

a.s.−→ 0,(4.10)

1

t

∫ t

0
L(θ, xis, µ∞)ds

a.s.−→
L1
L̃(θ),(4.11)
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the former by Proposition A.3, and the latter by an appropriate version of the ergodic theorem
(e.g., [71, Chapter X]). Let us now demonstrate that IN1,1(θ, t) also converges to zero in L1.
Using Lemma D.5, we can write∣∣∣∣L(θ, xis, µ

i
s)− L(θ, xis, µ∞)

∣∣∣∣ ≤ KW2(µis, µ∞)
[
1 + ||xis|||q + µ∞(|| · ||q) + µis(|| · ||q)

]
≤ K

[
1 + ||xis||q

]
e−λs

where in the second line we have additionally made use of Proposition A.2 (moment bounds
for the McKean-Vlasov SDE), Proposition A.3 (the exponential contractivity of the McKean-
Vlasov SDE), and Lemma D.1 (moment bounds for the invariant measure of the McKean-
Vlasov SDE). It follows straightforwardly, making use once more of Proposition A.2, and
allowing the value of K to change from line to line, that

E[|IN1,1(t)|] ≤ 1

t

∫ t

0
K
(
1 + E

[
||xis||q

])
e−λsds ≤ K

t

∫ t

0
e−λsds ≤ K(1− e−λt)

λt
,(4.12)

so that the convergence of IN1,1(θ, t) to zero does also hold in L1. We thus have, substituting
(4.10) - (4.11) into (4.9), that IN1 (θ, t)→ L̃(θ), both a.s. and in L1.

Let us now try to establish the convergence rate of this term. We have already established
a (non-asymptotic) bound for IN1,1(θ, t), so it remains to consider IN1,2(θ, t). We can bound
the deviation between this term and the asymptotic log-likelihood using arguments similar to
those found in, for example, [29]. First note that, using Lemma D.5 and Lemma D.1 (moment
bounds for the invariant measure of the McKean-Vlasov SDE), we have

|L(θ, x, µ∞)− L(θ, y, µ∞)| ≤ K||x− y||[1 + ||x||q + ||y||q].

We can thus utilise Lemma D.3 to obtain∣∣∣∣Exi0 [L(θ, x, µ∞)]−
∫
Rd
L(θ, y, µ∞)µ∞(dy)

∣∣∣∣ ≤ K [1 + ||xi0||q
]
e−λs

from which, in particular, it follows that

|E[I1,2(θ, t)]| ≤
∣∣∣∣Exi0

[
1

t

∫ t

0
L(θ, xis, µ∞)ds−

∫
Rd
L(θ, y, µ∞)µ∞(dy)

]∣∣∣∣(4.13)

≤ 1

t

∫ t

0

∣∣∣∣Exi0 [L(θ, xis, µ∞)]−
∫
Rd
L(θ, y, µ∞)µ∞(dy)

∣∣∣∣ds
≤ K(1− e−λt)

λt

[
1 + ||xi0||q

]
≤ K(1− e−λt)

λt
.(4.14)

where, as previously, we have allowed the value of the constant K to change from line to line.
Substituting (4.12) and (4.14) into (4.9), we thus have that, for some K1

0 > 0,

(4.15)

∣∣∣∣E [1

t

∫ t

0
L(θ, xis, µ

i
s)ds− L̃(θ)

] ∣∣∣∣ ≤ K1
0 (1− e−λt)

λt
.
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We now turn our attention IN2 (θ, t), the second term in (4.8). We begin with the observa-
tion that, by the Itô’s isometry, Condition C.1(ii) (the polynomial growth of G), Proposition
A.2 (the bounded moments of the McKean-Vlasov SDE), and Lemma D.2 (the asymptotic
growth rate of the moments of the McKean-Vlasov SDE), we have that

E

[∣∣∣∣∫ t

0
〈G(θ, xis, µ

i
s),dw

i
s〉
∣∣∣∣2
]

= E
[∫ t

0
||G(θ, xis, µ

i
s)||2ds

]
(4.16)

≤ E
[∫ t

0
K
(
1 + ||xis||q + E

[
||xis||q

])
ds

]
≤ Kt

[
1 + E[ sup

0≤s≤t
||xis||q]

]
≤ Kt

[
1 +
√
t

]
where the value of the constant K is allowed to change from line to line. It follows, making
use of the triangle inequality and the Hölder inequality that, for some K2

0 > 0, we have∣∣∣∣E [1

t
〈G(θ, xis, µ

i
s),dw

i
s〉
]∣∣∣∣ ≤ K2

0 (1 +
√
t)

1
2

t
1
2

,(4.17)

so that this term converges in L1 to zero, and we have the required rate. It remains only to
demonstrate a.s. convergence of this term to zero. To do so, consider the local martingale

Mt =

∫ t

0

1

s
〈G(θ, xis, µ

i
s), dw

i
s〉 =

1

t

∫ t

0
〈G(θ, xis, µ

i
s), dw

i
s〉+

∫ t

0

1

s2

[∫ s

0
〈G(θ, xiu, µ

i
u), dwiu〉

]
ds,

where the second line follows from Itô’s Lemma. Using the Itô isometry, Condition C.1(ii) (the
polynomial growth of G), and Proposition A.2 (the bounded moments of the McKean-Vlasov
SDE), and arguing similarly to above, we have

sup
t>0

E
[
|Mt|2

]
= E

[∫ ∞
0

1

s2
E
[
||G(θ, xis, µ

i
s)||2

]
ds

]
≤ K

[∫ t

0

1

s2

(
1 + E

[
||xis||q

])
ds

]
<∞.

(4.18)

By Doob’s martingale convergence theorem [27], there thus exists a finite random variable M∞
such that Mt → M∞ a.s. It follows immediately that 1

t

∫ t
0 〈G(θ, xis, µ

i
s), dw

i
s〉 also converges

to zero a.s., as claimed. Putting everything together, we thus have that 1
tL

i
t(θ) converges to

L̃(θ) both a.s. and in L1, and, combining (4.8), (4.15) and (4.17), that∣∣∣∣E[1

t
Lit(θ)− L̃(θ)

]∣∣∣∣ ≤ ∣∣∣∣E[1

t

∫ t

0
L(θ, xis, µ

i
s)ds− L̃(θ)

]∣∣∣∣+

∣∣∣∣E[1

t

∫ t

0
〈G(θ, xis, µ

i
s),dw

i
s〉
]∣∣∣∣

≤ K1
0 (1− e−λt)

λt
+
K2

0 (1 +
√
t)

1
2

t
1
2

.

4.3.2. Proof of Lemma 3.4.B.
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Additional Notation. In order to state and prove the next Lemma, it will be useful
to introduce some additional notation. Let x̂Nt ∈ (Rd)N be the process consisting of the
concatenation of the N solutions of the IPS (1.4), viz, x̂Nt = (x1,N

t , . . . , xN,Nt )T . Observe that
this process is the solution of the following SDE on (Rd)N

(4.19) dx̂Nt = B̂(θ, x̂Nt )dt+ dŵNt ,

where ŵNt is a (Rd)N -valued Brownian motion, and the function B̂(θ, ·) : (Rd)N → (Rd)N is
of the form B̂(θ, x̂N ) = (B̂1,N (θ, x̂N ), . . . , B̂N,N (θ, x̂N ))T , where, for i = 1, . . . , N , B̂i,N (θ, ·) :
(Rd)N → Rd is defined according to

B̂i,N (θ, x̂N ) = b(θ, xi,N ) +
1

N

N∑
j=1

φ(θ, xi,N , xj,N ).(4.20)

It will also be useful to define, for i = 1, . . . , N , the functions Ĝi,N (θ, ·) : (Rd)N → Rd and
L̂i,N (θ, ·) : (Rd)N → R according to

Ĝi,N (θ, x̂N ) = B̂i,N (θ, x̂N )− B̂i,N (θ0, x̂
N )(4.21)

L̂i,N (θ, x̂) = −1

2
||Ĝi,N (θ, x̂N )||2.(4.22)

Finally, we will write µ̂Nt = L(x̂Nt ) to denote the law of x̂Nt = (x1,N
t , . . . , xN,Nt ). We should be

careful not to confuse this with µNt = 1
N

∑N
i=1 δxi,Nt

, the empirical measure of the IPS.

Lemma 3.4.B. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all N ∈ N,
the processes 1

t∇
m
θ L

i,N
t (θ) and 1

t∇
m
θ LNt (θ), m = 0, 1, 2, converge, both a.s. and in L1, to the

functions

∇mθ L̃i,N (θ) =

∫
(Rd)N

∇mθ L̂i,N (θ, x̂N )µ̂N∞(dx̂N ) , ∇mθ L̃N (θ) =
1

N

N∑
i=1

∇mθ L̃i,N (θ).

In addition, there exist positive constants K1
m, K2

m, independent of N , such that∣∣∣∣∣∣∣∣E [1

t
∇mθ L

i,N
t (θ)−∇mθ L̃i,N (θ)

]∣∣∣∣∣∣∣∣ ≤ K1
m(1− e−λt)

λt
+
K2
m(1 +

√
t)

1
2

t
1
2

and this bound also holds if Li,Nt (·) and L̃i,N (·) are replaced with LNt (·) and L̃N (·).
Proof of Lemma 3.4.B. We will begin by proving that the two statements hold for the

function Li,Nt (θ). The proof, in this case, is very similar to the proof of Lemma 3.4.A, with
some simplifications. We will provide a sketch of the proof, signposting differences with the
previous proof where necessary. As previously, we will only consider the case m = 0, with the
results for m = 1, 2 proved analogously. We begin by recalling the definition of the function
1
tL

i,N
t (θ) from (2.4), which we now write in the form

1

t
Li,Nt (θ) =

1

t

∫ t

0
L̂i,N (θ, x̂Ns )ds+

1

t

∫ t

0
〈Ĝi,N (θ, x̂Ns ),dwis〉(4.23)
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We begin with the first term on the RHS. By Proposition A.4, the IPS admits a unique
invariant measure µ̂N∞ ∈ P((Rd)N ). Thus, for all N ∈ N, by the ergodic theorem (e.g., [71,
Chapter X]) we have that as t→∞,

1

t

∫ t

0
L̂i,N

(
θ, x̂Ns

)
ds

a.s.−→
L1

∫
(Rd)N

L̂i,N
(
θ, x̂N

)
µ̂∞(dx̂N ) = L̃i,N (θ),

Let us now obtain the required convergence rate. By the remark after Lemma D.5, the function
L̂i,N (θ, x̂N ) satisfies the conditions of Lemma D.3. Thus, we can apply Lemma D.3 to obtain∣∣∣∣Ex̂0 [L̂i,N (θ, x̂Nt )]−

∫
(Rd)N

L̂i,N (θ, ŷ)µ̂N∞(dŷN )

∣∣∣∣ ≤ K[1 + ||xi,N0 ||
q +

1

N

N∑
j=1

||xj,N0 ||
q

]
e−λt

and so, arguing as in (4.13) - (4.14) in the proof of Lemma 3.4.A, we have∣∣∣∣Ex̂0[1

t

∫ t

0
L̂i,N (θ, x̂Ns )ds−

∫
(Rd)N

L̂i,N (θ, ŷN )µ̂N∞(dŷN )

]∣∣∣∣
≤ K(1− e−λt)

λt

[
1 + ||xi,N0 ||

q +
1

N

N∑
j=1

||xj,N0 ||
q

]
≤ K1

0 (1− e−λt)
λt

.

It remains to bound the second term on the RHS of (4.23). We show that this term
converges to zero a.s. and in L1, and satisfies the required convergence rate, using essentially
identical arguments to those used in the proof of Lemma 3.4.A, c.f. (4.16) - (4.18). This
concludes the proof.

We now turn our attention to the function LNt (θ). The proof of the statements regarding
this function now follows easily. In particular, using the definition of LNt (θ), c.f. (2.4), and
the results above, we have (once more restricting attention to the case m = 0)

1

t
LNt (θ) =

1

t

[
1

N

N∑
i=1

Li,Nt (θ)

]
=

1

N

N∑
i=1

[
1

t
Li,Nt (θ)

]
a.s.−→
L1

1

N

N∑
i=1

L̃i,N (θ) = L̃N (θ),

and, for the required bound,∣∣∣∣∣∣∣∣E [1

t
∇mθ LNt (θ)−∇mθ L̃N (θ)

]∣∣∣∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

E
[

1

t
∇mθ L

i,N
t (θ)−∇mθ L̃i,N (θ)

]∣∣∣∣∣
∣∣∣∣∣(4.24)

≤ 1

N

N∑
i=1

∣∣∣∣∣∣∣∣E [1

t
∇mθ L

i,N
t (θ)−∇mθ L̃i,N (θ)

]∣∣∣∣∣∣∣∣
≤ 1

N

N∑
i=1

[
Km(1− e−λt)

λt
+
Km(1 +

√
t)

1
2

t
1
2

]

=
Km(1− e−λt)

λt
+
Km(1 +

√
t)

1
2

t
1
2

.(4.25)
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4.3.3. Proof of Lemma 3.4.C.

Lemma 3.4.C. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all θ ∈ Rp,
for all t ≥ 0, for all i = 1, . . . , N , we have, in L1, that

lim
N→∞

||1t∇θL
i,N
t (θ)|| = ||1t∇θL

i
t(θ)||,

lim
N→∞

||1t∇θL
N
t (θ)|| = ||1t∇θL

i
t(θ)||.

In addition, there exists a positive constant K such that, for all θ ∈ Rp, for all N ∈ N,

E
[∣∣∣∣∣∣∣∣1t∇θLit(θ)− 1

t
∇θLi,Nt (θ)

∣∣∣∣∣∣∣∣] ≤ K√
N

(
1 +

1√
t

)
,

and this bound also holds if Li,Nt (·) is replaced by LNt (·).

Proof. We begin by proving that the two statements hold for Li,Nt (θ). First recall that

1

t
∇θLit(θ) = −1

t

∫ t

0
∇θG(θ, xis, µ

i
s)G(θ, xis, µ

i
s)ds︸ ︷︷ ︸

Ii1(θ,t)

+
1

t

∫ t

0

〈
∇θG(θ, xis, µ

i
s), dw

i
s

〉
︸ ︷︷ ︸

Ii2(θ,t)

1

t
∇θLi,Nt (θ) = −1

t

∫ t

0

 1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns )

 1

N

N∑
j=1

G(θ, xi,Ns , xj,Ns )

ds

︸ ︷︷ ︸
Ii,N1 (θ,t)

+
1

t

∫ t

0

〈
1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns ), dwis

〉
︸ ︷︷ ︸

Ii,N2 (θ,t)

Let us seek bounds for E||Ii1(θ, t) − Ii,N1 (θ, t)|| and E||Ii2(θ, t) − Ii,N2 (θ, t)||, starting with the
latter. By Lemma D.8 (see Appendix D), for all s ≥ 0, there exists a positive constant K
such that

E
[∣∣∣∣∇θG(θ, xis, µ

i
s)−

1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns )
∣∣∣∣2] ≤ K

N
.

Thus, making using of the triangle inequality, the Itô isometry, and Fubini’s Theorem, we
have that

E
[
||Ii2(θ, t)− Ii,N2 (θ, t)||2

]
≤ 1

t2
E
[ ∫ t

0

∣∣∣∣∣∣∣∣∇θG(θ, xis, µ
i
s)−

1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns )

∣∣∣∣∣∣∣∣2ds

]
≤ K

Nt
.
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and thus, by the Hölder inequality,

(4.26) E
[
||Ii2(θ, t)− Ii,N2 (θ, t)||

]
≤ K√

Nt

We will now obtain, in much the same fashion, a bound for E[||Ii1(θ, t) − Ii,N1 (θ, t)||]. Once
again, by Lemma D.8, for all s ≥ 0, we have that

E
[∣∣∣∣∇θG(θ, xis, µ

i
s)−

1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns )
∣∣∣∣2] ≤ K

N
,(4.27)

E
[∣∣∣∣G(θ, xis, µ

i
s)−

1

N

N∑
j=1

G(θ, xi,Ns , xj,Ns )
∣∣∣∣2] ≤ K ′

N
.(4.28)

To proceed, consider the following inequality, which follows straightforwardly from the triangle
inequality and the Cauchy-Schwarz inequality,

E [||Y Z − YNZN ||] ≤ E
[
||Y − YN ||2

] 1
2 E
[
||Z||2

] 1
2 + E

[
||YN ||2

] 1
2 E
[
||Z − ZN ||2

] 1
2

Suppose we let Y = ∇θG(θ, xis, µ
i
s), YN = N−1

∑N
j=1∇θG(θ, xi,Ns , xj,Ns ), Z = G(θ, xis, µ

i
s), and

ZN = N−1
∑N

j=1G(θ, xi,Ns , xj,Ns ). Then, once more allowing the value of the constant K to
change from line to line, this inequality yields

E
[∣∣∣∣∇θG(θ, xis, µ

i
s)G(θ, xis, µ

i
s)−

1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns ) · 1

N

N∑
j=1

G(θ, xi,Ns , xj,Ns )
∣∣∣∣]

≤ E
[∣∣∣∣∇θG(θ, xis, µ

i
s)−

1

N

N∑
j=1

∇θG(θ, xi,Ns , xj,Ns )
∣∣∣∣2] 1

2

︸ ︷︷ ︸
≤ K√

N
by (4.27)

·E
[∣∣∣∣G(θ, xis, µ

i
s)
∣∣∣∣2] 1

2

︸ ︷︷ ︸
≤K

+ E
[∣∣∣∣G(θ, xis, µ

i
s)−

1

N

N∑
j=1

G(θ, xi,Ns , xj,Ns )
∣∣∣∣2] 1

2

︸ ︷︷ ︸
≤ K′√

N
by (4.28)

·E
[∣∣∣∣ 1

N

N∑
j=1

G(θ, xi,Ns , xj,Ns )
∣∣∣∣2] 1

2

︸ ︷︷ ︸
≤K′

≤ K√
N
,

where in the penultimate line we have used Condition C.1 (the polynomial growth of G) and
Proposition A.2 (the moment bounds for the IPS), to conclude that each of the expectations
are bounded above by some positive constants. That is, for example,

E
[∣∣∣∣G(θ, xis, µ

i
s)
∣∣∣∣2] ≤ E

[
K

(
1 + ||xis||q +

∫
Rd
||y||qµis(dy)

)]
≤ K

(
1 + E

[
||xis||q

])
≤ K2.
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It follows straightforwardly that

E
[
||Ii1(θ, t)− Ii,N1 (θ, t)||

]
≤ 1

t

∫ t

0

K√
N

ds =
K√
N
.(4.29)

Combining inequalities (4.26) and (4.29), and making use of the triangle inequality one final
time, we have that

E
[∣∣∣∣∣∣∣∣1t∇θLit(θ)− 1

t
∇θLi,Nt (θ)

∣∣∣∣∣∣∣∣] ≤ K√
N

(
1 +

1√
t

)
This establishes convergence in L1 as N → ∞, for all t ≥ 0. It remains only to establish
that the statements of the lemma also hold for LNt (θ). This is straightforward. Indeed, we
omit the calculations, which are essentially identical to those used at the end of the proof of
Lemma 3.4.B, c.f. (4.24) - (4.25).

4.3.4. Proof of Lemma 3.4.D.

Lemma 3.4.D. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Then, for all
N ∈ N, we have, both almost surely and in L1, that

lim
t→∞
||∇θL̃i,N (θi,N (t))|| = 0,

lim
t→∞
||∇θL̃N (θN (t))|| = 0.

Proof. We will prove the first statement of the lemma, with the second proved identically.4

In particular, we will use a modified version of the approach in [75], which itself is a continuous-
time version of the approach first introduced in [6]. In the interest of completeness, we will
include the proof in full here, adapted appropriately to the current setting and our notation.

We will require the following additional notation. Define an arbitrary constant κ > 0,
with λ = λ(κ) > 0 to be determined. Set σ = 0, and define the cycle of random stopping
times

0 = σ0 ≤ τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ . . .

according to

τk = inf
{
t > σk−1 : ||∇θL̃i,N (θi,Nt )|| ≥ κ

}
(4.30)

σk = sup
{
t > τk : 1

2 ||∇L̃
i,N (θi,Nτk )|| ≤ ||∇L̃N (θi,Ns )|| ≤ 2||∇L̃i,N (θi,Nτk )|| ∀s ∈ [τk, t],(4.31) ∫ t

τk

γ(s)ds ≤ ρ
}

The purpose of these stopping times is to control the periods of time for which ||∇L̃i,N (θi,Nt )||
is close to zero, and those for which it is away from zero. In addition, let η > 0, and set

4We remark that Lemmas D.9 - D.12, which are essential to this proof, all apply to both Li,Nt (θ) and LNt (θ),
and thus can still be used to establish the second statement.
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σk,η = σk + η. First consider the case in which there are a finite number of stopping times τk.
In this case, there exists finite t0 such that, for all t ≥ t0, [||∇θL̃i,N (θi,Nt )||] < κ. Now consider
the case in which there are an infinite number of stopping times τk. Then, using Lemmas
D.11 - D.12 (see Appendix D), there exist 0 < β1 < β, and k0 ∈ N, such that for all k ≥ k0,
almost surely,

L̃i,N (θi,Nσk )− L̃i,N (θi,Nτk ) ≥ β(4.32)

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥ −β1.(4.33)

It follows straightforwardly that

L̃i,N (θi,Nτn+1
)− L̃i,N (θi,Nτk0

) =
n∑

k=k0

[
L̃i,N (θi,Nσk )− L̃i,N (θi,Nτk ) + L̃i,N (θi,Nτk+1

)− L̃i,N (θi,Nσk )
]

(4.34)

≥
n∑

k=k0

(β − β1) = (n+ 1− k0)(β − β1)(4.35)

Since β − β1 > 0, this implies that L̃i,N (θi,Nτn+1)→∞ as n → ∞. But this is in contradiction
with Lemma D.6, which states that L̃i,N (θ) is bounded from above. Thus, there must exist
a finite time t0 such that, for all t ≥ t0, ||L̃i,N (θi,Nt )|| < κ. Since our original choice of κ was
arbitrary, this completes the proof that, for all N ∈ N, almost surely,

lim
t→∞
||∇θL̃i,N (θi,Nt )|| = 0.

Finally, we observe that, by Lemma D.6, ||∇θL̃i,N (θ)|| is bounded above for all θ ∈ Rp. Thus,
we also have convergence in L1 via Lebesgue’s dominated convergence theorem (e.g., [85,
Chapter 5]).

4.4. Proof of Theorem 3.4. Before we proceed to the proof of Theorem 3.4, we state the
following Lemma, which provides uniform moment bounds for the online parameter estimate,
and will be used frequently in this proof.

Lemma 4.1. Assume that Conditions B.1 - B.2, C.1, D.1, F.1, and G.1 - G.2 hold. Then,
for all q ≥ 1, for all i = 1, . . . , N , for all N ∈ N, there exists K such that

sup
t>0

E [||θt||q] ≤ K

sup
t>0

E
[
||θi,Nt ||q

]
≤ K.

Proof. This Lemma follows straightforwardly as an extension of [77, Lemma A.1], making
use of the appropriate bounds in Conditions G.1 - G.2.

Proof of Theorem 3.4. The proof of this result closely follows the proof of Theorem 2.7 in
[77], adapted appropriately to our particular case. We will begin by proving the first statement
of the theorem. To begin, let us recall the following form of the parameter update equation
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(2.8):

dθi,Nt = γt∇θL̃i,N (θi,Nt )dt+ γt
(
∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt(4.36)

+ γt∇θB(θi,Nt , xi,Nt , µNt )dwit

= γt∇θL̃(θi,Nt )dt+ γt
(
∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

)
dt(4.37)

+ γt
(
∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt+ γt∇θB(θi,Nt , xi,Nt , µNt )dwit.

Using a first order Taylor expansion, we have that

(4.38) ∇θL̃(θi,Nt ) = ∇θL̃(θ0) +∇2L̃(θ̃i,Nt )(θi,Nt − θ0) = ∇2L̃(θ̃i,Nt )(θi,Nt − θ0)

where θ̃i,Nt is point in the segment connecting θi,Nt and θ0. Substituting this into (4.37), we

obtain the following equation for Zi,Nt = θi,Nt − θ0

dZi,Nt = γt∇2
θL̃(θ̃i,Nt )Zi,Nt dt+ γt

(
∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

)
dt

+ γt
(
∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt+ γt∇θB(θi,Nt , xi,Nt , µNt )dwit.

Applying Itô’s formula to the function || · ||2, we obtain

d||Zi,Nt ||2 = 2γt
〈
Zi,Nt ,∇2

θL̃(θ̃i,Nt )Zi,Nt
〉
dt+ γt

〈
Zi,Nt ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt

+ γt
〈
Zi,Nt ,∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γt
〈
Zi,Nt ,∇θB(θi,Nt , xi,Nt , µNt )dwit

〉
+ γ2

t

∣∣∣∣∇θB(θi,Nt , xi,Nt , µNt )
∣∣∣∣2
F

dt

Due to the strong concavity of L̃(θ) (Condition H.1), it then follows that

d||Zi,Nt ||2 + 2ηγt||Zi,Nt ||2dt ≤ γt
〈
Zi,Nt ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt(4.39)

+ γt
〈
Zi,Nt ,∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γt
〈
Zi,Nt ,∇θB(θi,Nt , xi,Nt , µNt )dwit

〉
+ γ2

t

∣∣∣∣∇θB(θi,Nt , xi,Nt , µNt )
∣∣∣∣2
F

dt

where || · ||F is the Frobenius norm. Now, let us define the function Φt,t′ = exp[−2η
∫ t′
t γudu],

with ∂tΦt,t′ = 2ηγtΦt,t′ . Using the product rule, and (4.39), we obtain

d
[
Φt,t′ ||Zi,Nt ||2

]
= Φt,t′

[
d||Zi,Nt ||2 + 2ηγt||Zi,Nt ||2dt

]
(4.40)

≤ γtΦt,t′
〈
Zi,Nt ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt

+ γtΦt,t′
〈
Zi,Nt ,∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γtΦt,t′
〈
Zi,Nt ,∇θB(θi,Nt , xi,Nt , µNt )dwit

〉
+ γ2

t Φt,t′
∣∣∣∣∇θB(θi,Nt , xi,Nt , µNt )

∣∣∣∣2
F

dt
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Rewriting this in integral form, setting t′ = t, and taking expectations, we obtain

E
[
||Zi,Nt ||2

]
≤ E

[
Φ1,t||Zi,N1 ||

2
]

+ E
[∫ t

1
γsΦs,t

〈
Zi,Ns ,∇θL̃i,N (θi,Ns )−∇θL̃(θi,Ns )

〉
ds

]
(4.41)

+ E
[∫ t

1
γsΦs,t

〈
Zi,Ns ,∇θL(θi,Ns , xi,Ns , µNs )−∇θL̃i,N (θi,Ns )

〉
ds

]
+ E

[∫ t

1
γ2
sΦs,t

∣∣∣∣∇θB(θi,Ns , xi,Ns , µNs )
∣∣∣∣2
F

ds

]
= E

[
Ω

(1)
t,i,N

]
+ E

[
Ω

(2)
t,i,N

]
+ E

[
Ω

(3)
t,i,N

]
+ E

[
Ω

(4)
t,i,N

]
(4.42)

We will deal with each of these terms separately, beginning with Ω
(1)
t,i,N . For this term, we

have that, for sufficiently large t,

(4.43) E
[
Ω

(1)
t,i,N

]
= Φ1,tE

[
||Zi,N1 ||

2
]
≤ K(1)γt

which follows from Lemma 4.1 (the moment bounds for θi,Ns ), and Condition F.1 (the condi-
tions on the learning rate).

We now turn our attention to Ω
(2)
t,i,N . For this term, substituting the bound in Lemma E.1

into (4.41), we immediately obtain

E
[
Ω

(2)
t,i,N

]
≤
∫ t

1
γsΦs,tE

[
||Zi,Ns || sup

θi,Ns

||∇θL̃i,N (θi,Ns )−∇θL(θi,Ns )||

]
ds(4.44)

≤ K
[

1

N
1
2

] ∫ t

1
γsΦs,tds ≤ K(2)

[
1

N
1
2

]
.

where in the last line we have used Condition F.1 (the conditions on the learning rate) to
bound the integral.

We now turn our attention to Ω
(3)
t,i,N . We will analyse this term by constructing an appro-

priate Poisson equation. Let us define

Ri,N (θ, x̂N ) =
〈
θ − θ0,∇θL̂i,N (θ, x̂N )−∇θL̃i,N (θ)

〉
,

where, as previously, x̂N = (x1,N , . . . , xN,N ).It is straightforward to verify that this function
satisfies all of the conditions of Lemma D.13. Thus, by Lemma D.13, the Poisson equation

Axvi,N (θ, x̂N ) = Ri,N (θ, x̂N ) ,

∫
Rd
vi,N (θ, x̂N )µ̂N∞(dx̂N ) = 0

has a unique twice differentiable solution which satisfies

2∑
j=0

∣∣∣∣∂jvi,N∂θi
(θ, x̂N )

∣∣∣∣+

∣∣∣∣∂2vi,N

∂θ∂x
(θ, x̂N )

∣∣∣∣ ≤ K(1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
)
.
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Now, by Itô’s formula, we have that

vi,N (θi,Nt , x̂Nt )− vi,N (θi,Ns , x̂Ns ) =

∫ t

s
Aθvi,N (θi,Nu , x̂Nu )du+

∫ t

s
Ax̂N vi,N (θi,Nu , x̂Nu )du(4.45)

+

∫ t

s
γu∂θv

i,N (θi,Nu , x̂Nu )∇θB̂i,N (θu, x̂
N
u )dwiu

+

∫ t

s
∂xv

i,N (θi,Nu , x̂Nu )dŵNu

+

∫ t

s
γu

[
∂θ∂x̂v

i,N (θi,Nu , x̂Nu )∇θB̂i,N (θi,Nu , x̂Nu )
]

du

where ŵNu was defined in (4.19). It follows, now writing vi,Nt := vi,N (θi,Nt , x̂Nt ), that

Ri,N (θi,Nt , x̂Nt )dt = Ax̂N vi,N (θi,Nt , x̂Nt )dt

= dvi,Nt −Aθvi,N (θi,Nt , x̂Nt )dt− γt∂θvi,N (θi,Nt , x̂Nt )∇θB̂i,N (θi,Nt , x̂Nt )dwit

− ∂x̂vi,N (θi,Nt , x̂Nt )dŵNt − γt
[
∂θ∂x̂v

i,N (θi,Nt , x̂Nt )∇θB̂i,N (θi,Nt , x̂Nt )
]

dt

Thus, we can rewrite Ω
(3)
t,i,N as

Ω
(3)
t,i,N =

∫ t

1
γsΦs,t

〈
θi,Ns − θ0,∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )

〉
ds︸ ︷︷ ︸

Ri,N (θi,Ns ,x̂Ns )ds

(4.46)

=

∫ t

1
γsΦs,tdv

i,N
s −

∫ t

1
γsΦs,tAθvi,N (θi,Ns , x̂Ns )ds

−
∫ t

1
γ2
sΦs,t∂θv

i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )dwis

−
∫ t

1
γsΦs,t∂x̂v

i,N (θi,Ns , x̂Ns )dŵNs

−
∫ t

1
γ2
sΦs,t∂θ∂xv

i,N (θs, x̂
N
s )∇θB̂i,N (θi,Ns , x̂Ns )ds

We can rewrite the first term in this expression by applying Itô’s formula to the function
f(s, vs) = γsΦs,tvs. This yields

γtΦt,tv
i,N
t − γ1Φ1,tv

i,N
1 =

∫ t

1
γsΦs,tdv

i,N
s +

∫ t

1
γ̇sΦs,tv

i,N
s ds+

∫ t

1
2ηγ2

sΦs,tv
i,N
s ds.

Substituting the resulting expression for
∫ t

1 γsΦs,tdv
i,N
s into (4.46), and taking expectations,
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we obtain

E
[
Ω

(3)
t,i,N

]
= E

[
γtΦt,tv

i,N (θi,Nt , x̂Nt )
]
− E

[
γ1Φ1,tv

i,N (θi,N1 , x̂N1 )
]

− E
[∫ t

1
γ̇sΦs,tv

i,N (θi,Ns , x̂Ns )ds

]
− E

[∫ t

1
2ηγ2

sΦs,tv
i,N (θi,Ns , x̂Ns )ds

]
− E

[∫ t

1
γsΦs,tAθvi,N (θi,Ns , x̂Ns )ds

]
− E

[∫ t

1
γ2
sΦs,t∂θ∂xv

i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )ds

]
≤ K

[
γt +

∫ t

1

(
γ̇s + γ2

s

)
Φs,tds

]
≤ K(3)γt,(4.47)

where in the penultimate inequality we have used the polynomial growth of vi,N (θ, x̂N ) and
∂θ∂xv

i,N (θ, x̂N ), Condition C.1(ii) (which implies the polynomial growth of ∇θB̂i,N (θ, x̂N )),
Proposition A.2 (the moment bounds for x̂Nt ), Lemma 4.1 (the moment bounds for θi,Ns ), and
in the final inequality we have used Condition F.1 (the conditions on the learning rate). It
remains only to bound Ω

(4)
t,i,N . For this term, once more making use of the above assumptions,

we obtain

(4.48) E
[
Ω

(4)
t,i,N

]
= E

[∫ t

1
γ2
sΦs,t

∣∣∣∣∇θB(θs, xs, µs)
∣∣∣∣2
F

ds

]
≤ K

∫ t

1
γ2
sΦs,tds ≤ K(4)γt.

Combining inequalities (4.43), (4.44), (4.47), and (4.48), and setting K1 = max{K(1),K(3)},
K2 = K(4), and K3 = K(2), we thus have that

E
[
||θi,Nt − θ0||2

]
≤ E

[
Ω

(1)
t,i,N

]
+ E

[
Ω

(2)
t,i,N

]
+ E

[
Ω

(3)
t,i,N

]
+ E

[
Ω

(4)
t,i,N

]
≤ (K1 +K2)γt +

K3

N
1
2

,

which completes the proof of the first statement of the theorem.
Let us now turn our attention to the second statement. The proof of this bound goes

through almost verbatim. Let us briefly highlight the main points of difference. To begin, we
now have the following decomposition of the parameter update equation

dθNt = γt∇θL̃(θNt )dt+ γt
1

N

N∑
i=1

(
∇θL̃i,N (θNt )−∇θL̃(θNt )

)
dt

+ γt
1

N

N∑
i=1

(
∇θL(θNt , x

i,N
t , µNt )−∇θL̃i,N (θNt )

)
dt+ γt

1

N

N∑
i=1

∇θB(θi,Nt , xi,Nt , µNt )dwit.

Using a first order Taylor expansion around θ0, defining ZNt = θNt −θ0, applying Itô’s formula



PARAMETER ESTIMATION 35

to the function ||ZNt ||2, and using the strong concavity of L̃(θ), as in (4.38) - (4.39), we obtain

d||ZNt ||2 + 2ηγt||ZNt ||2dt ≤ γt
1

N

N∑
i=1

〈
ZNt ,∇θL̃i,N (θi,Nt )−∇θL̃(θNt )

〉
dt

+ γt
1

N

N∑
i=1

〈
ZNt ,∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θNt )

〉
dt

+ γt
1

N

N∑
i=1

〈
ZNt ,∇θB(θNt , x

i,N
t , µNt )dwit

〉
+ γ2

t

1

N2

N∑
i=1

∣∣∣∣∇θB(θt, xt, µt)
∣∣∣∣2
F

dt

where, as previously, || · ||F denotes the Frobenius norm. Continuing to follow our previous
arguments, c.f. (4.40) - (4.42), we finally arrive at

E
[
||ZNt ||2

]
≤ 1

N

N∑
i=1

[
E
[
Ω̃

(1)
t,i,N

]
+ E

[
Ω̃

(2)
t,i,N

]
+ E

[
Ω̃

(3)
t,i,N

]]
+

1

N2

N∑
i=1

E
[
Ω̃

(4)
t,i,N

]
where, up to minor modifications, Ω̃

(1)
t,i,N , . . . , Ω̃

(4)
t,i,N are identical to Ω

(1)
t,i,N , . . . ,Ω

(4)
t,i,N as defined

in (4.41) - (4.42). In particular, all instances of θi,Ns have been replaced by θNs . We thus have,
using the bounds established previously, c.f. (4.43), (4.44), (4.47), and (4.48), that

E
[
||ZNt ||2

]
≤ 1

N

N∑
i=1

(
K1γt +K3

1

N
1
2

)
+

1

N2

N∑
i=1

K2γt = (K1 +
K2

N
)γt +

K3

N
1
2

.

5. Numerical Examples. To illustrate the results of Section 3, we now provide two illus-
trative examples of parameter estimation in McKean-Vlasov SDEs, and the associated systems
of interacting particles. In particular, we consider a one-dimensional linear mean-field model
with two unknown parameters, and a stochastic opinion dynamics model with a single un-
known parameter. In both cases, we simulate sample paths and implement the recursive MLE
using a standard Euler-Maruyama scheme with ∆t = 0.1.

5.1. Linear Mean Field Dynamics. We first consider a one-dimensional linear mean field
model, parametrised by θ = (θ1, θ2)T ∈ R2, given by

dxt = −
[
θ1xt + θ2

∫
R

(xt − y)µt(dy)

]
dt+ σdwt,

µt = L(xt).

where σ > 0 and w = (wt)t≥0 is a standard Brownian motion. We will assume that x0 ∈ R.
This is clearly of the form of the McKean-Vlasov SDE (1.1) - (1.2) with b(θ, x) = −θ1x and
φ(θ, x, y) = −θ2(x− y). The corresponding system of interacting particles is given by

dxi,Nt = −

θ1x
i,N
t + θ2

1

N

N∑
j=1

(xi,Nt − xj,Nt )

dt+ σdwi,Nt , i = 1, . . . , N.
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In this model, the parameter θ1 controls the strength of attraction of the non-linear process
(or, in the IPS, of each individual particle) towards zero, while the strength of the parameter
θ2 controls the strength of the attraction of the non-linear process (of each individual particle)
towards its mean (the empirical mean). We remark that, in the case θ2 = 0, the non-linear
process reduces to a one-dimensional Orstein-Uhlenbeck (OU) process, and the system of
interacting particles reduces to N independent samples of this process. It is straightforward
to show that this model satisfies all of the conditions specified in Section 3.1. We defer the
details to Appendix I.

5.1.1. Offline Parameter Estimation. We begin by illustrating the performance of the
offline MLE. Since this model is linear in both of the parameters, in this case it is possible to
obtain the maximum likelihood in closed form as (see also [44])

θ̂N1,t =
ANt −BN

t

CNt −DN
t

, θ̂N2,t =
DN
t A

N
t − CNt BN

t

(CNt )2 − CNt DN
t

where we have defined, writing x̄Ns = 1
N

∑N
j=1 x

j,N
s ,

ANt =

∫ t

0

N∑
i=1

(xi,Ns − x̄Ns )dxi,Ns , BN
t =

∫ t

0

N∑
i=1

xi,Ns dxi,Ns

CNt =

∫ t

0

N∑
i=1

(xi,Ns − x̄Ns )2ds , DN
t =

∫ t

0

N∑
i=1

(xi,Ns )2ds.

For our first simulation, we assume that the true parameter is given by θ∗ = (1, 0.5)T , and
that the diffusion coefficient is equal to the identity, σ = 1. The performance of the MLE is
visualised in Figure 1, in which we plot the mean squared error (MSE) of the offline parameter
estimate for t ∈ [0, 30], and N ∈ {2, 5, 10, 25, 50, 100}, averaged over 500 random trials. As
expected, the parameter estimates converge to the true parameter values as N increases with
t fixed (see Theorem 3.1), and also as t increases with N fixed (see, e.g., [12, 47]).
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(a) θ̂N1,t.
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(b) θ̂N2,t.

Figure 1. L2 error of the offline MLE for t ∈ [0, 30] and N = {2, 5, 10, 25, 50, 100}. The L2 error is plotted
on a log-scale.
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We investigate the convergence rate of the offline MLE further in Figure 2, in which we plot
the mean absolute error (MAE) of the offline parameter estimate for N ∈ {20, 21, . . . , 400}
with t = 5, and also for t ∈ [50, 2000] with N = 2, averaged over 500 random trials. Our results

suggest that the offline MLE for this model has an L1 convergence rate of order O((Nt)−
1
2 ).

This is rather unsurprising: such a rate was recently established by Chen [24] for a linear
mean field model (of arbitrary dimension) in the absence of the global confinement term.
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Figure 2. Log-log plot of the L1 error of the offline MLE for t = 5 and N ∈ {20, . . . , 400} (top panel), and
for t ∈ [50, 2000] and N = 2 (bottom panel).

To conclude this section, we provide numerical confirmation of the asymptotic normality
of the MLE (Theorem 3.2). For the linear mean field model of interest, it is in fact possible
to obtain the asymptotic information matrix in closed form (see also [44]). In particular, it is
given by

It(θ) =

(
Dt(θ) Ct(θ)
Ct(θ) Ct(θ)

)
,

where, with γ(θ) = −2(θ1 + θ2),

Ct(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+
σ2

0

γ
(eγ(θ)t − 1),

Dt(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+

σ2
0

γ(θ)
(eγ(θ)t − 1)− µ2

0

2θ1
(e−2θ1t − 1).
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As such, in Figure 3, we are able to provide a direct comparison of the asymptotic normal
distribution of the MLE, and the approximate normal distribution obtained using a finite
number of particles.
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(c) Asymptotic bivariate density.

Figure 3. A comparison between the asymptotic normal distribution and the approximate normal distribu-
tion of the MLE for N = 500 particles. The histograms were obtained using 105 independent runs.

5.1.2. Online Parameter Estimation. We now turn our attention to the online MLE,
which for this model evolves according to

dθN1,t =
γ1,t

Nσ2

N∑
i=1

[
−xi,Nt dxi,Nt − xi,Nt (θN1,tx

i,N
t + θN2,t(x

i,N
t − x̄Nt ))dt

]
,

dθN2,t =
γ2,t

Nσ2

N∑
i=1

[
−(xi,Nt − x̄Nt )dxi,Nt − (xi,Nt − x̄Nt )(θN1,tx

i,N
t + θN2,t(x

i,N
t − x̄Nt ))dt

]
.

We will initially assume that one of the parameters is fixed (and equal to the true value),
while the other parameter is to be estimated. The true parameters are given by θ∗1 = 0.5
and θ∗2 = 0.1. Meanwhile, the initial parameter estimates are randomly generated according
to θ0

1, θ
0
2 ∼ U([2, 5]). Finally, the learning rates are given by γi,t = min{γ0

i , γ
0
i t
−α}, i = 1, 2,

where γ0
1 = 0.05, γ0

2 = 0.30, and α = 0.51. The performance of the stochastic gradient descent
algorithm is visualised in Figures 4 and 5, in which we plot the mean squared error (MSE) and
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the variance of the online parameter estimates for t ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}.
The results are computed over 500 independent random trials. Interestingly, increasing the
number of particles can result in a relatively significant reduction in the MSE of the interac-
tion parameter θ2, but has little consequence for the error of the confinement parameter θ1.
Meanwhile, there is a relatively significant reduction in the variance of both estimates.
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Figure 4. L2 error of the online parameter estimates for t ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}.
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Figure 5. Variance of the online parameter estimates for t ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}.

We should remark that, in the linear mean field model, with one parameter fixed, the
online parameter estimates generated via the system of interacting particles will converge to
the true value of the parameter (which coincides with the global minimum of the asymptotic
log-likelihood of the McKean-Vlasov SDE) for all values of N . Indeed, for this model, the
(asymptotic) log-likelihood of the IPS is strongly concave for all values of N , with unique
global maximum at the true parameter values. This is visualised in Figures 6d and 7d, in
which we have plotted approximations of profile asymptotic log-likelihood of the IPS for several
values of N . We are thus in the regime of Case I with finite N , meaning θNt will converge to
the true parameter as t→∞, regardless of the value of N .

Figures 6 and 7 also provide a numerical illustration of why the finite-time performance of
the online estimator improves with the number of particles (see Theorem 3.4‡), and why this
improvement is more pronounced for the interaction parameter θ2. As N increases, we observe
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that the time weighted average of the log-likelihood LNt (θ) (the noisy objective function) much
more closely resembles the asymptotic log-likelihood L̃N (θ) (the true objective function), even
for small time values. This means, in particular, that the fluctuations terms appearing in the
proof of Theorems 3.3‡ - 3.4‡ of the form∫ t

0
γs(∇θL̃N (θNs )− 1

N

N∑
i=1

∇θL(θNs , x
N
s , µ

N
s ))ds,

converge more rapidly to zero (as a function of time), for larger values of N . This disparity
in the convergence rate of the log-likelihood (as a function of the time), for different values of
N , appears to be much more significant for the interaction parameter θ2 (Figure 7) than it
is for the confinement parameter θ1 (Figure 6). Consequently, the online parameter estimate
θN2,t converges more rapidly as N increases, while there is little difference in the convergence
rate of θN1,t.
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Figure 6. Plots of the average log-likelihood, 1
T
LNT (θ1), for T = {1, 2.5, 5.7.5} and N = {5, 10, 50}.
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Figure 7. Plots of the average log-likelihood, 1
T
LNT (θ2), for T = {1, 2.5, 5.7.5} and N = {5, 10, 50}.

We conclude this discussion with a comparison between the online parameter estimates
generated using N particles from the IPS, and those generated using a single sample path of
McKean-Vlasov SDE, and its law. We should emphasise that the latter is only possible when
the solution of the non-linear equation is available. Illustrative results are provided in Figure
8, in which we plot the percentage error of the online parameter estimates for the interaction
parameter, for several values of N . In each case, the estimate based on the McKean-Vlasov
SDE converges more rapidly to the true parameter value. We also note, perhaps unsurprisingly,
that this disparity becomes less apparent as the number of particles increases, reflecting the
fact that the dynamics of the interacting particles increasingly resemble the dynamics of the
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solutions of the non-linear equation. Consistent with our previous observations, this disparity
is also less apparent for the online estimates of the confinement parameter (results omitted).
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Figure 8. Percentage error of the online maximum likelihood estimates of the interaction parameter (θ2)
for T ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}, generated using the IPS and the McKean-Vlasov SDE.

Let us now turn our attention to the case in which both parameters are unknown, and
to be estimated from the data. For the sake of comparison, we will once more assume that
that the true parameter is given by θ∗ = (θ∗1, θ

∗
2) = (0.5, 0.1). The initial parameter estimates

are now generated according to θ0
1 ∼ U([−1, 2]) and θ0

2 ∼ U([−2, 2]). Finally, we use constant
learning rates, with γ1,t = 0.1 and γ2,t = 0.2. The performance of the stochastic gradient
descent algorithm is illustrated in Figure 9, in which we plot the MSE of the online parameter
estimates for both of the unknown parameters, averaged over 500 random trials.
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Figure 9. L2 error of the online MLEs for T ∈ [0, 5000] and N = {2, 5, 10, 25, 50, 100}.
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In this case, the evolution of the MSE appears to indicate three distinct learning phases.
In the initial phase, the performance of the online estimator improves as a function of the
number of particles, with this improvement being more noticeable for the interaction parame-
ter θ2, as observed previously. Conversely, in the middle phase, the online estimator performs
(significantly) better for smaller values of N . These observations are readily explained with
reference to the asymptotic log-likelihood of the IPS for different values of N , as shown in
Figure 10. In particular, far from the global maximum at θ∗ = (0.5, 0.1), the asymptotic log-
likelihood decreases more steeply as the value of N increases. Broadly speaking, we can think
of this region of the optimisation landscape as responsible for the initial learning phase, hence
the improved performance of the estimator for larger values of N . On the other hand, close to
the global maximum, the asymptotic log-likelihood exhibits an increasingly large plateau as
the value of N increases (i.e., an increasingly flat maximum). This region of the optimisation
landscape is largely responsible for the middle learning phase, which explains the slower con-
vergence of the estimator for larger values of N . In the final learning phase, the (steady-state)
error of the recursive MLE appears to decrease as a function of the number of particles. This
is unsurprising, given the O(N−

1
2 ) term appearing in Theorem 3.4.
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Figure 10. Contour plots of the asymptotic log-likelihood L̃N (θ) for N = {2, 5, 10, 100}.

5.2. Stochastic Opinion Dynamics. We now consider a one-dimensional stochastic opin-
ion dynamics model, parametrised by θ = (θ1, θ2)T ∈ R2, of the form

dxt = −
[∫

R
ϕθ(||xt − y||)(xt − y)µt(dy)

]
dt+ σdwt,

where the interaction kernel ϕθ : R+ → R+ is defined according to

ϕθ(r) =

 θ1 exp

[
− 0.01

1− (r − θ2)2

]
, r > 0

0 , r ≤ 0.

This provides an approximation, infinitely differentiable on R+, to a scaled indicator function
with magnitude θ1, and support [0, θ+

2 ] := [0, θ2 +1]. We can interpret θ1 as a scale parameter,
which controls the strength of the attraction between particles, and θ+

2 as a range parameter,
which determines the distance within which particles must be of one another in order to
interact. This model is perhaps more frequently specified in terms of the corresponding
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system of interacting particles, which is given by

dxi,Nt = − 1

N

N∑
j=1

ϕθ(||xi,Nt − xj,Nt ||)(x
i,N
t − xj,Nt )dt+ σdwt.

Models of this form arise in various applications, from biology to the social sciences, in which
ϕθ determines how the dynamics of one particle (e.g., the opinions of one person) may influence
the dynamics of other particles (e.g., the opinions of other people). For a more detailed account
of such models, we refer to [13, 65] and references therein. For deterministic models of this
type, it is well known that, asymptotically, the particles merge into clusters, the number of
which depends both on the interaction kernel (i.e., the range and strength of the interaction
between particles) and the initialisation. In the stochastic setting, the random noise prohibits
the formation of exact clusters; instead, the particles merge into metastable ‘soft clusters’ (see
also [55]). This is shown in Figure 11.

0 50 100 150 200
t

2

0

2

x t

(a) θ2 = 0.0.

0 50 100 150 200
t

2

0

2

x t

(b) θ2 = 0.3.

0 50 100 150 200
t

2

0

2

x t

(c) θ2 = 0.5.

0 50 100 150 200
t

2

0

2

x t
(d) θ2 = 1.0.

Figure 11. Sample trajectories of the system of interacting particles for θ2 = {0.0, 0.3, 0.5, 1.0}.

We will focus on online parameter estimation in the case in which the scale parameter
θ1 is fixed, and the range parameter θ+

2 is to be estimated. We assume that θ1 = θ∗1 = 2,
and that θ+

2 = 0.5. This corresponds to an interaction kernel with with compact support
on [0, 0.5]. The initial parameter estimates are generated uniformly at random on [1.5, 2.5].
Finally, we use constant learning rates with γ2,t = 0.002. The performance of the recursive
MLE is illustrated in Figure 13, in which we plot the sequence of online parameter estimates
for θ+

2 , for several values of N , and for 50 different random initialisations. Encouragingly,
(almost) all of the online parameter estimates converge to within a small neighbourhood of
the true value of the parameter, suggesting that it is indeed possible to estimate the range of
the interaction kernel in an online fashion. As in our previous simulations, the performance
of the online estimator improves as the number of particles is increased. We should remark
that the performance of the online estimator is highly dependent on the initial conditions of
the particles. This should not come as a surprise; indeed, if the distance between particles
is greater than then support of the interaction kernel, then the interaction kernel (and its
gradient) are identically zero, and thus so too are all of the terms in the parameter update
equation. Thus, the value of the parameter estimate will remain unchanged. We see this
phenomenon in Figure 13, particularly when there are fewer particles.
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Figure 12. Sample trajectories of the system of interacting particles for N = {10, 20, 50}.

0 50 100 150 200
t

0.5

1.0

1.5

2.0

2.5

N t

N
t

0

(a) N = 10.

0 50 100 150 200
t

0.5

1.0

1.5

2.0

2.5

N t

N
t

0

(b) N = 20.

0 50 100 150 200
t

0.5

1.0

1.5

2.0

2.5

N t

N
t

0

(c) N = 50.

Figure 13. Sequence on online parameter estimates (blue) for the range parameter θ2, for 50 different
random initialisation θ02 ∼ U([1.5, 2.5]), and N = {10, 20, 50}. We also plot the true parameter value (orange),
the mean online parameter estimate plus/minus one standard deviation (black: solid, dashed).

6. Conclusions. In this paper, we have considered the problem of parameter estimation
for a stochastic McKean-Vlasov equation and the associated system of weakly interacting
particles. We established consistency and asymptotic normality of the offline MLE for the IPS
as the number of particles N →∞, extending classical results in [44]. Moreover, we proposed
an online estimator for the parameters of the stochastic McKean-Vlasov equation, based on
observations of the trajectories of the the associated IPS, multiple independent replicates
of the McKean-Vlasov SDE, or a single path of the McKean-Vlasov SDE and its law. We
demonstrated L1 convergence of this estimator to the stationary points of the asymptotic
log-likelihood of the McKean-Vlasov SDE as N → ∞ and t → ∞ and, under additional
assumptions, obtained an L2 convergence rate. Finally, we presented two numerical examples
as a proof of concept. A more detailed numerical analysis of parameter estimation in several
IPSs of practical interest (e.g., stochastic opinion dynamics with heterophilious dynamics as
in [65]) will appear in a subsequent paper.

Regarding other interesting directions for future research, in the offline case, it is of interest
to establish a non-asymptotic Lp convergence rate for the MLE in both the mean-field (large
N) and long time (large T ) regimes, extending the recent results in [24] to a more general
class of IPSs. In the online case, a natural extension of our results is to obtain a central
limit theorem for the recursive estimator, extending the results in [77] to non-linear McKean-
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Vlasov diffusions. Finally, one could aim to extend our results to the case in which the
diffusion coefficient is unknown, and must be estimated online (see [75] for online estimation
of the diffusion coefficient in the linear case, and [40] for offline estimation of the diffusion
coefficient in IPSs). This is a particularly interesting problem given that, for a broad class
of McKean-Vlasov SDEs, the uniqueness (or non-uniqueness) of the invariant measure(s) is
known to depend on the magnitude of the noise coefficient (e.g., [37, 38, 81]).

Appendix A. Existing Results on the McKean-Vlasov SDE.

Proposition A.1 (Existence and Uniqueness, [16, Theorem 2.2.3]). Assume that Conditions
B.1(i) - B.2(i) hold. If µθ0 ∈ P2(Rd), the McKean-Vlasov SDE (1.1) has a unique strong
solution xθ = (xθt )t≥0 for all t ≥ 0. In addition, the IPS (1.4) has a unique strong solution

xθ,N = (xθ,Nt )t≥0 for all t ≥ 0.

Proposition A.2 (Moment Bounds, [16, Lemma 2.3.1]). Assume that Conditions B.1(i) -
B.2(i) and D.1 hold. Then, for all k ≥ 0, there exists Ck > 0 such that for all θ ∈ Rp, and
for all N ∈ N,

sup
t≥0

E||xθ,i,Nt ||k ≤ Ck
(∫

Rd
xkµ0(dx) + 1

)
sup
t≥0

E||xθt ||k ≤ Ck
(∫

Rd
xkµ0(dx) + 1

)
Proposition A.3 (Unique Invariant Measure of the MVSDE [16, Theorem 2.3.3]). Assume

that Conditions B.1 - B.2 hold. Then the McKean-Vlasov SDE admits a unique equilibrium
measure µ∞ which is independent of the initial condition µ0. Moreover, with λ = α − 2L2,
the following contraction rate holds

W2(µt, µ∞) ≤ e−λtW2(µ0, µ∞)

Proposition A.4 (Unique Invariant Measure of the IPS, [Appendix B, Proposition 3.9]). As-
sume that Conditions B.1 - B.2 hold. Then the IPS admits a unique equilibrium measure µ̂N∞
which is independent of the initial condition µ̂N0 . Moreover, with λ = α − 2L2, and writing

µ̂
(k),N
t for the law of a subset of 1 ≤ k ≤ N interacting particles, the following contraction

rate holds

W2(µ̂
(k),N
t , µ̂(k),N

∞ ) ≤ e−λtW2(µ⊗k0 , µ̂(k),N
∞ ).

Proposition A.5 (Propagation of Chaos, [16, Lemma 2.4.1]). Let xi = (xit)t≥0 be N inde-
pendent copies of the solutions of (1.1) - (1.2) driven by independent Brownian motions wi.
Assume that Conditions B.1 - B.2 hold. Then there exist 0 < C < ∞, independent of time,
such that

sup
t≥0

E
[
||xi,Nt − xit||2

]
≤ C

N
.
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Proposition A.6 (A Law of Large Numbers, [25, Theorem 1.2], [66]). Assume that Condi-
tions B.1(i) - B.2(i) hold. If (µN0 )N∈N converge weakly to µ0, then for all g ∈ C(Rd) and for
all t ≥ 0, as N →∞,

lim
N→∞

[
1

N

N∑
i=1

g(xi,Nt )

]
P
=

∫
Rd
g(x)µt(dx).

Appendix B. Proof of Proposition A.4.

Proof. We will prove the first statement for k = N , with the general case proved almost
identically. Let x̂Nt and ŷNt be the solutions of (4.19) starting from x̂N0 and ŷN0 , both driven
by the same Brownian motion. We will write µ̂Nt and ν̂Nt to denote the laws of xNt and yNt ,
respectively. Now, by Itô’s formula, we have

(B.1)
d

dt
||x̂Nt − ŷNt ||2 = 2

(
x̂Nt − ŷNt

)
·
(
B̂(θ, x̂Nt )− B̂(θ, ŷNt )

)
.

Using Conditions B.1 and B.2, it is straightforward to show that, for all x̂N , ŷN ∈ (Rd)N , we
have

(
x̂N − ŷN

)
·
(
B̂(x̂N )− B̂(ŷN )

)
≤ −α

N∑
i=1

||x̂i,N − ŷi,N ||2 +
1

N

N∑
i,j=1

2L2

(
||x̂i,N − ŷi,N ||2

)
≤ − (α− 2L2) ||x̂N − ŷN ||2.(B.2)

Combining (B.1) and (B.2), and taking expectations, it follows that

d

dt
E
[
||x̂Nt − ŷNt ||2

]
≤ 2 (α− 2L2)E

[
||x̂Nt − ŷNt ||2

]
.

Thus, writing λ = α− 2L2, we have that

E
[
||x̂Nt − ŷNt ||2

]
≤ e−2λt||x̂N0 − ŷN0 ||2.

Let πN0 be an arbitrary coupling of µN0 and νN0 . We then have∫
(Rd)N×(Rd)N

E
[
||x̂Nt − ŷNt ||2

]
πN0 (dx̂N0 , dŷ

N
0 ) ≤ e−2λt

∫
(Rd)N×(Rd)N

||x̂N0 − ŷN0 ||2πN0 (dx̂N0 ,dŷ
N
0 ).

It follows, taking the infimum over all coupling measures π0, and taking square roots, that

W2(µ̂Nt , ν̂
N
t ) ≤ e−λtW2(µ̂N0 , ν̂

N
0 ).

Using this inequality, it is now straightforward to demonstrate existence and uniqueness of
an invariant measure for the IPS. Indeed, classical arguments used to establish existence and
uniqueness of an invariant measure for the corresponding McKean-Vlasov SDE (e.g. [16,
Theorem 2.3.3]) go through almost verbatim. The details are omitted here.
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Appendix C. Proof of Lemma for Theorem 3.1 and Theorem 3.2.

Lemma C.1. For all T ≥ 0, for all θ ∈ Θ ⊆ Rp,

lim
N→∞

sup
0≤t≤T

1

N

N∑
i=1

∫ t

0
〈G(θ, xi,Ns , µNs ), dwis〉 = 0

Proof. For ease of notation, let us define

MN
t (θ) :=

1

N

N∑
i=1

∫ t

0
〈G(θ, xi,Ns , µNs ), dwis〉.

Now, for all N ∈ N, and for all θ ∈ Rp, (MN
t (θ))t≥0 is a zero mean continuous square integrable

martingale, with quadratic variation

(C.1)
[
MN (θ)

]
t

=
1

N2

N∑
i=1

∫ t

0
||G(θ, xi,Ns , µNs )||2ds.

It follow, using the elementary fact that supx [f(x)− g(x)] ≥ supx f(x) − supx g(x), and the
martingale inequality [62, page 25], that

P
(

sup
0≤t≤T

MN
t (θ)− sup

0≤t≤T

α

2

[
MN (θ)

]
t
> β

)
≤ P

(
sup

0≤t≤T

{
MN
t (θ)− α

2

[
MN (θ)

]
t

}
> β

)
< e−αβ.

Thus, substituting (C.1) and using symmetry, we have that

P

(
sup

0≤t≤T

∣∣MN
t (θ)

∣∣ > β +
α

2N2

N∑
i=1

∫ T

0
||G(θ, xi,Ns , µNs )||2ds

)
< 2e−αβ.

Let α = Na, β = N−b, for some 0 < a < b < 1. Then

P

(
sup

0≤t≤T
|MN

t (θ)| > 1

N b
+

1

2N1−a
1

N

N∑
i=1

∫ T

0
||G(θ, xi,Ns , µNs )||2ds

)
< 2e−N

a−b
.

By a repeated application of Proposition A.6 (the McKean-Vlasov Law of Large Numbers),
we have that, as N →∞,

1

N

N∑
i=1

∫ T

0
||G(θ, xi,Ns , µNs )||2ds

P−→
∫ T

0

[∫
Rd
||G(θ, x, µs)||2µs(dx)

]
ds.

By definition, Condition C.1(ii), and Proposition A.2 the limiting function on the RHS is finite

and non-random. Moreover, we have that
∑∞

N=1 e
−Na−b

< ∞. The Borel-Cantelli Lemma
thus implies

lim
N→∞

sup
0≤t≤T

MN
t (θ) = 0.
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Appendix D. Proof of Lemmas for Theorem 3.3.

D.1. Additional Lemmas for Lemmas 3.4.A and 3.4.B.

Lemma D.1. Assume that Conditions B.1 - B.2 and D.1 hold. Then, for all k ∈ N, there
exists a positive constant K > 0 such that, for all i = 1, . . . , N , and for all N ∈ N,∫

Rd
||x||kµ∞(dx) ≤ K,∫

(Rd)N
||xi||kµ̂N∞(dx̂N ) ≤ K.

Proof. By Proposition A.3, the McKean-Vlasov SDE (1.1) - (1.2) admits a unique equi-
librium measure µ∞ which is independent of the initial condition µ0. By the ergodic theorem
(e.g., [71, Chapter X]), we thus have, for all k ∈ N, that

(D.1) lim
t→∞

1

t

∫ t

0
||xs||kds =

∫
Rd
||x||kµ∞(dx) , a.s.

Using Jensen’s inequality and Proposition A.2 (uniform moment bounds for the McKean-
Vlasov SDE), we obtain uniform integrability of the family {1

t

∫ t
0 ||xs||

kds}t>0. In particular,
for all 1 ≤ k′ < k, for all t > 0, we have, for some ε > 0,

E
[

1

t

∫ t

0
||xs||k

′
ds

]1+ε

≤ 1

t

∫ t

0
E
[
||xs||k

′(1+ε)
]

ds ≤ Ck
(∫

Rd
xkµ0(dx) + 1

)
.

It follows, taking expectations of (D.1), using uniform integrability in order to interchange
the limit and the expectation, and once more making use of Proposition A.2, that∫

Rd
||x||kµ∞(dx) = lim

t→∞

[
1

t

∫ t

0
E
[
||xs||k

]
ds

]
<∞.

The proof of the bound for the IPS is identical, noting that all of the relevant results (Propo-
sitions A.2 and A.3) have analogues for for the IPS (Propositions A.2 and A.4).

Lemma D.2. Assume that Conditions B.1 - B.2 and D.1 hold. Then, for all k ≥ 1, and
for all t ≥ 0, there exists K > 0 such that

E
[

sup
0≤s≤t

||xs||k
]
≤ Kt

1
2 ,

E
[

sup
0≤s≤t

||xi,Ns ||k
]
≤ Kt

1
2 , ∀i = 1, . . . , N.

Proof. We will prove the first claim (the proof of the second being essentially identical).
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By Itô’s Lemma, we have

||xt||2k = ||x0||2k +

∫ t

0
2k||xs||2k−2〈xs, B(θ, xs, µs)〉ds

+

∫ t

0
k||xs||2k−2Tr[Id + (k − 2)[xisx

j
s]
d
i,j=1||xs||−2]ds

+

∫ t

0
2k||xs||2k−2〈xs,dws〉

It follows, taking the supremum and taking expectations, that

E
[

sup
0≤s≤t

||xt||2k
]
≤ E

[
||x0||2k

]
+ 2k

∫ t

0
E
[∣∣∣||xs||2k−2〈xs, B(θ, xs, µs)〉

∣∣∣] ds︸ ︷︷ ︸
Π1
t

(D.2)

+ k

∫ t

0
E
[∣∣∣||xs||2k−2Tr[Id + (k − 2)[xisx

j
s]
d
i,j=1||xs||−2]

∣∣∣] ds︸ ︷︷ ︸
Π2
t

+ 2kE
[

sup
0≤s≤t

∫ t

0
||xs||2k−2〈xs, dws〉

]
︸ ︷︷ ︸

Π3
t

We begin by bounding the first term. First note that, by Conditions B.1 - B.2, there exist
positive constants C0 and C1 such that

〈xs, B(θ, xs, µs)〉 ≤ −(α− L2)||xs||2 + C||xs||+ L||xs||E [||xs||]

It then follows that

Π1
t ≤ K

∫ t

0
E
[
||xs||2k

]
+ E

[
||xs||2k−1

]
+ E

[
||xs||2k−1

]
E [||xs||] ds(D.3)

≤ K
∫ t

0
E
[
||xs||2k

]
+ E

[
||xs||2k

] 2k−1
2k

+ E
[
||xs||2k

] 2k−1
2k E

[
||xs||2

] 1
2 ds

≤ Kt
[
1 +

∫
Rd
x2kµ0(dx) +

[ ∫
Rd
x2kµ0(dx)

] 2k−1
2k
[
1 +

(∫
Rd
x2µ0(dx)

) 1
2
]]

where in the penultimate line we have used Hölder’s inequality, and in the final line we have
used Proposition A.2 (moment bounds for the McKean-Vlasov SDE). Similarly, for the second
term in (D.2), we have

Π2
t ≤ K

∫ t

0
E
[
||xs||2k

]
ds ≤ Kt

[
1 +

∫
Rd
x2kµ0(dx)

]
.(D.4)

It remains to bound the final term in (D.2). For this term, we use the Burkholder-Davis-Gundy
inequality and Proposition A.2 to obtain

Π3
t ≤ KE

[∫ t

0
||xs||4k−4xTs xsds

] 1
2

≤ KE
[∫ t

0
||xs||4k−2ds

] 1
2

≤ Kt
1
2 .(D.5)
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Combining equations (D.2), (D.3), (D.4), and (D.5), and using the Hölder inequality, we
conclude that, for all t > 0, there exists a positive constant K such that

E
[

sup
0≤s≤t

||xs||k
]
≤ E

[
sup

0≤s≤t
||xs||2k

] 1
2

≤ Kt
1
2 .

Lemma D.3. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that, for all θ ∈ Rp,
f(θ, ·) : Rd → R is locally Lipschitz, and satisfies a polynomial growth condition, viz

||f(θ, x)− f(θ, y)|| ≤ K||x− y|| [1 + ||x||q + ||y||q] .

Then, for all θ ∈ Rp, x, y ∈ Rd, t ≥ 0, there exist positive constants q,K > 0 such that∣∣∣∣Ex [f(θ, xt)]−
∫
Rd
f(θ, z)µ∞(dz)

∣∣∣∣ ≤ K[1 + ||x||q]e−λt.∣∣∣∣Ex [f(θ, xt)]− Ey [f(θ, xt)]

∣∣∣∣ ≤ K[1 + ||x||q + ||y||q]e−λt.

Alternatively, suppose that, for all θ ∈ Rp, f(θ, ·) : (Rd)N → R is locally Lipschitz and satisfies
a polynomial growth condition in the sense that

∣∣∣∣f(θ, x̂N )− f(θ, ŷN )

∣∣∣∣ ≤ K[1 + ||xi,N ||q + ||yi,N ||q +
1

N

N∑
j=1

||xj,N ||q +
1

N

N∑
j=1

||yj,N ||q
]

·
[
||xi,N − yi,N ||+

(
1

N

N∑
j=1

||xj,N − yj,N ||2
) 1

2
]

where x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N . Then, for all i = 1, . . . , N , and for all θ ∈ Rp, there
exist positive constants q,K > 0 such that

∣∣∣∣Ex̂N [f(θ, x̂Nt )]−
∫

(Rd)N
f(θ, ẑN )µ̂N∞(dẑN )

∣∣∣∣ ≤ K[1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
]
e−λt

∣∣∣∣Ex̂N [f(θ, x̂Nt )]− EŷN [f(θ, x̂Nt )]

∣∣∣∣ ≤ K[1 + ||xi,N ||q + ||yi,N ||q +
1

N

N∑
j=1

(||xj,N ||q + ||yj,N ||q)
]
e−λt

for all x̂N , ŷN ∈ (Rd)N , and for all t ≥ 0.

Proof. We will focus on the first statement of the first part of the Lemma. Let µ, ν ∈
P(Rd), and π ∈ Π(µ, ν). Then, using the Hölder inequality and the local Lipschitz assumption,
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it follows that∫
Rd×Rd

|f(θ, y)− f(θ, z)|π(dy,dz)

≤ K
[ ∫

Rd×Rd
||y − z||2π(dy,dz)

] 1
2
[
1 +

[ ∫
Rd×Rd

||y||2qπ(dy,dz)

] 1
2

+

[ ∫
Rd×Rd

||y||2qπ(dy,dz)

] 1
2
]

= K

[ ∫
Rd×Rd

||y − z||2π(dy,dz)

] 1
2
[
1 +

[ ∫
Rd
||y||2qµ(dy)

] 1
2

+

[ ∫
Rd
||y||2qµ(dz)

] 1
2
]

Let xt be a solution of the McKean-Vlasov SDE starting from x ∈ Rd. Let µxt denote the
law of xt, and let µ∞ denote the invariant measure of the McKean-Vlasov SDE. Moreover, let
πx,∞t denote an arbitrary coupling of µxt and µ∞. It then follows straightforwardly from the
previous inequality that∣∣∣∣Ex [f(θ, xt)]−

∫
Rd
f(θ, z)µ∞(dz)

∣∣∣∣ =

∣∣∣∣ ∫
Rd
f(θ, y)µxt (dy)−

∫
Rd
f(θ, z)µ∞(dz)

∣∣∣∣
≤
∫
Rd×Rd

|f(θ, y)− f(θ, z)|πx,∞t (dy,dz)

≤ K
[ ∫

Rd×Rd
||y − z||2πx,∞t (dy,dz)

] 1
2

·
[
1 +

[ ∫
Rd
||y||2qµxt (dy)

] 1
2

+

[ ∫
Rd
||z||2qµ∞(dz)

] 1
2
]

Finally, using the fact that the chosen coupling was arbitrary, and using Lemma D.1 (the
bounded moments of the invariant measure of the McKean-Vlasov SDE), Proposition A.2 (the
moment bounds for the McKean-Vlasov SDE), Proposition A.3 (exponential contractivity of
the McKean-Vlasov SDE), the previous inequality implies∣∣∣∣Ex [f(θ, xt)]−

∫
Rd
f(θ, z)µ∞(dz)

∣∣∣∣ ≤ KW2(µxt , µ∞)

[
1 +

[ ∫
Rd
||y||2qµxt (dy)

] 1
2

+K ′
]

≤ KW2(µx0 , µ∞)
[
1 + ||x||q

]
e−λt

≤ K
[
1 + ||x||q

]
e−λt

This completes the proof of the first statement of the first part of the Lemma. The proof of
the second statement is essentially identical, this time considering an arbitrary coupling of
µxt and µyt , and making use of the bound W2(µxt , µ

y
t ) ≤ e−λtW2(µx0 , µ

y
0). Finally, the proof of

the second part of the Lemma follows closely the previous proof, now using the statements in
Lemma D.1, Proposition A.2, and Proposition A.4 that are relevant to the IPS.

Lemma D.4. Assume that Condition C.1 holds. Then, for k = 0, 1, 2, 3, there exist con-
stants q,K <∞, such that ∇kθL(θ, x, µ), satisfy the following polynomial growth conditions:

||∇kθL(θ, x, µ)|| ≤ K [1 + ||x||q + µ(|| · ||q)] .
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Proof. We first observe that, by Condition C.1(ii), there exist constants qk,Kk <∞ such
that ∇kθb(θ, x) ≤ Kj(1 + ||x||qk) and ∇kθφ(θ, x, y) ≤ Kk(1 + ||x||qk + ||y||qk). It follows from
the definition of B(θ, x, µ), c.f. (1.3), that

∇kθB(θ, x, µ) = ∇kθb(θ, x, µ) +

∫
Rd
∇kθφ(θ, x, y)µ(dy)

= Kk(1 + ||x||qk) +Kk

∫
Rd

(1 + ||x||qk + ||y||qk)µ(dy)

≤ Kk [1 + ||x||qk + µ(|| · ||qk)]

where we allow the values of qk,Kk to vary from line to line. Thus, from the definition of
G(θ, x, µ), c.f. (2.1), we have that

(D.6) ||∇kθG(θ, x, µ)|| = ||∇kθB(θ, x, µ)−∇kθB(θ0, x, µ)|| ≤ Kk [1 + ||x||qk + µ(|| · ||qk)] .

It now follows, recalling the definition of L(θ, x, µ), c.f. (2.2), that

||L(θ, x, µ)|| = 1

2
||G(θ, x, µ)||2 ≤ K2

0 [1 + ||x||q0 + µ(|| · ||q0)]2 ≤ K [1 + ||x||q + µ(|| · ||q)]

where in the final inequality we have set K = 3K2
0 and q = 2q0, after applying Hölder’s

inequality. The bounds for ∇kθL(θ, x, µ), for k = 1, 2, 3, are obtained in an almost identical
fashion.

Remark. This result implies, substituting x = xi,N and µ = µN , and recalling that
L̂i,N (θ, x̂N ) := L(θ, xi,N , µ̂N ), that for all i = 1, . . . , N , N ∈ N, we have

||∇kθ L̂i,N (θ, µ̂N )|| ≤ K

1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q


Lemma D.5. Assume that Condition C.1 holds. Then, for k = 0, 1, 2, 3, there exist con-
stants q,K <∞ such that ∇kθL(θ, x, µ) satisfy

||∇kθL(θ, x, µ)−∇kθL(θ, x′, µ′)|| ≤ K
[
||x− x′||+ W2(µ, µ′)

]
·
[
1 + ||x||q + ||x′||q + µ(|| · ||q) + µ′(|| · ||q)

]
Proof. We begin by recalling that, from Condition C.1(ii), there exist constants q,K <∞

such that ∇kθφ(θ, x, y) ≤ K[||x− x′||+ ||y − y′||][1 + ||x||q + ||x′||q + ||y||q + ||y′||q]. It follows,
letting π ∈ Π(µ, µ′) and using the Hölder inequality, that∣∣∣∣∣∣∣∣∫

Rd
∇kθφ(θ, x, y)µ(dy)−

∫
Rd
∇kθφ(θ, x, y′)µ′(dy′)

∣∣∣∣∣∣∣∣(D.7)

≤ K
[ ∫

Rd×Rd
||y − y′||

[
1 + ||y||q + ||y′||q

]
π(dy,dz)

]
≤ K

[ ∫
Rd×Rd

||y − y′||2π(dy,dz)

] 1
2
[
1 +

[ ∫
Rd
||y||2qµ(dy)

] 1
2

+

[ ∫
Rd
||y′||2qµ(dz)

] 1
2
]

≤ KW2(µ, µ′)
[
1 + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]
.
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We then have, via the triangle inequality, the bound (D.7), and another application of both
Condition C.1(ii) and the Hölder inequality, that∣∣∣∣∣∣∣∣∫

Rd
∇kθφ(θ, x, y)µ(dy)−

∫
Rd
∇kθφ(θ, x′, y′)µ′(dy′)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∫

Rd
∇kθφ(θ, x, y)µ(dy)−

∫
Rd
∇kθφ(θ, x, y′)µ′(dy′)

∣∣∣∣∣∣∣∣+

∫
Rd

∣∣∣∣∣∣∇kθφ(θ, x, y′)−∇kθφ(θ, x′, y′)
∣∣∣∣∣∣µ′(dy′)

≤ KW2(µ, µ′)
[
1 + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]
+K||x− x′||

[
1 + µ′(|| · ||2q)

1
2

]
≤ K

[
||x− x′||+ W2(µ, µ′)

] [
1 + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]
.

Thus, recalling the definition of B(θ, x, µ), c.f. (1.3), and once more making use Condition
C.1(ii), we obtain

||∇kθB(θ, x, µ)−∇kθB(θ, x′, µ′)|| ≤
∣∣∣∣∣∣∇kθb(θ, x)−∇kθb(θ, x′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∫
Rd
∇kθφ(θ, x, y)µ(dy)−

∫
Rd
∇kθφ(θ, x′, y′)µ′(dy′)

∣∣∣∣∣∣∣∣
≤ K

[
||x− x′||+ W2(µ, µ′)

]
·
[
1 + ||x||q + ||x′||q + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]
.

From the definition of G(θ, x, µ), c.f. (2.1), we trivially then have

||∇kθG(θ, x, µ)−∇kθG(θ, x′, µ′)|| ≤ K
[
||x− x′||+ W2(µ, µ′)

]
(D.8)

·
[
1 + ||x||q + ||x′||q + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]
.

Finally, recalling the definition of L(θ, x, µ), c.f. (2.2), and combining (D.6) and (D.8), we
obtain

||L(θ, x, µ)− L(θ, x′, µ′)|| = 1

2

∣∣∣∣GT (θ, x, µ)G(θ, x, µ)−GT (θ, x′, µ′)G(θ, x′, µ′)
∣∣∣∣

≤ 1

2
||G(θ, x, µ)−G(θ, x′, µ′)|| ||G(θ, x, µ) +G(θ, x′, µ′)||

≤ K
[
||x− x′||+ W2(µ, µ′)

]
·
[
1 + ||x||q + ||x′||q + µ(|| · ||2q)

1
2 + µ′(|| · ||2q)

1
2

]2

≤ K
[
||x− x′||+ W2(µ, µ′)

]
·
[
1 + ||x||q + ||x′||q + µ(|| · ||q) + µ′(|| · ||q)

]
.

where in the final line we have replaced the unimportant constant q → 2q, after applying the
Hölder inequality. The bounds for ∇kθL(θ, x, µ), k = 0, 1, 2, follow analogously.
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Remark. In the case that substituting x = xi,N , x′ = yi,N , µ = µNx and µ′ = µNy , and
recalling that L̂i,N (θ, x̂N ) := L(θ, xi,N , µ̂N ), that for all i = 1, . . . , N , N ∈ N, it holds that∣∣∣∣∇kθL(θ, x̂N )−∇kθL(θ, ŷN )

∣∣∣∣ ≤ K[||yi,N − zi,N ||+ ( 1

N

N∑
j=1

||yj,N − zj,N ||2
) 1

2
]

·
[
1 + ||xi,N ||q + ||yi,N ||q +

1

N

N∑
j=1

||xj,N ||q +
1

N

N∑
j=1

||yj,N ||q
]

Lemma D.6. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for k = 0, 1, 2,
there exist K,K ′ > 0 such that, for all θ ∈ Rp, ||∇kθ L̃(θ)|| ≤ K and ||∇kθ L̃i,N (θ)|| ≤ K ′.

Proof. Using the definition of ∇kθ L̃(θ) (Lemma 3.4.A), the polynomial growth property of
∇kθL(θ, x, µ) (Lemma D.4), and the finite moments of the invariant measure of the McKean-
Vlasov SDE (Lemma D.1), we have that

||∇kθ L̃(θ)|| ≤
∫
Rd
||∇kθL(θ, x, µ∞)||µ∞(dx)

≤ K
∫
Rd

[
1 + ||x||q + [

∫
Rd
||y||qµ∞(dy)

]
µ∞(dy)

≤ K
∫
Rd

(1 + ||x||q)µ∞(dx) ≤ K.

The bound for ∇kθ L̃i,N (θ) follows identically, this time using the defintion of ∇kθ L̃i,N (θ)
(Lemma 3.4.B), and the finite moments of the invariant measure of the IPS (Lemma D.1).

D.2. Additional Lemmas for Lemma 3.4.C.

Lemma D.7. Assume that Conditions B.1 - B.2 and D.1 hold. For all Lipschitz functions
ϕ, there exists K > 0 such that, for all t ≥ 0, for all N ∈ N,

E

[∣∣∣∣∣∣∣∣ ∫
Rd
ϕ(y)µt(dy)− 1

N

N∑
i=1

ϕ(xi,Nt )

∣∣∣∣∣∣∣∣2
]
≤ K

N

Proof. Let xit, i = 1, . . . , N denote independent solutions of the McKean-Vlasov SDE (1.1)
- (1.2). We then have, using the elementary inequality ||a+ b||2 ≤ 2||a||2 + 2||b||2, that

E
[∣∣∣∣ ∫

Rd
ϕ(y)µt(dy)− 1

N

N∑
i=1

ϕ(xi,Nt )
∣∣∣∣2] ≤2E

[∣∣∣∣ ∫
Rd
ϕ(y)µt(dy)− 1

N

N∑
i=1

ϕ(xit)
∣∣∣∣2]

+ 2E
[∣∣∣∣ 1

N

N∑
i=1

(
ϕ(xit)− ϕ(xi,Nt )

) ∣∣∣∣2]
For the first term, we observe, using the independence of the variables xit, i = 1, . . . , N , that

E
[∣∣∣∣ ∫

Rd
ϕ(y)µt(dy)− 1

N

N∑
i=1

ϕ(xit)
∣∣∣∣2] ≤ 1

N
E
[∣∣∣∣ϕ(x1

t )− E[ϕ(x1
t )]
∣∣∣∣2]
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It is straightforward to show that E[(ϕ(x1
t )−E[ϕ(x1

t )])
2] ≤ E[(ϕ(x1

t )−ϕ(E[x1
t ]))

2]. It follows,
using also the fact that ϕ is Lipschitz, and Proposition A.2 (the bounded moments of the
McKean-Vlasov SDE), that

E
[∣∣∣∣ ∫

Rd
ϕ(y)µt(dy)− 1

N

N∑
i=1

ϕ(xit)
∣∣∣∣2] ≤ 1

N
E
[∣∣∣∣ϕ(x1

t )− ϕ(E[x1
t ])
∣∣∣∣2] ≤ K

N
.

where, as previously, the value of the constant K is allowed to vary from line to line. For the
second term, using the Cauchy-Schwarz inequality, the fact that ϕ is Lipschitz, and Proposition
A.5 (uniform-in-time propagation of chaos), we obtain

E
[∣∣∣∣ 1

N

N∑
i=1

(
ϕ(xit)− ϕ(xi,Nt )

)∣∣∣∣2] ≤ K

N

N∑
i=1

E
[∣∣∣∣xit − xi,Nt ∣∣∣∣2] ≤ K

N
.

The result follows immediately.

Lemma D.8. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose also that µ0 ∈
P2(Rd). Let xit denote a solution of the McKean-Vlasov SDE, driven by wi = (wit)t≥0. Then,
for all Lipschitz functions ϕ, there exists K > 0 such that, for all t ≥ 0, for all N ∈ N,

E

[∣∣∣∣∣∣∣∣ ∫
Rd
ϕ(xit, y)µt(dy)− 1

N

N∑
i=1

ϕ(xi,Nt , xj,Nt )

∣∣∣∣∣∣∣∣2
]
≤ K

N

Proof. The is an immediate corollary of Lemma D.7. Indeed, using the Hölder inequality,
and that ϕ is Lipschitz, we have

∣∣∣∣ ∫
Rd
ϕ(xit, y)µt(dy)− 1

N

N∑
j=1

ϕ(xi,Nt , xj,Nt )
∣∣∣∣2

≤ 2
∣∣∣∣ϕ(xit, y)µt(dy)− 1

N

N∑
j=1

ϕ(xit, x
j,N
t )

∣∣∣∣2 + 2
∣∣∣∣ 1

N

N∑
j=1

[ϕ(xit, x
j,N
t )− ϕ(xi,Nt , xj,Nt )]

∣∣∣∣2
≤ 2
∣∣∣∣ϕ(xit, y)µt(dy)− 1

N

N∑
j=1

ϕ(xit, x
j,N
t )

∣∣∣∣2 +
2K

N

N∑
j=1

∣∣∣∣xit − xi,Nt ∣∣∣∣2
It follows immediately, as required, that

E

[∣∣∣∣∣∣∣∣ ∫
Rd
ϕ(xit, y)µt(dy)− 1

N

N∑
i=1

ϕ(xi,Nt , xj,Nt )

∣∣∣∣∣∣∣∣2
]

≤ K E

∣∣∣∣ϕ(xit, y)µt(dy)− 1

N

N∑
j=1

ϕ(xit, x
j,N
t )

∣∣∣∣2
︸ ︷︷ ︸

≤K
N

by Lemma D.7

+E

 1

N

N∑
j=1

∣∣∣∣xit − xi,Nt ∣∣∣∣2
︸ ︷︷ ︸
≤K
N

by Proposition A.5

≤ K

N
.
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D.3. Additional Lemmas for Lemma 3.4.D.

D.3.1. Main Lemmas. The lemmas in this section are variations of Lemmas 3.1 - 3.5 in
[75]. For convenience, and since we will later also need to prove modified versions of these
lemmas (see Appendix G), we provide the proofs of these results in full, appropriately adapted
to the current setting.

Lemma D.9. Assume that Conditions B.1 - B.2, C.1, D.1, and F.1 hold. Define, with
x̂N = (x1,N , . . . , xN,N ), the function

Γk,η =

∫ σk,η

τk

γs

(
∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )

)
ds.

Then, almost surely, ||Γk,η|| → 0 as k →∞.

Proof. Let x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N . Consider the function

Si,N (θ, x̂N ) = ∇θL̂i,N (θ, x̂N )−∇θL̃i,N (θ).

We begin by noting that this function is ‘centred’ with respect to the invariant measure
µ̂∞(·). using the definition of ∇θL̃i,N (·) from Lemma 3.4.B. In addition, observe that, by
Lemma D.15 (see Appendix D.3.3), the function Si,N (θ, x̂) ∈ C2,α(Rp, (Rd)N ), and there exist
positive constants q,K > 0 such that, for j = 0, 1, 2,

|∂jθS
i,N (θ, x̂N )| ≤ K(1 + ||xi||q +

1

N

N∑
j=1

||xj ||q),

Thus, the function Si,N : Rp× (Rd)N → Rp satisfies the conditions of Lemma D.14. It follows
that, for all i = 1, . . . , N , the Poisson equation

Ax̂vi,N (θ, x̂N ) = Si,N (θ, x̂N ) ,

∫
(Rd)N

vi,N (θ, x̂N )µ̂N∞(dx̂N ) = 0

has a unique twice differentiable solution which satisfies

(D.9)
2∑
j=0

∣∣∣∣∂jvi,N∂θi
(θ, x̂N )

∣∣∣∣+

∣∣∣∣∂2vi,N

∂θ∂x
(θ, x̂N )

∣∣∣∣ ≤ K(1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
)
.

Let ui,N (t, θ, x̂N ) = γtv
i,N (θ, x̂N ). Applying Ito’s formula to each component of this vector-
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valued function, we obtain, for l = 1, . . . , p,

(D.10)

ui,Nl (t2, θ
i,N
t2
, x̂Nt2 )− ui,Nl (t1, θ

i,N
t1
, x̂Nt1 ) =

∫ t2

t1

∂su
i,N
l (s, θi,Ns , x̂Ns )ds

+

∫ t2

t1

Ax̂ui,Nl (s, θi,Ns , x̂Ns )ds+

∫ t2

t1

Aθui,Nl (s, θi,Ns , x̂Ns )ds

+

∫ t2

t1

γsTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∂θ∂x̂u

i,N
l (s, θi,Ns , x̂Ns )

]
ds

+

∫ t2

t1

∂x̂u
i,N
l (s, θi,Ns , x̂Ns ) · dŵNs

+

∫ t2

t1

γs∂θu
i,N
l (s, θi,Ns , x̂Ns ) · ∇θB̂i,N (θi,Ns , x̂Ns )dwis

where Ax̂ and Aθ are the infinitesimal generators of x̂N and θ, respectively, and we recall from
(4.19) that ŵNt = (w1

t , . . . , w
N
t )T . Rearranging this identity, and also recalling that vi,N (θ, x̂N )

is the solution of the Poisson equation, we obtain

Γk,η =

∫ σk,η

τk

γsAx̂vi,N (θi,Ns , x̂Ns )ds

= γσk,ηv
i,N (θi,Nσk,η , x̂

N
σk,η

)− γτkv
i,N (θi,Nτk , x̂

N
τk

)−
∫ σk,η

τk

γ̇sv
i,N (θi,Ns , x̂Ns )ds

−
∫ σk,η

τk

γsAθvi,N (θi,Ns , x̂Ns )ds−
∫ σk,η

τk

γ2
sTr
[
∇θB̂i,N (θi,Ns , ŝNx )∂θ∂x̂v

i,N (θi,Ns , x̂Ns )
]
ds

−
∫ σk,η

τk

γs∂x̂v
i,N (θi,Ns , x̂Ns ) · dŵNs −

∫ σk,η

τk

γ2
s∂θv

i,N (θi,Ns , x̂Ns ) · ∇θB̂i,N (θi,Ns , x̂Ns )dwis

We now prove the convergence of each term on the right hand side of this equation. As
previously, we allow the value of K to change from line to line. First define

J
(1)
t = γt||vi,N (θi,Nt , x̂Nt )||

We have, make use of the polynomial growth of vi,N (θ, x̂N ), and Proposition A.2 (the bounded
moments of the IPS), that

E[|J (1)
t |2] ≤ Kγ2

t

(
1 + E[||xi,Nt ||q] +

1

N

N∑
j=1

E[||xj,Nt ||q]
)
≤ Kγ2

t .

Applying the Borel-Cantelli argument as in [77, Appendix B], it follows that J
(1)
t converges

to zero with probability one. We next consider the term

J
(2)
0,t =

∫ t

0
∂sγ̇sv

i,N (θi,Ns , x̂Ns )ds+

∫ t

0
γsAθvi,N (θi,Ns , x̂Ns )ds

+

∫ t

0
γ2
sTr
[
∇θB̂i,N (θi,Ns , x̂Ns )∂θ∂xv

i,N (θi,Ns , x̂Ns )
]
ds



58 L. SHARROCK, N. KANTAS, P. PARPAS, G. A. PAVLIOTIS

This term obeys the bound

sup
t>0

E|J (2)
0,t | ≤ K

∫ ∞
0

(|γ̇s|+ γ2
s )(1 + E[||xi,Ns ||q] +

1

N

N∑
j=1

E[||xj,Ns ||q])ds

≤ K
∫ ∞

0
(|γ̇s|+ γ2

s )ds <∞.

Here, the first inequality follows from the growth properties of the vi,N (θ, x̂N ) in (D.9), the
second inequality from Proposition A.2 (the bounded moments of the IPS), and the final
inequality from Condition F.1 (the properties of the learning rate). It follows that there exists
a finite random variable J

(2)
0,∞ such that, with probability one,

(D.11) J
(2)
0,t → J

(2)
0,∞ , as t→∞.

The last term to consider is the stochastic integral

J
(3)
0,t =

∫ t

0
γs∂x̂v

i,N (θi,Ns , x̂Ns ) · dŵNs +

∫ σk,η

τk

γ2
s∂θv

i,N (θi,Ns , x̂Ns ) · ∇θB̂i,N (θi,Ns , x̂Ns )dwis

In this case, using the BDG inequality, and the same bounds as above, we have

E
[
|J (3)

0,t |
2
]
≤ K

∫ ∞
0

(γ2
s + γ4

s )

[
1 + E[||xi,Ns ||q] +

1

N

N∑
j=1

E[||xj,Ns ||q]
]
ds ≤ K

∫ ∞
0

γ2
sds <∞.

Thus, by Doob’s martingale convergence theorem, there exists a square integrable random
variable J

(3)
0,∞ such that, both almost surely and in L2,

(D.12) J
(3)
0,t → J

(3)
0,∞ , as t→∞.

It remains only to observe, combining (D.11) and (D.12), we have

||Γk,η|| ≤ J (1)
σk,η

+ J (1)
τk

+ J (2)
τk,σk,η

+ J (3)
τk,σk,η

k→∞→ 0.

Lemma D.10. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Let ρ > 0 be
such that, for a given κ > 0, it is true that 3ρ + ρ

4κ = 1
2L , where L denotes the Lipschitz

constant of ∇θL̃i,N (θ). For k large enough, and for η > 0 small enough (potentially random,
and depending on k), one has∫ σk,η

τk

γsds > ρ and, a.s.,
ρ

2
≤
∫ σk

τk

γsds ≤ ρ.
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Proof. We proceed by contradiction. Let us assume that
∫ σk,η
τk

γsds ≤ ρ. Choose arbitrary
ε > 0 such that ε ≤ ρ

8 . We begin with the observation that, via the Itô isometry, we have that

sup
t≥0

E
∣∣∣∣ ∫ t

0
γs

κ

||∇L̃i,N (θi,Nτk )||
∇θB̂i,N (θi,Ns , x̂Ns )dwis

∣∣∣∣2 ≤ ∫ t

0
Kγ2

s

(
1 + E

[
||x̂Ns ||q

])
ds <∞

where, we have used the polynomial growth of ∇θB̂i,N (θ, x̂) (see the proof of Lemma D.15),
Proposition A.2 (the bounded moments of the IPS), and Condition F.1 (the properties of the
learning rate). Thus, by the Doob’s martingale convergence theorem, there exists a finite
random variable M such that, both almost surely and in L2,∫ t

0
γs

κ

||∇L̃i,N (θi,Nτk )||
∇θB̂i,N (θi,Ns , x̂Ns )dwis →M

It follows that, for the chosen ε > 0, there exists k such that

(D.13)

∫ σk,η

τk

γs
κ

||∇L̃i,N (θi,Nτk )||
∇θB̂i,N (θi,Ns , x̂Ns )dwis < ε.

Let us now also assume that, for the given k, η is small enough such that for all s ∈ [τk, σk,η],

we have ||∇θL̃i,N (θi,Ns )|| ≤ 3||∇θL̃i,N (θi,Nτk )||. We can then compute

(D.14)

||θi,Nσk,η − θ
i,N
τk
|| =

∣∣∣∣ ∫ σk,η

τk

γs∇θL̂i,N (θi,Ns , x̂Ns )ds+

∫ σk,η

τk

γs〈∇θB̂i,N (θi,Ns , x̂Ns ), dwis〉
∣∣∣∣

≤ 3||∇θL̃i,N (θi,Nτk )||
∫ σk,η

τk

γsds+
∣∣∣∣ ∫ σk,η

τk

γs[∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )]ds
∣∣∣∣

+
||∇L̃i,N (θi,Nτk )||

κ

∣∣∣∣ ∫ σk,η

τk

γs
κ

||∇L̃i,N (θi,Nτk )||
〈∇θB(θi,Ns , x̂Ns ),dwis〉

∣∣∣∣
≤ 3||∇θL̃i,N (θi,Nτk )||ρ+ ε+

||∇L̃i,N (θi,Nτk )||
κ

ε

≤ ||∇θL̃i,N (θi,Nτk )||
[
3ρ+

ρ

4κ

]
where in the penultimate line we have used Lemma D.9 and (D.13), and in the final line we
have used the fact that our choice of ε satisfies ε ≤ ρ

8 . We thus obtain

||θi,Nσk,η − θ
i,N
τk
|| ≤ ||∇θL̃i,N (θi,Nτk )||

[
3ρ+

ρ

4κ

]
≤ ||∇θL̃i,N (θi,Nτk )|| 1

2L
.

Thus, using also the definition of the Lipschitz constant L, we obtain

||∇θL̃i,N (θi,Nσk,η)−∇θL̃i,N (θi,Nτk )|| ≤ L||θi,Nσk,η − θ
i,N
τk
|| ≤ 1

2
||∇θL̃i,N (θi,Nτk )||
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which then yields

(D.15)
1

2
||∇θL̃i,N (θi,Nτk )|| ≤ ||∇θL̃i,N (θi,Nσk,η)|| ≤ 2||∇θL̃i,N (θi,Nτk )||.

But this implies that σk,η ∈ [τk, σk], which is a contradiction. Thus we do indeed have∫ σk,η
τk

γsds > ρ. We now turn our attention to the second part of the Lemma. By definition,
we have that

∫ σk
τk
γsds ≤ ρ. Thus, it remains only to show that ρ

2 ≤
∫ σk
τk
γsds. From the first

part of the Lemma, we have that
∫ σk,η
τk

γsds > ρ. Moreover, for k sufficiently large and η
sufficiently small, we must have

∫ σk,η
σk

γsds ≤ ρ
2 . We thus obtain∫ σk

τk

γsds ≥ ρ−
∫ σk,η

σk

γsds ≥ ρ−
ρ

2
=
ρ

2
.

Lemma D.11. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that
there are an infinite number of intervals [τk, σk). Then there exists a fixed constant β =
β(κ) > 0 such that, for k large enough, almost surely,

L̃i,N (θi,Nσk )− L̃i,N (θi,Nτk ) ≥ β.

Proof. By Itô’s formula, we have that

L̃i,N (θi,Nσk )− L̃i,N (θi,Nτk )(D.16)

=

∫ σk

τk

γs||∇θL̃i,N (θi,Ns )||2ds︸ ︷︷ ︸
Ai,N1,k

+

∫ σk

τk

γs〈∇θL̃i,N (θi,Ns ),∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds︸ ︷︷ ︸
Ai,N2,k

+

∫ σk

τk

γs〈∇θL̃i,N (θi,Ns ),∇θB̂i,N (θi,Ns , x̂Ns )dwis〉︸ ︷︷ ︸
Ai,N3,k

+

∫ σk

τk

1

2
γ2
sTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )T∇2

θL̃i,N (θi,Ns )ds
]

︸ ︷︷ ︸
Ai,N4,k

We will deal with each of these terms individually. First consider Ai,N1,k . For this term, we
have that

Ai,N1,k =

∫ σk

τk

γs||∇θL̃i,N (θi,Ns )||2ds ≥ ||∇θL̃
i,N (θi,Nτk )||2

4

∫ σk

τk

γsds ≥
||∇θL̃i,N (θi,Nτk )||2

8
ρ

where, in the first inequality, we have used the definition of the {τk}k≥0, namely, that

||∇θL̃i,N (θi,Ns )|| ≥ 1
2 ||∇θL̃

i,N (θi,Nτk )|| for all s ∈ [τk, σk], and in the second inequality we have
used Lemma D.10.
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We now turn our attention to Ai,N2,k . We will handle this term using a very similar to
approach to that used in the proof of Lemma D.9. Let us consider the function

T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ),∇θL̂i,N (θ, x̂N )−∇θL̃i,N (θ)〉.

By Lemma D.16, we have that T i,N (θ, x̂N ) ∈ C2,α(Rp,Rd), and that ||∂jθT
i,N (θ, x̂N )| ≤ K(1 +

||xi,N ||q + 1
N

∑N
j=1 ||xj ||q), for j = 0, 1, 2. Moreover, it is straightforward to show that this

function satisfies
∫

(Rd)N T
i,N (θ, x̂N )µ̂∞(dx̂N ) = 0. Thus, Lemma D.14, the Poisson equation

Ax̂vi,N (θ, x̂N ) = T i,N (θ, x̂N ) ,

∫
(Rd)N

vi,N (θ, x̂N )µ∞(dx̂N ) = 0

has a unique twice differentiable solution which satisfies

2∑
j=0

∣∣∣∣∂jvi,N∂θi
(θ, x̂N )

∣∣∣∣+

∣∣∣∣∂2vi,N

∂θ∂x
(θ, x̂N )

∣∣∣∣ ≤ K[1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
]
.

and, using the same steps as in the proof of Lemma D.9, we can prove that, a.s.,∣∣∣∣∣∣∣∣∫ σk

τk

γs〈∇θL̃i,N (θi,Ns ),∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds
∣∣∣∣∣∣∣∣ k→∞→ 0.

We next consider Ai,N3,k . Using Itô’s isometry, Lemma D.6, the polynomial growth of the
function ∇θB̂i,N (θ, x̂) (see the proof of Lemma D.15), Proposition A.2 (the moment bounds
for solutions of the IPS) and Condition F.1 (the square summability of the learning rate), we
have that

sup
t≥0

E

[∣∣∣∣∫ t

0
γs〈∇θL̃i,N (θi,Ns ),∇θB̂i,N (θi,Ns , x̂Ns )dwis〉

∣∣∣∣2
]

≤ KE
∫ ∞

0
γ2
s ||∇θB̂i,N (θi,Ns , x̂Ns )||2ds

≤ K
∫ ∞

0
γ2
s (1 + E

[
||xi,Ns ||q

]
+

1

N

N∑
j=1

E
[
||xj,Ns ||q

]
ds <∞.

Thus, by Doob’s martingale convergence theorem, there exists a finite random variable Ai,N3,∞
such that, both almost surely and in L2,∫ t

0
γs〈∇θL̃i,N (θi,Ns ),∇θB̂i,N (θi,Ns , x̂Ns )dwis〉 → Ai,N3,∞.

as t → ∞. It follows that Ai,N3,k → 0 a.s. as k → ∞. Finally, we turn our attention to Ai,N4,k .
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For this term, we observe that

sup
t≥0

E
∣∣∣∣∣∣∣∣∫ t

0

1

2
γ2
sTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )T∇2

θL̃i,N (θi,Ns )
]

ds

∣∣∣∣∣∣∣∣
≤ K

∫ ∞
0

γ2
s (1 + E

[
||xi,Ns ||q

]
+

1

N

N∑
j=1

E
[
||x̂j,Ns ||q

]
)ds <∞,

where, as above, we have used Lemma D.6, the polynomial growth of∇θB̂i,N (θ, x̂), Proposition
A.2, and Condition F.1. It follows that the random variable∫ ∞

0

1

2
γ2
sTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )T∇2

θL̃i,N (θi,Ns )
]

ds

is finite a.s., which in turn implies that there exists a finite random variable Ai,N4,∞ such that∫ t

0

1

2
γ2
sTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )T∇2

θL̃i,N (θi,Ns )
]

ds→ A∞4

almost surely. It follows, in particular, that Ai,N4,k → 0 a.s. as k →∞. Summarising, we thus
have that, for all ε > 0, there exists k such that

L̃i,N (θi,Nσk )− L̃i,N (θi,Nτk ) = Ai,N1,k +Ai,N2,k +Ai,N3,k +Ai,N4,k

≥ Ai,N1,k − ||A
i,N
2,k || − ||A

i,N
3,k || − ||A

i,N
4,k ||

=
||∇θL̃i,N (θi,Nτk )||2

8
ρ− 3ε

The claim follows by setting ε = ρ(κ)κ2

32 and β = ρ(κ)κ2

32 .

Lemma D.12. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that
there are an infinite number of intervals [τk, σk). Then there exists a fixed constant 0 < β1 < β
such that, for k large enough,

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥ −β1.

Proof. Using Itô’s formula, we have that

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥

∫ τk

σk−1

γs〈∇θL̃i,N (θi,Ns ),∇θL̂i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds︸ ︷︷ ︸
Bi,N1,k

+

∫ τk

σk−1

γs〈∇θL̃i,N (θi,Ns ),∇θB̂i,N (θi,Ns , x̂Ns )dwis〉︸ ︷︷ ︸
Bi,N2,k

+

∫ τk

σk−1

1

2
γ2
sTr

[
∇θB̂i,N (θi,Ns , x̂Ns )∇θB̂i,N (θi,Ns , x̂Ns )T∇2

θL̃i,N (θi,Ns )ds
]

︸ ︷︷ ︸
Bi,N3,k

.
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Arguing as in the proof of Lemma D.11, the magnitude of each of the terms converges to zero
a.s. as k →∞. This is sufficient for the conclusion.

D.3.2. Technical Lemmas: On A Related Poisson Equation.

Lemma D.13. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that, for all
θ ∈ Rp, f(θ, ·) : (Rd)N → R satisfies a polynomial growth condition of the form

||f(θ, x̂N )|| ≤ K
(

1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
)

Moreover, suppose that f(θ, ·) is centred, in the sense that
∫

(Rd)N f(θ, x̂N )dµ̂N∞(dx̂N ) = 0.
Then, for all N ∈ N, the function

(D.17) F (θ, x̂N ) =

∫ ∞
0

Ex̂N ,θ0
[
f(θ, x̂Nt )

]
dt

is a well defined, continuous function of Sobolev class ∩p≥1W
2
p,loc, which satisfies the Poisson

equation

(D.18) Ax̂N ,θ∗F (θ, x̂N ) = −f(θ, x̂N ).

Moreover, F is centred, in the sense that
∫

(Rd)N F (θ, x̂N )µ̂N∞(dx̂N ) = 0, and there exist con-
stants q,K > 0 such that

|F (θ, x̂N )| ≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]

(D.19)

|∇x̂NF (θ, x̂)N | ≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]

(D.20)

Remark. This is essentially a statement of [68, Theorem 1], adapted appropriately to the
current statement. In our case, however, since we are interested in the solution of the Poisson
equation associated with the generator of the IPS x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N for any
N ∈ N, a little care is needed in places to ensure that arguments in the proof of [68, Theorem
1], in particular those used to establish that the solution is well defined, and that it satisfies
the bounds in (D.19) - (D.20), are independent of N . Indeed, we are interested in the solution
of this Poisson equation for arbitrarily large N , since we will later take the limit as N →∞.
As an example, if we were to use [68, Theorem 1] directly, we would only have, in place of
(D.19), the bound |F (θ, x̂)| ≤ K(1 + ||x̂N ||q), which, due to the ||x̂N ||q term, is unbounded in
the limit as N →∞.

Proof. We begin by showing that the function F (θ, x̂N ) is well defined, and that it satisfies
(D.19). Let x̂Nt denote a solution of the IPS starting from x̂N ∈ (Rd)N . Let µ̂Nt denote the
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law of x̂Nt . Using the bounds in Lemma D.3, and that f is centred, we have

∣∣∣∣Ex̂N [f(θ, x̂Nt )
]∣∣∣∣ =

∣∣∣∣Ex̂N [f(θ, x̂Nt )
]
−
∫

(Rd)N
f(θ, ẑN )µ̂N∞(dẑN )

∣∣∣∣(D.21)

≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]
e−λt(D.22)

We remark that, crucially, the constants q,K, λ > 0 are independent of N . Thus, for all
N ∈ N, the function F , as defined in (D.17), is absolutely integrable, and thus well defined.
Moreover, via the triangle inequality, we immediately obtain the bound in (D.19).

The remaining statements in Lemma D.13 now follow directly from [68, Theorem 1]. In
particular, the arguments in the proof of [68, Theorem 1(b), 1(c), 1(d), 1(f)] show that (D.17)
defines a continuous, centred solution, unique in the class of solutions belonging to ∩p≥1W

2
p,loc,

of the Poisson equation (D.18).
Finally, we can obtain the bound in (D.20) using the argument in the proof of [68, Theorem

1(e)], replacing the intermediate bound on ||F (θ, ·, ·)|| by (D.19), and the intermediate bound
on ||f(θ, ·, ·)|| by our condition on the polynomial growth of f(·).5. This completes the proof.

Lemma D.14. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that the function
f(θ, x̂N ) ∈ Cα,2(Rp, (Rd)N ), for some α > 0, is centred in the same sense as Lemma D.13,
and satisfies

|f(θ, x̂N )|+ |∂θf(θ, x̂N )|+ |∂2
θf(θ, x̂N )| ≤ K

[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]

where x̂ = (x1,N , . . . , xN,N ). Then the solution (D.17) of the Poisson equation (D.18) satisfies
F (·, x̂N ) ∈ C2 for all x̂N ∈ (Rd)N . Moreover, there exist q′,K ′ > 0 such that

2∑
k=0

∣∣∣∣∂kF∂θk
∣∣∣∣+

∣∣∣∣ ∂2F

∂x̂∂θ

∣∣∣∣ ≤ K[1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
]

Proof. The first statement of the Theorem follows directly from [67, Theorem 3]. Now,
observe that, since ∂kθ f , k = 0, 1, 2, satisfies a polynomial growth condition in the required
sense, ∂kθ f

i,N can be shown to satisfy bounds of the form given in Lemma D.3. It follows,
arguing as in (D.21) - (D.22), that

∣∣∣∣Ex̂N[∂kf∂θk
(θ, x̂Nt )

]∣∣∣∣ ≤ K[1 + ||xi,N ||q +
1

N

N∑
j=1

||xj,N ||q
]
e−λt

5In the original notation, these are the bounds on ||u|| and ||Lu||, respectively. See [68, pg. 1070]
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We thus have that, allowing the value of the constant K to change from line to line, that∣∣∣∣∂kF∂θk (θ, x̂N )

∣∣∣∣ ≤ ∫ ∞
0

∣∣∣∣Ex̂N[∂kf∂θk
(θ, x̂N )

]∣∣∣∣dt ≤ K ∫ ∞
0

[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]
e−λtdt

≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]
.

Finally, the bound on the mixed derivative follows from (D.20) in Lemma D.13.

D.3.3. Technical Lemmas: Miscellaneous.

Lemma D.15. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for all i =
1, . . . , N , N ∈ N, the function Si,N (θ, x̂N ) = ∇θL̂i,N (θ, x̂N )−∇θL̃i,N (θ) is in C2,α(Rp, (Rd)N ).
Moreover, for k = 0, 1, 2, there exists q and K such that

(D.23) ||∇kθSi,N (θ, x̂N )|| ≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]
.

Proof. By definition, we have that, for k = 0, 1, 2,

∇kθSi,N (θ, x̂N ) = ∇k+1
θ L̂i,N (θ, x̂N )−∇k+1

θ L̃i,N (θ).

By Condition C.1(i), ∇θb(θ, x) ∈ C2,α(Rp,Rd), and∇θφ(θ, x, y) ∈ C2,α,α(Rp,Rd,Rd). It follows
from the definitions, c.f. (4.20), (4.21) and (4.22), that ∇θB̂i,N (θ, x̂N ), ∇θĜi,N (θ, x̂N ), and
∇θL̂i,N (θ, x̂N ) are in C2,α(Rp, (Rd)N ). It also follows from the definition (Lemma 3.4.B) that
∇θL̃i,N (θ) is in C2(Rp). Thus, as claimed, Si,N (θ, x̂) is in C2,α(Rp, (Rd)N ). It remains to note
that the bound (D.23) follows immediately from Lemma D.4 and Lemma D.6

Lemma D.16. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for all i =
1, . . . , N , N ∈ N, the function T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ),∇θL̂i,N (θ, x̂N ) − ∇θL̃i,N (θ)〉 is in
C2,α(Rp, (Rd)N ). Moreover, for k = 0, 1, 2, there exists q, K such that

(D.24) ||∇kθT i,N (θ, x̂N )|| ≤ K
[
1 + ||xi,N ||q +

1

N

N∑
j=1

||xj,N ||q
]
.

Proof. This lemma follows almost immediately from Lemma D.15. First note that, by def-
inition, we can write T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ), Si,N (θ, x̂N )〉. By Lemma D.15, Si,N (θ, x̂N ) is
in C2,α(Rp, (Rd)N ) and ∇θL̃i,N (θ) is in C2(Rp). It follows immediately that also T i,N (θ, x̂N ) ∈
C2,α(Rp, (Rd)N ). Finally, the bound (D.24) follows from Lemma D.6 and Lemma D.15, via an
application of Holdër’s inequality.

Appendix E. Proof of Lemma for Theorem 3.4.

Lemma E.1. Assume that Conditions A.1, B.1 - B.2, C.1, and D.1 hold. Let i = 1, . . . , N ,
and N ∈ N. Then, for all θ ∈ Rp, there exists K <∞ such that

||∇θL̃(θ)−∇θL̃i,N (θ)|| ≤ K

N
1
2

, a.s.
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Proof. Let us define g : Rp × Rd × Rd → Rd as the function which satisfies G(θ, x, µ) =∫
Rd g(θ, x, y)µ(dy), where G(θ, x, µ) is defined in (2.1). Thus, in particular,

g(θ, x, y) = [b(θ, x) + φ(θ, x, y)]− [b(θ0, x) + φ(θ0, x, y)]

From the definition of L(θ, x, µ), c.f. (2.2), we have that

∇θL(θ, x, µ) = −∇Tθ G(θ, x, µ)G(θ, x, µ) = −
∫
Rd×Rd

∇Tθ g(θ, x, y)g(θ, x, z)µ(dy)µ(dz)

We can thus define l : Rp ×Rd ×Rd ×Rd → Rp as the function which satisfies ∇θL(θ, x, µ) =∫
Rd×Rd l(θ, x, y, z)µ(dy)µ(dz). In particular, we identify

l(θ, x, y, z) = −∇Tθ g(θ, x, y)g(θ, x, z).

We note that, via Condition C.1(ii), l(θ, ·, ·, ·) is locally Lipschitz with polynomial growth.
That is, for all x, x′, y, y′, z, z′ ∈ Rd, we have

||l(θ, x, y, z)− l(θ, x′, y′, z′)|| ≤ K
[
[1 + ||x||q + ||x′||q + ||y||q + ||y′||q + ||z||q + ||z′||q

]
·
[
||x− x′||+ ||y − y′||+ ||z − z′||](E.1)

In terms of this function, we can now write

∇θL(θ, xi, µ∞) =

∫
Rd×Rd

ϕ(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk)

=
1

N2

N∑
j=1

N∑
k=1

∫
Rd×Rd

ϕ(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk)

∇θL(θ, xi,N , µN ) =
1

N2

N∑
j=1

N∑
k=1

ϕ(θ, xi,N , xj,N , xk,N ).

where, in the second line, we have simply summed over the dummy variables xj and xk. and
thus, from the definitions (see Lemmas 3.4.A - 3.4.B),

∇θL̃(θ) =
1

N2

N∑
j=1

N∑
k=1

∫
Rd

[∫
Rd×Rd

ϕ(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk)

]
µ∞(dxi)

=
1

N2

N∑
j=1

N∑
k=1

∫
(Rd)N

ϕ(θ, xi, xj , xk)µ∞(dx1) · · ·µ∞(dxN )

∇θL̃i,N (θ) =
1

N2

N∑
j=1

N∑
k=1

∫
(Rd)N

ϕ(θ, xi,N , xj,N , xk,N )µ̂N∞(dx̂).

where in the second line we have simply integrated with respect to the invariant probability
measure µ∞ over additional dummy variables, which does not change the value of the integral.
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Let x̂Nt denote a solution of the IPS starting from x̂N0 = (x1,N
0 , . . . , xN,N0 ), and let x

[N ]
t denote

N independent solutions of the McKean-Vlasov SDE starting from x
[N ]
0 = (x1

0, . . . , x
N
0 ). Then,

using the definition of an invariant measure, we can write

∇θL̃(θ) =
1

N2

N∑
j=1

N∑
k=1

∫
(Rd)3

E
(xi0,x

j
0,x

k
0)

[
ϕ(θ, xi, xj , xk)

]
µ∞(dx1) · · ·µ∞(dxN )(E.2)

∇θL̃i,N (θ) =
1

N2

N∑
j=1

N∑
k=1

∫
(Rd)N

E
(xi,N0 ,xj,N0 ,xk,N0 )

[
ϕ(θ, xi,N , xj,N , xk,N )

]
µ̂N∞(dx̂).(E.3)

Let π∞ ∈ Π(µ̂N∞, µ
⊗N
∞ ) denote an arbitrary coupling of µ̂N∞ and µ⊗N∞ . Then, using (E.2) -

(E.3), it follows straightforwardly that

||∇θL̃(θ)−∇θL̃i,N (θ)||

≤ 1

N2

N∑
j=1

N∑
k=1

∫
(Rd)N×(Rd)N

E
(xi0,x

j
0,x

k
0 ,x

i,N
0 ,xj,N0 ,xk,N0 )

(E.4)

[∣∣∣∣ϕ(θ, xis, x
j
s, x

k
s)− ϕ(θ, xi,Ns , xj,Ns , xk,Ns )

∣∣∣∣]π∞(dx̂N , dx[N ])

Now, using the growth property (E.1) and Hölder’s inequality, we obtain (now suppressing
dependence of the expectation on the initial conditions)

E
[
||ϕ(θ, xis, x

j
s, x

k
s)− ϕ(θ, xi,Ns , xj,Ns , xk,Ns )||

]
(E.5)

≤
[
1 + E

[
||xis||2q

] 1
2 + · · ·+

[
E||xk,Ns ||2q

] 1
2

]
(E.6)

·
[
E
[
||xis − xi,Ns ||2

] 1
2 + E

[
||xjs − xj,Ns ||2

] 1
2 + E

[
||xks − xk,Ns ||2

] 1
2

]
≤ K

N
1
2

,(E.7)

where in the final line we have used Proposition A.2 (the bounded moments of the McKean-
Vlasov SDE and the IPS) and Proposition A.5 (uniform in time propagation of chaos). Finally,
substituting (E.5) - (E.7) into (E.4), the result follows.

Appendix F. Proof of Theorem 3.3∗ and Theorem 3.4∗.

F.1. Proof of Theorem 3.3∗.

Proof. The proof of Theorem 3.3∗ is similar to the proof of Theorem 3.3, with several
small modifications. Firstly, we replace all instances of θi,Nt and θ

[N ]
t (the parameter estimates

generated by the IPS) with θ
[i,N ]
t and θ

[N ]
t (the parameter estimates generate by partial ob-

servations of the McKean-Vlasov SDE). In addition, we will now utilise a slightly different
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decomposition of the asymptotic log-likelihood, namely

||∇θL̃(θ
[i,N ]
t )|| ≤ ||∇θL̃(θ

[i,N ]
t )− 1

t∇θL
i
t(θ

[i,N ]
t )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.A

+ ||1t∇θL
i
t(θ

[i,N ]
t )− 1

t∇θL
[i,N ]
t (θ

[i,N ]
t )||︸ ︷︷ ︸

→0 as N →∞ ∀t ∈ R+ by Lemma 3.4.C∗

+ ||1t∇θL
[i,N ]
t (θ

[i,N ]
t )−∇θL̃[i,N ](θ

[i,N ]
t )||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.B∗

+ ||∇θL̃[i,N ](θ
[i,N ]
t )||︸ ︷︷ ︸

→0 as t→∞, N →∞ by Lemma 3.4.D∗

.

where L[i,N ]
t (θ) is defined in (2.5), and L̃[i,N ](θ) = limt→∞

1
tL

[i,N ]
t (θ). In particular, we have

replaced all instance the ‘partial’ log-likelihood of the ith particle in the original IPS, Li,Nt (θ),
with the ‘partial’ log-likelihood of the ith particle in the ‘IPS’ consisting of N independent
solutions of the McKean-Vlasov SDE, L[i,N ]

t (θ). The result of the theorem now follows, using
the Lemma 3.4.A and the modified Lemmas 3.4.B∗ - 3.4.D∗ (see below).

We remark that we can still use Lemma 3.4.A to show that the first term converges to
zero in L1, since this lemma applies for all values of θ ∈ Rp, and thus replacing θi,Nt by θ

[i,N ]
t

is irrelevant. We do, however, require modified versions of Lemmas 3.4.B, 3.4.C, and 3.4.D.
We state and sketch the proofs of these below.

Lemma 3.4.B∗. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all N ∈
N, the processes 1

t∇
m
θ L

[i,N ]
t (θ) and 1

t∇
m
θ LNt (θ), m = 0, 1, 2, converge, both a.s. and in L1, to

the functions

∇mθ L̃[i,N ](θ) =

∫
(Rd)N

∇mθ L̂i,N (θ, x̂N )µ⊗N∞ (dx̂N ) , ∇mθ L̃[N ](θ) =
1

N

N∑
i=1

∇mθ L̃[i,N ](θ).

In addition, there exist positive constants K1
m, K2

m, independent of N , such that∣∣∣∣∣∣∣∣E [1

t
∇mθ L

[i,N ]
t (θ)−∇mθ L̃[i,N ](θ)

]∣∣∣∣∣∣∣∣ ≤ K1
m(1− e−λt)

λt
+
K2
m(1 +

√
t)

1
2

t
1
2

and this bound also holds if L[i,N ]
t (·) and L̃[i,N ](·) are replaced with L[N ]

t (·) and L̃[N ](·).
Proof. The proof is essentially identical to the proof of Lemma 3.4.B. On this occasion, we

use Proposition A.3 (existence of a unique invariant measure for the McKean-Vlasov SDE) in
the place of Proposition A.4 (existence of a unique invariant measure for the IPS) to establish
almost sure convergence. The remainder of the proof goes through almost verbatim, replacing
all instance of xi,Nt with xit, applying a modified version of Lemma D.3,6 and noting that all
of the required bounds hold for both the McKean-Vlasov SDE and the IPS.

Lemma 3.4.C∗. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all θ ∈
Rp, for all t ≥ 0, for all i = 1, . . . , N , we have, in L1, that

lim
N→∞

||1t∇θL
[i,N ]
t (θ)|| = ||1t∇θL

i
t(θ)||,

lim
N→∞

||1t∇θL
[N ]
t (θ)|| = ||1t∇θL

i
t(θ)||.

6In particular, it is straightforward to verify that Lemma D.3 still holds if the original IPS is replaced by
the IPS consisting of N independent copies of the McKean-Vlasov SDE.
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In addition, there exists a positive constant K such that, for all θ ∈ Rp, for all N ∈ N,

E
[∣∣∣∣∣∣∣∣1t∇θLit(θ)− 1

t
∇θL

[i,N ]
t (θ)

∣∣∣∣∣∣∣∣] ≤ K√
N

(
1 +

1√
t

)
,

and this bound also holds if L[i,N ]
t (·) is replaced by L[N ]

t (·).

Proof. The proof of Lemma 3.4.C goes through almost unchanged. In addition to the
modifications outlined above, we also now apply a modified (simpler) version of Lemma D.8.
Indeed, several terms in the proof of Lemma D.8 (and theauxiliary Lemma D.7) vanish when
xi,Nt is replaced by xit. In addition, where appropriate, we now make use of the moment
bounds for the solutions of the McKean-Vlasov SDE, rather than the IPS (Proposition A.2).

Lemma 3.4.D∗. Assume that Conditions B.1 - B.2, C.1, D.1, and F.1 hold. Then, for all
N ∈ N, we have, both almost surely and in L1, that

lim
t→∞
||∇θL̃[i,N ](θ[i,N ](t))|| = 0,

lim
t→∞
||∇θL̃[N ](θ[N ](t))|| = 0.

Proof. The proof is essentially the same as the proof of Lemma 3.4.D, with all instances

of θi,Nt and Li,Nt (·) replaced by θ
[i,N ]
t and L[i,N ]

t (·), respectively. This is also the case for the
auxiliary Lemmas D.9 - D.12. In these lemmas, we must additionally replace all instances of
xi,Nt , x̂Nt = (x1,N

t , . . . , xN,Nt ) by xit, x̂
[N ]
t = (x1

t , . . . , x
N
t ), respectively. Moreover, as above, we

now make use of the appropriate bounds for the solutions of the McKean-Vlasov SDE, rather
than those for IPS (Proposition A.2).

F.2. Proof of Theorem 3.4∗.

Proof. The proof of Theorem 3.4 goes through almost verbatim, using the same modifi-
cations outlined above. With these modifications, the analogue of E[Ω

(2)
t,i,N ] in (4.42), which

yields the N−
1
2 term in the final bound, vanishes. In particular, if one follows the arguments

in Lemma E.1 (see Appendix E), the expectations involving squared differences in (E.5) -
(E.6) are identically zero. Moreover, due to these modifications, the constants appearing in
the bounds for the analogues of E[Ω

(1)
t,i,N ], E[Ω

(3)
t,i,N ] and E[Ω

(4)
t,i,N ], c.f. (4.43), (4.47), and (4.48),

may differ. These observations explain the differences between the rates in Theorem 3.4 and
Theorem 3.4∗.

Appendix G. Proof of Theorem 3.3† and Theorem 3.4†.

G.1. Proof of Theorem 3.3†.

Proof. The proof of Theorem 3.3† is very similar to the proof of Theorem 3.3, with θi,Nt (the
parameter estimate generated by the IPS) is replaced by θit (the parameter estimate generated
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by the McKean-Vlasov SDE). In particular, we once more make use of the decomposition

||∇θL̃(θit)|| ≤ ||∇θL̃(θit)− 1
t∇θL

i
t(θ

i
t)||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.A

+ ||1t∇θL
i
t(θ

i
t)− 1

t∇θL
i,N
t (θit)||︸ ︷︷ ︸

→0 as N →∞ ∀t ∈ R+ by Lemma 3.4.C

+ ||1t∇θL
i,N
t (θit)−∇θL̃i,N (θit)||︸ ︷︷ ︸

→0 as t→∞ ∀N ∈ N by Lemma 3.4.B

+ ||∇θL̃i,N (θit)||︸ ︷︷ ︸
→0 as t→∞, N →∞ by Lemma 3.4.D†

.

The result then follows immediately from Lemmas 3.4.A - 3.4.C and Lemma 3.4.D† (see
below).

It is still possible to use Lemmas 3.4.A, 3.4.B, and 3.4.C to show that the first three terms
converge to zero in L1. In particular, these lemmas apply for all values of θ ∈ Rp, and so
it is irrelevant that θi,Nt has been replaced by θit. This modification is, however, relevant to
Lemma 3.4.D. We must therefore establish the following modified version of this lemma.

Lemma 3.4.D†. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Then, in L1,
we have

lim
t→∞

lim
N→∞

||∇θL̃i,N (θit)|| = 0,

Proof. The proof of this lemma largely follows the proof of Lemma 3.4.D. Let us briefly
outline the main changes. The first modification, of course, is to replace all instances of θi,Nt
with θit. In addition, we must slightly modify the definition of the original stopping times, c.f.
(4.30) - (4.31), which will now be given by

τk = inf
{
t > σk−1 : ||∇θL̃i,N (θit)|| ≥ κ

}
(G.1)

σk = sup
{
t > τk : 1

2 ||∇L̃
i,N (θiτk)|| ≤ ||∇L̃i,N (θis)|| ≤ 2||∇L̃i,N (θiτk)||+ 1

N
∀s ∈ [τk, t],(G.2) ∫ t

τk

γ(s)ds ≤ ρ
}

In addition, we must now rely on slightly modified versions of Lemma D.11 (namely, Lemma
D.11†) and Lemma D.12 (namely, Lemma D.12†) which yield, instead of (4.32) - (4.33), the
following inequalities

L̃i,N (θiσk)− L̃i,N (θiτk) ≥ β − K

N
1
2

∫ σk

τk

γsds

L̃i,N (θiτk)− L̃i,N (θiσk−1
) ≥ −β1 −

K

N
1
2

∫ τk

σk−1

γsds.
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Using these inequalities, it follows, arguing as in (4.34) - (4.35), that

L̃i,N (θiτn+1
)− L̃i,N (θiτk0

) =
n∑

k=k0

[
L̃i,N (θi,Nσk )− L̃i,N (θiτk) + L̃i,N (θiτk+1

)− L̃i,N (θiσk)
]

≥
n∑

k=k0

(β − β1)− 1

N
1
2

∫ τn+1

τ0

γsds

= (n+ 1− k0)(β − β1)− K

N
1
2

∫ τn+1

τ0

γsds

Suppose we let N = O((
∫ τn+1

0 γsds)
2). Then, using also the fact that β − β1 > 0, it follows

that L̃i,N (θiτn+1
) → ∞ as n → ∞, N → ∞. But this is in contradiction with Lemma D.6,

which states that L̃i,N (θ) is bounded from above. The remainder of the proof of Lemma 3.4.D
now goes through unchanged.

This proof relies on modified versions of Lemmas D.11 and D.12 (namely, Lemmas D.11†

and D.12†), which themselves rely on modified versions of Lemmas D.9 and D.10 (namely,
Lemmas D.9† and D.10†). Note that we can still use the original version of Lemma D.6, since
it applies for all θ ∈ Rp. It remains, therefore, to state and prove the modified versions of
these lemmas. We state these lemmas in full, and sketch any changes to the original proofs,
below.

G.1.1. Additional Lemmas for Lemma 3.4.D†.

Lemma D.9†. Assume that Conditions B.1 - B.2, C.1, D.1, and F.1 hold. Define, with
x̂N = (x1,N , . . . , xN,N ), the function

Γk,η =

∫ σk,η

τk

γs

(
∇θL̂i,N (θis, x̂

N
s )−∇θL̃i,N (θis)

)
ds.

Then, almost surely, ||Γk,η|| → 0 as k →∞.

Proof. The proof follows, essentially verbatim, the proof of Lemma D.9, with θi,Nt replaced
by θit throughout. In addition, when we apply Itô’s formula to the solution of the appropriate
Poisson equation, c.f. (D.10), the third, fourth, and sixth terms will have minor modifications,
due to the differences between the dynamics of θi,Nt and θit. Since all of the bounds used in
the subsequent arguments apply both to the solutions of the McKean-Vlasov SDE and the
IPS, the remainder of the argument goes through unchanged.

Lemma D.10†. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Let ρ > 0 be
such that, for a given κ > 0, it is true that 3ρ + ρ

4κ = 1
2L , where L denotes the Lipschitz

constant of ∇θL̃i,N (θ). For k large enough, and for η > 0 small enough (potentially random,
and depending on k), one has∫ σk,η

τk

γsds > ρ and, a.s.,
ρ

2
≤
∫ σk

τk

γsds ≤ ρ.
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Proof. The proof is more or less identical to the proof of Lemma D.10, with θi,Nt replaced
by θit throughout. In addition, due to the different dynamics, instead of (D.14), we now have
that

||θiσk,η − θ
i
τk
|| =

∣∣∣∣ ∫ σk,η

τk

γs∇θL(θis, x
i
s, µs)ds+

∫ σk,η

τk

γs〈∇θB(θis, x
i
s, µs), dw

i
s〉
∣∣∣∣

≤
∫ σk,η

τk

γs∇θ||L̃i,N (θis)||ds+
∣∣∣∣ ∫ σk,η

τk

γs[∇θL̂i,N (θis, x̂
N
s )−∇θL̃i,N (θi,Ns )]ds

∣∣∣∣
+
||∇L̃i,N (θiτk)||

κ

∣∣∣∣ ∫ σk,η

τk

γs
κ

||∇L̃i,N (θiτk)||
〈∇θB(θis, x

i
s, µs), dw

i
s〉
∣∣∣∣.

+
∣∣∣∣ ∫ σk,η

τk

γs[∇θL(θis, x
i
s, µs)−∇θL̂i,N (θis, x̂

N
s )ds

∣∣∣∣
This is identical to (D.14), aside from the presence of the additional final term. Under the
condition that

∫ σk,η
τk

γsds < ρ, we can bound this term in L1 by KρN−
1
2 . Then, following the

remaining arguments in (D.14) - (D.15), we arrive at

1

2
||∇θL̃i,N (θiτk)|| ≤ ||∇θL̃i,N (θiσk,η)|| ≤ 2||∇θL̃i,N (θiτk)||+ 1

N
1
2

.

Using our modified definition of the stopping times {σk}k≥1, c.f. (G.1) - (G.2), this implies
that σk,η ∈ [τk, σk], which is a contradiction, as in the proof of Lemma D.10. The remainder
of the proof goes through unchanged.

Lemma D.11†. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that
there are an infinite number of intervals [τk, σk). Then there exists a fixed constant β = β(κ) >
0 such that, for k large enough, almost surely,

L̃i,N (θiσk)− L̃i,N (θiτk) ≥ β
[
1− 1

N
1
2

∫ σk

τk

γsds

]
.

Proof. Comparing to the proof of Lemma D.11, we once more replace θi,Nt by θit through-
out. Moreover, instead of (D.16), we now have

L̃i,N (θiσk)− L̃i,N (θiτk) =

∫ σk

τk

γs||∇θL̃i,N (θis)||2ds

+

∫ σk

τk

γs〈∇θL̃i(θi,Ns ),∇θL̂i,N (θis, x̂
N
s )−∇θL̃i,N (θis)〉ds

+

∫ σk

τk

γs〈∇θL̃i,N (θi,Ns ),∇θB(θi,s , x̂
i
s, µs)dw

i
s〉

+

∫ σk

τk

1

2
γ2
sTr

[
∇θB(θis, x̂

i
s, µs)∇θB(θis, x̂

i
s, µs)

T∇2
θL̃i,N (θis)ds

]
+

∫ σk

τk

γs〈∇θL̃i,N (θi,Ns ),∇θL(θis, x
i
s, µs)−∇θL̂i,N (θis, x̂

N
s )〉ds
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We can deal with the first four terms using the same method as in the proof of Lemma D.11,
with similar modifications to those required for the extension of Lemma D.9. We can bound
the final term above in L1 by K

N
1
2

∫ σk
τk
γsds. Following the arguments in the proof of Lemma

D.11, we arrive, as required, at

L̃i,N (θiσk)− L̃i,N (θiτk) ≥ β
[
1− 1

N
1
2

∫ σk

τk

γsds

]
.

Lemma D.12†. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that
there are an infinite number of intervals [τk, σk). Then there exists a fixed constant 0 < β1 < β
such that, for k large enough,

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥ −β1

[
1− 1

N
1
2

∫ τk

σk−1

γsds

]
.

Proof. The modifications to the proof of Lemma D.12 are identical to the modifications
to the proof of Lemma D.11 (see above).

G.2. Proof of Theorem 3.4†.

Proof. The proof of Theorem 3.4† proceeds in much the same way as the proof of Theorem
3.4. To begin, let us consider the parameter update equation in the form

dθit = γt∇θL(θit, x
i
t, µt)dt+ γt∇θB(θit, x

i
t, µt)dw

i
t

= γt∇θL̃(θit) + γt(∇θL̃i,N (θit)−∇θL̃(θit))dt+ γt(∇θL(θit, x
i
t, µ

i
t)−∇θL(θit, x

i,N
t , µNt ))dt

+ γt(∇θL(θit, x
i,N
t , µNt )−∇θL̃i,N (θit))dt+ γt∇θB(θit, x

i
t, µt)dw

i
t.

Following almost verbatim the arguments in (4.38) - (4.42), we can obtain

E
[
||Zit ||2

]
≤ E

[
Φ1,t||Zi1||2

]
(G.3)

+ E
[∫ t

1
γsΦs,t

〈
Zis,∇θL̃i,N (θis)−∇θL̃(θis))

〉
ds

]
+ E

[∫ t

1
γsΦs,t

〈
Zis,∇θL(θis, x

i,N
s , µNs )−∇θL̃i,N (θis))

〉
ds

]
+ E

[∫ t

1
γ2
sΦs,t

∣∣∣∣∇θB(θis, x
i
s, µs)

∣∣∣∣2
F

ds

]
+ E

[∫ t

1
γsΦs,t

〈
Zis,∇θL(θis, x

i
s, µ

i
s)−∇θL(θis, x

i,N
s , µNs )

〉
ds

]
= E

[
Ω̄

(1)
t,i,N

]
+ E

[
Ω̄

(2)
t,i,N

]
+ E

[
Ω̄

(3)
t,i,N

]
+ E

[
Ω̄

(4)
t,i,N

]
+ E

[
Ω̄

(5)
t,i,N

]
(G.4)

where we have defined Zit = θit − θ0. It remains to bound each of these terms. We first note
that Ω̄

(1)
t,i,N , . . . , Ω̄

(4)
t,i,N in (G.4) are essentially identical to Ω

(1)
t,i,N , . . . ,Ω

(4)
t,i,N in (4.42) , up to

the fact that Zi,Ns and θi,Ns have been replaced by Zis and θis, respectively. Thus, noting that
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all relevant bounds apply both to the IPS and the McKean-Vlasov SDE, we can use almost
identical arguments to obtain

(G.5) E
[
Ω̄

(1)
t,i,N

]
+E

[
Ω̄

(2)
t,i,N

]
+E

[
Ω̄

(3)
t,i,N

]
+E

[
Ω̄

(4)
t,i,N

]
≤ K̄(1)γt+K̄

(2)

[
1

N
1
2

]
+K̄(3)γt+K̄

(4)γt

The only term which requires some additional care here is Ω̄
(3)
t,i,N . In particular, since θi,Nt has

now been replaced by θit, when applying Itô’s formula to the solution of the relevant Poisson
equation, c.f. (4.45), the first, third, and fifth terms have minor modifications.

It remains only to deal with the additional term Ω̄
(5)
t,i,N . Let p1, p2, q1, q2 ∈ (1,∞), with

1
p1

+ 1
p2

= 1
q1

+ 1
q2

= 1. Then, using Lemma D.5, and a repeated application of the Hölder
inequality, we obtain

E
[
〈Zis,∇θL(θis, x

i
s, µs)−∇θL(θis, x

i,N
s , µNs )〉

]
≤ K

[
E
[
||Zis||p1

]] 1
p1

[[
E
[
||xis − xi,Ns ||p2q1

]] 1
q1

[
E
[[

1 + · · ·+ ||µNs ([·]2)||
q
2
]p2q2]] 1

q2

+
[
E
[[
W2(µs, µ

N
s )
]p2q1] 1

q1

[
E
[[

1 + · · ·+ ||µNs ([·]2)||
q
2
]p2q2]] 1

q2

] 1
p2

Let p1 = 3, p2 = 3
2 , q1 = 4

3 , and q2 = 4. Then p2q1 = 2 and p2q2 = 6, and the previous
inequality yields

E
[
〈Zis,∇θL(θis, x

i
s, µs)−∇θL(θis, x

i,N
s , µNs )〉

]
≤ K

[
1

N
3
4

+
1

N
3
4

] 2
3

≤ K
[

1

N
1
2

]
,

where we have also used Lemma 4.1 (uniform moment bounds for Zis), Proposition A.2 (uni-
form moment bounds for the McKean-Vlasov SDE and the IPS), Proposition A.5 (uniform-in-
time propagation of chaos), and [30, Theorem 1] (bound on the Wasserstein distance between
the law of the McKean-Vlasov SDE and the empirical law of the IPS). We thus obtain

E
[
Ω̄

(5)
t,i,N

]
≤ K

[
1

N
1
2

] ∫ t

1
γsΦs,tds ≤ K̄(5)

[
1

N
1
2

]
.(G.6)

Substituting (G.5) and (G.6) into (G.3) - (G.4), setting K†1 = max{K̄(1), K̄(3)}, K†2 = K̄(4),
and taking the limit as N →∞, we finally obtain

E
[
||θt − θ0||2

]
≤ (K†1 +K†2)γt.

Appendix H. Proof of Theorem 3.3‡ and Theorem 3.4‡.

H.1. Proof of Theorem 3.3‡.

Proof. This theorem is identical to Lemma 3.4.D, which we have already proved in Section
4.3.4.
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H.2. Proof of Theorem 3.4‡.

Proof. The proof of this result is a simplified version of the proof of Theorem 3.4. We
now assume that L̃i,N (·) is strongly concave (Condition H.1’) rather than that L̃(·) is strongly
concave (Condition H.1). We thus do not require the decomposition in (4.37), and can consider
the decomposition in (4.36) directly, viz

dθi,Nt = γt∇θL̃i,N (θi,Nt )dt+ γt
(
∇θL(θi,Nt , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt

+ γt∇θB(θi,Nt , xi,Nt , µNt )dwit.

The arguments in (4.36) - (4.42) are essentially unchanged, with two minor modifications to
(4.42). In particular, the second term is identically zero, while Φs,t = exp(−2η

∫ t
s γudu) is

replaced by Φi,N
s,t = exp(−2ηi,N

∫ t
s γudu) in the remaining terms, where ηi,N is the concavity

constant for L̃i,N (·). The remainder of the proof goes through verbatim. The result is that
the N−

1
2 is absent from the final bound (this arises from the second term in (4.42)), while the

remaining terms are the same up to possibly different constants. This result, and its proof,
can be seen as a modified version of their counterparts in [77, Proposition 2.13].

Appendix I. Verification of Conditions for the Linear Mean Field Model. In this
Appendix, we verify explicitly that the conditions of Theorems 3.1 - 3.4 hold for the linear
one-dimensional mean field model studied in Section 5.1.

I.1. Main Assumptions.

Assumption A.1. This condition follows directly from Proposition A.2, which can be ap-
plied once we have verified Assumptions B.1 - B.2 and D.1 (see below).

Assumption B.1. For this model, we have b(θ, ·) : R → R, with b(θ, x) = −θ1x. This
function is Lipschitz continuous with constant θ1, and satisfies 〈x − x′, b(θ, x) − b(θ, x′)〉 =
〈x− x′,−θ1(x− x′)〉 = −θ1||x− x′||2. This verifies Condition B.1, provided θ1 > 0.

Assumption B.2. For this model, we have φ(θ, ·, ·) : R×R→ R, with φ(θ, x, y) = −θ2(x−
y). This function is twice differentiable with respect to both of its arguments, and is globally
Lipschitz with constant |θ2|. This verifies Condition B.2, provided |θ2| ≤ 1

2θ1.

Assumption C.1. The functions b : R×R→ R and φ : R×R×R are infinitely differentiable
with respect to all of their arguments. Moreover, we have that ||∇iθb(θ, x)|| = ||∇iθφ(θ, x, y)|| =
0 for i = 1, 2, 3. Finally, ||b(θ, x) − b(θ′, x)|| ≤ ||θ − θ′||||x||, ||φ(θ, x, y) − φ(θ′, x, y)|| ≤
||θ − θ′||(||x||+ ||y||).This verifies Condition C.1.

Assumption D.1. We assume that x0 ∈ R and thus this condition is trivially satisfied. We
note that this condition would also be satisfied if x0 ∼ N (µ, σ2) for some µ, σ ∈ R.

I.2. Offline Parameter Estimation.

Assumption E.1. For this model, we have B(θ, x, µs) = −θ1x − θ2(x − E[xs]) and thus
G(θ, x, µs) = −(θ1 − θ1,0)x − (θ2 − θ2,0)(x − E[xs]), where θ0 = (θ1,0, θ2,0) ∈ R2 denotes the
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true value of the parameter. We can then compute

(I.1)

L(θ, x, µs) = −1

2
[(θ1 − θ1,0)x+ (θ2 − θ2,0)(x− E[xs])]

2

= −1

2

[
(θ1 − θ1,0)2x2 + 2(θ1 − θ1,0)(θ2 − θ2,0)x(x− E[xs]) + (θ2 − θ2,0)2(x− E[xs])

2
]

and thus

mt(θ) =

∫ t

0

∫
Rd
L(θ, x, µs)µs(dx)ds

= −1

2

∫ t

0
(θ1 − θ1,0)2E

[
x2
s

]
+ 2(θ1 − θ1,0)(θ2 − θ2,0)Var(xs) + (θ2 − θ2,0)2Var(xs)ds

= −1

2

∫ t

0
[(θ1 − θ1,0) + (θ2 − θ2,0)]2 Var(xs) + (θ1 − θ1,0)2E [xs]

2 ds.

Let E [x0] = µ0 and Var(x0) = σ2
0 > 0. It is then relatively straightforward to compute (e.g.,

[44]), defining γ(θ) = −2(θ1 + θ2),

Eθ [xs]
2 = µ2

0e
−2θ1s(I.2)

Varθ(xs) = σ2
0e
γ(θ)s +

eγ(θ)s − 1

γ(θ)
(I.3)

We thus have infs≥0E [xs]
2 > 0 provided µ0 6= 0, and infs≥0 Var(xs) > 0. It follows that

mt(θ) ≤ 0, with equality if and only if θ1 = θ1,0 and θ2 = θ2,0.7 That is, equivalently,
inf ||θ−θ0||>δmt(θ) < 0 a.s. ∀δ > 0. This verifies Condition E.1.

Assumption E.2. For this model, as noted above, we have B(θ, x, µs) = −θ1x − θ2(x −
E[xs]), and thus ∇θB(θ, x, µs) = [−x,−(x− E[xs])]. It follows that

It(θ) =

∫ t

0

∫
Rd
∇θB(θ, x, µs)⊗∇θB(θ, x, µs)µs(dx)ds

=

∫ t

0

(
Eθ[x2

s] Varθ(xs)
Varθ(xs) Varθ(xs)

)
ds =

(
Dt(θ) Ct(θ)
Ct(θ) Ct(θ)

)
where, using (I.2) - (I.3), and integrating, we can obtain Ct(θ) and Dt(θ) explicitly as

Ct(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+

σ2
0

γ(θ)
(eγ(θ)t − 1),

Dt(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+

σ2
0

γ(θ)
(eγ(θ)t − 1)− µ2

0

2θ1
(e−2θ1t − 1),

7We remark that, if µ0 = 0, then E [xs]
2 = 0 for all s ≥ 0. Thus, while we certainly still have mt(θ) ≤ 0,

we now have equality whenever (θ1 − θ1,0) + (θ2 − θ2,0) = 0. That is, whenever θ1 + θ2 = θ1,0 + θ2,0. Thus, in
this case, θ1 and θ2 are no longer jointly identifiable.
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It remains to show that this matrix is positive-definite, and that for all λ = (λ1, λ2) ∈ R2,
λT It(θ0)λ is increasing as a function of t. Observe that

λT It(θ)λ = λ2
1Dt(θ) + 2λ1λ2Ct(θ) + λ2

2Ct(θ)

= λ2
1(Dt(θ)− Ct(θ)) + (λ1 + λ2)2Ct(θ) > 0

where, to obtain the final inequality, we have use the fact that Ct(θ) =
∫ t

0 Varθ(xs)ds > 0

and Dt(θ)− Ct(θ) =
∫ t

0 [Eθ[x2
s]− Varθ(xs)]ds =

∫ t
0 Eθ [xs]

2 ds > 0 for all s ≥ 0. Thus, It(θ) is
positive definite. Finally, it is straightforward to see that λT It(θ0)λ is increasing as a function
of t, and that It(0) = 0. This verifies Condition E.2.

I.3. Online Parameter Estimation.

Assumption F.1 - F.2. Conditions F.1 - F.2 are satisfied by γt = min{γ0, γ0t−δ}, where
γ0 ∈ [0,∞), and δ ∈ (1

2 , 1]. The straightforward calculations are omitted.

Assumption G.1. For this model, we recall from (I.1) that L(θ, x, µ) = −1
2 [(θ1 − θ1,0)x +

(θ2 − θ2,0)(x − Eµ[x])]2. For simplicity, let us focus on the ‘pure interaction’ case, in which
θ1 = θ1,0 = 0. In this case, we have L(θ, x, µ) = −1

2(θ2 − θ2,0)2(x − Eµ[x])2, and thus
∇θL(θ, x, µ) = −(θ2 − θ2,0)(x− Eµ[x])2. It is then straightforward to compute

〈∇θL(θ, x, µ), θ〉 = −θ2(θ2 − θ2,0)(x− Eµ[x])2 = −
(
1− θ2,0

θ2

)
(x− Eµ[x])2θ2

2.

It follows that, for all ||θ2|| ≥ ||θ2,0||, we have

〈∇θL(θ, x, µ), θ〉 ≤ −2(x− Eµ[x])2||θ2||2 = −κ(x, µ)||θ2||2.

This verifies Condition G.1.

Assumption G.2. For this model, we recall that ∇θB(θ, x, µ) = [−x,−(x − Eµ[x])]. We
thus have

τ(θ, x, µ) =
〈
∇θB(θ, x, µ)∇θBT (θ, x, µ)

θ

||θ||
,
θ

||θ||
〉 1

2 =
[
x2 + (x− Eµ(x))2

] 1
2 .

Thus implies, in particular, that |τ(θ, x, µ)− τ(θ′, x, µ)| = 0, which verifies Condition G.2.

Assumption H.1 - H.2. For this model, defining m∞ = Eµ∞ [dx], the unique invariant
measure µ∞(·) can be obtained as (e.g., [58])

µ∞(dx) =
1

Z(µ∞)
e−(θ1,0x2+θ2,0(x−m∞)2)dx

Z(µ∞) =

∫
R
e−(θ1,0y2+θ2,0(y−m∞)2)dy
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We can thus compute the asymptotic log-likelihood, up to a constant of proportionality, as

L̃(θ) =

∫
R
L(θ, x, µ∞)µ∞(dx)

= −1

2

1

Z∞(µ∞)

∫
R

[(θ1 − θ1,0)x+ (θ2 − θ2,0)(x−m∞)]2e−(θ1,0x2+θ2,0(x−m∞)2)dx

∝ −1

2

[
A1,1(θ1 − θ1,0)2 + 2A1,2(θ1 − θ1,0)(θ2 − θ2,0) +A2,2(θ2 − θ2,0)2

]
where in the final line we have computed (omitting the tedious calculations need to compute
the relevant Gaussian integrals) the constants

A1,1 = θ1,0 + θ2,0 + 2m2
∞θ

2
2,0(I.4)

A1,2 = θ1,0 + θ2,0 − 2m2
∞θ1,0θ2,0

A2,2 = θ1,0 + θ2,0 + 2m2
∞θ

2
1,0.(I.5)

It follows straightforwardly that the Hessian is given by

∇2
θL̃(θ) = −

(
A1,1 A1,2

A1,2 A2,2

)
In order to establish global strong concavity, we are required to show that, for all θ ∈ R2,
∇2
θL̃(θ) � −ηI for some η > 0, that is, the matrix ∇2

θL̃(θ) + ηI is negative semi-definite. We
will show, equivalently, that trace(∇2

θL̃(θ) +ηI) < 0 and det(∇2
θL̃(θ) +ηI) > 0. In particular,

we will demonstrate that this holds whenever the true parameter θ0 satisfies θ1,0+θ2,0 > η > 0,
where η can be chosen arbitrarily close to zero. We begin with the observation that

trace(∇2
θL̃(θ) + ηI) = 2η − (A1,1 +A2,2)

= 2 [η − (θ1,0 + θ2,0)]− 2m2
∞(θ2

1,0 + θ2
2,0)

< −2m2
∞(θ2

1,0 + θ2
2,0) < 0,

as required, where in the penultimate line we have used our condition on θ0. We now turn
our attention to

det(∇2
θL̃(θ) + ηI) = (η −A1,1)(η −A2,2)−A2

1,2

= η2 − (A1,1 +A2,2)η + (A1,1A2,2 −A2
1,2) > 0

for η ∈ (−∞, η−) ∪ (η+,∞), where

η± =
(A1,1 +A1,2)±

√
(A1,1 +A2,2)2 − 4(A1,1A2,2 −A2

1,2)

2
.

We first remark that both of these roots are real. Indeed a simple calculation shows that the
discriminant is positive: (A1,1 +A2,2)2 − 4(A1,1A2,2 −A2

1,2) = (A1,1 −A2,2)2 + 2A2
1,2 > 0. We

now claim that η− is positive. To see this, we can compute, using (I.4) - (I.5),

A1,1A2,2 −A2
1,2 = 2m2

∞ [θ1,0 + θ2,0] [θ1,0 + θ2,0]2 > 2m2
∞η [θ1,0 + θ2,0]2 > 0,
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where, to obtain the inequality, we have once more used our condition on θ0. It follows
straightforwardly that (A1,1 +A2,2)2− 4(A1,1A2,2−A2

1,2) < (A1,1 +A2,2)2, and so η− > 0. We
thus have, for arbitrary η ∈ (0, η−),

det(∇2
θL̃(θ) + ηI) > 0.

We thus have shown that, for all θ ∈ R2, ∇2
θL̃(θ) � −ηI for some η > 0. This verifies

Condition H.1. For the one-dimensional linear mean field model, one can verify Condition
H.1’ using almost identical arguments. The details are omitted.
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