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Abstract

A systematic procedure for optimising the friction coefficient in underdamped Langevin dynamics as a sam-
pling tool is given by taking the gradient of the associated asymptotic variance with respect to friction. We give
an expression for this gradient in terms of the solution to an appropriate Poisson equation and show that it can
be approximated by short simulations of the associated first variation/tangent process under concavity assump-
tions on the log density. Our algorithm is applied to the estimation of posterior means in Bayesian inference
problems and reduced variance is demonstrated when compared to the original underdamped and overdamped
Langevin dynamics in both full and stochastic gradient cases.

Contents

1 Introduction 2
1.1 Outline of approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Setting 5
2.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Semigroup bound, Poisson equation and central limit theorem . . . . . . . . . . . . . . . . . . . . . . 5

3 Directional derivative of σ2 7
3.1 Preliminary results and the main formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 A formula using a tangent process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Quadratic cases 10
4.1 Quadratic observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Odd polynomial observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Quartic observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Computation of the change in Γ 16
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Gradient procedure in Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.3 A thinning approach for ∆Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Concrete examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 One dimensional quadratic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Diffusion bridge sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Proofs 25

1

ar
X

iv
:2

11
2.

06
84

4v
1 

 [
st

at
.C

O
] 

 3
0 

N
ov

 2
02

1



7 Discussion 34
7.1 Relation to previous methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 The nonconvex case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Position-dependent friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 Metropolisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A Preliminaries 40

B Solving the Poisson equation with a Galerkin method 41

C Approximation of ∆Γ using independent realisations 44

1 Introduction

Let π be a probability measure on Rn with smooth positive bounded density, also denoted π, with respect to
the Lebesgue measure on Rn and let f ∈ L2(π) be an observable. In a range of applications including molecular
dynamics [12, 52, 54] and machine learning [60, 82, 83], a quantity of interest is the expectation of f with respect
to π,

π(f) :=

∫
fdπ,

which is analytically intractable and is numerically approximated most commonly by Markov Chain Monte Carlo
(MCMC) methods, whereby π is sampled by simulating an ergodic Markov chain (Xk)1≤k≤N with π as its unique

invariant measure and π(f) is approximated by the empirical average 1
N

∑N
k=1 f(Xk). MCMC methods enjoy

central limit theorems for many Markov chains employed, the most well-known (class) of such methods being the
Metropolis-Hastings algorithm [41, 56]. Recent efforts have been to develop MCMC methods suited to settings where
n� 1 and where point evaluations of π or its gradients are computationally expensive; these methods include slice
sampling [25, 61], Hamiltonian Monte Carlo [8, 24, 62], piecewise-deterministic Markov processes [10, 13, 81] and
those based on discretisations of continuous-time stochastic dynamics [30, 54, 55] together with divide-and-conquer
and subsampling approaches [4].
In this paper we consider the underdamped Langevin dynamics. Denoting Sn++ as the set of real symmetric n× n
positive definite matrices, the underdamped Langevin dynamics1 with mass M ∈ Sn++ and friction matrix Γ ∈ Sn++

is given by the R2n-valued solution (qt, pt) to

dqt = M−1ptdt (1.1a)

dpt = −∇U(qt)− ΓM−1ptdt+
√

2ΓdWt, (1.1b)

where
√

Γ ∈ Rn×n is any matrix satisfying √
Γ
√

Γ
>

= Γ,

U : Rn → R is the associated smooth potential or negative log density such that π ∝ e−U and Wt denotes a standard
Wiener process on Rn. The probability distribution from underdamped Langevin dynamics converges under general
assumptions to the invariant probability measure given by

π̃(dq, dp) = Z−1e−U(q)− p>M−1p
2 dqdp (1.2)

for a normalising constant Z and there have been numerous recent works [19, 20, 28, 32, 42, 50, 58, 73] on its
discretisations in terms of the quality of convergence to π̃ over time measured by (e.g.) Wasserstein distance; in
this paper, the goal is to optimise Γ ∈ Sn++ directly with respect to the asymptotic variance in the convergence of

πT (f) :=
1

T

∫ T

0

f(qt)dt

1also referred to as Langevin, second-order Langevin or kinetic Langevin.
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to π(f) for any particular f (or a finite set of observables) as T →∞.
We mention that parameter tuning in MCMC methods is a widely considered topic [2, 84] (and references within).
Specifically for underdamped Langevin dynamics, tuning the momentum part of π̃ with respect to reducing metasta-
bility or computational effort was considered in [70, 78, 80]. The choice of friction (as a scalar) has been a subject
of consideration as early as in [44], then in [1, 14, 47, 76] within the context of molecular dynamics and also in
[20, 27]. Most of these works make use of different measures for efficiency. The present work constitutes the first
systematic gradient procedure for choosing the friction matrix in an optimal manner, with respect to a appropriate
cost criterion.

1.1 Outline of approach

We proceed with a formal description of our approach, precise statements can be found in the main Theorems 3.2
and 3.5. It is known using results from [72] and [9] that, under suitable assumptions on U and f , a central limit
theorem

1√
T

∫ T

0

(f(qt)− π(f))dt
D→ N (0, σ2) as T →∞ (1.3)

holds and that σ2, the asymptotic variance, has the form

σ2 = 2

∫
φ(f − π(f))dπ̃ (1.4)

where φ is a solution to the Poisson equation

−Lφ = f − π(f) (1.5)

and L denotes the infinitesimal generator associated to (1.1). Two key observations are then made. Firstly, for any
direction δΓ ∈ Rn×n in the friction matrix, the derivative of σ2 with respect to the entries of Γ in the direction δΓ,
denoted dσ2.δΓ, is given by the formula

dσ2.δΓ = −2

∫
(∇pφ)>δΓ∇pφ̃dπ̃, (1.6)

where φ̃ is given by
φ̃(q, p) = φ(q,−p). (1.7)

A direction δΓ that guarantees a decrease in σ2 is then

∆Γ :=

∫
∇pφ⊗∇pφ̃dπ̃ (1.8)

where ⊗ denotes the outer product. Similarly, taking δΓ to be the diagonal elements of (1.8) or δΓ = In
∫
∇pφ·∇pφ̃dπ̃

give in both cases a negative change in asymptotic variance respectively for diagonal Γ and Γ of the form cIn. The
second observation is that since the solution φ to the Poisson equation (1.5) is known to be given by

φ(q, p) =

∫ ∞
0

E[f(qt)]dt, (1.9)

where (qt, pt) solves (1.1) with initial condition (q0, p0) = (q, p), given convexity conditions on the potential U and
under suitable assumptions, we have

∇pφ =

∫ ∞
0

E[∇f(qt)
>Dpqt]dt, (1.10)

where Dpqt denotes the Rn×n-matrix made of partial derivatives of qt with respect to the initial condition p in
momentum. Not only does Dpqt satisfy the dynamics that result from taking partial derivatives in (1.1), which
are susceptible to algorithmic simulation, but the process also decays to zero exponentially quickly, so that the
infinite time integral (1.10) can be accurately approximated with a truncation using short simulations of Dpqt for
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adaptive estimations of the direction (1.8) in Γ. This leads to an adaptive algorithm involving the selection of Γ in
an appropriate constrained set, of which we illustrate the performance with numerical examples.

Examples where improved Γ can be found analytically are presented in Section 4. Numerical illustrations making
use of (1.6) and (1.10) are presented in Sections 5.2. In particular, the algorithm is applied on the problem of
finding the posterior mean in a Bayesian logistic regression inference problem for two datasets with hundreds of
dimensions, where the best friction matrices found in both cases are close to zero (for example Γ = 0.1In performs
well compared to Γ = In, demonstrating reduced variance of almost an order of magnitude in Tables 5.2 and 5.3).
To use the asymptotic variance for a particular observable (or a set of them) and to use measures for the quality of
convergence to π̃ or to minimise an autocorrelation time as considered in [1, 14, 20, 44, 47, 76] can be conflicting
goals. To elaborate, in [44], the autocorrelation time was used as the point of comparison in the Gaussian target
measure case for the optimal friction. For n = 1, ω, γ ∈ R, U(q) = 1

2ω
2q2, M = 1, Γ = γ > 0, the autocorrelation

time for (1.1) satisfies

∂t

(
E(qtq0)
E(ptq0)

)
=

(
0 1
−ω2 −γ

)(
E(qtq0)
E(ptq0)

)
. (1.11)

By considering the eigenvalues, the conclusion in [45] is that the optimal γ for minimising the magnitude of E(qtq0)
is given by the critical damping γ = 2ω. A similar conclusion can be made when considering the spectral gap[66].
On the other hand, if f(q) = q in our setting, formally, the quantity

∫ ∫∞
0

E(qtq0)dtdπ(q0) is the asymptotic variance

Figure 1.1: The values mini(|Re(λi)|), where λi are the eigenvalues of the matrix appearing in (1.11), also the
spectral gap. Critical values of γ are given by 2ω.

due to (1.4) and (1.9). Despite the similarity, Corollary 4.8 asserts that γ = 0 is optimal. A more detailed discussion
about Corollary 4.8 is given in Section 4.2. This difference emphasizes that, at the cost of generic convergence to
π̃, the tuning of Γ here is directed at variance reduction for a particular observable, in this case f(q) = q. However,
multiple asymptotic variances can be used for the objective function to minimise, so that Γ can be optimised with
respect to several observables of interest simultaneously. Remark 5.1 describes the implementation for a linear
combination of asymptotic variances at no extra cost in terms of evaluations of π or its gradients.
The rest of the paper is organised as follows. In Section 2, we provide a mathematical setting in which the
underdamped Langevin dynamics with a friction matrix and in particular (1.1) has a well-defined solution and
satisfies the central limit theorem for suitable observables, together with notations used throughout the paper. In
Section 3, prerequisite results and the main formulae (1.6) and (1.10) are precisely stated. Exact results concerning
improvements in Γ including the quadratic U , quadratic f and linear f cases are given in Section 4. Numerical
methods in approximating (1.8) together with an algorithm resulting from (1.6) and (1.10) is outlined and detailed
in Algorithm 1 and 2 respectively in Section 5, alongside examples of U and f where improvements in variance are
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observed. In Section 6, deferred proofs are given. In Section 7, we conclude and discuss about future work.

2 Setting

Let (Ω,F ,P) be a complete probability space, (Ft)t∈R be a normal (satisfying the usual conditions) filtration with
(Wt)t≥0 a standard Wiener process on Rn with respect to (Ft)t∈R, π̃ be a probability measure given by (1.2).

Assumption 1. a U ∈ C∞(Rn) satisfies U ≥ 0 and its second derivatives satisfy

‖D2U‖∞ :=
∑
i,j

sup
q∈R2n

∣∣∂qi∂qjU(q)
∣∣ <∞. (2.1)

Note that (2.1) implies
|∇U(q)| ≤ KU (1 + |q|) (2.2)

for some KU > 0. The existence and uniqueness of a strong solution to (1.1) is established in Theorem A.1. Due
to the smoothness of U and Γ, the coefficients in (1.1) are locally Lipschitz and well-posedness of equation (1.1) is
given by [68], to which we also refer to for the sense of solution. In addition, we make certain to satisfy the joint
measurability assumption in [9] of (A.2).

2.1 Preliminaries and notation

The set of smooth compactly supported functions is denoted C∞c . The infinitesimal generator L (defined in (A.6))
associated to (1.1) is given formally by its differential operator form, denoted L, when acting on the subset C∞c (R2n),

L = p>M−1∇q −∇U(q)>∇p − p>M−1Γ∇p +∇>p Γ∇p. (2.3)

Its formal L2-adjoint L> satisfies
L>π̃ = 0, (2.4)

so that π̃ (see (1.2)) is an invariant probability measure for (1.1) for a normalisation constant Z. Let

L2
0(π) := {g ∈ L2(π) :

∫
gdπ = 0}

and similar for π̃. The notation D2U will be used for the Hessian matrix of U . As in the introduction, In ∈ Rn×n
denotes the identity matrix. For matrices A, |A| denotes the operator norm associated with the Euclidean norm on
Rn. ei is used to denote the ith Euclidean basis vector. For A,B ∈ Rn×n, A : B :=

∑
i,j AijBij and AS = 1

2 (A+A>).

〈·, ·〉π̃ denotes the inner product in L2(π̃) and similar for π.

2.2 Semigroup bound, Poisson equation and central limit theorem

In this section, a central limit theorem for the solution to (1.1) is established, where the resulting asymptotic
variance will be used as a cost function to optimise Γ with respect to. Specifically, it will be shown that under
some weighted L∞ bound on the observable f ∈ L2(π), the estimator πT for the unique solution (qt, pt) to (1.1)
converges to π(f) as T →∞ such that (1.3) holds with (1.4).

It is well known that the asymptotic variance can be expressed in terms of the solution to the Poisson equation (1.5)
using the Kipnis-Varadhan framework, see for example Chapter 2 in [48], Section 3.1.3 in [54], [15] and references
therein. In order to show that the expression (1.9) is indeed a solution to the Poisson equation (1.5), exponential
decay of the semigroup (A.5) is used. In Theorem 2.1 below, we establish convergence in law to the invariant
measure for the Langevin dynamics (1.1).For this, let the Lyapunov function Kl : R2n → R for all l ∈ N be given
by

K(z) = Kl(q, p) =
(
cU(q) + a|q|2 + b〈q, p〉+

c

2
|p|2 + 1

)l
(2.5)

for constants a, b, c > 0.
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Assumption 2. There exist constants β1, β2 > 0 and α ∈ R such that

∀q ∈ Rn, 〈q,∇qU(q)〉 ≥ β1U(q) + β2|q|2 + α. (2.6)

Inequality (2.6) implies

U(q) ≥ C|q|2 − C (2.7)

for all q ∈ Rn and some generic constant C > 0.

Theorem 2.1. Under Assumptions 1 and 2, π̃ is the unique invariant probability measure for the SDE (1.1) and
for all l ∈ N, there exist constants κl, Cl > 0 depending on l and constants a, b, c > 0 independent of l such that the
solution zzt = (qt, pt) to (1.1) with initial condition z satisfies

|E[ϕ(zzt )]− π̃(ϕ)| ≤ Cle−tκlKl(z)
∥∥∥∥ϕ− π̃(ϕ)

Kl

∥∥∥∥
L∞

(2.8)

for Lebesgue almost all initial z ∈ R2n, Kl ≥ 1 given by (2.5) and all Lebesgue measurable ϕ satisfying

ϕ

Kl
∈ L∞ (2.9)

Moreover for any l ∈ N, Kl satisfies ∫
Kldπ̃ <∞ (2.10)

and
LKl ≤ −alKl + bl (2.11)

for some constants al, bl > 0.

The proof is from [72], in which the setting is more general than (1.1) in that the friction matrix is dependent on
q and the drift is not necessarily conservative, i.e. the forcing term is not the gradient of a scalar function and the
fluctuation-dissipation theorem (see equation (6.2) in [66]) does not hold, but of course, it applies in particular to
our setting.

Remark 2.1. Inequality (2.8) holds for all initial z ∈ R2n, as opposed to almost all z, given any bounded measurable
ϕ. This is a consequence of combining (2.8) together with the strong Feller property given by Theorem 4.2 in [23].

Proof. The measure π̃ is invariant due to (2.4). For the rest of the statements, see Theorem 3 in [72].

The following corollary holds by taking ϕ as indicator functions and Remark 2.1.

Corollary 2.2. Under Assumptions 1 and 2, for all initial z ∈ R2n, the transition probability pzt of (1.1), given by
pzt (A) = P(zzt ∈ A), satisfies

‖pzt − π̃‖TV → 0 as t→∞

where ‖ · ‖TV denotes the total variation norm.

The solution to the Poisson equation is given next following the direction of [15].

Theorem 2.3. Under Assumptions 1 and 2, if f ∈ L2
0(π̃) satisfies f

Kl
∈ L∞ for some l ∈ N, then there exists a

unique solution φ ∈ L2
0(π̃) to the Poisson equation (1.5). Moreover, the solution is given by

φ =

∫ ∞
0

Pt(f)dt. (2.12)
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Proof. For T > 0, let

gT :=

∫ T

0

Pt(f)dt.

Note that gT ∈ L2(π̃) for T ∈ R+ ∪ {∞} and by Theorem 2.1

gT →
∫ ∞

0

Pt(f)dt (2.13)

in L2(π̃) as T →∞, specifically (2.8) with ϕ = f and using (2.10) for 2l in place of l. Applying L, it holds that

LgT = lim
s→0

Ps(gT )− gT
s

= lim
s→0

1

s

(∫ T+s

s

−
∫ T

0

)
Pu(f)du = PT (f)− f,

where the exchange in the order of integration is justified by Fubini, (2.8) and the last equality follows by the strong
continuity of (Pt)t≥0 given by Proposition A.2 in Section 6. Inequalities (2.8) and (2.10) (with 2l in place of l) also
give

PT (f)→ 0 in L2(π̃) (2.14)

as T → ∞, so that since L is a closed operator, equations (1.5) and (2.12) hold. In addition,
∫
φdπ̃ = 0 follows

from the invariance of π̃, Theorem 2.1 and Fubini’s theorem.

We proceed to state the central limit theorem for the solution to (1.1).

Theorem 2.4. Under Assumptions 1 and 2, if f ∈ L2(π̃) satisfies f
Kl
∈ L∞ for some l ∈ N, the random variable

1√
t

∫ t
0
(f(zs)− π(f))ds converges in distribution to N (0, σ2

f ) as t→∞ for any initial distribution, where

σ2
f = 2

∫
φ(f − π(f))dπ̃ (2.15)

and φ ∈ L2
0(π̃) is the solution to (1.5).

Proof. By Corollary 2.2 and Theorem 2.3, the result follows by Theorem 2.6 in [9]. See also Theorem 3.1 in [15].

3 Directional derivative of σ2

In this section, we give a number of natural preliminary results that pave the path for the main result in Theorem 3.4,
in which a formula for the derivative (1.6) of σ2 with respect to Γ is provided. The proofs of Proposition 3.1,
Lemma 3.2 and Theorem 3.4 are deferred to Section 6.

3.1 Preliminary results and the main formula

In order to establish the formula for the directional derivative, heavy use of the differential operator form (2.3)
for the generator is made. Proposition 3.1 establishes that φ solves the Poisson equation also as a partial differ-
ential equation, which makes use of the Feynman-Kac representation formula for the solution to the Kolmogorov
(backward) equation.

Proposition 3.1. Under Assumptions 1 and 2, if f ∈ L2
0(π̃) satisfies f

Kl
∈ L∞ for some l ∈ N, the solution φ given

by (2.12) solves −Lφ = f in the distributional sense for L given by (2.3), hence classically if in addition f ∈ C∞.

In order for the integral in a formula like (1.6) to be finite, control on the derivatives in p is required. This will also
be used in the proof of Theorem 3.4 and it is given by the following lemma.

Lemma 3.2. Under Assumptions 1 and 2, if f ∈ L2
0(π̃) satisfies f

Kl
∈ L∞ for some l ∈ N, the weak derivative in

p of the solution φ to −Lφ = f satisfies ∫
|∇pφ|2dπ̃ <∞.
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The following preliminary result is about the solution φ under a momentum reversal. It turns out that this is
the solution to the Poisson equation associated to the formal L2(π̃)-adjoint L∗ of L which appears in the proof of
Theorem 3.4.

Lemma 3.3. Let Assumptions 1 and 2 hold and let f ∈ C∞ and φ̃ ∈ L2
0(π̃) ∩ C∞ be given by (1.7), where φ is a

classical solution to −Lφ = f . Then φ̃ is a classical solution to the equation

−L∗φ̃ = f, (3.1)

where L∗ is the formal L2(π̃)-adjoint of L given by

L∗ = −p>M−1∇q +∇U(q)>∇p − p>M−1Γ∇p +∇>p Γ∇p.

Proof. The equation L∗φ̃ = L̃φ follows by a straightforward calculation.

If f is not smooth, the equation (3.1) still holds in the distributional sense, since for g ∈ C∞c and keeping the
notation (1.7) for the momentum reversal on arbitrary functions,∫

fgdπ̃ =

∫
fg̃dπ̃ = −

∫
φL∗g̃dπ̃ = −

∫
φL̃gdπ̃ = −

∫
φ̃Lgdπ̃.

The main formula of this section for the directional derivative of the asymptotic variance is given next. The
directional derivative of E : Sn++ → R at Γ ∈ Sn++ in the direction δΓ ∈ Sn++ is denoted by dE(Γ).δΓ =
limε→0

1
ε (E(Γ + εδΓ)− E(Γ)) whenever the limit exists.

Theorem 3.4. Under Assumptions 1 and 2, if f = f(q) ∈ L2
0(π) is continuous, satisfies f

Kl
∈ L∞ for some l ∈ N

and there exists ε′ > 0 such that Γ,Γ + εδΓ ∈ Sn++ for 0 < ε ≤ ε′, then the directional derivative of the asymptotic
variance σ2 at Γ in the direction δΓ has the form

dσ2.δΓ = −2

∫
(∇pφ)>δΓ∇pφ̃dπ̃, (3.2)

where φ is the solution (2.12) to the Poisson equation for the dynamics (1.1) at Γ and φ̃ is given by (1.7).

As mentioned in the introduction, from (3.2), the direction (1.8) guarantees a decrease in asymptotic variance;
similarly the scalar change in Γ given by (1.8) where the outer product is replaced by a dot product guarantees a
decrease in σ2.

3.2 A formula using a tangent process

Equation (3.2) has a more useful form. The first variation process of (1.1) is used here to calculate (1.10); this will
be the main methodology used in the numerical sections. This alternative formula given in Theorem 3.5 provides
a way to avoid using a finite difference Monte Carlo estimate of the derivative of an expectation. For simplicity,
we set M = In here. The first variation process associated to (1.1), denoted by (Dpqt, Dppt) ∈ Rn×2n for t ≥ 0, is
defined as the matrix-valued solution to

∂t

(
Dpqt
Dppt

)
=

(
0 In

−D2U(qt) −Γ

)(
Dpqt
Dppt

)
(3.3)

with the initial condition Dpq0 = 0, Dpp0 = In. By Theorem 39 of Chapter V in [69], the partial derivatives of
(qt, pt) with respect to the initial values in p indeed satisfy (3.3) and (Dpqt, Dppt) is continuous with respect to
those initial values. Note that there exists a unique solution to (3.3) by Theorem 38 in the same chapter of [69].
We omit the notational dependence of (qt, pt) on its initial condition (q0, p0) = (q, p) = z whenever convenient in
the following.

Theorem 3.5. Let Assumptions 1 and 2 hold. If in addition,
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• there exist U0 > 0 and Q ∈ Sn++ such that for all q ∈ Rn, v ∈ Rn,

v>D2U(q)v ≥ U0|v|2, D2U(q) = Q+D(q),

where D : Rn → Rn×n is small enough everywhere, in particular,

|D(q)| ≤ λ̂ := min

(
λm
2
,
λmU

2
0

8λ2
M

,
λmU0

16
,
U0

8

√
σmin(Q)

)
, (3.4)

where λm, λM > 0 are respectively the smallest and largest eigenvalue of Γ and σmin(Q) denotes the smallest
eigenvalue of Q, is assumed;

• f = f(q) ∈ L2
0(π) is everywhere differentiable and satisfies |f |+|∇f |Kl

∈ L∞ for some l ∈ N,

then the weak derivative ∇pφ has the form

∇pφ(q, p) =

∫ ∞
0

E[∇f(qt)
>Dpqt]dt, (3.5)

where qt solves (1.1) with initial condition (q0, p0) = (q, p) and Dpqt solves (3.3), the latter satisfying

|Dpqt|2 + |Dppt|2 ≤ C ′e−Ct (3.6)

for some constants C,C ′ > 0 independent of (q0, p0) and ω ∈ Ω.

The assumptions on U are made in order to ensure that the process (Dpqt, Dppt) converges to zero exponentially
quickly in order for the integral in (3.5) to be finite. Specifically, U is assumed to be close to some particular
quadratic function q>Qq, cf. [11].

Remark 3.1. Exponential decay of the first variation process is not required, only some uniform (in initial (q0, p0))
integrability in time of Dpqt together with a boundedness assumption on ∇f . On the other hand, Proposition 1 in
[20] and Proposition 4 in [57] explores more detailed conditions under which contractivity holds and does not hold.

Proof. Let b > 0 be the constant

b = min

(
λmU0

2λ2
M

,
λm
4
,

1

2

√
σmin(Q)

)
so that λ̂ reduces to

λ̂ = min

(
λm
2
, b
U0

4

)
and we have the following bound

1

2
∂t

[
e>i

(
Dpqt
Dppt

)>(
Q bIn
bIn In

)(
Dpqt
Dppt

)
ei

]
= e>i Dpq

>
t QDpptei + b|Dpptei|2

− e>i (bDpqt +Dppt)
>(D2U(q)Dpqt + ΓDppt)ei

= −be>i Dpq
>
t D

2U(qt)Dpqtei + e>i Dpq
>
t (−bΓ−D(qt))Dpptei

− e>i Dpp
>
t (Γ− bIn)Dpptei

≤
(
− bU0 +

bU0

2
+
λ̂

2

)
|Dpqtei|2 +

(
− λm + b+

bλ2
M

2U0
+
λ̂

2

)
|Dpptei|2

≤ −bU0

4
|Dpqtei|2 −

λm
4
|Dpptei|2

≤ −Ce>i
(
Dpqt
Dppt

)>(
Q bIn
bIn In

)(
Dpqt
Dppt

)
ei (3.7)
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for some generic constant C > 0 independent of the initial values (q0, p0) and ω ∈ Ω. Consequently, using the
(weighted) boundedness assumption on |∇f | and for each index i,∣∣(∇f(qt)

>Dpqt)i
∣∣ ≤ C ′e−Ct|∇f(qt)|
≤ C ′e−Ct(|∇f(qt)| − π(|∇f |)) + C ′e−Ct (3.8)

for a generic C ′ > 0 independent of (q0, p0) and ω ∈ Ω. Due to (3.8) together with Fubini’s theorem, it holds for
T > 0 and a test function g ∈ C∞c (R2n) that∫ ∫ T

0

E[f(qzt )]dt∇g(z)dz =

∫ T

0

E[

∫
f(qzt )∇g(z)dz]dt

= −
∫ T

0

E[

∫
∇f(qzt )>Dpq

z
t g(z)dz]dt

= −
∫ ∫ T

0

E[∇f(qzt )>Dpq
z
t ]dtg(z)dz.

Using Theorem 2.1, (3.8) again and dominated convergence to take T →∞ on both sides concludes the proof.

At any t, equation (3.5) can be used in a practical way in order to estimate the gradient direction (1.8). Specifically,
the following estimator can be used. Given (q, p) ∈ R2n, which we think of as solutions (qt, pt) to (1.1) hence
approximately distributed according to π̃, let

δΓ =

∫ T

0

∇f(q
(q,p)
t )>Dpq

(q,p)
t dt⊗

∫ T

0

∇f(q
(q,−p)
t )>Dpq

(q,−p)
t dt (3.9)

for any large enough T > 0, where (q
(q,p)
t , p

(q,p)
t ), (q

(q,−p)
t , p

(q,−p)
t ) solve (1.1) with independent realisations of Wt

and Dp has been used to denote the derivative with respect to the initial p as above. The next result is that
this estimator has finite variance. Note that for (q, p) distributed away from stationarity, the estimator cannot be
expected to be an unbiased estimator of (1.8).

Theorem 3.6. Let the assumptions of Theorem 3.5 hold. For Lebesgue almost-all (q, p) ∈ R2n, each entry of δΓ
defined in (3.9) has finite variance.

Proof. It suffices to show that (3.9) has finite second moment, for which it suffices to show that each element in the
vector of time integrals ∫ T

0

∇f(q
(q,p)
t )>Dpq

(q,p)
t ds

has finite second moments by independence. For each index i, using (3.7),∣∣(∇f(qt)
>Dpqt)i

∣∣2 ≤ C ′2e−2Ct|∇f(qt)|2

≤ C ′2e−2Ct(|∇f(qt)|2 − π(|∇f |2)) + C ′2e−2Ctπ(|∇f |2),

so that using the (weighted) boundedness assumption on |∇f | together with Theorem 2.1 and Fubini’s theorem,
the proof concludes.

4 Quadratic cases

Throughout this section, the target measure π is assumed to be Gaussian, when mean zero this is given by π ∝
exp(− 1

2q
>Σ−1q) for Σ ∈ Sn++, in other words, the potential is quadratic, U(q) = 1

2q
>Σ−1q. For polynomial

observables, we look for solutions to the Poisson equation by using a polynomial ansatz and comparing coefficients
in order to obtain an explicit expression for the asymptotic variance. The results provide benchmarks to test the
performance of the algorithms that arise from using the gradient in Theorem 3.4 as well as intuition for how Γ can
be improved in concrete cases. We will consider the following cases.
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1. Quadratic f = 1
2q
>U0q, given commutativity between U0 and Σ (Proposition 4.5), also f = 1

2U0q
2 + lq in one

dimension (Proposition 4.6);

2. Odd polynomial f , where the asymptotic variance will be shown to decrease to zero as Γ→ 0 (Proposition 4.7,
Corollary 4.8 and Proposition 4.9);

3. Quartic f in one dimension, in which the situation is similar to quadratic f (Proposition 4.10);

We proceed with stating in more detail the general situation of this section. Let Σ ∈ Sn++, U0 ∈ Sn++ and l ∈ Rn.
The Gaussian invariant measure π̃ and the observable f : R2n → R are given by

π̃ ∝ exp

(
− 1

2
q · Σ−1q − 1

2
p ·M−1p

)
, f(q) =

1

2
q · U0q + l · q (4.1)

and the value π(f) becomes

π(f) =

∫
fdπ =

∫
1

2
q · U0qdπ =

1

2
U0 : Σ. (4.2)

The infinitesimal generator L becomes in this case

L =

(
0 M−1

−Σ−1 −ΓM−1

)(
q
p

)
· ∇+∇p · Γ∇p

= M−1p · ∇q − Σ−1q · ∇p − ΓM−1p · ∇p +∇p · Γ∇p. (4.3)

Consider the natural candidate solution φ to the Poisson equation (1.5) given by

φ(q, p) =
1

2
q ·Gq + q · Ep+

1

2
p ·Hp+ g · q + h · p− 1

2
(G : Σ +H : M). (4.4)

for some constant matrices G,E,H ∈ Rn×n and vectors g, h ∈ Rn.

Lemma 4.1. Given f in (4.1), π(f) in (4.2) and L of the form (4.3), φ given by (4.4) is a solution to the Poisson
equation (1.5) if and only if

Σ−1q · (E>q + h)− Γ : HS −
1

2
q · U0q − l · q +

1

2
U0 : Σ = 0, (4.5)

−M−1(GSq + g) +HSΣ−1q +M−1Γ(E>q + h) = 0, (4.6)

−E>M−1 +HSΓM−1 = A1, (4.7)

for some antisymmetric A1 ∈ Rn×n.

Proof. Substituting (4.3), (4.4) and (4.1) into the Poisson equation (1.5), one obtains

−
(

0 M−1

−Σ−1 −ΓM−1

)(
q
p

)
·
(
GSq + Ep+ g
E>q +HSp+ h

)
− Γ : HS

=
1

2
q · U0q + l · q − 1

2
U0 : Σ.

Comparing the constant, first order and second order coefficients in p give respectively the sufficient conditions (4.5), (4.6)
and (4.7) as stated.

4.1 Quadratic observable

Similar calculations in this situation have appeared previously in Proposition 1 in [26], where explicit expressions
analogous to G, E, H and for σ2 are given. For our purposes of finding an optimal Γ, instead of taking these
explicit expressions, we keep unknown antisymmetric matrices (such as A1) as they appear and eventually use
commutativity between Σ and U0 to show that the antisymmetric matrices are zero. We continue from (4.5), (4.6)
and (4.7) with finding explicit expressions for the coefficients G, E, H of φ.
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Lemma 4.2. Given f in (4.1), π(f) in (4.2), L of the form (4.3), φ given by (4.4) is a solution to the Poisson
equation (1.5) with (4.3) if and only if

GS =
1

2
M(ΣU0 − ΣA2 − 2A1M)Γ−1Σ−1 +

1

2
Γ(U0Σ−A2Σ), (4.8)

E =
1

2
U0Σ +

1

2
A2Σ, (4.9)

HS =
1

2
(ΣU0 − ΣA2 − 2A1M)Γ−1, (4.10)

h = Σl and g = ΓΣl. (4.11)

for some antisymmetric matrices A1, A2.

Proof. Comparing coefficients in q in equation (4.5) gives

2Γ : HS = U0 : Σ (4.12)

h>Σ−1 = l> (4.13)

2EΣ−1 = U0 +A2 (4.14)

and the same for condition (4.6) gives

M−1GS = HSΣ−1 +M−1ΓE>, (4.15)

M−1g = M−1Γh. (4.16)

Condition (4.14) yields (4.9). Together with (4.7), this gives (4.10). From the expression (4.10) and by symmetry
of U0, condition (4.12) is in turn satisfied:

2Γ : HS = Γ : ((ΣU0 − ΣA2 − 2A1M)Γ−1)

=
∑
i,j,k,l

Γji(Σik(U0)kl − Σik(A2)kl − (A1)ikMkl)(Γ
−1)lj

=
∑
i,k

(U0)kiΣki = U0 : Σ,

where symmetry of Σ and M have been used. Substituting (4.9) and (4.10) into equation (4.15) then gives (4.8).
Equations (4.13) and (4.16) give the equations (4.11) for g and h.

The asymptotic variance from Theorem 2.4 can be given by a formula in terms of Σ, U0 and the coefficients of φ.
Before substituting the expressions from Lemma 4.2 into the formula, we give the formula itself, which is adapted
from the proof of Proposition 1 in [26].

Lemma 4.3. If the solution φ to the Poisson equation (1.5) for f given by (4.1), π(f) given by (4.2) and L given
by (4.3) is of the form (4.4), the asymptotic variance σ2 given by (2.15) has the expression

2〈φ, f − π(f)〉π̃ = Tr(GSΣU0Σ) + 2g · Σl. (4.17)

Proof. Denote

Ḡ =

(
GS E
E> HS

)
, Ū0 =

(
U0 0
0 0

)
, Σ̄ =

(
Σ 0
0 M

)
, ḡ =

(
g
h

)
, l̄ =

(
l
0

)
.

Each of φ and f − π(f) are given by

φ(z) =
1

2
z · Ḡz − ḡ · z − 1

2
Ḡ : Σ̄

f(z)− π(f) =
1

2
z · Ū0z − l̄ · z −

1

2
Ū0 : Σ̄
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for z = (q, p) ∈ R2n. Substituting into σ2 = 2〈φ, f − π(f)〉π̃ gives

2

∫
φ(f − π(f))dπ̃

=
1

2

∫
(z · Ḡz)(z · Ū0z)dπ̃ −

1

2

∫
(z · Ḡz)Ū0 : Σ̄dπ̃ + 2

∫
(ḡ · z)(l̄ · z)dπ̃

− 1

2

∫
Ḡ : Σ̄(z · Ū0z)dπ̃ +

1

2
(Ḡ : Σ̄)(Ū0 : Σ̄),

where ∫
(z · Ḡz)(z · Ū0z)dπ̃ =

∑
i,j,u,v

Ḡij(Ū0)uv

∫
zizjzuzvdπ̃

=
∑
i,j,u,v

Ḡij(Ū0)uv

(
Σ̄ijΣ̄uv + Σ̄iuΣ̄jv + Σ̄ivΣ̄ju

)
= (Ḡ : Σ̄)(Ū0 : Σ̄) + 2Tr(ḠΣ̄Ū0Σ̄).

As a result,

2

∫
φ(f − π(f))dπ̃ =

1

2
(Ḡ : Σ̄)(Ū0 : Σ̄) + Tr(ḠΣ̄Ū0Σ̄)− 1

2
(Ḡ : Σ̄)(Ū0 : Σ̄)

+ 2

∫
(ḡ · z)(l̄ · z)dπ̃

= Tr(ḠΣ̄Ū0Σ̄) + 2ḡ · Σ̄l̄.

From the expressions (4.8) and (4.10) for GS and HS respectively, it is not straightforward to check that there exist
antisymmetric A1 and A2 such that the right hand sides are indeed symmetric at this point, which is necessary for
the ansatz (4.4) for φ to be a valid solution. On the other hand, if Σ, U0, Γ, M all commute, then the right hand
sides of (4.8) and (4.10) are symmetric for A1 = A2 = 0 and the coefficients G and H become explicit, which allows
taking derivatives of σ2 with respect to the entries of Γ. Moreover, the explicit coefficients allow optimisation of
M , which is given by the following proposition.

Proposition 4.4. Let ΣU0 = U0Σ, f be as in (4.1), π(f) be as in (4.2), L be of the form (4.3) and φ be the
solution to the Poisson equation (1.5). The following holds.

lim
M→0

∫
φ(f − π(f))dπ̃ = inf

M∈Sn++

∫
φ(f − π(f))dπ̃,

where the limit on the left hand side is in the sense of M = mIn, m→ 0+.

Proof. Let

G =
1

2
MΣU0Γ−1Σ−1 +

1

2
ΓU0Σ, E =

1

2
U0Σ, H =

1

2
ΣU0Γ−1, (4.18a)

g = ΓΣl, h = Σl (4.18b)

so that by Lemma 4.2, φ given by (4.4) is the solution to the Poisson equation (1.5) and inserting G, g into (4.17)
gives

2〈φ, f − π(f)〉π̃ =
1

2
Tr(MΣU0Γ−1U0Σ + ΓU0Σ2U0Σ) + 2l>ΣΓΣl. (4.19)

The result follows since A : B > 0 for A,B ∈ Sn++.
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Proposition 4.4 solves the optimisation problem in M in the stated setting, but highlights the corresponding discrete
time problem since one cannot take M−1 → ∞ in practice. We focus on the optimisation of Γ and fix M = In in
the following.

Proposition 4.5. Let Σ, U0, l,M be such that

ΣU0 = U0Σ, l = 0, M = In, (4.20)

f be as in (4.1), π(f) be as in (4.2), L be of the form (4.3) and φ be the solution to the Poisson equation (1.5).
The following holds.

min
Γ∈SΣ

2

∫
φ(f − π(f))dπ̃ = Tr

(
U2

0 Σ
5
2

)
,

where SΣ is the set of symmetric positive definite matrices commuting with Σ and the minimum is attained by

Γ = Σ−
1
2 .

Proof. Let Σ = P>ΣdP be the eigendecomposition of Σ for orthogonal P . Since all symmetric matrices in the set
commuting with Σ share eigenvectors with Σ, it suffices to find a unique extremal point of the asymptotic variance
with respect to the eigenvalues of Γ, call them (λi)1≤i≤n, λi ≥ 0. Setting again (4.18), φ given by (4.4) is the
solution to the Poisson equation (1.5) and the asymptotic variance σ2 given by (2.15) becomes

2〈φ, f − π(f)〉π̃ =
1

2
Tr(ΣU0Γ−1U0Σ + ΓU0Σ2U0Σ), (4.21)

which reduces to a sum of functions of the form aiλ
−1
i + biλi, ai, bi > 0 after diagonalising with P and the result

follows.

In the scalar case, we can remove the restriction on l.

Proposition 4.6. If n = 1, U0 6= 0, l 6= 0, f : R→ R is given by (4.1), π(f) is given by (4.2), L is of the form (4.3)
and φ is the solution to the Poisson equation (1.5), then

min
Γ>0

2

∫
φ(f − π(f))dπ̃ = M

1
2 Σ2U2

0 (Σ + 4l2U−2
0 )

1
2

and the minimum is attained by

Γ =
M

1
2

(Σ + 4l2U−2
0 )

1
2

. (4.22)

Proof. By Lemma 4.2, the solution (4.4) to the Poisson equation (1.5) is

φ =

(
U0ΓΣ

4
+
MU0

4Γ

)
q2 +

U0Σ

2
qp+

U0Σ

4Γ
p2 + ΣΓlq + Σlp− U0ΓΣ2

4
− MU0Σ

2Γ
.

By Lemma 4.3, the asymptotic variance is given by

2

∫
φ(f − π(f))dπ̃ = 2Σ2

(
U2

0 Σ

4
+ l2

)
Γ +

U2
0 Σ2

2Γ
,

which attains the stated minimum at (4.22) as claimed.
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4.2 Odd polynomial observable

Another special case within (4.1) where the solution φ can be readily identified is when

U0 = 0,

that is, for linear observables. More generally, (almost) zero variance can be attained in the following special case.

Proposition 4.7. Under Assumption 1 and 2, for a general target measure π ∝ e−U on Rn, if the observable f is
of the form

f(q) = α · ∇U,
for α = (α1, . . . , αn), αi ∈ R, L is of the general form (2.3) and φ is the solution to the Poisson equation (1.5),
then the asymptotic variance satisfies

inf
Γ∈{γIn:γ>0}

2

∫
φ(f − π(f))dπ̃ = 0. (4.23)

Proof. Let Γ = γIn, γ ∈ R.Note there is a unique solution φ ∈ L2
0(π̃) to (1.5) by Theorem 2.3. The solution φ

to (1.5) has the expression

φ =
∑
i

αi(γqi + pi).

The asymptotic variance is equal to

2〈φ, f − π(f)〉π̃ = 2γ
∑
i,j

αiαj

∫
Rn

qi∂qjU(q)π(dq)

= −2γ
∑
i

α2
i

∫
Rn

qi∂qiπ(q)dq − 2γ
∑
i 6=j

αiαj

∫
Rn

qi∂qjπ(q)dq

= 2γ
∑
i

α2
i

∫
Rn

π(q)dq − 2γ
∑
i 6=j

αiαj

∫
Rn−1

qi

∫
R
∂qjπ(q)dqjdq−j

= 2γ
∑
i

α2
i .

where dq−j denotes dq1 . . . dqj−1dqj+1 . . . dqn.

Corollary 4.8. Given a Gaussian target measure with density π ∝ e−U on Rn, observable f : Rn → R as in (4.1)
with U0 = 0, that is,

f(q) = l · q,
where l ∈ Rn, π(f) = 0, L of the form (2.3) and φ the solution to the Poisson equation (1.5), equation (4.23) holds.

There is some intuition in the situation in Corollary 4.8. First note that the Langevin diffusion with Γ = 0 reduces
to deterministic Hamiltonian dynamics and that it is the limit case for the Γ attaining arbitrarily small asymptotic
variance in the proof of Proposition 4.7. The result indicates that this is optimal in the linear observable, Gaussian
measure case (i.e. (4.1), U0 = 0) and this aligns with the fact that the value (4.2) to be approximated is exactly the
value at the q = p = 0, so that Hamiltonian dynamics starting at q = 0, staying there for all time, approximates the
integral (4.2) with perfect accuracy. A similar idea holds for when the starting point is not q = p = 0, where (4.2) is
approximated exactly after any integer number of orbits in (q, p) space. Continuing on this idea, it seems reasonable
that the same statement holds more generally for any odd observable. At least, the following holds in one dimension.

Proposition 4.9. If n = 1, k̂ ∈ N and f : R→ R is an odd finite order polynomial observable given by

f(q) =

k̂∑
i=0

aiq
2i+1, (4.24)

π(f) = 0, L is of the form (4.3) and φ is the solution to the Poisson equation (1.5), then the asymptotic variance
satisfies (4.23).

The proof of Proposition 4.9 is deferred to Section 6.
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4.3 Quartic observable

The situation in the quartic observable case, at least in one dimension, is similar to quadratic observable case.

Proposition 4.10. If n = 1 and f : R→ R is a quartic observable given by

f(q) = q4, (4.25)

π(f) = 3Σ2 for some Σ > 0, L is of the form (4.3), M = 1 and φ is the solution to the Poisson equation (1.5),
then there exists σquar > 0 such that

min
Γ=γ>0

2

∫
φ(f − π(f))dπ̃ = σquar.

The proof of Proposition 4.10 can be found in Section 6.

5 Computation of the change in Γ

Throughout this section, the M = In case is considered. As mentioned, the formula (3.2) gives a natural gradient
descent direction (1.8) to take Γ in order to optimise σ2 from Theorem 2.4. In Theorem 3.4 and in the form (1.8),
the expression for the gradient is already susceptible to a Green-Kubo approach in the sense that the form (2.12)
for φ can be substituted in to obtain a trajectory based formula, where finite difference is used to approximate
∇p and independent realisations of (qt, pt) is used for the expectations. However, this is too inaccurate in the
implementation to be useful. The more directly calculable form as stated in the introduction in (1.10) is used
involving the derivative of (qt, pt) with respect to the initial condition in Section 3.2.
We focus the discussion on a Monte Carlo method to approximate ∇φ and gradient directions in Γ (e.g. (1.8)) based
on Theorem 3.4, but a spectral method to solve (1.5) and compute the change in Γ is given in Appendix B, which is
computationally feasible in low dimensions. Algorithm 1 summarises the resulting continuous-time procedure, where
all expectations within (1.8) are approximated by single realisations; further justifications, alternative methods,
refinements and a concrete implementation (Algorithm 2) along with examples follow.

Algorithm 1: Continuous-time outline of Γ update using (1.6) and (1.10)

Result: Γ ∈ Sn++

Start from arbitrary (q0, p0) ∈ R2n and set (q̃0, p̃0) = (q0,−p0), Dq0 = Dq̃0 = 0, Dp0 = Dp̃0 = In,
ζ = ζ̃ = 0, k = 0, Γ = In ∀1 ≤ j ≤ B, t = t0 = 0;

for N epochs do
simulate one step in qt, q̃t then in Dpqt and Dpq̃t from t to t+ ∆t;

add to ζ, ζ̃ to approximate the row vectors

ζ =

∫ t

t0

∇f(qs)
>Dpqsds, ζ̃ =

∫ t

t0

∇f(q̃s)
>Dpq̃sds;

if (Dpqt, Dppt) is small enough in magnitude then

update Γ with the gradient direction −ζ ⊗ ζ̃;

reset (q̃t, p̃t)← (qt,−pt); (Dpqt, Dppt), (Dpq̃t, Dpp̃t)← (0, In); t0 ← t; ζ, ζ̃ ← 0;

end
t← t+ ∆t

end

5.1 Methodology

Here we describe an on-the-fly procedure to repeatedly calculate the change (1.8) in Γ by simulating the first
variation process parallel to underdamped Langevin processes. The discretisation schemes used to simulate (1.1)
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and (3.3) are given in Section 5.1.1. Two gradient procedures, namely gradient descent and the Heavy ball method,
for evolving Γ given a gradient are detailed in Section 5.1.2. Then iterates from Section 5.1.1 are used to approximate
each change in Γ in Section 5.1.3 (see also Appendix C. The key idea linking the above is that if equation (3.5)
holds, then

∆Γ =

∫
∇pφ⊗∇pφ̃dπ̃

= −
∫ ∫ ∞

0

E[∇f(qs)
>Dpqs]

>ds

∫ ∞
0

E[∇f(q̃t)
>Dpq̃t]dtdπ̃, (5.1)

where (qt, pt) and (q̃t, p̃t) denote the solutions to (1.1) with initial values (q, p), (q,−p) respectively, (Dpqt, Dppt)
and (Dpq̃t, Dpp̃t) denote the solutions to (5.3) with q̃t replacing qt for the latter and the integral in (5.1) is with
respect to (q, p).

5.1.1 Splitting

A BAOAB splitting scheme [50, 51] will be used to integrate the Langevin dynamics (1.1), given explicitly by

pi+
1
3 = pi −∇U(qi)∆t

2

qi+
1
2 = qi + pi+

1
3

∆t
2

pi+
2
3 = exp(−∆tΓi)pi+

1
3 +

√
1− exp(−2∆tΓi)ξi

qi+1 = qi+
1
2 + pi+

2
3

∆t
2

pi+1 = pi+
2
3 −∇U(qi+1)∆t

2

(5.2)

for i ∈ N, ∆t > 0, where ξi are independent n-dimensional standard normal random variables and Γi ∈ Sn++ are
a sequence of friction matrices to be updated throughout the duration of the algorithm, but we mention again
recent developments, e.g. [19, 20, 32, 58, 73, 75], on discretisations of the underdamped Langevin dynamics; the
majority of the numerical error involved in updating Γ is expected to come from the small number of particles in
approximating the integrals in the expression (1.8) for ∆Γ, so that no further deliberation is made about the choice
of discretisation for the purposes here. The first variation process (5.3) together with its initial condition is

Dpqt =

∫ t

0

Dppsds, (5.3a)

Dppt = In −
∫ t

0

(D2U(qs)Dpqs + ΓDpps)ds. (5.3b)

In order to simulate (5.3), an analogous splitting scheme is used:

Dpi+
1
3 = Dpi −D2U(qi)Dqi∆t

2

Dqi+
1
2 = Dqi +Dpi+

1
3

∆t
2

Dpi+
2
3 = exp(−∆tΓi)Dpi+

1
3

Dqi+1 = Dqi+
1
2 +Dpi+

2
3

∆t
2

Dpi+1 = Dpi+
2
3 −D2U(qi+1)Dqi∆t

2 .

(5.4)

The kth column of the first term including the Hessian of U (and similarly for the last) can be approximated by

−∇U(qi +
∆t

2
(Dqi)k) +∇U(qi) (5.5)

where (Dqi)k denotes the kth column of Dqi, so that (5.3) can still be approximated in the absence of Hessian
evaluations. The approximation (5.5) will be used only when explicitly stated in the sequel.
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5.1.2 Gradient procedure in Γ

Suppose we have available a series of proposal updates (b0, . . . , bL−1) ∈ Rn×n×L for Γ. Given stepsizes αi = α ∈ R
and an annealing factor r ∈ R, the following constrained stochastic gradient descent (for i where proposal updates
are produced)

Γi+1 = Πµ
pd

(
Γi +

αi

2L

L−1∑
j=0

(bj + b>j )

)
(5.6)

can be considered, where L ∈ N and Πµ
pd is the projection to a positive definite matrix, for some minimum value

µ > 0, given by

Πµ
pd(M) =

n∑
i=1

max(λi, µ)viv
>
i (5.7)

for symmetric M ∈ Rn×n and its the eigenvalue decomposition

M =

n∑
i=1

λiviv
>
t .

Alternatively, a Heavy-ball method [67, 35] (with projection) can be used. The method is considered in the stochastic
gradient context in [18], given here as{

Γi+1 = Πµ
pd(Γi + αiΘi+1),

Θi+1 = (1− αir)Θi + αi

2L

∑L−1
j=0 (bj + b>j ).

(5.8)

The heavy-ball method offers a smoother trajectory of Γ over the course of the algorithm. Under appropriate
assumptions on bj , in particular if

1

2L

L−1∑
j=0

(bj + b>j ) ∼ N (∇σ2(Γi), σ2
b In2),

for some gradient ∇σ2(Γik) and variance σ2
b > 0, then the system (5.8) has the interpretation of an Euler discreti-

sation of a constrained Langevin dynamics, in which case r√
αiσ2

b

is the inverse temperature. By increasing r, the

analogous invariant distribution ‘sharpens’ around the maximum in its density and in this way reduces the effect
of noise at equilibrium; on the other hand, decreasing r reduces the decay in the momentum.

5.1.3 A thinning approach for ∆Γ

The most straightforward way of approximating the integral in (5.1) is to use independent realisations of (5.2), as
described in Appendix C, but we draw alternatively a thinned sample [64] from a single trajectory here in order
to run only a single parallel set of realisations of (5.2) and (5.4) at a time. More specifically, we consider a single
realisation of (5.2) and regularly-spaced points from its trajectory (possibly after a burn-in) as sample points from π̃.
Starting at each of these sample points and ending at each subsequent one, the process is replicated albeit starting
with a momentum reversal and simulated in parallel. In addition, for each of the two processes, a corresponding
first variation process (5.4) is calculated in parallel. A precise description follows.
Let K = 1 for simplicity. The Γ direction (5.1) is approximated by

− 1

(L+ L∗)

L+L∗−1∑
l=0

( T∑
i=1

∆t

K

K∑
k=1

∇f(qi+Tl+B(k) )>Dqi+Tl+B(k)

)
⊗

( T∑
i=1

∆t

K

K∑
k=1

∇f(q̃i+Tl+B(k) )>Dq̃i+Tl+B(k)

)
, (5.9)

where L ∈ N, ((qi(k), p
i
(k)))i∈N, ((q̃i(k), p̃

i
(k)))i∈N denote solutions to (5.2)
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• for i 6= B + T l − 1, l ∈ N if k 6= 1 and

• for all i if k = 1

with initial condition (0, 0), noise ξi = ξi(k), ξ̃
i
(k) for all i ∈ N satisfying ξi(k) = ξi(k′) = ξ̃i(k) = ξ̃i(k′) for all i < B, 1 ≤

k ≤ K, 1 ≤ k′ ≤ K, independent otherwise as i and k vary, along with corresponding (Dqi(k), Dp
i
(k)), (Dq̃i(k), Dp̃

i
(k))

satisfying (5.4) for i 6= B + T l − 1, l ∈ N (regardless of k), and where the k 6= 1 processes are ‘reset’ at i = B + T l
corresponding to the values of the k = 1 chain if the first variation processes have converged to zero, that is,

qTl+B(k) = qKl+B(1) , pTl+B(k) = pTl+B(1) , DqTl+B(k) = 0, DpTl+B(k) = In (5.10a)

q̃Tl+B(k) = qTl+B(1) , p̃Tl+B(k) = −pTl+B(1) , Dq̃Tl+B(k) = 0, Dp̃Tl+B(k) = In (5.10b)

for all 1 ≤ k ≤ K if for some Dconv > 0,

max
i,j,k

∣∣∣(DqTl+B(k) )ij

∣∣∣ < Dconv, max
i,j,k

∣∣∣(Dq̃Tl+B(k) )ij

∣∣∣ < Dconv, (5.11a)

max
i,j,k

∣∣∣(DpTl+B(k) )ij

∣∣∣ < Dconv, max
i,j,k

∣∣∣(Dp̃Tl+B(k) )ij

∣∣∣ < Dconv (5.11b)

and L∗ ∈ N is such that the number of elements in {l ∈ N : 1 ≤ l ≤ L + L∗} satisfying (5.11) is L. The approach
is summarised in Algorithm 2. Of course, the above for generic K ∈ N constitutes improving approximations to
∆Γ. Note that as Γ changes through the prescribed procedure, the asymptotic variance associated to the given
observable f is expected to improve, but on the contrary, the estimator (5.9) for the continuous-time expression (5.1)
may well worsen, since the integrand (of the outermost integral) in (5.1) is not f . Increasing L is expected to solve
any resulting issues; extremely small L have been successful in the experiments here.

Remark 5.1. If it is of interest to approximate expectations of P ∈ N observables with respect to π, the quantity∑P
i σ

2
i for example can be used as an objective function, where σ2

i is the asymptotic variance from the ith observable.

In the implementation in Algorithm 2, instead of only the vectors ζ, ζ̃, this amounts to calculating at each iteration
the vectors ζ(i), ζ̃(i) corresponding to the ith observable and taking the sum of the resulting update matrices in Γ
to update Γ. This calls for no extra evaluations of ∇U over the single observable case.

Remark 5.2. (Tangent processes along random directions) We mention the situation where simulating the full first
variation processes (Dpqt, Dppt) in Rn×2n is prohibitively expensive. A directional tangent process can be used
instead of (Dpqt, Dppt). Consider for a unit vector v ∈ Rn, that is |v| = 1, randomly chosen at the beginning of
each estimation of ∆Γ, the pair of vectors (Dpqtv,Dpptv) ∈ Rn×2. Multiplying on the right of ((5.3) and) (5.4) by
v, one obtains 

Dpvi+
1
3 = Dpvi −D2U(qi)Dqvi∆t

2

Dqvi+
1
2 = Dqvi +Dpvi+

1
3

∆t
2

Dpvi+
2
3 = exp(−∆tΓi)Dpvi+

1
3

Dqvi+1 = Dqvi+
1
2 +Dpvi+

2
3

∆t
2

Dpvi+1 = Dpvi+
2
3 −D2U(qi+1)Dqvi∆t

2 ,

(5.12)

where the first term involving the Hessian of U in (5.12) can be approximated by

−∇U(qi +
∆t

2
Dqvi) +∇U(qi)

and similarly for the last such term. In continuous time, the resulting direction in Γ is
∫
∇φ>v∇φ̃>vdπ̃v ⊗ v

and from (3.2) the rate of change in asymptotic variance in this direction is −2(
∫
∇φ>v∇φ̃>vdπ̃)2. However, the

resulting gradient procedure in Γ turns out to be painstakingly slow to converge in high dimensions in comparison
to simulating a full first variation process; as illustration, one can think of the situation where the randomly chosen
vector v is taken from the restricted set of standard Euclidean basis vectors, where only one diagonal value in Γ is
changed at a time. For a directional derivative, we also mention [79, 36].
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Algorithm 2: Gradient procedure in Γ

Result: Γi, 1 ≤ i ≤ N + 1
Start from arbitrary (q0, p0) ∈ R2n and set Dq0 = Dq̃0 = 0, Dp0 = Dp̃0 = In, ζ = ζ̃ = 0, k = 0,
Γj = In ∀1 ≤ j ≤ B;

for i = 1 : B − 1 do
compute qi+1 according to (5.2);

end
if i = B then

set (q̃i, p̃i)← (qi,−pi);
end
for i = B : N do

compute qi+1 and q̃i+1 according to (5.2);
compute Dqi+1 and Dq̃i+1 from (5.4) corresponding to qi+1 and q̃i+1 respectively;

compute the row vectors ζ ← ζ +∇f(qi+1)>Dqi+1∆t

ζ̃ ← ζ̃ +∇f(q̃i+1)>Dq̃i+1∆t

;

if l := i−B ∈ TN and (5.11) hold (ignoring appearances of (k) = (1)) then

save the matrix b( k
G−b

k
G c)G

= −ζ ⊗ ζ̃;

reset as follows: ζ, ζ̃ ← 0, (q̃i+1, p̃i+1)← (qi+1,−pi+1)

Dqi+1, Dq̃i+1 ← 0, Dpi+1, Dp̃i+1 ← In

;

and update the counter k ← k + 1;

end
if k ∈ GN then

compute Γi+1 according to (5.8);
else

set Γi+1 = Γi;
end

end

5.2 Concrete examples

In Sections 5.2.1, 5.2.2 and 5.2.3, the Monte Carlo approach is applied on concrete problems. Section 5.2.1 contains
the simplest one-dimensional Gaussian case where the optimal Γ is known and it is shown that the algorithm
approximates it quickly. A different Gaussian problem extracted from a diffusion bridge context is explored in
Section 5.2.2, where the algorithm is shown to approximate a Γ matrix that exhibits an even better empirical
asymptotic variance than the one given by Proposition 4.5. Finally, the algorithm is applied to finding the optimal
Γ in estimating the posterior mean in a Bayesian inference problem in Section 5.2.3, where the situation is shown to
be similar to Proposition 4.8, in the sense that the optimal Γ is close to 0; after and separately from such a finding,
the empircal asymptotic variance for a small Γ is compared that for Γ = In, with dramatic improvement in both
the full gradient and minibatch gradient cases.

5.2.1 One dimensional quadratic case

Here the algorithm given in Section 5.1.3 is used in the simplest one dimensional

U(q) =
V0

2
q2, f(q) =

1

2
q2, (5.13)

V0 > 0, case to find the optimal constant friction. Since commutativity issues disappear in the one-dimensional
case, the optimal constant friction is known analytically and is given by Proposition 4.5 to be Γ =

√
V0, with the

asymptotic variance V
− 5

2
0 . Moreover, the relationship between the asymptotic variance and Γ is explicitly given by

20



equations (4.8) and (4.17), which reduces in this case to

σ2(Γ) =
1

4V 2
0

(
Γ−1 +

1

V0
Γ

)
.

The case V0 = 5 is illustrated in Figure 5.3. In the middle and right plot of Figure 5.3, the procedure in Section 5.1.3
is used for 5 · 104 epochs, with ∆t = 0.08, block-size T = 125, L = 1 and Dconv = 2 · 10−4. Changing the observable
to the linear

f(q) = q (5.14)

gives that the ‘optimal’ (but unreachable in the algorithm due to the constraints) friction is 0 by Corollary 4.8.
The right plot in Figure 5.3 shows that the procedure arrives at a similar conclusion in the sense that the Γ hits
and stays at µ = 0.2.

Figure 5.1: Left: Relationship between asymptotic variance and Γ for (5.13). Middle and right: Trajectory of Γ
for (5.13) and (5.14) respectively by (5.8) with αi = 1, G = 1, r = 0.5 and µ = 0.2. Middle: the red line is the
optimal value Γ =

√
5 given by Proposition 4.5. All plots are for V0 = 5.

5.2.2 Diffusion bridge sampling

The algorithm in Section 5.1.3 is applied in the context of diffusion bridge sampling [38, 40] (see also for example
[7, 21, 39]), where the SDE

dxt = −∇V (xt)dt+
√

2β−1dW ′t (5.15)

for a suitable V : Rd → R, β > 0 and W ′t standard Wiener process on Rd, is conditioned on the events

x0 = x− and xT = x+ (5.16)

for some fixed T > 0, x0, x+ ∈ Rd and the problem setting is to sample from the path space of solutions to (5.15)
conditioned on (5.16). For the derivation of the following formulations, we refer to Section 5 in [38] and Section 6.1
in [6]; here we extract a simplified potential U to apply our algorithm on after a brief description.
Let

V (x) =
1

2
|x|2, x− = x+ = 0, β = 1, d = 1, T = 1.

Using the measure given by Brownian motion conditioned on (5.16) as the reference measure µ0 on the path space
of continuous functions C([0, 1],R), the measure µ associated to (5.15) conditioned on (5.16) satisfies

dµ

dµ0
(x) ∝ exp

(
− 1

4

∫ T

0

|x|2dt
)
,

where the left hand side denotes the Radon-Nikodym derivative, so that discretising µ on a grid in [0, 1] with
grid-size δ > 0 gives the approximating measure

π(q1, . . . , qn) ∝ e−U(q1,...,qn)
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where U is given by

U(q) =
1

2
q>Σ−1q =

1

2
q>


2
δ + δ

4 − 1
δ

− 1
δ

2
δ + δ

4 − 1
δ

. . .
− 1
δ

2
δ + δ

4 − 1
δ

2
δ + δ

4 − 1
δ

 q.

From here the Langevin system (1.1) can be used to sample from π and the algorithm given in Section 5.1.3 is
applied. For this purpose, the observable

f(q) =
1

2
|q|2

is used together with the parameters δ = 1
21 , n = 20, K = 1, L = 5, T = 60, B = 100 and Dconv = 0.01. Only the

diagonal values of Γ are updated and their trajectories are shown in Figure 5.2.

Figure 5.2: Diagonal values of Γ over iterations of (5.8) with αi = 0.2, G = 5, r = 1 and µ = 0.2.

At the end of 300000 epochs, Γ is given by

Γfinal = diag(1.2129, 1.5673, 1.8199, 1.8055, 1.2858, 0.9013, 0.3588, 0.2631,

0.2000, 0.2000, 0.2252, 0.2579, 0.3621, 0.4715, 1.3842, 1.9467,

1.9289, 1.6326, 1.3730, 1.1153).

This Γ is fixed and used for a standard sampling procedure for the same potential and observable. The asymptotic
variance is approximated by grouping the epochs after B = 100 burn-in iterations into NB = 999 blocks of T = 300
epochs, specifically,

σapprox =
1

NB

NB−1∑
l=0

[
1√
T∆t

T∑
i=1

∆t

(
f(qi+Tl+B)− 1

N

N∑
j=1

∆tf(qj+B)

)]2

and this is compared to the estimate from the same procedure using different values of fixed Γ in Table 5.1. Note
that Γ = Σ−

1
2 is the optimal Γ in the restricted class of matrices commuting with Σ given by Proposition 4.5, where

the asymptotic variance is known to be Tr(Σ
5
2 ) ≈ 6.4785.
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σapprox

Γ = In 6.9834

Γ = Σ−
1
2 6.5096

Γ = Γfinal 6.1667

Table 5.1: Empirical asymptotic variances with NB = 999, T = 300, B = 100, N = 299700.

5.2.3 Bayesian inference

We adopt the binary regression problem as in [29] on a dataset2 with datapoints encoding information about
images on a webpage and each labelled with ‘ad’ or ‘non-ad’. The labels {Yi}1≤i≤p, taking values in {0, 1}, of the
p = 2359 datapoints (counting only those without missing values) given in the dataset are modelled as conditionally
independent Bernoulli random variables with probability {ρ(β>Xi)}1≤i≤p, where ρ is the logistic function given by
ρ(z) = ecz/(1 + ecz) for all z ∈ R, c ∈ R is given by (5.18), {Xi}1≤i≤p, β, both taking values in Rn, are respectively
vectors of known features from each datapoint and regression parameters to be determined. The parameters β are
given the prior distribution N (0,Σ), where

Σ−1 =
1

p

p∑
i=1

X>i Xi ∈ Rn×n,

and the density of the posterior distribution of β is given up to proportionality by

πβ(β|{(Xi, Yi)}1≤i≤p) ∝ exp

( p∑
i=1

{cYiβ>Xi − log(1 + ecβ
>Xi)} − 1

2
β>Σ−1β

)
,

so that the log-density gradient, in our notation −∇U , is given by

−∇U(β) =

p∑
i=1

cXi(Yi − (1 + e−cβ
>Xi)−1)− Σ−1β.

The observable vector fi(q) = qi, 1 ≤ i ≤ n, corresponding to the posterior mean is used. The coordinate transform

β̂ = Σ−
1
2 β is made before applying the symmetric preconditioner Σ

1
2 on the Hamiltonian part of the dynamics so

that the dynamics simulated are as in (1.1) with M = In and

−∇U(β̂) = Σ
1
2

p∑
i=1

cXi(Yi − (1 + e−c(Σ
1
2 β̂)>Xi)−1)− β̂. (5.17)

We use the observable vector
fi(β̂) = β̂i, 1 ≤ i ≤ n

and the sum of their corresponding asymptotic variances as the value to optimise with respect to Γ, but show in
Figures 5.3 and 5.4 the estimated asymptotic variances for both sets fi(β̂), fi(β) of observables, where the estimation
is calculated using the vector on the left of the outer product in (5.9) in accordance with 2

∫
∇φ>Γ∇φdπ̃ which

follows from the formula (2.15) after integrating by parts with truncation. The approximation (5.5) for the term(s)
including the Hessian in (5.4) has been used to test the method despite the explicit availability of the Hessian.
During the execution of Algorithm 2, the constant c has been set to

c = c̄ :=
5

maxi(Σ
1
2

∑
j XjYj)i

. (5.18)

2http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements. Note that besides missing values at some datapoints, the dataset
comes with many quantitatively duplicate features and also some linear dependence between the vectors made up of a single feature
across all datapoints; here features have been removed so that the said vectors remaining are linearly independently. In particular,
n = 642.
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In detail, 30000 epochs are simulated; after 100 burn-in iterations of the Langevin discretisation (5.2), 2 parallel
simulations of (5.2) and 2 of the first variation discretisation (5.4) are run according to Section 5.1.3 with time-step
∆t = 0.1, block-size T = 100, L = 1 block per update in Γ, K = 1 and tolerance Dconv = 0.01.

Figure 5.3: Left: Diagonal values of Γ over iterations of (5.8) with αi = 0.1, G = 1, r = 1 and µ = 0.2. Note that
the mean of the absolute values of all entries of Γ at the end of the iterations is 0.0039. Middle: Sum over i of
estimated asymptotic variances for fi(β̂); right: for fi(β).

Figure 5.4: The same as in the caption of Figure 5.4, except r = 0.5 and a different dataset
(https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)) is used where n = 167 and p = 476. The mean
of the absolute values of all entries of Γ at the end of the iterations is 0.0210.

In Figures 5.3 and 5.4, Γ starts initially from the identity In and descends towards 0.2In (restricted as in (5.7)),
as expected for a linear observable and potential close to a quadratic (see Proposition 4.9). We note that in the
gradient descent procedure for Γ, using the minibatch gradient does not change the behaviour shown in Figures 5.3
and 5.4. In addition, although the trajectory of Γ seems to go directly to zero, we expect the optimal Γ to be close
but away from zero since the potential is close but not exactly quadratic.
Next, the value for Γ is fixed at various values and used for hyperparameter training on the same problem for the
first dataset, using both the full gradient (5.17) and a minibatch3 version where the sum in (5.17) is replaced by
p
10 times a sum over a subset S of {1, . . . , p} with 10 elements randomly drawn without replacement such that S
changes once for each i in (5.2). In the minibatch gradient case, c is set to a fraction of (5.18), specifically c̄( p10 )−1.
In Tables 5.2 and 5.3, variances for the posterior mean estimates are shown (similar variance reduction results
persist when using the probability of success for features taken from a single datapoint in the dataset).
In detail, for each row of Tables 5.2 and 5.3, N = 29700 epochs of (5.2) are simulated with the same parameters as
above. The asymptotic variance for each observable entry is approximated using block averaging (Section 2.3.1.3

3The control variate stochastic gradient on underdamped dynamics [17, 63] is not directly considered here but the benefits of an
improved Γ is expected to carry over to such variations of the stochastic gradient.
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in [53]) by grouping the epochs after B = 100 burn-in iterations into NB = 99 blocks of T = 300 epochs, that is,

σ2
k,approx =

1

NB

NB−1∑
l=0

[
1√
T∆t

T∑
i=1

∆t

(
fk(qi+Tl+B)− 1

N

N∑
j=1

fk(qj+B)

)]2

and NB = 3 blocks of T = 9900 epochs (respectively for each column of Tables 5.2 and 5.3); the values 0.8667
and 0.1571 approach and correspond to values in the middle plot of Figure 5.3 after multiplying by n = 642. The
variances are compared to those using a gradient oracle: unadjusted (overdamped) Langevin dynamics[29] and with
an irreversible perturbation[26], where the antisymmetric matrix J is given by

Ji,j =


1 if j − i = 1 or 1− n,
−1 if i− j = 1 or 1− n,
0 otherwise

for 1 ≤ i, j ≤ n and the stepsizes are the same as for underdamped implementations. In addition, the Euclidean
distance from intermediate estimates of the posterior mean to a total, combined estimate is shown for each method.

Specifically, dk :=
∣∣∣ 1

300k

∑300k
i=1 f(qi+B)− π̂(f)

∣∣∣ is plotted against k in Figure 5.5, where π̂(f) is the mean (over the

methods listed in Tables 5.2 and 5.3) of the final posterior mean estimates. A weighted mean with unit weights
except one half on the Γ = 0.2In and Γ = 0.1In methods also gave similar results, though this is not shown explicitly.

block-size T = 300 block-size T = 9900
Γ = In (1.2669,0.0320) (0.8667,0.7190)

Γ = 0.2In (0.2939,0.0018) (0.1571,0.0243)
Γ = 0.1In (0.1739,0.0007) (0.0890,0.0092)

overdamped (1.2298,0.0319) (0.8687,0.8662)
irreversible overdamped (0.5642,0.0077) (0.3835,0.1614)

Table 5.2: ( 1
n

∑n
k=1 σ

2
k,approx,

1
n

∑n
k=1(σ2

k,approx − 1
n

∑n
l=1 σ

2
l,approx)2) - Empirical asymptotic variances, mean and

variance over observable entries, where full gradients have been used.

block-size T = 300 block-size T = 9900
Γ = In (1.9575,0.0744) (1.3338,1.6650)

Γ = 0.2In (0.4600,0.0042) (0.2781,0.0784)
Γ = 0.1In (0.2646,0.0016) (0.1335,0.0208)

overdamped (1.9137,0.0791) (1.3065,1.9714)
irreversible overdamped (0.8764,0.0150) (0.5778,0.3266)

Table 5.3: The same as in Table 5.2, except for minibatch gradients

These figures demonstrate improvement of an order of magnitude in observed variances for Γ close to that resulting
from the gradient procedure over Γ = In. The improvement is also seen when compared to overdamped Langevin
dynamics with and without irrreversible perturbation.

6 Proofs

Proof. (of Proposition 3.1) Take an approximating sequence (fk)k∈N such that fk ∈ C∞c (R2n), fk → f in L2(π̃).
Fix h ∈ C∞c (R2n) and for the differential operator L∗ = −p>M−1∇q +∇U(q)>∇p − p>M−1Γ∇p +∇>p Γ∇p consider
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Figure 5.5: Euclidean distances to a combined posterior mean estimate over time. Left: full gradient. Right:
minibatch gradient.

the expression ∣∣∣∣ ∫ L∗hφdπ̃ − ∫ hfdπ̃

∣∣∣∣ ≤
∣∣∣∣∣
∫
L∗hφdπ̃ −

∫
L∗h

∫ T

1
T

Pt(f)dtdπ̃

∣∣∣∣∣
+

∣∣∣∣∫ h(f − P 1
T

(f) + PT (f))dπ̃

∣∣∣∣
+

∣∣∣∣∣
∫
L∗h

∫ T

1
T

Pt(f − fk)dtdπ̃

∣∣∣∣∣
+

∣∣∣∣∫ h(P 1
T

(f − fk)− PT (f − fk))dπ̃

∣∣∣∣
+

∣∣∣∣∣
∫
L∗h

∫ T

1
T

Pt(fk)dtdπ̃ +

∫
h(P 1

T
(fk)− PT (fk))dπ̃

∣∣∣∣∣. (6.1)

For any ε > 0, T can be chosen so that the first two terms on the right are each bounded by ε
4 due to (2.13), the

strongly continuous property of Pt and (2.14); subsequently k can be chosen so that the third and fourth terms are
each bounded by ε

4 . For the remaining term, using Assumption 1 for Theorem 5.13 in the first chapter of [49] and
Hörmander’s theorem [43],

∂tPt(fk) = LPt(fk) (6.2)

holds classically on (0, T )× R2n and
Pt(fk) ∈ C∞((0, T )× R2n). (6.3)

By Fubini and equation (6.2), ∫
L∗h

∫ T

1
T

Pt(fk)dtdπ̃ =

∫ T

1
T

∫
L∗hPt(fk)dπ̃dt

=

∫ T

1
T

∫
hLPt(fk)dπ̃dt

=

∫ T

1
T

∫
h∂tPt(fk)dπ̃dt,
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so that since (6.3) holds and therefore Pt(fk) is bounded on ( 1
T , T )×BR for any k ∈ N, T,R > 0, BR denoting the

Euclidean ball in R2n of radius R, Fubini’s theorem can be applied again to obtain∫
L∗h

∫ T

1
T

Pt(fk)dtdπ̃ =

∫
h(PT (fk)− P 1

T
(fk))dπ̃,

which is that the last term in (6.1) is equal to zero.

Before giving the proof for the main formula of the directional derivative of the asymptotic variance, a truncation
function is introduced and the membership of ∇pφ in L2(π̃) is shown. The truncation function is constructed to
satisfy a property (6.5) related to the generator (2.3); it will be used to robustly integrate by parts when establishing
both ∇pφ ∈ L2(π̃) and the main formula.

Firstly, let ϕ : R→ R, ϕk : R→ R be the standard mollifiers together with νk : R→ R be given by

ϕ(x) :=

e
1

x2−1

(∫ 1

−1
e

1
y2−1 dy

)−1

if − 1 < x ≤ 1

0 otherwise,

ϕk(x) :=
1

k
ϕ

(
x

k

)
, (6.4)

νk := ϕk ∗ 1(−∞,k2] ≤ 1

for k > 0.

Lemma 6.1. Under Assumption 1 and for k > 0, let ηk : R2n → R be the smooth functions given by

ηk(ζ) = νk(ln(1 + |ζ|2))

for all ζ ∈ R2n, then the following properties hold:

1. ηk is compactly supported;

2. ηk converges to 1 pointwise as k →∞;

3. for some constant C > 0 independent of k,

|Lηk|+ (1 + |ζ|)|∇ηk| ≤
C

k
. (6.5)

Proof. The first two properties easily hold by definition of ηk. For the third property, denoting

Lηk = ν′k(ln(1 + |ζ|2))L ln(1 + |ζ|2)

+ ν′′k (ln(1 + |ζ|2))(∇p ln(1 + |ζ|2))>Γ∇p ln(1 + |ζ|2).

It can be seen that ν′k and ν′′k are estimated by terms at most of order k−1; to see this, for all x ∈ R,

νk(x) =

∫ k2

−∞
ϕk(x− y)dy =

∫ ∞
x−k2

ϕk(z)dz,

so that
0 ≥ ν′k(x) = −ϕk(x− k2) ≥ −k−1 maxϕ

and
|ν′′k (x)| =

∣∣ϕ′k(x− k2)
∣∣ ≤ k−2 maxϕ′.
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Therefore there exists a constant C̄ > 0 such that

|Lηk| ≤ C̄
(
k−1

∣∣∣L ln(1 + |ζ|2)
∣∣∣+ k−2

∣∣∣(∇ ln(1 + |ζ|2))>Γ∇ ln(1 + |ζ|2)
∣∣∣). (6.6)

Moreover, the expression

L ln(1 + |ζ|2) =
L|ζ|2

1 + |ζ|2
− 4p>Γp

(1 + |ζ|2)2

=
p>M−1q −∇U(q)>p− p>M−1Γp+ TrΓ

1 + |ζ|2
− 4p>Γp

(1 + |ζ|2)2

is bounded from above and below by (2.2) and also the second term in (6.6) is bounded above by a direct calculation.
Similarly, (1 + |ζ|)|∇ηk| can be bounded as required by a direct calculation.

Proof. (of Lemma 3.2) Consider the functions (fk,R)k,R∈N given by

fk,R := ϕ 1
k
∗ (f1BR

) (6.7)

for ϕ 1
k

given in (6.4), BR the radius R ball in R2n centered at 0 and 1BR
its indicator function. For any k,R ∈ N,

fk,R ∈ C∞c ; moreover
fki,Ri → f (6.8)

in L2(π̃) as i → ∞ for any non-decreasing sequences (ki)i∈N, (Ri)i∈N such that ki, Ri → ∞. By Theorem 2.3 and
Proposition 3.1 together with Hörmander’s theorem, there exists φk,R ∈ C∞ ∩ L2

0(π̃) such that

−Lφk,R = fk,R − π̃(fk,R)

for each k,R ∈ N. For r ∈ N, ηr from Lemma 6.1 and the smallest eigenvalue λm of Γ,

λm

∫
ηr|∇pφk,R|2dπ̃ ≤

∫
ηr∇pφ>k,RΓ∇pφk,Rdπ̃

= −
∫
φk,R∇pη>r Γ∇pφk,Rdπ̃

−
∫
ηrφk,R(−M−1p+∇p)>(Γ∇pφk,R)dπ̃. (6.9)

The first term on the right can be written as

−
∫
φk,R∇pη>r Γ∇pφk,Rdπ̃ =

∫
φk,R(−M−1p+∇p)>Γ(∇pηrφk,R)dπ̃

=

∫
φ2
k,R(−M−1p+∇p)>Γ∇pηrdπ̃

+

∫
φk,R∇pη>r Γ∇pφk,Rdπ̃,

so that

−
∫
φk,R∇pη>r Γ∇pφk,Rdπ̃ =

1

2

∫
φ2
k,R(−M−1p+∇p)>Γ∇pηrdπ̃

=
1

2

∫
φ2
k,RLηrdπ̃

+
1

2

∫
φ2
k,R(−p>M−1∇q +∇U(q)>∇p)ηrdπ̃

≤ C

r
‖φk,R‖2L2(π̃) (6.10)
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for some generic constant C > 0, where the last line follows by (6.5). The second term on the right of (6.9) is

−
∫
ηrφk,R(−M−1p+∇p)>(Γ∇pφk,R)dπ̃

= −
∫
ηrφk,RLφk,Rdπ̃ +

∫
ηrφk,R(p>M−1∇q −∇U(q)>∇p)φk,Rdπ̃, (6.11)

where the last term integrates by parts to obtain∫
ηrφk,R(p>M−1∇q −∇U(q)>∇p)φk,Rdπ̃

= −1

2

∫
(p>M−1∇q −∇U(q)>∇p)ηrφ2

k,Rdπ̃,

so that plugging back into (6.11) and using again (6.5),

−
∫
ηrφk,R(−M−1p+∇p)>(Γ∇pφk,R)dπ̃ ≤ ‖φk,R‖L2(π̃)‖fk,R − π̃(fk,R)‖L2(π̃)

+
C

r
‖φk,R‖2L2(π̃).

Plugging into (6.9), together with (6.10),

λm

∫
ηr|∇pφk,R|2dπ̃ ≤ ‖φk,R‖L2(π̃)‖fk,R − π̃(fk,R)‖L2(π̃) +

C

r
‖φk,R‖2L2(π̃),

that is, ∇pφk,R ∈ L2(π̃). Since L and its parts are linear, the same arguments as above give

λm

∫
|∇pφk,R −∇pφk′,R′ |2dπ̃

≤ ‖φk,R − φk′,R′‖L2(π̃)‖fk,R − fk′,R′ − π̃(fk,R) + π̃(fk′,R′)‖L2(π̃) (6.12)

for any k′, R′ ∈ N. Moreover,

|fk,R| =
∣∣∣ϕ 1

k
∗ (f1BR

)
∣∣∣ ≤ C1BR+1

ϕ 1
k
∗ Kl (6.13)

for a generic constant C > 0 independent of k,R and since ϕ 1
k
∗ Kl → Kl uniformly on compact subsets, for any

fixed R ∈ N, there exists KR ∈ N such that k ≥ KR implies

|fk,R| ≤ 2CKl. (6.14)

Choosing now the sequences Ri = i, ki = i+ maxj≤iKj for all i ∈ N. By Theorems 2.1 and 2.3, i, j ∈ N,

‖φki,Ri
− φkj ,Rj

‖L2(π̃) ≤ C
∥∥∥∥fki,Ri − fkj ,Rj − π̃(fki,Ri) + π̃(fkj ,Rj )

Kl

∥∥∥∥
L∞

,

where C > 0 is again independent of k,R. Using the definition (6.7), the terms
∣∣∣ π̃(fk,R)
Kl

∣∣∣ are bounded uniformly in

k and R, which, together with (6.14), implies ‖φki,Ri
− φkj ,Rj

‖L2(π̃) is bounded uniformly in i, j, so that inserting
into (6.12) gives

λm

∫ ∣∣∇pφki,Ri
−∇pφkj ,Rj

∣∣2dπ̃ ≤ C‖fki,Ri
− fkj ,Rj

− π̃(fki,Ri
) + π̃(fkj ,Rj

)‖L2(π̃).

Together with (6.8), ∇pφki,Ri is a Cauchy sequence, with limit denoted as g ∈ L2(π̃), so that for any h ∈ C∞c ,∣∣∣∣∫ gh+

∫
φ∇ph

∣∣∣∣ ≤ ∣∣∣∣∫ gh−
∫
∇pφki,Rih

∣∣∣∣+

∣∣∣∣∫ φ∇ph−
∫
φki,Ri∇ph

∣∣∣∣,
hence

∇pφki,Ri → g = ∇pφ ∈ L2(π̃). (6.15)
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Some additional preliminaries are presented here for the proof of Theorem 3.4. For small ε ∈ R and some direction
δΓ ∈ Rn×n in the space of smooth friction matrices such that Γ + εδΓ ∈ Sn++, let Lε be the infinitesimal generator
of (1.1) with the perturbed friction matrix Γ + εδΓ in place of Γ, given formally by the differential operator

−Lε = −p>M−1∇q +∇U(q)>∇p + p>M−1(Γ + εδΓ)∇p −∇>p (Γ + εδΓ)∇p,

where the notation −εS will be used for the perturbation on L, that is,

−S = p>M−1δΓ∇p −∇>p δΓ∇p.

The formal L2(π̃)-adjoint of Lε is denoted

−L∗ε = p>M−1∇q −∇U(q)>∇p + p>M−1(Γ + εδΓ)∇p −∇>p (Γ + εδΓ)∇p

just as for L∗.

Proof. (of Theorem 3.4) For ε ≤ ε′, by Theorem 2.3 there exists a solution φ+ δφε ∈ L2
0(π̃) to the Poisson equation

with the perturbed generator
−Lε(φ+ δφε) = f − π(f).

By Theorem 2.4, the directional derivative of σ2(Γ) in the direction δΓ : Rn → Rn×n is

1

2
dσ2.δΓ = lim

ε→0

1

ε

∫
δφεfdπ̃. (6.16)

Let (fk,R)k,R∈N be given by (6.7). Since inequality (6.13) holds by definition and ϕ 1
k
∗ g → g uniformly on compact

subsets for any continuous g, there exists for each R ∈ N a constant K̂R ∈ N such that k ≥ K̂R implies (6.14) for
C independent of k,R and also

|fk,R − f | ≤
1

R
on BR−1.

The sequences Ri = i, ki = i+ maxj≤i K̂j for i ∈ N then give the sequence (fi)i∈N, fi := fki,Ri
∈ C∞c for all i ∈ N,

that satisfies ∥∥∥∥fi − fK2l

∥∥∥∥
L∞
→ 0 as i→∞,

which implies
‖fi − f‖L2(π̃) → 0 (6.17)

by (2.10) or by definition. Moreover, π(fi) → 0 by (6.14) and dominated convergence. Therefore the solutions
φi, φi,ε ∈ L2

0(π̃) to the Poisson equations

−Lφi = fi − π(fi), −Lεφi,ε = fi − π(fi)

given by Theorem 2.3 satisfy

‖φi − φ‖L2(π̃) + ‖φi,ε − (φ+ δφε)‖L2(π̃) → 0 as i→∞ (6.18)

by (2.12) and Theorem 2.1. Since fi ∈ C∞, Hörmander’s theorem together with Proposition 3.1 say that φi, φi,ε ∈
C∞ and so φi, φi,ε solves −Lφi = −Lεφi,ε = fi − π(fi) classically. Furthermore, in the same way as in the proof of
Lemma 3.2 to obtain (6.15), it holds that

‖∇pφi −∇pφ‖L2(π̃) + ‖∇pφi,ε −∇p(φ+ δφε)‖L2(π̃) → 0 as i→∞, (6.19)

where ∇pφi,∇pφi,ε ∈ L2(π̃) by Lemma 3.2 itself. The term under the limit in (6.16) is now approximated with a
term involving fi and the truncation functions ηk from Lemma 6.1. Working now with the approximating integral
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and using Lemma 3.3 together with the obvious extension on the notation from (1.7),∫
ηk(φi,ε− φi)fidπ̃ = −

∫
ηk(φi,ε− φi)L∗ε φ̃i,εdπ̃

= −
∫

(Lεηk(φi,ε− φi) + 2∇pηk(Γ + εδΓ)∇p(φi,ε− φi)

− εηkSφi)φ̃i,εdπ̃

= −
∫

(Lεηk(φi,ε− φi)+ 2∇pηk(Γ + εδΓ)∇p(φi,ε− φi))φ̃i,εdπ̃

−
∫
ε(ηk∇pφ>i δΓ∇pφ̃i,ε + φ̃i,ε∇pφ>i δΓ∇pηk)dπ̃. (6.20)

By Lemma 6.1 and 3.2, the terms involving gradients of ηk converge to zero as k →∞, so that taking k →∞, then
i→∞, ∫

δφεfdπ̃ = −
∫
ε∇pφ>δΓ∇p(φ̃+ δφ̃ε)dπ̃

holds, where (6.17), (6.18) and (6.19) have been used. Plugging into (6.16), the directional derivative becomes

1

2
dσ2.δΓ = − lim

ε→0

∫
∇pφ>δΓ∇p(φ̃+ δφ̃ε)dπ̃. (6.21)

From here, for any ε > 0, the unwanted term under the limit can be controlled by approximating again with a
truncation and fi, i ∈ N,

λm

∫
ηk

∣∣∣∇p(φ̃i,ε − φ̃i)∣∣∣2dπ̃
≤
∫
ηk∇p(φ̃i,ε − φ̃i)>(Γ + εδΓ)∇p(φ̃i,ε − φ̃i)dπ̃

= −
∫

(φ̃i,ε − φ̃i)∇pη>k (Γ + εδΓ)∇p(φ̃i,ε − φ̃i)dπ̃

−
∫
ηk(φ̃i,ε − φ̃i)(−M−1p+∇p)>((Γ + εδΓ)∇p(φ̃i,ε − φ̃i)dπ̃, (6.22)

where
λm = inf

0<ε≤ε′
λεm

and λεm is the smallest eigenvalue of Γ + εδΓ. The first term on the right hand side is negligible as k →∞ because
of Lemmata 6.1 and 3.2. The remaining term is

−
∫
ηk(φ̃i,ε − φ̃i)(−M−1p+∇p)>((Γ + εδΓ)∇p(φ̃i,ε − φ̃i)dπ̃

= −
∫
ηk(φ̃i,ε − φ̃i)L∗ε (φ̃i,ε − φ̃i)dπ̃

−
∫
ηk(φ̃i,ε − φ̃i)(p>M−1∇p −∇U>∇p)(φ̃i,ε − φ̃i)dπ̃, (6.23)

where the last term, after integrating by parts, gives∫
ηk(φ̃i,ε − φ̃i)(p>M−1∇p −∇U>∇p)(φ̃i,ε − φ̃i)dπ̃

= −1

2

∫
(p>M−1∇q −∇U>∇p)ηk(φ̃i,ε − φ̃i)2dπ̃, (6.24)
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which is negligible as k → ∞ again due to Lemma 6.1 and (2.2). On the other hand, the first term on the right
hand side of (6.23) is

−
∫
ηk(φ̃i,ε − φ̃i)L∗ε (φ̃i,ε − φ̃i)dπ̃ = ε

∫
ηk(φ̃i,ε − φ̃i)(M−1p−∇p)>δΓ∇pφ̃idπ̃

= ε

∫
∇pηk(φ̃i,ε − φ̃i)>δΓ∇pφ̃idπ̃

+ ε

∫
ηk∇p(φ̃i,ε − φ̃i)>δΓ∇pφ̃idπ̃, (6.25)

where again the term involving∇pηk is negligible as k →∞, so that putting together (6.22), (6.23), (6.24) and (6.25),
then taking k →∞ and i→∞ with (6.19) gives

λm

∫ ∣∣∣∇pδφ̃ε∣∣∣2dπ̃ ≤ ε∫ ∇pδφ̃>ε δΓ∇pφ̃dπ̃
≤ ελM

ε′

∫ (∣∣∣∇pδφ̃ε∣∣∣2 +
∣∣∣∇pφ̃∣∣∣2)dπ̃,

where λM = inf0<ε≤ε′ λ
ε
M , λεM is the largest eigenvalue of Γ + εδΓ and δΓ = Γ+ε′δΓ−Γ

ε′ has been used. Therefore∫ ∣∣∣∇pδφ̃ε∣∣∣2dπ̃ ≤ ελM
ε′λm − ελM

∫ ∣∣∣∇pφ̃∣∣∣2dπ̃
holds for small enough ε and putting into (6.21) concludes the proof.

For the proof of Proposition 4.9, some notation is introduced. For k̃ ∈ N, let the tridiagonal matrix Mk̃ ∈ Rk̃+1×k̃+1

be given by its elements

(Mk̃)i,j =


i if i+ 1 = j,

(i− 1)γ if i = j,

i− k̃ − 2 if i− 1 = j,

0 otherwise

(6.26)

for indices 1 ≤ i, j ≤ k̃ + 1.

Lemma 6.2. Let m ∈ N. Any tridiagonal matrix M̃ ∈ Rm×m of the form

(M̃)i,j =


bi if i+ 1 = j,

b′iγ if i = j,

b′′i if i− 1 = j,

0 otherwise

for constants bi, b
′
i, b
′′
i ∈ R, has an order γ determinant as γ → 0 if m is odd and a determinant that is bounded

away from zero as γ → 0 if m is even.

Lemma 6.2 is straightforwardly proved by repeatedly taking Laplace expansions. An explicit proof is not given
here.

Proof. (of Proposition 4.9) Only a standard Gaussian and M = 1 is considered, the arguments for the general
centered Gaussian case are the same. First consider the observable

f(q) = qk (6.27)
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for some odd k ∈ N. Take the polynomial ansatz

φ(q, p) =

k∑
i,j=0

ai,jq
ipj (6.28)

for ai,j ∈ R and Γ = γ > 0. It will be shown that arbitrarily small asymptotic variance is achieved in the γ → 0
limit. Note that only pairs (i, j) with odd i and even j make nonzero contributions to the asymptotic variance.
Applying −L to the ansatz,

−Lφ =

k∑
i,j=0

−iai,jqi−1pj+1 + jai,jq
i+1pj−1 + γjai,jq

ipj − γj(j − 1)ai,jq
ipj−2

=
∑
i,j=0

(−(i+ 1)ai+1,j−1 + (j + 1)ai−1,j+1 + γjai,j

− γ(j + 2)(j + 1)ai,j+2)qipj .

where
ai,j = 0 ∀i, j < 0 and ∀i, j > k. (6.29)

Comparing coefficients in (1.5),

−(i+ 1)ai+1,j−1 + (j + 1)ai−1,j+1 + γjai,j − γ(j + 2)(j + 1)ai,j+2 = 0 (6.30)

for all (i, j) 6= (k, 0). It holds by strong induction (in j′) that

ai′+j′,k+1−j′ = 0 ∀i′, j′ ≥ 0 (6.31)

because of the following. The base case j′ = 0 follows by (6.29), the induction step follows by taking (i, j) =
(i′ + j′ − 1, k + 2 − j′) for i′ ≥ 0 in (6.30) and again using (6.29) where necessary. Comparing coefficients in the
Poisson equation (1.5) for (i, j) = (k, 0) and using (6.29), (6.31) yields4

ak−1,1 = 1. (6.32)

Combining (6.32) with setting (i, j) = (j′ − 1, k + 1− j′) for j′ = 1, . . . , k in (6.30), the entries aj′,k−j′ satisfy the
linear system

Mk(ak,0, ak−1,1, . . . , a0,k)> = (1, 0, . . . , 0)>, (6.33)

where Mk ∈ Rk+1×k+1 is the tridiagonal matrix given in (6.26). In order to find the order in γ as γ → 0 of
the elements of (ak,0, . . . , a0,k)> appearing in (6.33), it suffices to find the order of the entries in the leftmost
column of M−1

k . For this, let Ci ∈ R be the ith minor appearing in the top row of the cofactor matrix of Mk.
On the corresponding submatrix, repeatedly taking the Laplace expansion on the leftmost column until only the
determinant of a (k + 1 − i)-by-(k + 1 − i) square matrix from the bottom right corner of Mk remains to be
calculated, then using Lemma 6.2 for this (k + 1 − i)-by-(k + 1 − i) matrix gives that Ci is of order γ as γ → 0
for odd i. Furthermore, the determinant of Mk is bounded away from zero as γ → 0 by Lemma 6.2. Therefore the
elements of (ak,0, . . . , a0,k) in the left hand side of (6.33) with an odd index, that is ak−j,j for even j, have order
γ and at most order 1 otherwise as γ → 0. These elements with odd indices are exactly those from the vector
(ak,0, . . . , a0,k)> that make a contribution to the asymptotic variance. The ‘next’ set of contributions come from
the vector (ak−2,0, ak−3,1 . . . , a0,k−2). Using again (6.29) and (6.30), the vector satisfies

Mk−2(ak−2,0, ak−3,1, . . . , a0,k−2)> = vk−2,

for some vector vk−2 (from the last term on the left hand side of (6.30)) of order γ as γ → 0 and since the
determinant of Mk−2 is of order 1 (by Lemma 6.2), the contributions here to the asymptotic variance are again of

4It is illustrative to imagine a grid of coefficients and the relations (6.30) and (6.32) as L-shaped chains on the grid, where (6.31)
and (6.29) leave only a triangular area of nonzero coefficients.
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order γ. Continuing for (ak−2j,0, ak−2j−1,1 . . . , a0,k−2j)
>, j ∈ N, it follows that all contributions are of order γ as

γ → 0. The resulting coefficients indeed make up a solution φ to the Poisson equation because the matrices Mk are
invertible and because the coefficients ai,j for even i + j are equal to zero from repeating the above procedure for
the coefficients associated to Mk−1, Mk−3 and so on.
For the general case of (4.24), since L is a linear differential operator and the contributions to the value of

∫
φ(f −

π(f))dπ̃ come from exactly the same (odd i, even j) ai,j coefficients from the corresponding solution φ to each
summand in (4.24), the proof concludes.

Proof. (of Proposition 4.10) Take the polynomial ansatz

φ(q, p) =

4∑
i,j=0

ai,jq
ipj (6.34)

for ai,j ∈ R, where ai,j not appearing in the sum are taken to be zero in the following. Again, only the standard
Gaussian is considered, it turns out the arguments follow similarly otherwise. Comparing coefficients in (1.5) and
using the same strong induction argument as in the proof of Proposition 4.9 leads to (6.30) for all (i, j) 6= (4, 0), (0, 0)
and equation (6.31). Taking (i, j) = (j′ − 1, 5− j′) for 1 ≤ j′ ≤ 4 in (6.30) and comparing the q4 coefficients in the
Poisson equation, it holds that

M4(a4,0, a3,1, a2,2, a1,3, a0,4)> = (1, 0, . . . , 0)> (6.35)

and taking (i, j) = (j′ − 1, 3− j′) for j′ ≥ 1 in (6.30) yields

M2(a2,0, a1,1, a0,2)> = γ(2a2,2, 6a1,3, 12a0,4)>. (6.36)

Equations (6.35), (6.36) can be solved explicitly and the asymptotic variance is a weighted sum of the result-
ing coefficients. Those in (6.34) that make contributions are a4,0, a2,2, a2,0, which gives the asymptotic variance
12(21γ4+55γ2+27)

γ(3γ2+4) that goes to infinity as γ → 0 or γ →∞. Comparing constant terms in the Poisson equation yields

a0,2 =
1

2Γ

∫
q4 e

q2

2

√
2π
dq =

3

2Γ
,

which turns out to be satisfied by the solution for a0,2, so that (6.34) is indeed a solution; note that the coefficients
associated to M3 and M1 are zero by a similar procedure as above.

7 Discussion

7.1 Relation to previous methodologies

The infinite time integral (1.9) has been used for the calculation of transport coefficients in molecular dynamics
[52, 65] and the derivative of the expectation appearing in (1.9) with respect to initial conditions is a problem
considered when calculating the ‘greeks’ in mathematical finance [33]. On the topic of the latter and in contrast to
[33], there is previous work dealing with cases of degenerate noise in the system, but the formulae derived were done
so under different motivations and do not seem to improve upon (1.10) in our situation; some of these references
are given in Remark 5.2.
Taking Γ→∞ together with a time rescaling, the dynamics (1.1) become the overdamped Langevin equation [66].
An analogous result holds [46] when Γ = Γ(q) is position dependent, where a preconditioner for the corresponding
overdamped dynamics appears in terms of Γ−1; see Section 7.3 for a consideration of our method in the position
dependent friction case. On the other hand, the Hessian of U makes a good preconditioner in the overdamped
dynamics because of the Brascamp-Lieb inequality, see Remark 1 in [1].
On the application of underdamped Langevin dynamics with (variance reduced) stochastic gradients alongside the
related Hamiltonian Monte Carlo method, [85] presents a comparison with convergence rates for the latter. In [17],
convergence guarantees are provided for variance reduced gradients in the overdamped case and the control variate
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stochastic gradients in the underdamped case, along with numerical comparisons in low dimensional, tall dataset
regimes. Furthermore, the underdamped dynamics with single, randomly selected component gradient update in
place of the full gradient is considered in [22].
Variance reduction by modifying the observable instead of changing the dynamics has been considered for example
in [3, 5, 77]. The methods there are incompatible with the framework in the present work due to the improved
observable being unknown before the simulation of the Markov chain. Although useful, their applicability are
limited in large n cases due to storage requirements[3], not to mention either escalating computational cost for
improvements in the observable or requirement of a priori knowledge[77].

7.2 The nonconvex case

In the case where U is nonconvex, the Monte Carlo procedure in Section 5.1.3 may continue to be used as presented,
however the first variation process could easily stray from the case of exponential decay as in Theorem 3.5. Transi-
tions from one metastable state to another cause the tangent process to increase in magnitude. In a one dimension

double well potential U(q) = q4

4 − q
2 + q

2 , linear observable f(q) = q case, these transitions occur frequently enough
during the gradient procedure in Γ that Dq blows up in simulation. Even in cases for which the metastabilities are
strong, so that transitions occur less frequently, simulations show that Γ dives to zero in periods where no transi-
tions are occuring (as if the case of Corollary 4.8), but increase dramatically in value once a transition does occur,
causing the trajectory in Γ to decay over time but occasionally jumping in value, so that there is no convergence
for Γ. On the other hand, the Galerkin method presented in Appendix B tends to give good convergence for Γ in
such cases.

7.3 Position-dependent friction

It is possible to adapt the formula (3.2) to the case of position-dependent gradient direction in Γ given a Feynman-
Kac representation formula and the corresponding existence result, which will be the aim of future work. The
gradient direction is the same as (1.8) with the change that the integral is replaced by the corresponding marginal
integral in p. Ideas using such a formula need to take into account that the first variation process retains a
non-vanishing stochastic integral with respect to Brownian motion, so that the truncation in calculating the corre-
sponding infinite time integral in Section 5.1.3 is not as well justified, or rather, does not happen in the execution
of Algorithm 2 due to (5.11) not being satisfied.

7.4 Metropolisation

Throughout Section 5, the implementation has not involved accept-reject steps. Metropolisation of discretisations of
the underdamped Langevin dynamics was given in [45], see also Section 2.2.3.2 in [53] and [58, 74]. The systematic
discretisation error is removed with the inclusion of this step but the momentum is reversed upon rejection (to
avoid high rejection rates [74]), which raises the question of whether friction matrices arising from Algorithm 1
improve the Metropolised situation where dynamics no longer imitate those in the continuous-time. For example
the intuition in the Gaussian target measure, linear observable case discussed in Section 4.2 no longer applies.

7.5 Conclusion

We have presented the central limit theorem for the underdamped Langevin dynamics and provided a formula for
the directional derivative of the corresponding asymptotic variance with respect to a friction matrix Γ. A number
of methods for approximating the gradient direction in Γ have been discussed together with numerical results giving
improved observed variances. Some cases where an improved friction matrix can be explicitly found have been given
to guide the expectation of an optimal Γ. In particular, in cases where the observable is linear and the potential is
close to quadratic, which is the case when finding the posterior mean in Bayesian inference with Gaussian priors,
the optimal friction is expected to be close to zero (due to Corollary 4.8). This is consistent with the numerical
conclusion from the proposed Algorithm 2. Moreover, it is shown that the improvement in variance is retained
when using minibatch stochastic gradients in a case of Bayesian inference.
We mention that the gradient procedure using (1.6) and (1.10) can be used to guide Γ in arbitrarily high dimension
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by extrapolation; that is, given a high dimensional problem of interest, the gradient procedure can be used on
similar, intermediate dimensional problems in order to obtain a friction matrix that can be extrapolated to the
original problem. In particular, for the Bayesian inference problem as formulated in Section 5.2.3, the algorithm
recommends the choice of a small friction scalar, which can be expected to apply for datasets in an arbitrary number
of dimensions.
Future directions not mentioned above includes well-posedness of the optimisation in Γ, extension to higher-order
Langevin samplers methods as in [16, 59] and gradient formulae in the discrete time case analogous to Theorem 3.4.

Acknowledgements

M.C. was funded under a EPSRC studentship. G.A.P. was partially supported by the EPSRC through grants
EP/P031587/1, EP/L024926/1, and EP/L020564/1. N.K. and G.A.P. were funded in part by JPMorgan Chase
& Co under a J.P. Morgan A.I. Research Awards 2019. Any views or opinions expressed herein are solely those
of the authors listed, and may differ from the views and opinions expressed by JPMorgan Chase & Co. or its
affiliates. This material is not a product of the Research Department of J.P. Morgan Securities LLC. This material
does not constitute a solicitation or offer in any jurisdiction. Part of this project was carried out as T.L. was a
visiting professor at Imperial College of London, with a visiting professorship grant from the Leverhulme Trust.
The Department of Mathematics at ICL and the Leverhulme Trust are warmly thanked for their support.

References

[1] H. AlRachid, L. Mones, and C. Ortner. Some remarks on preconditioning molecular dynamics. SMAI J.
Comput. Math., 4:57–80, 2018.

[2] C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Stat. Comput., 18(4):343–373, 2008.

[3] J. Baker, P. Fearnhead, E. B. Fox, and C. Nemeth. Control variates for stochastic gradient MCMC. Stat.
Comput., 29(3):599–615, 2019.

[4] R. Bardenet, A. Doucet, and C. Holmes. On Markov chain Monte Carlo methods for tall data. J. Mach. Learn.
Res., 18:Paper No. 47, 43, 2017.

[5] D. Belomestny, L. Iosipoi, E. Moulines, A. Naumov, and S. Samsonov. Variance reduction for Markov chains
with application to MCMC. Stat. Comput., 30(4):973–997, 2020.

[6] A. Beskos, G. Roberts, A. Stuart, and J. Voss. MCMC methods for diffusion bridges. Stoch. Dyn., 8(3):319–350,
2008.

[7] A. Beskos and A. Stuart. MCMC methods for sampling function space. In ICIAM 07—6th International
Congress on Industrial and Applied Mathematics, pages 337–364. Eur. Math. Soc., Zürich, 2009.
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[58] P. Monmarché. High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin
diffusion. Electron. J. Stat., 15(2):4117–4166, 2021.

[59] W. Mou, Y.-A. Ma, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. High-order Langevin diffusion yields
an accelerated MCMC algorithm. J. Mach. Learn. Res., 22:Paper No. 42, 41, 2021.

[60] R. Neal. Bayesian learning via stochastic dynamics. In S. Hanson, J. Cowan, and C. Giles, editors, Advances
in Neural Information Processing Systems, volume 5. Morgan-Kaufmann, 1993.

[61] R. M. Neal. Slice sampling. Ann. Statist., 31(3):705–767, 2003. With discussions and a rejoinder by the author.

[62] R. M. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo, Chapman &
Hall/CRC Handb. Mod. Stat. Methods, pages 113–162. CRC Press, Boca Raton, FL, 2011.

[63] C. Nemeth and P. Fearnhead. Stochastic Gradient Markov Chain Monte Carlo. J. Amer. Statist. Assoc.,
116(533):433–450, 2021.

[64] A. B. Owen. Statistically efficient thinning of a Markov chain sampler. J. Comput. Graph. Statist., 26(3):738–
744, 2017.

[65] G. A. Pavliotis. Asymptotic analysis of the Green-Kubo formula. IMA J. Appl. Math., 75(6):951–967, 2010.

[66] G. A. Pavliotis. Stochastic processes and applications, volume 60 of Texts in Applied Mathematics. Springer,
New York, 2014. Diffusion processes, the Fokker-Planck and Langevin equations.

[67] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathe-
matics and Mathematical Physics, 4(5):1–17, 1964.
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Appendix A Preliminaries

Theorem A.1. Let Assumption 1 hold. For any F0-measurable z0 : Ω→ R2n, there exists a unique almost surely
continuous in t solution (qt, pt) = zt : Ω→ R2n to (1.1) that is Ft-adapted and satisfies

E|zt|2 ≤ eκt(1 + E|z0|2) (A.1)

for a constant κ ∈ R and all t ≥ 0. Furthermore, for any z ∈ R2n, t ≥ 0, let pzt be the probability measure given by

pzt (A) = P(zzt ∈ A) (A.2)

for any Borel measurable A, where zzt denotes the solution to (1.1) starting at z0 = z, then pzt
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1. is a transition probability in the sense that

(a) (t, z) 7→ pzt (A) is Borel measurable on (0,∞)× R2n,

(b) the Chapman-Kolmogorov relation [34] holds and

2. admits a density denoted p(z, ·, t) : R2n → R with respect to the Lebesgue measure on R2n at every (t, z) ∈
(0,∞)× R2n such that p is a measurable function satisfying for every z ∈ R2n,

p(z, ·, ·) ∈ C∞(R2n × (0,∞)). (A.3)

Proof. Theorem 3.1.1 in [68] yields existence and uniqueness of the solution to (1.1) together with (A.1). Theorem
3.1 and 3.6 in Section 5 of [34] give that pzt (A) given by (A.2) is a probability kernel, that is, pzt (A) is Borel
measurable in z for fixed A, t, is a probability measure in A for fixed z, t and satisfies the Chapman-Kolmogorov
relation. For Borel measurability of (t, z) 7→ pzt (A) for fixed A, consider ẑzt given by

ẑzt (ω) =

{
zzt (ω) if ω : zz•(ω) ∈ C([0,∞)),

0 otherwise.
(A.4)

The process ẑzt is continuous in t and F-measurable in ω, therefore P(ẑzt ∈ A) = P(zzt ∈ A) is continuous in t hence
Borel measurable in (t, z). Finally, pzt admits a density at every (t, z) ∈ (0,∞) × R2n satisfying (A.3) due to Itô’s
rule and Hörmander’s theorem [43]; measurability with respect to the starting point z and therefore jointly in all of
the arguments follows by the strong Feller property given by Theorem 4.2 in [23], because p(t, ·, ζ) is the pointwise
limit of the continuous functions (

∫
ηk(ζ− ζ ′)p(t, ·, ζ ′)dζ ′)k>0, where ηk denotes the standard scaled mollifiers.

For all t ≥ 0, all z ∈ R2n and all f : R2n → R integrable under the law L((zt)t≥0|z0 = z) of zt starting at z, let

Pt(f) : z 7→ E(f(zzt )) = E(f(zt)|z0 = z). (A.5)

The family (Pt)t≥0 forms a strongly continuous (Proposition A.2) Markov semigroup on L2(π̃) with unit operator
norm. Denote by L the infinitesimal generator associated to this semigroup, given by

Lu = lim
t→0

Pt(u)− u
t

(A.6)

for all functions u ∈ D(L) ⊂ L2(π̃), where the domain D(L) consists of the functions for which the above limit in
L2(π̃) exists.

Proposition A.2. The family (Pt)t≥0 is strongly continuous in L2(π̃).

Proof. Fix ε > 0. For any f ∈ L2(π̃), there exists g ∈ C∞c such that ‖f − g‖L2(π̃) ≤ ε
3 . Writing

‖Ptf − f‖L2(π̃) ≤ ‖Ptf − Ptg‖L2(π̃) + ‖f − g‖L2(π̃) + ‖Ptg − g‖L2(π̃),

the right hand side is bounded by ε after Jensen’s inequality, invariance of π̃ and Itô’s rule together with a small
enough t.

Appendix B Solving the Poisson equation with a Galerkin method

Throughout this appendix, M = In is assumed. In low dimensions, it is feasible to approximate ∇pφ and a change
in Γ using Hermite polynomials. This approach gives an approximation in a finite subspace of L2(π̃) at the level
of φ, as opposed to estimates of ∇pφ at particular points in space as in the Monte Carlo approach in Section 5.
Specifically, the polynomials given by

Hl(z) =
(−1)l√
l!
e

z2

2
dl

dzl

(
e−

z2

2

)
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for l ∈ N and their products in the multidimensional case

Hl(p) =

n∏
k=1

Hlk
(pk), p = (p1, . . . , pn) ∈ Rn

for multiindices l = (l1, . . . , ln) ∈ Nn are considered in the weighted L2(ω) space, where ω(p) = e−
1
2
|p|2

(2π)−
n
2

. A property

of the Hermite polynomials that is repeatedly used here is that

∂zHl(z) =
√
lHl−1(z).

For the application of Hermite polynomials in solving the Poisson equation associated to Langevin dynamics (in the
case of scalar friction), we refer to [71]. See also Chapter 5 in [37] for Hermite polynomials in the multidimensional
setting. In the case of a non-quadratic potential U , the same polynomials are used here after a Gram-Schmidt
procedure in L2(π), which are denoted (Ĥl)l∈Nn , so that

Ĥl =
∑
|k|∞≤K

α
k
lHk,

where |k|∞ = max(k1, . . . , kn), K ∈ N, for some constants α
l
k ∈ R calculated numerically. Their products with Hl

are considered on L2(π̃). Similarly, Fourier approximations can be used in the case of an n-torus (in q).
The observable f ∈ L2

0(π) is approximated by the projection defined by

Πq
Kf :=

∑
|l|∞≤K

Ĥl

∫
fĤldπ =

∑
|k|∞,|l|∞≤K

Ĥlα
k
l

∫
fHkdπ. (B.1)

Since the generator has the form
L = ∇∗p · ∇q −∇∗q · ∇p − (∇∗p )>Γ∇p,

where
∇∗q = −∇q +∇U, ∇∗p = −∇p + p

are the respective formal L2(π̃)-adjoints of ∇q and ∇p, the negative of the generator in the Poisson equation applied
on functions of the form (B.1) is the (K + 1)2n-by-(K + 1)2n matrix given by

Lk,l,k̂,l̂ = 〈ĤkHl,−L(Ĥk̂Hl̂)〉π̃
= −〈Ĥk∇pHl,∇qĤk̂Hl̂〉π̃ + 〈∇qĤkHl, Ĥk̂∇pHl̂〉π̃ + 〈Ĥk∇pHl,ΓĤk̂∇pHl̂〉π̃

= −
∑
i

〈Ĥk, ∂qiĤk̂〉π(
√
liδ

l−ei
l̂

) +
∑
i

〈∂qiĤk, Ĥk̂〉π(

√
l̂iδ

l

l̂−ei
)

+
∑
i,j

δ
k

k̂
δ
l−ej
l̂−ei

√
lj l̂iΓi,j (B.2)

where δ denotes the Kronecker delta here, the dependences of Ĥk, Ĥk̂ and Hl, Hl̂ on q and p respectively have been

suppressed, 〈v, w〉 denotes
∑
i〈vi, wi〉 for v = (v1, . . . , vn), w = (w1, . . . , wn) and 〈·, ·〉 denotes the inner product on

L2(π̃). Note further that

〈∂qiĤk, Ĥk̂〉π =
∑

|l|∞,|l̂|∞≤K
α
l
k

√
li〈Hl−ei , Hl̂〉πα

l̂

k̂
,

so that since α
l
k are derived from the inner products in L2(π) between the original Hermite polynomials (Hl)l,

these inner products are the only values to be computed numerically other than those for the projection Πq
Kf of

42



the observable onto the finite dimensional subspace of L2(π̃) spanned by the first K + 1 Hermite polynomials given
by (B.1). Solving the Poisson equation then reduces to finding the coefficients φk,l ∈ R of

Π
(q,p)
K φ =

∑
|k|∞,|l|∞≤K

φk,lĤkHl

solving the linear system ∑
|k̂|∞,|l̂|∞≤K

Lk,l,k̂,l̂φk̂,l̂ = Π
(q,p)
K f =

{∑
|k̂|∞≤K

α
k̂
k

∫
fHk̂dπ if l = 0

0 otherwise,
(B.3)

where note Lk,l,0,0 = L0,0,k̂,l̂ = 0 so that only φk,l for (k, l) 6= (0, 0) are determined by (B.3) and φ0,0 = 0 is enforced
independently. Finally, the gradient direction in Γ is given by

(∆Γ)i,j =

∫ ∑
|k|∞,|l|∞≤K

φk,lĤk

√
liHl−ei

∑
|k̂|∞,|l̂|∞≤K

φk̂,l̂(−1)|l̂|Ĥk̂

√
l̂jHl̂−ejdπ̃

=
∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K
φk,lφk̂,l̂

√
li l̂j(−1)|l̂|δk

k̂
δ
l−ei
l̂−ej

=
∑

|k|∞,|l|∞≤K

φk,lφk,l−ei+ej

√
li(l − ei + ej)j(−1)|l| (B.4)

where
∣∣∣l̂∣∣∣ = l̂1 + · · ·+ l̂n and φk,l = 0 if there is some i such that ki > K or li > K. More robustly, the asymptotic

variance can be discretised first, followed by taking the gradient direction with respect to the approximate asymptotic
variance. Namely, (half of) the asymptotic variance

∫
∇pφ>Γ∇pφdπ̃ can be approximated by∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K
φk,lLk,l,k̂,l̂φk̂,l̂ (B.5)

(or simply the last term in (B.2) replacing Lk,l,k̂,l̂), so that the derivative with respect to the entries Γi,j can be

taken as follows. With abuse of notation, let L−1 ∈ R(K+1)2n−1×(K+1)2n−1 be the inverse of the matrix depending
on Γ given by (B.2) with the Lk,l,0,0 = L0,0,k̂,l̂ = 0 entries removed. Let also φ ∈ R(K+1)2n

be the vector made up

of the coefficients φk,l for k + l 6= 0 so that equation (B.3) can be rewritten as

φ = L−1((Π
(q,p)
K f)2, . . . , (Π

(q,p)
K f)(K+1)2n)>.

By (B.2), the derivative of Lk,l,k̂,l̂ with respect to the entry Γi,j is

∂Li,j
k,l,k̂,l̂

:= δ
k

k̂
δ
l−ej
l̂−ei

√
lj l̂i.

Let ∂Li,j ∈ R(K+1)2n−1×(K+1)2n−1 denote the matrix with entries ∂Li,j
k,l,k̂,l̂

except the ∂Li,jk,l,0,0 and ∂Li,j
0,0,k̂,l̂

entries

are deleted. The derivative of (B.5) with respect to the entry Γi,j is then

φ>∂Li,jφ+
∑

|k|∞,|l|∞,|k̂|∞,|l̂|∞≤K
2(∂φi,j)k,lLk,l,k̂,l̂φk̂,l̂, (B.6)

where ∂φi,j ∈ R(K+1)2n

is the vector given by

(∂φi,j)k :=

{
0 if k = 1

−(L−1∂Li,jφ)k−1 otherwise,

so that the gradient direction in Γ is given by the negative of (B.6).
It’s also possible to approximate φ using a finite difference in q, Hermite projection in p approach in the case when
the state space in q is the n-torus; we omit further descriptions but refer to [31] for this direction.
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Appendix C Approximation of ∆Γ using independent realisations

One can use the endpoints of a number of independent realisations of (5.2) to approximate the integral with respect
to π in (5.1) and, for each of those realisations, to use two additional sets of realisations of (5.2) and (5.4) to
approximate each of the expectations under the integral in (5.1).
Fix a starting point (q, p); the first of the expectations in (5.1) (and similarly for the second) can be approximated
at time s = i∆t with

1

K

K∑
k=1

∇f(qi(k))
>Dqi(k)

where K ∈ N, (qi(k), p
i
(k))i∈N denotes the solution to (5.2) with initial condition (q, p), noise ξi = ξi(k) for all i ∈ N

and where ξi(k) are independent as k = 1, . . . ,K, i varies and (Dqi(k), Dp
i
(k)) is the corresponding solution to (5.4).

Subsequently, introducing an additional population of independent realisations of (5.2) to draw from π after some
burn-in period, the change (5.1) in Γ can be approximated by

− 1

L

L∑
l=1

( B+T∑
i=B+1

∆t

K

K∑
k=1

∇f(qi(l,k))
>Dqi(l,k)

)>( B+T∑
i=B+1

∆t

K

K∑
k=1

∇f(q̃i(l,k))
>Dq̃i(l,k)

)
where B ∈ N is some burn-in number of iterations, T ∈ N is some a posteriori number of iterations depending on
whether the magnitude of the entries of DqB+T

(l,k) are smaller than some fixed value for all k, l; furthermore L ∈ N,

((qi(l,k), p
i
(l,k)))i∈N denotes the solution to (5.2) with initial condition say (0, 0), noise ξi = ξi(l,k) for all i ∈ N satisfying

ξi(l,k) = ξi(l,k′) ∀i < B, 1 ≤ k, k′ ≤ K

and are independent otherwise, ((q̃i(l,k), p̃
i
(l,k)))i≥B denotes the solution to (5.2) with ‘initial’ condition

(q̃B(l,k), p̃
B
(l,k)) = (qB(l,k),−p

B
(l,k))

for all 1 ≤ k ≤ K, 1 ≤ l ≤ L, independent noise ξi = ξ̃i(l,k) for i ≥ B independent also to (ξi(l,k))i∈N. The notation

(Dqi(l,k), Dp
i
(l,k)), (Dq̃i(l,k), Dp̃

i
(l,k)) represent the corresponding solutions to (5.4).
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