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of Pharaoh king of Egypt. So Pharaoh made him ruler over Egypt and all his palace.” 
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Abstract 

In this thesis, novel multi-fidelity modelling-based probabilistic optimisation methods are presented to 

address the computational challenge of stochastic design philosophies applied to complex aircraft 

composite structures. Novel multi-fidelity formulations developed in this thesis, blending High-Fidelity 

Model (HFM) and Low-Fidelity Model (LFM), are shown to significantly improve computational 

efficiency by making use of machine learning techniques, such as Artificial Neural Networks (ANN) 

and Non-linear Auto-Regressive Gaussian Process (NARGP). To further improve the computational 

efficiency compared to the conventional probabilistic optimisation methods, a multi-level optimisation 

approach and a new sampling strategy to collect training data points are incorporated into the multi-

fidelity formulations for the first time. In the developed optimisation methods, the HFM covers part of 

the design space whilst the LFM explores the whole design space to fill the lack of high-fidelity 

information. This improvement enables the multi-fidelity formulations to request a much smaller 

number of high-fidelity information causing considerable computational costs. Several engineering 

examples such as aircraft mono-stringer composite panels are used to demonstrate the accuracy and 

computational efficiency of the developed methods when used with different reliability and robustness 

analysis techniques, including Monte Carlo Simulation (MCS), the First-Order Reliability Method 

(FORM) and the Second-Order Reliability Method (SORM). The composite panels are subjected to 

mechanical and thermomechanical loads to show the broad range of potential applications. It is shown 

that the newly developed multi-fidelity probabilistic optimisation methods offer substantial 

computational time savings ranging from 50 % to 70 % and levels of error typically less than 1 % when 

compared with traditional probabilistic optimisation methods. Results demonstrate that the newly 

developed multi-fidelity probabilistic optimisation methods herein provide significant computational 

benefits and accurately predict the influence of uncertainties associated with design and manufacturing 

stages. As a result, the presented methods confidently carry out reliability-based and robust design 

optimisation of large-scale and complex aircraft composite structures. 
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1 Introduction 

Innovative and sustainable design technologies are associated with improvements in energy efficiency 

and reductions in carbon emission, due in part to the increased use of composite materials and the 

fundamental advantages that they offer, specifically their high strength and lightweight (1). Structures 

using these materials are widely employed in a vast range of infrastructure manufacturing industry, such 

as aircraft, renewable energy, naval architecture and automobile. However, traditional design 

approaches do not consider design uncertainties that every engineering system holds across the entire 

lifecycle. These uncertainties emanate from design, manufacturing, operation and ageing, which can 

deteriorate the performance quality of a structure. The design process without considering the 

uncertainties may also lead either to premature structural failure or a conservative design based on high 

safety factors. Hence, it is desirable to define a probability of success and sensitivity to variations, 

referred to as reliability and robustness, respectively. The probability in this context implies that the 

design breaks down to satisfy particular criteria, referred to as the probability of failure. Failure does 

not necessarily represent the structural collapse catastrophically, but it suggests that the structure is not 

able to offer the structural performance aimed. Reliability analysis estimates the probability of failure 

of each structural element. In contrast, robustness involves how stable the performance quality of the 

designed structure is regarding the variations in the manufacturing process or environmental condition. 

These variations associated with manufacturing and operation cause extra costs across the lifecycle, 

including unscheduled inspection, repair and maintenance (2). The assessment of estimating robustness 

is named robustness analysis (3). These reliability and robustness analyses provide many benefits to 

engineers at the early stage of the design process. Reliability analysis allows engineers to comprehend 

how different engineering parameters affect the reliability of their structure designed, as well as 

establish a design philosophy to improve its overall probability of success. Robustness analysis enables 

engineers to account for possible variations influencing the performance quality as well as obtain a 

more stable design without removing/minimising their sources (4). 

Even though reliability and robustness are significant for every structure, it is essentially important in 

the infrastructure manufacturing industry for the sake of improving energy efficiency by reducing the 

structural weight. This can tackle the inefficiencies of traditional design approaches caused by the use 
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of large safety factors that are introduced by international standards and specifications for each design 

field. These factors generally deliver a conservative and deterministic design to provide required safety 

levels. For instance, aircraft structures are required by the Federal Aviation Administration (FAA) to 

incorporate a safety factor of 1.5 for external loads on the structures whilst adding additional factors to 

escalate the level of safety concerning material properties, manufacturing effects, temperature effects, 

etc (5). 

Probabilistic design optimisation incorporates these reliability and robustness analyses into its 

optimisation process, and it considers the statistical characteristics caused by the uncertainties 

associated with design and manufacturing stages. Therefore, it enables the final design to deliver more 

reliable and robust engineering features to the industry where seeks ways to preserve a specified safety 

while achieving lightweight, fuel efficiency and net-zero emissions; an international goal (Net Zero by 

2050) announced by the International Energy Agency (IEA) (6). Such optimisation process 

accommodates different methods to carry out either reliability or robustness analysis depending on the 

objectives of optimisation. In general, Monte Carlo Simulation (MCS) is one of the typical statistical 

methods to estimate the reliability or robustness. The reliability can also be predicted by non-statistical 

methods, including the First-Order and Second-Order Reliability Methods, FORM and SORM, 

respectively (7). These two methods require the approximation of a limit state function using the first-

order and second-order Taylor series expansions. More details of these methods can be discovered in 

many books on reliability and robustness analyses (8,9).

Reliability and robustness analyses require a massive number of experimental tests on the structure to 

investigate the effect of design uncertainties. However, these experimental tests are impossible because 

of high cost, execution time and trained workforce requested. Numerical methods, particularly the Finite 

Element Method (FEM) for structural design, can be exploited to obtain as accurate solutions as 

experimental tests while not requesting those substantial resources. Even if the FEM can provide a 

certain level of reduction in time, the estimation of reliability and robustness at every single design 

point is still a challenging work due to its high computational cost for using the FEM simulations. Note 

that reliability and robustness analyses using MCS expects tens of thousands of the FEM simulations 

to reach the converged statistical result of each design point (8). For example, if the probabilistic 

optimisation using Genetic Algorithm (GA) consist of 12 populations and 20 generations while MCS 

for robustness analysis requires 10,000 simulations for each population, the total number of the FEM 

simulations reaches 2,400,000. Even though a structural problem is simple enough to take a few seconds 

to execute a single FEM simulation, the total computational time for the probabilistic optimisation is 

nearly one month. As engineering problems in composite structures become more complex and large-

scale structures having many design variables under complicated physics, the time for completing a 

FEM simulation to analyse them used to take more than a few hours. This suggests that the total 

simulation time can be more than some months or even some years depending on the problem features. 
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Many model approximation methods running on behalf of the FEM model have been developed to deal 

with this prohibitive computational challenge, which the models are called a surrogate model or a 

metamodel (10,11). This enables engineers to carry out reliability and robustness analyses for the 

probabilistic design optimisation precisely with improved computational efficiency, cutting down the 

FEM simulation time from a few hours to microseconds. Multi-fidelity model introduced in computer 

science is holding attention in structural optimisation because it offers more significant computational 

gains than the surrogate model while maintaining its accuracy (12). Specifically, the multi-fidelity 

model is expected to conduct the complex and large-scale composite design problems that their 

computational cost for even classical surrogate modelling is prohibitive. 

 

1.1 Composite Structure in Aircraft Design 

Composite structures are widely used in different manufacturing industry, including aircraft, wind 

turbines, automobile, etc. The recent development in composite materials, including lightweight and 

multifunction provides many engineering advantages to the industry and results in a dramatic increase 

in the usage of the materials for their products. As the design approach for environmentally friendly 

and sustainable development is incentivised to tackle global climate change, aircraft engineering is 

particularly leading the development of composite structures to accomplish an innovative aircraft design; 

reduced fuel consumption obtained by lightweight (13). The primary part of using these composite 

structures in aircraft encompasses fundamental elements to large systems. It is not surprising that the 

Boeing 787 Dreamliner and the Airbus A350 XWB consist of around 50 % and 53 % composite 

structures, respectively. These percentages are rising to even further boost weight reduction in aircraft 

fuselage (commonly 20 % lighter than aluminium) while achieving higher strength and expanded 

lifespan (14).

One of the most appealing uses of the composite structures is for designing the stiffened panel, which 

is an essential structural element for aircraft design. This stiffened panel allows a thin skin to carry 

extreme loading in both tension and compression using longitudinal stringers across the panel at a 

certain distance. Design for the stiffened composite panel should aim to maximise its strength, stiffness 

and buckling load. It should be noted that the buckling load does not mean the maximum load that the 

structure can carry. This implies that the structure can hold several times the amount of the buckling 

load before the structural failure, referred to as the non-linear post-buckling strength. This post-buckling 

strength capability offers impressive potential for both weight and cost savings. Hence, designing a 

composite panel that will work under the buckling load all the times is a very conservative approach. A 

more lightweight composite structure can be designed if the extra strength under the post-buckling 

regime is given (4,14,15). Furthermore, thermomechanical loading has been drawn attention in 
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aeronautics because of a massive increase in the industrial needs for high-speed and lightweight aircraft. 

This loading may cause untimely structural collapse when the aircraft is subjected to extreme 

surroundings. In particular, the consideration of thermal loading and mechanical loading can improve 

the composite aircraft design since the lightweight structures are typically susceptible to buckling under 

extreme conditions caused by high-speed operation (16–18). 

A comprehensive coverage of the mechanics of composite structures can be found in a book by Jones 

(1). In addition, overviews of the non-linear post-bucking and thermomechanical buckling that are more 

specific to the work presented in this thesis can be found in the following Chapters 5 and 6.  

 

1.2 Probabilistic Design Optimisation 

Industrial manufacturing processes for composite structures are inherently more complex than 

conventional metals and alloys. This involves significant uncertainties in mechanical properties, 

geometry, or loading conditions associated with the entire lifecycle (19). One of the major challenges 

concerning traditional composite design approaches is that the final design does not adequately 

represent these uncertainties but presume them by using large safety factors, hence resulting in 

conservative design. These uncertainties assumed by the use of safety factor result in the designed 

structure being inefficient, leading to increasing raw materials for manufacturing and rising fuel 

consumption for operating. The weight of aircraft is particularly important to reduce carbon emissions 

from aviation while being able to maintain fundamental design requirements and capabilities. Hence, 

an innovative aircraft design approach should aim to minimise the structural weight whilst providing a 

high safety level, achieved by considering the uncertainties associated with designing and 

manufacturing processes. 

An essential task would be necessary that can estimate the accurate statistical characteristics of the 

structural performance caused by the uncertainties in engineering parameters such as geometry, material 

properties and external loading. For example, insufficient understanding of unpredictable features and 

errors of the computational model can be the uncertainties at the early design stage. In the manufacturing 

stage for composite structures, a broad spectrum of flaws can lead to significant variations in material 

properties and geometry. However, traditional deterministic design optimisation methods do not have 

an action for the statistical measurement; hence they used to make the structure over-optimised across 

the whole lifecycle. Even if these deterministic approaches find a global design working very well at 

the design point, it might show a poor performance out of the design point as well as a higher probability 

of failure. Thus, this design cannot be guaranteed as a reliable or robust design due to the absence of 

significant influence of the uncertainties (20).
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An approach to deal with the above drawback is the probabilistic design optimisation methods, 

including Reliability-Based Design Optimisation (RBDO) and Robust Design Optimisation (RDO) (15). 

These methods are classified depending on the different philosophies for which each optimisation 

method aims. The purpose of RBDO is to minimise the probability of failure by accounting for the 

design uncertainties so that the final design has a higher level of reliability using a probabilistic 

approach (14). In comparison, RDO aims to reduce the variability of the structural responses regarding 

unexpected deviations induced by the uncertainties (4). A robust design found by RDO holds an 

improved performance quality during the lifecycle compared with a deterministic design. These two 

probabilistic design optimisation methods principally incorporate reliability and robustness analyses 

into their process. MCS can be exploited by estimating both reliability and robustness, while FORM 

and SORM are employed to predict the probability of failure. The procedure begins with searching the 

entire design space to get potential design points. Once obtained, reliability and robustness analyses are 

used to estimate the statistical characteristics of the design points related to the aim of probabilistic 

design. This is the primary feature of the probabilistic design optimisation methods compared with the 

traditional deterministic approaches. By exploiting the probabilistic philosophy during the optimisation 

process of aircraft structural elements using the composite structures, engineers are allowed to 

understand the statistical nature led by the design uncertainties associated with the design and 

manufacturing process.  

Although the probabilistic design optimisation offers a reliable and robust structural design with 

improved efficiency over the whole lifecycle, it has not been placed in the infrastructure design area 

due to its tremendous computational resources required (21). 

A comprehensive overview and theoretical background of probabilistic design optimisation can be 

found in a book by Choi (8). In addition, outlines of RBDO and RDO and comparison between them to 

highlight the work presented in this thesis can be discovered in Chapter 2. 

 

1.3 Surrogate Modelling 

Surrogate modelling that is also known as metamodeling aims to approximate computationally 

expensive FEM models for structural optimisation (10). This modelling allows the FEM models to be 

represented by a computationally cheap alternative model. The alternative model enables the 

probabilistic design optimisation to deal with the prohibitive computational challenge for evaluating the 

influence of the design uncertainties. The computational time using a surrogate model is a lot faster 

than that of the original FEM model, usually from hundreds to tens of thousands of times faster, while 

offering acceptable accuracy identical to the FEM model. This facilitates significant improvements in 

the probabilistic design optimisation process by reducing the total optimisation time from a couple of 
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weeks to several hours and preserving the solution accuracy of less than 1 % error. Such surrogate 

model is created by collecting experimental observations or numerical simulations. When enough 

information is collected, the surrogate modelling method creates a surrogate model by training and 

testing the collected data. This modelling process could be struggling with running many simulations 

since the quality of the surrogate model relies on the amount of training data (22). It is not surprising 

that such modelling process still offers extensive overall savings concerning the total number of 

computational simulations. Therefore, the surrogate modelling methods have been applied to the 

probabilistic optimisation due to their advantage regarding computational efficiency. One drawback of 

surrogate modelling is that they sometimes request an affordable number of simulations for training 

when the optimisation problem has many design variables. For example, if the optimisation problem 

involves complex and large-scale composite structures, the run time for a single FEM model would 

sometimes take more than few hours despite using the HPC resources. There are many types of 

surrogate modelling methods; some of the most commonly employed methods are Gaussian Process 

(GP) and Artificial Neural Networks (ANN). 

An inclusive summary and theoretical knowledge of the surrogate modelling that are more specific to 

the work introduced in this thesis can be found in Chapter 3. 

 

1.4 Multi-Fidelity Modelling 

Multi-fidelity modelling, which arises from surrogate modelling, has been introduced in computer 

science, and it has drawn significant attention amongst the optimisation research community since the 

last three decades (23). The multi-fidelity modelling aims to gain more computational efficiency from 

the traditional surrogate modelling method. A general surrogate model is created using a High-Fidelity 

Model (HFM) that brings accurate solutions while being computationally expensive. In contrast, a 

multi-fidelity model is trained using both a HFM and a Low-Fidelity Model (LFM), which is not 

accurate but computationally inexpensive. Multi-fidelity models constructed by blending different 

fidelity models can provide output solutions as precise as those of the general surrogate models using 

only the HFM while reducing the computational cost similar to the LFM. The ideal concept of multi-

fidelity modelling is to use a small number of the HFM and a large number of the LFM to achieve a 

specific reduction in the total training time. The fidelities to define the HFM and the LFM depend on 

how the HFM can be simplified by the LFM, such as physics and numerical accuracy. The multi-fidelity 

models are usually constructed using the surrogate modelling methods to obtain more computational 

gains compared to the multi-fidelity models using the high- and low-fidelity FEM models.  

One remarkable advantage of multi-fidelity modelling is to deal with the computational challenge of 

the probabilistic design optimisation for complex and large-scale composite structures that the 
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traditional surrogate modelling method cannot manage. Suppose the multi-fidelity models can provide 

acceptable accuracy with computational efficiency to the design area of composite structures. In that 

case, they allow engineers to examine the statistical estimation caused by the design uncertainties at the 

early design stage without conducting expensive experiments and time-consuming simulations. 

Prior to the work introduced in this thesis, multi-fidelity probabilistic design optimisation for composite 

structures was not researched by the engineering and science community. Given that the importance of 

composite structures under the non-linear post-buckling regime and thermomechanical loading, the 

significant necessity of the probabilistic design optimisation to consider the design uncertainties, and 

also the incredible benefits by the use of surrogate modelling and multi-fidelity modelling, a novel 

methodology that embraces these different approaches would provide a suitable answer to technical 

challenges that the industry seeks to tackle. 

A comprehensive explanation and theoretical background of the multi-fidelity modelling can be found 

in a book by Forrester (11). Overviews of the multi-fidelity models to highlight the work presented in 

this thesis can be discovered at the following Chapter 3.  

 

1.5 Aims and Objectives 

The primary objective of the work presented in this thesis is to develop novel multi-fidelity modelling-

based probabilistic design optimisation methods for composite structures, demonstrate them using the 

design problems of a mono-stiffened stringer composite panel, and broaden their application area, 

particularly to designing large-scale composite structures. The main objectives can be summarised in 

five sub-objectives. 

1. To develop a multi-fidelity RBDO framework for composite structures integrating with 

the use of surrogate modelling. Multi-fidelity models that consist of both a HFM and a LFM 

defined by different FEM mesh sizes are constructed using response correction functions. Then 

multi-fidelity surrogate models are created using ANN. The multi-fidelity RBDO framework 

involves the multi-fidelity modelling process and the reliability methods, such as MCS, FORM 

and SORM. This framework is demonstrated by the engineering examples of a mono-stringer 

stiffened composite panel considering uncertainties in geometry and applied load for the first 

time. These examples evaluate the developed multi-fidelity RBDO framework regarding 

improvements in solution accuracy and computational time savings compared to the traditional 

high-fidelity surrogate modelling technique. The framework is presented in Chapter 4. 

2. To develop a multi-fidelity modelling formulation covering different design spaces 

between the HFM and the LFM. The main drawback of the traditional multi-fidelity 

modelling methods, in which the HFM has to share the same design space with the LFM, is 
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addressed if the HFM and the LFM have a different number of design variables. The HFM has 

a few design variables to reduce the number of high-fidelity FEM simulations for training. At 

the same time, the LFM explores the entire design space sharing the design variables in the 

HFM. The multi-fidelity formulation incorporates multi-level optimisation into the modelling 

process to complement a lack of information led by the HFM not carrying all design variables. 

This delivers more computational efficiency followed by surrogate modelling based on ANN, 

making it particularly suitable for large-scale problems having many design variables. This new 

multi-fidelity formulation is presented in Chapter 5. 

3. To develop a multi-fidelity RDO framework for composite structures under the non-

linear post-buckling regime when the HFM has a smaller number of design variables than 

the LFM. The developed multi-fidelity formulation is integrated with the RDO process. Then 

it is demonstrated by two optimisation problems, deterministic optimisation and RDO, of a 

mono-stiffened stringer composite panel undergoing mechanical shortening beyond the linear 

buckling. The design uncertainties in geometry parameters are considered, and MCS predicts 

the statistical characteristics using the Sobol sampling technique for each design point. The 

developed framework can improve accuracy and computational cost over both conventional 

surrogate modelling and different multi-fidelity modelling methods. Comparison between 

robust and deterministic design is highlighted in terms of the variability of output responses 

relying on the consideration of design uncertainties. This developed multi-fidelity RDO 

framework is presented in Chapter 5. 

4. To develop a multi-fidelity modelling formulation utilising different sampling levels 

between the HFM and the LFM while considering non-linear correlations between them. 

This multi-fidelity formulation can offer acceptable multi-fidelity models that take care of the 

non-linear correlations between different fidelity models in a complex structural problem. This 

new formulation involves both a non-linear information fusion algorithm and multi-level 

optimisation. Specifically, the formulation enables the HFM to supervise a part of the entire 

design space using high-fidelity information collected densely from the selected design spaces. 

Simultaneously, the HFM provides high-fidelity information of other design variables collected 

sparsely while not increasing the sampling size for the high-fidelity training dataset. The LFM 

explores the whole design space for engineers to explore the solution spaces of other design 

variables associated with the selected design variables in the HFM. This novel multi-fidelity 

formulation is presented in Chapter 6.

5. To develop a multi-fidelity probabilistic optimisation framework for composite structures 

subjected to thermomechanical loading. The developed multi-fidelity formulation is 

incorporated with the RBDO process. Then it is demonstrated by a numerical example of a 

mono-stiffened stringer composite panel under mechanical and thermal loadings for the first 

time. The RBDO process aims to maximise the critical temperature changes undergoing an 
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inevitable mechanical shortening while satisfying the target reliability. In this example, the 

constructed multi-fidelity model carries ten input parameters to consider the design 

uncertainties in both material properties and geometry during the optimisation process. The 

optimal designs are found using successive high-fidelity corrections at the end of each 

optimisation level. The accuracy and computational time savings are highlighted by comparing 

with different traditional methods and a surrogate model computationally equivalent to the 

multi-fidelity model. This developed multi-fidelity optimisation framework is presented in 

Chapter 6. 

 

1.6 Author’s Published Work 

The follows are a list of author’s research achievement. This includes research articles submitted or 

published in international journals and work presented at international conferences. A link to the 

author’s ResearchGate profile is link. 

 

1.6.1 International Journals 

1. Kwangkyu Yoo,; Omar Bacarreza,; M. H. Ferri Aliabadi,; Multi-fidelity Probabilistic 

Optimisation of Composite Structures under Thermomechanical Loading using Gaussian 

Processes, Computers & Structures, Volume 257, 2021, 106655, 

https://doi.org/10.1016/j.compstruc.2021.106655. 

2. Kwangkyu Yoo,; Omar Bacarreza,; M. H. Ferri Aliabadi,; Multi-fidelity Robust Design 

Optimisation for Composite Structures based on Low-fidelity Models using Successive High-

fidelity Corrections, Composite Structures, Volume 259, 2021, 113477, 

https://doi.org/10.1016/j.compstruct.2020.113477. 

3. Kwangkyu Yoo,; Omar Bacarreza,; M. H. Ferri Aliabadi,; A Novel Multi-Fidelity Modelling-

Based Framework for Reliability-Based Design Optimisation of Composite Structures, 

Engineering with Computers, 2020, https://doi.org/10.1007/s00366-020-01084-x. 

 

1.6.2 International Conferences 
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2. Kwangkyu Yoo,; Omar Bacarreza,; M. H. Ferri Aliabadi,; Reliability-Based Design 

Optimisation of Composite Structure using Multi-fidelity Modelling, European Conference 

for Aerospace Sciences, Madrid, Spain, July 2019. 

3. Kwangkyu Yoo,; Omar Bacarreza,; M. H. Ferri Aliabadi,; Reliability Analysis of Composite 

Structures using Multi-Fidelity Modelling, International Conference on Advances in 

Aerospace Structures, Systems & Technology, London, UK, May 2019. 

 

1.7 Thesis Overview 

A chapter-by-chapter summary of this thesis is as below: 

 Chapter 2: Fundamental Concepts of Structural Optimisation. This chapter will introduce 

the fundamental concepts of structural optimisation, including optimisation methods, 

probabilistic design optimisation. It will also describe the basic concepts of reliability and 

robustness analyses, such as MCS, FORM and SORM. 

 Chapter 3: Multi-Fidelity Models. This chapter will introduce both surrogate modelling and 

multi-fidelity modelling. This includes methods to build training datasets, such as Random 

sampling, Optimal Latin Hypercube sampling and Sobol sampling, as well as typical surrogate 

modelling methods, such as ANN and GP. A simple numerical example of probabilistic 

optimisation using high-fidelity surrogate modelling will also be introduced. Finally, standard 

multi-fidelity modelling methods, such as response correction methods, space mapping method 

and autoregressive method, will be discussed. 

 Chapter 4: Multi-Fidelity Modelling-Based Reliability-Based Design Optimisation for 

Composite Structures. This chapter will introduce a multi-fidelity formulation using ANN 

when the HFM and the LFM share the same design space during the probabilistic optimisation 

process. The developed formulation is incorporated into the RBDO process and utilised to carry 

out MCS, FORM and SORM. Two numerical examples will be discussed to demonstrate the 

presented multi-fidelity RBDO framework. The work presented in this chapter has been 

published in article 3 from section 1.6.1. 

 Chapter 5: Multi-fidelity Robust Design Optimisation based on Low-Fidelity Models 

using Successive High-Fidelity Correction. This chapter will introduce a multi-fidelity 

formulation using ANN that covers different design spaces between two fidelity models. The 

formulation is based on the LFM having more design variables and the HFM having fewer ones 

to carry out large-scale composite design problems with improved computational efficiency.  

The developed formulations will be discussed by carrying out both deterministic optimisation 
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and RDO of composite structures under the non-linear post-buckling regime. The work 

presented in this chapter has been published in article 2 from section 1.6.1. 

 Chapter 6: Multi-fidelity Probabilistic Optimisation of composite structures for 

thermomechanical loading using Gaussian Process.  This chapter will introduce a multi-

fidelity formulation using GP that considers non-linear correlations between the HFM and the 

LFM. The formulation allows the HFM to collect the training data points with different 

sampling levels, such as dense and sparse sampling, while the LFM samples the training data 

points as dense as possible. An engineering example regarding composite structures under 

thermomechanical loading will be discussed to demonstrate the developed optimisation 

framework. The work presented in this chapter has been published in article 1 from section 

1.6.1. 

 Chapter 7: Conclusions and Future Research. The final chapter will summarise the 

conclusion found from the research work found in this thesis. Potential further research topics 

will also be suggested.  



 

Chapter 2 25 

 

2 Fundamental of Structural Optimisation 

 

This chapter will summarise the fundamental concepts on which the research presented in this thesis is 

based. This chapter will introduce the basic optimisation methods, such as gradient methods, direct 

methods and evolutionary methods, that can be used to conduct probabilistic design optimisation. Multi-

objective optimisation for probabilistic design will then be presented, including Reliability-Based 

Design Optimisation (RBDO) and Robust Design Optimisation (RDO). This will highlight a 

comparison of RBDO and RDO as well. The theory behind the consideration of design uncertainty will 

then be shown by how to define the uncertainty in structural design optimisation. Reliability analysis 

and robustness analysis will be discussed how they assess the uncertainty, such as Monte Carlo 

Simulation (MCS), the First-Order Reliability Method (FORM), and the Second-Order Reliability 

Method (SORM). 

 

2.1 Optimisation Methods for Probabilistic Design 

A vast number of optimisation methods have been developed in the field of structural optimisation over 

a few decades. These optimisation methods aim to minimise specified objective functions by adjusting 

a set of design variables while not violating given design constraints. In general, there are not particular 

types of optimisation methods that are developed to achieve probabilistic design. However, some 

research has efficient optimisation methods for probabilistic design that provide adequate performance 

accuracy and efficiency (24). The optimisation methods are categorised in several ways, such as 

gradient-based methods, direct methods and evolutionary methods. Gradient-based methods require the 

derivative information of problem functions to decide optimised search directions. Direct methods are 

derivative-free methods that do not calculate the derivatives of function in their direction search scheme. 

Evolutionary methods use the information of function values in the optimisation process. More details 
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of these methods can be found in many works of literature on the topic of optimisation methods for 

probabilistic design (25–32). 

 

2.1.1 Gradient-Based Methods 

Gradient-based methods use the derivatives of problem functions to determine the search direction for 

the optimum points. Many methods have been developed for this optimal search direction, including 

simple steepest descent, conjugate gradient, etc (33). These methods decide the direction using the first 

order or the second order Taylor approximation depending on the characteristic of the problem to 

calculate the derivatives at each step. The use of derivatives for the search direction scheme requires 

the problem functions to be twice continuously differentiable in the feasible design space to provide 

more accurate values. At the same time, the design variables in the problem should be continuous in the 

design ranges to offer proper values. The main advantage of these methods converges extremely quick 

compared to different methods because they usually need a small number of simulations iterated. 

However, the gradient-based methods employ local information such as function values and their 

gradients during the search direction scheme. This could result in convergence to a local minimum 

satisfying given conditions. There are many gradient-based methods developed so far, such as the 

Mixed Integer Sequential Quadratic Programming (MISQP), Non-linear Programming, Sequential 

Quadratic Programming (SQP), Large Scale Generalised Reduced Gradient (LSGRG), etc (34). Each 

method has its characteristic depending on the problem, design space, CPU resources, features, etc. The 

LSGRG is known for the potentials that are suited well for non-linear design spaces and many design 

variables that can be utilised to the probabilistic design optimisation of large-scale problems. This 

method adapts the search direction to remain active constraints precisely and follows the constraints to 

improve the design. The method divides the gradient calculations of possible search directions that 

ensure parallelisation in contrast with typical gradient-based methods.  

  

2.1.2 Direct Methods 

As direct methods do not take the derivatives of the problem functions, they search some points in a 

local design space to determine the direction and then decrease the size of the local searched area to 

converge. There are typical direct methods such as Hooke-Jeeves method, Downhill Simplex method, 

etc (35). The Hooke-Jeeves method investigates points around the current point using the perturbation 

of each design variable at a time until an improvement is achieved. When there is no more improvement 

in design tracking the favourable direction, variable perturbation is reduced gradually until convergence 

criteria are satisfied. In contrast, the Downhill Simplex method is a geometrically intuitive algorithm 

providing the capability to search in every direction by building a multi-dimensional body. As this 
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method continues, the simplex leads to a downward path toward the minimum region through the series 

of steps. This method obtains a reasonable probability of discovering the global minimum when the 

initial steps are large. The initial simplex will then cover a broader range of the design space and reduce 

the possibility of getting stuck in a local minimum. Even though direct methods are intuitive and 

straightforward enough to carry out, they show weak performance in the discontinuous design space. 

In addition, convergence can be extremely slow in complex large-scale problems and may not even 

converge to a stationary point. 

 

2.1.3 Evolutionary Methods 

Evolutionary methods are inspired by nature. The main characteristic of these methods does not require 

the derivatives of problem functions but function values. This enables the problem functions not to be 

differentiable and continuous across the entire design space in contrast with the general requirement of 

gradient-based methods. The approach of evolutionary methods includes randomness for the search 

process, whereas gradient-based methods determine the search direction calculated by derivatives (36). 

These methods seek to run a number of simulations without calculating derivatives to explore the entire 

design space as much as possible and develop solutions gradually in comparison with previous ones. 

Many evolutionary methods using this idea have been developed and demonstrated so far, including 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II), etc (34). The methods commonly provide much better coverage of design 

space. Thus, they ensure a global minimum point concerning objective functions while not getting 

trapped in different local minimum points. Given that these gradient free optimisation methods do not 

take derivative tests to reach a minimum but explore the design space to discover the best fitness value, 

the optimal point could be evaluated using mathematical conditions such as Karush-Kuhn-Tucker (KKT) 

conditions. An additional helpful feature of the methods can manage various types of problems having 

continuous, integer, and mixed variables since they do not care about differentiable conditions. Their 

major drawback is more computationally expensive than gradient-based methods since a large number 

of simulations are required to discover the area having the global minimum point. However, this 

drawback can be resolved using parallelisation, one of the benefits of these methods. 

It is not surprising that the GA is the most well-known among evolutionary methods. The primary 

mechanism of this algorithm mimics genetic operations that consist of some critical parameters, such 

as population, generation, etc (25). The population is a set of design points and also represents possible 

solution points. The generation shows how many iterations the GA carries out during the optimisation 

process. The total number of design points considered depends on these two parameters. The GA allows 

the population of design points to be gradually improved over consecutive generations. The GA process 

begins with an initial population that are randomly selected in the whole design space. In this set of 
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design points, a subset is chosen randomly, and then random processes generate new design points using 

the selected subset. The following sets of design points provide better fitness values because the subset 

of the previous set is used. This process is terminated until a stopping condition or a maximum allowable 

iteration is satisfied. This process is accomplished through three main genetic operators, such as 

selection, crossover and mutation. The selection process is to reproduce an old design point depending 

on the fitness values for the generation of a new population. In the crossover process, the selected design 

points of the new population exchange the characteristics between themselves. The mutation allows 

additional randomness to safeguard the process by mutating a design variable in each design point using 

another random value. The NAGA-II is a more advanced GA in order to deal with multi-objective 

problems (37). It employs each objective separately while the standard genetic operation of mutation 

and crossover are conducted. By the end of the optimisation process, a Pareto front is generated by 

selecting feasible non-dominated design points where each design point obtains the best combination 

of objective values. The improvement in one objective is not possible without losing one or more of the 

other objectives. This algorithm has been considered as a method for multi-objective probabilistic 

design optimisation due to its excellent performance. 

 

2.2 Multi-Objective Probabilistic Optimisation 

Multi-objective optimisation, which is also called multi-criteria optimisation or vector optimisation, is 

an optimisation process able to minimise several objective functions systematically and simultaneously. 

In contrast with single-objective optimisation to find a solution minimising the objective function, the 

way of determining a solution concerning the several objective functions should be defined (38). The 

different objective functions of this process conflict with each other, which means the improvement in 

one objective might degrade others. Several constraints can also be considered that feasible solutions 

having every optimal solution have to satisfy. Equation (2.1) shows a general form of multi-objective 

optimisation. 

min
𝑑
𝐹(𝑥) = (𝑓1(𝑑),⋯ , 𝑓𝑝(𝑑)) 

(2.1) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑔𝑖(𝑥) ≤ 0,                                   𝑖 = 1,⋯ , 𝐼 

   ℎ𝑗(𝑥) = 0,                                   𝑗 = 1,⋯ , 𝐽 

𝑤ℎ𝑒𝑟𝑒     𝐹 ∶ ℝ𝑛 → ℝ𝑝 

where 𝐹 is a vector including all 𝑝 objective functions, 𝑑 and 𝑥 are design variables’ vector and the 

whole optimisation variables, 𝑔𝑖 and ℎ𝑗 are inequality and equality constraint functions, ℝ𝑛 and ℝ𝑝 are 

the vectors of inputs and objectives, respectively. 



2.2 Multi-Objective Probabilistic Optimisation 

Chapter 2 29 

The optimal solutions in multi-objective optimisation problems can be characterised by a mathematical 

concept of dominance or partial ordering (39). The idea of dominance between two solutions, 𝑑1 and 

𝑑2  in ℝ𝑛 , is explained in equation (2.2). If 𝑑1  dominates 𝑑2 , two conditions should be necessarily 

considered. Firstly, 𝑑1is not worse in any objectives. The value of the objective function for 𝑑1 is less 

or equal to the value of the objective function for 𝑑2, regarding all the required objective functions. 

Secondly, there must be at least one objective for which 𝑑1 is rigorously greater. 

∀𝑖 ∈ {1,⋯ , 𝑝}, 𝑓1(𝑑1) ≤ 𝑓2(𝑑2)  
(2.2) 

∃𝑖 ∈ {1,⋯ , 𝑝}, 𝑓1(𝑑1) < 𝑓2(𝑑2) 

This process gives rise to a set of optimal solutions that is defined as Pareto optimality. The definition 

is that a feasible vector 𝑑∗ is Pareto optimal if the vector 𝑑∗ is not dominated by a different possible 

solution. Equation (2.3) represents that 𝑑∗ is Pareto optimal if no objective can be improved without 

sacrificing more than one objective of the other objectives. The set of Pareto optimal is prescribed as 

Pareto optimal set, and it provides the optimal solutions of multi-objective optimisation problems. 

𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑒𝑡 = {𝑑∗ ∈ ℱ | ∄𝑑 ∈ ℱ: 𝐹(𝑑) < 𝐹(𝑑∗)} (2.3) 

The main difference in multi-objective probabilistic optimisation is that the optimisation process 

considers the uncertainties of design variables for the entire structural lifecycle. This consideration 

enables the final design to become a more reliable or robust design depending on the defined objectives 

and constraints. There are two types of probabilistic optimisation, such as Reliability-Based Design 

Optimisation (RBDO) and Robust Design Optimisation (RDO) (15,20). RBDO carries the probability 

of failures as a constraint, whereas RDO takes the mean and standard deviations of objective functions. 

These two types will be introduced in the following sections in details. 

 

2.2.1 Reliability-Based Design Optimisation (RBDO) 

In general, RBDO integrates the reliability analysis with deterministic optimisation so that the 

optimisation process assesses the design constraints caused by the uncertainties of random design 

variables. This optimisation process ensures that the final design satisfies a specific probabilistic 

constraint as far as a prescribed reliability level. When an optimisation problem focuses on the 

occurrence of disastrous failure of a structural system, the optimisation problem is defined as RBDO 

(9,14). In RBDO, the reliability analysis evaluates a limit state function to calculate the probability of 

failure. A constraint is imposed to safeguard that failure does not exceed an adequate critical value. This 

limit state function is related to the constraints used in the deterministic optimisation, with the 

distinction that constraints may be violated having some acceptable probability. A typical RBDO 

problem can be expressed as 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒     𝐹(𝑑) 

(2.4) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑔𝑚(𝑑) ≤ 0,                                   𝑚 = 1,⋯ ,𝑀 

    𝑃[𝐺𝑛(𝑑, 𝑥) ≤ 0] − 𝑃𝑓,𝑛 ≤ 0,     𝑛 = 1,⋯ ,𝑁 

where 𝑑 and 𝑥 are the design variable’s vector and random variable’s vector, respectively, and 𝐹 is the 

objective functions. 𝑔𝑚  is m-th deterministic constraint and 𝐺𝑛  represents the n-th probabilistic 

constraint. 𝑃[. ]  implies the probability of the constraint being satisfied and 𝑃𝑓  is the acceptable 

probability of failure. 𝑃𝑓 mainly indicates the prescribed reliability level 𝛽𝑡 when a normal distribution 

represents the random variables.  

The reliability analysis in this optimisation process is the essential part of determining the probability 

of failure, which can be predicted using Monte Carlo Simulation (MCS), the First Order Reliability 

Method (FORM) and the Second Order Reliability Method (SORM) (8). MCS is based on different 

sampling methods, while the FORM and SORM exploit the derivatives of the limit state function. This 

reliability assessment considering the design uncertainties requires thousands of function evaluations 

leading to significantly high computational cost that is not a critical issue for deterministic optimisation. 

Different advanced numerical techniques have been developed to address the computational cost that is 

challenging with current technologies. 

 

2.2.2 Robust Design Optimisation (RDO) 

RDO combines the concept of robustness into deterministic optimisation that may produce over-

optimised design solutions caused by the ignorance of design uncertainties (40). Robust design aims to 

improve the quality of products concerning unexpected deviations that are led by variation at different 

phases of the structure’s lifecycle. This means that the structural performance of the robust design 

should be less sensitive to random variations. Even though the design solutions found by a conventional 

deterministic optimisation work well at design points, they could present inferior performance close or 

out of the design points. It is not surprising that the design solution, which results from the deterministic 

optimisation, will not be the robust solution providing minimum sensitivity to the design uncertainties. 

The structural performance is represented using objective functions or constraints, and it may be under 

wide scatter at different service phases. This scatter may considerably decrease the structural quality 

and lead to variations from the required performance. They may also increase the structural costs for 

inspection, repair and maintenance. In that sense, well‐optimised design solutions provide structures 

that reduce operating costs as well as the scatter of structural performance. These structures work 

consistently in the presence of unexpected variations during the overall service lifecycle. The robustness 
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of structures is one of the essential characteristics to be considered in the design stages to shrink the 

scatter of structural performance.  

One possible way is to reduce or exclude the spread of the input parameters, which may either be nearly 

impossible or increase the structure's total costs. Another way is to discover a design in which the 

structural performance is insensitive to the deviation of input parameters while not removing the sources 

of the parameters’ variations. The robust structural design approach describes the design quality of the 

structure using the mean value and variation of the structural performance. An evident approach is to 

specify the optimality requirements using the expected values of response performance. However, the 

design determined by the minimum expected value of the objective functions may still be susceptible 

to the variation of the probabilistic input parameters having uncertainties. This draws attention to the 

robust structural design that balances mean performance against some measure of the variability. This 

design is achieved by multi-objective optimisation, which is a trade-off between the mean performance 

and some measure of the variability (4). The general mathematical formulation of RDO can be given as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒    {𝜇(𝑓(𝑋)), 𝜎(𝑓(𝑋))} 

(2.5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑔𝑖(𝑋) ≤ 0                            𝑖 = 1,⋯ , 𝐼 

    ℎ𝑗(𝑋) = 0                            𝑗 = 1,⋯ , 𝐽 

    𝜎(𝑓(𝑋)) ≤ 𝜎𝑀
+  

    𝑥𝑙
(𝐿)
≤ 𝑥 ≤ 𝑥𝑙

(𝑈)               𝑙 = 1,⋯ , 𝐿 

where 𝑋 is the design and random variables’ vector, 𝜇(𝑓(𝑋)) and 𝜎(𝑓(𝑋)) are the first (mean) and 

second (standard deviation) statistical moments of the objective function, respectively. 𝑔𝑖  is 𝑖𝑡ℎ 

inequality constraint, ℎ𝑗 is 𝑗𝑡ℎ equality constraint, 𝜎𝑀
+  is the upper limit for the standard deviation of 

the structural performance and,  𝑥𝑙
(𝐿)

 and  𝑥𝑙
(𝑈)

 are the lower and upper bounds for the 𝑙𝑡ℎ  design 

variables. 

 

2.2.3 Difference between Reliability-Based Design and Robust Design  

As discussed in the previous section, Reliability-Based Design Optimisation (RBDO) and Robust 

Design Optimisation (RDO) aim to incorporate design uncertainties into the design optimisation process.  

These two optimisation approaches presume that design hazard is defined by combining the probability 

of an undesired event and its consequence. They put forth different design domains relying on the 

purpose of each optimisation. Figure 2.1 highlights the design domains of RBDO and RDO using two 

principal elements, such as event’s consequence and frequency. A design could target a structural 
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system encountering an extremely severe environment that leads to structural failure and collapse. This 

design is placed in the domain of RBDO, where the concept of reliability level is considered by a critical 

constraint. In contrast, a design could be optimised that a circumstance does not cause significant failure 

but deteriorate the structural performance through frequent fluctuations. In terms of design domain, 

RBDO is more likely associated with structural safety in extreme design condition, whereas RDO 

relates with structural performance in operating condition. 

 

Figure 2.1: Design domains depending on design target (41) 

Both RBDO and RDO combine the prediction of possible influence caused by design uncertainties with 

the optimal design process; however, these two approaches have different interest areas to the objective 

function’s distribution. RBDO aims to meet reliability requirements based on the probability 

distributions of the random design variables (14,24). The objective functions of RBDO should be 

minimised while not violating the probability constraints. RDO reduces the variation of structural 

performance (4,42). This approach includes minimising the variance of objective functions. 

Simultaneously, constraints can also be characterised by the allowable standard deviations. In RBDO, 

stochastic analysis predicts the likelihood of extreme events illustrated using the tail of the objective 

function’s distribution. The reliability analysis, which is the main part of RBDO, measures the 

reliability index associated with the probability of failure (43). This process leads to high computational 

costs to compute the reliability of each design point. Stochastic analysis in RDO calculates the effect 

of statistical moments about different design points. The robustness assessment of RDO concerns the 

variation of structural performance regarding unanticipated events.  

highlights the aim of RBDO, which reduces the probability of rare extreme events in the tail of the 

probability distribution function. Limit state function is a primary constraint that shows the boundary 
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between safe and failure region. RBDO generally diminishes the tail area across the limit state function 

so that the structure obtains a required reliability level. In contrast,  

Figure 2.3 illustrates how RDO ensures insensitive design. This design process reduces the variance of 

the objective function that provides more narrow distribution around the mean value of the function. 

 

Figure 2.2: RBDO strategy 

 

Figure 2.3: RDO strategy
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Both clearly show how two approaches offer different design solutions compared with traditional 

deterministic optimisation. When robust design and reliable design are found, it is meaningful to 

evaluate whether the final chosen design is feasible in an engineering way.  

Figure 2.4 highlights how a feasible design can be obtained using the probabilistic design approach. If 

the objective function of a robust design (service condition) is much smaller than that of a reliable 

design (extreme condition), the final design will be similar to a conservative design caused by large 

safety factors. If the objective function of a robust design is adjacent to a reliable design’s one, the final 

design will be a good design that reduce the difference in structural performance between the service 

and extreme conditions. Suppose the objective function of a robust design is better than that of a reliable 

design’s one. This does not make sense that the mean value of objective function for operating condition 

is higher than that of extreme condition. 

 

Figure 2.4: Reliable design and robust design 

 

2.3 Design Uncertainty Consideration 

As design requirements are getting more complex and comprehensive, many design approaches have 

been widely developed to answer the need for advanced probabilistic assessment technology 

considering the design uncertainties. In particular, the consideration of these uncertainties enables the 

design approaches to deal with the random nature of design parameters. This consideration ensures that 

the design quality is more improved compared to different design approaches based on safety factors. 

Probabilistic design obtained using the consideration of design uncertainties safeguards the deviation 
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of performance caused by system variations. This probabilistic design can resolve the knowledge 

shortage about the spread of structural performance that is the primary concern in the design based on 

safety factors (5).  

As can be seen in Figure 2.5, the sources of uncertainty are commonly categorised by the product’s 

lifecycle, such as design, manufacturing, service/operation and ageing. In the design stage, the 

uncertainties are usually inaccuracies in models and insufficient information caused by different level 

of understanding the structural system. These uncertainties in models and information associate with 

how precise the models are created and how much engineers perceive the system, respectively. 

Tolerances and material defects are considered as the uncertainties for the manufacturing stage, 

followed by the design stage. The tolerances include changes in geometry when the final design is 

manufactured or assembled in production lines. In particular, the material defects are crucial for 

manufacturing composite structures since the misalignment of fibre orientation and the presence of void 

in the matrix influence the overall mechanical properties of composite structures. The operation stage 

has different uncertainties, such as environmental variation and loading condition that are more likely 

associated with structural performance for a product’s service process. Finally, the decay of material 

properties may lead to the efficiency loss of the structural system through the ageing stage. 

 

Figure 2.5: Uncertainties through the entire lifecycle 

Conventional design approaches of optimisation, which are also known as deterministic design, do not 

explain any uncertainties in the structural system. These design approaches may provide an over-

optimised design. The design may not give adequate capability close or out of the design points despite 

presenting perfect performance at the design points. In contrast, modern probabilistic design approaches 

of optimisation account for these uncertainties that can be expected for the entire lifecycle. This 

consideration ensures that the design approaches can predict how much the uncertainties affect the 

design objectives, and offer more statistically reliable and robust designs. There are two analysis types 

to assess the uncertainties associated with the whole lifecycle, such as reliability and robustness (44). 

In Reliability-Based Design Optimisation (RBDO), reliability analysis is an essential process to predict 
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the probability of failure caused by the design uncertainties. In general, a structural design produced by 

a deterministic design approach based on safety factors shows a larger probability of failure compared 

to a probabilistic design considering the uncertainties. This ensures that the reliable design provides a 

certain confidence level, not violating a prescribed probabilistic constraint across the whole lifecycle 

since RBDO examines the effect of the uncertainties. Conversely, Robust Design Optimisation (RDO) 

carries robustness analysis during the process to calculate the statistical variance of the structural 

performance. This analysis enables the optimisation process to minimise the sensitivity of the objective 

function concerning arbitrary changes in the random variable in the system. These two analyses will be 

discussed further in the following sections. 

 

2.3.1 Reliability Analysis 

Reliability analysis is one of the approaches to consider uncertainties across the entire lifecycle of 

products (45). It becomes more significant in the field of structural design because it provides many 

benefits. This analysis mainly allows engineers to realise how the uncertainties in different design 

variables impact the probability of failure of their structures. At the same time, it enables designers to 

understand where the most critical design region is in the whole design space and improve the level of 

reliability in the system. There are two types of methods depending on how they predict the structure’s 

reliability, such as statistical methods and non-statistical methods (46). Monte Carlo Simulation (MCS) 

represents the statistical methods, whilst the First-Order Reliability Method (FORM) and the Second-

Order Reliability Method (SORM) are included in the non-statistical methods. The FORM and SORM 

utilise the first-order and second-order Taylor series expansions, respectively, to approximate a limit 

state function.  

 

2.3.1.1 Theory 

Reliability analysis considers the uncertainties of design variables and computes the probability of 

structural failure corresponding to the reliability index. The reliability analysis evaluates whether a limit 

state function that is a prescribed constraint exceeds a specific value. The limit state function means 

that a structure cannot carry out its design purpose when the structure experiences more than a particular 

allowable limitation. If the probability of failure regarding the limit state function is greater than the 

specific required value, the structure does not provide acceptable confidence associated with the 

reliability level. The limit state can be classified by two sorts, including ultimate and serviceability limit 

states (8). 
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The ultimate limit state is represented by the phenomenon of structural collapse such as corrosion, 

fatigue, deterioration, plastic mechanism, progressive collapse, fracture, etc. These limit states have a 

very low possibility of occurrence and dangerous consequences. In comparison, the serviceability limit 

state is related to the disruption of structures. For example, there are excessive deflection, excessive 

vibration, drainage, leakage, local damage, etc. Such limit states have a higher possibility of occurrence 

and less harmful consequences. 

In general, the limit state function shows the margin of safety between resistance and the load of 

structures. The limit state function can be defined as 

𝑔(𝑍) = 𝑅(𝑋) − 𝑆(𝑋) (2.6) 

𝑃𝑓 = 𝑃[𝑔(𝑍) < 0] (2.7) 

where 𝑔(𝑍) is the limit state function, 𝑃𝑓 is the probability of failure, 𝑍 is a vector of design variables 

that influence the limit state function, while 𝑋(𝑋 ⊆ 𝑍) is a vector of design variables that affects 𝑅 and 

𝑆, 𝑅 is the resistance and 𝑆 is the loading of the structure.  

If the value of 𝑔(𝑍) is less than zero, the structure is in the failure region. If the value of 𝑔(𝑍) equals 

to zero and is larger than zero, the structure is in the failure surface and the safe region, respectively. 

The reliability index 𝛽 indicating a confidence level not violating the prescribed limit state is expressed 

as  

𝛽 =
𝜇𝑔

𝜎𝑔
 (2.8) 

where 𝜇𝑔 and 𝜎𝑔 are the mean and standard deviation of the limit state function. 

The reliability index is the distance of the mean value of limit state from the safe surface and it is an 

appropriate measurement of reliability. When the limit state function is normally distributed, the 

probability of failure is described as 

𝑃𝑓 = 𝑃{𝑔(𝑍) < 0} = ∫𝑓𝑧(𝑍)𝑑𝑍

0

−∞

= 1 − ϕ(𝛽) = ϕ(−𝛽) (2.9) 

where 𝑓𝑧(𝑍) is the joint probability density function of 𝑍, 𝑃𝑓 are calculated using integrating over the 

failure region (𝑔(𝑍) < 0) , 𝛽  is the reliability index and ϕ(∙)  is the standard normal cumulative 

distribution function. 

All design variables in equation (2.9) are presumed to be independent of each other. It can be 

challenging to calculate the integral in the equation if the failure surface is non-linear or if there are 

many random variables in the limit state function. When the reliability index is calculated, the 
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probability of failure and the probability of success are obtained. There are three numerical methods, 

including Monte Carlo Simulation (MCS), the First-Order Reliability Method (FORM), and the Second-

Order Reliability Method (SORM), that can carry out the reliability analysis. MCS is the most 

straightforward in those three methods and evaluates the limit state function using randomly sampled 

design points from the distribution of the random design variables in the limit state function. In contrast, 

FORM and SORM simplifies the limit state function using the first-order and second-order Taylor series 

expansions, respectively, so that they can approximate the failure surface. Thus, FORM and SORM 

require much shorter calculation time, but they are not accurate compared to MCS. 

 

2.3.1.2 Monte Carlo Simulation (MCS) for Reliability Analysis 

MCS is a simple random sampling method or a statistical trial method based on randomly generated 

sampling sets for design variables (9). It is a powerful mathematical method for specific events that are 

the result of the stochastic process. MCS consists of the creation of random design variables and the 

statistical analysis of their outcomes. When a distribution type for random design variables is 

determined, MCS builds up a sampling set from the determined distribution. Then, MCS runs 

simulations using the created sampling set. There are several parameters for a random sample, such as 

the number of sampling points and distribution type, etc. The basic process of MCS is extended to the 

reliability analysis of structures. Firstly, sampling sets of random design variables are collected using 

the probability density function. Then, the mathematical model of limit-state is set up, and this model 

evaluates failures in the sampled sets. Next, many simulations are conducted using the created sampled 

sets of the random design variables. Finally, the probabilistic characteristics of structural response are 

estimated. 

As can be seen in equation (2.6), the limit state function 𝑔(𝑍) to be evaluated is made up of 𝑅(𝑋) and 

𝑆(𝑋) that usually are Finite Element Model (FEM) or Boundary Element Model (BEM) in the area of 

structural design having unknown probability distributions. If a vector 𝑋 consists of random design 

variables having known probability distributions that affect 𝑆 and 𝑅, the variables in 𝑋 is sampled by 

their probability distributions. Then the outcomes of 𝑆(𝑋) and 𝑅(𝑋) concerning the sampled 𝑋 are 

obtained. This process is continued repeatedly until the probability of distribution of 𝑔(𝑍) is estimated 

precisely. If a total sampling number, 𝑁𝑇𝑜𝑡𝑎𝑙 , for the random design variables in 𝑋  have been 

accomplished, the number of samples for which 𝑔(𝑍𝑖) < 0 or 𝑆(𝑋𝑖) > 𝑅(𝑋𝑖) (𝑖 = 1, 2, … ,𝑁𝑇𝑜𝑡𝑎𝑙) can 

be found, where 𝑋𝑖 and 𝑍𝑖 are the 𝑖𝑡ℎ sample for the random design variables in 𝑋 and 𝑍, respectively. 

This number is called by 𝑁𝐹𝑎𝑖𝑙𝑢𝑟𝑒. When 𝑁𝑇𝑜𝑡𝑎𝑙 simulations are carried out, the probability of failure 

is computed by 
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𝑃𝑓 =
𝑁𝐹𝑎𝑖𝑙𝑢𝑟𝑒
𝑁𝑇𝑜𝑡𝑎𝑙

 (2.10) 

The probability of success, 𝑃𝑠, also known as reliability, can be calculated as 

𝑃𝑠 = 1 − 𝑃𝑓 (2.11) 

MCS is generally used to validate whether different approximation methods, such as FORM and SORM, 

offer acceptable results. This process provides the most accurate estimation through a large number of 

simulations. 

 

2.3.1.3 First-Order Reliability Method (FORM) 

There are several ways to approximate the limit state function using Taylor expansion. FORM starts 

from the First-Order Second Moment (FOSM) method and then it has been developed by Hasofer-Lind 

(HL) method and Hasofer Lind – Rackwitz Fisseler (HF-RF) method (8). HL-RF method, generally 

known as FORM, is used in this work. 

FOSM method, also called the Mean Value FOSM (MVFOSM), makes the functional relations 

straightforward and mitigates the complexities to calculate the probability of failures of structures. The 

meaning of “first-order” is the first-order expansion of the limit state function. Random design variables 

for reliability analysis are defined by the first moment (mean) and second moment (variance).  

In Figure 2.6, the MVFOSM method approximates the limit state function using the first-order Taylor 

series expansion at the mean value. The approximation at the mean value using statistically independent 

variables 𝑋 is expressed as 

𝑔̃(𝑋) = 𝑔(𝜇𝑋) + 𝛻𝑔(𝜇𝑋)
𝑇(𝑋𝑖 − 𝜇𝑋𝑖) (2.12) 

where 𝜇𝑋 = {𝜇𝑥1 , 𝜇𝑥2 ,⋯ , 𝜇𝑥𝑛}
𝑇

, and 𝛻𝑔(𝜇𝑋) = {
𝜕𝑔(𝜇𝑋)

𝜕𝑥1
,
𝜕𝑔(𝜇𝑋)

𝜕𝑥2
, ⋯ ,

𝜕𝑔(𝜇𝑋)

𝜕𝑥𝑛
 }
𝑇

is the gradient of the 

limit-state function. 

The mean value of approximate limit state function 𝑔̃(𝑋) is written as 

𝜇𝑔̃ = 𝐸[𝑔(𝜇𝑋)] = 𝑔(𝜇𝑋) (2.13) 

The standard deviation of the approximate limit-state function is given as 

𝜎𝑔̃ = √𝑉𝑎𝑟[𝑔̃(𝑋)] = √[𝛻𝑔(𝜇𝑋)
𝑇]2𝑉𝑎𝑟(𝑋) = [∑(

𝜕𝑔(𝜇𝑋)

𝜕𝑥𝑖
)
2
𝜎𝑥𝑖
2

𝑛

𝑖=1

]

1/2

 (2.14) 

Finally, the reliability index 𝛽 is calculated as 
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𝛽𝑀𝑉𝐹𝑂𝑆𝑀 =  
𝜇𝑔̃

𝜎𝑔̃
 (2.15) 

As can be seen from equation (2.15), it is the same as equation (2.8) if the limit state function is linear. 

If the limit state function is not linear, the approximated limit state surface is computed by linearising 

the original limit state function at the mean value. 

 

Figure 2.6: Mean Value First-Order Second Moment Method 

The reliability index corresponding to the probability of failure is a mathematical optimisation to search 

for the point on the failure surface, 𝑔(𝑋) = 0, that shows the shortest distance for the origin point to 

the surface in the standard normal distribution. Hasofer and Lind improved MVFOSM by the Hasofer 

and Lind transformation. Here, a vector 𝑋 of random design variables is transformed into the basic 

variables into a set of normalised and independent variables 𝑈 . The standardised form for this 

transformation is defined as 

𝑢𝑖 =  
𝑥𝑖 − 𝜇𝑥𝑖
𝜎𝑥𝑖

  (2.16) 

where 𝜇𝑥𝑖  and 𝜎𝑥𝑖  are the mean value and the standard deviation of 𝑥𝑖 , respectively. The mean and 

standard deviation of 𝑢𝑖 are zero and one (standard normal distribution), respectively. 
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Figure 2.7: Failure surface transformation form 𝑋 -space to 𝑈-space 

Through this formulation, the mean value of original space (𝑋-space) is moved to the origin of standard 

normal space (𝑈-space). The failure surface, 𝑔(𝑋) = 0, in 𝑋-space is transformed to the associated 

failure surface, 𝑔(𝑈) = 0, in 𝑈-space, as illustrated in Figure 2.7. The reliability index, 𝛽, is the shortest 

distance from the origin to the failure surface, 𝑔(𝑈) = 0. 

𝛽 =  min
𝑈∊𝑔(𝑈)=0

(𝑈𝑇𝑈)1/2 (2.17) 

The value of the reliability index is the same with not only the true failure surface but also the tangent 

hyperplane at the design point. The improvement in this Hasofer-Lind iteration method changes the 

expansion location from the mean value to the Most Probable Failure Point (MPP). Let presume the 

limit state function with 𝑛-dimensional normally distributed having random design variables 𝑋. 

𝑔(𝑋) = 𝑔({𝑥1,  … , 𝑥𝑛}
𝑇) = 0 (2.18) 

Based on the formulation of equation (2.16), the limit state function in 𝑋-space is mapped into 𝑈-space. 

𝑔(𝑈) = 𝑔 ({𝜎𝑥1𝑢1 + 𝜇𝑥1 , … , 𝜎𝑥𝑛𝑢𝑛 + 𝜇𝑥𝑛}
𝑇
) = 0 (2.19) 

The first-order Taylor series of expansion of 𝑔(𝑈) at the MPP, 𝑈∗, is expressed as 

𝑔̃(𝑈) = 𝑔(𝑈∗) +∑ 𝜕𝑔(𝑈∗)

𝜕𝑈𝑖
(𝑢𝑖−𝑢𝑖

∗)

𝑛

𝑖=1

 (2.20) 

The shortest distance from the origin to the approximated failure surface in Figure 2.7 is defined as 
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𝑂𝑃∗ = 𝛽 =  
𝑔(𝑈∗) − ∑ 𝜕𝑔(𝑈∗)

𝜕𝑥𝑖
𝜎𝑥𝑖𝑢𝑖

∗𝑛
𝑖=1

√∑ (
𝜕𝑔(𝑈∗)
𝜕𝑥𝑖

𝜎𝑥𝑖)
2

𝑛
𝑖=1

 
(2.21) 

The direction cosine, which is called the sensitivity factor, is given as 

𝑐𝑜𝑠𝜃𝑥𝑖 = 𝑐𝑜𝑠𝜃𝑢𝑖 = −

𝜕𝑔(𝑈∗)
𝜕𝑈𝑖

|𝛻𝑔(𝑈∗)|
=

𝜕𝑔(𝑋∗)
𝜕𝑥𝑖

𝜎𝑥𝑖

√∑ (
𝜕𝑔(𝑈∗)
𝜕𝑥𝑖

𝜎𝑥𝑖)
2

𝑛
𝑖=1

= 𝛼𝑖 (2.22) 

The coordinates of the next point in 𝑈-space are calculated as 

𝑢𝑖 =  
𝑥𝑖 − 𝜇𝑥𝑖
𝜎𝑥𝑖

= 𝑂𝑃∗𝑐𝑜𝑠𝜃𝑥𝑖 = 𝛽𝑐𝑜𝑠𝜃𝑥𝑖 (2.23) 

The corresponding coordinate in 𝑋-space is determined by 

𝑥𝑖
∗ = 𝜇𝑥𝑖 + 𝛽𝜎𝑥𝑖𝑐𝑜𝑠𝜃𝑥𝑖 (2.24) 

The procedure of the Hasofer-Lind iteration method is shown in Figure 2.8. 

 

Figure 2.8: Procedure of the Hasofer-Lind iteration method 
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In the Hasofer-Lind method, random design variables should be represented as normally distributed. If 

the random design variables are not normally distributed, an additional transformation should be 

considered to obtain their normal distribution. Rackwitz and Fiessler proposed the transformation, and 

this advanced method is called the Hasofer Lind-Rackwitz Fiessler (HL-RF) method. Once the 

distribution of design variables is transformed into a normal distribution, the HF-RF method is identical 

to the HF method, as shown in Figure 2.9. 

 

Figure 2.9: Procedure of the Hasofer Lind-Rackwitx Fiessler method 

 

2.3.1.4 Second-Order Reliability Method (SORM) 

In general, the First-Order Reliability Method (FORM) provides acceptable results when the limit state 

surface has only one shortest point, and it is linear near the design point. If the failure surface shows 

high non-linearity, the reliability index and the probability of failure estimated using FORM might not 

offer acceptable and accurate results. To deal with this challenge, SORM in Figure 2.10 uses the second-

order Taylor series expansion to obtain a more precise approximation that is able to replace the failure 

surfaces of the original function. 
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Figure 2.10: Second-Order Reliability Method 

The second-order approximation of limit state function, 𝑔(𝑈) = 0, is derived by the second-order 

Taylor series expansion at the Most Probable Failure Point (MPP). 

𝑔̃(𝑈) = 𝑔(𝑈∗) + 𝛻𝑔(𝑈∗)𝑇 (𝑈 − 𝑈∗) +
1

2
(𝑈 − 𝑈∗)𝑇𝛻2𝑔(𝑈∗)(𝑈 − 𝑈∗) (2.25) 

where 𝛻2𝑔(𝑈∗) is the symmetric matrix of the second derivative of the limit state function. 

When the equation (2.25) is divided by  |𝛻𝑔(𝑈∗)| and 𝑔(𝑈∗) is zero, the equation can be expressed by  

𝑔̃(𝑈) = 𝛼𝑇(𝑈 − 𝑈∗) +
1

2
(𝑈 − 𝑈∗)𝑇𝐵(𝑈 − 𝑈∗) (2.26) 

where 𝛼 =
𝛻𝑔(𝑈∗)

|𝛻𝑔(𝑈∗)|
, and  𝐵 =

𝛻2𝑔(𝑈∗)

|𝛻𝑔(𝑈∗)|
 . 

The matrix of 𝐵 is called the Hessian matrix, which is a square matrix of second-order partial derivative 

of the limit state function. This Hessian matrix leads to substantial computational efforts for the 

reliability analysis. An orthogonal matrix 𝐻 is introduced as a form of 𝑌 = 𝐻𝑈 to carry out the rotation 

from the standard normal 𝑈-space to the rotated new standard normal 𝑌-space. The details of the 

orthogonal matrix are found in textbooks regarding the reliability analysis (8). Equation (2.26) in 𝑈-
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space can be transformed to 𝑌-space using the definition of direction cosine and the orthogonal matrix 

𝐻 as following. 

𝑔̃(𝑌) = −𝑦𝑛 + 𝛽 +
1

2
(𝐻−1𝑌 − 𝐻−1𝑌∗)𝐵(𝐻−1𝑌 − 𝐻−1𝑌∗)  (2.27) 

The final matrix in the equation (2.27) can be given using the orthogonal matrix, 𝐻. 

𝑔̃(𝑌) = −𝑦𝑛 + 𝛽 +
1

2
(𝑌 − 𝑌∗)𝐻𝐵𝐻𝑇(𝑌 − 𝑌∗) (2.28) 

𝑦𝑛 = 𝛽 +
1

2
∑𝑘𝑖𝑦′𝑖

2

𝑛−1

𝑖=1

 (2.29) 

where the 𝑘𝑖 indicates the curvature of response surface at the MPP and the major computational effort 

is caused by calculating the second derivatives of limit state function at the MPP.  

In particular, if the Finite Difference Method (FDM) to calculate the gradient of the limit state function 

is considered, a massive computational time might influence the efficiency of reliability analysis. There 

are two methods to compute the probability of failure using SORM: the Breitung formulation, as can 

be seen in equation (2.30) and the Tvedt’s formulation (8,9). 

𝑃𝑓 = 𝜙(−𝛽)∏ (1 + 𝑘𝑗𝛽)
−1/2𝑛−1

𝑗=1
  (2.30) 

 

Figure 2.11: Procedure of the Second-Order Reliability Method 
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2.3.2 Robustness Analysis 

The concept of robustness is utilised to quantify the quality of product in manufacturing engineering. 

When this concept incorporates into the deterministic optimisation process, it ensures that the optimal 

solution is a robust design. The variation during operating or service condition causes the unpredicted 

performance deviation in an initial design. This unexpected deviation may cause loss of structures’ 

quality as well as increase different costs for monitoring, inspection, repairs and maintenance. The 

robustness analysis has drawn attention in structural design to address the quality loss and operational 

cost rise. The most straightforward way is to decrease or eliminate the scatter of the input parameter, 

but it is not feasible. The other way is to produce structures that are less sensitive to the variation of 

input parameters.  

 

2.3.2.1 Theory 

The fundamental of robustness in the structural design is that the optimal design is determined not only 

by the minimum mean value of objective function but also by how much the structural response is 

scattered to the mean value (3). The global optimal design in deterministic optimisation may be more 

sensitive than a local design, although the optimisation process finds the minimum mean value of the 

objective function.  

Figure 2.12 highlights the concept of robustness using the distribution of objective function. The figure 

shows two different distributions concerning the same objective function that has to be minimised 

through the optimisation process. Each curve illustrates the frequency of the objective function, 

considering the random perturbation to its mean value.  In the figure, two curves that refer to different 

designs have their mean and variance values. Even though “Design A” presents a smaller mean value 

of the objective function, its dispersion level to the mean value is larger than “Design B”. In comparison, 

the mean value of “Design B” is greater than “Design A” while “Design B” offers more narrow 

distribution under the perturbation to the mean value. It is not surprising to note that “Design B” is a 

much more robust design than “Design A” because “Design B” has smaller sensitivity to variations. 

In Figure 2.13, it is made clear that the robust design point may not be consistent with the global optimal 

value but the local optimal value. However, since the concept of robustness care about the development 

of insensitive design, the local value can be a robust solution when this solution is the most stable 

solution to the variation of the design parameters. It is necessary that the designer assures the robustness 

of the solution, which is not sensitive to the deviation of the design parameters. In that sense, well‐

optimised design solutions provide structures that minimise operating costs. These structures perform 

consistently with unexpected variations during the overall service lifecycle. Therefore, the robustness 
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of structures should be considered in the design parameter stages to reduce the dispersion of structural 

performance. 

 

Figure 2.12: Concept of robustness 

 

Figure 2.13: Difference between global optimum and robust optimum 
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2.3.2.2 Monte Carlo Simulation (MCS) for Robustness Analysis 

MCS can evaluate not only reliability analysis but also robustness analysis. As discussed in the previous 

section 2.3.1.2, this method is an uncertainty propagation method that explicitly shows how 

uncertainties in input parameters influence results. If a probability distribution specifies the 

uncertainties in design parameters, MCS predicts the statistical characteristics of results propagated by 

the uncertainties. A large number of simulations regarding all uncertain parameters sampled are 

conducted to obtain these statistical results. Each simulation result during MCS is stored and then put 

together as a form of probability distribution (19).  

Contrary to the reliability analysis evaluating the limit state function, the robustness analysis requires 

the mean and variance of the response function. To assess the robustness, random sampling sets 

regarding input design parameters, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑, are created and these sets are defined by their mean and 

standard deviation. Then, the sampling sets are simulated and collected to evaluate the response 

functions. After that, the expected mean values and variances are obtained using equations (2.31) and 

(2.32), respectively. 

𝜇𝑋 = 𝐸[𝑋] =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑
∑ 𝑓𝑖

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑖=1

 (2.31) 

𝜎𝑋
2 = 𝑉[𝑋] = 𝐸[(𝑋 − 𝜇𝑋)

2] =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑
∑ (𝑓𝑖 − 𝜇𝑋)

2

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑖=1

 (2.32) 

where 𝜇𝑋 and 𝜎𝑋
2 are the mean and standard deviation of the response function 𝑓. 

In MCS, the greater number of points are sampled, the more accurate solutions are achieved. However, 

a large number of sampling points to improve the accuracy of solutions leads to substantial 

computational costs that are necessary to evaluate the response function. This also means that MCS 

requires many simulations when the dimension of the entire design spaces is large-scale. 
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3 Multi-Fidelity Models 

As the size of the engineering problem becomes more complex and demanding, multi-fidelity models 

have been utilised in optimisation in the last three decades. Mainly, probabilistic design optimisation 

requires a large number of computational simulations to evaluate how uncertainties influence outputs. 

These simulations in structural optimisation, usually based on Finite Element Methods (FEM) or 

Boundary Element Methods (BEM), are too computationally expensive to use directly for the entire 

optimisation process. The models for structural optimisation can be defined by two types depending on 

how accurate they are, such as High-Fidelity Model (HFM) and Low-Fidelity Model (LFM) (47). The 

HFM having all system information provides acceptable accuracy, but these models are 

computationally expensive. The LFM is computationally economical but less accurate compared to the 

HFM. This LFM shows a certain level of similarity regarding the response surfaces of the HFM. Multi-

fidelity models combine these two models using appropriate methods relying on the characteristic of 

problems. The primary aim of multi-fidelity modelling is to offer not only solutions as accurate as those 

of the HFM but also a lot more economic computational cost. Hence, the multi-fidelity models involve 

the trade-offs between solution accuracy and computation time savings.  

As shown in Figure 3.1, the fidelity is defined in different ways of how the HFM can be simplified by 

the LFM, such as reduced dimensionality, linearisation, partial convergence, simple geometry, 

simplified physics, lower refinement, etc (23). They are generally categorised into three types 

depending on the nature of each fidelity. Physics describes a difference in how the physical model is 

presumed and implemented. In the beam problem in structural mechanics, for instance, Euler-Bernoulli 

beam theory can be a physical model of the LFM, whereas Timoshenko beam theory can be that of the 

HFM. Numerical accuracy refers to how a defined physical model is calculated using different 

numerical solvers, such as a linear solver or a non-linear solver in Computational Fluid Dynamics 

(CFD). Numerical accuracy also represents different levels of discretisation or refinement that can be 

seen by a model with a fine mesh and a model with a coarse mesh in FEM models. Finally, when 

experiments are carried out as the HFM, computational simulations take the place of the LFM.  
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The multi-fidelity models constructed by the combination of different fidelity models commonly 

involve creating surrogate models to obtain more computational benefits. The surrogate models are 

sorts of approximation that has an explicit form between design input parameters and output parameters. 

These models have been widely used to deal with computational challenges through creating a black-

box model of a complex system (10). The multi-fidelity models can be constructed without the surrogate 

models; however, the computational cost caused by the use of the HFM and the LFM directly for the 

optimisation process may still lead to computational burden. These multi-fidelity models based on the 

surrogate models are constructed by deterministic and non-deterministic methods based on how to 

estimate the parameters to build the surrogate models. The deterministic methods estimate the 

coefficients of presumed basis functions that minimise the error between sampling design points and 

the functions. These deterministic methods build up the surrogate models of HFM and LFM and 

compare the response surfaces between them. In comparison, the non-deterministic methods consider 

the uncertainty of either the functions or coefficients and minimise the uncertainty using the sampling 

design points. They employ a statistical inference method, such as the Bayesian framework or Gaussian 

Process (GP), to hold the uncertainties in parameters without using the expensive standard Monte Carlo 

Simulations (23).  

The application area of multi-fidelity models has been broadened due to its inheritance of computational 

efficiency. The vast majority of the application area has been deterministic optimisation and uncertainty 

quantification (48). It has scarcely carried out probabilistic optimisation considering design uncertainty 

except for simple structure design problems covering a small design space. In specific, the multi-fidelity 

models are utilised in different structural mechanics problems, and the primary fidelities are the 

structure’s dimensionality and the discretisation’s level. 

 

Figure 3.1: Examples of fidelity between HFM and LFM 

This chapter will discuss the fundamental theory of surrogate modelling to construct multi-fidelity 

models such as different sampling techniques, surrogate modelling methods, validation methods and 

model improvements using sequential design. The probabilistic optimisation of a simple structure will 
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be introduced using the surrogate models. At the end of this chapter, the formulation of different multi-

fidelity methods will be discussed, such as response correction methods, space mapping and Auto-

Regressive (AR). 

 

3.1 Surrogate Model 

Computation-intensive design problems in engineering structures cause the enormous computational 

cost to run. This computational cost is still challenging despite constant development in computing 

technologies because the complexity of computer models created using the Finite Element Method 

(FEM) is also increasing. This high cost can be addressed using high-performance computing. However, 

these design problems based on complex computer models require a large number of calculations, often 

taking from hours to even days to run one single simulation (21). Such problems encompass different 

engineering fields, including structural design optimisation. In particular, Monte Carlo Simulations 

(MCS) to carry reliability analysis and robustness analysis require thousands of simulations to predict 

the statistical characteristics correctly. It is not possible to use the computer models directly for running 

the simulations needed if a single simulation requires more than hours to run. 

Surrogate modelling is a method to improve the overall computation efficiency and reach an acceptable 

accuracy compared with complex computer models. Surrogate models replace the computationally 

expensive models at the same time provide an excellent understanding of the relationship between input 

design parameters and output system performance. The number of input-output data from the complex 

computer models and where they are collected in the entire design space are crucial to obtain the 

acceptable accuracy of the surrogate model and the computation efficiency to build the model. Surrogate 

models can support different engineering area, as highlighted in Figure 3.2 (22). They approximate the 

complex computer models across the whole design space to reduce the computational cost. Such models 

enable engineers to explore the design space as well as improve the knowledge regarding the design 

problems. Finally, the surrogate models can be utilised to find optimal solutions for different 

optimisation problems that require computationally extensive efforts. In particular, the surrogate models 

can be used to take the place of the computationally expensive FEM models for probabilistic 

applications that demand a vast number of simulations to consider design uncertainties.  
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Figure 3.2: Application area of surrogate model 

There are several common types of surrogate modelling, including Artificial Neural Networks (ANN), 

Response Surface Method (RSM) and Gaussian Process (GP) (12). The number of design points to 

build the surrogate models depends on the dimension of the design space. If a design problem covers 

many design variables, the computational cost to train the surrogate model using the FEM simulations 

also rises dramatically. 

 

3.1.1 Sampling Techniques 

Sampling techniques are important to create a surrogate model efficiently that represents an original 

model.  If these sampling techniques choose appropriate design points in the design space, the surrogate 

model is trained accurately, and it replaces the broad range of characteristics of the original model. The 

input matrix 𝑋 is the sampled design points that are used to train a surrogate model. The matrix 𝑌 is the 

output corresponding to these design points. These two matrices can be expressed as: 

𝑋 = [

x1
x2
⋮
x𝑛

] = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21 𝑥22 ⋯ 𝑥2𝑚
⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] (3.1) 

𝑌 = [

y1
y2
⋮
y𝑛

] = [
𝑦(x1)
⋮

𝑦(x𝑛)
] (3.2) 

where 𝑛 and 𝑚 are the number of sampled design points and the design space dimension, respectively. 

If the system has one output value from the expensive model, the output 𝑌 will be a (𝑛 × 1) vector. If 

the system has 𝑝 output values, the output 𝑌 will be a (𝑛 × 𝑝) matrix. 
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The quality of a surrogate model relies on how to sample the design points to set up the input matrix 𝑋. 

Many sampling methods have been developed to explore the entire design space using space-filling 

approaches. These approaches aim to collect the design points as evenly distributed as possible while 

minimising the distance or cluster between different design points. Design of Experiments (DOE) is a 

method to determine the location of the design points that significantly influences the surrogate model’s 

accuracy. DOE is a process having the general target of maximising the amount of information obtained 

from a limited number of sampling points. Such sampling points estimate performance variability 

caused by changes in design input parameters. When DOE build a design matrix with input and output 

data, the design matrix indicates the values of uncertain design parameters. The vast majority of these 

sampling techniques are simple random sampling, Optimal Latin Hypercube Sampling (OLHS) and 

Sobol sampling (49). Each technique has its advantages and disadvantages in terms of space-filling 

capability, computational time and complication. These methods are introduced and discussed as 

follows. 

 

3.1.1.1 Simple Random Sampling 

Simple random sampling is the basic sampling techniques where the design points to be sampled are 

selected from a specific design range or a probability distribution. This is the most straightforward 

sampling method compared to different ones. With this sampling method, each design point is selected 

using a pseudo-random number generator, and every possible design point has the same chance to be 

sampled. However, this sampling method using the random nature can lead to irregular dispersion in 

the design space, such as clusters of design points and far distance between different design points.  

Figure 3.3 shows the uneven dispersion of design points caused by simple random sampling. This can 

result in poor accuracy of the surrogate model because the design points cannot cover the design space 

adequately. The surrogate model can provide good accuracy in some areas having many design points 

while offering inaccurate solutions in other areas having few design points. 
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Figure 3.3: Distribution of design points using simple random sampling 

 

3.1.1.2 Optimal Latin Hypercube Sampling (OLHS) 

OLHS is a more advanced sampling technique that comes from Latin Hypercube Sampling (LHS). LHS 

denotes a multivariable sampling method that confirms a non-overlapping design. It is an experimental 

design that effectively selects the design points in the whole design space. In this method, the 

distribution for each design variable is divided into an equal interval of probability without overlapping. 

Each equally divided probability interval has only one design point. These design points in every 

interval are randomly combined with rearranging them for each point with the different design points. 

The regularity of uniform probability intervals guarantees that each input design parameter has every 

portion of its design space. It reduces both response sensitivities and expensive computational cost to 

sample the design points. The disadvantages of LHS are that the design points are not reproducible 

since they are combined at random, and the small number of design points increases the possibility of 

dropping some areas in the whole design space. 

OLHS also breaks down the design space with the uniform interval of probability, and these design 

points in each interval are combined. However, it does not randomly combine the design points like 

LHS, but an optimisation process is adopted to an initial matrix created by LHS. A new matrix is 

obtained by swapping the order of design points in a column of the design matrix, and then the overall 

distance between the design points is evaluated. This optimisation process aims to create a matrix where 

the design points are scattered as evenly as possible within the design space defined by the lower and 

upper ranges. There are many different optimality criteria to reach such evenly spread design points. 
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One of these methods is the max-min distance criteria that involves maximising the minimum distance 

between other design points as expressed in equations (3.3) and (3.4).  

(max(sum( min
1≤𝑖,𝑗≤𝑛,𝑖≠𝑗

𝑑(xi, xj)))) (3.3) 

where 𝑑(xi, xj) is the distance between two different design points xi and xj, 𝑛 is the required number 

of design points. 

𝑑(xi, xj) = 𝑑𝑖𝑗 = [∑|x𝑖𝑘 − x𝑗𝑘|
2

𝑚

𝑘=1

]

1
2

     𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 (3.4) 

where 𝑚 is the number of design variables 

Equation (3.4) evaluates all design points 𝑖, 𝑗 = 1, 2, … , 𝑛 except 𝑖 ≠ 𝑗 and delivers the distance matrix 

𝑑 for the optimised design matrix. OLHS provides an excellent opportunity to train the surrogate model 

using the outstanding space-filling capability. As illustrated in Figure 3.4 and Figure 3.5, OLHS collects 

the design points in the entire design space more evenly distributed than LHS. 

 

Figure 3.4: Distribution of design points using Latin hypercube sampling 
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Figure 3.5: Distribution of design points using optimal Latin hypercube sampling 

 

3.1.1.3 Sobol Sampling  

Sobol sampling, a quasi-random sequence, provides more uniformly distributed design points than 

simple random sampling and Latin hypercube sampling methods. This sampling method selects the 

design points under consideration of earlier sampled design points whilst evading the presence of 

clusters and large spaces between different design points. The method allows surrogate models to offer 

a good quality of accuracy using a smaller number of design points than simple random sampling and 

OLHS. Such Sobol sequence consists of considerably complicated mathematical formulations 

compared with different sampling methods while providing more robust results having a smaller 

variation (49). 

 

3.1.2 Surrogate Modelling Methods 

Surrogate models aim to deal with a large number of computational simulations that evaluate objective 

functions and constraints for different optimisation problems. These models allow to carry out these 

optimisation problems using affordable computational cost. Such surrogate models are created by 

observations, such as experiments or numerical simulations. They have an explicit mathematical form 

concerning the relationship between input and output parameters.  There are several different methods 

to construct the surrogate models. This section will introduce two of the most typical methods that work 

with computer experiments, such as Artificial Neural Networks (ANN) and Gaussian Process (GP). 
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3.1.2.1 Artificial Neural Networks (ANN) 

ANN is a network of simple elements that are called neurons. These neurons take input data and change 

their activations according to the input data. Then they produce output associated with the input data 

and activation. There are three components to ANN, such as neurons, weight and activation function 

(50). In particular, Radial Basis Functions (RBF), a type of ANN, uses radial units as activation function. 

The output of this network is a linear combination of input and neuron parameters. This network 

architecture comprises three layers, including an input layer, a hidden layer having the RBF activation 

function and an output layer. The input layer is the vector of real numbers x ∈ 𝑅𝑛 , and the output layer 

is the scalar function of the input vector. The basic idea of the RBF is that these functions depending 

on the distance from a centre vector are radially symmetric. One of the advantages of the RBF is that 

the interpolation problem is not sensitive to the dimension of design space in which the data points lie. 

This enables multivariable functions to be approximated using a linear combination of single-variable 

functions (51). All inputs are connected to each hidden layer in the basic form, as shown in Figure 3.6. 

The input parameter is used as input data to RBF, and the output data of this network is a linear 

combination of RBF' outcomes. 

 

Figure 3.6: Basic form of the radial basis functions 

A basic RBF model is mathematically expressed as  

ℎ(x) = ∑𝑤𝑛 ∙ 𝑒𝑥𝑝(−𝛾‖x − x𝑛‖
2)

𝑁

𝑛=1

 (3.5) 

where 𝑁 is the number of neurons in the hidden layer. ℎ(x) and 𝑤𝑛 are hypothesis and the weight of 

neuron 𝑖, respectively. ‖x − x𝑛‖ is the radial distance between input and centre point of neuron 𝑛, the 

norm is typically calculated by the Euclidean distance. 
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As shown in equation (3.5), each pair (xn, yn) in the design space influences ℎ(x) based on the radial 

distance ‖x − xi‖. The learning algorithm is to find the weights 𝑤1, 𝑤2, … , 𝑤𝑛 from the equation using 

training data 𝐷 = (x1, y1), (x2, y2),… , (xn, yn). These weights minimise errors between ℎ(xn) and yn. 

Table 3.1 shows that the basis function in the equation (3.5), 𝑒𝑥𝑝(−𝛾‖x − xn‖
2), can be changed into 

different basis functions 𝜙 (52). 

Table 3.1: Typical radial basis functions 

Name Basis function 

Linear 𝜙 = ‖x − x𝑛‖ 

Cubic 𝜙 = ‖x − x𝑛‖
3 

Thin-plate spline 𝜙 = ‖x − x𝑛‖
2 ln(𝛾‖x − x𝑛‖) 

Gaussian 𝜙 = 𝑒𝑥𝑝(−𝛾‖x − x𝑛‖
2) 

Multi-quadric 𝜙 = √‖x − x𝑛‖
2 + 𝛾2 

Inverse multi-quadric 𝜙 =
1

√‖x − x𝑛‖
2 + 𝛾2

 

 

Equation (3.5) consists of 𝑁 equations in 𝑁 unknowns; thus, the solution can be calculated by 

[
𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥1‖

2) ⋯ 𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥𝑁‖
2)

⋮ ⋱ ⋮
𝑒𝑥𝑝(−𝛾‖𝑥𝑁 − 𝑥1‖

2) ⋯ 𝑒𝑥𝑝(−𝛾‖𝑥𝑁 − 𝑥𝑁‖
2)
] [

𝑤1
⋮
𝑤𝑁
] = [

𝑦1
⋮
𝑦𝑁
] (3.6) 

[

𝑤1
⋮
𝑤𝑁
] = [

𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥1‖
2) ⋯ 𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥𝑁‖

2)
⋮ ⋱ ⋮

𝑒𝑥𝑝(−𝛾‖𝑥𝑁 − 𝑥1‖
2) ⋯ 𝑒𝑥𝑝(−𝛾‖𝑥𝑁 − 𝑥𝑁‖

2)
]

−1

[

𝑦1
⋮
𝑦𝑁
] (3.7) 

𝑊 = 𝜙−1𝑌 (3.8) 

where 𝜙 is the matrix of the basis function. 

When the vector of weights is obtained, the surrogate model created using RBF can represent the 

complex computer model and provide outputs concerning different input data that are not used to train 

the model.  

As can be seen in equations (3.6) and (3.7), the value of 𝛾 in the Gaussian basis function affects the 

outcomes of the surrogate model. When the value of 𝛾 is small, the Gaussian function has a wide 

distribution, whereas the function having a large value of 𝛾 has a narrow distribution. This 𝛾 makes a 

significant difference depending on where the design points are and how sparse they are between 

different design points. Figure 3.7 and Figure 3.8 display how the value of 𝛾 influences interpolating 

with Gaussian functions (53). For example, if three points are selected from the red curve in Figure 3.7, 

the total contribution of the three interpolations passes precisely through the points. However, the small 

grey curves are the contribution according to each of them. The red curve is determined by adding all 

multiplication, which are weight 𝑤𝑛  and corresponding Gaussian 𝑒𝑥𝑝(−𝛾‖x − x𝑛‖
2) together. This 



3.1 Surrogate Model 

Chapter 3 59 

curve gives correctly the output data, such as 𝑦1, 𝑦2 and 𝑦3. This width appointed by the small value of 

𝛾 ensures a successful interpolation that provides a reasonable prediction between two different points. 

In contrast, the large value of 𝛾 leads to an incomplete interpolation between different points because 

each curve drops rapidly, although the red curve in Figure 3.8 gives the correct output data at the 

selected points. However, the interpolation of three grey curves is inferior enough not to deliver a good 

prediction between different points due to the narrow distribution. The two figures show that the value 

of 𝛾 matters about the distance between the points sampled because that it affects the interpolation. 

 

Figure 3.7: RBF with a small value of  𝛾 

 

Figure 3.8: RBF with a large value of 𝛾 
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3.1.2.2 Gaussian Process (GP) 

GP regression describes a supervised learning problem that both training and testing data sets consist 

of input and output pairs of observations 𝐷 = {xi, yi} =  (x1, y1), (x2, y2), … , (xn, yn).  GP defines a 

collection of random variables that are a finite number of which have a joint Gaussian distribution (54). 

Such GP is expressed using its mean function and covariance function 

𝜇(x) = 𝐸[𝑓(x)] (3.9) 

𝑘(x, x′) = 𝐸[(𝑓(x) − 𝜇(x))(𝑓(x′) − 𝜇(x′))] (3.10) 

where 𝜇(x) and 𝑘(x, x′) are the mean function and the covariance function, respectively. 𝑓(x) is a 

Gaussian process written as 𝑓(x) ~ 𝐺𝑃(𝜇(x), 𝑘(x, x′) ) 

The definition of GP requires consistency, which is also called the marginalisation property. This 

property explains that if GP states (𝑦1, 𝑦2) ~ 𝑁(𝜇, 𝜎), it also has to state 𝑦1 ~ 𝑁(𝜇1, 𝜎11 ) where 𝜎11 is 

the related submatrix of 𝜎. This safeguards the examination of a greater set of variables does not affect 

the distribution of the subset.  

The covariance function 𝑘(x, x′) is a positive definite kernel that represents the dependence structure of 

GP. This function characterises the covariance between different random variables. The covariance 

matrix  𝑐𝑜𝑣(𝑓(x), 𝑓(x′))  based on the squared exponential covariance function that is a popular 

covariance function is written as 

𝑐𝑜𝑣(𝑓(x), 𝑓(x′)) = 𝑘(x, x′) = 𝑒𝑥𝑝 (−
1

2
|x − x′|2) (3.11) 

where 𝑓(x) and 𝑓(x′) are GP concerning x and x′, respectively. |x − x′| stands for the Euclidean norm 

between x and x′. 

It should be noted that a function of the input data defines the covariance between the output data of 

GP regression. This covariance in equation (3.11) is nearly unity between the input data in close distance 

and drops when the distance goes far. If the term of |x − x′| in the equation is replaced by |x − x′|/𝜃 

for a positive characteristic length-scale 𝜃 that can be assumed by the distance to move in the input 

space before the function value can change considerably, the length-scale can be a parameter to control 

the oscillation frequencies of the GP regression model. Also, the process variance 𝜎2 of the random 

function can be added to control the range of variation of the model. Finally, the covariance matrix 

based on the squared exponential covariance function can be expressed by equation (3.12). The length 

scale, also known as hyperparameters, should be optimised because they are essential to creating an 

excellent surrogate model using GP. The process to find these optimal values are called hyperparameter 

estimation. 
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𝑐𝑜𝑣(𝑓(x), 𝑓(x′)) = 𝜎2𝑘(θ, x, x′) = 𝜎2𝑒𝑥𝑝 (−
1

2𝜃2
|x − x′|2) (3.12) 

When the observations are noise-free, {(x𝑖, y𝑖)|𝑖 = 1,… , 𝑛}, the training data provides the function 

information to be incorporated in the GP regression model. The joint distribution of the training output 

data sets 𝑌 and the test output data sets 𝑌∗ based on the prior is expressed as 

[
𝑌
𝑌∗
] ~ 𝑁 (0, [

𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) (3.13) 

where 𝐾(𝑋, 𝑋∗) is the (𝑛 × 𝑛∗) covariance matrix consisting of all combinations of 𝑛 training data 

points and 𝑛∗ testing data points. Similarly, 𝐾(𝑋, 𝑋), 𝐾(𝑋∗, 𝑋) and 𝐾(𝑋∗, 𝑋∗) denotes the covariance 

matrixes of their components. 

The prior appoints an evaluation to specify pairwise correlation between different input data points and 

manifests prior knowledge on the characteristics of the function to be estimated. This joint prior 

distribution should be defined to accommodate the function along with the observed design data points 

so that the posterior distribution is obtained over the function. This posterior distribution corresponds 

to conditioning the joint Gaussian prior distribution on the design data points, and it can be given as 

𝑌∗|𝑋∗, 𝑋, 𝑌 ~ 𝑁(𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)
−1𝑌,𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)

−1𝐾(𝑋, 𝑋∗)) (3.14) 

New output data 𝑌∗  concerning testing input data points 𝑋∗  can be taken from the joint posterior 

distribution using the mean and covariance matrix. This conditional distribution provides the predictive 

equations for the GP regression model as 

𝑝(𝑌∗| 𝑋, 𝑌, 𝑋∗) =  𝑁(𝑌∗|𝜇∗(𝑋∗), 𝜎∗
2(𝑋∗)) (3.15) 

𝜇∗(𝑋∗) =  𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)
−1𝑌 (3.16) 

𝜎∗
2(𝑋∗) =  𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)

−1𝐾(𝑋∗, 𝑋)
𝑇 (3.17) 

Predictions are estimated using the posterior mean 𝜇∗ , while the variance associated with these 

predictions is computed using the posterior covariance 𝜎∗
2. 

In order for the GP regression model to predict the response at new testing points 𝑋∗ , the 

hyperparameters of the length-scale 𝜃 and the process variance 𝜎2 in equation (3.12) have to be found 

appropriately. Different methods to optimise these parameters, such as maximum likelihood estimation, 

has been developed in the past (54). The maximum likelihood estimation used here is a popular method 

to estimate the parameters, and the maximum log-likelihood of the GP regression model can be 

expressed by 
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log 𝑝(𝑌|𝑋) = −
1

2
log|𝐾| −

1

2
𝑌𝑇𝐾−1𝑌 −

𝑛

2
log 2𝜋 (3.18) 

where 𝐾 is 𝐾(𝑋, 𝑋) and 𝑛 is the number of training data points. 

  

3.1.3 Validation of Surrogate Models 

When a surrogate model is constructed using ANN or GP, the surrogate models should be validated 

whether it provides not only the computational efficiency but also accurate solutions. There are two 

popular validation methods to evaluate the created surrogate model, including the separation and cross-

validation methods (55). As shown in Figure 3.9, the separation method requires two different datasets, 

training and testing datasets, which are determined using sampling techniques, such as simple random 

sampling, optimal Latin hypercube sampling, etc. The training data set is to create the surrogate model 

using global approximation methods, such as ANN and GP.  Once the surrogate model is constructed, 

the testing dataset assesses the surrogate model's accuracy by comparing output values between the 

original model and the surrogate model. The testing dataset is a hidden dataset that is considered only 

once, and this dataset should not be available until the surrogate model is created using the training 

dataset. This describes that the testing dataset is not considered in the data training process creating the 

surrogate model.  

In contrast to the separation method, the cross-validation method consists of different phases. Each 

phase subdivides a sampled dataset into the training dataset and the testing dataset. Then the surrogate 

model created using the training dataset is validated using the testing dataset. This error analysis is also 

called the leave-one-out cross-validation method since each phase requires at least a single design point 

in the testing dataset. The more points are added to each cross-validation phase, the more significant 

time is taken to validate the model. Figure 3.10 shows the general phase of the cross-validation method. 

 

Figure 3.9: Separation method 
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Figure 3.10: Cross-validation method 

The differences measured by these two validation methods can be quantified using proper error analysis. 

There are many error analysis types, such as average, maximum, root mean square and R-squared error 

analyses. The root mean square error analysis used here calculates the squared differences between the 

actual output value from the original model and the predicted output value from the surrogate model. 

These squared differences are normalised using the difference between the maximum and minimum 

actual output values in the design range. The root mean squared error is computed as 

𝐸𝑟𝑟𝑜𝑟 =  
√∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑝𝑢𝑡 )2𝑛

𝑘=1
𝑛

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑝𝑢𝑡
 

(3.19) 

where 𝑛 is the number of testing design points. 

 

3.1.4 Sequential Design 

The computational time to obtain the actual output values corresponding to the sample design points 

takes an enormous contribution to constructing the surrogate model. A sequential sampling process 

enables designers to improve the accuracy of approximation as well as computational efficiency. As 

shown in Figure 3.11, this sampling process aims to add more sampling points to the surrogate 

modelling process to advance the quality of the training dataset (56). The sequential sampling method 

begins from the initial sampling set to initialise the surrogate modelling process that is collected by a 

sampling technique. Then this method selects additional sampling points for this initial set using the 

max-min scaled distance approach. This approach collects new sampling points that maximise the 
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minimum distance between two different sampling points in the following sampling set. When the 

accuracy of the surrogate model using the updated training dataset has satisfied the required level, the 

iterative sampling process can be terminated. Unless the process reaches the specific accuracy, the 

process carries on using more new sampling points until it fulfils the tolerance requirement. In this 

manner, the sequential design ensures that the surrogate model having an acceptable accuracy can be 

created using more computationally efficient than different sampling approaches. 

 

Figure 3.11: Sampling procedure for sequential design 

 

3.1.5 Numerical Example - Surrogate Modelling-Based Probabilistic 

Optimisation 

In this numerical example, Reliability-Based Design Optimisation (RBDO), one type of probabilistic 

optimisation method, is carried out for the isotropic steel plate's design. This example clearly shows 

how the surrogate models are utilised in the probabilistic optimisation process. The isotropic steel drain 

cover illustrated in Figure 3.12 was optimised in the RBDO process that considers the uncertainty of 

design variables. The objective of the optimisation problem is to minimise both the drain cover’s cost 

related to its mass and the vertical displacement under the uniformly distributed pressure. The maximum 

stress was defined by a constraint to ensure that the material does not violate half of its yielding point 

for safety. The height of the drain and the thickness of the steel plate are considered design variables. 

The Finite Element Method (FEM) model of the drain cover was created using Abaqus and Isight 

(57,58). The problem definition, including dimension, material properties, loading condition and 

optimisation is described in Table 3.2. It should be noted that the pressure load is defined by the total 
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force that gives the total magnitude of pressure applied over the entire surface. The reliability analysis, 

which is an essential part of RBDO, was conducted using the First-Order Reliability Method (FORM) 

because this method is computationally affordable to the use of the FEM model. This allows seeing 

how the surrogate model obtains many computational gains through the comparison with the use of the 

FEM model. The gradient of the constraint was calculated using the step size of 1 % of the finite 

difference method. The iteration for the Most Probable Point (MPP) stopped until the convergence of 

the reliability index is 0.1 % . The design uncertainties of drain height and plate thickness were 

determined by the coefficient of variations, which are 0.3 and 0.1, respectively. The constraint was 

160.0 𝐺𝑃𝑎 that is half of the yield stress of steel.  

 

Figure 3.12: Isotropic steel drain cover having two design variables 

Table 3.2: Problem definition 

Description  Value 

Material properties Young’s modulus (𝐺𝑃𝑎) 138 

 Poisson’s ratio 0.3 

Dimension Outer dimension (𝑚𝑚) 500 × 500 

 Drain width (𝑚𝑚) 70 

Pressure load Total force distribution (𝑁) 10,000 

Design Variables Drain height (𝑚𝑚) 187 < 𝐿 < 313 

 Plate thickness (𝑚𝑚) 3.75 < 𝑡 < 6.25  
Optimisation method NSGA-II 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: 5 

  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 8 
Constraint Maximum von Mises stress 160.0 𝐺𝑃𝑎 

Objectives Cost (referring the steel price per unit mass) 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

 Maximum out-of-plane displacement (𝑚𝑚) 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
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Figure 3.13 describes the process of how to create the surrogate model for this optimisation problem. 

When Optimal Latin Hypercube Sampling (OLHS) samples enough number of design points in the 

design range, the FEM solver calculates the output values concerning the sampled design points to set 

up the design matrix. In this example, Radial Basis Functions (RBF) with a basis function of Gaussian  

created the surrogate model, and the created surrogate model was evaluated using a testing dataset as 

shown in Table 3.3. The sequential sampling method was also considered to improve the quality of the 

surrogate model.   

Table 3.4 presents the RBDO results using FORM whilst comparing them between the FEM and 

surrogate models. The optimal solutions of each model were selected by the same vertical displacement 

in the Pareto front. The costs of the two selected optimal solutions show nearly similar between the 

FEM model and surrogate model. The reliability index and the probability of failure have also very 

similar results. This means that the surrogate model offers trustworthy accuracy in comparison with the 

FEM model. Most notably, substantial computational gains are achieved by the use of the surrogate 

model. The optimisation time using the FEM model was over 28 hours, whereas that of the surrogate 

model was less than an hour. In the surrogate modelling method, the vast majority of the computational 

cost was caused by the FEM simulation to create the design matrix using the input and output values. 

The actual optimisation time was considerably fast while providing a nearly identical accuracy level to 

the FEM model.  

 

Figure 3.13: Surrogate modelling process 
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Table 3.3: Validation of surrogate model using the separation method 

Testing 

data point 

Drain 

height (𝐿) 
Plate 

thickness (𝑡) 
Output 

Surrogate 

model 

FEM 

model 

Error 

analysis 

(%) 

1 190 5.5 

Cost 124.8 124.8 0.00 

Displacement 

(Dips.) 
2.9 2.9 0.06 

Maximum 

von Mises 

stress (VMS) 

117.0 117.2 0.17 

2 160 6 

Cost 139.4 139.3 0.03 

Disp. 2.2 2.1 0.94 

VMS 98.0 97.5 0.17 

3 182 4.75 

Cost 108.4 108.4 0.00 

Disp. 4.14 4.14 0.00 

VMS 146.6 146.8 0.12 

4 220 3.8 

Cost 84.1 84.2 0.07 

Disp. 6.8 6.7 0.19 

VMS 206.1 193.3 6.64 

5 280 6.2 

Cost 130.7 130.8 0.11 

Disp. 2.6 2.7 0.92 

VMS 107.2 105.1 2.00 

 

Table 3.4: RBDO result comparison between the FEM model and surrogate model 

Parameter 
Model 

FEM model Surrogate model 

Drain height (𝑚𝑚) 175.6 204.6 

Plate thickness (𝑚𝑚) 5.4 5.5 

von Mises stress (𝐺𝑃𝑎) 121.0 120.0 

Cost (£) 122.9 123.2 

Vertical displacement  (𝑚𝑚) 3.0 3.0 

Reliability index 2.0 1.9 

Probability of failure 0.04 0.06 

Computational time (hours) 28:44:08 00:40:41 

 

3.2 Multi-Fidelity Modelling Methods 

The main idea of multi-fidelity modelling is to create a surrogate model that allows Low-Fidelity 

Models (LFM) to replace High-Fidelity Models (HFM) using proper mathematical corrections. These 

correction methods are multiplicative correction, additive correction, comprehensive correction and 

space mapping. The first three methods correct the LFM using the difference or ratio of the response 

surfaces between the HFM and the LFM. Space mapping discovers a transformation function of input 

variables that can be mapped from the high-fidelity space to the low-fidelity space. Conversely, Auto 

Regressive (AR) calculates the correlation between different fidelity models, and then it constructs a 

multi-fidelity model (23,59).  
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The construction of a multi-fidelity model requires data from both the HFM and the LFM. The data can 

be expressed as 

𝑋𝐻𝐹 = 

[
 
 
 
X𝐻𝐹,1
X𝐻𝐹,2
⋮

X𝐻𝐹,𝑛𝐻𝐹]
 
 
 
= [

𝑥𝐻𝐹,11 𝑥𝐻𝐹,12 ⋯ 𝑥𝐻𝐹,1𝑚
𝑥𝐻𝐹,21 𝑥𝐻𝐹,22 ⋯ 𝑥𝐻𝐹,2𝑚
⋮ ⋮ ⋱ ⋮

𝑥𝐻𝐹,𝑛𝐻𝐹1 𝑥𝐻𝐹,𝑛𝐻𝐹2 ⋯ 𝑥𝐻𝐹,𝑛𝐻𝐹𝑚

] (3.20) 

𝑋𝐿𝐹 = 

[
 
 
 
X𝐿𝐹,1
X𝐿𝐹,2
⋮

X𝐿𝐹,𝑛𝐿𝐹]
 
 
 
= [

𝑥𝐿𝐹,11 𝑥𝐿𝐹,12 ⋯ 𝑥𝐿𝐹,1𝑚
𝑥𝐿𝐹,21 𝑥𝐻𝐹,22 ⋯ 𝑥𝐿𝐹,2𝑚
⋮ ⋮ ⋱ ⋮

𝑥𝐿𝐹,𝑛𝐿𝐹1 𝑥𝐿𝐹,𝑛𝐻𝐹2 ⋯ 𝑥𝐿𝐹,𝑛𝐻𝐹𝑚

] (3.21) 

where 𝑛𝐻𝐹 and 𝑛𝐿𝐹 are the number of design points from the HFM and the LFM, respectively. 𝑚 is the 

number of design variables. The output vectors form the HFM and the LFM are written as 

𝑌𝐻𝐹 = 

[
 
 
 
Y𝐻𝐹,1
Y𝐻𝐹,2
⋮

Y𝐻𝐹,𝑛𝐻𝐹]
 
 
 
=

[
 
 
 
 
Y𝐻𝐹(X𝐻𝐹,1)

Y𝐻𝐹(X𝐻𝐹,2)

⋮
Y𝐻𝐹(X𝐻𝐹,𝑛𝐻𝐹)]

 
 
 
 

 (3.22) 

𝑌𝐿𝐹 = 

[
 
 
 
Y𝐿𝐹,1
Y𝐿𝐹,2
⋮

Y𝐿𝐹,𝑛𝐿𝐹]
 
 
 
=

[
 
 
 
 
Y𝐿𝐹(X𝐿𝐹,1)

Y𝐿𝐹(X𝐿𝐹,2)

⋮
Y𝐿𝐹(X𝐿𝐹,𝑛𝐿𝐹)]

 
 
 
 

 (3.23) 

where Y𝐻𝐹 and Y𝐿𝐹 are the outputs from the HFM and the LFM, respectively. 

In general, these multi-fidelity methods that have been developed so far share the same design space 

with different fidelity models.  

 

3.2.1 Response Correction Methods 

Response correction methods aim to create a surrogate model for the LFM to represent the response 

surface of the HFM. There are three methods depending on how each method corrects its LFM in the 

case where 𝑛𝐻𝐹 = 𝑛𝐿𝐹  (47). Firstly, the estimated response of the HFM using the multiplicative 

correction to improve the response of the LFM can be written as 

𝑌̂𝐻𝐹(𝑋) = 𝛽(𝑋) ∙ 𝑌𝐿𝐹(𝑋) (3.24) 

where 𝑌̂𝐻𝐹 is the estimated response of the HFM, 𝛽(𝑋) is a surrogate model of response ratios between 

the HFM and the LFM, 𝑋 is a vector of independent design variables, 𝑌𝐿𝐹(𝑋) is the response of the 

LFM. 
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Secondly, the estimated response of the HFM using the additive correction to correct the response of 

the LFM can be expressed as 

𝑌̂𝐻𝐹(𝑋) = 𝑌𝐿𝐹(𝑋) + 𝛿(𝑋) (3.25) 

where 𝛿(𝑋) is a surrogate model of response differences between the HFM and the LFM. 

Finally, the comprehensive methods use both multiplicative and additive corrections. A popular 

comprehensive method is  

𝑌̂𝐻𝐹(𝑋) = 𝛽(𝑋) ∙ 𝑌𝐿𝐹(𝑋) + 𝛿(𝑋) (3.26) 

where 𝛽 is the surrogate model of multiplicative correction, and  𝛿 is the surrogate model of additive 

correction.  

Many methods fix the multiplicative correction 𝛽 as a constant value and employ a surrogate model of 

additive correction (60). However, some comprehensive correction methods work with the 𝛽 that is not 

constant either. Equation (3.27) displays a new comprehensive correction method that has been 

proposed using a weighting function based on the traditional correction methods. 

𝑌̂𝐻𝐹(𝑋) = 𝑤(𝑋) ∙ 𝛽(𝑋) ∙ 𝑌𝐿𝐹(𝑋) + (1 − 𝑤(𝑋)) ∙ (𝑌𝐿𝐹(𝑋) + 𝛿(𝑋)) (3.27) 

where 𝑤(𝑋) is a weighting function. 

 

3.2.2 Space Mapping 

The space mapping method aims to cover different design spaces between the HFM and the LFM so 

that a small number of high-fidelity simulations are evaluated during the multi-fidelity modelling 

process (61,62). This process continues optimising the multi-fidelity model based on low-fidelity 

simulations until the stopping criteria of the optimisation is satisfied. For the multi-fidelity model to 

deal with different design spaces, a mapping function is necessary between the HFM and the LFM. 

Parameter estimation is crucial to establish the mapping function giving an appropriate relationship 

between two different sets of design variables. This method ensures that the low-fidelity design 

variables can be a subset of the high-fidelity ones. Similarly, the high-fidelity design variables can be 

an interpolation of the low-fidelity ones. Figure 3.14 illustrates how the space mapping constructs the 

multi-fidelity model. The primary idea is to obtain a suitable model using the proper mapping function 

that provides not only more computationally efficient than the HFM but also as least more accurate than 

the LFM. The space mapping consists of four steps to create the multi-fidelity model, as shown in Figure 

3.15. 
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Figure 3.14: Space mapping method 

 

Figure 3.15: Procedure of space mapping method 

The space mapping method aims to solve the optimisation problem that is generally given as 

𝑋∗ ≜ 𝑎𝑟𝑔min
𝑋
𝑈(𝑅(𝑋)) (3.28) 

where 𝑅 ∈ ℝ𝑚×1 is the vector of 𝑚 responses of the model, 𝑋 is the vector of 𝑛 input variables, and 𝑈 

is an objective function. 𝑋∗ is the optimal solution to be found. 

As shown in Figure 3.14, the design variables of the HFM and the LFM are defined by 𝑋𝐻𝐹 and 𝑋𝐿𝐹 ∈

ℝ𝑛×1 , respectively. The corresponding vectors of response are defined by 𝑅𝐻𝐹  and 𝑅𝐿𝐹  ∈ ℝ
𝑚×1 , 

respectively. A mapping function 𝑃 between the HFM and the LFM input variables is expressed by 

𝑋𝐿𝐹 = 𝑃(𝑋𝐻𝐹) (3.29) 

Then, the response vectors in a region of interest can be written as 
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𝑅𝐿𝐹(𝑃(𝑋𝐻𝐹)) = 𝑅𝐻𝐹(𝑋𝐻𝐹) (3.30) 

The mapping function allows us not to run a large number of high-fidelity simulations but to exploit 

only low-fidelity simulations during the optimisation process. The LFM having a smaller number of 

design variables than the HFM enables the multi-fidelity model to explore the whole design space with 

affordable computational cost. At the end of the optimisation process, they find the optimal solution 

𝑋𝐿𝐹
∗  in the low-fidelity design space, and it can be transformed by the optimal solution 𝑋𝐻𝐹

∗  in the high-

fidelity design space using the inverse mapping function as follows. 

𝑋𝐻𝐹
∗ ≜ 𝑃−1(𝑋𝐿𝐹

∗ ) (3.31) 

The parameter extraction to set up the mapping function is a sub-optimisation problem that is expressed 

by 

𝑋𝐿𝐹
(𝑗)
≜ 𝑎𝑟𝑔min

𝑋𝐿𝐹
‖𝑅𝐻𝐹 (𝑋𝐻𝐹

(𝑗)
) − 𝑅𝐿𝐹(𝑋𝐿𝐹)‖ (3.32) 

where 𝑗 is the number of iteration to find the parameters of the mapping function. 

The error of the parameter extraction is defined by 

𝜖 ≜ ‖𝑅𝐻𝐹 (𝑋𝐻𝐹
(𝑗)
) − 𝑅𝐿𝐹 (𝑋𝐿𝐹

(𝑗)
)‖ = min

𝑋𝐿𝐹
‖𝑅𝐻𝐹 (𝑋𝐻𝐹

(𝑗)
) − 𝑅𝐿𝐹(𝑋𝐿𝐹)‖ (3.33) 

The parameters satisfying the equations (3.32) and (3.33) enable the HFM’s design variables to be 

transformed to the LFM’s design variables. Then, the optimisation problem can be carried out in the 

low-fidelity design space that takes more economical computational time to find the optimal solution. 

If a mapping function between two different design spaces is linear, the relationship between them can 

be presumed by 

𝑋𝐿𝐹 = 𝑃
(𝑗)(𝑋𝐻𝐹) = 𝐴

(𝑗)𝑋𝐻𝐹 + 𝐵
(𝑗) (3.34) 

where 𝐴(𝑗) ∈ ℝ𝑛×𝑚 and  𝐵(𝑗) ∈ ℝ𝑛×1. 

 

3.2.3 Auto Regressive (AR) 

The AR framework is an advanced GP regression model that constructs multi-fidelity models using 

different fidelity models (11). In contrast to the response correction methods, this framework can work 

in the case where 𝑛𝐻𝐹 ≠ 𝑛𝐿𝐹. The AR regression model utilises the correlation between the information 

datasets of the most accurate expensive model, the HFM, and the less accurate cheap model, the LFM. 

These two different information datasets are used in the AR framework, the set of high-fidelity data 

(𝑋𝐻𝐹 , 𝑌𝐻𝐹) where 𝑋𝐻𝐹 is (𝑛𝐻𝐹 ×𝑚) matrix and 𝑌𝐻𝐹 is a column vector of length 𝑛𝐻𝐹, and the other 
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set of low-fidelity data (𝑋𝐿𝐹 , 𝑌𝐿𝐹) where 𝑋𝐿𝐹 is (𝑛𝐿𝐹 ×𝑚) matrix and 𝑌𝐿𝐹 is a column vector of length 

𝑛𝐿𝐹. In this framework, the high-fidelity design points 𝑋𝐻𝐹 need to be a subset of the low-fidelity design 

points 𝑋𝐿𝐹, (𝑋𝐻𝐹 ⊂ 𝑋𝐿𝐹). A more detailed explanation of the mathematical formulations can be found 

in (63,64). 

The AR regression model consists of a scaling parameter and GP regression models to approximate the 

HFM using the LFM. The model can be written as 

𝑓𝐻𝐹(𝑋) = 𝜌𝑓𝐿𝐹(𝑋) + 𝑓𝛿(𝑋) (3.35) 

where 𝑓𝐻𝐹(∙) and 𝑓𝐿𝐹(∙) represent the GP created using the data from the high-fidelity and low-fidelity 

datasets, respectively. 𝜌 is a scaling parameter that quantifies the correlation between two different 

fidelity outputs. Another GP 𝑓𝛿(𝑋) represents the difference between 𝑓𝐻𝐹(𝑋) and 𝜌𝑓𝐿𝐹(𝑋). 

In GP regression modelling, the covariance matrix 𝑐𝑜𝑣(𝑓(x), 𝑓(x′)) = 𝜎2𝑘(x, x′) is a simple form. In 

the AR regression framework, the covariance matrix is more complex because of the correlation 

between different fidelity models. This matrix can be represented as 

𝑐𝑜𝑣(𝑌𝐿𝐹 , 𝑌𝐿𝐹) = 𝑐𝑜𝑣(𝑓𝐿𝐹(𝑋𝐿𝐹), 𝑓𝐿𝐹(𝑋𝐿𝐹) ) 

= 𝜎𝐿𝐹
2 𝑘(𝜃𝐿𝐹 , 𝑋𝐿𝐹 , 𝑋𝐿𝐹) 

(3.36) 

𝑐𝑜𝑣(𝑌𝐻𝐹 , 𝑌𝐿𝐹) = 𝑐𝑜𝑣(𝑓𝐻𝐹(𝑋𝐻𝐹), 𝑓𝐿𝐹(𝑋𝐿𝐹) ) 

= 𝜌𝜎𝐿𝐹
2 𝑘(𝜃𝐿𝐹 , 𝑋𝐿𝐹 , 𝑋𝐻𝐹) 

(3.37) 

𝑐𝑜𝑣(𝑌𝐻𝐹 , 𝑌𝐻𝐹) = 𝑐𝑜𝑣(𝑓𝐻𝐹(𝑋𝐻𝐹), 𝑓𝐻𝐹(𝑋𝐻𝐹) ) 

= 𝑐𝑜𝑣(𝜌𝑓𝐿𝐹(𝑋𝐻𝐹) + 𝑓𝛿(𝑋𝐻𝐹), 𝜌𝑓𝐿𝐹(𝑋𝐻𝐹) + 𝑓𝛿(𝑋𝐻𝐹) ) 

= 𝜌2𝑐𝑜𝑣(𝑓𝐿𝐹(𝑋𝐻𝐹), 𝑓𝐿𝐹(𝑋𝐻𝐹)) + 𝑐𝑜𝑣(𝑓𝛿(𝑋𝐻𝐹), 𝑓𝛿(𝑋𝐻𝐹)) 

= 𝜌2𝜎𝐿𝐹
2 𝑘(𝜃𝐿𝐹 , 𝑋𝐻𝐹 , 𝑋𝐻𝐹) + 𝜎𝛿

2 𝑘(𝜃𝛿 , 𝑋𝐻𝐹 , 𝑋𝐻𝐹) 

(3.38) 

Thus, the complete covariance matrix having a dimension of (𝑛𝐿𝐹 + 𝑛𝐻𝐹) × (𝑛𝐿𝐹 + 𝑛𝐻𝐹) is generated 

by 

𝐾 = [
𝜎𝐿𝐹
2 𝑘(𝜃𝐿𝐹 , 𝑋𝐿𝐹 , 𝑋𝐿𝐹) 𝜌𝜎𝐿𝐹

2 𝑘(𝜃𝐿𝐹 , 𝑋𝐿𝐹 , 𝑋𝐻𝐹)

𝜌𝜎𝐿𝐹
2 𝑘(𝜃𝐿𝐹 , 𝑋𝐻𝐹 , 𝑋𝐿𝐹) 𝜌2𝜎𝐿𝐹

2 𝑘(𝜃𝐿𝐹 , 𝑋𝐻𝐹 , 𝑋𝐻𝐹) + 𝜎𝛿
2 𝑘(𝜃𝛿 , 𝑋𝐻𝐹 , 𝑋𝐻𝐹)

] (3.39) 

where 𝜎𝐿𝐹
2  and 𝜎𝛿

2 are the process variances. 𝜃𝐿𝐹 and 𝜃𝛿 are the hyperparameters corresponding to the 

covariance functions for the LFM and the difference data, respectively. These parameters and the 

scaling parameter 𝜌 can be obtained using the maximum log-likelihood estimation. 

Predictions 𝜇∗𝐻𝐹 and variance 𝜎∗𝐻𝐹
2  concerning test input data points 𝑋∗ can be taken from the joint 

posterior distribution using the mean and covariance matrix. This multi-fidelity posterior distribution 

provides the predictive mean and variance at the high-fidelity level represented by 
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𝑝(𝑓𝐻𝐹| 𝑌𝐻𝐹 , 𝑋𝐻𝐹 , 𝑓∗𝐿𝐹) = 𝑁 (𝑓𝐻𝐹| 𝜇∗𝐻𝐹(𝑋∗), 𝜎∗𝐻𝐹
2 (𝑋∗)) (3.40) 

𝜇∗𝐻𝐹(𝑋∗) = 𝜌𝜇∗𝐿𝐹(𝑋∗) + 𝜇𝛿 + 𝐾(𝑋∗, 𝑋𝐻𝐹)𝐾
−1(𝑋, 𝑋)[𝑌𝐻𝐹 − 𝜌𝜇∗𝐿𝐹(𝑋𝐻𝐹) − 𝜇𝛿] (3.41) 

𝜎∗𝐻𝐹
2 (𝑋∗) = 𝜌

2𝜎∗𝐿𝐹
2 (𝑋∗) + 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋𝐻𝐹)𝐾

−1 𝐾(𝑋∗, 𝑋𝐻𝐹)
𝑇 (3.42) 

Where 𝐾(𝑋∗, 𝑋𝐻𝐹) = [
𝜌′(𝜎𝐿𝐹

′ )2𝑘(𝜃𝐿𝐹
′ , 𝑋𝐿𝐹 , 𝑋∗)

(𝜌′)2(𝜎𝐿𝐹
′ )2𝑘(𝜃𝐿𝐹

′ , 𝑋𝐻𝐹 , 𝑋∗) + (𝜎𝛿
′ )2𝑘(𝜃𝛿

′ , 𝑋𝐻𝐹 , 𝑋∗)
]  is a column vector of 

length (𝑛𝐿𝐹 + 𝑛𝐻𝐹). The superscript (′) represents hyperparameters estimated. 
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4 Multi-Fidelity Reliability-Based Design 

Optimisation for Composite Structures 

Reliability-Based Design Optimisation (RBDO) provides many advantages because it enables 

engineers to consider uncertainties in different design variables used to design and manufacture a 

composite structure. The conventional design approach for composite structure design may cause the 

final design to be conservative that involves using safety factors to hinder structural failures. In contrast 

to the design approach, RBDO allows engineers to understand how the design uncertainties affect their 

structural reliability or the probability of failure. At the same time, they ensure not only the most critical 

design area but the improvement in the reliability of the structures. RBDO includes the reliability 

assessment having statistical methods or non-statistical methods. Monte Carlo Simulation (MCS) is a 

statistical method that evaluates the limit state function directly during the optimisation process. The 

First-Order Reliability Method (FORM) and the Second-Order Reliability Method (SORM) calculate 

the reliability using first-order and second-order Taylor series expansions to approximate the limit state 

function. MCS generally offers the most accurate value among the three methods since it uses the limit 

state function itself without approximation. SORM using higher order approximation is more accurate 

than FORM when the limit state function is particularly highly non-linear. More details of these 

reliability methods are introduced in many books and works of literature (8,9). 

There have been many research works for the development and application of RBDO in structural 

optimisation, such as isotropic and composite structures. The reliability analysis, particularly the 

essential part of RBDO, has been actively considered in various structural design problems (43,65). 

One remarkable example is Morse et al. (43), where the reliability analysis of a 2D rectangular isotropic 

plate with a centre hole subjected to uniaxial tension was conducted. The reliability indexes, which 

represent the probability of success, were compared by different reliability methods, such as MCS, 

FORM and SORM. The result comparison showed that the two approximation methods obtained similar 

results to MCS. The optimisation process combined with the reliability analysis, also known as RBDO, 

has been widely used in the design area of composite structures (20,66). One notable example is Lopez 
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et al. (14). They developed an advanced RBDO process for a more complex composite structure, a 

multi-stiffened stringer composite panel. This optimisation process found the stacking sequence of the 

composite panel to maximise the ultimate load in the post-buckling regime. The hybrid mean value 

algorithm using the first-order approximation to find the Most Probable failure Point (MPP) was used. 

This algorithm proposed a next upcoming point during the reliability analysis depending on the type of 

the limit-state function between convex and concave. Based on the initial stacking sequence provided 

by DO, the reliability analysis evaluated the reliability of the composite panel associated with 

uncertainties in material properties.  

In general, RBDO is computationally expensive due to considering design uncertainties at every design 

point to evaluate if each design violates the limit state function. In general, the reliability analysis using 

MCS requires a significant number of high-fidelity Finite Element Method (FEM) simulations of more 

than hundreds or even thousands until the results are converged. Even though a single high-fidelity 

FEM simulation requires a few seconds to run, the entire optimisation may take several days or weeks 

to run the total number of FEM simulations. Surrogate modelling, also called metamodeling, have been 

drawn attention to address this substantial computational cost caused by assessing the design 

uncertainties in probabilistic design approaches. Wang et al. (10) introduced surrogate modelling 

approaches as essential tools to conduct the optimisation. In particular, they showed that surrogate 

models have a significant role in Multi-Objective Optimisation (MOO). These models improve the 

computational performance as well as provide an understanding of the effects of design variables. There 

are many types of surrogate models that have been exploited concerning RBDO. Hassanien et al. (65) 

applied a surrogate model that is created by the Response Surface Method (RSM) to conduct the 

reliability analysis of dented pipes. Scarth et al. (67) created a surrogate model using support vector 

machines with Gaussian Process (GP) to drive RBDO of a composite aircraft structure. Bacarreza et al. 

(67) used Radial Basis Function (RBF) to create a surrogate model of a composite stiffened panel. 

Sampling techniques contribute significantly to the performance of the surrogate model since an 

increase in computational cost might be caused by an inappropriate sampling process. The sequential 

sampling method was developed to offer better sampling performance than other techniques (56,68). 

Although the use of surrogate models reduces computation time, composite structures may require 

several hours to simulate even a single FEM model relying on the characteristic of a problem. The 

concept of multi-fidelity models has been introduced in structural optimisation to address this 

computational challenge. Multi-fidelity models, which are created by the use of High-Fidelity Model 

(HFM) and Low-Fidelity Model (LFM), provide results of similar accuracy to surrogate models only 

based on the HFM while providing a noticeable reduction in computational cost. Many research works 

have been carried out to apply the multi-fidelity models to structural optimisation. The vast majority of 

this application has been confined to the area of DO, which does not consider the uncertainty of design 

variables. Vitali et al. (47) introduced the concept of multi-fidelity models through crack propagation 
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in a composite structure. The idea is to use the ratio and the difference between the LFM and the HFM. 

Alexandrov et al. (69) combined the HFM and the LFM using the multiplicative correction function. 

This multiplicative correction function is constructed by Taylor-series approximation, and it makes the 

LFM follow the response of the HFM. In Goldfeld et al. (70), the optimisation of buckling analysis for 

a laminated shell was conducted using the multi-fidelity models using the LFM. Response correction 

surfaces which are a ratio between the HFM and the LFM, are built by various polynomial functions to 

create the multi-fidelity models. The LFM was changed to a high-order polynomial response surface 

with improved accuracy and computation time savings through this approximation. Due to its many 

advantages, the multi-fidelity models have replaced the extensive use of FEM simulations in different 

DO problems. However, its application in the probabilistic optimisation of composite design has 

received little attention. Before the work presented in this thesis, no work has been performed by the 

research community on the topic of RBDO of composite structures using the multi-fidelity models. 

The main objectives of the work introduced in this chapter were to develop a multi-fidelity formulation 

for reliability analysis and RBDO of composite structures for the first time. The developed multi-fidelity 

formulation considers the effect of design uncertainties using different reliability methods. In particular, 

this work showed that the multi-fidelity formulation can be applied to approximate the limit state 

function using FORM and SORM while providing nearly identical results to MCS. The multi-fidelity 

formulation incorporating the RBDO process constructs two types of multi-fidelity models depending 

on how to use FEM models, such as direct and indirect multi-fidelity models. It provides not only similar 

accuracy to the conventional high-fidelity surrogate modelling but also offers considerable computation 

time savings. For the first time, the proposed multi-fidelity framework was demonstrated by the 

reliability analysis and RBDO of a mono-stringer stiffened composite panel to see how much 

computational gains are obtained.  

This chapter begins by introducing the mathematical formulation of the multi-fidelity method used in 

this work. It will then describe how the multi-fidelity formulation implements both structural reliability 

analysis and RBDO framework. At the end of this chapter, two engineering examples of rising 

complexity will demonstrate the multi-fidelity modelling framework to show the potential for large 

scale problems. The accuracy and computation time savings were evaluated and compared with the 

results of the conventional surrogate models using only HFM.  The work shown in this chapter is based 

on the research work presented by Yoo et al. in (24). 
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4.1 Multi-Fidelity Modelling Method for the Same Design Space 

between Fidelity Models 

As described in the previous chapter, the response correction methods require the same training data 

points between the HFM and the LFM to construct multi-fidelity models. The primary feature of these 

methods shares the same dimension of design spaces. This enables an accurate response correction 

function to be created using the information from the same design points of two different fidelity models. 

The response correction methods allow the inaccurate LFM to represent the response surface of the 

accurate HFM using the same design points collected by a proper sampling technique. In this work, the 

multiplicative and additive correction functions were used (47). Two types of multi-fidelity models, 

depending on how the LFM works with the multi-fidelity method, are constructed using the response 

correction methods, such as direct and indirect multi-fidelity models. 

In this multi-fidelity modelling method, both the HFM and the LFM require the same number of design 

points (𝑛𝐻𝐹 = 𝑛𝐿𝐹) and share the same dimension of design spaces with each other. This enables the 

response correction methods to build a proper response correction surface using each information 

coming from the HFM and the LFM. Two matrixes of the ratio and the difference can be created 

depending on the number of responses using the information. These two matrixes can build each 

surrogate model for the ratio and the difference. These surrogate models offer the appropriate correction 

corresponding to different design points so that the LFM improves their accuracy to represent the HFM. 

These models can be created as Artificial Neural Networks (ANN) as described in sections 3.1.2.1. 

The direct type of multi-fidelity model requires the surrogate model of a response correction surface 

chosen. This type involves directly calling the response of the LFM during the multi-fidelity modelling 

process. Two different multi-fidelity models can be created using these two surrogate models as follows. 

𝑌̂𝑀𝐹1(𝑋) = 𝛽(𝑋) ∙ 𝑌𝐿𝐹(𝑋) (4.1) 

𝑌̂𝑀𝐹2(𝑋) = 𝑌𝐿𝐹(𝑋) + 𝛿(𝑋) (4.2) 

where 𝑋 is 𝑛 design points for training with input design parameters. MF1 and MF2 denote the direct 

multi-fidelity models using different response correction functions, respectively. 𝛽  and 𝛿  are the 

surrogate models of ratio and difference between the HFM and the LFM. 𝑌𝐿𝐹 is the response directly 

calculated using the low-fidelity FEM model.

The indirect type of multi-fidelity model uses two different surrogate models of the LFM and a response 

correction surface. The indirect type involves approximating the LFM using ANN. This enables 𝑌𝐿𝐹(𝑋) 

to be replaced by a surrogate model of the LFM to reduce computation time if even the LFM is 

computationally expensive. Another two different multi-fidelity models are expressed below. 
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𝑌̂𝑀𝐹3(𝑋) = 𝛽(𝑋) ∙ 𝑌̂𝐿𝐹(𝑋) (4.3) 

𝑌̂𝑀𝐹4(𝑋) = 𝑌̂𝐿𝐹(𝑋) + 𝛿(𝑋) (4.4) 

where 𝑌̂𝐿𝐹 is the surrogate model of the LFM. MF3 and MF4 denote the indirect multi-fidelity models. 

𝛽  and 𝛿  are the surrogate models of the ratio and difference between the HFM and the LFM, 

respectively.   

 

4.2 Multi-Fidelity Modelling-Based Reliability Analysis 

A reliability analysis aims to evaluate a limit state function as a constraint and calculate the reliability 

of a structure. The probability of failure refers to how the structure has reliability under a specific 

restricted condition. In general, this analysis ensures that powerful computation resources are provided 

because it needs to calculate the influence caused by uncertainties in design variables. The multi-fidelity 

modelling-based reliability analysis developed in this work defines the limit state function. This can be 

represented as 

𝑔𝑀𝐹(𝑍) = 𝑅𝑀𝐹(𝑋) − 𝑆𝑀𝐹(𝑋) (4.5) 

𝑃𝑓,𝑀𝐹 = 𝑃[𝑔𝑀𝐹(𝑍) < 0] (4.6) 

where 𝑔𝑀𝐹(𝑋) is the limit-state function using the multi-fidelity models, 𝑃𝑓,𝑀𝐹 is the probability of 

failure using the multi-fidelity models, 𝑋  is a vector of all design variables under consideration, 

𝑅𝑀𝐹 and 𝑆𝑀𝐹 are the resistance and the loading of structure, respectively, which come from the multi-

fidelity models.  

If the value of 𝑔𝑀𝐹(𝑋) is less than zero, the structure is not in the safe region. If the value of 𝑔𝑀𝐹(𝑋) 

equals zero or is more than zero, the structure is in the failure surface or the safe area, respectively. In 

this work, MCS, FORM and SORM calculate the probability of failure using the multi-fidelity models 

blending two different fidelity models. 

Firstly, MCS using the multi-fidelity models predicts the probability of failure after 𝑁𝑡𝑜𝑡𝑎𝑙,𝑀𝐹 multi-

fidelity simulations are carried out. This can be expressed by 

𝑃𝑓,𝑀𝐶𝑆,𝑀𝐹 =
𝑁𝑓,𝑀𝐹

𝑁𝑡𝑜𝑡𝑎𝑙,𝑀𝐹
 (4.7) 

where 𝑁𝑓,𝑀𝐹 and 𝑁𝑡𝑜𝑡𝑎𝑙,𝑀𝐹 are the number of failure and the total multi-fidelity simulations conducted. 

𝑃𝑓,𝑀𝐶𝑆,𝑀𝐹 is the probability of failure using MCS predicted by the multi-fidelity models. 
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When MCS estimates the statistical characteristics for the reliability analysis, Sobol sampling was used 

to collect the design points that consider the influence caused by the design uncertainties. As described 

in sections 3.1.1.3, Sobol sampling provides more uniformly distributed design points than the simple 

random sampling since this sampling technique aims to reduce the variance of statistical predictions for 

MCS. In particular, Sobol sampling offers more robust statistical results than even the Latin Hypercube 

sampling for the reliability analysis (49). 

In contrast to MCS, FORM and SORM approximate the limit state function using the first- and second-

order Taylor expansion series to compute the probability of failure, respectively. The calculation of 

derivatives of the limit state function is essential to decide the accuracy of the solution and the 

computational costs to predict a reliability index. There are two typical methods to calculate the 

derivatives of the limit state function, Finite Difference Method (FDM) and Implicit Differentiation 

Method (IDM) (43).  In this work, the FDM is applied to calculate the probability of failure.  

The principle of the FDM is that derivatives in the partial differential equation are approximated by the 

linear combination of response values defined by a finite grid (71). The FDM is a relatively challenging 

method because the sensitivities may be hugely susceptible to the step size chosen. This implies that 

rounding errors or truncation errors become considerable, relying on the step size. However, the FDM 

provides a distinct advantage of calculating derivatives for complex problems, for which analytical 

solutions do not exist. 

There are three standard methods to evaluate the first-order derivatives using the FDM: the forward 

difference, the backward difference, and the central difference schemes. The first-order forward finite 

difference scheme is expressed by 

(
𝜕𝑆𝑀𝐹(𝑋)

𝜕𝑋
)
𝑖
=
𝑆𝑀𝐹(𝑋𝑖 + ∆𝑋𝑖, 𝑋−𝑖) − 𝑆𝑀𝐹(𝑋)

∆𝑋𝑖
 (4.8) 

The first-order backward finite difference scheme is expressed by 

(
𝜕𝑆𝑀𝐹(𝑋)

𝜕𝑋
)
𝑖
=
𝑆𝑀𝐹(𝑋) − 𝑆𝑀𝐹(𝑋𝑖 − ∆𝑋𝑖, 𝑋−𝑖)

∆𝑋𝑖
 (4.9) 

The first-order central finite difference scheme is expressed by 

(
𝜕𝑆𝑀𝐹(𝑋)

𝜕𝑋
)
𝑖
=
𝑆𝑀𝐹(𝑋𝑖 + ∆𝑋𝑖, 𝑋−𝑖) − 𝑆𝑀𝐹(𝑋𝑖 − ∆𝑋𝑖, 𝑋−𝑖)

2∆𝑋𝑖
 (4.10) 

The second-order finite difference scheme determines the derivatives using the central scheme as 

follows. 
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(
𝜕2𝑆𝑀𝐹(𝑋)

𝜕𝑋2
)
𝑖

=
𝑆𝑀𝐹(𝑋𝑖 + ∆𝑋𝑖, 𝑋−𝑖) − 2𝑆𝑀𝐹(𝑋) + 𝑆𝑀𝐹(𝑋𝑖 − ∆𝑋𝑖 , 𝑋−𝑖)

(∆𝑋𝑖)
2

 (4.11) 

Where ∆𝑋𝑖 is the step size and 𝑋−𝑖 is the vector of design variable eliminating the variable 𝑋𝑖. The 

magnitude of the step size ∆𝑋𝑖 affects the accuracy of the derivatives of  𝑆𝑀𝐹(𝑋). A small step size will 

cause substantial rounding error, whereas a large step size will cause substantial truncation error. It was 

found that the proper value of step size is in the range of between 0.01 % and 0.1 % using a sensitivity 

analysis. The step size in this range offered accurate derivatives of 𝑆𝑀𝐹(𝑋); hence, a value from the 

range was selected as the step size in this work. 

FORM calculates the reliability indexes presenting the shortest distance from the origin point to the 

failure surface in the standard normal distribution. This method transforms the mean value point of the 

original space (𝑋-space) to the origin of normal space (𝑈-space). This transformation enables the Taylor 

expansion point to be moved from the mean value point to the Most Probable failure Point (MPP). The 

first-order Taylor series of expansion of 𝑔𝑀𝐹(𝑈) at MPP 𝑈∗ using the multi-fidelity models is defined 

as 

𝑔̃𝑀𝐹(𝑈) = 𝑔𝑀𝐹(𝑈
∗) +∑

𝜕𝑔𝑀𝐹(𝑈
∗)

𝜕𝑈𝑖
(𝑈𝑖 − 𝑈𝑖

∗)

𝑛

𝑖=1

 (4.12) 

The shortest distance, also known as the reliability index, from the origin to the failure surface using 

the multi-fidelity models is written as 

𝛽𝑀𝐹 =
𝑔𝑀𝐹(𝑈

∗) − ∑
𝜕𝑔𝑀𝐹(𝑈

∗)
𝜕𝑋𝑖

𝜎𝑋𝑖𝑈𝑖
∗𝑛

𝑖=1

√∑ (
𝜕𝑔𝑀𝐹(𝑈

∗)
𝜕𝑋𝑖

𝜎𝑋𝑖)
2

𝑛
𝑖=1

 
(4.13) 

This process is iterated until the estimate of reliability index 𝛽𝑀𝐹  using the multi-fidelity models 

converges in specific tolerance criteria. When the limit-state function is the normal distribution function, 

the probability of failure using the multi-fidelity models is defined as 

𝑃𝑓,𝐹𝑂𝑅𝑀,𝑀𝐹 = 1 − 𝜙(𝛽𝑀𝐹) = 𝜙(−𝛽𝑀𝐹) (4.14) 

where 𝑃𝑓,𝐹𝑂𝑅𝑀,𝑀𝐹 is the probability of failure using FORM predicted by the multi-fidelity models, and 

𝜙(∙) is the standard normal cumulative distribution function.

Compared to FORM, SORM requires the second-order derivatives to approximate the failure surface 

to provide more accurate results under the highly non-linear failure surface. The second-order 

approximation of limit-state function 𝑔𝑀𝐹(𝑈) = 0  is derived by the second-order Taylor series 

expansion at the MPP using the multi-fidelity models. 
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𝑔̃𝑀𝐹(𝑈) = 𝑔𝑀𝐹(𝑈
∗) + 𝛻𝑔𝑀𝐹(𝑈

∗)𝑇 (𝑈 − 𝑈∗) +
1

2
(𝑈 − 𝑈∗)𝑇𝛻2𝑔𝑀𝐹(𝑈

∗)(𝑈 − 𝑈∗) (4.15) 

where 𝛻2𝑔𝑀𝐹(𝑈
∗) is the Hessian matrix, which is the symmetric matrix of the second derivative of the 

limit-state function. The Hessian matrix creates additional computational cost during the reliability 

analysis; however, it ensures that SORM provides a more accurate reliability index in a non-linear limit-

state function.  

𝑃𝑓,𝑆𝑂𝑅𝑀,𝑀𝐹 = 𝜙(−𝛽𝑀𝐹)∏ (1 + 𝑘𝑗𝛽𝑀𝐹)
−1/2𝑛−1

𝑗=1
 (4.16) 

where 𝑃𝑓,𝑆𝑂𝑅𝑀,𝑀𝐹 is the probability of failure using SORM predicted by the multi-fidelity models and 

the 𝑘𝑖 indicates the curvature of the response surface at the MPP.  

 

4.3 Multi-Fidelity Reliability-Based Design Optimisation 

Framework 

The conventional form of RBDO is introduced in equation (2.4). This RBDO process requires 

computationally intensive models or a surrogate model using many high-fidelity design points. A novel 

multi-fidelity modelling-based RBDO framework to address this computational challenge caused by 

the traditional optimisation process is developed in this work, as illustrated in Figure 4.1. This 

framework can be divided into two stages: the multi-fidelity modelling process and the multi-fidelity 

RBDO process.  

Before the RBDO process begins, the multi-fidelity modelling process should be conducted to construct 

multi-fidelity models having adequate quality. The modelling process defines the HFM and the LFM 

based on the discretisation level of the FEM model, which is commonly used in structural optimisation. 

The type of fidelity can be determined relying on the characteristic of optimisation problems. Then, the 

sampling technique, which is the Optimal Latin Hypercube Sampling (OLHS) method in this work, 

collects appropriate design points to set up the design matrix having all input design parameters in the 

entire design space. The collected design points are employed to set up the input and output datasets of 

the two different fidelity models using a FEM solver. ANN based on RBF using these datasets creates 

three surrogate models of the LFM, the ratio and the difference between the two fidelity models, 

respectively. The three surrogate models should be evaluated using a proper error analysis, such as root 

mean square error analysis, to show a specified level of accuracy in this framework. After the models 

are validated, the multi-fidelity models are constructed using the combination of these three surrogate 

models and one low-fidelity FEM model depending on the direct or the indirect multi-fidelity models. 

The direct multi-fidelity model requires the response of the composite structures directly from the low-
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fidelity FEM models during the multi-fidelity modelling process. Conversely, the indirect type calls for 

the response from the surrogate model using the low-fidelity training datasets. Both models exploit the 

surrogate models of response correction surfaces so that the LFM represents the nature of the high-

fidelity response. 

 

Figure 4.1: Multi-fidelity modelling-based reliability-based design optimisation framework 

After this modelling process, the RBDO process begins to find the optimal design while exploring the 

whole design space using the constructed multi-fidelity models. There are many optimisation methods 

to conduct the RBDO process, and a proper optimisation method can be determined by engineering 

according to the problem characteristics. In particular, evolutionary methods, described in sections 2.1.3, 

work well with the probabilistic design optimisation of composite structures because these methods are 
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suitable to catch the global reliable solution in the non-linear solution space (34). When a proper 

optimisation method is chosen, three reliability methods, such as MCS, FORM and SORM, predict the 

probability of failure regarding each design point offered by the optimisation method. When the 

specified stopping criteria are satisfied, the optimal solutions, which are found using the multi-fidelity 

models, are evaluated by accuracy and computation time savings compared with the conventional 

RBDO process using high-fidelity modelling based surrogate models.    

 

4.4 Numerical Examples 

This section demonstrates the developed multi-fidelity models using two numerical examples 

concerning the design of composite structures. A short outline of each numerical example is described 

as follows. 

 Numerical example 1: Multi-fidelity modelling-based reliability analysis. This numerical 

example is based on work shown in Yoo et al. (24).  This example aims to demonstrate how 

multi-fidelity modelling approaches can be used to carry out different reliability methods, such 

as MCS, FORM and SORM, while increasing the efficiency of conventional high-fidelity 

reliability analysis for a composite structure. 

 Numerical example 2: Multi-fidelity reliability-based design optimisation. This numerical 

example is based on work shown in Yoo et al. (24).  This example aims to show the potential 

if multi-fidelity modelling approaches are utilised to the RBDO of composite structures for the 

first time. The efficiency caused by the use of multi-fidelity models is introduced as well. 

 

4.4.1 Model Description 

The composite structure considered in this work is a mono-stiffened stringer composite panel, as shown 

in Figure 4.2. The geometry of this composite panel is parameterised by 𝑋1, 𝑋2, 𝑋3  and 𝑋4  that 

represent stringer foot length, stringer height, the horizontal distance between stringer top and foot, and 

stringer top length, respectively. The material properties and dimension of the panel are denoted in 

Table 4.1. The composite panel consists of the skin and the stringer. It is clamped at both the right-hand 

and left-hand ends, but the left-hand end is free to move in the loading direction (z-direction in Figure 

4.2). There are no constraints on two either side of the skin. The composite panel was analysed in the 

linear-buckling regime to obtain the maximum first buckling load. In the example of the reliability 

analysis, the linear buckling was considered when the applied load has eccentricity regarding the centre 

of mass of the stringer (y-direction in the figure). In the example of RBDO, the load was applied to the 

centre of mass without eccentricity. In these two examples, a HFM and an LFM should be defined first 
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to create the multi-fidelity models. The level of discretisation of FEM models was considered as a type 

of fidelity in this work. The FEM models are built and calculated using Abaqus/CAE. The mesh 

convergence study was conducted to select both the HFM and the LFM with different accuracy and 

computational costs. As shown in Figure 4.3, the mesh size was determined that the HFM and the LFM 

are 4.0 𝑚𝑚 and 30.0 𝑚𝑚, respectively. The accuracy difference between the two models was 10 %, 

and the computation time of the LFM was 80 % more efficient than the HFM. 

 

 

Figure 4.2: Mono-stringer stiffened composite structure having four geometry parameters 
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Figure 4.3: The HFM with 4.0 𝑚𝑚 mesh size (left) and the LFM with 30.0 𝑚𝑚 mesh size (right) 

Table 4.1: Material properties and dimensions of the composite structure 

Parameter Value 

Longitudinal modulus of elasticity (𝐺𝑃𝑎) 𝐸11 139.0 

Transversal modulus of elasticity (𝐺𝑃𝑎) 𝐸22 = 𝐸33 8.1 

Poisson’s ratio 𝜈 0.33 

Out-of-plane shear modulus (𝐺𝑃𝑎) 𝐺12 = 𝐺13 3.1 

In-plane shear modulus (𝐺𝑃𝑎) 𝐺23 4.8 

Skin and stringer thickness (𝑚𝑚) 𝑡 2.208 

Skin and stringer layup (𝑑𝑒𝑔𝑟𝑒𝑒)  [45/-45/0/0/90/0]sym 

Panel length (𝑚𝑚) 𝐿 600.0 

Panel width  (𝑚𝑚) 𝑊 250.0 

 

4.4.2 Multi-Fidelity Modelling-Based Reliability Analysis 

The multi-fidelity reliability analyses using MCS, FORM and SORM were performed on the mono-

stringer stiffened composite panel. The composite panel was loaded by a compressive axial load having 

eccentricity. Five random variables, four parameters defining the geometry and one load eccentricity, 

were considered. The limit-state function, which is made up of five random variables and one constraint, 

can be written as 

𝑔𝑀𝐹(𝑋) = 𝑃𝑐𝑟,𝑐 − 𝑃𝑐𝑟,𝑒,𝑀𝐹(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝜀) (4.17) 

where 𝑃𝑐𝑟,𝑐 is the minimum buckling load as a constraint, 𝑃𝑐𝑟,𝑒,𝑀𝐹 is the first buckling load from the 

multi-fidelity model, 𝜀 is the eccentricity from the centre of mass.  

The structure fails when 𝑔𝑀𝐹(𝑋) < 0. Each random variable has a probability distribution having mean 

and standard deviation, as seen in Table 4.2. 
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Table 4.2: Probability distribution of random design variables 

Parameter 
Probability 

distribution 
Mean 

Standard 

deviation 

Stringer foot (𝑋1) Normal 43 𝑚𝑚 0.215 

Stringer height (𝑋2) Normal 30 𝑚𝑚 0.15 

Distance between stringer top and foot (𝑋3) Normal 15 𝑚𝑚 0.075 

Stringer top (𝑋4) Normal 25 𝑚𝑚 0.125 

Eccentricity (ε) Normal 0 𝑚𝑚 9.09 

 

4.4.2.1 Multi-Fidelity Modelling 

In this example, ANN was used to create three surrogate models of the LFM, and two correction 

response surfaces of the ratio 𝛽(𝑋) and the difference δ(𝑋) between the two fidelity models. The design 

points to create the surrogate models using ANN were obtained using Optimal Latin Hypercube 

Sampling (OLHS). The sampling range was determined by the value of each random variable’s 

cumulative distribution function from 0.5 % to 99.5 %. The reason is that the sampling points are highly 

concentrated in the high probability region of each random variable and less concentrated in the low 

probability region. Once OLHS collects the design points, the HFM and the LFM using the FEM solver 

calculate the corresponding output values to each design point. Then the training datasets to create the 

three different surrogate models are obtained. The training dataset having 11 points was sampled using 

OLHS because it is the minimum number of sampling points for ANN to create the surrogate models 

having four design variables. In order to evaluate the quality of the surrogate models, the test dataset 

having thirty points were also sampled from each variable’s cumulative distribution function from the 

same sampling range. ANN created the three surrogate models: the LFM, the ratio, and the difference 

between the two fidelity models. These models were validated by the separation method using the test 

dataset. The multi-fidelity models were constructed using these surrogate models and the low-fidelity 

FE model, as shown in Table 4.3. 

The direct multi-fidelity models, MF1 and MF2 in Table 4.3, spend expensive computation time to 

conduct the reliability analysis because they call the first buckling load from the low-fidelity FEM 

models. It should be noted that the computation time of the low-fidelity FEM models is not cheap when 

it comes to thousands of FEM simulations for the reliability analysis. To provide more computation 

time savings, the surrogate models of MF1 and MF2 were also generated using the training dataset 

having 40 points. The test dataset has 20 points from the same range of cumulative distribution function. 

The indirect multi-fidelity models, MF3 and MF4, were created without calling the low-fidelity FEM 

models. 

 

 



4.4 Numerical Example 

Chapter 4 87 

Table 4.3: Multi-fidelity models 

Model Output approximation 

MF1 𝑌𝑀𝐹1(𝑋) = 𝛽
𝐴𝑁𝑁(𝑋) ∙ 𝑌𝐿𝐹

𝐹𝐸𝑀(𝑋) 

MF2 𝑌𝑀𝐹2(𝑋) = 𝛿
𝐴𝑁𝑁(𝑋) + 𝑌𝐿𝐹

𝐹𝐸𝑀(𝑋) 

MF3 𝑌𝑀𝐹3(𝑋) = 𝛽
𝐴𝑁𝑁(𝑋) ∙ 𝑌𝐿𝐹

𝐴𝑁𝑁(𝑋) 

MF4 𝑌𝑀𝐹4(𝑋) = 𝛿
𝐴𝑁𝑁(𝑋) + 𝑌𝐿𝐹

𝐴𝑁𝑁(𝑋) 
 

4.4.2.2 Results and Discussion 

In this section, the multi-fidelity models were used to conduct the reliability analysis of the composite 

panel to the linear buckling under eccentric load. The reliability analysis was carried out using MCS, 

FORM and SORM. A minimum buckling load constraint of 20 𝑘𝑁 was applied, and it is drawn in each 

figure using a dashed red line. If the buckling load of each simulation is less than this constraint, the 

composite panel is supposed to fail. Surrogate models using a different number of HFM were also 

generated to see how accurate the multi-fidelity models are and find the equivalent number of HFM 

that show a similar accuracy level to the multi-fidelity models. 

The accuracy of multi-fidelity models is evaluated by comparing mean and standard deviation at the 

mean value point. As shown from Table 4.4 to Table 4.6, the reliability analysis results using the multi-

fidelity models are very close to the result of a HF100. The HF100, which is a surrogate model using 

100 of the HFM, is presumed by the most accurate value. In addition, a HF11 is also a surrogate model 

that uses the minimum number of HFM for ANN to create the surrogate model. As the number of HFM 

to generate the surrogate model decreases, the surrogate models do not produce accurate solutions 

compared to the HF100. These mean and standard deviation are calculated by the outcomes of design 

points of MCS using Sobol sampling, whereas FORM and SORM calculate these two values using 

output and gradient at the mean value point. Table 4.4 and Figure 4.4 show that the mean and standard 

deviation of the HF100 are 27.88 𝑘𝑁 and 7.13, respectively. These values are used as the most accurate 

value to evaluate the accuracy of the created multi-fidelity models. The difference of mean values 

between the HF100 and the HF11 is 6.1 %, while the differences to the direct multi-fidelity models, 

MF1 and MF2, are smaller at 2.5 %. However, the indirect multi-fidelity models, MF3 and MF4, show 

similar differences to the HF11, which are 5.5 % and 6.0 %, respectively. The standard deviation of the 

HF100 using MCS is 7.13. The standard deviation of MF1 and MF2 at the mean value point are 6.72 

and 6.05, respectively, whereas the MF3 and MF4 show the values of 6.40 and 6.51, respectively. Figure 

4.5 and Figure 4.6 show that the MF1 and MF2 show similar levels of accuracy to the HF100, although 

the standard deviation of the MF2 is smaller. Table 4.5 and  

Table 4.6 clearly show that the mean and standard deviation are identical between FORM and SORM 

since they use the same output and gradient at the mean value point. The means of FORM and SORM 
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at the mean value point are slightly smaller than the mean of MCS, but the standard deviation is nearly 

the same with MCS. Interestingly, the difference error of the mean of the HF11 using FORM and SORM 

is over 11 % compared to the mean of the HF100. When the number of HFM used to generate the 

surrogate model is more than 40, the differences concerning the HF100 are less than 1 %. The MF1 and 

MF2 provided better accuracy than the MF3 and MF4. In particular, the standard deviation of the MF1 

was more accurate than the HF50. It can be seen from Table 4.4 to Table 4.6 that the reliability indexes 

from SORM are closer to the MCS results than the FORM results. It suggests that SORM can provide 

a more accurate solution in the failure domain than FORM because SORM takes into account the 

curvature of the limit-state function using second-order derivatives. It is found that the reliability index 

of the MF1 is much more accurate to the HF100 compared to even the HF50. Although the MF2 

provided the accurate mean, its reliability index is not correct because the standard deviation is smaller 

than other multi-fidelity models. The MF3 and MF4 show similar levels of reliability indexes between 

the HF11 and HF20. 

In order to evaluate computation time savings, the computation time of each model was normalised by 

the computation time of the HF100 using MCS. The average FEM simulation time for the HFM and 

the LFM was 47 seconds and 10 seconds, respectively. The average computation time for one surrogate 

model was 0.0057 seconds, and this computation time was calculated over 1,000,000 runs. The 

computation time of each reliability analysis using different models was calculated by multiplying the 

simulation number and the average computation time. The computation time savings are compared in 

Figure 4.7. The MF1 and MF2 were constructed by 11 of the HFM and 51 of the LFM, while the MF3 

and the MF4 were built by 11 of HFM and 11of LFM. It is interesting to note that there were notable 

computation time savings in the use of multi-fidelity models. In particular, the computation time of both 

the MF1 and the MF2, which presented highly accurate solutions, is about 45 % of the HF100 using 

MCS. The computational cost of these two models is also cheaper than the HF40 having the equivalent 

accuracy. It is seen that FORM and SORM do not show a significant difference in computation time 

than MCS because this problem converges to a small number of MCS. Suppose the problem is more 

complex, or the reliability analysis is conducted using only high-fidelity FE models. In that case, the 

computation time savings through the multi-fidelity models will increase a lot more. This comparison 

clearly highlights that the multi-fidelity model provides not only accurate solutions that are similar to 

the HFM having many design points but also computation time that is a lot more economical than the 

HFM. 
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Table 4.4: Reliability analysis results using MCS 

 HF11 HF20 HF30 HF40 HF50 HF100 
HF11+LF11 

MF1 MF2 MF3 MF4 

Mean 29.57 29.20 29.56 27.99 27.97 27.88 28.58 28.58 29.41 29.55 

Standard  

deviation 
6.59 6.85 6.14 6.17 6.47 7.13 6.72 6.05 6.40 6.51 

Reliability  

index 
1.60 1.44 2.17 1.81 1.59 1.35 1.41 1.75 1.60 1.60 

Error (%) 6.1 4.7 6.0 0.4 0.3 - 2.5 2.5 5.5 6.0 

 

Table 4.5: Reliability analysis results using FORM 

 HF11 HF20 HF30 HF40 HF50 HF100 
HF11+LF11 

MF1 MF2 MF3 MF4 

Mean 29.54 29.04 29.44 26.47 26.36 26.48 27.31 27.46 29.30 29.52 

Standard  

deviation 
6.73 6.89 4.96 4.87 6.12 7.18 6.64 4.76 6.57 6.74 

Reliability  

index 
1.51 1.55 2.61 2.23 1.74 1.32 1.44 2.06 1.52 1.50 

Error (%) 11.56 9.66 11.72 0.03 0.46 - 3.13 3.70 10.64 11.47 

 

Table 4.6: Reliability analysis results using SORM 

 HF11 HF20 HF30 HF40 HF50 HF100 
HF11+LF11 

MF1 MF2 MF3 MF4 

Mean 29.54 29.04 29.44 26.47 26.36 26.48 27.31 27.46 29.30 29.52 

Standard  

deviation 
6.73 6.89 4.96 4.87 6.12 7.18 6.64 4.76 6.57 6.74 

Reliability  

index 
1.55 1.56 2.61 2.23 1.74 1.35 1.48 2.06 1.56 1.54 

Error (%) 11.56 9.66 11.72 0.03 0.46 - 3.13 3.70 10.64 11.47 
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Figure 4.4: Reliability analysis result using MCS 

 

Figure 4.5: Reliability analysis results using FORM 
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Figure 4.6: Reliability analysis results using SORM 

 

Figure 4.7: Computation time to different multi-fidelity models 

 

4.4.3 Multi-Fidelity Modelling-Based Reliability-Based Design 

Optimisation 

In this section, a multi-objective probabilistic optimisation is carried out. It is demonstrated that the 

multi-fidelity models provide accurate solutions and high computation time savings compared to the 
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surrogate model of the HFM. Multi-fidelity RBDO is conducted to validate the concept of multi-fidelity 

models in a probabilistic optimisation process, requiring a number of simulations to consider design 

uncertainties. The four geometric design variables of the same composite panel have their own 

uncertainty, as shown in Table 4.2. NSGA-II is used, which is a multi-objective evolutionary 

optimisation method. 

 

4.4.3.1 Problem Definition 

In general, RBDO includes reliability analysis in its optimisation process, and this example involves 

considering the uncertainties of four geometry parameters of the composite panel. RBDO process 

ensures that the optimal design meets the requirement of a specific probabilistic constraint defined by 

a prescribed reliability index 𝛽. In this example, random design variables are characterised by a normal 

distribution, a probability failure 𝑃𝑓,𝑀𝐹  is related to the prescribed reliability index 𝛽𝑀𝐹  as 𝑃𝑓,𝑀𝐹 =

𝛷(−𝛽𝑀𝐹). As mentioned before, there are three methods to calculate the reliability of structure such as 

MCS, FORM and SORM. In particular, MCS was conducted by the Sobol sampling method because 

the simple random sampling requires a vast number of simulations during the optimisation process. In 

Table 4.7, the number of simulations for MCS using the Sobol sampling is 20 % less than that of the 

simple random sampling. At the same time, the mean and standard deviation of the statistical result are 

nearly identical to each other. To ensure the accuracy of FORM and SORM, the step size of the FDM 

was set as 0.001, and the convergence tolerance was determined by 0.0001. The constraints of this 

optimisation process are the maximum mass and the target probability of failure that are 1.0 𝑘𝑔 and 

0.00135, respectively. The objective functions are to maximise the first buckling load and to minimise 

the structure mass. Parameter studies using NSGA-II were carried out to set the population size and 

generation number, and then they were determined by 12 and 60, respectively. The details of the multi-

fidelity models are described in the next section. 

Table 4.7: Sobol sampling vs. Simple random sampling 

 
MCS 

Sobol Sampling 

MCS 

Random Sampling 

Simulation number 150 600 

Probability of success 1.0000 0.9967 

Mean 53.76 53.77 

Standard deviation 0.28 0.28 

Minimum 53.12 52.93 

Maximum 54.45 54.58 
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4.4.3.2 Multi-Fidelity Modelling 

The minimum number of design points for ANN to create the surrogate models was 10 because there 

are four geometric design variables. The multi-fidelity models were constructed using 10 of the HFM 

and 10 of the LFM. The surrogate models using 100 of the HFM, known as HF100, were also created 

to evaluate the performance of the multi-fidelity models. OLHS is employed to build the training and 

test datasets. In particular, a total of 300 design points, 100 for the training dataset and 200 for the test 

dataset, were collected to create the surrogate models of the HF100. Total 30 design points, 10 for the 

training dataset and 20 for the test dataset, were also sampled to create two surrogate models having the 

HFM and the LFM, respectively. These training and test datasets also were used to generate the two 

correction factors, 𝛽(𝑥) and δ(𝑥), for the LFM to represent the response surfaces of the HFM. The 

design points for the training dataset were determined by the range from -20 % to 20 % concerning the 

mean of each design variable. The design points for the test dataset were selected by the broader range 

from -25 % to 25 % in order to evaluate the quality of the surrogate model. Through the training dataset 

from the sampling range, two direct multi-fidelity models and two indirect multi-fidelity models are 

constructed, as can be seen in Table 4.3. Each model has four inputs having geometries and two outputs 

having mass and buckling load. 

Table 4.8 highlights that the two direct multi-fidelity models, MF1 and MF2, showed better quality than 

the two indirect multi-fidelity models, MF3 and MF4. The HF100 presented nearly the same response 

as the high-fidelity FEM models, whereas an HF10 which consists of 10 of the HFM, showed significant 

differences compared to the four different multi-fidelity models. All models provided the correct mass 

because the response surface of mass is simple for the multi-fidelity models to represent. It is interesting 

to note that the MF1 and MF2 provided more accurate results of buckling load and mass than the HF10, 

even though the computation time of these two models was slightly more expensive due to the extra 

LFMs to improve the quality of the multi-fidelity models. The increase in this extra computation time 

caused by the LFMs is worth it since the multi-fidelity models provide more accurate results than the 

HF10. If the number of the HFM increases until the accuracy is similar to the multi-fidelity models, the 

computation time caused by this increase should be much higher than that of the multi-fidelity models. 

It is seen that the errors of the indirect multi-fidelity models were higher than the direct multi-fidelity 

models because these indirect multi-fidelity models use the surrogate models based on the design points 

from the LFM. These four multi-fidelity models were validated to conduct the RBDO process as an 

alternative model to the HFM. 
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Table 4.8: Multi-fidelity models validation 

Model 
Fitness error 

Buckling load Mass 

MF1 0.0101 0.0009 

MF2 0.0107 0.0009 

MF3 0.0155 0.0034 

MF4 0.0155 0.0034 

HF10 0.0159 0.0029 

HF100 0.0034 0.0006 

 

4.4.3.3 Results and Discussion 

In Figure 4.8 and Figure 4.9, the optimisation results of the multi-fidelity models using FORM are 

compared to the results of the high-fidelity modelling-based surrogate model (HF100). The results using 

MCS and SORM are not presented in this example because they are nearly the same as the results using 

FORM. As shown in these figures, the Pareto Fronts show the optimal design results that are satisfied 

with the desired objectives and constraints. It should be noted that the slope of the Pareto Front line is 

changed when the structure mass is around 0.94 𝑘𝑔. It means that the first buckling load increases 

gradually until the mass reaches 0.94 𝑘𝑔. However, when the mass is more than 0.94 𝑘𝑔, the buckling 

load does not rise as much as the structure mass increases. It is determined that the design geometries 

around the mass of 0.94 𝑘𝑔 are the reasonable design values in the given design space.  

Table 4.9 and Figure 4.10 show the comparison of chosen geometries when the mass of the composite 

panel is 0.94 𝑘𝑔 that the linear buckling load is the economically maximum value. The result of the 

HF100 is the most accurate value because this model consists of enough HFM that provide the correct 

first buckling load. It is worth noting that the chosen optimal geometry values from the multi-fidelity 

models are nearly identical to those from the HF100. The mean and standard deviation of the multi-

fidelity models are similar to those of the HF100 in the same mass. Figure 4.10 and Figure 4.11 show 

the probabilistic distribution of each multi-fidelity model and the optimal geometric design from RBDO. 

The direct multi-fidelity models, MF1 and MF2, have almost the same mean and standard deviation. 

The probabilistic distributions of indirect multi-fidelity models, MF3 and MF4, have a little different 

mean of first buckling loads, although they have nearly the same standard deviation. Therefore, the 

accuracy of all multi-fidelity models was validated. 

Computation time savings, as well as accuracy, are the main goals of this study. It is essential to show 

how much computation time savings can be achieved by using the multi-fidelity models. In order to be 

able to compare the computation time of each model reasonably, the required simulation number of 

each model during this optimisation process is compared. The average computation time of HFM and 

LFM using Abaqus/CAE was calculated over 100 runs, respectively. This computation time was 47 
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seconds and 10 seconds, respectively. The computation time of one surrogate model was assumed by 

total simulation time divided by the total simulation number used in the whole optimisation process. 

The total simulation time using Intel Core i7-6700 CPU @ 3.40GHz and the number of simulations 

using all surrogate models were 7,036 seconds and 1,229,085, respectively. The computation time of 

one surrogate model was 0.0057 seconds. To ensure the computation time of each model, it was 

calculated by the combination of the simulation number of surrogate models, high-fidelity FEM models 

and low-fidelity FEM models. As shown in Figure 4.12, all computation time is normalised by the 

computation time of the HF100 using MCS, which is the most computationally expensive. This figure 

clearly shows that the multi-fidelity models require a lot less computational cost than the HF100. In 

three reliability methods that calculate the probability of failure, MCS is the most computationally 

expensive. FORM is a little cheaper than SORM because SORM requires more simulation for a second-

order Taylor expansion at the failure domain. The direct multi-fidelity models, MF1 and MF2, are 

slightly more expensive than the indirect multi-fidelity models, MF3 and MF4, because the direct 

models call the low-fidelity FEM models when they create the surrogate models. In particular, all multi-

fidelity models show a similar level of computation time to the LF100, which consists of 100 low-

fidelity FEM models. It should be noted that the computation time of the multi-fidelity models is 

reduced by at least 70 % compared to the HF100. If the optimisation is conducted using the high-fidelity 

FEM models without the surrogate models, the multi-fidelity models will save the computation time a 

lot more than 70 %. 

Table 4.9: Initial and chosen geometry of the composite panel 

Model 
X1 X2 X3 X4 Mean STD Mass 

[𝑚𝑚] [𝑚𝑚] [𝑚𝑚] [𝑚𝑚] [𝑘𝑁] [-] [𝑘𝑔] 
Initial 43.0 30.0 15.0 25.0 53.76 - 0.90 

HF100 51.6 24.3 18.0 30.0 73.86 0.40 0.94 

MF1 51.6 24.5 18.0 30.0 72.87 0.36 0.94 

MF2 51.5 24.4 18.0 30.0 72.83 0.36 0.94 

MF3 51.6 24.5 18.0 30.0 73.45 0.39 0.94 

MF4 51.6 24.6 18.0 30.0 72.67 0.36 0.94 
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Figure 4.8: Comparison to RBDO results using FORM (HF100 vs. Direct multi-fidelity models) 

 

Figure 4.9: Comparison to RBDO results using FORM (HF100 vs. Indirect multi-fidelity models) 
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Figure 4.10: Reliability-based design optimisation results 

  

(top) 

 

(bottom) 

Figure 4.11: Mono-stringer stiffened panel geometry optimised for maximum linear buckling load 

based on 0.94 kg: (top) Initial model and (bottom) RBDO model (MF1) 
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Figure 4.12: Computation time concerning different multi-fidelity models 

 

4.5 Summary  

In conclusion, the multi-fidelity formulation was developed for reliability analysis and RBDO of 

composite structures to consider the influence of uncertainties in design variables. This formulation 

enables the multi-fidelity models to offer remarkable accuracy nearly identical to the HFM as well as 

significant computational time savings similar to the LFM. This is accomplished by creating the 

response surfaces of ratio and difference between two different fidelity models. These two models 

covering the same design spaces requires the same number of design points to train the surrogate model 

using ANN. The direct and indirect multi-fidelity models depending on the use of the low-fidelity FEM 

models during the modelling process are constructed. Then these models are employed in the developed 

multi-fidelity RBDO process.  

Two numerical examples demonstrated the performance of the multi-fidelity models: reliability analysis 

and RBDO. The multi-fidelity reliability analyses considering design uncertainties were conducted 

using MCS, FORM and SORM that calculate the reliability of structure under the given limit-state 

function. In the example of multi-fidelity reliability analysis, the direct multi-fidelity models, 

particularly the model using the ratio response surface, provided a highly accurate solution. The 

computational cost of the multi-fidelity models is equivalent to the use of 40 high-fidelity FEM models. 

These multi-fidelity models furnished computation time savings of over 50 %  compared to the 

conventional computationally expensive method using only HFM. The concept of multi-fidelity 

modelling was also applied to the probabilistic multi-objective optimisation problem. The direct and 

indirect multi-fidelity models provided very close optimisation solutions to the results of the 

conventional method.  The computation time using MCS was decreased by at least 70 %, and this time 
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savings were a lot larger when FORM and SORM were used in the optimisation process. These results 

suggest that the new multi-fidelity framework can be applied to reliability analysis and RBDO of 

composite structures having design uncertainties. This framework provides a certain level of accuracy 

and considerable computation time savings compared to the conventional method using only HFM. 
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5 Multi-Fidelity Robust Design Optimisation 

based on Low-Fidelity Models using 

Successive High-Fidelity Correction 

It is well acknowledged that composite structures draw attention in different industrial areas because 

they provide remarkable strength, stiffness and energy savings consistent with both an environmentally 

friendly design and a cost-effective operation. The manufacturing process of composite structures is 

complex and carries various uncertainties that influence the quality and performance of the final design. 

The variation in design parameters, in general, provokes unexpected deviations across the entire 

lifecycle, including design, manufacturing, service, and ageing. Robust Design Optimisation (RDO), 

one type of probabilistic design optimisation, is an essential design approach since it considers how the 

uncertainties associated with design and manufacturing could affect product quality and performance. 

The main idea of RDO was proposed by Taguchi Genichi (3), and such idea aims to provide more stable 

output performance regarding the variation of design parameters, such as geometry, service 

environment and material property. RDO allows the final design not to be an extremely conservative 

design based on excessive safety factors or worst-case scenarios because it minimises the variation of 

product performance caused by the design uncertainties. Hence, RDO improves the quality of the design 

product by stabilising the deviations of response behaviour without removing their design sources and 

minimising the effect of the design uncertainties (44).  

RDO has been studied and applied to various engineering design fields, such as structural design using 

Finite Element Method (FEM) (4,20,72–74) and aerodynamic design using Computer Fluid Dynamics 

(CFD) (67,75–77). In general, RDO requires computationally expensive efforts to find robust design 

solutions because many computational simulations have to be conducted to calculate the effect caused 

by the design uncertainties. This is a typical challenge to be addressed in the area of probabilistic design 

optimisation. Likewise, RBDO in the previous chapter, the use of the surrogate model has been actively 

developed to tackle the computational challenge caused by carrying out the process of RDO (22). Most 
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of them approximate the expensive computation models using Artificial Neural Networks (ANN), 

Kriging, polynomial regression and Response Surface Method (RSM) (4,67,78–80). One notable 

example concerning RDO of composite structures using the surrogate model is Bacarreza et al. (4), 

where the RDO framework of a composite stiffened panel under non-linear progressive failure analysis 

was presented using ANN. The quality of the created surrogate model was evaluated by the cross-

validation error method to determine whether the model provides the computation time savings and an 

acceptable level of accuracy. This model was applied to conduct a robustness analysis considering the 

design uncertainties of the composite stiffened panel. This work allows the concept of RDO to be 

implemented in the design of composite structures under non-linear damage progressive problems. It 

shows the potential to extend the application area of RDO using the surrogate model. 

As discussed in Chapter 4, there are different types of multi-fidelity modelling methods that have been 

developed to improve the computational efficiency of conventional high-fidelity surrogate modelling 

methods. When a problem becomes large-scale and complex, the computational cost to create the 

surrogate model is still extremely expensive because a large number of High-Fidelity Models (HFM) 

have to be simulated using a numerical solver. However, the computational cost for running even a 

single high-fidelity FEM simulation of the composite structure is too high to neglect when the problem 

has non-linear response behaviour or many design variables. Multi-fidelity modelling methods 

developed so far have been used to conduct optimisation and uncertainty propagation using the 

combination of both HFM and Low-Fidelity Models (LFM). In particular, the vast majority of the way 

of combining two different fidelity models uses response correction methods for the LFM to represent 

the response behaviour of the HFM (12,23,47). Different multi-fidelity modelling methods, such as the 

Co-kriging method, have been applied to aerodynamic optimisation problems (63,75,81). Even though 

these multi-fidelity modelling methods provide acceptable accuracy and computational efficiency 

compared to the conventional high-fidelity surrogate modelling methods, they have been demonstrated 

using mathematical examples, aerodynamic design optimisation and structural design optimisation of 

isotropic materials. The primary limitation of these methods is difficult to take care of large-scale 

problems having many design variables. In order to create the response correction functions, such as 

the ratio or difference between the HFM and the LFM, many high-fidelity simulations should be 

conducted using a FEM or CFD solver to build a correct response surface. This causes tremendous 

computational burdens when the system has many design variables. It should be noted that the number 

of high-fidelity simulations needs to be the same as that of low-fidelity simulations to construct a multi-

fidelity model using the response correction methods.

The main objective of this work was to develop a novel multi-level multi-fidelity modelling-based RDO 

framework. It aims to apply to the probabilistic optimisation problem when the HFM and the LFM have 

a different number of design variables so that the computational cost to construct the multi-fidelity 

model is reduced. This developed multi-fidelity RDO framework requires a smaller number of high-
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fidelity FEM simulations compared to the conventional multi-fidelity modelling methods, which require 

the same number of FEM simulations between the HFM and the LFM. To achieve this research 

objective, the HFM has a fewer number of design variables during the optimisation process, while the 

LFM has more design variables to explore the whole design space sharing the same design variables 

with the HFM. Multi-level optimisation was also considered to gain more computational efficiency by 

dividing the optimisation problems into several subproblems. This framework drives using the LFM 

covering the whole design space while updating the optimal solutions using high-fidelity corrections. 

Its applications demonstrated this approach to both Deterministic Optimisation (DO) and RDO of a 

mono-stringer stiffened composite panel under the post-buckling regime. Finally, the robust design and 

deterministic design were compared by conventional optimisation methods using the HFM. The 

performance of this new framework was evaluated in terms of optimisation solution accuracy and 

computation time savings.  

This chapter will first explain the concept of the multi-fidelity modelling method that covers different 

design spaces between the HFM and the LFM. Then it will introduce the developed multi-fidelity 

formulation and how this formulation implements the probabilistic design optimisation. At the end of 

this chapter, two numerical examples of DO and RDO will be conducted to design a composite structure 

to demonstrate the new multi-fidelity optimisation framework. The work presented in this chapter is 

based on work presented by Yoo et al. in (42). 

 

5.1 Multi-Fidelity Modelling Method for Different Design Spaces 

between Fidelity Models 

As discussed in Chapter 3, the traditional multi-fidelity methods developed so far can be divided by 

how they allow the LFM to represent the response behaviours. The majority of these multi-fidelity 

methods set up the response correction function, such as multiplicative, additive and comprehensive 

correction methods. These methods require the same number of high-fidelity FEM simulations as that 

of low-fidelity FEM simulations. Some methods using Gaussian Process (GP), including Co-kriging, 

require a smaller number of high-fidelity FEM simulations than low-fidelity FEM simulations. 

However, the design variables in the HFM and the LFM have to be identical to each other. These 

traditional methods may cause significant computational challenges when the optimisation problem is 

large-scale or has many design variables. The space mapping method creating a proper transformation 

function between different design spaces has not been used in the field of structural optimisation so far 

due to its limitation. The limitation will be described in the following section. 
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5.1.1 Space Mapping Method in Structural Optimisation 

The space mapping method allows different fidelity models to cover different design spaces, and it 

constructs the multi-fidelity model. This method builds a mapping function between the HFM having 

all design variables and the LFM having a few design variables. The mapping function enables the 

optimisation results obtained in the low-fidelity design space to be transformed into the high-fidelity 

design space using the inverse mapping function. The idea of the space mapping method was proposed 

to design the microwave circuit at first (62). Then its application scope has expanded to the field of 

aerodynamic design (82). However, this method has scarcely applied to the area of structural 

optimisation. The only example found in (83) used the space mapping method to conduct a DO of a 

steel beam structure with two design variables subjected to a uniformly distributed load. However, the 

space mapping method considered in the vast majority of related literature shared the same number of 

design variables between the HFM and the LFM (84). Even though the HFM and the LFM have a 

different number of design variables, the fidelity is not the level of discretisation but numerical solvers 

(82). 

This section demonstrated whether the space mapping method is available to construct a proper multi-

fidelity model for structural optimisation when the HFM and the LFM have a different number of design 

variables. The numerical example is the same as the isotropic steel plate presented in Chapter 3, but it 

has more design variables, as shown in Figure 5.1.  The drain cover has four design variables, such as 

horizontal drain, vertical drain, drain depth and plate thickness. This DO problem aims to minimise the 

mass and vertical displacement under a uniformly distributed load. The constraint is the maximum 

allowable stress of the drain cover. The Finite Element Method (FEM) model of the drain cover was 

created using Abaqus (57). The design ranges of each variable are described in Table 5.1. 

Table 5.1: Design range of each variable 

Parameter Value 

Drain height (𝑚𝑚) 144 < 𝑉 < 216 

Drain width (𝑚𝑚) 56 < 𝐻 < 84 

Drain depth (𝑚𝑚) 24 < 𝐷 < 36 

Plate thickness (𝑚𝑚) 4 < 𝑇 < 6  
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Figure 5.1: Isotropic steel strain cover having four design variables 

In this example, the HFM has four design variables (𝐻, 𝑉, 𝐷, 𝑇), while the LFM has two of them (𝑣,

𝑡). These two variables for the LFM were determined by more dominant input design variables to the 

objective functions than other design variables. Both the high- and low-fidelity FEM models were 

created using the identical mesh size, whereas they carry different design variables.  

As illustrated in Figure 5.2, the optimisation process using the space mapping method consists of two 

steps, such as a mapping parameter extraction and DO process. Basically, 𝑋𝐻𝐹𝑀 is a vector of high-

fidelity design variables, and the mapping function, 𝑃, transforms the 𝑋𝐻𝐹𝑀 to 𝑋𝐿𝐹𝑀 that is a vector of 

low-fidelity design variables. Then, the optimisation problem can find optimal solutions in the low-

fidelity design spaces. Finally, the low-fidelity optimal solutions, 𝑋𝐿𝐹𝑀
∗ , are transformed to high-fidelity 

optimal solutions, 𝑋𝐻𝐹𝑀
∗ , using the inverse mapping function. The parameter extraction is the main step 

for the space mapping method to build a multi-fidelity model.  

In this example, the created mapping function transforms the high-fidelity design spaces having four 

design variables to the low-fidelity design spaces having two design variables. Firstly, 𝑛 high-fidelity 

training points should be collected from the entire design space using Design of Experiments (DoE). 

Then the output responses are obtained to set up the high-fidelity training dataset. A linear mapping 

function, 𝑃 , should be presumed that can be represented as 𝑋𝐿𝐹𝑀 = 𝑃(𝑋𝐻𝐹𝑀) = 𝐵 × 𝑋𝐻𝐹𝑀 + 𝐶 . It 

should be noted that the dimension of the mapping matrix 𝐵 and the vector 𝐶 is (2 × 4) and (2 × 1), 
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respectively, relying on a different number of design variables between the HFM and the LFM. 

Parameter extraction is a sub-optimisation problem to obtain each mapping parameter of the matrix 𝐵 

and the vector 𝐶 . This sub-optimisation problem minimises the difference between high-fidelity 

response, 𝑌𝐻𝐹𝑀(𝑋𝐻𝐹𝑀) , and low-fidelity response, 𝑌𝐿𝐹𝑀(𝑋𝐿𝐹𝑀) = 𝑌𝐿𝐹𝑀(𝐵 × 𝑋𝐻𝐹𝑀 + 𝐶) . The sub-

optimisation offers the mapping parameters. Then the surrogate model, 𝑃̂, of the mapping parameters 

can be established using ANN. This surrogate model satisfies with  𝑌𝐿𝐹𝑀 (𝑃̂(𝑋𝐻𝐹𝑀)) ≅ 𝑌̂𝐻𝐹𝑀(𝑋𝐻𝐹𝑀) 

and is used to carry out the optimisation problem until the low-fidelity optimal solutions, 𝑋𝐿𝐹𝑀
∗ , are 

obtained. Finally, the high-fidelity optimal solutions, 𝑋𝐻𝐹𝑀
∗ , are found using the inverse mapping 

function. 

 

Figure 5.2: Deterministic optimisation process using the space mapping method 

Equation (5.1) represents the mapping function of design variables between the HFM and the LFM. 

The HFM has four design variables, while the LFM has two design variables. The parameter extraction 

aims to find the mapping parameters in the matrix 𝐵  and the vector 𝐶 . Equation (5.2) shows the 

objectives of the parameter extraction. The first objective is to minimise the difference in responses 

between the two fidelity models. The second and third objectives are for the low-fidelity design 

variables not to be far away from the high-fidelity design space. It should be noted that the mapping 

parameters 𝐵12 and 𝐵23, which are related to 𝑉 and 𝑇 in the HFM, are constant at 1.0.  

𝑋𝐿𝐹𝑀 = 𝑃(𝑋𝐻𝐹𝑀) = 𝐵 × 𝑋𝐻𝐹𝑀 + 𝐶 

[
𝑣
𝑡
] = [

𝐵11 𝐵12 𝐵13 𝐵14
𝐵21 𝐵22 𝐵23 𝐵24

] [

𝐻
𝑉
𝑇
𝐷

] + [
𝐶1
𝐶2
] 

(5.1) 

 



5.1 Multi-Fidelity Modelling Method for Different Design Space 

Chapter 5 106 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒     ‖𝑌̂𝐻𝐹𝑀(𝑋𝐻𝐹𝑀) − 𝑌𝐿𝐹𝑀(𝐵 × 𝑋𝐻𝐹𝑀 + 𝐶)‖ 

(5.2)     𝐵11 ∙ 𝐻 + 𝐵13 ∙ 𝑇 + 𝐵14 ∙ 𝐷 = 0 

    𝐵21 ∙ 𝐻 + 𝐵22 ∙ 𝑉 + 𝐵24 ∙ 𝐷 = 0 

 

Figure 5.3: Space mapping method between the HFM and the LFM 

When the surrogate model of the HFM is created, the parameter extraction is conducted using NSGA-

II and finds the mapping parameters, as shown in Figure 5.3. The output responses of the LFM using 

the mapping function were nearly identical to those of the HFM. However, it should be evaluated 

whether the inverse mapping function transforms a low-fidelity design point to a correct high-fidelity 

design point. Equation (5.3) denotes how the high-fidelity design point is obtained using the inverse 

mapping function. The pseudo-inverse was considered due to the different design spaces of the HFM 

and the LFM. 

𝑋𝐻𝐹𝑀 = 𝑃
−1(𝑋𝐿𝐹𝑀) = [[𝐵

𝑇𝐵]−1𝐵𝑇][[𝑋𝐿𝐹𝑀] − [𝐶]] (5.3) 

In the first case in Figure 5.3, the inversed high-fidelity design point from the low-fidelity design point 

was not even close to the original design point but completely different. The inversed design points are 

out of design space and geometrically impossible values, as described in equation (5.4)

This result shows that the inverse mapping matrix does not provide correct high-fidelity design variables 

when the design spaces of the HFM and the LFM are different. The matrix 𝐵𝑇𝐵 in equation (5.3) is 

close to a singular matrix, and the matrix [𝐵𝑇𝐵]−1𝐵𝑇 might provide an incorrect high-fidelity design 

point. It is not possible for the mapping function to offer reasonable high-fidelity design variables from 

𝑋𝐻𝐹𝑀_𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = [

71.33
174.73
5.23
30.78

] ≠ 𝑋𝐻𝐹𝑀_𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑑 [

7.89
123.72
37.93
−60.82

] (5.4) 
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low-fidelity design spaces because of information loss between the two fidelity models when the design 

variables are dependent on the mesh size using the same FEM solver. 

 

5.2 Multi-Fidelity Modelling having a Different Number of 

Design Variables between HFM and LFM 

The multi-fidelity methods developed in computer science provide significant computational efficiency 

compared to metamodels or surrogate models. Such surrogate models have been widely used in 

different types of design problems in engineering. However, it is found that the traditional multi-fidelity 

methods do not allow different fidelity models to carry a different number of design variables. The 

space mapping method, which covers different design spaces between the HFM and the LFM, was not 

available for structural optimisation as described in the previous section. The inverse mapping function 

derived by the pseudo inverse formulation does not provide a correct high-fidelity design point from a 

low-fidelity design point since the mapping matrix is not with the same number of rows and columns. 

It should be noted that a composite structure used in large-scale design problems, such as aircraft or 

wind turbine, has many design variables such as geometry, material properties, etc. For instance, if a 

structure has more than thirty design variables and each design variable has a wide design range, 

hundreds of high-fidelity FEM models have to be simulated to construct the response correction 

function in the same design spaces with the LFM. This requires the same number of design points with 

the LFM to cover the entire design space and leads to considerable computational cost. Although the 

traditional multi-fidelity methods offer a certain level of computation time savings, it should be 

highlighted that the changes in the mesh regarding different geometry parameters in the HFM cause 

additional computational cost when it comes to large-scale structures.  

 

5.2.1 Multi-Level Optimisation for Multi-Fidelity Modelling 

As the engineering system in the field of structural optimisation becomes more complex and enormous, 

it causes an increase in the number of design variables to consider. As mentioned in the previous section, 

the computational cost of considering all design variables in high-fidelity FEM simulations is 

prohibitive to construct even multi-fidelity models.  

In order to resolve this challenge, the developed multi-fidelity formulation adapts the concept of multi-

level optimisation to improve computational efficiency compared with traditional surrogate methods 

and other multi-fidelity methods. Multi-level optimisation presents a wide range of benefits when it 

comes to large-scale optimisation problems. This optimisation approach separates a given large-scale 
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optimisation problem into several scaled-down problems (85). This approach breaks down the large-

scale optimisation problem into several levels of design adjustment corresponding to various collections 

of design variables. This adaptation ensures that the multi-fidelity formulation can offer significant 

computational time savings while safeguarding the probabilistic optimisation process against different 

levels leading to information loss (42). 

The selection of levels and the associated design variables depend on the problem characteristics. For 

instance, if the level is determined by numerical analysis methods, the design variables should be 

defined by what the numerical solver requires (86). In comparison, if the level is defined by different 

objective functions, each level should take different design variables which deliver critical impact (87). 

The level can also be determined by different design approaches, such as preliminary and detailed 

design (4). These levels provide the large-scale problem to computational efficiency with benefits. It is 

not surprising that each level has its objectives and constraints, depending on the design variables. In 

this multi-level optimisation, the designer should decide to find reasonable solutions at each level that 

maximise the performance of the whole given system. A typical multi-level multi-objective 

optimisation process can be expressed as equation (5.5): 

 Level 1  

(5.5) 

𝑚𝑖𝑛𝑖𝑛𝑖𝑠𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓𝑖(𝑋) (𝑖 = 1, 2, … , 𝐼) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑋) ≤ 0 (𝑗 = 1, 2, … , 𝐽) 

 ℎ𝑘(𝑋) = 0 (𝑘 = 1, 2,… , 𝐾) 

 𝑥𝑙
(𝐿)
≤ 𝑥𝑙 ≤ 𝑥𝑙

(𝑈)
 (𝑙 = 1, 2, … , 𝐿) 

 ⸽  

 Level n  

𝑚𝑖𝑛𝑖𝑛𝑖𝑠𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓𝑜(𝑌) (𝑜 = 1, 2, … , 𝑂) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑝(𝑌) ≤ 0 (𝑝 = 1, 2,… , 𝑃) 

 ℎ𝑞(𝑌) = 0 (𝑞 = 1, 2, … , 𝑄) 

 𝑦𝑟
(𝐿)
≤ 𝑦𝑟 ≤ 𝑦𝑟

(𝑈)
 (𝑟 = 1, 2, … , 𝑅) 

where 𝑋 is the design variables, 𝑓𝑖  is the 𝑖𝑡ℎ  objective function, 𝑔𝑗  is 𝑗𝑡ℎ  inequality constraint, ℎ𝑘  is 

𝑘𝑡ℎ equality constraint, and  𝑥𝑙
(𝐿)

 and  𝑥𝑙
(𝑈)

 are the lower and upper bounds for the 𝑙𝑡ℎ design variables 

in Level 1. Similarly, 𝑌 is the design variables, 𝑓𝑜 is the 𝑜𝑡ℎ objective function, 𝑔𝑝  is 𝑝𝑡ℎ inequality 
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constraint, ℎ𝑞 is 𝑞𝑡ℎ equality constraint, and  𝑥𝑟
(𝐿)

 and  𝑥𝑟
(𝑈)

 are the lower and upper bounds for the 𝑟𝑡ℎ 

design variables in Level n. It should be noted that part of the objectives can be used at a different level. 

 

5.2.2 Multi-Fidelity Formulations Based on the LFM using Successive 

High-Fidelity Correction 

This section introduces a new multi-level multi-fidelity modelling method to address the computational 

challenge and offer more computational efficiency than the traditional multi-fidelity methods. This 

multi-fidelity method aims to manage different design spaces between the HFM and the LFM. The 

multi-level optimisation approach is incorporated into this developed modelling process. This method 

employs ANN, which uses particularly the radial basis functions introduced in sections 3.1.2.1, to create 

the surrogate models.  

Figure 5.4 represents the main idea of this multi-fidelity modelling method is to use the LFM with 

successive high-fidelity correction across the optimisation level. Here, the HFM has fewer design 

variables (one variable in this example) than the LFM at each level to reduce the high-fidelity FEM 

simulations to construct surrogate models. In contrast, the LFM has more design variables than the 

HFM at the same level. The multi-fidelity model constructed by these two fidelity models encompasses 

different dimension of design spaces, and it is utilised at each level of the probabilistic optimisation 

process. Fundamentally, the optimal solutions of high-fidelity design variables are obtained using the 

optimisation loop of the HFM. At the same time, the solution spaces of other design variables that are 

not included in the HFM can be explored by the optimisation loop of the LFM having all design 

variables. After every optimisation level, both the HFM and the LFM are corrected using the optimal 

solutions of the multi-fidelity model at each level, and then the updated models move on to the following 

optimisation level. These updated models are exploited to construct an improved multi-fidelity model 

that carries new high-fidelity design variables during the following optimisation process. The optimal 

solutions of the low-fidelity design variables at the previous level are employed by the initial starting 

points of the next level to discover global solutions efficiently. The LFM can complement information 

loss in the whole design space caused by the HFM not embracing the entire design space. In this manner, 

the HFM provides accurate optimal solutions of high-fidelity design variables. The LFM explores the 

whole solution space of all design variables while sharing the design variables in the HFM.  
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Figure 5.4: Concept of multi-fidelity modelling method having a different number of design variables 

As defined in Table 5.2, the formulation highlights how a multi-fidelity model is constructed using a 

different number of design variables between the HFM and the LFM. At the first level, 𝑚 design 

variables in the HFM are selected from all design variables, 𝑛. These 𝑚 selected design variables are 

defined by H(I). Other design variables not chosen are fixed at their initial values. In comparison, the 

LFM has 𝑛 design variables defined by L(I). It is not surprising that H(I) is a subset of L(I). This enables 

the constructed multi-fidelity model to explore the whole design space using the LFM. After the 

optimisation at this level, the optimal solutions are found that are represented by Ĥ(I) and L̂(I) of high-

fidelity design variables and low-fidelity design variables, respectively. Then the selected high-fidelity 

design variables in the first level are updated by Ĥ(I) and other design variables not chosen by the HFM 

are also updated by L̂(I).  

The HFM chooses a different number of design variables in the next level, 𝑙, as new design variables 

H(II) and the optimised design variables in the first level, Ĥ(I), are fixed for this level. The LFM covers 

the whole design space except for the previous high-fidelity design spaces of H(I) while sharing the new 

design high-fidelity design spaces of H(II). The vector size of low-fidelity design variables should be 

(𝑛 −𝑚) × 1. The constructed multi-fidelity model finds the optimal solutions of design variables 

specified by H̃(II)  and L̃(II) . H̃(II)  updates the multi-fidelity model while L̃(II)  offers initial starting 

points for the following optimisation level. This process is continued until all optimal solutions are 

found. It should be noted that the selection of the design variables in the HFM does not follow any 

particular order since the LFM encompasses the whole design space regardless of choice. It was 
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demonstrated that different selection orders do not affect the optimisation results. This modelling 

method can be incorporated into the probabilistic optimisation framework where the primary challenge 

is to deal with substantial high-fidelity FEM simulations. 

Table 5.2: Formulations of multi-level multi-fidelity modelling method 

 HFM at Level I LFM at Level I 

Design 

variables 

H(I) = [𝑥(1),⋯ , 𝑥(𝑚)],   (𝑚 < 𝑛) 

𝑥(𝑚+1), ⋯ , 𝑥(𝑛) 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑 

L(I) = X = [𝑥(1), 𝑥(2),⋯ , 𝑥(𝑛)] 
H(I) ⊂ L(I) 

Number of 

Design 

variables 
𝑚 𝑛 (𝑎𝑙𝑙 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

Optimal 

values 
Ĥ(I) = [𝑥(1),⋯ , 𝑥(𝑚)] L̂(I) = [𝑥(1),⋯ , 𝑥(𝑛)] 

Corrected 

HFM &LFM 
X = [Ĥ(I), 𝑥(𝑚+1),⋯ , 𝑥(𝑛)] 

 HFM at Level II LFM at Level II 

Design 

variables 

H(II) = [𝑥(𝑚+1),⋯ , 𝑥(𝑙)],   𝑙 < 𝑛 

Ĥ(I) 𝑎𝑛𝑑 𝑥(𝑙+1),⋯ , 𝑥(𝑛) 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑. 

L(II) = [𝑥(𝑚+1),⋯ , 𝑥(𝑛)] 
Ĥ(I) 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑.    H(II) ⊂ L(II) 

Number of 

Design 

variables 
𝑙 − 𝑚 𝑛 −𝑚 

Optimal 

values 
H̃(II) = [𝑥̃(𝑚+1),⋯ , 𝑥̃(𝑙)] L̃(II) = [𝑥̃(𝑚+1),⋯ , 𝑥̃(𝑛)] 

Corrected 

HFM &LFM 
X = [Ĥ(I), H̃(II), 𝑥̃(𝑙+1)⋯ , 𝑥̃(𝑛)] 

 HFM at Level III LFM at Level III 

 
𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 H(III)𝑎𝑛𝑑 L(III) 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑎𝑛𝑛𝑒𝑟. 

Ĥ(I) 𝑎𝑛𝑑 H̃(II) 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑙𝑒𝑣𝑒𝑙. 
  

5.2.3 Multi-Fidelity Modelling-Based Robust Design Optimisation 

Methodology 

The developed multi-fidelity formulation is integrated with the RDO process, a type of probabilistic 

optimisation methods. Figure 5.5 shows how the developed optimisation framework combines with the 

multi-fidelity method introduced in the previous section. The framework consists of the multi-fidelity 

modelling process and the RDO process using the concept of multi-level optimisation. The primary 

steps that should be highlighted in this framework are to build a set of high-fidelity design parameters 

at each level and construct the multi-fidelity model for the RDO process. The framework is 

implemented as follows. 

As shown in the figure and the table, the HFM and the LFM are defined by mesh convergence studies, 

and then each FEM model using the defined mesh sizes are created. The number of optimisation levels, 

𝑘  in the figure, and the number of design variables in the HFM, 𝑚  and 𝑙  in the table, should be 

determined by engineers depending on the characteristic and size of the optimisation problem. It should 
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be noted that the HFM has fewer design variables, H(I), while the LFM has all design variables in the 

first level, L(I). Once the training dataset is obtained using the two FEM models, the multi-fidelity model 

is constructed by the surrogate models using ANN of both the HFM and the LFM based on the set of 

design variables, H(I) and L(I), for the first level. The multi-fidelity RDO process is carried out by 

Monte Carlo Simulations (MCS) using the Sobol sampling technique and offers the optimal solutions 

for the first level, Ĥ(I) and L̂(I). The optimal solutions of design variables in HFM, Ĥ(I), update the 

HFM while those in LFM, L̂(I), provides starting points for the next level.  

For example, there are two models in the first level of the RDO process, the HFM having only one 

design variable and the LFM having all design variables. Both surrogate models of the two fidelity 

models are constructed using ANN. It should be noted that other design variables apart from the selected 

design variable in the HFM are fixed at the initial mean value of each design variable. At the same time, 

the LFM examines the design spaces of those design variables that are not selected in the HFM. Hence, 

both the HFM and the LFM cooperate as a multi-fidelity model during the optimisation process. The 

initial starting points are chosen by sampling techniques to be evenly distributed in the design spaces, 

such as Optimal Latin Hypercube Sampling (OLHS) and Sobol sampling techniques. The LFM shares 

the selected design variables of the HFM during the RDO process. When the first level of the RDO 

process is completed, the chosen design variables in the HFM are corrected by the optimal solutions of 

the high-fidelity design variables at the level. The optimal solutions of the low-fidelity design variables 

also correct the other design variables in HFM that are not considered in the first level. These updated 

HFM and LFM are used in the next level of the RDO process. In this manner, the multi-fidelity 

optimisation process is continued until the multi-fidelity model finds the optimal solutions of all high-

fidelity design variables. 

This new multi-level multi-fidelity modelling-based RDO framework enables the use of a considerably 

smaller number of the HFM compared with conventional multi-fidelity methods. These computational 

time savings are obtained by the HFM having fewer design variables so that the number of high-fidelity 

FEM simulations is reduced, which is the main contribution of this multi-fidelity formulation. This 

method also provides the complementation of information loss using the LFM exploring all design 

spaces in the optimisation process, which the HFM omits depending on the selection of design variables. 

It should be highlighted that the proposed method takes more advantage of multi-fidelity modelling 

than the conventional multi-fidelity methods. 
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Figure 5.5: Multi-fidelity robust design optimisation framework
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5.3 Finite Element Model of Composite Structures under Non-

Linear Post-Buckling  

In general, stringer-stiffened composite structures are represented by a thin skin structure that should 

be preserved using longitudinal stringers in compressive loading condition. The composite structures 

under compression are subjected to mechanical shortening. As the shortening rises along the 

longitudinal direction, transverse deflection appears all of a sudden at a certain shortening length or 

load level. This transverse deflection is called linear buckling that was considered in Chapter 4. If a 

composite structure is loaded beyond the linear buckling, the structure is under a post-buckling regime. 

Linear buckling is widely used in many industrial design problems because it conveniently provides a 

structural stability level to designers. However, it is acknowledged that the linear buckling load does 

not mean the maximum load for the structure to survive. Even though the applied load is a few times 

bigger than the buckling load, the failure of the structure might not happen even under the post-bucking 

region (88). The post-buckling strength capacity of the stringer-stiffened composite structures has been 

studied in the area of probabilistic design because it offers considerable benefits to reduce weight 

(4,14,15). 

A non-linear FEM model is developed in this section in order to demonstrate the multi-fidelity RDO 

framework using the mono-stringer stiffened composite structure under a non-linear post-buckling 

regime. In the post-bucking regime, the buckled shape of the structure frequently varies as the 

compression load increases. Also, mode-switch or mode-jump, known by abrupt changes in the 

buckling mode, is observed when the compression load increases to a specific value. These structural 

instabilities found in the post-buckling regime lead to significant numerical challenges, which cannot 

be entirely caught by the use of quasi-static FEM analysis. The non-linear explicit dynamic analysis is 

a much better way to analyse the non-linear post-buckling (89). The forecast of the collapse load is 

considerably demanding because stresses along thickness in composites are sensitive. In general, the 

non-linear post-buckling analysis of composite structures includes both geometric and material non-

linearity. It will mainly introduce how the parameters of constraints and objectives for the optimisation 

problem are determined. A good design approach for the mono-stringer stiffened structure aims that the 

stiffener buckles first before the skin is in the yield region. This enables the structure to achieve buckling 

without damage initiation in the skin.  

There are several failure measures based on the stress or strain of a structure. One well-known failure 

criterion was proposed by Tasi and Wu (90) that can be applied to composite materials to predict the 

load-carrying capability of a structure. This criterion is useful to estimate the damage initiation of the 

structural failure process. The maximum stress failure criterion based on this theory is expressed as: 
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𝐼𝑇𝑠𝑎𝑖−𝑊𝑢 = 𝐹1𝜎11 + 𝐹2𝜎22 + 𝐹11𝜎11
2 + 𝐹22𝜎22

2 + 𝐹66𝜎12
2 + 2𝐹12𝜎11𝜎22 < 1.0 (5.6) 

where 𝐼𝑇𝑠𝑎𝑖−𝑊𝑢 is a failure index,  𝐹 is a Tsai-Wu coefficient, 𝜎 is stress, subscripts 1 and 2 refers to 

the longitudinal and transverse directions, respectively. If the 𝐼𝑇𝑠𝑎𝑖−𝑊𝑢  exceeds this criterion, it is 

presumed that the damage begins. 

Each coefficient in equation (5.6) is defined as: 

𝐹1 =
1

𝑋𝑡
+
1

𝑋𝑐
, 𝐹2 =

1

𝑌𝑡
+
1

𝑌𝑐
, 𝐹11 =

−1

𝑋𝑡𝑋𝑐
, 𝐹22 =

−1

𝑌𝑡𝑌𝑐
, 𝐹66 =

1

𝑆2
 (5.7) 

where 𝑋𝑡 and 𝑋𝑐 are maximum tensile and compressive strength in the longitudinal direction, 𝑌𝑡 and 𝑌𝑐 

are maximum tensile and compressive strength in the transverse direction, 𝑆 is the maximum shear 

strength in the 𝑋𝑌 plane. 

Firstly, the FEM model of the mono-stiffened stringer composite structure is created to see the 

difference in structural behaviours depending on the use of cohesive elements. When the FEM model 

accounts for both the geometric and material non-linearity, the model should be created using the 

cohesive elements to consider progressive failures caused by interfacial debonding between the stringer 

and skin. Modelling these elements is a challenging task and leads to considerable computational cost 

due to the tiny element size of the cohesive zone. Suppose a FEM model without the cohesive elements 

can obtain an acceptable reaction force and failure index regarding the compressive load before the 

global buckling calculated using a FEM model with cohesive elements. In that case, the composite 

structure can be optimised geometrically non-linear region. The computational cost without the 

cohesive elements is a lot cheaper than that with the cohesive elements. 

As shown in Figure 5.6, the same mono-stringer stiffened composite structure was considered in 

Chapter 4. This structure is clamped at both ends, but the left‐hand end is free to move in the longitudinal 

direction (z‐direction in the figure), which is the applied loading direction. Pure compression load is 

applied by increasing uniform displacement at the left‐hand end. The material properties are the same 

as in Table 4.1. The failure parameters to calculate Tsai-Wu indexes are shown in Table 5.3. 
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Figure 5.6: Mono-stringer stiffened composite panel 

Table 5.3: Damage initiation parameters 

Parameter Value 

Longitudinal tensile strength (𝐺𝑃𝑎) 𝑋𝑡 2.9 

Longitudinal compressive strength (𝐺𝑃𝑎) 𝑋𝑐 1.66 

Transverse tensile strength (𝐺𝑃𝑎) 𝑌𝑡 0.058 

Transverse compressive strength (𝐺𝑃𝑎) 𝑌𝑐 0.025 

In-plane shear strength (𝐺𝑃𝑎) 𝑆 0.095 

 

Table 5.7(top) compares the reaction force between two FEM models depending on the use of the 

cohesive elements. The reaction force between the two different FEM models is nearly identical before 

the global buckling happens at around the shortening length of 3.12 mm following the linear buckling 

at about the shortening length of 0.5 mm. The reaction force at the global buckling in the FEM model 

with cohesive elements was 134 kN, while the FEM model without cohesive elements showed 131 kN. 

The out-of-plane displacement of the panel at the global buckling is shown in Table 5.7(bottom). Hence, 

the shortening length of 3.0 mm is suitable for building up input and output datasets to construct the 

surrogate models. This shows that the cohesive elements are not necessary to consider when the global 

buckling is not a primary structural behaviour for the optimisation.  
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(top) 

 

(bottom) 

Figure 5.7: Reaction force comparison depending on the use of the cohesive elements (top) and the 

out-of-plane displacement at the shortening length of 3.12 mm (bottom) 

The failure index calculated by Tsai-Wu theory is generally considered a constraint 𝐼𝑇𝑠𝑎𝑖−𝑊𝑢 < 1.0 to 

track the failure process of the structure (4). It is analysed to see whether this index can be used as a 

parameter that the multi-fidelity model can manage. As a result, this index is not appropriate to construct 

a multi-fidelity model as follows. 

 Computation time for post-processing: Tsai-Wu indexes should be extracted from all 

integration points in all lay-ups of each element. That causes enormous post-processing time 

much longer than high-fidelity FEM simulation time. For example, a single high-fidelity FEM 

simulation in this problem takes about 40 minutes; however, the computation time for post-

processing takes more than 2 hours 30 minutes because the damage imitation has to be found 
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from millions of integration points in thousands of elements. This is not a reasonable 

computation time.  

 Local value: Tsai-Wu index is a local value that is considerably dependent on the mesh. It is 

challenging to create a surrogate model using even the HFM because it is not easy to obtain an 

exact reaction force at the damage initiation point where the Tsai-Wu index equals one. Even 

though the loading speed for the explicit dynamic analysis decreases, it is not possible to capture 

the acceptable reaction force using the LFM. Figure 5.8(a) shows the response surface of the 

reaction force of the LFM having one design variable (X1). The low-fidelity surrogate model 

does not catch the response surface thoroughly because the response values from the FEM 

model change suddenly at the region between X1 = 42.55 mm and X1 = 43.45 mm. Although 

the surrogate model represents the responses of the FEM model except for the region, the error 

of the surrogate model is not good enough to construct the multi-fidelity model. Figure 5.8(b) 

highlights why the Tsai-Wu index cannot be considered a parameter of the surrogate model. 

The figure illustrates the maximum Tsai-Wu index regarding the shortening length of two FEM 

models between X1 = 42.55 mm and X1 = 43.45 mm. When the Tasi-Wu index equals one, the 

reaction force at the damage initiation point is obtained. However, it is challenging to collect 

proper reaction forces at the damage initiation point of different FEM models. In the figure, the 

damage of the FEM model of 42.55 mm occurs at the shortening length of 3.54 mm. Then 

corresponding reaction force of the model is obtained. When the FEM model of 43.45 mm 

undergoes a similar shortening length, its reaction force is not obtained since the Tsai-Wu index 

is about 0.999. Then the reaction force of the model is found at the shortening length of 4.41 

mm, which leads to a sudden rise in the response surface. Hence, the reaction force at the 

damage initiation point is not appropriately captured, so adequate surrogate models are not 

obtained to construct the multi-fidelity model.  

 

The damage initiation was not selected as a constraint based on these parameter studies, but the reaction 

force was determined as an objective function. The reaction force is not only a global index that can 

define the HFM and the LFM, but also a parameter to evaluate the global buckling. Hence, material 

properties were assumed in the linear elastic region, while geometric non-linearity was considered. 

Delamination that is caused by debonding between stringer and skin was not considered in this section. 
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(a) 

 

(b) 

Figure 5.8: Response surface of the reaction force of LFM having one design variable 𝑋1 (a) and 

Tsai-wu index of low-fidelity FEM models between X1 = 42.55 mm and X1 = 43.45 mm (b) 
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5.4 Numerical Examples 

Two engineering examples, DO and RDO, were carried out to design a mono-stringer stiffened 

composite structure using the developed multi-level multi-fidelity probabilistic optimisation method. 

Firstly, DO that is more straightforward than probabilistic optimisation methods was conducted to 

evaluate the feasibility of the developed method. Then, RDO was carried out to see whether this new 

method could be systematically incorporated into the probabilistic optimisation of composite structures 

considering design uncertainties. In these two engineering examples, the efficiency of the multi-fidelity 

model covering different design spaces between the HFM and the LFM was evaluated using the 

conventional optimisation method based on high-fidelity modelling-based surrogate models. 

 

5.4.1 Optimisation of a Mono-Stringer Stiffened Composite Panel under 

the Non-Linear Post-Buckling Regime 

As shown in Figure 5.6, the same mono-stringer stiffened composite structure considered in the example 

of Chapter 4. It should be noted that only the geometry of the stringer part is to be optimised, and the 

dimensions of the skin are fixed during the optimisation process. The number of the stringer geometry 

parameters is four (X1, X2, X3 and X4) to validate the proposed method via a simple optimisation 

problem. The type of fidelity in these two examples was chosen by the level of discretisation of the 

FEM model. Figure 5.9 shows that the mesh grid of both the HFM and the LFM was defined by the 

size of 7.0 mm and 20.0 mm, respectively. The HFM and the LFM show about 10 % difference in 

accuracy, while the computational cost of the HFM is ten times higher than that of the LFM. These 

models were modelled using non-linear explicit dynamic finite element analysis using Abaqus (57). 

The FEM models consist of 4-node shell elements (S4R). 

Two types of examples, i.e. DO and RDO, are conducted to demonstrate the developed multi-fidelity 

modelling-based probabilistic optimisation method embracing different design spaces between the 

HFM and the LFM. Each level has the same objective functions and constraints, whereas other design 

variables are considered at each level. The boundary conditions and loading conditions were not 

changed at every optimisation level. The optimisation aims to find a composite panel that shows 

minimum mass and maximum reaction force under the non-linear post-buckling regime. Through these 

two engineering examples, the potential application area of the developed optimisation method can be 

broadened to large-scale problems having substantially larger design spaces. 
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Figure 5.9: The HFM with 7 mm mesh size (left) and the LFM with 20 mm mesh size (right)  

 

5.4.2 Multi-Fidelity Modelling-Based Deterministic Optimisation 

DO was conducted to see if this method provides acceptable solution accuracy and computational time 

savings. In order to find the best solution, the Pareto front is found first, and then the optimum solution 

is selected by a decision-maker.  

 

5.4.2.1 Problem Definition 

As can be seen in Table 5.4, the mesh size of the HFM and LFM for finite element analysis were defined 

by of 7.0 mm and 20.0 mm, respectively. The design spaces of cross-section geometric parameters of 

the stringer are also denoted. The optimisation was carried out using the NSGA-II algorithm, a multi-

objective method suited well for highly non-linear design spaces. The Pareto front is constructed by 

choosing the feasible non-dominated designs where each design point has the best combination of 

objective function values. The improvement of the objective is only possible by sacrificing the other 

objectives. Generation and population numbers for the optimisation process were chosen as of 20 and 

12, respectively. These values were accomplished by the convergence study of the objective functions. 

Hence, the total number of FEM simulations at each level was 240. Different constraints for the HFM 

and the LFM are defined by the minimum reaction force that originates from the initial model. Both the 

HFM and the LFM have their objectives in the multi-fidelity modelling-based DO process.  

Table 5.5 shows the selected design variables in the HFM at each level and the number of FEM 

simulations to build the multi-fidelity model.  It is not surprising that the number of high-fidelity FEM 

simulations is dramatically reduced because the LFM examines the whole design spaces. This should 

compensate for the disparity of solution space caused by a lack of information of which the HFM does 

not cover the entire design spaces. 
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Table 5.4: DO – problem definition 

Description  Value 

Multi-fidelity model 
HFM 𝑀𝑒𝑠ℎ: 7.0 𝑚𝑚 

LFM 𝑀𝑒𝑠ℎ: 20.0 𝑚𝑚 

Design variables Stringer foot 34.4 ≤ 𝑋1 ≤ 51.6 

 

Stringer height 24.0 ≤ 𝑋2 ≤ 36.0 

Distance between top and foot 12.0 ≤ 𝑋3 ≤ 18.0 

Stringer top 25.0 ≤ 𝑋4 ≤ 30.0 

Optimisation method 

 

NSGA-II 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: 20 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 12 

Constraints 

 

HFM Reaction Force 𝑅𝐹 ≥ 124.0 𝑘𝑁 

LFM Reaction Force 𝑅𝐹 ≥ 130.0 𝑘𝑁 

Objectives 

 

 

 

HFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

LFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

HFM Reaction Force 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 

LFM Reaction Force 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 
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Table 5.5: Details of the multi-fidelity model 

Level 

HFM LFM 

Design variable 
Number of  

FEM simulations 
Design variable 

Number of 

FEM simulations 

I X1 10 X1, X2, X3, X4 100 

II X2 10 X2, X3, X4 70 

III X3 10 X3, X4 40 

IV X4 10  - 

 

5.4.2.2 Results 

There are four objectives in this optimisation problem, and this is not easy to present using a 2D or 3D 

graph. However, a tabular form can be an option to represent the results concerning different levels and 

objectives. Table 5.6 shows the results of DO using the multi-fidelity model. This model has four 

geometric parameters to be optimised; hence the HFM has only one design variable at each optimisation 

level in this example. Table 5.6 highlights how both the HFM and the LFM embrace the whole design 

spaces as a multi-fidelity model. As mentioned before, two fidelity models share the design variable of 

X1 during the optimisation process at Level I. The results of Level I show optimal values of both the 

HFM and the LFM that provide the maximum reaction force at the given shortening length. These 

optimal values correct both the HFM and the LFM; in particular, the optimal value of X1 is fixed 

because this value is the best solution obtained from the high-fidelity design spaces. At Level II, the 

HFM takes the new design variable X2. At the same time, X3 and X4 are also updated by the optimal 

values of the LFM at Level II. The LFM has three design variables (X2, X3 and X4) with the fixed value 

of X1 from Level I. Similarly, Level II provides the optimal values that are X2 of the HFM, and X3 and 

X4 of the LFM. They are also used to correct both the HFM and the LFM in Level II, and these updated 

models are utilised at Level III. In this manner, the final optimal solution is found when Level IV is 

completed. 
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Table 5.6: DO results - multi-fidelity model 

Level 

Design 

variable 

Result Optimal value (mm) for 

multi-fidelity model 

correction 
Updated HFM 

by multi-

fidelity model 

RF (kN) Mass (g) 

HFM LFM HFM LFM HFM LFM 
Value from 

HFM 

Value from 

LFM 

I X1 

X1 

X2 

X3 

X4 

126.0 138.1 617 635 X1: 47.225 

X2: 34.470 

X3: 17.450 

X4: 27.515 

X1: 47.225 

(Fixed) 

X3: 17.450 

X4: 27.515 

II X2 

X2 

X3 

X4 

131.9 140.5 639 641 X2: 35.924 
X3: 17.241 

X4: 29.728 

X2: 35.924 

(Fixed) 

X4: 29.728 

 

III X3 
X3 

X4 
132.9 140.4 642 641 X3: 17.493 X4: 29.282 

X3: 17.493 

(Fixed) 

IV X4 - 133.1 - 642 - X4: 30.000 - 
X4: 30.000 

(Fixed) 

 

Table 5.7: DO results accuracy by optimal solution (multi-fidelity vs. high-fidelity) 

 Multi-fidelity model High-fidelity FEM 

model 

Maximum RF (kN) 133.1 132.8 

Minimum mass (g) 642 640 

 

 

Figure 5.10: DO results comparison by the Pareto front (multi-fidelity vs. high-fidelity FEM) 
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Figure 5.11: DO computation time comparison (multi-fidelity vs. high-fidelity)  

Figure 5.10 shows the Pareto front of the optimisation using the multi-fidelity model. As shown in the 

figure, the Pareto front improves gradually in the direction in which the reaction force increases as the 

level goes up. The Pareto front of Level I is lower than that of Level II. The Pareto front of Level IV is 

higher than other levels. Table 5 shows that the maximum reaction force of each level increased from 

Level I (126.0 kN) to Level IV (133.1 kN). The conventional DO method using high-fidelity FEM 

models has the same objectives and constraints, and the Pareto front of this traditional method is shown 

in Figure 5.10. Table 5.7 presents the comparison of the final chosen solution between the multi-fidelity 

model and the high-fidelity FEM model to show how accurate the solution of the multi-fidelity model 

is. The reaction force of the multi-fidelity model indicates good agreement with that of the high-fidelity 

FEM model corresponding to a mass of 640 g. 

The proposed multi-fidelity modelling method aims to provide the accuracy of solutions and 

computation time savings.  It is significant to show how much of the computational time savings are 

obtained using the multi-fidelity model. Unfortunately, not many research works provide a standard 

guideline for the computational cost of multi-fidelity models (23). In general, the computational cost is 

defined by the number of high-fidelity FEM simulations because the primary goal of the multi-fidelity 

modelling method is to reduce the computational cost of the HFM using the LFM (48). In order to 

evaluate the computational cost of each model acceptably and diminish the computational noise, the 

total number of FEM simulations to create the multi-fidelity model is calculated and then it is 

normalised by the number of FEM simulations used for the conventional method (24). Figure 5.11 

displays the computational time taken by the proposed method and the traditional method. In the 
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previous section, 40 design points of the HFM and 210 design points of the LFM were used to construct 

the multi-fidelity model. The conventional method was performed using 240 high-fidelity FEM models. 

The developed multi-fidelity model offers about 80 % of computation time savings compared to the 

traditional method using the high-fidelity FEM models. 

 

5.4.3 Multi-Fidelity Modelling-Based Robust Design Optimisation 

Through the benchmark study of DO in the previous section, the feasibility of this developed multi-

fidelity modelling-based optimisation method was proven. This enables to broaden to the area of RDO 

using the developed method. This example aims to demonstrate how computationally economical and 

accurate this proposed optimisation method is to find a robust design solution. 

 

5.4.3.1 Problem Definition 

Table 5.8 shows the problem definition of this example. The details of the stiffened composite panel, 

the mesh size and the design space are the same as the previous example. The reason for the same design 

space with DO is that a robust solution might be far from the deterministic solution. Each design 

variable has its design uncertainty of 0.1 % as manufacturing tolerance (15). These uncertainties are 

described by the statistical characteristics, which is a form of the normal distribution having mean and 

standard deviation. The extra constraint was added by a maximum mass of 630 g. In particular, the 

objectives in Table 5.8 presents the features of RDO. Eight objectives for the optimisation process using 

the multi-fidelity model are to maximise reaction force while minimising mass and the standard 

deviations of both reaction force and mass. Table 5.5 shows the selection order of the design variable 

in the HFM at each level and the number of FEM simulations to create the multi-fidelity model. Figure 

5.12 illustrates the multi-fidelity RDO framework using NSGA-II. In particular, robustness should be 

checked at each member of the population of each generation. MCS was utilised to specify the statistical 

moments of the objectives (mass and reaction force), which are caused by the uncertainties of random 

design variables. The Sobol sampling technique was considered that provides more uniformly 

distributed design points and more robust statistical predictions than the descriptive sampling technique 

(49). The maximum number of sampling points to check the robustness was 1,000. The convergence 

tolerance was 0.1 % of both mean and standard deviation compared to those associated values calculated 

every 25 sampled points. Hence, the maximum number of the multi-fidelity model’s simulations was 

120,000 during the robust optimisation process. 
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Figure 5.12: RDO structure 

Table 5.8: RDO – problem definition 

Description  Value 

Multi-fidelity model HFM 𝑀𝑒𝑠ℎ: 7.0 𝑚𝑚 
LFM 𝑀𝑒𝑠ℎ: 20.0 𝑚𝑚 

Design variables 

 

 

 

Stringer foot 34.4 ≤ 𝑋1 ≤ 51.6 

Stringer height 24.0 ≤ 𝑋2 ≤ 36.0 
Distance between top and foot 12.0 ≤ 𝑋3 ≤ 18.0 

Stringer top 25.0 ≤ 𝑋4 ≤ 30.0 

Optimisation method 

 

NSGA-II 

 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: 10 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 12 
Analysis type Monte Carlo simulation 𝑆𝑜𝑏𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔: 1000 
Design uncertainty 

Mean 
Standard Deviation 

(Std. Dev.) 

𝑋1 0.001 × 𝑋1 

𝑋2 0.001 × 𝑋2 

𝑋3 0.001 × 𝑋3 

𝑋4 0.001 × 𝑋4 
Constraints 

 

HFM Reaction Force 𝑅𝐹 ≥ 124.0 𝑘𝑁 

LFM Reaction Force 𝑅𝐹 ≥ 130.0 𝑘𝑁 
Mass 𝑚𝑎𝑠𝑠 ≤ 630 𝑔 

Objectives 

 

 

 

HFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
LFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

Std. Dev. HFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

Std. Dev. LFM Mass 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
HFM RF 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 

LFM RF 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 
Std. Dev. HFM RF 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

Std. Dev. LFM RF 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
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5.4.3.2 Results 

Table 5.9 describes the optimisation results at each level and how the HFM is corrected by the optimal 

values from using the multi-fidelity model. In the first level, both the HFM and the LFM share the 

design variable of X1 while exploring the entire solution spaces of all design variables using the LFM. 

Figure 5.13 depicts how this multi-fidelity modelling-based method probes the solution spaces when 

the HFM and the LFM have a different number of design variables in the optimisation process. Figure 

5.13 (a) shows the optimal solution of X1 using the HFM, which is reliable and accurate. At the same 

time, (b), (c) and (d) in the figure represent how the proposed multi-fidelity modelling method is 

implemented to embrace different solution spaces which are not included in the HFM during the 

optimisation process. It should be highlighted that these sub-figures offer what the different solution 

spaces are expected by the use of the LFM sharing the same X1 with the HFM at the first level. As can 

be seen in the figure, the LFM helps the decision-maker travel the different solution spaces of X2, X3 

and X4 corresponding to the variation of X1 of the HFM. This information trade within the multi-fidelity 

model enables X2, X3 and X4 of the HFM to be updated by optimal values of the LFM having all design 

variables. Table 5.9 highlights that the reaction force of HFM at the given shortening length at each 

level rises gradually as the optimisation level is escalated.  

Table 5.9: RDO results - multi-fidelity model 

Level 

Design 

variable 

Result Optimal value (mm) for 

multi-fidelity model 

correction 
Updated HFM 

by multi-

fidelity model 

RF (kN) Mass (g) 

HFM LFM HFM LFM HFM LFM 
Value from 

HFM 

Value from 

LFM 

I X1 

X1 

X2 

X3 

X4 

127.0 132.6 623 627 X1: 50.129 

X2: 31.589 

X3: 17.684 

X4: 20.656 

X1: 50.129 

(Fixed) 

X3: 17.684 

X4: 20.656 

II X2 

X2 

X3 

X4 

128.9 130.5 631 617 X2: 33.312 
X3: 15.082 

X4: 20.097 

X2: 33.312 

(Fixed) 

X4: 20.097 

III X3 
X3 

X4 
128.8 134.5 630 625 X3: 18.000 X4: 23.640 

X3: 18.000 

(Fixed) 

IV X4 - 129.0 - 631 - X4: 20.504 - 
X4: 20.504 

(Fixed) 

 

Figure 5.14 illustrates the Pareto front at each level of the RDO process using the multi-fidelity model. 

As seen in the Pareto front in the figure, the reaction force in the post-buckling regime was improved 

as the level progressed while the constraint of mass was not violated. Finally, the Pareto front of the 

fourth level presents the maximum reaction force with a mass of 630 g to evaluate the efficiency of the 

proposed method using an equivalent approach. In the figure, the optimal solutions from the use of the 

surrogate model based on 200 design points of the HFM are also presented to verify the accuracy of the 
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multi-fidelity model. It should be noted that these Pareto fronts from both the proposed method and the 

conventional method show the acceptable range of difference among the optimal solutions.  

 

 

HFM 

(X1) 

LFM 

(X1, X2, X3, X4) 

Level 

I 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.13: Multi-fidelity modelling based optimisation at Level I 

Table 5.10 describes the robust results which are chosen by the optimal solutions. This RDO aims to 

maximise the mean values of mass and reaction force, and minimise the standard deviation values of 

mass and reaction force. Hence, two optimal robust designs were selected that show the maximum mean 

of reaction force and the minimum standard deviation of reaction force, respectively. These results were 
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compared with the results of the conventional high-fidelity surrogate model that have the same mass as 

those designs from the proposed method. The robust solution of the multi-fidelity model is close enough 

to that of the high-fidelity surrogate model. Both solutions for different objectives have an acceptable 

agreement with the solutions of the high-fidelity surrogate model. It should be highlighted that the 

optimal solutions of the multi-fidelity model are more robust, which the standard deviations of each 

reaction force are 0.30 and 0.18, respectively, compared to those of the high-fidelity surrogate model. 

This means that the proposed optimisation method using a lot smaller number of FEM simulations 

discovers a more robust design. This is also found at the standard deviation of mass. 

In general, surrogate models are used to conduct RDO to overcome high computational cost, and these 

models are a kind of black-box form between design variables and responses. Hence, the final chosen 

solution that is produced by these surrogate models should be validated using proper calculation, such 

as a FEM solver or an experiment. Table 5.11 shows the solution accuracy of the surrogate model 

constructed using ANN. According to the table, the reaction forces of two surrogate models at the 

optimal design point are nearly identical to those calculated by the FEM solver. It should be remarked 

that the accuracy of the multi-fidelity model is better than that of the HFM.  

 

Figure 5.14: RDO result comparison by the Pareto front (multi-fidelity vs. high-fidelity) 
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Table 5.10: RDO results’ accuracy by optimal solution (multi-fidelity vs. high-fidelity) 

Model 
X1 

(mm) 

X2 

(mm) 

X3 

(mm) 

X4 

(mm) 

RF (kN) Mass (g) 

Mean Std. Dev. Mean Std. Dev. 

Objective: maximise reaction force 

Multi-fidelity 

model 
50.13 33.31 18.00 20.50 129.0 0.30 631 0.12 

HF surrogate 

model 
43.47 35.45 17.34 29.96 130.1 0.48 631 0.16 

Objective: minimise standard deviation of reaction force 

Multi-fidelity 

model 
43.01 32.67 15.38 22.28 124.8 0.18 608 0.15 

HF surrogate 

model 
40.87 35.44 13.95 24.42 124.7 0.24 611 0.15 

 

Figure 5.15 shows the statistical characteristic of the reaction force depending on the type of 

optimisation. The optimal design, which is obtained by DO, represents a more significant mean value 

of reaction force than the robust design. In contrast, the deterministic design is more sensitive with a 

larger standard deviation. It is worthy to note that the variation of the robust design using the multi-

fidelity model is smaller than that of the conventional method. Figure 5.16 illustrates the robust designs 

of the multi-fidelity model and the high-fidelity surrogate model when the objective function minimises 

the standard deviation of the reaction force under the post-buckling regime. Both robust designs in the 

figure have a nearly identical mean value of reaction force, while the dispersion of reaction force 

obtained by the multi-fidelity model is smaller than that of the conventional method. This is also clearly 

observed in Table 5.10. It should be noted that the accuracy of this multi-fidelity model is acceptable 

enough to be applied to RDO considering the design uncertainty of random design variables. 

The computational time savings are presented in Figure 5.17. The computational cost to create the multi-

fidelity model were normalised by the total computation time of the high-fidelity surrogate model. The 

developed multi-fidelity model incorporated 40 design points of the HFM and 210 design points of the 

LFM, while the high-fidelity surrogate model used 200 design points of the HFM. The computation 

time savings through the use of the multi-fidelity model was about 70 % compared to the computation 

time of the conventional high-fidelity surrogate method. It is critical to show how much the proposed 

multi-fidelity method is efficient than the different multi-fidelity methods covering the same number of 

design variables between the HFM and the LFM. These conventional multi-fidelity methods require the 

same number of FEM simulations between the HFM and the LFM to construct proper response 

correction surfaces that are the main component (47). Table 5.5 shows that the LFM having all design 

variables requires 100 design points of the LFM to construct the surrogate model having good quality. 

Hence, the HFM having all design variables should also need 100 design points of the HFM to create 

proper response correction surfaces. Figure 5.17 shows that the multi-fidelity model using the proposed 

method requires 40 design points of the HFM and 210 points of the LFM. The computational time 
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savings of the proposed method is about 50 % than the conventional multi-fidelity methods. These 

savings could be a dramatic improvement in conducting RDO of large-scale composite structures, 

which require the high computational cost to analyse even a single HFM. The final chosen deterministic 

and robust designs are illustrated in Figure 5.18.  

Table 5.11: The accuracy of the surrogate model (ANN vs. FEM solver) 

Model 
X1 

(mm) 

X2 

(mm) 

X3 

(mm) 

X4 

(mm) 

RF 

(ANN) 

RF 

(FEM Solver) 

Error 

(%) 

Multi-fidelity 

model 
50.13 33.31 18.00 20.50 129.0 kN 129.0 kN 0 % 

HF surrogate 

model 
43.47 35.45 17.34 29.96 130.1 kN 128.2 kN 1.5 % 

 

 

Figure 5.15: Statistical characteristic between DO and RDO: maximum reaction force 
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Figure 5.16: Statistical characteristic between multi-fidelity and high-fidelity surrogate model: 

minimum standard deviation of reaction force 

 

Figure 5.17: RDO computation time comparison (multi-fidelity vs. high-fidelity) 
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(top) 

 

(bottom) 

Figure 5.18: Chosen stringer geometry from DO (top) and RDO (bottom): maximum reaction force 

 

5.5 Summary 

In this chapter, the multi-level multi-fidelity modelling based optimisation framework is presented. It 

is demonstrated by RDO of a mono-stringer stiffened composite panel under the non-linear post-

buckling regime. It should be noted that the HFM has a fewer number of design variables, whereas the 

LFM has more design variables in this multi-fidelity modelling method. This is one of the main 

contributions of this work compared to conventional multi-fidelity modelling methods that require the 

same number of design variables between the HFM and the LFM to create the correction response 

function. During this optimisation process, the HFM having fewer design variables provides an accurate 

solution to correct the multi-fidelity model. At the same time, the LFM having more design variables 

explores the solution space of all design variables while sharing the design variables with HFM. In 

particular, the constructed multi-fidelity model using ANN is incorporated with the multi-level 

optimisation approach to deal with large-scale composite problems with many design spaces. The 

results of two engineering examples were evaluated in terms of solution accuracy and computational 

time savings. The optimal solutions of DO and RDO using the multi-fidelity model were nearly identical 

to those using the conventional method. It should be highlighted that the standard deviation of the 

optimal solution using the multi-fidelity model was more robust than that of the optimal solution using 

the conventional high-fidelity surrogate model. Computational efficiency was highlighted by the use of 

normalisation between the number of FEM simulations to create the multi-fidelity model and the 

number of FEM simulations to generate conventional high-fidelity surrogate models, as well as a 

comparison with a traditional multi-fidelity model with the same number of design variables for the 

HFM and the LFM. The multi-fidelity model was constructed using both 40 design points of the HFM 

and 210 design points of the LFM. In contrast, the conventional method for DO and RDO used 240 and 
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200 design points of the HFM, respectively. At least 50 % of computational time savings were obtained 

using this new multi-level multi-fidelity modelling method. Through these demonstrations, the multi-

fidelity modelling based optimisation framework was proven as a new optimisation method that the 

HFM and the LFM have different design spaces during the optimisation process. The developed multi-

fidelity modelling-based probabilistic optimisation framework shows excellent potential for large-scale 

composite problems considering design uncertainties. 
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6 Multi-Fidelity Probabilistic Optimisation of 

Composites for Thermomechanical Loading 

using Gaussian Process Based on Sparse 

High-Fidelity Information 

Thermomechanical loading may lead to a premature structural collapse in composite materials used in 

different engineering structures. By comprehensive awareness of the thermomechanical loading behind 

the structural stability, the stability of a designed composite system can be more precisely secured. As 

industrial demands for energy efficiency and low carbon emissions are rising, structures using these 

composite materials are applied to a broad range of engineering fields due to their fundamental 

advantages providing high strength and lightweight. For example, composite structures are used in 

aircraft structural design because high-speed and lightweight aircraft requirements are significantly 

growing. Lightweight structures are generally vulnerable to buckling under extreme environmental 

conditions. Hence, it is essential that buckling is taken into account at the design stage of composite 

structures. In particular, thermomechanical buckling should not be ignored since thermal loading can 

cause considerable damage followed by mechanical loading for a high-speed aircraft. Many design 

optimisation approaches for composite structures have been developed to consider both thermal and 

mechanical loading. However, the limitation of these current approaches is only based on Deterministic 

Optimisation (DO) that could cause conservative composite designs because they do not consider 

design uncertainties associated with the product’s lifecycle. 

In common, these uncertainties are considered by the use of safety factors that could result in a waste 

of material resources caused by increased weight. An ideal optimisation approach to consider the design 

uncertainties is the probabilistic design optimisation, including Reliability-Based Design Optimisation 

(RBDO) and Robust Design Optimisation (RDO). These optimisation approaches allow structural 

optimisation to deliver low carbon emissions and energy efficiency since they bring reliable and robust 
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design solutions for the entire lifecycle of structures. In specific, RBDO aims to minimise the 

probability of failure so that the final design satisfies reliability requirements based on the probabilistic 

characteristics of the design variables. This optimisation approach focuses on the safety of structures 

when they are exposed to catastrophic and extreme circumstances.  So far, the vast majority of research 

works have considered the thermal buckling behaviours of composite and metallic structures caused by 

thermal expansions without considering mechanical loading (91–95). Only a few research works have 

studied the thermomechanical buckling behaviours of composite structures. They have been 

demonstrated by structural analysis and deterministic design problems that do not consider the design 

uncertainties (16,18). Although the probabilistic design optimisation has been studied for designing 

different composite structures (4,14,15,20,24,42), there has not been a research work that carries out 

the probabilistic design of composite structures under thermomechanical loading. It is not surprising 

that the computational cost of these design problems is higher than considering a single loading.  

In the design area of composite structures, RBDO considers different design uncertainties depending 

on the objectives of optimisation problems. It highlights how different reliable designs rely on the 

consideration of design uncertainties compared with deterministic designs. These design uncertainties 

commonly involve mechanical properties and geometric parameters of structures associated with the 

design and manufacturing process (14,15,67,96–98). As discussed in previous chapters, the 

probabilistic design optimisation process encounters significant computational challenges led by 

statistical calculations regarding the design uncertainties. In particular, RBDO carries out the reliability 

assessments to obtain a prescribed reliability level, which requires millions of computationally 

expensive simulations such as Finite Element Method (FEM) simulations. An attempt to reduce the 

high computational cost caused by considering the design uncertainties involves the use of surrogate 

models (4,10,99). These models have been widely used in the various probabilistic optimisation process 

for composite structures while providing a certain level of computational gains. However, the 

computational cost is still the main obstacle to carry out the RBDO of complex and large-scale 

composite structures. It is not surprising that even a single FEM simulation in these problems is too 

computationally expensive to create the surrogate models. 

An approach that accounts for the prohibitive computational challenge involves the use of a multi-

fidelity modelling approach that offers substantial computational time savings compared with the 

traditional single-fidelity surrogate modelling approach. This multi-fidelity modelling approach allows 

hundreds number of computationally economical Low-Fidelity Model (LFM) data points to boost the 

accuracy of tens of High-Fidelity Model (HFM) data points, accurate but computationally demanding. 

In particular, the multi-fidelity modelling approach enables the probabilistic optimisation to account for 

the design uncertainties that conventional surrogate modelling approaches are still struggling with 

(12,23,48). As introduced in Chapters 4 and 5, traditional multi-fidelity approaches using Artificial 

Neural Networks (ANN) or Response Surface Method (RSM) require that the HFM and the LFM carry 



 

Chapter 6 138 

the same number of training points to build correction response surfaces (24,47). This may lead to 

additional high-fidelity FEM simulations that designers do not want to count. In contrast, some multi-

fidelity approaches allow the HFM and the LFM to embrace a different number of training points since 

they don’t build the correction response surfaces. They are mainly derived using Gaussian Process (GP) 

(54) and these approaches are combined with the linear autoregressive information fusion scheme 

(63,64).  One notable example is Forrester et al. (63), where a multi-fidelity optimisation using co-

kriging was developed to consider the linear correlation between different fidelity levels using GP. The 

authors demonstrated the multi-fidelity method using composite design problems in which the fidelity 

is defined by the linearity level of the numerical solver. Another notable example is Perdikris et al. 

(100,101), where a non-linear information fusion algorithm was presented to capture non-linear 

correlations during the multi-fidelity modelling process. The algorithm was based on GP regression and 

the non-linear autoregressive scheme to consider the complex non-linear correlation between different 

fidelity models. The algorithm offered a lot higher accuracy when the two fidelity models have non-

linear correlations across the whole design space. This can contribute to deal with a challenging gap in 

the response surface caused by different FEM mesh size between the HFM and the LFM. This gap is 

not captured using even hundreds of the LFM data points when traditional multi-fidelity approaches 

carry out structural optimisation problems. Due to its many advantages, GP considering linear 

correlation has found extensive use with different optimisation problems, with notable examples being 

(63,75). However, its application considering the non-linear information fusion algorithm to the 

structural optimisation problems has not received attention.  

The multi-fidelity modelling approaches for probabilistic optimisation developed so far request that the 

HFM and the LFM explore the same dimension of design spaces. This causes enormous computational 

cost when there are many design variables in large-scale composite design problems. As presented in 

Chapter 5, the multi-level multi-fidelity modelling method allows two different fidelity models to 

embrace different design spaces during the optimisation process. This method was not suitable to carry 

out probabilistic design problems that show the non-linear correlation between the HFM and the LFM. 

The method does not use GP considering the correlation between the two models but uses ANN 

analysing input-output values to construct the multi-fidelity model. This drawback could be resolved 

by the use of both GP and the non-linear information fusion algorithm. The improved multi-fidelity 

method could enable the LFM to represent the response surfaces using the HFM covering part of the 

entire design space. This research work aims to develop a multi-fidelity probabilistic optimisation of 

composite structures under thermomechanical loading using GP for the first time. Before the work 

presented in this thesis, no work has been carried out by the research community on the topic of multi-

fidelity probabilistic optimisation of composite structures under thermomechanical loading.

In summary, the work presented in this chapter aimed to develop a novel multi-fidelity methodology 

for: 
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 Formulating a multi-fidelity method. The multi-fidelity formulation allows the HFM and the 

LFM to have a different number of design variables during the optimisation process. 

Specifically, the HFM supervises only a small part of the entire design space, while the LFM 

encompasses the whole design space. The primary contribution of this formulation allows the 

high-fidelity training dataset to be collected by different sampling levels, such as dense and 

sparse. This offers a very efficient means to construct a multi-fidelity model. 

 Combining the non-linear information fusion algorithm with the multi-fidelity modelling 

formulation. Previous works on this topic have exclusively involved the use of high-fidelity 

information covering the same dimension of design space as low-fidelity information. One 

drawback of this concept causes extra computational cost. The proposed multi-fidelity 

probabilistic framework avoids this problem by supervising part of the whole design space 

using densely distributed high-fidelity information while covering the entire design space using 

sparsely distributed one. Then the non-linear information fusion algorithm using GP calculates 

the correlation between the HFM and the LFM, and then incorporates the multi-fidelity RBDO 

framework to construct a more accurate multi-fidelity model. 

 Demonstrating a novel multi-fidelity probabilistic optimisation method. As part of this 

approach, a new multi-fidelity methodology is developed. This methodology is demonstrated 

by the RBDO of composite structures under thermomechanical loading for the first time. The 

accuracy and computational efficiency are evaluated through this numerical example when the 

composite structure is loaded by mechanical loading and thermal loading. 

This chapter will begin by reviewing the fundamental theory of thermomechanical buckling and non-

linear information fusion algorithm. Then, the developed multi-fidelity method will be introduced, 

including multi-fidelity formulation and RBDO framework. A numerical example of a composite 

structure under thermomechanical loading is presented towards the end of this chapter. The work 

presented in this chapter is based on the work presented by Yoo et al. in (102). 

 

6.1 Multi-Fidelity Modelling-Based Probabilistic Optimisation 

A novel multi-fidelity modelling method, which blends an HFM and an LFM based on a proper 

correction using high-fidelity information, has been developed to improve the computational efficiency 

of the probabilistic optimisation process. Since conventional multi-fidelity modelling approaches 

involve the HFM embracing the same dimension of design spaces with the LFM, the computational 

cost of such modelling methods is exceptionally high to carry out the probabilistic design of large-scale 

composite structures. This requires that the HFM calls for the same number of high-fidelity FEM 

simulations as the LFM to build correction response surfaces. It should be noted that even mesh 
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generation for the HFM caused by changes in geometrical random design variables can bring about 

substantial computational cost. A new multi-fidelity modelling-based probabilistic optimisation to 

supervise different design spaces between the HFM and the LFM is developed to mitigate the 

computational cost in this section. This developed method begins with the critical idea about 

maximising the use of low-fidelity information while minimising the use of high-fidelity information. 

The number of high-fidelity design points relies on the dimension of design spaces to be covered. When 

the HFM has a small number of design variables and the LFM has all design variables, the 

computational cost to construct the multi-fidelity model can be significantly reduced. In particular, the 

multi-fidelity modelling method is integrated with multi-level optimisation to manage large-scale 

composite design problems. As introduced in Chapter 5, the multi-level multi-fidelity modelling method 

for the probabilistic optimisation separately creates two surrogate models of the HFM and the LFM 

with different design variables (42). This formulation is combined with the RDO of composite 

structures under the non-linear post-buckling regime without considering the correlation between the 

two different fidelity models. The proposed multi-fidelity modelling formulation in this section extends 

the application area to composite structures under thermomechanical loading by considering the 

correlation between the HFM and the LFM. 

 

6.1.1 Theory of the Non-Linear Information Fusion Algorithm 

 The presented multi-fidelity modelling method in this chapter employs the non-linear information 

fusion algorithm (101), which is also called the Non-linear Auto-Regressive Gaussian Process 

(NARGP), to consider the non-linear correlation between different fidelities. The NARGP is put forth 

to improve the linear autoregressive GP scheme developed by Kennedy and O’Hagan (64). As discussed 

in Chapter 3, the autoregressive GP (denoted by AR) is extended by the GP regression to construct a 

probabilistic model that consists of different fidelity models, such as the HFM and the LFM, as the 

generalised form is expressed in equation (6.1). 

𝑓𝐻𝐹(𝑋) = 𝑧𝐿𝐹(𝑓𝐿𝐹(𝑋)) + 𝑓𝛿(𝑋) (6.1) 

where 𝑓𝐻𝐹 and 𝑓𝐿𝐹 are GP created using the training datasets of the HFM and LFM, respectively. They 

are usually assigned a zero mean prior 𝑓~𝐺𝑃( 𝑓|0, 𝑘(x, x′; 𝜃)). 𝑘  is a proper covariance function 

defined using hyper-parameters 𝜃  that produce a covariance matrix 𝐾𝑖𝑗 =  𝑘(x𝑖 , x𝑗; 𝜃)  between 

different input data (x𝑖, x𝑗) . These hyper-parameters are obtained using the maximum-likelihood 

estimation (54). 𝑧𝐿𝐹 is an unknown function that describes the correlation between the outputs of the 

HFM and the LFM. 𝑓𝛿 is a GP representing the difference between 𝑧𝐿𝐹(𝑓𝐿𝐹(𝑋)) and 𝑓𝐻𝐹(𝑥). 
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The NARGP harnesses the functionality of the linear AR without compromising its analytical 

compliance and straightforward algorithm structure. In particular, 𝑧𝐿𝐹(𝑓𝐿𝐹(𝑋)) , the functional 

composition of two GP priors, is characterised by the so-called deep GP. This does not allow the 

posterior of 𝑓𝐻𝐹 is Gaussian distribution. To deal with this problem, the NARGP substitutes the GP 

posterior of low-fidelity predictions, 𝑓∗𝐿𝐹(𝑥), with the GP prior, 𝑓𝐿𝐹, put forth by Le Gratiet and Garnier 

(103). The principal significance of this non-linear information fusion algorithm is that 𝑧𝐿𝐹 and 𝑓𝛿 in 

equation (6.1) incorporates a function, 𝑔𝐻𝐹, as described in equation (6.2).  

𝑓𝐻𝐹(𝑋) = 𝑔𝐻𝐹(𝑋, 𝑓∗𝐿𝐹(𝑋)) (6.2) 

where 𝑔𝐻𝐹~𝐺𝑃(𝑓𝐻𝐹|0, 𝑘𝐻𝐹𝑔((𝑋, 𝑓∗𝐿𝐹(𝑋)), (𝑋
′, 𝑓∗𝐿𝐹(𝑋′); 𝜃𝐻𝐹))  is a GP that is characterised by a 

covariance 𝑘𝐻𝐹𝑔 of low-fidelity predictions between different input data (𝑋, 𝑋′).  

The main difference in comparison with the linear AR in equation (6.1) is that 𝑓𝛿 is implicitly taken in 

equation (6.2). Likewise the linear AR, the NARGP under the assumption of noiseless data implies the 

Markov property as in equation (6.3), which translates into presuming that given the nearest point of 

the LFM’s posterior, 𝑧𝐿𝐹(𝑓∗𝐿𝐹(𝑋)), there is nothing to learn more about 𝑓𝐻𝐹(𝑋) from any other output 

𝑧𝐿𝐹(𝑓∗𝐿𝐹(𝑋′)) (64). The assumption of nested training datasets allows the high-fidelity training data, 

𝑋𝐻𝐹, to be a subset of the low-fidelity training data, 𝑋𝐿𝐹. 

cov{𝑓𝐻𝐹(𝑋), 𝑧𝐿𝐹(𝑓∗𝐿𝐹(𝑋′))|𝑧𝐿𝐹(𝑓∗𝐿𝐹(𝑋))} = 0,               ∀𝑋 ≠ 𝑋′ (6.3) 

It should be noted that the training of 𝑔𝐻𝐹 using the HFM becomes more straightforward to conduct the 

maximum-likelihood estimation because the posterior of the LFM, 𝑓∗𝐿𝐹(𝑋𝐻𝐹), is a known deterministic 

quantity. The covariance function of 𝑔𝐻𝐹  also contribute to the improvement in the NARGP. The 

function is broken down to consider precise correlations between different input data, as shown in 

equation (6.4).  

𝑘𝐻𝐹𝑔 = 𝑘𝐻𝐹𝜌(𝑋, 𝑋
′; 𝜃𝐻𝐹𝜌) ∙ 𝑘𝐻𝐹𝑓(𝑓∗𝐿𝐹(𝑋), 𝑓∗𝐿𝐹(𝑋

′); 𝜃𝐻𝐹𝑓) + 𝑘𝐻𝐹𝛿(𝑋, 𝑋
′; 𝜃𝐻𝐹𝛿) (6.4) 

where 𝑘𝐻𝐹𝜌, 𝑘𝐻𝐹𝑓 and 𝑘𝐻𝐹𝛿 are the covariance functions of the scaling factor, function value from low-

fidelity GP model and the difference between two different data, respectively. 𝜃𝐻𝐹𝜌 , 𝜃𝐻𝐹𝑓 and 𝜃𝐻𝐹𝛿 are 

the hyper-parameters of each covariance function, which are obtained by the high-fidelity training 

dataset using the maximum-likelihood estimation as introduced in Chapter 3.  

The covariance function is selected by the square exponential function in equation (3.11). Hence, the 

NARGP in equation (6.2) enables the LFM’s posterior, 𝑓∗𝐿𝐹 , to be projected onto a high-fidelity 

response, 𝑓𝐻𝐹, through a flawless mapping. This allows the multi-fidelity model to capture the non-

linear correlations between the HFM and the LFM. Then, the posterior distributions from the multi-
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fidelity model are the predictive mean, 𝜇∗𝑀𝐹(𝑋∗), and variance, 𝜎∗𝑀𝐹
2 (𝑋∗). They are calculated using 

Monte Carlo simulation that is expressed by: 

𝑝(𝑓∗𝐻𝐹(𝑋∗)) ≔ 𝑝(𝑓𝐻𝐹(𝑋∗, 𝑓∗𝐿𝐹(𝑋))|𝑓∗𝐿𝐹 , 𝑋∗, 𝑌𝐻𝐹 , 𝑋𝐻𝐹) 

                                                  = ∫𝑝(𝑓𝐻𝐹( 𝑋∗, 𝑓∗𝐿𝐹(𝑋))|𝑌𝐻𝐹 , 𝑋𝐻𝐹 , 𝑋∗) 𝑝(𝑓∗𝐿𝐹(𝑋∗))𝑑𝑋∗ 
(6.5) 

where 𝑋∗ is a new test point, 𝑓𝐻𝐹 is the GP of the multi-fidelity model, 𝑓∗𝐿𝐹 is the GP model of the LFM, 

𝑌𝐻𝐹 and 𝑋𝐻𝐹 are the high-fidelity training (input/output) data points. The multi-fidelity model, which 

provides the predictive mean, 𝜇∗𝑀𝐹(𝑋∗), is incorporated into the proposed multi-fidelity probabilistic 

optimisation framework. 

 

6.1.2 Sampling Strategy for High- and Low-Fidelity Information  

As shown in Figure 6.1, the formulation aims to maximise the use of the LFM while providing precise 

corrections using a small number of high-fidelity training data points. Here, the HFM concentrates on 

the design spaces of few selected variables at each probabilistic optimisation level. In order to facilitate 

this purpose, an effective sampling strategy has been employed in this work that the principle is based 

on standard filling sampling strategies such as uniform random sampling or Optimal Latin Hypercube 

Sampling (OLHS). In general, these space-filling strategies are typically implemented to create a multi-

fidelity model due to their nature offering evenly distributed training data points without gaps or clusters 

in the whole design space. It is not surprising that the performance of multi-fidelity models relies on 

how to collect the training data points using an appropriate sampling strategy.  

Figure 6.1 illustrates the effective sampling strategy consisting of different sampling degrees to obtain 

the training data points, including dense and sparse sampling. Each sub-figure in the figure shows a 

plan view of distribution relying on different design variables to highlight such sampling strategy. 

Figure 6.1(a) presents the distribution of the dense sampling for the selected design variables in the 

HFM, Hd in Table 6.1, which refers to collecting evenly enough distributed training data points to 

embrace the design space of Hd. It should be noted that traditional multi-fidelity modelling methods 

exploit the training datasets sampled as dense as possible. In comparison, Figure 6.1(b) and (c) display 

the distribution of the sparse sampling for other design variables in the HFM, Hs in Table 6.1, which 

does not thoroughly cover the design space with a biased distribution caused by the insufficient number 

of training data points. Still, it can provide scarce information within the same sampling size for Hd. 

Standard regression methods, including GP or artificial neural networks, commonly require the number 

of training data points ten times more than the dimension of design space (104). For example, if there 

are three design variables in a structural optimisation problem in Figure 6.1, the number of training data 

points, also called the dense sampling in this work, should be at least thirty.  
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This sampling scheme offers a launchpad for the multi-fidelity formulation to reduce the high-fidelity 

FEM simulations compared with other multi-fidelity modelling methods. Consider the illustrative 

example with three design variables in Figure 6.1. The HFM focuses on only two design variables 

(Hd = [X1, X2]). In that case, the number of high-fidelity training data points is significantly reduced 

because they cover two-dimensional design space. Another design variable (Hs = [X3]) not selected in 

Hd is randomly sampled within the number of training data points for Hd, and then added to the high-

fidelity training dataset. This allows the high-fidelity training dataset to provide the dense information 

of the selected design variables, Hd, as well as sparse information of other design variables, Hs, without 

causing extra computational cost. In the meantime, the LFM exploring the entire design space in Figure 

6.1(d), (e) and (f) collects enough information as dense as possible to obtain a good quality. The low-

fidelity training dataset shares the high-fidelity training data points, as displayed by a blue box in those 

sub-figures. This allows the NARGP to calculate the correlations using these constructed high- and low-

fidelity training datasets based on equation (6.4). Then, it creates the multi-fidelity model using equation 

(6.2), which can predict output responses, 𝜇∗𝑀𝐹(𝑥∗), concerning the variation of design variables 

correctly. It should be highlighted that the number of high-fidelity training data points in this sampling 

strategy becomes a lot less than thirty, which the traditional methods require.  

 

Figure 6.1: Concept of the proposed multi-fidelity modelling approach 
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Table 6.1: Sampling strategy for the multi-fidelity formulation 

Iterate:  

Characterise the design and random variables 

Select the design variables in the HFM, Hd 

Define other design and random variables in the HFM as Hs 
Define all design and random variables in the LFM as Ld 

Dense sampling Hd: Around five times of the number of design variables in Hd  

Sparse sampling Hs: Equal sampling size for Hd 

Combine Hd and Hs 
Dense sampling Ld: At least five times of the number of design and random variables in Ld  

Create a multi-fidelity model using the NARGP 

Evaluate the quality of the model 

If satisfied, the model is constructed. 

If not satisfied, more training data points for the HFM and LFM should be added. 

Continue until the quality is acceptable. 

 

6.1.3 Multi-Fidelity Modelling Formulation and Probabilistic Optimisation 

Process 

This section describes how to construct a multi-fidelity model and it introduces the developed multi-

fidelity probabilistic optimisation framework. Table 6.2 summarises the workflow that the multi-fidelity 

modelling formulation constructs the multi-fidelity model using the sampling strategy. Then Figure 6.2 

shows the optimisation framework using the constructed multi-fidelity model. The first level of 

probabilistic optimisation begins with selecting 𝑚 design variables in the HFM,  Hd
(I)
= [𝑥(1),⋯ , 𝑥(𝑚)] 

in the table, and the training data points for this Hd
(I)

 should be sampled as dense as the NARGP can 

represent the response surfaces of Hd
(I)

accurately. The selected design variables, 𝑚  (𝑚 < 𝑛), are 

chosen by the designer’s decision from all design variables, 𝑛, depending on the problem size. This 

enables the NARGP to require a smaller number of high-fidelity training data points compared with 

different multi-fidelity modelling methods considering all design variables in the HFM. Other design 

variables in the HFM are defined by Hs
(I)
= [𝑥(𝑚+1),⋯ , 𝑥(𝑛)] and they are not selected in Hd

(I)
. The 

training data points for Hs
(I)

 is randomly collected within the sampling size for Hd
(I)

 using the sparse 

sampling to preserve the size of the high-fidelity training dataset. Then these two sampling sets 

comprising different sampling degrees are combined as a high-fidelity training input dataset for the first 

level of probabilistic optimisation. At the same time, low-fidelity training data points for the LFM 

having 𝑛 design variables, Ld
(I)
= [𝑥(1), 𝑥(2),⋯ , 𝑥(𝑛)], are also sampled using the dense sampling to 

embrace the entire design space completely. Then, two training output datasets corresponding to the 

high- and low-fidelity training input datasets, respectively, can be constructed using a proper numerical 

solver (Abaqus CAE in this work). The NARGP creates a multi-fidelity model for the first level of 

probabilistic optimisation using the two high- and low-fidelity training input/output datasets. Figure 6.1 
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highlights that the multi-fidelity model based on the sampling strategy can provide the correct solutions 

of Hd
(I)

 during the first level of probabilistic optimisation process since it comprises enough high-

fidelity training data points using the dense sampling. Simultaneously, the multi-fidelity model 

examines all design variables’ solution spaces using both the sparse high-fidelity training data points 

for Hs
(I)

 and the dense low-fidelity training data points for Ld
(I)

. When the first level of probabilistic 

optimisation discovers the optimal solutions, the multi-fidelity model for the second level should be 

constructed using Hd
(II)

= [𝑥(𝑚+1),⋯ , 𝑥(𝑙)] , Hs
(II)

= [𝑥(𝑙+1),⋯ , 𝑥(𝑛)]  and Ld
(II)

= [𝑥(𝑚+1), ⋯ , 𝑥(𝑛)] 

followed by updating the HFM and LFM with the optimal solutions of the first optimisation level, as 

described in Table 6.2 and Figure 6.2.  

As shown in Figure 6.1, the cooperation between the HFM and LFM enables a multi-fidelity model to 

embrace the entire design space without a lack of information during the probabilistic optimisation 

process. Notably, the structure of the NARGP constructs a multi-fidelity model when the training 

dataset of HFM is a subset of the LFM training dataset. The main contribution of this multi-fidelity 

formulation is that the HFM focuses on only a small part of the entire design spaces to reduce the 

sampling size for the high-fidelity training dataset. The HFM also provides sparsely the high-fidelity 

information of other design variables, Hs
(I)

, while avoiding the requirement of extra high-fidelity FEM 

simulations. This enables the NARGP to calculate the correlations precisely between the HFM and the 

LFM based on the sampling strategy to construct the accurate multi-fidelity model. Also, the low-

fidelity training dataset using the dense sampling complements the lack of information led by the 

insufficient high-fidelity information of Hs
(I)

.  

Next, the multi-fidelity probabilistic optimisation framework using this proposed multi-fidelity 

modelling formulation is illustrated in Figure 6.2. Once the NARGP creates the multi-fidelity model 

using the sampling strategy and the training scheme, the first level of probabilistic optimisation is 

conducted using the predictions, 𝜇∗𝑀𝐹(𝑥∗), offered by the constructed multi-fidelity model. The optimal 

solutions, Ĥd
(I)

, of the selected design variables in the HFM, Hd
(I)

, are found. The design variables, 

[𝑥(1),⋯ , 𝑥(𝑚)], of both the HFM and LFM are updated by the optimal solutions, X = [Ĥd
(I), L̂d

(I)
], where 

L̂d
(I)

 represents the optimal solutions of other design variables in the LFM, [𝑥(𝑚+1),⋯ , 𝑥(𝑛)]. The design 

variables in Ĥd
(I)

 are fixed and not considered in the second level since their optimal solutions come 

from the high-fidelity training dataset using the dense sampling.  Then, different design variables for 

the second level, Hd
(II) = [𝑥(𝑚+1), ⋯ , 𝑥(𝑙)] where (𝑙 < 𝑛), are selected. The choice of the HFM’s 

design variables should not necessarily follow any particular sequence because the LFM embraces the 

whole design space at all times. During the second level of probabilistic optimisation, the optimisation 

algorithm finds the optimal solutions, H̃d
(II)

 and L̃d
(II)

, of the design variables, Hd
(II)

 and Ld
(II)

, using a new 
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multi-fidelity model constructed for this level. These multi-fidelity modelling and probabilistic 

optimisation process are continued until Level 𝑘 terminates, which means all optimal solutions are 

found.  

The LFM does not require extra FEM simulations to build up a new training dataset for the next level. 

This can provide additional computational gains compared to the multi-level multi-fidelity method that 

should establish the low-fidelity training dataset for each level (42). It is not surprising that even low-

fidelity FEM simulations can cause a computational burden when a problem is complex and large-scale. 

It should be highlighted that the proposed method seeks to harness most of the advantages of multi-

fidelity modelling as well as deal with the non-linear correlation between different fidelity models using 

non-linear data fusion GP. In particular, this method enables the probabilistic design optimisation to 

broaden its area to the design of composite structures under thermomechanical loading. 

Table 6.2: Multi-fidelity modelling process 

Optimisation 

level 
 HFM LFM 

Level I 

Design 

and 

random 

variables 

Dense 

sampling 
Hd
(I)
= [𝑥(1),⋯ , 𝑥(𝑚)], 

𝑚 < 𝑛 

Ld
(I)
= X

= [𝑥(1), 𝑥(2),⋯ , 𝑥(𝑛)] 
Sparse 

sampling Hs
(I)
= [𝑥(𝑚+1),⋯ , 𝑥(𝑛)]  

Number of design and 

random variables 
𝑛 

(𝑎𝑙𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

Optimal solutions at 

Level I 
Ĥd
(I)
= [𝑥(1),⋯ , 𝑥(𝑚)] L̂d

(I)
= [𝑥(𝑚+1),⋯ , 𝑥(𝑛)] 

Updated HFM & LFM X = [Ĥd
(I)
, 𝑥(𝑚+1),⋯ , 𝑥(𝑛)] 

Level II 

Design 

and 

random 

variables 

Dense 

sampling 
Hd
(II)

= [𝑥(𝑚+1),⋯ , 𝑥(𝑙)],   

𝑙 < 𝑛 

Ĥd
(I)

 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑. 

Ld
(II)

= [𝑥(𝑚+1),⋯ , 𝑥(𝑛)] 

Sparse 

sampling Hs
(II)

= [𝑥(𝑙+1),⋯ , 𝑥(𝑛)]  

Number of design and 

random variables 
𝑛 −𝑚 

Optimal solutions at 

Level II 
H̃d
(II)

= [𝑥̃(𝑚+1),⋯ , 𝑥̃(𝑙)] L̃d
(II)

= [𝑥̃(𝑙+1),⋯ , 𝑥̃(𝑛)] 

Updated HFM & LFM X = [Ĥd
(I)
, H̃d

(II)
, 𝑥̃(𝑙+1)⋯, 𝑥̃(𝑛)] 

 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 Hd
(III)

𝑎𝑛𝑑 Ld
(III)

 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑎𝑛𝑛𝑒𝑟. 

Ĥd
(I)

 𝑎𝑛𝑑 H̃d
(II)

 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑙𝑒𝑣𝑒𝑙. 
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Figure 6.2: Multi-fidelity probabilistic optimisation framework 

 

6.2 Thermomechanical Buckling of Composite Structures 

The displacement for a composite structure modelled using three-dimensional shell elements for FEM 

simulations is based on the first-order deformation plate theory (18), given by equation (6.6) 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜙𝑦(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜙𝑥(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(6.6) 

where 𝑢0, 𝑣0 and 𝑤0 are the displacements at the middle of the plane along each direction, including 

𝑥, 𝑦 and 𝑧, respectively. 𝜙𝑥 and 𝜙𝑦 represents the rotation of the mid-surface in the 𝑥 and 𝑦 axis. 

The von Karman strain-displacement relationship to consider geometrical non-linearity caused by the 

large deflections of thin plates is described by equation (6.7). 

Ε = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
  
 

  
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥}
  
 

  
 

+
1

2

{
  
 

  
 (

𝜕𝑤

𝜕𝑥
)
2

(
𝜕𝑤

𝜕𝑦
)
2

2
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦}
  
 

  
 

 (6.7) 

The in-plane strain vector, Ε, in equation (6.7), is expressed by substituting the equation (6.6). 

Ε = 𝜀0 − 𝑧𝜅 = 𝜀𝑚 + 𝜀𝜃 − 𝑧𝜅 

=

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+
1

2

{
  
 

  
 (

𝜕𝑤0
𝜕𝑥

)
2

(
𝜕𝑤0
𝜕𝑦

)
2

2
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦 }

  
 

  
 

− 𝑧

{
  
 

  
 

𝜕𝜙𝑦

𝜕𝑥
𝜕𝜙𝑥
𝜕𝑦

𝜕𝜙𝑦

𝜕𝑥
+
𝜕𝜙𝑥
𝜕𝑦 }

  
 

  
 

 
(6.8) 

where 𝜀0, 𝜀𝑚, 𝜀𝜃 and 𝜅 represent the in-plane strain vector at the mid-plane, the linear in-plane strain 

vector, and the non-linear in-plane strain vector and the curvature strain vector, respectively. 

In the meantime, transverse shear strains, γ, are expressed as equation (6.9). 

γ = {
γ𝑦𝑧
γ𝑥𝑧

} =

{
 

 
𝜕𝑤0
𝜕𝑦

− 𝜙𝑥

𝜕𝑤0
𝜕𝑥

− 𝜙𝑦}
 

 
 (6.9) 

In general, equation (6.10) explains the thermo-elastic anisotropic stress-strain relations (1,18). It is 

recognised that thermal stress is not caused by external loads but is a consequence of restrained 

geometrical thermal distortion.  

{𝜎} = [𝐶]({Ε} − {𝛼}Δ𝑇) (6.10) 

where [𝐶] is a constitutive matrix, {𝛼} is the coefficient vector of thermal expansion for a single lamina 

concerning the in-plane coordinate system and Δ𝑇 is a temperature difference.  
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The stresses of the 𝑘 -th layer in the laminate layers are calculated using the transformation of 

coordinates from principal material coordinates, which is represented by equation (6.11) 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] [

𝜀𝑥 − 𝛼𝑥Δ𝑇
𝜀𝑦 − 𝛼𝑦Δ𝑇

γ𝑥𝑦 − 𝛼𝑥𝑦Δ𝑇
] (6.11) 

where [𝑄̅𝑖𝑗] is the transformed stiffness coefficient matrix. 𝛼𝑥, 𝛼𝑦 and 𝛼𝑥𝑦 are defined as 

𝛼𝑥 = 𝛼1𝑐𝑜𝑠
2𝜃 + 𝛼2𝑠𝑖𝑛

2𝜃 

𝛼𝑦 = 𝛼1𝑠𝑖𝑛
2𝜃 + 𝛼2𝑐𝑜𝑠

2𝜃 

𝛼𝑥𝑦 = 2(𝛼1 − 𝛼2)𝑠𝑖𝑛 𝜃𝑐𝑜𝑠𝜃 

(6.12) 

where 𝛼1 and 𝛼2 are thermal expansion coefficients, respectively, and  𝜃 is the ply angle of the layer. 

The entire force and moment resultants for a 𝑁-layered laminate composite structure are defined as 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑡/2

−𝑡/2

𝑑𝑧 = ∑ ∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

𝑧𝑘

𝑧𝑘−1

𝑑𝑧

𝑁

𝑘=1

 (6.13) 

[

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] 𝑧

𝑡/2

−𝑡/2

𝑑𝑧 = ∑ ∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘

𝑧

𝑧𝑘

𝑧𝑘−1

𝑑𝑧

𝑁

𝑘=1

 (6.14) 

where 𝑡 is the thickness of the 𝑘-th layer. Note that 𝑧𝑘 is the directed distance to the bottom of the 𝑘-th 

layer, and 𝑧𝑘−1 is the directed distance to the top of the 𝑘-th layer. 

When equation (6.11) is substituted in equations (6.13) and (6.14), the force and moment resultants are 

obtained that are integrated through the thickness of the composite structure 

{
𝑁

𝑀
} = [

𝐴 𝐵
𝐵 𝐷

] {𝜀
0

𝜅
} − {

𝑁∆𝑇
𝑀∆𝑇

} 

𝑄 = 𝑆𝛾 

(6.15) 

(N∆T, M∆T) = ∑∫ [Q̅]𝑘{𝛼}𝑘(1, 𝑧)Δ𝑇
𝑧𝑘

𝑧𝑘−1

𝑑𝑧

𝑛

𝑘=1

 (6.16) 

where the laminate stiffness is defined as ([A], [B], [D]) = ∑ ∫ (𝑄̅𝑖𝑗)𝑘(1, 𝑧, 𝑧
2𝑧𝑘

𝑧𝑘−1
)𝑑𝑧𝑛

𝑘=1  with (𝑖, 𝑗 =

1, 2, 6). [𝐴], [𝐵] and [𝐷] are extensional, bending-extension coupling and bending twisting coupling 

matrices, respectively. [𝑆] is shear stiffness matrices defined by ∑ 𝜅𝑝 ∫ (𝑄̅𝑖𝑗)𝑘
𝑧𝑘
𝑧𝑘−1

𝑑𝑧𝑛
𝑘=1  with (𝑖, 𝑗 =
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4,5) and 𝜅𝑝 is a shear correction factor. {𝑁∆𝑇} and {𝑀∆𝑇} are the thermal forces and thermal moment 

induced by the temperature changes Δ𝑇, respectively.  

The principle of virtual work derives the governing equation for thermomechanical buckling. 

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0 (6.17) 

where 𝛿𝑊𝑖𝑛𝑡 is the internal virtual work that consists of 𝛿𝑊𝑖𝑛𝑡
(1)

 and 𝛿𝑊𝑖𝑛𝑡
(2)

 done by linear and thermal 

geometric stiffness such that 

𝛿𝑊𝑖𝑛𝑡
(1)
= ∫ {𝛿𝜀𝑚}

𝑇{𝑁} + {𝛿𝜅}𝑇{𝑀} + {𝛿𝛾}𝑇{𝑄}
𝐴

𝑑𝐴 

= ∫ [𝛿𝜀𝑚
𝑇 𝐴𝜀𝑚 + 𝛿𝜀𝑚

𝑇 𝐵𝜅 + 𝛿𝑘𝑇𝐵𝜀𝑚 + 𝛿𝜅
𝑇𝐷𝜅 + 𝛿𝛾𝑇𝑆𝛾]

𝐴

𝑑𝐴 

= {𝛿𝑑}𝑇[𝐾]{𝑑} 

(6.18) 

where {𝑑} is the displacement vector and [𝐾] is the linear stiffness matrix. 

Thermal geometric stiffness matrix, [𝐾∆𝑇], is offered by the work done by a constant thermal force that 

leads to a small lateral deflection. This internal work is done by the thermal forces, including 𝑁∆𝑇𝑥, 

𝑁∆𝑇𝑦, and 𝑁∆𝑇𝑥𝑦, caused by the temperature change. The change in strain energy due to the thermal 

forces is written as equation (6.19). 

𝛿𝑊𝑖𝑛𝑡
(2) = −∫ [𝛿𝜀𝜃

𝑇𝑁∆𝑇 ]
𝐴

𝑑𝐴 

= −∫ [𝑁∆𝑇𝑥𝛿 (
𝜕𝑤

𝜕𝑥
) + 𝑁∆𝑇𝑦𝛿 (

𝜕𝑤

𝜕𝑦
) + 𝑁∆𝑇𝑥𝑦𝛿 (

𝜕𝑤

𝜕𝑥
) (
𝜕𝑤

𝜕𝑦
)]

𝐴

𝑑𝐴 

= −∫ 𝛿

{
 

 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦}
 

 
𝑇

[
𝑁∆𝑇𝑥 𝑁∆𝑇𝑥𝑦
𝑁∆𝑇𝑥𝑦 𝑁∆𝑇𝑦

]
𝐴

{
 

 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦}
 

 
𝑑𝑥𝑑𝑦 

= −{𝛿𝑑}𝑇[𝐾∆𝑇]{𝑑} 

(6.19) 

Finally, the equation of motion of the composite structure and the eigenproblem for the 

thermomechanical buckling analysis is obtained, which can be represented as 

([𝐾] − λ[𝐾∆𝑇]){𝑑} = {0} (6.20) 

([𝐾] − λ[𝐾∆𝑇]){Φ} = {0} (6.21) 

where λ and {Φ} are the critical temperature change and buckling mode shape, respectively.
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6.3 Numerical Example 

The proposed multi-fidelity probabilistic optimisation framework was demonstrated by the RBDO of a 

mono-stringer stiffened composite panel under thermomechanical loading. This demonstration shows 

the potential of the developed multi-fidelity optimisation method to be utilised for the probabilistic 

design of large-scale composite structures under both mechanical and thermal loading. Notably, the 

computational efficiency of the presented method was highlighted by comparison with traditional multi-

fidelity models and high-fidelity surrogate models. 

 

6.3.1 Mono-Stringer Stiffened Composite Structure under 

Thermomechanical Loading 

The details of the mono-stringer stiffened composite structure is illustrated in Figure 6.3, which is 

identical to the composite structures considered in previous chapters. This structure is clamped at both 

ends, but the left‐hand end is free to move in the longitudinal direction (z‐direction in the figure), which 

is the applied loading direction. Pure compression load for mechanical shortening is applied by 

increasing uniform displacement at the left‐hand end. The material properties are the same as in Table 

4.1. The thermal expansion coefficients of the structure are shown in Table 6.3. It should be noted that 

only the stringer geometry is to be optimised, while the optimisation process considers the uncertainties 

of both the geometry and the mechanical properties of both the stringer and the skin. There are no 

constraints on the two longitudinal edges of the skin. Perfect bonding is assumed between the stiffener 

and skin to consider their interaction. 
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Figure 6.3: Mono-stringer stiffened composite panel 

Table 6.3: Thermal expansion coefficient 

Parameter Value 

Longitudinal thermal coefficient (/℃) 𝛼1 1.7 × 𝐸−6 

Transverse thermal coefficient (/℃) 𝛼2 −1.0 × 𝐸−6 

 

The thermomechanical buckling analysis depending on different mechanical shortening lengths was 

conducted to see how significant the critical temperature changes are. Figure 6.4 displays the 

thermomechanical buckling results for a mono-stiffened stringer panel with the mean geometry values 

at the design space. As seen in the figure, the composite structure carries mechanical shortening caused 

by pure compression, and then a thermal buckling analysis is conducted to find the critical temperature 

change. Table 6.4 shows that the thermomechanical buckling occurs in the vicinity of 95 ℃, which is 

the normal operating temperature range of regional aircraft when the shortening length is 0.3 𝑚𝑚 

(∆𝐿 𝐿⁄ = 0.05 %). In this work, the thermomechanical buckling temperature refers to the maximum 

critical temperature change followed by the shortening, ∆𝐿 𝐿⁄ = 0.05 %. The class of fidelity was 

decided by the level of FEM discretisation. Figure 6.5 illustrates the mesh grid of both the HFM and 

LFM; the element size was defined as 4.0 𝑚𝑚 and 12.0 𝑚𝑚, respectively, through a mesh convergence 

study for the thermomechanical buckling temperature. It should be highlighted that the LFM shows 

around 15 % error while demonstrating a computational cost of only about 30 % compared to the HFM. 

The FEM models are composed of four-node shell elements (S4R). 
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Table 6.4: Critical temperature changes depending on mechanical shortening 

Mechanical shortening (𝑚𝑚) 0 0.1 0.2 0.3 

Critical temperature changes (℃) 407 303 200 94.9 

 

Figure 6.4: Out-of-plane displacement of composite structures 

 

Figure 6.5: 4 𝑚𝑚 mesh size for HFM (left) and 12 𝑚𝑚 mesh size for LFM (right)  

 

6.3.2 Multi-Fidelity Modelling 

A multi-fidelity model using the proposed formulation is constructed to carry out the probabilistic 

optimisation of composite structures under thermomechanical loading. The input parameters of the 

multi-fidelity model are the mono-stiffened stringer geometry (𝑋1, 𝑋2, 𝑋3 and 𝑋4) in Figure 6.3 and 

the mechanical properties of the composite structure (𝐸11, 𝐸22=𝐸33, 𝐺23, 𝐺12=𝐺13, 𝛼11 and  𝛼22) in 

Table 4.1 and Table 6.3. These input parameters are defined as the design and random variables that 

are used for optimisation and reliability analysis, respectively. In this work, the design variables are 

geometry parameters, whereas the random variables are both geometry and mechanical properties. 

Outputs are the critical temperature change and the mass of the composite structure. This multi-fidelity 

model having ten input parameters and two output parameters is constructed using both the HFM and 

the LFM covering different design spaces. As mentioned before, the NARGP quantifies non-linear 

correlations between different fidelities to create an accurate multi-fidelity model.  

  

(a) Mechanical shortening (compression) (b) Temperature rise 
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Firstly, the training datasets for the HFM and the LFM should be sampled using OLHS technique that 

is a sampling technique to collect training data in the given design space as evenly distributed as possible. 

Table 6.5 shows ten input parameters having each design range that consist of four geometric 

parameters and six mechanical properties. The geometric parameters primarily influence the output of 

the composite structure. At the same time, they have uncertainties associated with design and 

manufacturing that could considerably affect the structure's performance. Apart from these geometric 

parameters, the uncertainties of the mechanical properties should be considered as well. Table 6.6 

clearly shows how the multi-fidelity model is constructed using two different fidelity models that 

explore supervise different design spaces at each level. The number of FEM simulations to construct 

the multi-fidelity model are also shown in the table. As mentioned in the previous section, the HFM 

covers only a part of the whole design space as dense as the sampled high-fidelity dataset can precisely 

examine the response surfaces of the selected design variables, 𝑋1 and 𝑋2 in this work. When the HFM 

at the first level focuses on the two design variables, ten training data points are enough to create the 

metamodel concerning these design variables accurately. The same number of training data of other 

design variables should also be sampled sparsely and added to the high-fidelity training dataset. 

Although the number of ten training data points is not sufficient to set up other design variables' 

metamodel, it allows the NARGP to use the high-fidelity information as much as possible in the given 

training dataset without causing extra high-fidelity FEM simulations. In contrast, the LFM, because it 

supervises all design variables, requires sixty training data points to supplement the lack of other design 

variables’ information that is not included in the HFM. This training dataset embraces the response 

surfaces of all design variables as solidly as possible. Once the NARGP constructs the multi-fidelity 

model, error analysis should be conducted using a test dataset that uses points not included in the 

training scheme. The created multi-fidelity model at each level predicts the critical temperature change 

and the mass with less than 1.5 % error in the given design spaces. 

When the multi-fidelity model completes the first level of optimisation, this multi-fidelity model 

provides the optimal solutions of the two selected design variables in the HFM as well as corresponding 

values of other design variables in the LFM. These optimal solutions update the HFM to choose 

different design variables that are not considered at the previous level. The LFM is also updated by 

those optimal solutions that enable a smaller number of design variables than the first level. The 

corresponding values obtained by the LFM update other design variables that are not considered in 

HFM. After updating two models, HFM chooses new design variables, 𝑋3 and 𝑋4, as shown in Table 

6.6. Then, ten new training data points that can correctly establish the chosen design variables' response 

surfaces are sampled using OLHS as densely as possible. Simultaneously, the same number of training 

data points of other design variables are also collected sparsely to build up an efficient high-fidelity 

training dataset. It is not surprising that the LFM at the first level is still precise enough to carry out the 

next level optimisation since it is made up of sixty training points. This means the LFM requires only 
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ten additional low-fidelity FEM simulations that are identical to the training data of HFM for this level 

since the high-fidelity training dataset should be a subset of the low-fidelity training dataset. Figure 6.6 

highlights how the HFM and the LFM cooperate using different sampling levels in different design 

spaces when 𝑋1 and 𝑋2 are selected as the HFM’s design variables. The high-fidelity training dataset 

is evenly distributed using the small number of training points in the design space of 𝑋1 and 𝑋2. 

However, it does not seem that the rest of the design spaces, 𝑋3 and 𝑋4, are scattered uniformly in the 

high-fidelity design spaces. The low-fidelity training dataset carefully covers the whole design space 

without information loss dissimilar to the high-fidelity design spaces. It should be highlighted that this 

multi-fidelity scheme enables the size of the high-fidelity training dataset to decrease while embracing 

the entire design space with sparsely distributed high-fidelity information as well as dense low-fidelity 

information. It should be noted that conventional surrogate modelling approaches require hundreds of 

training points to consider all design and random variables. Some multi-fidelity modelling methods also 

demand a significant number of high-fidelity training data points because the HFM encompasses the 

same design spaces as the LFM. The proposed multi-fidelity modelling methodology provides 

significant computational time savings compared with other multi-fidelity methods and enables 

probabilistic optimisation to broaden its application area to large-scale composite structures under 

thermomechanical loading.  

Table 6.5: Design and random variables 

Design of experiment input data Value 

Stringer foot (𝑚𝑚) 34.4 < 𝑋1 < 51.6 

Stringer height (𝑚𝑚) 24.0 < 𝑋2 < 36.0 

Distance between top and bottom (𝑚𝑚) 12.0 < 𝑋3 < 18.0 

Stringer top (𝑚𝑚) 20.0 < 𝑋4 < 30.0 

E11 (𝐺𝑃𝑎) 111 < 𝐸11 < 167 

E22=E33 (𝐺𝑃𝑎) 6.5 < 𝐸22 < 9.8 

G12=G13 (𝐺𝑃𝑎) 3.8 < 𝐺12 < 5.8 

G23 (𝐺𝑃𝑎) 2.5 < 𝐺23 < 3.7 

𝛼11 (/℃) 1.36𝐸−6 < 𝛼11 < 2.04𝐸
−6 

𝛼22 (/℃) −1.2𝐸−6 < 𝛼22 < −0.8𝐸−6 

 

 

 

 

 

 



6.3 Numerical Example 

Chapter 6 156 

Table 6.6: Details of the multi-fidelity models 

Level 

Scatter 

degree 

of 

Training 

data 

HFM LFM 

Design and random 

variable 

Number of 

FEM 

simulations 

Design and random 

variable 

Number of 

FEM 

simulations 

I 

Dense 𝑋1, 𝑋2 

10 

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 

60 

Sparse 
𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 

- 

II 

Dense 𝑋3, 𝑋4 

10 

𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 10 

Sparse 
𝐸11, 𝐸22 = 𝐸33, 𝐺23 

𝐺12 = 𝐺13, 𝛼11, 𝛼22 
- 

 

 

Figure 6.6: Training data distribution between HFM and LFM 

 

6.3.3 Multi-Fidelity Reliability-Based Design Optimisation 

RBDO, a type of probabilistic optimisation, was conducted to demonstrate the efficiency and accuracy 

of the multi-fidelity model constructed using the proposed formulation. In this example, geometric non-

linearity were considered, while the material properties were presumed to be in the linear elastic region. 
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6.3.3.1 Problem Definition 

Table 6.7 describes the description of the RBDO problem of the mono-stiffened stringer composite 

structure under thermomechanical loading. There are four constraints and three objectives. Since this 

proposed multi-fidelity optimisation approach aims to cooperate with the HFM and the LFM exploring 

different design spaces, each fidelity model has its constraints and objectives in the optimisation process. 

They carried typical mass constraints but different constraints regarding minimum critical temperature 

changes based on the difference between the HFM and the LFM. The reliability index was targeted by 

the associated value with the probability of failure, 0.135 %. The objective functions were to maximise 

the critical temperature changes and minimise the mass of the composite structure. It should be 

highlighted that the composite structure should be under thermal condition followed by a specific 

mechanical shortening, 0.05 % regarding the longitudinal direction, to include the effect of residual 

stress. 

The discretisation level of FEM models for the HFM and the LFM were defined through a mesh 

convergence study. It should be noted that the LFM shows 15 % solution error compared to the HFM 

whilst offering a 70% reduction in computational cost. The design spaces of geometric parameters and 

material properties are the same as the range of design of experiments in the previous section. As shown 

in Figure 6.7, the optimisation was conducted using NSGA-II (37), a multi-objective exploratory 

technique. This optimisation method is suitable for highly non-linear design spaces as well as 

discontinuous design spaces. The method follows the standard genetic operation of mutation and 

crossover. Still, the selection process is based on different mechanisms to construct a Pareto set with 

the best combination of objective values. Generation and population numbers were determined by 12 

and 20, respectively, to find optimal solutions correctly. These values were obtained using the 

convergence check of the Pareto front depending on different combinations of generation and 

population. In particular, the reliability check to consider the design uncertainties of random design 

variables is essential in this optimisation process. The uncertainties associated with geometric 

parameters are commonly assumed by a 0.1 % coefficient of variation concerning its mean values as 

manufacturing tolerance. The uncertainties of mechanical properties are considered by a random normal 

distribution with 5 %  coefficient of variation (15). All input parameters are presumed to have a 

truncated Gaussian distribution at three standard deviations. The reliability assessment should be 

conducted at all populations of each generation. Monte Carlo simulation computes the statistical 

characteristics of the objective functions, which are induced by the uncertainties of random design 

variables. Sobol sampling method was incorporated into the Monte Carlo simulation to obtain more 

homogeneous sampling distribution as well as more robust statistical estimations than other sampling 

methods (49). It should be noted that the maximum allowable number of multi-fidelity simulations to 

check the probability of failure was set to 2,000. The convergence tolerance check was carried out at 
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every 25 sampling points to improve the computational efficiency. The Monte Carlo simulations were 

halted when both mean and standard deviations satisfy 0.1 % difference with these associated values at 

the previous convergence test. Hence, the maximum simulation number using the developed multi-

fidelity model was 480,000 for the two levels in this RBDO process.  

Table 6.7: Reliability-based design optimisation - problem definition 

Description  Value 

Multi-fidelity model 
𝐻𝐹𝑀 𝑀𝑒𝑠ℎ 𝑠𝑖𝑧𝑒: 4.0 𝑚𝑚 

𝐿𝐹𝑀 𝑀𝑒𝑠ℎ 𝑠𝑖𝑧𝑒: 12.0 𝑚𝑚 

Optimisation method 𝑁𝑆𝐺𝐴 − 𝐼𝐼 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: 12 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 10 

Analysis type 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑆𝑜𝑏𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠: 2000 

Design uncertainty 

𝑀𝑒𝑎𝑛 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑋1 0.001 × 𝑋1 

𝑋2 0.001 × 𝑋2 

𝑋3 0.001 × 𝑋3 

𝑋4 0.001 × 𝑋4 

𝐸11 0.05 × 𝐸11 

𝐸22 0.05 × 𝐸22 

𝐺12 0.05 × 𝐺12 

𝐺23 0.05 × 𝐺23 

𝛼11 0.05 × 𝛼11 

𝛼22 0.05 × 𝛼22 

Constraints under 0.05% 

mechanical shortening 

𝑚𝑎𝑠𝑠 𝑚 ≤ 1 𝑘𝑔 

𝐻𝐹𝑀  ∆𝑇𝑐𝑟 ∆𝑇𝑐𝑟,𝐻𝐹𝑀 ≥ 50 ℃ 

𝐿𝐹𝑀  ∆𝑇𝑐𝑟 ∆𝑇𝑐𝑟,𝐿𝐹𝑀 ≥ 57.5 ℃ 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 𝛽 𝛽 = 3 

Objectives under 0.05% 

mechanical shortening 

𝑀𝑒𝑎𝑛 𝑚𝑎𝑠𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

𝑀𝑒𝑎𝑛 𝐻𝐹𝑀  ∆𝑇𝑐𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 

𝑀𝑒𝑎𝑛 𝐿𝐹𝑀  ∆𝑇𝑐𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 

 

 

Figure 6.7: Multi-fidelity RBDO framework 
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6.3.3.2 Results 

Table 6.8 represents the RBDO results using the proposed multi-fidelity formulation. This table 

demonstrates how the multi-fidelity model enables cooperation between two different fidelity models 

and improves its accuracy at the end of each level. In the table, the HFM has two different sampling 

degrees of training data, while the LFM is sampled densely as it can produce the response surfaces for 

all random design variables. At the first level, the HFM carries two design variables, 𝑋1 and 𝑋2, while 

the LFM has all the random design variables. At the same time, the HFM takes other two design 

variables, 𝑋3 and 𝑋4, and six random variables of material properties as a form of sparsely scattered 

training data that allows the LFM to quantify correlations among all variables. Both the HFM and LFM 

share the selected design variables of 𝑋1 and 𝑋2 during the first level of the optimisation. As shown in 

Figure 6.8, this enables the multi-fidelity model to scrutinise the solution spaces of other design 

variables corresponding to those of the selected design variables. When the first level finds the Pareto 

front satisfied with the objectives and constraints, the optimal solutions should be chosen by the 

designer’s decision. In this work, the optimal solutions were chosen by the allowable temperature range 

associated with the regional aircraft operation, known from -45 ℃  to 85 ℃ . The chosen optimal 

solutions at the first level update the multi-fidelity model before the next level. The optimal solutions 

of 𝑋1 and 𝑋2 are good enough to be fixed at the next level because they are obtained by dense high-

fidelity information. It is not surprising that the corresponding optimal solutions of the LFM at the first 

level can update other design variables, 𝑋3 and 𝑋4, that are not included in the HFM. Hence, this update 

enables the HFM to take different design variables that are collected as densely as possible. Similarly, 

as the first level, this updated HFM carries different design variables, 𝑋3 and 𝑋4, while the information 

of six random variables is also included sparsely. The LFM is updated by the optimal solutions of 

𝑋1 and 𝑋2, while the HFM takes all random design variables except for the fixed 𝑋1 and 𝑋2. When 

this level is finished, the final solution is obtained because there are two levels in this example. 

Figure 6.9 illustrates the Pareto fronts of the optimisation results at each level. The Pareto front of the 

first level is associated with the selected design variables that the HFM mainly supervises for the 

optimisation process, while the LFM compensates for the lack of high-fidelity information. The second 

level’s Pareto front has a small range since the optimal solutions in the first level’s Pareto front updates 

the multi-fidelity model. It should be highlighted that the second level examines the solution spaces 

thoroughly based on the chosen solution of the first level and discovers more reliable and better 

solutions compared to those of the first level. As can be seen in the figure, the Pareto front points at the 

second level rise to the upward direction and fill the gap in the solution space left from the first level. 

The figure also includes the Pareto front found from a conventional surrogate modelling approach, 

which is called a super HFM in this work, to highlight how accurate the proposed multi-fidelity method 

is. The super HFM consists of 150 high-fidelity FEM simulations to correctly resemble ten random 
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design variables' response surfaces. This figure shows that the Pareto front of the super HFM is nearly 

identical to that of the multi-fidelity model.  

Table 6.9 displays the mean value and standard deviation of the chosen optimal solutions so that the 

results of reliability assessments are compared between the multi-fidelity model and the super HFM. It 

should be noted that the optimal solution of the super HFM is selected as having the same mass as the 

chosen optimal solution of the multi-fidelity model. The multi-fidelity model has almost the same mean 

value and acceptable standard deviation as those of super HFM. It is also significant to assess the 

accuracy of the multi-fidelity model as the solution of the HFM created by the equivalent number of 

high-fidelity FEM simulations. There could be no advantages of the proposed method unless the multi-

fidelity model constructed by the same computational cost is more accurate. Table 6.6 shows that the 

multi-fidelity model comprises 20 HFMs and 70 LFMs that equate to 40 high-fidelity FEM simulations. 

Figure 6.10 features the accuracy among three different models: the multi-fidelity model, the super 

HFM and the equivalent HFM (HFM40). In this figure, the multi-fidelity model's mean value is much 

closer to the super HFM than that of HFM40 while having the standard deviation similar to the super 

HFM. This means that the reliability assessments of the proposed multi-fidelity method are more 

accurate than the equivalent number of high-fidelity FEM simulations in terms of computation time. As 

the NARGP is incorporated into the multi-fidelity formulation, the constructed multi-fidelity model has 

a black-box structure between input and output parameters. The chosen optimal solutions should be 

checked to show if the solutions make sense using proper techniques, such as a FEM solver or an 

experiment. Table 6.9 shows the critical temperature change using the multi-fidelity model is nearly 

identical to that of the FEM solver. It should be remarked that the accuracy of the multi-fidelity model 

is more accurate than that of the super HFM at this design point. 

The vast benefit of multi-fidelity modelling methods is that they can reduce the significant 

computational cost caused by the consideration of uncertainties during the probabilistic optimisation 

process. Figure 6.11 represents the computational time savings of the proposed multi-fidelity method 

compared to different probabilistic optimisation methods. All computational costs in this figure are 

normalised by the total computational cost of the super HFM so that the computational gains are 

emphasised in a practical way (48). The proposed multi-fidelity model is constructed using both 20 

HFM training points and 70 LFM training points. The equivalent computational cost equates to about 

40 high-fidelity FEM simulations because the computational cost of LFM is 70 % more economical 

than HFM’s cost. In contrast, the super HFM requires 150 high-fidelity FEM simulations. It is not 

surprising that the proposed multi-fidelity optimisation method provides around 75 % of computation 

time savings. However, it is more significant to show how much computation time savings are obtained 

by the use of this new method compared with different multi-fidelity methods. Traditional multi-fidelity 

methods (23)construct a multi-fidelity model using both 60 HFM training points and 60 LFM training 

points because two different fidelity models have the same number of design variables. The equivalent 
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high-fidelity FEM simulation number to this model is around 80, which is twice more computationally 

expensive than the proposed multi-fidelity method. This proposed multi-fidelity method is still more 

efficient than the multi-level multi-fidelity modelling approach developed before (42). The multi-level 

multi-fidelity approach uses both 20 HFM training points and 110 LFM training points, which equates 

to around 55 high-fidelity FEM simulations; hence the proposed multi-fidelity method enables 30 % of 

computation time savings. Although the LFM is generally computationally cheap, its computational 

cost can cause a severe burden when it comes to large-scale problems. Therefore, the proposed novel 

multi-fidelity method allows for considerably significant computational benefits to broaden the 

application range of the multi-fidelity method to the probabilistic design of large-scale composite 

structures. 

Table 6.8: RBDO results 

Level 

Scatter 

degree 

of 

training 

data 

Design and random variables  

used for the HFM and LFM 

Result 
Optimal 

design values 

to update the 

multi-fidelity 

model 

Critical 

temperature 

change (℃) Mass 

(𝑔) 

HFM LFM HFM LFM 

I 

Dense 𝑋1, 𝑋2 

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 

87 95 861 

𝑋1: 34.67 

𝑋2: 24.10 

𝑋3: 17.82 

𝑋4: 27.27 Sparse 
𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 

- 

II 

Dense 𝑋3, 𝑋4 

𝑋3, 𝑋4, 𝐸11, 
𝐸22 = 𝐸33, 𝐺23, 
𝐺12 = 𝐺13, 𝛼11, 𝛼22 98 110 867 

𝑋1: 34.67 

𝑋2: 24.10 

𝑋3: 18.00 

𝑋4: 30.00 Sparse 
𝐸11, 𝐸22 = 𝐸33, 𝐺23 

𝐺12 = 𝐺13, 𝛼11, 𝛼22 
- 
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Figure 6.8: Multi-fidelity modelling based RBDO at Level I  

 

Figure 6.9: RBDO results comparison by Pareto Front between multi-fidelity model vs. super HFM 
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Figure 6.10: Statistical characteristic among three different models 

 

Table 6.9: Design value and FE solver check 

Model 
Design variables (𝑚𝑚) Mass 

(𝑔) 

Approximated 

model 

∆𝑇𝑐𝑟(℃) 

FEM 

model  
∆𝑇𝑐𝑟(℃) 𝑋1 𝑋2 𝑋3 𝑋4 𝜇 𝜎 

Multi-fidelity 

model 
34.67 24.10 18.00 30.00 867 98.1 5.2 98.7 

Super HFM 35.35 24.01 17.97 29.08 868 99.5 12.1 98.7 

HFM40 37.25 24.01 17.97 23.90 865 87.4 9.3 85.1 
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Figure 6.11: Computational efficiency comparison among four different methods 

 

6.4 Summary 

In this work, a novel multi-fidelity probabilistic optimisation approach was proposed and demonstrated 

with a mono-stiffened stringer composite panel under thermomechanical loading. This approach 

enables the probabilistic optimisation of composite structures while providing considerable 

computation time savings and reliable solutions. This research work's main contribution is that the HFM 

supervises a part of the entire design space as dense as possible while examining other design spaces 

sparsely within not causing extra computational cost. Simultaneously, the LFM takes all design 

variables for the multi-fidelity model to explore the whole design space. The NARGP is incorporated 

into this multi-fidelity method because it can quantify correlations between different fidelity models to 

predict more accurate solutions. This method also cooperates with a multi-level optimisation framework 

to be utilised for large-scale problems with a vast number of design variables. The proposed method 

was demonstrated by the RBDO problem of the composite structure under a thermal environment 

followed by mechanical shortening. The optimal solutions and their reliability assessments obtained by 

the proposed multi-fidelity method were nearly identical to those of the super HFM, the conventional 

surrogate modelling approach. They are also more accurate than a surrogate model that used the 

equivalent number of high-fidelity FEM simulations to the multi-fidelity model in terms of computation 

time. Compared with a FEM solver, the multi-fidelity model predicts the critical temperature changes 

more precisely than those of the super HFM for this example. As well as improvements in accuracy, 
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this proposed method provides significant improvements to computational efficiency. This new 

method's computational efficiency was highlighted by comparing it with a conventional surrogate 

method, traditional multi-fidelity method and multi-level multi-fidelity method. It should be noted that 

the proposed method offers remarkable computation time savings. In particular, this method is 30-50 

%  more computationally efficient than other multi-fidelity methods. The developed multi-fidelity 

probabilistic optimisation method is a new optimisation approach that enables the HFM and the LFM 

to supervise different design spaces while cooperating with each other during the optimisation process. 

This new multi-fidelity method enables the probabilistic optimisation of complex and large-scale 

problems, such as for composite structures under thermomechanical loading, to be conducted in a 

significantly more efficient and accurate manner. 
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7 Conclusions and Future Work 

In this chapter, general conclusions and potential suggestions for both short-term and long-term future 

work are discussed. 

7.1 Summary and Conclusions 

As introduced in Chapter 1, the main objectives of the work presented in this thesis were to develop 

novel multi-fidelity modelling-based probabilistic design optimisation methods for composite 

structures, including Reliability-Based Design Optimisation (RBDO) and Robust Design Optimisation 

(RDO).  In order to achieve the objectives, new multi-fidelity modelling formulations were formulated 

to specifically reduce the computational cost associated with the high-fidelity finite element analysis. 

The newly developed formulations bridged the gap between High-Fidelity Model (HFM) and Low-

Fidelity Model (LFM) using machine learning techniques, including Artificial Neural Networks (ANN) 

and Non-linear Auto-Regressive Gaussian Process (NARGP). Furthermore, a multi-level optimisation 

approach was developed and a new sampling strategy were integrated into the probabilistic design for 

the first time. The developed multi-fidelity probabilistic optimisation methods enable the HFM and the 

LFM to have a different number of design variables during the optimisation process; hence, they offered 

more computational benefits than traditional surrogate methods and existing multi-fidelity methods. 

Several engineering examples using aircraft mono-stringer stiffened composite panels under 

mechanical and thermal loads demonstrated the accuracy and computational efficiency of the developed 

multi-fidelity probabilistic optimisation methods. Results represent that the developed methods herein 

significantly reduce the required computational time, allowing for more design variables to be 

considered early in the design stage of large-scale and complex aircraft composite structures. The results 

discussed in Chapters 4, 5 and 6 show that this main research aim has been accomplished.

In Chapter 4, a multi-fidelity modelling-based RBDO framework was developed for composite 

structures for the first time. This framework proved to provide acceptable accuracy and substantial 

computational efficiency compared with the conventional RBDO optimisation method using the 
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common high-fidelity surrogate model. The new multi-fidelity framework also assured the capability 

to carry out different reliability analyses estimating the probability of failure. These were demonstrated 

in two engineering examples at the end of the chapter highlighting the accuracy and efficiency of the 

developed framework. 

In Chapter 5, a new multi-fidelity modelling-based RDO framework was developed for covering 

different design spaces between High-Fidelity Model (HFM) and Low-Fidelity Model (LFM). Two 

engineering examples featuring a mono-stiffened stringer composite panel subjected to the non-linear 

post-buckling regime were examined. The developed framework integrated with multi-level 

optimisation convinced extra computational gains compared with the traditional multi-fidelity methods 

while providing acceptable accuracy. 

In Chapter 6, a novel multi-fidelity modelling-based probabilistic optimisation framework was 

developed for considering the non-linear correlations between the HFM and the LFM using Gaussian 

Process (GP). An engineering example of the same composite panel under thermomechanical loading 

was investigated. This new framework employing different sampling degrees to the HFM probed to be 

more computationally efficient than other different multi-fidelity methods. The accuracy of this 

framework was further improved with the use of non-linear fusion GP. 

As mentioned in Chapter 1, the primary objectives of the work presented in this thesis broke down into 

five sub-objectives. The conclusions for each of these sub-objectives are summarised as follows.  

1. To develop a multi-fidelity RBDO framework for composite structures integrating with 

the use of surrogate modelling. This was introduced in Chapter 4. The developed multi-

fidelity method using the Artificial Neural Networks (ANN) provides acceptable accuracy and 

significant computational efficiency to carry out the RBDO process of composite structures. 

Firstly, the accuracy of the multi-fidelity models was demonstrated by comparing the 

conventional high-fidelity surrogate models. Overall, the direct multi-fidelity models that 

directly called low-fidelity FEM models during the modelling process offer more accurate 

solutions to carry out the reliability analyses and RBDO process than the indirect multi-fidelity 

models that called the surrogate model of the LFM. These multi-fidelity models using 11 high-

fidelity FEM models proved to be much more accurate than a surrogate model using the same 

number of high-fidelity FEM models used in the multi-fidelity models. In particular, their 

accuracy assured to be similar to a surrogate model using the high-fidelity FEM models four 

times more than the number of high-fidelity FEM models used in the multi-fidelity models. The 

multi-fidelity models proved to be utilised with different reliability methods such as MCS, 

FORM and SORM. Although FORM and SORM require the first-order and second-order 

gradients of the response surfaces, the direct multi-fidelity models provided acceptable 

accuracy to estimate the probability of failure of the structural system. These multi-fidelity 
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models also proved to be suitable to conduct the RBDO process since they correctly found the 

optimal solutions, which are nearly identical to those of the traditional high-fidelity surrogate 

model. The Pareto fronts between the multi-fidelity and high-fidelity surrogate models were 

almost similar across the solution space. The mean values and standard deviation of the selected 

optimal solution based on the equal mass showed a high level of accuracy between the two 

different models. Secondly, the computational efficiency was evaluated by comparing the total 

simulation numbers of both FEM and surrogate models for the reliability analyses and RBDO 

process. Notable computational time savings were achieved by the use of multi-fidelity models. 

All computational costs were normalised by the computation time for MCS of the surrogate 

model using one hundred of HFMs. The direct multi-fidelity models were slightly 

computationally expensive compared with the indirect multi-fidelity models since they directly 

use the low-fidelity FEM models to offer higher accuracy. When utilising the multi-fidelity 

surrogate models, the computational costs among MCS, FORM and SORM assured to be 

comparable due to the inherent computational benefit of the surrogate model. Given that the 

computational time of the surrogate model using only LFM is similar to those of the multi-

fidelity models, it should be highlighted that the developed multi-fidelity probabilistic 

optimisation framework provides significant computational efficiency as well as high accuracy 

nearly identical to the traditional high-fidelity surrogate model. 

2. To develop a multi-fidelity modelling formulation covering different design spaces 

between the HFM and the LFM. This was introduced in Chapter 5. Overall, the developed 

formulation allows the HFM and the LFM to have a different number of design variables to 

provide more computational efficiency than the traditional multi-fidelity methods. These multi-

fidelity methods, including the method presented in Chapter 4, require an equal number of FEM 

simulations between the HFM and the LFM. The main drawback of these methods causes extra 

high-fidelity FEM simulations associate with the number of design variables in the HFM. 

Ideally, many low-fidelity simulations and fewer high-fidelity simulations bring more 

computational benefit to the probabilistic optimisation. The developed multi-fidelity 

formulation enables the HFM to cover the design spaces of a few selected design variables. At 

the same time, other design variables not chosen in the HFM are included in the LFM to explore 

the entire design space. This idea was achieved by incorporating multi-level optimisation into 

the multi-fidelity formulation. In this formulation, the HFM aims to find accurate optimal 

solutions of the selected design variables during the probabilistic optimisation process. In 

contrast, the LFM aims to allow engineers to explore the solution spaces of design variables 

not included in the HFM. It was found that the HFM discovers the optimal solutions in the high-

fidelity design space at the end of each optimisation level. These optimal solutions were used 

to correct the multi-fidelity models before they carry out the next level. The optimal solutions 

obtained by the LFM were used by the initial starting points for the next level to find global 
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solutions efficiently. In conclusion, the multi-fidelity formulation proved to be a more 

computationally efficient alternative to construct an acceptable multi-fidelity model while 

preserving a high level of accuracy similar to the traditional surrogate models.  

3. To develop a multi-fidelity RDO framework for composite structures under the non-

linear post-buckling regime when the HFM has a smaller number of design variables than 

the LFM. This was introduced in Chapter 5. The developed multi-fidelity formulation was 

incorporated into the RDO framework of composite structures. The framework was 

demonstrated by two engineering examples of a mono-stiffened stringer composite panel under 

the non-linear post-buckling regime, deterministic optimisation (DO) and RDO, respectively. 

It was found that the difference in solution accuracy between the multi-fidelity model and the 

high-fidelity FEM model for the DO process was only less than 1 %. The computational time 

savings obtained by the multi-fidelity model was 75 % in comparison with the DO using the 

high-fidelity FEM model directly. The multi-fidelity methods delivered more computational 

gains to the RDO process considering the design uncertainties of geometry parameters. Due to 

a significant number of simulations for the RDO process, the high-fidelity FEM model was not 

able to be directly used. Still, the traditional high-fidelity surrogate model was used to evaluate 

the efficiency and accuracy of the developed multi-fidelity methods. It was found that the 

objective functions obtained by the multi-fidelity model were improved as the optimisation 

level was progressed. The difference in the optimal solutions having an equal mass between the 

two models were less than 1 %, while the optimal solution using the multi-fidelity model was 

more robust than the high-fidelity surrogate model. It was found that more economic 

computational cost was achieved using the developed multi-fidelity model. The multi-fidelity 

model required both 40 high-fidelity design points and 210 low-fidelity design points. In 

contrast, the conventional surrogate model requested 200 high-fidelity design points. It was 

found that around 70 % of computational time savings were obtained using this multi-level 

multi-fidelity method. These examples assured that the developed multi-fidelity method shows 

significant potential for large-scale composite design problems considering the design 

uncertainties compared to different multi-fidelity methods. 

4. To develop a multi-fidelity modelling formulation utilising different sampling levels 

between the HFM and the LFM while considering non-linear correlations between them. 

This was introduced in Chapter 6. A multi-fidelity modelling formulation was developed to 

deliver more computational gains as well as more accurate solutions. This approach was able 

to improve the multi-level multi-fidelity method presented in Chapter 5 that the HFM provides 

the high-fidelity information regarding the design variables selected. The method was capable 

of capturing the response surfaces of structural behaviours that show a simple linear trend 

between different fidelity models. This formulation presented in this chapter was motivated 

using different sampling levels to collect the high-fidelity information from the entire design 
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space while collecting the low-fidelity information as much as possible. The sampling strategy 

was established to collect high-fidelity information using dense sampling and sparse sampling. 

It was found that this sampling strategy allows the multi-fidelity model to require a smaller 

number of high-fidelity FEM simulations embracing a part of the entire design space. At the 

same time, it was found that the high-fidelity training dataset offers sparsely information of 

other design spaces without causing extra high-fidelity FEM simulations. The non-linear fusion 

GP was used to consider the non-linear correlation between the HFM and the LFM. Compared 

to the use of conventional surrogate modelling methods, the use of the non-linear fusion GP 

constructed a more accurate multi-fidelity model capturing a complex trend between different 

fidelity models. Both the sampling scheme and the non-linear fusion GP were integrated with 

multi-level optimisation to bring more computational efficiency to large-scale design problems. 

In conclusion, it has been demonstrated that this novel multi-fidelity modelling formulation can 

efficiently and accurately conduct the probabilistic optimisation of composite structures.

5. To develop a multi-fidelity probabilistic optimisation framework for composite structures 

subjected to thermomechanical loading. This was introduced in Chapter 6. The developed 

multi-fidelity formulation using the non-linear fusion GP was incorporated into the RBDO 

process. The established framework was demonstrated by an engineering example of a mono-

stiffened stringer panel under thermomechanical loading. The composite panel was subject to 

mechanical loading and thermal loading. The design uncertainties of four geometry parameters 

and six material properties were considered input parameters to construct the multi-fidelity 

model. It was found that the multi-fidelity model for each level of the RBDO process scrutinises 

a part of design spaces while providing sparely high-fidelity information to the LFM. This 

enabled the multi-fidelity model to be updated using the optimal solutions at the end of each 

level, as well as be ready to explore different design spaces for the following level. The Pareto 

front of the multi-fidelity model was compared with the conventional surrogate model using 

150 high-fidelity FEM simulations. It was found that the solution spaces are more thoroughly 

examined as the optimisation level goes up. This offered more reliable and better solutions 

compared with those of the previous optimisation levels since the design space to be explored 

by the multi-fidelity model narrowed down. The statistical characteristics of the optimal 

solution obtained by the multi-fidelity model were nearly identical to those of the optimal 

solution from the high-fidelity surrogate model. The multi-fidelity model proved to be more 

accurate than the surrogate model using 40 high-fidelity FEM simulations that equates to both 

20 HFMs and 70 LFMs required for constructing the multi-fidelity model. In terms of 

computational efficiency, it is not surprising that the multi-fidelity model accomplished about 

75 % reduction compared to the surrogate model using 150 high-fidelity FEM simulations. It 

was found that the multi-fidelity model delivers around 50% of computational time savings 

compared with the traditional multi-fidelity method (47) using both 60 HFMs and 60 LFMs. 



7.2 Future Work 

Chapter 7 171 

This multi-fidelity model proved to be approximately 30 % more computationally efficient than 

the multi-level multi-fidelity method presented in Chapter 5, requiring both 20 HFMs and 110 

LFMs. Given that the computational cost of low-fidelity FEM simulations could lead to a severe 

challenge when it comes to large-scale design problems, the gains obtained by a smaller number 

of low-fidelity FEM models can be significant.  

 

7.2 Future Work 

Some possible future research works are summarised as follows. These suggested works are divided 

into two groups, such as short-term and long-term. Short-term research work can be accomplished 

within one year, while long-term research work requests more than several years. 

 

7.2.1 Short-Term Future Research Work 

 In the research work introduced in Chapter 6 of the thesis, the developed multi-fidelity 

formulation was demonstrated by the probabilistic design optimisation of composite structures 

under thermomechanical buckling. If the formulation is shown by a more practical engineering 

problem of large-scale composite structures, its advantages would be strengthened. As 

presented in Chapter 5, the non-linear post-buckling strength can be a helpful design criterion 

to achieve more lightweight to reduce fuel consumption while maintaining structural stability. 

Hence, the multi-fidelity formulation could be implemented to the probabilistic design 

optimisation of a sizeable multi-stiffened stringer composite panel subjected to the non-linear 

thermal post-buckling regime.  

 Depending on the level of complexity involved, it might be worthy of considering material non-

linearity, including damage propagation failure analysis. Suppose the non-linear fusion GP does 

not construct a multi-fidelity model to capture the response surfaces of a large-scale problem. 

Then a more advanced multi-fidelity approach, known as Deep GP, can be utilised to boost the 

quality of the multi-fidelity model. However, an innovative improvement in the multi-fidelity 

formulation should be put forth to deal with the considerable computational cost caused by the 

Deep GP. 

 

7.2.2 Long-Term Future Research Work 

 The work presented in this thesis was restricted to probabilistic design optimisation considering 

uncertainties associated with the design and manufacturing process. However, it would be 
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interesting to broaden the application area of developed research work on the operational and 

ageing process such as Structural Health Mentoring (SHM). 

 The multi-fidelity SHM framework with probabilistic design philosophy could deliver the total 

solution framework to industry, such as aircraft and offshore wind power. Notably, it would be 

better to develop new multi-fidelity formulations that require experimental data for high-

fidelity information and computational simulations for low-fidelity information. This could 

contribute to providing remarkable time savings into the virtual design, testing and inspection. 
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