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Analysis of Spatial Point Patterns on Surfaces

Abstract

With the advent of improved data acquisition technologies more complex spatial datasets

can be collected at scale meaning theoretical and methodological developments in spatial

statistics are imperative in order to analyse and generate meaningful conclusions. Spatial

statistics has seen a plethora of applications in life sciences with particular emphasis on ecol-

ogy, epidemiology and cell microscopy. Applications of these techniques provides researchers

with insight on how the locations of objects of interest can be influenced by their neighbours

and the environment. Examples include understanding the spatial distribution of trees ob-

served within some window, and understanding how neighbouring trees and potentially soil

contents can influence this.

Whilst the literature for spatial statistics is rich the common assumption is that point pro-

cesses are usually restricted to some d-dimensional Euclidean space, for example cell locations

in a rectangular window of 2-dimensional Euclidean space. As such current theory is not

capable of handling patterns which lie on more complex spaces, for example cubes and el-

lipsoids. Recent e↵orts have successfully extended methodology from Euclidean space to

spheres by using the chordal distance (the shortest distance between any two points on a

sphere) in place of the Euclidean distance. In this thesis we build on this work by considering

point processes lying on more complex surfaces. Our first significant contribution discusses

the construction of functional summary statistics for Poisson processes which lie on compact

subsets of Rd which are o↵ lower dimension. We map the process from its original space

to the sphere where it is possible to take advantage of rotational symmetries which allow

for well-defined summary statistics. These in turn can be used to determine whether an

observed point patterns exhibits clustered or regular behaviour.

Partnering this work we also provide a hypothesis testing procedure based on these functional

summary statistics to determine whether an observed point pattern is complete spatially

random. Two test statistics are proposed, one based on the commonly used L-function for

planar processes and the other a standardisation of the K-function. These test statistics

are compared in an extensive simulation study across ellipsoids of varying dimensions and
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processes which display di↵ering levels of aggregation or regularity.

Estimates of first order properties of a point process are extremely important. They can

provide a graphical illustration of inhomogeneity and are useful in second order analysis. We

demonstrate how kernel estimation can be extended from a Euclidean space to a Riemannian

manifold where the Euclidean metric is now substituted for a Riemannian one. Many of the

desirable properties for Euclidean kernel estimates carry over to the Riemannian setting.

The issue of edge correction is also discussed and two criteria for bandwidth selection are

proposed. These two selection criteria are explored through a simulation study.

Finally, an important area of research in spatial statistics is exploring the interaction between

di↵erent processes, for example how di↵erent species of plant spatially interact within some

window. Under the framework of marked point processes we show that functional summary

statistics for multivariate point patterns can be constructed on the sphere. This is extended

to more general convex shapes through an appropriate mapping from the original shape

to the sphere. A number of examples highlight that these summary statistics can capture

independence, aggregation and repulsion between components of a multivariate process on

both the sphere and more general surfaces.
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1
Introduction

Spatial statistics is a collection of techniques used to understand the spatial characteristics

of a finite collection of points within a given area. Technology used to acquire such data is

becoming ever more advanced with datasets being collected at finer and finer resolutions.

Spatial datasets come in many forms, for example Diggle [2003] discusses how to handle data

in the form of grid counts. More modern imaging techniques allow researchers to localise

objects precisely giving exact coordinates, or at least within some small standard error. Not

only is it possible to capture more accurate spatial data but technological advancements

have meant that data can be captured at scales ranging from the microscopic [Diggle, 1986,

Lagache et al., 2013, Cohen et al., 2019] to the macroscopic [Robeson et al., 2014, Lawrence

et al., 2016, Jun et al., 2019]. This advancement in the collection of spatial datasets has

fuelled the need for novel methodological development to correctly analyse and draw con-

clusions from the data.

With spatial datasets being curated at a multitude of scales these point patterns may not

necessarily lie on a plane or within some volume, but instead be restricted to some lower

dimensional surface embedded within a higher dimensional Euclidean space. This means

that current methodologies, which often make the assumption that points lie on a Euclidean

space, are not appropriate to analyse such data. Point patterns such as these are an under-

researched area with, only recently, extensions being made for point patterns restricted to

the sphere [Robeson et al., 2014, Møller and Rubak, 2016, Lawrence et al., 2016, Cuevas-

Pacheco and Møller, 2018, Jun et al., 2019] or on linear networks [Ang et al., 2012, Rakshit
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et al., 2017, Moradi et al., 2018, Rakshit et al., 2019]. The primary focus of this thesis is to

develop theory and methodology for point processes that exist on surfaces embedded within

some Euclidean space that do not exhibit symmetric properties like spheres.

Challenges are readily apparent when attempting to extend methodology for a point process

lying on a Euclidean or spherical space to a space which exhibits more complex geometry.

An immediate issue is the definition of a distributionally invariant process. By defining

point processes to exist on a d - dimensional Euclidean space or even a (d� 1) - dimensional

sphere it is possible to define notions of distributional invariance under common isometries,

such as translation (on Euclidean space) and rotation (on Euclidean and spherical space).

When relaxing the assumption that point processes lie on such symmetric spaces we can no

longer assume that there exists an infinitely sized set of isometries for which distributional

invariance (i.e. an infinitely large set of transformations T defined on some general space

such that for any t 2 T , a point process X has the same probability measure as t(X)) can be

well-defined which has subsequent consequences when attempting to define basic properties

commonly attributed to point processes.

This thesis makes three contributions to the literature for studying point processes outside of

typical symmetric spaces such as the plane and sphere. The first shows that functional sum-

mary statistics can be constructed for Poisson processes on convex shapes. We also discuss

a formal hypothesis testing procedure to determine whether a pattern exhibits homogeneity.

The second discusses how to estimate the intensity of a point process lying on a Riemannian

manifold by extending the methodology of kernel estimation for Euclidean Diggle [1985],

Berman and Diggle [1989], Møller and Waagepetersen [2003], van Lieshout [2012] and linear

network McSwiggan et al. [2017], Moradi et al. [2018], Rakshit et al. [2019] processes. Fi-

nally, we demonstrate that functional summary statistics for multivariate processes lying on

spheres can be constructed. Using this framework we can also construct summary statistics

for multivariate processes on convex shapes. We demonstrate that these summary statis-

tics are capable of determining whether or not components of the multivariate process are

independent.

1.1 Structure of thesis

This thesis presents novel methodology for analysing point patterns confined to arbitrary

closed convex surfaces within d-dimensional Euclidean, with a focus on the scenario when

d = 3. The outline of this thesis is as follows:
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• Chapter 2 discusses the relevant background on spatial statistics required. Here we

establish the notation used for the remainder of the thesis. In this chapter we describe

much of the theory under the premise of a general metric space but provide more

concrete examples in d-dimensional Euclidean space.

• Chapter 3 extends from Chapter 2 specifically for point processes defined on a (d�1) -

dimensional sphere, with a focus on d = 3. Point processes on spheres are central to the

work coming in later chapters. In this chapter we outline the significant contributions

made for the analysis of spherical processes [Robeson et al., 2014, Møller and Rubak,

2016, Lawrence et al., 2016] and also contribute an extension of the inhomogeneous F,

H, and J-functions [van Lieshout, 2011] from Euclidean to spherical space, utilising

rotations as opposed to translations. We also formalise and extend to spheres the proof

of White [1979] which derives the infinite series expansion of the F , and H-functions,

first when the nth-order moment factorial intensity measure is assumed to exist and

when the nth-order factorial moment intensity function is assumed to exist. This is

covered in our work, Ward et al. [2021b].

• Chapter 4 describes the first major novel contribution to the spatial statistics literature

and is the key concept introduced in our paper, Ward et al. [2021b]. Here we discuss

the di�culties imposed by the geometry of surfaces for which our point process exists

upon. Based on the Mapping Theorem for Poisson processes [Kingman, 1993] we can

circumvent this issue and are able to construct functional summary statistics for such

a process. This provides graphical illustrations of how an observed point pattern may

deviate away from spatial homogeneity and can guide researchers in modelling their

data.

• Chapter 5 builds on the work of Chapter 4. It discusses how to conduct a formal,

Monte Carlo based, hypothesis test when the null of the observed point pattern is a

homogeneous Poisson process, which is typically conducted early in a point pattern

analysis pipeline; this is the final contribution made in our work Ward et al. [2021b].

We propose two test statistics, the first is analagous to the L-function typically used

for point process on Rd and based on the work of Lawrence [2018] whilst the second is

based on the standardisation given by Lagache et al. [2013]. The empirical power of

these test statistics is explored through simulations on ellipsoids of varying dimensions.

• Chapter 6 discusses the problem of intensity estimation for point processes on compact

Riemannian manifolds, which is the focus of our work Ward et al. [2021a]. We focus on

kernel estimators and extend theory of nonparametric kernel intensity estimation from
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Rd to arbitrary Riemannian manifolds with a focus on ones embedded within R3. We

discuss theoretical properties of these estimators highlighting the Euclidean analogue

and also provide a practical approach to bandwidth selection of point processes on

such spaces. We conduct a simulation study over ellipsoids of varying dimensions to

compare two bandwidth selection procedures, extended from the Euclidean theory, and

based on these are able to provide broad rules of thumbs as to the most appropriate

scenarios for each of their applications.

• Chapter 7 develops methodology to detect interactions between components of a mul-

tivariate point process lying on convex surfaces. This chapter is related to our work

Ward et al. [2021c]. Considering multitype processes as a special case of marked pro-

cessess, we first discuss marked spheroidal point processes extending the works of van

Lieshout [2006], Cronie and van Lieshout [2016]. Utilising the Mapping Theorem [Last

and Penrose, 2018], we can map point patterns from a convex shape to the unit sphere

which allows for the construction of functional summary statistics. These can be used

to illustrate, graphically, whether a multivariate point patterns exhibits attraction or

repulsion between its components.

1.2 Publications

Work contained in this thesis has either been published or is in preparation. Chapters 3 -

5 (and Appendices A - C) discuss material in our paper titled ‘Testing for complete spatial

randomness on three dimensional bounded convex shapes’ [Ward et al., 2021b]. Permission

and limitations for reuse of this material can be found in the Author Rights section at https:

//www.elsevier.com/about/policies/copyright. The website states that this work can

be included as part of a thesis or dissertation and a copy of this can be found in Appendix

F. Chapters 6 and 7 discuss material for papers currently under preparation and are titled

‘Estimation of the intensity function of a spatial point process on a Riemannian manifold’

[Ward et al., 2021a] and ‘Functional summary statistics for multitype point patterns on three

dimensional convex surfaces’ [Ward et al., 2021c] respectively.

20



2
Background

This chapter discusses the necessary spatial statistics background used throughout this thesis. We

follow the notation of Møller and Waagepetersen [2003]. Section 2.1 provides a formal definition

of a spatial point process, introducing their moment measures and reduced Palm processes. We

pay particular emphasis on Poisson processes in Section 2.2 which are a key spatial process used

in later chapters. Finally, Section 2.3 discusses functional summary statistics in Rd
typically

used in exploratory data analysis, model fitting, and model validation, and provide examples

when the process is stationary.

2.1 Point processes

Spatial point processes, or simply point processes, are often considered as a random collection

of points located over some given space. For example a random finite set of points over a

d-dimensional Euclidean space, Rd, or (d� 1)-dimensional sphere, Sd�1, where d 2 N. More

commonly we only observe point process within some bounded region of the underlying

space, such as the d-dimensional box in Rd or the upper hemisphere of Sd�1. In this chapter

we will assume that X lies within some, potentially unbounded, metric space S equipped

with a metric dS (in later chapters this will often be the geodesic or shortest distance between

points of the associated metric space).
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2.1.1 Definition of a point process

Let X be a point process on a metric space S which is Polish, this is assumed throughout

the thesis. Then associated with X is its random counting measure NX : S 7! N0, where N0

is the set of natural numbers including 0, which counts the number of elements of X that

lie within some subset of S. Analogously, we have a deterministic version of NX denoted

nx : S 7! N0, where x ✓ S is a deterministic subset of S. We will also use XB or xB to

denote X \B or x \B where B ✓ S respectively. To denote elements of X we will use the

term event whilst an arbitrary point in S will be termed a point. Define BS(x, r) for x 2 S

and r 2 R+ to be the ball in S centred at x with radius r such that y 2 BS(x, r) if and only

if dS(x,y)  r. We also define �S to be the Hausdor↵ measure on S, for example we take

the Lebesgue measure on Rd, and will define X \ x ⌘ X \ {x} for ease of notation.

For a formal definition of a point process we define the set of locally finite point configurations

of S as,

Nlf = {x ⇢ S : nx(B) <1, B ✓ S such that B is bounded}.

In the event that S is bounded we can define the finite point configurations of S as,

Nf = {x ⇢ S : nx(B) <1, B ✓ S}.

A point process X then takes values in the space Nlf or Nf depending on whether S is

unbounded or not. Based on the space of values X can take we may also refer to X as a

random locally finite set (or random finite set in the event S is bounded). Equipping S with

the Borel sigma-algebra B, the sigma-algebra generated by open subsets of S, and defining

B0 to denote the set of bounded Borel sets we then define Nlf as,

Nlf = �({x 2 Nlf : n(xB) = m} : B 2 B0,m 2 N0),

i.e. the sigma-algebra generated by sets constructed from Nlf such that they are finite over

elements of B0. We then define a point process as,

Definition 2.1.1. A point process X which lies on a metric space S is said to be a measurable

mapping from some probability space (⌦,F , P ) to the measurable space (Nlf ,Nlf ). We denote

PX(F ) = P (X 2 F ) = P ({! 2 ⌦ : X(!) 2 F}) for F 2 Nlf , to be the probability measure

of X.

In the event that S is bounded a similar definition can be constructed using Nf . A common,

mild restriction imposed on point proceses is that they are simple. A simple point process is
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one such that, almost surely, no two distinct elements of the point process are coincidental,

that is the points cannot lie on top of each other. All point processes considered in this

thesis will be simple.

Based on Definition 2.1.1 we can characterise a point process in numerous ways. Lemma

B.2 of Møller and Waagepetersen [2003] shows that a point process is uniquely determined

by the finite dimensional distribution of its random count measure, that is joint distribution

of NX(B1), . . . , NX(Bm) for any B1, . . . , Bm 2 B0 and m 2 N0 defines our point process X.

This leads to a useful characterisation based on void probabilities.

Definition 2.1.2. Let X be a point process on some metric space S. Then the void proba-

bilities of the point process are,

⌫(B) = P (NX(B) = 0), for any B 2 B0.

Theorem B.1 of Møller and Waagepetersen [2003] shows that X is uniquely determined

by its void probabilities. Another useful characterisation is based on so-called generating

functionals. Generating functionals are useful in Chapters 3 and 4 when extending functional

summary statistics defined for stationary processes to nonstationary ones.

Definition 2.1.3. Let X be a point process on some metric space S. Then the generating

functionals of X are defined as,

GX(u) = E
Y

x2X
u(x),

for functions u : S 7! [0, 1] with the set defined by {x 2 S : u(x) < 1} being bounded.

To see why generating functionals uniquely determine point process, set u(x) = a [x2B] for

0  a  1, then GX(u) = E
⇥
tNX(B)

⇤
. This is the moment generating function for NX(B)

which uniquely defines the random counting measure of X. This in turn defines the void

probabilities, which by previous discussion, i.e. Theorem B.1 of Møller and Waagepetersen

[2003], defines X.

If we restrict our attention to the setting of S = Rd then common assumptions frequently

imposed on a point process X are stationarity and isotropy.

Definition 2.1.4. Let X be a point process on Rd. X is said to be stationary if its associated

probability measure is invariant under translations, i.e. X
d
= X+x for any x 2 Rd, X+x =

{z : z = y+x,y 2 X} and
d
= means equivalent in distribution. X is also said to be isotropic
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if it is distributionally invariant under rotations around the origin, i.e. X
d
= OX, where O

is any rotation around the origin and OX = {y : y = O x,x 2 X}.

In a few instances it will be convenient to discuss densities of absolutely continuous measures.

More precisely we say that a process X is absolutely continuous with respect to another

process Y if and only if PY (Y 2 F ) = 0 implies PX(X 2 F ) = 0 for F 2 Nlf . By the

Radon-Nikodyn Theorem [Billingsley, 1986] we then have that if X is absolutely continuous

with respect to Y there exists a function f : Nlf 7! [0,1] such that,

PX(X 2 F ) = E[ [Y 2 F ]f(Y )].

We then denote f as the density of X with respect to Y .

2.1.2 Moment measures

In this section we introduce the definitions of moment measures in spatial statistics which

are analagous to moments of random variables. We define the nth-order moment measure

↵(n) and the nth-order factorial moment measure ↵(n).

Definition 2.1.5. The nth-order moment measure, µ(n), of a point process X is defined as,

µ(n)(B1, . . . , Bn) = E
X

x1,...,xn2X
[x1 2 B1, . . . , xn 2 Bn],

for Bi ✓ S, i = 1, . . . , n. Further, when n = 1 and if we assume that µ(1) is absolutely

continuous with respect to the Hausdor↵ measure over S then by the Radon-Nikodyn Theorem

[Billingsley, 1986] we have that

µ(B) ⌘ µ(1)(B) =

Z

B

⇢(x)�S(x),

for B ✓ S. ⇢ : S 7! R+ where R+ is the non-negative real numbers is denoted the intensity

function of X, whilst µ is denoted the intensity measure.

Based on Definition 2.1.5 ⇢(x)�S(dx) is often considered the probability of observing an

event of X lying in some infinitesimal volume dx centred at x. Additionally, notice that

when n = 1,

µ(B) = E
X

x2X
[x 2 B] = E [NX(B)] ,
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and for n 2 N,
µ(n)(B1, . . . , Bn) = E [NX(B1) · · ·NX(Bn)] .

An important property of stationary processes is their constant intensity functions when

restricting S to Rd (e.g. see Proposition 8.2 Last and Penrose [2018]). We also say that

if a point process has a constant intensity function then it is homogeneous otherwise it is

inhomogeneous. The next definition introduces the nth-order factorial moment measure.

Definition 2.1.6. The nth-order factorial moment measure, ↵(n), of a point process X is

defined as,

↵(n)(B1, . . . , Bn) = E
6=X

x1,...,xn2X
[x1 2 B1, . . . , xn 2 Bn],

for Bi ✓ S, i = 1, . . . , n and the sum is over pairwise distinct elements, i.e. xi 6= xj for

i 6= j. Further, if ↵(n) is absolutely continuous with respect to the n-fold Hausdor↵ measure

on Sn then by the Radon-Nikodyn Theorem [Billingsley, 1986] we have that,

↵(n)(B1, . . . , Bn) =

Z

B1

· · ·

Z

Bn

⇢(n)(x1, . . . , xn)�S(dx1) · · ·�S(dxn), (2.1)

where �S is the Hausdor↵ measure on S. The integrand ⇢(n) is defined as the nth-order

factorial intensity function.

Like the intensity function ⇢(n)(x1, . . . ,xn)�S(dx1) · · ·�S(dxn) can be considered the prob-

ability of observing n events of X each within an infinitesimal area dxi centred at xi. Notice

that for n = 1, ↵ ⌘ ↵(1) = µ. The term factorial in nth-order factorial moment measure

arises when we consider Bi = B ✓ S for all i = 1, . . . , n then,

↵(n)(B1, . . . , Bn) = ↵(n)(B, . . . , B)

= E
6=X

x1,...,xn2X

nY

i=1

[xi 2 B]

= E [NX(B)(NX(B)� 1) · · · (NX(B)� n+ 1)] .

Furthermore, it is worthwhile noting the following relation when n = 2 (e.g. see Equation

4.1 of Møller and Waagepetersen [2003]),

µ(2)(B1, B2) = ↵(2)(B1, B2) + µ(B1 \B2),

which highlights that the second order properties of NX are defined by µ and ↵(2).
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The nth-order moment and factorial moment measures can equivalently be defined in terms

of Lebesgue integrals of arbitrary non-negative measurable functions (e.g. see Chiu et al.

[1995, pp. 110-111]). Equivalence of these definitions holds by standard measure theoretic

arguments such as those given by Theorem 16.11 and the subsequent remarks of Billingsley

[1986].

2.1.3 Palm Theory

Palm theory plays a central role in point process theory and is crucial in understanding the

distribution of a point process X given that we have observed one or more typical points

of X. These distributions are more commonly referred to as Palm distributions. They were

first introduced by Palm [1943] for point processes on the real line and then later extended

to Rd and other more abstract spaces (e.g. see Jagers [1973]).

Palm theory is the study a point process X conditional on some typical event of that same

process. Measure theory is used to give a precise definition of what a typical event of a

point process is but heuristically we can think of them as a randomly selected event from X

in which each event has an equal probability of being chosen [Chiu et al., 1995]. A typical

application of this theory is in the construction of nearest neighbour distance distributions

where we are interested in understanding what the closest neighbour is to a typical point of

our process is.

In this section we shall follow the tutorial to Palm theory outlined by Coeurjolly et al. [2017]

for the general case when X is not absolutely continuous with respect to a unit rate Poisson

process (see Section 2.2 for a discussion on Poisson processes). In the event X is absolutely

continuous with respect to a unit rate Poisson process then Coeurjolly et al. [2017] also

provide a simplified account of Palm distributions. For a more detailed exposition of Palm

distributions see Daley and Vere-Jones [2003].

In order to define the Palm process of a point process we require the following definition.

Definition 2.1.7. Let X be a point process on some metric space S. We then define the

Campbell measure, C : S ⇥Nlf 7! R, and reduced Campbell measure, C ! : S ⇥Nlf 7! R as,

C(B,F ) = E
X

x2X
[x 2 B,X 2 F ]

C !(B,F ) = E
X 6=

x2X
[x 2 B,X \ x 2 F ],
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for B ✓ S and F ✓ Nlf respectively.

Taking the reduced Campbell measure we notice that µ(·) = C !(·, Nlf ) and it is easy to see

that C !(·, F )  C !(·, Nlf ) = µ(·) for any F 2 Nlf . Therefore C ! is absolutely continuous

with respect to µ and so by the Radon-Nikodyn Theorem [Billingsley, 1986] we have that

there exists a density P !
x such that,

C !(B,F ) =

Z

B

P !

x(F )µ(dx), (2.2)

where it can be shown that P !
x is a probability measure for each x 2 S (see Daley and

Vere-Jones [2003] for details). We then have the following definition for the reduced Palm

distribution,

Definition 2.1.8. Let X be a point process on a metric space S. Then P !
x for x 2 S as

defined by Equation 2.2 is the reduced Palm distribution of X at point x. We then say that

the process defined by probability measure P !
x is the reduced Palm process of X and denoted

X !
x.

Coeurjolly et al. [2017] extend this definition for multiple typical events. That is given a set of

typical events {x1, . . . ,xn} of X then we can equivalently define P !
x1,...,xn

and X !
x1,...,xn

to be

the reduced Palm distribution and process given the set of typical points respectively. These

definitions are constructed based on the nth-order factorial moment measure and nth-order

reduced Campbell measure C !
n,

C !

n(B1, . . . , Bn, F ) = E
X 6=

x1,...,xn2X
[x1 2 B1, . . . ,xn 2 Bn, X \ {x1, . . . ,xn} 2 F ],

analogously to the case of an individual typical event of X.

The reduced Palm distribution is often interpreted as the conditional distribution of X \ x

given x. To see this in Definition 2.1.8 set B = BS(x, r) for any x 2 S and r 2 R+ small, so

small that in fact the probability of observing two points of the process X inside this small

ball is negligible. Then we have that µ(B) ⇡ P (NX(B) > 0) and C !(B,F ) ⇡ P (NX(B) >

0, X \ x 2 F ) and so by Equation 2.2 we have,

P !

x(F ) ⇡
C !(BS(x, r), F )

µ(BS(x, r))

⇡
P (NX(BS(x, r)) > 0, X \ x 2 F )

P (NX(BS(x, r)) > 0)
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= P (X \ x 2 F |NX(BS(x, r)) > 0).

This leads to the common interpretation of the reduced Palm distribution being a conditional

distribution.

By utilising standard measure theoretic arguments (e.g. see Theorem 16.11 of Billingsley

[1986]) and Equation 2.2 we can obtain the Campbell-Mecke Theorem (e.g. see Equation

C.4 of Møller and Waagepetersen [2003]).

Theorem 2.1.9. (Campbell-Mecke Theorem) Let X be a point process on a metric space S

with X !
x being the reduced Palm process of X given a typical event x. Then it follows that,

E
X

x2X
h(x, X \ x) =

Z

S

E
h
h(x, X !

x)
i
µ(dx)

for non-negative functions h : S ⇥Nlf 7! R.

A simple corollary to this is the Campbell Theorem (e.g see Equation 4.1.3 of Chiu et al.

[1995]).

Corollary 2.1.10. (Campbell Theorem) Let X be a point process on a metric space S then,

E
X

x2X
h(x) =

Z

S

h(x)µ(dx)

for non-negative functions h : S 7! R.

This result follows trivially from the Campbell-Mecke Theorem, by defining g(x) = h(x) [X\

x 2 Nlf ] where h is as in Corollary 2.1.10. Then using Theorem 2.1.9 with g the Campbell

theorem is obtained. Furthermore, these results can be extended from the reduced Palm

process X !
x to the reduced Palm process X !

x1,...,xn
thus giving formulas,

E
X 6=

x1,...,xn2X
h(x1, . . . ,xn, X \ {x1, . . . ,xn})

=

Z

Sn
E
h
h(x1, . . . ,xn, X

!

x1,...,xn
)
i
↵(n)(dx1, . . . , dxn) (2.3)

E
X 6=

x1,...,xn2X
h(x1, . . . ,xn) =

Z

Sn
h(x1, . . . ,xn)↵

(n)(dx1, . . . , dxn)

which are the extended versions of the Campbell-Mecke and Campbell Theorems respectively

(e.g. see Equations 12 and 14 of Coeurjolly et al. [2017]).
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Both the Campbell-Mecke and Campbell Theorem are useful devices when establishing re-

sults involving the expectations of sums over point processes. They convert sums to integrals

which can be more easily evaluated, especially if we suppose that ↵(n) is absolutely continu-

ous with respect to n-dimensional Hausdor↵ measure of S and hence ↵(n)(dx1, . . . , dxn) can

be replaced with ⇢(n)(x1, . . . ,xn)�S(dx1) · · ·�S(dxn) in all previous equations.

Suppose now that ⇢(n) exists for n 2 N and that X is absolutely continuous with respect

to Z, the standard unit rate Poisson (see Section 2.2 for definition of Poisson processes),

with density f(x). Then by setting h(x1, . . . ,xn, X \ {x1, . . . ,xn}) = [x1 2 B1, . . . ,xn 2

Bn, X \ {x1, . . . ,xn} 2 F ] for Bi 2 S, i = 1, . . . , n and F 2 Nlf we have,

C !

n(B1, . . . , Bn, F )

= E

2

4f(Z)
6=X

z1,...,zn2Z
h(z1, . . . , zn, Z \ {z1, . . . , zn})

3

5

= E

2

4
6=X

z1,...,zn2Z
f(z1, . . . , zn, Z \ {z1, . . . , zn})h(z1, . . . , zn, Z \ {z1, . . . , zn})

3

5

=

Z

B1

· · ·

Z

Bn

E [f(z1, . . . , zn, Z \ {z1, . . . , zn}) [Z 2 F ]]�S(d z1) · · ·�S(d zn)

=

Z

B1

· · ·

Z

Bn

E

f(z1, . . . , zn, Z \ {z1, . . . , zn})

⇢(n)(z1, . . . , z1)
[Z 2 F ]

�

⇢(n)(z1, . . . , z1)�S(d z1) · · ·�S(d zn),

and therefore X !
x1,...,xn

is the reduced Palm process which has density

fx1,...,xn(x) =
f(x1, . . . ,xn, x \ {x1, . . . ,xn})

⇢(n)(x1, . . . ,x1)
(2.4)

with respect to the standard unit rate Poisson, this follows by arguments similar to those in

Coeurjolly et al. [2017].

An important result when S = Rd and our process is stationary is an explicit relationship

between P !
x and P !

o where o is the origin of Rd. More precisely, if we define

P !

o(F ) =
1

⇢�S(B)
E

X

x2XB

[X\ 2 F + x], F ✓ Nlf ,
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for some arbitrary set B ✓ Rd such that 0 < �S(B) <1, and

P !

x(F ) = P !

o(F � x), F ✓ Nlf ,x 2 Rd (2.5)

then P !
x(F ) defines the reduced Palm distribution of the stationary process X for any x 2 Rd;

this is the result of, for example, Theorem C.1 of Møller and Waagepetersen [2003].

2.2 Poisson processes

Poisson processes are a class of point processes used in the preliminary stages of inference as

models for non-interacting events or complete spatial randomess (CSR). They provide the

foundation to build more complex point processes which may more readily describe data.

For the purposes of this section we will assume 0 < �S(S) <1 and details of extensions to

unbounded S can be found in Møller and Waagepetersen [2003].

2.2.1 Definition of a Poisson process

Poisson processes can be defined based on Binomial point processes which describe the

distribution of precisely n 2 N independently and identically distributed events over some

metric space S.

Definition 2.2.1. (Binomial point process) Let n 2 N and B ✓ S. Let f : B 7! R+ be a

density function such that
R
B
f(x)�S(dx) = 1. Then X consisting of n points is said to be a

Binomial point process with n points and density f over B if the n points are independently

and identically distributed (IID) over B with density f with respect to �S.

The simplest Binomial point process assumes uniform density across B, i.e. f(x) = 1/�S(B).

Although at first glance the Binomial process looks like a model of no interaction, it is not,

in fact if we say that there are m  n points in some subset A ⇢ B then there must be n�m

points in B \ A. In order to build a model of no interaction between points we randomise

the total number of points leading to a Poisson process.

Definition 2.2.2. (Poisson point process) Let ⇢ : S 7! R+ be integrable over B (i.e.R
B
⇢(x)�S(dx) <1) and define,

µ(B) =

Z

B

⇢(x)�S(dx), B ✓ S.

The point process X is said to be Poisson over S with intensity function ⇢ if:
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1. for any B ✓ S the number of points NX(B) of X in B is Poisson with mean µ(B),

2. and NX(B) = n these points are distributed as a Binomial process over B with density

f(x) = ⇢(x)/µ(B).

Alternative definitions of a Poisson process can be characterised by the fact that X = X !
x

for all x 2 S [Coeurjolly et al., 2017] or even by independence of the process over disjoint

sets [Møller and Waagepetersen, 2003, Proposition 3.2].

If the intensity function of a Poisson process is constant then we say the process is a homo-

geneous Poisson process (otherwise it is an inhomogeneous Poisson process), in particular

we use the homogeneous Poisson process to define a process as being CSR: a homogeneous

model of no interactions. In preliminary analysis of spatial data it is common to determine

whether or not the point pattern exhibits CSR or not and in the event this hypothesis is

rejected then whether it demonstrates attractive or repulsive behaviour. We define the stan-

dard unit rate Poisson process to be the Poisson process over S with ⇢(x) = 1 for all x 2 S

and denote it by Z. Suppose that S is bounded and X is a Poisson process with intensity

function ⇢ : S 7! R+. Then by Proposition 3.8 of Møller and Waagepetersen [2003] we have

that X is absolutely continuous with respect to Z with density,

f(x) = exp (�S(S)� µ(S))
Y

x2x
⇢(x), (2.6)

where µ(S) =
R
S
⇢(x)�S(dx), f is defined for finite point configurations of S.

2.2.2 Expansion of the Poisson measure

An important property of Poisson processes that will be useful for establishing results in-

volving the mapping of Poisson processes between di↵erent metric space is the expansion of

the Poisson measure.

Proposition 2.2.3. Let X be a point process over a metric space S with intensity function

⇢ : S 7! R+ that is assumed integrable. Then X is Poisson if and only if for all B ✓ S and

all F ✓ Nlf ,

P (XB 2 F ) =
1X

n=0

exp(�µ(B))

n!

Z

B

· · ·

Z

B

[{x1, . . . ,xn} 2 F ]
nY

i=1

⇢(xi)�S(dx1) · · ·�S(dxn)

See, for example, Proposition 3.1 of Møller and Waagepetersen [2003] for a proof; it also
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follows directly from Definition 2.2.2.

If we now suppose that we have a point process X that is absolutely continuous with respect

to Z, the standard Poisson process, then there must exists a unique non-negative density f

such that P (X 2 F ) = E[f(Z) [Z 2 F ]], and therefore by Proposition 2.2.3 we have that,

P (X 2 F ) =
1X

n=0

exp(�µ(S))

n!
Z

S

· · ·

Z

S

[{x1, . . . ,xn} 2 F ]f({x1, . . . ,xn})�S(dx1) · · ·�S(dxn),

for F 2 Nf [Coeurjolly et al., 2017, Equation 3].

2.2.3 Slivnyak-Mecke Theorem

The Slivnyak-Mecke Theorem is another useful way of characterising a Poisson process and

can be used to show that if a point process is Poisson then so is its reduced Palm process.

Theorem 2.2.4. (Slivnyak-Mecke Theorem) Let X be a Poisson process over S with inte-

grable intensity function ⇢ : S 7! R+. Then for any function h : Sn
⇥Nlf 7! R+,

E
6=X

x1,...,xn2X
h(x1, . . . ,xn, X \ {x1, . . . ,xn})

=

Z

Sn
E [h(x1, . . . ,xn, X)]

nY

i=1

⇢(xi)�S(dx1) · · ·�S(dxn)

See Theorem 3.3 of Møller and Waagepetersen [2003] for a proof. Immediately from the

Slivnyak-Mecke Theorem we have that ⇢(n) = ⇢n if our point process is Poisson. This follows

by the uniqueness of densities d↵(n)/d�n
S
.

2.3 Functional summary statistics

Functional summary statistics are popular statistical devices used in the early stages of

spatial data analysis. They can be used to fit models through techniques akin to the method

of moments estimators commonly employed in traditional statistical analysis; this is known

as the method of minimum contrast. They can also be used to validate model fits. During the

initial analysis of any spatial data an important application of functional summary statistics
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is to determine whether an observed point pattern exhibits CSR. In this section we shall

restrict our attention to the case where S = Rd.

2.3.1 Pair correlation function

The pair correlation function (PCF), h, is the normalisation of the second order intensity

function by the product of the first order intensity functions. More precisely, if both ⇢ and

⇢(2) exists for a process X, then its PCF is,

h(x,y) =
⇢(2)(x,y)

⇢(x)⇢(y)
, (2.7)

where we take a/0 = 0 for any a � 0. Immediately notice that, by the Slivnyak-Mecke

Theorem we have that h(x,y) = 1 for all Poisson processes. Then if h(x,y) > 1 (< 1) this

suggests that pairs of points at these locations are more likely (less likely) to occur jointly

when compared to a Poisson process with the same intensity function.

A common assumption to make on h is translationally invariant, i.e. h(x,y) = h(x+ z,y+ z).

Under this assumption h is then a function of the di↵erence between its arguments i.e.

h(x,y) = h(x�y). If in addition to translation invariance we also impose rotational invari-

ance around the origin then we have that h is a function of the distance between the points

i.e. h(x,y) = h(dRd(x,y)) [Møller and Waagepetersen, 2003].

2.3.2 Stationary processes

We now suppose that our point process X is stationary and therefore has a constant intensity

function ⇢ > 0. We define Ripley’s K function [Ripley, 1977] and the L-function [Møller and

Waagepetersen, 2003].

Definition 2.3.1. Ripley’s K function and the L-function for a stationary process X on Rd

are,

K(r) =
1

⇢2�S(A)
E

X 6=

x1,x22X
[x1 2 A,x2�x1 2 BRd(o, r)] ,

L(r) =

✓
K(r)

!d

◆ 1
d

, r > 0,

where !d is the volume of the unit ball in Rd.
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By applying the Campbell-Mecke Theorem to the definition of K(r) and using the fact

that P !
x(F ) = P !

o(F � x) for any F 2 Nlf (see Equation 2.5) we obtain that K(r) =

E
h
NX!

o
(BRd(o, r))

i
/⇢ [Møller and Waagepetersen, 2003, Appendix C]. Thus we have a Palm

interpretation of ⇢K(r) as the expected number of further events of X within a distance r

of a given typical event at o. Furthermore, under a Poisson assumption and when d = 2 it

can be shown that,

K(r) = ⇡r2, L(r) = r, r > 0.

Thus combined with the Palm interpretation for a point process X whose K-function is

such that K(r) > ⇡r2 (< ⇡r2) or whose L-function is such that L(r) > r (< r) then this

suggest aggregation (regularity) at scales less than r when compared to CSR: a model of non-

interacting events. When testing for CSR the L-function is more often employed since (a) it

is linear in r and (b) under a homogeneous Poisson process the estimators of the L-function

are variance stabilised [Besag, 1977], see Section 2.3.4 for nonparametric estimation. Figure

2.1 highlights these properties for estimators of both the K and L-functions.

We next introduce the empty space function F , nearest neighbour function H, and the J-

function [Møller and Waagepetersen, 2003].

Definition 2.3.2. Let X be a stationary point process over Rd with constant intensity func-

tion ⇢ > 0. Then the empty space function is the probability of the nearest event from a

given point, typically the origin, is to the nearest point of X i.e.

F (r) = P
⇣
XBRd (o,r)

6= ;
⌘
, r > 0. (2.8)

The nearest neighbour function is,

H(r) =
1

⇢�Rd(A)
E

X

x2XA

[(X \ x) \BRd(x, r) 6= ;], r > 0 (2.9)

for an arbitrary set A ⇢ Rd such that 0 < �Rd(A) <1. The J-function is then given as,

J(r) =
1�H(r)

1� F (r)
, F (r) < 1.

By stationarity of X, F is independent of the origin and H is independent of the arbitrary

set A. This means that it is possible to form unbiased estimates of these functions can be

formulated from an individual observation x of X [Møller and Waagepetersen, 2003].
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A useful identity for F (r) can be derived as,

F (r) = P
⇣
XBRd (o,r)

6= ;
⌘
=

E [�Rd(B \X�r)]

�Rd(B)
, (2.10)

where X�r = {y : 9x 2 X s.t. y 2 BS(x, r)} and r > 0. This follows since F does not

depend on o by stationarity of X and an interchange of integrals by Fubini’s Theorem.

The naming of H-function as the nearest neighbour function becomes apparent when in-

terpreted as a Palm distribution. By using the Campbell-Mecke Theorem and noting that

P !
x(F ) = P !

o(F � x) for any F 2 Nlf (see Equation 2.5), in Appendix C of Møller and

Waagepetersen [2003] they show that

H(r) = P
⇣
NX!

o
(BRd(o, r))

⌘
, r > 0,

which leads to the nearest neighbour interpretation.

It can further be shown that under CSR and in Rd, F and H are equivalent and equal to 1�

exp(�⇢!drd) for r > 0 and !d the volume of the unit ball in Rd [Møller and Waagepetersen,

2003] and so J(r) = 1 for a CSR process. This means that, at least for small r, if the process

were aggregated then we would expect H(r) > F (r) since we would expect to have greater

probability observing two events within a distance r then from a point x 2 Rd to an event of

X. The reverse reasoning holds for more regular processes and thus we have that J(r) < 1 if

the process exhibits aggregation or clustering and J(r) > 1 if the process exhibits regularity.

These properties are explored and demonstrated in Figure 2.1.

2.3.3 Nonstationary processes

Before introducing the summary statistics for nonstationary point processes we first intro-

duce theKmeasure and the notion of second order intensity reweighted stationary (SOIRWS).

This allows for the extension of Ripley’s K-function to inhomogeneous point processes and

is thanks to the work of Baddeley et al. [2000].

Definition 2.3.3. Let X be a point process over Rd with locally integrable intensity function

⇢ : Rd
7! R+. Suppose that the measure

K(B) =
1

�Rd
E

6=X

x1,x22X

[x1 2 A,x2�x1 2 B]

⇢(x1)⇢(x2)
, B ✓ Rd (2.11)
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does not depend on A ✓ Rd with 0 < �Rd(A) <1 and take a/0 = 0 for any a � 0. Then X

is said to be second order intensity reweighted stationary and K is referred to as the second

order reduced moment measure (SORMM) on Rd.

Immediately we have that if a process X is stationary then it is also SOIRWS [Møller

and Waagepetersen, 2003]. K can equivalently be expressed using Palm distributions, more

precisely in Appendix C of Møller and Waagepetersen [2003] they show that,

K(B) =

Z

Nlf

X

x2x

[x�y 2 B]

⇢(x)
P !

y(dx), (2.12)

for almost all y 2 Rd. This follows by application for the Campbell-Mecke Theorem to

Equation 2.11.

Furthermore, we have a useful identity which relates K to the PCF, h, when it exists and is

translational invariant, i.e. h(x,y) = h(x� y), then

K(B) =

Z

B

h(x)�Rd(dx), (2.13)

which follows by the Campbell-Mecke Theorem and that the SORMM does not depend on

A. Thus h being translationally invariant is su�cient for X to be SOIRWS [Baddeley et al.,

2000].

We then define the inhomogeneous version of Ripley’s K-function and the L-function as

[Møller and Waagepetersen, 2003],

Definition 2.3.4. Let X be a SOIRWS point process with intensity function ⇢ : Rd
7! R+.

Then the inhomogeneous K and L-functions are given as,

Kinhom(r) = K (BRd(o, r)) , Linhom(r) =

✓
Kinhom(r)

!d

◆ 1
d

, r > 0

where !d is the volume of the unit ball in Rd.

It is clear from this definition that when X is stationary we recover Ripley’s K-function and

therefore the L-function of Definition 2.3.1. Additionally, if we suppose that h is isotropic

then,

Kinhom(r) = �d

Z
r

0

sd�1h(s)ds,

where �d is the surface area of the unit ball in Rd. This follows from Equation 2.13 and by
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switching to polar coordinates in Rd [Møller and Waagepetersen, 2003].

The F,H, and J-functions have been extended to the inhomogeneous setting by van Lieshout

[2011]. We will discuss these in detail in Chapter 3, specifically when S = Sd.

2.3.4 Nonparametric estimation of summary statistics

We discuss estimation of the functional summary statistics detailed in previous sections. In

particular we will be focusing on the K,L, F,H, J,Kinhom, and Linhom-functions, whilst a

discussion of how to undergo intensity function estimation is discussed in Chapter 6. Ad-

ditional details on estimation of the K and PCFs are given by Møller and Waagepetersen

[2003]. We will discuss so-called border-corrected [Møller and Waagepetersen, 2003] esti-

mators here. Whilst simple and intuitive to understand border-corrected estimators can

inevitably lead to the exclusion of a substantial number of points in an observed pattern

when building estimates. Other approaches which attempt to counteract this e↵ect include

Ripley’s isotropic correction [Ripley, 1991], Hanisch type estimators [Hanisch, 1984, Stoyan,

2006] and Kaplan-Meier type estimators [Baddeley and Gill, 1997]. These will not be dis-

cussed here and more details can be found in their respective references. We will suppose

that we have observed x an instance of the process X within some region W ⇢ Rd.

In spatial analysis certain properties of estimators are frequently unobtainable; ones that may

even be considered a minimal requirement, such as unbiasedness, for traditional statistical

analysis. Instead a common property that is often desirable is ratio-unbiasedness. Suppose

that we have an estimator of the form ✓̂ = A/B estimating a parameter ✓, then ✓̂ is said to

be ratio-unbiased if E[A]/E[B] = ✓.

Given that we are observing only a portion of our process, precisely XW , we introduce the

fundamental morphological operators: erosion and dilation. These operators are defined as,

A B = {a 2 A : Ba ✓ A}, A�B = [a2ABa,

where Ba is the translation of the set B by a i.e. Ba = {c : c = a + b, b 2 B} for erosion

and dilation respectively. These operators lay the foundation of the theory in mathematical

morphology and are the basis for more complex operators, such as opening and closing,

for more details see Chiu et al. [1995]. Erosion is considerably important when considering

random finite sets as it is commonly used to construct unbiased/ratio-unbiased estimators

for functional summary statistics. In particular we denote A r = A BS(o, r) where A ✓ S

as this set will be used repeatedly throughout this thesis.

37



Suppose we observe an instance of XW as xW and assume that X is stationary. Then a

natural estimator of ⇢ is nx(W )/�Rd(W ), which is unbiased and in the event of X being

Poisson is also the maximum likelihood estimator of ⇢. Furthermore, we will often need

estimators of ⇢2 (e.g. see Equation 2.11). In this case we can construct the estimator ⇢̂2 =

nx(W )(nx(W ) � 1)/�2Rd(W ) for ⇢2, which by application of the Campbell-Mecke Theorem

is unbiased.

Now suppose that momentarily X is no longer stationary and has intensity function ⇢ : Rd
7!

R+. Then the border-corrected estimator for Kinhom is,

K̂inhom(r) =
1

�Rd(W )

X

x12XW r

X

x22XW \x1

[x2 2 BRd(x1, r)]

⇢(x1)⇢(x2)
, (2.14)

which, by Equation 2.11, is unbiased. In the more likely event that ⇢ is unknown a plug-in

intensity estimator is often used replacing ⇢ by ⇢̂ [Møller and Waagepetersen, 2003]. Specif-

ically in the stationary case we can take ⇢̂2 = nx(W )(nx(W )� 1)/�2Rd(W ) which, although

generally biased, achieves ratio-unbiasedness. Furthermore, we can construct estimates of L

as L̂(r) = (K̂(r)/!d)1/d. These are demonstrated in Figure 2.1.

Returning to the situation when X is stationary with known constant intensity function ⇢

then, based on Equation 2.9, we can construct the estimator

Ĥ(r) =
1

⇢�Rd(W r)

X

x2XW r

[X \ x\BRd(x, r) = ;] . (2.15)

Clearly, for known ⇢ this is unbiased whilst using ⇢̂ = NX(W )/�R(W ) in place of ⇢ incurs

bias but attains ratio-unbiasedness. For the F -function we can construct two estimators

based on Equations 2.8 and 2.10. Let P be a finite deterministic set of points over W then

construct estimators,

F̂1(r) = 1�

P
i2PW r

Q
x2X (1� [dRd(i,x)  r])

nP (W r)
(2.16)

F̂2(r) =
�Rd(W r \X�r)

�Rd(W r)
, (2.17)

where F̂1 is based on Equation 2.8 and F̂2 on Equation 2.10. Furthermore, it can be seen

that both these estimators are unbiased. To construct an estimator of the J-function we can
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use estimators of the F and H-functions as,

Ĵ(r) =
1� Ĥ(r)

1� F̂i(r)
, i 2 {1, 2}, (2.18)

which by unbiasedness of F̂i and ratio-unbiasedness of Ĥ means that Ĵ is ratio-unbiased.

Construction of Ĵ is demonstrated in Figure 2.1 and how this compares when the assumption

of CSR is violated by the observed point pattern.

2.3.5 Monte Carlo hypothesis testing

Since spatial point processes are complex objects it is often challenging if not impossible to

construct analytic results and thus it is common to employ Monte Carlo based methods since

simulation of point processes can often be achieved; this is especially true when conducting

hypothesis testing. Let us suppose that we have a simple hypothesis where our null is com-

pletely characterised by Pnull. We then consider some test statistic T0 = T (X), for example

T0 = L̂X(r) for a given r > 0, where the subscript X indicates that L̂ was constructed using

a realisation of X. We can then construct a p-value of T0 using Monte Carlo simulates under

the null. More precisely we can simulate point patterns X1, . . . , Xn for n 2 N under the null

and then construct Ti = T (Xi) statistics for each i. These replicates can then be used to

construct p-values for T0 as

p0 =
1

n

nX

i=1

[T0  Ti],

in the event of a one-sided test. The precision of these p-value estimates can be made

arbitrarily more accurate by considering larger and larger values of n.

Since it is common to use functional summary statistics as test statistics it is useful to con-

struct so-called simulation envelopes which can be used to determine behaviour at di↵ering

scales. Define T0(r) = T (X, r) to be the test statistics from the observed data at scale r > 0

and Ti(r) to be the same test statistic constructed from null simulate Xi, i = 1, . . . , n. We

can then take,

Tmin(r) = min{Ti(r) : i = 1, . . . , n}, Tmax(r) = max{Ti(r) : i = 1, . . . , n}.

Then since each Xi are IID, we have exchangeability. Further, assuming Ti(r) for i = 0, . . . , n
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are almost surely di↵erent then,

P (T0(r) < Tmin(r)) = P (T0(r) > Tmin(r)) =
1

n+ 1
.

The bounds Tmin(r) and Tmax(r) are denoted the 100/(n+1) lower and 100n/(n+1) upper

simulation envelopes at distance r. We need not only consider the most extreme values but

also the kth smallest and largest values of Ti(r) and thus can construct the 100k/(n + 1)

lower and 100(n� k+1)/(n+1) upper simulation envelopes. We can then compare plots of

T0(r) with its lower and upper simulation envelopes to determine whether there is statistical

evidence to support rejecting the null. A cautionary word is necessary when comparing

our observed test statistic T0(r) with Tmin(r) and Tmax(r); although for fixed r Ti(r) are

independent and hence exchangeable, when comparing across di↵erent values of r the random

vectors (T1(r), . . . , Tn(r)) are no longer independent i.e. for r 6= r0 (T1(r), . . . , Tn(r)) and

(T1(r0), . . . , Tn(r0)) are not independent. Plots of these functional summary statistics are

demonstrated in Figure 2.1 under a CSR null hypothesis for various stationary processes.

2.4 Discussion

This chapter discusses the necessary spatial point pattern theory required for this thesis. We

started by defining a point process on an arbitrary metric space and introduced many of their

important properties such as moment measures, intensity functions, and Palm processes. We

define a Poisson process as N IID points distributed over some window such that N is a

Poisson random variable and discuss a handful of properties related to such processes. To

end the chapter we introduce functional summary statistics for stationary and nonstationary

processes, showing how they can be estimated and subsequently compared to a null model

using simulation envelopes in order to determine whether the null should be rejected. Poisson

processes will come to play a key role in Chapters 3 and 4 where they are assumed to be

the null model, whilst functional summary statistics are used to determine appropriateness

of such a hypothesis. In the next chapter we discuss point process theory specifically on

spheres. We provide details of functional summary statistics currently in the literature

whilst extending others from Rd to the sphere.
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3
Point processes on Sd�1

This chapter provides an overview of the current literature on spherical point processes, making

particular reference to the recent works of Robeson et al. [2014], Møller and Rubak [2016] and

Lawrence et al. [2016] which lay the foundation of spherical point process theory. We discuss

these papers and others in Section 3.1 providing an introduction to the area and functional

summary statistics for spherical point processes. We outline some basic notation needed for

the geometry imposed by working on a spherical space in Section 3.2. Section 3.3 revisits the

functional summary statistics for rotationally invariant point processes on Sd�1
whilst Section

3.4 discusses the inhomogeneous extension of the K-function. In Sections 3.5 and 3.6 we build

on this work by providing modest extensions from Rd
to Sd�1

of the inhomogeneous F,H, and

J-functions in Section 3.5. We provide a similar infinite series expansion for the F and H-

functions given by White [1979] for processes on Sd�1
and also extend the inhomogeneous F,H

and J-functions first discussed by van Lieshout [2011] for processes in Rd
. Properties of these

functional summary statistics are discussed in Section 3.6 when we assume they are Poisson.

3.1 Literature review

Analysis of spatial point processes residing on Sd�1 is a relatively new area of research. The

first discussion was given in passing by Ripley [1977] with interest in the area only recently

been reignited with the works of Robeson et al. [2014], Lawrence et al. [2016] and Møller

and Rubak [2016].

Robeson et al. [2014] discusses the spherical analogue to Ripley’s K-function [Ripley, 1977].

This is achieved by exchanging the Euclidean distance typically used to define K-functions
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for stationary processes on Rd with the great circle distance. They show that a homogeneous

Poisson process on a sphere of radius R in three dimensions has K-function given by K(r) =

2⇡R2(1 � cos(r/R)), where r is taken as the great circle distance. They also provide a

nonparametric estimator for the spherical K-function of homogeneous processes which again

follows the standard estimator on Rd replacing [y 2 BRd(x, r)] with [y 2 BS2R
(x, r)] in

Equation 2.14 where S2
R

is the two dimensional sphere of radius R. It is also worthwhile

noting that Robeson et al. [2014] highlight that, unlike the planar case where we can only

observe the process through some window of finite area, in the spherical setting we need not

handle edge-e↵ects for a completely observed process. Robeson et al. [2014] demonstrate their

spherical K-functions on three datasets: (1) a deterministic pattern of longitude and latitude

points, (2) points of a hexagonal grid constructed to have the same area as the sphere, and (3)

locations of Global Climate Observing System Upper-Air Network stations used to track local

climate patterns. Although the first two are somewhat contrived, deterministic datasets they

highlight similar properties of the K-function for planar data but in the spherical setting.

That is more repulsive processes tend to display K-functions that lie below the theoretical

CSR K-function whilst for attractive processes the opposite phenomena occurs.

Although an important first step is made by Robeson et al. [2014] the methodology presented

is limited to homogeneous spherical point processes and only focuses on one functional sum-

mary statistics, namely Ripley’s K-function which may only capture a subset of behaviour

in an observed point pattern [Baddeley and Silverman, 1984]. This leads to the work of

Lawrence et al. [2016] and Møller and Rubak [2016]. Møller and Rubak [2016] notes that

these two works were conducted independently of one another although exploring very simi-

lar topics. That being said Møller and Rubak [2016] do highlight the di↵erences between the

works and that they supplement each other providing a much more holistic view of spher-

ical point processes than if either were considered in isolation of the other. Starting with

Lawrence et al. [2016] they provide three key extensions to that of Robeson et al. [2014]:

(1) other functional summary statistics for rotationally invariant spherical processes, (2)

functional summary statistics for inhomogeneous point processes, and (3) dealing with par-

tially observed point patterns on Sd�1. Lawrence et al. [2016] provide spherical counterparts
for the F , H and J-functions for rotationally invariant spherical processes whilst focusing

on the inhomogeneous K-function for processes with non-constant intensity functions. In

Section 3.3 we formalise the extension of the inhomogeneous F , H, and J-functions to the

setting of Sd�1 from Rd [van Lieshout, 2011]. To deal with partial observation Lawrence

et al. [2016] propose border-corrected estimates of the functional summary statistics whilst

their later work, Lawrence [2018], provides details of alternative edge-correction approaches

such as Ripley’s isotropic correction [Ripley, 1991] and Hanisch-type estimators [Hanisch,
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1984]. Lawrence et al. [2016] also discuss Neyman-Scott processes, more precisely giving a

precise definition of a Thomas process on Sd�1 based on the Von-Mises Fisher distribution

and showing that model inference can be achieved for this class of processes through the

method of minimum contrast. Møller and Rubak [2016] also discuss the inhomogeneous ex-

tension of the K-function for spherical point processes as well the spherical counterparts for

the F , H, and J-functions. Møller and Rubak [2016] diverges from Lawrence et al. [2016]

by discussing the theoretical details of spherical determinantal point processes and their

usefulness in modelling repulsive processes.

These three papers can be considered to have laid the foundation for the theory of modern

spherical point process theory. Further research has been conducted in this field. Cuevas-

Pacheco and Møller [2018] discuss the theoretical considerations of log Gaussian Cox pro-

cesses on Sd�1 whilst Møller et al. [2018] build on Møller and Rubak [2016] discussion of

determinantal point processes providing additional theoretical details. Møller et al. [2021]

discusses point processes on Rd
⇥Sk extending the inhomogeneous K-function from Rd. Jun

et al. [2019] discuss multivariate extensions on the sphere, more precisely modelling three

di↵erent rain-types simultaneously under the framework of a trivariate log Gaussian Cox

process. An overview of recent developments in spatial statistics including those on Sd�1

can be found in Møller and Waagepetersen [2017].

For the remainder of this chapter we will discuss spherical point patterns when d = 3 but

easily extends to any d 2 N. Methodology also extends easily when considering spheres not

of unit radius.

3.2 Notation on S2

We consider the metric space (S2, dS2) where dS2 : S2 ⇥ S2 7! R+ is defined to be the

shortest distance between two points in S2, this is also known as the great circle distance

and commonly denoted the geodesic distance within the framework of manifolds, whilst the

geodesic is a continuous path between the two points which attains the geodesic distance.

On the unit sphere the geodesic distance has a closed form,

dS2(x,y) = cos�1(xT
y), x,y 2 S2.

Further, the area of the unit sphere is �S2(S2) = 4⇡ whilst the area of a spherical cap of

angle r 2 [0,⇡] is given by �S2(BS2(x, r)) = 2⇡(1 � cos(r)) for any x 2 S2, see Figure 3.1.

We will take the origin on the unit sphere to be o = (0, 0, 1)T . Let O(3) be the set of all
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r

r

Figure 3.1: Diagram of spherical cap on unit sphere with radius r.

three dimensional rotations around the origin of R3 then we define Ox 2 O(3) to be the

rotation which takes x to o (the origin in S2) i.e. the rotation matrix through the angle

↵ = cos�1(oT x) anticlockwise (noting that ||x || = ||o || = 1) around the axis x⇥o where

⇥ is the cross product of vectors.

We define the d � 1-dimensional spherical point process X to follow Definition 2.1.1 with

S = Sd�1. We say that X is isotropic in accordance with Definition 2.1.4 and note that

since Sd�1 is a compact set notions of stationarity do not make sense on such a metric space

since a translation of the points does not map to the same space i.e. if Ty(x) = x+y is the

translation of x by a vector y 2 Rd then T : Sd�1 67! Sd�1. Further note that an isotropic

spheroidal point process also has constant intensity function ⇢ 2 R+ [Møller and Rubak,

2016].

3.3 Isotropic functional summary statistics

The functional summary statistics for isotropic spheroidal point processes were first dis-

cussed, as noted in the literature review, by Robeson et al. [2014], Lawrence et al. [2016]

and Møller and Rubak [2016]. More precisely the empty-space, nearest-neighbour, J , and
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Ripley’s K-functions are defined as

F (r) = P (XBS2 (o,r)
6= ;) (3.1)

H(r) = P (X !

o,BS2 (o,r)
6= ;) (3.2)

J(r) =
1�H(r)

1� F (r)
(3.3)

K(r) =
1

⇢
E
X

x2X!
o

[dS2(x,o)  r], (3.4)

for r 2 [0,⇡] and where ⇢ is the constant intensity respectively for rotationally invariant

point processes on S2. By isotropy these functional summary statistics, as in the stationary

Euclidean case, are independent of the origin o. The definitions given above of the H and

K-functions are based on the Palm interpretation and can equivalently be defined as

H(r) =
1

⇢�S2(A)
E

X

x2XA

[(X \ x) \BS2(x, r) 6= ;]

K(r) =
1

⇢2�S2(A)
E

6=X

x,y2X
[x 2 A, dS2(x,y)  r],

where A is an arbitrary subset of S2. This identity follows from the Campbell-Mecke Theorem

(see Theorem 2.1.9). Lawrence et al. [2016] and Møller and Rubak [2016] then suggest border-

corrected estimates analogous to Equation 2.14 with constant intensity function for Ripley’s

K-function, Equation 2.15 for the nearest-neighbour function, Equations 2.16 and 2.17 for

the empty-space function and Equation 2.18 for the J-function.

A Poisson process over the unit sphere is defined by Definition 2.2.2 with S = S2. It can

then be shown that for a spherical CSR process with constant intensity function ⇢ we have,

F (r) = 1� exp(�⇢2⇡(1� cos(r)))

H(r) = 1� exp(�⇢2⇡(1� cos(r)))

J(r) = 1

K(r) = 2⇡(1� cos(r)),

for r 2 [0,⇡], where we note that �S2(BS2(x, r)) = 2⇡(1� cos(r)) for any x 2 S2.

Additionally, the L-function was discussed by Lawrence [2018] for spherical processes. Orig-

inally the L-function arose as the result of Besag [1977] discussion on Ripley [1977] work
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in which they noted that for a CSR process on R2,
p
K(r) is approximately variance

stabilised. Furthermore by introducing a factor of 1/
p
⇡ Besag [1977] introduces the L-

function which stabilises for variance over di↵erent scales and also linearises the function,

i.e. L(r) =
p
K(r)/⇡ = r. As discussed by Lawrence [2018]

p
K(r) is still a variance stabilis-

ing transformation for isotropic spherical processes but a simple factor, as in the planar case,

is not trivially introduced in order for the transformation to also be linearised and therefore

they define Kstab(r) =
p

K(r) so as to avoid confusion with the more typical L-function.

Lawrence [2018] does suggest centralising functional summary statistics by subtracting their

theoretical counterpart. Figure 3.2 demonstrates these isotropic functional summary statis-

tics comparing them to a null Poisson hypothesis, where the middle plot corresponds to the

function P (r) = Kstab(r)�
p

2⇡(1� cos(r)).

3.4 Inhomogeneous K-function

For inhomogeneous point processes Møller and Rubak [2016] and Lawrence et al. [2016]

introduce the inhomogeneous K-function on S2. To properly define the inhomogeneous K-

function we introduce the notion of second order intensity reweighted isotropic (SOIRWI)

which extends SOIRWS Baddeley et al. [2000] from Rd to Sd�1, first discussed in Møller and

Rubak [2016] and Lawrence et al. [2016]. The following definition does just this extending

Definition 2.1.5 to the sphere.

Definition 3.4.1. Let X be a point process over S2 with locally integrable intensity function

⇢ : S2 7! R+. Suppose that the measure

K(B) =
1

�S2(A)
E
X 6=

x,y2X

[x 2 A,Ox y 2 B]

⇢(x)⇢(y)
, B ✓ S2 (3.5)

does not depend on A ✓ S2 with 0 < �S2(A) <1 and take a/0 = 0 for any a � 0. Then X

is said to be second order intensity reweighted isotropic and K is referred to as the second

order reduced moment measure on S2.

Similar to Equation 2.12 we also have the Palm interpretation,

K(B) =

Z

Nlf

X

x2x

[Oy x 2 B]

⇢(x)
P !

y(dx), (3.6)

for almost all y 2 S2. Like in the Euclidean case this follows by the Campbell-Mecke Theorem
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(see Theorem 2.1.9). We can define the inhomogeneous K-function as,

Kinhom(r) = K(BS2(o, r)) =
1

�S2(A)
E

6=X

x,y2X

[x 2 A,Ox y 2 BS2(o, r)]

⇢(x)⇢(y)
, (3.7)

for r 2 [0,⇡] and any A ✓ S2 such that 0 < �S2(A), which by Equation 3.6 has an equivalent

Palm interpretation with B replaced by BS2(o, r). In the event that the process is completely

observed over all S2 then edge correction is not needed and in the event that the process is

only observed over a portion of S2 both Møller and Rubak [2016] and Lawrence et al. [2016]

suggest border corrected versions of the estimator. Additionally, they both also suggest to

replace ⇢ with some estimator ⇢̂ in the more typical scenario when ⇢ is unknown which

generally leads to a biased estimator for Kinhom, although it may be possible to achieve

ratio-unbiasedness in specific cases.

Defining h : S2⇥S2 7! R to be our PCF and suppose that it is isotropic, that is to say for any

rotation O 2 O(3) h(x,y) = h(O x, O y) which is in turn equivalent to h(x,y) = h(dS2(x,y))

depending only on the distance between x and y, then it can be shown that,

K(B) =

Z

B

h(x)�S2(dx),

where h(x) = h(dS2(o,x)). This follows by the Campbell-Mecke Theorem (see Theorem

2.1.9). In this scenario and when focusing on the inhomogeneous K-function we can rewrite

Kinhom using spherical coordinates as,

Kinhom(r) = 2⇡

Z
r

0

h(t) sin(t)dt, r 2 [0,⇡] (3.8)

as shown by Møller and Rubak [2016].

3.5 Extensions of inhomogeneous F , H, and J-functions to S2

Having reviewed the existing functional summary statistics for both isotropic and non-

isotropic point processes we now discuss how to extend the inhomogeneous F,H, and J-

functions from Rd, first discussed by van Lieshout [2011], to Sd�1, where we primarily focus

on d = 3. The argument follows analogously for other values of d. Many of the proofs in this

section follow similarly to those found in van Lieshout [2011] with certain caveats to account

for the di↵erent geometry imposed by being on a sphere as opposed to a Euclidean space.
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The inhomogeneous F , H, and J-functions are constructed based on an infinite series repre-

sentation of the isotropic F and H-functions first discussed by White [1979] in Rd. Corollary

3.5.2 gives the same representation as White [1979] but for spherical instead of Euclidean

point processess.

Theorem 3.5.1. Let X be an isotropic spheroidal point process with constant intensity

function ⇢. Further we assume the existence of all nth-order factorial moment measures for

both X and its reduced Palm process, X !
x. Then the F and H-functions have the following

series representation,

F (r) = �
1X

n=1

(�1)n

n!
↵(n)(BS2(o, r), . . . , BS2(o, r))

H(r) = �
1X

n=1

(�1)n

n!
↵!(n)

o (BS2(o, r) . . . , BS2(o, r))

where ↵(n) and ↵!(n)

x are the factorial moment measure for X and X !
x and BS2(o, r) is the

spherical cap of radius r at the origin o 2 S2. These representations hold provided the

series is absolutely convergent, that is if, limn!1 |an+1/an| < 1 or lim supn!1(|an|)1/n <

1, where we set an = ((�1)n/n!) ↵(n)(BS2(o, r), . . . , BS2(o, r)) for the F -function and set

an = ((�1)n/n!) ↵!(n)

o (BS2(o, r) . . . , BS2(o, r)) for the H-function.

Proof. See Appendix A.1.

The following corollary provides an infinite series representations of the F , and H-function

from Theorem 3.5.1 in terms of the nth-order product intensities, assuming they exists for

all n 2 N. This representation is similar to the one given by White [1979] the only di↵erence

being that they worked on the Euclidean plane and here we are on a sphere.

Corollary 3.5.2. (White [1979]) Let X be an isotropic spheroidal point process with constant

intensity function ⇢. Further we assume the existence of all nth-order product intensities for

both X and its reduced Palm process, X !
x. Then the F and H-functions have the following

series representation,

F (r) = �
1X

n=1

(�1)n

n!

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)
⇢(n)(x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn)

H(r) = �
1X

n=1

(�1)n

n!

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n+1)(o,x1, . . . ,xn)

⇢
�S2(dx1) · · ·�S2(dxn)
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provided the series is absolutely convergent, where BS2(o, r) is the spherical cap of radius r

at the origin o 2 S2.

Proof. See Appendix A.2. For original proof on Rd see White [1979].

Before introducing the infinite series representation for the isotropic J-function we need to

introduce the nth-order correlation functions. These are a useful alternative to the nth-order

product intensities [van Lieshout, 2011] and are commonly used in the astrophysics literature

[Peebles, 1980].

Definition 3.5.3. Let X be a spherical point process for which all its nth-order product

intensities exists. Then the nth-order correlation functions are recursively defined for n 2 N,
based on nth-order product intensities, with ⇠1 = 1 and

⇢(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
=

nX

k=1

X

D1,...,Dk

⇠|D1|(xD1) · · · ⇠|Dk|(xDk),

where the final sum ranges over all partitions {D1, . . . , Dk} of {1, . . . , n} in k non-empty,

disjoint sets, xDj = {xi : i 2 Dj}, j = 1, . . . , k, and xi 2 S2.

The following theorem provides the infinite series representation of the isotropic J-function

which was first discussed by van Lieshout [2006] for marked point processes on a Euclidean

space and is based on the nth-order correlation functions. The following theorem is adapted

from Proposition 4.2 of van Lieshout [2006] where the underlying metric space is now S2

rather than Rd and focuses on unmarked point processes rather than marked as considered

originally by van Lieshout [2006].

Theorem 3.5.4. Let X be an isotropic, spherical point process with constant intensity func-

tion ⇢. Further, assume that the nth-order intensity functions exists for all n 2 N. Then the

J-function has the following series representation,

J(r) = 1 +
1X

n=1

(�⇢)n

n!
Jn(r), 0  r  ⇡ (3.9)

for which F (r) < 1, Jn(t) =
R
BS2 (o,r)

· · ·
R
BS2 (o,r)

⇠(n+1)(0,x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn),

and BS2(o, r) is the spherical cap at the origin o 2 S2.

Proof. See Appendix 3.5.4. The original proof for marked point processes on Rd is given in

Proposition 4.2 of van Lieshout [2006].
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Next we introduce the notion of a spherical point process being intensity reweighted moment

isotropic (IRWMI), which extends to intensity reweighted moment stationary (IRWMS) for

Euclidean processes defined by van Lieshout [2011] to the sphere by basing invariance on

rotations as opposed to translations.

Definition 3.5.5. Let X be a spheroidal point process. Then X is said to be intensity

reweighted moment isotropic if, for all n 2 N, the nth-order correlation functions are rota-

tionally invariant. That is ⇠n(x1, . . . ,xn) = ⇠n(Ox1, . . . , Oxn) for all n 2 N and O 2 O(3).

We note a few immediate results from this definitions similar to those identified by van

Lieshout [2011]. First an isotropic process X is immediatedly IRWMI. Additionally if we

suppose that X is IRWMI then for n = 2 and using Definition 3.5.3,

h(x,y) =
⇢(2)(x,y)

⇢(x)⇢(y)
= ⇠2(x,y) + 1,

where h is the PCF of X. Then by rotational invariance of ⇠2 we have that the pair cor-

relation function is isotropic which, from our discussion on the inhomogeneous K-function,

means that X is also SOIRWI. This also highlights that IRWMI is a stronger condition then

SOIRWI. We are now in a position to define the inhomogeneous J-function on a sphere.

Definition 3.5.6. For an IRWMI point process, X, with intensity function ⇢ : S2 7! R such

that ⇢̄ ⌘ infx2S2 ⇢(x) > 0,

Jinhom(r) = 1 +
1X

n=1

(�⇢̄)n

n!
Jn(t), r 2 [0,⇡]

where Jn(r) =
R
BS2 (o,r)

· · ·
R
BS2 (o,r)

⇠n+1(o,x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn) and the series is

absolutely convergent.

Based on this definition and Theorem 3.5.4 in the event that the process is isotropic with

constant intensity function ⇢, then ⇢̄ = ⇢ and the definition of the inhomogeneous J-function

aligns with the isotropic one. As identified by van Lieshout [2011] Jinhom(r) > 1 suggests

inhibition at range r whilst Jinhom(r) < 1 suggests aggregation or clustering at range r.

Similar to Theorem 1 of van Lieshout [2011] the following theorem shows that the inhomo-

geneous J-function can be represented as the ratio of generating functionals of the reduced

Palm process X !
x and the original process X.
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Theorem 3.5.7. For all r 2 [0,⇡] and y 2 S2,

uyr (x) =
⇢̄ [x 2 BS2(y, r)]

⇢(x)
, x 2 S2.

where Oy : S2 7! S2 is a rotation that maps y to o. Assuming that the series

1X

n=1

⇢̄n

n!

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn)

is absolutely convergent. Then under the further assumptions associated with Definition 3.5.6

of the inhomogeneous J-function and the existence of all nth-order intensity function ⇢!(n)y

for the reduced Palm distribution X !
y, 8y 2 S2,

Jinhom(r) =
GX!

y
(1� uyr )

GX(1� uyr )
, r 2 [0,⇡]

for when GX(1 � uyr ) > 0, where GX!
y
and G are the generating functionals for X !

y and X

respectively.

Proof. See Appendix A.4. See Theorem 1 van Lieshout [2011] for the original proof for point

processes on Rd.

By an identical argument that van Lieshout [2011] makes immediately after stating Theorem

1 in their work, we note that in the isotropic case uyr (x) = [x 2 BS2(y, r)] and so,

GX(1� uyr ) = P (XBS2 (y,r)
= ;) = P (XBS2 (o,r)

= ;) = 1� F (r)

GX!
y
(1� uyr ) = P (X !

y,BS2 (y,r)
= ;) = P (X !

o,BS2 (o,r)
= ;) = 1�H(r),

thus in the isotropic setting, the numerator and denominator of Jinhom as given by Theorem

3.5.7 collapse to their isotropic counterparts. This naturally extends the isotropic F and

H-functions to the inhomogeneous setting as,

Finhom(r) = 1�GX(1� uyr )

Hinhom(r) = 1�GX!
y
(1� uyr ),

where by the proof of Theorem 3.5.7 this holds for almost all y 2 S2.

In order to develop estimators of Finhom and Hinhom we follow van Lieshout [2011] who
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suggests border-corrected nonparametric estimators. Thus suppose we observe X within

some window W ✓ S2 and let P be a deterministic, finite point configuration over W . Then

we estimate Finhom and Hinhom as,

F̂inhom(r) = 1�

P
p2P\W r

Q
x2X\B(p,r)

⇣
1� ⇢̄

⇢(x)

⌘

|P \W r|
(3.10)

Ĥinhom(r) = 1�

P
x2X\W r

Q
y2(X\x)\B(x,r)

⇣
1� ⇢̄

⇢(y)

⌘

NX(W r)
, (3.11)

and therefore noting Theorem 3.5.7 we estimate the inhomgeneous J-function as,

Ĵinhom(r) =
1� Ĥinhom(r)

1� F̂inhom(r)
. (3.12)

To select P we use the algorithm of Deserno [2004] to generate equidistant points on the

unit sphere: we set the number of points to 99. The following proposition, like Proposition

1 van Lieshout [2011], shows unbiasedness of F̂inhom and ratio-unbiasedness of Ĥinhom and

Ĵinhom.

Proposition 3.5.8. The F̂inhom defined by Equation 3.10 is unbiased. Ĥinhom and Ĵinhom as

defined by Equations 3.11 and 3.12 are ratio-unbiased.

Proof. See Appendix A.5. See Proposition 1 van Lieshout [2011] for proof of Euclidean

processes.

3.6 Examples of inhomogeneous functional summary statistics

In this section we shall discuss classes of spherical point processes for which their inhomoge-

neous functional summary statistics are well defined. This builds on the works of Lawrence

et al. [2016] who describes the inhomogeneous K-function for inhomogeneous Neyman-Scott

processes that have a location dependent expected number of o↵spring per parent and van

Lieshout [2011] who describes the inhomogeneous F , H, and J-functions for Poisson pro-

cesses, Log Gaussian Cox processes (LGCP), and location dependent thinned processes.

These examples follow similar resasoning as those given by van Lieshout [2011] on Rd.
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3.6.1 Poisson processes

Suppose X is a spherical Poisson process over S2 with intensity function ⇢ : S2 7! R+ such

that ⇢̄ = infx2S2 ⇢(x) > 0. Then we also know that ⇢(n)(x1, . . . ,xn) = ⇢(x1) · · · ⇢(xn), this

follows for example for the Slivynak-Mecke Theorem (see Theorem 2.2.4). Then

⇢(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
= 1,

and so the Poisson process is clearly IRWMI and hence also SOIRWI. Therefore the Kinhom,

Finhom,Hinhom, and Jinhom are all well defined. Furthermore by, for example, Proposition 3.3

of Møller and Waagepetersen [2003] we have that the generating functional for a Poisson

process is given by,

GX(u) = exp

✓
�

Z

S2
(1� u(x))⇢(x)�S2(dx)

◆
, (3.13)

for functions u : S2 7! [0, 1], which can be used to calculate Finhom and Hinhom. The

Kinhom,Finhom,Hinhom, and Jinhom for a Poisson process are given by,

Kinhom(r) = 2⇡(1� cos(r))

Finhom(r) = Hinhom(r) = 1� exp(�⇢̄2⇡(1� cos(r)))

Jinhom(r) = 1,

where we used Equation 3.13 for Finhom and Hinhom and note that by the Slivnyak-Mecke

Theorem X !
x

d
= X for Hinhom. In order to demonstrate these we now consider two examples

of inhomogeneous Poisson processes with the following intensity functions,

⇢1(x) = exp(�4x+ 2) (3.14)

⇢2(x) =
300

4⇡
·
2

5

✓
sin(�⇡x) +

3

2

◆
, (3.15)

where x = (x, y, z)T 2 S2. Examples of their functional summary statistics are given in

Figure 3.3.

3.6.2 LGCPs

LGCPs are a popular class of models frequently used for aggregation. Recently Cuevas-

Pacheco and Møller [2018] discussed the theoretical considerations of LGCPs on spheres,
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in particular providing results of their existence based on the work of Lang et al. [2016]

who discuss continuity of random fields on manifolds. There have also been discussions in

the multivariate setting on spheres by Jun et al. [2019] who use LGCPs to model rainfall

patterns on a global scale.

To define a LGCP we first consider the more general definition of a Cox process which we

will take from Chiu et al. [1995]. Let us define [M,M] to be the measurable space over

non-negative finite measures on S2 and let  be a random measure with distribution P 
over [M,M]. We then say X is a Cox process with driving random measure  if, given  ,

X is a Poisson process with intensity measure  . Throughout this thesis we shall assume

that almost surely  is absolutely continuous with respect �S2 and so its Radon-Nikodyn

derivative almost surely exists and is thus the conditional intensity function of X given  ;

we shall use  (x) =  (dx)/�S2(dx) = d /d�S2 to denote the Radon-Nikodyn derivative

where  (B) =
R
B
 (x)�S2(dx). We shall also assume that all moments of  exists, that is

E
Q

n

i=1
 (xi), for xi 2 S2, i = 1, . . . , n n 2 N exist. It can easily be shown that the nth-order

intensity function of the Cox process is,

⇢(n)(x1, . . . ,xn) = E
nY

i=1

 (xi),

by taking iterated expectations conditioning on the randommeasure,  [Møller andWaagepetersen,

1998].

We now briefly discuss Palm processes of Cox processes following a similar discussion to that

of Coeurjolly et al. [2017]. Since we assume that  is absolutely continuous with respect

�S2 , X, on S2 is then absolutely continuous with respect to the standard unit rate Poisson

over S2. Consider W ✓ S2, then conditional on  , XW has density,

f(x| ) = exp

✓
�S2(W )�

Z

W

 (x)�S2(dx)

◆Y

x2x
 (x),

for finite point configurations x ✓W which follows from Equation 2.6. Then unconditionally

XW has density E[f(x| )] and the reduced Palm process given typical points x1, . . . ,xn 2W

has density,

fx1,...,xn(x) = E

f(x| )

Q
n

i=1
 (xi)

⇢(n)(x1, . . . ,xn)

�
, (3.16)

which follows from Equation 2.4 [Coeurjolly et al., 2017]. If we then define  x1,...,xn to be the

random measure that is absolutely continuous with respect to  with density (
Q

n

i=1
 (xi)) /

⇢(n)(x1, . . . ,xn) then by Equation 3.16 we can see that X !

W,x1,...,xn
is also a Cox process with
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driving random measure  x1,...,xn [Coeurjolly et al., 2017]. For generalisations when  is

not necessarily absolutely continuous with respect to �S2 see, for example, Chiu et al. [1995,

p. 156].

As the name suggests a LGCP is defined by an underlying Gaussian object, more precisely

a Gaussian random field (GRF). Let U : S2 7! R be a random function over the unit sphere,

then U is said to be a GRF if for any n 2 N, x1, . . . ,xn 2 S2 and a1, . . . , an 2 R then
P

n

i=1
aiU(xi) is a univariate Gaussian random variable. By this definition we know that the

GRF is then defined by its mean function µ : S2 7! R and covariance function c : S2⇥S2 7! R
such that,

µ(x) = E[U(x)]

c(x,y) = E[(U(x)� µ(x))(U(y)� µ(y))].

A LGCP is then defined through the Radon-Nikodyn derivative,  , of a Cox process. More

precisely,

 (x) = eU(x),

where U is a GRF with mean function µ : S2 7! R and covariance function c : S2 ⇥ S2 7! R.
In order for the resulting point process X to be well defined we require that the  is almost

surely integrable in order for  to be a well defined finite random measure over S2. This is
discussed by Cuevas-Pacheco and Møller [2018] who argue that, given µ is continuous and

bounded, almost sure integrability of  is satisfied if it is almost surely continuous. This in

turn is satisfied if the zero mean field, U0(x) = U(x)� µ(x), which has the same covariance

function c as U , is almost surely so called locally sample Hölder continuous of some order

k > 0. That is, a function f : S2 7! R is said to be locally sample Hölder continuous of order

k if, for every z 2 S2, there exists a non-empty neighbourhood of z denoted V and constant

CV,k such that,

sup
x,y2V,x 6=y

����
f(x)� f(y)

dS2(x,y)

����  CV,k.

The following proposition, which is Proposition 1 of Cuevas-Pacheco and Møller [2018],

provides a simple condition for a mean zero GRF being locally sample Hölder continuous of

some order k > 0.

Proposition 3.6.1. [Cuevas-Pacheco and Møller, 2018, Proposition 1] Let U0 be a zero
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mean GRF with covariance function c. Define the variogram of U0 as,

�(x,y) =
1

2
E
⇥
(U0(x)� U0(y))

2
⇤
.

Suppose there exists s 2 (0, 1], l 2 (0, 1), and m > 0 such that,

�(x,y)  m(dS2(x,y))
l/2, whenever dS2(x,y) < s. (3.17)

Then, for any k 2 (0, l/2), U0 is almost surely locally sample Hölder continuous of order k.

This proposition is a special case of Corollary 4.5 of Lang et al. [2016] when the space under

consideration is a sphere.

A common assumption on the covariance function is to suppose that it is isotropic; we will

suppose this is the case from now on. That is c(x,y) = �2s(dS2(x,y)) = �2s(r), for �2 > 0

and r 2 [0,⇡] where s is denoted the correlation function and only depends on the geodesic

distance dS2(x,y) = r between points x,y 2 S2 with s(0) = 1. Under this assumption

Cuevas-Pacheco and Møller [2018] demonstrate that, for a number of correlation functions,

it is possible to construct many well-defined LGCPs over S2.

Furthermore by arguments similar to those made by Møller and Waagepetersen [1998] we

have that a LGCP defined by a GRF with mean function µ and covariance function c then,

⇢(n)(x1, . . . ,xn) = E
nY

i=1

 (xi)

= E
nY

i=1

eU(xi)

= E
h
e
Pn

i=1 U(xi)
i

=

 
nY

i=1

exp

✓
µ(xi) +

c(xi,xi)

2

◆!0

@
Y

1i<jn
exp (c(xi,xj))

1

A ,

which follows by using the moment generating function for a multivariate normal vector.

Thus we have that,
⇢(n)(x1, . . . ,xn)Q

n

i=1
⇢(xi)

=
Y

1i<jn
exp (c(xi,xj)) ,

and so LGCPs with isotropic covariance functions are IRWMI, and hence also SORWI.

Therefore, the inhomogeneous K, F , H, and J-functions are all well-defined.
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To calculate the theoretical inhomogeneousK-function for a LGCP with isotropic correlation

function Equation 3.8 can be used where the pair correlation function h is,

h(x,y) =
⇢(2)(x,y)

⇢(x)⇢(y)
= exp (c(x,y)) = exp

�
�2s(dS2(x,y))

�
,

and so the inhomogeneous K-function is,

Kinhom(r) = 2⇡

Z
r

0

exp
�
�2s(t)

�
sin(t)dt, r 2 [0,⇡].

For the inhomogeneous F and H-functions we need to calculate generating functionals for

LGCPs. As such we use the following standard result for a Cox process, X, to do so (e.g.

see Equation 5.2 of Møller and Waagepetersen [2003]),

GX(u) = E

exp

✓
�

Z

S2
(1� u(x)) (x)�S2(dx)

◆�
.

Thus, like van Lieshout [2011], we can calculate the inhomogeneous F -function. First denote

µ̄ = infx2S2 e
µ(x) then,

1� Finhom(r) = GX(1� uyr )

= GX(1� uor )

= E

exp

✓
�

Z

S2

⇢̄ [x 2 BS2(o, r)]

⇢(x)
eU(x)�S2(dx)

◆�

= E
"
exp

 
�µ̄

Z

BS2 (o,r)
eU(x)�µ(x)�S2(dx)

!#
,

where the second equality holds since an LGCP is IRWMI so it does not depend on y and

so we are free to choose it, the last line follows since ⇢(x) = exp(µ(x) + �2/2) where we

have assumed an isotropic covariance function. The inhomogeneous H-function for LGCPs

follows from our discussion of Palm processes of Cox processes (similar to van Lieshout

[2011]), more specifically using Equation 3.16 we have,

1�Hinhom(r) = GX!
y
(1� uyr )

= GX!
o
(1� uor )

= E

2

4
Y

x2X!
o

(1� uor (x))

3

5
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= E o

2

4EX!
o| o

2

4
Y

x2X!
o

(1� uor (x))

����� o

3

5

3

5

= E 

2

4EX!
o| 

2

4
Y

x2X!
o

(1� uor (x))

����� 

3

5  (o)
⇢(o)

3

5 ,

EX!
o| 

"
Q

x2X!
o
(1� uor (x))

����� 
#
= exp

⇣
�µ̄

R
BS2 (o,r)

eU(x)�µ(x)�S2(dx)
⌘
since X !

o is also a Cox

process then we have as van Lieshout [2011] for LGCPs on Rd,

= E
"

eU(o)

eµ(o)+�2/2
exp

 
�µ̄

Z

BS2 (o,r)
eU(x)�µ(x)�S2(dx)

!#

= E
"
eU(o)�µ(o)

e�2/2
exp

 
�µ̄

Z

BS2 (o,r)
eU(x)�µ(x)�S2(dx)

!#
.

Note that E
⇥
eU(o)�µ(o)⇤ = e�

2
/2 (which follows by the moment generating function for a

normal random variable), then we can write, as van Lieshout [2011] does, the inhomogeneous

J-function as,

Jinhom(r) =
E
h
eU(o)�µ(o) exp

⇣
�µ̄

R
BS2 (o,r)

eU(x)�µ(x)�S2(dx)
⌘i

E
⇥
eU(o)�µ(o)

⇤
E
h
exp

⇣
�µ̄

R
BS2 (o,r)

eU(x)�µ(x)�S2(dx)
⌘i .

Using an identical argument to that outlined in van Lieshout [2011], we can show that LGCPs

with mean and positive correlation function defined to ensure almost surely continuous paths

of the underlying Gaussian random field (see Proposition 3.6.1) results in Jinhom(r)  1 for

all r 2 [0,⇡].

Proposition 3.6.2. Let X be a LGCP such that the assumptions of Proposition 3.6.1 hold

and the correlation function is nonnegative, then Jinhom(r)  1 for all r 2 [0,⇡].

Proof. See Appendix A.6. For a proof in Rd see discussion given by van Lieshout [2011] at

the end of Section 5.4.

In Figure 3.4 we consider three di↵erent LGCPs where the underlying Gaussian random field

is simulated using the approach outlined in Cuevas et al. [2020]. We also thank the authors

of Cuevas et al. [2020] for providing the code to simulate the GRFs. For each of them the

underlying GRF has one of the following correlation functions,
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1. The powered exponential correlation (Figure 3.4a) function,

s(r) = exp

✓
�

✓
r

�

◆↵◆
, � > 0, 0 < ↵  1.

2. The Matérn correlation (Figure 3.4b) function,

s(r) =
2

�(↵)

✓
r

2�

◆↵
K↵

✓
r

�

◆
, � > 0, 0 < ↵ 

1

2
.

3. The generalised Cauchy correlation (Figure 3.4c) function,

s(r) =

✓
1 +

✓
r

�

◆↵◆� ⌧
↵

, � > 0, 0 < ↵  1, ⌧ > 0.

For the Matérn correlation function, � is the gamma function and K↵ is the modified Bessel

function of the second kind defined as,

�(x) =

Z 1

0

tx�1e�xdx, x > 0

K↵(x) =
⇡

2

I�↵(x)� I↵(x)

sin(↵⇡)
,

respectively, where

I↵(x) =
1X

n=0

1

n!�(n+ ↵+ 1)

⇣x
2

⌘
2n+↵

is the modified Bessel function of the first kind. The mean function for each GRF is µ(x) = x,

where x = (x, y, z)T in Figure 3.4. Proposition 4 of Cuevas-Pacheco and Møller [2018]

guarantees that Inequality 3.17 holds and hence the resulting LGCPs are well defined, i.e.

 (x) = eU(x) is almost surely integrable where U is our GRF.

3.6.3 Location dependent thinning

The previous two examples have considered non-interacting inhomogeneous point processes

(inhomogeneous Poisson processes) and clustered inhomogeneous point processes (LGCPs).

We know consider functional summary statistics for inhomogeneous processes arising from

location dependent thinning and can be used to exemplify inhomogeneous processes which

exhibit regularity. The example considered here on the sphere is similar to that considered

by van Lieshout [2011] for thinned point processes on Rd.
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Thinning is a common operation applied to point processes in which points of the process

are excluded based on a certain set of rules; this can lead to alternative models. Let X be a

point process and suppose we have some rule � : Nlf 7! Nlf which dictates how thinning is

applied to X to give Xth, the thinned process, i.e. Xth = �(X). Then � is often classified

into one of the following two classes:

1. Independent thinning : the point x 2 X is included/excluded in Xth independentally

of any other point of y 2 X, or

2. Dependent thinning : the inclusion/exclusion of the point x 2 X in Xth may depend

on other points of X.

In this section we will consider functional summary statistics for independently thinned point

processes over S2. We shall use dependent thinning to define a regular process and use this to

exemplify how functional summary statistics can be constructed for independently thinned

processes.

We will consider Xth to be the thinning of X by the rule � defined as,

�(X) = {x 2 X|R(x)  p(x), R(x) ⇠ Uniform([0, 1])},

where R(x) for any x 2 S2 are mutually independent and independent ofX and p : S2 7! [0, 1]

is a known function with each p(x) denoted the retention probability at x. It can be shown

that if X is SOIRWI or IRWMI then so is Xth respectively. This follows by standard results

on the nth-order factorial moment measures; Møller and Waagepetersen [2003] shows this

for SOIRWS Euclidean processes in Proposition 4.3 and van Lieshout [2011] discusses this

for IRWMS Euclidean processes. More explicitly, let Xth be the thinning of X and suppose

that the intensity functions of all orders of X exists. Then consider the nth-order factorial

moment measure of Xth, ↵
(n)

th
,

↵(n)

th
(A1 ⇥ · · ·⇥An) = E

6=X

x1,...,xn2Xth

[x1 2 A1, . . . , xn 2 An]

= E
6=X

x1,...,xn2X
[x1 2 A1, R(x1)  p(x1) . . . , xn 2 An, R(xn)  p(xn)]

=

Z

A1

· · ·

Z

An

P (R(x1)  p(x1), . . . , R(xn)  p(xn))⇢(x1, . . . ,xn)

�S2(dx1) · · ·�S2(dxn)
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=

Z

A1

· · ·

Z

An

 
nY

i=1

P (R(xi)  p(xi))

!
⇢(x1, . . . ,xn)

�S2(dx1) · · ·�S2(dxn)

=

Z

A1

· · ·

Z

An

 
nY

i=1

p(xi)

!
⇢(x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn),

and so the nth-order intensity function of Xth is,

⇢(n)
th

(x1, . . . ,xn) = p(x1) · · · p(xn)⇢
(n)(x1, . . . ,xn).

Therefore
⇢(n)
th

(x1, . . . ,xn)

⇢th(x1) · · · ⇢th(xn)
=
⇢(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
.

So if X is IRWMI then Xth is also IRWMI by Definition 3.5.5 and if X is SOIWI then so is

Xth when considering n = 2 by Definition 3.4.1. An immediate consequence of this is that

the pair correlation functions for X and Xth are identical meaning that the inhomogeneous

K-functions are also identical, whilst for inhomogeneous J-function an adjustment is needed

for the infimum of the intensity function for the thinned process. In particular, let ⇢̄th =

infx2S2 ⇢th(x) and suppose greater then 0, then by Definition 3.5.6 we have that,

Jinhom,th(r) = 1 +
1X

n=1

(�⇢̄th)n

n!
Jn(t), r 2 [0,⇡]

where Jn(t) is the same as that defined for X since the nth-order correlation functions for

X and Xth are identical.

In order to get the ratio representation of Jinhom,th we need to calculate Finhom,th and

Hinhom,th: the inhomogeneous F and H functions for the thinned process. For Finhom,th

we will use the fact that GXth(u) = GX(up + 1 � p) where GX and GXth are the generat-

ing functionals for X and Xth respectively [Chiu et al., 1995, p. 147]. Defining uy
r,th

(x) =

(⇢̄th [x 2 BS2(y, r)])/(p(x)⇢(x)) we have,

1� Finhom,th(r) = GXth(1� uy
r,th

)

= GX(1� uor,thp)

= E
Y

x2X

✓
1�

⇢̄th [x 2 BS2(o, r)]

⇢(x)

◆
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To calculate Hinhom,th for a location thinned process it can be shown that the reduced Palm

process of Xth is identical to a location dependent thinning by the same rule � of the reduced

Palm process of X [van Lieshout, 2011]. Starting from the reduced Campbell measure for

the thinned process (see Definition 2.1.7), let F 2 Nlf be an element of the sigma-algebra

such that for any B 2 B0, no elements of a point process lie in B, i.e. X 2 F if and only if

NX(B) = 0 then,

C !

th(B,F ) = E
X

x2Xth

[x 2 B,Xth \ x 2 F ]

= E
X

x2Xth

[x 2 B,NXth\x(B) = 0]

= E
X

x2Xth

[x 2 B]

0

@
Y

y2Xth\x

[y /2 B]

1

A

= E
X

x2X
[x 2 B,R(x)  p(x)]

0

@
Y

y2X\x

[y /2 B,R(y)  p(y)]

1

A

= E
X

x2X
[x 2 B,R(x)  p(x)]

0

@

0

@
Y

y2X\x

[y /2 B]

1

A

0

@
Y

y2X\x

[R(y)  p(y)]

1

A

1

A

= E
X

x2X
[x 2 B,R(x)  p(x), NX\x(B) = 0]

0

@
Y

y2X\x

[R(y)  p(y)]

1

A

=

Z

B

E

2

4 [R(x)  p(x), NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 ⇢(x)�S2(dx)

=

Z

B

E[ [R(x)  p(x)]]E

2

4 [NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 ⇢(x)�S2(dx)

=

Z

B

E

2

4 [NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 p(x)⇢(x)�S2(dx)

=

Z

B

E

2

4 [NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 ⇢th(x)�S2(dx),

where ⇢th(x) = p(x)⇢(x) is the intensity function of the thinned process. By uniqueness of

the Radon-Nikodyn derivative P !

Xth
= dC !

th
/dµth, where µth is the intensity measure of the
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thinned process we have that,

P !

Xth
(F ) = P (NX!

x
(B) = 0) = E

2

4 [NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 ,

where the right hand side is exactly the void probability associated with the location depen-

dent thinning of X !
x with retention probabilities p(x). To see this consider the point process

Y !
x derived from X !

x by thinning with retention probability p(x) then,

P (NY !
x
(B) = 0) = E[ [NY !

x
(B) = 0]]

= E
Y

y2Y !
x

[x /2 B]

= E
Y

y2X!
x

[x /2 B,R(x)  p(x)]

= E

2

4

0

@
Y

y2X!
x

[x /2 B]

1

A

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5

= E

2

4 [NX!
x
(B) = 0]

0

@
Y

y2X!
x

[R(y)  p(y)]

1

A

3

5 .

Thus since P !

Xth
and PY !

x
are identical on the void probabilities and the fact that void

probabilities uniquely characterise a point process this must mean that for any F 2 Nlf

P !

Xth
(F ) = PY !

x
(F ) and so reduced Palm process of Xth can be considered the thinning of

the reduced Palm process of X by the same retention probability. Therefore, using the same

result as for the generating functionals of thinned processes [Chiu et al., 1995, p. 147] we

have,

1�Hinhom,th(r) = E
Y

x2X!
o

✓
1�

⇢̄th [x 2 BS2(o, r)]

⇢(x)

◆
.

Thus we can represent the inhomogeneous J-function as,

Jinhom,th(r) =
E
Q

x2X!
o

⇣
1�

⇢̄th [x2BS2 (o,r)]
⇢(x)

⌘

E
Q

x2X

⇣
1�

⇢̄th [x2BS2 (o,r)]
⇢(x)

⌘ ,

and if X, the unthinned process, is isotropic then ⇢̄th = p̄⇢, where p̄ = infx2S2 and ⇢ is the
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constant intensity. Thus

Jinhom,th(r) =
E
h
(1� p̄)

N
X!

o
(BS2 (o,r))

i

E
h
(1� p̄)NX(BS2 (o,r))

i .

To exemplify functional summary statistics for thinned point processes on S2 we will consider
the so-calledMatérn I and II hardcore processes, first introduced Bertil Matérn in his seminal

work Matérn [2013] and later extended by Stoyan and Stoyan [1985]. These processes both

arise from dependent thinning of homogeneous Poisson processes. They are defined as follows

on S2.

Definition 3.6.3. Let X be a homogeneous Poisson process on S2 with intensity ⇢ 2 R+.

Fix R 2 [0,⇡], and thin X according to the following rule: delete events x 2 X if there exists

y 2 X \ {x} such that dS2(x,y) < R, otherwise retain x. The resulting thinned process is

then defined as a Matérn I inhibition process on S2.

Definition 3.6.4. Let X be a homogeneous Poisson process on S2 with intensity ⇢ 2 R+.

Fix R 2 [0,⇡], and let each x 2 X have an associated mark, Mx drawn from some mark

density PM independently of all other marks and points in X. Thin X according to the

following rule: delete the event x 2 X if there exists y 2 X \ {x} such that dS2(x,y) < R

and My < Mx, otherwise retain x. The resulting thinned process is then defined as a Matérn

II inhibition process on S2.

Since a homogeneous Poisson process is isotropic over S2 and the thinning rule is not a

function of location the resulting Matérn I and II processes are also isotropic [Teichmann

et al., 2013]. The following proposition, which is Proposition 3.9 and 3.11 of Lawrence [2018],

gives the intensity functions for the Matérn processes.

Proposition 3.6.5. The spheroidal Matérn I and II processes with hardcore distance R 2

[0,⇡], underlying isotropic Poisson process with intensity function ⇢ > 0 and independent

mark random variable Mx for the latter have constant intensity functions

⇢1 = ⇢ exp(�⇢2⇡(1� cos(R)))

⇢2 =
1� exp(�⇢2⇡(1� cos(R)))

2⇡(1� cos(R))

respectively.

Proof. This follows directly from Proposition 4.6.4 when D = S2. Also see Proposition 3.9
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and 3.11 of Lawrence [2018].

Since the Matérn processes are isotropic then they are also IRWMI and SOIRWI, thus we can

independently thinning these processes with some set of retention probabilities p : S2 7! [0, 1]

and the new process will have well defined inhomogeneous K,F,H, and J-functions.

In Figure 3.5 we consider examples of Matérn I and II processes that have been independently

thinned with retention probabilities,

p(x) =
2

5

✓
sin(�⇡x) +

3

2

◆
, x = (x, y, z)T 2 S2.

We simulate both underlying Matérn processes with hardcore parameter R = 0.07 and

expected number of points across the sphere being E[NX(S2)] = 300; that is we set the

intensity, ⇢, of the underlying isotropic Poisson point process set such that 4⇡⇢i = 300 for

i = 1, 2 where ⇢i is taken from Proposition 3.6.5. Whilst for the Matérn II process we

simulate each mark independently with a unit rate exponential distribution. By isotropy its

intensity function is constant and 300/(4⇡). This means that the intensity functions of both

the Matérn processes are identical and given by

⇢(x) =
300

4⇡
·
2

5

✓
sin(�⇡x) +

3

2

◆
. (3.18)

This intensity function is plotted over the sphere in Figure 3.5a and 3.5d where large inten-

sities are indicated by yellow regions and low intensities by blue regions.

As expected due to the hardcore distance imposed by both processes we see this highlighted

in both Figures 3.5b and 3.5e where there is a steep descent for the former whilst a flat line

for the latter until, approximately, the hardcore distance of R = 0.07 is reached. This also

translate to the plot of the inhomogeneous J-function in Figure 3.5f where in the enlarged

portion the estimates for the Matérn I and II are non-decreasing functions until the hardcore

distance is reached.

3.7 Discussion

Spheroidal point process theory remains a relatively new area of research and remains rela-

tively underexplored. We began with a literature review discussing contributions made by

Robeson et al. [2014], Møller and Rubak [2016], Lawrence et al. [2016] which introduce key

definitions for spheroidal processes and accompanying functional summary statistics, in par-
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ticular Møller and Rubak [2016], Lawrence et al. [2016] both introduce the inhomogeneous

K-function. We provided extensions of the inhomogeneous F,H, and J-functions from R2,3

to S2 [van Lieshout, 2011] and demonstrated these on various spheroidal point processes.

The functional summary statistics developed here come to play key roles in Chapters 3 and

4 where they are used to determine if a point pattern is CSR or not based on simulation

envelopes.
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4
Summary statistics for Poisson

processes on convex shapes

This chapter discusses our first major contribution made to the area of spatial statistics based on

our work Ward et al. [2021b]. In this chapter we discuss the di�culties imposed when observing

point processes outside of symmetric spaces such as Rd
and Sd�1

. With a focus on d = 3, we

show that Poisson processes on bounded convex shapes can be mappped to a process on S2
where

rotational symmetries provide us the flexibility to construct well-defined functional summary

statistics. We demonstrate these using simulation envelopes for Poisson processes on cubes

and ellipsoid. Using these functional summary statistics we are also able to examine whether an

observed point pattern exhibits evidence of aggregation and/or repulsion and explore this through

simulated examples of Thomas and Matérn processes on ellipsoids.

4.1 Notation

Let x 2 R3 such that x = (x1, x2, x3)T and define ||x|| = (x2
1
+x2

2
+x2

3
)1/2 to be the Euclidean

norm with the origin of R3 denoted as 0 = (0, 0, 0)T . We equip R3 with its Lebesgue measure

�R3 .

Define D̄ be a connected set of R3, that is D̄ cannot be divided into two distinct non-

empty open sets, and �R3(D) finite. We also suppose that D̄ is compact (i.e. closed and

bounded). The set D̄ is said to be convex if and only if for all x,y 2 D̄ such that x 6= y then

{z 2 R3 : z = x+ �(y� x), � 2 (0, 1)} 2 D̄. Let D be the boundary of D̄ and we say that D
is convex if D̄ is convex. Examples of bounded convex surfaces of R3 are spheres, ellipsoids,
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and cubes. Throughout this chapter we shall focus on such convex surfaces where D will be

used to denote the boundary of a convex subset of R3.

Further for any bounded convex set D we suppose that the surface can be parametrised.

More precisely, suppose that D can be partitioned into p > 0 sets, i.e. there exists sets Di

such that [p

i=1
Di = D and Di 6= Dj for i 6= j. Then for each Di there exists g̃i,

xo = g̃i(xm, xn) such that (xr, xs, xt)
T
2 Di (4.1)

for some m,n, o 2 {1, 2, 3},m 6= n 6= o 6= m and r = min(m,n, o), t = max(m,n, o), s 2

{m,n, o} \ {r, t}. For example take the case of a sphere with radius 1 centred at the origin,

then for the upper hemisphere we can parametrise x3 as x3 = g̃(x1, x2) = (1 � x2
1
� x2

2
)1/2

whilst for the lower hemisphere we can parametrise x3 as x3 = g̃(x1, x2) = �(1�x2
1
�x2

2
)1/2.

For any bounded convex sets, D, we also define its geodesic as a shortest path between two

points x,y 2 D such that every point in the path is also an element of D and denote the

geodesic distance by dD : D ⇥ D 7! R+, where R+ is the positive real line including 0, thus

(D, dD) is a metric space. Additionally, we will frequently need to evaluate integrals over D,
which can be done using the infinitesimal area element over each of the Di defined as,

dDi =

s

1 +

✓
@g̃i
@xm

◆
2

+

✓
@g̃i
@xn

◆
2

dxmdxn,

where g̃i is di↵erentiable for all i = 1, . . . , p. We assume that these convex subsets of R3 are

defined such that the origin is inside D, that is 0 2 D̄, we then say the space D is centred.

Our methodology can easily be adapted for non-centred spaces by making the appropriate

translations to bring the origin inside D.

4.2 Defining summary statistics on D

We now explain the subtle reasoning as to why constructing functional summary statistics

directly on D is not a trivial extension from S2. The definitions given by Equations (3.1)-

(3.4) are well defined when considering stationary or isotropic point processes on Rd or S2

respectively. This is because the symmetries of the space admit well defined notions of

stationarity/isotropy based on translations and rotations. Since an arbitrary convex space

D does not, in general, have isometries these notions of stationarity/isotropy cannot be well

defined. Therefore, defining functional summary statistics analogous to (3.1)-(3.4) is not

possible.
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Further, we also argue that we cannot define a point process to be SOIRWI on D. On S2

being SOIRWI is equivalent to having a rotationally invariant pair correlation function. We

may be tempted to equivalently define a point process to be SOIRWI on D if it has an

invariant form for its pair correlation function. In particular this would make sense for a

Poisson process on D as it would have pair correlation function, h(x) = 1 for all x 2 D.
Closer inspection though leads us to conclude that this is not an appropriate definition for

SOIRWI on D. Using instead Definition 3.4.1 (see also Møller and Waagepetersen [2003,

Definition 4.5, p. 32]) to define SOIRWI we notice that Equation (3.5) implicitly depends on

rotations Ox(y). If we now consider a point process on D, we cannot construct the second

order reduced moment measure as, in general, we do not have an analogous isometry. This

in turn means that we cannot define SOIRWI directly on D based on an invariance of the

pair correlation function.

Moreover, for a point process on S2, consider the more specific case when B = BS2(o, r), r > 0

in (3.5). This is identically the inhomogeneous K-function. The indicator function of (3.5)

is still well-defined in the case of S2 such that we are counting the events of X \ {x} that are

at most a distance r from x 2 X. This same intuition could not equivalently be applied to

point processes on a convex shape as the ball of radius r from a point x on D also depends

on x, i.e. BD(x, r) ⇢ D is di↵erent for each x 2 D. Thus it is not possible to directly define

an inhomogeneous K-function on D.

4.3 Mapping from D to S2

Having discussed the impracticalities of defining functional summary statistics directly on

D we consider an alternative construction of summary statistics for Poisson processes on

general convex shapes. We show that a Poisson process on a general convex shape, D, can
be mapped to a Poisson process on a sphere, and then define functional summary statistics

for such processes. We discuss properties of these functional summary statistics in the more

general setting of inhomogeneous Poisson processes on S2.

To circumvent the geometrical restrictions of D we show, in this section, that we can map

Poisson processes from D to S2 and construct functional summary statistics in this space.

Theorem 4.3.2 shows that a Poisson process on D can be transformed to a Poisson process

on a sphere where we can take advantage of the rotational symmetries. The invariance of

Poisson processes between metric spaces is known as the Mapping Theorem [Kingman, 1993].

We use the function f(x) = x/||x|| to map point patterns from D to S2. Lemma 4.3.1 shows

that this function is bijective and hence measurable.
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Lemma 4.3.1. Let D be a convex subset of R3 such that the origin in R3 is in the interior

of D, i.e. o 2 D̄. Then the function f(x) = x/||x||, f : D 7! S2 is bijective.

Proof. See Appendix B.1.

Rather than using the Mapping Theorem [Kingman, 1993], we utilise Proposition 3.1 of

Møller and Waagepetersen [2003] to show that mapping a Poisson process from D to S2

results in a new Poisson process on S2 and also derive the intensity function of the mapped

process on S2.

Theorem 4.3.2. Let X be a Poisson process on an arbitrary bounded convex shape D ⇢ R3

with intensity function ⇢ : D 7! R. We assume that D can be partitioned into p > 0

sets Di each with an associated parametrisation xoi = g̃i(xmi , xni) for some mi, ni, oi 2

{1, 2, 3},mi 6= ni 6= oi 6= mi as defined by Equation 4.1. We assume for all i = 1, . . . , p

that g̃i are di↵erentiable. Let Y = f(X), where f(x) = x/||x|| with f(X) = {y 2 S2 : y =

x/||x||,x 2 X}. Then Y is a Poisson process on S2, with intensity function,

⇢⇤(x) =

8
>>>><

>>>>:

⇢(f�1(x))l1(f
�1(x))J(1,f⇤)(x)

q
1� x2m1

� x2n1
, x = (xr1 , xs1 , xt1)

T
2 f(D1)

...

⇢(f�1(x))lp(f
�1(x))J(p,f⇤)(x)

q
1� x2mp

� x2np
, x = (xrp , xsp , xtp)

T
2 f(Dp)

(4.2)

where,

xoi = g̃i(xmi , xni)

ri = min(mi, ni, oi), ti = max(mi, ni, oi), si 2 {mi, ni, oi} \ {ri, ti}

li(x) =

"
1 +

✓
@g̃i
@xmi

◆
2

+

✓
@g̃i
@xni

◆
2
# 1

2

J(i,f⇤�1)(x) =
1

(x2mi
+ x2ni

+ g̃2
i
(xmi , xni))

3

det

2

4

0

@
x2ni

+ g̃2
i
(xmi , xni)� xmi g̃i(xmi , xni)

@g̃i
@xmi

�xmi

⇣
xni + g̃i(xmi , xni)

@g̃i
@xni

⌘

�xni

⇣
xmi + g̃i(xmi , xni)

@g̃i
@xmi

⌘
x2mi

+ g̃2
i
(xmi , xni)� xni g̃i(xmi , xni)

@g̃i
@xni

1

A

3

5

J(i,f⇤)(x) =
1

J(i,f⇤�1)(f�1(x))
,

where f�1 is the inverse of f , det(·) is the determinant operator, and f⇤ : R2
7! R2 is the
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function

f⇤(xmi , xni) =

✓
xmi

||(xri , xsi , xti)||
,

xni

||(xri , xsi , xti)||

◆
.

Proof. See Appendix B.2.

To solidify the notation used to describe the space D in Theorem 1, we demonstrate it

with a clear example. Let us suppose that D is an ellipsoid with semi-major axis lengths

a, b, and c along the x, y and z-axes. Then we define D1 to be the D \ {x 2 R3 :

x = (x1, x2, x3)T and x3 � 0} i.e. the elements of D with non-negative x3 component.

Similarly we define D2 = D \ {x 2 R3 : x = (x1, x2, x3)T and x3 < 0}. Then us-

ing the notation outlined in Section 2.1 we take g̃1(x) = +c
p
1� (x1/a)2 � (x2/b)2 and

g̃2(x) = �c
p

1� (x1/a)2 � (x2/b)2.

Remark 4.3.3. A notion of bijectivety arises from this theorem. Consider the set of all

Poisson processes on D such that their intensity functions exist, label this set TD. Also

define TS2 as all the Poisson processes on S2 such that their intensity functions exist. Then

for any X 2 TD implies that f(X) 2 TS2. Similarly by considering the inverse operation f�1,

which exists by Lemma 4.3.1, for all Y 2 TS2 implies that f(Y ) 2 TD. Hence the mapping

f : TD 7! TS2 is surjective. By Theorem 4.3.2 if X,Y are Poisson processes on D with

intensity function ⇢X and ⇢Y respectively then f(X) and f(Y ) are the same Poisson process

if and only if ⇢X = ⇢Y and so the mapping is also injective, and hence bijective. This means

that analysis of a Poisson process, X, on D is equivalent to the analysis of f(X) on S2. This

is the result of the following corollary.

Corollary 4.3.4. Suppose that X1 and X2 are two Poisson processes on D with intensity

functions ⇢1 and ⇢2 respectively, such that ⇢1(x) 6= ⇢2(x) for x 2 B ✓ D such that �D(B) >

0. Define the transformed processes Y1 = f(X1) and Y2 = f(X2) from D to S2 where

f(x) = x/||x||. Then the Y1 and Y2 are Poisson processes with intensity functions ⇢⇤
1
and ⇢⇤

2

respectively such that ⇢⇤
1
(x) 6= ⇢⇤

2
(x) for x

⇤
2 B⇤ where B⇤ = f(B) ✓ S2.

Proof. See Appendix B.3.

Remark 4.3.5. Further, another useful result which follows directly from Theorem 4.3.2

is the construction of approximate Poisson processes on S2. Suppose that we do not have a

parametrisation of the surface or the parametrisation is complex then we can approximate the

space, by considering a finite piecewise planar approximation of D. For example this piecewise

planar approximation could be constructed by considering the boundary of the convex hull of
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a finite set of points U ⇢ D, denote this approximation D̃. Then each face of the D̃ is a plane

for which g̃i exists. We can then use this approximation of D to map a Poisson process on

D to S2.

4.4 Constructing functional summary statistics

We are now in a position to construct functional summary statistics for a Poisson pro-

cess which lies on some bounded convex space D. Since all Poisson processes on S2 are

SOIRWI [Møller and Rubak, 2016] and IRWMI [van Lieshout, 2011], the estimators for

Finhom, Hinhom, Jinhom, andKinhom (see Equations 3.10-3.12 and 3.7 respectively) [van Lieshout,

2011, Møller and Rubak, 2016] can be combined with the mapped intensity function from

Theorem 4.3.2 to construct estimators as follows,

F̂inhom,D(r) = 1�

P
p2P

Q
x2Y \BS2 (p,r)

⇣
1� ⇢̄⇤

⇢⇤(x)

⌘

|P |
(4.3)

Ĥinhom,D(r) = 1�

P
x2Y

Q
y2(Y \{x})\BS2 (x,r)

⇣
1� ⇢̄⇤

⇢⇤(y)

⌘

NY (S2)
(4.4)

Ĵinhom,D(r) =
1� Ĥinhom,D(r)

1� F̂inhom,D(r)
(4.5)

K̂inhom,D(r) =
1

4⇡

X 6=

x,y2Y

[d(x,y)  r]

⇢⇤(x)⇢⇤(y)
, (4.6)

where P is a finite grid on S2, X is a Poisson process on D with intensity function ⇢, Y = f(X)

is the mapped Poisson process onto S2, ⇢⇤ is given by (4.2) and ⇢̄⇤ = infx2S2 ⇢
⇤(x). In the

event that ⇢ : D 7! R+ is unknown and therefore ⇢⇤ is unknown, nonparametric plug-in

estimates of ⇢⇤ can be constructed [Lawrence et al., 2016, Møller and Rubak, 2016]. In

Chapter 6 we consider this problem when the underlying space is a Riemannian manifold.

4.4.1 Properties of functional summary statistics

Consider the general case of all Poisson processes on S2. Theorem 4.4.1 gives the expectations

of F̂inhom(r), Ĥinhom(r), and K̂inhom(r). We restate the mean of K̂inhom [Lawrence et al.,

2016, Møller and Rubak, 2016] and adapt the proof to Proposition 1 in van Lieshout [2011]

for Rd, to show that F̂inhom is unbiased and Ĥinhom is ratio unbiased for S2. In addition we

also provide the expectation of Ĥinhom(r).
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Theorem 4.4.1. Let X be a spherical Poisson process on S2 with known intensity function

⇢ : S2 7! R+, such that ⇢̄ = infx2S2 ⇢(x) > 0. Then the estimators for F̂inhom(r), and

K̂inhom(r) are unbiased whilst Ĥinhom(r) is ratio-unbiased. More precisely,

E[F̂inhom(r)] = 1� exp(�⇢̄2⇡(1� cos r))

E[Ĥinhom(r)] = 1�
exp(�⇢̄2⇡(1� cos r))� exp(�µ(S2))

1� ⇢̄2⇡(1�cos r)
µ(S2)

E[K̂inhom(r)] = 2⇡(1� cos r),

where r 2 [0,⇡], and ⇢̄ = infx2S2 ⇢(x) > 0. Further by unbiasedness and ratio-unbiasedness of

F̂inhom(r) and Ĥinhom(r), respectively, we immediately have ratio-unbiasedness of Ĵinhom(r).

Proof. See Lawrence et al. [2016] for treatment of K̂inhom(r). Results for F̂inhom(r) and

Ĥinhom(r) follow from a trivial adaptation of the proof for Proposition 1 in van Lieshout

[2011]. For the expectation of Ĥinhom(r) see Appendix B.4.

Theorem 4.4.1 shows that Ĥinhom(r) is a biased estimator for Hinhom(r). Although biased it

can be bounded.

Corollary 4.4.2. With the same assumptions as Theorem 4.4.1, let X be a spherical Poisson

process on S2 with intensity function ⇢ : S2 7! R+. Defining ⇢̄ = infx2S2 ⇢(x), the bias of the

estimator Ĥinhom(r) is bounded by

|Bias(Ĥinhom(r))|  exp(�µ(S2))  exp(�4⇡⇢̄),

for all r 2 [0,⇡].

Proof. See Appendix B.5.

Corollary 4.4.2 shows that, depending on the intensity function and hence ⇢̄ = infx2S2⇢(x),

the bias can be considered negligible. In the examples to come we set the expected number

of points of the process to be large enough for the bias to be considered negligible. Next we

provide the variance of the estimators of the functional summary statistics.

Theorem 4.4.3. Let X be a spherical Poisson process on S2 with known intensity function

⇢ : S2 7! R+, such that ⇢̄ = infx2S2 ⇢(x) > 0. Then the estimators K̂inhom(r), F̂inhom(r), and
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Ĥinhom(r) have variance,

Var(K̂inhom(r)) =
1

8⇡2

Z

S2

Z

S2

[d(x,y)  r]

⇢(x)⇢(y)
�S2(dx)�S2(dy)+

(1� cos r)2
Z

S2

1

⇢(x)
�S2(dx),

Var(F̂inhom(r)) =
exp (�2⇢̄�S2(BS2(o, r)))

|P |2

X

p2P

X

p02P
exp

 Z

BS2 (p,r)\BS2 (p
0,r)

⇢̄2

⇢(x)
�S2(dx)

!

� exp (�2⇢̄�S2(BS2(o, r))) ,

Var(Ĥinhom(r))

=
1

µ2(S2)

Z

S2

Z

S2
(⇢(x)� ⇢̄ [x 2 BS2(y, r)]) (⇢(y)� ⇢̄ [y 2 BS2(x, r)])

e�µ(S
2
)

A2

1
(x,y)

⇣
eµ(S

2
)A1(x,y) � 1� Ei(µ(S2)A1(x,y)) + � + log(µ(S2)A1(x,y))

⌘

�S2(dx)�S2(dy)

+
1

µ(S2)

Z

S2

e�µ(S
2
)

A2(x)

�
� + log(µ(S2)A2(x))� Ei(µ(S2)A2(x))

�
⇢(y)�S2(dy)

�
e�2µ(S

2
)

⇣
1� ⇢̄

µ(S2)2⇡(1� cos r)
⌘
2

✓
e
µ(S2)

⇣
1� ⇢̄

µ(S2)2⇡(1�cos r)
⌘

� 1

◆2

where,

A1(x,y) = 1�
2⇢̄

µ(S2)2⇡(1� cos r) +
⇢̄2

µ(S2)

Z

BS2 (x,r)\BS2 (y,r)

1

⇢(z)
�S2(dz)

A2(x) = 1�
2⇢̄

µ(S2)2⇡(1� cos r) +
⇢̄2

µ(S2)

Z

BS2 (x,r)

1

⇢(y)
�S2(dy)

Ei(x) = �

Z 1

�x

e�t

t
dt

and Ei(x) is the exponential integral and r 2 [0,⇡].

Proof. See Appendix B.6.

Due to the complexity of the estimator for the Ĵinhom-function, its mean and variance are

extremely complex and although can be derived in terms of integrals over S2, we instead give

79



an approximation based on the Taylor series expansion of the function f(x, y) = x/y around

the means of the numerator and denominator. We first provide conditions for which the first

two moments of Ĵinhom(r) exist and then proceed to show how it can be approximated.

Theorem 4.4.4. Let X be a spheroidal Poisson process with intensity function ⇢ : S2 7! R+

such that ⇢̄ ⌘ infx2S2 ⇢(x) > 0. Let P be any finite grid on S2 and define rmax = sup{r 2

[0,⇡] : there exists p 2 P such that ⇢(x) 6= ⇢̄ for all x 2 BS2(p, r)}. Then for any given

r 2 [0, rmax] both E[Ĵinhom(r)] and Var(Ĵinhom(r)) exist.

Proof. See Appendix B.7.

Proposition 4.4.5. Let X be a spheroidal Poisson process with known intensity function

⇢ : S2 7! R. Then the covariance between 1� Ĥinhom(r) and 1� F̂inhom(r) for r 2 [0,⇡] is,

Cov(1� Ĥinhom(r), 1� F̂inhom(r))

=
1

|P |

X

p2P

Z

S2

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆

exp
n
�2⇢̄2⇡(1� cos r)�

R
BS2 (x,r)\BS2 (p,r)

⇢̄
2

⇢(y)�S2(dy)
o

A(x,p)

⇢(x)

µ(S2)�S2(dx)

� exp(�2⇡(1� cos r)⇢̄) (exp(�2⇡(1� cos r)⇢̄)

� exp(�µ(S2)) µ(S2)
µ(S2)� 2⇡(1� cos r)⇢̄

,

where P is a finite grid of points on S2 and,

A(x,p) = 1�
2⇢̄

µ(S2)2⇡(1� cos r) +
1

µ(S2)

Z

BS2 (x,r)\BS2 (p,r)

⇢̄2

⇢(y)
�S2(dy).

Proof. See Appendix B.8.

Using a Taylor series expansion (see Appendix B.9), we can approximate the expectation

and variance of Ĵinhom(r) as

E

X

Y

�
⇡

µX

µY

�
Cov(X,Y )

µ2

Y

+
Var(Y )µX

µ3

Y

(4.7)

Var

✓
X

Y

◆
⇡

µX

µY


Var(X)

µ2

X

� 2
Cov(X,Y )

µXµY

+
Var(Y )

µ2

Y

�
, (4.8)
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where X = 1 � Ĥinhom(r) and Y = 1 � F̂inhom(r). The terms in Equations (4.7) and (4.8)

are given in Theorems 4.4.1 and 4.4.3, and Proposition 4.4.5.

4.5 Examples

We now look at two examples where we simulate homogeneous Poisson processes on their

surfaces and construct the previously described functional summary statistics.

4.5.1 Cube

We define a centred cube over each of the six faces with a side length 2l, where l = 1. We

have the six following equations parametrising each face,

x3 ⌘ g̃1(x1, x2) = �l, for � l  x1, x2  l

x3 ⌘ g̃2(x1, x2) = l, for � l  x1, x2  l

x2 ⌘ g̃3(x1, x3) = �l, for � l  x1, x3  l

x2 ⌘ g̃4(x1, x3) = l, for � l  x1, x3  l

x1 ⌘ g̃5(x2, x3) = �l, for � l  x2, x3  l

x1 ⌘ g̃6(x2, x3) = l, for � l  x2, x3  l.

Using Theorem 4.3.2 we can derive the intensity function for the point process that is mapped

to the sphere. By symmetry we need only consider one of the faces of the cube and by rotation

we will be able to derive the intensity function on the sphere. Consider the bottom face, i.e.

x3 = �1, and in the notation of Theorem 4.3.2 label this D1. Then,

l1(x) = 1

J(1,f⇤)(x) = (1 + x1 + x2)
2,

and so the intensity function over f(D1) is,

⇢⇤1(x) = ⇢(1 + (f⇤�1
1

(x1))
2 + (f⇤�1

2
(x2))

2)2(1� x21 � x22)
1
2 ,
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Figure 4.1: Example of simulating and mapping a CSR process on the cube to the sphere. Top left: example

of a CSR process on a cube with l = 1 and constant intensity function 50. Top right: mapping of points from

cube to the sphere by the function f(x) = x/||x||. Bottom: mapped point pattern on the sphere with the new

intensity function indicated by the colour on the sphere. High intensity is indicated by light areas whilst low

intensity is indicated by dark areas.

82



thus by the appropriate rotations the intensity function over the entire sphere is,

⇢⇤(x) =

8
>>>>>>>>>><

>>>>>>>>>>:

⇢(1 + (f⇤�1
1

(x1))
2

+ (f⇤�1
2

(x2))
2)2(1� x21 � x21)

1
2 ,

x 2 f(D1) [ f(D2)

⇢(1 + (f⇤�1
1

(x1))
2

+ (f⇤�1
3

(x3))
2)2(1� x21 � x23)

1
2 ,

x 2 f(D3) [ f(D4)

⇢(1 + (f⇤�1
2

(x2))
2

+ (f⇤�1
3

(x3))
2)2(1� x22 � x23)

1
2 ,

x 2 f(D5) [ f(D6),

where D1,D2,D3,D4,D5, and D6 are the faces such that z = �1, z = 1, y = �1, y = 1, x = �1,

and x = 1 respectively. Figure 4.1 demonstrates mapping from a cube with l = 1 and ⇢ = 50

to the unit sphere where the shading over the sphere indicates areas of low (dark) and high

(light) intensity. The figure also shows an example of a CSR pattern over the cube and how

this pattern changes under the mapping.

In order to be able to construct the inhomogeneous F -, and H-function we need to determine

infx2S2 ⇢
⇤(x). By the nature of the function f(x) = x/||x|| and assuming that l � 1, then

mapping events from the cube to the sphere causes events to be more concentrated on the

sphere compared to the cube, thus increasing the corresponding intensity on the sphere.

Therefore, the lowest achievable intensity occurs at the centre of each face of the cube, i.e.

for the bottom face it occurs when x1 = x2 = 0, giving infx2S2 ⇢
⇤(x) = ⇢. Figure 4.2 gives

examples of the inhomogeneous K-, F -, H-, and J-functions where l = 1 and ⇢ = 5 and are

typical when the observed process is CSR.

4.5.2 Ellipsoid

An ellipsoid is defined by its semi-major axis lengths a, b, c 2 R along x, y, and z-axis

respectively. Again we also assume that the ellipsoid is centred at the origin. We can

parametrise an ellipsoid separately on the upper and lower hemiellipsoids as,

x3 ⌘ g̃+(x1, x2) = c

✓
1�

x2
1

a2
�

x2
2

b2

◆1/2

, for
x2
1

a2
+

x2
2

b2
 1

x3 ⌘ g̃+(x1, x2) = �c

✓
1�

x2
1

a2
�

x2
2

b2

◆1/2

, for
x2
1

a2
+

x2
2

b2
 1.

We now demonstrate our methodology on an ellipsoid with semi-major axis lengths a = 1, b =

1, and c = 3 along the x-, y-, and z-axis respectively. Instead of using the function f(x) =
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Figure 4.2: Examples of Kinhom- (top left), Finhom- (top right), Hinhom- (bottom left), and Jinhom- (bottom
right) functions for CSR patterns on a cube with l = 1 and ⇢ = 5. Solid line is the estimated functional

summary statistic for our observed data, dashed line is the theoretical functional summary statistic for a Pois-

son process, and the grey shaded area represents the simulation envelope from 99 Monte Carlo simulations of

Poisson processes fitted to the observed data.
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Figure 4.3: Example of simulating and mapping a CSR process on a prolate ellipsoid to the sphere. Top left:
example of a CSR process on a prolate ellipsoid with a = b = 1, c = 3 and ⇢ = 5. Top right: mapping of points

from prolate ellipsoid to the sphere by the function f(x) = (x1/a, x2/b, x3/c)
T
. Bottom: mapped point pattern

on the sphere with the new intensity function indicated by the colour on the sphere. High intensity is indicated

by light areas whilst low intensity is indicated by dark areas.
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x/||x|| to map from the ellipsoid to the sphere, we can use a simpler mapping function which

makes calculation of the determinant J(i,f⇤)(x) in Theorem 4.3.2 significantly easier. We can

simply scale along the axis directions, i.e. use the mapping f(x) = (x1/a, x2/b, x3/c)T . Using

this mapping function, as opposed to dividing each vector by the norm of itself, and focusing

on the bottom hemiellipsoid (indicated by the minus superscript), then

l�(x) =

vuut1�
⇣
1� c2

a2

⌘
x2
1
�

⇣
1� c2

b2

⌘
x2
2

1� x2
1
� x2

2

, J(�,f⇤)(x) = ab,

and so on the lower hemisphere the intensity function takes the form

⇢⇤�(x) = ⇢ab

s

1�

✓
1�

c2

a2

◆
x2
1
�

✓
1�

c2

b2

◆
x2
2
.

By symmetry the mapped intensity function over the whole sphere is then

⇢⇤(x) = ⇢ab

s

1�

✓
1�

c2

a2

◆
x2
1
�

✓
1�

c2

b2

◆
x2
2
. (4.9)

Again we need to calculate infx2S2 ⇢
⇤(x). Noting that c � a = b, thus �

�
1� c2/a2

�
� 0

and �
�
1� c2/b2

�
� 0, then the square root term is minimised when x1 and x2 are 0,

hence infx2S2 ⇢
⇤(x) = ⇢ab. Using this we can construct the estimators of the inhomogeneous

functional summary statistics given by Equations (4.3)-(4.6). Examples are given in Figure

4.4. These figures are typical for CSR with the estimated functional summary statistics lying

well within the simulation envelopes.

4.6 Regular & cluster processes on D

We examine some regular and cluster processes on D. In particular, we examine how func-

tional summary statistics constructed under the Poisson hypothesis deviate when the un-

derlying process is in fact not Poisson. We shall be using the Matérn I and II inhibition

processes Chiu et al. [1995] as examples of regular processes, and Thomas processes as a

cluster example. Definitions for the Matérn I, II and Thomas processes on convex shapes

will also be presented, whilst properties of such processes are also provided.
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Figure 4.4: Examples of Kinhom- (top left), Finhom- (top right), Hinhom- (bottom left), and Jinhom- (bottom
right) functions for CSR patterns on a prolate ellipsoid with a = b = 1, c = 3, and ⇢ = 5. Solid line is the

estimated functional summary statistic for our observed data, dashed line is the theoretical functional summary

statistic for a Poisson process, and the grey shaded area represents the simulation envelope from 99 Monte Carlo

simulations of Poisson processes fitted to the observed data.
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4.6.1 Examples of regular and cluster processes on convex shapes

A common way of defining a regular process is using a minimum distance R, known as the

hardcore distance, for which no point in the process has a nearest neighbour closer than R.

In typical applications R is usually the Euclidean distance (in Rd) or the great circle distance

(in S2), but on an arbitrary three dimensional convex shape, D, this distance is taken as the

geodesic distance defined by the surface. The following definitions extend the Matérn I and

II processes to a convex shape with geodesic distance dD(x,y), x,y 2 D.

Definition 4.6.1. Let X be a homogeneous Poisson process on D with intensity ⇢ 2 R+.

Fix R > 0, and thin X according to the following rule: delete events x 2 X if there exists

y 2 X \ {x} such that dD(x,y) < R, otherwise retain x. The resulting thinned process is

then defined as a Matérn I inhibition process on D.

Definition 4.6.2. Let X be a homogeneous Poisson process on D with intensity ⇢ 2 R+. Fix

R > 0, and let each x 2 X have an associated mark, Mx drawn from some mark density PM

independently of all other marks and points in X. Thin X according to the following rule:

delete the event x 2 X if there exists y 2 X \ {x} such that dD(x,y) < R and My < Mx,

otherwise retain x. The resulting thinned process is then defined as a Matérn II inhibition

process on D.

We also extend the Neyman-Scott process, a class of cluster processes, to arbitrary convex

shapes.

Definition 4.6.3. Let XP be a homogeneous Poisson process on D with intensity ⇢ 2 R+.

Then for each c 2 XP define Xc to the point process with intensity function ⇢c(x) = ↵k(x, c),

where ↵ > 0, k : D⇥D 7! R such that for fixed y 2 D k(·,y) is a density function and NXc(D)
can be any random counting measure associated to Xc. The point process X = [c2XpXc is

a Neyman-Scott process.

A Thomas process is a specific Neyman-Scott process where the function k(·, ·) has a specific

form. In R2, k is taken to be an isotropic bivariate Gaussian distribution [Møller and

Waagepetersen, 2003], whilst on S2 it is taken as the Von-Mises Fisher distribution [Lawrence

et al., 2016]. We define a Thomas process on D to be a Neyman-Scott process with density

function k of the form,

k(x,y) =
1

�(x,�2)
exp

✓
�
d2(x,y)

2�2

◆
,
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where � is a bandwidth parameter and �(x,�2) =
R
D exp

�
�d(x,y)/2�2

�
�D(y). This is

known as the Riemannian Gaussian distribution Said et al. [2017], where on the plane this

would reduce to an isotropic bivariate Gaussian.

4.6.2 Properties of regular & cluster processes

The following proposition gives the expected number of points for Matérn I and II processes

in any subset of D.

Proposition 4.6.4. Let X1 and X2 be a Matérn I and II inhibition processes respectively. In

the Matérn II case we also define a mark distribution PMx such that the mark is independent

not only of all other points y 2 X2 \ {x} and marks My, for y 2 X2 \ {x} but also of x, the

point associated to the mark Mx. Define N1 and N2 to be the random counting measures of

X1 and X2. Then the expectations of NX1 and NX2 are given as,

E[NX1(B)] = ⇢

Z

B

e�⇢�D(BD(x,R))�D(dx)

E[NX2(B)] =

Z

B

1� e�⇢�D(BD(x,R))

�D(BD(x, R))
�D(dx),

where B ✓ D.

Proof. See Appendix B.10.

As we will be running simulations based on Matérn II inhibition processes and given that it

is a regular process there is a finite maximum number of points that can arise on the surface

D. The following corollary to the previous proposition gives the maximum expected value

of NX2(D) for a fixed hard-core distance.

Corollary 4.6.5. Let X be a Matérn II process over D with hard-core distance R and defined

by a Poisson process with constant intensity function ⇢. Then,

sup⇢2R+E[NX(D)] =
Z

D

1

�D(BD(x, R))
�D(dx).

Proof. See Appendix B.11.

The following proposition gives the expected number of points for a Thomas-type process

on D.
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Proposition 4.6.6. Let X be a Thomas-type process on D with concentration parameter 

and a constant expected number of o↵spring, �, for each parent point. Then,

E[NX(D)] = �D(D)⇢�.

Proof. See Appendix B.12.

4.6.3 Simulation of regular and cluster processes

We briefly discuss how to simulate these point processes on convex shapes, much of which

is based on simulation of homogeneous Poisson processes on convex shapes. To simulate

homogeneous Poisson processes we can first simulate the number of points in the pattern as

⇢�D(D) and then distribute them uniformly across D. In order to distribute the uniformly

across D we can use the rejection sampler outlined by Kopytov and Mityushov [2013].

Simulation of Matérn I and II then depend upon removing events in an underlying homo-

geneous Poisson process based on their distance between the events. This depends on being

able to calculate the geodesic distance on a given surface. Assuming this can be achieved,

then it is simple to simulate Matérn I and II process using their definitions. For ellipsoidal

Matérn I and II processes we use the geographiclib [Karney, 2017] available as a MATLAB

toolbox.

To simulate a Thomas process this can easily be achieved by rejection sampling again.

Simulation of the parents is a homogeneous Poisson process. Then, for each parent, we

simulate its random number of o↵spring and then construct a rejection sampler to sample

from

k(xp,x) =
1

�(xp,�2)
exp

✓
�
d2(xp,x)

2�2

◆
,

where xp is in the parent process, � is a bandwidth parameter and �(xp,�2) =
R
D exp(�d2(xp,x)

/2�2)�D(dx). Again for an ellipsoidal Thomas process we use geographiclib Karney [2017]

to calculate geodesic distances on the surface of an ellipsoid.

4.6.4 Functional summary statistics assuming CSR

We simulate Matérn II, and Thomas processes and construct estimates of their functional

summary statistics under the assumption that they are CSR. The inhomogenous functional

summary statistics are displayed in Figure 4.5. Comparing Figure 4.5 to typical functional
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é
r
n
II
w
it
h
p
a
r
a
m
e
t
e
r
s
R

=
0.
3
a
n
d
e
x
p
o
n
e
n
t
ia
l

m
a
r
k
d
is
t
r
ib
u
t
io
n
w
it
h
r
a
t
e
�
=

1
(
to
p
ro
w
)
,
P
o
is
s
o
n
p
r
o
c
e
s
s
(
m
id
dl
e
ro
w
)
,
a
n
d
T
h
o
m
a
s
p
r
o
c
e
s
s
w
it
h
p
a
r
a
m
e
t
e
r
s

=

0.
1
a
n
d
o
↵
s
p
r
in
g
e
x
p
e
c
t
a
t
io
n
1
5

(
b
ot
to
m

ro
w
)
o
n
a
p
r
o
la
t
e
s
p
h
e
r
o
id

w
it
h
d
im

e
n
s
io
n
s
(a
,
b
,
c
)
=

(1
,
1,
3)

a
ll
w
it
h
e
x
p
e
c
t
a
t
io
n
1
0
0
.
S
o
li
d
li
n
e
is
t
h
e
e
s
t
im

a
t
e
d
fu
n
c
t
io
n
a
l
s
u
m
m
a
r
y
s
t
a
t
is
-

t
ic
s
fo
r
o
u
r
o
b
s
e
r
v
e
d
d
a
t
a
,
d
a
s
h
e
d
li
n
e
is
t
h
e
t
h
e
o
r
e
t
ic
a
l
fu
n
c
t
io
n
a
l
s
u
m
m
a
r
y
s
t
a
t
is
t
ic

fo
r
a
P
o
is
s
o
n
p
r
o
c
e
s
s
,
a
n
d
t
h
e
g
r
e
y
s
h
a
d
e
d
a
r
e
a
is
t
h
e
s
im

u
la
t
io
n

e
n
v
e
lo
p
e
s
fr
o
m

9
9
M
o
n
t
e
C
a
r
lo

s
im

u
la
t
io
n
s
o
f
P
o
is
s
o
n
p
r
o
c
e
s
s
e
s
fi
t
t
e
d
t
o
t
h
e
o
b
s
e
r
v
e
d
d
a
t
a
.

91



summary statistics for regular and cluster processes in R2, we see the same types of deviations

away from CSR. In particular, we see for regular processes with small r that there are negative

deviations, whilst the cluster process has large positive deviations for the K̃inhom-function.

Furthermore, the Ĵinhom-function shows significant positive deviations for regular processes

whilst negative ones are observed for cluster processes.

Figure 4.5 highlights the importance of considering many di↵erent functional summary statis-

tics when attempting to draw conclusions from the data [Diggle, 2003]. More precisely con-

sider the top row of Figure 5 which refers to a Matérn II process with hardcore distance

R = 0.3 and E[NX(D)] = 100. If we were to only consult the Kinhom simulation envelope

(top left figure) then we may be hesitant to reject CSR, but when we examine the Hinhom

and Jinhom simulation envelope plots there is strong evidence to suggest that this process is

not CSR and is in fact regular. Thus, for this specific setting, the simulation envelope plots

of the Jinhom function provide greater power compared to those produced with the Kinhom

function, especially for smaller r [Baddeley et al., 2015, p. 235]. This e↵ect is also seen in

Figure 1 of van Lieshout [2011] for Log Gaussian Cox processes on R2, where for small values

of r the Kinhom is unable to provide evidence against a the process being inhomogeneous

Poisson but examining both the Finhom and Hinhom provides greater evidence against this

hypothesis.

This phenomena was first discussed by Baddeley and Silverman [1984], where they show that

it is possible to construct planar processes which are not homogeneous Poisson but have the

same K-function. This is also discussed by Baddeley et al. [2000] in Section 2.4 of their work

in the inhomogeneous setting. Similar arguments to those in Baddeley et al. [2000], Baddeley

and Silverman [1984] can be used to construct spheroidal processes that are not Poisson but

exhibit the same K-function as any given Poisson process with the same intensity. This

discussion serves as a precautionary warning to consulting only one individual functional

summary statistic and it is therefore important to consider many to avoid drawing improper

conclusions from data.

4.7 Discussion

In this chapter we have highlighted that construction of functional summary statistics outside

of symmetric spaces such as Rd and Sd�1 is non-trivial. We have discussed Poisson point

processes on convex shapes and demonstrated, using the Mapping theorem [Kingman, 1993],

that it is possible to construct functional summary statistics. This is achieved by switching

analysis of point processes from the original space to the sphere where rotational symmetries
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can be utilised to facilitate well-defined functional summary statistics. Using simulation

envelopes, it is possible to determine whether a point pattern exhibits CSR or not and if

the latter holds then, based on how the observed functional summary statistics deviates, we

can determine if the point pattern displays regular or clustered behaviour. The functional

summary statistics developed in this chapter lay the foundation for the following chapter, in

particular the inhomogeneous K-function, where we discuss how formal hypothesis testing

can be conducted using Monte Carlo techniques.
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5
Testing for CSR on convex shapes

This chapter extends on the foundations made in Chapter 4 and are the test statistics constructed

and explored in Ward et al. [2021b] for testing CSR. We begin by discussing the inhomogeneous

K-function for a CSR processes on a convex shape D mapped to S2
when the intensity is un-

known, providing derivations of the first two moments. Based on these derivations we construct

an approximately variance stabilised version of the inhomogeneous K-function and use this to

suggest a test statistics for the hypothesis of CSR. We also consider an analogue inhomogeneous

L-function originally proposed by Lawrence [2018] in the isotropic setting and compare these

two test statistics in an extensive simulation study across ellipsoids of varying dimensions.

5.1 Testing for CSR on convex shapes in R3

Exploratory data analysis for spatial point patterns in R2 typically begins with testing

whether the observed point pattern exhibits CSR where test statistics are frequently based

on the L-function, L(r) =
p
K(r)/⇡. On R2 and under CSR the L-function is linear in r and

variance stabilised [Besag, 1977] whilst Lawrence [2018] discusses the analogue L-function

in S2 where again it is variance stabilised when the underlying process is CSR. As we are

working with inhomogeneous Poisson processes on S2 an equivalent transformation for the

L function has not been discussed previously. We propose two test statistics:

1. an extension of the analogue L-function proposed by Lawrence [2018] to the inhomo-

geneous setting, and
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2. a standardisation of the inhomogeneous K-function inspired by Lagache et al. [2013].

In order to construct the latter we must derive first and second order properties of the

estimated functional summary statistics. Chapter 4 discusses derivations for any spherical

Poisson process when ⇢ is known. In this section we consider the scenario when we have

a CSR process on D with unknown intensity ⇢ 2 R+. Furthermore we shall only focus

on the inhomogeneous K-function as standardisation of the remaining functional summary

statistics follow identically.

5.1.1 Statement of the problem

We are now in a position to formally state the hypothesis of CSR we are interested in and

for which this chapter discusses an approach to testing.

Let X be a spatial point process, such that g(X) = 0 where g(X) is a notational

convenience for g(x) = 0, for all x 2 X and g is the level set for the convex

shape D. From a realisation of X we wish to conduct the following hypothesis

test,

H0 : X is CSR on D vs. H1 : X is not CSR on D.

5.1.2 Test statistic for CSR

Given a homogeneous Poisson process on D with intensity ⇢ 2 R+, we map this to S2 giving a

new Poisson process on the sphere with inhomogeneous intensity function given by Theorem

4.3.2 as

⇢⇤(x) =

8
>>>><

>>>>:

⇢l1(f
�1(x))J(1,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(D1)

...

⇢ln(f
�1(x))J(n,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(Dn).

(5.1)

Using Theorems 4.4.1 and 4.4.3 we can calculate the mean and variances of the inhomo-

geneous K-function when ⇢ is known. When ⇢ is unknown we use estimators of ⇢ when

constructing functional summary statistics. In particular we use

⇢̂ =
NX(D)
�D(D)

, ⇢̂2 =
NX(D)(NX(D)� 1)

�2D(D)
,
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which are both unbiased for ⇢ and ⇢2 respectively by application of the Campbell-Mecke

Theorem [Møller and Waagepetersen, 2003]. Thus our estimator for Kinhom(r) when ⇢ is

unknown takes the following form,

K̃inhom(r) =

8
<

:

�
2
D(D)

4⇡NY (S2)(NY (S2)�1)
P

x2Y
P

y2Y \{x}
[d(x,y)r]
⇢̃(x)⇢̃(y) , if NY (S2) > 1

0, otherwise,
(5.2)

where Y = f(X), f is our mapping from the ellipsoid to the sphere, and ⇢̃(x) is given by,

⇢̃(x) =

8
>>>><

>>>>:

l1(f
�1(x))J(1,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(D1)

...

ln(f
�1(x))J(n,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(Dn).

(5.3)

Note that NY (S2) = NX(D2).

An analogue L-function for isotropic spherical point processes was introduced by Lawrence

[2018] in which the square root of Ripley’s sphericalK-function is taken. This transformation

benefits from approximate variance stabilisation in the same sense as the L-function does in

Rd Besag [1977] but is not linearised. In the planar setting a multiplicative factor of 1/
p
⇡

can be used such that L(r) = r but due to the more complex form of K on S2 a simple

linearising transformation is not intuitive. Therefore Lawrence [2018] suggest subtracting

the theoretical value in order for the summary statistic to be zero in the event a process is

Poisson. Following this line of thought we then propose, in the inhomogeneous setting, the

following functional summary statistic Pinhom(r) =
p
Kinhom(r) �

p
2⇡(1� cos(r)), where

we use Pinhom rather than Linhom to avoid confusion with the Euclidean L-function as Pinhom

takes a very di↵erent form to its Euclidean counterpart. In the event of a homogeneous

Poisson process over D (and hence a inhomogeneous Poisson process over S2) we can estimate

Pinhom as,

P̃inhom(r) =
q

K̃inhom(r)�
p
2⇡(1� cos(r)).

Diggle [2003] proposes using the maximum absolute value between the theoretical and the

estimated functional summary statistics to test for CSR. Based on this we propose the
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following two test statistics,

T1 = sup
r2[0,⇡]

���P̃inhom(r)
��� , T2 = sup

r2[0,⇡]

������
K̃inhom(r)� 2⇡(1� cos(r))q

dVar(K̃inhom(r))

������
, (5.4)

the first based on the work of Lawrence [2018] and the second on the work of Lagache et al.

[2013]. In order to be able to construct the test statistic T2, an estimate of the variance of

the empirical functional summary statistics are required. Further, we need show that the

bias of K̃inhom(r) is negligible and hence E[K̃inhom(r)] ⇡ 2⇡(1�cos(r)) for Poisson processes,

validating its use in (5.4). By using estimators for ⇢ and ⇢2 we alter the first and second

order properties given by Theorems (4.4.1) and (4.4.3). In the following we consider the first

and second order moments of K̃inhom.

5.1.3 Estimating moments of K̃inhom(r) on S2 for CSR process on D

Theorem 5.1.1. The bias and variance of K̃inhom(r) are,

Bias(K̃inhom(r)) = �P (NY (S2)  1)2⇡(1� cos r),

and,

Var(K̃inhom(r)) = 4⇡2(1� cos r)2(1� P (NY (S2)  1))P (NY (S2)  1)

+ ⇢3�4D(D)(1� cos r)2
✓Z

S2

1

⇢̃(x)
�S2(dx)�

16⇡2

�D(D)

◆

E


1

(NY (S2) + 3)2(NY (S2) + 2)2

�

+
⇢2�4D(D)

8⇡2

✓Z

S2

Z

S2

[d(x1,x2)  r]

⇢̃(x1)⇢̃(x2)
�S2(dx1)�S2(dx2)�

64⇡4(1� cos r)2

�2D(D)

◆

E


1

(NY (S2) + 2)2(NY (S2) + 1)2

�
,

(5.5)

where ⇢̃(x) is given by Equation (5.3).

Proof. See Appendix C.1.

The form of the variance derived in Theorem 5.1.1 is near identical to that derived by Lang

and Marcon [2012] except that our derivations considers inhomogeneous Poisson processes,
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does not require corrections for edge e↵ects, and the space is S2 instead of R2. Further we

can bound the absolute value of the bias as follows

|Bias(K̃inhom(r))| = P (NY (S2)  1)2⇡(1� cos r)

= exp(�µY (S2))(1 + µY (S2))2⇡(1� cos r)

 4⇡(1 + µY (S2)) exp(�µY (S2)) (5.6)

 4⇡(1 + µY (S2))µY (S2)�e = O
�
µ1�e
Y

(S2)
�
, (5.7)

where µY is the intensity measure of Y = f(X), the inequality in (5.6) is attained by setting

r = ⇡, and (5.7) follows from ex � xe. Thus, for shapes considered in this chapter, the bias

will be negligible.

From Theorem 5.1.1 it is possible to construct a ratio-unbiased estimator for the vari-

ance. In particular by the Campbell-Mecke Theorem, and defining the estimator ⇢̂k =

NY (S2)(NY (S2)� 1) · · · (NY (S2)� k � 1)/�kD(D), then E[⇢̂k] = ⇢k and so ⇢̂k is unbiased for

⇢k. We can substitute the expectations in (5.5) with their corresponding observed values, for

example we substitute (NY (S2)+ 3)�2(NY (S2)+ 2)�2 for E[(NY (S2)+ 3)�2(NY (S2)+ 2)�2].

Additionally, the following lemma helps derive a ratio unbiased estimator for P (NY (S2) < 1).

Lemma 5.1.2. Let N ⇠ Poisson(�), k 2 N and p 2 R+. Define the following random

variable,

R =
N !eN�k

(N � k)!(e+ p)N
. (5.8)

Then R is ratio-unbiased for �ke�p�.

Proof. See Appendix C.2.

Using Lemma 5.1.2 we can construct a ratio-unbiased estimator for (1 � P (NY (S2) <

1))P (NY (S2) < 1). Defining � = ⇢�D(L),

(1� P (NY (S2) < 1))P (NY (S2) < 1) = (1� e�� � �e��)(e�� + �e��)

= e�� + �e�� � e�2� � 2�e�2� � �2e�2�,
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and so a ratio-unbiased estimator for (1� P (NY (S2) < 1))P (NY (S2) < 1) is

eNY (S2)

(e+ 1)NY (S2) +
NY (S2)eNY (S2)�1

(e+ 1)NY (S2) +
eNY (S2)

(e+ 2)NY (S2)

�
2NY (S2)eNY (S2)�1

(e+ 2)NY (S2) �
NY (S2)(NY (S2)� 1)eNY (S2)�2

(e+ 2)NY (S2) .

Plugging the given estimators for (1 � P (NY (S2) < 1))P (NY (S2) < 1), E[(NY (S2) + 3)�2

(NY (S2) + 2)�2], E
⇥
(NY (S2) + 2)�2(NY (S2) + 1)�2

⇤
, ⇢2 and ⇢3 into (5.5) gives a ratio un-

biased estimator for Var(K̃inhom(r)), which in turn allows for the construction of the test

statistic T2 in (5.4).

5.1.4 Standardised inhomogeneous K-function plots

Figure 5.1 highlights how the empirical K-function estimates deviate when the underlying

process is not CSR. For the regular processes we notice considerable negative deviations for

small r whilst for cluster processes positive deviations are observed, highlighted in the right

column of Figure 5.1.

Intuitively, this is to be expected, with a near identical reasoning to what is observed for

the K-function in R2,3. Since the regular process has a hard-core distance between events,

we observe estimates for Kinhom(r) that are close to zero for small r, thus resulting in the

large negative deviation observed in Figure 5.1. On the other hand, for the Thomas cluster

process, we observe events in closer proximity than would be expected for a CSR process,

thus the estimated Kinhom(r) function has large positive deviations away from CSR.

Further to this, the second row of Figure 5.1 corresponding to a Poisson process highlights

the importance of applying a variance stabilising transform. If we based a test statistic

on Kinhom(r) � 2⇡(1 � cos(r)) (or even Kinhom(r)) then these plots suggests worst power

compared to the Pinhom- and the standardised Kinhom-functions.

5.2 Simulation study

We conduct empirical Type I and II error studies to evaluate the e↵ectiveness of the proposed

test statistic in determining whether or not a point process on a convex shape exhibits CSR.

We consider di↵erent prolate ellipsoids such that the area of the ellipsoid is the same across

di↵ering semi-major axis lengths. This will allow us to determine how the power of our test
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é
r
n
II
w
it
h

R
=

0.
2
a
n
d
e
x
p
e
c
t
a
t
io
n
1
0
0
(
to
p
ro
w
)
,
P
o
is
s
o
n
p
r
o
c
e
s
s
w
it
h
e
x
p
e
c
t
a
t
io
n
40

⇡
,
a
n
d
T
h
o
m
a
s
p
r
o
c
e
s
s
w
it
h
p
a
r
a
m
e
t
e
r
s


=
0.
5,

e
x
p
e
c
t
a
t
io
n
o
f
1
5
0
,

a
n
e
x
p
o
n
e
n
t
ia
l
m
a
r
k
d
is
t
r
ib
u
t
io
n
w
it
h
r
a
t
e
�

=
1
a
n
d
o
↵
s
p
r
in
g
m
e
a
n
o
f
2
0
,
e
x
p
o
n
e
n
t
ia
l
m
a
r
k
d
is
t
r
ib
u
t
io
n
w
it
h
r
a
t
e
�

=
1
a
n
d
o
↵
s
p
r
in
g
e
x
p
e
c
t
a
t
io
n

1
5
(
b
ot
to
m

ro
w
)
o
n
a
p
r
o
la
t
e
s
p
h
e
r
o
id

w
it
h
a
=

b
=

0.
80

00
,
c
=

1.
43

98
3
(
d
im

e
n
s
io
n
s
c
h
o
s
e
n
s
o
t
h
a
t
t
h
e
a
r
e
a
o
f
t
h
e
e
ll
ip
s
o
id

is
4⇡

)
.
S
o
li
d
li
n
e
is
t
h
e

e
s
t
im

a
t
e
d
fu
n
c
t
io
n
a
l
s
u
m
m
a
r
y
s
t
a
t
is
t
ic
s
fo
r
o
u
r
o
b
s
e
r
v
e
d
d
a
t
a
,
d
a
s
h
e
d
li
n
e
is
t
h
e
t
h
e
o
r
e
t
ic
a
l
fu
n
c
t
io
n
a
l
s
u
m
m
a
r
y
s
t
a
t
is
t
ic

fo
r
a
P
o
is
s
o
n
p
r
o
c
e
s
s
,
a
n
d
t
h
e

g
r
e
y
s
h
a
d
e
d
a
r
e
a
is
t
h
e
s
im

u
la
t
io
n
e
n
v
e
lo
p
e
s
fr
o
m

9
9
9
M
o
n
t
e
C
a
r
lo

s
im

u
la
t
io
n
s
o
f
P
o
is
s
o
n
p
r
o
c
e
s
s
e
s
fi
t
t
e
d
t
o
t
h
e
o
b
s
e
r
v
e
d
d
a
t
a
.

100



changes as the space under consideration deforms further away from the unit sphere.

5.2.1 Design of simulations

In order to best understand the properties of our testing procedure we will consider CSR,

Matérn II and Thomas processes on di↵erent prolate spheroids. We design the experiments

such that the expected number of events is similar across all experiments. For both the CSR

and Thomas process simulations this is easily controlled. For a Poisson process, the expected

number on D is ⇢�D(D) whilst for a Thomas process it is given by Proposition 4.6.6.

On the other hand, the Matérn II process requires a little more attention since Corollary

4.6.5 limits the maximum expected number of possible events for a given space D. Thus,

for a given expected number µ that is less than or equal to the one prescribed by Corollary

4.6.5 we fix the hard-core distance R and solve the following equation for ⇢

Z

B

1� e�⇢�D(BD(x,R))

�D(BD(x, R))
�D(dx) = µ. (5.9)

A full outline of all the experiments and the parameters chosen are given in Tables 5.1, 5.2,

and 5.3 for CSR, regular, and cluster process simulations respectively. Note that when R = 0

for the Matérn II process and when  =1 for the Thomas process both processes are CSR.

5.2.2 Test Statistics

Calculating |P̃inhom(r)| and |(K̃inhom(r)� 2⇡(1 � cos r))/(dVar(K̃inhom(r)))1/2| over all r 2

[0,⇡] could be computationally infeasible and so we instead calculate it for r 2 R =

{r1, . . . , rm}, m 2 N, where R is a finite set of distinct, evenly spaced points such that

ri 2 [0,⇡], i = 1, . . . ,m, for the purposes of our simulation studies. We then take our test

statistic as

T1 = max
r2R

���P̃inhom(r)
��� , T2 = max

r2R

������
K̃inhom(r)� 2⇡(1� cos(r))q

dVar(K̃inhom(r))

������
.

where for these simulation studies we set R = {0, 0.02, 0.04, . . . ,⇡}. These simulations are

tested at a 5% significance level. Each experiment is repeated 1000 times, and for each

experiment we simulate 999 Poisson processes to approximate the critical values of the

hypothesis test.
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5.2.3 Results

Tables 5.1, 5.2 and 5.3 outline the parameter selection and results of our simulations. By the

nature of Monte Carlo simulations the CSR results given in Table 5.1 are as to be expected

with an empirical rejection rate close to 0.05. Expectedly, we see that for the same ellipsoid

i.e. a kept constant, that when the Matérn II parameter R increases and the Thomas process

parameter  decreases (each representing an increased departure from CSR), the power of

our test improves. In Appendix C.3 we discuss a potential reason for the power of our test

decreasing as a decreases (hence c increases), for both regular and cluster processes, for

the same R and  respectively. Additionally, Figure 4.5 suggests we may gain power by

considering a two sided test.

We see that T1 achieves greater empirical power compared to T2 over the majority of ex-

periments considered in our simulation study. This is clearly the case when a = 1 or 0.8

for the Matérn II process whilst when a = 0.6 or 0.4 the distinction is not as clear. In

particular, T2 achieves considerably greater empirical power for Experiment (2civ). For the

Thomas process we see that T1 out performs T2 in nearly all experiments for all values of

a. These result suggest the following considerations in practice: (1) consider T1 before T2

since computing T1 is simpler, (2) if T1 does not provide su�cient evidence against the null

then T2 may provide additional information or even considering another functional summary

statistic that has been developed in Chapter 4. Although a formal hypothesis test may be

sought, these results emphasise that this should not be without a detailed examination of

simulation envelope plots which can potentially provide further information. In particular,

simulation envelope plots can give indications as to whether the point pattern exhibits more

regular or clustered behaviour [Diggle, 2003].

5.3 Discussion

This chapter discusses the final contribution made in Ward et al. [2021b]. Two test statistics

were proposed, one based on the work of Lawrence [2018] and the other based on a standard-

isation inspired by Lagache et al. [2013]. We derived properties of the latter and investigated

both for their ability in determining whether a point pattern exhibits CSR through an ex-

tensive simulation study which explored ellipsoids of varying dimensions as well as processes

that exhibit di↵ering levels of aggregative and repulsive behaviour. Following testing of

CSR, we would typically be interested in estimating first order properties, in particular the

intensity function and is the discussion of the next chapter.
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Experiment No. Expectation a ⇢ Reject H0 : T1 Reject H0 : T2

1a 40⇡ 1 10 0.0250 0.0480
1b 40⇡ 0.8 10 0.0390 0.0390
1c 40⇡ 0.6 10 0.0440 0.0430
1d 40⇡ 0.4 10 0.0560 0.0560

Table 5.1: Results when the observed data is CSR. The semi-major axis length along the x-axis, a, and y-axis,

b, are equivalent and the semi-major axis length along the z-axis is determined such that the area of the ellipsoid

is 4⇡.

Experiment No. Expectation a R Reject H0 : T1 Reject H0 : T2

2ai 100 1 0 0.0450 0.0750
2aii 100 1 0.05 0.2520 0.0270
2aiii 100 1 0.1 1.0000 0.4550
2aiv 100 1 0.2 1.0000 1.0000
2bi 100 0.8 0 0.0440 0.0550
2bii 100 0.8 0.05 0.0460 0.0030
2biii 100 0.8 0.1 0.8460 0.0370
2biv 100 0.8 0.2 1.0000 1.0000
2ci 100 0.6 0 0.0520 0.0510
2cii 100 0.6 0.05 0.0540 0.0060
2ciii 100 0.6 0.1 0.0260 0.0010
2civ 100 0.6 0.2 0.2990 0.7790
2di 100 0.4 0 0.0440 0.0410
2dii 100 0.4 0.05 0.0400 0.0100
2diii 100 0.4 0.1 0.0270 0.0000
2div 100 0.4 0.2 0.0020 0.0020

Table 5.2: Results when the observed data is a Matérn II process, with independent mark being exponential

with rate 1. The semi-major axis length along the x-axis, a, and y-axis, b, are equivalent and the semi-major

axis length along the z-axis is determined such that the area of the ellipsoid is 4⇡. Fixing the expectation, µ,

and hard-core distance, R, we use Equation 26 to calculate ⇢ for the underlying constant Poisson process inten-

sity function. When R = 0 a Matérn II process collapses to a CSR process.
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Experiment No. Expectation a  Reject H0 : T1 Reject H0 : T2

3ai 150 1 1 0.0290 0.0440
3aii 150 1 5 0.0330 0.0470
3aiii 150 1 1 0.4620 0.5630
3aiv 150 1 0.5 0.9840 0.9830
3bi 150 0.8 1 0.0460 0.0540
3bii 150 0.8 5 0.0530 0.0570
3biii 150 0.8 1 0.2950 0.2120
3biv 150 0.8 0.5 0.9260 0.9340
3ci 150 0.6 1 0.0490 0.0460
3cii 150 0.6 5 0.0570 0.0610
3ciii 150 0.6 1 0.3730 0.1400
3civ 150 0.6 0.5 0.7480 0.7800
3di 150 0.4 1 0.0670 0.0600
3dii 150 0.4 5 0.0530 0.0360
3diii 150 0.4 1 0.4460 0.2020
3div 150 0.4 0.5 0.6460 0.6350

Table 5.3: Results when the observed data is an ellipsoidal Thomas process. The expected number of o↵spring

per parent is � = 20 and the underlying Poisson parent process has constant intensity function ⇢ = µ/(4⇡�),
where µ is the expectation. The semi-major axis length along the x-axis, a, and y-axis, b, are equivalent and the

semi-major axis length along the z-axis is determined such that the area of the ellipsoid is 4⇡. When  = 1 an

ellipsoidal Thomas process collapses to a CSR process.
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6
Intensity estimation on Riemannian

manifolds

Intensity estimation is an important step in analysing any spatial data and is the focal point of

this chapter. Not only can it provide a graphical description of inhomogeneity in the data but

they are key statistics that can be utilised for second order analysis of the observed pattern, e.g.

construction of inhomogeneous functional summary statistics. Extensive research has been con-

ducted for intensity estimation of two and three dimensional point patterns whilst contributions

have also been made for point patterns on linear networks. Outside of such spaces research is

limited. In response to this we extend the current theory for kernel estimation of intensities for

point patterns observed on d-dimensional Euclidean spaces to d-dimensional Riemannian mani-

folds. This is the primary focus of our work Ward et al. [2021a]. We propose natural extensions

of kernel intensity estimators from the Euclidean case based on the geodesic distance defined

by the Riemannian metric and show that it enjoys similar statistical properties to its Euclidean

counterparts. A discussion of di↵erent bandwidth selection procedures is given and an extensive

simulation study is conducted to determine the e↵ectiveness of these procedures on various types

of point processes on ellipsoids of varying dimensions endowed with their canonical metric.

6.1 Introduction

Point patterns restricted to two dimensional surfaces are a relatively new form of spatial

data and encourages the development of new theory and methodology as existing frame-

works typically assume the process lies on some d-dimensional Euclidean space, typically

two or three dimensions, and thus implicitly rely on its geometry for notions such as sta-
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tionarity and isotropy. Such data has arisen in super resolution microscopy Cabriel et al.

[2019], Gustavsson et al. [2018] where these experimental techniques are capable of produc-

ing spatial data restricted to the surfaces of microbes and thus there is need for proper

statistical procedures to facilitate correct analysis. This chapter attempts to bridge this gap

constructing nonparametric kernel estimates for the intensity function of point processes

lying on Riemannian manifolds. We note that the unification of spatial point processes

and di↵erential geometry is discussed scarcely in the literature with contributions including:

Alonso-Ruiz and Spodarev [2017] who discuss marked point processes where the point pro-

cess lies in Rd whilst its marks exists on some Riemannian manifold and Jensen and Nielsen

[2001] who discuss Markov point processes on Riemmanian manifolds embedded within Rd.

We extend the theory further discussing the construction of an estimator for the intensity

function based on edge corrections given by Diggle [1985] and Jones [1993], van Lieshout

[2012] for Euclidean processes. These estimators can help garner the level of inhomogeneity

in the data but also be a useful tool in subsequent analysis, for example the construction of

inhomogeneous K-functions [Baddeley et al., 2000], which in turn can help elucidate second

order properties of the underlying point process.

The geometrical restriction imposed when considering point processes lying on arbitrary sur-

faces incurs significant challenges compared to typical two or three dimensional Euclidean

processes. In particular this is discussed by Ward et al. [2021b] when constructing func-

tional summary statistics for point processes on convex spaces highlighting that notions of

stationarity and isotropy are not well-defined on such surfaces and instead advocating map-

ping the process onto a sphere where rotational symmetries facilitate well-defined functional

summary statistics for Poisson processes. These challenges are also apparent when analysing

point processes on linear networks: Ang et al. [2012], Rakshit et al. [2017], Cronie et al. [2020]

discusses geometrical corrections to typical summary statistics such as Ripley’s K-function

Ripley [1977] and the J-function van Lieshout and Baddeley [1996], whilst McSwiggan et al.

[2017], Moradi et al. [2018], Rakshit et al. [2019] discuss approaches to estimate the intensity

function using kernels which respect the geometry of the linear network.

Taking inspiration from the recent advancement in the statistical analysis of linear net-

works, this work proposes kernel based intensity estimators for point processes residing on

d-dimensional manifolds with a focus on two dimensional manifolds embedded within a three

dimensional Euclidean space. In particular, like Moradi et al. [2018], we propose natural ex-

tensions of the kernel estimates used for typical two dimensional spatial data by replacing

the Euclidean metric with the Riemannian metric. Even under an alternative metric we

show that we can benefit from many of the same statistical properties as the Euclidean
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counterpart.

Section 6.2 outlines the preliminary material needed and discusses how kernel estimation

of the intensity function is conducted for two dimensional spatial data. 6.3 extends kernel

estimates for planar data to point patterns residing on Riemannian manifolds, discussing a

number of statistical properties. Two bandwidth selection procedures are then considered

in Section 6.4 where we extend cross-validation under a Poisson hypothesis [Baddeley et al.,

2015] and the nonparametric approach of Cronie and Van Lieshout [2018] to the Riemannian

manifold setting. We conclude this cahpter with an in depth simulation study exploring

di↵erent point processes over ellipsoids of varying dimensions in Section 6.5.

6.2 Preliminaries

In this section we will introduce the background and notation for point processes used

throughout the remainder of this chapter as well as the types of surfaces we shall be working

on. The notation utilised in this chapter is specific to this chapter only due to the conventions

used in di↵erential geometry. To help solidify the ideas developed later in this chapter we

will briefly discuss how kernel estimation of the intensity function is currently achieved on

d-dimensional Euclidean spaces to the end of this section.

6.2.1 Differential geometry

A d-dimensional manifold, M, is a topological space that can be locally approximated at

any point p 2M by a subset of Rd. To formally define a manifold we require the definition

of a local chart. For any U ⇢ M a neighbourhood of p and function  : U 7! Rd a

homeomorphism (a continuous, bijective map whose inverse exists and is continuous), (U, )

is said to be a local chart of M. Let M be a topological space, and define a collection of

local charts {(Ui, i))}i2I to be an atlas of M if the set [i2IUi = M, i.e. the set of Ui

covers M for some index set I. If for all  they map to the d-dimensional Euclidean plane,

then M is said to be a manifold. We define the transition maps of M as  i �  
�1
j

for all

i, j 2 I such that Ui \ Uj 6= ; and say that M is of class Ck if all transition maps are Ck

k 2 N, that is the all transition maps are k-times continuously di↵erentiable. Furthermore,

the manifold is said to be orientated if the Jacobian determinants of the transition maps are

all positive. This is a key property to define di↵erential forms on M (although it is possible

to do so on non-orientated manifolds through densities [Carmo, 2016]). In this chapter we

will assume that our manifold is C1 di↵erentiable (or smooth) and orientated. We will
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write  (p) = (x1(p), . . . , xn(p)) to denote the local coordinate representation of p 2 U in

the local chart (U, ).

A tangent vector at p can be consider either as the instantaneous velocity of a curve passing

through p in M or as a derivation at p acting on the algbera of germs of smooth functions

f : M 7! R (denoted C1p ) defined at p [Tu, 2011]. We follow the latter definition which

relaxes the need for a local coordinate system as would be required by the former. A

derivation at p 2M is defined to be a linear map D : C1p 7! R such that,

D(fg) = (Df)g(p) + f(p)(Dg).

D is then a tangent at p [Tu, 2011]. Let r1, . . . , rn be the standard coordinates on Rd and

(U, ) be a local chart, then xi = ri �  : U 7! R and then if f is a smooth function defined

within some neighbourhood of p we define,

@

@xi

����
p

f =
@

@ri

����
�(p)

(f �  �1),

and so @/@xi|p satisfies this condition and hence is a tangent. We denote the set of tangents

at p to be TpM and it can be shown that the set @/@x1|p, . . . , @/@xn|p forms a basis of TpM

[Tu, 2011]. We will frequently denote a tangent of TpM as Xp whilst the function X over M

assigns an element of TpM for each p 2M and is called a vector field. TM = [p2MTpM

is denoted the tangent bundle of M. We let T ⇤pM be the dual space of TpM, that is the

space of all linear functions from TpM to R. We define the di↵erential of a smooth function

f on M as df , which assigns for each point p in M with,

(df)p(Xp) = Xpf, Xp 2 TpM.

Then for a local cordinate system (U, ) = (U, x1, . . . , xn) the elements (dx1)p, . . . , (dxn)p

are all elements of T ⇤pM and form a basis dual to the basis @/@x1|p, . . . , @/@xn|p of TpM

[Tu, 2011]. We call an element (df)p 2 T ⇤pM a covector whilst df is called a covector field

or 1-form, i.e. for each p 2M it assigns an element of T ⇤pM.

Consider a function on the k Cartesian product of a vector space V , i.e. f : V k
7! R. We

say that f is a k-tensor if it is linear in each of its k arguments and the vector space of

all k�tensors functions on V is denoted by Lk(V ). Furthermore, the function f is then

said to be alternating if for all permutations � 2 Sk (where Sk is the permuation group of

size k 2 N), f(v�(1), . . . ,v�(k)) = sgn(�)f(v1, . . . ,vk) for v1, . . . ,vk 2 V and we denote the

space of all alternating k-tensors by Ak(V ). Moreover, we refer to elements of Ak(V ) as
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k-covectors. We apply the functor Ak(·) to TpM and thus define !p 2 Ak(TpM) to be a

k-covector on M. A k-covector field, !, is a function over M that assigns a k-covector, !p,

for each element of p 2M. A k-covector field is also called a k-form and has degree k.

We now introduce the idea of pushforwards and pullbacks for some smooth map, F , between

two manifolds N and M, i.e. F : N 7!M. The map F induces a pushforward at each point

p 2 N , denoted F⇤,p as,

(F⇤,pXp)(f) = Xp(f � F ), Xp 2 TpN , f 2 C1
F (p)(M).

Thus F⇤,p maps points from TpN to TF (p)M. It can shown that if f : M 7! R is a C1

function, then for p 2M and Xp 2 TpM we have that,

f⇤,p(Xp) = (df)p(Xp)
d

dt

����
f(p)

,

(e.g. see [Tu, 2011, Proposition 17.2]) and hence f⇤,p is the same as (df)p and thus we can

also refer to the di↵erential as a pushforward and vice versa. The pullback of F , denoted

(F⇤,p)⇤ is the dual notion to its pushforward, mapping Ak(TF (p)M) to Ak(TpN ). Letting

!F (p) be a k-covector at F (p) in M then (F⇤,p)⇤(!F (p)) is a k-covector at p in N defined

as,

(F⇤,p)
⇤(!F (p))(v1, . . . ,vk) = !F (p)(F⇤,pv1, . . . , F⇤,pvk), v, . . . ,vk 2 TpN .

This notion can be cumbersome and we shall denote (F ⇤!)p = (F⇤,p)⇤(!F (p)). By dropping

the subscript p and considering (F ⇤!) as a function over p 2 N then (F ⇤!) is a k-form on

N .

6.2.2 Riemannian manifolds

A Riemannian metric, g, on a smooth manifoldM is a function overM which assigns to each

point p an inner product on TpM, i.e. gp : TpM⇥TpM 7! R, that varies smoothly with p.

(M, g) is then a Riemannian manifold and we note that g is a 2-tensor of M. Suppose we

have a local chart (U, ) and let p 2 U ⇢M then as a function of p the Riemannian metric

can be written locally as an n⇥ n matrix with (i, j) elements given by [Lee, 2018],

gij(p) = g

 
@

@xi

����
p

,
@

@xj

����
p

!
.
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The dependence on p will often be omitted, i.e. gij = gij(p) and the associated norm will

be denoted || · || :=
p

gp(·, ·) =
p
g(·, ·). The distance between two points, p and q, on a

Riemannian manifolds is then defined as the length of the shortest piecewise continuously-

di↵erentiable curve between p and q. More precisely, let � : [a, b] 7! M be a piecewise

continuously-di↵erentiable function, then the geodesic between �(a) and �(b) is the curve

which minimises

L(�) =

Z
b

a

q
g�(t)(�0(t), �0(t))dt,

where �0(t) is the velocity (i.e. a derivation at �(t)) of the curve and hence an element of

T�(t)M. If the geodesic between �(a) and �(b) is �̃ then the geodesic distance is given by

L(�̃) and we denote it dg : M⇥M 7! R+. In addition to this (M, dg) defines a metric space

over M.

Having defined geodesics on M we can now define the exponential and logarithm maps at

a point p in the manifold. More precisely, the exponential map, expp(v), takes elements of

the tangent space at p and maps them to expp(v) = �p,v(1) 2 M where � is the geodesic

with �(0) = p and �0(0) = v 2 TpM. Moreover the exponential mapping is di↵eomorphic

within a neighbourhood of 0 2 TpM and we define the set of all vectors v in TpM for which

�p,v(t) = expp(tv) is the minimising geodesic for t 2 [0, 1] but is no longer minimising for

any t = 1 + ✏ ✏ > 0 to be the cut locus of p in the tangent space. The cut locus of p is

then defined as the exponential map of tangent vectors v at p that are in the cut locus of

p in the tangent space. The infimum of the distances from p to elements of its cut locus is

then denoted the injectivity radius at p. We define the global injectivity radius of M as the

infimum of the injectivity radius at p over all points in M and denote it r⇤. By assuming

that the global injectivity radius is positive then for any p in M we can find some ball of

radius r > 0 for which BTpM(0, r) ⇢ TpM is di↵eomorphic into a neighbourhood U of p.

Conversely, the logarithm map at p is defined as the inverse of the exponential map, i.e.

logp(q) = exp�1p (q) for q 2M.

Instead of integrating functions we must instead integrate forms over a manifold [Tu, 2011].

We define the top or maximal forms to be the forms of degree d on a d-dimensional manifold.

These are the only forms which can be integrated on a manifold of dimension d. Let (U, )

be a local chart and ! an d-form on M with support U , then the pullback ( �1) ⇤ ! is a

d-form on Rd. By, for example [Tu, 2011, Proposition 3.29], a d-form on Rd can be written

as f(x)dx1 ^ · · · ^ dxd for some f : Rd
7! R where dx1 ^ · · · ^ dxd is the volume element on

Rd written in terms of the exterior product of the local coordinate system, for short we will
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write dx = dx1 ^ · · · ^ dxd. Then we define the integral of the d-form ! on U as,

Z

U

! =

Z

 (U)

( �1)⇤! =

Z

 (U)

f(x)dx,

where the integral does not depend on the choice of local chart (e.g. see [Tu, 2011, Section

23.4]). Notice that every top form also defines a measure on M. An important d-form is

the Riemannian volume form, denoted by dvol and is given by,

dvol(x) =
q
det(gij)dx =

q
det(gij)dx

1
^ · · · ^ dxd

in local coordinates. Moreover, let K be any compact subset of U , then we say that the

volume of K is,

Vol(K) =

Z

K

dvol(x).

Using the atlas of the manifold combined with its corresponding partition of unity it is also

possible to define the volume of K when K is a compact set of M instead of just U , an

individual local chart of the manifold, see for example Lee [2018] for this generalisation. The

Riemannian volume form will take the place of the typical d-dimensional Lebesgue measure

when considering point processes over a manifold.

The brief exposition of di↵erential and Riemannian geometry provided here is general and

based on Tu [2011], Lee [2018]; a more in depth discussion of these topics is can be found in

these references. In particular we do not specify the Riemannian metric tensor g. Given the

nature of spatial point processes and that, typically in applications, they are nearly always

realisations in Rd it is therefore natural to consider Riemmanian manifolds that are embedded

within some higher dimensional Euclidean space, for example the d� 1 dimensional sphere,

Sd�1, is embedded within Rd. In addition to this we can impose the canonical Riemannian

metric tensor, that is the manifold inherits the metric tensor of the space its embedded in,

for example returning to the d � 1 dimensional sphere, Sd�1 would inherit the Euclidean

metric of Rd.

6.2.3 Point processes on Riemannian manifolds

Throughout this chapter we denote X to be a point process over a compact d-dimensional

Riemannian manifold (M, g) with the induced distance metric dg. We define Nlf to be the

set of locally finite point configurations in M and we assume that, almost surely, X 2 Nlf .

We suppose that X is observed in some compact window W of M. Define NX(B) to be the
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random counting measure associated to X which denotes the number of points of X residing

in B ⇢M and that the intensity measure is given by µ(B) = E[NX(B)], i.e. the expected

number of points of X in B. If µ is absolutely continuous with respects to the Riemannian

volume form, then there exists a function ⇢ : M 7! R, such that,

µ(B) =

Z

B

⇢(x) dvol(x).

The function ⇢ is the Radon-Nikodyn derivative of the intensity measure with respects to the

Riemannian volume form and is called the intensity function ofX. Heuristically, ⇢(x) dvol(x)

can be interpreted as probability of an event of X being in an infinitesimal volume dvol(x).

If ⇢ is constant then we say that X is homogeneous, otherwise X is inhomogeneous. We

assume that the intensity function exists and then by the Campbell theorem [Daley and

Vere-Jones, 2003] we have that for any measurable, nonnegative function f : M 7! R+,

E
X

x2X
f(x) =

Z

M
f(x)⇢(x) dvol(x). (6.1)

Similar to point processes in the Rd we define a Poisson process analogously: X is said

to be a Poisson process with intensity function ⇢ if for any compact subset M of M then

NX(M) is Poisson with mean µ(M) and given NX(M) = n, each n event is independently

and identically distributed with density ⇢(x)/µ(M) over M . In the event that ⇢ is constant

the resulting Poisson process is said to be CSR.

6.2.4 Kernel estimation on Rd

Before describing kernel estimation on a Riemannian manifold we first review kernel estima-

tion of intensity functions for point processes on Rd that have been observed through some

bounded window W ✓ Rd. As defined by Silverman [1986] a kernel function k : Rd
7! R+

is typically an d-dimensional symmetric probability density function and given a bandwidth

parameter h > 0, the intensity function ⇢ : Rd may be estimated as,

⇢̂h(x) =
X

y2X\W

ch(x,y)�1

hd
k

✓
x� y

h

◆
, (6.2)

for x 2 W and ch is some edge correction. Two popular edge correction factors used for

Euclidean point processes are the global [Diggle, 1985, Berman and Diggle, 1989] and local
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[Jones, 1993, van Lieshout, 2012] edge corrections which are defined as,

ch(x,y) =
1

hd

Z

W

k

✓
x� z

h

◆
dz and (6.3)

ch(x,y) =
1

hd

Z

W

k

✓
z� y

h

◆
dz (6.4)

respectively. Both edge corrections are in general biased for the true intensity function but

in the event of a homogeneous point process the global correction becomes unbiased whilst

the local correction remains biased. On the other hand van Lieshout [2012] demonstrated

that the local correction benefits from the following mass preservation property,

Z

W

⇢̂h(x) dx = NX(W ),

and that taking expectations of the previous equation shows that global unbiasedness is

achieved, i.e.
R
W
⇢̂h(x) dx is unbiased for µ(W ). Rakshit et al. [2019] also consider simi-

lar edge correction to these for point processes on linear networks, with a focus on rapid

computation of the kernel estimate using fast Fourier transforms.

The choice of kernel k is considered to be less important than the correct choice of bandwidth

h which balances close and distant interactions [Møller and Waagepetersen, 2003]. Common

choices of kernels in spatial analysis include the Epanechnikov, box and Gaussian kernels.

The integrated squared error (ISE) can be used to assess quality of a kernel estimate and is

defined as,

ISE(⇢̂h) =

Z

W

(⇢̂h(x)� ⇢(x))
2 dx, (6.5)

whilst the mean integrated squared error (MISE) is defined as the expectation of the ISE.

Moreover the MISE can be decomposed as,

MISE(⇢̂h) =

Z

W

Var(⇢̂h(x)) + Bias2(⇢̂h(x)) dx. (6.6)

In practice though both these measures of performance are limited since the true intensity

function is rarely known but is a useful metric when conducting simulation studies as the

intensity functions are indeed known in this scenario and thus can be used to measure

performance of a statistical procedure.
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6.3 Kernel estimation on Riemmanian manifolds

Following similar arguments made by Moradi et al. [2018] to extend kernel estimation to

linear networks we propose extensions of Equation 6.2 with the edge corrections given by

Equations 6.3 [Diggle, 1985, Berman and Diggle, 1989] and 6.4 [van Lieshout, 2012] when

the underlying space is a compact Riemannian manifold of dimension d with metric tensor

g (and hence induced geodesic distance dg). We propose that the intensity function be

estimated by,

⇢̂h(x) =
X

y2X\W

ch(x,y)�1

hd
k

✓
dg(x,y)

h

◆
(6.7)

where W is some bounded window of M, ch(x,y) is an edge correction factor, the global

and local corrections being extended from Rd as

ch(x,y) =
1

hd

Z

W

k

✓
dg(x, z)

h

◆
dvol(z) (6.8)

ch(x,y) =
1

hd

Z

W

k

✓
dg(z,y)

h

◆
dvol(z) (6.9)

respectively [Diggle, 1985, Berman and Diggle, 1989, van Lieshout, 2012], and we assume

that the functions, k : R 7! R+ is a one-dimensional symmetric probability distribution

so (1/hd)k(·/h) defines an d-dimensional kernel function. In contrast with Pelletier [2005]

definition of a kernel, which requires five conditions (see Equations (41a)-(41e) of Le Brigant

and Puechmorel [2019]) we require a single constraint on k. Our proposed estimator is in

fact derived identically to that of Moradi et al. [2018] but where the underlying space is a

Riemannian manifold rather then a linear network. We refer to ⇢̂(1)
h

and ⇢̂(2)
h

as the kernel

estimates for ⇢ of X using Equations 6.8 and 6.9 for edge correction respectively. Given

that previous work highlights that the choice of k is less critical than h in Rd [Møller and

Waagepetersen, 2003] in this work we shall consider the Gaussian kernel,

k(dg( · ,y)) / exp

 
�
d2g( · ,y)

2

!
, (6.10)

where the normalising constant results in the kernel integrating to 1 over M. On Rd under

the standard Euclidean metric this kernel collapses to a standard multivariate Gaussian

distribution and hence the typical Gaussian kernel in d-dimensions. See also Pennec [2006] for

a discussion of probability distributions on manifolds, in particular the normal distribution.

It is also plausible to use other kernels in order to construct estimates of the intensity
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function.

6.3.1 Properties

The statistical properties of the kernel estimates given by using the edge corrections of

Equations 6.3 and 6.4 have been well studied [Diggle, 1985, Berman and Diggle, 1989, van

Lieshout, 2012] and many of these properties carry over to the setting of point processes on

Riemannian manifolds. In particular, the bias and variance of ⇢̂(1)
h

and ⇢̂(2)
h

are explored and

we also provide some asymptotic results showing that convergence in MISE can be achieved

for the shape of the true intensity function following similar arguments made Cucala [2006,

2008] for point processes that are observed with and without some error.

Bias

Using Campbell’s theorem it can easily be shown that the pointwise bias is given by,

E
h
⇢̂(i)
h
(x)

i
=

Z

W

c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆
⇢(y) dvol(y),

for i = 1, 2 and W a bounded window of M. If we then suppose that ⇢ is constant over M

then for ⇢̂(1)
h

ch(x,y) does depend on x but not on y whilst the opposite holds for ⇢̂(2)
h

and

so we have that,

E
h
⇢̂(1)
h

(x)
i
=

⇢

ch(x, · )

Z

W

1

hd
k

✓
dg(x,y)

h

◆
dvol(y) =

⇢

ch(x, · )
ch(x, · ) = ⇢

E
h
⇢̂(2)
h

(x)
i
= ⇢

Z

W

c�1
h

( · ,y)

hd
k

✓
dg(x,y)

h

◆
dvol(y).

Therefore ⇢̂(1)
h

is unbiased and ⇢̂(2)
h

biased when the process is homogeneous. Although ⇢̂(2)
h

may be biased in the homogeneous setting it does maintain the mass preservation property

given by van Lieshout [2012] for both homogeneous and inhomogeneous processes,

Z

W

⇢̂(2)
h

(x) dvol(x) = NX(W )

which is easily shown by interchanging integration and summation in the previous equation.

Further, to this we also obtain that
R
W
⇢̂(2)
h

(x) dvol(x) is unbiased for µ(W ).
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Variance

Now suppose that our process X is Poisson on M with intensity function ⇢. It can be shown

that for any measurable nonnegative function f : M 7! R+ we have that Var(
P

x2X f(x)) =R
W

f2(x)⇢(x) dvol(x) [Baddeley et al., 2015]. As such, the pointwise variances for ⇢(1)
h

and

⇢(2)
h

under a Poisson assumption are

Var
⇣
⇢̂(1)
h

(x)
⌘
= c�2

h
(x, · )

Z

W

✓
1

hd
k

✓
dg(x,y)

h

◆◆
2

⇢(y) dvol(y)

Var
⇣
⇢̂(2)
h

(x)
⌘
=

Z

W

c�2
h

( · ,y)

✓
1

hd
k

✓
dg(x,y)

h

◆◆
2

⇢(y) dvol(y).

Similar to Rakshit et al. [2019], if the Poisson process is homogeneous with constant intensity

⇢ then

Var
⇣
⇢̂(1)
h

(x)
⌘
= ⇢c�2

h
(x, · )

Z

W

✓
1

hd
k

✓
dg(x,y)

h

◆◆
2

dvol(y)

Var
⇣
⇢̂(2)
h

(x)
⌘
= ⇢

Z

W

c�2
h

( · ,y)

✓
1

hd
k

✓
dg(x,y)

h

◆◆
2

dvol(y),

highlighting that variance is not constant across M even if the true intensity function is

constant. Unbiased estimates of the variance can easily be obtained using

dVar
⇣
⇢̂(i)
h
(x)

⌘
=

X

y2X\W

 
c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆!2

,

where unbiasedness follows by applying Campbell’s theorem. Again these formulas are sim-

ilar to those derived by Rakshit et al. [2019] for point processes on linear networks.

Asymptotics

We now look at the asymptotics of the bias and variance under a Poisson assumption we

also assume, for this section, that our kernel is Gaussian, see Equation 6.10. When typically

dealing with kernel density estimation all points are assumed IID and the total number of

points is deterministic, where the asymptotic scenario is to letN , the number of observations,

go to infinity whilst h goes to zero. In the point process setting in order to determine

asymptotic characteristics the increasing-domain asymptotic framework is often employed

[Cressie, 1993], where the observation window is allowed to increase such that the expected

116



number of points goes to infinity. There are two issues with applying this framework in the

current situation:

1. As noted by Cucala [2008], as the bandwidth tends to 0 the estimated intensity at each

point then depends on an expected number of events which tends to 0.

2. Since we are working on a compact manifold the assumption of an infinitely increasing

domain is not a feasible.

Instead we can let the expected number of points go to infinity over W ✓M in such a way

that the shape of ⇢ remains unchanged, for example we could suppose that ⇢(x) = ⌫⇢1(x)

such that ⇢1 integrates to 1 over W then µX(W ) = ⌫ and as ⌫ (and hence µX(W )) goes

to infinity ⇢1 remains unchanged. This is the setting considered by Cucala [2006, 2008] for

point processes on Rd with and without observational noise and Rakshit et al. [2019] for

linear networks. We thus consider the asymptotic properties of

⇢̂(i)
h,1

(y) =
[NX(W ) 6= 0]

NX(W )

X

x2X\W

1

hd
k

✓
�dg(x,y)

h

◆
ch(x,y)

�1, (6.11)

for i = 1, 2. We show that it is possible to achieve pointwise unbiasedness and consistency and

thus convergence in integrated means squared error to ⇢1(y) = ⇢(y)/µ(M). Clearly, based

on Equation 6.11 we have the relationship ⇢̂(i)
h
(y) = NX(W )⇢̂(i)

h,1
(y), with our original kernel

density estimator. The following proposition gives our pointwise asymptotic properties for

⇢̂(i)
h,1

for i = 1, 2.

Proposition 6.3.1. Let (M, g) be a Riemannian manifold with Riemannian metric tensor

g. We observe our process through some bounded window W ✓ M and suppose that it is

Poisson with continuous intensity ⇢ such that ⇢1(x) = ⇢(x)/µ(W ) = O(1) as µ(W ) goes to

1 and is smooth. Then,

E
h
⇢̂(i)
h,1

(x)
i
! ⇢1(x) and,

Var
⇣
⇢̂(i)
h,1

(x)
⌘
! 0,

for i = 1, 2 with Gaussian kernel, x 2 W ✓ M as h ! 0, and µ(W ) ! 1, such that

A(µ(W ))/hd ! 0 where A(µ(W )) = E[ [NX(W ) 6= 0]/NX(W )].

Proof. See Appendix D.2. For a proof in Rd see Cucala [2006, pp. 105-107].
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In Appendix D.2 we show that under a Poisson hypothesis,

A(µ(W )) 
2

µ(W )
,

and hence we can replace the condition A(µ(W ))/hd ! 0 with 1/(µ(W )hd) ! 0. If we

further suppose that our intensity is of the form ⇢(x) = ⌫⇢1(x) such that ⇢1 integrates to

1 over W , then we have that µ(W ) = ⌫ and so our condition can be written as 1/(⌫hd) !

0, which is precisely the condition found for kernel density estimators for ⌫ IID points

distributed with density ⇢1, see for example Wand and Jones [1994, Equation 4.8].

An immediate consequence from Propositon 6.3.1 is pointwise consistency of our kernel

estimator with a Gaussian kernel. We can also achieve convergence in MISE.

Corollary 6.3.2. Let the same conditions on X hold as for Proposition 6.3.1 and W ✓M

be a bounded window of our Riemannian manifold. Then we have that,

E
Z

W

(⇢̂(i)
h,1

(x)� ⇢1(x))
2dvol(x)

�
! 0,

as h ! 0 and µ(W ) ! 1 such that A(µ(W ))/hd ! 0 where A(µ(W )) = E[ [NX(W ) 6=

0]/NX(W )].

Proof. Follows immediately from Proposition 6.3.1 and using Equation 6.6, but adapted for

Riemmanian manifolds instead of Rd.

6.4 Bandwidth selection

To select h it has been suggested that a critical inspection of intensity plots is necessary

in order to balance local and global features in the data [Møller and Waagepetersen, 2003],

whilst other approaches appeal to optimisation criteria. Baddeley et al. [2015] suggest se-

lecting bandwidths based on optimising the cross-validation Poisson log likelihood given

by

`cv =
X

x2X
log

�
⇢̂�x
h

(x)
�
�

Z

M
⇢̂h(x) dvol(x), (6.12)

where ⇢̂�z
h

(x) = h�d
P

y2X\{z} k (�dg(x,y)/h) c
�1
h

(x,y) is then an estimate of ⇢ without

the observation z 2 X. It is easy to show that under a Poisson assumption and using the

Cambell-Mecke Theorem, that the cross validation log likelihood is unbiased for the log
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likelihood function

` = logL =
X

x2X
log(⇢(x))�

Z

M
⇢(x) dvol(x).

A bandwidth selection technique that requires special consideration here is state estimation

for isotropic Cox processes [Diggle, 2014, Section 5.3], in particular this approach cannot

be trivially adapted to Riemmanian manifolds. Starting on Rd, Diggle [1985] assumes that

the underlying process is a stationary, isotropic Cox process such that the driving random

field, ⇤, has constant mean µ and covariance function c(x,y),x,y 2 Rd such that it only

depends on ||x�y||, i.e. the Euclidean distance between x and y. By assuming a stationary

and istropic Cox process the first order intensity function, ⇢ is constant, and the second

order intensity function of X also only depends on the distance between the points i.e.

⇢(2)(x,y) = ⇢(2)(||x � y||). Then Diggle [1985] suggest minimising the mean squared error

between the kernel density estimate and the realisation of ⇤ i.e. minimise,

MISE(h) = E
⇥
(⇢̂h(x)� ⇤(x))

2
⇤
, (6.13)

where the expectation is with respect to both ⇤ and the process X. By the assumption of

stationarity MISE(h) does not depend on x and so without loss of generality x can be taken

to be 0 [Diggle, 2014]. Additionally under a box kernel, i.e. ⇢̂h(x) = NX(BRd(x, r))/(⇡h2)

it can be shown that [Diggle, 2014],

MISE(h) = ⇢(2)(0) +
⇢(1� 2⇢K(h))

⇡h2
+

1

⇡2h4

Z

BRd (0,h)

Z

BRd (0,h)
⇢(2)(||x� y||)dydx, (6.14)

where the double integral can be converted into a single integral using the substitution

z = x � y, and converting to polar coordinates (see for example Diggle [2014], Cronie and

Van Lieshout [2018]) to give

MISE(h) = ⇢(2)(0) +
⇢(1� 2⇢K(h))

⇡h2
+

⇢2

⇡2h4

Z
2h

0

⇣
2h2 cos�1

⇣ s

2h

⌘
�

s

2

�
4h2t2

�1/2⌘
K(dt).

Since the first term does not depend on h it can be ignored and thus in order to optimise

the MISE we need estimates of ⇢ and Ripley’s K-function.

Now if we are working on a Riemmanian manifold this approach does not easily translate,

primarily due to the fact that notions of stationarity and isotropy are ill-defined on such

surfaces [Ward et al., 2021b]. This means that the assumption of a stationary and isotropic

Cox process, which the MISE in Rd is built on is inapproriate for point processes on M.

Importantly this means that the MISE in Equation 6.13 is not independent of x, and so
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x = 0 cannot be used without loss of generality. Instead one could use

MISE(h) =

Z

M
E
⇥
(⇢̂h(x)� ⇤(x))

2
⇤
dvol(x). (6.15)

If we suppose that X is Cox process which has constant mean function and covariance

function which only depends through dg(x,y) then again X has constant intensity function

and a second order intensity function which only depends on the geodesic distance between

the points. If we then take the integrand of Equation 6.15 it can be shown, using standard

conditioning arguments that,

E
⇥
(⇢̂h(x)� ⇤(x) )

2
⇤
= ⇢(2)(0) +

⇢

Vol(BM(x, h))

+
2

Vol(BM(x, h))

Z

BM(x,h)
⇢(2)(dg(x,y)) dvol(y)

+
1

Vol2(BM(x, h))

Z

BM(x,h)

Z

BM(x,h)
⇢(2)(dg(y, z)) dvol(y) dvol(z).

(6.16)

Unlike the Euclidean counterpart given by Equation 6.14, simplifications for the two integrals

are not easily obtainable due to the di�culties imposed by the geometry of M. This means

that Equation 6.16 cannot be easily be simplified into a function depending on some type of

Ripley’s K function as in the Euclidean case, moreover from the discussion given by Ward

et al. [2021b], functional summary statistics defined directly on M are not easily obtainable.

One could potentially impose structure on ⇢(2) by assuming some parametric model for

the Cox process, for example supposing it is a Log Gaussian Cox process defined by some

parameters ✓. Although a potential solution it imposes further restrictions which may not be

appropriate in practice. Moreover the minimisation of Equation 6.15 would then also need

to be made over both h and ✓ adding to the required computational resources. Irrespective

of how to deal with ⇢(2), there is an additional integral over M which needs calculating,

compare Equations 6.14 and 6.15, adding further to the complexity of using state estimation

for bandwidth selection on Riemannian manifolds. For these reasons state estimation is not

considered further.

Another approach to bandwidth selection is given by Cronie and Van Lieshout [2018] who

utilise Campbell’s Theorem in order to select an appropriate bandwidth. Unlike the two

previous methods discussed, Cronie and Van Lieshout [2018]’s approach does not rely on

any model assumptions and the optimisation criteria derived by Cronie and Van Lieshout

[2018] is free of any integrals and thus benefits from faster computation. Translated into the

Riemannian setting, Cronie and Van Lieshout [2018] noticed that by setting f(x) = 1/⇢(x)
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in Campbell’s Theorem, Equation 6.1, and assuming that the intensity function is positive

everywhere onM then
P

x2X ⇢�1(x), also known as the Stoyan & Grabarnik statistic [Stoyan

and Grabarnik, 1991], is an unbiased estimator of Vol(W ) in the event that ⇢ is known. More

often the not, ⇢ is not available and instead Cronie and Van Lieshout [2018] replace ⇢ with

⇢̂h and select the value of h which minimises

F (h) = (T (⇢̂h)�Vol(W ))2 , (6.17)

where T (⇢̂h) =
P

x2X ⇢̂�1
h

(x). From Equation 6.17 it is clear that there are computational

advantages over minimising Equation 6.12: (1) no integration is required and, (2) a compa-

rable number of calculations are conducted to evaluate the first term of both equations since

they both involve a double sum over a similar number of elements.

Cronie and Van Lieshout [2018] discuss continuity and limit properties of T on Rd which are

important in order to optimise F . Before extending this to Riemannian manifolds we first

discuss some properties of the edge correction factor given by Equations 6.8 and 6.9. First

we show that it is continuous in h.

Lemma 6.4.1. For the Gaussian kernel (see Equation 6.10), the edge correction factors as

defined by Equations 6.8 and 6.9 are continuous for all h 2 (0,1).

Proof. See Appendix D.3. See Cronie and Van Lieshout [2018] for a proof in Rd.

As an immediate result of Lemma 6.4.1 it can easily be shown that Equation 6.12 is con-

tinuous in h for a Gaussian kernel since (1/hd)k(�dg(x,y)/h)ch(x,y)�1 is continuous and

hence so is ⇢̂h. The logarithm is a continuous function and so the composition of log and

⇢̂h is also continuous. The second term of Equation 6.12 with the integral can be shown to

be continuous in h by using the same argument as given in Lemma 6.4.1 and hence `cv is

continuous in h.

The following theorem extends Theorem 1 of Cronie and Van Lieshout [2018] to Riemannian

manifolds in the specific case of a Gaussian kernel given by Equation 6.10.

Theorem 6.4.2. Let X be a point process over a Riemannian manifold (M, g) and is

observed through some bounded window W ✓ M. Disregard the trivial case X \W is the

empty set. Suppose the same restrictions apply to (M, g) as in Lemma D.1.1. Then T is a

continuous function in h 2 (0,1) when ch(x,y) = 1 or given by Equations 6.8 and 6.9. We
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also obtain the following limit cases,

T (⇢̂h)! 0 as h! 0,

for ch(x,y) = 1 and ch(x,y) given by Equations 6.8 and 6.9 whilst,

T (⇢̂h)!1 as h!1,

for ch(x,y) = 1 and,

T (⇢̂h)! Vol(W ) as h!1,

for ch(x,y) given by Equations 6.8 and 6.9.

Proof. See Appendix D.4. See Cronie and Van Lieshout [2018, Theorem 1] for a proof in

Rd.

From Theorem 6.4.2 we have that when ch(x,y) = 1 there exists a minima for F given by

Equation 6.17, whilst if edge correction is used a minimum occurs when h ! 1, which is

akin to the Euclidean approach considered by Cronie and Van Lieshout [2018], and thus,

like Cronie and Van Lieshout [2018] we suggest to optimise F with no shape correction, but

to include the edge correction term after a bandwidth has been selected.

6.5 Simulation study

We explore how the cross validation critera [Baddeley et al., 2015] compares to Cronie’s crite-

ria [Cronie and Van Lieshout, 2018] for bandwidth selection on manifolds. More precisely we

shall run simulations on ellipsoids of varying dimensions embedded within R3 endowed with

the canonical metric. To calculate the geodesics on the ellipsoids we use the GeographicLib

MATLAB package [Karney, 2017] which implements the algorithms of Karney [2012]. We will

suppose that we have viewed the entire point pattern, i.e. W = M which is possible since M

is compact, and generate 100 realisations of each model. It should be noted that even though

we have completely observed the process over M in these simulations this does not implic-

itly mean the edge correction terms become 1 as they would in the hypothetical scenario

of a completely observed point pattern in Rd. Thus the edge corrections used on compact

Riemannian manifolds serve an additional purpose, not only correcting for events that may

have occurred outside the observation window but also to account for the geometrical con-
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straints imposed by the space; this is similar to what is encountered for point processes on

linear networks Moradi et al. [2018], McSwiggan et al. [2017], Rakshit et al. [2019]. Follow-

ing Cronie and Van Lieshout [2018], we will select the bandwidth using no edge correction,

i.e. ch(x,y) = 1 where we run a gridsearch over for h on the set {0.01, 0.02, . . . , 4.99, 5.00}.

Then, to assess quality we will calculate the average ISE (see Equation 6.5) using the selected

bandwidths and applying local edge correction, i.e. using Equation 6.9. For the purpose

of computational speed we approximate the ISE as a Riemannian sum. More precisely, we

use the inverse of the local chart x = (a sin(✓) cos(�), b sin(✓) sin(�), c cos(✓)), denoting it

 , to map the integral over M to an integral over R2 where ✓ 2 [0,⇡],� 2 [0, 2⇡] thus

det(gij) = sin2(✓)a2b2(1� (1� c2/a2) sin(✓)2 cos(�)2 � (1� c2/b2) sin(✓)2 sin(�)2) and so,

ISE(⇢̂h) =

Z

M
(⇢̂h(x)� ⇢(x))

2 dvol(x)

=

Z
⇡

0

Z
2⇡

0

�
⇢̂h( 

�1(✓,�))� ⇢( �1(✓,�))
�2q

det(gij) d✓d�. (6.18)

We then equidistantly partition [0,⇡] and [0, 2⇡] into 100, e.g. [0,⇡] = ([99

i=1
[(i � 1)⇡/100,

i⇡/100)) [ [99⇡/100,⇡] and thus we can form a Riemannain sum over these partitions to

approximate the ISE as

ISE(⇢̂h) ⇡
100X

i,j=1

✓
⇡

100

2⇡

100

◆
u(✓i,�j),

where ⇡/100 · 2⇡/100 corresponds to the area of each partition, which is the same for all, u

is given by the integrand of Equation 6.18 and ✓i = (2i� 1)⇡/200 and �j = (2i� 1)2⇡/200

for i, j = 1, . . . , 100. This same idea is used to evaluate the integral in the cross validation

criteria, see Equation 6.12. In order for the results to be comparable we divide the average

ISE by the expected number of points over M. In order to calculate the expected number

of points we can again use the same local chart applied to
R
M ⇢(x) dvol(x) and use MATLAB’s

integral2 function to calculate the double integral numerically.

In the simulation conducted by Cronie and Van Lieshout [2018] they consider homogeneous,

linear and modulated intensities, we follow a similar study setup considering homogeneous,

log-linear and log-modulation intensity functions in the Poisson and clustered case whilst

linear and modulated intensities are used for the regular case which is based in location

dependent thinning. We consider the log counterparts of those consider by Cronie and Van

Lieshout [2018] to ensure positivity of the intensity function since our space admits negative

elements, for example if we consider the 2-dimensional sphere then (�1, 0, 0)T 2 S2. We shall
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consider three ellipsoids with axis lengths adjusted in order to ensure their Riemmanian

volume measure, i.e. their surface area, is 1. First we consider the 2-dimensional sphere

with radius r = (1/(4⇡))1/2, the ellipsoids with axis length a = b = 0.8 · (1/(4⇡))1/2 and

a = b = 0.6·(1/(4⇡))1/2 along the x- and y-axis with the axis length along the z-axis adjusted

to ensure unit surface area; the former ellipsoid shall be referred to as Ellipsoid 1 and the

latter Ellipsoid 2 in the upcoming simulation studies.

Overall, from our simulation study we have been able to replicate the results of Cronie and

Van Lieshout [2018] but in the context of a Riemannian manifold instead of the typical

Rd structure. Broadly speaking the cross-validation selection critera performs substantially

better, in terms of ISE, compared to Cronie’s selection criteria Cronie and Van Lieshout

[2018] when the true process is Poisson. In setting of more clustered processes, and more

precisely LGCP processes, we see that Cronie’s approach perform significantly better and for

processes that exhibit more regular behaviour we see have more mixed results where cross-

validation outperforms Cronie’s approach in general with some specific scenarios indicating

that Cronie’s method is better. In the regular case though the di↵erence in the performance

is marginal.

6.5.1 Poisson processes

As a base case we consider Poisson processes with the following intensity functions,

⇢1(x) = ⇢ homogeneous (6.19)

⇢(2)(x) = exp(3 +Ax) log-linear (6.20)

⇢3(x) = exp(2 +A cos(8y)) log-modulation (6.21)

where x = (x, y, z)T 2 M and ⇢, A 2 Rd. For the homogeneous case we shall consider

⇢ 2 {50, 150, 300}, the log-linear case A 2 {10, 18, 22} and the log-modulation case A 2

{3, 4, 5}. These cases allow us to investigate the properties of the two bandwidth selections

in the presences of a low, medium and high expected number of points over M. Figure 6.1

displays typical simulates across the three ellipsoids for when ⇢ = 150 in the homogeneous

case, A = 18 in the log-linear case and A = 4 in the log modulation case (see Equations

6.19-6.21).

The results of our Poisson simulation study are presented in Table 6.1. As expected, since

the true process is Poisson the cross-validation selection criteria consistently outperforms

Cronie’s selection criteria due to the Poisson assumption in its construction.
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Figure 6.1: Examples of simulated Poisson processes on di↵erent ellipsoids. Top row: homogenoeus Poisson

process with ⇢ = 150, middle row: log-linear Poisson process with A = 18, and bottom row: log-modulated

Poisson process with A = 4. Left column: sphere with r = (1/(4⇡))1/2, middle column: ellipsoid with a = b =
0.8 · (1/(4⇡))1/2, and right column: with ellipsoid with a = b = 0.6 · (1/(4⇡))1/2. Yellow on the surface indicates

high intensity whilst the blue low intensity. Please note these images are not to scale: this refers to both the

axes lengths and the intensities across the di↵erent ellipsoids and processes.
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Shape Intensity Type Process Parameters E[NX(M)]
Average
ISE - CV

Average
ISE - Cronie

Sphere Homogeneous ⇢ = 50 50.0000 4.0526 4.7053

Sphere Homogeneous ⇢ = 150 150.0000 4.9511 7.2912

Sphere Homogeneous ⇢ = 300 300.0000 4.9232 10.2879

Sphere Log-linear A = 10 59.5714 15.8867 60.4332

Sphere Log-linear A = 18 317.2406 51.9008 943.6023

Sphere Log-linear A = 22 802.2368 98.4829 3236.1471

Sphere Log-modulated A = 3 49.9820 21.8054 39.8503

Sphere Log-modulated A = 4 116.1563 40.0078 125.9735

Sphere Log-modulated A = 5 280.1509 70.9938 381.0162

Ellipsoid 1 Homogeneous ⇢ = 50 50.0000 4.0749 4.5990

Ellipsoid 1 Homogeneous ⇢ = 150 150.0000 4.7520 7.4986

Ellipsoid 1 Homogeneous ⇢ = 300 300.0000 5.6133 10.3270

Ellipsoid 1 Log-linear A = 10 43.5999 11.8202 29.1954

Ellipsoid 1 Log-linear A = 18 153.7524 33.6446 309.6516

Ellipsoid 1 Log-linear A = 22 313.6824 49.4227 862.5868

Ellipsoid 1 Log-modulated A = 3 58.6030 20.4560 32.0236

Ellipsoid 1 Log-modulated A = 4 135.9275 40.0391 105.2776

Ellipsoid 1 Log-modulated A = 5 326.7017 69.5342 328.4795

Ellipsoid 2 Homogeneous ⇢ = 50 50.0000 4.2731 4.4250

Ellipsoid 2 Homogeneous ⇢ = 150 150.0000 5.8025 7.8692

Ellipsoid 2 Homogeneous ⇢ = 300 300.0000 6.5221 10.5295

Ellipsoid 2 Log-linear A = 10 32.3422 11.0831 15.5067

Ellipsoid 2 Log-linear A = 18 75.0547 21.9043 98.0805

Ellipsoid 2 Log-linear A = 22 123.1302 34.1756 225.4659

Ellipsoid 2 Log-modulated A = 3 74.8816 20.5229 23.4277

Ellipsoid 2 Log-modulated A = 4 175.6577 37.2837 72.6545

Ellipsoid 2 Log-modulated A = 5 423.0580 62.9209 235.9694

Table 6.1: Average ISE for Poisson simulation study. The sphere has radius (1/(4⇡))1/2. For Ellipsoid 1 and 2

the minor axis length along the x- and y-axis are the same and 0.8·(1/(4⇡))1/2 and 0.6·(1/(4⇡))1/2 respectively

whilst the minor axis length along the z-axis is adjusted to ensure unit surface area of the ellipsoid. The columns

for intensity type and process parameters correspond to Equations 6.19-6.21. The average ISE is divided by the

expected number of points for each process to put them on a comparable scale.
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6.5.2 Log Gaussian Cox processes

Next we explore how the bandwidth selection criteria perform when the underlying process

exhibits aggregative behaviour. In order to do so we shall consider LGCPs. We say that X

is a Cox process if, given some driving random field Z over M, X is a Poisson process with

intensity given by Z; X is then LGCP if Z(x) = exp(U(x)) where U is a GRF over M. The

function U : M 7! R is a GRF if for any n 2 N, x1, . . . ,xn 2 M and a1, . . . , an 2 R then
P

n

i=1
aiU(xi) is a univariate normal. Since our ellipsoids are embedded in R3 in order to

simulate GRFs we first simulate them in R3 and then extract only those elements that lie on

the ellipsoid, i.e if U is a GRF over R3 then on our ellipsoid our GRF is U 0 = {U(x) : x 2M}:

this simulation approach is similar to that considered by Cronie et al. [2020] where, in their

simulation study, they simulate a LGCP over R2 and then only extract those elements that

lie on the linear network of interest. Letting U be a GRF over M with mean function

µ : M 7! R and covariance function c : M⇥M 7! R, then the intensity function of a LGCP

X with driving random field exp(U) is

⇢(x) = exp

✓
µ(x) +

c(x,x)

2

◆

[Møller and Waagepetersen, 1998]. In this simulation study we will set the covariance func-

tion to be exponential, that is

c(x,y) = �2 exp

 
�

p
(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2

�2

!
,

where x = (x1, x2, x3)T , y = (y1, y2, y3)T , �2 2 {2 log(2), 2 log(5)} and �2 2 {1/10, 1/50}.

Our intensity function will be ⇢(x) = exp
�
µ(x) + �2/2

�
. We consider three mean functions

for the GRF in our simulations,

µ1(x) = log(⇢) homogeneous (6.22)

µ2(x) = 4 + 3x log-linear (6.23)

µ3(x) = 6 cos(8y)� 1 log-modulation, (6.24)

where x = (x, y, z)T , with ⇢ 2 {10, 50}. Examples of these processes are shown in Figure

6.2.

Table 6.2 displays the results of our simulation study for di↵ering LGCPs across di↵erently

shaped ellipsoids. From this study we can see that Cronie’s bandwidth selection procedure
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[Cronie and Van Lieshout, 2018] is consistently better then using cross-validation. The

only case when the cross-validation approach outperforms Cronie’s method is for the log-

modulated study with (�2, �2) = (2 log(2), 1/10) for the Sphere and Ellipsoid 1. This could

be due to the balance between the fixed and random e↵ect of LGCP. More precisely the

mean function, representing the fixed e↵ect, dominates the GRF, representing the random

e↵ect and so, for this specific set of parameters, the LGCP is more like a Poisson process

with intensity exp(µ(x)) which explains why cross-validation outpeforms Cronie’s approach

in this experiment. We also note that our findings in this simulation study are comparable

to the one conducted by Cronie and Van Lieshout [2018]. That is with a decreasing range

of interaction (i.e. decressing �2) we typically see smaller ISE, whilst a larger variablity (i.e.

increasing �2) sees larger ISE.

6.5.3 Strauss processes

Next we analyse the performance of these selection criteria for processes that exhibit more

regular behaviour, more precisely how accurately these kernel intensity estimators recover

the intensity of a Strauss process. Strauss, and more broadly Markov, processes have been

discussed on general di↵erentiable manifolds in Jensen and Nielsen [2001] but with the pri-

mary focus being Rd. Letting Z be the unit rate Poisson over M we define a Strauss process

to be the point process with density

f(x) / �nx(M) exp

0

@�↵
X

{x,y}2x

[dg(x,y)  R]

1

A (6.25)

for x 2 Nlf , nx(M) is the cardinality of x in M and �,↵, R > 0, with respect to Z and

where the sum is taken such that x 6= y. With ↵ > 0 we ensure that the density is integrable

(see e.g. Møller and Waagepetersen [2003]). The parameter R controls the range of the

interaction between events whilst ↵ dictates how strong the repulsive e↵ect between events

is enforced in the Strauss process.

We define the Papangelou conditional intensity as �(x, x) = f(x [ x)/f(x) for x 2 M and

x 2 Nlf [Møller and Waagepetersen, 2003] and so for the Strauss process we have,

�(x, x) =
f(x [ x)

f(x)
= � exp

 
�2↵

X

y2x
[dg(x,y)  R]

!
,

notice that the Papangelou conditional intensity does not depend on the normalising con-
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Figure 6.2: Examples of simulated LGCP on di↵erent ellipsoids, all simulated with (�1
, �

2) = (2 log(2), 1/10)
and the intensities shown are those from the realisation of the random field, U , not the true intensity function

of the process and not exp(U). Top row: homogenoeus LGCP with ⇢ = 50, middle row: log-linear LGCP

with intensity function defined by Equation 6.23, and bottom row: log-modulated LGCP with intensity func-

tion defined by Equation 6.24. Left column: sphere with r = (1/(4⇡))1/2, middle column: ellipsoid with

a = b = 0.8 · (1/(4⇡))1/2, and right column: with ellipsoid with a = b = 0.6 · (1/(4⇡))1/2. Yellow on the sur-

face indicates high intensity whilst the blue low intensity. Please note these images are not to scale: this refers

to both the axes lengths and the intensities across the di↵erent ellipsoids and processes.
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Shape Intensity Type Process Parameters E[NX(M)]
Average
ISE - CV

Average
ISE - Cronie

Sphere Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/10) 20.0000 17.0929 8.0739

Sphere Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/10) 100.0000 97.5720 34.3151

Sphere Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/10) 50.0000 244.3839 41.9379

Sphere Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/10) 250.0000 1919.7599 204.3011

Sphere Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/50) 20.0000 4.6832 3.6429

Sphere Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/50) 100.0000 24.6142 9.6393

Sphere Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/50) 50.0000 52.5429 10.8179

Sphere Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/50) 250.0000 783.4225 54.0848

Sphere Log-linear (�
2
, �

2
) = (2 log(2), 1/10) 122.7054 155.1708 48.5685

Sphere Log-linear (�
2
, �

2
) = (2 log(2), 1/50) 122.7054 40.2732 12.4336

Sphere Log-linear (�
2
, �

2
) = (2 log(5), 1/10) 306.7636 1859.7728 213.6367

Sphere Log-linear (�
2
, �

2
) = (2 log(5), 1/50) 306.7636 1959.3217 79.6290

Sphere Log-modulated (�
2
, �

2
) = (2 log(2), 1/10) 68.8620 231.1246 144.9872

Sphere Log-modulated (�
2
, �

2
) = (2 log(2), 1/50) 68.8620 96.8251 120.0373

Sphere Log-modulated (�
2
, �

2
) = (2 log(5), 1/10) 172.1551 3045.9504 495.2031

Sphere Log-modulated (�
2
, �

2
) = (2 log(5), 1/50) 172.1551 1415.2029 326.0981

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/10) 20.0000 23.4645 9.5831

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/10) 100.0000 164.7407 45.1687

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/10) 50.0000 417.4968 72.0366

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/10) 250.0000 3018.0571 348.3341

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/50) 20.0000 5.7675 3.4204

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/50) 100.0000 28.2673 11.8004

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/50) 50.0000 34.3588 9.0967

Ellipsoid 1 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/50) 250.0000 471.2450 40.4640

Ellipsoid 1 Log-linear (�
2
, �

2
) = (2 log(2), 1/10) 118.2890 176.2341 53.5139

Ellipsoid 1 Log-linear (�
2
, �

2
) = (2 log(2), 1/50) 118.2890 40.0890 11.7100

Ellipsoid 1 Log-linear (�
2
, �

2
) = (2 log(5), 1/10) 295.7225 4235.0825 468.0618

Ellipsoid 1 Log-linear (�
2
, �

2
) = (2 log(5), 1/50) 295.7225 680.6555 46.9309

Ellipsoid 1 Log-modulated (�
2
, �

2
) = (2 log(2), 1/10) 80.0582 1054.5760 216.5820

Ellipsoid 1 Log-modulated (�
2
, �

2
) = (2 log(2), 1/50) 80.0582 103.8792 111.3561

Ellipsoid 1 Log-modulated (�
2
, �

2
) = (2 log(5), 1/10) 200.1454 3024.4015 568.7395

Ellipsoid 1 Log-modulated (�
2
, �

2
) = (2 log(5), 1/50) 200.1454 1169.9196 310.1984

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/10) 20.0000 18.3928 10.4260

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/10) 100.0000 93.3750 42.2984

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/10) 50.0000 171.5190 46.0187

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/10) 250.0000 1077.4310 219.4151

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(2), 1/50) 20.0000 6.5671 4.3024

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(2), 1/50) 100.0000 35.9551 13.2055

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (10, 2 log(5), 1/50) 50.0000 50.3529 11.8543

Ellipsoid 2 Homogeneous (⇢,�
2
, �

2
) = (50, 2 log(5), 1/50) 250.0000 495.4170 50.0350

Ellipsoid 2 Log-linear (�
2
, �

2
) = (2 log(2), 1/10) 114.4394 121.6319 52.3291

Ellipsoid 2 Log-linear (�
2
, �

2
) = (2 log(2), 1/50) 114.4394 41.8724 14.2393

Ellipsoid 2 Log-linear (�
2
, �

2
) = (2 log(5), 1/10) 286.0986 1681.8290 297.8267

Ellipsoid 2 Log-linear (�
2
, �

2
) = (2 log(5), 1/50) 286.0986 667.2383 66.6023

Ellipsoid 2 Log-modulated (�
2
, �

2
) = (2 log(2), 1/10) 103.5088 187.4522 129.5535

Ellipsoid 2 Log-modulated (�
2
, �

2
) = (2 log(2), 1/50) 103.5088 100.4447 94.5360

Ellipsoid 2 Log-modulated (�
2
, �

2
) = (2 log(5), 1/10) 258.7721 1320.8154 437.5811

Ellipsoid 2 Log-modulated (�
2
, �

2
) = (2 log(5), 1/50) 258.7721 1373.0900 287.0485

Table 6.2: Average ISE for LGCP simulation study. The sphere has radius (1/(4⇡))1/2. For Ellipsoid 1 and 2

the minor axis length along the x- and y-axis are the same and 0.8·(1/(4⇡))1/2 and 0.6·(1/(4⇡))1/2 respectively

whilst the minor axis length along the z-axis is adjusted to ensure unit surface area of the ellipsoid. The columns

for intensity type and process parameters correspond to Equations 6.22-6.24. The average ISE is divided by the

expected number of points for each process to put them on a comparable scale.
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stant.

This is a natural extension of the Strauss processes from Rd to M by replacing the canon-

ical Euclidean metric with the Riemannian metric over M. Although natural it is worth

noting that the induced distance metric dg is no longer stationary. For example consider Rd

endowed with its canonical metric then for any x,y 2 Rd we have that
p

(x� y)T (x� y) =p
(x+ z� y + z)T (x+ z� y + z) for any z 2 Rd but no such equivalent property holds

more generally over all manifolds, this is a special property of Euclidean spaces. As such a

Strauss process defined by Equation 6.25 is stationary in Rd but for a more general manifold

this may not be the case, moreover it need not even be homogeneous over M. This becomes

an issue when trying to calculate the ISE as we would need to know the true intensity of

the process. We instead approximate the ISE. To do so we note that the intensity of a point

process, X, with Papangelou conditional intensity � is given by ⇢(x) = E[�(x, X)] (see e.g.

[Møller and Waagepetersen, 2003, Proposition 6.2]) and so assuming that we can simulate

our process X we can approximate ⇢ as,

⇢(x) ⇡
1

N

NX

i=1

�(x, Xi), (6.26)

where Xi are point processes with Papangelou conditional intensity �. We can simulate

realisations of X using a spatial birth-death-move Metropolis-Hastings (SBDMMH) algo-

rithm and letting the chain run for a su�ciently long time that the invariant distribution

has been reached [Møller and Waagepetersen, 2003]. We can thus use Equation 6.26 to ap-

proximate ⇢ and thus approximate the ISE. Further to this we can estimate E[NX(M)] as

(1/N)
P

N

i=1
NXi(M) where we have N realisations Xi of our process instead of calculating

the mean number of points using integration as done in the Poisson and LGCP studies. In

order to consider di↵erent forms of inhomogeneity, more then that imposed by the original

Strauss model by previous discussion, we shall independently thin the process using one of

the three following retention probabilities,

p1(x) = 1 pseudo-homogeneous (6.27)

p2(x) =
1 + 3x

1 + 3a
linear (6.28)

p3(x) =
2 + 4 cos(10x)

6
modulation, (6.29)

where x = (x, y, z)T and a is the minor axis length along the x-axis of the ellipsoid. Equation

6.27 in fact refers to the original, unthinned Strauss process and we refer to it as pseudo-
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homogeneous due to previous discussion; that on arbitrary Riemannian manifolds the process

is not necessarily homogeneous. Examples of these processes are given in Figure 6.3. For

our simulation study we will set � = 400, ↵ 2 {0.01, 0.1} and R 2 {0.1, 0.2}, whilst in order

to construct the unbiased estimate ⇢ as in Equation 6.26 we set N = 10000. Trace plots of

NX(M) and
P

{x,y}2X [dg(x,y)  R] from the SBDMMH algorithm showed that the e↵ect

of the initial distributions disappears after around 5000 iterations typically. We therefore

run the chain with a burn-in of 100000 and then subsample the chain every 1000 from then

on.

Results for the Strauss process are given in Table 6.3. From these results we see varying

results with cross-validation outperforming Cronie’s method [Cronie and Van Lieshout, 2018]

in general, in particular it has improved performance in the pseudo-homogeneous case and

modulated settings, whilst Cronie’s method seems to give better results when the intensity

function is linear. Even with these di↵erences in performance they are extremely marginal,

especially in the linear setting. Typically, it also appears that as ↵ or R are increased there is

a reduction in average ISE, but this should be examined under some suspicion as increasing

the values of these parameters results in a reduction of the expected number of points and

we have observed that the average ISE also drops when this occurs.

6.6 Discussion

In this chapter we have extended the theory of nonparametric kernel intensity estimation

from a d-dimensional Euclidean space to a d-dimensional Riemannian manifold. We have

shown that many of the desirable properties from Euclidean space extend and have adapted

two bandwidth selection criteria to this scenario drawing comparable results to their Eu-

clidean counterparts in a simulation study [Cronie and Van Lieshout, 2018]. Based on the

results of the simulation we suggest using Cronie and Van Lieshout [2018] criteria over the

cross validation criteria unless the point process exhibits significant regularity: conclusions

similar to that of Cronie and Van Lieshout [2018]. In the final chapter we discuss how

functional summary statistics can be constructed for multivariate point patterns on convex

shapes. Methodology developed here is key to estimating the intensity function and subse-

quently used as a plug-in estimator for the summary statistics of multivariate point processes

on convex shapes.
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Figure 6.3: Examples of simulated Strauss processes on di↵erent ellipsoids all with parameters (�,↵, R) =
(400, 0.1, 0.1). Top row: pseudo-homogenoeus Strauss process (for the intensity plot we have simply taken the

mean over the grid of points since the intensity is nearly equivalent everywhere), middle row: log-linear Strauss

process (see Equation 6.28), and bottom row: log-modulated Strauss process (see Equation 6.29). Left column:
sphere with r = (1/(4⇡))1/2, middle column: ellipsoid with a = b = 0.8 · (1/(4⇡))1/2, and right column:
with ellipsoid with a = b = 0.6 · (1/(4⇡))1/2. Yellow on the surface indicates high intensity whilst the blue

low intensity. Please note these images are not to scale: this refers to both the axes lengths and the intensities

across the di↵erent ellipsoids and processes.
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Shape Intensity Type Process Parameters E[NX(M)]
Average
ISE - CV

Average
ISE - Cronie

Sphere Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.1) 326.9181 4.1859 10.0066

Sphere Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.1) 158.8051 1.9340 5.5295

Sphere Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.2) 230.4917 3.0766 6.8795

Sphere Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.2) 74.0678 2.6821 4.3987

Sphere Linear (�,↵, R) = (400, 0.01, 0.1) 177.1803 6.8957 5.9619

Sphere Linear (�,↵, R) = (400, 0.1, 0.1) 85.9409 4.5972 4.4432

Sphere Linear (�,↵, R) = (400, 0.01, 0.2) 124.8093 5.1109 4.5399

Sphere Linear (�,↵, R) = (400, 0.1, 0.2) 40.1244 5.3121 4.8132

Sphere Modulated (�,↵, R) = (400, 0.01, 0.1) 147.6968 32.9222 91.9720

Sphere Modulated (�,↵, R) = (400, 0.1, 0.1) 71.8542 20.9617 50.4006

Sphere Modulated (�,↵, R) = (400, 0.01, 0.2) 104.1532 27.3495 65.5846

Sphere Modulated (�,↵, R) = (400, 0.1, 0.2) 33.4601 18.4170 30.4539

Ellipsoid 1 Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.1) 327.0679 3.9288 9.1548

Ellipsoid 1 Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.1) 158.9274 2.0718 5.5708

Ellipsoid 1 Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.2) 230.5472 3.5758 7.4606

Ellipsoid 1 Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.2) 74.0699 2.6184 4.4366

Ellipsoid 1 Linear (�,↵, R) = (400, 0.01, 0.1) 194.9879 6.7941 6.2850

Ellipsoid 1 Linear (�,↵, R) = (400, 0.1, 0.1) 94.6502 4.9810 4.8639

Ellipsoid 1 Linear (�,↵, R) = (400, 0.01, 0.2) 137.4484 6.8035 6.0505

Ellipsoid 1 Linear (�,↵, R) = (400, 0.1, 0.2) 44.2165 5.2622 4.9809

Ellipsoid 1 Modulated (�,↵, R) = (400, 0.01, 0.1) 176.8703 19.3731 41.3491

Ellipsoid 1 Modulated (�,↵, R) = (400, 0.1, 0.1) 86.0105 13.6570 23.8703

Ellipsoid 1 Modulated (�,↵, R) = (400, 0.01, 0.2) 125.0499 17.8348 30.9726

Ellipsoid 1 Modulated (�,↵, R) = (400, 0.1, 0.2) 40.1884 12.7997 16.1993

Ellipsoid 2 Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.1) 327.0782 4.8086 9.7270

Ellipsoid 2 Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.1) 158.9183 2.6908 5.7366

Ellipsoid 2 Pseudo-homogeneous (�,↵, R) = (400, 0.01, 0.2) 230.5326 4.2225 7.6968

Ellipsoid 2 Pseudo-homogeneous (�,↵, R) = (400, 0.1, 0.2) 74.1534 3.9902 5.2951

Ellipsoid 2 Linear (�,↵, R) = (400, 0.01, 0.1) 217.0637 8.1579 7.8578

Ellipsoid 2 Linear (�,↵, R) = (400, 0.1, 0.1) 105.4746 5.4402 5.3606

Ellipsoid 2 Linear (�,↵, R) = (400, 0.01, 0.2) 152.8796 7.1587 6.7224

Ellipsoid 2 Linear (�,↵, R) = (400, 0.1, 0.2) 49.1915 5.8574 5.5281

Ellipsoid 2 Modulated (�,↵, R) = (400, 0.01, 0.1) 228.2123 15.8179 16.1999

Ellipsoid 2 Modulated (�,↵, R) = (400, 0.1, 0.1) 111.0509 11.6062 10.7698

Ellipsoid 2 Modulated (�,↵, R) = (400, 0.01, 0.2) 161.3947 13.6333 13.1285

Ellipsoid 2 Modulated (�,↵, R) = (400, 0.1, 0.2) 52.0897 9.9838 9.1551

Table 6.3: Average ISE for Strauss simulation study. The sphere has radius (1/(4⇡))1/2. For Ellipsoid 1 and 2

the minor axis length along the x- and y-axis are the same and 0.8·(1/(4⇡))1/2 and 0.6·(1/(4⇡))1/2 respectively

whilst the minor axis length along the z-axis is adjusted to ensure unit surface area of the ellipsoid. The columns

for intensity type and process parameters correspond to Equations 6.27-6.29. The average ISE is divided by the

expected number of points for each process to put them on a comparable scale.
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7
Summary statistics for multitype point

patterns on convex surfaces

In this chapter we discuss our work Ward et al. [2021c]. We extend the analysis of multivariate

point patterns from Euclidean space to the sphere and then towards convex shapes, with the

primary focus being to construct functional summary statistics capable of providing evidence of

dependence between components of an observed multitype point pattern. By using the Mapping

Theorem we can shift analysis of a point process from their original metric space to the sphere

where we can benefit from rotational symmetries in order to construct functional summary statis-

tics, such as the cross K�function, in order to detect statistical interactions between components

of the process. We explore both homogeneous and inhomogeneous processes and their ability to

determine attraction and repulsion in a number of examples on sphere and ellipsoids.

7.1 Introduction

Analysis of multivariate point patterns has focused predominantly on those that arise on a

Euclidean space with a rich literature available for exploratory data analysis and modelling

fitting [Møller and Waagepetersen, 2003, Baddeley et al., 2015, Chiu et al., 1995]. In many

applications multivariate point patterns frequently arise on surfaces that are not adequately

modelled by the geometry of a Euclidean space. For example, in microbiology, researchers are

interested in the spatial relationship between di↵erent cellular membrane bound molecules

where the cells are more appropriately modelled by ellipsoids or capsules. In such applica-

tions current methodologies that assume the process is Euclidean would be erroneous as it
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does not respect the underlying geometry with which the point process resides.

Furthermore, one may be tempted to simply exchange the Euclidean metric for a metric that

respects the geometry of the original space, for example the distance of the shortest path

between any two points lying on the surface commonly: the geodesic distance. Although

intuitive this could lead to an improper theoretical treatment of the underlying process.

This idea is explored by Ward et al. [2021b] in the setting of univariate point patterns

and constructing functional summary statistics for Poisson processes. In their work they

argue that simply substituting the Euclidean metric for a more appropriate one is not a

su�cient solution to testing for CSR. This arises from the fact that the original space may

not present an infinite number of isometries which are necessary to have analogous notions of

distributional invariance such as stationarity and isotropy and hence well-defined summary

statistics cannot be easily constructed. This challenge is overcome by Ward et al. [2021b]

by using the Mapping Theorem Kingman [1993] to construct summary statistics for Poisson

processes, such as Ripley’s K-function Ripley [1977]. This issue is also encountered for point

patterns on linear networks where the irregularity of the geometry imposed by the space

requires special consideration when handling point processes observed on such structures

Ang et al. [2012], Rakshit et al. [2017].

These issues are also apparent in the multivariate setting where lacking notions of stationarity

and isotropy can lead to improper theoretical treatment. A more practical issue would

be how to sample replicates from a null hypothesis of independence when the process is

homogeneous on the convex space. Consider, initially, the typical example of testing for

statistical correlation between components of a bivariate pattern in R2. Under stationarity

a popular approach is to use the toroidal shift method of Lotwick and Silverman [1982] to

draw simulates under the null hypothesis of independence. These are then used to construct

functional summary statistics which are compared against the functional summary statistic

constructed from the observed pattern. Now suppose one observes a bivariate point pattern

on some surface such that it is homogeneous. Notice that to correctly implement the method

of Lotwick and Silverman [1982] it is implicitly assumed that there exists a transformation

from the original space to a torus such that the mapping induces a process that has constant

intensity function; this need not be the case for arbitrary closed surface. More precisely,

in general it may not be possible to map a point process from an arbitrary convex shape

to a torus (or some other shape that is equipped with a set of isomteries) such that the

mapped process has a constant intensity function as is the case for point patterns observed

in a rectangular window of R2. Therefore methodology akin to the toroidal shift of Lotwick

and Silverman [1982] is not trivially extendable to processes on asymmetric surfaces.
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Limited research has been conducted in understanding multivariate point processes outside

of Rd. In the univariate setting there is extensive work for analysing point patterns on

the sphere including Robeson et al. [2014], Lawrence et al. [2016], Møller and Rubak [2016],

Cuevas-Pacheco and Møller [2018] and linear networks Ang et al. [2012], Rakshit et al. [2017],

McSwiggan et al. [2017], Moradi et al. [2018], Rakshit et al. [2019], whilst univariate analysis

outside of these spaces has been considered by Ward et al. [2021b]. The work of Jun et al.

[2019] presents an approach to modelling multivariate point processes on a sphere using

multivariate log Gaussian Cox processes (LGC processes): their work revolves around the

analysis of rainfall on a global scale.

In this chapter we outline how exploratory data analysis can be conducted for multitype

point processes on the surfaces of bounded shapes in R3 with particular focus on detecting

statistical interactions between components of the process. Section 7.2 outlines the prelim-

inary material and notation used for the remainder of this chapter. Section 7.3 describes

briefly how statistical relationships between components of a multivariate pattern can be

detected on the sphere whilst Section 7.5 uses the foundations built in Section 7.3 to anal-

yse multivariate processes on more general surfaces in R3. In both Sections 7.3 and 7.5 we

demonstrates our approach on spheres and ellipsoids respectively for processes which exhibit

independence, attractiveness and regularity between components.

7.2 Preliminaries

In this section we outline the necessary spatial theory and notation used throughout this

chapter and follows a similar framework to Cronie and van Lieshout [2016], Iftimi et al.

[2019]. We refer the reader to Section 4.1 for the framework of the geometry considered in

this chapter. Furthermore, we can consider multitype point patterns as a special case of

marked point processes and therefore develop the theory under this more general setting.

7.2.1 Marked Point Processes

Following the notation of Møller and Waagepetersen [2003], we define �D(x) as the surface

measure of the surface of the convex shape D, which is endowed with its geodesic distance

and Borel �-algebra, B(D). Let M be a Polish space equipped with its Borel �-algebra

B(M). Define the ground process Xg to be a univariate locally finite simple (that is points

do not coincide) point process on D and then, informally, if for each point xi 2 Xg we assign

a mark mi the resulting process X is said to be a marked point process on D with mark space
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M. More precisely, let B(D⇥M) be the Borel �-algebra on the product space of D and M

and define Nlf = {x ⇢ D⇥M : |x\A| <1 for all bounded A 2 B(D⇥M)}. Define N to be

the �-algebra generated by the sets {x 2 Nlf : |x \A| = m} for all bounded A 2 B(D⇥M)

and m 2 N. A marked point process on D with mark space M is a measurable mapping

from some probability space (⌦,F ,P) into the measurable space (Nlf ,N ). The special case

of multitype point processes arises when M is finite, i.e. M = {1, 2, . . . , k} for k > 0. Let

M ✓M then we denote XM = {(x,m) 2 X : m 2M}.

In order to integrate over D⇥M we require some reference measure over (D⇥M,B(D⇥M)).

For this purpose we shall take the product measure �D ⌦ ⌫ to be our reference measure

where ⌫ is some suitable chosen reference measure on the mark space. Examples of ⌫

can be probability measures over compact subspaces of R or a counting measure when

M = {1, 2, . . . , k}, k a positive integer, further details can be found in e.g. Chiu et al. [1995],

Daley and Vere-Jones [2003]. When well defined we can write (�D⌦⌫)(D,M) = �D(D)⌫(M)

where D 2 B(D) and M 2 B(M).

Let A = D ⇥M 2 B(D ⇥M), then we define NX(A) = NX(D ⇥M) to be the counting

measure of X, i.e.

NX(D ⇥M) =
X

(x,m)2X

[(x,m) 2 D ⇥M ].

That is, NX counts the number of points in X with spatial location lying in B and mark M .

The expectation of NX is denoted the intensity measure: µ(A) = µ(D⇥C) = E[NX(D⇥M)].

Throughout this paper we shall make the further assumption that µ is absolutely continuous

with respect to �D ⌦ ⌫, then by the Radon-Nikodyn theorem there exists a unique density

⇢ : D⇥M 7! R+ such that

µ(D ⇥M) =

Z

D

Z

M

⇢(x,m)�D(dx)⌫(dm),

with ⇢ denoting the intensity function of X. We note that by construction the ground

process of X, Xg, has intensity measure µg(D) = µ(D⇥M) for D ⇢ D and so for any fixed

M ⇢M we have that µ(D ⇥M)  µ(D ⇥M) = µg(D). Hence µ is absolutely continuous

with respect to µg and therefore for any fixed M ⇢M we have

µ(D ⇥M) =

Z

B

Kx(M)µg(dx).

Here Kx is a probability measure and can be interpreted as the probability of a point x

having a mark in M given that x is an event of Xg. Further, by assumption that µ is
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absolutely continuous with respect to �D ⌦ ⌫ we have that µg is absolutely continuous with

respect to �D and thus there exists intensity function ⇢g : D 7! R+. If we also assume that

Kx is absolutely continuous with respect to ⌫ then we have

µ(D ⇥M) =

Z

B

Z

M

fx(m)⇢g(x)�D(dx)⌫(dm),

where fx is the density of Kx with respect to ⌫. Hence we have the identity ⇢(x,m) =

fx(m)⇢g(x).

We can define higher order intensity functions as densities of factorial moment measures

with respect to the n-fold reference measure (�D ⌦ ⌫)n. The nth-order factorial moment

measure, ↵(n), of X is defined as

↵(n)(B1, . . . , Bn) = E
X 6=

(x1,m1),...,(xn,mn)2X

[(x1,m1) 2 B1, . . . , (xn,mn) 2 Bn],

where Bi 2 B(D ⇥M) for i = 1, . . . , n and
P 6= is the sum over pairwise distinct elements.

Notice that for n = 1, ↵(1) = ↵ = µ. If ↵(n) is the absolutely continuous with respect to

(�D ⌦ ⌫)n then there exists densities ⇢(n) : (D ⇥ ⌫)n 7! R+ such that for any measurable

function f : (D⇥ ⌫)n 7! R+ they satisfy the following

E
X 6=

(x1,m1),...,(xn,mn)2X

f((x1,m1), . . . , (xn,mn)) =

Z
· · ·

Z

(D⇥M)n

f((x1,m1), . . . , (xn,mn))⇢
(n)((x1,m1), . . . , (xn,mn))

nY

i=1

�D(dxi)⌫(dmi),

where ⇢(n) denotes the nth-order intensity function and ⇢(n)((x1,m1), . . . , (xn,mn))
Q

n

i=1

�D(dxi)⌫(dmi) can be heuristically considered as the probability of finding points of X

in infinitesimal volumes (dxi, dmi) for i = 1, . . . , n. This formula is known as Campbell’s

formula for marked processes and for the remainder of this chapter we shall suppose the

existence of the nth-order intensity functions for all n.

Similar to n = 1 we can also define Kx1,...,xn to be the nth-order mark distributions. By

assumption of the existence of ⇢(n) we also obtain the nth-order intensity functions of the

ground process Xg, ⇢
(n)

g and if we assume that Kx1,...,xn is absolutely continuous with respect

to the n-fold measure ⌫n with density fx1,...,xn : Mn
7! R+ then we have the identity,

⇢(n)((x1,m1), . . . , (xn,mn)) = fx1,...,xn(m1, . . . ,mn)⇢
(n)

g ((x1,m1), . . . , (xn,mn)).
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Further to this we say thatX is independently marked if fx1,...,xn(m1, . . . ,mn) =
Q

n

i=1
fxi(mi)

for all n 2 N.

Having defined the nth-order intensity functions we can now define a central property of

point processes: the point correlation function of a marked process (PCF), h (c.f. Equation

2.7 for PCF of unmarked processes). The PCF is defined as

h((x,mx), (y,my)) =
⇢(2)((x,mx), (y,my))

⇢(x,mx)⇢(y,my)
.

Under a Poisson assumption with independent marking it can easily be shown that h((x,mx),

(y,my)) = 1, Such a Poisson model typically serves as a benchmark of no interaction between

events where if h((x,mx), (y,my)) > 1 it indicates clustering between events with marks m1

and m2 whilst inhibition holds if h((x,mx), (y,my)) < 1.

The nth-order correlation functions ⇠n for n 2 N are defined recursively (for example see

White [1979], van Lieshout [2006]) and based on the nth-order intensity functions. Set ⇠1 = 1,

then for n � 2,

lX

k=1

X

E1,...,El

kY

j=1

⇠|Ej | ({(xi,mi) : i 2 Ej}) =
⇢(n)((x1,m1), . . . , (xn,mn))

⇢(x1,m1) · · · ⇢(xn,mn)
,

where
P

E1,...,El
is the sum over all possible l-sized partitions of the set {1, . . . , n} such that

Ej 6= ;.

The summary statistics developed in this paper are based on the reduced Palm processes of

a marked point process X. We can define the reduced Palm process as the point process

which follows the probability measure defined by the Radon-Nikodyn derivative of the reduced

Campbell measure, C !(A ⇥ N) = E
P

(x,m)2X [((x,m), X \ (x,m)) 2 A ⇥ N ] where A 2

B(D⇥M), and N 2 N , with respect to µ (see for example Møller and Waagepetersen [2003,

Appendix C.2]). Since C ! << µ we have by the Radon-Nikodyn theorem

C !(A⇥N) =

Z

B⇥M
P !

(x,m)
(N)µ(dx, dm),

where (x,m) 2 D ⇥M. Here, P !

(x,m)
is the Radon-Nikodyn derivative dC !/dµ and defines

a probability measure called the reduced Palm measure, see e.g. Møller and Waagepetersen

[2003, Appendix C.2]. We frequently use P !

(x,m)
(N) as a short hand for P (X !

(x,m)
2 N) for

N 2 N . The process X !

(x,m)
that follows P !

(x,m)
is referred to as the reduced Palm process

of X. Heuristically, P !

(x,m)
can be considered the conditional distribution of X given that
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(x,m) 2 X. Based on this we also have the Campbell-Mecke formula

E
X 6=

(x,m)2X

f((x,m), X \ (x,m)) =

Z

D⇥M
E!

(x,m)
[f((x,m), X)]µ(dx, dm),

where E!

(x,m)
is the expectation under the measure P !

(x,m)
. Following Cronie and van Lieshout

[2016] we can also define the ⌫-averaged Palm measure with respect to M 2 B(M) where

⌫(M) > 0 as,

P !

z,M (N) =
1

⌫(M)

Z

M

P !

(x,m)
(N)⌫(dm), N 2 N . (7.1)

P !

z,M defines a probability measure since 0  P !

(x,m)
(·)  1 and it may be interpreted as the

probability of X given that X has a point at x with mark in M . Moreover, if we substitute

the reference measure ⌫ with a probability measure ⌫M over M then we have that,

P !

z,M (N) =
1

⌫M(M)

Z

M

P !

(x,m)
(N)⌫M(dm)

which may be interpreted as the conditional distribution of Y \ (x⇥M) given that Y \ (x⇥

M) 6= ; [Cronie and van Lieshout, 2016].

As an example consider X as a multitype point process with M = {1, . . . , k} and reference

measure ⌫ being the counting measure, then taking M = {i} for some i 2 {1, . . . , k} we have

that,

P !

x,M (N) =
1

⌫(i)
⌫(i)P !

(x,i)(N) = P !

(x,i)(N).

Further, based on Equation 7.1 we can define the expectation with respect to the probability

measure P !

(x,m)
as

E!

x,M [f(X)] =
1

⌫(M)

Z

M

E!

(x,m)
[f(X)]⌫(dm), (7.2)

for measurable, non-negative functions f .

In order to define upcoming summary functional statistics we require the generating func-

tional of a marked point process, G, of a point process which uniquely characterises X [Møller

and Waagepetersen, 2003]. Let u : D⇥M 7! [0, 1] be a measurable function with bounded

support then the generating functional is defined as

G(u) = E
Y

(x,m)2X

(1� u(x,m)) .

Further to this, given that the nth-order intensity functions exists for all n and that the
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following series is convergent the generating functional can be represented as an infinite

series [Cronie and van Lieshout, 2016],

G(u) = 1 +
1X

n=1

Z

D⇥M
· · ·

Z

D⇥M
⇢(n)((x1,m1), . . . , (xn,mn))

nY

i=1

u(xi,mi)�D(dxi)⌫(mi),

where we take the convention that an empty product is 1. Further to this, using Equation

7.2, we can define the generating functional G!

x,M with respect to P !

x,M as

G!

x,M (u) =
1

⌫(M)

Z

M

E!

(x,m)

2

4
Y

(y,n)2X

(1� u(y, n))

3

5 ⌫(dm).

7.3 Summary statistics for isotropic processes on S2

In this section we shall discuss how to construct summary statistics for isotropic marked point

processes on the sphere, extending the theory developed by van Lieshout [2006] for Euclidean

point processes to spherical ones. We define the second order reduced moment measure

for a spheroidal marked point process and consider how functional summary statistics can

be constructed based on the work of van Lieshout [2006]. Concentrating specifically on

multivariate point processes, we demonstrate, based on estimators of the summary statistics,

that independence, attraction and replusion between components can be detected between

components.

7.3.1 Definitions

As in Møller and Rubak [2016] denote O(3) to be the 3 ⇥ 3 rotation matrices and define,

for O 2 O(3), OX = {(Ox,m) : (x,m) 2 X} to be the rotation of the point process X

by O. We then say that X is isotropic if OX and X are identically distributed for any

O 2 O(3). Notice that by isotropy, for fixed M 2M we have that µ(D⇥M) = µ(OD⇥M)

for any D ✓ S2 and O 2 O(3) is a rotationally invariant measure on the sphere. Therefore

µ(D ⇥M) = ⌘M�S2(D) where ⌘M is a positive constant potentially depending on M , i.e.

is proportional to the surface measure on the sphere [Møller and Waagepetersen, 2003]. By

isotropy of X the ground process is also isotropic and thus the ground process has constant
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intensity ⇢g, hence µ(D ⇥M) =
R
D
Kx(M)⇢g�S2(dx). Therefore,

0 = ⌘M�S2(D)�

Z

D

Kx(M)⇢g�S2(dx)

=

Z

D

⌘M�S2(dx)�

Z

D

Kx(M)⇢g�S2(dx)

=

Z

D

⌘M �Kx(M)⇢g�S2(dx).

Since this must hold for any D ✓ S2, the integrand must be 0 meaning ⌘M = Kx(M)⇢g.

Therefore the mark distribution is independent of x and so the superscript can be dropped.

For an isotropic process we thus have,

µ(D ⇥M) = ⇢gK(M)�S2(D), (7.3)

where K is a probability measure over M. When discussing isotropic processes later we note

that it is convenient to take the reference measure ⌫ over M to be K.

We say that X is homogeneous if the intensity function of the ground process is constant,

i.e. ⇢g(x) = ⇢ 2 R+. In this event the intensity function of X is given by ⇢(x,m) = fx(m)⇢,

where fx is the density of first order mark distribution with respect to the reference measure

⌫ over M. We say that X has common mark distribution if Kx
⌘ K is independent of x, and

so fx
⌘ f , which is the density of K with respect to ⌫. Further to this, if K coincides with

⌫ then we have that f ⌘ 1 and so ⇢(x,m) = ⇢g(x). We also define the unit rate (marked)

Poisson process to be a marked process which has a ground Poisson process with intensity

one almost everywhere, and marks that are independent of location and IID with probability

measure PM over a mark space M. Additionally if PM admits a density pM with respect to

the reference measure ⌫ then the unit rate Poisson process has intensity ⇢(x,m) = pM(m)

or if we take PM to be the reference measure then ⇢(x,m) = 1.

LetX be isotropic, then it can be shown that OX !

(x,m)
andX !

(Ox,m)
are identically distributed

if O 2 O(3). We define the origin on S2 to be the North pole, i.e. o = (0, 0, 1)T and define

Ox to be the unique rotation such that Oxo = x for which the axis of rotation is orthogonal

to the geodesic between x and o then OxX !

(o,m)
and X !

(x,m)
are identically distributed. This

is the marked version of Møller and Rubak [2016, Proposition 1] and can easily be proven

under the mild condition of X being absolutely continuous to the unit rate Poisson over

mark space M. Therefore from Equation 7.1 we have that,

P (X !

o,M 2 ·) = P (OT

x (X
!

x,M ) 2 ·),
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for almost all x 2 S2. Similar to [Chiu et al., 1995, pg. 125] we refer to P (X !

x,M 2 ·) as the

reduced Palm distribution with respect to the mark set M (see also van Lieshout [2006]).

In order to be able to construct functional summary statistics we need to impose certain

assumptions on our point process such that they are well defined. In Rd, these assumptions

describe how events of XC located in A ⇢ Rd interact with other events of XE located

in B ⇢ Rd where C,E ⇢ M. For Euclidean processes a common assumption imposed is

for X to be second order intensity reweighted stationary for marked processes (SOIRWS),

see for example Cronie and van Lieshout [2016], which extends an analogous definition for

unmarked point processes discussed by Baddeley et al. [2000] (cf. Definition 2.3.3 for the

unmarked version). We define a similar property for spheroidal processes, that is second

order intensity reweighted isotropic for marked processes (SOIRWI), (cf. Definition 3.4.1 for

the unmarked version). Define K
CE(B) for A,B ⇢ S2 and C,E ✓M by

�S2(A)⌫(C)⌫(E)KCE(B) = E
X 6=

(x,mx),(y,my)2X

[(x,mx) 2 A⇥ C, (OT
xy,my) 2 B ⇥ E]

⇢(x,mx)⇢(y,my)
.

(7.4)

We say that X is SOIRWI if KCE does not depend on A. If we suppose that the PCF is

isotropic, i.e. h((x,mx), (y,my)) = h((Ox,mx), (Oy,my)) for any O 2 O(3) then by the

Campbell-Mecke theorem it is easily shown that,

⌫(C)⌫(E)KCE(B) =
1

�S2(A)

Z

A⇥C

Z

B⇥E
h((x,mx), (y,my))�S2(dx)⌫(dmx)�S2(dy)⌫(dmy)

=
1

�S2(A)

Z

A⇥C

Z

B⇥E
h((OT

xx,mx), (O
T

xy,my))�S2(dx)⌫(dmx)�S2(dy)⌫(dmy).

Letting z = OT
xy and relabelling mx = m1 and my = m2, we have

⌫(C)⌫(E)KCE(B) =
1

�S2(A)

Z

A⇥C

Z

B⇥E
h((o,m1), (z,m2))�S2(dx)⌫(dm1)�S2(dz)⌫(dm2)

=

Z

C

Z

B⇥E
h((o,m1), (z,m2))�S2(dx)⌫(dm1)�S2(dz)⌫(dm2).

Therefore a marked point processes that has an isotropic PCF is SOIRWI. Isotropic processes

are also SOIRWI. For the purpose of this chapter whenever we refer to a point process as

being SOIRWI we shall suppose that their PCF is isotropic as opposed to the more general

definition prescribed by Equation 7.4.

We can now define our functional summary statistics for isotropic marked point processes,
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extending the work of van Lieshout [2006]. Let C,E ✓M then

FE(r) = P (X \ (BS2(o, r)⇥ E) 6= ;) (7.5)

DCE(r) = P (X !

o,C \ (BS2(o, r)⇥ E) 6= ;) (7.6)

JCE(r) =
1�DCE(r)

1� FE(r)
for FE(r) < 1 (7.7)

KCE(r) =
1

�S2(A)⌫(C)⌫(E)

E
X 6=

(x,mx),(y,my)2X

[(x,mx) 2 A⇥ C, (OT
xy,my) 2 BS2(o, r)⇥ E]

⇢(x,mx)⇢(y,my)
, (7.8)

for all r 2 [0,⇡], and where KCE does not depend on A ✓ S2 since the process is assumed

isotropic. Note that KCE(r) is the marked version of the multitype cross K function, see

for example Møller and Waagepetersen [2003] and that KCE(r) = K
CE(BS2(o, r)). Further

note that under an isotropic assumption we have that ⇢(x,m) = f(m)⇢g, where ⇢g is the

constant intensity of the ground process and f is the density of K with respect to ⌫ from

Equation 7.3. Therefore ⇢(x,m) can be subsituted in the definition of KCE . Additionally,

by isotropy, none of these functional summary statistics depend on the typical point o. For

example, consider FE(r;x) = P (X \ (BS2(x, r)⇥ E) 6= ;) then

FE(r;x) = P (X \ (BS2(x, r)⇥ E) 6= ;)

= P (OT

xX \ (BS2(O
T

xx, r)⇥ E) 6= ;)

= P (X \ (BS2(o, r)⇥ E) 6= ;)

= FE(r).

A similar argument can be used for KCE , DCE and hence JCE does not depend on the

typical point either. In general JCE
6= JEC whilst KCE = KEC .

Let C,E ⇢ M be such that C \ E = ;. The following proposition describes how the

functional summary statistics behave under independence and can be considered marked

spheroidal analogues to the multitype Euclidean results given by van Lieshout and Baddeley

[1999] and Møller and Waagepetersen [2003].

Proposition 7.3.1. Let X be a marked isotropic spheroidal point process. Let C,E ⇢ M

such that C \ E = ; and suppose that XC and XE are independent. Then,

DCE(r) = FE(r)

JCE(r) = 1
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KCE(r) = 2⇡(1� cos(r)),

for r 2 [0,⇡].

Proof. See Appendix E.1.

7.3.2 Estimating functional summary statistics

In order to draw any conclusions concerning the relationship between XC and XE we need

to be able to estimate these functional summary statistics. Following van Lieshout [2006],

suppose that we observe the process through some window W ⇢ S2 such that �S2(W ) > 0

and that the reference measure and probability measure over M coincide (thus ⇢(x,m) = ⇢g

where ⇢g is the constant intensity of the ground process), we can construct estimates for

them as

1� D̂CE(r) =
1

⇢g�S2(W r)⌫(C)
X

(x,mx)2X

[(x,mx) 2W r ⇥ C]
Y

(y,my)2X

✓
1� [dS2(x,y) < r,my 2 E]

◆
,

1� F̂E(r) =
1

|IW r |

X

p2IW r

Y

(x,m)2X

✓
1� [dS2(p,x)  r,m 2 E]

◆
,

ĴCE(r) =
1� D̂CE(r)

1� F̂E(r)
for F̂E(r) < 1,

K̂CE(r) =
1

⇢2g�S2(W r)⌫(C)⌫(E)
X

(x,mx)2X

X

(y,my)2X\(x,mx)

[(x,mx) 2W r ⇥ C, dS2(x,y)  r,my 2 E],

where A r is the erosion of set A ⇢ S2 by distance r 2 R+ and I is a finite grid of

points taken over S2. A common transformation used for planar multitype point patterns is

LCE(r) =
p

(KCE(r)/⇡) which benefits from the fact that under independence LCE(r) ⌘ r

since KCE(r) = ⇡r2 and under a Poisson hypothesis is approximately variance stabilised.

SinceKCE(r) is not of a linear form in r (see Proposition 7.3.1) we instead consider the trans-

formation PCE(r) =
p
KCE(r)�

p
2⇡(1� cos(r)), and similarly to estimate PCE we have

P̂CE(r) =
q
K̂CE(r)�

p
2⇡(1� cos(r)). Furthermore, it is easy to show either unbiasedness

or ratio-unbiasedness of these estimators.
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Proposition 7.3.2. Let X be a marked isotropic point process on S2 such that the same

assumptions hold as in Proposition 7.3.2. Then the minus sampling estimators F̂E, D̂CE

and K̂CE are unbiased whilst ĴCE is ratio-unbiased when ⇢g, the intensity of the ground

process, is known.

Proof. See Appendix E.2.

In the more likely event that ⇢g and potentially ⌫, the mark measure are unknown then

⇢g�S2(W r)⌫(C) can be replaced by the unbiased estimator NX(W r ⇥ C) for D̂CE [van

Lieshout, 2006]. Using this plugin estimator leads to D̂CE being ratio-unbiased and hence

so is ĴCE . For K̂CE it can be shown that

⇢2g�S2(W r)⌫(C)⌫(E) =
E[NX(W r ⇥ C)]E[NX(W r ⇥ E)]

�S2(W r)
,

and so we suggest to use NX(W r ⇥ C)NX(W r ⇥ E)/�S2(W r) as a plugin estimator for

⇢2g�S2(W r)⌫(C)⌫(E). In general, NX(W r ⇥ C)NX(W r ⇥ E)/�S2(W r) is biased but in

the event XC and XE are independent then unbiasedness is achieved.

In the event that the process is completely observed over S2 then minus sampling is not

needed and W r can be replaced by S2. For the special case of a multitype point pattern

where M = {1, 2, . . . , k} then ⇢(x, i)⌫(i) = ⇢i(x) where i 2 M and ⌫ is the referential

counting measure over M. We can then simplify the estimators; taking C = {i} and

E = {j} with i 6= j then ⇢g⌫(C) = ⇢g⌫(i) = ⇢i and ⇢g⌫(E) = ⇢g⌫(j) = ⇢j , giving

1� D̂ij(r) =
1

⇢i�S2(W r)

X

x2Xi

[x 2W r]
Y

y2Xj

✓
1� [dS2(x,y) < r]

◆
(7.9)

1� F̂ j(r) =
1

|IW r |

X

p2IW r

Y

x2Xj

✓
1� [dS2(p,x)  r]

◆
(7.10)

Ĵ ij(r) =
1� D̂ij(r)

1� F̂ j(r)
for F̂ j(r) < 1 (7.11)

K̂ij(r) =
1

⇢i⇢j�S2(W r)

X

x2Xi

X

y2Xj

[x 2W r, dS2(x,y)  r]. (7.12)

These are analagous to the summary statistics given in Møller and Waagepetersen [2003]

for stationary Euclidean multitype processes. Using these functional summary statistics we

can detect whether there is evidence of aggregation or repulsion between components of the
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multitype processes. More precisely in the simple setting of a bivariate process X = (X1, X2)

and setting C = {1} and E = {2} then if the estimated K̂12(r) is greater than 2⇡(1�cos(r))

this suggests that the components are not independent and are actually attracted to each

other, whilst if K̂12(r) is less than 2⇡(1 � cos(r)) this suggests that the components repel

each other. Similar conclusions can be obtained from Ĵ12(r) and Ĵ21(r) where values greater

than 1 suggests repulsion between X1 and X2 whilst attraction is suggested if the values are

less than 1. The intensity, ⇢i, is often unknown for i 2 {1, . . . , k} and so plug-in estimators

are necessary. In the isotropic multitype setting we can use the unbiased estimator,

⇢̂i = NXi(W )/�S2(W ), (7.13)

where W is our window of observation with �S2(W ) > 0. Since ⇢̂i for i 2 M is unbiased

when used as plugins for Equations 7.9-7.12 F̂ ij is unbiased whilst D̂ij , Ĵ ij and K̂ij are

ratio-unbiased.

7.3.3 Determining independence

The principal goal of this chapter is to detect presence of dependency between components

in a multitype point pattern on a convex shape. Typically for Euclidean processes, estimates

of functional summary statistics from the observed pattern are compared against those con-

structed under simulations drawn from a null hypothesis [Møller and Waagepetersen, 2003,

Myllymäki et al., 2017]. Therefore determining independence ultimately comes down to how

simulates from a null distribution can be sampled. Two approaches are commonly used for

stationary multitype processes in Rd,

1. The random toroidal shift approach developed by Lotwick and Silverman [1982], and

2. Simulating a specified null model, e.g. Poisson process (see for example Rajala et al.

[2018]).

The approach of Lotwick and Silverman [1982] allows for the potentially unknown marginal

distributions to be maintained when simulating the null. This approach can be adapted to

multitype spheroidal patterns where random toroidal shifts are instead replaced by random

rotations. There are though two major pitfalls to this method:

• Application of rotations requires a point pattern that has been observed over all of the

sphere.
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• For values of r close to ⇡ the estimates of our functional summary statistics for both

the observed and null simulates are very close.

To see the second point consider K̂12

X
for an observed bivariate point pattern X = (X1, X2).

Suppose now that we randomly rotate X1 to give a null simulate X̃ = (OX1, X2) where

O 2 O(3) is a random rotation. It is then easily shown that K̂12

X̃
(⇡) = K̂12

X
(⇡) = 4⇡, where

Equation 7.13 is used as a plugin for ⇢i. Hence all null simulates will converge to the same

value at r = ⇡ and so the true variability of the functional summary statistics for the process

is not accurately captured and for values of r close to ⇡. As such envelope plots should be

treated cautiously in this region.

The second approach imposes additional distribution assumptions on the null hypothesis, for

example an independent Poisson assumption. Although stricter distributional assumptions

have been made, previous work including Wiegand et al. [2012], Møller and Waagepetersen

[2003], Rajala et al. [2018] have used this approach to provide evidence of dependency be-

tween components in a multitype process. This issue also highlights the di�culty of testing

a hypotheses like independence in the context of spatial statistics with progress only possi-

ble with the aid of additional assumptions. Furthermore, assuming a completely specified

null model allows for simulation from the null distribution even in the event of a partially

observed spheroidal process. This approach also avoids falling into the potential issue of

misinterpretation of the envelope plot for values of r close to ⇡, unlike the random rotation

approach [Lotwick and Silverman, 1982]. In the coming examples we will explore both these

approaches for determining whether components of an observed multitype point pattern

exhibit dependence or not.

7.3.4 Examples

In these examples we shall assume that the process is observed on the entirety of S2, and so

minus sampling is not needed. Furthermore, all the processes will be bivariate and isotropic

with extensions to additional components easily achieved. We shall consider four examples,

first a Poisson process whose components are independent, then LGCPs which have either

independent, attractive, or repulsive components. To assess the hypothesis of independence

we shall construct simulation envelopes using either random rotations of the original ob-

served process or simulate a Poisson process with the corresponding fitted intensity given by

Equation 7.13. In each case we generate 199 simulates and construct 2.5% lower and 97.5%

upper envelope. When generating null simulates using random rotations we randomly rotate

only the second component keeping the first component fixed, whilst for the Poisson null we
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simulate both the first and second components. We apply these similar simulation schemes

for all examples considered in this chapter.

Poisson process

We simulate an isotropic bivariate Poisson process with independent components. The inten-

sities are ⇢1 = 10 and ⇢2 = 12 for the first and second components respectively. Examples of

the functional summary statistics are given in Figure 7.1. We can see that the observed func-

tional summary statistics remains close the the theoretical value and within the simulation

envelope.

LGCP

A LGCP can be used to model aggregation and repulsion between components of a multi-

variate process [Brix and Moller, 2001, Møller and Waagepetersen, 2003]. We first discuss

some basic properties of multivariate LGCPs. Let (Z1, Z2) : S2 ⇥ S2 7! R+ ⇥ R+ be a non-

negative bivariate random field over the sphere such that each Zi, i = 1, 2 is almost surely

locally integrable. Then we say that X = (X1, X2) is a Cox process on S2 if, conditioned

on Z = (Z1, Z2), X is a bivariate Poisson process with intensity function ⇢(x,m) = Zm(x)

where m 2 {1, 2}. We frequently refer to Z as the driving (random) field of X. We then

say that X is a bivariate LGCP process on S2 if, conditioned on the intensity function

Z = (exp(Y1), exp(Y2)), is a bivariate Poisson process, where Y = (Y1, Y2) is a bivariate

GRF on S2. The distribution of GRF Y is determined by its mean and covariance/cross-

covariance functions,

µi(x) = E[Yi(x)], cij(x,y) = Cov(Yi(x), Yj(y)),

for i, j 2 {1, 2}. This in turn completely defines the distribution of X and the intensity func-

tion and pair correlation function are given as (see for example Møller and Waagepetersen

[2003]),

⇢i(x) = exp

✓
µi(x) +

cii(x,y)

2

◆
, gij = exp(cij(x,y)),

for i, j 2 {1, 2}. On spheres, univariate LGCP are discussed in depth by Cuevas-Pacheco

and Møller [2018] whilst multivariate LGCP are discussed by Jun et al. [2019]. Typically

simplifying assumptions are made, for example the covariance/cross-covariance functions,

cij , are isotropic, that is they only depends on the distance dS2(x,y) between x and y. In
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Figure 7.1: Example of an isotropic bivariate spheroidal Poisson process with constant intensity functions

⇢1 = 10 and ⇢2 = 12 for the first and second component respectively. Top row: realisation of the process

with X1 and X2 being represented by the red and black points respectively. All three figures are the same real-

isation observed at di↵erent angles on the sphere. Middle row: plots of the functional summary statistics where

random rotations are used to construct the envelope and bottom row: plots of the functional summary statistics

where simulates from a homogeneous Poisson process are used to construct the envelope. Solid black line is the

observed functional summary statistic, dashed red line is the theoretical value under independence and the grey

area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Appendix E.3 we provide additional theoretical details of multivariate spheroidal LGCP.

We can simulate a bivariate LGCP with independent components by imposing the driving

random field to have independent component, e.g. Y1, Y2 are independent GRFs then the

resulting LGCP has independent components. Since the GRF has independent components

we have c12 = c21 = 0 and g12 = g21 = 1, hence recovering the results of Proposition 7.3.1

In order to construct attractive and repulsive bivariate LGCP we shall follow the prescription

given by Brix and Moller [2001]. Let Z be a univariate GRF with zero mean and covariance

function c(x,y) = �2s(
p
(x� y)T (x� y)) = �2s(r), where s is the correlation function and

�2, r > 0. In Appendix E.3 we show that a univariate GRF on the sphere with correlation

function dependent on Euclidean distance instead of the geodesic distance is still isotropic.

Then we define,

Y1(x) = µ1(x) + a1Z(x)

Y2(x) = µ2(x) + a2Z(x),

where µi are continuous mean functions and ai 2 R. The random field Y = (Y1, Y2) is a

bivariate GRF which is almost surely integrable, see Appendix E.3. The covariance and

cross covariance functions are,

cii(r) = a2i�
2s(r)

c12(r) = a1a2�
2s(r),

respectively for i = 1, 2, r > 0, and which semi-positive definiteness of the covariance

function matrix, {cij}, is satisfied in order for the GRF to be well defined [Brix and

Moller, 2001]. Then the bivariate Cox process X = (X1, X2) with driving random field

exp(Y ) = (exp(Y1), exp(Y2)) is our LGCP. In our examples we shall assume that the corre-

lation function s takes the exponential form,

s(r) = exp

✓
�r

�2

◆
, (7.14)

for �2, r > 0. Thus, by controlling the signs of a1 and a2 we can enforce aggregation or

repulsion. For example if we set a1, a2 > 0 then c12 > 0 which implies that g12 > 1 indicating

attraction between components of X the resulting bivariate LGCP. Similarly if the signs of

a1 and a2 di↵er then repulsion between the components is enforced. The magnitude of ai

i = 1, 2 controls the extent to which the aggregation or repulsion is imposed.
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We now consider three examples:

1. Independent bivariate LGCP where we set �2 = 1, �2 = 1 and the mean functions of

the first and second components are µ1 = log(10) and µ2 = log(5) respectively. An

example is given in Figure 7.2 where the results show that the observed functional

summary statistics lie within the simulation envelopes as expected.

2. Attractive bivariate LGCP where we set �2 = 1, �2 = 1, a1 = a2 = 1 and the mean

functions of the first and second components are µ1 = log(15) and µ2 = log(10)

respectively. An example is given in Figure 7.3 where the results show that the observed

functional summary statistics lies above the simulation envelopes for P 21 and below

for both J12 and J21 highlighting the attractive nature of the process.

3. Repulsive bivariate LGCP where we set �2 = 1, �2 = 1, a1 = 1, a2 = �1 and the

mean functions of the first and second components are µ1 = log(15) and µ2 = log(10)

respectively. An example is given in Figure 7.4 where the results show that the observed

functional summary statistics lies below the simulation envelopes for P 21 and above

for both J12 and J21 highlighting the repulsive nature of the process.

These examples demonstrate that the isotropic functional summary statistics are able to

capture independence of components. Attraction and repulsion are also correctly identified

based on the deviations of the summary statistics compared to the null simulates. The

middle left plot P 21 of Figures 7.1-7.4 graphically highlight the issue of simulating the null

hypothesis using random rotations as the estimators of the summary statistics for the null

simulates all converge to 0.

7.4 Summary statistics for inhomogeneous processes on S2

In this section we consider how to construct functional summary statistics for inhomoge-

neous marked processes. We first discuss how Equations 7.5-7.7 can be adapted to this

scenario following the work of Cronie and van Lieshout [2016] who discussed the inhomoge-

neous J-function for point processes in Rd. We then progress onto how the inhomogeneous

cross K-function can be constructed based on Equation 7.4. We then examine how these

functional summary statistics perform in determining independence, aggregation or repul-

sion exhibited between components of inhomogeneous spheroidal bivariate processes using

simulation envelopes.
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Figure 7.2: Example of an isotropic independent bivariate LGCP with parameters µ1 = log(10), µ2 =
log(5),�2 = 1, �2 = 1. Top row: realisation of the process with X1 and X2 being represented by the red and

black points respectively. The figure on the left does not have a surface intensity, the middle figure has the sur-

face intensity given by the observed random field Y1 and the right figure has the surface intensity given by the

observed random field Y2: all these figures are displayed from the same perspective, where high intensity is indi-

cated by yellow and low by blue. Middle row: plots of the functional summary statistics where random rotations

are used to construct the envelope and bottom row: plots of the functional summary statistics where simulates

from a homogeneous Poisson process are used to construct the envelope. Solid black line is the observed func-

tional summary statistic, dashed red line is the theoretical value under independence and the grey area indicates

the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.3: Example of an isotropic attractive bivariate LGCP with parameters µ1 = log(15), µ2 =
log(10), a1 = a2 = 1,�2 = 1, �2 = 1. Top row: realisation of the process with X1 and X2 being represented

by the red and black points respectively. The figure on the left does not have a surface intensity, the middle fig-

ure has the surface intensity given by the observed random field Y1 and the right figure has the surface intensity

given by the observed random field Y2: all these figures are displayed from the same perspective, where high

intensity is indicated by yellow and low by blue. Middle row: plots of the functional summary statistics where

random rotations are used to construct the envelope and bottom row: plots of the functional summary statistics

where simulates from a homogeneous Poisson process are used to construct the envelope. Solid black line is the

observed functional summary statistic, dashed red line is the theoretical value under independence and the grey

area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.4: Example of an isotropic repulsive bivariate LGCP with parameters µ1 = log(15), µ2 = log(10), a1 =
1, a2 = �1,�2 = 1, �2 = 1. Top row: realisation of the process with X1 and X2 being represented by the

red and black points respectively. The figure on the left does not have a surface intensity, the middle figure

has the surface intensity given by the observed random field Y1 and the right figure has the surface intensity

given by the observed random field Y2: all these figures are displayed from the same perspective, where high

intensity is indicated by yellow and low by blue. Middle row: plots of the functional summary statistics where

random rotations are used to construct the envelope and bottom row: plots of the functional summary statistics

where simulates from a homogeneous Poisson process are used to construct the envelope. Solid black line is the

observed functional summary statistic, dashed red line is the theoretical value under independence and the grey

area indicates the 2.5% lower and 97.5% upper simulation envelope.
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7.4.1 Inhomogeneous cross J function

To introduce the inhomogeneous cross J function we will follow arguments similar to those

found in Cronie and van Lieshout [2016] where we use notions of rotational invariance of

spheroidal processes instead of translational invariance for Euclidean processes as given orig-

inally. Let us first write ⇢̄E = infx2S2,m2E ⇢(x,m), we assume that our marked process X

is simple and that its intensity functions of all orders exists. It is then supposed that the

nth-order correlation functions are isotropic in the sense,

⇠n((x1,m1), . . . , (xn,mn)) = ⇠n((Ox1,m1), . . . , (Oxn,mn)),

for any O 2 O(3) and (xi,mi) 2 S2 ⇥M. If we also make the assumption that ⇢̄ ⌘ ⇢̄M > 0

then we say thatX is intensity-reweighted momented isotropic (IRWMI), this definition is due

to van Lieshout [2011] and extends a similar one found in Ward et al. [2021b] for univariate

spheroidal processes. It should be noted that any isotropic process is also immediately

IRWMI. Other IRWMI include Poisson processes, multitype processes with independent

IRWMI components or a ground process that is IRWMI (in the sense of Ward et al. [2021b])

which is subsequently independently marked.

We now introduce the inhomogeneous cross nearest neighbour distance distribution function

for marked spheroidal processes. Let X be a marked spheroidal processes that is IRWMI

and let C,E ⇢M with ⌫(C), ⌫(E) > 0. Denoting

ury,E(x,m) =
⇢̄E [(x,m) 2 BS2(y, r)⇥ E]

⇢(x,m)
, y 2 S2, (7.15)

for r � 0 we then define the inhomogeneous cross nearest neighbour distance distribution

function as,

DCE

inhom
(r) = 1�G!

y,C(1� ury,E). (7.16)

By Theorem 7.4.1 the choice of y is arbitrary, this is identical to the reasoning found in

Cronie and van Lieshout [2016] for the inhomogeneous D-function of Euclidean processes.

To see why this extends the isotropic cross D-function given by Equation 7.6 suppose that

X is now isotropic and that the reference measure ⌫ takes the mark measure, then Equation

7.16 becomes,

DCE

inhom
(r) = 1�G!

y,C(1� ury,E)
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= 1�
1

⌫(C)

Z

C

E!

(y,m)

2

4
Y

(x,n)2X

✓
1�

⇢̄E [(x, n) 2 BS2(y, r)⇥ E]

⇢(x, n)

◆3

5 ⌫(dm)

since the process is isotopic with reference measure taking the mark measure then ⇢(x,m) ⌘

⇢ 2 R+ is constant and ⇢̄E = ⇢

= 1�
1

⌫(C)

Z

C

E!

(y,m)

2

4
Y

(x,n)2X

(1� [(x, n) 2 BS2(y, r)⇥ E])

3

5 ⌫(dm)

= 1�
1

⌫(C)

Z

C

E!

(y,m)

2

4
Y

(x,n)2X

[(x, n) /2 BS2(y, r)⇥ E]

3

5 ⌫(dm)

= 1�
1

⌫(C)

Z

C

E!

(y,m)
[ [X \ (BS2(y, r)⇥ E) = ;]] ⌫(dm)

= 1�
1

⌫(C)

Z

C

P!

(y,m)
(X \ (BS2(y, r)⇥ E) = ;]) ⌫(dm)

= 1� P!

y,C (X \ (BS2(y, r)⇥ E) = ;])

= P!

y,C (X \ (BS2(y, r)⇥ E) 6= ;])

since X is isotropic then this probability does not depend on y and we have

= P!

o,C (X \ (BS2(o, r)⇥ E) 6= ;])

which is precisely Equation 7.6.

Next we introduce the inhomogeneous empty space function of XE as,

FE

inhom
(r) = 1�G(1� ury,E),

where ury,E is given by Equation 7.15. Similarly for DCE

inhom
, Theorem 7.4.1 will show, like

Cronie and van Lieshout [2016], that FE

inhom
does not depend on y. Again, to see why this

is an extension of the isotropic F -function given by Equation 7.5 consider X is an istropic

spheroidal mark process then,

FE

inhom
(r) = 1�G(1� ury,E)

= 1� E

2

4
Y

(x,m)2X

✓
1�

⇢̄E [(x,m) 2 BS2(y, r)⇥ E]

⇢(x,m)

◆3

5
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since the process is isotopic ⇢(x,m) ⌘ ⇢ 2 R+ is a constant since the reference measure is

also our mark measure and ⇢̄E = ⇢

= 1� E

2

4
Y

(x,m)2X

(1� [(x,m) 2 BS2(y, r)⇥ E])

3

5

= 1� E

2

4
Y

(x,m)2X

[(x,m) /2 BS2(y, r)⇥ E]

3

5

= 1� E [ [X \ (BS2(y, r)⇥ E) = ;]]

= 1� P(X \ (BS2(y, r)⇥ E) = ;)

= P(X \ (BS2(y, r)⇥ E) 6= ;)

since X is isotropic then this probability does not depend on y and we have

= P(X \ (BS2(o, r)⇥ E) 6= ;),

which is precisely Equation 7.5.

Before introducing the inhomogeneous cross J function for spheroidal marked point processes

we first need to return to the isotropic setting and provide an infinite series representation

of JCE , this exposition follows nearly identically to van Lieshout [2006] except where we

replace translation invariance by rotational invariance and are working on S2 instead of Rd.

By White [1979] we have that FE can be written as,

FE(r) =�
1X

n=1

(�1)n

n!
Z

· · ·

Z

(BS2 (o,r)⇥E)n

⇢(n)((x1,m1), . . . , (xn,mn))�S2(dx1)⌫(m1) · · ·�S2(dxn)⌫(mn),

where our reference measure ⌫ is taken as the mark measure over M. It can be shown, using

nearly identical arguments made by van Lieshout [2006], that if X is an isotropic spheroidal

marked point process for which all intensity functions of any order exists and the first is

given by the constant ⇢ 2 R+, then JCE , for any C,E ✓ M with ⌫(C), ⌫(E) > 0, can be

written as,

JCE(r) =
1

⌫(C)

 
⌫(C) +

1X

n=1

(�⇢)n

n!
JCE

n (r)

!
, (7.17)
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for r 2 [0,⇡] and where

JCE

n (r) =

Z

C

Z
· · ·

Z

(BS2 (o,r)⇥E)n

⇠n+1((y,m), (Oyx1,m1), . . . , (Oyxn,mn))

⌫(m)�S2(dx1)⌫(m1) · · ·�S2(dxn)⌫(mn),

(7.18)

for y 2 S2. Through Cauchy’s root test a su�cient condition for the infinite series to converge

is

lim sup
n!1

(⇢nJCE(r)/n!)1/n < 1.

From van Lieshout [2006] it is easily shown that Equation 7.18 does not depend on y if X is

isotropic, hence neither does Equation 7.17. A proof of Equation 7.17 can easily be achieved

based on the proof of Proposition 4.2 of van Lieshout [2006] where appropriate adaptations

are made.

Based on Equation 7.17 we can now define the inhomogeneous cross J function. Let X be an

IRWMI spheroidal marked point process for which its intensity functions exist of all orders

and C,E ✓ M such that ⌫(C), ⌫(E) > 0. We define the inhomogeneous cross J function

between C and E as,

JCE

inhom
(r) =

1

⌫(C)

 
⌫(C) +

1X

n=1

(�⇢̄E)n

n!
JCE

n (r)

!
,

for r 2 [0,⇡] and where,

JCE

n (r) =

Z

C

Z
· · ·

Z

(BS2 (o,r)⇥E)n

⇠n+1((y,m), (Oyx1,m1), . . . , (Oyxn,mn))

⌫(m)�S2(dx1)⌫(m1) · · ·�S2(dxn)⌫(mn),

for y 2 S2. Again, as in the isotropic case, there is an implicit dependence on y but by

IRWMI, JCE
n is independent of y and hence so is JCE

inhom
. This definition is comparable

to that given by Cronie and van Lieshout [2016] who define the inhomogeneous cross J

functions for Euclidean processes. It can be seen immediately that if X is isotropic then we

recover Equation 7.17. It is also important to note that if X is Poisson then JCE

inhom
(r) ⌘ 1

and heuristically values JCE

inhom
(r) < 1 is indicative of points with marks in E tending to

aggregate around points with marks in C whilst the converse is suggested if JCE

inhom
(r) > 1

at a distance r � 0.
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Similar to Cronie and van Lieshout [2016], the inhomogeneous cross J function can be

written as the ratio of the inhomogeneous cross nearest neighbour distribution and empty

space function. The following theorem gives this relationship and a similar result is given

for Euclidean processes in Theorem 1 of Cronie and van Lieshout [2016].

Theorem 7.4.1. Let X be a spheroidal marked point process that is IRWMI. Under the

further assumption that the intensity functions of all orders of X exist and that

lim sup
n!1

0

B@
⇢̄E
n!

Z
· · ·

Z

(BS2 (o,r)⇥E)n

⇢(n)(x1,m1), . . . , (xn,mn)

⇢(x1,m1) · · · ⇢(xn,mn)

nY

i=1

�S2(dxi)⌫(mi)

1

CA

1/n

< 1,

then both DCE and FE are independent of y and

JCE(r) =
1�DCE(r)

1� FE(r)
,

for r 2 [0,⇡] and FE(r) 6= 1.

Proof. The proof of Theorem 1 in Cronie and van Lieshout [2016] can be adapted to the

spherical scenario. The proof also follows similar arguments to the proof of Theorem 3.5.7.

The following proposition, similar to Proposition 2 of Cronie and van Lieshout [2016], shows

that if XC and XE are independent then the inhomogeneous cross J function is identically

1.

Proposition 7.4.2. Let X be a spheroidal IRWMI marked point process and consider two

disjoint sets C,E ⇢M such that they have positive measure ⌫. Further assume that XC and

XE are independent and that the assumptions of Theorem 7.4.1 hold. Then,

DCE

inhom(r) = FE

inhom(r)

and so JCE

inhom(r) ⌘ 1.

Proof. The proof of Proposition 2 in Cronie and van Lieshout [2016] can be adapted to the

spherical scenario.
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7.4.2 Inhomogeneous cross K function

By relaxing the IRWMI assumption down to SOIRWI, which is equivalent to the first and

second order correlation functions, ⇠1 and ⇠2, being rotationally invariant, we can construct

the inhomogeneous cross K function. Moreover, the inhomogeneous cross K function takes

an identical form to Equation 7.8 except we drop the assumption of isotropy in favour of

SOIRWI, i.e. the PCF is isotropic. Even under the SOIRWI assumption it can easily be

shown that if C,E ⇢M are disjoint sets with positive measure ⌫ such that XC and XE are

independent then

KCE

inhom
(r) = 2⇡(1� cos(r)),

which identical to the isotropic setting [Møller and Waagepetersen, 2003]. We again main-

tain the heuristic understanding that if KCE

inhom
(r) > 2⇡(1� cos(r)) then this indicates that

points with marks in C aggregate around points with marks in E whilst the converse holds

if KCE

inhom
(r) < 2⇡(1� cos(r)). In the multitype setting if two components of the process are

independent then the Cartesian product of those components is SOIRWI. In other words,

let X be a multitype process with k components, suppose that Xi and Xj are indepen-

dent for i, j 2 {1, . . . , k}, i 6= j then (Xi, Xj) is SOIRWI [Møller and Waagepetersen, 2003,

Proposition 4.4].

7.4.3 Estimating functional summary statistics

In order to estimate the inhomogeneous functional summary statistics we follow Cronie and

van Lieshout [2016] to obtain estimates for JCE

inhom
whilst estimates for KCE

inhom
follow similarly

to the isotropic setting. Let us suppose that we have observed our spheroidal point process

X through some window W ✓ S2. Then we can estimate our functional summary statistics

as,

1� D̂CE

inhom
(r) =

1

�S2(W r)⌫(C)

X

(x,mx)2X

[(x,mx) 2W r ⇥ C]

⇢(x,mx)

Y

(y,my)2X

✓
1�

⇢̄E [dS2(x,y) < r,my 2 E]

⇢(y,my)

◆
(7.19)

1� F̂E

inhom
(r) =

1

|IW r |

X

p2IW r

Y

(x,m)2X

✓
1�

⇢̄E [dS2(p,x)  r,m 2 E]

⇢(x,mx)

◆
(7.20)
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ĴCE

inhom
(r) =

1� D̂CE(r)

1� F̂E(r)
for F̂E(r) < 1 (7.21)

K̂CE

inhom
(r) =

1

�S2(W r)⌫(C)⌫(E)
X

(x,mx)2X

X

(y,my)2X\(x,mx)

[(x,mx) 2W r ⇥ C, dS2(x,y)  r,my 2 E]

⇢(x,mx)⇢(y,my)
.

(7.22)

The following proposition presents the first order properties of these proposed estimators.

Proposition 7.4.3. Let X be a spheroidal marked process such that the assumptions of

Theorem 7.4.1 hold. Then D̂CE

inhom, F̂
E

inhom, and K̂CE

inhom are unbiased whilst ĴCE

inhom is ratio

unbiased for known ⇢.

Proof. Proof of Lemma 1 Cronie and van Lieshout [2016] can be adapted to the current

setting.

For most cases the intensity function ⇢ is unknown in which case a plug-in estimator is

typically used. Moreover, it may be the case that ⌫ is unknown or an irregular window

makes calculating �S2(W r) challenging, in which case Stoyan and Stoyan [2000] advocate

using the Hamiltonian principle where �S2(W r)⌫(C) is replaced by

X

(x,m)2X

[(x,mx) 2W r ⇥ C]

⇢(x,m)
. (7.23)

By the Campbell formula this is unbiased for �S2(B)⌫(C) for known ⇢. Even if ⌫ is known

and �S2(W r) is easy to calculate, for example if a process is completely observed such that

W = S2 we still advocate the use of Equation 7.23 instead of �S2(W r)⌫(C). This is because

guarantees on the range of D̂CE

inhom
are not achievable when ⇢ is replaced by a plugin estimator

and the true value of �S2(B)⌫(C) is used. To see this first note that DCE

inhom
(0) = 0 for any

X 2 Nlf and so we would want any estimator to replicate this behaviour. If our plugin is ⇢̂

for ⇢ then when r = 0 we have

D̂CE

inhom
(0) = 1�

1

�S2(W r)⌫(C)

X

(x,mx)2X

[(x,mx) 2W r ⇥ C]

⇢̂(x,mx)
. (7.24)

There is no guarantee that this is 0 and can even be negative, this will also be the case when

r is small since the point process is assumed simple. If we instead use Equation 7.23 with
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the same plugin estimator for ⇢ as in Equation 7.24 then we gaurantee for r = 0 that D̂CE

is 0 and positive for small r. In all coming examples we shall use Equation 7.23 instead of

�S2(B)⌫(C).

Further to this, Iftimi et al. [2019] discusses the Hamiltonian principle when considering

K̂CE

inhom
specifically for spatio-temporal point processes. In Appendix B of Iftimi et al.

[2016], a preprint of Iftimi et al. [2019], they discuss a number of scenarios to estimating

�S2(B)⌫(C)⌫(E) by applying the Hamiltonian principle which could be analogously applied

here.

In the coming example we use the kernel estimates developed in Chapter 6 where the band-

width selected by the criteria developed by Cronie and Van Lieshout [2018] and was adapted

to the setting of Riemmanian manifolds.

When considering the special case of multitype patterns, ⌫ can be taken as the standard

counting measure in which case the estimates simplify as the reference measure is known.

For this case ⇢(x, i) = ⌫(i)⇢i(x) = ⇢i(x), let i, j 2M = {1, . . . , k} such that i 6= j then the

estimates are,

1� D̂ij

inhom
(r) =

1

�S2(W r)

X

x2Xi

[x 2W r]

⇢i(x)

Y

y2Xj

✓
1�

⇢̄j [dS2(x,y) < r]

⇢j(y)

◆
(7.25)

1� F̂ j

inhom
(r) =

1

|IW r |

X

p2IW r

Y

x2Xj

✓
1�

⇢̄j [dS2(p,x)  r]

⇢j(x)

◆
(7.26)

Ĵ ij

inhom
(r) =

1� D̂ij(r)

1� F̂ j(r)
for F̂ j(r) < 1 (7.27)

K̂CE

inhom
(r) =

1

�S2(W r)

X

x2Xi

X

y2Xj

[x 2W r, dS2(x,y)  r]

⇢i(x)⇢j(y)
, (7.28)

Plugin estimators can be used for ⇢i, i 2 {1, . . . , k}. For D̂CE

inhom
instead of using �S2(W r) we

use the estimator
P

x2Xi\W r
1/⇢̂i(x) to ensure that D̂CE

inhom
is 0 when r = 0 and is positive

for small r, where ⇢̂i is our plugin estimator.

7.4.4 Determining independence

In the inhomogeneous setting, determining whether dependency exists between marks is more

complex. A toroidal shift approach is considered by Cronie and van Lieshout [2016] where

not only is the pattern translated but so is the underlying intensity function for Euclidean
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processes. This approach can be adapted to the spherical setting where translations are

replaced with rotations. Following Cronie and van Lieshout [2016], we first consider the

random measure which places mass 1/⇢(x,m) at points (x,m) 2 X

⌅X =
X

(x,m)2X

�(x,m)

⇢(x,m)
,

then for B ⇥ C ⇢ B(S2 ⇥M) we have that,

⌅X(B ⇥ C) =
X

(x,m)2X

[(x,m) 2 B ⇥ C]

⇢(x,m)
.

We define the rotation of ⌅X as,

⌅X

O (B ⇥ C) = ⌅X(OB ⇥ C)

=
X

(x,m)2X

[(OT
x,m) 2 B ⇥ C]

⇢(x,m)

=
X

(x,m)2OTX

[(x,m) 2 B ⇥ C]

⇢(Ox,m)
,

where O 2 O(3) and OX is taken to mean the spatial coordinates of X being rotated by

the rotation O. We say that ⌅X is isotropic if ⌅X d
= ⌅X

O
for any O 2 O(3). Notice that if X

is IRWMI then ⌅X is moment isotropic, that is the factorial moment measures of ⌅X and

⌅X

O
are identical for any O 2 O(3). Using this and an identical argument to Proposition 4

Cronie and van Lieshout [2016] we can show the following proposition.

Proposition 7.4.4. Suppose that X is a spheroidal marked point process for which the as-

sumptions of Theorem 7.4.1 hold and let C,E be disjoint subsets of M with strictly positive

⌫ measure. If XC and XE are independent and the measure ⌅X is isotropic then the es-

timates DCE

inhom, F
E

inhom, J
CE

inhom, and KCE

inhom can be written as a function of (⌅XC ,⌅XE ) and

(⌅XC ,⌅XE
O

)
d
= (⌅XC ,⌅XE ).

Proof. Proposition 4 Cronie and van Lieshout [2016] can be adapted to the current setting.

This proposition implies that we can generate samples from our null hypothesis by randomly

rotating one or both of the components XC and/or XE whilst also rotating the intensity

function to account for this rotation.
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Although this approach is quite general extending Lotwick and Silverman [1982] toroidal

shift method to inhomogeneous processes, this approach does fall into the same issues as

its isotropic counterpart. That is we require the point process to be completely observed

on S2 and that for values of r close to ⇡ the estimates of our functional summary statistics

are very close to each other. Thus in scenarios where the point process is not completely

observed or distant interactions are important we may consider imposing further assump-

tions on the null hypothesis in order to generate null samples, e.g. Poisson processes with

independent components, and thus construct the simulation envelopes akin to the second

approach discussed for isotropic processes.

7.4.5 Examples

Estimates of the intensity are constructed using the techniques discussed in Chapter 6. We

select the bandwidth using the Cronie’s criteria [Cronie and Van Lieshout, 2018] without

any edge correction and then construct the estimator applying local edge correction, see

Equation 6.9. When used as a plugin estimator into Equations 7.25-7.28 we use the leave-

one-out estimator for ⇢i, i.e. if x 2 Xi then we have the estimate,

⇢̂i(x) =
X

y2X\W\x

ch(x,y)�1

hd
k

✓
dg(x,y)

h

◆
, (7.29)

and ch(x,y) is given by Equation 6.9. We use the leave-one-out estimator since Baddeley

et al. [2000] found that Equation 7.29 leads to less bias, compared to Equation 6.7, for both

Poisson and clustered processes. The situation is less clear for regular processes.

We consider four examples,

1. Independent bivariate Poisson process with intensity ⇢1(x) = exp(log(6) + z) and

⇢2(x) = exp(log(5) + 2x) for the first and second components respectively where x =

(x, y, z)T 2 S2. An example is given in Figure 7.5 where the results show that the

observed functional summary statistics lie within the simulation envelopes as expected.

2. Independent bivariate LGCP where we set �2 = 1, �2 = 1. The mean functions

of the first and second components are µ1(x) = µ2(x) = log(5) + x respectively,

x = (x, y, z)T 2 S2. An example is given in Figure 7.6 where the results show that the

observed functional summary statistics lie within the simulation envelopes as expected.

3. Attractive bivariate LGCP where we set �2 = 1, �2 = 1, a1 = a2 = 1. The mean func-

tions of the first and second components are µ1(x) = µ2(x) = log(5) + x2 respectively,
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x = (x, y, z)T 2 S2. An example is given in Figure 7.7 where the results show that

the observed functional summary statistics lies above the simulation envelopes for P 21

and below for both J12 and J21 highlighting the attractive nature of the process.

4. Repulsive bivariate LGCP where we set �2 = 1, �2 = 1, a1 = 1, a2 = �1. The mean

functions of the first and second components are µ1(x) = log(5) + y2 and µ2(x) =

log(5) + x2 respectively, x = (x, y, z)T 2 S2. An example is given in Figure 7.8

where the results show that the observed functional summary statistics lies below the

simulation envelopes for P 21 and above for both J12 and J21, highlighting the repulsive

nature of the process.

These examples demonstrate that the functional summary statistics developed in this section

for inhomogeneous multitype point processes are capable of providing evidence supporting

whether components are independent, attractive or repulsive based on comparison with

simulates from a null model. The middle left plots of P 21 given in Figures 7.5-7.8 again

highlight the issue of using random rotations to simulate the null hypothesis, as was the case

for the isotropic examples considered earlier; all the functional summary statistics converge

to a single point at r = ⇡, although not 0 in the inhomogeneous case.

7.5 Summary statistics on convex shapes

In this section we demonstrate how functional summary statistics can be constructed for

point patterns observed on convex shapes and used to determine independence, attraction

or repulsion. Following the discussion given by Ward et al. [2021b] there are a number of

impracticalities to defining functional summary statistics directly on a convex shape due to

the potential asymmetric nature of the convex shape. This asymmetry means analogous

notions of translation and rotational invariance cannot be well-defined, which in turn means

functional summary statistics cannot be constructed directly. Instead we can use the con-

cepts introduced by Ward et al. [2021b] and map point processes from their original space

onto the sphere, where rotational symmetries can now be utilised to construct well-defined

functional summary statistics.

7.5.1 Mapping marked point processes to S2

The following theorem shows that marked point processes on convex shapes can be mapped to

a marked point process on the sphere under an appropriately transformed intensity function.
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Figure 7.5: Example of an inhomogeneous independent bivariate Poison process with intensity functions

⇢1(x) = exp(log(6) + z), ⇢2(x) = exp(log(5) + 2x),x = (x, y, z)T 2 S2
for the first and second compo-

nents respectively. Top row: realisation of the process with X1 and X2 being represented by the red and black

points respectively. The figure on the left does not have a surface intensity, the middle figure has the surface

intensity given by ⇢1 and the right figure has the surface intensity given by ⇢2: all these figures are displayed

from the same perspective, where high intensity is indicated by yellow and low by blue. Middle row: plots of the

functional summary statistics where random rotations are used to construct the envelope and bottom row: plots

of the functional summary statistics where simulates from an inhomogeneous Poisson process with the fitted in-

tensity are used to construct the envelope. Solid black line is the observed functional summary statistic, dashed

red line is the theoretical value under independence and the grey area indicates the 2.5% lower and 97.5% upper

simulation envelope.
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Figure 7.6: Example of an inhomogeneous independent bivariate LGCP with parameters µ1(x) = µ2(x) =
log(5) + x,�

2 = 1, �2 = 1,x = (x, y, z)T 2 S2
. Top row: realisation of the process with X1 and X2 being

represented by the red and black points respectively. The figure on the left does not have a surface intensity, the

middle figure has the surface intensity given by the observed random field Y1 and the right figure has the surface

intensity given by the observed random field Y2: all these figures are displayed from the same perspective, where

high intensity is indicated by yellow and low by blue. Middle row: plots of the functional summary statistics

where random rotations are used to construct the envelope and bottom row: plots of the functional summary

statistics where simulates from an inhomogeneous Poisson process with the fitted intensity are used to construct

the envelope. Solid black line is the observed functional summary statistic, dashed red line is the theoretical

value under independence and the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.7: Example of an inhomogeneous attractive bivariate LGCP with parameters µ1(x) = µ2(x) = log(5)+
x
2
, a1 = a2 = 1,�2 = 1, �2 = 1,x = (x, y, z)T 2 S2

. Top row: realisation of the process with X1 and X2 being

represented by the red and black points respectively. The figure on the left does not have a surface intensity, the

middle figure has the surface intensity given by the observed random field Y1 and the right figure has the surface

intensity given by the observed random field Y2: all these figures are displayed from the same perspective, where

high intensity is indicated by yellow and low by blue. Middle row: plots of the functional summary statistics

where random rotations are used to construct the envelope and bottom row: plots of the functional summary

statistics where simulates from an inhomogeneous Poisson process with the fitted intensity are used to construct

the envelope. Solid black line is the observed functional summary statistic, dashed red line is the theoretical

value under independence and the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.8: Example of an inhomogeneous repulsive bivariate LGCP with parameters µ1(x) = log(5) +
y
2
, µ2(x) = log(5) + x

2
, a1 = 1, a2 = �1,�2 = 1, �2 = 1,x = (x, y, z)T 2 S2

. Top row: realisation

of the process with X1 and X2 being represented by the red and black points respectively. The figure on the

left does not have a surface intensity, the middle figure has the surface intensity given by the observed random

field Y1 and the right figure has the surface intensity given by the observed random field Y2: all these figures are

displayed from the same perspective, where high intensity is indicated by yellow and low by blue. Middle row:
plots of the functional summary statistics where random rotations are used to construct the envelope and bot-
tom row: plots of the functional summary statistics where simulates from an inhomogeneous Poisson process

with the fitted intensity are used to construct the envelope. Solid black line is the observed functional summary

statistic, dashed red line is the theoretical value under independence and the grey area indicates the 2.5% lower

and 97.5% upper simulation envelope.
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Theorem 7.5.1. Let D be a convex surface such that the same assumptions for Theorem

4.3.2 hold. Let X be a marked point process on D with intensity function ⇢ and f : D 7! S2

be a bijective measurable mapping. Then the point process Y = f(X) ⌘ {(f(x),m) : (x,m) 2

X}, is a marked point process on S2 with intensity function,

⇢⇤(x,m) =

8
>>>><

>>>>:

⇢(f�1(x),m)l1(f
�1(x))J(1,f⇤)(x)

q
1� x2m1

� x2n1
, x = (xr1 , xs1 , xt1)

T
2 f(D1)

...

⇢(f�1(x),m)lp(f
�1(x))J(p,f⇤)(x)

q
1� x2mp

� x2np
, x = (xrp , xsp , xtp)

T
2 f(Dp)

where xoi = g̃i(xmi , xni) and g̃i, li, J(i,f⇤),mi, ni, oi, ri, si, ti for i = 1, . . . , p and f⇤ are defined

as in Theorem 4.3.2.

Proof. Proof of Last and Penrose [2018, Theorem 5.1] can be adapted from the unmarked

to the marked setting and when the surface is convex.

By using Theorem 7.5.1 we can convert a point process over D to a point process over S2 and
thus utilise the estimators developed previously for analysis of spheroidal marked processes.

More precisely, we can use Equations 7.19-7.22 to estimate our functional summary statistics

where instead of ⇢ in the original statement of the estimators we can use ⇢⇤ as given by

Theorem 7.5.1.

As in the spherical case, we would need to construct an estimator of the unknown intensity

function. Suppose we have some estimator ⇢̂ of ⇢ then we can estimate ⇢⇤ from Theorem

7.5.1 as,

⇢̂⇤(x,m) =

8
>>>><

>>>>:

⇢̂(f�1(x),m)l1(f
�1(x))J(1,f⇤)(x)

q
1� x2m1

� x2n1
, x = (xr1 , xs1 , xt1)

T
2 f(D1)

...

⇢̂(f�1(x),m)lp(f
�1(x))J(p,f⇤)(x)

q
1� x2mp

� x2np
, x = (xrp , xsp , xtp)

T
2 f(Dp)

(7.30)

Iftimi et al. [2019] proposed a Voronoi intensity estimator for marked spatio-temporal point

processes which could be adapted to this setting to estimate ⇢. Additionally Iftimi et al.

[2016, Section 6.1.1], a preprint of Iftimi et al. [2019], outlines a number of simplfying

assumptions that can make calculating ⇢̂ easier, e.g. a common mark distribution.

As the focus of this chapter is on multitype patterns we can take our reference measure to

be the standard counting measure and so ⇢(x, i) = ⇢i(x) for i 2 {1, . . . , k}. Thus we need
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only consider two scenarios:

1. ⇢i(x) is constant over D and so can be estimated by ⇢̂i(x) = NXi(W )/�D(W ),

2. ⇢i(x) is not constant over D and so can be estimated using a kernel intensity estimator

for each Xi, i 2 {1, . . . , k}.

Both of these can then be used in conjunction with Theorem 7.5.1 and Equation 7.30 to

construct an estimate of the intensity function on the sphere as either,

⇢̂⇤i (x) =

8
>>>>>><

>>>>>>:

NXi(W )

�D(W )
l1(f

�1(x))J(1,f⇤)(x)
q

1� x2m1
� x2n1

, x = (xr1 , xs1 , xt1)
T
2 f(D1)

...

NXi(W )

�D(W )
lp(f

�1(x))J(p,f⇤)(x)
q

1� x2mp
� x2np

, x = (xrp , xsp , xtp)
T
2 f(Dp),

(7.31)

⇢̂⇤i (x) =

8
>>>><

>>>>:

⇢̂i(f
�1(x))l1(f

�1(x))J(1,f⇤)(x)
q

1� x2m1
� x2n1

, x = (xr1 , xs1 , xt1)
T
2 f(D1)

...

⇢̂i(f
�1(x))lp(f

�1(x))J(p,f⇤)(x)
q
1� x2mp

� x2np
, x = (xrp , xsp , xtp)

T
2 f(Dp),

(7.32)

for the homogeneous and inhomogeneous case respectively and x 2 S2 and ⇢̂i is an estimator

of the intensity forXi. In the coming examples we will use the nonparametric kernel approach

discussed in Chapter 6 when ⇢i is inhomogeneous.

7.5.2 Determining independence

On S2 we considered two approaches to examining whether a process has independence

between subsets to the mark space: (1) random rotations and (2) full distributional specifi-

cation of the null hypothesis. For the first approach, by Proposition 7.4.4, we know that if

the process is IRWMI on S2 then we can apply random rotations to simulate the null, as-

suming the intensity function is also suitably adjusted to test independence. Alternatively,

for the second approach, so long as the specified null process is IRWMI and/or SOIRWI

then from Monte Carlo simulates the functional summary statistics can be constructed and

independence tested for.
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When mapping point processes from our convex shape to the sphere the assumptions of

IRWMI and/or SOIRWI of the resulting process may not hold. Even though this may be

the case in the coming examples we show that the functional summary statistics are still

able to capture attractive and repulsive behaviour of a process. Although, in general, the

resulting spheroidal process may not satisfy the assumptions of IRWMI and/or SOIRWI

there are a few cases where these assumptions still hold for processes mapped from D to

S2: (1) Poisson process with an common mark distribution is IRWMI, (2) a multitype

Poisson process with independent components is IRWMI, and (3) A multitype process with

independent components is SOIRWI, see e.g [Møller and Waagepetersen, 2003, Proposition

4.4].

We highlight the special case when the process is Poisson. If we considered the second

approach and we specify a Poisson null then we know the null model is IRWMI and hence,

if the process is completely observed, we could in fact use random rotations rather then

simulating Poisson processes over D. This allows for a more general hypothesis with less

distributional assumptions to be tested.

7.5.3 Examples: Homogeneous multitype processes

We now exemplify these functional summary statistics across various bivariate processes.

We shall consider point processes that have been completely observed over an ellipsoid with

semi-major axis lengths a = b = 0.8 and c = 1.4398 along the x, y, and z�axes, the length

along the z�axis is set such that the surface area of the ellipsoid is 4⇡: identical to the unit

sphere. To simulate a LGCP on an ellipsoid we follow similarly to the spherical case where a

zero mean Gaussian field is first simulated in R3 with correlation function given by Equation

7.14. Then focusing only on points x 2 D, given the random field, we can simulate a Poisson

process. The result is a LGCP. We use a construction similar to Brix and Moller [2001] to

model attractive and repulsive behaviour of components. We consider four homogeneous

examples where we use Equation 7.31 and have used the function f(x) = (x/a, y/b, z/c)T

for x = (x, y, z)T 2 D to map from the ellipsoid to the sphere (cf. Equation 4.9),

1. Independent bivariate Poisson process with constant intensity functions ⇢1 = ⇢2 = 10

for the first and second components. An example is given in Figure 7.9 where the

results show that the observed functional summary statistics lie within the simulation

envelopes as expected.

2. Independent bivariate LGCP where we set �2 = 1, �2 = 0.2 and the mean functions of
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the first and second components are µ1 = µ2 = log(5). An example is given in Figure

7.10 where the results show that the observed functional summary statistics lie well

within the simulation envelopes as expected.

3. Attractive bivariate LGCP where we set �2 = 1, �2 = 0.2, a1 = a2 = 1 and the mean

functions of the first and second components are µ1 = µ2 = log(5). An example is

given in Figure 7.11 where the results show that the observed functional summary

statistics lies above the simulation envelopes for P 21 and below for both J12 and J21

highlighting the attractive nature of the process.

4. Repulsive bivariate LGCP where we set �2 = 1, �2 = 0.2, a1 = 1, a2 = �1 and the

mean functions of the first and second components are µ1 = µ2 = log(5). An example

is given in Figure 7.12 where the results show that the observed functional summary

statistics lies below the simulation envelopes for P 21 and above for both J12 and J21

highlighting the repulsive nature of the process.

Although the assumptions necessary to construct well defined functional summary statistics

may not hold when the process is mapped from the ellipsoid to the sphere, these examples

demonstrate that we can still determine whether components of a multitype point process

exhibit independence, attraction or repulsion. These functional summary statistics therefore

serve as useful exploratory tools when first investigating point processes on convex shapes.

7.5.4 Examples: Inhomogeneous multitype processes

Next we consider four inhomogeneous point processes. We use Equation 7.32 with our

kernel estimator for the intensity function developed in Chapter 6 and bandwidth selected

using Cronie’s criteria [Cronie and Van Lieshout, 2018] adapted to the Riemannian manifold

setting. We shall use the function f(x) = (x/a, y/b, z/c)T for x = (x, y, z)T 2 D to map

from the ellipsoid to the sphere.

1. Independent bivariate Poisson process with intensity functions ⇢1(x) = exp(log(6)+z)

and ⇢2(x) = exp(log(6) + 2x) for the first and second components respectively where

x = (x, y, z)T 2 D. An example is given in Figure 7.13 where the results show that

the observed functional summary statistics lie well within the simulation envelopes as

expected.

2. Independent bivariate LGCP where we set �2 = 1, �2 = 0.2 and the mean functions of

the first and second components are µ1(x) = µ2(x) = log(6)+x with x = (x, y, z)T 2 D.
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Figure 7.9: Example of a homogeneous independent bivariate Poisson process on an ellipsoid with dimensions

(a, b, c) = (0.8, 0.8, 1.4398) and intensity function ⇢1 = ⇢2 = log(10). Top row: realisation of the process

with X1 and X2 being represented by the red and black points respectively. The three figures show the same

realisation from di↵erent perspectives of the ellipsoid. Middle row: plots of the functional summary statistics

where random rotations are used to construct the envelope and bottom row: plots of the functional summary

statistics where simulates from a homogeneous Poisson process are used to construct the envelope. Solid black

line is the observed functional summary statistic, dashed red line is the theoretical value under independence and

the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.10: Example of a homogeneous independent bivariate LGCP on an ellipsoid with dimensions (a, b, c) =
(0.8, 0.8, 1.4398) and parameters µ1 = µ2 = log(5),�2 = 1, �2 = 0.2. Top row: realisation of the process

with X1 and X2 being represented by the red and black points respectively. The three figures show the same

realisation from the same perspectives of the ellipsoid, the left figure displays the data without any surface in-

tensity, the middle figure displays the realisation of Y1 as the surface intensity and the right figure displays the

realisation of Y2 as the surface intensity: high intensity is indicated by yellow whilst blue indicates low intensity.

Middle row: plots of the functional summary statistics where random rotations are used to construct the enve-

lope and bottom row: plots of the functional summary statistics where simulates from a homogeneous Poisson

process are used to construct the envelope. Solid black line is the observed functional summary statistic, dashed

red line is the theoretical value under independence and the grey area indicates the 2.5% lower and 97.5% upper

simulation envelope.
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Figure 7.11: Example of a homogeneous attractive bivariate LGCP on an ellipsoid with dimensions (a, b, c) =
(0.8, 0.8, 1.4398) and parameters µ1 = µ2 = log(5), a1 = a2 = 1,�2 = 1, �2 = 0.2. Top row: realisation of the

process with X1 and X2 being represented by the red and black points respectively. The three figures show the

same realisation from the same perspectives of the ellipsoid, the left figure displays the data without any surface

intensity, the middle figure displays the realisation of Y1 as the surface intensity and the right figure displays the

realisation of Y2 as the surface intensity: high intensity is indicated by yellow whilst blue indicates low intensity.

Middle row: plots of the functional summary statistics where random rotations are used to construct the enve-

lope and bottom row: plots of the functional summary statistics where simulates from a homogeneous Poisson

process are used to construct the envelope. Solid black line is the observed functional summary statistic, dashed

red line is the theoretical value under independence and the grey area indicates the 2.5% lower and 97.5% upper

simulation envelope.
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Figure 7.12: Example of a homogeneous repulsive bivariate LGCP on an ellipsoid with dimensions (a, b, c) =
(0.8, 0.8, 1.4398) and parameters µ1 = µ2 = log(5), a1 = 1, a2 = �1,�2 = 1, �2 = 0.2. Top row: realisation of

the process with X1 and X2 being represented by the red and black points respectively. The three figures show

the same realisation from the same perspectives of the ellipsoid, the left figure displays the data without any

surface intensity, the middle figure displays the realisation of Y1 as the surface intensity and the right figure dis-

plays the realisation of Y2 as the surface intensity: high intensity is indicated by yellow whilst blue indicates low

intensity. Middle row: plots of the functional summary statistics where random rotations are used to construct

the envelope and bottom row: plots of the functional summary statistics where simulates from a homogeneous

Poisson process are used to construct the envelope. Solid black line is the observed functional summary statis-

tic, dashed red line is the theoretical value under independence and the grey area indicates the 2.5% lower and

97.5% upper simulation envelope.
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An example is given in Figure 7.14 where the results show that the observed functional

summary statistics lie well within the simulation envelopes as expected.

3. Attractive bivariate LGCP where we set �2 = 1, �2 = 0.2, a1 = a2 = 1 and the mean

functions of the first and second components are µ1(x) = µ2(x) = log(5) + x2 with

x = (x, y, z)T 2 D. An example is given in Figure 7.15 where the results show that the

observed functional summary statistics typically lie above the simulation envelopes for

P 21 and below for both J12 and J21 highlighting the attractive nature of the process.

4. Repulsive bivariate LGCP where we set �2 = 1, �2 = 0.2, a1 = 1, a2 = �1 and the

mean functions of the first and second components are µ1(x) = log(5)+y2 and µ2(x) =

log(5) + x2 respectively and x = (x, y, z)T 2 D. An example is given in Figure 7.16

where the results show that the observed functional summary statistics typically lie

below the simulation envelopes for P 21 and above for both J12 and J21 highlighting

the repulsive nature of the process.

For the last two examples, under the Poisson null the plot of P 21 (bottom left plot in

Figures 7.11 and 7.16), only lies marginally outside the simulation envelope. Based solely

on these plots we would suppose there is little evidence to suggest deviations away from

independence, but when also considering the plots of J12 and J21 there is clear indication of

attraction or repulsion in the process. This example highlights the importance of examining

many di↵erent second order statistics [Baddeley and Silverman, 1984].

7.6 Discussion

In this chapter we discussed our final contribution to the spatial statistics literature. We de-

tailed how functional summary statistics can be constructed for marked spheroidal processes

by extending the theory from Rd [Cronie and van Lieshout, 2016]. Under the framework

of marked processes we specifically focused on multivariate point patterns highlighting that

these functional summary statistics were capable of capturing attractive or repulsive be-

haviour between its components in an observed point process. Using the Mapping Theorem

[Last and Penrose, 2018] we were able to extend this methodology further for point processes

lying on the surface of convex shapes. Numerical examples showed that the functional sum-

mary statistics constructed for marked point processes on convex shapes are still capable

of capturing attractive and repulsive behaviour even when the assumptions of IRWMI or

SOIRWI do not hold for the mapped point process.
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Figure 7.13: Example of an inhomogeneous independent bivariate Poisson process on an ellipsoid dimensions

(a, b, c) = (0.8, 0.8, 1.4398) and intensity functions ⇢1 = exp(log(6) + z) and ⇢2 = exp(log(6) + 2x) for the
first and second component respectively. Top row: realisation of the process with X1 and X2 being represented

by the red and black points respectively. The three figures show the same realisation from the same perspectives

of the ellipsoid. The left figure has no surface intensity, the middle figure displays ⇢1 as its surface intensity,

whilst the right figure displays ⇢2 as its surface intensity: high intensity is indicated by yellow whilst low intensity

is indicated by blue. Middle row: plots of the functional summary statistics where random rotations are used

to construct the envelope and bottom row: plots of the functional summary statistics where simulates from an

inhomogeneous Poisson process with the fitted intensity function are used to construct the envelope. Solid black

line is the observed functional summary statistic, dashed red line is the theoretical value under independence and

the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.14: Example of an inhomogeneous independent bivariate LGCP on an ellipsoid with dimensions

(a, b, c) = (0.8, 0.8, 1.4398) and parameters µ1(x) = µ2(x) = log(6) + x,�
2 = 1, �2 = 0.2. Top row: re-

alisation of the process with X1 and X2 being represented by the red and black points respectively. The three

figures show the same realisation from the same perspectives of the ellipsoid, the left figure displays the data

without any surface intensity, the middle figure displays the realisation of Y1 as the surface intensity and the

right figure displays the realisation of Y2 as the surface intensity: high intensity is indicated by yellow whilst blue

indicates low intensity. Middle row: plots of the functional summary statistics where random rotations are used

to construct the envelope and bottom row: plots of the functional summary statistics where simulates from an

inhomogeneous Poisson process with the fitted intensity function are used to construct the envelope. Solid black

line is the observed functional summary statistic, dashed red line is the theoretical value under independence and

the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.15: Example of an inhomogeneous attractive bivariate LGCP on an ellipsoid with dimensions (a, b, c) =
(0.8, 0.8, 1.4398) and parameters µ1(x) = µ2(x) = log(6) + x

2
, a1 = a2 = 1,�2 = 1, �2 = 0.2. Top row:

realisation of the process with X1 and X2 being represented by the red and black points respectively. The three

figures show the same realisation from the same perspectives of the ellipsoid, the left figure displays the data

without any surface intensity, the middle figure displays the realisation of Y1 as the surface intensity and the

right figure displays the realisation of Y2 as the surface intensity: high intensity is indicated by yellow whilst blue

indicates low intensity. Middle row: plots of the functional summary statistics where random rotations are used

to construct the envelope and bottom row: plots of the functional summary statistics where simulates from an

inhomogeneous Poisson process with the fitted intensity function are used to construct the envelope. Solid black

line is the observed functional summary statistic, dashed red line is the theoretical value under independence and

the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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Figure 7.16: Example of an inhomogeneous repulsive bivariate LGCP on an ellipsoid with dimensions (a, b, c) =
(0.8, 0.8, 1.4398) and parameters µ1(x) = log(6) + y

2
, µ2(x) = log(6) + x

2
, a1 = 1, a2 = �1,�2 = 1, �2 = 0.2.

Top row: realisation of the process with X1 and X2 being represented by the red and black points respectively.

The three figures show the same realisation from the same perspectives of the ellipsoid, the left figure displays

the data without any surface intensity, the middle figure displays the realisation of Y1 as the surface intensity

and the right figure displays the realisation of Y2 as the surface intensity: high intensity is indicated by yellow

whilst blue indicates low intensity. Middle row: plots of the functional summary statistics where random ro-

tations are used to construct the envelope and bottom row: plots of the functional summary statistics where

simulates from an inhomogeneous Poisson process with the fitted intensity function are used to construct the

envelope. Solid black line is the observed functional summary statistic, dashed red line is the theoretical value

under independence and the grey area indicates the 2.5% lower and 97.5% upper simulation envelope.
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8
Conclusions

The focus of this thesis has been to develop theory and methodology for the analysis of point

processes outside of a Euclidean space, a typical assumption made in the current literature.

We summarise the contributions made and discuss how this work can be extended and future

avenues that could be fruitfully pursued.

In Chapter 3 we reviewed the current literature on spheroidal point processes making partic-

ular reference to the discussion of the inhomogeneous K-function given by Møller and Rubak

[2016], Lawrence et al. [2016] which is of importance in the subsequent chapters. Building

on the work of van Lieshout [2011] we have defined IRWMI processes and provide extensions

of the inhomogeneous F,H, and J-functions from R2,3 to S2 demonstrating them on three

types of nonstationary processes over the sphere: Poisson, LGCP, and location dependent

thinning. The development of these functional summary statistics serve as the foundation

for the analysis of point patterns in the two subsequent chapters which discuss how to con-

struct functional summary statistics for Poisson processes over convex shapes and formal

hypothesis testing for CSR over convex shapes.

Chapter 4 presents our first major contribution. We demonstrated that construction of

functional summary statistics outside of symmetric spaces such as Rd and Sd�1 is non-trivial.
We show that for Poisson point processes existing on convex shapes it is in fact possible to

construct functional summary statistics through the Mapping Theorem [Kingman, 1993].

This allows for analysis to be conducted on a sphere where rotational symmetries can be

exploited and thus functional summary statistics can be well-defined. We have demonstrated
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the methodology through simulation envelopes demonstrating that the described summary

statistics are able to identify when a process is truly CSR on D. The summary statistics

are also capable of highlighting when a process may be clustered or regular based on their

deviations from an assumed CSR process.

Building on Chapter 4, Chapter 5 discusses a formal Monte Carlo approach to hypothesis

testing of CSR on a convex surface. We derived two test statistics: one based on the work

of Lawrence [2018] and the other based on a standardisation considered in Lagache et al.

[2013]. Properties of the latter test statistic were derived. Both statistics were investigated

for their e�cacy in determining CSR through an extensive simulation study across ellipsoids

of varying dimensions and processes that exhibited di↵ering levels of clustering or regularity.

We showed that T1 outperforms T2 (see Equation 5.4) for the majority of the experiments

and that calculation of T1 benefits from quicker computational calculation. Based on these

results we suggested that T1 would be a more favourable test statistic to use when testing

CSR but this should not be at the expense of a critical examination of envelope plots [Diggle,

2003].

If a point pattern is suspected to not be CSR we would then be interested in recovering the

intensity function of the point pattern. Chapter 6 discusses precisely this when the space

is a Riemannian manifold. In this chapter we extended the theory of nonparametric kernel

intensity estimation for point processes from a Euclidean space endowed with the standard

Euclidean metric to a Riemannian manifold endowed with a Riemmanian metric. We have

provided formulas for the bias and variance for the kernel intensity estimators under a Poisson

assumption whilst also providing asymptotic results when the expected number of points

across the manifold increases. Furthermore, we have also discussed two bandwidth selection

protocols Baddeley et al. [2015], Cronie and Van Lieshout [2018]. We have investigated

these two selection criteria through an extensive simulation study across ellipsoids of varying

dimensions. Based on the simulation studies we can provide similar tentative conclusions

as those drawn by Cronie and Van Lieshout [2018]: in the Poisson setting one should use

the cross validation criteria, whilst in the clustered setting Cronie’s selection criteria is more

appropriate. In the regular setting cross validation seems to outperform Cronie’s criteria

in general, although this di↵erence is small in most cases. In addition to this, Cronie’s

approach is computationally more e�cient and therefore in practice would suggest using

Cronie’s selection criteria unless the pattern shows significant regularity, in which case cross

validation would be more appropriate.

The final contribution made discusses how summary statistics can be constructed for mul-

titype processes on convex shapes. In Chapter 7 we discussed how functional summary
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statistics can be constructed for marked spheroidal processes by extending the theory from

Rd [Cronie and van Lieshout, 2016] to the current setting. We focused on multitype point

processes with the goal of determining whether a pattern exhibits attractiveness or repul-

siveness between its component. Examples are explored on the sphere demonstrating that

these functional summary statistics are able to capture these behaviours of point patterns.

Using the Mapping Theorem [Last and Penrose, 2018] we were able to further extend this

methodology for point processes lying on the surface of convex shapes. Again, examples

show that the functional summary statistics constructed for multitype point processes on

convex shapes are still capable of capturing attractive and repuslive behaviour even when

the assumptions of IRWMI or SOIRWI may be violated.

8.1 Future work

There are a number of natural extensions following our work. The major focus here has

been on the development of tools for exploratory data analysis and the next step would be

to consider modelling techniques for point processes observed on general spaces. Due the

di�culty of defining summary statistics for point process that are not Poisson we would

expect techniques such as minimum contrast [Møller and Waagepetersen, 2003] to be inef-

fective. We anticipate that Markov processes on convex shapes can be fit using maximum-

likelihood, psuedo-likelihood, and logistic regression [Baddeley and Turner, 1998, Møller

and Waagepetersen, 2003, Baddeley et al., 2014], whilst LGCP can be fit using maximum-

likelihood and pseudo-likelihood techniques also [Møller and Waagepetersen, 2003]. Typi-

cally following model fitting determining whether the model is adequate is suitable follows:

for spatial point patterns this can be assessed through functional summary statistics where

the observed is compared to realisations generated from the fitted model. Although con-

struction of summary statistics for general point processes is not possible on convex shapes,

it can be shown that both Markov and Cox processes remain Markov and Cox respectively

when mapped to the sphere, this fact coupled with the thinning technique developed by

Møller and Schoenberg [2010] may allow for functional summary statistics to be constructed

that can be used for model validation. The thinning technique of Møller and Schoenberg

[2010] was successfully applied to spheroidal LGCP in Cuevas-Pacheco and Møller [2018] to

determine whether the model fit well.

An extension of the work in Chapter 6 would be to relax the Riemannian assumption. It

may not always be plausible to suppose a smooth Riemannian structure on the underlying

surface, instead a more practical approach would be to use a piecewise linear approximation
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of the surface which may be more easily obtained in real world applications. In such a setting

we expect the theory can be easily adapted and the results still hold. If in addition to this

we also drop the compactness assumption and instead suppose we have a manifold with a

boundary this allows for new types of data to be analysed such as point patterns that exist on

uneven surfaces, e.g. tree locations on mountainous or hilly regions. Under the assumption

of a Riemannian manifold it may be possible to construct geometrically corrected functional

summary statistics using the volume density function introduced in Appendix D.1. The

arguments follow similarly to those made by Ang et al. [2012], Rakshit et al. [2017] for point

processes on linear networks and these ideas will be pursued in upcoming work.

In Chapter 7 we focused on testing independence between components of a multitype point

pattern. Another hypothesis that is commonly considered is random labelling : that the

marks are all IID and do not depend upon the ground process. These ideas have been

explored in a number of works including van Lieshout and Baddeley [1999], Cronie and van

Lieshout [2016], Iftimi et al. [2019] for spatial and spatio-temporal processes in Rd and could

be extended to processes lying on general surfaces.
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France, 2006.

L. Cucala. Intensity estimation for spatial point processes observed with noise. Scandinavian

Journal of Statistics, 35(2):322–334, 2008.

F. Cuevas, D. Allard, and E. Porcu. Fast and exact simulation of Gaussian random fields

defined on the sphere cross time. Statistics and Computing, 30(1):187–194, 2020.

190



F. Cuevas-Pacheco and J. Møller. Log Gaussian Cox processes on the sphere. Spatial

Statistics, 26:69–82, 2018.

D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Volume 1:

Elementary Theory and Methods. Springer, New York, second edition, 2003.

M. Deserno. How to generate equidistributed points on the surface of a sphere. 2004. URL

https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf.

P. J. Diggle. A kernel method for smoothing point process data. Journal of the Royal

Statistical Society: Series C, 34(2):138–147, 1985.

P. J. Diggle. Displaced amacrine cells in the retina of a rabbit: analysis of a bivariate spatial

point pattern. Journal of Neuroscience Methods, 18(1-2):115–125, 1986.

P. J. Diggle. Statistical Analysis of Spatial Point Patterns. Arnold, London, second edition,

2003.

P. J. Diggle. Statistical Analysis of Spatial and Spatio-temporal Point Patterns. CRC press,

Florida, third edition, 2014.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner. 3D single-

molecule super-resolution microscopy with a tilted light sheet. Nature Communications,

9(1):123, 2018.

K. H. Hanisch. Some remarks on estimators of the distribution function of nearest neighbour

distance in stationary spatial point processes. Series Statistics, 15(3):409–412, 1984.

G. Henry and D. Rodriguez. Kernel density estimation on Riemannian manifolds: Asymp-

totic results. Journal of Mathematical Imaging and Vision, 34(3):235–239, 2009.

W. Hoe↵ding. Breakthroughs in Statistics: Foundations and Basic Theory, chapter A Class

of Statistics with Asymptotically Normal Distribution, pages 308–334. Springer, New

York, 1992.

A. Iftimi, O. Cronie, and F. Montes. The second-order analysis of marked spatio-temporal

point processes, with an application to earthquake data. arXiv:1611.04808, 2016.

A. Iftimi, O. Cronie, and F. Montes. Second-order analysis of marked inhomogeneous spa-

tiotemporal point processes: Applications to earthquake data. Scandinavian Journal of

Statistics, 46(3):661–685, 2019.

191



P. Jagers. On Palm probabilities. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte

Gebiete, 26(1):17–32, 1973.

E. B. V. Jensen and L. S. Nielsen. A review on inhomogeneous Markov point processes.

Lecture Notes-Monograph Series, 37:297–318, 2001.

M. C. Jones. Simple boundary correction for kernel density estimation. Statistics and

Computing, 3(3):135–146, 1993.

M. Jun, C. Schumacher, and R. Saravanan. Global multivariate point pattern models for

rain type occurrence. Spatial Statistics, 31:100355, 2019.

C. F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87(1):43–55, 2012.

C. F. F. Karney. GeographicLib. MATLAB Central File Exchange, 2017. URL https://

www.mathworks.com/matlabcentral/fileexchange/50605-geographiclib. Retrieved

October 5, 2017.

J. F. C. Kingman. Poisson Processes. Oxford University Press, Oxford, 1993.

N. P. Kopytov and E. A. Mityushov. The method for uniform distribution of points on

surfaces in multi-dimensional Euclidean space. Intellectual Archive, 2013. URL http:

//www.intellectualarchive.com/?link=item&id=1170.

T. Lagache, G. Lang, N. Sauvonnet, and J. C. Olivo-Marin. Analysis of the spatial organi-

zation of molecules with robust statistics. PLoS ONE, 8(12):1–7, 2013.

A. Lang, J. Pottho↵, M. Schlather, and D. Schwab. Continuity of random fields on Rieman-

nian manifolds. Communications on Stochastic Analysis, 10(2):185–193, 2016.

G. Lang and E. Marcon. Testing randomness of spatial point patterns with the Ripley

statistic. ESAIM: Probability and Statistics, 17:767–788, 2012.

G. Last and M. Penrose. Lectures on the Poisson Process. Cambridge University Press,

Cambridge, 2018.

T. J. Lawrence. Point pattern analysis on a sphere. Master’s thesis, The University of

Western Australia, 2018.

T. J. Lawrence, A. J. Baddeley, R. K. Milne, and G. Nair. Point pattern analysis on a region

of a sphere. Stat, 5(1):144–157, 2016.

192



A. Le Brigant and S. Puechmorel. Approximation of densities on Riemannian manifolds.

Entropy, 21(1):43, 2019.

J. M. Lee. Introduction to Riemannian Manifolds. Springer, Cham, 2018.

H. Lotwick and B. Silverman. Methods for analysing spatial processes of several types of

points. Journal of the Royal Statistical Society: Series B, 44(3):406–413, 1982.

B. Matérn. Spatial Variation. Lecture Notes in Statistics. Springer, Berlin, second edition,

2013.

G. McSwiggan, A. J. Baddeley, and G. Nair. Kernel density estimation on a linear network.

Scandinavian Journal of Statistics, 44(2):324–345, 2017.

J. Møller and E. Rubak. Functional summary statistics for point processes on the sphere

with an application to determinantal point processes. Spatial Statistics, 18(A):4–23, 2016.

J. Møller and F. P. Schoenberg. Thinning spatial point processes into poisson processes.

Advances in Applied Probability, 42(2):347–358, 2010.

J. Møller and R. Waagepetersen. Some recent developments in statistics for spatial point

patterns. Annual Review of Statistics and its Application, 4(1):317–342, 2017.

J. Møller and R. P. Waagepetersen. Log Gaussian Cox Processes. Scandinavian Journal of

Statistics, 25(3):451–482, 1998.

J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial Point

Processes. CRC Press, Florida, 2003.

J. Møller, M. Nielsen, E. Porcu, and E. Rubak. Determinantal point process models on the

sphere. Bernoulli, 24(2):1171–1201, 2018.

J. Møller, H. S. Christensen, F. Cuevas-Pacheco, and A. D. Christo↵ersen. Structured

space-sphere point processes and K-functions. Methodology and Computing in Applied

Probability, 23(2):569–591, 2021.
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A
Appendix to Chapter 3

A.1 Proof of Theorem 3.5.1

Proof. Let {B1, . . . , Bn} be a partition of BS2(o, r) into n sets, such that as n increases the

area of each Bi decreases. Then,

F (r) = 1� PX\BS2 (o,r)
(;)

= 1� P((XB1 = ;) \ · · · \ (XBn = ;))

= 1�

0

BB@1�
nX

i=1

P(XBi 6= ;) +
nX

i,j=1

i<j

P((XBi 6= ;) \ (XBj 6= ;))� · · ·

1

CCA (A.1)

=
nX

i=1

P(XBi 6= ;)�
nX

i,j=1

i<j

P((XBi 6= ;) \ (XBj 6= ;)) + · · · , (A.2)

where (A.1) follows from the inclusion-exclusion principle. Next we shall consider the first

term. Define an(x) =
P

n

i=1
[xBi 6= ;] and a(x) =

P
x2x [x 2 BS2(o, r)] where x 2 Nlf .

Then it can easily be seen that an is a monotonically increasing sequence since as the number

of partitions increases the number of partitions containing more than one point of x decreases.

Further the maximimum of an is a. To see this consider small neighbourhoods of each x 2 x

such that these neighbourhoods are all disjoint. This is possible since we only consider locally
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finite point configurations of Nlf which have unique points, i.e. no two elements of x 2 Nlf

can be identical. For the space Nlf,multi = {x 2 Nlf | there exists x,y 2 x such that x =

y} ⇢ Nlf by assuming simplicity of X we define P(X 2 Nlf,multi) = 0. Label these Bx, then

[xBx 6= ;] = 1, 8x 2 x and so for this partition an = a and cannot increase as this would

require at least one point of x to be in two di↵erent disjoint Bx: a contradiction. Hence as

n!1, an ! a. Therefore,

nX

i=1

P(XBi 6= ;) = E
nX

i=1

[XBi 6= ;]

=

Z

Nlf

nX

i=1

[xBi 6= ;]dP(x).

Since an(x)  a(x) and by assumption ↵(1)
⌘ ↵ exists, and noticing that E[a(X)] =

E
P

x2X [x 2 BS2(o, r)] = ↵(BS2(o, r)) < 1, we can therefore apply the dominated con-

vergence theorem when taking the limit as n increases and the volumes of Bi decrease,

i.e.

lim
n!1

�S2 (Bi)!0

nX

i=1

P(XBi 6= ;) = lim
n!1

�S2 (Bi)!0

Z

Nlf

nX

i=1

[xBi 6= ;]dP(x)

=

Z

Nlf

lim
n!1

�S2 (Bi)!0

nX

i=1

[xBi 6= ;]dP(x)

=

Z

Nlf

X

y2x
[y 2 BS2(o, r)]dP(x)

= E
X

x2X
[xBi 2 BS2(o, r)]

= ↵(BS2(o, r)),

noting by our previous discussion that P(X 2 Nlf,multi) = 0 and so we can disregard elements

of Nlf,multi. Hence this identity holds almost surely.

An identical approach can be used for the remaining terms of A.2 in the following. By
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considering the kth term of A.2 we have,

(�1)k+1

nX

i1,...,ik=1

i1<···<ik

P((XBi1
6= ;) \ · · · \ (XBik

6= ;))

=
(�1)k+1

k!

nX

i1=1

· · ·

nX

ik=1

ik /2{i1,...,ik�1}

P((XBi1
6= ;) \ · · · \ (XBik

6= ;)).

Define,

an(x) =
6=X

i1,...,ik2{1,...,n}

[xBi1
6= ;, . . . , xBik

6= ;]

a(x) =
6=X

x1,...,xk2x
[x1 2 BS2(o, r), . . . ,xk 2 BS2(o, r)],

for x 2 Nlf . By identical arguments as in the case for k = 1 we have that an(x) is increasing

for a shrinking partition of BS2(o, r) and attains its maximum of a(x). Thus by using the

dominated convergence theorem again we have,

lim
n!1

�S2 (Bi)!0

(�1)k+1

nX

i1,...,ik=1

i1<···<ik

P((XBi1
6= ;) \ · · · \ (XBik

6= ;))

=
�(�1)k

k!
↵(k)(BS2(o, r), . . . , BS2(o, r)),

and so gives the infinite series representation of the F - function.

The series representation for the H - function follows an identical argument to that of the F

- function, instead using the factorial moment measure for the reduced Palm point process,

X !
x.

A.2 Proof of Corollary 3.5.2

Proof. The infinite series for F follows immediately from Theorem 3.5.1 and Equation 2.1.

Further, by assumption we also know that,

↵!(n)

o (B1 ⇥ · · ·⇥Bn) =

Z

B1

· · ·

Z

Bn

⇢!(n)o (x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn).
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Then we have the following relationship between the nth-order product intensities of X and

X !
o (see for example Coeurjolly et al. ((2017))),

⇢!(n)x (x1, . . . ,xm) =
⇢(n+1)(x,x1, . . . ,xn)

⇢(x)
, (A.3)

and so for our point process X,

↵!(n)

o (B1 ⇥ · · ·⇥Bn) =

Z

B1

· · ·

Z

Bn

⇢(n+1)

o (o,x1, . . . ,xn)

⇢
�S2(dx1) · · ·�S2(dxn),

and then by Theorem 3.5.1 we have the infinite series for the H-function in terms of the

nth-order product intensities.

A.3 Proof of Theorem 3.5.4

Our proof follows identically to the proof of Proposition 4.2 in van Lieshout ((2006)), al-

though we restrict our attention to S2 and only focus on unmarked point processes.

Proof. From Corollary 3.5.2 and assuming that all factorial moment intensities exist,

⇢(1�H(r)) =⇢+
1X

n=1

(�1)n

n!
Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)
⇢(n+1)(0,x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn),

then using the Definition 3.5.3 of the nth-order correlation function,

⇢(1�H(r)) =⇢+ ⇢
1X

n=1

(�⇢)n

n!

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

nX

k=0

X

D1,...,Dk

⇠|D1|(xD1) · · · ⇠|Dk|(xDk)�S2(dx1) · · ·�S2(dxn),

where the set {D1, . . . , Dk} now partitions {0, 1, . . . , n}. Then,

⇢(1�H(r)) = ⇢+ ⇢
1X

n=1

(�⇢)n

n!

nX

k=0

X

D1,...,DkZ

BS2 (o,r)
|D1|

⇠|D1|(xD1)�
(|D1|)
S2 (dxD1) · · ·

Z

BS2 (o,r)
|Dk|

⇠|Dk|(xDk)�
(|Dk|)
S2 (dxDk)
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where BS2(o, r)
|Di| is the Cartesian product of BS2(o, r), |Di| times, dxDi = dxa1 ⇥ · · · ⇥

dxa|Di|
such that a1, . . . , a|Di| 2 xDi and �

(n)

S2 is the n - fold Lebesgue measure on S2. Then
we pull out the terms ⇠|Di|(xDi) such that 0 2 Di giving,

⇢(1�H(r)) = ⇢+ ⇢
1X

n=1

(�⇢)n

n!

X

D✓{1,...,n}

J|D|(r)

n�|D|X

k=1

X

D1,...,Dk 6=;
[Dj={1,...,n}\D

I|D1| · · · I|Dk|, (A.4)

where I|Di| =
R
BS2 (o,r)

|Di| ⇠|Di|(x|Di|)�
(|Di|)
S2 (dx|Di|) and we have taken the convention that

P
0

k=1
= 1. It can be shown that this can then be factorised as,

 
⇢J0(r) + ⇢

1X

n=1

(�⇢)n

n!
Jn(t)

!
0

BB@1 +
1X

m=1

(�⇢)m

m!

mX

k=1

X

D1,...,Dk
[Dj={1,...,m}

I|D1| · · · I|Dk|

1

CCA . (A.5)

To see why this factorisation holds we expand Equation A.5 and then work term by term.

By expanding A.5, we have the following terms,

⇢J0(r) (A.6)

⇢
1X

n=1

(�⇢)n

n!
Jn(t) (A.7)

⇢J0(r)

0

BB@
1X

m=1

(�⇢)m

m!

mX

k=1

X

D1,...,Dk
[Dj={1,...,m}

I|D1| · · · I|Dk|

1

CCA (A.8)

 
⇢
1X

n=1

(�⇢)n

n!
Jn(t)

!
0

BB@
1X

m=1

(�⇢)m

m!

mX

k=1

X

D1,...,Dk
[Dj={1,...,m}

I|D1| · · · I|Dk|

1

CCA (A.9)

For term A.6, this is identical to ⇢ by the definition of ⇠1 ⌘ 1 and so J0(r) = 1, which gives

the first term of A.4. In A.4 consider the second term but in the second summand only

consider the case when D = {1, . . . , n}. Thus
Pn�|D|

k=1
=
P

0

k=1
= 1 and therefore we have

A.7. Next consider when D = ;, then pulling J0(r) out we have A.8. Finally we consider all
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other terms over the sum of D,

⇢
1X

n=1

(�⇢)n

n!

X

D✓{1,...,n}
D 6=;,D 6={1,...,n}

J|D|(r)

n�|D|X

k=1

X

D1,...,Dk 6=;
[Dj={1,...,n}\D

I|D1| · · · I|Dk|. (A.10)

Notice that by integrating out xi in J|D|(r), I|Di|, i = 1, 2, . . . the specific elements of the

sets D and Dj , j = 1, 2, . . . are not relevant and only the size of the sets are. Acknowledging

this fact and that there are
�
n

x

�
ways of selecting a subset of {1, . . . , n} of size d, A.10 can

be rewritten as,

⇢
1X

n=1

(�⇢)n

n!

n�1X

d=1

✓
n

d

◆
Jd(r)

n�dX

k=1

X

D1,...,Dk 6=;
[Dj={1,...,n�d}

I|D1| · · · I|Dk|

By expanding
�
n

d

�
and switching the order of the first two sums we have,

 
⇢
1X

n=1

(�⇢)n

n!
Jn(t)

!
0

BB@
1X

m=1

(�⇢)m

m!

mX

k=1

X

D1,...,Dk
[Dj={1,...,m}

I|D1| · · · I|Dk|

1

CCA ,

which is identically A.9. By the definition of the nth-order correlation function and Corollary

3.5.2, the second term of A.5 is 1� F (r) and so we have,

⇢(1�H(r)) =

 
⇢+ ⇢

1X

n=1

(�⇢)n

n!
Jn(t)

!
(1� F (r))

Since J(r) = (1�H(r))/(1� F (r)), we have the final result.

A.4 Proof of Theorem 3.5.7

Before proceeding with the proof of Theorem 3.5.7 we first discuss the generating functional

of a point process. The generating functional, GX(u) of a point process X, very much like

a generating function for a random variable, can be used to derive the nth order factorial

moment measures based on derivatives of GX(u) (e.g. see Chiu et al. ((1995))). Conversely,

assuming that the product intensity functions of all orders exists and letting u be a mea-

surable function taking values in [0, 1] with bounded support then as shown by e.g. van
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Lieshout ((2011)) we have an infinite series representation of the generating functional,

GX(1� u) = E
Y

x2X
(1� u(x))

= E

2

41�
X

x2X
u(x) +

1

2!

6=X

x1,x22X
u(x1)u(x2)� · · ·

3

5

= E
"
1 +

1X

n=1

(�1)n

n!

6=X

x1,··· ,xn

u(x1) · · ·u(xn)

#

= 1 +
1X

n=1

(�1)n

n!
E

6=X

x1,··· ,xn

u(x1) · · ·u(xn)

= 1 +
1X

n=1

(�1)n

n!
Z

S2
· · ·

Z

S2
u(x1) · · ·u(xn)⇢

(n)(x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn), (A.11)

assuming the right hand side is absolutely convergent. In the event the nth order product

intensities do not exists but the nth order factorial moment measures do and are locally

finite then can be replaced with ↵(n)(dx1, . . . , dxn). Equipped with this identity we can now

progress with the proof of Theorem 3.5.7 which follows analogously to the proof of Theorem

1 in van Lieshout ((2011)).

Proof. To begin the proof we first show the following identity,

E
6=X

x1,...,xn2X!
x

nY

i=1

[xi 2 BS2(x, r)]

⇢(xi)

=

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n+1)(0,x1, . . . ,xn)

⇢(0)⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn).

Starting with the left-hand side,

E
6=X

x1,...,xn2X!
x

nY

i=1

[xi 2 BS2(x, r)]

⇢(xi)

=

Z

BS2 (x,r)
· · ·

Z

BS2 (x,r)

⇢!(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn)
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=

Z

BS2 (x,r)
· · ·

Z

BS2 (x,r)

⇢(n+1)(x,x1, . . . ,xn)

⇢(x)⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn)

=

Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n+1)(0,x1, . . . ,xn)

⇢(0)⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn)

where the first line holds by the Campbell-Mecke Theorem applied to the reduced Palm

process and the penultimate line holds by Equation A.3, and the final one holds by rotational

invariance of the nth order correlation functions, and this holds for almost all x 2 S2. In the

original proof given by van Lieshout ((2011)) they use Fubini’s theorem to equate integrands

to show the above identity. We have the following identity,

Y

x2X

✓
1�

⇢̄ [x 2 BS2(y, r)]

⇢(x)

◆
= 1 +

1X

n=1

(�⇢̄)n

n!

6=X

x1,...,xn2X

nY

i=1

[xi 2 BS2(y, r)]

⇢(xi)
. (A.12)

This identity holds since the product on the left-hand side is almost surely a finite product

since X \ BS2(x, r) is almost surely finite. To see why this identity follows, an identical

argument can be used as in the series representation of the generating functional given

previously. Not only does the identity hold for a point process X but it also holds for its

reduced Palm process, X !
x. Thus taking expectations of both sides the following identity

holds for almost all y 2 S2,

GX!
y
(1� uyr ) =1 +

1X

n=1

(�⇢̄)n

n!
Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n+1)(0,x1, . . . ,xn)

⇢(0)⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn),

(A.13)

which holds provided that the power series on the right-hand side is absolutely convergent.

Further for all y 2 S2, by the series representation given by Equation A.11, and rotational

invariance of the nth order correlation function we also have,

GX(1� uyr ) =1 +
1X

n=1

(�⇢̄)n

n!
Z

BS2 (o,r)
· · ·

Z

BS2 (o,r)

⇢(n)(x1, . . . ,xn)

⇢(x1) · · · ⇢(xn)
�S2(dx1) · · ·�S2(dxn),

(A.14)

where the right-hand side is assumed absolutely convergent. By taking Equation A.13, it
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can be shown that this equates to,

GX!
y
(1� uyr ) = 1 +

1X

n=1

(�⇢̄)n

n!

X

D✓{1,...,n}

J|D|(r)

n�|D|X

k=1

X

D1,...,Dk 6=;
[Dj={1,...,m}

I|D1| · · · I|Dk|, (A.15)

where In =
R
BS2 (o,r)

· · ·
R
BS2 (o,r)

⇠n(x1, . . . ,xn)�S2(dx1) · · ·�S2(dxn). This can then be fac-

tored as,

 
1 +

1X

n=1

(�⇢̄)n

n!
Jn(r)

!
0

BB@1 +
1X

m=1

(�⇢̄)m

m!

mX

k=1

X

D1,...,Dk 6=;
[Dj={1,...,m}

I|D1| · · · I|Dk|

1

CCA . (A.16)

Equation A.15 and A.16 follow by identical arguments used in the derivation of the series

representation of the isotropic J-function, in particular Equations A.4 and A.5. Noting

the the right-hand side of the product in Equation A.16 is equivalently G(1 � uyr ), the

representation of Jinhom follows by Definition 3.5.6.

A.5 Proof of Proposition 3.5.8

We demonstrate the unbiasedness of F̂inhom and ratio - unbiasedness of Ĥinhom and Ĵinhom for

a point process that has been observed over all of S2. The proof for windowed observations

follows identically.

Proof. Consider taking expectations of 1� F̂inhom(r) =

P
p2P

Q
x2X\B(p,r)

⇣
1� ⇢̄

⇢(x)

⌘

|P | then,

1� E[F̂inhom(r)] = E 1

|P |

X

p2P

Y

x2X\B(p,r)

✓
1�

⇢̄

⇢(x)

◆

=
1

|P |

X

p2P
E

Y

x2X\B(p,r)

✓
1�

⇢̄

⇢(x)

◆

=
1

|P |

X

p2P
E

Y

x2X\B(y,r)

✓
1�

⇢̄

⇢(x)

◆

= E
Y

x2X\B(y,r)

✓
1�

⇢̄

⇢(x)

◆

= G(1� uyr ),
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where the third line follows from the fact that the point process is assumed IRWMI and

hence unbiasedness of F̂inhom(r) follows.

To show ratio-unbiasedness of Ĥinhom(r) define the random variables

Y =
X

x2X

Y

y2(X\{x})\B(x,r)

✓
1�

⇢̄

⇢(y)

◆
,

and Z = NX(S2), then taking expectations of Y , leads to,

E[Y ] = E
X

x2X

Y

y2X\{x}\B(x,r)

✓
1�

⇢̄

⇢(y)

◆

=

Z

S2
E

Y

y2X!
x

✓
1�

⇢̄

⇢(y)

◆
↵(dx)

=

Z

S2
G!

x(1� uxr )↵(dx)

=

Z

S2
G!

y(1� uyr )↵(dx)

= G!

y(1� uyr )E[NX(S2)],

where the second line follows by the Campbell-Mecke Theorem, the penultimate line follows

due to the assumption of IRWMI and the final line follows from
R
S2 ↵(dx) = ↵(S2) =

E[NX(S2)]. Clearly, E[Z] = E[NX(S2)] and so ratio-unbiasedness of Ĥinhom follows.

A.6 Proof of Proposition 3.6.2

Proof. Let us define the zero mean Gaussian random field Z(x) = U(x) � µ(x) with the

same correlation function as U . Then Jinhom(r)  1 if

Cov

 
eZ(o), exp

 
�µ̄

Z

BS2 (o,r)
eZ(x)�S2(dx)

!!
 0. (A.17)

Consider a Riemann partition of BS2(o, r), that is define the sequence B(n) for n > 1 such

that B(n) = [n
i=1

Bi,n where [n
i=1

Bi,n = BS2(o, r), Bi,n\Bj,n = ; for i 6= j and �S2(Bi,n)! 0

as n!1. Then for each Bi,n take any xi,n 2 Bi,n and by almost sure path continuity of Z
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(see Proposition 3.6.1) we have that

exp

 
�µ̄

Z

BS2 (o,r)
eZ(x)�S2(dx)

!
= lim

n!1
exp

 
�µ̄

nX

i=1

eZ(xi,n)�S2(Bi,n)

!
.

For each n define Z = (Z(o), Z(x1,n), . . . , Z(xn,n))T , then since the correlation function is

nonnegative by construction we have that the elements of Z are associated by Pitt’s Theorem

((Pitt, 1982)) . That is random variables Z1, . . . , Zn are said to be associated if

Cov(f(Z), g(Z)) � 0,

for any pair of increasing functions f and g; a function f : Rn
7! R is said to be increasing

if it is a non - decreasing function of any single component. Let us define f(Z) = eZ1 and

g(Z) = � exp
�
�µ̄

P
n

i=1
eZi�S2(Bi,n)

�
, then since both f and g are increasing we have that

for any n > 0,

Cov

 
eZ(o), exp

 
�µ̄

nX

i=1

eZ(xi,n)�S2(Bi,n)

!!
= Cov(f(Z),�g(Z))

= �Cov(f(Z), g(Z))

 0.

Thus by taking the limit as n ! 1 and applying the dominated convergence theorem we

obtain A.17.
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B
Appendix to Chapter 4

B.1 Proof of Lemma 4.3.1

Proof. To show that f is bijective we need to show that it is both injective and surjective.

For surjectivity we need to show that for any x
0
2 S2, there exists x 2 D such that f(x) = x

0.

To do this first fix any x
0
2 S2 and define the half line, Lx0 = {y 2 R3 : y = �x0, � 2 R+

},

where R+ is the positive real line including 0. Then since D is compact (i.e. closed and

bounded) and o is in the interior of D then the half line must intersect the D and so there

exists x 2 D such that x 2 Lx0 . Therefore there must exists � 2 R+,x = �x0. Taking

norms of both sides and noting that since x
0
2 S2 meaning ||x

0
|| = 1 then � = ||x|| and so,

x/||x|| = x
0 and so f is surjective.

For injectivity we need to show that for any x,y 2 D if f(x) = f(y) then x = y. Fix

x,y 2 D such that f(x) = f(y) and define x
0 = f(x) = f(y). Again define the line Lx0 as

previous and by convexity of D, the fact that o 2 D and since Lx0 is a half line then there is

precisely only one intersection of Lx0 with D. Therefore both x and y must be this point of

intersection meaning x = y. Hence f is bijective.

B.2 Proof of Theorem 4.3.2

In this section we show that a Poisson process lying on an arbitrary bounded convex space

D ⇢ R3 can be mapped to another Poisson process on a sphere, known as the Mapping
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Theorem Kingman ((1993)). We also show that no two di↵erent Poisson processes on D map

to the same Poisson process on the sphere under the same mapping.

Before starting the main theorem of this section we first introduce a lemma (see for example

Møller and Waagepetersen ((2003, Proposition 3.1, pp 15-16))) which is an expansion of the

probability measure for a Poisson process on an arbitrary metric space. We shall state it in

the context of an arbitrary convex shape in R3, represented by D.

Lemma S1. (Møller and Waagepetersen ((2003))) X is a Poisson process with intensity

function ⇢ : D 7! R on D if and only if for all B ✓ D with µ(B) =
R
B
⇢(x)dx < 1 and all

F ✓ Nlf,

P (XB 2 F ) =
1X

n=0

exp(�µ(B))

n!

Z

B

· · ·

Z

B

[{x1, . . . ,xn} 2 F ]
nY

i=1

⇢(xi)�D(dx1) · · ·�D(dxn),

(B.1)

where the integral for n = 0 is read as [; 2 F ].

Proof. See Proposition 3.1 of Møller and Waagepetersen ((2003)).

Now we give the main theorem of our work which shows that a Poisson process on D is

mapped to a Poisson process on S2. This is known as the Mapping Theorem Kingman

((1993)). Here we use Lemma S1.

Before beginning this theorem we lay down a little notation in order to avoid confusion.

x = (x, y, z) will be an element of R3 where we may subscript with an n 2 N when we

are referring to a single vector within a set. x will be an element of Nlf and may also be

subscripted with n 2 N when we are referring to a single element in a set of finite point

configurations. Notice that we are using x to be both the first element of x and an element

in Nlf , based on context it will be clear to which we are referring too.

Proof. In order to show that Y ⌘ f(X) is a Poisson process we show that its distribution

function can be expanded as given by Equation B.1. Then 8B ✓ D and 8F ✓ Nlf and

noting that f is a measurable map (since the map is bijective and hence an inverse exists)

we have that,

P (YB 2 F ) = P (f�1(YB) 2 f�1(F ))

= P (Xf�1(B) 2 f�1(F ))
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Now we define f�1
i

(F ), for i = 1, . . . , n where F ✓ Nlf ,

F = {x 2 Nlf : x = {x1, . . . ,xm},m 2 N, x 2 F}

f�1(F ) = {f�1(x) : f�1(x) = {f�1(x1), . . . , f
�1(xm)},m 2 N, x 2 F}

we want to partition f�1(F ) over each f�1(Di), i = 1, . . . , n

f�1(F ) =
�
[
n

i=1f
�1(xi) : f

�1(xi) = {f�1(x(i,1)), . . . , f
�1(x(i,mi)

)},

f�1(x(i,j)) 2 f�1(Di), j = 1, . . . ,mi, mi 2 N, i = 1, . . . , n,[n

i=1xi 2 F
 
.

To understand the notation x(i,j) consider first a single element x 2 F . Then since F is a

subset of Nlf this means that |x| 2 N. Then define mi = |x \ Di|, hence
P

n

i=1
mi = |x|.

Then x(i,j) is j
th element of x \ Di such that j = 1, . . . ,mi. We define f�1

i
(F ) ⌘ {f�1(x) :

f�1(x) ⌘ {f�1(x1), . . . , f�1(xn)}, f�1(xi) 2 f�1(Di), n 2 N, 9y 2 F such that x ✓ y}.

Then,

P (Xf�1(B) 2 f�1(F )) = P ({Xf�1(B)\D1
, . . . , Xf�1(B)\Dn

} 2 f�1(F ))

= P (Xf�1(B)\D1
2 f�1

1
(F ), . . . , Xf�1(B)\Dn

2 f�1n (F ))

= P (X
f
�1
1 (B)

2 f�1
1

(F ), . . . , X
f
�1
n (B)

2 f�1n (F ))

=
nY

i=1

P (X
f
�1
i (B)

2 f�1
i

(F ))

where f�1
i

(A) = {(x, y, z)T 2 A : (x, y, z)T 2 Di} if A ✓ D. We emphasize the dual

meaning of f�1
i

(A) where the defintion depends on the nature of A, i.e. if A ✓ D or if

A ✓ Nlf . Without loss of generality lets suppose that all projections of each Di onto R2 are

invertible, if not then we can divide Di into further subsets [m
j=1

Di,j such that the projection

of each Di,j is then invertible. For example an ellipsoid is defined by the zero-set equation

x2/a2 + y2/b2 + z2/c2 = 1, but if the entire space were projected down to R2 its inverse

does not exists, instead we divide the ellipsoid into the upper and lower hemiellipsoids and

then the projections restricted to these segments of the ellipsoids are then invertible. Let us

also define the projection of Di to R2 as PDi . Further, for x = (x, y, z)T , then x lies on D if

g(x) = 0, we define g̃ to be the rearrangement of g such that z is a function of x and y, i.e.

z = g̃(x, y). Then by Lemma S1,

P (X
f
�1
i (B)

2 f�1
i

(F ))
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=
1X

n=0

exp(�µ(f�1
i

(B)))

n!
Z

f
�1
i (B)

· · ·

Z

f
�1
i (B)

[{x1, . . . ,xn} 2 f�1
i

(F )]
nY

i=1

⇢(xi)�Di(dx1) · · ·�Di(dxn)

=
1X

n=0

exp(�µ(f�1
i

(B))

n!
ZZ

PDi [f
�1
i (B)]

· · ·

ZZ

PDi [f
�1
i (B)]

[{(x1, y1, g̃1(x1, y1))
T , . . . , (xn, yn, g̃1(xn, yn))

T
} 2 f�1

i
(F )]

nY

i=1

⇢ (xi, yi, g̃i(xi, yi))

s

1 +

✓
@g̃i
@xi

◆
2

+

✓
@g̃i
@yi

◆
2

dxidyi

=
1X

n=0

exp(�µ(f�1
i

(B))

n!
ZZ

PDi [f
�1
i (B)]

· · ·

ZZ

PDi [f
�1
i (B)]

[{(x1, y1, g̃1(x1, y1))
T , . . . , (xn, yn, g̃1(xn, yn))

T
} 2 f�1

i
(F )]

nY

i=1

⇢ (xi, yi, g̃i(xi, yi)) li(xi, yi)dxidyi,

where li(xi, yi) =
q
1 + (@g̃i/@xi)

2 + (@g̃i/@yi)
2. Now consider the indicator term, we need

to show that when xi 7! xi/||x|| and yi 7! yi/||x|| then [{x1, . . . ,xn} 2 f�1
i

(F )] 7!

[{y1, . . . ,yn} 2 Fi], where Fi = {x : x = {x1, . . . ,xm},xj 2 f(Di), j = 1, . . . ,m,m 2

N, 9y 2 F such that x ✓ y}. Let us consider first an individual point x 2 D. Further let

us define r = |x| =
p
x2 + y2 + z2. Then since z = g̃i(x, y), r is thus a function of x and

y, let us write r(x, y) = ||x||. Thus we can rewrite z = g̃i(x, y) =
p
r2(x, y)� x2 � y2.

Then suppose we apply the transformations x0 = x/r(x, y) and y0 = y/r(x, y), we have

z =
p
r2(x, y)� r2(x, y)x02 � r2(x, y)y02 ) z = r(x, y)

p
1� x02 � y02. Therefore,

[{x1, . . . ,xn} 2 f�1
i

(F )] = [{(x1, y1, g̃1(x1, y1))
T , . . . , (xn, yn, g̃1(xn, yn))

T
} 2 f�1

i
(F )]

apply transformations x0 = x/r(x, y) and y0 = y/r(x, y),

=

"(✓
r(x1, y1)x

0
1, r(x1, y1)y

0
1, r(x1, y1)

q
1� x02

1
� y02

1

◆T

, . . . ,

⇣
r(xn, yn)x

0
n, r(xn, yn)y

0
n, r(xn, yn)

p
1� x02n � y02n

⌘T�
2 f�1

i
(F )

�
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=

"(✓
x01, y

0
1,
q
1� x02

1
� y02

1

◆T

, . . . ,
⇣
x0n, y

0
n,
p
1� x02n � y02n

⌘T
)
2 Fi

#

= [{y1, . . . ,yn} 2 Fi]

Let us return to P (X
f
�1
i (B)

2 f�1
i

(F )). We apply the transformation f⇤(x, y) = (x/r(x, y),

y/r(x, y))T and define the inverse as f⇤�1(x, y). We have,

P (X
f
�1
i (B)

2 f�1
i

(F ))

=
1X

n=0

exp(�µ(f�1
i

(B))

n!

ZZ

f⇤(PDi [f
�1
i (B)])

· · ·

ZZ

f⇤(PDi [f
�1
i (B)])

[{y, . . . ,yn} 2 Fi]

nY

i=1

⇥
⇢
�
f⇤�1
1

(x0i, y
0
i), f

⇤�1
2

(x0i, y
0
i), g̃i(f

⇤�1
1

(x0i, y
0
i), f

⇤�1
2

(x0i, y
0
i))
�

li(f
⇤�1
1

(x0i, y
0
i), f

⇤�1
2

(x0i, y
0
i))J(i,f⇤)(x

0
i, y

0
i)dx

0
idy

0
i

⇤
,

where J(i,f⇤)(x
0
i
, y0

i
) is the Jacobian of the transformation f⇤. The Jacobian of the transfor-

mation is defined as,

J(i,f⇤)(x) =
1

J(i,f)(f⇤�1(x))

where we can use the inverse property to obtain J(i,f⇤�1),

J(i,f⇤�1)(x) = det

" 
@x
0

@x

@x
0

@y

@y
0

@x

@y
0

@y

!#

The entries of J(i,f⇤�1)(x) are given as follows,

@x0

@x
=

y2 + g̃2
i
(x, y)� xg̃(x, y) @g̃

@x

r3(x, y)

@x0

@y
=
�x

⇣
y + g̃(x, y)@g̃

@y

⌘

r3(x, y)

@y0

@x
=
�y

⇣
x+ g̃(x, y) @g̃

@x

⌘

r3(x, y)

@y0

@y
=

x2 + g̃2
i
(x, y)� yg̃(x, y)@g̃

@y

r3(x, y)
,
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where r(x, y) = ||x||, and so

J(i,f⇤�1)(x) = J(i,f⇤�1)(x, y)

=
1

r6(x, y)
det

2

4

0

@
y2 + g̃2

i
(x, y)� xg̃(x, y) @g̃

@x
�x

⇣
y + g̃(x, y)@g̃

@y

⌘

�y
⇣
x+ g̃(x, y) @g̃

@x

⌘
x2 + g̃2

i
(x, y)� yg̃(x, y)@g̃

@y

1

A

3

5 .

Therefore,

J(i,f⇤)(x
0) = J(i,f⇤)(x

0, y0) =
1

J(i,f)(f
⇤�1
1

(x0, y0), f⇤�1
2

(x0, y0))

Projecting onto the sphere,

P (X
f
�1
i (B)

2 f�1
i

(F )) =
1X

n=0

exp(�µ(f�1
i

(B))

n!
Z

P
�1
S2 [f⇤(PDi [f

�1
i (B)])]

· · ·

Z

P
�1
S2 [f⇤(PDi [f

�1
i (B)])]

[{y, . . . ,yn} 2 Fi]
nY

i=1

⇢⇤i (yi)�S2(dyi), (B.2)

where ⇢⇤
i
(y) = ⇢(f⇤�1

1
(x) , f⇤�1

2
(y), g̃i(f

⇤�1
1

(x), f⇤�1
2

(y))) li(f
⇤�1
1

(x), f⇤�1
2

(y)) Ji,f�1(x, y)p
1� x2 � y2, y = (x, y, z)T 2 S2.

We now need to show that P�1S2 [f⇤(PDi [f
�1
i

(B)])] = B \ f(Di). Equivalently, we can show

that f⇤(PDi [f
�1
i

(B)]) = PS2 [B \ f(Di)]. It is easy to see that,

f⇤(PDi [f
�1
i

(B)]) = {(x/||x||, y/||x||)2 2 R2 : f(x) 2 B \ f(Di),x = (x, y, z)T 2 Di}

PS2 [B \ f(Di)] = {(x, y) 2 R2 : (x, y, z)T 2 B \ f(Di)}.

Then since f is bijective (see Lemma 4.3.1) this means that for all x 2 D, there exists

y 2 S2 such that y = f(x). Further since Di, i = 1, . . . , n partition D this means that

f(Di), i = 1, . . . , n partitions S2 and so x 2 f�1(B) \ Di ) y = f(x) 2 B \ f(Di). Hence

taking the set PS2 [B \ f(Di)],

PS2 [B \ f(Di)] = {(x, y) 2 R2 : (x, y, z)T 2 B \ f(Di)}

= {(x, y) 2 R2 : (x, y, z)T = f(x0) 2 B \ f(Di),x
0
2 Di}

= {(x, y) 2 R2 : (x, y, z)T = (x0/||x0||, y0/||x0||, z0/||x0||)T 2 B \ f(Di),

x
0 = (x0, y0, z0)T 2 Di}

= {(x0/||x0||, y0/||x0||)T 2 R2 : (x0/||x0||, y0/||x0||, z0/||x0||)T 2 B \ f(Di),

x
0 = (x0, y0, z0)T 2 Di}
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= f⇤(PDi [f
�1
i

(B)]).

Therefore,

P (X
f
�1
i (B)

2 f�1
i

(F )) =
1X

n=0

exp(�µ(f�1
i

(B))

n!
Z

B\f(Di)

· · ·

Z

B\f(Di)

[{y, . . . ,yn} 2 Fi]
nY

i=1

⇢⇤i (yi)�S2(dyi).

With this identity we thus have,

P (YB 2 F ) =
nY

i=1

P (X
f
�1
i (B)

2 f�1
i

(F ))

=
nY

i=1

 1X

n=0

exp(�µ(f�1
i

(B))

n!

Z

B\f(Di)

· · ·

Z

B\f(Di)

[{y, . . . ,yn} 2 Fi]
nY

i=1

⇢⇤i (yi)�S2(dyi)

1

CA .

Consider the multiplication of two of the multiplicands i 6= j. Define ⇢⇤
i,j
(x) = ⇢⇤

i
(x) if x 2

S2\f(Di) and ⇢⇤i,j(x) = ⇢⇤
j
(x) if x 2 S2\f(Dj) and also let kp,n({yi}

n

i=1
) = [{y1, . . . ,yn} 2

Fp]
Q

n

i=1
⇢⇤
i
(yi), for p = i, j. Then we have,

P (X
f
�1
i (B)

2 f�1
i

(F ))P (X
f
�1
j (B)

2 f�1
j

(F ))

=

 1X

n=0

exp(�µ(f�1
i

(B)))

n!

Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 1X

m=0

exp(�µ(f�1
j

(B)))

m!

Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m({yi}
m

i=1)�S2(dy1) · · ·�S2(dym)

!

=
1X

n=0

1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

⇥

 
1

n!

Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 
1

m!

Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m({yi}
m

i=1)�S2(dy1) · · ·�S2(dym)

!
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we then use the substitution m0 = m+ n,

=
1X

n=0

1X

m=n

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

⇥

 
1

n!

Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 
1

(m� n)!

Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m�n({yi}
m�n
i=1

)�S2(dy1) · · ·�S2(dym�n)

!

=
1X

m=0

mX

n=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))
1

m!

m!

n!(m� n)!

⇥

 Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m�n({yi}
m�n
i=1

)�S2(dy1) · · ·�S2(dym�n)

!

=
1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

m!

mX

n=0

✓
m

n

◆ Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m�n({yi}
m�n
i=1

)�S2(dy1) · · ·�S2(dym�n)

!

=
1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

m!

mX

n=0

✓
m

n

◆ Z

B\f(Di)

· · ·

Z

B\f(Di)

ki,n({yi}
n

i=1)�S2(dy1) · · ·�S2(dyn)

!

⇥

 Z

B\f(Dj)

· · ·

Z

B\f(Dj)

kj,m�n({yi}
m

i=n+1)�S2(dyn+1) · · ·�S2(dym)

!

=
1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

m!

⇥

 Z

B\f(Di)

+

Z

B\f(Dj)

!
· · ·

 Z

B\f(Di)

+

Z

B\f(Dj)

!
ki,n({y}

n

i=1)kj,m�n({y}
m

i=n+1)�S2(dy1) · · ·�S2(dym)

215



Define ki,j,m({yi}
m

i=1
) = [{y1, . . . ,yn} 2 Fi,j ]

Q
n

i=1
⇢⇤
i,j
(yi), where Fi,j = {x : x = {x1,

. . . ,xn}, n 2 N,xi 2 Di[Dj , 9y 2 F such that x ✓ y}. Then it can be seen that ki,n({y}ni=1
)

kj,m�n({y}mi=n+1
) = ki,j,m({yi}

m

i=1
) and so,

=
1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

m!

⇥

 Z

B\f(Di)

+

Z

B\f(Dj)

!
· · ·

 Z

B\f(Di)

+

Z

B\f(Dj)

!
ki,j,m({yi}

m

i=1)�S2(dy1) · · ·�S2(dym)

=
1X

m=0

exp(�µ(f�1
i

(B))) exp(�µ(f�1
j

(B)))

m!

⇥

Z

B\(f(Di)[f(Dj))

· · ·

Z

B\(f(Di)[f(Dj))

ki,j,m({yi}
m

i=1)�S2(dy1) · · ·�S2(dym)

Define Bi,j = B\ (f(Di) [ f(Dj)) and f�1
i,j

(B) = f�1
i

(B)[f�1
j

(B) and noting that f�1
i

(B)\

f�1
j

(B) = ;,

=
1X

m=0

exp(�µ(f�1
i,j

(B)))

m!

Z

Bi,j

· · ·

Z

Bi,j

ki,j,m({yi}
m

i=1)�S2(dy1) · · ·�S2(dym)

=
1X

m=0

exp(�µ(f�1
i,j

(B)))

m!

Z

Bi,j

· · ·

Z

Bi,j

[{y1, . . . ,ym} 2 Fi,j ]
mY

i=1

⇢⇤i,j(yi)�S2(dy1) · · ·�S2(dym)

We can then repeat this argument for each multiplicand in Equation B.2 and reduce the

probability measure P (YB 2 F ) to,

P (YB 2 F ) =
X

n=0

exp(�µ(f�1(B))

n!

Z

B

· · ·

Z

B

[{y, . . . ,yn} 2 F ]
nY

i=1

⇢⇤(yi)dyi,

where,

⇢⇤(x) =

8
>>><

>>>:

⇢⇤
1
(x), x 2 f(D1)

...

⇢⇤n(x), x 2 f(Dn).

(B.3)

Then defining µ⇤(B) = µ(f�1(B)) we need to show that µ⇤(B) =
R
B
⇢⇤(x)dx. This follows
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since,

µ⇤(B) = µ(f�1(B))

=

Z

f�1(B)

⇢(x)dx

=
nX

i=1

Z

f
�1
i (B)

⇢(x)dx

=
nX

i=1

Z

B\f(Dj)

⇢⇤i (x)dx

=

Z

B

⇢⇤(x)dx,

where the penultimate line follows by a the same argument used before, first projecting from

Di to R2, then applying the transformation x0 7! x/||x|| and y0 7! y/||x||, then doing the

inverse projection back to the sphere. This finishes the proof by again applying Lemma

S1.

B.3 Proof of Lemma 4.3.4

Proof. By assumption we suppose there is at least one point in D such that ⇢1(x) 6= ⇢2(x).

Denote this point x
⇤ and define y

⇤
⌘ f(x⇤) 2 f(Dj) for some j 2 {1, . . . , n}. Then at the

point y⇤ the intensities of Y1 and Y2 are,

⇢⇤1(y
⇤) = ⇢1(f

�1(y⇤))l1(f
�1(y⇤))J(1,f�1)(y

⇤)
q
1� y⇤2

1
� y⇤2

2

⇢⇤2(y
⇤) = ⇢1(f

�1(y⇤))l1(f
�1(y⇤))J(1,f�1)(y

⇤)
q
1� y⇤2

1
� y⇤2

2
,

respectively. Then ⇢⇤
1
(y⇤) 6= ⇢⇤

2
(y⇤), since ⇢1(f�1(y⇤)) = ⇢1(x⇤) 6= ⇢2(x⇤) = ⇢2(f�1(y⇤)).

B.4 Proof of Theorem 4.4.1

In this section we derive the means for the estimators of Finhom-, Hinhom-, and Kinhom-

functions. To do this we will make use of the Campbell-Mecke Theorem ((Møller and

Waagepetersen, 2003)) on S2,

Theorem S2. Let X be a point process on S2 and h be any non-negative, measurable function
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such that h : S2 ⇥Nlf 7! R. Then,

E
X

x2X
h(x, X \ {x}) =

Z

S2
E[h(x, X !

x)]µ(dx),

and if the intensity function exists then,

E
X

x2X
h(x, X \ {x}) =

Z

S2
E[h(x, X !

x)]⇢(x)�S2(dx).

Proof. See Møller and Waagepetersen ((2003, Appendix C, pp. 248-249)).

Noting that the reduced Palm process, X !
x, for a Poisson process, X, is again the same

Poisson process Coeurjolly et al. ((2017)) we get the Slivnyak-Mecke Theorem ((Møller and

Waagepetersen, 2003, Theorem 3.2, p. 21)),

E
X

x2X
h(x, X \ {x}) =

Z

S2
E[h(x, X)]⇢(x)�S2(dx).

We now give the proof the of Theorem 4.4.1.

Proof. Proofs for the expectation of F̂inhom-, and K̂inhom-functions are found in van Lieshout

((2011)) and Lawrence et al. ((2016)), Møller and Rubak ((2016)) respectively. Ratio-

unbiasedness of the Ĥinhom-function is also found in van Lieshout ((2011)). The proofs

found in van Lieshout ((2011)) are in Rn but can be extended easily to S2. Then for the

expectation of Ĥinhom(r),

E

2

4 1

NX(S2)
X

x2X

Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5

= E

2

4
X

x2X

1

NX(S2)
Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5

= E

2

4
X

x2X

1

|X|

Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5

= E

2

4
X

x2X

1

|X \ {x} [ {x}|

Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5 ,
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applying the Slivnyak-Mecke Theorem,

=

Z

S2
E

2

4 1

|X [ {x}|

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5 ⇢(x)�S2(dx)

=

Z

S2
E

2

4 1

NX(S2) + 1

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5 ⇢(x)�S2(dx). (B.4)

We then take the expectation in the integrand and handle it separately, using the definition

of a Poisson process being the independent distribution of a Poisson number of points.

E

2

4 1

NX(S2) + 1

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5

= E

2

4 1

NX(S2) + 1
E

2

4
Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆ �����NX(S2) = n

3

5

3

5

= E
"

1

NX(S2) + 1
E
"

nY

i=1

✓
1�

⇢̄ [Xi 2 BS2(x, r)]

⇢(Xi)

◆##
,

where Xi are independently distributed across S2 with density ⇢(x)
µ(S2) . Then taking the first

expectation,

E
"

nY

i=1

✓
1�

⇢̄ [Xi 2 BS2(x, r)]

⇢(Xi)

◆#
=

nz }| {Z

S2
· · ·

Z

S2

nY

i=1

✓
1�

⇢̄ [xi 2 BS2(x, r)]

⇢(xi)

◆
⇢(xi)

µ(S2)�S2(dx)i

=

✓Z

S2

⇢(y)

µ(S2) � ⇢̄ [y 2 BS2(x, r)]dy

◆n

=

✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆n

Returning to the expectation over NX(S2) we have,

E

2

4 1

NX(S2) + 1

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆3

5

= E
"

1

NX(S2) + 1

✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆NX(S2)
#
,
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define A ⌘ 1� ⇢̄

µ(S2)2⇡(1� cos r), then

= E


1

NX(S2) + 1
ANX(S2)

�
,

=
1X

n=0

An

n+ 1

�ne��

n!
,

where � ⌘ µ(S2),

=
e��

A�

1X

n=0

(A�)n+1

(n+ 1)!

=
e��

A�

1X

n=1

(A�)n

n!

=
e��

A�

 1X

n=0

(A�)n

n!
� 1

!

=
e��

A�

⇣
eA� � 1

⌘

=
e�⇢̄2⇡(1�cos r) � e�µ(S

2
)

µ(S2)� ⇢̄2⇡(1� cos r)
,

plugging this into Equation B.4,

Z

S2

e�⇢̄2⇡(1�cos r) � e�µ(S
2
)

µ(S2)� ⇢̄2⇡(1� cos r)
⇢(x)�S2(dx) =

e�⇢̄2⇡(1�cos r) � e�µ(S
2
)

1� ⇢̄2⇡(1�cos r)
µ(S2)

,

and so,

E[Ĥinhom(r)] = 1�
e�⇢̄2⇡(1�cos r) � e�µ(S

2
)

1� ⇢̄2⇡(1�cos r)
µ(S2)

.

B.5 Proof of Corollary 4.4.2

Proof.

Bias(Ĥinhom(r)) =

0

@1�
e�⇢̄2⇡(1�cos r) � e�µ(S

2
)

1� ⇢̄2⇡(1�cos r)
µ(S2)

1

A�
⇣
1� e�⇢̄2⇡(1�cos r)

⌘
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=
exp(µ(S2))� ⇢̄2⇡(1�cos r)

µ(S2) exp(�2⇡(1� cos r)⇢̄)

1� ⇢̄2⇡(1�cos r)
µ(S2)

=
µ(S2) exp(µ(S2))� ⇢̄2⇡(1� cos r) exp(�2⇡(1� cos r)⇢̄)

µ(S2)� ⇢̄2⇡(1� cos r)

Taking the absolute value of the bias and the numerator is bounded above by,

|µ(S2) exp(µ(S2))� ⇢̄2⇡(1� cos r) exp(�2⇡(1� cos r)⇢̄)|

 µ(S2) exp(µ(S2)) + ⇢̄2⇡(1� cos r) exp(�2⇡(1� cos r)⇢̄)

 µ(S2) exp(µ(S2)),

where the fist line follows from the triangle inequality. The denominator is bounded below,

|µ(S2)� ⇢̄2⇡(1� cos r)| � µ(S2) + ⇢̄2⇡(1� cos r)

� µ(S2),

where again the first line follows from the triangle inequality, since |a�b+b|  |a�b|+ |b|)

|a|� |b|  |a� b|, for a, b 2 R. Hence the absolute of the bias is bounded by,

|Bias(Ĥinhom(r))|  exp(µ(S2)).

The final inequality follows by noting that µ(S2) =
R
S2 ⇢(x)�S2(dx) �

R
S2 ⇢̄�S2(dx) = 4⇡⇢̄.

B.6 Proof of Theorem 4.4.3

In this section we derive the variance of the functional summary statistics. Throughout this

section we will frequently refer to the area of a spherical cap, at any point o 2 S2 with

geodesic distance r by BS2(o, r). We will also make use of the extended Campbell-Mecke

Theorem Møller and Waagepetersen ((2003)) throughout,

Theorem S3. Let X be a point process on S2 and h be any non-negative, measurable function

such that h :
�
⇥

n

i=1
S2
�
⇥Nlf 7! R. Then,

E
6=X

x1,...,xn2X
h(x1, . . . ,xn, X \ {x1, . . . ,xn})
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=

Z

S2
· · ·

Z

S2
E[h(x1, . . . ,xn, X

!

x1,...,xn
)]↵(�S2(dx)1, . . . ,�S2(dx)n)

and if the intensity function of order n exists then,

E
6=X

x1,...,xn2X
h(x1, . . . ,xn, X \ {x1, . . . ,xn})

=

Z

S2
· · ·

Z

S2
E[h(x1, . . . ,xn, X

!

x1,...,xn
)]⇢(n)(x1, . . . ,xn)�S2(�S2(dx)1) · · ·�S2(�S2(dx)n),

where X !
x1,...,xn

is the nth-order reduced Palm process of X.

Proof. See Møller and Waagepetersen ((2003, Appendix C, pp. 248-249)).

Again, as in the case for when n = 1, for any order n the reduced Palm process of order

n, X !
x1,...,xn

, for a Poisson process, X, is again the same Poisson process. Hence we get

the extended Slivnyak-Mecke Theorem ((Møller and Waagepetersen, 2003, Theorem 3.3, p.

22)),

E
6=X

x1,...,xn2X
h(x1, . . . ,xn, X \ {x1, . . . ,xn})

=

Z

S2
· · ·

Z

S2
E[h(x1, . . . ,xn, X)]

nY

i=1

⇢(xi)�S2(�S2(dx)1) · · ·�S2(�S2(dx)n),

(B.5)

To derive the variance of K̂inhom(r), before which we require the following lemma,

Lemma S4. Let X be a finite set and define Xn as the Cartesian product of X n times,

i.e. Xn = X ⇥ · · ·⇥X, and the following sets,

Y = {(x1,x2,x3,x4)
T
2 X4 : x1 2 X,x2 2 X \ {x1},x3 2 X,x4 2 X \ {x3}}

Y1 = {(x1,x2,x3,x4)
T
2 X4 : x1 2 X,x2 2 X \ {x1},x3 2 X \ {x1,x2},x4 2 X \ {x1,x2,x3}}

Y2 = {(x1,x2,x3,x4)
T
2 X4 : x1 2 X,x2 2 X \ {x1},x3 2 {x1,x2},x4 2 {x1,x2} \ {x3}}

Y3 = {(x1,x2,x3,x4)
T
2 X4 : x1 2 X,x2 2 X \ {x1},x3 2 X \ {x1,x2},x4 2 {x1,x2} \ {x3}}

Y4 = {(x1,x2,x3,x4)
T
2 X4 : x1 2 X,x2 2 X \ {x1},x3 2 {x1,x2},x4 2 X \ {x1,x2,x3}},

then Y = [i=1,...,4Yi and Yi, i = 1, . . . , 4 are pairwise disjoint.

Proof. Pairwise disjointness of the sets Yi, i = 1 . . . 4 follows from the definitions of the sets.
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To prove equality we will show the following,

r 2 Y ) r 2 [i=1,...,4Yi, and (B.6)

r 2 [i=1,...,4Yi ) r 2 Y (B.7)

Statement B.7, holds by considering each set Yi in turn. In particular it is clear by the

definitions of the sets that for each i = 1, . . . , 4, Yi ✓ Y and so Statement B.7 holds.

To show Statement B.6 let x 2 Y and fix x1 2 X and x2 2 X \ {x1}. Then there are two

possibilities for x3, either x3 2 X \ {x1,x2} or x3 2 {x1,x2}. If the former holds then x4

can either be in X \ {x1,x2,x3} or {x1,x2} \ {x3}. If the first holds then x 2 Y1 and if

the second holds then x 2 Y3. Considering all possible combinations proves Statement B.6.

Hence it follows that Y = [i=1,...,4Yi.

We now proceed with the proof for the variance of estimates of the inhomogeneous functional

summary statistics. The proof is spread over three parts, one for each functional summary

statistic.

Proof. Variance of K̂inhom(r)

We expand the variance as Var(X) = E[X2]� E2[X],

Var(K̃inhom(r)) = Var

0

@ 1

4⇡

X

x2X

X

y2X\{x}

[d(x,y)  r]

⇢(x)⇢(y)

1

A

=
1

16⇡2

"
E
 
X

x2X

X

y2X\{x}

[d(x,y)  r]

⇢(x)⇢(y)

!
2

| {z }
(1)

�E2
X

x2X

X

y2X\{x}

(d(x,y)  r)

⇢(x)⇢(y)
| {z }

(2)

#
,

(B.8)

We deal with each of the terms individually. First consider term (2) of the previous equation,

this is simply the inhomogeneous K-function for a Poisson process,

1

16⇡2
E2

X

x2X

X

y2X\{x}

(d(x,y)  r)

⇢(x)⇢(y)
= E2

1

4⇡

X

x2X

X

y2X\{x}

(d(x,y)  r)

⇢(x)⇢(y)

= K2

inhom
(r)

= 4⇡2(1� cos r)2,
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where the penultimate equality follows from the definition of Kinhom (taking the arbitrary

area B to be S2) and the final equality follows from Theorem 4.4.1. To handle term (1) we

first expand the square,

1

16⇡2
E
 
X

x2X

X

y2X\{x}

[d(x,y)  r]

⇢(x)⇢(y)

!
2

=
1

16⇡2
E
X

x2X

X

y2X\{x}

[d(x,y)  r]

⇢(x)⇢(y)

X

x02X

X

y02X\{x0}

[d(x0,y0)  r]

⇢(x0)⇢(y0)

=
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X

X

y02X\{x0}

[d(x,y)  r] [d(x0,y0)  r]

⇢(x)⇢(y)⇢(x0)⇢(y0)

Let us define the summand as,

fr(x,y,x
0,y0) =

[d(x,y)  r] [d(x0,y0)  r]

⇢(x)⇢(y)⇢(x0)⇢(y0)
,

and then by Lemma S4 we can divide the sum in the expectation into 4 terms,

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

X

y02X\{x0,x,y}

fr(x,y,x
0,y0)

| {z }
(a)

+
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02{x,y}

X

y02{x,y}\{x0}

fr(x,y,x
0,y0)

| {z }
(b)

+
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

X

y02{x,y}\{x0}

fr(x,y,x
0,y0)

| {z }
(c)

+
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02{x,y}

X

y02X\{x,y,x0}

fr(x,y,x
0,y0)

| {z }
(d)

.

We handle these terms independently. For term (a) we can directly apply the extended

Slivnyak-Mecke Theorem given by Equation B.5,

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

X

y02X\{x0,x,y}

fr(x,y,x
0,y0)
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=
1

16⇡2

Z

S2
· · ·

Z

S2
fr(x,y,x

0,y0)⇢(x)⇢(y)⇢(x0)⇢(y0)�S2(dx)�S2(dy)�S2(dx)
0�S2(dy)

0

=
1

16⇡2

Z

S2
· · ·

Z

S2
[d(x,y)  r] [d(x0,y0)  r]�S2(dx)�S2(dy)�S2(dx)

0�S2(dy)
0

=
1

16⇡2

✓Z

S2

Z

S2
[d(x,y)  r]�S2(dx)�S2(dy)

◆
2

=
1

16⇡2

✓Z

S2
�S2(BS2(o, r))�S2(dy)

◆
2

=
1

16⇡2
(4⇡�S2(BS2(o, r)))

2

= �S2(BS2(o, r))
2,

where the penultimate equality follows since the area of the spherical cap is constant for a

fixed geodesic radius for any centre, 0 indicates any arbitrary point in S2. Term (b) can be

handled in a similar manner as term (a),

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02{x,y}

X

y02{x,y}\{x0}

fr(x,y,x
0,y0)

=
1

16⇡2
E
X

x2X

X

y2X\{x}

fr(x,y,x,y) + fr(x,y,y,x)
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1

16⇡2
E
X

x2X

X

y2X\{x}
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+
[d(x,y)  r] [d(y,x)  r]
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=
1

8⇡2
E
X

x2X

X
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[d(x,y)  r]

⇢2(x)⇢2(y)

Hence by the extended Slivnyak-Mecke Theorem again we have,
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E
X

x2X

X
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⇢2(x)⇢2(y)
=

1

8⇡2

Z

S2

Z

S2

[d(x,y)  r]

⇢2(x)⇢2(y)
⇢(x)⇢(y)�S2(dx)�S2(dy)

=
1

8⇡2

Z

S2

Z

S2

[d(x,y)  r]

⇢(x)⇢(y)
�S2(dx)�S2(dy)

We now consider term (c),

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

X

y02{x,y}\{x0}

f(x,y,x0,y0)
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=
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

fr(x,y,x
0,x)| {z }

(I)

+ fr(x,y,x
0,y)| {z }

(II)

.

We can handle these terms independently.

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

fr(x,y,x
0,x)

=
1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

[d(x,y)  r] [d(x0,x)  r]

⇢(x)⇢(y)⇢(x0)⇢(x)

=
1

16⇡2

Z

S2

Z

S2

Z

S2

[d(x,y)  r] [d(x0,x)  r]

⇢2(x)⇢(y)⇢(x0)
⇢(x)⇢(y)⇢(x0)�S2(dx)�S2(dy)�S2(dx)

0

=
1

16⇡2

Z

S2

Z

S2

Z

S2

[d(x,y)  r] [d(x0,x)  r]

⇢(x)
�S2(dx)�S2(dy)�S2(dx)

0

=
1

16⇡2

Z

S2

Z

S2

[d(x,y)  r]

⇢(x)

✓Z

S2
[d(x0,x)  r]�S2(dx)

0
◆
�S2(dx)�S2(dy)

=
�S2(BS2(o, r))

16⇡2

Z

S2

1

⇢(x)

✓Z

S2
[d(x,y)  r]�S2(dy)

◆
�S2(dx)

=
�S2(BS2(o, r))

2

16⇡2

Z

S2

1

⇢(x)
�S2(dx),

where the second equality follows by the Slivnyak-Mecke Theorem. By an identical argument

term II is given by,

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02X\{x,y}

fr(x,y,x
0,y) =

�S2(BS2(o, r))
2

16⇡2

Z

S2

1

⇢(y)
�S2(dy)

Term (d) can be handled in an identical manner as term (c). To see this consider the

summation over y
0 in term (d). Since x

0
2 {x,y} this means that the set X \ {x,y,x0} is

identical to X \{x,y} and so the summations over x0 and y
0 can be interchanged. Therefore,

1

16⇡2
E
X

x2X

X

y2X\{x}

X

x02{x,y}

X

y02X\{x,y,x0}

fr(x,y,x
0,y0) =

2�S2(BS2(o, r))
2

16⇡2

Z

S2

1

⇢(x)
�S2(dx).

Further we note that the area of spherical cap is given by �S2(BS2(o, r)) = 2⇡(1 � cos r).

Thus collecting all the terms gives the form of the variance,

Var(K̂inhom(r)) =
1

8⇡2

Z

S2

Z

S2

[d(x,y)  r]

⇢(x)⇢(y)
�S2(dx)�S2(dy) + (1� cos r)2

Z

S2

1

⇢(x)
�S2(dx).

(B.9)
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Proof. Variance of F̂inhom(r)

Restating the estimator for Finhom(r),

F̂inhom(r) = 1�

P
p2P

Q
x2X\BS2 (p,r)

⇣
1� ⇢̄

⇢(x)

⌘

|P |
.

Taking the variance using Var(X) = E[X2]� E2[X],

Var(F̂inhom(r)) =
1

|P |2
Var

X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆

=
1

|P |2
E

0

@
X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆1

A
2

�
1

|P |2
E2

X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆

(B.10)

Dealing with each term independently, we have

E

0

@
X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆1

A
2

= E
X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆ X

p02P

Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆

=
X

p2P

X

p02P
E
Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆ Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆
(B.11)

From the proof of Theorem 1 given by van Lieshout ((2011)), we have the following identity,

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆
= 1 +

1X

n=1

(�⇢̄)n

n!

6=X

x1,...,xn2X

nY

i=1

[xi 2 BS2(x, r)]

⇢(xi)
,

and using the convention that a sum over an emptyset is 0, i.e.
P

0

k=1
=
P

x✓; =
P
;2x = 1,

Y

y2X

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆
=

1X

n=0

(�⇢̄)n

n!

6=X

x1,...,xn2X

nY

i=1

[xi 2 BS2(x, r)]

⇢(xi)
. (B.12)
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Taking just the expectation from Equation B.11 we expand the first product over x using

the previous identity to give,

E
Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆ Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆

= E

0

@
1X

n=0

(�⇢̄)n

n!

6=X

x1,...,xn2X

nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

1

A
Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆

= E
1X

n=0

(�⇢̄)n

n!

6=X

x1,...,xn2X

 
nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

Y

y2{X\{x1,...,xn},{x1,...,xn}}

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆1

A

= E
1X

n=0

(�⇢̄)n

n!

6=X

x1,...,xn2X

0

@
nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

Y

y2{x1,...,xn}

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆

Y

y2X\{x1,...,xn}

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆1

A

= E
1X

n=0

(�⇢̄)n

n!

6=X

x1,...,xn2X

 
nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆

Y

y2X\{x1,...,xn}

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆1

A

=
1X

n=0

(�⇢̄)n

n!
E

6=X

x1,...,xn2X

 
nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆

Y

y2X\{x1,...,xn}

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆1

A

Using the extended Slivnyak-Mecke Theorem,

=
1X

n=0

(�⇢̄)n

n!

nz }| {Z

S2
· · ·

Z

S2

E
 

nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆
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Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆1

A
nY

i=1

⇢(xi)�S2(dxi)

=
1X

n=0

(�⇢̄)n

n!

nz }| {Z

S2
· · ·

Z

S2

nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆

E
Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆ nY

i=1

⇢(xi)�S2(dxi)

=
1X

n=0

(�⇢̄)n

n!
E
Y

y2X

✓
1�

⇢̄ [y 2 BS2(p
0, r)]

⇢(y)

◆

nz }| {Z

S2
· · ·

Z

S2

nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆ nY

i=1

⇢(xi)�S2(dxi)

Note the expectation is just the definition of the generating functional of X which does not

depend on the point p0 (see proof of Theorem 1 by van Lieshout ((2011))),

=
1X

n=0

(�⇢̄)n

n!
G(1� uyr )

nz }| {Z

S2
· · ·

Z

S2

nY

i=1

[xi 2 BS2(p, r)]

⇢(xi)
✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆ nY

i=1

⇢(xi)�S2(dxi)

=
1X

n=0

(�⇢̄)n

n!
G(1� uyr )

nz }| {Z

S2\BS2 (p,r)
· · ·

Z

S2\BS2 (p,r)

nY

i=1

✓
1�

⇢̄ [xi 2 BS2(p
0, r)]

⇢(xi)

◆
�S2(dx)1 · · ·�S2(dx)n

=
1X

n=0

(�⇢̄)n

n!
G(1� uyr )

 Z

S2\BS2 (p,r)

✓
1�

⇢̄ [x 2 BS2(p
0, r)]

⇢(x)

◆
�S2(dx)

!n

= G(1� uyr )
1X

n=0

(�⇢̄)n

n!

0

@�S2(S2BS2 (p,r)
)�

Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄

⇢(x)
�S2(dx)

1

A
n
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Using the series definition for the exponential function,

= G(1� uyr ) exp

0

@�⇢̄

0

@�S2(S2BS2 (p,r)
)�

Z

S2
BS2 (o,r)\BS2 (p0,r)

⇢̄

⇢(x)
�S2(dx)

1

A

1

A

= G(1� uyr ) exp

0

@⇢̄
Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄

⇢(x)
�S2(dx)� ⇢̄�S2(BS2(o, r))

1

A

= G(1� uyr ) exp (�⇢̄�S2(BS2(o, r))) exp

0

@
Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄2

⇢(x)
�S2(dx)

1

A

Substituting this into the first term of Equation B.10 gives,

1

|P |2
E

0

@
X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆1

A
2

= G(1� uyr ) exp (�⇢̄�S2(BS2(o, r)))
1

|P |2

X

p2P

X

p02P
exp

0

@
Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄2

⇢(x)
�S2(dx)

1

A

The second term of Equation B.10, by unbiasedness of F̂inhom shown in Theorem 4.4.1, gives,

E2
1

|P |

X

p2P

Y

x2X

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆
= E2

h
1� F̂inhom(r)

i

=
⇣
1� E[F̂inhom(r)]

⌘
2

= G2(1� uyr ),

where the generating functional does not depend on y. Thus the variance is,

G(1� uyr ) exp (�⇢̄�S2(BS2(o, r)))

⇥
1

|P |2

X

p2P

X

p02P
exp

0

@
Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄2

⇢(x)
�S2(dx)

1

A�G2(1� uyr ),
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For a Poisson process, G(1� uyr ) = exp
⇣
�⇢̄�S2(S

2

BS2 (o,r)
)
⌘
, thus the variance is,

exp (�2⇢̄�S2(BS2(o, r)))
1

|P |2

X

p2P

X

p02P
exp

0

@
Z

S2
BS2 (p,r)\BS2 (p0,r)

⇢̄2

⇢(x)
�S2(dx)

1

A

� exp
⇣
�2⇢̄�S2(S

2

BS2 (o,r)
)
⌘
.

Before the proof for the variance of Ĥinhom(r) we introduce the exponential integral. The

exponential integral, denoted Ei(x), is defined as the following integral,

Ei(x) = �

Z 1

�x

e�t

t
dt.

It can then be shown that the exponential integral has the following infinite series represen-

tation,

Ei(x) = � + log(x) +
1X

k=1

xk

k · k!
, (B.13)

where � is known as the Euler-Mascheroni constant and defined as,

� = lim
n!1

 
� log(n) +

nX

k=1

1

k

!
.

The variance for Ĥinhom(r) will be given in terms of Ei(x).

Proof. Variance of Ĥinhom(r)

Restating the estimator for Ĥinhom(r),

Ĥinhom(r) = 1�

P
x2X

Q
y2X\{x}

⇣
1�

⇢̄ [y2BS2 (x,r)]
⇢(y)

⌘

NX(S2) ,

we note that this estimator is only well defined when [NX(S2) > 0]. In the event that

NX(S2) = 0 we shall define Ĥinhom(r) = 0, in which case we can write our estimator as,

Ĥinhom(r) = [NX(S2) > 0]

0

@1�

P
x2X

Q
y2X\{x}

⇣
1�

⇢̄ [y2BS2 (x,r)]
⇢(y)

⌘

NX(S2)

1

A .
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By using the law of total variance, conditioning on NX(S2) = n,

Var(Ĥinhom(r)) = E[Var(Ĥinhom(r)|NX(S2 = n)]| {z }
(1)

+Var(E[Ĥinhom(r)|NX(S2) = n])| {z }
(2)

. (B.14)

The variance in term (1) is,

Var(Ĥinhom(r)|NX(S2 = n) = [n > 0]Var

0

BB@1 +
1

n

nX

i=1

nY

j=1

j 6=i

✓
1�

⇢̄ [Xj 2 B(Xi, r)]

⇢(Xj)

◆
1

CCA ,

=
[n > 0]

n2
Var

0

BB@
nX

i=1

nY

j=1

j 6=i

✓
1�

⇢̄ [Xj 2 B(Xi, r)]

⇢(Xj)

◆
1

CCA ,

where Xk, k = 1, . . . , n are independently distributed points with density proportional

to ⇢(xk), by definition of a Poisson process. We use the identity Var(
P

n

i=1
Xi) =

P
n

i=1P
n

j=1
Cov(Xi, Xj) and define Li =

Q
n

j=1

j 6=i

⇣
1� ⇢̄ [Xj2B(Xi,r)]

⇢(Xj)

⌘
,

=
[n > 0]

n2

nX

p=1

nX

q=1

Cov (Lp, Lq)

=
[n > 0]

n2

nX

p=1

nX

q=1

⇣
E[LpLq]� E[Lp]E[Lq]

⌘

=
[n > 0]

n2

6=X

p,q2{1,...,n}

0

B@E[LpLq]| {z }
(a)

�E[Lp]E[Lq]| {z }
(b)

1

CA

+
[n > 0]

n2

nX

p=1

0

B@E[L2

p]| {z }
(c)

�E2[Lp]| {z }
(d)

1

CA (B.15)

Taking term (a),

E[LpLq] = E

2

664
nY

j=1

j 6=p

✓
1�

⇢̄ [Xj 2 BS2(Xp, r)]

⇢(Xj)

◆ nY

j=1

j 6=q

✓
1�

⇢̄ [Xj 2 BS2(Xq, r)]

⇢(Xj)

◆
3

775
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using iterated expectation, conditioning on Xp = xp,Xq = xq,

= E

2

664E

2

664
nY

j=1

j 6=p

✓
1�

⇢̄ [Xj 2 BS2(Xp, r)]

⇢(Xj)

◆

nY

j=1

j 6=q

✓
1�

⇢̄ [Xj 2 BS2(Xq, r)]

⇢(Xj)

◆ �����Xp = xp,Xq = xq

3

775

3

775

= E
✓

1�
⇢̄ [Xp 2 BS2(Xq, r)]

⇢(Xp)

◆✓
1�

⇢̄ [Xq 2 BS2(Xp, r)]

⇢(Xq)

◆

⇥ E

2

664
nY

j=1

j 6=p,q

✓
1�

⇢̄ [Xj 2 BS2(Xp, r)]

⇢(Xj)

◆✓
1�

⇢̄ [Xj 2 BS2(Xq, r)]

⇢(Xj)

◆ �����Xp = xp,Xq = xq

3

775

3

775

The expectation conditioned on (Xq,Xp) is,

E

2

664
nY

j=1

j 6=p,q

✓
1�

⇢̄ [Xj 2 BS2(Xp, r)]

⇢(Xj)

◆✓
1�

⇢̄ [Xj 2 BS2(Xq, r)]

⇢(Xj)

◆ �����Xp = xp,Xq = xq

3

775

=

n�2z }| {Z

S2
· · ·

Z

S2

nY

j=1

j 6=p,q

✓
1�

⇢̄ [xj 2 BS2(xp, r)]

⇢(xj)

◆✓
1�

⇢̄ [xj 2 BS2(xq, r)]

⇢(xj)

◆
⇢(xj)

µ(S2)�S2(dxj)

=

✓Z

S2

✓
1�

⇢̄ [x 2 BS2(xp, r)]

⇢(x)

◆✓
1�

⇢̄ [x 2 BS2(xq, r)]

⇢(x)

◆
⇢(x)

µ(S2)�S2(dx)
◆n�2

=

✓Z

S2

⇢(x)

µ(S2) �
⇢̄

µ(S2) [x 2 BS2(xp, r)]�
⇢̄

µ(S2) [x 2 BS2(xq, r)]

+
⇢̄2

µ(S2)
[x 2 BS2(xp, r),x 2 BS2(xq, r)]

⇢(x)
�S2(dx)

◆n�2

=

 
1�

2⇢̄

µ(S2)2⇡(1� cos r) +
⇢̄2

µ(S2)

Z

BS2 (xp,r)\BS2 (xq ,r)

1

⇢(x)
�S2(dx)

!n�2
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We then define A1(xp,xq) ⌘ 1� 2⇢̄

µ(S2)2⇡(1� cos r)+ ⇢̄
2

µ(S2)
R
BS2 (xp,r)\BS2 (xq ,r)

1

⇢(x)�S2(dx) and

returning to E[LpLq],

E[LpLq] = E
✓

1�
⇢̄ [Xp 2 BS2(Xq, r)]

⇢(Xp)

◆✓
1�
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⇢(Xq)

◆
An�2

1
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=

Z

S2

Z

S2

✓
1�
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Then taking term (b) of Equation B.15 and examining one of the expectations,
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Taking the condition expectation,
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The final term (d) is identical to that of (b). So plugging into Equation B.15 gives,

Var(Ĥinhom(r)|NX(S2 = n) =
[n > 0]

n2

6=X

p,q2{1,...,n}
 

1

µ2(S2)

Z

S2

Z

S2
(⇢(x)� ⇢̄ [x 2 BS2(y, r)]) (⇢(y)� ⇢̄ [y 2 BS2(x, r)])A

n�2
1

(x,y)�S2(dx)�S2(dy)

�

✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆n�1✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆n�1
!

+
[n > 0]

n2

nX

p=1

 
1

µ(S2)

Z

S2
An�1

2
(y)⇢(y)�S2(dy)�

✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆
2n�2

!

=
1

µ2(S2)Z

S2

Z

S2
(⇢(x)� ⇢̄ [x 2 BS2(y, r)]) (⇢(y)� ⇢̄ [y 2 BS2(x, r)])

✓
[n > 0](n� 1)

n
An�2

1
(x,y)

◆
�S2(dx)�S2(dy)

+
1

µ(S2)

Z

S2

✓
[n > 0]

n
An�1

2
(y)

◆
⇢(y)�S2(dy)� [n > 0]

✓
1�

⇢̄

µ(S2)2⇡(1� cos r)

◆
2n�2

We need to then take the expectation of this variance over NX(S2). By application of

Tonelli’s Theorem we can interchange the expectation over NX(S2) with the integrals over

x and y. This comes by showing that both A1(x,y) and A2(x) are non-negative for all

x,y 2 S2. Obviously ⇢(x) � ⇢̄ [x 2 BS2(y, r)] and ⇢(y) � ⇢̄ [y 2 BS2(x, r)] are greater

than or equal to 0 since ⇢̄ = infx2S2 ⇢(x). It then follows since the integrand of A1(xp,xq),

(1� ⇢̄ [x 2 BS2(xp, r)]/⇢(x)) (1� ⇢̄ [x 2 BS2(xq, r)]/⇢(x)) ⇢(x)/µ(S2), is then non-negative

for all x and so the integral over f is non-negative and thus Tonelli’s Theorem can be

applied. A near identitical argument can be applied to A2(x) to show that it is always non-

negative and hence Tonelli’s Theorem can then be applied. We then calculate the following

expectations,
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where the penultimate line follows from Equation B.13. Similarly for (b) and (c),
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where Li is as defined in Equation B.15,
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where ⇤ = µ(S2). Therefore the variance of Ĥinhom(r) is,
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(B.16)

The final part of the proof is to ensure that the integrands are truly Lebesgue integrable,

that is the integrals given in the previous equation are finite. We shall work with the sec-

ond,
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Hence the integrand is bounded,
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(B.17)

We show that the lower and upper bounds can be bounded further such that they do not

depend on r or x. First we bound e�µ(S
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where the final inequality follows from µ(S2) � 4⇡⇢̄. The lower bound is,
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Next we need to show that A2(x) is strictly greater than 0,
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Then for r 2 [0,⇡) µL(S2 \ BS2(x, r)) > 0 and since ⇢(y) � ⇢̄ > 0 this means that the

second term is strictly greater than 0. Further the first term is always non-negative since
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⇢(y) � ⇢̄ > 0. Then if r = ⇡ we have that,
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Since the right hand side of this inequality is a constant this means that it is Lebesgue

integrable over S2 and so by the dominated convergence theorem so is the left hand side,

thus showing that the integrands are truly Lebesgue integrable. An identical approach can

be used to show that the first term of Equation B.16 is also Lebesgue integrable.
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B.7 Proof of Theorem 4.4.4

Proof. Starting with the expectation,

E[Ĵinhom(r)] =
Z

Nlf
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Nlf |nx(S2) = 0} and Nlf,1 = {x 2 Nlf |nx(S2) > 0}, then Nlf = Nlf,0 [ Nlf,1 and Nlf,0 \

Nlf,1 = ; and so,

E[Ĵinhom(r)] =
Z

Nlf,0

Ĵinhom(r)PX(dx) +

Z

Nlf,1

Ĵinhom(r)PX(dx),

taking the convention that 0

0
= 1, the first term is finite,

=

Z

Nlf,0

PX(dx) +

Z

Nlf,1

Ĵinhom(r)PX(dx),

= PX(X 2 Nlf,0) +

Z

Nlf,1

Ĵinhom(r)PX(dx),

it can be shown that PX(X 2 Nlf,0) = PNX(S2)(NX(S2) = 0) then,

= P (NX(S2) = 0) +

Z

Nlf,1

Ĵinhom(r)PX(dx).

We now show that the second term can be bounded and hence the expectation is well defined.

Taking the integrand and noting that random variables are now deterministic,

Ĵinhom(r) =
|P |

P
x2x

Q
y2x\x

⇣
1�

⇢̄ [y2BS2 (x,r)]
⇢(y)

⌘

nx(S2)
P

p2P
Q

z2x

⇣
1�

⇢̄ [z2BS2 (p,r)]
⇢(z)

⌘ .

First we note that Ĵinhom(r) � 0 and is so bounded below. Working with the numerator we

have that,

X

x2x

Y

y2x\x

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆


X

x2x

Y

y2x\x

1

= nx(S2).
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Now working with the denominator showing that it is bounded below and hence its reciprocal

bounded above. By the assumption we have that there exists p̃ 2 P such that for any

x 2 BS2(p̃, r), ⇢(x) 6= ⇢̄, then

X

p2P

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p, r)]

⇢(z)

◆
=

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p̃, r)]

⇢(z)

◆
+

X

p2P\p̃

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p, r)]

⇢(z)

◆
.

Then the first term is strictly greater than 0 by our assumption. Thus,

X

p2P

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p, r)]

⇢(z)

◆
�

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p̃, r)]

⇢(z)

◆
> 0.

Further by the assumption we can define ⇢̄p̃ = infx2BS2 (p̃,r)
⇢(x) and then,

X

p2P

Y

z2x

✓
1�

⇢̄ [z 2 BS2(p, r)]

⇢(z)

◆
�

Y

z2x

✓
1�

⇢̄

⇢̄p̃

◆
=

✓
1�

⇢̄

⇢̄p̃

◆nx(S2
)

,

and so,

���Ĵinhom(r)
��� 

|P |nx(S2)

nx(S2)
⇣
1� ⇢̄

⇢̄p̃

⌘nx(S2)
= |P |

✓
1�

⇢̄

⇢̄p̃

◆�nx(S2
)

.

We now show that the right hand side of the above inequality is integrable. Define the sets

Nlf,1,(i) = {x 2 Nlf,1 : n(x) = i}, then Nlf,1 =
S1

i=1
Nlf,1,(i) and Nlf,1,(i) \ Nlf,1,(j) = ; for

i 6= j and hence we have partitioned the space Nlf,1. Thus,

Z

Nlf,1

|P |

✓
1�

⇢̄

⇢̄p̃

◆�nx(S2
)

PX(dx) =
1X

i=1

Z

Nlf,1,(i)

|P |

✓
1�

⇢̄

⇢̄p̃

◆�nx(S2)
PX(dx)

nx(S2) = i for all x 2 Nlf,1,(i) and so is constant over each partition of the space,

=
1X

i=1

|P |

✓
1�

⇢̄

⇢̄p̃

◆�i Z

Nlf,1,(i)

PX(dx)

=
1X

i=1

|P |

✓
1�

⇢̄

⇢̄p̃

◆�i
PX(X 2 Nlf,1,(i))
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but it is easy to see that PX(X 2 Nlf,1,(i)) = PNX(S2)(NX(S2) = i), and since X is Poisson

and defining a = (1� ⇢̄

⇢̄p̃
) and � = µ(S2),

= |P |

1X

i=1

a�i
�ne��

i!

= |P |e��
1X

i=1

(�/a)i

i!

= |P |e��
 1X

i=0

(�/a)i

i!
� 1

!

= |P |e��
⇣
e��/a � 1

⌘
.

Hence we have shown that,

Z

Nlf,1

���Ĵinhom(r)
���PX(dx)  |P |e��

⇣
e��/a � 1

⌘

and so by the dominated convergence theorem the expectation of Ĵinhom(r) exists.

Existence of the variance of Ĵinhom(r) follows simply based on the existence of the expecta-

tion,

Var(Ĵinhom(r)) =

Z

Nlf

⇣
Ĵinhom(r)� E[Ĵinhom(r)]

⌘
2

PX(dx).

Partitioning the space Nlf again into Nlf,0 ⌘ {x 2 Nlf |N(x) = 0} and Nlf,1 ⌘ {x 2

Nlf |N(x) > 0} we have that,

Var(Ĵinhom(r)) (B.18)

=

Z

Nlf,0

⇣
Ĵinhom(r)� E[Ĵinhom(r)]

⌘
2

PX(dx) +

Z

Nlf,1

⇣
Ĵinhom(r)� E[Ĵinhom(r)]

⌘
2

PX(dx).

(B.19)

Taking the convention that 0

0
= 1 then the first term is simply,

Z

Nlf,0

⇣
Ĵinhom(r)� E[Ĵinhom(r)]

⌘
2

PX(dx) = E2[Ĵinhom(r)]

Z

Nlf,0

PX(dx)

= E2[Ĵinhom(r)]PX(X 2 Nlf,0),
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then we note that PX(X 2 Nlf,0) = P (NX(S2) = 0) and so,

= E2[Ĵinhom(r)]P (NX(S2) = 0),

which is finite since the expectation exists. The second term of Equation B.19 over the space

Nlf,1 can also be shown to be finite. Since E[Ĵinhom(r)] is finite we just need to show that

Ĵinhom(r) is bounded in order show that the integrand is bounded and hence integrable. But

from proving the expectation exists we have that,

0  Ĵinhom(r)  |P |

✓
1�

⇢̄

⇢̄p̃

◆�nx(S2
)

,

and hence the square of Ĵinhom(r) is also bounded and so the integrand of second term in

Equation B.19 is bounded above and thus the variance exists.

Remark S5. From the proof of this theorem the requirement of the process being Pois-

son was only needed for a closed form of the distribution for its corresponding counting

process NX(S2). We can drop the requirement of X being Poisson but instead require

that the probability generating function of NX(S2), GNX(S2)(s), has radius of convergence

|s| 
⇣
1� ⇢̄

⇢̄p̃

⌘�2
, where ⇢̄p̃ = infx2BS2 (p̃,r)

⇢(x) and there exists p̃ 2 P such that for any

x 2 BS2(p̃, r), ⇢(x) 6= ⇢̄. This condition would be su�cient for the theorem to hold true also.

B.8 Proof of Propositon 4.4.5

Proof. Define,

X ⌘ 1� Ĥinhom(r) =
1

NX(S2)
X

x2X

Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆

Y ⌘ 1� F̂inhom(r) =
1

|P |

X

p2P

Y

y2X

✓
1�

⇢̄ [y 2 BS2(p, r)]

⇢(y)

◆

Then,

Cov(X,Y ) = E[XY ]| {z }
(a)

�E[X]E[Y ]| {z }
(b)

Term (a) is given by,

E[XY ]
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= E

2

4

0

@ 1

NX(S2)
X

x2X

Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆1

A

0

@ 1

|P |

X

p2P

Y

y2X

✓
1�

⇢̄ [y 2 BS2(p, r)]

⇢(y)

◆1

A

3

5

=
1

|P |

X

p2P
E

2

4 1

NX(S2)
X

x2X

0

@
Y

y2X\{x}

✓
1�

⇢̄ [y 2 BS2(x, r)]

⇢(y)

◆1

A

0

@
Y

y2X

✓
1�

⇢̄ [y 2 BS2(p, r)]

⇢(y)

◆1

A

3

5

=
1

|P |

X

p2P
E

0

@ 1

NX(S2)

NX(S2)X

i=1

E

2

664

0

BB@
nY

j=1

j 6=i

✓
1�

⇢̄ [Xj 2 BS2(Xi, r)]

⇢(Xj)

◆
1

CCA

0

@
nY

j=1

✓
1�

⇢̄ [Xj 2 BS2(p, r)]

⇢(Xj)

◆1

A
�����NX(S2) = n

3

775

| {z }
(?)

1

CCCCCCCA

,

where Xk, k = 1, . . . , n are independently distributed on S2 with density proportional to

⇢(xk), when conditioned on NX(S2). Taking (?),

E

2

664

0

BB@
nY

j=1

j 6=i

✓
1�

⇢̄ [Xj 2 BS2(Xi, r)]

⇢(Xj)

◆
1

CCA

0

@
nY

j=1

✓
1�

⇢̄ [Xj 2 BS2(p, r)]

⇢(Xj)

◆1

A
�����NX(S2) = n

3

775

= E

2

664

✓
1�

⇢̄ [Xi 2 BS2(p, r)]

⇢(Xi)

◆
0

BB@
nY

j=1

j 6=i

✓
1�

⇢̄ [Xj 2 BS2(Xi, r)]

⇢(Xj)

◆✓
1�

⇢̄ [Xj 2 BS2(p, r)]

⇢(Xj)

◆
1

CCA

3

775 ,

Using iterated expectations and conditioning on Xi,

= E

2

664

✓
1�

⇢̄ [Xi 2 BS2(p, r)]

⇢(Xi)

◆ nY

j=1

j 6=i

E
✓

1�
⇢̄ [Xj 2 BS2(x, r)]

⇢(Xj)

◆✓
1�

⇢̄ [Xj 2 BS2(p, r)]

⇢(Xj)

◆�
3

775

= E
✓

1�
⇢̄ [Xi 2 BS2(p, r)]

⇢(Xi)

◆
En�1

✓
1�

⇢̄ [Y 2 BS2(x, r)]

⇢(Y)

◆✓
1�

⇢̄ [Y 2 BS2(p, r)]

⇢(Y)

◆��

(B.20)

where Y is distributed with density proportional to ⇢(y) on S2. It is then easy to show that,

E
✓

1�
⇢̄ [Y 2 BS2(x, r)]

⇢(Y)

◆✓
1�

⇢̄ [Y 2 BS2(p, r)]

⇢(Y)

◆�
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= 1�
2⇢̄

µ(S2)2⇡(1� cos r) +
1

µ(S2)

Z

BS2 (x,r)\BS2 (p,r)

⇢̄2

⇢(y)
�S2(dy).

Let us define A(x,p) = E
h⇣

1�
⇢̄ [Y2BS2 (x,r)]

⇢(Y)

⌘⇣
1�

⇢̄ [Y2BS2 (p,r)]
⇢(Y)

⌘i
, and so returning to

B.20,

E
✓

1�
⇢̄ [Xi 2 BS2(p, r)]

⇢(Xi)

◆
An�1(Xi,p)

�
= E

✓
1�

⇢̄ [X 2 BS2(p, r)]

⇢(X)

◆
An�1(X,p)

�
,

where X has density proportional to ⇢(x) on S2,

=

Z

S2

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆
An�1(x,p)

⇢(x)

µ(S2)�S2(dx).

And so,

E[XY ] =
1

|P |

X

p2P
E

2

4 1

NX(S2)

NX(S2)X

i=1

Z

S2

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆
ANX(S2)�1(x,p)

⇢(x)

µ(S2)�S2(dx)

3

5

=
1

|P |

X

p2P
E
Z

S2

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆
ANX(S2)�1(x,p)

⇢(x)

µ(S2)�S2(dx)
�

=
1

|P |

X

p2P

Z

S2

✓
1�

⇢̄ [x 2 BS2(p, r)]

⇢(x)

◆
E
h
ANX(S2)�1(x,p)

i ⇢(x)

µ(S2)�S2(dx)

Then it can easily be shown that,

E
h
ANX(S2)�1(x,p)

i
=

exp
n
�2⇢̄2⇡(1� cos r)�

R
BS2 (x,r)\BS2 (p,r)

⇢̄
2

⇢(y)�S2(dy)
o

A(x,p)
.

Then from Theorem 4.4.1 we have that,

E[X] = exp(2⇡(1� cos r)⇢̄)

E[Y ] = µ2(S)exp(2⇡(1� cos r)⇢̄)� exp(µ(S2))
µ(S2)� 2⇡(1� cos r)⇢̄

.

And so we have the covariance between Ĥinhom(r) and F̂inhom(r).
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B.9 Taylor series expansion for Ĵinhom

We discuss Taylor series expansions in general and their use to approximate moments of

random variables Wolter ((2007)), after which we apply this to the Ĵinhom-function. For any

function f : R2
7! R, we have its Taylor expansion up to second order around ✓ = (✓x, ✓y)

as,

f(x, y) = f(✓x, ✓y) +
@f

@x

����
✓X ,✓Y

(x� ✓x) +
@f

@y

����
✓X ,✓Y

(y � ✓y)+

1

2

"
@2f

@x2

����
✓X ,✓Y

(x� ✓x)
2 + 2

@2f

@x@y

����
✓X ,✓Y

(x� ✓x)(y � ✓x) +
@2f

@y2

����
✓X ,✓Y

(y � ✓y)
2

#
+R(x, y),

where R(x, y) is a remainder term. Thus using random variables X and Y , with ✓ =

(E[X],E[Y ]) ⌘ (µX , µY ), whilst also assuming that E[R(X,Y )] is close to 0 then,

E[f(X,Y )] ⇡ f(µX , µY ) +
1

2


@2f

@x2
Var(X) + 2

@2f

@x@y
Cov(X,Y ) +

@2f

@y2
Var(Y )

�
.

Then to approximate the variance we first note that using the first order Taylor series

expansion E[f(X,Y )] ⇡ f(µX , µY ). Then,

Var(f(X,Y )) = E[(f(X,Y )� E[f(X,Y )])2]

⇡ E[(f(X,Y )� f(µX , µY ))
2]

⇡ E

2

4
 
f(µX , µY ) +

@f

@x

����
µX ,µY

(X � µX) +
@f

@y

����
µX ,µY

(Y � µY )� f(µX , µY )

!
2
3

5

= E

2

4
 
@f

@x

����
µX ,µY

(X � µX) +
@f

@y

����
µX ,µY

(Y � µY )

!
2
3

5

=
@f

@x

����
2

µX ,µY

Var(X) + 2
@f

@x

����
µX ,µY

@f

@y

����
µX ,µY

Cov(X,Y ) +
@f

@y

����
2

µX ,µY

Var(Y )

Hence defining f(X,Y ) = X

Y
, we have the following approximations to the first and second

order moments of f(X,Y ),

E

X

Y

�
⇡

µX

µY

�
Cov(X,Y )

µ2

Y

+
Var(Y )µX

µ3

Y

(B.21)

Var

✓
X

Y

◆
⇡

µX

µY


Var(X)

µ2

X

� 2
Cov(X,Y )

µXµY

+
Var(Y )

µ2

Y

�
. (B.22)
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Then since Ĵinhom(r) is defined as the ratio of two random variables, in particular 1 �

Ĥinhom(r) and 1 � F̂inhom(r). Thus combining Proposition 4.4.5 with the Taylor series ex-

pansions given in Equations B.21 and B.22 provides an estimate for the expectation and

variance of Ĵinhom(r).

B.10 Proof of Proposition 4.6.4

Proof. Let us first start with X1. Define Y1 ⇠ PPP (⇢,D) to be the homogeneous Poisson

process which is thinned to give X1. Then 8B ✓ D we can rewrite the counting measure for

X1 as,

NX1(B) =
X

x2Y1\B
[NY1\{x}(BD(x, R)) = 0],

where NY1\{x}, is the random counting measure for the process Y1 without the point x. Then

taking expectations and using the Slivnyak-Mecke Theorem,

E[NX1(B)] = E

2

4
X

x2Y1\B
[NY1\{x}(BD(x, R)) = 0]

3

5

=

Z

B

E [ [NY1(BD(x, R)) = 0]] ⇢�D(dx)

= ⇢

Z

B

P(NY1(BD(x, R)) = 0)�D(dx)

= ⇢

Z

B

e�⇢�D(BD(x,R))�D(dx)

For NX2(B) a few more steps are required in order to take into account the mark associated

with each point. Similarly to the counting measure for X1, we can rewrite the counting

measure for X2 as,

NX2(B) =
X

x2Y2\B
[Mx My, 8y 2 (Y2 \ {x}) \BD(x, R)].

By again taking expectations and using the Slivnyak-Mecke Theorem,

E[NX2(B)] = E

2

4
X

x2Y2\B
[Mx My, 8y 2 (Y2 \ {x}) \BD(x, R)]

3

5
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=

Z

B

E[ [Mx My, 8y 2 Y2 \BD(x, R)]]⇢�D(dx)

=

Z

B

P(Mx My, 8y 2 Y2 \BD(x, R))⇢�D(dx)

Define �x = ⇢�D(BD(x, R)), then the probability is calculated as follows,

P(Mx My, 8y 2 Y2 \BD(x, R))

=
1X

n=0

P (Mx My, 8y 2 Y2 \BD(x, R)|NY2(BD(x, R)) = n)P(NY2(BD(x, R)) = n)

=
1X

n=0

�nxe
��x

n!
P (Mx My, 8y 2 Y2 \BD(x, R)|NY2(BD(x, R)) = n)

Let us label the points yi 2 Y2, for i = 1, . . . , n to be the n points in BD(x, R) coming from

the process Y2. Then the event Mx My, 8y 2 Y2\BD(x, R) given that NY2(BD(x, R)) = n

is identical to the event that the mark associated to the point x is the smallest of all marks.

In other words we are concerned with the event Mx  min{My1 , . . . ,Myn}. Let us define

Mmin = min{My1 , . . . ,Myn} and fMmin(m) to be the density function of Mmin, then by using

order statistics we know that fMmin(m) = nfMx(m)(1 � FMx(m))n�1, where fMx(m) and

FMx(m) are the density and cumulative density functions of an individual markis respectively.

Then we have,

P (Mx My, 8y 2 Y2 \BD(x, R)|NY2(BD(x, R)) = n)

= P(Mx Mmin)

=

Z

Mmin
P(Mx  m)fMmin(m)dm

=

Z

Mmin
FMx(m)nfMx(m)(1� FMx(m))n�1dm

= [FMx(m)(1� FMx(m))n]M
min

+

Z

Mmin
fMx(m)(1� FMx(m))ndm

= [FMx(m)(1� FMx(m))n]M
min

+


1

n+ 1
(1� FMx(m))n+1

�Mmin

=
1

n+ 1
,
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where the last line follows since the range of Mmin is identical to the range of Mx. Returning

to P(x 2 X2),

P(Mx My, 8y 2 Y2 \BD(x, R)) =
1X

n=0

�nxe
��x

n!

1

n+ 1

=
e��x

�x

1X

n=0

�n+1
x

(n+ 1)!

=
e��x

�x

" 1X

n=0

�nx
n!
� 1

#

=
e��x

�x
(e�x � 1)

=
1� e��x

�x

=
1� e�⇢�D(BD(x,R))

⇢�D(BD(x, R))
.

Thus returning to the expectation of NX2(B),

E[NX2(B)] =

Z

B

1� e�⇢�D(BD(x,R))

�D(BD(x, R))
�D(dx).

B.11 Proof of Corollary 4.6.5

Proof. Notice that since ⇢�D(BD(x, R)) is always positive this means that 1�e�⇢�D(BD(x,R))

�D(BD(x,R))
�

0, 8⇢ 2 R+ and x 2 D. Then 1�e�⇢1�D(BD(x,R))

�D(BD(x,R))
< 1�e�⇢2�D(BD(x,R))

�D(BD(x,R))
, 8⇢1 < ⇢2 and so the

supremum is when ⇢ is taken to infinity giving the final result.

B.12 Proof of Proposition 4.6.6

Proof. Let Y = f(X), where f(x) = x/||x|| then,

E[NX(D)] = E

2

4
X

c2Xp

NXc(S2)

3

5
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=

Z

D
E[NXc(S2)]⇢dc

= �⇢

Z

D
dc

= �D(D)⇢�.
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C
Appendix to Chapter 5

C.1 Proof of Theorem 5.1.1

In this section we shall rederive the expectation and variance of our estimators for Kinhom(r)

in the scenario when ⇢ is unknown. We restate our estimator as,

K̃inhom(r) =

8
<

:

�
2
D(D)

4⇡NY (S2)(NY (S2)�1)
P

x2Y
P

y2Y \{x}
[d(x,y)r]
⇢̃(x)⇢̃(y) , if NY (S2) > 1

0, otherwise
(C.1)

where Y = f(X) and

⇢̃(x) =

8
>>>><

>>>>:

l1(f
�1(x))J(1,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(D1)

...

ln(f
�1(x))J(n,f⇤)(x)

q
1� x2

1
� x2

2
, x 2 f(Dn)

(C.2)

The proof is then,

Proof. We can rewrite our estimator as,

K̃inhom(r) =
[NY (S2) > 1]�2D(D)

4⇡NY (S2)(NY (S2)� 1)

X

x2Y

X

y2Y \{x}

[d(x,y)  r]

⇢̃(x)⇢̃(y)
(C.3)
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Further, note that NY (S2) = NX(D2), where f(x) = x
|x| . We then take expectations (using

iterated expectations conditioning on NY (S2)) of K̃inhom(r) to get the bias,

E(K̃inhom(r)) = E

2

4 [NY (S2) > 1]�2D(D)
4⇡NY (S2)(NY (S2)� 1)

X

x2Y

X

y2Y \{x}

[d(x,y)  r]

⇢̃(x)⇢̃(y)

3

5

=
�2D(D)
4⇡

E

0

@ [NY (S2) > 1]

NY (S2)(NY (S2)� 1)
E

2

4
6=X

x,y2Y

[d(x,y)  r]

⇢̃(x)⇢̃(y)

������
NY (S2) = n

3

5

1

A

=
�2D(D)
4⇡

E

0

@ [NY (S2) > 1]

NY (S2)(NY (S2)� 1)
E

2

4
6=X

i,j2{1,...,n}

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

3

5

1

A

=
�2D(D)
4⇡

E
✓

[NY (S2) > 1]NY (S2)(NY (S2)� 1)

NY (S2)(NY (S2)� 1)
E


[d(Y,Y)  r]

⇢̃(Y)⇢̃(Y)

�◆

=
�2D(D)
4⇡

P (NY (S2) > 1)E


[d(Y,Y)  r]

⇢̃(Y)⇢̃(Y)

�

=
�2D(D)
4⇡

P (NY (S2) > 1)

Z

S2

Z

S2

[d(x,y)  r]

⇢̃(x)⇢̃(y)

⇢⇤(x)⇢⇤(y)

⇢2�2D(D)
�S2(dx)�S2(dy)

= P (NY (S2) > 1)2⇡(1� cos r).

The bias follows by noting that P (NY (S2) > 1) = 1� P (NY (S2)  1). The variance can be

calculated using the law of total variance we have,

Var(K̃inhom(r)) = E[Var(K̃inhom(r)|NY (S2))]| {z }
(1)

+Var[E[K̃inhom(r)|NY (S2)]]| {z }
(2)

. (C.4)

Considering term (2) first,

E[K̃inhom(r)|NY (S2) = n] =
[n > 1]�2D(D)
4⇡n(n� 1)

E

2

4
6=X

x,y2Y

[d(x,y)  r]

⇢̃(x)⇢̃(y)

�����NY (S2) = n

3

5

Using the fact that given NY (S2) = n, each x 2 Y is independently and identically dis-

tributed with density ⇢⇤(x)/µ(D), where µ(D) = ⇢�D(D), the expectation becomes,

=
[n > 1]�2D(D)
4⇡n(n� 1)

E

2

4
6=X

i,j2{1,...,n}

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

�����NY (S2) = n

3

5

=
[n > 1]�2D(D)
4⇡n(n� 1)

6=X

i,j2{1,...,n}

E
"

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

�����NY (S2) = n

#
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=
[n > 1]�2D(D)
4⇡n(n� 1)

n(n� 1)E


[d(X,Y)  r]

⇢̃(X)⇢̃(Y)

�

=
[n > 1]�2D(D)

4⇡
E


[d(X,Y)  r]

⇢̃(X)⇢̃(Y)

�
,

where X and Y are independent random vectors distributed in S2 with density ⇢⇤(x)/µ(D).
Noting that the joint density of X and Y is ⇢⇤(x)⇢⇤(y)/µ2(D), the expectation becomes,

E[K̃inhom(r)|NY (S2) = n] =
[n > 1]�2D(D)

4⇡

Z

S2

Z

S2

[d(x,y)  r]

⇢̃(y)⇢̃(y)

⇢⇤(x)⇢⇤(y)

µ2(D) �S2(dx)�S2(dy)

=
[n > 1]�2D(D)

4⇡

1

�2D(D)

Z

S2

Z

S2
[d(x,y)  r]�S2(dx)�S2(dy)

=
[n > 1]

4⇡

Z

S2

Z

S2
[d(x,y)  r]�S2(dx)�S2(dy)

= [n > 1]2⇡(1� cos r)

Hence term (2) is,

Var[E[K̃inhom(r)|NY (S2)]] = Var( [NY (S2) > 1]2⇡(1� cos r))

= 4⇡2(1� cos r)2
⇥
E( 2[NY (S2) > 1])� E2( [NY (S2) > 1])

⇤

= 4⇡2(1� cos r)2
⇥
P (NY (S2) > 1)� P 2(NY (S2) > 1)

⇤

= 4⇡2(1� cos r)2P (NY (S2) > 1)
⇥
1� P (NY (S2) > 1)

⇤

= 4⇡2(1� cos r)2(1� P (NY (S2)  1))P (NY (S2)  1),

where, since NY (S2) ⇠ Poisson(⇢�D(D)),

P (NY (S2)  1) = 1� e�⇢�D(D) � ⇢�D(D)e�⇢�D(D).

Now consider term (1), we calculate Var(K̃inhom(r)|NY (S2)),

Var(K̃inhom(r)|NY (S2) = n) = Var

0

@ [NY (S2) > 1]�2D(D)
4⇡NY (S2)(NY (S2)� 1)

6=X

x,y2Y

[d(x,y)  r]

⇢̃(x)⇢̃(y)

�����NY (S2) = n

1

A

=
2[n > 1]�4D(D)

16⇡2
Var

0

@ 1

n(n� 1)

6=X

x,y2Y

[d(x,y)  r]

⇢̃(x)⇢̃(y)

�����NY (S2) = n

1

A

=
[n > 1]�4D(D)

16⇡2
Var

0

@ 1

n(n� 1)

6=X

x,y2Y

[d(x,y)  r]

⇢̃(x)⇢̃(y)

�����NY (S2) = n

1

A
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=
[n > 1]�4D(D)

16⇡2
Var

0

@ 1

n(n� 1)

6=X

i,j2{1,...,n}

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

1

A

Here we follow a similar argument to that of Lang and Marcon ((2012)) through U -statistics.

Noting that [d(Yi,Yj)r]
⇢̃(Yi)⇢̃(Yj)

= [d(Yj ,Yi)r]
⇢̃(Yj)⇢̃(Yi)

, i.e. it is symmetric in its arguments, we rewrite

the summation,

1

n(n� 1)

6=X

i,j2{1,...,n}

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)
=

1

n(n� 1)

X

1i<jn

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)
+

[d(Yj ,Yi)  r]

⇢̃(Yj)⇢̃(Yi)

=
2

n(n� 1)

X

1i<jn

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

=

✓
n

2

◆�1 X

1i<jn

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

This is form of a U -statistic and variances of this class of statistics can be decomposed using

the work of Hoe↵ding ((1992)). Using the same notation as Hoe↵ding ((1992)), we define

some quantities and derive a number of expectations,

Un =

✓
n

2

◆�1 X

1i<jn

[d(Yi,Yj)  r]

⇢̃(Yi)⇢̃(Yj)

�(y1,y2) =
[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)

�1(y1) ⌘ �1(y1,Y2) = E[�(y1,Y2)] = E[�(Y1,Y2)|Y1 = y1]

= E


[d(y1,Y2)  r]

⇢̃(y1)⇢̃(Y2)

�

=

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)

⇢⇤(y2)

⇢�D(D)
�S2(dy2)

=
1

⇢̃(y1)�D(D)

Z

S2
[d(y1,y2)  r]�S2(dy2)

=
2⇡(1� cos r)

⇢̃(y1)�D(D)
�2(y1,y2) = E[�(y1,y2)] = E[�(Y1,Y2)|Y1 = y1,Y2 = y2] = �(y1,y2)

E[�1(Y1)] =

Z

S2

2⇡(1� cos r)

⇢̃(y1)�D(D)
⇢⇤(y1)

⇢�D(D)
�S2(dy1)

=
4⇡ · 2⇡(1� cos r)

�2D(D)
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E[�2(Y1,Y2)] =

Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)

⇢⇤(y1)⇢⇤(y2)

⇢2�2D(D)
�S2(dy1)�S2(dy2)

=
4⇡ · 2⇡(1� cos r)

�2D(D)

E[�2

1(Y1)] =

Z

S2

4⇡2(1� cos r)2

⇢̃2(y1)�2D(D)
⇢⇤(y1)

⇢�D(D)
�S2(dy1)

=
4⇡2(1� cos r)2

�3D(D)

Z

S2

1

⇢̃(y1)
�S2(dy1)

E[�2
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Z

S2

Z

S2

[d(y1,y2)  r]
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⇢⇤(y1)⇢⇤(y2)

⇢2�2D(D)
�S2(dy1)�S2(dy2)

=
1

�2D(D)

Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)

⇣1 = Var(�1(Y1))

= E[�2

1(Y1)]� E2[�1(Y1)]

=
4⇡2(1� cos r)2

�3D(D)

Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2 · 4⇡2(1� cos r)2

�4D(D)

=
4⇡2(1� cos r)2

�3D(D)

✓Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2

�D(D)

◆

⇣2 = Var(�2(Y1,Y2))

= E[�2

2(Y1,Y2)]� E2[�2(Y1,Y2)]

=
1

�2D(D)

Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)�

16⇡2 · 4⇡2(1� cos r)2

�4D(D)

=
1

�2D(D)

✓Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)�

64⇡4(1� cos r)2

�2D(D)

◆

Then using the variance derived by Hoe↵ding ((1992)) for U -statistics, the variance of our

Un can be decomposed as,

Var (Un) =

✓
n

2

◆�1 2X

k=1

✓
2

k

◆✓
n� 2

2� k

◆
⇣k

=
4(n� 2)

n(n� 1)
⇣1 +

2
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⇣2
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Then,

Var(K̃inhom(r)|NY (S2) = n) =
[n > 1]�4D(D)

16⇡2

✓
4(n� 2)

n(n� 1)
⇣1 +

2

n(n� 1)
⇣2

◆

= �D(D)(1� cos r)2
✓Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2

�D(D)

◆
·

[n > 1](n� 2)

n(n� 1)

+
�2D(D)
8⇡2

✓Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)�

64⇡4(1� cos r)2

�2D(D)

◆
[n > 1]

n(n� 1)

Taking expectations gives,

E[Var(K̃inhom(r)|NY (S2))]

= �D(D)(1� cos r)2
✓Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2

�D(D)

◆
E


[NY (S2) > 1](NY (S2)� 2)

NY (S2)(NY (S2)� 1)

�

+
�2D(D)
8⇡2

✓Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)�

64⇡4(1� cos r)2

�2D(D)

◆
E


[NY (S2) > 1]

NY (S2)(NY (S2)� 1)

�

The expectations can be simplified as follows and defining � = ⇢�D(D),

E


[NY (S2) > 1](NY (S2)� 2)

NY (S2)(NY (S2)� 1)

�
=

1X

n=0

[n > 1](n� 2)

n(n� 1)

�ne��

n!

=
1X

n=3

(n� 2)

n(n� 1)

�ne��

n!

=
1X

n=3

1

n2(n� 1)2
�ne��

(n� 3)!

=
1X

n=0

1

(n+ 3)2(n+ 2)2
�n+3e��

n!

= �3
1X

n=0

1

(n+ 3)2(n+ 2)2
�ne��

n!

= �3E


1

(NY (S2) + 3)2(NY (S2) + 2)2

�

Similarly the other expectation is,

E


[NY (S2) > 1]

NY (S2)(NY (S2)� 1)

�
= �2E


1

(NY (S2) + 2)2(NY (S2) + 1)2

�
,
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and so,

E[Var(K̃inhom(r)|NY (S2))]

= ⇢3�4D(D)(1� cos r)2
✓Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2

�D(D)

◆
E


1

(NY (S2) + 3)2(NY (S2) + 2)2

�

+
⇢2�4D(D)

8⇡2

✓Z

S2

Z

S2

[d(y1,y2)  r]

⇢̃(y1)⇢̃(y2)
�S2(dy1)�S2(dy2)�

64⇡4(1� cos r)2

�2D(D)

◆

⇥ E


1

(NY (S2) + 2)2(NY (S2) + 1)2

�
.

Combining everything gives the variance of K̃inhom(r),

Var(K̃inhom(r)) = 4⇡2(1� cos r)2(1� P (NY (S2)  1))P (NY (S2)  1)

+ ⇢3�4D(D)(1� cos r)2
✓Z

S2

1

⇢̃(y1)
�S2(dy1)�

16⇡2

�D(D)

◆
E


1

(NY (S2) + 3)2(NY (S2) + 2)2
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+
⇢2�4D(D)
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✓Z

S2
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S2

[d(y1,y2)  r]
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�S2(dy1)�S2(dy2)�

64⇡4(1� cos r)2

�2D(D)

◆

⇥ E


1

(NY (S2) + 2)2(NY (S2) + 1)2

�

C.2 Proof of Lemma 5.1.2

Proof. Define S = N !eN�k/(N � k)! and T = (e+ p)N , then R = S/T . Then,

E[S] =
1X

n=0

n!en�k

(n� k)!

�ne��

n!

= e�ke��
1X

n=k

(e�)n

(n� k)!

= e�ke��
1X

l=0

(e�)l+k

l!

= e�ke��(e�)k
1X

l=0

(e�)l

l!

= e�ke��(e�)kee�

= �ke�(e�1).
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Further,

E[T ] =
1X

n=0

(e+ p)n
�ne��

n!

= e��
1X

n=0

(�(e+ p))n

n!

= e��e�(e+p)

= e�(e+p�1).

Therefore,
E[S]
E[T ] =

�ke�(e�1)

e�(e+p�1) = �ke�p�

C.3 Decreasing power

We see, in Tables 6.1-6.3, that as a becomes smaller, and therefore c becomes larger a

reducing empirical power of our test for both regular and cluster processes, for the same R

and  respectively. This e↵ect could be due to a combination of mapping from the ellipsoid

to the sphere and an artefact of the test statistic being proposed over a finite grid of points

rather than being consider over the entire range of [0,⇡]. To see this consider just the Matérn

II process with a fixed hardcore distance R. Further, let us only consider a cross section of

the ellipsoid, more specifically the ellipse such that it’s major and minor axis lengths are

c and a respectively, see Figure C.1. Let us consider the point (0, a) lying on the ellipse

and take the point to the right of it which is precisely the hardcore distance R away from

it, let us label this point x. To find x use the parametrisation (x, y) = (c cos t, a sin t) for

t 2 [0, 2⇡). Then we solve the following equation for t to find x,

R =

Z
⇡/2

t

(c2 sin2 s+ a2 cos2 s)1/2ds.

Let us label t̃ as the solution to this equation and we then find x as (c cos t̃, a sin t̃). Then

apply the map onto the unit circle which gives us (0, a) 7! (0, 1) and (c cos t̃, a sin t̃) 7!

(cos t̃, sin t̃) and so our new hardcore distance on the circle is R0 = cos�1(sin t̃). It should be

noted that this calculation is dependent upon where on an ellipsoid the event of interest, x

is as BD(x, R) does not map to BD(f(x), r) for some r > 0 and where f is our mapping from
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a

c

R

1

R′

Figure C.1: Example of hardcore distance reduction due to mapping to a sphere.

the ellipsoid to the sphere. Using the example when a = 0.4000 we have that c = 3.1602

and thus for a hardcore distance of R = 0.2, on the cross sectional ellipse we have an

e↵ective hardcore distance of R0 = 0.0633, which is an extremely small hardcore distance

and since our finite grid of points is too coarse (points are only separated a distance of 0.02

apart) it results in a loss in power of our test. Furthermore, examining the standardised

inhomogeneous K-function in Figure C.2 we can further see the e↵ect of our mapping and

taking only a finite grid of points along [0,⇡] as the negative deviation reduces as ellipsoid

deforms further away from the unit sphere. It should be noted though that even though the

power of our test reduces as we move further away from the sphere Figure C.2 still indicates

evidence that of regularity as for small r for all ellipsoids the observed inhomogeneous K-

function falls below the simulation envelope. This highlights the importance of a proper

examination of graphical representations of functional summary statistics as opposed to the

use of formal hypothesis testing Diggle ((2003)). Another consideration would be to potential

use a two sided hypothesis testing procedure which may provide greater power when the true

underlying process is not CSR.

A similar e↵ect also occurs when examining cluster processes. By mapping the pattern from

the ellipsoid to the sphere we will distort the isotropic nature of our o↵spring density relative

to its parent. In particular this will cause the cluster size to contract and so if our finite grid

of points is too coarse we will struggle to detect deviations away from CSR.
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Figure continued on following page.
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Figure C.2: Plots of the standardised inhomogeneous K-function for a Matérn II process with hardcore distance

R = 0.2. From top left to bottom right a = 1 (sphere), a = 0.8, a = 0.6 and a = 0.4. Black line is the

estimated standardised K̂inhom(r) for our observed data, dashed red line is the theoretical functional summary

statistic for a Poisson process, and the grey shaded area represents the simulation envelope from 999 Monte

Carlo simulations of Poisson processes fitted to the observed data.
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D
Appendix to Chapter 6

D.1 Limit properties of edge correction factor

The following lemma is discusses the asymptotics of the edge correction factors as h goes to

either 0 or infinity. It is used in the proofs of Proposition 6.3.1 and Theorem 6.4.2.

Lemma D.1.1. Suppose that (M, g) is a Riemannian manifold then the edge correction

factors given by Equation 6.8 and 6.9 with a Gaussian kernel (see Equation 6.10) we have

the following limit properties when considered as a function of h for fixed x,y 2M,

ch(x,y)!
K

(2⇡)n/2
as h! 0,

hnch(x,y)!
Vol(W )

(2⇡)n/2
as h!1,

where K =
R
Rd exp(�||x||2/2)dx <1.

Before providing the proof we make the following remark. If we supposed that our Rie-

mannian manifold is embedded within some Euclidean space and we then take g to be

the canonical Riemannian metric, for example the d � 1 dimensional sphere in Rd inherits

the Euclidean metric in Rd, then ||x||
2 is identically the Euclidean norm squared and so

K = (2⇡)n/2 and so,

ch(x,y)! 1 as h! 0
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which is equivalent to the limiting behaviour as h ! 0 of the edge correction terms in

Euclidean space given by Cronie and Van Lieshout ((2018)). Moreover, we can also retrieve

the limiting behaviour as h ! 1 if we supposed that M is Rd endowed with its Euclidean

metric then trivially Vol(W ) = �Rd(W ) and so we recover the results of Cronie and Van

Lieshout ((2018)). The proof of Lemma D.1.1 is now given.

Proof. Since the edge correction factors are e↵ectively symmetric in x and y we need only

consider one of Equations 6.8 and 6.9: we will use Equation 6.8. We first recall that by

Gauss’s Lemma Carmo ((1992)), the exponential map is radially isometric. We also require

the so-called volume density function Besse ((1978)), Pelletier ((2005)), Henry and Rodriguez

((2009)). The volume density function, ✓p(q) : M 7! R, can be defined as the Radon-

Nikodyn derivative of the pullback of the volume form by expp with respect to the Lebesgue

measure, dx = dx1 ^ · · · dxd, over the tangent space defined by gp on TpM,

✓p(q) =
d exp⇤p vol(x)

dx
(logp q),

see Besse ((1978)) for more details on the volume density function. Moreover, the volume

density function can be represented in locally in normal coordinates, that is the local chart

(BM(p, r), logp), where r < r⇤ and r⇤ is the global injectivity radius. Then in this coordinate

system we have that,

✓p(q) = det(gij(logp(q)))
1/2,

where gij is the metric tensor g expressed in the local coordinate system given by logp

Pelletier ((2005)), Henry and Rodriguez ((2009)). Since g is smooth over M this implies

that ✓p is also smooth and gij(p) = �ij and so ✓p(p) = 1. By defining the volume density

function we can integrate over local regions of M by mapping to the tangent space at p, i.e.

suppose f is an integrable function over BM(p, r) where r < r⇤ and let (BM(p, r), logp) be

the normal coordinates at p then,

Z

BM(p,r)
f dvol =

Z

logp(BM(p,r))
((expp)

⇤f) d exp⇤p vol =

Z

BTpM (0,r)
(f � expp) · (✓p � expp) dx

where, by Gauss’s lemma, we have that logp(BM(p, r)) = BTpM(0, r). We now show the

result of the lemma, first dividing the integral of ch(x,y) into two parts where we take r  r⇤,

ch(x,y) =
1

(2⇡)d/2

Z

M

1

hd
exp

 
�d2g(x, z)

2h2

!
dvol(z)
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=
1

(2⇡)d/2

Z

M\BM(x,r)

1

hd
exp

 
�d2g(x, z)

2h2

!
dvol(z)

+
1

(2⇡)d/2

Z

BM(x,r)

1

hd
exp

 
�d2g(x, z)

2h2

!
dvol(z). (D.1)

The first term can easily be shown to go to 0 as h goes to 0 as follows,

1

(2⇡)d/2

Z

M\BM(x,r)

1

hd
exp

 
�d2g(x, z)

2h2

!
dvol(z) 

1

hd

Z

M\BM(x,r)
exp

✓
�r2

2h2

◆
dvol(z)

=
Vol(M\BM(x, r))

hd
exp

✓
�r2

2h2

◆
,

where the second line follows since M is compact and thus Vol(M) is finite. The right hand

side tends to 0 as h goes to 0 and hence the limit of this term is also 0 since it must be

greater than or equal to 0.

Turning to the second term of Equation D.1 we have that,

1

(2⇡)d/2

Z

BM(x,r)

1

hd
exp

 
�d2g(x, z)

2h2

!
dvol(z)

=
1

(2⇡)d/2

Z

BTxM (0,r)

1

hd
exp

 
�d2g(x, expx(z))

2h2

!
✓x(expx(z))dz,

by radial isometry we have that d2g(x, expx(z)) = ||z||
2 and so,

=
1

(2⇡)d/2

Z

BTxM (0,r)

1

hd
exp

✓
�||z||

2

2h2

◆
✓x(expx(z))dz

define K =
R
Rd exp(�||x||2/2)dx and for the time being assume K <1

=
K

(2⇡)d/2

Z

BTxM (0,r)

1

Khd
exp

✓
�||z||

2

2h2

◆
✓x(expx(z))dz

and hence we notice that limh!0(1/Khd) exp
�
�||z||

2/2h2
�
takes the form of a Dirac -

delta. Since ✓x(expx(z)) depends smoothly on z, that ✓x(expx(0)) = ✓x(x) = 1 and is

defined over the compact space of BTxM(0, r) we can use the standard Dirac-delta propertyR
Rd f(x)�(dx) = f(0) where � is the Dirac-delta function to give,

=
K

(2⇡)d/2
✓x(0)
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=
K

(2⇡)d/2
,

and hence our result for Riemannian manifolds assuming that K <1, which is indeed true

by the Nash embedding theorem Nash ((1956)). To properly apply Nash’s theorem we first

need to define what an isometric embedding is. Let F : M 7! N be a smooth function

between Riemannian manifolds (M, g1) and (N , g2), F is then an isometric embedding of

M in N if it preserves the metric, that is for all p 2M and Xp, Yp 2 TpM then,

(g1)p(Xp, Yp) = (g2)F (p)(F⇤,pXp, F⇤,pYp).

As such Nash’s embedding theorem states that any compact d-dimensional Riemannain

manifold (M, g) without boundary can be isometrically embedded into Rm for some m 2 N
under its canonical metric, i.e. the Euclidean metric. Let F : M 7! Rm be the isometric

embedding as defined by Nash’s theorem and let TF (p)Rm be the tangent space at F (p).

Let (U, x1, . . . , xd) be a local coordinate system with p 2 U ⇢ M, we can then write

Xp =
P

d

i=1
ai@/@xi|p to be a vector in the tangent space at p written using the basis

imposed by the local coordinates. Let (V, y1, . . . , ym) be the standard coordinate system of

Rm, set F i = yi � F be the ith component of F and F (p) 2 V then we can write F⇤,pXp as

((Tu, 2011, Proposition 8.11)),

F⇤,pXp =
mX

j=1

 
dX

i=1

ai
@F j

@xi

����
p

!
@

@yj

����
F (p)

.

Letting e be the canonical Euclidean metric on Rm and since y1, . . . , ym is our standard

coordinate system we have that,

(e)F (p)(F⇤,pXp,F⇤,pYp)

=
⇣
a1 · · · ad

⌘

0

BBB@

@F
1

@x1

���
p

· · ·
@F

m

@x1

��
p

...
. . .

...
@F

1

@xd

���
p

· · ·
@F

m

@xd

��
p

1

CCCA

0

BBB@

@F
1

@x1

���
p

· · ·
@F

1

@xd

���
p

...
. . .

...
@F

m

@x1

��
p

· · ·
@F

m

@xd

��
p

1

CCCA

0

BB@

b1

...

bd

1

CCA

= vXpJ
T

F JFvYp ,

where the matrix JF = [@F i/@xj ] corresponds to the Jacobian of the transformation F ,

Yp =
P

d

i=1
bi@/@xi|p and vXp and vYp are the representations of Xp and Yp in the local
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coordinate system imposed by x1, . . . , xd. Therefore by Nash’s theorem we have that,

gp(Xp, Yp) = (e)F (p)(F⇤,pXp, F⇤,pYp) = vXpJ
T

F JFvYp .

Therefore

K =

Z

Rd
exp

✓
�
||x||

2

2

◆
dx

=

Z

Rd
exp

✓
�
x
TJT

F
JFx

2

◆
dx

= (2⇡)d/2
q
det

�
(JT

F
JF )�1

�

=

 
(2⇡)d

det
�
JT

F
JF

�
!

1/2

where the last line follows if JT

F
JF is positive definite.

To show the limiting behaviour as h!1 we follow a similar arugment to Cronie and Van

Lieshout ((2018)) noting that limh!1 k(dg(x,y)/h) = (2⇡)�d/2 by Equation 6.10. Therefore,

lim
h!1

hdch(x,y) = lim
h!1

Z

W

1

(2⇡)d/2
exp

✓
�
dg(x,y)

2h2

◆
dvol(z)

=

Z

W

1

(2⇡)d/2

✓
lim
h!1

exp

✓
�
dg(x,y)

2h2

◆◆
dvol(z)

=

Z

W

1

(2⇡)d/2
dvol(z)

=
Vol(W )

(2⇡)d/2
,

where the second line follows by the dominated convergence theorem.

D.2 Proof of Proposition 6.3.1

In order to show pointwise unbiasedness and consistency we require the following identities

given by Cucala ((2006)) translated to the setting of Riemannian manifolds,

E[Z] =
⇣
1� e�µ(W )

⌘Z

W

f(x)⇢1(x) dvol(x) (D.2)
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Var(Z) = A(µ(W ))

Z

W

f2(x)⇢1(x) dvol(x)

�

✓Z

W

f(x)⇢1(x) dvol(x)

◆⇣
A(µ(W ))� e�µ(W )

� e�2µ(W )

⌘
, (D.3)

where Z = ( [NX(W ) 6= 0]/NX(W ))
P

x2X\W f(x), X is a Poisson process with intensity

function ⇢, A(m) = E[(1/NX(W )) [NX(W ) 6= 0], ⇢1(x) = ⇢(x)/µ(M) and f : M 7! R is

measurable and nonnegative. We now present the proof of Proposition 6.3.1.

Proof. We first show asymptotic unbiasedness. For i = 1, 2 and from Equation D.2 we have

that,

E
h
⇢̂(i)
h,1

(x)
i
=
⇣
1� e�µ(W )

⌘Z

M
[y 2W ]

c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆
⇢1(y) dvol(y)

=
⇣
1� e�µ(W )

⌘"Z

BM(x,r)
[y 2W ]

c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆
⇢1(x) dvol(y)

+

Z

M\BM(x,r)
[y 2W ]

c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆
⇢1(y) dvol(y)

#

where 0 < r < r⇤, r⇤ being the global injectivity radius of M. Applying an identical

argument to that used in the proof of Lemma D.1.1 to show that the first term of Equation

D.1 goes to 0, we can show that the second term here also goes to 0 as h goes to 0. Thus

we shall focus on the integral in the first term,

Z

BM(x,r)
[y 2W ]

c�1
h

(x,y)

hd
k

✓
dg(x,y)

h

◆
⇢1(y) dvol(y)

=

Z

BTxM (0,r)
[expx(y) 2W ]

c�1
h

(x, expx(y))

hd
k

✓
dg(x), expx(y)

h

◆
⇢1(expx(y))✓x(expx(y))dy

=

Z

BTxM (0,r)
[expx(y) 2W ]

c�1
h

(x, expx(y))

(2⇡)d/2hd
exp

 
�
d2g(x, expx(y))

2h2

!
⇢1(expx(y))✓x(expx(y)) dy

=

Z

BTxM (0,r)

c�1
h

(x, expx(y))

(2⇡)d/2hd
exp

✓
�
||y||

2

2h2

◆
[expx(y) 2W ]⇢1(expx(y))✓x(expx(y)) dy

=

Z

BTxM (0,r)

c�1
h

(x, expx(y))

(2⇡)d/2hd
exp

✓
�
||y||

2

2h2

◆
g(y) dy,

where g(y) = [expx(y) 2 W ]⇢1(expx(y))✓x(expx(y)). By Lemma D.1.1 for any 0 < ✏ <

K/((2⇡)d/2) we can find a small enough h0 such that for h < h0, K/((2⇡)d/2)�✏ < ch(x,y) <

K/((2⇡)d/2) + ✏. Setting K 0 = K/((2⇡)d/2) we can bound the previous integral, denoting it
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I(h), as

Z

BTxM (0,r)

1

(2⇡)d/2hd(K 0 + ✏)
exp

✓
�
||y||

2

2h2

◆
g(y) dy < I(h)

<

Z

BTxM (0,r)

1

(2⇡)d/2hd(K 0 � ✏)
exp

✓
�
||y||

2

2h2

◆
g(y) dy.

(D.4)

Taking the left hand side of the previous inequality we have that,

Z

BTxM (0,r)

1

(2⇡)d/2hd(K 0 + ✏)
exp

✓
�
||y||

2

2h2

◆
g(y) dy

=
K

(2⇡)d/2(K 0 + ✏)

Z

BTxM (0,r)

1

Khd
exp

✓
�
||y||

2

2h2

◆
g(y) dy

=
K 0

(K 0 + ✏)

Z

BTxM (0,r)

1

Khd
exp

✓
�
||y||

2

2h2

◆
g(y) dy

Then as h goes to 0, 1

Khd exp
�
�||y||

2/2h2
�
acts as a Dirac-delta and so we have as h ! 0

and noting that g(0) = [expx(0) 2W ]⇢1(expx(0))✓x(expx(0)) = ⇢1(x),

K 0

(K 0 + ✏)
g(0) =

K 0

(K 0 + ✏)
g(0) =

K 0

(K 0 + ✏)
⇢1(x).

We can use a similar argument for the right hand side of Inequality D.4 and therefore have,

K 0

(K 0 + ✏)
⇢1(x) < lim

h!0

I(h) <
K 0

(K 0 � ✏)
⇢1(x),

for h < h0. Then since we can make ✏ arbitrarily small we must have that,

lim
h!0

I(h) = ⇢1(y).

Then since 1� e�µ(W ) goes to 1 as µ(W ) goes to infinity we have asymptotic unbiasedness.
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To show that the variance goes to 0 take Equation D.3 giving,

Var
⇣
⇢̂(i)
h,1

(x)
⌘
= A(µ(W ))

Z

M
[y 2W ]

c�2
h

(x,y)

h2d
k2
✓
dW (x,y)

h

◆
⇢1(y) dvol(y)

�

 Z

M
[y 2W ]

c�1
h

(x,y)

hn
k

✓
dg(x,y)

h

◆
⇢1(y) dvol(y)

!⇣
A(µ(W ))� e�µ(W )

� e�2µ(W )

⌘
.

(D.5)

Taking the first bracket in the second term notice that,

Z

M
[y 2W ]

c�1
h

(x,y)

hn
k

✓
dg(x,y)

h

◆
⇢1(y) dvol(y) =

E
h
⇢̂(i)
h,1

(x)
i

1� e�µ(W )
,

and hence as h! 0 and µ(W )!1 this integral is of O(1), i.e. it is bounded in this limit.

Examining A(µ(W )) we have,

A(µ(W )) = E


[NX(W ) 6= 0]

NX(W )

�

=
1X

n=1

e�µ(W )(µ(W ))n

n · n!



1X

n=1

2e�µ(W )(µ(W ))n

(n+ 1)!

=
2e�µ(W )

µ(W )

1X

n=1

(µ(W ))n+1

(n+ 1)!

=
2e�µ(W )

µ(W )

1X

n=2

(µ(W ))n

n!


2e�µ(W )

µ(W )

1X

n=0

(µ(W ))n

n!
=

2

µ(W )
,

where the first inequality follows since k � 1 ) 1/k  2/(k + 1). Then A(µ(W )) goes to

zero as µ(W ) goes to infinity and hence the second term of Equation D.5 goes to 0 as h goes

to 0 and µ(W ) goes to infinity.

Then taking the integral in the first term of Equation D.5 we can split the integral. By

Lemma D.1.1, for any 0 < ✏ < min(r⇤,K/((2⇡)d/2)), we have that there exists a h0 such

that for h < h0 we have 0 < K/((2⇡)d/2) � ✏ < ch(x,y) and so taking h < h0 we can

split into to over BM(x, h) and M \ BM(x, h), and like previous arguments the integral

over M\ BM(x, r) goes to zero. Thus focusing on the integral over BM(x, h) and defining
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K 0 = K/((2⇡)d/2) we have,

Z

BM(x,h)
[y 2W ]

c�2
h

(x,y)

h2d
k2
✓
dg(x,y)

h

◆
⇢1(y) dvol(y)

=

Z

BTxM (0,h)
[expx(y) 2W ]

c�2
h

(x, expx(y))

(2⇡)d/2h2d
exp

✓
�
||y||

2

h2

◆
⇢1(expx(y))✓x(expx(y)) dy


1

(K 0 � ✏)2

Z

BTxM (0,h)

[expx(y) 2W ]

(2⇡)d/2h2d
exp

✓
�
||y||

2

h2

◆
⇢1(expx(y))✓x(expx(y)) dy


1

(K 0 � ✏)2

Z

BTxM (0,h)

1

(2⇡)d/2h2d
exp

✓
�
||y||

2

h2

◆
⇢1(expx(y))✓x(expx(y)) dy

using the change of variables z = y/h

=
1

(K 0 � ✏)2

Z

BTxM (0,1)

hd

(2⇡)d/2h2d
exp

�
�||z||

2
�
⇢1(expx(hz))✓x(expx(hz)) dz

=
1

hd(K 0 � ✏)2

Z

BTxM (0,1)

1

(2⇡)d/2
exp

�
�||z||

2
�
⇢1(expx(hz))✓x(expx(hz)) dz.

Notice that both ⇢1(expx(hz)) and ✓x(expx(hz)) are bounded for small h since limh!0 ⇢1(expx(hz)) =

⇢1(x) and limh!0 ✓x(expx(hz)) = 1 and exp(�||z||2)  exp(�||0||) = 1 means that the inte-

gral is of O(1) as h! 0 and thus the first term of Equation D.5 is,

A(µ(W ))

Z

M
[y 2W ]

c�2
h

(x,y)

h2d
k2
✓
dW (x,y)

h

◆
⇢1(y) dvol(y)  P

A(µ(W ))

hd
,

where P is some real number independent of h and µ(W ). Thus the variance goes to 0 if

A(µ(W ))/hd ! 0 as h! 0 and µ(W )!1.

D.3 Proof of Lemma 6.4.1

Proof. It is trivial that if the ch(x,y) = 1 then it is continuous. Now the edge correction

factors given by Equations 6.8 and 6.9 are symmetric so we only need to consider one of

them: we shall focus on the global one edge correction, i.e. Equation 6.8. Fix ✏, h0 > 0

and define fx(z, h) = (1/(2⇡)d/2) exp(�d2g(x, z)/(2h
2)). Then for fixed x, z 2 M, fx is

continuous in h, by continuity of 1/h2, exp and that the composition of continuous functions

are also continuous. Thus by definition of continuity, for ✏0 = ✏/Vol(M) there exists � > 0
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such that,

|h� h0| < � ) |gx(z, h)� gx(z, h0)| < ✏0 =
✏

Vol(W )
.

Then notice that for fixed x 2M,

����
Z

W

gx(z, h) dvol(z)�

Z

W

gx(z, h0) dvol(z)

���� =
����
Z

W

gx(z, h)� gx(z, h0) dvol(z)

����



Z

W

|gx(z, h)� gx(z, h0)| dvol(z)

<

Z

W

✏

Vol(W )
dvol(z)

= ✏,

and so by definition
R
W

gx(z, h) dvol(z) is continuous in h. Therefore, since h 7! 1/hd is

continuous and the product of continuous functions is also continuous this implies that

ch(x,y) is continuous over h 2 (0,1).

D.4 Proof of Theorem 6.4.2

Proof. Parts of our proof follow similarly to that of Cronie and Van Lieshout ((2018)). To

show continuity of T it is clear that ⇢̂h is continuous by Lemma 6.4.1. Further, since we

ignore X being the empty set we have that ⇢̂h(x) � h�nk(dg(x,x)/h)c
�1
h

(x,y) > 0 and

hence taken the reciprical of ⇢̂h(x) is well-defined and more importantly continuous, hence

T is continuous.

We now let h go to 0. Then we have for x 2 X and i = 1, 2,

⇢̂(i)
h
(x) =

X

y2X\W

1

((2⇡)d/2)hd
exp

 
�d2g(x,y)

2h2

!
c�1
h

(x,y)

�
c�1
h

(x,x)

hd
exp

 
�d2g(x,x)

2h2

!
=

1

hdch(x,x)
,

and so,

)
1

⇢̂h(x)
 hdch(x,x),

where the second line follows since it is a sum of positive real numbers and so we remove all
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terms except for y = x since x 2 X. Thus we have that,

T (⇢̂h)  hd
X

x2X\W
ch(x,x),

Thus given an observed X by Lemma D.1.1 all our edge correction terms go to K/()(2⇡)d/2)

for K =
R
Rd exp(�||x||2)dx which is bounded and thus we have that T (⇢̂h) goes to 0 as h

goes to 0.

Now suppose that h goes to infinity then,

c�1
h

(x,y)

(2⇡)d/2hd
exp

 
�d2g(x,y)

2h2

!
!

8
<

:

1

Vol(W )
, if ch(x,y) is given by Equation 6.8 or 6.9

0, if ch(x,y) = 1,

by Lemma D.1.1 and so,

T (⇢̂h)!

8
<

:

P
x2X

1P
y2X 1/Vol(W )

= Vol(W ), if ch(x,y) is given by Equation 6.8 or 6.9

1, if ch(x,y) = 1.
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E
Appendix to Chapter 7

E.1 Proof of Proposition 7.3.1

Proof. This proof follows nearly identical to ((Møller and Waagepetersen, 2003, Proposition

4.5)). Clearly JCE(r) = 1 if DCE(r) = FE(r). We can rewrite DCE as an expectation over

the point process X rather then its reduced Palm process X !

o,C . Let our finite reference

measure ⌫ over M coincide with the mark distribution and so under isotropy we have that

⇢(x,m) = ⇢ and A be an arbitrary subset of S2 such that �S2(A) > 0 then,

DCE(r) = P (X !

o,C \ (BS2(o, r)⇥ E) 6= ;)

= P (X !

x,C \ (BS2(x, r)⇥ E) 6= ;) (E.1)

=
1

�S2(A)

Z

A

P (X !

x,C \ (BS2(x, r)⇥ E) 6= ;)�S2(dx)

=
1

�S2(A)⌫(C)

Z

A

Z

C

P (X !

(x,m)
\ (BS2(x, r)⇥ E) 6= ;)�S2(dx)⌫(dm) (E.2)

=
1

⇢�S2(A)⌫(C)

Z

A

Z

C

P (X !

(x,m)
\ (BS2(x, r)⇥ E) 6= ;)⇢�S2(dx)⌫(dm)

=
1

⇢�S2(A)⌫(C)
E

X

(x,m)2X

[(x,m) 2 A⇥ C, (X \ (x,m)) \ (BS2(x, r)⇥ E) 6= ;],

(E.3)
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where E.1 follows by isotropy ofX, E.2 follows by definition of P !

x,C and E.3 by the Campbell-

Mecke theorem. Let us define XA⇥C = X \ (A ⇥ C) for A ⇢ S2 and C ⇢ M, then this

expectation can be rewritten as,

=
1

⇢�S2(A)⌫(C)
E

X

(x,m)2XA⇥C

[XBS2 (x,r)⇥E 6= ;]

=
1

⇢�S2(A)⌫(C)
E

X

(x,m)2XA⇥C

E
h

[XBS2 (x,r)⇥E 6= ;]|Xc

i

=
1

⇢�S2(A)⌫(C)
E

X

(x,m)2XA⇥C

P (XBS2 (x,r)⇥E 6= ;)

=
1

⇢�S2(A)⌫(C)
E

X

(x,m)2XA⇥C

FE(r)

=
⇢�S2(A)⌫(C)

⇢�S2(A)⌫(C)
FE(r)

= FE(r).

To show thatKCE(r) = 2⇡(1�cos(r)) we note that under independence ⇢(2)((x,mx), (y,my)) =

⇢(x,mx)⇢(y,my) when m1 2 C and m2 2 E and so the result can be shown by application

of the Campbell theorem and noting that �S2(BS2(o, r)) = 2⇡(1� cos(r)).

E.2 Proof of Proposition E.2

Proof. Starting with F̂E we have that,

E[1� F̂E(r)] =
1

|IW r |

X

p2IW r

E
Y

(x,m)2X

✓
1� [dS2(p,x)  r,m 2 E]

◆

=
1

|IW r |

X

p2IW r

P (X \ (BS2(p, r)⇥ E) = ;)

=
1

|IW r |

X

p2IW r

P (X \ (BS2(o, r)⇥ E) = ;)

= P (X \ (BS2(o, r)⇥ E) = ;)

= 1� FE(r).
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For D̂CE and by the Campbell-Mecke Theorem,

E[1� D̂CE(r)] = E 1

⇢g�S2(W r)⌫(C)
X

(x,mx)2XW r

[(x,mx) 2W r ⇥ C]
Y

(y,my)2X

✓
1� [dS2(x,y) < r,my 2 E]

◆

=
1

⇢g�S2(W r)⌫(C)

Z

W r

Z

C

E!

(x,m)

Y

(y,my)2X

✓
1� [dS2(x,y) < r,my 2 E]

◆
⇢(x,m)�S2(dx)⌫(m)

since X is isotropic and we have taken the reference measure ⌫ to be the probability measure

over M we have that ⇢(x,m) = ⇢g and so

=
1

�S2(W r)⌫(C)

Z

W r

Z

C

E!

(x,m)

Y

(y,my)2X

✓
1� [dS2(x,y) < r,my 2 E]

◆
�S2(dx)⌫(m)

=
1

�S2(W r)

Z

W r

E!

(x,C)

Y

(y,my)2X

✓
1� [dS2(x,y) < r,my 2 E]

◆
�S2(dx)

=
1

�S2(W r)

Z

W r

P (X !

x,C \ (BS2(x, r)⇥ E) = ;)�S2(dx)

=
1

�S2(W r)

Z

W r

1� P (X !

x,C \ (BS2(x, r)⇥ E) 6= ;)�S2(dx)

=
1

�S2(W r)

Z

W r

1� P (X !

o,C \ (BS2(o, r)⇥ E) 6= ;)�S2(dx)

= 1� P (X !

o,C \ (BS2(o, r)⇥ E) 6= ;)

= 1�DCE(r)

For K̂CE unbiasedness follows by application of the Campbell Theorem and the fact the

independence between XC and XE implies ⇢(2)((x,mx), (y,my)) = ⇢(x,mx)⇢(y,my) when

m1 2 C and m2 2 E. Ratio-unbiasedness of ĴCE follows by unbiasedness of F̂E and

D̂CE .

E.3 Bivariate LGCP on S2

In this section we discuss bivariate LGCP on S2 in more detail. Define c(x,y) = {cij(x,y)}

to be the covariance function matrix and that the covariance function matrix is isotropic,
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i.e. cij(x,y) = cij(dS2(x,y)) = cij(r), where r > 0. We assume that the mean functions µi

of the GRF are continuous and that the covariance functions, cii, take the following form,

cii(d) = �2sii (r) , (E.4)

where sii : R 7! [�1, 1] is a known correlation function. In order for almost sure integrability

of the GRF conditions need to be imposed on µi and cij . These conditions are outlined

across Cuevas-Pacheco and Møller ((2018)) and Brix and Moller ((2001)). More precisely,

Proposition 1 of Cuevas-Pacheco and Møller ((2018)) (see also Proposition 3.6.1) provides

conditions on the variogram of a zero mean univariate GRF to have continuous sample paths:

suppose there exist numbers s 2 (0, 1], l 2 (0, 1), and m > 0 such that,

�(x,y)  mdS2(x,y)
l/2,

for dS2(x,y) < s, where �(x,y) = E[(X0(x) � X0(y))2]/2 is the variogram and X0 is a

zero mean univariate GRF. Thus in the bivariate setting if �i is the variogram of Xi the ith

component of X then we have the su�cient condition,

�i(x,y)  mdS2(x,y)
l/2,

for almost sure integrability. Under Equation E.4 we can simplify this condition to,

1� sii(r) 
m

�2
dl/2,

for d < s, which is identically the condition derived by Møller and Waagepetersen ((1998))

for Euclidean processes. In addition to this condition we also reqiuire that the covariance

function matrix is semi-positive definite and Brix and Moller ((2001)) provide conditions on

the covariance and cross covariance functions for this to hold.

In this work we shall suppose that our covariance functions are of the form,

cii(x,y) = �2sii (||x� y||) , (E.5)

where �2, � > 0, ||·|| is the Euclidean norm, where sii : R 7! [�1, 1], or i = 1, 2 is known. This

form is distinctly di↵erent to that seen in Cuevas-Pacheco and Møller ((2018)) for univariate

LGCP where they supposed that the correlation function depended on the geodesic distance

rather then on the Euclidean distance in our case.

Although we are using a Euclidean distance it is still possible to prove isotropy of the

278



resulting LGCP on the sphere when the mean functions are constant. To see this consider

first the bivariate GRF Ỹ in R3 with constant mean functions and correlation function given

by Equation E.5 such that the conditions of Theorem 3.4.1 of Adler ((2010)) are satisfied

then the field is isotropic in R3. If we then define Y (x) = Ỹ (x) for x 2 S2 then isotropy of

Ỹ implies isotropy of Y and Y is precisely the Gaussian field defined by Equation E.5 with

constant mean function. Therefore, since Y is isotropic we also have that X the LGCP with

driving field exp(Y ) is also isotropic. An alternative argument is to see that,

||x� y|| = 2 sin

✓
dS2(x,y)

2

◆
,

for x,y 2 S2, obtained using simple geometric arguments and hence Equation E.5 can be

written as a function of dS2(x,y) and therefore the resulting GRF is isotropic on S2 and

hence so is X. This is similar to a result in Møller and Waagepetersen ((1998)) who show

that if X is a LGCP and Y is a GRF in Rd where if Y is translationally and rotationally

invariant then under any rigid motions � in Rd (X,Y )
d
= (�(X), Y (�(c)̇)). Furthermore,

assuming that the conditions of Theorem 3.4.1 of Adler ((2010)) are satisfied then we have

almost sure continuity over all of R3 which implies continuity specifically on S2 and hence

almost sure integrability is satisfied also. The simplicity of using Equation E.5 is that we can

simulate GRFs in R3 and then restrict our view only to those points that lie on the sphere

and this subset inherits the properties of the GRF it is embedded in. In order to simulate

the GRFs we use the RandomFields package available in R Schlather et al. ((2020)).

279



F
Copyright statement

Chapters 3 - 5 and Appendices A - C reproduce material from our paper ‘Testing for complete

spatial randomness on three dimensional bounded convex shapes’ ((Ward et al., 2021b)). A

screenshot of the Authors rights is given below. More details can be found at https:

//www.elsevier.com/about/policies/copyright where a complete list of permissions and

limitations can be found.

Figure F.1: Copyright agreement associated with Ward et al. ((2021b)). The blue box highlights that the ma-

terial can be reproduced as part of a thesis or dissertation. Additional details on permissions, resuse and limita-

tions can be found at https://www.elsevier.com/about/policies/copyright.

280


