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Abstract

Reinforcement learning, or learning how to map situations to actions that

maximise a numerical reward signal, poses two fundamental interdependent

problems: exploration and credit assignment. The exploration problem con-

cerns an agent’s ability to discover useful experiences. The credit assignment

problem pertains to an agent’s ability to incorporate the discovered experi-

ences. The latter comprises two distinct subproblems itself: structural and

temporal credit assignment. The structural credit assignment problem involves

determining how to assign credit for the outcome of an action to the many

component structures, or internal decisions, that could have been involved in

producing that action. The temporal credit assignment problem has to do with

determining how to assign credit for outcomes of a sequence of experiences to

the actions that could have contributed to those outcomes. In this thesis, we

broadly study the credit assignment problem in reinforcement learning, making

contributions to each of its subproblems in isolation.

In the first part of this thesis we address the reinforcement learning prob-

lem in environments with multi-dimensional discrete action spaces, a problem

setting that plagues structural credit assignment, or generalisation, due to the

Bellman’s curse of dimensionality. We argue that leveraging the combinato-

rial structure of such action spaces is crucial for achieving rapid generalisation

from limited data. To this end, we introduce two approaches for estimating ac-

tion values that feature a capacity for leveraging such structures, in each case

empirically validating that significant performance improvements in sample

complexity can be gained. Furthermore, we demonstrate that our approaches

unleash significant benefits concerning space and time complexity, thus allow-

ing them to successfully scale to high-dimensional discrete action spaces where

the conventional approach becomes computationally intractable.

In the second part of this thesis we address the temporal credit assignment
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problem. Specifically, we identify and analyse general training scenarios where

appropriate temporal credit assignment is hindered by the mishandling of time

limits or by the choice of discount factor. To address the first matter, we

formalise the ways in which time limits may be interpreted in reinforcement

learning and how they should be handled in each case accordingly. To address

the second matter, we produce a possible explanation for why the performance

of low discount factors tends to fall flat when used in conjunction with function

approximation. In turn, this leads us to develop a method that enables a much

larger range of discount factors by rectifying the hypothesised root cause.
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Chapter 1

Introduction

1.1 Intelligence

We refer to ourselves as Homo sapiens, which is Latin for “wise man,” signi-

fying how important we think of our intelligence in making us special (Russell

and Norvig, 2009). This then begs the curious question of what defines intel-

ligence. In truth, there is not yet a clear consensus on a concrete definition

of intelligence. Nevertheless, the definition given by McCarthy (2007, p. 2)

is considered generally satisfactory: “Intelligence is the computational part

of the ability to achieve goals in the world.” This concise definition of in-

telligence admits some of its widely accepted facets: intelligence is a matter

of degree, concerns only computational competency, and manifests itself in

outcomes rather than mechanisms (Sutton, 2020).

1.2 Artificial Intelligence

Understanding intelligence has long been a scholarly pursuit, studied in fields

such as philosophy, psychology, and neuroscience. The related field of artificial

intelligence (AI) differs from these fields in that it tries not only to understand

but also to build intelligent entities (Russell and Norvig, 2009). Furthermore,

AI is not restricted per se to mechanisms underlying intelligence in biological

systems. This is in contrast to these other fields, at least in their traditional

context, which study intelligence from the perspective of biological systems,

and primarily humans. Nonetheless, building strong intelligent entities without

drawing inspiration from biological systems is a daunting task, given the search

space of possible solutions is enormous and very sparse (Hassabis et al., 2017).

Hence, it is common in AI research to take inspiration and use findings in fields

20



studying biological cognition. In fact, the origins of the AI methods on which

this thesis is founded lie in such research: reinforcement learning, which was

originally inspired by research into animal learning, and deep learning, which

took root in ideas from neuroscience.

1.3 Learning from Interaction

McCarthy’s definition of intelligence does not specify how “the ability to

achieve goals” comes into existence. In biological systems, such ability is partly

innate and partly acquired, with the ability to acquire being at least initially

innate. The process of acquiring the ability to achieve goals is referred to as

learning. The first idea to occur to us when we think about learning in the

world, and one that underlies nearly all theories of learning and intelligence,

is learning from interaction (Sutton and Barto, 2018). This is simply the idea

of an entity, which can sense aspects of their environment and can influence it

through their actions, learning to achieve goals by trial and error. A learning

entity as such is often referred to as a learning agent1 due to the fact that it can

make decisions and enact them on the world, with “agent” literally meaning

“the one who acts” (Harutyunyan, 2020).

1.4 Reinforcement Learning

The notion of “achieving goals” is at the heart of McCarthy’s definition of intel-

ligence. However, this definition abstracts away how a goal should be specified.

Reinforcement learning provides a formalism for learning from interaction in

which the agent’s goal is specified as maximising a cumulative numerical signal,

called the reward. The use of a reward signal to formalise the idea of a goal is

one of the most distinctive features of reinforcement learning. The generality

of formalising the idea of a goal in this way relies on the reward hypothesis :

That all of what we mean by goals and purposes can be well thought

of as the maximisation of the expected value of the cumulative sum

of a received scalar signal (Sutton and Barto, 2018, p. 53).

In this thesis, we assume that the reward hypothesis holds and instead focus

on building learning agents that become increasingly intelligent by learning

1In this thesis we frequently use “agent” as a convenient shorthand for a learning agent.
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“the ability to achieve goals” through reinforcement. In other words, we aim

to build goal-directed agents that learn to map perceived environment’s states

to optimal actions, ones that maximise the expected total reward (or some

cumulative measure in terms of rewards) over the long run.

1.4.1 Policies, Value Functions, and Models

One can identify three main subelements of a reinforcement learning agent: a

policy, a value function, and a model of the environment.

The behaviour of an agent in any state is defined by its policy, the inevitable

subelement that governs the agent’s side of the agent-environment interaction

process. Sometimes the agent’s policy is directly represented, where the other

subelements could be used to facilitate learning this policy. Whereas other

times the policy is inferred indirectly from the agent’s other subelements.

A value function specifies the total amount of reward an agent can expect

to accumulate over the future, starting from a state (in the case of a state-value

function) or a state-action pair (in the case of an action-value function). By

estimating the latter, the agent’s best action in any given state can be simply

found by maximising the predicted action values in that state. On the other

hand, if only state values are estimated, then either a model of the environment

or a direct policy is needed for action selection.

A model is something that mimics the behaviour of the environment. For

example, a model might predict the expected next state and reward from a

given state and action. A learning agent may utilise a model of the environment

to facilitate learning a direct policy or a value function, or to decide on a course

of action by deliberating about possible futures before they occur (also known

as planning). Methods for solving reinforcement learning problems that use

models are termed model-based methods, as opposed to simpler model-free

methods which do not.

1.4.2 Lookup Tables and Function Approximation

The functions of a reinforcement learning agent may be represented using two

fundamental means: a lookup table or a function approximator.

For example, a lookup table can be used to estimate a state-value function

or an action-value function, respectively, in environments with finite state or
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state-action spaces. In this way the desired function can be represented exactly.

However, in most realistic problems the state space, action space, or both are

combinatorial and enormous. In such cases the memory required to store the

desired function in a lookup table becomes intractable. An even more pressing

issue with lookup tables is that of generalisation. For instance, a lookup table

does not allow the agent to usefully generalise its experience with a limited

subset of the state space to produce good predictions for a much larger subset.

To resolve the aforesaid issues, an approximation of a desired function may

be constructed by learning an appropriate set of weights for the parameters

of a function approximator. This also enables coping with continuous states

and actions, extending the application of reinforcement learning beyond envi-

ronments with finite state or state-action spaces. The topic of generalisation

using function approximation has been extensively studied under the super-

vised learning paradigm in machine learning research. In theory, any of the

methods studied in supervised learning can be used for function approxima-

tion within reinforcement learning. Of particular importance in the context of

function approximation are neural network, or deep learning, methods (LeCun

et al., 2015; Schmidhuber, 2015). The combination of reinforcement learning

with deep learning, widely called deep reinforcement learning, enables building

general-purpose agents which are able to generalise in enormous environments

by learning about the underlying structures in samples. It is worth mention-

ing that neural networks are general nonlinear function approximators which

subsume lookup tables and linear function approximation as special cases.

1.4.3 Exploration and Credit Assignment

It is often useful to decompose the reinforcement learning problem into two

fundamental interdependent subproblems: exploration and credit assignment.

The exploration problem refers to aspects of the reinforcement learning prob-

lem that have to do with determining how to discover useful experiences. The

credit assignment problem concerns the aspects of the reinforcement learn-

ing problem that have to do with determining how to best incorporate the

discovered experiences into the agent.
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1.4.4 Structural and Temporal Credit Assignment

The problem of credit assignment itself consists of two distinct subproblems:

structural and temporal credit assignment (Sutton, 1984; Silver, 2018).

The structural credit assignment problem refers to aspects of the credit

assignment problem that concern determining how to distribute credit for suc-

cess (or blame for failure) of an action among the many internal structures

that could have been involved in producing it (Sutton and Barto, 2018). The

forenamed subproblem is not unique to reinforcement learning. Rather it is

intimately tied to the problem of generalisation, which is primarily studied

under the supervised learning paradigm. This is evident in the multitude of

supervised learning methods that are used in reinforcement learning for this

purpose. For example, a fundamental solution method for this problem is

backpropagation in neural networks (Goodfellow et al., 2016). Furthermore,

combining backpropagation with structured neural networks such as recurrent,

convolutional, and graph networks facilitates generalisation or structural credit

assignment by forming useful internal structures.

The temporal credit assignment problem refers to aspects of the credit as-

signment problem that have to do with determining how to assign credit for

outcomes of a sequence of experiences to actions that contributed to those out-

comes. Unlike the structural credit assignment problem, the temporal version

of the problem is mostly unique to reinforcement learning. One fundamental

solution method for this problem is temporal-different learning (Sutton, 1988).

Additionally, almost any temporal-difference method, such as Q-Learning or

Sarsa, can be combined with eligibility traces to further facilitate temporal

credit assignment.

1.5 Contributions

In this thesis we separately study each subproblem of the credit assignment

problem. In each case we identify a number of general obstacles and propose

ideas for addressing them. These ideas primarily contribute by furthering

our understanding about useful mechanisms for estimating action values, with

the exception of Chapter 5 which presents ideas that apply more broadly.

Furthermore, given our motivation to build agents that learn to act optimally
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in order to achieve goals, we mainly focus on methods for finding the optimal

action-value function and thus an optimal policy. The prime example of such

a method is Q-Learning (Watkins, 1989). Hence, throughout this thesis we

examine our ideas in combination with Q-Learning, using either lookup tables

or function approximation to represent the action-value function.

In the first part of this thesis we study the structural version of the credit

assignment problem. We argue that while there is a significant overlap between

structural credit assignment in supervised learning and reinforcement learning,

the latter poses a number of additional issues that do not normally arise in

conventional supervised learning. We identify one such challenge to emerge in

environments with multi-dimensional discrete action spaces, where structural

credit assignment is rapidly impeded with increasing action-space cardinality.

While there exists a myriad of supervised learning methods for addressing

the structural credit assignment problem in enormous and combinatorial state

spaces, tackling similar issues in action spaces has received comparatively little

attention. This is likely due to the fact that the notion of agency is unique

to reinforcement learning, and that structural credit assignment is less often

explored in the reinforcement learning context. We propose two approaches to

bridge this gap.

Firstly, we consider an initial approach for leveraging the combinatorial

structure of multi-dimensional discrete action spaces in order to enable fast

structural credit assignment from limited data. Our approach relies on the

factorisation of multi-dimensional discrete action spaces and learning action

values for each action dimension in a decentralised manner (much like a team

of cooperative reinforcement learners). We demonstrate that this approach can

significantly improve structural credit assignment by enabling more updates

for insufficiently-explored, or even unexplored, actions.

Secondly, following the success of our initial approach, we further argue

for the usefulness of enabling higher-order combinations of the action dimen-

sions to also contribute to estimation of action values. Moreover, the inclusion

of higher-order combinations expands the space of possible action-value func-

tions that can be accurately represented. To enable such a capacity we resort

to an alternative approach, formulating the problem as a representation learn-

ing one. Specifically, we frame the problem as learning a decomposition of the
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action-value function that is structured in such a way to leverage the combi-

natorial structure of multi-dimensional discrete actions at various orders. We

present this approach as a framework to flexibly build architectures that lever-

age such structures. These architectures can be combined in succession with

those for learning state representations and trained end-to-end using backprop-

agation, without imposing any change to the reinforcement learning method.

Our results advocate for the general usefulness of leveraging the combinatorial

structure of multi-dimensional discrete actions at various orders.

In the second part of this thesis we study the temporal version of the credit

assignment problem. We identify and analyse general training scenarios where

appropriate temporal credit assignment is hindered either due to using time

limits during the interaction process or due to short effective time-horizons

(as established by low discount factors). We clarify the root causes for these

shortcomings and propose approaches for addressing them.

Firstly, we study scenarios where the agent-environment interaction is bro-

ken down into episodes by using time limits, or the maximum amount of time

an interaction sequence can last. We identify two ways in which time limits

can be interpreted in this context and describe how to appropriately handle

each case. Specifically, if the agent must in fact maximise its performance over

the time-limited period, we argue that a notion of the remaining time should

be included as part of the agent’s input. However, if the agent must max-

imise its performance beyond the time limit, where time limits are only used

to diversify the agent’s experience, we argue for bootstrapping at states where

termination is solely due to reaching a time limit. We discuss the importance

of these strategies for correct temporal credit assignment and thus for avoiding

learning instabilities and suboptimal policies.

Secondly, we investigate why the the performance of low discount factors

tends to fall flat when used in conjunction with function approximation, es-

pecially in tasks with long horizons. To do so, we analyse the effect of the

discount factor on the optimisation process using a number of experiments.

Our analysis leads to refuting a number of common hypotheses about this

phenomenon. In turn, we set forth an alternative hypothesis that identifies

the difference of the action gap—the optimal value difference between the best

and second-best actions—across the state space as the root cause. To test
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this hypothesis, we introduce a method that achieves more homogeneous ac-

tion gaps by mapping the action-value estimates to a logarithmic space and

performing updates in that space instead. We empirically demonstrate that

the proposed method indeed enables successful learning for the combination

of low discount factors and function approximation, thus providing supporting

evidence for our hypothesis.

1.6 Overview by Chapters

This thesis is partitioned into a shared background chapter followed by two

orthogonal parts, each addressing one of the subproblems of credit assignment

in reinforcement learning.

Background in Reinforcement Learning

→ Chapter 2 is a brief review of the key concepts in reinforcement learning,

spanning from a formal introduction to the reinforcement learning problem to

a description of the solution methods that are used throughout the thesis.

Part I Structural Credit Assignment

In this part we present our contributions to the structural credit assignment

problem.

→ Chapter 3 explores a decentralised learning approach for exploiting the

combinatorial structure of multi-dimensional action spaces at the lowest order.

→ Chapter 4 introduces a general framework for learning action represen-

tations that leverage the combinatorial structure of multi-dimensional action

spaces at arbitrary orders.

Part II Temporal Credit Assignment

In this part we present our contributions to the temporal credit assignment

problem.

→ Chapter 5 formalises the ways in which time limits may be interpreted in

reinforcement learning and how they should be handled in each case.

→ Chapter 6 investigates why the combination of low discount factors and

function approximation tends to fail in practice, leading us to develop a method

for resolving it.
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Chapter 2

Background in Reinforcement
Learning

In this chapter we will describe the reinforcement learning problem as well as

some fundamental solution methods for addressing it. For a broad coverage of

reinforcement learning, we refer the reader to the books by Sutton and Barto

(2018) and Szepesvári (2010).

2.1 The Reinforcement Learning Problem

The reinforcement learning problem is learning how to map situations to ac-

tions by interacting with an environment in order to maximise a cumulative

numerical reward signal. We refer to the decision-making learner as the agent.

The environment is everything outside of the agent. The reward signal defines

the goal of a reinforcement learning problem whereby the agent attempts to

maximise the total reward it receives over the long run.

We now define the interaction between the agent and environment in a

general form. At every given time the agent observes the state of its envi-

ronment to some extent and in response produces an action according to its

behaviour policy. In turn, the environment transitions to a next state with a

corresponding next observation and a numerical reward for the agent.

To make the reinforcement learning problem concrete, we need to establish

what we mean by “situations” and how they relate to the agent’s observations.

To do so, we need to define two related notions: the environment state and

agent state. The environment state is whatever information the environment

uses to transition to a next state and to emit a next reward. The agent can

usually observe this information only partially. Therefore, while in actuality
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the environment state fully represents the situation, it cannot be expected

from the agent to learn a mapping from what is not observable. Nevertheless,

this need not mean that an agent’s interpretation of the situation at a given

time can only be as good as its observation at that time. In fact, the agent can

use whatever information that is observable to construct an internal state. In

other words, the internal state can be any function of the history, the sequence

of observations, actions, and rewards up to the present time. We refer to any

such internal state as the agent state.

2.2 The Problem Formulation

The environment of a reinforcement learning problem can be modelled, in a

mathematically idealised form, as a Markov decision process, or MDP (Puter-

man, 1994). An MDP is a quintuple (S,A, P, R, P0), where S denotes the state

space, A the action space, P the state-transition distribution, R the reward

distribution, and P0 the initial-state distribution.

The state space is the set of all states, or all unique situations, the agent may

find itself in while interacting with the environment. In the MDP formalism

every state must be a sufficient statistic of the future, or satisfy the Markov

property. Formally, a state St ∈ S encountered at time t is said to be Markov

if and only if

Pr{St+1 |St} = Pr{St+1 |S0, S1, . . . , St}.

As such, the environment state is Markov, whereas the agent state may or

may not be Markov. Throughout this thesis we enforce, or otherwise assume,

that the agent state is Markov and thus no longer distinguish between the

environment state and agent state, referring to both simply as the state. That

is to say, we generally do not consider the problem of how a Markov state can

be constructed by the agent from non-Markov observations.

The action space is the set of all actions the agent can possibly take in any

given state. We should note that the set of possible actions may differ from

one state to another, but it is convenient to suppress any such differences by

letting A denote the union of the state-dependent sets of actions:

A .
=
⋃
s∈S

A(s).
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At a given time t the agent uses its behaviour policy π(a | s), the probability

that At=a if St=s, to choose an action to perform in the environment:

π(a | s) .
= Pr{At=a |St=s}.

The state-transition distribution P specifies the probability of transitioning

to a next state s′ given a state s and an action a:

P (s′ | s, a) .
= Pr{St+1=s′ |St=s, At=a}.

The reward distribution R specifies the probability of emitting a numerical

reward r on transition to a next state s′ from a state s due to an action a:

R(r | s, a, s′) .
= Pr{Rt+1=r |St=s, At=a, St+1=s′}.

The initial-state distribution P0 specifies the probability of the interaction

starting in a state s:

P0(s)
.
= Pr{S0=s}.

Putting everything together, the interaction between the agent and MDP

gives rise to a sequence of states, actions, and rewards that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . .

2.2.1 Returns and Values

The outcome, or the return, of an interaction sequence is defined as some

specific function of the reward sequence. In the simplest case the return is the

sum of the reward sequence:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + . . . . (2.1)

Mostly due to practical reasons, it is very common to adopt a discounted sum

of the reward sequence, or the discounted return:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . . , (2.2)

where 0≤γ≤1 is called the discount factor. Notice that the discounted return

subsumes the undiscounted one as a special case for γ=1. Hence, throughout

this thesis we primarily use the discounted return formulation (2.2) and set

γ=1 wherever possible to achieve the undiscounted return.
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We define the state-value function Vπ(s) as the function that gives the

expected return from state s due to following policy π:

Vπ(s)
.
= Eπ[Gt |St=s].

Similarly, we define the action-value function Qπ(s, a) as the function that

gives the expected return from action a at state s and then following policy π:

Qπ(s, a)
.
= Eπ[Gt |St=s, At=a].

The goal of a reinforcement learning agent can now be more formally stated

as finding a policy that maximises the values of states S0 ∼ P0(s).

2.2.2 Episodic and Continuing Tasks

In some cases the agent-environment interaction naturally breaks down into

separate episodes, where an episode terminates due to reaching a terminal

state. Tasks with episodes of this kind are referred to as episodic tasks. In

such cases the episodic sequences of interaction take the following form:

S0, A0, R1, S1, A1, R2, . . . , SH−1, AH−1, RH , SH ,

where H is a finite random variable commonly referred to as the horizon.

In episodic tasks the goals are often best described using the undiscounted

return formulation (2.1). However, whenever using function approximation we

generally need to resort to the discounted return formulation (2.2) with γ < 1

to avoid some optimisation issues.1

On the other hand, in other cases the agent-environment interaction goes

on continually without limit. That is, the horizon H is infinite. We call these

continuing tasks. In such cases the undiscounted return formulation (2.1) is

problematic as the sum of an infinite number of rewards could itself easily be

infinite. By using γ < 1 the discounted return formulation (2.2) resolves this

optimisation issue by ensuring bounded returns in continuing tasks as long as

the rewards {Rk} are bounded.

In this thesis we consider both episodic and continuing tasks, but we almost

always use a time limit as an arbitrary termination condition to break down

the agent-environment interaction into partial sequences or episodes.

1We refer the reader to the discussions by Durugkar and Stone (2017) and Pohlen et al.
(2018) around such issues.
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2.3 Optimality of Policies and Value Functions

A value function defines a partial ordering over policies. Specifically, as Sutton

and Barto (2018, p. 62) put it: “A policy π is defined to be better than or

equal to a policy π′ if its expected return is greater than or equal to that of π′

for all states.” There is always at least one policy that is better than or equal

to all other policies. We refer to this as an optimal policy. While in general

there may be more than one optimal policy, we denote all such policies by π∗.

The optimal policies share the same state-value function, called the optimal

state-value function V ∗:

V ∗(s)
.
= Vπ∗(s) = max

π
Vπ(s),

for all s ∈ S. The optimal policies also share the same action-value function,

called the optimal action-value function Q∗:

Q∗(s, a)
.
= Qπ∗(s, a) = max

π
Qπ(s, a),

for all s ∈ S and a ∈ A. Notice that indeed an optimal policy in the sense

described here also maximises the values of states S0 ∼ P0(s), which is our

goal in a reinforcement learning problem.

2.4 Bellman Equations

A fundamental property of value functions used throughout reinforcement

learning is that they satisfy the following recursive relationships:

Vπ(s) = Eπ[Rt+1 + γVπ(St+1) |St=s], (2.3)

Qπ(s, a) = Eπ[Rt+1 + γQπ(St+1, At+1) |St=s, At=a]. (2.4)

These are known as the Bellman expectation equations for Vπ and Qπ. Using

these equations we can derive the foundational equation underpinning the main

reinforcement learning method that permeates throughout this thesis, namely

Q-Learning. To this end, we begin by substituting Qπ in Equation (2.4) with

Q∗:

Q∗(s, a) = Eπ∗ [Rt+1 + γQ∗(St+1, At+1) |St=s, At=a]. (2.5)

As we stated in the previous section, there may be more than one optimal

policy π∗ which obtains Q∗. A well-known result is that, for any MDP, at least
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one optimal policy is deterministic and that all such policies can be extracted

by maximising Q∗:

π∗(s) ∈ argmax
a

Q∗(s, a). (2.6)

By assuming a deterministic optimal policy π∗, we can rewrite Equation (2.5)

(in which action At+1 is drawn from π∗) as follows:

Q∗(s, a) = Eπ∗ [Rt+1 + γmax
a′

Q∗(St+1, a
′) |St=s, At=a]. (2.7)

This is known as the Bellman optimality equation for Q∗.

It is worth mentioning that V ∗ could also be used to extract a deterministic

optimal policy. However, in that case a model of the environment is required

for performing one-step-ahead search. As stated in Equation (2.6), with Q∗

the agent does not need a model to extract such a policy.

2.5 Temporal-Difference Learning

Temporal-difference learning, or TD learning, is a general method primarily for

policy evaluation or prediction, the problem of estimating the value functions

Vπ or Qπ for a given policy π (Sutton, 1984; Sutton, 1988). TD learning

uses bootstrapping ideas from dynamic programming (Bellman, 1957) to enable

learning in an online manner (by updating a guess from a guess) as well as

sample-based value estimation ideas from Monte Carlo methods (Sutton and

Barto, 2018) to enable learning directly from experience without a model of

the environment (by eliminating full backups).

In combination with variations of generalised policy iteration from dynamic

programming, TD learning gives rise to the most widely used methods for

control, the reinforcement learning problem of finding an optimal policy π∗.

In the next two subsections we will describe tabular TD(0), the simplest

TD method for prediction, and tabular Q-Learning, a canonical TD method

for control. Then we will describe how one could go beyond the tabular case

to function approximation and outline a successful procedure for combining

Q-Learning with deep neural networks.

2.5.1 TD(0): One-Step TD Learning for Prediction

The simplest TD method is the tabular version of TD(0), or one-step TD, for

estimating the state-value function Vπ of a given policy π. This TD method
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iteratively improves an estimate V (St) of Vπ(St) by making the update

V (St)← V (St) + αt

(
Rt+1 + γV (St+1)− V (St)

)
(2.8)

immediately on transition to St+1 and receiving Rt+1, due to performing At

produced by π in St. Here αt is a positive learning rate. The expression

δt
.
= Rt+1 + γV (St+1) − V (St) is known as the (one-step) TD error. The

expression Yt
.
= Rt+1+γV (St+1) is the update target for TD(0), the part of the

update rule that distinguishes TD(0) from other TD methods for estimating

Vπ. In principle, this update rule transforms the Bellman expectation equation

for Vπ (2.3) into a sample-based iterative method for finding Vπ at convergence.

To guarantee convergence with probability one to the ideal predictions Vπ,

Dayan (1992) (and later Jaakkola et al. (1994)) show that the sequence {αt}

must satisfy the Robbins-Monro conditions:

∞∑
t=0

αt =∞ and
∞∑
t=0

α2
t <∞. (2.9)

Nevertheless, obtaining a sequence of learning rates that meets the conditions

(2.9) with a satisfactory convergence rate is hard. Therefore, we seldom use a

learning rate sequence that satisfies these conditions and, instead, use a small

constant learning rate α that works well in practice. It is worth mentioning

that TD(0) has been proven by Sutton (1988) to converge to Vπ in the mean

for a constant learning rate α provided that α is sufficiently small.

2.5.2 Q-Learning: Off-Policy TD Learning for Control

Considered one of the early breakthroughs in reinforcement learning, Q-

Learning (Watkins, 1989) is an elegant TD method for control. The tabular

version of Q-Learning iteratively improves an estimate Q(St, At) of the optimal

action value Q∗(St, At) by making the update

Q(St, At)← Q(St, At) + α
(
Rt+1 + γmax

a′
Q(St+1, a

′)−Q(St, At)
)
. (2.10)

Notably, this update rule allows for off-policy training for control; sample

transitions from any behaviour policy can be used to improve the estimates Q

towards Q∗.2 In principle, this update rule transforms the Bellman optimality

2More broadly, off-policy training refers to learning about a target policy (e.g. estimating
its corresponding value function) from data generated by a different behaviour policy. This
is as opposed to on-policy training where data has to be generated according to the policy
that is being evaluated or improved.
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equation for Q∗ (2.7) into a sample-based iterative method for finding Q∗ at

convergence.

Under a variant of the conditions (2.9) and the assumption that all state-

action pairs continue to be visited and updated, Q has been shown to converge

with probability one to Q∗ (Watkins and Dayan, 1992; Jaakkola et al., 1994).

To meet the latter assumption, an ε-greedy strategy can be used as the be-

haviour policy during training. That is, with probability 1 − ε an action that

maximises Q is selected, and with probability ε an action is sampled uniformly

at random from the set of possible actions. At convergence to Q∗ a determinis-

tic optimal policy can be extracted in a model-free manner via Equation (2.6).

Similarly to our discussion for TD(0), in practice, we often resort to a small

constant learning rate α that works well.

2.5.3 TD Learning with Function Approximation

In environments with continuous or large finite state spaces, it is not possible

or practical to learn a value for each individual state or state-action pair. In

such cases, it is necessary to represent the state more compactly by using some

feature vector x(s)
.
= (x1(s), x2(s), . . . , xd(s)) for a given state s. In general,

the feature vector should be chosen such that it reflects some structures in the

state. For example, in a combinatorial state space with d dimensions, where

each state s is the combination of d sub-state components, an obvious choice

for the feature vector would be x(s)
.
= (s1, s2, . . . , sd). Notice that in this

case each feature can take the same value across many states, thus enabling

the reinforcement learner to leverage the combinatorial structure of the state

space and achieve generalisation.

A value function can then be approximated by a function of the features

x(s) and parameters θ. One important special case of function approximation

is to use a linear combination of features and parameters to approximate a

value function, e.g. Vθ(s)
.
= x(s) · θ. Notice that in the case of linear function

approximators the number of parameters is dictated by, and is equivalent to,

the number of features. It is worth mentioning that linear function approxi-

mation subsumes table-lookup as a special case. Explicitly, if x(s) is a one-hot

vector with cardinality |S| (the state-space size) and that for any state s all

vector elements are zero except for the sth element, then the linear function
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approximator reduces to a simple table. Note that in this case, the notion of

generalisation becomes irrelevant as an update at one state affects no other.

Furthermore, the representational capacity of the function approximator can

be increased by using a nonlinear parameterisation such as a neural network.

An approximate value function can be trained using the combination of

TD learning, backpropagation, and some variation of stochastic gradient de-

scent. Specifically, TD learning addresses the temporal credit assignment by

providing an appropriate error to minimise. Backpropagation calculates the

gradient of a function of the error with respect to the function approximator’s

parameters. Stochastic gradient descent, or some variation of it, is used to

minimise the error by updating the parameters using the gradients calculated

via backpropagation. The combination of backpropagation and stochastic gra-

dient descent addresses the structural credit assignment by distributing credit

for the error among the many parameters that were involved in producing it.

In the next subsection, we outline the procedure for training Q-Learning

with function approximation and the considerations that have been shown to

make the training stable, especially with deep neural networks.

2.5.4 Deep Q-Networks

An approximate value function can be trained by updating the parameters of

a function approximator after each transition, and solely based on that transi-

tion, using TD learning to produce the error for each update. For example, in

the case of Q-Learning, an approximate action-value function can be trained

by minimising the squared TD error

δ2t
.
=
(
Rt+1 + γmax

a′
Qθ(St+1, a

′)−Qθ(St, At)
)2

(2.11)

on each individual transition (St, At, Rt+1, St+1) immediately after being expe-

rienced. However, the combination of TD learning and function approximation

has been shown to be unstable or to even diverge (Tsitsiklis and Van Roy,

1997; Sutton and Barto, 2018). More precisely, due to instabilities during the

training process, the convergence of on-policy TD methods (for prediction or

control) cannot be guaranteed when used in conjunction with nonlinear func-

tion approximators and the convergence of off-policy TD methods (for predic-

tion or control) cannot be guaranteed when combined with linear or nonlinear
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function approximators (see Maei (2011) for a detailed overview). This insta-

bility has numerous causes. Here we outline these causes for Q-Learning, but

similar arguments apply to the broader family of TD methods. First, due to

the sequential nature of interactions in reinforcement learning, the observa-

tions are correlated. This in turn causes a high variance across the updates.

Second, small updates to the action-value function may significantly change

the behaviour policy. This in turn considerably changes the data distribution.

Third, due to bootstrapping, the action values Qθ(St, At) and update targets

Rt+1 + γmaxa′ Qθ(St+1, a
′) are correlated. This implies that updating the ac-

tion values also changes the target values, thus introducing nonstationarity in

the updates.

Mnih et al. (2015) address these instabilities by modifying the Q-Learning

procedure in two key ways. First, they use a method called experience replay

(first studied by Lin (1992)). This method stores the agent’s experiences in

a memory buffer from which minibatches of experience are drawn uniformly

at random to update the action-value function. Note that learning by ex-

perience replay is admissible in the case of Q-Learning because it allows for

off-policy training. Randomising over the experiences removes correlations in

the observation sequence and smooths over changes in the data distribution.

Second, they modify the update targets to be based on an older set of

parameters θ−, thus adding a delay between the time an update to the action

values is made and the time the update affects the target values:

δ2t
.
=
(
Rt+1 + γmax

a′
Qθ−(St+1, a

′)−Qθ(St, At)
)2

, (2.12)

where the target parameters θ− are updated with the online parameters θ

every C steps and are held fixed between individual updates. This modification

reduces the correlations between the action values and update targets.

This modified Q-Learning procedure, termed deep Q-networks (DQN), has

been demonstrated to enable training deep neural networks in a stable manner

and achieve human-level play on the challenging domain of classic Atari 2600

games (from pixels) (Mnih et al., 2015).
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2.6 Policy Gradient Methods

In this chapter we describe policy gradient methods, an alternative approach

to solving the control problem in reinforcement learning (Sutton et al., 1999).

Unlike the action-value methods described in Section 2.5, policy gradient meth-

ods do not require action-value estimates for selecting actions. Rather they

work by explicitly representing the policy using a parameterised function ap-

proximator. However, as we will see later in this section, a value function may

still be used to learn the policy parameters.

Given a parameterised policy πw(a | s) with parameters w ∈ Rd, policy

gradient methods seek to maximise a scalar performance measure J(w) by

updating the policy parameters using stochastic gradient ascent as follows:

w ← w + α∇̂J(w). (2.13)

Here ∇̂J(w) ∈ Rd is a stochastic estimate whose expectation approximates

the gradient of the performance measure with respect to the policy parameters

w. One natural choice for the performance measure is the expected state value

under the current policy:

J(w)
.
= Eπw

[
Vπw(St)

]
= Eπw

[∑
a∈A

Qπw(St, a) πw(a |St)

]

= Eπw

[
Qπw(St, At)

πw(At |St)

⌊πw(At |St)⌋

]
,

(2.14)

where Vπw and Qπw are, respectively, the state-value and action-value functions

corresponding to policy πw and ⌊·⌋ denotes the stop gradient operation. The

policy gradient theorem (Sutton et al., 1999) provides an analytic expression for

the gradient of this performance measure with respect to the policy parameters

as follows:

∇J(w) = ∇Eπw

[
Qπw(St, At)

πw(At |St)

⌊πw(At |St)⌋

]
∝ Eπw

[
Qπw(St, At)

∇πw(At |St)

πw(At |St)

]
= Eπw

[
Qπw(St, At)∇ ln πw(At |St)

]
,

(2.15)

where the symbol ∝ denotes “proportional to.” In episodic tasks the constant

of proportionality is the average length of an episode, while in continuing tasks

it is 1 (i.e. the relationship becomes an equality) (Sutton and Barto, 2018).
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In practical scenarios this expectation cannot be evaluated exactly, rather it

needs to be estimated from data generated by following the policy πw in the

environment. A key challenge is then how to best estimate this expression from

limited data. In the next subsection we will describe a commonly used method

that addresses this challenge by combining several algorithmic components.

2.6.1 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) (Schulman et al., 2017) is one of the

most commonly used on-policy algorithms at the time of writing this thesis.

In this subsection we will briefly describe the main algorithmic components

that PPO combines to obtain good estimates of ∇J(w) from limited data.

Baseline Function

The policy gradient theorem can be generalised to include a comparison of the

action value to an arbitrary baseline b(s) (Williams, 1992):

∇J(w) ∝ Eπw

[(
Qπw(St, At)− b(St)

)
∇ ln πw(At |St)

]
. (2.16)

The baseline can generally be any function as long as it does not change the

expectation on the right-hand side (i.e. one that does not introduce statistical

bias). This can be satisfied by ensuring that the baseline function does not

vary with actions. For an action-independent baseline b(s), Equation (2.16)

remains valid because the subtracted quantity is zero in expectation:

Eπw

[
b(St)∇ ln πw(At |St) |St=s

]
=
∑
a∈A

πw(a | s) b(s)∇ ln πw(a | s)

=
∑
a∈A

πw(a | s) b(s)
∇πw(a | s)
πw(a | s)

=
∑
a∈A

b(s)∇πw(a | s)

= b(s)∇
∑
a∈A

πw(a | s)

= b(s)∇1

= 0.

(2.17)

Notice that in continuous action spaces the summation over discrete actions

in the equation above turns into an integration over the continuous actions.

While the baseline leaves the expected value of the update unchanged (as
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established above), it can greatly reduce its variance. One natural choice for

the baseline is the state-value function Vπw , or in practice a learned estimator

for it V . Subtracting the state-value function from the action-value function

leaves a quantity that is commonly referred to as the advantage function:

Aπw(St, At)
.
= Qπw(St, At)− Vπw(St), (2.18)

where Eπw [Aπw(St, At)] = 0. Intuitively, the advantage function gives a relative

measure of the importance of each action at any given state. PPO estimates

this quantity instead of the action values.

Likelihood Ratio

The policy gradient updates are restricted to data generated according to the

agent’s current policy πw. As such, the moment the policy gets updated by

applying one step of gradient ascent, all interaction data up until then needs to

be discarded as they no longer correspond to the agent’s policy. This is highly

sample inefficient. The primary variant of PPO optimises a clipped surrogate

objective to address this shortcoming:

Jclip(w)
.
= Eπµ

[
min

{
Aπµ(St, At) ρ(w), Aπµ(St, At) clip

(
ρ(w), 1− ϵ, 1 + ϵ

)}]
,

(2.19)

where ϵ is a small scalar constant and ρ(w)
.
= πw(At |St)

⌊πµ(At |St)⌋ is the likelihood ratio.

This altered objective serves by enabling multiple minibatch updates on the

same batch of data, as opposed to performing a single update on the entire

batch. More precisely, a small ϵ prohibits the policy from diverging far from the

data-generating policy πµ, thus asserting that the data remains approximately

consistent with the policy after an update is applied. This clipped surrogate

objective, which is the most distinctive feature of the PPO algorithm, has

been empirically shown to improve sample complexity in comparison to the

standard policy gradient objective.

Advantage Estimation

To achieve variance-reduced estimation of the advantage function Aπµ , PPO

makes use of a truncated variant of the generalised advantage estimator or

GAE(λ) (Schulman et al., 2016) given by:

A(St, At)
.
= δt + (γλ)δt+1 + (γλ)2δt+2 + · · ·+ (γλ)K−t−1δK−1, (2.20)
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where A(St, At) is an estimate of Aπµ(St, At) and δi
.
= Ri+1+γV (Si+1)−V (Si)

is a one-step TD error, in which V (Si) is an estimator for Vπµ(Si). The above

equation calculates advantage estimates as a geometrically-weighted average

of truncated k-step returns with decay parameter λ and truncation horizon K

(i.e. maximum length of the trajectory segment). GAE(λ) is generally best

viewed as a TD(λ) method for estimating the advantage function, with its

truncated variant (discussed above) being analogous to the truncated TD(λ)

algorithms (Sutton and Barto, 2018).

One natural choice for obtaining state-value estimates to compute the ad-

vantage estimates is to learn an estimator of the state value using the update

target

Yt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γK−t−1RK + γK−tV (SK). (2.21)

Using this update target a tabular estimator can be trained by making the

update V (St)← V (St) + α(Yt − V (St)) and an approximate estimator can be

trained by minimising the squared error (Yt − Vθ(St))
2.
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Part I

Structural Credit Assignment

This part of the thesis describes ideas for addressing the structural version of

the credit assignment problem in reinforcement learning. That is to say, we

study some aspects of the credit assignment problem that have to do with

determining which internal structures deserve credit for influencing the per-

formed behaviour (Sutton, 1984). In particular, the ideas described in this

part of the thesis address this problem in the specific context of reinforcement

learning in environments with multi-dimensional discrete action spaces.

We now explicate the target problem setting by revisiting the MDP formu-

lation of the environment in reinforcement learning (presented in Section 2.2).

The MDP formalism abstracts away the combination of sub-actions that

are activated when a discrete action a is chosen. Specifically, in a problem

with an N -dimensional action space a given action a maps onto an N -tuple

(a1, a2, . . . , aN), where each ai represents a discrete sub-action from the ith sub-

action space. As such, the action space could have an underlying combinatorial

structure whereby the set of actions is formed as a Cartesian product of the

sub-action spaces. To make this property apparent in our notations, through-

out this part of the thesis we express the action space as A .
= A1×A2×· · ·×AN ,

where each Ai is a finite set of sub-actions. Moreover, we amend our nota-

tion for the actions a into a (in bold) to reflect that actions are generally the

combinations of several sub-actions.

The theme of our contributions is the repurposing of existing approaches

for cooperative multi-agent reinforcement learning (Panait and Luke, 2005;

Buşoniu et al., 2008; Bloembergen et al., 2015) to address a number of chal-

lenges that are confronted by individual reinforcement learners in environments

with multi-dimensional discrete action spaces. Particularly, we outline the spe-
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cific challenges that arise in such environments, which are caused by the curse

of dimensionality (Bellman, 1957), and address the aspects that are related

to structural credit assignment. We argue that the key is in leveraging the

combinatorial structure of such action spaces to enable rapid generalisation

from limited data, thus leading us to introduce two approaches for estimating

action values with such a capacity. Furthermore, we show that our approaches

not only improve generalisation but also unleash significant benefits concerning

space and time complexity.
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Chapter 3

Action Branching Methods

3.1 Introduction

Solving the reinforcement learning problem in multi-dimensional discrete ac-

tion spaces is plagued by the curse of dimensionality (Bellman, 1957): the

number of actions increases exponentially with the number of action dimen-

sions. For example, a system with 17 action dimensions and 5 sub-actions

per action dimension implies an action-space size of 517, or approximately 800

billion actions. Such enormous action spaces, which are not uncommon, pose

great challenges for exploration and credit assignment even in small finite state

spaces. These challenges arise given the amount of experience that can be col-

lected is often substantially smaller than the number of possible state-action

pairs. In the example above if there is only one state (as in a multi-armed ban-

dit problem) and if sampling a single transition takes 0.01 seconds, then trying

each possible action only once takes more than 250 years. This is clearly not

possible to achieve. Regardless, this number of samples is hardly enough for

learning in multi-armed bandit problems, let alone in reinforcement learning

problems with numerous states.

The limitations imposed by the curse of dimensionality are not specific

to multi-dimensional action spaces. In fact, multi-dimensionality is similarly

problematic in state spaces; take for example an agent that receives images

as input, where the number of pixels gives the dimensionality with each pixel

having a set of possible values. Nevertheless, advances in deep learning have

enabled efficient structural credit assignment in such high-dimensional state

spaces. In turn, deep Q-networks (DQN) achieve human-level performance

in Atari 2600 games by learning from pixel images (Mnih et al., 2015). The
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key idea is exploiting the underlying structure in such spaces to enable fast

generalisation from limited data. In the case of DQN this is made possible

through the use of convolutional networks over a factorised representation of

the state. Interestingly, the success of DQN is not due to using a sophisticated

exploration strategy to efficiently discover useful experiences; on the contrary,

DQN uses the simplest exploration strategy there is, ε-greedy. The success of

DQN in such high-dimensional state spaces is due to combining the standard Q-

Learning algorithm for temporal credit assignment with deep neural networks

for structural credit assignment.

We note that while models such as that of DQN are able to cope with combi-

natorial (discrete or continuous) state spaces by using function approximators

that feature useful structural inductive biases, their representation of the ac-

tion space is always simply tabular over the composite space of actions. In this

chapter1 we take a first step towards leveraging the combinatorial structure of

multi-dimensional discrete action spaces in order to enable fast generalisation

from limited data. Our approach relies on learning a separate estimator of the

action-value function for each sub-action space via independent learning (Tan,

1993). This approach can significantly improve structural credit assignment

by enabling further updates for insufficiently-explored, or even unexplored, ac-

tions: updating one action’s value would update the values of all actions with

a shared subset of sub-actions.

In addition to its primary benefit of improving structural credit assign-

ment, our approach addresses the main computational issues (with respect to

the space and time complexity) that arise due to the curse of dimensionality in

multi-dimensional discrete action spaces. Firstly, because we do not represent

each composite action using a unique output (thus a unique set of weights),

our approach enables substantially smaller function approximators. Explic-

itly, using our approach the number of outputs grows linearly in the number

of action dimensions, whereas using the conventional approach it grows ex-

ponentially. Secondly, the substantially smaller number of parameters propor-

tionately reduces the amount of computations needed for evaluating the action

values and updating the parameters. Thirdly, the actions that maximise the

1This chapter is based on the following paper: Tavakoli, A., Pardo, F., and Kormushev,
P. (2018). Action branching architectures for deep reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 4131–4138.

45



action-value function could now be identified by maximising the estimates for

each sub-action space independently. This decentralised maximisation oper-

ation has linear time complexity versus exponential time complexity for the

standard approach. The benefit of this substantially reduced computational

demand is critical for Q-Learning (in which maximisation operation is required

for computing the update target as well as for action selection), but it is also

important for methods such as Sarsa (Rummery and Niranjan, 1994) which

require maximisation of the action-value function for action selection.

We combine our approach with DQN and test the resulting agent in dis-

cretised physical control benchmarks, which feature action spaces of diverse

dimensionality. Our results show the effectiveness of our approach in multi-

dimensional discrete action spaces, especially in problems with a larger number

of action dimensions. Remarkably, our approach achieves effective learning in

a highly challenging case with nearly 800 billion actions (just as that in our

example from the beginning of this section). Interestingly, these improvements

are achieved using the simple ε-greedy for exploration.

3.2 Methods

Our approach is to apply independent learning (Tan, 1993), as an approach to

cooperative multi-agent reinforcement learning, so as to address the aforemen-

tioned challenges faced by individual reinforcement learners in environments

with multi-dimensional discrete action spaces. However, given the differences

in motivation and problem setting, we refer to our approach as action branch-

ing to distinguish it from conventional independent learning. The difference in

motivation is that we are interested in leveraging the combinatorial structure

of multi-dimensional action spaces to improve structural credit assignment and

computational scalability, while independent learning is a natural paradigm for

a team of agents trying to maximise a shared reward signal. The difference

in problem setting is that independent learning primarily deals with heteroge-

neous partial observations across multiple agents, whereas action branching is

for single-agent reinforcement learning and as such deals with a single obser-

vation at any given time.
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3.2.1 Branching Q-Learning

In principle, action branching can be combined with any action-value method,

such as Q-Learning or Sarsa. We illustrate this general possibility using Q-

Learning as an example. Consider a problem with action-space dimensionality

N andM i sub-actions for the ith action dimension. We needN action-value es-

timators Qi with M i outputs. Note that this differs from standard Q-Learning

in which the only action-value estimator Q has
∏N

i=1 M
i outputs. We modify

the Q-Learning update rule (2.10) by replacing the composite actions with

sub-actions along a single action dimension and by replacing the estimator Q

(over the composite action space) with Qi (over the ith sub-action space):

Qi(St, A
i
t)← Qi(St, A

i
t) + α

(
Rt+1 + γmax

ai′
Qi(St+1, a

i′)−Qi(St, A
i
t)
)
. (3.1)

In each iteration we update all estimators Qi in parallel, where i∈{1, 2, . . . , N}.

This is essentially Independent Q-Learning (Tan, 1993) with the only difference

being that of the problem setting which we discussed earlier.

For a given state s and composite action a
.
= (a1, a2, . . . , aN), we note

that all estimators Qi(s, ai) attempt to predict the same value. To explicitly

incorporate this notion into the updates we can modify the independent update

target formulation from Equation (3.1)

Y i
t, independent

.
= Rt+1 + γmax

ai′
Qi(St+1, a

i′) (3.2)

into

Yt,mean
.
= Rt+1 + γ

1

N

N∑
i=1

max
ai′

Qi(St+1, a
i′) , (3.3)

which sets the mean update target across all estimators as the update target

for each estimator.

3.2.2 Branching Deep Q-Networks

We described how our approach can be combined with Q-Learning in the tab-

ular case. The combination with other tabular action-value methods, such as

Sarsa, or their extensions to function approximation, such as DQN, is similarly

straightforward. For the purpose of our experiments we combine our approach

with DQN, the canonical action-value method for model-free control in high-

dimensional state spaces. We call this agent Branching DQN (BDQN). To
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realise our agent’s model we should note that while independent learning gen-

erally deals with independent models across the agents (without inter-agent

communication or parameter sharing), in our approach we can share parame-

ters to any extent that is desired. We choose to use a shared set of parameters

ψ to jointly learn an encoder for state and, thereafter, use a unique set of pa-

rameters θi for each estimator. Thus, we denote each estimator Qi with Qψ,θi

to clearly reflect such parameterisation. For all practical purposes, this is a

multi-head neural network. All such estimators can then be trained in parallel

by minimising their respective sequences of squared TD errors

δit
2 .
=

(
Rt+1 + γmax

ai′
Qψ,θi(St+1, a

i′)−Qψ,θi(St, A
i
t)

)2

(3.4)

over samples {(Sk,Ak, Rk+1, Sk+1)}, where Ak = (A1
k, A

2
k, . . . , A

N
k ). We can

modify this expression to incorporate mean update targets as before. To sta-

bilise the training process with function approximation we apply the same

considerations as in DQN (which we outlined in Section 2.5.4).

Same as in DQN, we use an ε-greedy strategy as the behaviour policy

to balance exploration and exploitation. For greedy action selection (with

probability 1 − ε), we find sub-actions that maximise each Qψ,θi separately

and then concatenate them to obtain the composite greedy action. Otherwise

(with probability ε), we sample sub-actions uniformly at random across all

action dimensions. Similarly to DQN, we linearly decay ε over time.

3.3 Experiments

3.3.1 Experimental Setup

We test our approach in several physical control benchmark environments that

feature continuous action spaces of diverse dimensionality, providing us with a

range of combinatorial action spaces. Table 3.1 shows the dimensionality and

size of the action spaces in these environments, where the latter is obtained by

discretising each action space with the granularity of five sub-actions per joint

(just as in our experiments). Given that the continuous sub-actions in our envi-

ronments belong in the range [−1, 1], discretizing them into five equally spaced

sub-actions yields discrete sub-action spaces of the form {−1,−0.5, 0, 0.5, 1}.

This allows for learning even finer behaviours than bang-bang and bang-off-
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bang solutions (i.e. policies over extremal sub-actions, respectively, excluding

and including the neutral 0 sub-action), two choices of discrete-policy represen-

tation which have been argued to be sufficient for solving numerous continuous

control benchmarks (Seyde et al., 2021). The first five environments (Reacher,

Hopper, HalfCheetah, Walker2D, and Ant) feature the full suite of PyBullet

benchmarks (Coumans and Bai, 2019) excluding those with one-dimensional

action spaces (InvertedPendulum and InvertedDoublePendulum) or without a

stable implementation (Humanoid). For the missing Humanoid benchmark we

use the one from OpenAI Gym (Brockman et al., 2016), which is simulated

using MuJoCo (Todorov et al., 2012). These environments use predefined

time limits: 1000 steps for all locomotion tasks and 150 steps for the single

manipulation task (Reacher). See Appendix A.2 for a brief overview of these

environments.

We base our implementation of BDQN on the Dopamine framework (Cas-

tro et al., 2018), which provides a reliable open-source code for DQN. We

simplify the network architecture of DQN (originally for Atari 2600 games) by

replacing the convolutional networks with two hidden layers of 600 and 400

rectifier units to reflect the non-pixel nature of states in our physical control

benchmarks. We share these layers across all network heads. We also adapt the

final hidden layer from 512 to 400 rectifier units, dividing them equally across

the number of network heads for BDQN. We remark that this simple heuristic

does not achieve similar numbers of parameters with respect to our discrete

action baselines in environments with large action spaces. Nonetheless, this is

inevitable given that the standard models require a set of unique parameters

for representing each possible action. Table 3.2 lists the hyperparameters used

for BDQN and DQN in our physical control benchmarks.

All reported learning curves are generated by evaluating the agents after

every 10,000 steps during the training using an ε-greedy policy with ε = 0.001,

each time for a minimum of 5000 steps (until the last evaluation episode ends

by reaching a terminal state or the time limit).
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Domain Dimensionality Size

Reacher 2 25
Hopper 3 125
HalfCheetah 6 15,625
Walker2D 6 15,625
Ant 8 390,625
Humanoid 17 762,939,453,125

Table 3.1: Dimensionality and size (using five sub-actions per joint) of the action
spaces in our physical control benchmarks.

Hyperparameter Value

minibatch size 64
replay memory size 100,000
agent history length 1
target network update frequency 2000
discount factor 0.99
action repeat 1
update frequency 1
optimiser Adam
learning rate 0.00001
ϵ̂ (a constant used for numerical stability in Adam) 0.0003125
β1 (1st moment decay rate used by Adam) 0.9
β2 (2nd moment decay rate used by Adam) 0.999
loss function mean-squared error
initial exploration 1
final exploration 0.05
final exploration step 50,000
replay start size 10,000

Table 3.2: Hyperparameters used for BDQN and DQN in our physical control bench-
marks.
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Figure 3.1: Learning curves for BDQN (with independent and mean update targets),
DQN, and a simplified version of Rainbow in our physical control benchmarks (nine
random seeds). Shaded regions indicate standard deviation. Average performance
of DDPG trained for three million environment steps is provided for illustration
purposes.

3.3.2 Results

Figure 3.1 shows the learning curves for BDQN with independent and mean

update targets as well as DQN. In Reacher with a two-dimensional action space

we do not see any significant difference. In Hopper with a three-dimensional ac-

tion space we start to observe moderate improvements by both BDQN variants

over DQN. Remarkably, in HalfCheetah and Walker2D with six-dimensional

action spaces the performance of DQN falls flat, whereas both BDQN variants

manage to achieve high levels of performance. In Ant and Humanoid with

higher-dimensional action spaces we were unable to run DQN as it imposes

significant computational demands which render it intractable. On the other

hand, BDQN successfully scales to such high-dimensional action spaces with-

out a significant increase in the required computational resources (in particular,

memory and time requirements). This demonstrates the utility of leveraging

the combinatorial structure of multi-dimensional discrete action spaces to en-

able fast generalisation from limited data as well as computational scalability.

We also provide the performance of DQN combined with prioritised replay
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(Schaul et al., 2016), dueling networks (Wang et al., 2016), multi-step learning

(Hessel et al., 2018), and Double Q-Learning (van Hasselt et al., 2016) (denoted

Rainbow†; see Hessel et al. (2018) for an overview). The significant gap between

the performances of this agent and vanilla BDQN supports the orthogonality

of our approach with respect to these extensions.

Moreover, we include the average final performance of DDPG (Lillicrap et

al., 2016) to give a sense of the performances achievable by a continuous control

method, particularly by one that is closely related to DQN. The reported

DDPG results are based on the implementation by Achiam (2018). The final

performances (at three million environment steps) were obtained by averaging

test performances (with no action noise) over the last 100,000 steps of training

(20 random seeds). The network architecture and hyperparameters match

those reported in Lillicrap et al. (2016). Interestingly, the performance of

BDQN across our environments is either on par with or significantly better

than that of DDPG. This is despite the fact that, unlike DDPG, BDQN does

not use a specialised exploration strategy to exploit ordinality of the underlying

continuous action space or perform temporally-extended exploration which is

useful in physical environments with inertia. Remarkably, in Humanoid with a

17-dimensional action space both BDQN variants achieve a high performance

level, whereas DDPG falls flat. This may be due to local optimisation issues in

DDPG which can lead to sub-optimal policies in multi-modal value landscapes

(Metz et al., 2017; Tessler et al., 2019).

Lastly, we do not observe a significant difference between the performances

of our BDQN variants, with only a moderately better overall performance for

the variant with mean update targets. Nevertheless, evaluations on a broader

set of environments are necessary to establish whether using mean update

targets benefits learning with action branching.

3.4 Related Work

To the best of our knowledge, the idea of modelling the problem of single-agent

reinforcement learning in multi-dimensional discrete action spaces as a coop-

erative multi-agent one was first mentioned by Buşoniu et al. (2006), where

decentralised value iteration was used to learn a control policy in a problem

with a two-dimensional action space. Nonetheless, the reported improvements
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were mostly in terms of reduced computational requirements and not sample

complexity. Similar observations were made by Troost et al. (2008) but this

time in a model-free reinforcement learning context, based on Q(λ)-Learning

and Sarsa(λ). A more extensive examination in this direction was performed,

concurrently to our work, by Leottau et al. (2018) which showed that improved

sample complexity can be obtained in environments with higher-dimensional

action spaces via decentralised reinforcement learning (using a family of such

methods including independent learning) as compared to the centralised coun-

terparts while requiring less computational resources. Nonetheless, this work

also remains limited to environments with relatively low-dimensional action

spaces (with the highest being four-dimensional). The work presented in this

chapter serves as the first empirical validation for scaling single-agent rein-

forcement learning to such high-dimensional discrete action spaces using de-

centralised reinforcement learning, as well as the first large-scale examination

of such an approach in the context of deep reinforcement learning.

Our results could also serve to further corroborate the effectiveness of Inde-

pendent DQN (Tampuu et al., 2017) in cooperative multi-agent reinforcement

learning problems by providing empirical evidence for its success at scale (with

up to 17 independent learners) in a related setting.

Some alternative approaches for Q-Learning in environments with high-

dimensional discrete action spaces have been explored. Concurrent to the work

presented in this chapter, Metz et al. (2017) proposed factoring the action space

and predicting action values sequentially across the sub-action spaces using an

autoregressive model architecture. More recently, Van de Wiele et al. (2020)

proposed a method based on combining Q-Learning with a sampling-based

approach for maximising the action values. An approximate maximisation as

such enables Q-Learning to computationally scale to environments with high-

dimensional discrete or continuous action spaces. These methods have been

shown to enable Q-Learning to perform competitively against DDPG or D3PG

(a distributed version of DDPG), respectively, in numerous discretised physical

control benchmarks.

Several methods have been proposed for learning in large discrete action

spaces that have an associated underlying continuous action representation

by using a continuous control method (van Hasselt and Wiering, 2009; Dulac-
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Arnold et al., 2015). Nevertheless, these methods are not intended for enabling

the application of discrete action methods such as Q-Learning to environments

with high-dimensional discrete action spaces. For example, the approach of

Dulac-Arnold et al. (2015) relies on DDPG.

3.5 Conclusion

In this chapter we demonstrated that fast generalisation from limited data can

be achieved in environments with multi-dimensional discrete action spaces by

assigning credit to the action’s sub-actions as opposed to solely the action for

which an update is performed. The improvements, which are gained without

modifying the methods of exploration or temporal credit assignment, are due

to better structural credit assignment. Our results illustrate that exploiting

the combinatorial structure of multi-dimensional action spaces is a key ingre-

dient in enabling sample-efficient structural credit assignment and, thus, fast

generalisation. We also demonstrated that representing action values over a

factorised action space rather than its composite form has significant com-

putational benefits due to achieving substantially smaller tables or number

of parameters. Moreover, in the case of Q-Learning, action-value maximisa-

tion can be done over the factorised action space as opposed to the composite

one, thus achieving linear time complexity versus exponential time complex-

ity for the conventional approach. (This also applies to other methods that

require maximisation of action values for action selection such as Sarsa.) In

the high-dimensional Humanoid environment BDQN achieved great learning

performance in only three million environment steps despite the underlying

action space having nearly 800 billion actions.

To enable learning action values over the factorised action space, we re-

sorted to independent learning, or action branching as we call it in our case.

While in practice this approach shows great success, in theory it is sub-

ject to numerous challenging coordination issues. These coordination issues

are well known and extensively studied in the context of cooperative multi-

agent reinforcement learning (Claus and Boutilier, 1998; Panait et al., 2008).

The literature identifies five challenges responsible for the non-coordination

of independent learners: Pareto-selection, nonstationarity, stochasticity, alter-

exploration, and shadowed equilibria (see Matignon et al. (2012) for a detailed
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overview). The BDQN agent does not explicitly address any of these coordina-

tion issues. However, a certain choice which comes naturally in a single-agent

reinforcement learning context could be responsible for the effectiveness of

BDQN. Specifically, as described in Section 3.2.2, our ε-greedy policy is such

that the independent learners explore or exploit in unison. This is conjectured

in the literature as a way of overcoming certain coordination issues (Troost

et al., 2008; Matignon et al., 2012). In addition, the relative success of inde-

pendent learning in cooperative multi-agent reinforcement learning problems

is often attributed to using a GLIE2 exploration strategy (Matignon et al.,

2012). Similarly to the standard DQN agent, we linearly annealed ε during

training from 1.0 to 0.05 over the first 50,000 environment steps, and fixed it

at 0.05 thereafter. Notice that while this is not exactly a GLIE strategy, it

achieves reduced exploration frequency over time to a good degree.

Given the remarkable effectiveness of BDQN in multi and high-dimensional

action spaces, an interesting direction for future work is to apply explicit mech-

anisms to resolve the coordination issues. In the next chapter we take such a

step forward, providing an alternative approach with a more general formula-

tion and more appealing properties.

2GLIE: Greedy in the Limit with Infinite Exploration (Singh et al., 2000).
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Chapter 4

Action Hypergraph Networks

4.1 Introduction

In the previous chapter we demonstrated that factorising multi-dimensional

discrete action spaces and learning action values over the sub-action spaces in

an independent manner unleashes significant benefits with regard to sample,

time, and space complexity. The key was in enabling a capacity to leverage the

combinatorial structure of such action spaces. We only investigated leveraging

the combinatorial structure at the level of the sub-action spaces. Nonetheless,

we argue that enabling higher-order combinations of the sub-action spaces to

also contribute to the estimation of action values can further facilitate gener-

alisation. Moreover, the inclusion of higher-order combinations increases the

representational capacity of the model or, in other words, expands the space of

possible action-value functions that can be accurately represented. Increasing

the representational capacity in this sense allows us to reduce the coordination

issues, or even bypass them altogether in moderate action spaces. Note that

this is not readily possible with independent learners, whereby the control of

each sub-action space is delegated to a separate estimator. In order to enable

such a capacity, and more generally improve coordination, in this chapter1 we

resort to an alternative approach, formulating the problem as a representation

learning one.

Representation learning methods have helped shape the recent progress in

reinforcement learning by enabling a capacity for learning good representations

of state. This is in spite of the fact that representation learning was tradition-

1This chapter is based on the following paper: Tavakoli, A., Fatemi, M., and Kormu-
shev, P. (2021). Learning to represent action values as a hypergraph on the action vertices.
In Proceedings of the International Conference on Learning Representations.
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ally less often explored in the reinforcement learning context. As such, the de

facto representation learning techniques which are widely used in reinforcement

learning were developed under other machine learning paradigms (Bengio et

al., 2013). Nevertheless, reinforcement learning brings some unique problems

to the topic of representation learning, with exciting headway being made in

identifying and exploring them.

Action-value estimation is a critical component of the reinforcement learn-

ing paradigm. Hence, how to effectively learn estimators for action value from

training samples is one of the major problems studied in reinforcement learning.

We set out to study this problem through the lens of representation learning,

focusing particularly on learning representations of action in multi-dimensional

discrete action spaces. While action values are conditioned on both state and

action and, as such, good representations of both would be beneficial, there

has been comparatively little research on learning action representations.

We frame this problem as learning a decomposition of the action-value

function that is structured in such a way to leverage the combinatorial struc-

ture of multi-dimensional discrete actions. This structure is an inductive bias

which we incorporate in the form of architectural assumptions. We present

this approach as a framework to flexibly build architectures for learning rep-

resentations of multi-dimensional discrete actions by leveraging various orders

of their underlying sub-action combinations. These architectures can be com-

bined in succession with any architecture for learning state representations

and trained end-to-end using backpropagation, without imposing any change

to the reinforcement learning algorithm. We remark that designing represen-

tation learning methods by incorporating some form of structural inductive

biases is highly common in deep learning, resulting in highly-publicised archi-

tectures such as recurrent, convolutional, and graph networks (see Battaglia

et al. (2018) for a detailed discussion of these inductive biases). Moreover,

even without the inclusion of higher-order combinations, framing the problem

as learning a decomposition of the action-value function generally enables bet-

ter coordination than that of independent learners; this is because it allows

each estimator to contribute the utility of its own sub-actions to the joint es-

timate. This is based on a finding by Sunehag et al. (2017) in the context of

cooperative multi-agent reinforcement learning.
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We first demonstrate the effectiveness of our approach in illustrative, struc-

tured prediction problems with only one state (as in multi-armed bandits).

We then argue for the ubiquity of similar structures and test our approach

in standard reinforcement learning problems, including our physical control

benchmarks from the previous chapter. The results advocate for the general

usefulness of leveraging the combinatorial structure of multi-dimensional dis-

crete action spaces at various orders.

4.2 Definition of Hypergraph

A hypergraph (Berge, 1989) is a generalisation of a graph (West, 1996) in

which an edge, also known as a hyperedge, can join any number of vertices.

Let V
.
= {A1,A2, . . . ,ANv} be a finite set representing the set of vertices Ai.

A hypergraph on V is a family of subsets or hyperedges H
.
= {E1, E2, . . . , ENe}

such that

Ej ̸= ∅ (j = 1, 2, . . . , N e), (4.1)

Ne⋃
j=1

Ej = V. (4.2)

According to Equation (4.1), each hyperedge Ej is a member of E .
= P(V ) \ ∅

where P(V ), called the powerset of V , is the set of possible subsets on V . The

rank r of a hypergraph is defined as the maximum cardinality of any of its

hyperedges. We define a c-hyperedge, where c ∈ {1, 2, . . . , N v}, as a hyperedge

with cardinality or order c. The number of possible c-hyperedges on V is given

by the binomial coefficient
(
Nv

c

)
. We define a c-uniform hypergraph as one

with only c-hyperedges. As a special case, a c-complete hypergraph, denoted

Kc, is one with all possible c-hyperedges.

In this chapter we treat each sub-action space Ai as a vertex, or an action

vertex. In this way, V denotes the set of action vertices, N v the number of

action dimensions, and N e the number of hyperedges in a hypergraph on the

action vertices.
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Figure 4.1: (a) A sample hypergraph overlaid on a physical system with six action
vertices. (b) An instance building block of our framework for a sample hyperedge.
(c) An architecture is realised by stacking several building blocks, one for each
hyperedge in the hypergraph.
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4.3 Action Hypergraph Networks Framework

We now describe our framework using the example in Figure 4.1. Consider the

sample physical system of Figure 4.1a with six action vertices (solid circles).

A sample hypergraph is depicted for this system with four hyperedges (dashed

shapes), featuring a 1-hyperedge, two 2-hyperedges, and a 3-hyperedge. Note

that this set of hyperedges constitutes a hypergraph as there are no empty

hyperedges and the union of hyperedges spans the set of action vertices, re-

spectively satisfying conditions (4.1) and (4.2).

We wish to enable learning a representation of each hyperedge in an arbi-

trary hypergraph. To achieve this, we create a parameterised function UEj
(e.g.

a neural network) for each hyperedge Ej which receives a state representation

ψ(s) as input and returns as many values as the possible combinations of the

sub-actions for the action vertices enclosed by its respective hyperedge. In

other words, UEj
has as many outputs as the cardinality of a Cartesian prod-

uct of the action vertices in Ej. Each such hyperedge-specific function UEj
is

a building block of our action hypergraph networks framework.2 Figure 4.1b

depicts the block corresponding to the 3-hyperedge from the hypergraph of

Figure 4.1a. We remark that for any action a
.
= (a1, a2, . . . , aN

v
) from the ac-

tion space A, each block has only one output that corresponds to a and, thus,

contributes exactly one value as a representation of its respective hyperedge

at the given action. This output UEj

(
ψ(s), aEj

)
is identified by aEj which de-

notes the combination of sub-actions in a that correspond to the action vertices

enclosed by Ej.

We can realise an architecture within our framework by composing several

of such building blocks, one for each hyperedge in a hypergraph of our choos-

ing. Figure 4.1c shows an instance architecture corresponding to the sample

hypergraph of Figure 4.1a. The forward view through this architecture is as

follows. A shared representation of the input state s is fed into multiple blocks,

each of which features a unique hyperedge. A representation vector of size N e

is then obtained for each action a, where N e is the number of hyperedges or

blocks. These action-specific representations are then mixed (on an action-

by-action basis) using a function f (e.g. a fixed non-parametric function or a

2Throughout this chapter we assume linear units for the block outputs. However, other
activation functions could be more useful depending on the task or choice of mixing function.
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neural network). The output of this mixing function is our estimator for action

value at the state-action pair (s, a). Concretely,

Q(s, a)
.
= f

(
UE1

(
ψ(s), aE1

)
, UE2

(
ψ(s), aE2

)
, . . . , UENe

(
ψ(s), aENe

) )
. (4.3)

While only a single output from each block is relevant for an action, the

reverse is not the case. That is, an output from a block generally contributes

to more than a single action’s value estimate. In fact, the lower the cardinality

of a hyperedge, the larger the number of actions’ value estimates to which a

block output contributes. This can be thought of as a form of combinatorial

generalisation. Particularly, action value can be estimated for an insufficiently-

explored or unexplored action by mixing the action’s corresponding represen-

tations which have been trained as parts of other actions. Moreover, this

structure enables a capacity for learning faster on lower-order hyperedges by

receiving more updates and learning slower on higher-order ones by receiving

less updates. This is a desirable intrinsic property as we would ideally wish to

learn representations that exhaust their capacity for representing action values

using lower-order hyperedges before they resort to higher-order ones.

4.3.1 Mixing Function Specification

The mixing function receives as input a state-conditioned representation vector

for each action. We view these action-specific representation vectors as action

representations. Explicitly, these action representations are learned as a de-

composition of the action-value function under the mixing function. Without

a priori knowledge about its appropriate form, the mixing function should be

learned by a universal function approximator. However, joint learning of the

mixing function together with a good decomposition under its dynamic form

could be challenging. Moreover, increasing the number of hyperedges expands

the space of possible decompositions, thereby making it even harder to reach

a good one. The latter is due to the lack of identifiability in value decom-

position in that there is not a unique decomposition to reach. Nevertheless,

this issue is not unique to our setting as representations learned using neural

networks are in general unidentifiable. We demonstrate the potential benefit

of using a universal mixer (a neural network) in our illustrative bandit prob-

lems. However, to allow flexible experimentation without re-tuning standard
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agent implementations, in our reinforcement learning benchmarks we choose

to use summation as a non-parametric mixing function. This boils down the

task of learning action representations to reaching a good linear decomposi-

tion of the action-value function under the summation mixer. We remark that

the summation mixer is commonly used with value-decomposition methods in

the context of cooperative multi-agent reinforcement learning (Sunehag et al.,

2017). In an informal evaluation in our reinforcement learning benchmarks,

we did not find any advantage for a universal mixer over the summation one.

Nonetheless, this could be a matter of tuning the learning hyperparameters.

4.3.2 Hypergraph Specification

We now consider the question of how to specify a good hypergraph. In actu-

ality, there is not an all-encompassing answer to this question. For example,

the choice of hypergraph could be treated as a way to incorporate a priori

knowledge about a specific problem. Nonetheless, we can outline some general

rules of thumb. In principle, including as many hyperedges as possible enables

a richer capacity for discovering useful structures. Correspondingly, an ideal

representation is one that returns neutral values (e.g. near-zero inputs to the

summation mixer) for any hyperedge whose contribution is not necessary for

accurate estimation of action values (i.e. the lower-order hyperedges are able

to represent its contribution). However, as described in Section 4.3.1, having

many mixing terms could complicate reaching a good decomposition due to

the lack of identifiability. Taking these into consideration, we frame hyper-

graph specification as choosing a rank r whereby we specify the hypergraph

that comprises all possible hyperedges of orders up to and including r:

H
.
=

r≤Nv⋃
c=1

Kc, (4.4)

where hypergraph H is expressed as the union of c-complete hypergraphs Kc.

Figure 4.2 depicts a standard model against a class of models in our framework

where the space of possible hyperedges E is ordered by cardinality.

In general, not including the highest-order (N v) hyperedge limits the rep-

resentational capacity of an action-value estimator. This could introduce sta-

tistical bias due to estimating N actions’ values using a model with M < N
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Figure 4.2: (a) A standard model. (b) A class of models in our framework, depicted
by the ordered space of possible hyperedges E . Our class of models subsumes the
standard one as an instance.

unique outputs.3 In a structured problem M < N could suffice, otherwise such

bias is inevitable. Consequently, choosing any r < N v could affect the estima-

tion accuracy in a prediction problem and cause sub-optimality in a control

problem. Thus, we preferably wish to use hypergraphs of rank r =N v. We

remark that this bias is additional to (and as such should be distinguished

from) the bias of function approximation which also affects methods such as

DQN. We can view this in terms of the bias-variance tradeoff with r acting as

a knob: lower r means more bias but less variance, and vice versa. Notably,

when the N v-hyperedge is present even the simple summation mixer can be

used without causing bias. However, when this is not the case, the choice of

mixing function could significantly influence the extent of bias. In this work

we generally fix the choice of the mixing function to summation and instead

try to include higher-order hyperedges.

3The notions of statistical bias and inductive bias should be distinguished from one an-
other: an inductive bias does not necessarily imply a statistical bias. In fact, a good inductive
bias is one that enables a better generalisation capacity but causes little or no statistical
bias. In this chapter we use “bias” as a convenient shorthand for statistical bias.
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4.4 Experiments

4.4.1 Illustrative Prediction Problems

In this section we set out to illustrate the essence of problems in which we

expect improvements by our approach. To do so, we minimise confounding

effects in both our problem setting and learning method. Given that we are

interested purely in studying the role of learning representations of action (and

not of state), we consider a multi-armed bandit (one-state MDP) problem

setting. We specify our bandits such that they have a combinatorial action

space of three dimensions, where we vary the action-space sizes by choosing

the number of sub-actions per action dimension from {5, 10, 20}.

The reward functions are deterministic but differ for each random seed.

Despite using a different reward function in each independent trial, they are

all generated to feature a good degree of decomposability with respect to the

combinatorial structure of the action space. That is to say, by design, there

is generally at least one possible decomposition that has nonzero values on all

possible hyperedges. To achieve this we create each reward function by ran-

domly initialising a hypergraph model with all possible hyperedges. Explicitly,

in each trial, we sample as many values as the total number of outputs across all

possible hyperedges: sampling uniformly from [−10, 10] for the 1-hyperedges,

[−5, 5] for the 2-hyperedges, and [−2.5, 2.5] for the 3-hyperedges. This results

in structured reward functions that can be decomposed to a good degree on

the lower-order hyperedges but still need the highest-order hyperedge for a

precise decomposition. Next, we generate a random mixing function by uni-

formly sampling the parameters of a single-hidden-layer neural network from

[−1, 1]. The number of hidden units and the activation functions are sampled

uniformly from {1, 2, . . . , 5} and {ReLU, tanh, sigmoid, linear}, respectively.

Lastly, a deterministic reward for each action is generated by mixing the ac-

tion’s corresponding subset of values.

We train predictors for reward (equivalently, the optimal action values)

using minimalist parameterised models that resemble tabular ones as closely

as possible. As such, our baseline corresponds to a standard tabular model

in which each action value is estimated by a single unique parameter. In

contrast, our approach does not always require a unique parameter for each
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action as it relies on mixing multiple action-representation values to produce an

action-value estimate. Hence, for our approach we instantiate as many unique

parameters as the total number of outputs from each model’s hyperedges.

Moreover, we consider summation and universal mixers as well as increasingly

more complete hypergraphs, specified using Equation (4.4) by varying rank r

from 1 to 3. For any model using a universal mixer we additionally use a single

hidden layer of 10 rectifier units for mixing the action-representation values,

initialised using the Xavier uniform method (Glorot and Bengio, 2010). Each

predictor is trained in a supervised learning manner, using backpropagation

and stochastic gradient descent to minimise the mean-squared prediction error.

We repeatedly sample minibatches of 32 rewards (with replacement) to update

a predictor’s parameters, with each training iteration comprising 100 such

updates.

The number of hyperedges in our hypergraphs of interest (according to

Section 4.3.2) can be expressed in terms of binomial coefficients as

|H| .=
r≤Nv∑
c=1

(
N v

c

)
,

where hypergraph H is specified by its rank r according to Equation (4.4).

As we described in Section 4.3, each action’s value estimator is formed by

mixing as many action-representation values as there are hyperedges in the

model (see Equation (4.3)). In our simple models for the bandit problems,

each such value corresponds to a single parameter. Therefore, each learning

update per action involves updating as many parameters as the number of

hyperedges. To ensure fair comparisons, we adapt the learning rates across

different models in our study based on the number of parameters involved in

updating each action’s value estimate. Concretely, we set a single effective

learning rate across all models in our study. We then obtain each model’s

individual learning rate α via

α
.
=

effective learning rate

|H|
.

We use an effective learning rate of 0.0007 in our study. While this achieves

the same actual effective learning rate for both the baseline and our models

using the summation mixer, the same does not hold exactly for our models

using a universal mixer. Nonetheless, this still serves as a useful heuristic to
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Figure 4.3: Prediction error in our illustrative multi-armed bandits with three action
dimensions and increasing action-space sizes. Each variant is run on 64 reward
functions in any action-space size. (a) Normalised average RMS error curves. (b)
Average RMS errors at the 400th training iteration.

obtain similar effective learning rates across all models. It is important to note

that the baseline receives the largest individual learning rate across all other

models, one that improves its performance with respect to any other learning

rates used by the variants of our approach.4

Figure 4.3a shows normalised RMS (root mean square) prediction error

curves (averaged over 64 reward functions) for two variants of our approach

that leverage all possible hyperedges versus our tabular baseline. The learning

4The best learning rate for standard tabular learning in deterministic environments is
α=1. Nevertheless, the variants of our approach undergo more complex learning dynamics
(due to learning value decompositions) and thus require a lower learning rate. Our systematic
adjustment of the learning rate allows us to fairly study sample complexity under a similar
effective learning rate for all.
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curve for each independent trial is generated by calculating the RMS prediction

error across all possible actions after each training iteration. We see that the

ordering of the curves remains consistent with the increasing number of actions,

where the baseline is outperformed by our approach regardless of the mixing

function. Nevertheless, our model with a universal mixer performs significantly

better in terms of sample efficiency. Moreover, the performance gap becomes

significantly wider as the action-space size increases, attesting to the utility of

leveraging the combinatorial structure of actions for scaling to more complex

action spaces. Figure 4.3b shows average RMS prediction errors at the 400th

training iteration (as a proxy for “final” performance) for all variants in our

study. As expected, including higher-order hyperedges and/or using a more

generic mixing function improves final prediction accuracy in every case.

Going beyond these simple prediction problems to our control benchmarks

in reinforcement learning we anticipate a general advantage for our approach,

following the same pattern of yielding more significant improvements in larger

action spaces.

4.4.2 Atari 2600 Games

We now test our approach in the Atari 2600 games of the Arcade Learning

Environment (ALE) (Bellemare et al., 2013) (see Appendix A.1 for a brief

overview). The action space of Atari 2600 is determined by a digital joystick

with three degrees of freedom: three positions for each axis of the joystick, plus

a button. This implies that these games can have a maximum of 18 discrete

actions, with many not making full use of the joystick capacity. To focus our

compute resources on games with a more complex action space we limit our

tests to 29 Atari 2600 games from the literature that feature 18 valid actions.

For the purpose of our control experiments we combine our approach with

deep Q-networks (DQN) (Mnih et al., 2015). The resulting agent, which we

dub hypergraph Q-networks (HGQN), deploys an architecture based on our

action hypergraph networks (similar to that shown in Figure 4.2b) using the

summation mixer. Given that the action space has merely three dimensions,

we instantiate our agent’s model based on a hypergraph including the seven

possible hyperedges. We realise this model by modifying the DQN’s final hid-

den layer into a multi-head one, where each head implements a block from our
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framework for a respective hyperedge. To achieve a fair comparison with DQN

we ensure that our agent’s model has roughly the same number of parameters

as DQN by making the sum of the hidden units across its seven heads to match

that of the final hidden layer in DQN. Specifically, we implement HGQN by

replacing the final hidden layer of 512 rectifier units in DQN with seven net-

work heads, each with a single hidden layer of 74 rectifier units. Our agent is

trained end-to-end using backpropagation in the same way as DQN.

Just as in Chapter 3, we base our implementation of HGQN on the

Dopamine framework (Castro et al., 2018). Dopamine provides a reliable

open-source code for DQN as well as enables standardised benchmarking in

the ALE under the best known evaluation practices (see, e.g., Bellemare et al.

(2013) and Machado et al. (2018)). As such, we conduct our Atari 2600 ex-

periments without any modifications to the agent or environment parameters

with respect to those outlined in Castro et al. (2018), except for the network

architecture change for HGQN described above. Our DQN results are based

on the published Dopamine baselines.

The human-normalised scores reported in this section are given by the

formula (similarly to van Hasselt et al. (2016) and Dabney et al. (2018))

scoreagent − scorerandom
scorehuman − scorerandom

,

where scoreagent, scorehuman, and scorerandom are the per-game scores (undis-

counted returns) for the given agent, a reference human player, and random

agent baseline. We use Table 2 from Wang et al. (2016) to retrieve the hu-

man player and random agent scores. The relative human-normalised score of

HGQN versus DQN in each game is given by the formula (similarly to Wang

et al. (2016))
scoreHGQN − scoreDQN

max(scoreDQN, scorehuman)− scorerandom
,

where scoreHGQN and scoreDQN are computed by averaging over their respective

learning curves.

Figure 4.4a shows the relative human-normalised score of HGQN (three

random seeds) versus DQN (five random seeds) for each game. Figure 4.4b

shows median and mean human-normalised scores across the 29 Atari games

for HGQN and DQN. Our results indicate improvements over DQN on the ma-

jority of the games (Figure 4.4a) as well as in overall performance (Figure 4.4b).
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Figure 4.4: (a) Difference in human-normalised score for 29 Atari 2600 games with
18 valid actions, HGQN versus DQN over 200 training iterations (positive % means
HGQN outperforms DQN). (b) Human-normalised median and mean scores across
the same set of games. Random seeds are shown as traces.

Notably, these improvements are both in terms of sample complexity and final

performance (Figure 4.4b). The consistency of improvements in these games

has the promise of greater improvements in tasks with larger action spaces.

See Figure B.1 for full learning curves across these 29 Atari 2600 games.

To further demonstrate the versatility of our approach, we combine it with

a simplified version of Rainbow (Hessel et al., 2018) that includes prioritised

replay (Schaul et al., 2016), dueling networks (Wang et al., 2016), multi-step

learning (Hessel et al., 2018), and Double Q-Learning (van Hasselt et al., 2016).

We do not include C51 (Bellemare et al., 2017) as it is not trivial how it can

be combined effectively with our approach. We also do not combine with noisy

networks (Fortunato et al., 2018) as they are not implemented in Dopamine.

We denote the simplified Rainbow by Rainbow† and the version combined with

our approach by HG-Rainbow†.

We run these agents on the three best and worst-performing games from

Figure 4.4a. We conjecture that the games in which HGQN outperforms DQN
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Figure 4.5: Difference in human-normalised score for six Atari 2600 games with
18 valid actions, featuring the three best and worst-performing games from Fig-
ure 4.4a (positive % means HGQN outperforms DQN or HG-Rainbow† outperforms
Rainbow† over 200 training iterations).

most significantly should feature a kind of structure that is exploitable by

our approach. Therefore, given that our approach is notionally orthogonal

to the extensions in Rainbow†, we can also expect to see improvements by

HG-Rainbow† over Rainbow†. Figure 4.5 shows the relative human-normalised

score of HG-Rainbow† versus Rainbow† (three random seeds in each case) along

with those of HGQN versus DQN from Figure 4.4a for these six games, sorted

according to Figure 4.4a (blue bars). We see that the signs of relative scores

for Rainbow†-based runs are mostly aligned with those for DQN-based runs.

Notably, in Stargunner the relative improvements are on par in magnitude.

See Figure B.2 for full learning curves across these six select Atari 2600 games.

The latter experiment mainly serves to demonstrate the practical feasibil-

ity of combining our approach with several DQN extensions. However, as each

extension in Rainbow† impacts the learning process in certain ways, we be-

lieve that substantial work is required to establish whether such extensions are

theoretically sound when combined with the learning dynamics of value decom-

position. In fact, a recent study on the properties of linear value-decomposition

methods in cooperative multi-agent reinforcement learning could hint at a po-

tential theoretical incompatibility with certain replay schemes (Wang et al.,

2021). We defer such a study to future work.
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Figure 4.6: Learning curves for HGQN, BDQN (with mean update targets), DQN,
and a simplified version of Rainbow in our physical control benchmarks (nine random
seeds). Shaded regions indicate standard deviation. Average performance of DDPG
trained for three million environment steps is provided for illustration purposes.

4.4.3 Physical Control Benchmarks

We test our approach in problems with larger action spaces by returning to

the physical control benchmarks from the previous chapter, under the same

settings used to produce the results of Figure 3.1. (See Appendix A.2 for a brief

overview of these environments.) The implementation and hyperparameters of

HGQN closely follow those of BDQN (see Section 3.3.1). Once again, we

apply the same heuristic of dividing the final hidden layer equally across the

number of network heads. In this way, the architecture of a 1-complete HGQN

model becomes equivalent to that of BDQN for each environment. Therefore,

the memory requirements for the 1-complete HGQN models and BDQN are

exactly the same.

We run HGQN with increasingly more complete hypergraphs, specified us-

ing Equation (4.4) by varying rank r from 1 to 3. Figure 4.6 shows the learn-

ing curves for HGQN, BDQN (with mean update targets), and our baselines

from Section 3.3.2. We see that HGQN is generally competitive with BDQN.

Notably, in the Ant environment BDQN is significantly outperformed by the
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1-complete HGQN agent using the same model capacity. This could be due to

the better coordination properties of the latter approach (related to findings

by Sunehag et al. (2017)). We also see that the 1-complete HGQN models in

our experiments are able to scale computationally to high-dimensional action

spaces. In fact, as we shall discuss in Section 4.6, the computational com-

plexity of our 1-complete HGQN models using the summation mixer (or any

strictly monotonic mixer) is the same as that of BDQN.

We also see that HGQN significantly outperforms the other baselines. Re-

markably, HGQN outperforms DDPG in almost all cases despite using the

training routine of DQN, without involving policy gradients or a specialised

exploration strategy. Moreover, the significant gap between the performances

of Rainbow† and vanilla HGQN supports the orthogonality of our approach

with respect to the extensions in Rainbow†.

In Walker2D we see a clear advantage for including the 2-hyperedges, but

additionally including the 3-hyperedges relatively degrades the performance.

This suggests that a rank-2 hypergraph strikes the right balance between bias

and variance, where including the 3-hyperedges causes higher variance and,

potentially, overfitting. In HalfCheetah we see little difference across hyper-

graphs, despite it having the same action space as Walker2D. This suggests

that the 1-complete model is sufficient in this case for learning a good action-

value estimator.

Figure 4.7 shows average per-hyperedge representation of the greedy ac-

tion learned by our approach. Specifically, we evaluated nine trained rank-3

HGQN models using a greedy policy for 10,000 steps in each case. We col-

lected the greedy action’s corresponding representation at each step (i.e. one

action-representation value for each hyperedge) and averaged them per hy-

peredge across steps. The error bars show the maxima and minima of these

representations. In HalfCheetah the significant representations are on the 1-

hyperedges. In Walker2D, while 1-hyperedges generally receive higher average

representations, there is one 2-hyperedge that receives a comparatively signif-

icant average representation. The same 2-hyperedge also receives the highest

variation of values across steps. This 2-hyperedge, denoted {1, 4}, corresponds

to the left and right hips in the agent’s morphology (Figure 4.7b). A good

bipedal walking behaviour, intuitively, relies on the hip joints acting in unison.

72



Figure 4.7: (a) Average (bars) and minimum-maximum (error bars) per-hyperedge
representation of the greedy action over 90,000 steps (nine trained rank-3 HGQN
models, 10,000 steps each). (b) The actuation morphology of each respective domain
is provided for reference.

Therefore, modelling their joint interaction explicitly enables a way of obtain-

ing coordinated representations. Moreover, the significant representations on

the 3-hyperedges correspond to those including the two hip joints. This per-

haps suggests that the 2-hyperedge representing the hip joints is critical in

achieving a good walking behaviour, and that any representations learned by

the 3-hyperedges are only learned due to the lack of identifiability in value

decomposition (see Section 4.3).

Notice that, similarly to the 1-complete HGQN agent, BDQN is outper-

formed by higher-order HGQN models in Walker2D, where coordination be-

tween the hip joints seems to be key in reaching a higher performance level.

This further demonstrates the importance of addressing the coordination issue

by representing higher-order combinations, a general possibility with action

hypergraph networks that cannot be obtained by action branching methods.
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4.5 Related Work

Value decomposition has been studied in cooperative multi-agent reinforce-

ment learning under the paradigm of centralised training but decentralised

execution. In this context, the aim is to decompose joint action values into

agent-wise values such that acting greedily with respect to the local values

yields the same joint actions as those that maximise the joint action values.

A sufficient but not necessary condition for a decomposition that satisfies this

property is the strict monotonicity of the mixing function (Rashid et al., 2018).

An instance is VDN (Sunehag et al., 2017) which learns to decompose joint

action values onto a sum of agent-wise values. QMIX (Rashid et al., 2018)

advances this by learning a strictly increasing nonlinear mixer, with a further

conditioning on the (global) state using hypernetworks (Ha et al., 2017). These

are multi-agent counterparts of our 1-complete models combined with the re-

spective mixing functions. To increase the representational capacity of these

methods, higher-order interactions need to be represented. In a multi-agent

reinforcement learning context this means that fully-localised maximisation of

joint action values is no longer possible. By relaxing this requirement and al-

lowing some communication between the agents during execution, coordination

graphs (Guestrin et al., 2002) provide a framework for expressing higher-order

interactions in a multi-agent setting. Recent works have combined coordina-

tion graphs with neural networks and studied them in multi-agent one-shot

games (Castellini et al., 2019) and multi-agent reinforcement learning bench-

marks (Böhmer et al., 2020). Our work repurposes coordination graphs from

cooperative multi-agent reinforcement learning as a method for action repre-

sentation learning in standard reinforcement learning.

Sharma et al. (2017) proposed a model on par with a 1-complete model in

our framework and evaluated it in multiple Atari 2600 games. In contrast to

HGQN, their model shows little improvement beyond DQN. This is likely due

to not including higher-order hyperedges, which in turn limits the representa-

tional capacity of their model.

Graph networks (Scarselli et al., 2009) have been combined with policy

gradient methods for training modular policies that generalise to new agent

morphologies (Wang et al., 2018; Pathak et al., 2019; Huang et al., 2020).
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The global policy is expressed as a collection of graph policy networks that

correspond to each of the agent’s actuators, where every policy is only respon-

sible for controlling its corresponding actuator and receives information from

only its local sensors. The information is propagated based on some assumed

graph structure among the policies before acting. Our work differs from this

literature in many ways. Notably, our approach does not impose any assump-

tions on the state structure and, thus, is applicable to any problem with a

multi-dimensional discrete action space. The closest to our approach in this

literature is the concurrent work of Kurin et al. (2021) in which they intro-

duce a transformer-based approach to bypass having to assume a specific graph

structure.

4.6 Conclusion

In this chapter we described a class of models for learning action represen-

tations that enable fast generalisation from limited data by leveraging the

combinatorial structure of multi-dimensional actions at various orders. We

showed that, by only representing the lowest-order hyperedges, our approach

can yield a class of models that achieve competitive performance with BDQN

and have the same computational requirements. Notably, this class of models

removes the need for independent learners and enables us to use unified up-

dates without imposing any change to the reinforcement learning method. As

such, much like a convolutional network which can be seamlessly incorporated

into an agent’s model, our proposed models can be combined in succession with

those for state representation learning to leverage the combinatorial structure

in actions. Additionally, our approach enables higher-order combinations of

the sub-action spaces to also contribute to the estimation of action values.

While this comes at a higher computational cost, it presents the possibility to

achieve faster generalisation in problems with moderate action dimensionality

without sacrificing accuracy, or lowering the representational capacity. In a

sense, our approach spans a spectrum with the conventional approach at one

end and action-branching style approaches at the other, thus allowing us to

choose our models depending on the task complexity or to incorporate a priori

knowledge about the task.

We demonstrated the potential benefit of using a more generic mixing func-
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tion in our bandit problems (Section 4.4.1). However, in an informal study, on

a subset of our reinforcement learning benchmarks we did not see any improve-

ments beyond our non-parametric summation mixer. Further exploration of

more generic (even state-conditioned) mixing functions is an interesting direc-

tion for future work.

The requirement to maximise over the set of possible actions limits the ap-

plicability of Q-Learning in environments with high-dimensional action spaces.

In the case of approximate Q-Learning, this limitation is partly due to the cost

of evaluating all possible actions’ values before an exact maximisation can be

performed. Our approach can bypass these issues in certain cases, e.g. when

using a 1-complete hypergraph with a strictly monotonic mixer (Rashid et al.,

2018). To more generally address such issues, we can maximise over a sampled

set of actions instead of the entire set of possible actions (Van de Wiele et

al., 2020). Such approximate maximisation will enable including higher-order

hyperedges in environments with high-dimensional action spaces.

The above discussion is specific to the combination of our approach with

Q-Learning. Nevertheless, our approach can be combined with other action-

value methods. For instance, it can be used to learn a critic in an actor-critic

method where an action drawn from the actor only needs to be evaluated by

the critic in a single forward pass through the model.

We demonstrated the practical feasibility of combining our approach with

a simplified version of Rainbow. An extensive empirical study of the impact

of these combinations, as well as combining with further extensions, is left for

future work. Moreover, a better understanding of how value decomposition

affects the learning dynamics of approximate Q-Learning could help establish

which extensions are theoretically compatible with our approach.

An intriguing direction for future research is exploring regularisation strate-

gies for promoting the emergence of useful sparse hypergraph structures (see,

e.g., Sakryukin et al. (2020)). Another interesting direction is to formulate the

problem of hypergraph specification as architecture search in a meta-learning

problem setting.
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Part II

Temporal Credit Assignment

This part of the thesis describes ideas for addressing the temporal version of

the credit assignment problem in reinforcement learning. In other words, we

study some aspects of the credit assignment problem that have to do with de-

termining when the behaviour that deserves credit for influencing an outcome

occurred during the sequence of interactions (Sutton, 1984). In particular,

we identify and analyse general training scenarios that hinder temporal credit

assignment either due to using a time limit during the interaction process or

a low discount factor (thus establishing a short effective time-horizon).

To address the first matter, we characterise the ways in which time limits

may be interpreted in reinforcement learning. This leads us to formalise how

they should be handled in each case in order to obtain correct temporal credit

assignment. To address the second matter, we investigate why approximate

solution methods tend to entirely fail when combined with low discount factors.

We produce a possible explanation for this phenomenon which, in turn, leads

us to develop a method that enables a much larger range of discount factors

by rectifying the hypothesised root cause.
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Chapter 5

Time Limits in Reinforcement
Learning

5.1 Introduction

The interaction between a reinforcement learning agent and its environment is

commonly broken down into sequences, or episodes, by using time limits—the

maximum amount of time an interaction sequence can last. In this case the

discounted return formulation (2.2) can be explicitly rewritten as follows:

Gt:T
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−t−1RT , (5.1)

where T denotes the time limit which is generally a finite random variable (i.e.

T may vary from one episode to another). Nonetheless, for ease of exposition

and without loss of generality, throughout our discussions we assume that T

is fixed across episodes.

In this chapter1 we formalise how time limits should be handled and ex-

plain why not doing so can cause state-aliasing and invalidate experience re-

play, leading to suboptimal policies and learning instability. In particular, we

identify two ways in which time limits can be interpreted in the context of

reinforcement learning and describe how to appropriately handle each case.

We now introduce the two cases and outline our consideration for each case.

Optimising directly for the expectation of the return formulation (5.1) is

suitable for naturally time-limited tasks in which the agent has to maximise its

expected return over a time-limited horizon. Under this notion of optimality,

the objective of the agent does not go beyond the time limit. Hence, in this

1This chapter is based on the following paper: Pardo, F., Tavakoli, A., Levdik, V.,
and Kormushev, P. (2018). Time limits in reinforcement learning. In Proceedings of the
International Conference on Machine Learning, pp. 4045–4054.
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case the agent could, for example, learn to take more risky actions that lead

to higher expected returns as approaching the time limit. In Section 5.2 we

study this case and illustrate that, due to timeout terminations, the remaining

time is part of the environment state and essential to its Markov property. As

such, we argue for the inclusion of a notion of the remaining time in the agent’s

input. We refer to this approach as time-awareness.

On the other hand, optimising for the expectation of the standard return

formulation (2.2) is relevant for time-unlimited tasks in which the interaction

is not limited in time by nature. In this case the agent has to maximise its

expected return over an indefinite (possibly infinite) horizon. Nevertheless, it is

often desirable to use time limits to diversify the agent’s experience. In Section

5.3 we show that, in order to learn good time-unlimited policies, it is important

to distinguish between terminations that are due to reaching a time limit and

those due to reaching a terminal state. Specifically, for bootstrapping methods

(dynamic programming and TD learning), we argue for bootstrapping at states

where termination is due to reaching a time limit or, more generally, any other

arbitrary causes. We refer to this approach as partial-episode bootstrapping.

We first demonstrate the effectiveness of our considerations in an illustrative

control problem using tabular Q-Learning. Then, we evaluate the impact of

our considerations on a range of physical control problems using Proximal

Policy Optimisation (PPO) (Schulman et al., 2017), demonstrating significant

improvements for both of our considerations. Lastly, we show that the negative

impact of large experience replay buffers from Zhang and Sutton (2017) can

be vastly reduced if time limits are properly handled.

5.2 Time-Awareness for Time-Limited Tasks

In tasks that are time-limited by nature, the learning objective is to directly

optimise the expectation of the return Gt:T from Equation (5.1). Interactions

are systematically terminated at a predetermined time T if no environmental

termination occurs earlier. Such time-wise terminations should be interpreted

as transitioning to a terminal state whenever the time limit is reached. Thus,

the states of the environment, formally an MDP, contain a notion of the re-

maining time used by the state-transition distribution. This time-dependent

MDP can be thought of as a stack of T time-independent MDPs followed by
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one that only transitions to a terminal state. Therefore, at each time step

t ∈ {0, 1, . . . , T − 1} actions result in transitioning to a next state in the next

MDP in the stack.

In this case, a time-unaware agent has to effectively act in a partially ob-

servable environment, where the states that only differ by their remaining time

appear identical. This phenomenon is a form of state-aliasing (Whitehead and

Ballard, 1991) which is known to lead to suboptimal policies and learning insta-

bility due to the infeasibility of appropriate temporal credit assignment. In the

case of a time-unaware agent in a naturally time-limited task, the issue arises

specifically from the fact that timeout terminations can only be attributed to

stochasticity in the environment; in which case the time-unaware agent could

perceive an additional chance of transitioning to a terminal state from any

given state in the underlying MDP. In fact, the perceived termination distri-

bution depends on the agent’s behaviour policy and, as such, is nonstationary

from the agent’s perspective. For example, consider an MDP with a fixed un-

derlying initial state and zero probability for transitioning from the initial state

to a terminal state. If a time-unaware agent always chooses to remain in its

initial state during the entire course of an episode, it would then perceive the

probability of termination from that initial state to be 1 / T . On the contrary,

if the agent always chooses to move away from its initial state, it would then

perceive said probability to be zero.

In view of the above, we consider time-awareness for reinforcement learning

agents in time-limited tasks by directly including the remaining time T−t in the

agent’s input or, more generally, by providing a way to infer it. For example,

for a given policy π, we write the state-value function at state s and time t for

a time-aware agent in a time-limited environment with time limit T like this:

Vπ(s, T − t)
.
= Eπ [Gt:T |St=s] , (5.2)

where s denotes a non-Markov state that becomes Markov only when it is

combined with a notion of the remaining time T−t. This consideration resolves

the issues of time-unawareness for bootstrapping (dynamic programming and

TD learning) and non-bootstrapping methods (Monte Carlo methods).

We now identify three additional issues of time-unawareness that are rele-

vant specifically in the context of bootstrapping methods. To do so, we start off
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by showing time-awareness for the simplest bootstrapping method: one-step

TD prediction, or TD(0), for learning an estimator of state value. By letting

V denote an estimate of the state-value function, the one-step TD update for

a time-aware agent is as follows:

V (s, T − t)← (1− α)V (s, T − t) + αy , (5.3)

where y is the one-step TD target:

y
.
=

{
r at all terminations

r + γV (s′, T − t− 1) otherwise
. (5.4)

Similarly to before, s and s′ denote non-Markov states that become Markov

only when they are combined with a notion of the remaining time. A time-

aware agent uniquely identifies all possible underlying states and appropriately

decides when to perform bootstrapping. On the other hand, a time-unaware

agent undergoes conflicting updates (sometimes bootstrapping and sometimes

not) for the same perceived state transition s to s′. These conflicting up-

dates are problematic. Firstly, they can cause delusive value estimates due

to a leakage of values to out-of-reach states. Secondly, they can yield a high

estimation variance whenever the difference between bootstrapping and non-

bootstrapping targets is large. Thirdly, in control problems (where value esti-

mates are commonly used to infer or update the behaviour policy) the ratio of

these conflicting updates for a given state s is nonstationary as the termination

distribution changes with the behaviour policy.

5.2.1 The Last Moment Problem

To give a simple example of where the optimal policy is

time-dependent (i.e. time-awareness is critical for both

bootstrapping and non-bootstrapping methods), we con-

sider an MDP consisting of two states A and B. The

agent always starts in A and has the possibility to choose

to stay in place with a reward of 0 or jump to B with a

reward of +1. However, B is a trap state with no exit where the only possible

action provides a penalty of −1. The episodes terminate after a fixed number

of time steps T . Thus, assuming the true objective is not discounted, the opti-

mal deterministic policy is to jump right before the time limit is reached. For
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(a) Environment (b) Standard

(c) Time-awareness (d) Partial-episode bootstrapping

Figure 5.1: An illustration of the Two-Goal Gridworld problem (T = 3) together
with colour-coded state values and policies learned by tabular Q-Learning with and
without our considerations. (a) The environment. (b) The standard agent is time-
unaware and treats timeouts as environmental terminations. It learns to always go
for the nearest goal even if there is not enough time to reach it. (c) The time-
aware agent maximises its return over the fixed horizon and learns to stay in place
when there is not enough time to reach a goal. (d) The agent with partial-episode
bootstrapping maximises its return over an indefinite horizon and learns to go for
the most rewarding goal.

a time-unaware agent, this task is impossible to solve optimally for any T > 1,

with the best learnable deterministic policy being to stay in place. In contrast,

a time-aware agent can learn to stay in place for T − 1 steps and then jump.

5.2.2 The Two-Goal Gridworld Problem

To further show the impact of state-aliasing in time-unaware agents, we con-

sider a deterministic gridworld environment with two possible goals rewarding

50 for reaching the top-right and 20 for the bottom-left grids (Figure 5.1a).

The agent has five actions to choose from: moving in the four cardinal direc-

tions or staying in place. A movement in any direction incurs a penalty of −1,

while staying in place generates a reward of 0. Episodes terminate on reaching

a goal or after 3 time steps. The initial state is uniformly sampled at the start

of each episode from the set of possible grids excluding the goals.

We train tabular Q-Learning with and without time-awareness until con-

vergence using a uniform random behaviour policy, a decaying learning rate,
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and a discount factor of 0.99. As shown in Figure 5.1c, the time-aware agent

quickly learns the optimal policy, which is to go for the closest goal only when

there is enough time or to stay in place otherwise. On the other hand, as

shown in Figure 5.1b, the standard time-unaware agent learns a policy that

always tries to go for the closest goal even if there is not enough time to reach

it. Interestingly, the optimal policy in this example can be represented without

any information about the remaining time. Nonetheless, this example clearly

shows that the conflicting updates during training due to state-aliasing can

cause a leakage of values to out-of-reach states and lead to suboptimal poli-

cies. We remark that non-bootstrapping methods are not susceptible to such

leakage as they use complete returns as opposed to bootstrapping.

5.2.3 Physical Control Benchmarks

We now evaluate the performance of Proximal Policy Optimisation (PPO)

(Schulman et al., 2017) with and without inclusion of the remaining time as

part of the agent’s input on nine physical control benchmarks from the Ope-

nAI Gym’s MuJoCo collection (Todorov et al., 2012; Brockman et al., 2016).

We refer the reader to Section 2.6.1 for a description of the PPO algorithm

and to Appendix A.2 for a brief overview of the environments. We use the

PPO implementation from OpenAI Baselines (Dhariwal et al., 2017) with a

diagonal-covariance Gaussian policy distribution parameterisation, using the

hyperparameters reported by Schulman et al. (2017) (see Table 5.1). For the

time-aware PPO, we concatenate the remaining time represented by a scalar

(normalised from −1 to 1) to the MuJoCo states. By default, these environ-

ments use predefined time limits and do not distinguish between timeout and

Hyperparameter Value

λ (decay parameter) 0.95
K (truncation horizon) 2048
ϵ (clipping parameter) 0.2
minibatch size 64
number of minibatch updates 10
optimiser Adam
learning rate 0.0003

Table 5.1: PPO hyperparameters.
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(a) γ=0.99

(b) γ=1

Figure 5.2: Learning curves for PPO with and without the remaining time in input
on several physical control benchmarks from the OpenAI Gym’s MuJoCo collection
(T = 1000 for all except Reacher with T = 50). The averaged sum of rewards and
standard errors are shown against the number of environment steps (10 random
seeds). Results are shown for two discount factors: (a) γ=0.99 and (b) γ=1. The
time-aware PPO (TA-PPO) generally outperforms the standard PPO, especially for
the case with a higher discount factor of 1.

environmental terminations.

Figure 5.2 shows that time-awareness significantly improves the learning

performance of PPO. To better understand the differences between the time-

aware and time-unaware agents, we now highlight some observations.

As shown in Figure 5.2a, for a discount factor of 0.99, the standard time-

unaware PPO agent is oftentimes initially on par with the time-aware PPO

agent but later reaches a lower final performance. This is due to the fact

that in some domains (e.g. Humanoid) the agents only start to experience

timeout terminations more frequently as they become better, at which point

the time-unaware agent begins to perceive inconsistent returns for seemingly

similar states. The advantage of time-awareness becomes even clearer in the

case of a discount factor of 1 (Figure 5.2b) where the time-unaware PPO

agent often diverges drastically. This is mainly because, in this case, the time-
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Figure 5.3: Learned state-value estimates on InvertedPendulum (T =1000) by the
time-aware (blue) and the standard time-unaware (orange) PPO agents. The time-
aware agent quickly learns an accurate estimator for state value, while the standard
time-unaware agent slowly learns a constant estimate. Results are shown for two
discount factors: (a) γ=0.99 and (b) γ=1.

unaware agent suffers from much more significant conflicts as returns are now

the undiscounted sum of rewards.

Figure 5.3 shows the learned state-value estimates in InvertedPendulum

over episodes of interaction during training, perfectly illustrating the differ-

ence between time-aware and time-unaware agents in terms of their estimated

expected returns. While time-awareness enables PPO to learn an accurate

decay of the expected return with respect to the remaining time, the time-

unaware PPO only learns a constant estimate. We must note that both agents

learn good policies that quickly reach a goal state early on during training.

In other words, shortly after the training process begins, the agents learn to

quickly reach a goal state and then maintain that state for the remainder of

the episode. As such, the graphs of Figure 5.3 show, for the most part, the

learned state-value estimates of a goal state over episodic time steps.

In naturally time-limited tasks where the agents have to maximise their

performance for a limited time, time-aware agents can demonstrate interesting

ways of achieving this objective. Figure 5.4 shows the average final pose of

the time-aware and time-unaware PPO agents in Hopper using T =300. Here,

the time-aware agent robustly learns to jump forward as approaching the time

limit in order to maximise its expected return, achieving a “photo finish.”

Moreover, Figure 5.4 shows a failure mode demonstrated by the time-unaware

PPO agent in the case of γ=1 where the learned behaviour is to actively stay

in place in order to accumulate the bonus for not falling. This suboptimality

is caused by the high learning instability due to the conflicting updates.
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Figure 5.4: Average last pose on Hopper (T = 300) with the vertical termination
threshold of 0.7 meters in red. The time-aware agent (TA-PPO) learns to jump
forward close to the time limit in order to maximise its traversed distance. The time-
unaware PPO agent does not learn this behaviour and its training is significantly
destabilised when the discount factor is high. Results are shown for two discount
factors: (a) γ=0.99 and (b) γ=1.

5.3 Partial-Episode Bootstrapping for

Time-Unlimited Tasks

In tasks that are not time-limited by nature, the learning objective is to opti-

mise the expectation of the return Gt from Equation (2.2). While the agent has

to maximise its expected return over an indefinite (possibly infinite) horizon,

it is often desirable to regularly reset the environment by using time limits in

order to increase the diversity of the agent’s experience. However, a common

misconception is to then treat the auxiliary terminations due to such time lim-

its as environmental terminations. As such, the agent falsely treats its partial

episodes of interaction as concrete ones, not accounting for the possible future

rewards that could have been experienced if no time limits were used.

In view of the above, in the specific context of bootstrapping methods, we

argue for continuing to bootstrap at states where termination is due to the

time limit. We refer to this consideration as partial-episode bootstrapping. To

formalise this, let us consider the example of predicting a state-value function

using TD(0) as the simplest bootstrapping method. We remark that the state-

value function for a given policy π can be rewritten in terms of the time-limited

return Gt:T and the value from the last state in the interaction sequence Vπ(ST )
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as below:

Vπ(s)
.
= Eπ

[
Gt:T + γT−tVπ(ST ) |St=s

]
. (5.5)

By letting V denote an estimate of the state-value function, the one-step TD

update on transition to s′ and receiving r is:

V (s)← (1− α)V (s) + αy , (5.6)

where y is the one-step TD target for a partial-episode bootstrapping agent:

y
.
=

{
r at environmental terminations

r + γV (s′) otherwise (including timeouts)
. (5.7)

An agent without partial-episode bootstrapping does not bootstrap at timeout

terminations. This causes conflicting updates for estimating the value of the

same state s, leading to similar issues as those we discussed for conflicting

updates in the context of time-unaware agents (Section 5.2).

5.3.1 The Two-Goal Gridworld Problem

We revisit the gridworld environment from Section 5.2.2. While previously

the agent’s task was to learn an optimal policy for a given time limit, we now

consider how an agent can learn a good policy for an indefinite horizon from

partial episodes of interaction. We use the same setup and tabular Q-Learning

as in Section 5.2.2, but, instead of treating terminations due to time limits

as environmental ones, we now maintain bootstrapping from the nonterminal

states that are reached at the time limits. This modification allows the agent to

learn the time-unlimited optimal policy of always going for the most rewarding

goal (Figure 5.1d). On the other hand, while the standard agent which does not

perform bootstrapping at nonterminal timeout states has values from out-of-

reach states leaking into its learned value function (Figure 5.1b), these updates

do not occur in the appropriate proportion to let the agent learn the time-

unlimited optimal policy.

5.3.2 Physical Control Benchmarks

For the next experiments we again use PPO but with a modification for partial-

episode-bootstrapping to enable the agent to bootstrap when the environment

is reset due to time limits and no terminal states are encountered. This in-

volves modifying the implementation of the generalised advantage estimator,

87



Figure 5.5: Performance comparison of PPO with and without partial-episode boot-
strapping (PEB) using γ = 0.99 on two physical control benchmarks (10 random
seeds). The averaged discounted sum of rewards and standard errors are shown
against the number of environment steps. The training episodes are limited to 300
or 1000 time steps (indicated in parentheses). The evaluation episodes are limited
to one million time steps.

or GAE(λ), from Section 2.6.1. While the latter uses a geometrically-weighted

average of truncated k-step returns for bootstrapping which is more complex

than the one-step bootstrapping described in Equation (5.7), the same idea

of continuing to bootstrap from the nonterminal timeout states is the only

modification required for the considered approach.

We consider the Hopper and Walker2D environments from Section 5.2.3

but instead aim to learn a policy that maximises the agent’s expected return

over a time-unlimited horizon. The goal here is to show that by continuing

to bootstrap from nonterminal states at timeout terminations it is possible

to learn good policies for time-unlimited tasks from time-limited episodes of

interaction. Figure 5.5 shows the learning curves for PPO with and without

partial-episode bootstrapping. The training episodes were limited to a maxi-

mum of 300 time steps, whereas during evaluation the episodes were limited to

a higher maximum of one million time steps. For comparison, we also trained

the standard PPO agent with a training time limit of 1000 steps. The re-

sults show that partial-episode bootstrapping enables the agent to learn better

policies using shorter training episodes of interaction.

5.3.3 The Infinite Cube Pusher Problem

To demonstrate the ability of our agent in optimising for an infinite-horizon

objective (as in a continuing task), we introduce a novel physical control envi-

ronment consisting of a torque-controlled ball on a horizontal plane that is used

to push a cube to specified target positions (Figure 5.6a). Every time the cube
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Figure 5.6: Performance comparison of PPO with and without partial-episode boot-
strapping (PEB) using γ = 0.99 on the Infinite Cube Pusher problem (10 random
seeds). (a) A sample image of the environment. (b) The averaged number of reached
targets and standard errors are shown against the number of environment steps. The
training episodes are limited to 50 or 1000 time steps (indicated in parentheses). The
evaluation episodes are limited to 1000 time steps.

reaches a target, the agent receives a reward of +1 and the target is moved

away from the cube to a new random position. The terrain is surrounded by

fixed bounding walls. We force the inner edges of the walls to obstruct the

cube, but not the ball, in order to let the agent move the cube even if it is in

a corner. The environment state consists of: the coordinates of the ball, cube,

and target; the velocities of the ball and cube; and the rotation of the cube.

Due to the infinite-horizon nature of this task and the absence of dense

rewards, it is highly useful to break down the interaction during training into

partial episodes to diversify experience and improve learning performance. To

this end, we use a time limit of 50 steps during training which is sufficient to

push the cube to an individual target in most cases. However, during evalua-

tion 1000 time steps were used to allow reaching multiple targets. Figure 5.6b

shows that partial-episode bootstrapping significantly improves the learning

performance.

5.4 The Effect on Experience Replay

Sampling and training on batches of transitions from a buffer of past experience

has proved to be highly effective in stabilising the training of neural networks

by decorrelating updates and avoiding the rapid forgetting of rare experiences

(Mnih et al., 2015; Schaul et al., 2016). This is known as experience replay

(Lin, 1992). However, we argue that the perceived non-stationarity that is

induced by improper handling of time limits is incompatible with experience
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Figure 5.7: Performance comparison of tabular Q-Learning with and without partial-
episode bootstrapping (PEB) using γ=1 on the Difficult Gridworld problem (T =
200) presented by Zhang and Sutton (2017). (a) The environment. (b) The averaged
sum of rewards and standard errors are shown against the number of environment
steps (30 random seeds). Experience replay significantly hurts the performance
where timeout terminations are not properly handled, while by simply continuing
to bootstrap whenever a timeout termination is encountered the learning is much
faster and varying the buffer size has almost no effect.

replay. Indeed, the distribution of timeout terminations changes with the

agent’s behaviour and, thus, past transitions become obsolete.

While both time-awareness and partial-episode bootstrapping provide ways

to solve this issue, we only illustrate the effect of partial-episode bootstrapping

on one of the tasks presented by Zhang and Sutton (2017). In the latter

work, the authors demonstrate that experience replay can significantly hurt

the learning process if the size of the replay buffer is not tuned well. One of

the environments used is a deterministic gridworld with a fixed initial state

and a fixed terminal goal state (Figure 5.7a). The agent receives a penalty of

−1 for each time step at a nonterminal state and 0 otherwise. As proposed

by the authors, tabular Q-Learning is used with values initialised to 0, no

discounting, an ε-greedy policy with a fixed 10% chance of random actions,

and a time limit of 200 steps. Figure 5.7b shows the learning curves averaged

over 30 random seeds. We successfully reproduce the results from the paper

showing that the performance deteriorates very quickly with increasing buffer

size. We then demonstrate that by simply bootstrapping from nonterminal

timeout states the effect of the buffer size is vastly diminished.

5.5 Related Work

The importance of time-awareness for optimising a time-limited objective is

well-established in the dynamic programming and optimal control literature.

However, as we discussed in this chapter, it has been widely overlooked in the
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reinforcement learning literature and in the design of popular benchmarks that

are aimed at evaluating the progress in reinforcement learning. To the best

of our knowledge, the importance of the inclusion of a notion of time in time-

limited tasks was first demonstrated in the reinforcement learning literature

by Harada (1997), yet it seems to have been widely overlooked. Nonetheless, a

major difference between the approach of Harada (1997), namely QT-Learning,

and the one described in this chapter is that we considered a more general class

of time-dependent MDPs, where the reward and the transition distributions

may also be time-dependent.

With the aim of unifying task specification in reinforcement learning, White

(2017) introduces a way to view episodic tasks as continuing ones through

transition-based discounting. While they do not explicitly discuss this pos-

sibility, partial-episode bootstrapping can be equivalently obtained through

transition-based discounting. Other than this, despite the fact that using aux-

iliary time limits is highly common, the reinforcement learning literature has

been unclear about whether partial-episode bootstrapping is used or not.

In deep reinforcement learning it is highly common to use a stack of previous

observations or use recurrent neural networks to address partial observability

(Wierstra et al., 2010). These solutions can help when a notion of the re-

maining time is not included as part of the agent’s input. However, including

this information is much simpler and allows for better interpretability of the

learned policies. Furthermore, the latter should enable better generalisation

for dealing with varying time limits.

5.6 Conclusion

We considered the problems of learning optimal policies in time-limited and

time-unlimited tasks using time-limited episodes of interaction. When learn-

ing policies for naturally time-limited tasks, we showed that it is important

for correct temporal credit assignment to include a notion of the remaining

time as part of the agent’s input. On the other hand, when learning policies

for time-unlimited tasks, we showed that it is important for correct temporal

credit assignment to continue bootstrapping at the end of partial episodes—

whenever termination is purely due to time limits, or more generally any early

termination conditions other than reaching a terminal state. In both cases we
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reported significant improvements in the learning performance for our consid-

erations.

Nevertheless, in many problems, agents that do not incorporate these con-

siderations still manage to perform relatively well. This could be due to nu-

merous reasons. For example, the impact of the conflicting updates can be

negligible if the time limits are so large that timeout terminations are hardly

experienced or if the discount factor is small enough. Moreover, in the case of

time-unaware agents in naturally time-limited tasks there could be observable

features that are correlated with time (e.g. the forward distance) or it may be

unlikely to observe the same states at different remaining times.

Lastly, we discussed time-awareness and partial-episode bootstrapping as

separate cases. However, if the task is time-limited in nature but the episodes of

interaction are cut shorter in time due to any arbitrary termination conditions,

then the two approaches should be used in conjunction.
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Chapter 6

Logarithmic Reinforcement
Learning

6.1 Introduction

Using a discount factor 0<γ < 1 to exponentially decay the present value of

future rewards is highly common for task specification in reinforcement learn-

ing (see Section 2.2.1 for the discounted return formulation). Sometimes this

is intended to specify the true objective one should aim to optimise, in which

case γ is to be treated as part of the MDP. However, more often than not, γ

serves as a mathematically convenient means to satisfy theoretical convergence

conditions (Bertsekas and Tsitsiklis, 1996) or, more generally, as a hyperpa-

rameter of the optimisation (Prokhorov and Wunsch, 1997; Xu et al., 2018;

Amit et al., 2020). This is because the magnitude of γ can greatly impact

the stability of the learning process. For example, when used in conjunction

with function approximation, too high of a discount factor is known to gener-

ally lead to unstable learning due to overgeneralisation (Durugkar and Stone,

2017; Pohlen et al., 2018) and the performance of low discount factors tends

to simply fall flat in practice. As such, if the true objective is best specified

using some γ, we often need to resort to a different γ that works well in prac-

tice. In fact, having a mismatch between the true objective and one that the

agent optimises is not restricted to only having different discount factors. It

is nonetheless important to enable using a wider range of discount factors in

order to reduce the performance gap due to any such mismatch.
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In this chapter1 we start off by exemplifying some scenarios in which the

discount factor plays an important role in reducing the performance gap due

to a mismatch between the true objective and optimisation objective (Sec-

tion 6.2). (These examples also expand our discussions from the previous

chapter on the role of time limits in reinforcement learning.) We then look

deeper into the effect of the discount factor on the optimisation process. We

analyse why, in practice, the performance of low discount factors tends to fall

flat when used in combination with function approximation, especially in tasks

with long horizons. In particular, we refute a number of common hypotheses

and present an alternative one, identifying the primary culprit to be the dif-

ference of the action gap—the optimal value difference between the best and

second-best actions—across the state space. To test this hypothesis, we intro-

duce a new method that yields more homogeneous action gaps in tasks with

sparse rewards. This is achieved by mapping the update target to a logarithmic

space and performing updates in that space instead. Finally, we demonstrate

empirically that our method achieves much better performances for low dis-

count factors than previously possible, providing supporting evidence for our

new hypothesis.

6.2 Discounting Effects on Performance Gap

In this section we present examples to substantiate our earlier claims regard-

ing the importance of γ in reducing the performance gap wherever there is a

mismatch between the true objective and one that the agent optimises. In Sec-

tion 5.2 we established that time-awareness is generally needed for the learning

of optimal policies in time-limited tasks. However, it is still very common to

indirectly optimise for the true time-limited objective through the proxy of

a time-unlimited objective. (This is perhaps because a stationary, or time-

independent, policy is generally simpler to compute.) In fact, most commonly

according to the literature, the true objective is time-limited and undiscounted,

while the optimisation objective is time-unlimited and discounted (e.g. as in

the seminal work of Mnih et al. (2015)). We consider this common scenario,

1This chapter is based on the following paper: van Seijen, H., Fatemi, M., and Tavakoli,
A. (2019). Using a logarithmic mapping to enable lower discount factors in reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 14134–14144.
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Figure 6.1: (a) Illustrations of our three environments, where the blue grid denotes
the fixed initial position, numbers indicate the reward for collecting each object, and
arrows signify the wind direction. (b) Performance of the optimal policies for the
true objective (black) and optimisation objective (blue) as evaluated with respect
to the true objective as a function of γ. The difference between the two represents
the performance gap.

with a clear objective mismatch, as the basis for constructing our examples.

Explicitly, we design three simple environments (Figure 6.1a) and evaluate

the performances of the optimal policies for the true objective (time-limited

and undiscounted) and optimisation objective (time-unlimited and discounted)

with respect to the true objective and as a function of 0 < γ < 1 (Figure 6.1b).

We use a time limit of 12 steps for the true objective.

In each environment, starting from the blue grid, the agent is rewarded for

collecting the green objects and penalised for collecting the red objects. The

transition dynamics is deterministic in environments A and B. In environment

C wind blows along the direction of the arrows, making the agent move towards

left with a 40% chance regardless of the performed action.

In environment A, where a small negative reward (−1) has to be traded off

for a large positive reward (+5) received later, high discount factors result in a

smaller performance gap. By contrast, in environment B low discount factors

result in a smaller performance gap. The reason is that for high discount

factors the optimal policy (with respect to the optimisation objective) takes

the longer route of first collecting the large positive reward (+5) before going

for the small positive reward (+1). However, with a time limit of 12 steps

during evaluation, there is not enough time to collect both objects by taking

this long route. Using a low discount factor results in the agent taking the

shorter route of first collecting the small positive reward and then the large

positive reward; thereby the agent manages to collect both positive rewards

in time. In environment C a tradeoff needs to be made between taking the

shorter route and risk being pushed to the negative reward (−5), due to state-
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transition stochasticity, versus a longer detour to minimise such a risk. In this

environment the optimal policy for the true objective is time-dependent (i.e.

time-awareness is critical for representing the optimal policy). Hence, given

that the agent optimises a time-unlimited objective and, as such, does not have

time-awareness, the performance gap cannot be reduced to 0 for any γ. In this

case, discount factors that minimise the performance gap are neither too high

nor too low. These examples demonstrate that, as long as there is a mismatch

between the true objective and optimisation objective, the best discount factor

is problem-specific and can be anywhere in the range between 0 and 1.

It is worth noting that the optimal policy for the time-unlimited optimisa-

tion objective can be learned from time-limited episodes of interaction during

training. For example, let us consider using Q-Learning to learn the optimal

policy for the optimisation objective in any of the environments from Fig-

ure 6.1. With a uniform random behaviour policy and training episodes of 12

time steps (just as the time limit of the true objective), there is a nonzero prob-

ability for each possible state-action pair being visited in an episode. Hence,

with an appropriate schedule for decaying the learning rate, convergence in the

limit can be guaranteed (Jaakkola et al., 1994). A key detail to enable this

is to utilise partial-episode bootstrapping (Section 5.3). Similarly, the opti-

mal policy for the true objective can be learned using Q-Learning by utilising

time-awareness (Section 5.2).

6.3 Discounting Effects on Optimisation

In the previous section our discussion involved the theoretical minimum of the

performance gap for each possible γ. That is, we evaluated the performance

gap with respect to the true objective using the optimal policies for the true

and optimisation objectives. However, γ also affects the optimisation process

whereby finding an optimal policy could be more challenging for some discount

factors than others. In this section, using the chain walk problem shown in

Figure 6.2, we evaluate the correlation between the choice of γ and how chal-

lenging it could be to find an optimal policy. Specifically, we use a discounted

objective for the purpose of optimisation with different discount factors and

measure the proportion of random trials that learn the optimal policy of choos-

ing the left action aL in every state. In theory, the optimal performance of +1
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Figure 6.2: Our chain walk problem consisting of 50 nonterminal states and two
terminal ones. Each nonterminal state has two actions: aL which results in transi-
tioning to the left with probability 1− p or to the right with probability p, and vice
versa for aR. All rewards are 0, except for transitioning to the far-left or far-right
terminal states which result in rL and rR, respectively.

is achievable for any choice of γ (i.e. the performance gap can be minimised

to 0 for any γ).

To study the optimisation effects under function approximation we use

linear function approximation with features constructed by tile coding (Sutton,

1996), using tile widths of 1, 2, 3, and 5 together with an offset of 1. Tile coding

a state using a tile width of w and an offset of 1 corresponds to a set of binary

features that are nonzero for w neighbouring states and zero elsewhere. We

set the number of tilings such that all states receive a full set of features. With

a tile coding scheme as such, any value function can be represented. That

is, in principle, error-free reconstruction of the optimal action-value function

is possible for any discount factor. Note that for w = 1 the representation

becomes equivalent to a tabular one. To keep our experiment as simple as

possible, we remove the role of exploration by performing update sweeps over

the entire state-action space (using a learning rate of 0.001) and measure the

performance at the end of each full-sweep update.

Figure 6.3a shows the performance of Q-Learning early on during the train-

ing (average performance over the first 10,000 sweeps) as well as the final per-

formance (average between the 100,000 and 110,000 sweeps). This experiment

demonstrates a common empirical observation: when used in conjunction with

function approximation, the performance of low discount factors tends to fall

flat in sparse reward problems. More specifically, we have three main obser-

vations: (1) there is a sharp drop in the final performance for discount factors

below some threshold value; (2) the threshold value depends on the tile width,

with larger tile widths resulting in worse (i.e. higher) threshold values; and

(3) the tabular representation performs well across all discount factors.

The action gap of a state s, denoted by ∆AG(s), is defined as the value

difference between the best and second-best actions at s for the optimal action-
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Figure 6.3: Early and final performance of Q-Learning on three variations of the
chain walk problem. (a) Performance on the unaltered environment. (b) Perfor-
mance on the environment variation with 100 times larger action values (i.e. larger
action gaps). (c) Performance on the environment variation with action values
pushed up by 100 (i.e. lower relative action gaps). All environment variations
result in similar performance graphs.

value function Q∗:

∆AG(s)
.
= Q∗(s, a∗)−Q∗(s, a†), (6.1)

where a∗ is the best action and a† is the second-best action. Now, if the er-

ror for an estimate of the optimal action-value function is smaller than half

the action gap in every state, then the greedy policy with respect to such

action-value estimates is guaranteed to be equal to the optimal policy (Farah-

mand, 2011). For this reason, merely having small action gaps is commonly

held responsible for the numerous failure modes of reinforcement learning with

function approximation (Bellemare et al., 2016), such as that of low discount

factors. To examine this common belief, we start by evaluating two straight-

forward hypotheses involving the action gap: (1) lower discount factors cause

poor performance because they result in smaller action gaps; and (2) lower

discount factors cause poor performance because they result in smaller relative

action gaps (i.e. the action gap of s divided by the maximum action-value at

s). Given that both hypotheses are supported by the results from Figure 6.3a,

we perform more directed experiments to test each hypothesis. To test the first

hypothesis, we perform the same experiment as before but with rewards that

are a factor of 100 larger, thus increasing the action gaps by a factor of 100.
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Figure 6.4: Action-gap deviation as a function of the discount factor in the chain
walk problem of Figure 6.2, illustrating that the difference in action gaps across the
state space becomes larger with lower discount factors.

Therefore, for the first hypothesis to hold, this change should improve (i.e.

lower) the threshold value below which the performance falls flat. To test the

second hypothesis, we push all action values up by 100 through extra rewards

(i.e. adding 100 (1 − γ) and 100 to the reward on any transition to a nonter-

minal and terminal state, respectively), thus reducing the relative action gaps.

Therefore, for the second hypothesis to hold, this change should degrade the

performance. Figures 6.3b and 6.3c show the performance of Q-Learning on

these environment variations, together with the performance on the unaltered

environment (Figure 6.3a). The performance on both of these environment

variations is roughly the same as the performance on the unaltered environ-

ment, thus invalidating both hypotheses.

Inspired by the observation that larger tile widths (which perform averaging

over a larger set of states) result in a worse performance on lower discount

factors (Figure 6.3), we set forth a third hypothesis: lower discount factors

cause poor performance with function approximation because they result in

a larger difference in action gaps across the state space. To illustrate our

statement about the difference in action gaps, we show what such differences

look like as a function of γ in the chain walk problem of Figure 6.2. To

do so, we introduce a metric, which we call action-gap deviation and denote

by κ, for capturing a notion of the difference in action gaps across the state

space. Explicitly, let S be a random variable with a uniform distribution over

S† ⊆ S, the set of all nonterminal states with nonzero action gaps. Moreover,

let X
.
= log10 (∆AG(S)). We now define κ to be the standard deviation of the

random variable X. Figure 6.4 shows κ as a function of the discount factor
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for the chain walk problem of Figure 6.2, illustrating our statement that lower

discount factors result in a larger difference in action gaps across the states.

To test this new hypothesis, we have to develop a method that reduces the

action-gap deviation κ for low discount factors without changing the optimal

policy. We do so in the next section.

6.4 Logarithmic Q-Learning

In this section we introduce our new method, called Logarithmic Q-Learning,

which reduces the action-gap deviation κ in sparse reward problems. We

present this method in three steps, in each step adding a layer of complexity

to extend the generality of the method. In Appendix C we present the proof

of convergence for this method in its most general form. As the first step, we

now consider deterministic environments with rewards that are nonnegative.

6.4.1 Deterministic Domains with Nonnegative
Rewards

Our method is based on the general approach of mapping the update target

to a different space and performing updates in that space instead. We denote

the mapping function by f and its inverse by f−1. Just as in Pohlen et al.

(2018), with Q-Learning as the basis, values in the mapping space are updated

as follows:

Q̃(St, At)← (1− α)Q̃(St, At) + αf
(
Rt+1 + γmax

a′
f−1
(
Q̃(St+1, a

′)
))

, (6.2)

where Q̃ is an estimate of the optimal action-value function in the mapping

space. To obtain a regular action value Q the inverse mapping has to be

applied to Q̃. Because the updates occur in the mapping space, the action gap

of a state s from Equation (6.1) is now defined in the mapping space:

∆̃AG(s)
.
= Q̃∗(s, a∗)− Q̃∗(s, a†) . (6.3)

Consequently, κ is also measured in the mapping space.

To reduce κ, we propose using a logarithmic mapping. Explicitly, we pro-

pose the following mapping function:

f(x)
.
= c ln(x+ ϵ) + d , (6.4)
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Figure 6.5: Action-gap deviation as a function of the discount factor for a modified
version of the chain walk problem from Figure 6.2 with rL=1, rR=0, and p=0.

with the inverse function:

f−1(x) = e(x−d)/c − ϵ , (6.5)

where c, d, and ϵ are the mapping hyperparameters.

To understand the effect of the logarithmic mapping (6.4) on the action-

gap deviation κ, we plot κ based on action gaps in the regular space and in

the logarithmic space for a modified version of the chain walk problem from

Figure 6.2 (with rL = 1, rR = 0, and p = 0). In the case of the logarithmic

mapping (6.4), we set ϵ=γk with k ∈ {40, 50, 200}. We will explain shortly our

reasoning behind this choice. Figure 6.5 shows that, with an appropriate value

for ϵ (k=50), the action-gap deviation κ can almost be reduced to zero for low

discount factors. Setting ϵ too low (k=200) increases the action-gap deviation

a little, while setting ϵ too high (k = 40) increases the action-gap deviation

by a lot for low discount factors. The reason for this is that, effectively, ϵ

controls the smallest value in the regular space for which the action gap in

the logarithmic space is still significant enough. In the modified version of our

chain walk problem this value is about γk, the value of the state from which

it takes k time steps to experience the reward of +1 under the optimal policy.

(This is why k=50 works best in our chain walk problem with 50 nonterminal

states.) Therefore, by setting ϵ = γk, we achieve roughly the same effective

horizon of k time steps across discount factors.

The parameters c and d, respectively, scale and shift values in the loga-

rithmic space and do not have any effect on the action-gap deviation. The

parameter d controls the initialisation of the action values. Setting d as

d = −c ln(qinit + ϵ) (6.6)
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ensures that f−1(0)= qinit for any choice of c, k, and γ. This can be useful in

practice, e.g. when using neural networks to represent Q̃, as it enables stan-

dard initialisation methods (which produce output values around 0) while still

ensuring that the initialised Q̃ values correspond to qinit in the regular space.

The parameter c scales values in the logarithmic space. For most tabular and

linear methods, scaling values does not affect the optimisation process. How-

ever, such scaling can significantly impact the optimisation process for deep

reinforcement learning methods. In all our experiments, except for the deep

reinforcement learning ones, we use c=1 and set d according to Equation (6.6)

using qinit=0.

In stochastic environments the approach described in this section is prob-

lematic. This is because averaging over stochastic samples in the logarithmic

space produces an underestimate as compared to averaging in the regular space

and then mapping the outcome to the logarithmic space. More precisely, in

deterministic environments a state-action pair (s, a) results deterministically

in a next state s′ and a next reward r. As such, y = r + γmaxa′ Q(s′, a′), or

the averaging target for Q(s, a), is deterministic. In this case we have:

E [ln(y)] = ln (E[y]) = ln(y).

On the other hand, in environments with stochastic transition dynamics or

rewards either or both of the resultant next state or next reward could be

random variables, thus denoted respectively by capital letters S ′ and R to

reflect this. As such, Y = R + γmaxa′ Q(S ′, a′), or the averaging target for

Q(s, a), is stochastic. In this case, from Jensen’s inequality, we have:

E [ln(Y )] ≤ ln (E[Y ]) .

Fortunately, within our specific context, there is a way around this limita-

tion that we discuss in the next section.

6.4.2 Stochastic Domains with Nonnegative Rewards

The learning rate α generally conflates two forms of averaging: averaging of

stochastic update targets due to environment stochasticity and, in the case

of function approximation, averaging over different states. In order to amend

our method for stochastic environments, ideally, we would separate these two
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forms of averaging and perform the averaging over stochastic update targets

in the regular space and the averaging over different states in the logarithmic

space. (This idealised notion is related to our observation in Section 6.3 that

larger tile widths, which perform averaging over a larger set of states, result

in a worse performance on lower discount factors.) While such a separation

is hard to obtain, the approach presented below achieves many of the same

benefits. In particular, it enables convergence of Q̃ to f(Q∗) even when the

environment is stochastic.

Let βlog and βreg be the learning rates for averaging in the logarithmic space

and regular space, respectively. We amend our method from the previous

section by computing an alternative update target that is based on performing

an averaging operation in the regular space. Specifically, the update target U

is transformed into an alternative update target Û as follows:

Û ← f−1
(
Q̃(St, At)

)
+ βreg

(
U − f−1

(
Q̃(St, At)

))
, (6.7)

where

U
.
= Rt+1 + γmax

a′
f−1

(
Q̃(St+1, a

′)
)
. (6.8)

The modified update target Û is used for updates in the logarithmic space:

Q̃(St, At)← Q̃(St, At) + βlog

(
f(Û)− Q̃(St, At)

)
. (6.9)

The effective learning rate for the combination of these updates is the product

α = βreg βlog. Notice that if βreg=1, then Û =U and the update (6.9) reduces

to the update (6.2) with α=βlog.

We now fix the effective learning rate α = βreg βlog to 0.001 and test different

combinations of values for βreg and βlog. Figure 6.6 shows RMS (root mean

square) error curves, as a measure of the difference between f−1(Q̃(s, a)) and

Q∗(s, a) over all state-action pairs, on a modified version of the chain walk

problem from Figure 6.2 with rL = 1, rR = 0, and p = 0.25. The results are

based on a tile width of 1 (i.e. tabular representation) and k = 200. These

results show that βreg should be sufficiently low to reduce the TD errors in the

logarithmic space, thus keeping the underestimation of values due to averaging

in the logarithmic space under control. Note that for βreg =1, which reduces

the revised method to that in the previous section, the error does not reduce

to near zero.
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Figure 6.6: RMS error curves, based on the difference between f−1(Q̃(s, a)) and
Q∗(s, a) over all state-action pairs, on a modified version of the chain walk problem
from Figure 6.2 with rL=1, rR=0, and p=0.25. A low enough βreg is necessary to
keep the underestimation of values due to averaging in the logarithmic space under
control.

6.4.3 Stochastic Domains with General Rewards

We now consider the general case of stochastic environments with rewards that

can be any real number. Consider the decomposition of the reward r into two

components r+ (nonnegative) and r− (nonpositive) as follows:

r+
.
=

{
r if r > 0

0 otherwise

r−
.
=

{
|r| if r < 0

0 otherwise

. (6.10)

Note that the decomposed rewards r+ and r− are always nonnegative and that

r = r+ − r− (6.11)

at all times. By decomposing the rewards in this way, two separate utility

functions, Q̃+ and Q̃−, can be trained in the logarithmic space using each

reward component, r+ and r−. The regular action value function Q can then

be obtained using Q̃+ and Q̃− as follows:

Q(s, a)
.
= f−1

(
Q̃+(s, a)

)
− f−1

(
Q̃−(s, a)

)
. (6.12)

Importantly, we use this action-value function Q to find maximising actions

for performing our updates as well as for greedy action selection. Therefore,

Q̃+ and Q̃− are not intended to estimate the optimal action-value functions

for r+ and r− in the mapping space. Rather it is only their composition via

Equation (6.12) into Q, our estimator for Q∗ of the original reward signal r,
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Figure 6.7: Action-gap deviation as a function of the discount factor in the original
chain walk problem from Figure 6.2 calculated based on the action gaps of Q̃+ (“log
plus-only”), Q̃− (“log min-only”), both Q̃+ and Q̃− (“log both”), and Q∗ (“reg”).

that is meaningful. Putting it all together, to perform the update (6.7) we

obtain two separate update targets for each reward component:

U+ .
= R+

t+1 + γf−1
(
Q̃+(St+1, a

′)
)

U− .
= R−

t+1 + γf−1
(
Q̃−(St+1, a

′)
) , (6.13)

where

a′
.
= argmax

a′

(
f−1
(
Q̃+(St+1, a

′)
)
− f−1

(
Q̃−(St+1, a

′)
))

. (6.14)

In turn, these update targets are transformed using the update (6.7) into Û+

and Û−, respectively, which are then transformed using the update (6.9) into

Q̃+ and Q̃−, respectively.

We now demonstrate κ for the original version of the chain walk problem

with rL=1, rR=−1, and p=0.25 (Figure 6.2). Because there are two functions,

Q̃+ and Q̃−, we need to generalise our definition of κ for this situation. We

consider three variants: (1) κ is based on the action gaps of Q̃+ (“log plus-

only”); (2) κ is based on the action gaps of Q̃− (“log min-only”); and (3) κ is

based on the action gaps of both Q̃+ and Q̃− (“log both”). Figure 6.7 shows

such κ variants (using k = 200) together with κ based on the action gaps of

Q∗ (“reg”), same as that in Figure 6.4. Interestingly, only for the “log plus-

only” variant κ is small across discount factors. This is because under the

optimal policy (computed by acting greedily with respect to the composition

of Q̃+ and Q̃− using Equation (6.12) on convergence to Q∗) the chance that

the agent moves from a state near the positive terminal state to the negative

terminal state is very small. Consequently, k = 200 is too small to make the

action gaps for Q̃− homogeneous across the state space. Nevertheless, as we
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Figure 6.8: Early and final performance of Logarithmic Q-Learning on our original
chain walk problem.

see in the next section, k=200 results in a good performance across discount

factors, suggesting that not having homogeneous action gaps for Q̃− is not

a huge issue. We think this is due to the different nature of behaviours for

positive and negative rewards; that is, it may be worthwhile to traverse a long

distance to obtain a positive reward, but avoiding a negative reward typically

requires only a short effective horizon.

6.5 Experiments

6.5.1 Chain Walk

We test our method by returning to the original version of the chain walk

problem (Figure 6.2), under the same settings used to produce the results of

Figure 6.3a. We use k = 200 as well as βreg = 0.1 and βlog = 0.01, for which

the effective learning rate βreg βlog is equal to the α used to produce the results

of Figure 6.3a. Figure 6.8 shows the performance of Logarithmic Q-Learning

early on during the training as well as its final performance. Comparing these

graphs with the graphs from Figure 6.3a shows that Logarithmic Q-Learning

has successfully resolved the optimisation issues of regular Q-Learning related

to the use of low discount factors in conjunction with function approximation.

6.5.2 Atari 2600 Games

We test our approach in Atari 2600 games (see Appendix A.1 for a brief

overview), using identical experimentation settings as in Section 4.4.2. For

this purpose, we combine our approach with deep Q-networks (Mnih et al.,
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2015), referring to the resulting agent as Logarithmic DQN (LogDQN). Simi-

lar to Section 4.4.2, we base our implementation on the Dopamine framework

(Castro et al., 2018). We realise our model for LogDQN by doubling the size

of the DQN’s output layer, using half of it to estimate Q̃+ and the other half

to estimate Q̃−. All the other layers are shared between Q̃+ and Q̃− and re-

main unchanged from DQN. Given that both Q̃+ and Q̃− are updated using

the same samples, the replay memory does not require any modification and

thus the memory footprint does not change. Moreover, because Q̃+ and Q̃−

are evaluated simultaneously in a single pass through the model, the compu-

tational cost of LogDQN remains similar to DQN. While Dopamine provides

baselines for 60 games in total, we only consider the subset of 55 games for

which human scores have been published.

We optimised the hyperparameters of LogDQN using a subset of six games:

Alien, Zaxxon, Breakout, Double Dunk, Space Invaders, and Fishing Derby.

For the discount factor we tried γ ∈ {0.84, 0.92, 0.96, 0.98, 0.99} and for c we

tried c ∈ {0.1, 0.5, 1.0, 2.0, 5.0}. Throughout, we used a fix k= 100. We also

tried the same γ values for DQN and found the default γ = 0.99 to perform

best. For LogDQN, γ=0.96 and c=0.5 performed best. We also tried lower

γ values, such as γ = 0.1 and γ = 0.5, but they did not improve the overall

performance over these six games. We set the learning rates of LogDQN to

βlog=0.0025 and βreg=0.1 so that the effective learning rate α=βreg βlog is the

same as that of DQN (α= 0.00025). We set d based on Equation (6.6) with

qinit=1 for the positive head and qinit=0 for the negative head.

Figure 6.9a shows the relative human-normalised score of LogDQN versus

DQN over the last 10% of their respective learning curve for each game. Fig-

ure 6.9b shows median and mean human-normalised scores across the 55 Atari

games for LogDQN and DQN. The results indicate significant improvements

in final performance over DQN in a number of games (Figure 6.9a) as well as

in overall performance (Figure 6.9b). See Figure B.3 for full learning curves

across these 55 Atari 2600 games.

6.6 Conclusion

Our results provide strong evidence for our hypothesis that large differences in

action gaps are detrimental to the performance of approximate reinforcement

107



Figure 6.9: (a) Difference in human-normalised score for 55 Atari 2600 games,
LogDQN versus DQN over the last 10% of their respective learning curve (positive %
means LogDQN outperforms DQN). Orange bars indicate a performance difference
larger than 50%, dark-blue bars indicate a performance difference between 10% and
50%, and light-blue bars indicate a performance difference smaller than 10%. (b)
Human-normalised median and mean scores across the same set of games.

learning methods. A possible explanation could be that optimising on the

squared Bellman error in the conventional approach might drive towards an

average squared error that is similar across the state space. However, the error

landscape required to bring the approximation error below the action gap in

all states has a very different shape if the action gap is different by orders of

magnitude across the state space. This mismatch between the required error

landscape and that produced by the conventional Bellman error may lead to

an ineffective use of the function approximator.

The strong performance we observed for γ=0.96 in the deep reinforcement

learning setting is unlikely solely due to a difference in the performance gap.

We suspect that there are also other effects at play that make LogDQN as

effective as it is. On the other hand, at (much) lower discount factors, the

performance was not as good as it was for the high discount factors. We had
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expected that at least for some of the six games a small discount factor (e.g.

between γ = 0.1 and γ = 0.5) would be better. We believe a possible reason

could be that since such low values are very different than the original DQN

settings, some of the other DQN hyperparameters might no longer be ideal

in the low discount factor region. An interesting future direction would be to

reevaluate some of the other hyperparameters for such low discount factors.
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Chapter 7

Conclusions and Outlook

This thesis focused on the credit assignment problem in reinforcement learning

and described several contributions to each of its main subproblems separately.

This chapter discusses the essence of the findings and suggests general direc-

tions for future research.

In the first part of the thesis we reviewed the issues that prevent the appli-

cation of classical reinforcement learning methods to domains with combinato-

rial and enormous action spaces. We looked at the issues pertaining to credit

assignment in such domains and identified the main barrier to be structural,

as opposed to temporal. This in turn led us to develop two general classes

of methods in order to remedy those issues. The key was to embrace the

compositionality in combinatorial action spaces and leverage it for enabling

fast generalisation from limited data. This idea proved critical in moderate

or high-dimensional action spaces, and improved sample complexity and final

performance even in low-dimensional action spaces. In addition, we showed

that our methods not only address the structural credit assignment problem

but also unleash significant benefits concerning space and time complexity.

This in turn allows them to computationally scale to domains far beyond what

is possible by the conventional approach. These ideas suggest numerous lines

of inquiry for future research. We outline a few of them below.

While leveraging compositionality of combinatorial states underpins nearly

all recent success stories of reinforcement learning, similar ideas are not widely

explored in the context of combinatorial actions. To a good extent, this is due

to the fact that, generally, structural credit assignment is less often studied

by the reinforcement learning community. This evokes the notion that there

likely are many other unique problems concerning structural credit assignment
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which need to be studied in the specific context of reinforcement learning; given

they do not arise normally in conventional supervised learning. We especially

believe that action representation learning needs to be explored in great depth

and more generally, beyond only leveraging the compositional structure in

combinatorial action spaces. We hope that the success of our work in this

direction instigates a wider attention to this topic.

We demonstrated that our methods enable DQN to significantly outperform

DDPG on a set of continuous action problems via discretisation. Remarkably,

this was accomplished using the training procedure of DQN, without involv-

ing policy gradients or a specialised exploration strategy. This manifests the

great potential of classical action-value methods in tackling continuous action

problems, a problem setting in which policy gradient methods have been the

dominant choice. This begs the question of what more could be done to fur-

ther improve the performance of action-value methods in such domains. Here

we prescribe a few possibilities. Firstly, employing exploration strategies that

exploit the ordinality of the underlying continuous structure instead of using

ε-greedy could prove useful. Moreover, DDPG uses an Ornstein-Uhlenbeck

process (Uhlenbeck and Ornstein, 1930) to generate temporally-correlated ac-

tion noise for achieving exploration efficiency in physical control problems with

inertia. Using a similar inductive bias could also be useful for discrete action

methods. An important aspect of using discrete action methods for discre-

tised continuous action problems is the myriad of available techniques, most

of which can be readily employed. For instance, temporally-extended ε-greedy

strategies could be used to achieve persistent exploration (Dabney et al., 2021).

Another interesting opportunity is using a curriculum of progressively grow-

ing action spaces where a coarse discretisation helps exploration and a fine

discretisation allows for a more optimal policy (Farquhar et al., 2020).

The intuitions behind our methods, which scaled action-value methods to

high-dimensional discrete action domains, also apply to policy gradient meth-

ods (Sutton et al., 1999). Recently, a similar idea to our action branching

and 1-complete action hypergraph models has been studied in the context

of discrete policy gradient methods, yielding superior performance in physical

control benchmarks over the Gaussian policy counterparts (Tang and Agrawal,

2020). The same idea has also been successfully applied to the Shadow Dex-
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terous Hand, a humanoid robotic hand with a 20-dimensional action space

(Andrychowicz et al., 2020). Given the effectiveness of policy gradient meth-

ods with factorised discrete policies, an interesting direction for future work

would be to study policies that additionally represent the higher-order combi-

nations of the sub-action spaces (similarly to our action hypergraph models).

We discussed in Chapter 3 that action branching, similarly to independent

learning in multi-agent reinforcement learning, is in theory subject to numerous

coordination issues. To this end, we introduced action hypergraph networks

which reduce such coordination issues by allowing to incorporate higher-order

combinations, even bypassing the issues altogether when the highest-order

combination is included. Nonetheless, as discussed in Chapter 4, including

higher-order hyperedges leads to higher computation and memory demands

that quickly become intractable with increasing action dimensionality. The

high computational demand stems from the maximisation operation in Q-

Learning. The high memory demand is because of having to instantiate a

separate network head to represent each hyperedge. One potential solution to

address the prohibitive computational demand is to substitute the exact max-

imisation operation with an approximate one. The memory demand could also

be alleviated by sharing parameters among all hyperedges of the same order,

thus avoiding the need to store a unique set of parameters for each possible

hyperedge. The combination of these ideas with action hypergraph networks

is indeed an important direction for future work. Furthermore, exploring other

explicit mechanisms to resolve the coordination issues for when higher-order

hyperedges are not present would be another interesting direction for future

research. For instance, we empirically showed that our 1-complete hypergraph

models are able to outperform the action branching methods, which have the

same representational capacity. We conjecture that these improvements are

due to better coordination properties of the value-decomposition approach (in

action hypergraph networks) over independent learning (in action branching).

In the second part of the thesis we studied the two related notions of time

limits and discount factors in reinforcement learning. First, we identified two

ways in which using a time limit to break down the agent-environment inter-

action can be interpreted: (1) the time limit indicates the actual period over

which the performance should be maximised; or (2) the time limit is arbitrary
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whereby the performance should be maximised beyond the time limit. We

then described considerations that are necessary for correct temporal credit

assignment in each training scenario. We discussed that the literature largely

overlooks this concept and, as such, fails to commit to either case, which in

turn leads to suboptimal policies and learning instabilities. Second, we began

with the observation that, in practice, the application of approximate solution

methods is confined to a very small range of high discount factors. We then

argued that unlocking the capacity to use the full range of discount factors

could be critical in obtaining more desirable behaviours, those which better

maximise the true objective. To exemplify this, we considered training scenar-

ios where, due to the presence of time limits during evaluation, the magnitude

of the discount factor plays a significant role on the learned behaviours. Such

a connection between time limits and discount factors is due to the fact that

the magnitude of the discount factor establishes an effective time-horizon for

the agent, which in turn alters the agent’s sense of immediacy with respect to

the remaining time. Motivated by this we searched for the root cause of the

issue. We identified that the issue is due to large differences in action gaps

across the state space, a scenario which is especially prevalent in tasks with

sparse rewards. To remedy this, we introduced a method that achieves more

homogeneous action gaps by mapping the action-value estimates to a loga-

rithmic space and performing updates in that space instead, thus enabling a

much larger range of discount factors to be used with function approximation.

While these ideas are important on their own, they cast light on broader lines

of inquiry which we discuss below.

We showed that the correct handling of time limits in reinforcement learning

is a simple, but important, consideration. In fact, mishandling of time limits

has been a major source of confusion in evaluating progress in reinforcement

learning research (Tucker et al., 2018). Consequently, we think that studying

such simple pathologies contributes to the reinforcement learning community

by: (1) enabling a better assessment of new ideas; (2) improving reproducibil-

ity; and of course (3) achieving better performances by avoiding instabilities

and suboptimal policies.

The success of using a logarithmic mapping to address a shortcoming of

the conventional squared Bellman error indicates the importance of studying
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general nonlinear mappings in reinforcement learning. In other words, consid-

ering general nonlinear mappings opens up a large design space of methods

that may feature interesting new properties. This line of work aligns with

the concurrent general proposition by van Hasselt et al. (2019) for which our

logarithmic mapping provides a concrete example.

While using a logarithmic mapping has the desirable property of magnifying

near-zero returns, it does the opposite to large returns. In other words, a

logarithmic mapping has a too-low slope when encountering large returns,

which in turn leads to an over-compression of such returns. This may explain

why our LogDQN has performed unfavourably in some dense reward scenarios,

such as in the Atari 2600 game of Skiing in which the agent encounters a

reward at every step. This requires developing altered solutions in order to

maintain the desirable magnification property of the logarithmic mapping for

small returns while avoiding the over-compression property for large returns.

(See Anonymous (2022) for a recent development in this direction.)

Finally, the ideas discussed in each part of the thesis are orthogonal to one

another and, in principle, can be combined. In fact, the results throughout

the first part of the thesis were obtained using partial-episode bootstrapping

which was introduced in the second part. This combination improved the per-

formances of the proposed methods and our baselines. Therefore, the approach

of this thesis serves as a testament to the general usefulness of studying each of

the two subproblems in credit assignment (i.e. structural and temporal credit

assignment) in isolation by: (1) bringing clarity to the contributions; (2) al-

lowing easier analysis; and (3) yielding a distinct toolbox for each subproblem.
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Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Morgan & Clay-
pool.

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru,
J., and Vicente, R. (2017). Multi-agent cooperation and competition with
deep reinforcement learning. PLOS ONE 12(4), pp. 1–15.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooper-
ative agents. In Proceedings of the International Conference on Machine
Learning, pp. 330–337.

Tang, Y. and Agrawal, S. (2020). Discretizing continuous action space for on-
policy optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 5981–5988.

Tavakoli, A., Fatemi, M., and Kormushev, P. (2021). Learning to represent
action values as a hypergraph on the action vertices. In Proceedings of the
International Conference on Learning Representations.

Tavakoli, A., Levdik, V., Islam, R., Smith, C. M., and Kormushev, P. (2019).
Exploring restart distributions. In Multidisciplinary Conference on Rein-
forcement Learning and Decision Making.

Tavakoli, A., Pardo, F., and Kormushev, P. (2018). Action branching ar-
chitectures for deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 4131–4138.

Tessler, C., Tennenholtz, G., and Mannor, S. (2019). Distributional policy op-
timization: An alternative approach for continuous control. In Advances in
Neural Information Processing Systems, pp. 1352–1362.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for
model-based control. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 5026–5033.

Troost, S., Schuitema, E., and Jonker, P. (2008). Using cooperative multi-agent
Q-Learning to achieve action space decomposition within single robots. In
Proceedings of the International Workshop on Evolutionary and Reinforce-
ment Learning for Autonomous Robot Systems, pp. 23–32.

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic
Control 42(5), pp. 674–690.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R. E., Ghahramani, Z., and Levine,
S. (2018). The mirage of action-dependent baselines in reinforcement learn-
ing. In Proceedings of the International Conference on Machine Learning,
pp. 5015–5024.

Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of the Brownian
motion. Physical Review 36(5), pp. 823–841.

Van de Wiele, T., Warde-Farley, D., Mnih, A., and Mnih, V. (2020). Q-
Learning in enormous action spaces via amortized approximate maximiza-
tion. arXiv:2001.08116.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learn-
ing with Double Q-Learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 2094–2100.

120



van Hasselt, H., Quan, J., Hessel, M., Xu, Z., Borsa, D., and Barreto, A. (2019).
General non-linear Bellman equations. arXiv:1907.03687.

van Hasselt, H. and Wiering, M. A. (2009). Using continuous action spaces to
solve discrete problems. In Proceedings of the International Joint Confer-
ence on Neural Networks, pp. 1149–1156.

van Seijen, H., Fatemi, M., and Tavakoli, A. (2019). Using a logarithmic map-
ping to enable lower discount factors in reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 14134–14144.

Wang, J., Ren, Z., Han, B., Ye, J., and Zhang, C. (2021). Towards under-
standing cooperative multi-agent Q-Learning with value factorization. In
Advances in Neural Information Processing Systems.

Wang, T., Liao, R., Ba, J., and Fidler, S. (2018). NerveNet: Learning struc-
tured policy with graph neural networks. In Proceedings of the International
Conference on Learning Representations.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., and de Fre-
itas, N. (2016). Dueling network architectures for deep reinforcement learn-
ing. In Proceedings of the International Conference on Machine Learning,
pp. 1995–2003.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis.
University of Cambridge.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-Learning. Machine Learning
8(3), pp. 279–292.

West, D. B. (1996). Introduction to Graph Theory. Prentice-Hall.
White, M. (2017). Unifying task specification in reinforcement learning. In Pro-

ceedings of the International Conference on Machine Learning, pp. 3742–
3750.

Whitehead, S. D. and Ballard, D. H. (1991). Learning to perceive and act by
trial and error. Machine Learning 7(1), pp. 45–83.

Wierstra, D., Förster, A., Peters, J., and Schmidhuber, J. (2010). Recurrent
policy gradients. Logic Journal of the IGPL 18(5), pp. 620–634.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning 8(3), pp. 229–256.

Xu, Z., van Hasselt, H., and Silver, D. (2018). Meta-gradient reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 2402–
2413.

Zhang, S. and Sutton, R. S. (2017). A deeper look at experience replay. In
NeurIPS Deep Reinforcement Learning Symposium.

121



Appendix A

Standard Benchmarks

Designing generally competent agents raises the question of how to best eval-

uate them. Ideally, as remarked by Bellemare et al. (2013), the agent should

be compared across domains that are (i) varied enough to claim generality, (ii)

each interesting enough to be representative of settings that might be faced

in practice, and (iii) each created by an independent party to be free from

experimenter’s bias. To this end, in each contributing chapter of this thesis,

we evaluate our agents on either or both of two sets of benchmarks that more

or less feature these properties and, as such, are widely adopted by the re-

inforcement learning community to empirically evaluate general competency.

Below we briefly introduce these benchmarking sets.

A.1 Atari 2600 Games

The Atari 2600 is a classic video gaming console featuring a myriad of games,

each one different, interesting, and designed to be a challenge for human play-

ers. The Arcade Learning Environment (ALE), originally introduced by Belle-

mare et al. (2013), makes available dozens of Atari 2600 games and presents an

evaluation methodology for empirically assessing agents designed for general

competency. The usefulness of ALE as a testbed is apparent from the enor-

mous attention it has received from the scientific community and the number

of success stories it has facilitated. In this section we outline the interface and

some key properties of the ALE environments.

Deep Q-networks (DQN) (Mnih et al., 2015) is the first artificial agent to

achieve human-level play in a large fraction of Atari 2600 games, one that

we build on whenever evaluating our contributions in these games. Hence,
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Figure A.1: Schematic illustration of the DQN’s network architecture for Atari
2600 games. Image from “Mnih et al. (2015). Human-level control through deep
reinforcement learning. Nature 518(7540), pp. 529–533.”

in what follows, we further describe the preprocessing operations that partly

contributed to the broad success of DQN in these games. Figure A.1 shows a

schematic illustration of the DQN’s network architecture for solving the Atari

2600 games, provided for reference.

Observations A single game screen (frame) in an Atari 2600 game is 160

pixels wide and 210 pixels high, with a 128-colour palette. As such, each

observation in the ALE by default consists of a single frame: a two-dimensional

array of 7-bit pixels, 160 pixels wide and 210 pixels high (Bellemare et al.,

2013). Working directly with these raw frames can be demanding in terms of

computation and memory requirements. In the context of DQN, Mnih et al.

(2015) employ a basic preprocessing step to reduce the input dimensionality

and to deal with some artefacts of the Atari 2600 emulator. First, to encode a

single frame they take the maximum value for each pixel colour value over the

frame being encoded and the previous frame (this is known as frame pooling).

This step has proven necessary to remove flickering that is present in games

where some objects appear only in even frames while other objects appear

only in odd frames, an artefact caused by the limited number of sprites Atari

2600 can display at once. Second, they then extract the luminance channel
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from the RGB frame and rescale it to obtain a greyscale frame of size 84× 84.

They apply this preprocessing to the four most recent frames and stack them

to produce the input to the network. Such preprocessed observations are used

by our agents throughout this thesis to interact with the Atari 2600 games.

Actions The action space of the ALE is defined by the Atari 2600’s joystick

with three degrees of freedom: a composition of three positions for each of the

two axes of the joystick and an optional button press. This implies that these

games can have up to 18 unique discrete actions. The joystick controller for

Atari 2600 is shown on the right in Figure A.1.

Rewards The reward signal in the ALE corresponds to the difference in the

game score (based on the underlying Atari 2600 game) between the previous

time step and the current time step. As the scale of scores varies greatly

from game to game, DQN replaces each positive reward with 1, each negative

reward with −1, and leaves 0 rewards unchanged. Clipping rewards in this

manner affects the performance in some games as the agent cannot differentiate

between rewards of different magnitude (i.e. agent only observes the sign of

the reward). Nevertheless, this simple heuristic limits the scale of the error

derivatives and makes it easier to use the same learning rate across numerous

games (Mnih et al., 2015). Moreover, the reward function in the Atari 2600,

and thus the ALE, is deterministic: given a particular emulator state s and a

joystick input a there is a unique resulting next reward r.

Transition Dynamics The transition dynamics in the Atari 2600, and thus

the ALE, is deterministic: given a particular emulator state s and a joystick

input a there is a unique resulting next state s′. To better represent challenges

that could be faced in practice, these games should feature stochastic transition

dynamics. To this end, Machado et al. (2018) introduce an addition to the ALE

that enables a form of stochasticity called sticky actions, whereby with 25%

probability the environment executes the action from the previous step instead

of the agent’s new action. In our Atari 2600 experiments in this thesis, we use

this stochastic variant of the ALE to evaluate each agent.
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Interactions In the ALE, an agent interacts with the environment in an

episodic manner. A standard practice is to restrict the agent’s decision points

by repeating a selected action for k consecutive frames, where k = 4 is com-

monly used in the literature (Mnih et al., 2015). This is known as frame

skipping (Naddaf, 2010). We also use this simple technique with k=4 to allow

the agent to play more games without significantly increasing the runtime.

An episode begins by resetting the ALE to its initial configuration and

terminates when the game is over. Furthermore, a time limit is commonly

used to restrict the maximum length of an episode to 27, 000 agent steps. In

some games the player has a number of “lives” which are lost one at a time.

There are different ways to deal with this special case, where losing a life should

be avoided but is distinct from a “game over.” In Dopamine (Castro et al.,

2018), the framework which we use throughout this thesis for our Atari 2600

evaluations, an episode does not terminate when the agent loses a life but the

game is not over yet. Instead, an artificial termination signal is passed to the

agent to help it learn about avoiding “death.”

A.2 Physical Control Benchmarks

The ALE benchmark offers a set of complex environments with diverse wonky

dynamics and an enormous observation space. Nonetheless, the action space of

the ALE is limited to a small set of 18 actions. To enable evaluating our agents

in arbitrarily larger action spaces with an underlying combinatorial structure,

we resort to a benchmarking set of physical control environments. These envi-

ronments feature continuous action spaces of diverse dimensionality, with the

continuous sub-actions along each dimension spanning the range [−1, 1]. This

provides us with a wide range of combinatorial action spaces for evaluating

our agents in Chapters 3 and 4.

By default, these environments return low-dimensional continuous feature

observations from which the continuous state can be recovered. Due to this low-

dimensional non-pixel nature of observations, training and evaluating agents in

these environments is substantially less demanding in terms of computational

requirements than the ALE. This is partly why in Chapters 3 and 5 we only

evaluate our agents in these tasks, and do not additionally include evaluations

in the ALE.

125



Each environment in this testbed consists of an articulated structure (which

is controlled by the agent) in a physical world where all interactions are sim-

ulated by a (real-world) physics engine. In our experiments involving this

testbed we rely mostly on the same set of environments, albeit based on two

different physics engines: PyBullet (Coumans and Bai, 2019) and MuJoCo

(Todorov et al., 2012). In what follows, we provide a high-level overview of

these environments and their goals. In the descriptions, names are followed by

a tuple indicating whether the environment has an existing and stable imple-

mentation based on PyBullet or MuJoCo.

InvertedPendulum (PyBullet, MuJoCo) consists
of a pole that is mounted on a pivot point on an
actuated cart. The goal is to balance the pole by
applying horizontal forces to the cart at its base.

InvertedDoublePendulum (PyBullet, MuJoCo)

consists of a two-link pole (i.e. a pole on a pole) that
is mounted on a pivot point on an actuated cart. The
goal is to balance the two-link pole near the upright
position by applying horizontal forces to the cart at
the base.

Reacher (PyBullet, MuJoCo) is a planar manipu-
lator with two rigid links and two actuated joints.
The goal is to control the joints such that the end-
effector (green sphere) reaches the target position
(red sphere) and then remains there.

Hopper (PyBullet, MuJoCo) is a planar monopod
robot with four links (corresponding to the torso, up-
per leg, lower leg, and foot) along with three actuated
joints. The goal is to hop forward as fast as possible
without falling.

HalfCheetah (PyBullet, MuJoCo) is a planar
biped robot with eight rigid links, including two legs
and a torso, along with six actuated joints. The goal
is to run forward as quickly as possible.
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Walker2D (PyBullet, MuJoCo) is a planar biped
robot consisting of seven rigid links, corresponding to
two legs and a torso, along with six actuated joints.
The goal is to walk forward as fast as possible without
falling.

Ant (PyBullet, MuJoCo) is a three-dimensional
quadruped robot with 13 rigid links, including a
torso and four legs, along with eight actuated joints,
two per each leg. The goal is to move forward as
quickly as possible while maintaining a normal stand-
ing height.

Humanoid (MuJoCo) is a three-dimensional hu-
manoid robot consisting of 13 rigid links along with
17 actuated joints. The goal is to move forward as
fast as possible without falling.

Swimmer (MuJoCo) is a planar robot with 3 rigid
links and 2 actuated joints, sliding on a two-
dimensional surface with viscous fluid dynamics. The
goal is to swim forward as fast as possible.
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Appendix B

Learning Curves for Atari 2600
Games

Here we provide complete learning curves for all the Atari 2600 experiments

of this thesis:

• Figure B.1 shows complete learning curves for HGQN and DQN across

29 games with 18 valid actions.

• Figure B.2 shows complete learning curves for HGQN, HG-Rainbow†,

DQN, and Rainbow† across six select games with 18 valid actions, fea-

turing the three best and worst-performing games from Figure 4.4a.

• Figure B.3 shows complete learning curves for LogDQN and DQN across

55 games.
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Figure B.1: Learning curves in 29 Atari 2600 games with 18 valid actions for HGQN
and DQN. Shaded regions show standard deviation.
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Figure B.2: Learning curves for HGQN, HG-Rainbow†, DQN, and Rainbow† in
six Atari 2600 games with 18 valid actions, featuring the three best and worst-
performing games from Figure 4.4a. Shaded regions indicate standard deviation.
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Figure B.3: Learning curves in 55 Atari 2600 games for LogDQN and DQN. Shaded
regions indicate standard deviation.
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Appendix C

Convergence of Logarithmic
Q-Learning

In this chapter we present the proof of convergence for Logarithmic Q-Learning

in its most general form.1

C.1 Definitions and Theorem

Our Logarithmic Q-Learning method is defined by the following equations:

f(x)
.
= c ln(x+ γk) + d ; f−1(x) = e(x−d)/c − γk (C.1)

R+
t

.
=

{
Rt if Rt > 0

0 otherwise

R−
t

.
=

{
|Rt| if Rt < 0

0 otherwise

(C.2)

Qt(s, a)
.
= f−1

(
Q̃+

t (s, a)
)
− f−1

(
Q̃−

t (s, a)
)

(C.3)

Ãt+1
.
= argmax

a′

(
Qt(St+1, a

′)
)

(C.4)

U+
t

.
= R+

t+1 + γf−1
(
Q̃+

t (St+1, Ãt+1)
)

(C.5)

Û+
t

.
= f−1

(
Q̃+

t (St, At)
)
+ βreg,t

(
U+
t − f−1

(
Q̃+

t (St, At)
))

(C.6)

1The proof is due to Harm van Seijen which we adopt from van Seijen et al. (2019) for a
complete exposition of the Logarithmic Q-Learning algorithm in this thesis.
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Q̃+
t+1(St, At)

.
= Q̃+

t (St, At) + βlog,t

(
f
(
Û+
t

)
− Q̃+

t (St, At)
)

(C.7)

U−
t

.
= R−

t+1 + γf−1
(
Q̃−

t (St+1, Ãt+1)
)

(C.8)

Û−
t

.
= f−1

(
Q̃−

t (St, At)
)
+ βreg,t

(
U−
t − f−1

(
Q̃−

t (St, At)
))

(C.9)

Q̃−
t+1(St, At)

.
= Q̃−

t (St, At) + βlog,t

(
f
(
Û−
t

)
− Q̃−

t (St, At)
)

(C.10)

For these equations, the following theorem holds:

Theorem 1 Under the definitions above, Qt converges to Q∗ w.p. (with prob-

ability) 1 if the following conditions hold:

1. 0 ≤ βlog,t βreg,t ≤ 1

2.
∑∞

t=0 βlog,t βreg,t =∞

3.
∑∞

t=0(βlog,t βreg,t)
2 <∞

4. limt→∞ βreg,t = 0

C.2 Proof of Convergence

C.2.1 Part 1

We define Q+
t (s, a)

.
= f−1

(
Q̃+

t (s, a)
)

and prove in Section C.2.2 that from

(C.5), (C.6), and (C.7) it follows that:

Q+
t+1(St, At) = Q+

t (St, At) + βreg,t βlog,t

(
U+
t −Q+

t (St, At) + c+t
)
, (C.11)

with c+t converging to zero w.p. 1 under condition 4 of our theorem (Theo-

rem 1), and U+
t defined as:

U+
t

.
= R+

t+1 + γ Q+
t (St+1, Ãt+1).

Similarly, using definition Q−
t (s, a)

.
= f−1

(
Q̃−

t (s, a)
)
and (C.8), (C.9), and

(C.10) it follows that:

Q−
t+1(St, At) = Q−

t (St, At) + βreg,t βlog,t

(
U−
t −Q−

t (St, At) + c−t
)
, (C.12)
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with c−t converging to zero w.p. 1 under condition 4 of our theorem, and U−
t

defined as:

U−
t

.
= R−

t+1 + γ Q−
t (St+1, Ãt+1).

It follows directly from the definitions of Q+
t and Q−

t and (C.3) that:

Qt(s, a) = Q+
t (s, a)−Q−

t (s, a). (C.13)

Subtracting (C.12) from (C.11) and substituting this equivalence yields:

Qt+1(St, At) = Qt(St, At)+

βreg,t βlog,t

(
R+

t+1 −R−
t+1 + γ Qt(St+1, Ãt+1)−Qt(St, At) + c+t − c−t

)
. (C.14)

From (C.2) it follows that Rt = R+
t −R−

t . Furthermore, the following holds:

Qt(St+1, Ãt+1) = Qt

(
St+1, argmax

a′

(
Qt(St+1, a

′)
))

= max
a′

Qt

(
St+1, a

′)
Using these equivalences and defining αt

.
= βreg,t βlog,t and ct

.
= c+t − c−t , it

follows that:

Qt+1(St, At) = Qt(St, At)+

αt

(
Rt+1 + γmax

a′
Qt(St+1, a

′)−Qt(St, At) + ct

)
, (C.15)

with ct converging to zero w.p. 1 under condition 4 of our theorem. This is a

noisy Q-Learning algorithm with the noise term decaying to zero. As we show

in Section C.2.2, ct is fully specified (in the positive case, and likewise in the

negative case) by Q+
t , U

+
t , and βreg,t, which implies that ct is measurable given

information at time t, as required by Lemma 1 in Singh et al. (2000). Invoking

that lemma, it can therefore be shown that the iterative process defined by

(C.15) converges to Q∗
t if 0 ≤ αt ≤ 1,

∑∞
t=0 αt = ∞, and

∑∞
t=0 α

2
t < ∞, as is

guaranteed by the first three conditions of our theorem. The steps are similar

to the proof for Theorem 1 of Singh et al. (2000), which we do not repeat here.

C.2.2 Part 2

In this section we prove that (C.11) holds under the definitions from Sec-

tion C.1, Q+
t (s, a)

.
= f−1

(
Q̃+

t (s, a)
)
, and condition 4 of our theorem. The
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proof of (C.12) follows the same steps but instead with the “−” variants of the

variables. For readability, we use β1 for βlog,t and β2 for βreg,t.

The definition of Q+
t implies Q̃+

t (s, a) = f
(
Q+

t (s, a)
)
. Using these equiva-

lences, we can rewrite (C.5), (C.6), and (C.7) in terms of Qt:

f
(
Q+

t+1(St, At)
)
= f

(
Q+

t (St, At)
)
+ β1

(
f
(
Û+
t

)
− f

(
Q+

t (St, At)
))

, (C.16)

with

Û+
t = Q+

t (St, At) + β2

(
R+

t+1 + γ Q+
t (St+1, Ãt+1)−Q+

t (St, At)
)
. (C.17)

By applying f−1 to both sides of (C.16), we get:

Q+
t+1(St, At) = f−1

(
f
(
Q+

t (St, At)
)
+ β1

(
f
(
Û+
t

)
− f

(
Q+

t (St, At)
)))

, (C.18)

which can be rewritten as:

Q+
t+1(St, At) = Q+

t (St, At) + β1

(
Û+
t −Q+

t (St, At)
)
+ e+t , (C.19)

where e+t is the error due to averaging in the logarithmic space instead of the

regular space:

e+t
.
= f−1

(
f
(
Q+

t (St, At)
)
+ β1

(
f
(
Û+
t

)
− f

(
Q+

t (St, At)
)))

−Q+
t (St, At)− β1

(
Û+
t −Q+

t (St, At)
)
. (C.20)

The key to proving (C.11), and by extension our theorem, is proving that

e+t goes sufficiently fast to 0. We prove this by defining a bound on |e+t | and

showing that this bound goes to zero. Figure C.1 illustrates the bound. The

variables in the figure refer to the following quantities:

a → Q+
t (St, At)

b → Û+
t

v → (1− β1) a+ β1 b

w̃ → (1− β1)f(a) + β1f(b)

w → f−1(w̃)

The error e+t corresponds to:

e+t = f−1
(
(1− β1) f(a) + β1 f(b)

)
−
(
(1− β1) a+ β1 b

)
= f−1(w̃)− v = w − v.
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Figure C.1: Bounding the error for two cases: (left) a < b and (right) a > b.

Note here that since f is a strictly concave function, the definitions of w̃ and

v directly imply w̃ < f(v). Because f−1 is monotonically increasing, it follows

that w < v, which yields |e+t | = v − w.

In both graphs of Figure C.1, besides the mapping function f(x), three

more functions are plotted: g0(x), g1(x), and g2(x). These three functions

are all linear functions passing through the point
(
a, f(a)

)
. The function

g0(x) has derivative f
′(a), while g2(x) has derivative f

′(b). The function g1(x)

additionally passes through the point
(
b, f(b)

)
, giving it the derivative

(
f(a)−

f(b)
)
/(a− b).

As illustrated by the figure, g1(v) = w̃ and g−1
1 (w̃) = v. Furthermore, for

x between a and b the following holds (in both cases):

g0(x) ≥ f(x) ≥ g1(x) ≥ g2(x).

And, equivalently:

g−1
0 (x) ≤ f−1(x) ≤ g−1

1 (x) ≤ g−1
2 (x).

We bound |e+t | = v − w by using a lower bound w− for w and an upper

bound v+ for v. Specifically, we define w− .
= g−1

0 (w̃) and v+
.
= g−1

2 (w̃), and

can now bound the error as follows: |e+t | ≤ v+ − w−. Next, we compute an

expression for the bound in terms of a, b, and f .

First, note that for the derivatives of g0 and g2 the following holds:

g′0(x) = f ′(a) =
f(a)− w̃

a− w− ; g′2(x) = f ′(b) =
f(a)− w̃

a− v+
.
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From this it follows that:

w− =
w̃ − f(a)

f ′(a)
+ a ; v+ =

w̃ − f(a)

f ′(b)
+ a .

Using this we rewrite our bound as:

v+ − w− =
w̃ − f(a)

f ′(b)
− w̃ − f(a)

f ′(a)

=

(
1

f ′(b)
− 1

f ′(a)

)(
w̃ − f(a)

)
=

(
1

f ′(b)
− 1

f ′(a)

)(
(1− β1)f(a) + β1f(b)− f(a)

)
= β1

(
1

f ′(b)
− 1

f ′(a)

)(
f(b)− f(a)

)
.

Recall that f(x)
.
= c ln(x+ γk) + d. The derivative of f(x) is:

f ′(x) =
c

x+ γk
.

Substituting f(x) and f ′(x) in the expression for the bound gives:

v+ − w− = β1

(
b+ γk

c
− a+ γk

c

)(
c ln(b+ γk) + d−

(
c ln(a+ γk) + d

))
= β1(b− a)

(
ln(b+ γk)− ln(a+ γk)

)
= β1(a− b)

(
ln(a+ γk)− ln(b+ γk)

)
= β1(a− b) ln

(
a+ γk

b+ γk

)
= β1(a− b) ln

(
a− b

b+ γk
+ 1

)
.

Using the definitions of a and b, the results for the bound for e+t :

|e+t | ≤ v+ − w− ≤ β1

(
Q+

t (St, At)− Û+
t

)
ln

(
Q+

t (St, At)− Û+
t

Û+
t + γk

+ 1

)
. (C.21)

Definition (C.6) can be written as:

Û+
t

.
= Q+

t (St, At) + β2

(
U+
t −Q+

t (St, At)
)

(C.22)

yielding:

Q+
t (St, At)− Û+

t = Q+
t (St, At)−

(
Q+

t (St, At) + β2

(
U+
t −Q+

t (St, At)
))

= β2

(
Q+

t (St, At)− U+
t

)
.
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Substituting this in (C.21) gives:

|e+t | ≤ β1 β2

(
Q+

t (St, At)− U+
t

)
ln

(
β2

(
Q+

t (St, At)− U+
t

)
Û+
t + γk

+ 1

)
.

Let us define c+t as:

c+t
.
=
(
Q+

t (St, At)− U+
t

)
ln

(
β2

(
Q+

t (St, At)− U+
t

)
Û+
t + γk

+ 1

)
.

Hence, |e+t | ≤ β1 β2 c
+
t . Substituting maximum bound of |e+t | and (C.22) in

(C.19), we get:

Q+
t+1(St, At) = Q+

t (St, At) + β1 β2

(
U+
t −Q+

t (St, At) + c+t

)
(C.23)

with c+t going to zero if β2 goes to zero, which concludes this part of the proof.
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