
Imperial College London

Department of Computing

Abstractions and performance

optimisations for finite element methods

Author:
Tianjiao Sun

Supervisors:
Prof Paul H J Kelly

Dr David Ham

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

December 14, 2021

Declaration

I herewith certify that all material in this dissertation which is not my own
work has been properly acknowledged.

Tianjiao Sun

1

Abstract

Finding numerical solutions to partial differential equations (PDEs) is an
essential task in the discipline of scientific computing. In designing software
tools for this task, one of the ultimate goals is to balance the needs for gen-
erality, ease to use and high performance. Domain-specific systems based
on code generation techniques, such as Firedrake, attempt to address this
problem with a design consisting of a hierarchy of abstractions, where the
users can specify the mathematical problems via a high-level, descriptive
interface, which is progressively lowered through the intermediate abstrac-
tions. Well-designed abstraction layers are essential to enable performing
code transformations and optimisations robustly and efficiently, generating
high-performance code without user intervention.

This thesis discusses several topics on the design of the abstraction layers
of Firedrake, and presents the benefit of its software architecture by provid-
ing examples of various optimising code transformations at the appropriate
abstraction layers. In particular, we discuss the advantage of describing the
local assembly stage of a finite element solver in an intermediate represen-
tation based on symbolic tensor algebra. We successfully lift specific loop
optimisations, previously implemented by rewriting ASTs of the local assem-
bly kernels, to this higher-level tensor language, improving the compilation
speed and optimisation effectiveness.

The global assembly phase involves the application of local assembly
kernels on a collection of entities of an unstructured mesh. We redesign
the abstraction to express the global assembly loop nests using tools and
concepts based on the polyhedral model. This enables us to implement
the cross-element vectorisation algorithm that delivers stable vectorisation
performance on CPUs automatically. This abstraction also improves the
portability of Firedrake, as we demonstrate targeting GPU devices trans-
parently from the same software stack.

2

Dedication

To Toby, my source of strength and purpose.

3

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof Paul H J
Kelly and Dr David Ham, for their expertise, enthusiasm, vision and gener-
ous support throughout my study. I always know that I can rely on their
guidance whenever I need it. They lead the research endeavour with such
high standards and integrity that I am sure will benefit me for years to come,
and for that, I am deeply grateful.

Special thanks to Lawrence Mitchell for his tremendous help in steering
my research direction, and for being a reliable source of expert knowledge
through the project. His extraordinary productivity is something that I
might never attain, but it will always motivate me to strive for doing better.

I am thankful to my fellow developers of the Firedrake project: Miklós
Homolya, Andrew McRae and Thomas Gibson, for their help and encour-
agement in my research journey. A significant part of my research is inspired
by the works of Fabio Luporini, who is always there to share with me his
ideas and advice. It has been my pleasure to be part of this team.

I had the privilege to interact and work with outstanding researchers in
our discipline: J. Ram Ramanujam, Andreas Klöckner, Kaushik Kulkarni.
I have benefited tremendously from their thoughts and experiences, and I
look forward to continuing our collaboration in the future.

I have been fortunate to share the same office on the first floor of William
Penney Laboratory with great colleagues and friends: Emanuele Vespa,
Matthew Taylor and Eduardo Carvalho. I will always fondly recall the
time we shared, but I am also certain that we will be in touch.

Special thanks to my examiners, Dr Gerard Gorman and Dr Gihan Mu-
dalige, for their kind guidance and encouragement during the Viva.

My funding was provided by the Engineering and Physical Sciences Re-
search Council (EPSRC) through the Centre for Doctoral Training in High
Performance Embedded and Distributed Systems (HiPEDS).

4

Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise in-
dicated, its contents are licensed under a Creative Commons Attribution
NoDerivatives 4.0 International Licence (CC BY-ND).

Under this licence, you may copy and redistribute the material in any
medium or format for both commercial and non-commercial purposes. This
on the condition that; you credit the author and do not distribute modified
versions of the work.

When reusing or sharing this work, ensure you make the licence terms
clear to others by naming the licence and linking to the licence text.

Please seek permission from the copyright holder for uses of this work
that are not included in this licence or permitted under UK Copyright Law.

5

Contents

1 Introduction 8
1.1 Thesis statement . 9
1.2 Technical contributions . 9
1.3 Dissemination . 10
1.4 Thesis outline . 10

2 Background and related work 12
2.1 Finite element methods . 12

2.1.1 Variational formulation 12
2.1.2 Finite element discretisation 14
2.1.3 Local and global assembly 15
2.1.4 The matrix-free methods 22

2.2 Automating PDE solvers . 24
2.3 Firedrake overview and internal abstractions 25
2.4 Chapter summary . 27

3 Local assembly as tensor contractions 28
3.1 Local assembly as tensor contraction 28
3.2 Tensor expression rewrites in GEM 30

3.2.1 Essential GEM concepts 31
3.2.2 Argument factorisation algorithm 32

3.3 Experimental evaluation . 39
3.3.1 Experimental setup . 39

3.4 Compilation time . 41
3.5 Reducing floating-point operations 43

4 Vectorisation for global assembly of matrix-free operators 46
4.1 Motivation and related works 46
4.2 Preliminaries . 48

4.2.1 Local assembly and TSFC 49
4.2.2 Global assembly and PyOP2 51

4.3 Vectorisation . 54
4.3.1 Cross-element vectorisation and Loopy 54

6

4.4 Compiler vector extensions 59
4.5 Performance Evaluation . 61

4.5.1 Experimental setup . 61
4.5.2 Experimental results and discussion 65
4.5.3 Compiler comparison and vector extensions 70
4.5.4 Vectorisation speed-up 71
4.5.5 Achieved peak performance 72
4.5.6 Tensor-product elements 72

4.6 Chapter summary . 73

5 Global assembly of matrix-free operators on GPUs 74
5.1 Motivation and related works 74
5.2 Implementation . 76

5.2.1 Implementation on CUDA and OpenCL 76
5.2.2 Atomic addition . 79
5.2.3 Single element per thread parallelisation 80
5.2.4 Global constants . 83

5.3 Performance evaluation . 84
5.3.1 Experimental setup . 84
5.3.2 Experimental results and discussion 85
5.3.3 Limitations . 90

6 Summary and outlook 91

Appendices 95

A Operators for experimental evaluation 96

7

Chapter 1

Introduction

Partial differential equations (PDEs) are essential tools to analyse problems
in diverse areas in science and engineering, such as fluid dynamics, electro-
magnetism, wave propagation and quantum mechanics. Because analytical
solutions of PDEs only exit for very few problems of real-world interests,
numerical methods, such as finite element methods, finite difference meth-
ods and finite volume methods, are critical to applications in research and
industry. Compared with other numerical methods, finite element methods
provide great flexibility in tailoring the discretisation scheme for specific
problems and physical domains. One major downside, however, is the com-
plexity in delivering high-performance implementations on modern comput-
ing hardware, which usually requires bespoke hand-tuning, specific to the
hardware as well as the application at hand. This challenge in achieving rea-
sonable performance for a wide range of applications limits the adaptation
of novel ideas in research in finite element methods.

Domain-specific languages (DSLs) expose a limited set of primitives de-
signed for a particular set of applications to facilitate rapid development and
exploration. By restricting the application space, a domain-specific compiler
could exploit specialised knowledge in performing transformations that are
difficult for general-purpose compilers. In the realm of software systems for
solving PDEs using finite element methods, there have been successful ex-
amples, such as FEniCS [Logg et al., 2012] and Firedrake [Rathgeber et al.,
2015], that employ the design of a multi-layered software stack. The users
define the mathematical problems in high-level interfaces, which are low-
ered through the stack, eventually generating efficient low-level code close
to the hardware. At each layer of such a toolchain, a carefully designed
intermediate representation is needed to enable specific optimisations and
transformations that are more easily realised at the correct levels of ab-
straction. Compared with a monolithic design, a multi-layered design has
the advantage of providing a clean separation of concerns that allows experts
in different domains to operate in different levels of abstraction.

8

1.1 Thesis statement

Well designed abstraction layers for the local and global assembly computa-
tions enable effective performance optimisations for finite element solvers.

1.2 Technical contributions

Firedrake is an automated system for the portable solution of PDEs using
the finite element method. Firedrake is a publicly available, open-source
project that is popular among researchers in numerical mathematics for its
versatility and ease to use. This thesis describes the intermediate represen-
tations for the local and global assembly computations in Firedrake, and
how these representations are exploited and improved to facilitate specific
code optimisations. The technical contributions of this thesis are divided
into three parts:

• Improvement to local assembly kernel optimisations by raising the ab-
straction level to perform loop transformations (Chapter 3).

The local assembly process in finite element methods computes the
contribution of the global stiffness matrices and load vectors from a
single element in the domain. Such computations can be described in
a symbolic tensor language. We show that loop optimisations, pre-
viously implemented as manipulation of the Abstract Syntax Trees
(ASTs) of the local assembly kernels, can be lifted to tensor computa-
tions refactorisation in this language, resulting in a more efficient and
robust implementation.

• Effective automated vectorisation of the global assembly of matrix-free
operators (Chapter 4).

The global assembly process computes the global stiffness matrices and
load vectors by aggregating the contributions from all the elements
in the domain. By introducing a polyhedral-like abstraction of loop
nests to represent the global assembly computations, we successfully
implemented the cross-element vectorisation algorithm that delivers
robust, portable vectorisation performances on modern CPUs.

• GPU code generation for the global assembly of matrix-free operators
(Chapter 5).

We show that the abstraction of the loop nests, mentioned above,
facilitates targeting GPU devices in Firedrake by generating CUDA
and OpenCL kernels from the same high-level description of the global
assembly computations.

9

1.3 Dissemination

The work described in this thesis has been made available in open-source
software packages, and disseminated in the following publications and con-
ference presentations:

• Loop fusion for finite element assembly in PyOP2. FEniCS Workshop.
Luxembourg, 2017.

• Automated cross-element vectorization in Firedrake. FEniCS Work-
shop. Oxford, UK, 2018.

• Automated cross-element vectorization in Firedrake. Firedrake Work-
shop. London, UK, 2018.

• Automated cross-element vectorization in Firedrake. Dagstuhl Semi-
nar on Loop Optimization. Schloss Dagstuhl, Germany, 2018.

• Automated cross-element vectorization in Firedrake. Workshop on
Compilers for Parallel Computing, Dublin, Ireland, 2018.

• Firedrake: Automated High Performance Finite Element Simula-
tion. SIAM Conference on Computational Science and Engineering.
Spokane, USA, 2019.

• Performance Optimisation of Finite Element Assembly in Fire-
drake. SIAM Conference on Computational Science and Engineering.
Spokane, USA, 2019.

• SIMD vectorization for matrix-free finite element methods. Intel Ex-
treme Performance Users Group. Web seminar, 2019.

• [Sun, Mitchell, Kulkarni, Klöckner, Ham, and Kelly, 2020]. A study
of vectorization for matrix-free finite element methods. International
Journal of High Performance Computing Applications 34(6): 629-644.

1.4 Thesis outline

This thesis describes investigations into improving the abstractions of the
software stack of Firedrake. Chapter 2 introduces the finite element method
and the Firedrake software stack, with the emphasis on how the compo-
nents are organised into different abstraction layers. Chapter 3 describes
our approach to perform loop optimisations on local assembly kernels in the
higher abstraction layer based on tensor algebra. Chapter 4 describes the
cross-element vectorisation algorithm, which achieves reliable and effective
vectorisation for the global assembly of matrix-free operators on CPUs. This
algorithm is enabled by integrating with Loopy [Klöckner, 2014] in Firedrake

10

as a new abstraction layer to represent the global assembly computation. We
show that this representation provides a pathway to target GPU devices in
Firedrake in Chapter 5. Each of the above chapters includes a section on
conducting experimental evaluations on our approaches. Finally, Chapter 6
concludes this thesis and discusses possible future research directions.

11

Chapter 2

Background and related work

In this chapter, we provide the relevant background materials to the topics
covered in subsequent chapters. These include the background on the finite
element method, a review of relevant software tools, and a summary of the
software architecture of Firedrak.

2.1 Finite element methods

The finite element method (FEM) is one of the most extensively used nu-
merical methods to solve real-world science and engineering problems that
are governed by partial differential equations. This popularity is primarily
due to its ability to handle complex geometries and generalisability to a
wide range of problems. In this section, we review key mathematical and
computational concepts of finite element methods that are relevant to the
rest of this thesis.

2.1.1 Variational formulation

We follow the notation introduced by Logg et al. [2012] and Luporini et al.
[2017]. Consider the symmetric positive-definite Helmholtz equation of some
unknown field u : Ω→ R defined on a domain Ω ⊂ Rd with boundary ∂Ω:

∇2u+ u = f in Ω, (2.1)

where f is a given function defined on Ω. We prescribe a Dirichlet boundary
condition on ΓD ⊆ ∂Ω and a Neumann boundary condition on ΓN ⊆ ∂Ω,
such that ΓD + ΓN = ∂Ω:

u = u0 on ΓD,

∂nu = g on ΓN ,
(2.2)

where u0 is a given function and ∂nu denotes the partial derivative of u in
the normal direction.

12

To obtain the variational or weak formulation of Equation (2.1), we
multiply (2.1) by a suitable test function v:∫

Ω
v∇2u+ uv dx =

∫
Ω
fv dx. (2.3)

If we let the test function v vanish on the Dirichlet boundary ΓD, after
integrating the left-hand side by parts and applying the divergence theorem,
we obtain ∫

Ω
∇u · ∇v + uv dx−

∫
ΓN

gv ds =

∫
Ω
fv dx. (2.4)

Note that for Equation (2.4) to be well-defined, we only require the first
derivatives (defined weakly) of u and v to be square-integrable on Ω, that is
to say, u and v must be functions from the Sobolev space H1(Ω).

After moving the unknown terms to the left-hand side and other terms
to the right-hand side, we obtain the variational or weak formulation of
Equation (2.1):

Find u ∈ V such that∫
Ω
∇u · ∇v + uv dx =

∫
Ω
fv dx+

∫
ΓN

gv ds ∀v ∈ V̂ ,
(2.5)

where V̂ , the test function space, is defined as

V̂ = {v ∈ H1(Ω) : v = 0 on ΓD}, (2.6)

and V , the trial function space, is defined by shifting V̂ by the Dirichlet
boundary condition

V = {v ∈ H1(Ω) : v = u0 on ΓD}. (2.7)

It is worth noting that the different types of boundary conditions are
treated in different ways: the Neumann boundary conditions become part
of the variational formulation, whereas the Dirichlet boundary conditions
are imposed by restricting the trial function space.

More abstractly, a variational formulation of a partial differential equa-
tion can be expressed as:

Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V̂ ,
(2.8)

where a(·, ·) is a bilinear form (i.e. a bilinear map V × V̂ → R), L(·) is a
linear form (i.e. a linear map V̂ → R), V and V̂ are the suitably chosen
function spaces of the trial and test functions.

13

2.1.2 Finite element discretisation

When using finite element methods to solve partial differential equations nu-
merically, we discretise the function spaces to find an approximate solution.
This approach contrasts with the finite difference methods, which discretises
the differential operators in the equations.

Let Vh be a finite-dimensional subspace of V with dimension N . Assum-
ing V = V̂ , using Galerkin projection (see, for example, [Brenner and Scott,
2007]), we can find the approximate solution uh of Equation (2.8) by solving
the following projection equation:

Find uh ∈ Vh such that

a(uh, vh) = L(vh) ∀vh ∈ Vh.
(2.9)

To estimate the error of this approximate solution, we recall the Galerkin
orthogonality theorem, which states that the error function, defined as εh =
u− uh, is always orthogonal to the approximate function space Vh:

a(εh, w) = 0 ∀w ∈ Vh. (2.10)

Furthermore, if we define the energy norm of a space V as

‖v‖E =
√
a(v, v) ∀v ∈ V, (2.11)

then the energy norm is guaranteed to be minimised by uh:

‖u− uh‖E = min{‖u− v‖E : v ∈ Vh}. (2.12)

That is to say, uh is the best approximation in the subspace Vh to the exact
solution u of the original equation, with the error measured according to the
energy norm.

Let {φi}Ni=1 be the set of basis functions spanning Vh. Then uh ∈ Vh can
be expressed as a linear combination of φi:

uh =
N∑
i=1

uiφi. (2.13)

For a fixed set of basis functions, we can use the vector of the basis co-
efficients u = (u1, · · · , un) as a equivalent representation of u for simplicity.
Substituting each basis function φi as the test function v in Equation (2.9),
we can rewrite (2.9) as the following linear system

Au = b, (2.14)

where the stiffness matrix A and load vector b are the linear algebra rep-
resentations of the bilinear operator a and linear operator L. The elements
of A and b are computed as:

Aij = a(φi, φj), i, j = 1 . . . N,

bi = L(φi), i = 1 . . . N.
(2.15)

14

In Firedrake, the users define the equations and discretisations in Uni-
fied Form Language (UFL) [Alnæs et al., 2014], a domain-specific language
embedded in Python. Listing 2.1 shows an excerpt of UFL code to define
and solve the variational form of the Helmholtz equation (2.4) in Firedrake.
Here the domain is a 10× 10 triangulation of a unit square. We choose the
first-order Lagrange element as our approximation space (i.e. the space of
linear polynomials). UFL is a symbolic language that allows the users to
define the problems in a high-level, intuitive interface close to mathematics.
Firedrake, as explained in the following sections, computes the stiffness ma-
trix and load vector corresponding to the discretised equation, and leverages
the solvers provided by the PETSc library [Balay et al., 2017] to solve the
resulting linear systems.

Listing 2.1: Solving the variational form of the Helmholtz equation in Fire-
drake on a unit square. The definition of f, the given function in Equation
(2.1) is omitted for simplicity. The numerical solution is assigned to u.

1 mesh = UnitSquareMesh (10, 10)

2 V = FunctionSpace(mesh , "Lagrange", 1)

3 u = TrialFunction(V)

4 v = TestFunction(V)

5 a = (dot(grad(v), grad(u)) + v*u) * dx

6 L = f * v * dx

7 u = Function(V)

8 solve(a, L, u)

2.1.3 Local and global assembly

The computation of matrix A and vector b according to Equation (2.15) is
referred to as the assembly of A and b. Let T be a tessellation of the domain
Ω, and N be the dimension of the test and trial function space (N is usually
at least 106 in real applications), a naive way to compute A according to
(2.15) is shown in Algorithm 1.

Algorithm 1 Naive assembly algorithm of a bilinear form a according to
its definition using the basis functions.

for i← 1, . . . , N do
for j = 1, . . . , N do

Aij ← a(φi, φj)
end for

end for

However, this algorithm does not take advantage of the sparsity structure
of matrix A. Because the basis functions in the chosen function space of
finite element methods only have local support, we know that a(φi, φj) = 0
for a pair of basis functions φi and φj , unless they have support in the same
element K ∈ T .

15

Therefore, a more efficient algorithm to assemble A is by iterating over
all the elements in the domain and accumulate the contribution from each
element, skipping all pairs of basis functions that do not have support on
the same element: ∫

Ω
a(φi, φj) dx =

∑
K∈T

∫
K
a(φi, φj) dx. (2.16)

Let {φKi }
Nl

i=1 be the subset of {φi}Ni=1 that are supported on the element K,
we can define the dense matrix AK associated with element K as

AK
ij = aK(φKi , φ

K
j), (2.17)

where

aK(u, v) =

∫
K
∇u · ∇v + uv dx (2.18)

is the original bilinear form a restricted to K.
This approach, adapted from [Logg et al., 2012], is described in Al-

gorithm 2. The number function m(K, i) enables identifying a local basis
function φKi as the local restriction of the global basis function φm(K,i). This

is achieved by mapping the local numbering i of the basis function φKi to
the global numbering m(K, i) of the same basis function.

Algorithm 2 Global assembly algorithm by iterating over all elements in
the domain and accumulating local contributions, taking advantage of the
property that the basis functions have local support.

A← 0
for all K ∈ T do

Compute AK

for i = 1, . . . , Nl do
for j = 1, . . . , Nl do

Am(K,i),m(K,j) ← Am(K,i),m(K,j) +AKij
end for

end for
end for

We can identify two parts of the overall assembly process of matrix A:
we name the computation of local matrix AK according to Equation (2.17)
local assembly, whereas the process of accumulating local contributions to
the global matrix A is named global assembly.

Local assembly as tensor contraction

In Firedrake, the local assembly process is accomplished by the Two-Stage
Form Compiler (TSFC) [Homolya et al., 2018]. Abstractly, TSFC takes a

16

differential form (either a bilinear form or a linear form) as the input and
generates the code that computes a local tensor representing the contribu-
tion of the global stiffness matrix or load vector from a given element in
the domain. This generated routine is often called a local assembly kernel.
Below, we highlight some of the essential computational aspects of local
assembly kernels.

Numerical integration with quadrature rules As shown in Equation
(2.18), a local assembly kernel computes entries of the local tensor by eval-
uating integrals. Because symbolic integration is only feasible in very few
cases, such integrals often need to be evaluated numerically. The general
method that TSFC generates to compute integrals is by applying numerical
quadratures.

A numerical quadrature rule comprises of a set ofNq quadrature points at

coordinates {Xq}
Nq

q=1 and a corresponding set of quadrature weights {wq}
Nq

q=1.
To approximately evaluate the integral of a function f over domain D, we
can write the integral as the sum of the function values at the quadrature
points, weighted by the quadrature weights:∫

D
f dx ≈

Nq∑
q=1

f(Xq)wq. (2.19)

If f is a polynomial, the integral can be computed precisely (up to ma-
chine precision) if Nq is large enough. TSFC chooses the quadrature rule to
evaluate the integral based on the expression to be integrated and discreti-
sation function space. Users can overwrite this decision through runtime
parameters passed to TSFC.

Reference space and pull-back In order to construct a global function
space, i.e. one that is defined on the whole domain Ω, it is common to build a
single reference finite element function space, defined on a reference element
K̂, and maps it to every element in Ω through coordinate transformations.

For each element K ∈ Ω, let the mapping FK : K̂ → K be the trans-
formation from {x̂}, the coordinate system of the reference element K̂, to
{x}, the coordinate system of the element K. For simplicial shapes (e.g.
triangles and tetrahedra), this mapping is an affine transformation.

The pull-back associated with the transformation FK , F ∗ is defined as

F ∗(v)(x̂) = v(FK(x̂)) ∀v ∈ VK , (2.20)

where VK is the global function space restricted to K. In other words, the
pull-back maps a function in the global function space to a function in the
reference function space:

F ∗(v) := v ◦ FK . (2.21)

17

We continue to follow the example of assembling the bilinear form of
the Helmholtz operator. Let {Φi}Nl

i=Nl
be the set of basis functions in the

reference space. The basis functions of the global function space, {φKi }
Nl
i=Nl

,
can be transformed to the reference space by applying the reverse of the
pull-back:

φKi = Φi ◦ F−1
K . (2.22)

We can also obtain the spatial gradients of the basis functions by apply-
ing the chain rule to (2.22):

∇φKi = JTK∇̂Φi ◦ F−1
K , (2.23)

where JK = ∇̂FK is the Jacobian of the transformation of the coordinate
system. The operator ∇̂ indicates differentiation with respect to the coor-
dinates of the reference element, {x̂}.

The measure of the integral also needs to be scaled by |det(Jk)|. Finally,
we can rewrite the integral in an arbitrary element K in Equation (2.17) as
an integral in the reference element K̂:

AK
ij =

∫
K̂

(
JTK∇̂Φi · JTK∇̂Φj + ΦiΦj

)
|det(JK)| dx̂. (2.24)

Using a suitable quadrature rule {Xq, wq}
Nq

q=1, the above integral can be
evaluated numerically as the following summation:

AK
ij =

Nq∑
q=1

wq

(
J−TK (Xq)∇̂Φi(Xq) · J−TK (Xq)∇̂Φj(Xq) + Φi(Xq)Φj(Xq)

) ∣∣det(JK)
∣∣

(2.25)

Tensor contraction and GEM In Equation (2.25), terms such as Φi(Xq)
and ∇̂Φi(Xq) are the evaluation of the reference basis functions and their
gradients at quadrature points in the reference element. These expressions
do not depend on the cell K and can be pre-computed separately. TSFC
relies on FIAT [Kirby, 2004] and FInAT [Homolya et al., 2017] to compute
these tensors, called tabulations, for a given reference function space and
quadrature rule.

FIAT supports a wide range of finite element discretisations of arbitrary
polynomial degrees. Given the coordinates of some points in the reference
element, FIAT computes the evaluations of the basis functions and their
gradients at these points. FInAT performs similar functions but also pre-
serves the internal structure of the finite elements (e.g. for tensor product
elements, which are constructed by composing discretisations of lower phys-
ical dimensions, the tabulation tensors can be written as tensor products of

18

tensors of lower ranks). These structures can be exploited for optimisations
in code generation.

To simplify the notation and to highlight the free indices in Equation
(2.25), we write these tabulation tensors as

Φiq = Φi(Xq),

∇Φikq =
∂Φi

∂x̂k
(Xq).

(2.26)

The Jacobian of the coordinate transformation at each quadrature point
can be written as the tensor

JKikq =
∂xi
∂x̂k

(Xq), i, k = 1 . . . d, (2.27)

and the inverse of the Jacobian can be written as the tensor

J−1K ikq =
∂x̂i
∂xk

(Xq) , i, k = 1 . . . d, (2.28)

with d the spatial dimension.
Rearranging the summations and expanding the dot product, we can

write Equation (2.25) as the following scalar expression that computes each
entry of the matrix AK :

AK
ij =

Nq∑
q=1

d∑
α=1

d∑
β=1

d∑
γ=1

wq

(
J−1K αβq∇ΦiβqJ

−1
K αγq∇Φjγq + ΦiqΦjq

) ∣∣det(JKq)
∣∣ .

(2.29)
With the exception of computing the expression

∣∣det(JKq)
∣∣, Equation

(2.29) is an ordinary tensor contraction. TSFC incorporates GEM, an in-
termediate representation for tensor algebra, to express local assembly com-
putations as tensor contractions. In GEM, expressions are represented as
directed acyclic graphs (DAGs) on tensor nodes. We discuss the optimisa-
tions of the representations in GEM in more depth in Chapter 3.

Except for the Jacobian tensors JK and J−1K , which need to be computed
from xK, the coordinates of each element K in the domain, all other tensors
in (2.29) are compile-time constants. We note that there are many possible
orders to evaluate such tensor contraction expressions as multi-dimensional
loops. One possible approach is listed in Algorithm 3. Note that in the
cases of simplicial geometry, since the coordinate transformation is constant
within each cell, JK and J−1L are independent of the quadrature number q,
and can be hoisted out of the q loop.

Arguments and coefficients In general, a multi-linear differential form
could also depend on functions other than the basis functions of the test and

19

Algorithm 3 Local assembly algorithm for the Helmholtz operator

function Helmholtz(xK)
Define Φ,∇Φ, w . Constant tensors
AK ← 0
for q = 1, . . . , Nq do

Compute JK from xK

Compute J−1K from JK

Compute
∣∣det(JK)

∣∣ from JK

for i, j = 1, . . . , Nl do
for α, β, γ = 1, . . . , d do

AKij ← AKij+
(
wqJ

−1
K αβq∇ΦiβqJ

−1
K αγq∇Φjγq + ΦiqΦjq

) ∣∣det(JK)
∣∣

end for
end for

end for
return AK

end function

Independent of q on
simplicial geometry

trial function spaces. These functions are potentially members of function
spaces other than the test and trial function spaces.

In the UFL terminology, the test and trial (basis) functions are called
arguments, whereas other arbitrary functions in a multi-linear differential
form are called coefficients. A multi-linear form is always linear with re-
spect to its arguments, but can be non-linear with respect to its coefficients.
Consider the weighted Laplacian operator L in a heat transform equation,
defined as

L(u) = −∇ · (κ∇u), (2.30)

where κ : Ω → R is a function that usually represent the thermal conduc-
tivity of the object. The bilinear form of the operator L is

a(u, v) =

∫
Ω
κ∇u · ∇v dx, (2.31)

where u is the trial function and v is the test function. In the above equation,
u and v are the arguments of a(·, ·) and κ is a coefficient.

In order to assemble a multi-linear form with coefficients, TSFC requires
the evaluation of the coefficient functions at all the quadrature points. As-
suming κ is a member of the function space U with basis functions {ψi}Ni=1,
the restriction of κ on an element K, κK , can be written as the weighted
sum of the basis functions:

κK(x) =

Nl∑
i

κKiψi(x), (2.32)

20

where κK is the vector of the weights of the basis functions.
We follow the same method applied to the arguments to evaluate κK

in the reference element. Let {Ψi}Nl
i=1 be basis functions of the reference

function space, and κ̂ be the pull-back of κK in the reference element, the
value of κ̂ at a quadrature point q is

κ̂q =

Nl∑
i=1

κKiΨiq, (2.33)

with the tabulation tensor Ψ defined similarly to Equation (2.26), but using
{Ψi}Nl

i=1 instead of {Φi}Nl
i=1 as the basis functions.

To assemble forms with coefficients using numerical quadratures, we re-
quire the evaluations of the coefficients at the quadrature points. This can
be computed from the input tensor κK as shown in (2.33).

The local assembly of the weighted Laplacian operator in Equation (2.31)
is computed as the following tensor contraction:

AK
ij =

Nq∑
q=1

Nl∑
i=1

κKiΨiq

d∑
α=1

d∑
β=1

d∑
γ=1

wqJ
−1
K αβq∇ΦiβJ

−1
K αγq∇Φjγ

∣∣det(JKq)
∣∣ .

(2.34)
The tabulation tensor Ψiq can be obtained from FIAT and FInAT at compile
time, whereas the tensor κKi needs to be passed in as additional parameters
to the local assembly routine.

In summary, the local assembly of differential forms with coefficients re-
quires additional inputs to the kernel and introduces more reduction indices
in the tensor contraction computation.

Global assembly as parallel loops over unstructured meshes

During the global assembly phase, the local contribution from each mesh
entity, computed by the local assembly kernel generated by TSFC, is accu-
mulated into the global data structures. This is illustrated in Algorithm 2.
In Firedrake, the global assembly stage is handled by PyOP2 [Rathgeber
et al., 2012]. The abstraction of PyOP2 is the programming model of par-
allel computations over entities on an unstructured mesh. Mesh entities are
modelled as sets of integers, and the connections of the entities are mod-
elled as maps between integer sets, representing the mesh topology. During
global assembly, PyOP2 is responsible for iterating over the mesh entities,
marshalling data in and out of the local assembly kernels and handling syn-
chronisations among parallel compute nodes.

PyOP2 programs are organised as parallel loops, or parloops. A
parloop specifies a computational kernel, a set of mesh entities over which
the kernel is applied, and all the input and output data of the kernel. The
data are associated with the mesh entities: each piece of data can be directly

21

defined on a mesh entity, or indirectly accessed through a mapping defined
on mesh entities.

Date objects also carry access access descriptors, such as WRITE, READ,
INC, which indicates their access pattern in the kernel, to facilitate schedul-
ing and lazy evaluation of the parloops.

As an example, the parloop for the global assembly of the bilinear form
of the Helmholtz operator, discretised using first order Lagrange finite ele-
ment on a triangular mesh is:

Parloop(helmholtz , cells , A(cell2vert , INC), coords(cell2vert , READ))

helmholtz is the local assembly kernel in Algorithm 3, generated by
TSFC. cells is the set of all triangles in the mesh. A is the global (sparse)
matrix that holds the global assembly result. coords is the global data
structure that holds the coordinates of the vertices of the triangles. These
are needed in computing the Jacobian of the coordinate transformation from
a triangle in the mesh to the reference element. The mapping cell2vert

maps each triangle to its vertices and provides the indirect access from a
triangle to the coordinates of its vertices, stored in coords. Because the
basis functions of first-order Lagrange finite element on triangles are defined
only on the vertices, cell2vert is also used to indirectly access A in this
parloop.

When performing the computation, PyOP2 iterates over the set cells,
gathers the input data using the access mappings into local (dense) arrays,
invokes the computation kernel with the input data, and finally, updates the
(sparse) global data structure using the access mappings with the results
produced by the kernel. In our example, these local arrays correspond to
the tensors AK and xK respectively in Algorithm 3.

2.1.4 The matrix-free methods

Computationally, the assembly of stiffness matrices becomes more expensive
for higher-order methods, in terms of both space and time. One observation
is that the stiffness matrices are only needed to solve the linear systems
representing the differential forms, and are not otherwise required. The
matrix-free method leverages the property that when solving linear systems
using Krylov methods, it is sufficient to be able to compute the result of
multiplying the stiffness matrix with an arbitrary vector. Since the entries
to the stiffness matrices themselves are usually not required1, the explicit
assembly of the matrices can be avoided.

Compared with assembling the stiffness matrices, matrix-free methods
perform more computation per matrix-vector product, but benefit from
much lower startup cost and smaller memory footprint. These methods

1Some preconditioners such as algebraic multigrid, however, do require the entries of
the stiffness matrices.

22

are usually more suitable for modern hardware because improvement in the
memory bandwidth has generally lagged that of the advancement in com-
puting power in high-performance computing systems.

Consider a bilinear form a(·, ·) : V × V → R and the sparse matrix A
that represents the action of a(·, ·) in a discretised function space U . An
arbitrary function x ∈ U can be written as a weighted sum of the basis
functions {φi}Ni=1 of U ,

x =
N∑
i=1

xiφi. (2.35)

The vector x = (x1, · · · , xN) is therefore the linear algebra representa-
tion of the function x. To solve the linear system Au = b with a matrix-free
method, we need to provide the solver with a routine that computes the
matrix-vector product Ax, given an arbitrary vector x. This product is also
called the action of the operator a on the function x.

According to the definition of A in (2.15), and making use of the linearity
of the operator a, Ax can be computed as

(Ax)i =
N∑
j=1

Aijxj =
N∑
j=1

a(φi, φj)xj

= a(φi,
N∑
j=1

xjφj) = a(φi, x).

(2.36)

Abstractly, the assembly of the action of a on x is the same as the
assembly of the one form ax ≡ a(·, x) : V → R. The function x is simply a
coefficient to the local assembly kernel.

In Firedrake, the users can switch to matrix-free approaches by config-
uring the solver options, without having to change the high-level problem
definitions. This is described in detail by Kirby and Mitchell [2018].

Putting all the concepts together, we arrive at the global assembly rou-
tine in Algorithm 4. We assume that the Jacobian is constant on each
element in the domain. Einstein notation is used in the tensor contraction
expressions for simplicity. The set of contracted indices is {α, β, γ, q, j}, and
the set of free indices is {i}. The algorithmic complexity of this routine is
therefore

NK ×N2
b ×Nq × d3, (2.37)

where NK is the number of elements in the domain, Nb is the number of basis
functions in the reference function space, Nq is the number of quadrature
points, and d is the dimension of the physical space.

23

Algorithm 4 Global assembly routine for the (matrix-free) action of the
Helmholtz operator, on a simplicial element. Einstein notation is used for
tensor contractions. T is the set of all elements in the domain. x, f , a are
the global arrays that hold the coordinates of the cell vertices, the input
function (expressed as weights of basis functions) and the output function
(expressed weights of basis functions). mx,mf ,ma are the mappings from
elements to their associated data entries in the global arrays.

function Helmholtz(T ,x,mx, f ,mf , a,ma)
Define Φ,∇Φ,Ψ, w . Constant tensors
for all K ∈ T do

xK ← xmx(K)

fK ← fmf (K)

Compute JK from xK

Compute J−1K from JK

Compute
∣∣det(JK)

∣∣ from JK

aKi ← wq

(
fKjΨjq

)(
J−1K αβq∇ΦiβqJ

−1
K αγq∇Φjγq + ΦiqΦjq

) ∣∣det(JK)
∣∣

ama(K) ← ama(K) + aK

end for
end function

Gather data for cell K

Jacobian computation

2.2 Automating PDE solvers

The development of high-performance PDE solvers is a challenging under-
taking, and over the years, many programming models and libraries have
been introduced to aid the programmers and improve performance portabil-
ity in the landscape of ever-changing CPUs and accelerators. These include
pragma based language extensions such as OpenMP [OpenMP Architecture
Review Board, 2018] and OpenACC [OpenACC Organization], as well as
embedded languages, such as SYCL [Khronos Group]. Library based so-
lutions such as Kokkos [Edwards et al., 2014], RAJA [Beckingsale et al.,
2019] and Thrust [Hoberock and Bell, 2010] offer higher level interfaces us-
ing generic programming.

Specialised tools have been developed in the domain of finding numer-
ical solutions to PDEs. Due to the simplicity of finite difference methods
(FDM), many projects using FDM adopt automated code generation to
generate optimised stencil kernels from a high level description of the com-
putation. Examples in this area include ExaStencils [Lengauer et al., 2014],
OpenSBLI [Jacobs et al., 2017] and Devito [Luporini et al., 2018]. Many
of these projects are domain-specific languages (DSLs) that are embedded
in a host language, with Python one of the popular choices. Beyond FDM
projects, other examples of DSLs and frameworks include OpenFOAM [The

24

OpenFOAM Foundation, 2018], which uses finite volume methods, PyFR
[Witherden et al., 2014], which uses flux reconstruction methods, and Dune
[Dedner et al., 2010] and Deal.II [Bangerth et al., 2007], which are object-
oriented C++ finite element packages.

In the realm of frameworks that support the finite element method, OP2
[Mudalige et al., 2012] facilitates the global assembly process with an ab-
straction for representing computations on an unstructured mesh. Since
FEM fundamentally relies on the theory of function spaces, some projects us-
ing FEM introduce high-level abstractions that match the underlying math-
ematical concepts and generate the local assembly kernels from a symbolic
representation of the PDE (in its variational form). In addition to Firedrake,
recent successful examples in this context include FEniCS [Logg et al., 2012]
and FreeFem++ [Hecht, 2012]. These software packages provide users with
high-level interfaces for fast implementation while relying on optimisations
and transformations in the code generation pipeline to generate efficient
low-level code. The challenge, as in all compilers, is to create appropri-
ate abstraction layers and apply optimisations that improve, or at least not
worsen, performance on a broad set of programs and hardware platforms.

2.3 Firedrake overview and internal abstractions

MPI

Firedrake
language

Unified Form
Language

CPU Future
arch.GPU

FIAT / FInAT TSFC compiler COFFEE AST
optimiserPETSc

PyOP2
interfaceparallel loopdata structures

Loopy
interface

computation
kernel

Variational
formulation of

PDEs

Local assembly
kernels

Global assembly
kernels

Parallel loops
over mesh

entities

Programming model
and abstractions

Figure 2.1: Simplified architecture diagram of the Firedrake software stack
and its abstraction layers. Components shared with FEniCS are coloured in
blue. Interfaces are coloured in red.

25

In this section, we give an overview of the software architecture of Fire-
drake, where the contributions described in this thesis are implemented and
released. Firedrake [Rathgeber et al., 2015] is an automated system for
the numerical solution of PDEs using the finite element method. One of
the main design goals of Firedrake is to allow users to define the problems
flexibly and intuitively while achieving high performance “out of the box”.
This goal motivates the design of the Firedrake system as various compo-
nents that are organised into a multi-layered software stack with well-defined
abstractions, providing the separation of concerns to domain specialists at
each abstraction layer, as shown in Figure 2.1. We describe some of the
components that are relevant to the work in this thesis below.

UFL

Firedrake and FEniCS [Logg et al., 2012] include the Unified Form Lan-
guage (UFL) [Alnæs et al., 2014] as the high-level interface in Python for
the users to define the variational formulation of the PDEs. In addition
to UFL, Firedrake also exposes Python constructs and functions for tasks
such as reading meshes from files, defining boundary conditions, specifying
discretisation schemes and configuring the numerical linear algebra solvers.
Firedrake relies on the DMPlex module [Knepley and Karpeev, 2009, Lange
et al., 2016] in PETSc for distributed mesh management.

TSFC

The Two-Stage Form Compiler (TSFC) [Homolya et al., 2018] is a form
compiler in Firedrake that automatically generates local assembly code for
evaluating finite element integrals derived from the given variational forms.
TSFC uses FIAT [Kirby, 2004] and FInAT [Homolya et al., 2017] to obtain
the tabulation tensors of basis functions (and their derivatives) at specified
quadrature points for the numerical computation of the integrals. Internally,
TSFC defines an intermediate representation named GEM to describe the
local assembly computation using symbolic tensor algebra. TSFC apply per-
formance optimisations to this GEM representation by rewriting the tensor
expressions before generating low-level code.

COFFEE

COFFEE [Luporini et al., 2015] is a domain-specific compiler and optimiser
tailored to local assembly kernels for finite element methods. COFFEE
analyses and transforms the abstract syntax tree (AST) of a local assem-
bly kernel by exploiting particular characteristics of finite element integrals
and achieves performance optimisations that are difficult for general-purpose
compilers.

26

Loopy

Loopy [Klöckner, 2014] is a code generation system embedded in Python
that is specialised for array-style computations. Internally, Loopy represents
the computation domains, the data access patterns and the instruction de-
pendencies as integer sets and relations. Firedrake leverages this powerful
intermediate representation to describe and optimise the global assembly
computation when evaluating finite element integrals, as described in Chap-
ter 4.

PyOP2

PyOP2 [Rathgeber et al., 2012] is a Python library that provides the abstrac-
tion for specifying parallel iterations on entities of a general mesh. Started
as a Python implementation of OP2 [Mudalige et al., 2012], PyOP2 shares
the same basic concepts but also differs by using run-time code generation
and just-in-time compilation. In Firedrake, PyOP2 organises the execu-
tion of the global assembly computation, coordinating data movement and
synchronisation among compute nodes running in parallel.

2.4 Chapter summary

In this chapter, we present the essential mathematical concepts of the finite
element method and how they are related to the main building blocks of
Firedrake, with the emphasis on the computational properties of the local
and global assembly processes. In the following chapters, we will discuss the
design of the abstractions in Firedrake to support optimisations applied to
the local and global assembly computations.

27

Chapter 3

Local assembly as tensor
contractions

This chapter describes the computational aspects of the local assembly pro-
cess in a typical finite element application. We argue that a symbolic, math-
ematical abstraction focused on tensor contractions is a suitable medium for
representing the local assembly computation and applying certain optimi-
sations. We lift loop optimisations in Firedrake, previously implemented by
manipulating ASTs, to symbolic tensor computation rewrites in this higher
level intermediate representation, and demonstrate its robustness and effec-
tiveness with experimental results.

3.1 Local assembly as tensor contraction

We have illustrated in section 2.1.3 that the local assembly algorithms can
be expressed as tensor contractions of GEM tensors in Firedrake. Since
GEM nodes are purely symbolic, this representation enables robust expres-
sion rewrites following simple tensor algebra rules. The tensor contraction
abstraction is an ideal layer to perform transformations aiming to reduce
the number of floating-point operations, as it captures the mathematical
specifics of the assembly algorithms while allowing freedom in the lower ab-
stractions layers in realisation decisions such as instruction scheduling and
hardware-specific optimisation such as SIMD vectorisation.

One benefit that the GEM presentation provides is the ability to rewrite
the tensor computation efficiently. In local assembly routines such as Algo-
rithm 3, often there are subexpressions in the inner loops which are invariant
with respect to one or more of the outer iteration indices. The computation
of these subexpressions can be hoisted outside of the invariant iterations by
introducing temporary variables to store the results so that they are not
recomputed unnecessarily. This technique is also called loop-invariant code
motion, as demonstrated in works by Luporini et al. [2017] and Ølgaard and

28

for k ← 1, . . . , Nk do
for j = 1, . . . , Nj do

Ajk ← aj × ck + aj × dk
end for

end for

(a) The loop nest to compute Ajk =
ajck+ajdk. Total number of floating-
point operations is 3NjNk.

for k ← 1, . . . , Nk do
t← ck + dk
for j = 1, . . . , Nj do

Ajk ← aj × t
end for

end for

(b) The loop nest to compute Ajk =
aj(ck +dk). Total number of floating-
point operations is Nk +NkNj .

Figure 3.1: An example of loop-invariant code motion. The j-invariant
subexpression ck + dk can be lifted out of the j loop to reduce the amount
of computation.

Wells [2010].
The effective application of loop-invariant code motion often requires

rewriting the expression to expose invariant subexpressions. Consider the
expression

Ajk = ajck + ajdk (3.1)

in a nested loop over j and k. In its original form, the subexpressions
ajck and ajdk are not invariant with respect to indices j and k, since both
expressions depend on j and k. However, we can rewrite ajck + ajdk as
aj(ck + dk), and the new expression ck + dk is now invariant in j loop as it
does not contain index j. This new subexpression can then be hoisted out
into a temporary variable as a result. The pseudo-code generated by TSFC
which illustrates the effect of loop-invariant code motion is shown in Figure
3.1.

We note that once an invariant subexpression is exposed by refactorisa-
tion, such as the example in Figure 3.1, the hoisting of the subexpression is
performed automatically during code generation in TSFC. This is because
the evaluation of GEM nodes during code generation is dictated by their free
indices, as decried by Homolya [2018]. Furthermore, finite element assembly
is only a specific subset of general tensor contraction computations, where
we can leverage domain-specific information for optimisation. In particu-
lar, the bounds of all indices are known at compile time and because of the
linearity of the multi-linear forms with respect to their arguments (i.e. the
basis functions, this does not apply to the coefficients), each index to the
arguments would only appear once in any GEM expression.

The main challenge to achieving effective loop-invariant code motion is
that there are usually multiple ways to rewrite a tensor expression, and it
is computationally infeasible to enumerate all the choices in general. As an
example, consider the following expression

ajck + ajdk + ajek + bjck + bjek (3.2)

29

Assuming indices j and k have the same extent, it is preferable to factorise
it as aj(ck+dk+ek)+bj(ck+ek) rather than as (aj+bj)ck+ajdk+(aj+bj)ek
because the former requires less number of floating-point operations.

To summarise:

• Loop optimisations such as loop-invariant code motion are equivalent
to targeted rewriting of GEM expressions using associativity and dis-
tributivity rules.

• Expansion and factorisation of expressions are often required to expose
hoisting opportunities.

• Rewriting of expressions needs to be driven by effective cost models
or heuristics leveraging domain-specific knowledge. Particularly to
finite element methods, the knowledge that an expression is linear
with respect to certain arguments can be leveraged to narrow down the
rewrite search space, or as described later, make exhaustive searches
feasible.

Historically, to optimise local assembly kernels in Firedrake, the COF-
FEE compiler [Luporini et al., 2015] is integrated into Firedrake. COF-
FEE creates an abstract syntax tree (AST) of the local assembly kernel and
applies optimisations by systematically manipulating the AST. COFFEE
applies both loop transformations, such as loop-invariant code motion, in
order to reduce the number of floating-point operations, and also low-level
optimisations, such as alignment and padding to promote vectorisation, to
improve the execution efficiency of the hardware. One shortcoming of us-
ing COFFEE in Firedrake is that the AST representation is used both for
optimisation and for code generation, and consequently, the optimisation
passes need to be aware of code generation artefacts, such as declaration
and initialisation of arrays, for correctness. Such considerations increase
the complexity in the implementation of COFFEE. In addition, the repre-
sentation of the computation as a tree instead of a graph makes it more
challenging to discover hoistable subexpressions, as discussed later in this
chapter.

COFFEE predates the development of TSFC as the default form com-
piler in Firedrake. TSFC brings GEM as an abstraction layer in the Fire-
drake software stack, which makes it possible to address some of the above
issues by lifting the loop optimisation algorithms in COFFEE to a higher
level abstraction based on symbolic mathematics.

3.2 Tensor expression rewrites in GEM

In this section, we describe the algorithm to rewrite the tensor expressions
in GEM in order to reduce the number of floating-point operations.

30

3.2.1 Essential GEM concepts

We briefly describe some of the GEM constructs and concepts which are
essential for our optimisation algorithm. This section only gives a much
simplified view of GEM, and we refer the readers to [Homolya et al., 2018]
for a thorough technical discussion.

DAGs Computations on tensors in GEM are organised as directed acyclic
graphs (DAGs) of GEM objects. GEM objects form the nodes of the graph.
No special meaning is assigned to the edges apart from indicating the “be-
longs to” relationship between nodes.

Tensors Tensor nodes represent multi-dimensional data in GEM. Con-
stant tensors in GEM are known as Literals, while tensors which are as-
signed values at runtime are known as Variables. All tensor nodes in GEM
have shapes which are known at compile-time.

Tensors ↔ scalars Indexing a tensor with Index objects results in a
scalar node. A Tensor node has a shape while an Index node has an extent.
For example, if T is a Variable of shape (3, 2), i is an Index of extent
3, j is an Index of extent 2, then Indexed(T, (i, j)) is a scalar node
representing the value A[i, j].

Note that i and j are free indices in A[i, j]. They are lowered to loops
during code generation. For instance, for the instruction A[i, j]=0, TSFC
will generate nested loops which set all element of A to 0.

One can create Tensors from scalar nodes with ComponentTensor.
For example, ComponentTensor(Indexed(T, (i, j)), (i,)) produces a
Tensor with shape (3,) and free index (j,) that represents the slice T[:,

j].

Arithmetic operators GEM provides nodes for common arithmetic op-
erations such as Sum, Product, and MathFunction (e.g. trigonometric func-
tions). These operators only act on scalar arguments, thus tensor nodes
need to be appropriatedly indexed beforehand.

Tensor contractions Tensor contractions are represented by IndexSum

nodes in GEM. For instance, IndexSum(e,i) contracts expression e (which
is assumed to have the free index i) over the summation index i.

Argument indices As explained in Section 2.1.3, a bilinear form a(·, ·)
(or a multi-linear form in general) is always linear in its arguments. Since
the local assembly matrix is defined as AK

ij = aK(φKi , φ
K
j), we know that

the resultant GEM expression is always linear with respect to terms indexed

31

by i or j. We call these indices the argument indices. These are also the
indices that appear on both sides of the assembly equation (i.e. they are
not reduced over).

This linearity property guarantees that in any product node, each ar-
gument index appears at most once. As an example, in the product AiB
with i being an argument index, we can be sure that B is independent of
i. Argument indices are therefore useful to expose loop-invariant subexpres-
sions. The distinction between argument indices and other indices is always
available at compile-time. For instance, in (2.29), the indices i and j are
argument indices, while the indices q, α, β, γ are not.

Refactorisation labels GEM expressions can be assigned refactorisation
labels. These labels determine how the expressions are handled in the rewrit-
ing passes. We define the following labels to support our algorithm:

• ATOMIC: the expression should not be broken up into smaller parts.

• COMPOUND: the expression can be broken up into smaller parts.

• OTHER: the expression is irrelevant for refactorisation.

Monomials A Monomial object represents a product of GEM nodes. This
concept is introduced in GEM to facilitate the mechanics and analysis of
refactoring product expressions. A Monomial is constructed from a list of
sum indices, a list of GEM expressions called atomics, and another single
GEM expression called rest. For instance, the expression

∑
i a1a2r can be

represented as

Monomial(sum_indices =(i,), atomics =(a1,a2), rest=r).

Note that the terms atomics and rest do not carry any semantic meaning
at this stage: they simply specify the grouping of the factors in a product.
The decision of whether an expression should be regarded as atomic or rest
depends on specific optimisation passes.

Monomial sum A summation of Monomials are encapsulated in a
MonomialSum object. In general, any finite element assembly integral
can be written as the summation of products of tensors, or equally, as a
MonomialSum.

3.2.2 Argument factorisation algorithm

We now describe the rewriting algorithm implemented in TSFC using the
GEM abstraction to reduce the number of floating-point operations. Essen-
tially, this algorithm is a reimplementation of certain optimisation passes in
COFFEE [Luporini et al., 2017] in the language of tensor algebra. We name

32

this algorithm argument factorisation because the key idea is to use argu-
ments as common subexpressions for factorisation. Optimisations based on
symbolic tensor algebra have been broadly explored in many projects, with
Tensor Contraction Engine [Auer et al., 2006], TensorFlow [Abadi et al.,
2016] and TVM [Chen et al., 2018] as some of the prominent examples in the
applications of quantum chemistry and artificial neural network. Compared
with these more general approaches, our algorithm differs by exploiting the
linearity of some tensor elements, which is guaranteed by the finite element
formulation, to arrive at simpler heuristics.

Since an integral that represents a finite element assembly computation
is always linear with respect to its arguments, it is always possible to find
factors in a product that are independent of some indices. Such factors can
then be hoisted out of the inner loop(s) during code generation as loop-
invariant subexpressions.

We use the Laplacian operator on a 2D triangular mesh to illustrate the
argument factorisation algorithm. The bilinear form of this operator is given
by

AK
ij =

Nq∑
q=1

2∑
α=1

2∑
β=1

2∑
γ=1

wq

(
J−1K αβ∇ΦiβqJ

−1
K αγ∇Φjγq

) ∣∣det(JK)
∣∣ , (3.3)

where the tensors are defined following the descriptions in Section 2.1.3.
Note that since triangles are simplicial, the Jacobian is constant for each
element and is independent of quadrature index q. Equation (3.3) is the
input GEM expression to the argument factorisation algorithm.

Step 1. Expand the Jacobian applications and the dot products
Firstly, we expand the two Jacobian applications and the dot product

in order to expose factorisation opportunities. This is achieved by unrolling
any summation indices that have an extent less than or equal to 2 (the
dimension of the physical space). In our example, the reductions over α, β, γ
are unrolled to produce:

AK
ij =

Nq∑
q=1

wq
(
P1iqP1jq + P2iqP2jq

) ∣∣det(JK)
∣∣ . (3.4)

where

P1jq ≡ J−1K 11∇Φjq1 + J−1K 12∇Φjq2 (3.5a)

P1kq ≡ J−1K 11∇Φkq1 + J−1K 12∇Φkq2 (3.5b)

P2jq ≡ J−1K 21∇Φjq1 + J−1K 22∇Φjq2 (3.5c)

P2kq ≡ J−1K 21∇Φkq1 + J−1K 22∇Φkq2 (3.5d)

33

Step 2. Convert expressions to MonomialSums
We introduce a classifier function that assigns refactorisation labels to

GEM nodes that are factors of a PRODUCT node, according to the number
of free indices and whether the free indices are argument indices (the set of
which is known beforehand). This classifier is shown in Algorithm 5. We
then recursively expand nodes that are labelled as COMPOUND by applying
the distributive law a(b+ c)→ ab+ac. In essence, this classifier expands all
summations that contain more than one arguments and expose the ATOMIC

nodes to the top level of the summation. Because the produced ATOMIC

nodes tend to be shared among different terms in the summation, this ex-
pansion strategy is likely to introduce more refactorisation opportunities for
the following steps.

Algorithm 5 Classifier to assign refactorisation labels to GEM nodes

function Classify(node, argument indices)
n←

∣∣{node.free indices} ∩ {argument indices}
∣∣

if n = 0 then
label ← OTHER

else if n = 1 and node is Indexed then
label ← ATOMIC

else
label ← COMPOUND

end if
return label

end function

The right-hand-side of Equation (3.3) is an IndexSum with a Product

child node. The set of argument indices is {i, j}. The Product node has
three child nodes. The child node P0iP0j+P1iP1j is labelled as COMPOUND be-
cause it has two argument indices {i, j}, and therefore needs to be expanded
by the distribution law. Note that a COMPOUND factor in a product must be
a summation due to linearity. Thus such a rewrite is always possible. This
produces the expression

wqP1iqP1jq

∣∣det(JK)
∣∣+ P2iqP2jq

∣∣det(JK)
∣∣ . (3.6)

This is a Sum node with two child Product nodes, and the above process
repeats on the child Product nodes. The terms P0i, P0j , P1i, P1j only have
one argument index {i} or {j}, but they are Sum nodes instead of Indexed
nodes, thus they are labelled as COMPOUND and expanded as well. The terms
wq and

∣∣det(JK)
∣∣ are labelled as OTHER since they do not have any argument

index.
After the expansion, all factors in each Product node are labelled either

as ATOMIC or OTHER. We create a Monomial for each product, with the list

34

of all ATOMIC factors as atomics and the product of all OTHER factors as rest.
We then divide the Monomials into groups according to their sum indices
and create a MonomialSum for each group.

There is only one sum index {q} in (3.4), and the whole equation is
converted into one MonomialSum consisting of four Monomials:

AK
jk =

MonomialSum︷ ︸︸ ︷
G11 +G21 +G12 +G22, (3.7)

where

G11 ≡

Monomial︷ ︸︸ ︷
Nq∑
q=1︸︷︷︸

sum index

∇Φjq1∇Φkq1︸ ︷︷ ︸
atomics

(
J−1K 11J

−1
K 11 + J−1K 21J

−1
K 21

)
wq
∣∣det(JK)

∣∣︸ ︷︷ ︸
rest

(3.8a)

G21 ≡
Nq∑
q=1

∇Φjq2∇Φkq1

(
J−1K 11J

−1
K 12 + J−1K 21J

−1
K 22

)
wq
∣∣det(JK)

∣∣
(3.8b)

G12 ≡
Nq∑
q=1

∇Φjq1∇Φkq2

(
J−1K 11J

−1
K 12 + J−1K 21J

−1
K 22

)
wq
∣∣det(JK)

∣∣
(3.8c)

G22 ≡
Nq∑
q=1

∇Φjq2∇Φkq2

(
J−1K 12J

−1
K 12 + J−1K 22J

−1
K 22

)
wq
∣∣det(JK)

∣∣
(3.8d)

Step 3. Pick optimal atomic factors to refactorise
For each MonomialSum, we define SA as the set of all atomic factors. We

choose the set SR ⊆ SA consisting of refactoring factors. This subset is used
to refactorise the summation. We required that each Monomial must have
at least one atomic factor in SR.

Algorithm 6 shows the recursive routine to find the set SR. Compare is
a function that ranks two possible sets of factors. In this case, we firstly
favour solutions with fewer factors, as this means these factors are shared by
more Monomials. In the cases of sets of the same size, we choose the set with
factors whose argument indices have larger extents, because they correspond
to loops with larger trip counts from which the invariant subexpressions
could be hoisted out.

We then attempt to refactorise the Monomials with the factors in SR,
using the distributive rule ab + ac → a(b + c). This step produces a sum

35

Algorithm 6 Finding refactoring factors from all atomic factors.

M ≡ {all monomials}
Mi ≡ ithmonomial
SR ←

⋃
m∈M

{m.atomics} . Initialise with set of all atomic factors

S ← {}

function Compare(S1, S2) . Rank two sets of atomic factors
if |S1| < |S2| then

return True
else if |S1| = |S2| then

e1 ←
∑
a∈S1

∏
i∈a.ai

(i.extent) . a.ai is the set of argument indices of a

e2 ←
∑
a∈S2

∏
i∈a.ai

(i.extent)

return e1 > e2

else
return False

end if
end function

procedure FindFactors(M , i) . Find factors for the ith Monomial
if i > |M | then

return
end if
if i = |M | then

if Compare(S, SR) then
SR ← S . Update the solution

end if
return

end if
for all a ∈ {Mi.atomics} do

S ← S + a . Try each atomic factor
FindFactors(M , i+ 1) . Go to the next monomial
S ← S − a

end for
end procedure

FindFactors(M , 1) . Start from the first monomial

of products, with each product consisting of one ATOMIC factor and poten-
tially another sum of products. The child Sum nodes are converted to new
MonomialSums according to Step 2. We then repeat Step 3 to the new
MonomialSums recursively until they do not contain any ATOMIC factor. This

36

Original expression: aibijeikz + dibijeik + cibijeik + aqbijfikz
Argument indices: {j, k}
Atomic factors: SA ≡ {bij , eik, fik}
Refactoring factors: SR ≡ {bij}
Refactorisation with SR: bij (aieikz + dieik + cieik + aifikz)︸ ︷︷ ︸

new MonomialSum

Recursively refactoring new MonomialSum:
Atomic factors: S′A ≡ {eik, fik}
Refactoring factors: S′R ≡ {eik, fik}
Refactorisation with S′R: eik (aiz + di + ci) + fikaiz

Refactorisaiton result: bij

eik (aiz + di + ci)︸ ︷︷ ︸
j,k-invariant

+fikaiz


︸ ︷︷ ︸

j-invariant

Figure 3.2: An example of argument factorisation to expose loop-invariant
subexpressions using Algorithm 6.

process is illustrated with an example in 3.2.
For the expression in (3.7), since the extents of j and k are equal, SR can

either take SRj ≡ {∇Φjq1,∇Φjq2} or SRk
≡ {∇Φkq1,∇Φkq2}. Assuming

SR = SRj , we obtain the following expression:

AK
jk =

Nq∑
q=1

∇Φjq1

(
∇Φkq1S1wq

∣∣det(JK)
∣∣+∇Φkq2S2wq

∣∣det(JK)
∣∣)+

Nq∑
q=1

∇Φjq2

(
∇Φkq1S3wq

∣∣det(JK)
∣∣+∇Φkq2S4wq

∣∣det(JK)
∣∣) ,

(3.9)

with

S1 ≡ J−1K 11J
−1
K 11 + J−1K 21J

−1
K 21 (3.10a)

S2 ≡ J−1K 11J
−1
K 12 + J−1K 21J

−1
K 22 (3.10b)

S3 ≡ J−1K 11J
−1
K 12 + J−1K 21J

−1
K 22 (3.10c)

S4 ≡ J−1K 12J
−1
K 12 + J−1K 22J

−1
K 22 (3.10d)

We note that mathematically S2 = S3, but they correspond to different
GEM nodes. Comparison between GEM expressions and trimming the DAG
by folding equivalent nodes is a possible future improvement.

Step 4. Convert MonomialSums to expressions
Finally, we group the Monomials in each MonomialSum according to their

sum indices, and create a IndexSum node for each group, using the sum

37

factorisation algorithm described in [Homolya et al., 2017]. For arbitrary
tensor contraction expressions, this algorithm searches for the optimal order
of indices to contract with by traversing all the permutations of the contract-
ing indices. This approach is computationally feasible because the number
of sum indices is at most 31. When handling each contraction index, we filter
out the factors which need to be contracted and apply a greedy algorithm
to determine the order of multiplication. The goal is to multiply the factors
with free indices that have the smallest extents first, so that the inner loops
have shorter trip counts. This process is shown in Algorithm 7.

This step converts Equation (3.9) to the following expression

AK
jk =

Nq∑
q=1

(
wq
∣∣det(JK)

∣∣S1∇Φkq1 + wq
∣∣det(JK)

∣∣S2∇Φkq2

)
∇Φjq1+

Nq∑
q=1

(
wq
∣∣det(JK)

∣∣S3∇Φkq1 + wq
∣∣det(JK)

∣∣S4∇Φkq2

)
∇Φjq2,

(3.11)
In Listing 3.1, we show the C code generated by TSFC for the second-

order Laplacian operator on a triangular mesh. This finite element discreti-
sation has six basis functions in the local space. Because the integrand is a
linear polynomial, the number of quadrature points is 3. The arrays E1 and
E2 correspond to ∇Φiq1 and ∇Φiq2, the tabulations of the first derivatives
of the basis functions in the x and y direction respectively. The array w

holds the quadrature weights wq.

Algorithm 7 Greedy algorithm to apply the associative rule to products
in order to reduce the number of operations.

i ≡ contraction index
SF ← {factors with index i}
while |SF | > 1 do

. x.fi ≡ free indices of x

a, b← min
a,b

{∏
j∈I

j.extent

∣∣∣∣a, b ∈ SF , a 6= b, I = {a.fi} ∪ {b.fi}

}
c← a× b
SF ← SF \ {a, b}
SF ← SF ∪ {c}

end while

1Since we always unroll the Jacobian applications and inner products, the only contrac-
tions are over quadrature indices. For simplicial elements, there is only one quadrature
index. For tensor product finite elements, the number of quadrature indices is equal to
the number of base elements that make up the tensor-product element. This number is
bounded by the dimension of the physical space.

38

Listing 3.1: Local assembly kernel of the Laplace operator

1 static double const E1 [3][6] = { ... };

2 static double const E2 [3][6] = { ... };

3 static double const w[3] = { ... };

4
5 void kernel(double *__restrict__ A, double const *__restrict__ coords)

6 {

7 // Jacobian

8 double J11 = coords [2] - corrds [0];

9 double J22 = coords [5] - coords [1];

10 double J12 = coords [4] - coords [0];

11 double J21 = coords [3] - corrds [1];

12 double d = J11 * J22 - J12 * J21;

13 double det = fabs(d);

14
15 // Jacobian inverse

16 double K11 = J22 / d;

17 double K21 = - J21 / d;

18 double K12 = - J12 / d;

19 double K22 = J11 / d;

20
21 double S1 = K11 * K11 + K21 * K21;

22 double S2 = K11 * K12 + K22 * K21;

23 double S3 = K11 * K12 + K21 * K22;

24 double S4 = K21 * K21 + K22 * K22;

25
26 double t0, t1, t2 , t3 , t4, t5[6], t6[6];

27 for (int q = 0; q <= 2; ++q)

28 {

29 t0 = w[q] * det;

30 t1 = t1 * S1;

31 t2 = t1 * S2;

32 t3 = t1 * S3;

33 t4 = t1 * S4;

34 for (int k = 0; k <= 5; ++k)

35 {

36 t4[k] = E1[q][k] * t1 + E2[q][k] * t2;

37 t5[k] = E1[q][k] * t3 + E1[q][k] * t4;

38 }

39 for (int j = 0; j <= 5; ++j)

40 for (int k_0 = 0; k_0 <= 5; ++k_0)

41 A[j][k] += t4[k] * E1[q][j] + t5[k] * E2[q][j];

42 }

43 }

3.3 Experimental evaluation

In this section, we assess the argument factorisation algorithm by applying
it to a wide range of operators in Firedrake.

3.3.1 Experimental setup

TSFC organises the optimisation passes on GEM expressions as different
optimisation modes, which the users can specify. Different modes share the
same code generation backend but perform different GEM-to-GEM trans-

39

formations. The simplest mode in TSFC is the vanilla mode, which does
not attempt to refactorise the GEM expressions, i.e. it directly generates
code from the GEM expressions produced by the frontend of the form com-
piler. This mode is the original behaviour of TSFC as described in [Homolya
et al., 2018], and is the previous default in Firedrake.

Prior to the work described in this chapter, Firedrake relied on COF-
FEE [Luporini et al., 2017] to optimise the local assembly kernel. COFFEE
represents the kernel as abstract syntax trees (ASTs) and performs trans-
formations such as factorisation, expansion, association, code motion by
manipulating the ASTs directly. Our approach described in this chapter is
essentially a refinement of the ideas in COFFEE in an abstraction based on
tensor algebra. This algorithm is organised as the coffee optimisation mode
in TSFC. Raising the abstraction level enables us to perform the required
transformations more robustly and efficiently: our implementation has less
than 300 lines of additional Python code in TSFC. For comparison, the core
components of COFFEE have more than 8000 lines of Python code. Part
of the saving stems from the fact that scheduling and code generation are
handled separately by TSFC after optimisation passes as applied, whereas
COFFEE needs to rediscover the semantics of the computation and the
dependencies between tensors. In addition, since the computation is repre-
sented as DAGs in GEM, a common subexpression stays as one GEM node
throughout the rewrites, thus eliminating the need in COFFEE to perform
analysis of the ASTs to rediscover common subexpressions. We note that
COFFEE also performs other optimisations such as vectorisation, making
it difficult to account for the lines of code in isolation. However, since the
vectorisation pass is pushed down to the global assembly phase in Firedrake,
as explained in Chapter 4, there are plans to retire COFFEE entirely from
the Firedrake software stack in the near future.

This new setup for optimising local assembly kernels is schematically
highlighted in Figure 3.3.

We evaluate the efficacy of our algorithm by measuring the compilation
time (Section 3.4) and the number of floating-point operations (Section 3.5)
of the local assembly kernels created from five bilinear forms: the mass
matrix (mass), the Helmholtz equation (helmholtz), the vector Laplacian
operator (laplacian), an elastic model (elasticity), and a hyperelastic
model (hyperelasticity). The mathematical description of the operators
is detailed in Appendix A.

We perform the experiments on 2D (triangles) and 3D (tetrahedra)
meshes. We choose the Lagrange finite element of polynomial degree p for
all the operators. We also multiply the bilinear form by c coefficient func-
tions. The coefficient functions are from the Lagrange space of polynomial
degree q. The ranges of the parameters in our test suite are:

• p ∈ {1, 2, 3, 4}

40

Figure 3.3: Comparison between the coffee and gem optimisation mode in
TSFC. By raising the abstraction level, loop optimisations on ASTs can be
lifted to transformations on tensors based on mathematical rules.

• q ∈ {1, 2, 3, 4}

• c ∈ {0, 1, 2, 3}

Our choice of operators and parameters are inspired by Ølgaard and
Wells [2010] and Luporini et al. [2017], and are adapted from real-world
applications. There are 640 test cases in total. We compare the results from
three approaches:

• vanilla: Do not apply argument factorisation in TSFC and in COF-
FEE.

• gem: Apply the argument factorisation to the GEM expressions as
described in this chapter2.

• COFFEE Apply all COFFEE optimisations apart from vectorisation to
the output of TSFC using vanilla mode. This is the previous default
setting in Firedrake.

3.4 Compilation time

Firstly, we compare the time taken to perform the optimisations with gem

and with COFFEE. Because both approaches act on the output of vanilla,
we compute the time spent in the optimisation phase only by subtracting
the compilation time of vanilla from the total compilation time. Other
low-level optimisations in COFFEE, such as padding for promoting vectori-
sation, are switched off. The measurements are conducted on a system with

2Note that this pass is named the coffee mode in TSFC. We have modified the name
here to avoid ambiguity when comparing with using COFFEE for optimisation.

41

10 2 10 1 100 101

COFFEE optimisation time (s)

10 2

10 1

100

101

ge
m

 o
pt

im
isa

tio
n

tim
e

(s
)

elasticity
helmholtz
hyperelasticity
laplacian
mass
y=x

Figure 3.4: Comparison of time take to perform optimisations on the bilinear
forms with gem and COFFEE. Each point represents one test case, placed
at the coordinate {compilation time using COFFEE, compilation time using
gem}. Only cases where the time taken is longer than 0.25 seconds are
shown. The colours of the points distinguish different bilinear forms. The
points above the y = x line correspond to test cases where gem optimisations
take longer than COFFEE, and vice versa. Optimisation with gem is faster
than with COFFEE for 284 out of the 302 test cases shown.

an Intel Haswell CPU (Core i7-4790 3.60 GHz) with 32 GB DDR4 mem-
ory. Turbo Boost is disabled. We repeat the measurements three times and
report the average time.

In Figure 3.4, we compare the time taken to perform argument factori-
sation in GEM (gem) and similar transformations in COFFEE (COFFEE).
We show the results where either gem or COFFEE takes more than 0.25 sec-
onds. Out of the 302 test cases, gem is faster than COFFEE in 284 cases.

42

The differences in optimisation time are more significant for complicated
bilinear forms, such as elasticity and hyperelasticity. Such test cases
have more complicated expressions and loop structures, resulting in more
challenges in analysing and transforming the ASTs by the COFFEE com-
piler. The polynomial degree only changes the loop trip counts but not the
expressions themselves. Therefore, we see that the compilation times for
each bilinear form are clustered together.

3.5 Reducing floating-point operations

Next, we compare the efficacy of reducing the number of floating-point oper-
ations with gem and with coffee, using vanilla as the baseline. We define
optimisation effectiveness as the reduction of the number of floating-point
operations of the generated code against the vanilla strategy:

optimisation effectiveness =
vanilla FLOPs− coffee or gem FLOPs

vanilla FLOPs
.

(3.12)
Figure 3.5 compares the optimisation effectiveness of the coffee ap-

proach and the gem approach. Out of the 640 test cases, the optimisation
effectiveness differ by less than 5% in 466 cases, indicating that the argument
factorisation algorithm is successful in performing the same optimisations
by the COFFEE compiler. For all the remaining 174 test cases, the effec-
tiveness of gem is higher than coffee by more than 5%. This result shows
that while the argument factorisation approach is algorithmically similar to
the optimisations in COFFEE, implementing the algorithms in the higher
level of abstraction, based on tensor algebra, is more robust and thorough,
resulting in fewer corner cases and unexpected performance degradations.

We list the exact experimental results for the hyperelasticity operator
with two coefficients (i.e. c = 2) in Table 3.1.

Part of this advantage can be attributed to the intrinsic properties of the
representation in GEM. For instance, GEM represents tensor contraction as
DAGs instead of trees so that any common subexpressions are more likely
to be kept intact after expanding a summation node. As an example, when
rewriting ab(c + d) → abc + abd, the product ab is still one node in the
transformed DAG, and it only needs to be computed once in the generated
code, whereas COFFEE will need to recover this kind of information after
rewriting the ASTs.

In addition, by raising the abstraction level, optimisations in GEM are
purely symbolic and mathematical. These optimisations are focused on oper-
ation count reduction, and in particular, are not concerned with instruction
scheduling and code generation, which are handled separately afterwards.
On the other hand, similar algorithms implemented in COFFEE, based on
rewriting ASTs, need to take into account such semantics and tend to be

43

Table 3.1: Comparison of optimisation performances of gem and COFFEE for
the hyperelasticity local assembly kernels with two coefficient functions.
D: 2D or 3D mesh. P: Polynomial degree of the argument functions. Q:
Polynomial degree of the coefficient functions. flop: Number of floating-
point operations. time: Compilation time (in seconds). E: optimisation
effectiveness as defined in (3.12), in percentage.

vanilla COFFEE gem

D P Q flop time flop E (%) time flop E (%) time

2 1 1 1,003 0.11 885 11.8 0.25 639 36.3 0.14
2 1 2 15,801 0.17 9,427 40.3 0.43 7,042 55.4 0.19
2 1 3 148,695 0.24 77,924 47.6 0.44 57,996 61.0 0.27
2 1 4 582,949 0.12 283,024 51.4 0.38 219,468 62.4 0.39
2 2 1 1,527 0.12 1,120 26.7 0.34 952 37.7 0.15
2 2 2 32,862 0.11 20,178 38.6 0.42 15,163 53.9 0.15
2 2 3 218,070 0.17 116,370 46.6 0.46 86,923 60.1 0.21
2 2 4 768,466 0.43 377,106 50.9 0.38 292,755 61.9 0.19
2 3 1 2,571 0.11 1,846 28.2 0.33 1,678 34.7 0.15
2 3 2 70,043 0.17 43,618 37.7 0.45 33,169 52.6 0.2
2 3 3 299,947 0.13 161,522 46.1 0.44 121,441 59.5 0.28
2 3 4 977,769 0.36 482,454 50.7 0.43 375,697 61.6 0.38
2 4 1 5,235 0.12 3,874 26.0 0.37 3,706 29.2 0.15
2 4 2 103,734 0.12 65,682 36.7 0.43 50,635 51.2 0.21
2 4 3 396,882 0.13 216,082 45.6 0.45 163,731 58.7 0.27
2 4 4 1,215,118 0.19 603,618 50.3 0.45 471,819 61.2 0.38
3 1 1 6,617 0.2 6,150 7.1 0.66 3,898 41.1 0.37
3 1 2 377,860 0.36 210,680 44.2 12.28 133,379 64.7 0.5
3 1 3 11,229,001 0.33 4,094,927 63.5 12.38 3,406,127 69.7 0.74
3 1 4 86,300,984 1.28 27,303,788 68.4 12.32 25,414,026 70.6 1.37
3 2 1 9,437 0.37 6,661 29.4 0.76 5,429 42.5 0.44
3 2 2 657,091 0.26 422,769 35.7 13.09 236,060 64.1 0.54
3 2 3 19,488,883 0.61 7,633,377 60.8 13.1 5,953,676 69.5 0.82
3 2 4 129,024,579 1.46 42,078,361 67.4 13.04 38,096,964 70.5 1.58
3 3 1 22,757 0.51 15,681 31.1 0.8 14,449 36.5 0.44
3 3 2 3,467,067 0.48 2,246,278 35.2 13.06 1,274,193 63.2 0.58
3 3 3 31,071,065 0.59 12,244,910 60.6 13.05 9,577,657 69.2 0.98
3 3 4 183,971,236 1.75 60,174,729 67.3 13.47 54,505,940 70.4 2.04
3 4 1 47,597 0.31 36,221 23.9 0.81 34,989 26.5 0.44
3 4 2 6,107,683 0.49 3,998,097 34.5 13.2 2,318,396 62.0 0.61
3 4 3 46,656,579 0.91 18,554,521 60.2 13.06 14,573,124 68.8 1.09
3 4 4 252,901,067 1.66 83,084,153 67.1 13.54 75,308,068 70.2 1.89

44

20 0 20 40 60 80 100
COFFEE optimisation effectiveness (%)

20

0

20

40

60

80

100

ge
m

 o
pt

im
isa

tio
n

ef
fe

ct
iv

en
es

s (
%

)

elasticity
helmholtz
hyperelasticity
laplacian
mass

Figure 3.5: Comparison of optimisation effectiveness in reducing the num-
ber of floating-point operations reduction for gem and COFFEE. Each point
represents one test case, placed at the coordinate {optimisation effectiveness
with COFFEE, optimisation effectiveness with gem}. The colours of the points
distinguish different bilinear forms. The shaded region represents the cases
where the difference between the two approaches is less than 5%. Optimisa-
tion effectiveness with gem is higher than COFFEE by more than 5% for 174
out of the 640 test cases.

more mechanical in nature and more error-prone. For example, there have
been a few instances where the declaration of a variable is moved after its
uses, or a local variable is used out of its scope, leading to compilation errors.

45

Chapter 4

Vectorisation for global
assembly of matrix-free
operators

Global assembly in finite element methods is the process of computing the
matrices and vectors representing the differential forms in the global function
space. This is achieved by applying the local assembly kernel to each element
in the domain and accumulate the local results. While optimisations of the
local assembly kernels are focused on reducing the operation counts, which
are largely hardware-oblivious, optimisations of the global assembly process
are concerned with the efficient execution of the nested loops on specific
hardware platforms. One particular optimisation of this nature is vectori-
sation on CPUs with SIMD (Single Instruction Multiple Data) instructions.
In this chapter, we present the abstraction representing the global assembly
process in Firedrake, and demonstrate how such an abstraction enables the
loop transformations to generate vectorised code in a generic and automatic
way.

4.1 Motivation and related works

One particular challenge for generating high-performance code on modern
hardware is vectorisation. Modern CPUs increasingly rely on SIMD in-
structions to achieve higher throughput and better energy efficiency. Finite
element computation requires the assembly of vectors and matrices, which
represent differential forms on discretised function spaces. This process con-
sists of applying a local function, often called an element kernel, to each mesh
entity, and incrementing the global data structure with the local contribu-
tions. In the context of SIMD optimisation, the challenge is that typical
local assembly kernels often suffer from issues that can preclude effective
vectorisation. These issues include complicated loop structures, poor data

46

access patterns, and loop trip counts that are not multiples of the vector
width of the CPU. As we show later in this chapter, general purpose com-
pilers frequently perform poorly in generating efficient, vectorised code for
such kernels. For example, the loops in the local assembly kernel in Listing
4.2 are unlikely to be vectorised if the loop trip count (6) is not a multiple of
the vector width, due to the cost of generating a remainder loop. In general,
padding and data layout transformations are required to enable the vectori-
sation of the element kernels [Luporini et al., 2015], but the effectiveness of
such approaches is not consistent across different examples. Since padding
also results in larger overheads for wider vectors, new strategies are needed
as vector width increases for the new generate of hardware.

Matrix-free methods, described in section 2.1.4, avoid building large
sparse matrices in applications of the finite element method and thus trade
computation for storage. They have become popular for use on modern
hardware due to their higher arithmetic intensity (defined as the number of
floating-point operations per byte of data transfer). SIMD vectorisation is
particularly important for computationally intensive high order methods, for
which matrix-free methods are often applied. Previous work on improving
vectorisation of matrix-free operator application, or equivalently, residual
evaluation, mostly focuses on exposing library interfaces to the users. Kron-
bichler and Kormann [2017] first perform a change of basis from nodal points
to quadrature points, and provide overloaded SIMD types for users to write
a quadrature-point-wise expression for residual evaluation. However, since
the transformation is done manually, new operators require manual reim-
plementation. Knepley and Terrel [2013] also transpose to quadrature-point
basis but target GPUs instead. Both works vectorise by grouping elements
into batches, either to match the SIMD vector length in CPUs or the shared
memory capacity on GPUs. In contrast, Müthing et al. [2017] apply an
intra-kernel vectorisation strategy and exploit the fact that, in 3D, evaluat-
ing both a scalar field and its three derivatives fills the four lanes of an AVX2
vector register (assuming the computation is in double precision). More re-
cently, Kempf et al. [2018] target high order Discontinuous Galerkin (DG)
methods on hexahedral meshes using automated code generation to search
for vectorisation strategies, while taking advantage of the specific memory
layout of the data. Moxey et al. [2020] focus on vectorisation strategies for
the matrix-free evaluation of the Helmholtz operator on high-order spec-
tral/hp finite element, implemented in the Nektar++ framework [Cantwell
et al., 2015].

Closer to the Firedrake framework, Mudalige et al. [2016] have success-
fully implemented automated inter-kernel vectorisation in OP2, where vec-
torised code can be generated from a user kernel specified in the OP2 API
with minimal modification. However, in the PyOP2 layer in Firedrake, the
computational kernels are treated as opaque functions, making it difficult
for PyOP2 to perform the required code transformations.

47

In this chapter, we present a generic and portable solution based on cross-
element vectorisation. Our vectorisation strategy, implemented in Firedrake,
is similar to that of Kronbichler and Kormann [2017] but is fully automated
through code generation like that of Kempf et al. [2018] and Mudalige et al.
[2016]. We extend the scope of code generation in Firedrake to incorpo-
rate the outer iteration over mesh entities and leverage Loopy [Klöckner,
2014], a loop code generator based loosely on the polyhedral model, to sys-
tematically apply a sequence of transformations that promote vectorisation
by grouping mesh entities into batches so that each SIMD lane operates
on one entity independently. This automated code generation mechanism
enables us to explore the effectiveness of our techniques on operators span-
ning a wide range of complexity and systematically evaluate our method-
ology. Compared with an intra-kernel vectorisation strategy, this approach
is conceptually well-defined, more portable, and produces more predictable
performance. Our experimental evaluation demonstrates that the approach
consistently achieves a high fraction of hardware peak performance while
being fully transparent to the end users.

The contributions of this chapter are as follows:

• We present the design of a code transformation pipeline that permits
the generation of high-performance, vectorised code on a broad class
of finite element models.

• We demonstrate the implementability of the proposed pipeline by re-
alising it in the Firedrake finite element framework.

• We provide a thorough evaluation of our code generation strategy and
demonstrate that it achieves a substantial fraction of theoretical peak
performance across a broad range of test cases and popular C compil-
ers.

The rest of this chapter is arranged as follows. After reviewing the pre-
liminaries of code generation for the finite element method in Section 4.2, we
describe our implementation of cross-element vectorisation in Firedrake in
Section 4.3. In Section 4.5, we demonstrate the effectiveness of our approach
with experimental results.

4.2 Preliminaries

As described in Sections 2.1.3 and 2.1.4, The assembly of a linear form
in Firedrake is treated as a two-step process: local assembly and global
assembly. The rest of this section highlights the computational properties of
these two steps with an example, and in doing so, introduces the components
and concepts in Firedrake that are relevant to the implementation of cross-
element vectorisation.

48

4.2.1 Local assembly and TSFC

Local assembly of linear forms is the evaluation of the integrals as defined by
the weak form of the differential equation on each entity (cell or facet) of the
mesh. In Firedrake, the users define the problem in Unified Form Language
(UFL) [Alnæs et al., 2014] which captures the weak form and the function
space discretisation. Then the Two-Stage Form Compiler (TSFC) [Homolya
et al., 2018] takes this high-level, mathematical description and generates
efficient C code. The intermediate representation of TSFC is a tensor algebra
language called GEM, which supports various optimisations on the tensor
operations, as mentioned in Chapter 3. As an example, consider the linear
form of the weak form of the positive-definite Helmholtz operator:

L(u; v) =

∫
Ω
∇u · ∇v + uv dx, (4.1)

Listing 4.1: Assembling the linear form of the Helmholtz operator in UFL.

1mesh = UnitSquareMesh (10, 10)

2V = FunctionSpace(mesh , "Lagrange", 2)

3v = TestFunction(V)

4u = Function(V)

5L = (dot(grad(u), grad(v)) + u*v) * dx

6result = assemble(L)

Listing 4.1 shows the UFL syntax to assemble the linear form L as the
vector result, on a 10×10 triangulation of a unit square. We choose to use
the second-order Lagrange element, commonly known as the P2 element, as
our approximation space. Listing 4.2 shows a C representation of this kernel
generated by TSFC1. We note the following key features of this element
kernel:

• The kernel takes three array arguments in this case: coords holds the
coordinates of the current triangle, w 0 holds ui, the coefficients of u,
and A stores the result.

• The first part of the kernel (lines 8–20) computes the inverse and the
determinant of the Jacobian for the coordinate transformation from
the reference element to the current element. This is required for
pulling back the differential forms to the reference element. The Jaco-
bian is constant for each triangle because the coordinate transforma-
tion is affine in this case. In the general case, the Jacobian is computed
at every quadrature point.

1This TSFC-generated kernel is reformatted slightly for consistency with the PyOP2
generated kernels. The kernel function names generated by TSFC and PyOP2 are long
and complicated due to name mangling in Firedrake. They are shortened to operator
names such as helmholtz in the listings for readability.

49

Listing 4.2: Local assembly kernel for the Helmholtz operator (degree 2, on
triangles) of Listing 4.1 in C generated by TSFC.

1 static inline void helmholtz(double *__restrict__ A,

2 double const *__restrict__ coords , double const *__restrict__ w_0)

3 {

4 double const t13 [6] = { ... };

5 double const t14[6 * 6] = { ... };

6 double const t15[6 * 6] = { ... };

7 double const t16[6 * 6] = { ... };

8 double t0 = -1.0 * coords [0];

9 double t1 = t0 + coords [2];

10 double t2 = -1.0 * coords [1];

11 double t3 = t2 + coords [5];

12 double t4 = t0 + coords [4];

13 double t5 = t2 + coords [3];

14 double t6 = t1 * t3 + -1.0 * t4 * t5;

15 double t7 = 1.0 / t6;

16 double t8 = t1 * t7;

17 double t9 = t7 * -1.0 * t4;

18 double t10 = t7 * -1.0 * t5;

19 double t11 = t3 * t7;

20 double t12 = fabs(t6);

21 for (int ip = 0; ip <= 5; ++ip) {

22 double t17 = 0.0;

23 double t18 = 0.0;

24 double t19 = 0.0;

25 for (int i = 0; i <= 5; ++i) {

26 t17 = t17 + t16[6 * ip + i] * w_0[i];

27 t18 = t18 + t15[6 * ip + i] * w_0[i];

28 t19 = t19 + t14[6 * ip + i] * w_0[i];

29 }

30 double t20 = t13[ip] * t12;

31 double t21 = t11 * t19 + t10 * t18;

32 double t22 = t9 * t19 + t8 * t18;

33 double t23 = t20 * (t21 * t10 + t22 * t8);

34 double t24 = t20 * (t21 * t11 + t22 * t9);

35 double t25 = t20 * t17;

36 for (int j = 0; j <= 5; ++j)

37 A[j] = A[j] + t15[6 * ip + j] * t23 + t16[6 * ip + j] * t25 +

t14[6 * ip + j] * t24;

38 }

39 }

50

• The constant arrays t13, t14, t15, t16 are the same for all elements.
t14 represents the tabulation of basis functions at quadrature points,
t15 and t16 represent derivatives of basis functions at quadrature
points across each spatial dimension, t13 represents the quadrature
weights.

• The ip loop iterates over the quadrature points, evaluating the inte-
grand in (4.1) and summing to approximate the integral. The i and j

loops iterate over the degrees of freedom performing a change of basis
to values at quadrature points and then back to degrees of freedom
when accumulating into the output array A. The extents of these loops
depend on the integrals performed and the choice of function spaces
respectively.

• TSFC performs a sequence of optimisation passes by rewriting the ten-
sor operations following mathematical rules before generating the loop
nests (see Homolya et al. [2017] and Chapter 3 for details). This is
more powerful than a C compiler’s loop-invariant code motion op-
timisation because, firstly, TSFC operates on the symbolic tensor
expressions to explore different refactoring and reordering strategies
that expose invariant sub-expressions, and secondly, non-scalar sub-
expressions can also be extracted into temporary arrays to eliminate
redundant computation in the loop nests. As a side effect of these
transformations, the loop nests in the kernels are no longer perfectly
nested, thus limiting the effectiveness of vectorisation if it is only ap-
plied to the innermost loops (as most C compilers attempt to do).

• After the optimisation and scheduling stage, the translation of tensor
algebra to C in TSFC is a straightforward rewrite of tensor operations
to loop nests. This process results in certain artefacts that are shown
in Listing 4.2. For example, since there is no specific representation
for subtractions in TSFC, negations are emitted as multiplication by
-1. This can result in generated C code that is not as idiomatic as
if written by hand. Firedrake relies on the backend C compilers o
optimise such artefacts away, since readability is a secondary concern
for the generated code.

4.2.2 Global assembly and PyOP2

During global assembly, the local contribution from each mesh entity, com-
puted by the element kernel, is accumulated into the global data structure.
In Firedrake, PyOP2 [Rathgeber et al., 2012] is responsible for representing
and realising the iteration over mesh entities, marshalling data in and out
of the element kernels. The computation is organised as PyOP2 parallel
loops, or parloops. A parloop specifies a computational kernel, a set of mesh

51

entities to which the kernel is applied, and all data required for the kernel.
The data objects can be directly defined on the mesh entities, or indirectly
accessed through maps from the mesh entities. For instance, the signature
for the global assembly of the Helmholtz operator is:

parloop(helmholtz , cells , L(cell2dof , INC), coords(cell2vert , READ),

u(cell2dof , READ)).

Here helmholtz is the element kernel as shown in Listing 4.2, generated by
TSFC; cells is the set of all triangles in the mesh; L, coords, and u are the
global data objects that are needed to create the arguments for the element
kernel, where L holds the result vector, coords holds the coordinates of
the vertices of the triangles which are needed for computing the Jacobian,
and u holds the vector representation of function u (as weights of basis
functions). These global data objects correspond to the kernel arguments A,
coords and w 0 respectively. The maps cell2dof and cell2vert provide
indirections from the mesh entities to the global data objects. Finally, each
data argument is annotated with an access descriptor: READ for read-only,
INC for increment access. In this example, the L and u arguments share
the same map (since they are both defined on the same quadratic Lagrange
space), while the coords argument, being linear, uses a different map.

Listing 4.3 shows the C code generated by PyOP2 for the above example.
The code is then JIT-compiled when the result is needed in Firedrake. In
the context of vectorisation, this approach, with the inlined element kernel,
forms the baseline in our experimental evaluation. We note the following
key features of the global assembly kernels:

• The outer loop is over mesh entities.

• For each entity, the computation can be divided into three parts: gath-
ering the input data from global into local data (t3 and t4 in this case,
which correspond to kernel arguments coords and w 0), calling the lo-
cal assembly kernel, and scattering the output data (t2) to the global
data structure.

• The gathering and scattering of data make use of indirect addressing
via base pointers (dats) and indices (maps).

• Different mesh entities might share the same degrees of freedom: par-
allelisation of the scattering loop on line 29 must be aware of the
potential for data races.

• Global assembly interacts with local assembly via a function call (line
27). While the C compiler can potentially inline this call, it creates an
artificial boundary to using loop optimisation techniques that operate
at the source code level. Additionally, even after inlining, outer loop
vectorisation over mesh entities requires that the C compiler vectorises

52

Listing 4.3: Global assembly code for action of the Helmholtz operator (de-
gree 2, on triangles) in C generated by PyOP2.

1 static inline void helmholtz(double *__restrict__ A,

2 double const *__restrict__ coords , double const *__restrict__ w_0)

3 {

4 // ... element kernel as defined previously ... //

5 }

6
7 void wrap_helmholtz(int const start , int const end ,

8 double *__restrict__ dat0 , double const *__restrict__ dat1 ,

9 double const *__restrict__ dat2 , int const *__restrict__ map0 ,

10 int const *__restrict__ map1)

11 {

12 double t2[6];

13 double t3[3 * 2];

14 double t4[6];

15
16 for (int n = start; n <= -1 + end; ++n) {

17 for (int i6 = 0; i6 <= 5; ++i6)

18 t4[i6] = dat2[map0[6 * n + i6]];

19
20 for (int i2 = 0; i2 <= 2; ++i2)

21 for (int i3 = 0; i3 <= 1; ++i3)

22 t3[2 * i2 + i3] = dat1[2 * map1[3 * n + i2] + i3];

23
24 for (int i1 = 0; i1 <= 5; ++i1)

25 t2[i1] = 0.0;

26
27 helmholtz(t2, t3, t4);

28
29 for (int i15 = 0; i15 <= 5; ++i15)

30 dat0[map0[6 * n + i15]] += t2[i15];

31 }

32 }

53

through data-dependent array accesses. This is the software engineer-
ing challenge that has previously limited vectorisation to a single local
assembly kernel in Firedrake.

4.3 Vectorisation

As one would expect, the loop nests and loop trip counts vary considerably
for different integrals, meshes and function spaces that users might choose.
This complexity is one of the challenges that our system specifically, and
Firedrake more generally, must face in order to deliver predictable perfor-
mance on modern CPUs, which have increasingly rich SIMD instruction
sets.

In the prior approach to vectorisation in our framework, the local as-
sembly kernels generated by TSFC were further transformed to facilitate
vectorisation, as described in Luporini et al. [2015]. The arrays are padded
so that the trip counts of the innermost loops match multiples of the length
of SIMD units. However, padding becomes less effective for low polynomial
degrees on wide SIMD units. For instance, AVX512 instructions act on 8
double-precision floats, but the loops for degree 1 polynomials on triangles
only have trip counts of 3. Moreover, loop-invariant code motion is very ef-
fective in reducing the number of floating-point operations, but the hoisted
instructions are not easily vectorised as they are no longer in the innermost
loops. This effect is more pronounced on tensor-product elements where
TSFC is able to apply sum factorisation [Homolya et al., 2017] to achieve
better algorithmic complexity.

4.3.1 Cross-element vectorisation and Loopy

Another strategy is to vectorise across several elements in the outer loop
over the mesh entities, as proposed previously by Kronbichler and Kormann
[2017]. This approach computes the contributions from several mesh en-
tities using SIMD instructions, where each SIMD lane handles one entity.
This is always possible regardless of the complexity of the local element ker-
nel because the computation on each entity is independent and identical.
One potential downside is the increase in register and cache pressure as the
working set is larger.

For a compiler, the difficulty in performing cross-element vectorisation
(or, more generally, outer-loop vectorisation) is to automate a sequence of
loop transformations and necessary data layout transformations robustly.
This is further complicated by the indirect memory accesses in data gath-
ering and scattering, and the need to unroll and interchange loops across
these indirections. Such transformations require significantly more semantic
knowledge than what is available to the C compiler.

54

Loopy [Klöckner, 2014] is a loop generator embedded in Python which
targets both CPUs and GPUs. Loopy provides abstractions based on inte-
ger sets for loop-based computations and enables powerful transformations
based on the polyhedral model [Verdoolaege, 2010]. Loop-based computa-
tions in Loopy are represented as Loopy kernels. A Loopy kernel is a sub-
program consisting of a loop domain and a partially-ordered list of scalar
assignments acting on multi-dimensional arrays. The loop domain is spec-
ified as a set of integral points in the convex intersection of quasi-affine
constraints, represented using the Integer Set Library [Verdoolaege, 2010].
Loopy supports code generation for different environments from the same
kernel by choosing different targets.

To integrate with Loopy, the code generation mechanisms in Firedrake
were modified as illustrated in Figure 4.1.

Figure 4.1: Integration of Loopy in Firedrake for global assembly code gen-
eration.

Instead of generating source code directly, TSFC and PyOP2 are mod-
ified to generate Loopy kernels. We have augmented the Loopy internal
representation with the ability to support a generalised notion of kernel
fusion through the nested composition of kernels, specifically through sub-
programs and inlining. This allows PyOP2 to inline the element kernel such
that the global assembly Loopy kernel encapsulates the complete compu-
tation of global assembly. This holistic view of the overall computation
enables robust loop transformations for vectorisation across the boundary
between global and local assembly. To facilitate SIMD instruction genera-
tion, we also introduced a new OpenMP target to Loopy which extends its
existing C-language target to support OpenMP SIMD directives [OpenMP
Architecture Review Board, 2018, §2.9.3].

Listing 4.4 shows an abridged version of the global assembly Loopy kernel

55

for the Helmholtz operator, with the element kernel fused.

Listing 4.4: Global assembly Loopy kernel of the Helmholtz operator (degree
2, on triangles).

1 KERNEL: helmholtz

2 --

3 ARGUMENTS:

4 start: type: int32

5 end: type: int32

6 dat0: type: float64 , shape: (None)

7 // ... More arguments ... //

8 --

9 DOMAINS:

10 [end , start] -> { [n] : start <= n < end }

11 { [i6] : 0 <= i6 <= 5 }

12 // ... More domains ... //

13 --

14 INAME_IMPLEMENTATION_TAGS:

15 None

16 --

17 TEMPORARIES:

18 t4: type: float64 , shape: (6), dim_tags: (stride :1)

19 // ... More temporaries ... //

20 --

21 INSTRUCTIONS:

22 for n

23 for i6

24 t4[i6] = dat2[map0[n, i6]]

25 // ... More instructions ... //

26 for i15

27 dat0[map0[n, i15]] += t0[0, i15]

28 end n

We highlight the following key features of Loopy kernels:

• Loop indices, such as n and i1, are called inames in Loopy, which
define the iteration space. The bounds of the loops are specified by
the affine constraints in domains.

• Loop transformations operate on kernels by rewriting the loop domain
and the statements making up the kernel. In addition, each iname
carries a set of tags governing its realisation in generated code, perhaps
as a sequential loop, as a vector lane index, or through unrolling.

• Multi-dimensional arrays occur as arguments and temporaries. The
memory layout of the data can be specified by assigning tags to the
array dimensions.

• Dependencies between statements determine their partial order. State-
ment scheduling can also be controlled by assigning priorities to state-
ments and inames.

56

For example, to achieve cross-element vectorisation (by batching four
elements into one SIMD vector in this example) we invoke the following
sequence of Loopy transformations on the global assembly Loopy kernel,
exploiting the domain knowledge of finite element assembly:

1. Split the outer loop n over mesh entities into n outer and n simd, with
n simd having a trip count of four. The objective is to generate SIMD
instructions for the n simd loops, such that each vector lane computes
one iteration of the n simd loops.

2. Assign the tag SIMD to the new iname n simd. This tag informs Loopy
to force the n simd loop to be innermost, privatising the temporary
variables by vector-expansion if necessary.

We show the change to the Loopy kernel after these transformations in
Listing 4.5. In particular, the vector-expansion of the temporary t4, and the
splitting (and subsequent modification of the loop domain) of the n iname.

Listing 4.5: Changes to global assembly Loopy kernel of the Helmholtz
operator after cross-element vectorisation

1 KERNEL: helmholtz_simd

2 --

3 ARGUMENTS:

4 start: type: int32

5 end: type: int32

6 dat0: type: float64 , shape: (None)

7 // ... More arguments ... //

8 --

9 DOMAINS:

10 [end , start] -> { [n_outer , n_simd] :

11 n_simd >= start - 4n_outer and

12 0 <= n_simd <= 3 and n_simd < end - 4n_outer }

13 // ... More domains ... //

14 --

15 INAME_IMPLEMENTATION_TAGS:

16 n_simd: SIMD

17 --

18 TEMPORARIES:

19 t4: type: float64 , shape: (6, 4), dim_tags: (stride:4, stride :1)

20 // ... More temporaries ... //

21 --

22 INSTRUCTIONS:

23 for n_outer , n_simd

24 for i6

25 t4[i6, n_simd] = dat2[map0[n_outer * 4 + n_simd , i6]]

26 // ... More instructions ... //

27 for i15

28 dat0[map0[n_outer * 4 + n_simd , i15]] += t2[i15 , n_simd]

29 end n_outer , n_simd

Listing 4.6 shows the generated C code for the Helmholtz operator vec-
torised by grouping together four elements. Apart from the previously men-
tioned changes, we note the following details:

57

Listing 4.6: Global assembly code for action of the Helmholtz operator (de-
gree 2, on triangles) in C vectorised by batching four elements.

1 // ... Constant array declarations ... //

2
3 void wrap_helmholtz(int const start , int const end ,

4 double *__restrict__ dat0 , double const *__restrict__ dat1 ,

5 double const *__restrict__ dat2 , int const *__restrict__ map0 ,

6 int const *__restrict__ map1)

7 {

8 double form_t1 [4] __attribute__ ((aligned (64)));

9 double t2[6 * 4] __attribute__ ((aligned (64)));

10 // ... More temporary array declarations ... //

11 for (int n_outer = (start / 4); n_outer < (end / 4); ++ n_outer) {

12 for (int i2 = 0; i2 <= 2; ++i2) {

13 for (int i3 = 0; i3 <= 1; ++i3) {

14 #pragma omp simd

15 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

16 t3[n_simd + 8 * i2 + 4 * i3] =

17 dat1[2 * map1 [12 * n_outer + 3 * n_simd + i2] + i3];

18 }

19 }

20 for (int i6 = 0; i6 <= 5; ++i6) {

21 #pragma omp simd

22 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

23 t4[n_simd + 4 * i6] =

24 dat2[map0 [24 * n_outer + 6 * n_simd + i6]];

25 }

26 for (int i1 = 0; i1 <= 5; ++i1) {

27 #pragma omp simd

28 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

29 t2[n_simd + 4 * i1] = 0.0;

30 }

31 #pragma omp simd

32 for (int n_simd = 0; n_simd <= 3; ++ n_simd) {

33 form_t11[n_simd] = 0.0;

34 form_t1[n_simd] = -1.0 * t3[n_simd];

35 // ... More similar instructions ... //

36 form_t8[n_simd] = fabs(form_t7[n_simd]);

37 }

38 for (int form_ip = 0; form_ip <= 5; ++ form_ip) {

39 // ... More similar loop nests ... //

40 for (int form_j = 0; form_j <= 5; ++ form_j) {

41 #pragma omp simd

42 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

43 t2[n_simd + 4 * form_j] +=

44 form_t25[form_j] * form_t24[n_simd] +

45 form_t13[n_simd + 4 * form_j] +

46 form_t27[form_j] * form_t26[n_simd];

47 }

48 }

49 for (int i15 = 0; i15 <= 5; ++i15)

50 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

51 dat0[map0 [24 * n_outer + 6 * n_simd + i15]] +=

52 t2[n_simd + 4 * i15];

53 }

54 }

• The n simd loops are pushed to the innermost level. Moreover, this
transformation vector-expands temporary arrays such as t2, t3, t4

by four, with the expanded dimension labelled as varying the fastest

58

when viewed from (linear) system memory. This ensures their accesses
in the n simd loops always have unit stride.

• Loopy provides a mechanism to declare arrays to be aligned to specified
memory boundaries (64 bytes in this example).

• The n simd loops are decorated with #pragma omp simd to inform C
compilers to generate SIMD instructions. The exception is the writing
back to the global array (lines 49–52), which is sequentialised due to
potential race conditions, as different mesh entities could share the
same degrees of freedom.

• The peel loops that handle the cases where the number of elements
is non-divisible by four are generated by specifying slabs in Loopy.
These loops process the first and final iterations, which are potentially
incomplete, so that the conditionals in bounds of the main loop are
simplified. These peel loops are omitted here for simplicity. Note that
it is possible to pass additional constraints to Loopy if more informa-
tion is known about the loop bounds in PyOp2, which enables Loopy
to eliminate these loops in certain cases.

• After cross-element vectorisation, all local assembly instructions (lines
31–48) are inside n simd loops, which always have trip counts of four
and are unit stride. All loop-varying array accesses are unit stride in
the fastest moving dimension. There are no loop-carried dependencies
in n simd loops. As a result, the n simd loops, and therefore all local
assembly instructions, are vectorisable without further consideration
of dependencies. This is verified by checking the x86 assembly code
and also by running the program with the Intel Software Development
Emulator.

4.4 Compiler vector extensions

A more direct way to inform the compiler to emit SIMD instructions without
depending on OpenMP is to use vector extensions2, which support vector
data types. These were first introduced in the GNU compiler (GCC), but are
also supported in recent versions of the Intel C compiler (ICC) and Clang.
Analogous mechanisms exist in various vector-type libraries, e.g. VCL [Fog,
2017]. To evaluate and compare with the directive-based approach from Sec-
tion 4.3.1, we created a further code generation target in Loopy to support
vector data types. When inames and corresponding array axes are jointly
tagged as vector loops, Loopy generates code to compute on data in vector
registers directly, instead of scalar loops over the vector lanes. It is worth

2https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html

59

noting that the initial intermediate representation of the loop is identical in
each case, and that the different specialisations are achieved through code
transformation.

Listing 4.7: Global assembly code for action of the Helmholtz operator in C
vectorized by four elements (using vector extensions).

1 typedef double double4 __attribute__ ((vector_size (32)));

2 typedef int int4 __attribute__ ((vector_size (16)));

3
4 static double4 const _zeros_double4 __attribute__ ((aligned (64))) =

5 { 0.0 };

6
7 // ... Constant array declarations ... //

8
9 void wrap_helmholtz(int const start , int const end ,

10 double *__restrict__ dat0 , double const *__restrict__ dat1 ,

11 double const *__restrict__ dat2 , int const *__restrict__ map0 ,

12 int const *__restrict__ map1)

13 {

14 double4 form_t1 __attribute__ ((aligned (64)));

15 // ... Temporary array declarations ... //

16
17 for (int n_outer = (start / 4); n_outer <= ((-4 + end) / 4);

18 ++ n_outer) {

19 for (int i2 = 0; i2 <= 2; ++i2) {

20 for (int i3 = 0; i3 <= 1; ++i3) {

21 #pragma omp simd

22 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

23 t3[n_simd + 8 * i2 + 4 * i3] =

24 dat1[2 * map1 [12 * n_outer + 3 * n_simd + i2] + i3];

25 }

26 }

27 for (int i6 = 0; i6 <= 5; ++i6) {

28 #pragma omp simd

29 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

30 t4[n_simd + 4 * i6] =

31 dat2[map0 [24 * n_outer + 6 * n_simd + i6]];

32 }

33
34 for (int i1 = 0; i1 <= 5; ++i1)

35 t2[i1] = _zeros_double4;

36
37 form_t11 = _zeros_double4;

38 form_t1 = -1.0 * t3[0];

39
40 for (int form_ip = 0; form_ip <= 5; ++ form_ip) {

41 // ... More similar instructions ... //

42 #pragma omp simd

43 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

44 form_t8[n_simd] = fabs(form_t7[n_simd]);

45 // ... More similar instructions ... //

46 for (int form_j = 0; form_j <= 5; ++ form_j)

47 t2[form_j] +=

48 form_t25[form_j] * form_t24 +

49 form_t13[form_j] +

50 form_t27[form_j] * form_t26;

51 }

52
53 for (int i15 = 0; i15 <= 5; ++i15)

54 for (int n_simd = 0; n_simd <= 3; ++ n_simd)

55 dat0[map0 [24 * n_outer + 6 * n_simd + i15]] +=

60

56 t2[i15][n_simd];

57 }

58 }

Listing 4.7 shows the C code generated for the Helmholtz operator vec-
torised by batching four elements using the vector extension target. Here
almost all vectorised (innermost) loops for local assembly are replaced by
operations on vector variables. For instructions which do not fit the vector
computation model, most noticeably the indirect data gathering (lines 22–
24 29–31), or instructions containing built-in mathematics functions which
are not supported on vector data types (line 44), Loopy generates scalar
loops over vector lanes, decorated with #pragma omp simd. In addition, be-
cause vector extensions do not automatically broadcast scalars, any vector
instruction with a scalar rvalue is modified by adding the zero vector to the
expression, as shown in lines 35 and 37.

Compared to Listing 4.6, using vector extensions removes most of the
innermost loops, and the only remaining OpenMP SIMD directives are due
to the limitations of vector extensions as explained previously.

4.5 Performance Evaluation

We follow the performance evaluation methodology of [Luporini et al., 2017]
by measuring the assembly time of a range of operators of increasing com-
plexity and polynomial degrees. Due to the large number of combinations
of experimental parameters (operators, meshes, polynomial degrees, vectori-
sation strategies, compilers, hyperthreading), we only report an illustrative
portion of the results here, with the entire suite of experiments made avail-
able on the interactive online repository CodeOcean [Sun, 2019b].

4.5.1 Experimental setup

We performed experiments on a single node of two Intel systems, based on
the Haswell and Skylake microarchitectures, as detailed in Table 4.1. Fire-
drake uses MPI for parallel execution where each MPI process handles the
assembly for a subset of the domain. Hybrid MPI-OpenMP parallelisation
is not supported, and we stress that OpenMP pragmas are only used for
SIMD vectorisation within a single MPI process. Because we observe that
hyperthreading usually improves the performance by 5% to 10% for our ap-
plications, we set the number of MPI processes to the number of logical cores
of the CPU to utilise all available computational resources. Experimental
results with hyperthreading turned off are available on CodeOcean. Turbo
Boost is switched off to mitigate reproducibility problems that might be
caused by dynamic thermal throttling. The batch size, i.e., the number of
elements grouped together for vectorisation, is chosen to be consistent with
the SIMD length. We use three C compilers: GCC 7.3, ICC 18.0 and Clang

61

Table 4.1: Hardware specifications for experiments on cross-element vectori-
sation

Haswell Xeon E5-2640 v3 Skylake Xeon Gold 6130

Base frequency 2.6 GHz 2.1 GHz
Physical cores 8 16
SIMD instruction set AVX2 AVX512
doubles per SIMD vector 4 8
Cross-element vectorization batch size 4 8
FMA3 units per core 2 2
FMA instruction issue per cycle 2 2
Peak performance (double-precision)4 332.8 GFLOP/s 1075.2 GFLOP/s
System memory 4×8 GB DDR4-2133 2×32 GB DDR4-2666
LINPACK performance (double-precision)5 262.5 GFLOP/s 678.8 GFLOP/s
Memory bandwidth6 38.5 GB/s 36.6 GB/s
GCC/Clang arch flag -march=native -march=native
ICC SIMD flag -xcore-avx2 -xcore-avx512 -qopt-zmm-usage=high
Other compiler flags -O3 -ffast-math -fopenmp -O3 -ffast-math -fopenmp
Intel Turbo Boost OFF OFF

5.0. The two vectorisation strategies described in Section 4.3 are tested on
all platforms. We use the vendor-published Base Frequency to calculate the
peak performance in Table 4.1. In reality, modern Intel CPUs dynamically
reduce frequencies on heavy workloads with AVX2 and AVX512 instruc-
tions, which results in lower achievable performance. To get a reasonable
indication of the achievable peak performance for compute-bound applica-
tions, we run the optimised LINPACK benchmark binary provided by Intel
and record its performance on the two platforms.

For the benefit of reproducibility, we have archived the specific versions
of Firedrake components that are used for the experimental evaluation on
Zenodo [Zenodo/Firedrake, 2019]. An installation of Firedrake with compo-
nents matching the ones used in this chapter can be obtained following the
instruction at https://www.firedrakeproject.org/download.html, using the
following command:

python3 firedrake -install --doi 10.5281/ zenodo .2595487

The evaluation framework itself, including the program formulations and
scripts for performance measurement, is archived at [Sun, 2019a].

3Fused multiply-add operations.
4Calculated as base frequency×#cores×SIMD width×2 (for FMA)×#issue per cycle
5Intel LINPACK Benchmark. https://software.intel.com/en-us/articles/intel-mkl-

benchmarks-suite
6STREAM triad benchmark, 2 threads per core.

62

https://www.firedrakeproject.org/download.html

T
ab

le
4
.2

:
O

p
er

a
to

r
ch

a
ra

ct
er

is
ti

cs
a
n

d
sp

ee
d

-u
p

su
m

m
ar

y,
u

si
n

g
G

C
C

w
it

h
ve

ct
or

ex
te

n
si

on
s.

A
I:

ar
it

h
m

et
ic

in
te

n
si

ty
(F

L
O

P
/
b
y
te

).
D

:
tr

ip
co

u
n
t

of
lo

op
s

ov
er

d
eg

re
es

of
fr

ee
d

om
.

Q
:

tr
ip

co
u

n
t

of
lo

op
s

ov
er

q
u

ad
ra

tu
re

p
oi

n
ts

.
H

:
sp

ee
d

-u
p

ov
er

b
as

el
in

e
on

H
a
sw

el
l,

16
p

ro
ce

ss
es

,
w

it
h

ve
ct

or
ex

te
n

si
on

s.
S

:
sp

ee
d

-u
p

ov
er

b
as

el
in

e
on

S
k
y
la

ke
,

32
p

ro
ce

ss
es

,
w

it
h

ve
ct

or
ex

te
n

si
on

s.

t
r
i

q
u
a
d

t
e
t

h
e
x

P
A

I
D

Q
H

S
A

I
D

Q
H

S
A

I
D

Q
H

S
A

I
D

Q
H

S
mass

1
1
.2

3
3

1
.0

1
.0

4
.7

2
3

1
.1

1
.5

2
.7

4
4

1
.2

0
.7

1
6
.9

2
3

1
.8

2
.8

2
1
.7

6
6

1
.3

1
.0

3
.9

3
4

0
.8

1
.0

5
.9

1
0

1
4

1
.7

2
.4

1
0
.8

3
4

1
.1

1
.5

3
3
.0

1
0

1
2

2
.0

1
.3

3
.9

4
5

0
.8

1
.0

8
.7

2
0

2
4

0
.9

1
.8

8
.5

4
5

1
.8

2
.5

4
5
.6

1
5

2
5

2
.4

2
.6

3
.9

5
6

2
.2

1
.9

3
9
.2

3
5

1
2
5

1
.0

1
.6

7
.4

5
6

2
.1

2
.8

5
7
.5

2
1

3
6

1
.1

2
.0

3
.9

6
7

2
.3

1
.5

5
5
.9

5
6

2
1
6

0
.7

1
.0

7
.0

6
7

2
.0

2
.7

6
9
.7

2
8

4
9

0
.8

1
.6

4
.1

7
8

2
.5

1
.9

8
1
.2

8
4

3
4
3

1
.1

1
.9

6
.9

7
8

2
.2

2
.7

helmholtz

1
1
.8

3
3

1
.2

1
.0

1
0
.7

2
3

2
.0

2
.9

3
.9

4
4

1
.6

1
.6

4
5
.5

2
3

2
.5

3
.5

2
5
.7

6
6

2
.2

1
.7

1
0
.6

3
4

1
.0

1
.3

2
7
.3

1
0

1
4

2
.3

5
.5

3
4
.9

3
4

1
.8

3
.3

3
9
.6

1
0

1
2

2
.3

5
.6

1
0
.5

4
5

1
.3

2
.1

3
7
.5

2
0

2
4

1
.5

3
.3

2
7
.9

4
5

1
.8

3
.2

4
1
7
.8

1
5

2
5

2
.3

5
.2

1
0
.5

5
6

3
.2

5
.7

1
6
4
.1

3
5

1
2
5

1
.9

2
.8

2
4
.5

5
6

2
.8

4
.7

5
2
3
.3

2
1

3
6

1
.7

3
.5

1
0
.4

6
7

2
.8

4
.8

2
3
0
.1

5
6

2
1
6

1
.4

1
.8

2
3
.1

6
7

2
.8

4
.5

6
2
9
.9

2
8

4
9

1
.3

2
.8

1
0
.9

7
8

3
.0

5
.0

3
3
1
.4

8
4

3
4
3

1
.5

4
.1

2
2
.7

7
8

2
.9

4
.4

laplacian

1
0
.5

3
1

1
.0

1
.1

7
.9

2
3

1
.7

2
.7

1
.9

4
1

1
.0

1
.0

3
7
.8

2
3

2
.3

3
.2

2
2
.7

6
3

1
.7

1
.4

8
.7

3
4

1
.0

1
.2

1
0
.4

1
0

4
2
.2

3
.6

2
7
.1

3
4

1
.9

2
.8

3
4
.0

1
0

6
2
.2

2
.1

8
.4

4
5

1
.5

2
.0

2
4
.0

2
0

1
4

2
.2

3
.5

2
1
.6

4
5

1
.5

2
.0

4
6
.9

1
5

1
2

2
.4

2
.8

8
.3

5
6

3
.1

2
.9

3
1
.5

3
5

2
4

2
.7

3
.2

1
9
.2

5
6

2
.6

3
.7

5
1
2
.6

2
1

2
5

2
.1

3
.1

8
.2

6
7

2
.9

3
.9

1
2
4
.3

5
6

1
2
5

2
.9

2
.6

1
8
.4

6
7

2
.5

3
.7

6
1
6
.8

2
8

3
6

1
.9

2
.7

8
.6

7
8

2
.8

4
.0

1
8
9
.3

8
4

2
1
6

2
.6

2
.3

1
8
.3

7
8

2
.5

4
.1

elasticity

1
0
.5

3
1

1
.0

1
.0

1
0
.2

2
3

1
.9

2
.8

1
.9

4
1

1
.1

1
.0

4
8
.0

2
3

2
.3

3
.3

2
3
.0

6
3

1
.8

1
.5

1
0
.2

3
4

0
.9

1
.3

1
1
.6

1
0

4
2
.0

6
.3

3
1
.8

3
4

1
.9

2
.9

3
4
.4

1
0

6
2
.1

2
.2

9
.5

4
5

1
.5

2
.0

2
5
.6

2
0

1
4

2
.2

3
.3

2
4
.4

4
5

1
.5

1
.9

4
7
.3

1
5

1
2

2
.5

3
.6

9
.2

5
6

3
.0

3
.9

3
2
.7

3
5

2
4

2
.8

3
.1

2
1
.3

5
6

2
.6

3
.7

5
1
3
.2

2
1

2
5

2
.1

3
.2

9
.0

6
7

2
.8

3
.9

1
2
7
.5

5
6

1
2
5

2
.8

2
.6

2
0
.1

6
7

2
.5

3
.8

6
1
7
.4

2
8

3
6

1
.9

2
.8

9
.3

7
8

2
.8

4
.3

1
9
2
.6

8
4

2
1
6

2
.6

2
.4

1
9
.8

7
8

2
.4

4
.2

hyperelasticity

1
0
.5

3
1

1
.5

1
.4

3
1
.9

2
4

1
.2

1
.9

1
.7

4
1

1
.6

1
.9

1
8
3
.0

2
4

1
.2

1
.9

2
9
.8

6
6

2
.6

4
.2

3
1
.3

3
6

1
.9

3
.0

6
3
.2

1
0

1
4

3
.1

5
.9

1
3
7
.8

3
6

2
.3

4
.3

3
2
6
.8

1
0

2
5

3
.1

6
.7

3
0
.6

4
8

1
.4

1
.6

3
1
3
.8

2
0

1
2
5

3
.0

6
.1

1
1
8
.6

4
8

1
.5

1
.7

4
4
0
.7

1
5

4
9

3
.3

7
.3

3
0
.6

5
1
0

3
.3

6
.3

6
0
0
.0

3
5

3
4
3

2
.9

4
.2

1
1
0
.3

5
1
0

3
.2

6
.0

5
5
6
.1

2
1

8
1

2
.6

6
.1

3
0
.5

6
1
2

3
.4

6
.6

9
1
5
.2

5
6

7
2
9

2
.6

2
.8

1
0
8
.1

6
1
2

3
.0

5
.5

6
7
4
.5

2
8

1
2
1

2
.3

4
.3

3
1
.8

7
1
4

3
.3

5
.9

1
4
2
8
.3

8
4

1
3
3
1

1
.7

4
.6

1
0
8
.8

7
1
4

3
.0

5
.7

63

We measure the execution time of assembling the residual for five oper-
ators: the mass matrix (“mass”), the Helmholtz equation (“helmholtz”),
the vector Laplacian (“laplacian”), an elastic model (“elasticity”), and
a hyperelastic model (“hyperelasticity”). The mathematical description
of the operators is detailed in Appendix A. These operators stem from real-
world applications and cover a wide range of complexity: the generated C
code for the corresponding global assembly kernels exceeds hundreds of KB
for the hyperelasticity operator at high polynomial degree.

We performed experiments on both 2D and 3D domains, with two types
of mesh used for each case: triangles (“tri”) and quadrilaterals (“quad”) for
2D problems, tetrahedra (“tet”) and hexahedra (“hex”) for 3D problems.
This large variety underscores the broad applicability of our approach. The
arithmetic intensities and other pertinent characteristics of the operators
are listed in Table 4.2. The memory footprint is calculated assuming perfect
caching – it is thus a lower bound which results in an upper bound esti-
mation for the arithmetic intensity. The triangular and tetrahedral meshes
use an affine coordinate transformation (requiring only one Jacobian evalu-
ation per element). The quadrilateral and hexahedral meshes use a bilinear
(trilinear) coordinate transformation (requiring Jacobian evaluation at ev-
ery quadrature point), which usually results in higher arithmetic intensities
at low orders. In Firedrake, tensor-product elements [McRae et al., 2014]
benefit from optimisations such as sum factorisation to achieve lower asymp-
totic algorithmic complexity. They are therefore more competitive for higher
order methods [Homolya et al., 2017].

We record the maximum execution time of the generated global assembly
kernels on all MPI processes. This time does not include the time in syn-
chronisation and MPI data exchange for halo updates. Each experiment is
run five times, and the average execution time is reported. Exclusive access
to the compute nodes is ensured and threads are pinned to individual logi-
cal cores. Startup costs such as code generation time and compilation time
are excluded. We use automatic vectorisation by GCC without batching,
compiled with the optimisation flags of Table 4.1, as the baseline for com-
parison. Compared with our cross-element strategy, the baseline represents
the out-of-the-box performance of compiler auto-vectorisation for the local
element kernel. We note that cross-element vectorisation does not alter the
algorithm of local assembly except for the vector expansion, as illustrated by
Listing 4.2 and Listing 4.6. Consequently, the total number of floating-point
operations remains the same. The performance benefit from cross-element
vectorisation is therefore composable with the operation-reduction optimi-
sations performed by the form compiler to the local assembly kernels.

Before measuring the performance in terms of floating-point operations
per second (FLOPs), we use the Intel Software Development Emulator (In-

64

Table 4.3: Statistics of floating-point arithmetic instructions for degree 4
helmholtz kernel on quad mesh, running on Haswell. The Baseline column
and Vect columns show the numbers of instructions (in millions) executed
without and with cross-element vectorisation. GCC is used for both cases,
with the flags listed in Table 4.1. The Vect FLOPs column shows the contri-
bution of FLOPs by different types of instructions. We consider one FMA
instruction as two FLOPs (e.g. one AVX2 FMA instruction contributes
eight FLOPs).

Instruction type Baseline Vect Vect FLOPs (%)
1 double (scalar) 15,695 344 0.4
2 doubles (SSE) 3,962 0 0.0
4 doubles (AVX2) 2,372 4,621 21.6
FMA 1 double (scalar) 13,996 0 0.0
FMA 2 doubles (SSE) 655 0 0.0
FMA 4 doubles (AVX2) 3,041 8,349 78.0
Total 36,691 13,314 100.0

tel SDE)7 to verify the effectiveness of our transformation in promoting
vectorisation. We count the number of floating-point arithmetic instruc-
tions and group them by (A) their operand sizes and (B) whether they are
fused multiply-add (FMA) instructions. As an example, Table 4.3 shows
the statistics for the helmholtz operator of polynomial degree 4 on a quad

mesh, running on Haswell. The data indicate that after cross-element vec-
torisation, the compiler is more capable of generating SIMD instructions for
the global assembly. In this particular example, 99.6% of all floating-point
computations are performed by AVX2 SIMD instructions, compared with
less than 40% for the baseline.

4.5.2 Experimental results and discussion

Figures 4.2 to 4.5 show the performance of the operators on Haswell and
Skylake, vectorised with OpenMP SIMD directives (Section 4.3.1), and with
vector extensions (Section 4.4). We indicate the fraction of peak perfor-
mance achieved on the left axis, and the fraction of the LINPACK bench-
mark performance on the right axis. Figures 4.6 and 4.7 compare the roofline
models [Williams et al., 2009] of the baseline and our approach using vector
extensions, using the GCC compiler on Haswell and Skylake. The speed-up
achieved is also summarised in Table 4.2.

7https://software.intel.com/en-us/articles/intel-software-development-emulator

65

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

mass - tri mass - quad mass - tet mass - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

helmholtz - tri helmholtz - quad helmholtz - tet helmholtz - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

laplacian - tri laplacian - quad laplacian - tet laplacian - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

elasticity - tri elasticity - quad elasticity - tet elasticity - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

hyperelasticity - tri

1 2 3 4 5 6
Polynomial degree

hyperelasticity - quad

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tet

1 2 3 4 5 6
Polynomial degree

hyperelasticity - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

ICC GCC CLANG baseline LINPACK

Figure 4.2: The fraction of peak FLOP/s (as listed in Table 4.1) achieved by different compilers for
operators {mass, helmholtz, laplacian, elasticity, hyperelasticity}, on meshes {tri,
quad, tet, hex} on Haswell using vector extensions with 16 MPI processes. The dotted line
indicates the fraction of peak performance achieved by LINPACK benchmark.

.

66

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

mass - tri mass - quad mass - tet mass - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

helmholtz - tri helmholtz - quad helmholtz - tet helmholtz - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

laplacian - tri laplacian - quad laplacian - tet laplacian - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

elasticity - tri elasticity - quad elasticity - tet elasticity - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

hyperelasticity - tri

1 2 3 4 5 6
Polynomial degree

hyperelasticity - quad

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tet

1 2 3 4 5 6
Polynomial degree

hyperelasticity - hex

0.25

0.50

0.75

1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

ICC GCC CLANG baseline LINPACK

Figure 4.3: The fraction of peak FLOP/s (as listed in Table 4.1) achieved by different compilers for
operators {mass, helmholtz, laplacian, elasticity, hyperelasticity}, on meshes {tri,
quad, tet, hex} on Haswell using OpenMP pragma with 16 MPI processes. The dotted line
indicates the fraction of peak performance achieved by LINPACK benchmark.

.

67

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

mass - tri mass - quad mass - tet mass - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

helmholtz - tri helmholtz - quad helmholtz - tet helmholtz - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

laplacian - tri laplacian - quad laplacian - tet laplacian - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

elasticity - tri elasticity - quad elasticity - tet elasticity - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

hyperelasticity - tri

1 2 3 4 5 6
Polynomial degree

hyperelasticity - quad

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tet

1 2 3 4 5 6
Polynomial degree

hyperelasticity - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

ICC GCC CLANG baseline LINPACK

Figure 4.4: The fraction of peak FLOP/s (as listed in Table 4.1) achieved by different compilers for
operators {mass, helmholtz, laplacian, elasticity, hyperelasticity}, on meshes {tri,
quad, tet, hex} on Skylake using vector extensions with 32 MPI processes. The dotted line
indicates the fraction of peak performance achieved by the LINPACK benchmark.

.

68

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

mass - tri mass - quad mass - tet mass - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

helmholtz - tri helmholtz - quad helmholtz - tet helmholtz - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

laplacian - tri laplacian - quad laplacian - tet laplacian - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

elasticity - tri elasticity - quad elasticity - tet elasticity - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 F
LO

P/
s

hyperelasticity - tri

1 2 3 4 5 6
Polynomial degree

hyperelasticity - quad

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tet

1 2 3 4 5 6
Polynomial degree

hyperelasticity - hex

0.25
0.50
0.75
1.00

FL
OP

/s
 /

LI
NP

AC
K

FL
OP

/s

ICC GCC CLANG baseline LINPACK

Figure 4.5: The fraction of peak FLOP/s (as listed in Table 4.1) achieved by different compilers for
operators {mass, helmholtz, laplacian, elasticity, hyperelasticity}, on meshes {tri,
quad, tet, hex} on Skylake using OpenMP pragma with 40 MPI processes. The dotted line
indicates the fraction of peak performance achieved by the LINPACK benchmark.

.

69

10 1 100 101 102 103

Arithmetic intensity

5

10

20

50

100

200
300
500

GF
LO

PS
 /

s

Haswell baseline

10 1 100 101 102 103

Arithmetic intensity

5

10

20

50

100

200
300
500

GF
LO

PS
 /

s

Haswell cross-element vectorization

mass - tri
mass - quad
mass - tet
mass - hex

helmholtz - tri
helmholtz - quad
helmholtz - tet
helmholtz - hex

laplacian - tri
laplacian - quad
laplacian - tet
laplacian - hex

elasticity - tri
elasticity - quad
elasticity - tet
elasticity - hex

hyperelasticity - tri
hyperelasticity - quad
hyperelasticity - tet
hyperelasticity - hex

LINPACK

Figure 4.6: Roofline model of operators for basline and cross-element vectorisation using GCC on
Haswell. The dotted lines indicate the performance of the LINPACK benchmark.

.

100 101 102 103

Arithmetic intensity

10

20

50

100

200

500

1000

2000

GF
LO

PS
 /

s

Skylake baseline

100 101 102 103

Arithmetic intensity

10

20

50

100

200

500

1000

2000

GF
LO

PS
 /

s

Skylake cross-element vectorization

mass - tri
mass - quad
mass - tet
mass - hex

helmholtz - tri
helmholtz - quad
helmholtz - tet
helmholtz - hex

laplacian - tri
laplacian - quad
laplacian - tet
laplacian - hex

elasticity - tri
elasticity - quad
elasticity - tet
elasticity - hex

hyperelasticity - tri
hyperelasticity - quad
hyperelasticity - tet
hyperelasticity - hex

LINPACK

Figure 4.7: Roofline model of operators for basline and cross-element vectorisation using GCC on
Skylake. The dotted lines indicate the performance of the LINPACK benchmark.

.

4.5.3 Compiler comparison and vector extensions

When vectorising with OpenMP SIMD directives, ICC gives the best perfor-
mance for almost all test cases, followed by Clang, while GCC is significantly
less competitive. The performance disparity is more pronounced on Skylake
than on Haswell. However, when using vector extensions, Clang and GCC
improve significantly and are able to match the performance of ICC on both
Haswell and Skylake, whereas ICC performs similarly with both OpenMP
SIMD directives and vector extensions.

We use the Intel Software Development Emulator to count the number
of instructions executed at runtime for code generated by different compil-

70

ers. The data, shown in Table 4.4, indicate that although floating-point
operations are fully vectorised by all compilers when using OpenMP SIMD
directives for cross-element vectorisation, GCC and Clang generate more
load and store instructions between vector registers and memory. One pos-
sible reason is that GCC and Clang choose to allocate short arrays to the
stack rather than the vector registers directly, causing more load on the
memory subsystem.

Table 4.4: Statistics of memory instructions (in millions) executed by code
generated by different compilers for degree 9 helmholtz kernel on quad

mesh, running on Haswell.

Instruction type ICC GCC Clang
memory read 32 bytes 1,346 1,448 1,621
memory write 32 bytes 631 1,000 824
Total 1,977 2,448 2,445

In light of these results, we conclude that vectorisation with vector ex-
tensions allows greater performance portability on different compilers and
CPUs for our applications. It is, therefore, our preferred strategy for imple-
menting cross-element vectorisation, and is the default option for the rest of
our analysis in this chapter.

4.5.4 Vectorisation speed-up

Almost across the board, significant speed-up is achieved on the test cases
under consideration. Slowdown occurs in two situations. First, on low poly-
nomial degrees, the kernels tend to have low arithmetic intensity so that the
increase in available floating-point throughput through cross-element vec-
torisation cannot compensate for the increase in the size of the working set
of data. Second, on simple operators such as mass on tri and tetra, the
kernels have simple loop structures and the compilers can sometimes suc-
cessfully apply other optimisations such as unrolling and loop interchange to
achieve vectorisation without batching elements in the outer loop. The pat-
tern of speed-up is consistent across Haswell and Skylake. Higher speed-up is
generally achieved on more complicated operators(e.g. hyperelasticity),
and on tensor-product elements (quad and hex), which generally correspond
to more complicated loop structure and higher arithmetic intensity due to
the Jacobian recomputation at each quadrature point.

71

4.5.5 Achieved peak performance

We observe that the fraction of peak performance varies smoothly with poly-
nomial degrees for cross-element vectorisation in all test cases. This fulfils
an important design requirement for Firedrake: small changes in problem
setup by the users should not create unexpected performance degradation.
This is also shown in Figures 4.6 and 4.7 where the results are more clus-
tered on the roofline plots after cross-element vectorisation. The baseline
shows performance inconsistency, especially for low polynomial degrees. For
instance, for the helmholtz operator with degree 3 on quad, the quadrature
loops and the basis function loops all have trip counts of 4, which fits the
vector length on Haswell and results in better performance.

On simplicial meshes (tri and tetra), higher order discretisation leads
to kernels with very high arithmetic intensity because of the quadratic and
cubic increases in the number of basis functions, and thus the loop trip
counts. This is due to the current limitation that simplicial elements in
Firedrake cannot be sum factorised, thus they do not reflect realistic use
cases for higher order methods. In these test cases, we observe that the
baseline approaches cross-element vectorisation for sufficiently high polyno-
mial degrees. This is not a serious concern for our optimisation strategy
because the break-even degrees are very high except for simple operators
such as mass, and ultimately, tensor-product elements are more competi-
tive for higher order methods in terms of algorithmic complexity. We note
that further developments in TSFC and FInAT such as the Bernstein ele-
ments [Kirby and Thinh, 2012] would enable sum factorisation for simplicial
meshes. These techniques might introduce loop-carried dependencies to the
local assembly kernels, which could be challenging for intra-kernel vectorisa-
tion strategies but is composable with cross-element vectorisation, and the
approach described here can still be applied.

We also observe that there exists a small number of test cases where
the achieved peak performance is marginally higher than the LINPACK
benchmark. Although not providing an explicit reason, McCalpin [2018]
reported that the LINPACK benchmark could experience more than 10%
slowdown on recent Xeon Platinum processors, potentially due to snoop filter
evictions. Another possible reason for this observation is thermal throttling
since our test cases typically run for a shorter period of time compared to
LINPACK.

4.5.6 Tensor-product elements

We observe higher and more consistent speed-up for tensor-product elements
(quad and hex) on both Haswell and Skylake. This is because, on these
meshes, more computation is moved out of the innermost loop due to sum
factorisation performed by TSFC, resulting in more challenging loop nests

72

for the baseline strategy which attempts to vectorise within the element
kernel. The same applies to the evaluation of the Jacobian of coordinate
transformation, which is a nested loop over quadrature points after sum
factorisation for tensor-product elements.

The base elements of quad and hex are interval elements in 1D, thus the
extents of loops over degrees of freedom increase only linearly with respect
to the polynomial degrees, as shown in Table 4.2. As a result, the baseline
performance does not improve as quickly for higher polynomial degrees on
quad and hex compared with tri and tet, resulting in stable speed-up for
cross-element vectorisation observed on tensor-product elements.

4.6 Chapter summary

We have presented a portable, general-purpose solution for delivering stable
vectorisation performance on modern CPUs for matrix-free finite element as-
sembly. We have performed extensive experimental evaluations for a broad
class of finite element operators on a large range of elements and polynomial
degrees. We showed that compiler-based vector extensions facilitate gener-
ating appropriate vectorisable code, improving performance portability on
all three C compilers that we tested. We described the implementation of
cross-element vectorisation in Firedrake, which is transparent to the end-
users. Although the technique of cross-element vectorisation is conceptually
simple and has been applied in other works, our implementation based on
code generation is automatic, robust and composable with other optimi-
sation passes, such as the argument factorisation algorithm described in
Chapter 3.

The newly introduced abstraction layer, together with the integration of
Loopy in the code generation and optimisation pipeline, opens up multiple
possibilities for future developments in Firedrake. These include code gen-
eration with intrinsic instructions, loop tiling, and GPU acceleration, which
we will discuss in the next chapter.

73

Chapter 5

Global assembly of
matrix-free operators on
GPUs

Graphical Processing Units (GPUs) are engaging platforms for scientific
computing that usually offer high (peak) performances as well as better cost
and energy effectiveness. Systems empowered with GPUs frequently occupy
the top spots in the list of the world’s most powerful supercomputers1.
However, despite the investments in these platforms and advances in the
programming toolchains for GPUs, many simulations based on the finite
element methods are still not ported to GPUs. In the previous chapter,
we have demonstrated the integration of Loopy in Firedrake which enables
cross-element vectorisation on CPUs. In this chapter, we describe how the
representation of the global assembly process in Loopy allows us to generate
CUDA and OpenCL code to target GPUs.

5.1 Motivation and related works

One particular challenge hindering more widespread usage of GPUs is the
substantial effort required to develop GPU kernels or rewrite existing CPU
code in order to leverage the architectural advantages of GPUs. Moreover,
GPU implementations are often needed to be updated regularly to target
devices from different vendors, or devices from different generations of the
same vendor, as the GPU hardware architecture and instruction sets tend
to be redesigned more frequently compared to CPUs.

As discussed in Section 2.1.4, using a matrix-free approach is another
way to improve the performance of an iterative solver. This approach is
even more applicable to GPU-based systems due to the advantages of hav-

1https://www.top500.org/

74

ing less memory transfer and better memory access patterns [Kiran et al.,
2020]. GPU-based matrix-free implemenations have been developed for a
wide range of applications in domains such as elasticity [Martinez-Frutos
et al., 2015], heat conduction [Kiss et al., 2012], weather simulation [Müller
et al., 2013, 2015], earthquake modelling [Komatitsch et al., 2009], fluid me-
chanics [Fehn et al., 2019] and topology optimisations [Ram and Sharma,
2017].

To implement the global assembly phase of a FEM solver using a matrix-
free approach, it is possible to directly leverage the libraries shipped by the
hardware vendors, such as cuBLAS and cuSPARSE, which provides certain
basic linear algebra routines. This has been demonstrated by Müller et al.
[2015] and Ljungkvist [2017]. However, significant effort is often needed to
reorganise the computation in order to utilise these routines available in
the libraries. This process tends to be application-specific and non-trivial
for a general FEM framework like Firedrake. The performance of such
approaches are usually not portable and highly dependent on problem sizes
and discretisation schemes.

Alternatively, the computation kernels can be implemented at the CUDA
or OpenCL level. Cecka et al. [2011] and Dziekonski et al. [2012] have
manually ported the global assembly step from CPUs to GPUs for specific
applications. This re-implementation is non-trivial and typically involves
introducing a significant preprocessing stage to benefit from the fine-grain
parallelism on GPUs. Compared to a library-based approach, such imple-
mentations are even more device-specific with limited reusability.

Other works such as [Bolz et al., 2003, Klöckner et al., 2009, Komatitsch
et al., 2009] focus on specific applications and succeed in delivering high-
performance GPU implementations. In particular, the particular PDEs and
discretisation schemes used in these applications allow the authors to apply
sophisticated data transformations to remove conflicts and promote data
locality. While significant insights can be gained from these methods, it
remains unclear how the techniques can be applied more generally and how
much of the developed infrastructure in these works can be reused for future
hardware.

All of the above-mentioned approaches involve manually implementing
the computation kernels in CUDA or OpenCL. Pichler and Haase [2017]
instead make use of THURST [Hoberock and Bell, 2010], a higher-level C++
templated library to allow faster prototyping. While it is likely easier to
implement the solver in THURST than in CUDA, this work is still restricted
to one application and one discretisation.

To generalise and automate the process of targeting GPUs, Markall et al.
[2010] uses UFL [Alnæs et al., 2014] to transform the weak form of a PDE
into a DAG of fine-grain computational operators, each of which is mapped
to a pre-implemented CUDA kernel. This approach significantly raises the
programming abstraction level for the users, who can specify the mathemat-

75

ical problems in UFL in many cases, but the need to manually implement
computational kernels significantly limits the generalisability. We note that
OP2 also supports GPU code generation for computations on unstructured
mesh [Giles et al., 2013]. This functionality was partially ported to PyOP2
initially [Rathgeber et al., 2012] but has not been actively maintained and
updated to keep up with the rest of the Firedrake components, missing key
features such as the support for tensor product elements. Updating PyOP2
to match the functionality of OP2 is a significant endeavour that also re-
quires maintaining a separate code generator in PyOP2 going forward.

The introduction of Loopy in the Firedrake framework, as described
in Chapter 4, provides another pathway to automate global assembly on
GPUs through code generation. This is because Loopy already support
generating CUDA or OpenCL code from the same high-level descriptions of
loops, such as the example in Listing 4.4. In this chapter, we describe how
PyOP2 is modified to support GPUs. We extend PyOP2 to apply necessary
transformations to the Loopy kernels, and leverage existing Loopy backends
to generate the CUDA or OpenCL kernels that describe the global assembly
computation. PyOP2 is also modified to generate the host-side code that
organises data movement.

This approach completes the code generation pipeline in Firedrake on
GPUs and allows users to target both CPUs and GPUs starting from the
same problem definition, with the same flexibility in choosing different dis-
cretisation schemes. The loop transformation facilities in Loopy also enables
easy exploration of different parallelisation strategies, where the loop nests
are divided among GPU threads following different patterns.

The rest of this chapter is divided into two parts. In Section 5.2, we
describe our methodology to target GPUs in Firedrake. We evaluate our
approach with numerical experiments in Section 5.3.

5.2 Implementation

5.2.1 Implementation on CUDA and OpenCL

Figure 5.1: GPU backend implementation for CUDA and OpenCL devices
in Firedrake using Loopy.

76

The task to target GPUs in Firedrake is two-fold. First, the device code
(i.e. a kernel implemented in CUDA or OpenCL) for the global assembly
computation needs to be generated. Second, the runtime system needs to be
established to launch the kernels and orchestrate data movement between
the host and the device.

Since Loopy natively supports CUDA and OpenCL as code generation
targets, once a (backend-independent) global assembly Loopy kernel is cre-
ated (such as the example in Listing 4.4), this same Loopy kernel can be
used to generate not only CPU code, but also CUDA and OpenCL device
kernels. Compared with generating code on CPUs, the CUDA and OpenCL
kernels require different parallelisation strategies to match the iterations to
the blocks and threads on GPUs, as explained later on.

CUDA

In Firedrake, many data structures in PyOP2 are essentially a thin layer
of abstraction wrapped around corresponding PETSc objects. For exam-
ple, a PyOP2 Dat that represents a discretised vector is an object owing
a (distributed) array representing a PETSc Vec. When running on CPUs,
PyOP2 directly operates on these arrays while executing the kernels. For
GPU targets, PyOP2 needs to transfer the inputs to the device first (if they
are not on the device already, or if they are on the device but are invali-
dated), launch the kernel and transfer the results back if they are needed on
the host. The GPU runtime of Firedrake handles this process.

We use PyCUDA [Klöckner et al., 2012] as the runtime for the CUDA
backend in Firedrake. PyCUDA provides a Python interface that allows
easy integration with PyOP2 to compile and launch the CUDA kernels on
GPUs. The memory allocation on the device and data movement between
the host and the device are all handled through Python functions provided
by PyCUDA. In this case, the integration with PETSc is “shallow”: to of-
fload a computation on GPU, PyOP2 obtains the pointers to the underlying
memory of the PETSC Vecs, uses PyCUDA to send the data to the device
(if needed) and launch the kernel with these pointers, There is, therefore,
no need for explicit host-side code in this scenario.

For the OpenCL backend, we use ViennaCL [Rupp et al., 2016] for the
runtime support. ViennaCL is a header-only library that provides a C++
interface for linear algebra routines. It is the recommended mechanism to
leverage PETSc in OpenCL. Compared with CUDA, OpenCL provides a
lower-level API, and the host-side programs are usually more elaborate.
This observation also holds for us when integrating ViennaCL into PyOP2.
Instead of handling the runtime in Python, we create a host-side C++ pro-
gram using ViennaCL that compiles the kernel, transfers the data, sets com-
putation properties such as work group sizes and launches the kernel. This
program is non-trivial but nonetheless well-structured, and can be created

77

at runtime from a template. A skeleton of such a host-side program is shown
in Listing 5.1 where details such as error handling are omitted.

OpenCL

Listing 5.1: An example of host-side ViennaCL code to transfer data and
launch OpenCL kernels with details such as error handling omitted.

1 #include <CL/cl.h>

2 #include "petsc.h"

3 #include "petscvec.h"

4 #include "petscviennacl.h"

5 #include "viennacl/ocl/backend.hpp"

6 #include "viennacl/vector.hpp"

7 #include "viennacl/backend/memory.hpp"

8
9 extern "C" void kernel_executor(cl_kernel kernel , int start , int end ,

Vec dat0 , cl_mem map0 , ...)

10 {

11 // ViennaCL vector declarations .

12 viennacl ::vector <PetscScalar > *dat0_viennacl;

13 // ... More declarations ... //

14
15 // Get ViennaCL Vec from PETSC Vec.

16 VecViennaCLGetArray(dat0 , &dat0_viennacl);

17 // ... More similar instructions ... //

18
19 // Set the kernel arguments.

20 viennacl ::ocl::handle <cl_mem > dat0_handle = ...;

21 clSetKernelArg(kernel , 0, sizeof(PetscScalar), &dat0_handle);

22 // ... More similar instructions ... //

23
24 // Get the context.

25 viennacl ::ocl:: context ctx = ...;

26
27 // Get the command queue.

28 cl_command_queue queue= ctx.get_queue ().handle ().get();

29
30 // Set the local and global work group sizes.

31 const int dim = ...;

32 size_t l_size[dim] = { ... };

33 size_t g_size[dim] = { ... };

34
35 clFinish(queue);

36
37 // Enqueue the kernel.

38 clEnqueueNDRangeKernel(queue , kernel , dim , g_size , l_size);

39
40 clFinish(queue);

41
42 // Restoring the arrays to the petsc vecs

43 VecViennaCLRestoreArray(dat0 , &dat0_viennacl);

44 // ... More similar instructions ... //

45 }

We also note that the PETSc data objects for GPU targets need to be
initialised with the corresponding PETSc types, so that the data formats
and layout semantics match what is expected by the PETSc algorithms.

78

This means, for example, a PETSc Vec (owned by a PyOp2 Dat) should be
created with the type VECCUDA (CUDA) or VECVIENNACL (OpenCL).

The exceptions to the above are PyOP2 Maps, which are used to represent
the mapping from an entry in a source set (e.g. a cell in a mesh) to one or
more entries in a target set (e.g. one or more DOFs in a finite element func-
tion space). In PyOp2, Maps are represented by multi-dimensional Numpy
arrays of integers, and, unlike Dats, there are no underlying PETSc objects
for Maps. To transfer the (read-only) Maps to the device before launching
a kernel, on the CUDA backend, we copy the array to the device using
PyCUDA functions. In the case of OpenCL, we generate and execute a
host-side ViennaCL program such as the example in Listing 5.2 to perform
this copy.

Listing 5.2: A helper host-side ViennaCL program to copy the data repre-
senting a PyOP2 Map to the device.

1 #include <CL/cl.h>

2 #include "petsc.h"

3 #include "petscviennacl.h"

4
5 extern "C" cl_mem get_map_buffer(int * __restrict__ array , const int

array_size , viennacl ::ocl:: context ctx)

6 {

7 int size = sizeof(cl_int) * array_size;

8 return clCreateBuffer(ctx.handle ().get(),

9 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR , size , array);

10 }

In general, although the OpenCL and CUDA backends are functionally
similar, the support for CUDA in our toolchain is more established. It is also
easier to use as it operates at a higher level and is better integrated with
Python. We note that there also exists a Python binding for ViennaCL,
which might remove the need for generating the host-side code. This path
has not been sufficiently explored, partly due to the fact that it abstracts
away the runtime aspects completely and makes it harder to use this binding
in PyOP2 which is responsible for organising data movements. As a result,
we only describe the implementation and performance details for the CUDA
backend and use CUDA nomenclature and conventions in the rest of this
chapter.

5.2.2 Atomic addition

Listing 5.3: CUDA code snippet that implements atomic incrememts for
double-precision floating-point numbers.

1 #if __CUDA_ARCH__ < 600

2 __device__ double atomicAdd(double *address , double val) {

3 unsigned long long int *address_as_ull =

4 (unsigned long long int *) address;

5 unsigned long long int old = *address_as_ull , assumed;

6

79

7 do {

8 assumed = old;

9 old = atomicCAS(address_as_ull , assumed ,

10 __double_as_longlong(val + __longlong_as_double(assumed)));

11
12 } while (assumed != old);

13
14 return __longlong_as_double(old);

15 }

16 #endif

In the global assembly process on GPUs, typically, the results are stored
in the device global memory during the computation. If different threads
could compute the contributions for the same DOFs, the updates to the
global data need to be implemented as an atomic update to mitigate po-
tential race conditions. However, on certain Nvidia GPUs (for example, the
devices from the GeForce product line before the Pascal series), atomicAdd
function is not implemented for double-precision floating-point numbers in
the CUDA API. Instead, we extend the CUDA code generator in Loopy
to generate the code snippet in Listing 5.3, which implements the atomic
addition with a 64-bit atomic compare and swap (CAS) instruction on such
devices.

5.2.3 Single element per thread parallelisation

As illustrated in Algorithm 4, there are multiple loops in the global assembly
routine that can be parallelised. These include:

• The outer loop over elements in the domain

• The reduction loop over basis functions

• The reduction loop over quadrature points

The most straightforward strategy to parallelise the global assembly loop
nests on GPUs is to assign each iteration of the outer loop to one thread
so that each thread computes the contribution from one element in the
domain. The computation on each cell can be performed independently, and
no synchronisation is required between threads during the computation. The
write-back to the global vector needs to be performed by atomic additions
as shown in Section 5.2.2, due to potential race conditions. This strategy is
analogous to the cross-element vectorisation strategy on CPUs as described
in Chapter 4, but treating one GPU thread as a vector line on CPU.

A critical feature of the programming abstraction on GPUs is the concept
of hierarchical parallelism, where threads are grouped into thread blocks. In
the hardware view, threads in the same blocks run on the same stream
processor. They can communicate with each other via shared memory and
synchronise with block barriers. This means in addition to establishing the

80

Listing 5.4: The global assembly Loopy kernel of the Helmholtz operator
(degree 2, on triangles) transformed for generating CUDA code.

1 KERNEL: helmholtz_gpu_sept

2 --

3 ARGUMENTS:

4 start: int32

5 end: int32

6 dat0: type: float64 , space: global

7 // ... More arguments ... //

8 --

9 DOMAINS:

10 [end , start] -> { [n_outer , n_inner] :

11 n_inner >= start - 32 n_outer and

12 0 <= n_inner <= 31 and n_inner < end - 32 n_outer }

13 // ... More temporaries ... //

14 --

15 INAME_IMPLEMENTATION_TAGS:

16 n_outer: g.0

17 n_inner: l.0

18 --

19 TEMPORARIES:

20 t0: type: float64 , shape: (1, 6), space:auto

21 form_t14: type: float64 , shape: (6, 6), space:global

22 // ... More temporaries ... //

23 --

24 INSTRUCTIONS:

25 for n_outer , n_inner

26 for i6

27 t2[0, i6] = dat2[map0[n_inner + n_outer *32, i6]]

28 end i6

29 // ... More instructions ... //

30 for i8

31 dat0[map0[n_inner + n_outer *32, i8]] += t0[0, i8] {atomic=update}

32 end n_outer , i8, n_inner

81

task for a thread, we also need to specify how many threads comprise a
block.

Using the single-element-per-thread parallelisation strategy, because
each thread can run independently and update the global memory directly,
there is no need for communication between threads and an arbitrary block
size can be chosen. In this work, we have picked the block size of 32 because
it matches the warp size on the hardware size. We also verified that as long
as the chosen block size is a multiple of 32 and less than the hardware block
size limit of 1024, the differences in performance are insignificant for this
parallelisation strategy.

Listing 5.4 shows how the Loopy kernel for global assembly of the
Helmholtz operator in Listing 4.4 are transformed to generate CUDA code.
We split the outer loop n over the cells into n outer and n inner, with
the extent of n inner equals to 32. n outer is assigned the tag g.0, which
maps it to blocks, while n inner is assigned the tag l.0, which maps it to
individual threads. This means they are mapped to the built-in variables
blockIdx.x and threadIdx.x in CUDA.

Listing 5.5: CUDA kernel for the action of the Helmholtz operator (degree
2, on triangles).

1 // ... Definition of atomicAdd in Listing 5.3 ... //

2 __constant__ double const form_t13 [6] = { ... };

3 __constant__ double const form_t14 [6 * 6] = { ... };

4 __constant__ double const form_t15 [6 * 6] = { ... };

5 __constant__ double const form_t16 [6 * 6] = { ... };

6
7 extern "C" __global__ void __launch_bounds__ (32) helmholtz(

8 int const start , int const end , double *__restrict__ dat0 ,

9 double const *__restrict__ dat1 , double const *__restrict__ dat2 ,

10 int const *__restrict__ map0 , int const *__restrict__ map1)

11 {

12 if (32*(blockIdx.x+start -(31+31* start)/32)+threadIdx.x-start >= 0 &&

13 end -32*(blockIdx.x+start -(31+31* start)/32)-threadIdx.x > 0)

14 {

15 double form_t0;

16 // ... Temporary variable declarations ... //

17
18 for (int i6 = 0; i6 <= 5; ++i6)

19 t2[i6] = dat2[map0[6 * (32 * blockIdx.x + threadIdx.x) + i6]];

20 for (int i2 = 0; i2 <= 2; ++i2)

21 for (int i3 = 0; i3 <= 1; ++i3)

22 t1[2 * i2 + i3] =

23 dat1[2 * map1[3 * (32 * blockIdx.x + threadIdx.x) + i2] + i3];

24 for (int i0 = 0; i0 <= 5; ++i0)

25 t0[i0] = 0.0;

26 form_t0 = -1.0 * t1[0];

27 // ... More similiar instructions ... //

28 for (int form_ip = 0; form_ip <= 5; ++ form_ip)

29 {

30 form_t17 = 0.0;

31 // ... More similiar instructions ... //

32 for (int form_i = 0; form_i <= 5; ++ form_i)

33 {

34 form_t17 += form_t16 [6 * form_ip + form_i] * t2[form_i];

35 // ... More similiar instructions ... //

82

36 }

37 // ... More similiar instructions ... //

38 for (int form_j = 0; form_j <= 5; ++ form_j)

39 t0[form_j] +=

40 form_t15 [6 * form_ip + form_j] * form_t23 +

41 form_t16 [6 * form_ip + form_j] * form_t25 +

42 form_t14 [6 * form_ip + form_j] * form_t24;

43 }

44 for (int i8 = 0; i8 <= 5; ++i8)

45 atomicAdd (&dat0[map0[6 * (32 * blockIdx.x + threadIdx.x) + i8]],

46 t0[i8]);

47 }

48 }

The generated CUDA kernel is shown in Listing 5.5. We note Loopy
correctly identifies the write back to the global memory in lines 45-46 to be
an atomic update, and an atomicAdd instruction is generated as a result.

The NVCC compiler does not reliably unroll small loops. Instead, we
attach the inames that correspond to the (innermost) loop over the physical
dimensions with the implementation tag unr so that Loopy always unrolled
them for performance consistency. Note that such loops might not exist in
the kernel if all the functions in the equation are scalar functions.

5.2.4 Global constants

In a Loopy kernel, temporary variables (i.e. data that are not arguments
of the kernel) can be assigned a memory address space, as shown in Listing
5.4. The address space determines the storage allocation of the temporary
variable. Possible spaces include: PRIVATE (thread-specific memory), LOCAL
(block-specific memory) and GLOBAL (global memory). It is usually suffi-
cient to set the address space to AUTO which allows Loopy to determine the
memory location automatically. Nonetheless, we assign the GLOBAL space
to the constant arrays that describe the tabulations of the basis functions
and quadrature weights. As shown in Listing 5.5, these arrays are declared
with constant in the generated CUDA kernel and are allocated in the
read-only constant memory on the device.

However, the size of the constant memory is limited to 64KB in recent
NVidia GPUs2. On the other hand, the dimension of the tabulation matri-
ces is Nquadrature × Nbasis, which means the constant memory is not large
enough for these constants of complicated equations on higher orders. This
problem is more pronounced on simplicial meshes (tri and tetra) because
the numbers of quadrature points and basis functions grow quadratically
or cubically (due to the lack of sum-factorisation by the form compiler), as
shown in Table 4.2.

To mitigate this problem, we design a transformation that copies these
constant arrays to the global memory on the device and pass them to the

2https://docs.nvidia.com/cuda/cuda-c-programming-guide

83

Table 5.1: Hardware specification for experiments

GeForce GTX TITAN Tesla P100

Microarchitecture Kepler Pascal
Base frequency 837 MHz 1126 MHz
CUDA cores 2688 3584
FMA instructions available Yes Yes
Double-precision cost factor 3 2
Peak performance (double-precision)3 1499.9 GFLOP/s 4035.6 GFLOP/s
LINPACK performance (double-precision)4 768.7 GFLOP/s 3967.0 GFLOP/s
Device memory 6 GB GDDR5 16 GB HBM2
Device memory bandwidth5 241.4 GB/s 500.2 GB/s
Block size 32 32

kernel as additional arguments. This transformation is achieved by removing
these arrays from the list of temporary variables in the Loopy kernel and
adding them to the list of kernel arguments, with the computation remaining
unchanged. This strategy allows Firedrake to support all such assembly
kernels on GPU, at the cost of requiring additional loads from the global
memory.

5.3 Performance evaluation

In this section, we evaluate the performance of the global assembly kernels
of a suite of matrix-free operators on GPUs.

5.3.1 Experimental setup

We performed experiments on two systems with NVidia GPUs from the
GeForce (desktop-orientated) and Tesla (server-orientated) product lines.
The details are listed in Table 5.1. We use CUDA toolkit version 9.2 for this
experiment.

Because many GPUs are optimised for 32-bit arithmetics, they can be
ineffective to perform 64-bit computations. This situation is particularly
relevant for devices from the GeForce product line which are optimised for
desktop graphics and gaming uses. This inefficiency is noted as double-
precision cost factor in Table 5.1, where a cost factor of 2 indicates there is
no loss of efficiency compared with executing single-precision computations.

4Calculated as: base frequency×#cores× 2 (for FMA)÷ double-precision cost factor
5NVidia LINPACK Benchmark. https://developer.nvidia.com/rdp/assets/cuda-

accelerated-linpack-linux64

84

We use the Base Frequency provided by the NVidia to calculate the
peak performance in Table 5.1. Similar to Chapter 4, we run the LINPACK
benchmark provided by the vendor to obtain estimates for achievable peak
performance.

We perform the evaluation using the same family of operators and dis-
cretisations listed in Table 4.2. The computations are repeated between 100
to 1000 times.

On most NVidia GPUs, the L1 cache of a streaming processor is backed
by the same memory as the shared memory. Because the kernels do not use
shared memory in the single-cell-per-thread parallelisation strategy, we set
the cache configuration to PreferL1 in the CUDA runtime in PyOP2, so
that more space is allocated to the L1 cache.

5.3.2 Experimental results and discussion

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 L
IN

PA
CK

 F
LO

P/
s mass - tri

1 2 3 4 5 6
Polynomial degree

helmholtz - tri

1 2 3 4 5 6
Polynomial degree

laplacian - tri

1 2 3 4 5 6
Polynomial degree

elasticity - tri

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tri

GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100

Figure 5.2: The fraction of peak LINPACK FLOP/s (as listed in Table 5.1) achieved for operators
{mass, helmholtz, laplacian, elasticity, hyperelasticity}, on mesh {tri} on GeForce
GTX Titan and Tesla P100. Parallelised using the single-element-per-thread strategy with block
size of 32.

Figure 5.2 shows the performance of the operators on triangular meshes
on the two GPU devices. We observe that the performance improves with
increasing polynomial degrees at low polynomial degrees. This observation
corresponds to the increase in the arithmetic intensities, as shown in Table
4.2, that improves the utilisation of the devices. This is also evident in
Figures 5.3 and 5.4 which show the roofline models of the operators on the
two devices, respectively.

However, at higher polynomial degrees, the performance starts to de-
crease with increasing degrees. One important reason for this observation is
the higher register usage of the generated CUDA kernels at higher polyno-
mial degrees. On GPUs, each streaming process owns a register file shared

85

10 1 100 101 102 103

Arithmetic intensity

20

50

100

200

500

1000

GF
LO

PS
 /

s

GeForce GTX TITAN, single-element-per-thread parallelisation

mass - tri
mass - quad
mass - tet
mass - hex

helmholtz - tri
helmholtz - quad
helmholtz - tet
helmholtz - hex

laplacian - tri
laplacian - quad
laplacian - tet
laplacian - hex

elasticity - tri
elasticity - quad
elasticity - tet
elasticity - hex

hyperelasticity - tri
hyperelasticity - quad
hyperelasticity - tet
hyperelasticity - hex

LINPACK

Figure 5.3: Roofline model of operators for single-element-per-thread parallelisation on GeForce
GTX TITAN. The dotted lines indicate the performance of the LINPACK benchmark.

.

10 1 100 101 102 103

Arithmetic intensity

20

50

100

200

500

1000

2000

4000

GF
LO

PS
 /

s

Tesla P100, single-element-per-thread parallelisation

mass - tri
mass - quad
mass - tet
mass - hex

helmholtz - tri
helmholtz - quad
helmholtz - tet
helmholtz - hex

laplacian - tri
laplacian - quad
laplacian - tet
laplacian - hex

elasticity - tri
elasticity - quad
elasticity - tet
elasticity - hex

hyperelasticity - tri
hyperelasticity - quad
hyperelasticity - tet
hyperelasticity - hex

LINPACK

Figure 5.4: Roofline model of operators for single-element-per-thread parallelisation on Tesla
P100. The dotted lines indicate the performance of the LINPACK benchmark.

.

among all (active) threads. As a result, a higher number of registers al-

86

located per thread will lead to lower thread occupancy and lower perfor-
mances. In addition, register spilling increases memory traffic and instruc-
tion counts, further decreasing performances. This phenomenon is more
evident for complicated operators such as hyperelasticity. Table 5.2 lists
the register usage of the kernels as reported by the CUDA NVCC com-
piler. Nonetheless, high performance is achievable in some instances where
the arithmetic intensity is high enough while register spilling does not sig-
nificantly impact the performance yet, for example, the hyperelasticity

operator on tet at degree 3.

Tensor-product elements

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 L
IN

PA
CK

 F
LO

P/
s

mass - quad

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 L
IN

PA
CK

 F
LO

P/
s

mass - hex

helmholtz - quad

1 2 3 4 5 6
Polynomial degree

helmholtz - hex

laplacian - quad

1 2 3 4 5 6
Polynomial degree

laplacian - hex

elasticity - quad

1 2 3 4 5 6
Polynomial degree

elasticity - hex

hyperelasticity - quad

1 2 3 4 5 6
Polynomial degree

hyperelasticity - hex

GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100GeForce GTX Titan Tesla P100

Figure 5.5: The fraction of peak LINPACK FLOP/s (as listed in Table 5.1) achieved for operators
{mass, helmholtz, laplacian, elasticity, hyperelasticity}, on meshes {quad, hex} on
GeForce GTX Titan and Tesla P100. Parallelised using the single-element-per-thread strategy
with block size of 32.

Figure 5.5 shows the performance of the operators using tensor-product
discretisations, namely, on quad and hex meshes. We observe that, at lower

87

T
ab

le
5
.2

:
R

eg
is

te
r

st
at

is
ti

cs
of

th
e

ge
n

er
at

ed
C

U
D

A
ke

rn
el

s
u

si
n

g
si

n
gl

e-
el

em
en

t-
p

er
-t

h
re

ad
p

ar
al

le
li

sa
ti

on
.

R
:

re
gi

st
er

u
se

d
.

L
:

re
g
is

te
r

sp
il

l
lo

a
d

s
(b

y
te

s)
.

S
:

re
g
is

te
r

sp
il

l
st

or
es

(b
y
te

s)
.

X
:

co
m

p
il

at
io

n
fa

il
u

re
(d

u
e

to
ke

rn
el

u
si

n
g

to
o

m
u

ch
gl

ob
al

co
n

st
an

t
m

em
or

y
).

t
r
i

q
u
a
d

t
e
t

h
e
x

T
it

a
n

P
1
0
0

T
it

a
n

P
1
0
0

T
it

a
n

P
1
0
0

T
it

a
n

P
1
0
0

P
R

L
S

R
L

S
R

L
S

R
L

S
R

L
S

R
L

S
R

L
S

R
L

S

mass

1
2
6

0
0

3
2

0
0

4
4

0
0

5
0

0
0

4
8

0
0

4
4

0
0

1
2
2

0
0

1
1
0

0
0

2
5
0

0
0

6
4

0
0

7
6

0
0

6
4

0
0

7
2

0
0

6
4

0
0

2
5
5

1
4
8

1
4
8

2
5
5

2
5
6

2
5
6

3
6
8

0
0

6
4

0
0

1
0
8

0
0

1
1
2

0
0

1
2
8

0
0

1
2
8

0
0

2
5
5

9
9
2

9
8
0

2
5
5

1
5
2
0

1
4
9
6

4
1
2
8

0
0

1
2
6

0
0

1
2
8

0
0

1
6
8

0
0

2
5
5

0
0

2
5
5

1
4
0

1
4
0

1
6
8

3
7
9
6

3
4
2
0

1
6
8

3
9
0
4

3
8
5
6

5
1
2
8

0
0

1
2
8

0
0

1
6
8

0
0

2
5
5

0
0

X
X

X
X

X
X

2
5
5

1
9
5
2

1
9
5
6

2
5
5

1
9
0
4

1
9
0
4

6
1
6
8

0
0

2
5
4

0
0

2
5
5

3
0
8

3
0
8

2
5
5

4
9
6

4
9
6

X
X

X
X

X
X

2
5
5

6
4
0

6
4
0

2
5
5

5
2
0

5
2
8

helmholtz

1
4
0

0
0

4
8

0
0

7
8

0
0

7
8

0
0

6
4

0
0

6
4

0
0

2
2
8

0
0

2
3
6

0
0

2
7
4

0
0

6
4

0
0

1
3
6

0
0

1
4
4

0
0

1
2
8

0
0

1
2
8

0
0

2
5
5

6
0
8

6
0
8

2
5
5

6
2
0

6
2
0

3
1
2
6

0
0

9
6

0
0

1
9
2

0
0

2
1
2

0
0

2
5
5

9
2

9
2

2
5
4

0
0

2
5
5

1
8
7
2

1
3
6
4

2
5
5

2
3
8
0

1
8
6
8

4
1
2
8

0
0

1
6
8

0
0

2
4
4

0
0

2
5
5

5
2

5
2

X
X

X
X

X
X

2
5
5

4
1
5
6

3
5
8
8

2
5
5

4
0
4
0

3
4
1
6

5
2
4
8

0
0

2
5
4

0
0

2
5
5

2
4
0

2
8
4

2
5
5

3
8
4

3
8
0

X
X

X
X

X
X

2
5
5

1
8
8
8

1
5
1
2

2
5
5

1
8
1
6

1
4
5
6

6
2
5
5

1
8
0

1
7
6

2
5
4

0
0

2
5
5

5
6
4

6
2
0

2
5
5

7
6
0

7
5
6

X
X

X
X

X
X

2
5
5

2
5
2
0

1
8
8
0

1
6
8

3
7
6
4

3
5
1
6

laplacian

1
4
2

0
0

4
4

0
0

9
2

0
0

9
6

8
8

7
6

0
0

7
8

0
0

2
5
5

4
3
6

4
3
6

2
5
5

5
0
0

5
0
0

2
6
6

0
0

6
4

0
0

2
1
2

0
0

2
3
2

0
0

1
6
8

0
0

1
6
8

0
0

1
6
8

4
3
9
6

4
2
9
2

1
6
8

4
0
0
4

3
9
4
4

3
1
0
8

0
0

1
2
8

0
0

2
5
5

1
9
2

2
1
2

2
5
5

3
0
4

3
0
0

2
5
5

9
0
0

8
9
6

2
5
5

1
4
4
8

1
2
6
8

1
6
8

5
3
3
2

5
0
8
0

1
6
8

4
7
2
0

4
4
8
8

4
1
6
8

0
0

2
5
4

0
0

2
5
5

6
3
2

7
1
2

2
5
5

8
2
4

8
8
4

1
6
8

4
4
9
6

4
6
2
0

6
4

6
3
4
4

7
0
7
2

2
5
5

4
1
7
6

3
4
5
6

2
5
5

4
0
8
8

3
4
8
8

5
2
5
5

1
5
6

1
5
6

2
5
5

3
6

3
6

1
6
8

2
1
8
4

2
2
7
6

1
6
8

2
4
9
6

2
5
2
4

X
X

X
X

X
X

2
5
5

6
4
4
0

5
8
7
2

2
5
5

6
2
4
0

5
6
5
6

6
2
5
5

5
1
6

5
1
6

2
5
5

7
2
0

7
2
0

1
6
8

3
5
4
4

3
5
4
8

1
6
8

3
3
3
2

3
2
6
4

X
X

X
X

X
X

2
5
5

3
5
2
8

3
4
8
0

2
5
5

3
4
9
6

3
5
0
4

elasticity

1
4
6

0
0

4
4

0
0

9
8

0
0

9
2

0
0

7
6

0
0

7
8

0
0

2
5
5

3
1
2

3
1
2

2
5
5

3
0
8

3
0
8

2
6
6

0
0

6
4

0
0

2
2
4

0
0

2
3
8

0
0

1
6
8

0
0

2
2
8

0
0

1
6
8

4
4
6
0

4
3
5
6

1
6
8

4
0
2
0

3
9
6
8

3
1
1
0

0
0

1
2
8

0
0

2
5
5

1
9
2

2
1
2

2
5
5

2
9
6

2
9
2

2
5
5

9
2
4

9
2
0

2
5
5

1
6
0
8

1
3
0
0

1
6
8

5
3
5
6

5
1
0
4

1
6
8

4
7
7
2

4
5
4
0

4
1
6
8

0
0

2
5
4

0
0

2
5
5

6
2
4

6
9
6

2
5
5

8
2
4

8
8
4

1
6
8

4
3
5
2

4
2
1
2

6
4

5
6
5
6

5
7
0
4

2
5
5

4
1
7
6

3
4
6
4

2
5
5

4
0
8
8

3
4
8
8

5
2
5
5

1
8
0

1
8
0

2
5
5

7
6

7
6

1
6
8

2
1
8
4

2
2
7
6

1
6
8

2
4
9
6

2
5
2
4

X
X

X
X

X
X

2
5
5

6
4
9
6

5
9
2
0

2
5
5

6
2
7
2

5
6
8
0

6
2
5
5

5
1
6

5
1
6

2
5
5

7
2
0

7
2
0

1
6
8

3
5
4
4

3
5
4
8

1
6
8

3
3
3
2

3
2
6
4

X
X

X
X

X
X

2
5
5

3
5
2
0

3
4
8
0

2
5
5

3
5
0
4

3
5
1
2

hyperelasticity

1
7
0

0
0

6
4

0
0

2
0
4

0
0

2
1
8

0
0

1
2
8

0
0

1
2
6

0
0

2
5
5

9
3
2

9
0
8

2
5
5

8
8
0

7
9
6

2
1
2
8

0
0

1
6
8

0
0

2
5
5

1
6
8

2
0
4

2
5
5

2
4
0

2
3
6

2
5
5

2
2
8

2
8
8

2
5
5

5
1
2

3
1
6

2
5
5

5
7
1
6

5
2
8
8

1
6
8

6
3
3
2

6
9
4
8

3
2
2
8

0
0

2
3
9

0
0

2
5
5

5
9
2

5
9
2

2
5
5

6
4
0

6
4
0

2
5
5

1
6
8
4

1
9
2
8

2
5
5

2
4
0
8

2
3
6
4

2
5
5

3
8
1
6

3
2
8
8

2
5
5

3
8
3
2

3
4
4
8

4
2
5
5

1
6
4

1
6
4

2
5
5

2
6
8

2
6
8

1
6
8

2
2
4
8

2
2
5
2

2
5
5

1
4
8
4

1
2
9
2

X
X

X
X

X
X

2
5
5

6
0
3
2

5
3
1
2

2
5
5

6
4
0
0

6
0
2
4

5
2
5
5

5
4
8

5
4
8

2
5
5

7
0
8

7
0
8

1
6
8

3
6
8
0

3
6
8
4

1
6
8

3
9
8
4

3
8
6
8

X
X

X
X

X
X

1
6
8

8
1
9
6

7
9
1
6

2
5
5

5
7
0
4

5
1
6
8

6
2
5
5

1
0
5
2

1
0
5
2

6
4

3
6
6
0

3
6
8
8

1
6
8

5
5
5
2

5
5
5
6

1
6
8

6
7
6
0

6
9
8
0

X
X

X
X

X
X

2
5
5

1
7
9
2

1
5
7
6

2
5
5

1
8
0
8

1
6
0
4

88

polynomial degrees, assembly on tensor-product elements tends to perform
better compared with simplicial finite elements. This is because the kernels
for tensor-product elements usually have higher arithmetic intensities at low
polynomial degrees. However, similarly to the simplicial cases, the perfor-
mance degrades at higher polynomial degrees due to register pressure. We
also note that the arithmetic intensities do not increase with the polynomial
degree for tensor-product elements, thus the performance almost uniformly
decreases with increasing polynomial degrees.

Global constant memory

1 2 3 4 5 6
Polynomial degree

0.25

0.50

0.75

1.00

FL
OP

/s
 /

Pe
ak

 L
IN

PA
CK

 F
LO

P/
s mass - tet

1 2 3 4 5 6
Polynomial degree

helmholtz - tet

1 2 3 4 5 6
Polynomial degree

laplacian - tet

1 2 3 4 5 6
Polynomial degree

elasticity - tet

1 2 3 4 5 6
Polynomial degree

hyperelasticity - tet

constants in constant memory constants in global memoryconstants in constant memory constants in global memoryconstants in constant memory constants in global memoryconstants in constant memory constants in global memoryconstants in constant memory constants in global memory

Figure 5.6: The fraction of peak LINPACK FLOP/s (as listed in Table 5.1) achieved for opera-
tors {mass, helmholtz, laplacian, elasticity, hyperelasticity}, on mesh {tet} on Tesla
P100. Parallelised using the single-element-per-thread strategy with block size of 32.

As described in Section 5.2.4, the constant arrays that represent the
tabulation and quadrature weights are stored in the global constant memory
on the device, and accessed by all threads during computation. However,
at higher polynomial degrees, the sizes of these arrays might exceed the
capacity of the constant memory, results in compilation failures. Such cases
are marked as X in Table 5.2. One plausible strategy to mitigate this issue,
in general, is to store these constants in the global memory on the device
and pass them into the kernels as additional arguments.

Figure 5.6 describes the effect of transferring the constants as kernel ar-
guments for the hyperelasticity kernel on Tesla P100. In cases where
the constant memory is large enough to accommodate the constant arrays,
transferring them as additional arguments introduces more bandwidth pres-
sure, resulting in lower performances typically. However, this strategy is
successful in compiling this complicated kernel at high polynomial degrees.
It provides a valuable fallback mechanism to a general framework such as

89

Firedrake, which needs to support arbitrary operators and discretisations
specified by the users.

5.3.3 Limitations

The work presented in this chapter can be regarded as a proof of concept to
add GPU support in Firedrake. There are many possible alternatives and
extensions that have not been thoroughly explored. Apart from mapping
each iteration of the outer loop over mesh entities to one thread, there are
numerous strategies to partition the loop nests in a global assembly kernel,
such as the thread transposition algorithm by Knepley et al. [2016] that
makes use of the on-device shared memory to divide the computation for
one entity among a group of threads, achieving better device utilisation in
some instances. Although the Loopy abstraction can facilitate the kernel
transformations required to implement such strategies, the difficulty lies in
choosing a particular strategy and deciding its parameters (such as thread
block sizes) to maximise performance. This is likely to require augmenting
PyOP2 with a robust cost model and/or an auto-tuning setup (such as
the one implemented in OP2 [Giles et al., 2013]) to guide the optimisation
decisions.

Other than using atomic instructions, there are other strategies to mit-
igate potential data race hazards due to indirect accesses. These include
using memory barriers to guard the data updates, and scheduling the in-
structions (e.g. using a graph colouring algorithm [Ljungkvist, 2017]) to
avoid accessing the same data element from different threads.

90

Chapter 6

Summary and outlook

In this thesis, we have studied the design of intermediate representations of
Firedrake and described certain adaptations that improve its code genera-
tion and optimisation capability. We summarise our findings in this final
chapter and discuss possible future research directions.

In Chapter 3, we argue that GEM, a language based on symbolic tensor
algebra, concisely and conveniently describes the local assembly phase of
a finite element solver. Local assembly kernels can be represented as ten-
sor contractions and structured as DAGs in GEM, where optimisations are
implemented as rewriting of the DAGs following mathematical rules.

We have demonstrated the effectiveness of this approach by lifting the
loop-invariant code motion optimisation, previously implemented in COF-
FEE as AST manipulations, to this higher abstraction layer of tensor alge-
bra. Our experiments confirm that this particular optimisation is efficient
and consistently outperforms the status-quo in terms of compilation speed
and optimisation effectiveness.

However, there are other types of optimisations that can be and should
be lifted to the level of symbolic tensor algebra. For example, certain kernels
can be refactored such that the subexpressions involving compile-time con-
stant tensors are organised together and precomputed in the generated code.
Precomputation is not strictly beneficial as it could lead to a larger memory
footprint. In addition, it might impact the effectiveness of other optimisa-
tions, e.g. by removing certain loop-invariant subexpressions which could
otherwise be hoisted out, and thus should not be applied unconditionally in
isolation.

More broadly, the sequence of applying a set of transformations to a
DAG representing a local assembly kernel could impact the optimisation
result, and TSFC would need to be enhanced with more sophisticated per-
formance modelling in the future to determine such a sequence for a given
kernel. An alternative strategy is to design new optimisation modes based on
heuristics and pick the best result for a particular application after trying

91

all modes. Because DAG analysis and refactorisation of symbolic expres-
sions can be performed efficiently in the GEM representation, TSFC can, in
theory, explore a large combination of various transformations without the
compilation time becoming the bottleneck in Firedrake.

In Chapter 4, we have presented a portable, general-purpose solution
for delivering stable vectorisation performance on modern CPUs for matrix-
free finite element assembly. We have performed extensive experiments on
a broad class of finite element operators on a large range of discretisation
schemes. Although the technique of cross-element vectorisation is concep-
tually simple and has been applied in hand-written kernels before, our im-
plementation based on code generation is automatic, transparent to the
end-users, and composable with other optimisation passes in Firedrake.

In the experimental evaluation, we have presented results on two re-
cent Xeon processors and compared the vectorisation performances of three
popular C compilers to verify the performance portability of our approach.
One important finding is that compiler-based vector extensions are produc-
tive mechanisms to obtain consistent vectorisation results across all three
compilers.

One shortcoming of our algorithm is that the write-back to the global
data structure is not vectorised due to possible race conditions. The newly
introduced Conflict Detection instructions in the Intel AVX512 instruction
set could potentially mitigate this limitation [Zhang, 2016, Section 2.3]. As
a development in the future, new tags could be added to Loopy in order to
support code generation targeting these processor intrinsics.

So far, we have focused on the matrix-free finite element method because
it is compute-intensive and is therefore more likely to benefit from vectorisa-
tion. However, our methodologies and implementation can support matrix
assembly with minimal modifications – a global assembly kernel needs to
read from and write to entries of a global (sparse) matrix instead of a global
vector. Firedrake relies on PETSc [Balay et al., 2017] to handle distributed
matrices. When updating entries of a global matrix, PETSc requires spe-
cific data layouts for the input array. In the cases when several elements are
batched together for cross-element vectorisation, PyOP2 needs to generate
code to explicitly unpack and transpose the local assembly results into in-
dividual arrays before calling PETSc functions to update the global sparse
matrices for each element. Future improvement could include eliminating
this overhead, possibly by extending the PETSc API.

In Chapter 5, we describe our approach to adding GPU support in Fire-
drake by leveraging the code generation facility of the newly introduced
Loopy abstraction. To demonstrate the generalisability of our strategy, we
have conducted experimental evaluations on two GPU devices, using a test
suite of a large family of operators and discretisations of various polynomial
degrees.

Compared with CPUs, certain hardware or ISA features (such as hard-

92

ware prefetchers and branch predictors) are less sophisticated on GPUs. The
memory hierarchy is also less lenient in handling problematic access patterns
and register spillings. Furthermore, GPU kernel compilers such as NVCC
are less capable in performing aggressive optimisations automatically. As a
result, our single-element-per-thread parallelisation strategy, although able
to support a wide range of applications in Firedrake, cannot deliver pre-
dictable and portable performance on GPUs in general. More refined and
targeted transformations are likely needed in the future. One potential fu-
ture development is to partition the computation for each mesh entity among
different threads, which synchronise via the on-device shared memory. Such
parallelisation strategies are likely to reduce the register pressure which we
identify as one of the performance bottlenecks. The difficulty in adding
these strategies to PyOP2 is that they are likely to require kernel-specific
fine-tuning for parameters such as block sizes and synchronisation patterns,
making generalisability a challenging task for an application-agnostic tool
like Firedrake. For example, the thread transposition algorithm by Knepley
et al. [2016] only performs well in its original form if the least common mul-
tiple of Nq (the number of quadrature points) and Nb (the number of basis
functions) is relatively small. In addition, this optimisation step could be
an iterative process where hyper-parameters of the strategy are determined
incrementally based on the performance statistics returned by the kernel
compiler. In that consideration, the ability of Loopy to perform and com-
pose kernel transformations efficiently will be essential in implementing such
general parallelisation strategies, so that multiple strategies can be explored
without jeopardising the compilation speed to a prohibitive extent.

Computationally, one important difference of the global assembly phase
compared with the local assembly phase is accessing global data structure
through indirect mappings. In local assembly kernels, GEM predominately
only deals with dense linear algebra. In global assembly kernels, indirect ac-
cesses like B[A[i]] are analysed in Loopy by tools based on the polyhedral
model. In the future, the GEM language could be extended to support lim-
ited cases of using expressions like A[i] as indices, so that optimisations like
cross-element vectorisation can also be lifted to the higher level of symbolic
tensor algebra, blurring the boundary between local and global assembly
kernels. Certain domain-specific languages and compilers, such as Tensor
Comprehension [Vasilache et al., 2018] in the domain of artificial neural net-
work, already successfully support such access patterns. On a cautionary
note, a valuable asset of GEM is that GEM is a simple language with very
few constructs and concepts, and the drawbacks of extending GEM in this
way include a looser GEM grammar and weakened invariant properties of
the algebra, which could impact the ability of the GEM compiler to anal-
yse and transform the expressions, potentially making DAG rewrites more
complicated during optimisation.

More broadly, the software stack in Firedrake today is organised as mul-

93

tiple abstraction layers that are isolated from each other. Although this de-
sign helps to maintain invariant properties of each abstraction, we also note
that there could be significant benefits in allowing intermediate representa-
tions of different abstraction levels to coexist. The recently announced MLIR
project [Lattner et al., 2020] facilitates building intermediate representations
on the same infrastructure, and thereby promoting a much more fine-grained
style in instruction lowering and optimisation. As semi-conductor technol-
ogy continues to advance, new hardware designs are constantly emerging to
handle computation-intensive applications. With many of the recent proces-
sors, such as the Graphcore IPU, the Cerebras Wafer Scale Engine and the
SymbaNova Dataflow System, deviate considerably from the traditional von
Neumann architecture, this new style of organising intermediate abstrac-
tions more “organically” could bring substantial flexibility to the toolchain
to evolve together with the hardware landscape, and also improve the pro-
ductivity of the library developers.

94

Appendices

95

Appendix A

Operators for experimental
evaluation

Here we give the mathematical definitions of the bilinear forms a(·, ·) used
as the test cases for the experimental evaluation.

mass Here u and v are scalar-valued trial and test functions.

a(u, v) = uv dx (A.1)

helmholtz Here u and v are scalar-valued trial and test functions.

a(u, v) = (∇u · ∇v + uv) dx (A.2)

laplacian Here u and v are vector-valued trial and test functions.

a(u,v) = (∇u : ∇v) dx (A.3)

elasticity The linear elasticity model solves for a displacement vector field.
Here u and v are vector-valued trial and test functions, ε is the symmetric
strain rate tensor. The bilinear form is defined as:

ε(u) =
1

2

[
∇u + (∇u)T

]
a(u,v) = ε(u) : ε(v) dx

(A.4)

mixed poisson Here we consider a mixed formulation of two coupled
fields for the Poisson equation ∇2u = −f . We introduce the the auxiliary
vector-valued variable σ = ∇u to represent the negative flux. Let (σ, u) be
the trial functions and (τ, v) be the test functions from a mixed function
space of conforming discrete function spaces, the bilinear form is defined as:

a
(
(σ, u), (τ, v)

)
= σ · τ +∇ · τu+∇ · σv dx (A.5)

96

hyperelasticity In this simple hyperelastic model, we define the strain
energy function Ψ over vector field u:

F = I +∇u

C = FTF

E = (C− I)/2,

Ψ =
λ

2

[
tr(E)

]2
+ µtr(E2)

(A.6)

where I is the identity matrix, λ and µ are the Lamé parameters of the
material, F is the deformation gradient, C is the right Cauchy-Green tensor,
E is the Euler-Lagrange strain tensor. We define the Piola-Kirchhoff stress
tensors as:

S =
∂Ψ

∂E
P = FS

(A.7)

Finally, we arrive at the residual form of this non-linear problem:

r = P : ∇v − b · v (A.8)

where b is the external forcing. To solve this non-linear problem, we need
to linearize the residual form at an approximate solution u, this gives us the
bilinear form a:

a(δu,v) = lim
ε→0

r(u + εδu)− r(u)

ε
, (A.9)

where the trial function is δu, the test function is v, and u is a coefficient of
the operator. We use the automatic differentiation of UFL to compute the
operator symbolically.

97

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, and Others. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified
form language: A domain-specific language for weak formulations of par-
tial differential equations. ACM Transactions on Mathematical Software
(TOMS), 40(2):9, 2014.

A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, and
Others. Automatic code generation for many-body electronic structure
methods: the tensor contraction engine. Molecular Physics, 104(2):211–
228, 2006.

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. D. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik, and Others. Petsc
users manual revision 3.8. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

W. Bangerth, R. Hartmann, and G. Kanschat. deal. II—a general-purpose
object-oriented finite element library. ACM Transactions on Mathematical
Software (TOMS), 33(4):24—-es, 2007.

D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. W. Scogland.
RAJA: Portable performance for large-scale scientific applications. In
2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc), pages 71–81. IEEE, 2019.

J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM transactions on
graphics (TOG), 22(3):917–924, 2003.

S. Brenner and R. Scott. The mathematical theory of finite element methods,
volume 15. Springer Science and Business Media, 2007.

98

C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, and Others.
Nektar++: An open-source spectral/hp element framework. Computer
physics communications, 192:205–219, 2015.

C. Cecka, A. J. Lew, and E. Darve. Assembly of finite element methods
on graphics processors. International journal for numerical methods in
engineering, 85(5):640–669, 2011.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, and Others. {TVM}: An automated end-to-
end optimizing compiler for deep learning. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pages
578–594, 2018.

A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A generic interface for
parallel and adaptive discretization schemes: abstraction principles and
the DUNE-FEM module. Computing, 90(3):165–196, 2010.

A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski. Accuracy, mem-
ory, and speed strategies in GPU-based finite-element matrix-generation.
IEEE Antennas and Wireless Propagation Letters, 11:1346–1349, 2012.

H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns.
Journal of parallel and distributed computing, 74(12):3202–3216, 2014.

N. Fehn, W. A. Wall, and M. Kronbichler. A matrix-free high-order dis-
continuous Galerkin compressible Navier-Stokes solver: A performance
comparison of compressible and incompressible formulations for turbu-
lent incompressible flows. International Journal for Numerical Methods
in Fluids, 89(3):71–102, 2019.

A. Fog. VCL — A C++ Vector Class Library. Technical report, 2017. URL
https://www.agner.org/optimize/vectorclass.pdf.

M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Reguly. De-
signing OP2 for GPU architectures. Journal of Parallel and Distributed
Computing, 73(11):1451–1460, 2013.

F. Hecht. New development in freefem++. Journal of Numerical Mathe-
matics, 20(3-4):251–266, 2012.

J. Hoberock and N. Bell. Thrust: A parallel template library. 2010.

M. Homolya. On code generation techniques for finite elements. (June),
2018.

99

https://www.agner.org/optimize/vectorclass.pdf

M. Homolya, R. C. Kirby, and D. A. Ham. Exposing and exploiting struc-
ture: optimal code generation for high-order finite element methods. arXiv
preprint arXiv:1711.02473, 2017.

M. Homolya, L. Mitchell, F. Luporini, and D. A. Ham. TSFC: a structure-
preserving form compiler. SIAM Journal on Scientific Computing, 40(3):
C401—-C428, 2018.

C. T. Jacobs, S. P. Jammy, and N. D. Sandham. OpenSBLI: A framework
for the automated derivation and parallel execution of finite difference
solvers on a range of computer architectures. Journal of Computational
Science, 18:12–23, 2017.

D. Kempf, R. Heß, S. Müthing, and P. Bastian. Automatic Code Gener-
ation for High-Performance Discontinuous Galerkin Methods on Modern
Architectures. arXiv preprint arXiv:1812.08075, 2018.

Khronos Group. SYCL website. URL www.khronos.org/sycl/.

U. Kiran, S. S. Gautam, and D. Sharma. GPU-based matrix-free finite
element solver exploiting symmetry of elemental matrices. Computing,
102(9):1941–1965, 2020.

R. C. Kirby. Algorithm 839: FIAT, a new paradigm for computing finite
element basis functions. ACM Transactions on Mathematical Software
(TOMS), 30(4):502–516, 2004.

R. C. Kirby and L. Mitchell. Solver composition across the PDE/linear
algebra barrier. SIAM Journal on Scientific Computing, 40(1):C76—-
C98, 2018.

R. C. Kirby and K. T. Thinh. Fast simplicial quadrature-based finite element
operators using Bernstein polynomials. Numerische Mathematik, 121(2):
261–279, 2012.

I. Kiss, S. Gyimothy, Z. Badics, and J. Pavo. Parallel realization of the
element-by-element FEM technique by CUDA. IEEE Transactions on
magnetics, 48(2):507–510, 2012.

A. Klöckner. Loo. py: transformation-based code generation for GPUs and
CPUs. In Proceedings of ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, page 82.
ACM, 2014.

A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontin-
uous Galerkin methods on graphics processors. Journal of Computational
Physics, 228(21):7863–7882, 2009.

100

www.khronos.org/sycl/

A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-
Time Code Generation. Parallel Computing, 38(3):157–174, 2012. ISSN
0167-8191. doi: 10.1016/j.parco.2011.09.001.

M. G. Knepley and D. A. Karpeev. Mesh algorithms for PDE with sieve
I: Mesh distribution. Scientific Programming, 17(3):215–230, 2009. ISSN
10589244. doi: 10.3233/SPR-2009-0249.

M. G. Knepley and A. R. Terrel. Finite element integration on GPUs. ACM
Transactions on Mathematical Software (TOMS), 39(2):10, 2013.

M. G. Knepley, K. Rupp, and A. R. Terrel. Finite element integration with
quadrature on the GPU. arXiv preprint arXiv:1607.04245, 2016.

D. Komatitsch, D. Michéa, and G. Erlebacher. Porting a high-order finite-
element earthquake modeling application to NVIDIA graphics cards using
CUDA. Journal of Parallel and Distributed Computing, 69(5):451–460,
2009.

M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontin-
uous Galerkin finite element operators. arXiv preprint arXiv:1711.03590,
2017.

M. Lange, L. Mitchell, M. G. Knepley, and G. J. Gorman. Efficient mesh
management in firedrake using PETSC DMPLEX. SIAM Journal on
Scientific Computing, 38(5):S143—-S155, 2016.

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR:
A compiler infrastructure for the end of Moore’s law. arXiv preprint
arXiv:2002.11054, 2020.

C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler,
U. Rüde, J. Teich, A. Grebhahn, S. Kronawitter, and Others. ExaStencils:
Advanced stencil-code engineering. In European Conference on Parallel
Processing, pages 553–564. Springer, 2014.

K. Ljungkvist. Matrix-free finite-element computations on graphics proces-
sors with adaptively refined unstructured meshes. In SpringSim (HPC),
page 1, 2017.

A. Logg, K.-A. Mardal, and G. Wells. Automated solution of differential
equations by the finite element method: The FEniCS book, volume 84.
Springer Science and Business Media, 2012.

F. Luporini, A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam,
D. A. Ham, and P. H. J. Kelly. Cross-loop optimization of arithmetic

101

intensity for finite element local assembly. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 11(4):57, 2015.

F. Luporini, D. A. Ham, and P. H. J. Kelly. An algorithm for the optimiza-
tion of finite element integration loops. ACM Transactions on Mathemat-
ical Software (TOMS), 44(1):3, 2017.

F. Luporini, M. Lange, M. Louboutin, N. Kukreja, J. Hückelheim, C. Yount,
P. Witte, P. Kelly, F. Herrmann, and G. Gorman. Architecture and per-
formance of Devito, a system for automated stencil computation. CoRR,
abs/1807.0, jul 2018. URL http://arxiv.org/abs/1807.03032.

G. R. Markall, D. A. Ham, and P. H. J. Kelly. Towards generating optimised
finite element solvers for GPUs from high-level specifications. Procedia
Computer Science, 1(1):1815–1823, 2010.

J. Martinez-Frutos, P. J. Martinez-Castejon, and D. Herrero-Perez. Fine-
grained GPU implementation of assembly-free iterative solver for finite
element problems. Computers & Structures, 157:9–18, 2015.

J. D. McCalpin. HPL and DGEMM performance variability on the Xeon
Platinum 8160 processor. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and Analy-
sis, page 18. IEEE Press, 2018.

A. T. T. McRae, G.-T. Bercea, L. Mitchell, D. A. Ham, and C. J. Cotter.
Automated generation and symbolic manipulation of tensor product finite
elements. To appear in SIAM Journal on Scientific Computing, pages 1–
29, 2014. ISSN 10957200. doi: 10.1137/15M1021167.

D. Moxey, R. Amici, and M. Kirby. Efficient matrix-free high-order finite
element evaluation for simplicial elements. SIAM Journal on Scientific
Computing, 42(3):C97—-C123, 2020.

G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J. Kelly. Op2:
An active library framework for solving unstructured mesh-based appli-
cations on multi-core and many-core architectures. In 2012 Innovative
Parallel Computing (InPar), pages 1–12. IEEE, 2012.

G. R. Mudalige, I. Z. Reguly, and M. B. Giles. Auto-vectorizing a large-scale
production unstructured-mesh CFD application. In Proceedings of the 3rd
Workshop on Programming Models for SIMD/Vector Processing, page 5.
ACM, 2016.

E. Müller, X. Guo, R. Scheichl, and S. Shi. Matrix-free GPU implementation
of a preconditioned conjugate gradient solver for anisotropic elliptic PDEs.
Computing and Visualization in Science, 16(2):41–58, 2013.

102

http://arxiv.org/abs/1807.03032

E. H. Müller, R. Scheichl, and E. Vainikko. Petascale solvers for anisotropic
PDEs in atmospheric modelling on GPU clusters. Parallel Computing,
50:53–69, 2015.

S. Müthing, M. Piatkowski, and P. Bastian. High-performance Implemen-
tation of Matrix-free High-order Discontinuous Galerkin Methods. arXiv
preprint arXiv:1711.10885, 2017.

K. B. Ølgaard and G. N. Wells. Optimisations for quadrature representa-
tions of finite element tensors through automated code generation. ACM
Transactions on Mathematical Software (TOMS), 37(1):8:1–8:23, 2010.
ISSN 0098-3500. doi: 10.1145/1644001.1644009.

OpenACC Organization. OpenACC website. URL www.openacc.org.

OpenMP Architecture Review Board. OpenMP Application Programming
Interface 5.0. Technical Report November, OpenMP Architecture Review
Board, 2018. URL https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5.0.pdf.

F. Pichler and G. Haase. Finite element method completely implemented
for graphic processor units using parallel algorithm libraries. The in-
ternational journal of high performance computing applications, page
1094342017694703, 2017.

L. Ram and D. Sharma. Evolutionary and GPU computing for topology
optimization of structures. Swarm and evolutionary computation, 35:1–
13, 2017.

F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli,
and P. H. J. Kelly. PyOP2: A high-level framework for performance-
portable simulations on unstructured meshes. Proceedings - 2012 SC Com-
panion: High Performance Computing, Networking Storage and Analysis,
SCC 2012, pages 1116–1123, 2012. doi: 10.1109/SC.Companion.2012.134.

F. Rathgeber, D. a. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
McRae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly. Firedrake:
automating the finite element method by composing abstractions. 0(0):
1–25, 2015. URL http://arxiv.org/abs/1501.01809.

K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser,
A. Jungel, and S. Selberherr. ViennaCL—linear algebra library for multi-
and many-core architectures. SIAM Journal on Scientific Computing, 38
(5):S412—-S439, 2016.

T. Sun. tj-sun/firedrake-vectorization: Scripts for experimental evaluation
for the manuscript on cross-element vectorization., mar 2019a. URL
https://doi.org/10.5281/zenodo.2590705.

103

www.openacc.org
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://arxiv.org/abs/1501.01809
https://doi.org/10.5281/zenodo.2590705

T. Sun. Cross-element vectorization in Firedrake.
https://www.codeocean.com/, feb 2019b.

T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. J.
Kelly. A study of vectorization for matrix-free finite element methods.
The International Journal of High Performance Computing Applications,
34(6):629–644, 2020.

The OpenFOAM Foundation. OpenFOAM user guide Version 6. The Open-
FOAM Foundation, 2018.

N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen. Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions. arXiv preprint arXiv:1802.04730, 2018.

S. Verdoolaege. isl: An integer set library for the polyhedral model. In In-
ternational Congress on Mathematical Software, pages 299–302. Springer,
2010.

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the
ACM, pages 65–76, 2009. URL http://dl.acm.org/citation.cfm?id=

1498785.

F. D. Witherden, A. M. Farrington, and P. E. Vincent. PyFR: An
open source framework for solving advection–diffusion type problems on
streaming architectures using the flux reconstruction approach. Computer
Physics Communications, 185(11):3028–3040, 2014.

Zenodo/Firedrake. Firedrake: an automated finite element system, mar
2019. URL https://doi.org/10.5281/zenodo.2590703.

B. Zhang. Guide to automatic vectorization with Intel AVX-512
instructions in Knights Landing processors. Colfax International¡
http://colfaxresearch. com, 2016.

104

http://dl.acm.org/citation.cfm?id=1498785
http://dl.acm.org/citation.cfm?id=1498785
https://doi.org/10.5281/zenodo.2590703

	Introduction
	Thesis statement
	Technical contributions
	Dissemination
	Thesis outline

	Background and related work
	Finite element methods
	Variational formulation
	Finite element discretisation
	Local and global assembly
	The matrix-free methods

	Automating PDE solvers
	Firedrake overview and internal abstractions
	Chapter summary

	Local assembly as tensor contractions
	Local assembly as tensor contraction
	Tensor expression rewrites in GEM
	Essential GEM concepts
	Argument factorisation algorithm

	Experimental evaluation
	Experimental setup

	Compilation time
	Reducing floating-point operations

	Vectorisation for global assembly of matrix-free operators
	Motivation and related works
	Preliminaries
	Local assembly and TSFC
	Global assembly and PyOP2

	Vectorisation
	Cross-element vectorisation and Loopy

	Compiler vector extensions
	Performance Evaluation
	Experimental setup
	Experimental results and discussion
	Compiler comparison and vector extensions
	Vectorisation speed-up
	Achieved peak performance
	Tensor-product elements

	Chapter summary

	Global assembly of matrix-free operators on GPUs
	Motivation and related works
	Implementation
	Implementation on CUDA and OpenCL
	Atomic addition
	Single element per thread parallelisation
	Global constants

	Performance evaluation
	Experimental setup
	Experimental results and discussion
	Limitations

	Summary and outlook
	Appendices
	Operators for experimental evaluation

