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Abstract:

We examine sparse graph automorphism groups from the perspective
of the Kechris-Pestov-Todorčević (KPT) correspondence. The sparse
graphs that we discuss are Hrushovski constructions: we consider the
‘ab initio’ Hrushovski construction M0, the Fräıssé limit of the class
of 2-sparse graphs with self-sufficient closure; M1, a simplified version
of M0; and the ω-categorical Hrushovski construction MF . We prove
a series of results that show that the automorphism groups of these
Hrushovski constructions demonstrate very different behaviour to pre-
vious classes studied in the KPT context. Extending results of Evans,
Hubička and Nešetřil, we show that Aut(M0) has no coprecompact
amenable subgroup. We investigate the fixed points on type spaces
property, a weakening of extreme amenability, and show that for a
particular choice of control function F , Aut(MF ) does not have any
closed oligomorphic subgroup with this property. Next we consider the
Aut(M1)-flow of linear orders on M1, and show that minimal subflows
of this have all Aut(M1)-orbits meagre. We give partial analogous re-
sults for the Aut(M0)-flow of linear orders on M0, and find the universal
minimal flow of the automorphism group of the “dimension 0” part of
M0.



Contents

Acknowledgements 5

Notation and terminology 6

Introduction 8

Chapter 1. Background 16
1.1 Graphs and oriented graphs: notation and setup . . . . 16

1.2 Sparse graphs: C0 and C1 . . . . . . . . . . . . . . 19
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Notation and terminology

Classes of graphs:

Class Fräıssé limit
Automorphism

group
Definition

C1 M1 G1 finite graphs B s.t.
∀A ⊆ B, ∃ a ∈ A, d(a) ≤ 2

C0 M0 G0 2-sparse graphs
C00 M00 G00 A ∈ C0, δ(A) = 0
CF MF GF B ∈ C0, δ(A) ≥ F (|A|)

∀A ⊆ B, with Fräıssé limit
MF ω-categorical

Classes of oriented graphs:

Class Fräıssé limit
Automorphism

group
Definition

D1 N1 K1 2-oriented graphs with no
directed cycles

D0 × × 2-oriented graphs
Dfin × × finely 2-oriented graphs
DE NE KE digraph reducts of Efin

D00 × × 2-oriented graphs with
δ = 0

Classes of ordered oriented graphs:

Class Fräıssé limit
Automorphism

group
Definition

E1 (N1, α) H1 admissibly ordered
2-oriented graphs with no

directed cycles
Efin (NE , α) HE admissibly ordered finely

2-oriented graphs
E00 (N00, α) H00 admissibly ordered

2-oriented graphs with
δ = 0

In Chapter 4, where we study linear orders on M1, we write:

G = G1, K = K1, H = H1.

In Chapter 5, where we study linear orders on M0, we write

G = G0, K = KE , H = HE .
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Other notation:

Notation Description
K≺ (A, γ) with A ∈ K and γ a linear order on A
LO(M) the flow of linear orders on M
Or(M) the flow of 2-orientations on M
δ(A) the predimension δ(A) = 2|A| − |E(A)|
V(A) vertex set of the graph A
E(A) edge set E(A) ⊆ A(2) of the graph A
EA symmetric, irreflexive edge relation EA ⊆ A2

A ≤s B δ(C) ≥ δ(A) ∀A ⊆ C ⊆ B
A vs B A is successor-closed in B

(A, γA) vs (B, γB) for A,B oriented graphs with orders γA, γB:
A vs B, γA = γB|A

A ≤d B δ(C) > δ(A) for all A ( C ⊆ B
A ≤1 B there exists a 2-orientation of B w/o directed

cycles in which A is successor closed
scc strongly connected component
scl successor-closure

Qρ(x) the cone of x in the orientation ρ
Gx the stabiliser of x in the group G
Gx the G-orbit of x

Attribution of results. Results due to other authors will usually be
explicitly referenced. New results due to the author (in collaboration
with the author’s PhD supervisor David Evans) will be indicated as
follows:

(*) indicates a new result which is a straightforward translation of
earlier results.

(**) indicates a new result whose proof contains an original idea.

If a result is not explicitly referenced and is not indicated by asterisks,
then it is either folklore, or comes from [6], [7], [8], the key paper which
provides the starting point for this PhD thesis (of which we use results
from several versions).



Introduction

This thesis examines the automorphism groups of sparse graphs from
the perspective of the Kechris-Pestov-Todorčević correspondence (KPT),
a series of results linking the topological dynamics of automorphism
groups of countable homogeneous structures with structural Ramsey
theory. Classes of sparse graphs demonstrate different behaviour to
previous classes studied in the KPT context.

Sparse graphs.

A graph A is k-sparse if for all finite B ⊆ A, the number of edges of
B is at most k times the number of vertices of B. We will take k = 2
throughout this thesis for presentational simplicity.

Predimension. The classes of sparse graphs that we study are exam-
ples of Hrushovski constructions, an important source of examples in
model theory. One way to phrase 2-sparsity is in terms of graph pred-
imension. For A a finite graph, the predimension δ(A) of A is given
by 2|V(A)| − |E(A)|, i.e. twice the number of vertices minus the num-
ber of edges. A graph is then 2-sparse iff all its finite subgraphs have
non-negative predimension. The predimension we use here is a partic-
ular case of a more general notion of predimension used in Hrushovski
constructions, where δ(A) = c|V(A)| − |E(A)| with c ∈ R+ (see [5] for
more details, and [15], [16] for the original papers of Hrushovski where
these constructions were introduced).

Strong classes. The classes of sparse graphs that we study will also
be strong classes: they will have a distinguished notion of embedding,
which we call strong embeddings.

Let C0 denote the class of finite 2-sparse graphs. For A ⊆ B ∈ C0, we
will say A is self-sufficient in B, written A ≤s B, if for A ⊆ C ⊆ B,
δ(C) ≥ δ(A), and C0 together with this distinguished notion of ≤s-
substructure gives the strong class (C0,≤s). The classical Fräıssé theory
(see [14], Section 7.1), which gives a correspondence between count-
able homogeneous structures and amalgamation classes, carries over to
strong classes, where in our definition of homogeneity, the amalgama-
tion property and so on we restrict to strong embeddings.

We then have that (C0,≤s) is a≤s-free amalgamation class, with Fräıssé
limit M0.

Orientations. A central fact in the analysis of sparse graphs is that
a graph is k-sparse iff it is k-orientable: its edges may be oriented so
that each vertex has at most k out-edges. This fact is well known to
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graph theorists, and the proof is by Hall’s Marriage Theorem. Writing
D0 for the class of finite 2-oriented graphs, we thus have that C0 is
the class of graph reducts of D0. For A ⊆ B ∈ D0, we write A vs B
if A is successor-closed in B, and (D0,vs) gives another example of a
vs-free amalgamation class. In fact, as shown in Lemma 1.5 of [11], we
may again use Hall’s Marriage Theorem to show that for A ⊆ B ∈ C0,
A ≤s B iff there exists a 2-orientation B+ of B in which A vs B+, so
the strong classes (C0,≤s), (D0,vs) are very closely linked. Throughout
this thesis, orientations will be a key tool in studying sparse graphs.

More classes of sparse graphs. We will also study two more exam-
ples of Hrushovski constructions. The first is M1, a “simplified” version
of M0. Let D1 denote the class of finite 2-oriented graphs where the
orientation has no directed cycles. (D1,vs) is a vs-free amalgamation
class. Let C1 be the class of graph reducts of D1. For A ⊆ B ∈ C1, write
A ≤1 B if there exists an expansion B+ ∈ D1 of B with A+ vs B+,
where we write A+ for the orientation induced on A by B+. We then
have that (C1,≤1) is a ≤1-free amalgamation class, whose Fräıssé limit
we denote by M1. We can regard (C1,≤1) as, in some sense, a simplified
version of (C0,≤s): often the same results are true for M1 and M0 but
easier to prove for M1, and the simpler proof for M1 can then provide
a proof idea for the M0 case.

The second example of a Hrushovski construction that we study is
the ω-categorical MF (first introduced in [15]). The details of the
construction are somewhat more technical than for M1 and M0, and
we provide an outline. Let C>0 be the class of graphs in C0 whose non-
empty subgraphs all have positive predimension. For A ⊆ B ∈ C>0,
write A ≤d B if δ(C) > δ(A) for all A ( C ⊆ B. Then (C>0,≤d) is a
≤d-free amalgamation class, but its Fräıssé limit is not ω-categorical.
To obtain an ω-categorical Fräıssé limit, we specify a uniform bound
on the d-closure, which we do by means of a control function F . Let F
be a function starting at zero whose growth rate is that of log(x) (with
a few additional assumptions), and let CF be the class of A ∈ C>0 such
that for B ⊆ A, δ(B) ≥ F (|B|). (CF ,≤d) will then have a uniformly
bounded d-closure, so writing MF for the Fräıssé limit, Aut(MF ) is
oligomorphic (i.e. has finitely many orbits on Mn

F for n ≥ 1), and so
by the Ryll-Nardzewski theorem, MF is ω-categorical.

The KPT correspondence

A G-flow is a continuous action of a Hausdorff topological group G on
a (non-empty) compact Hausdorff space X. The study of G-flows is
a central topic in topological dynamics. A G-flow morphism is a con-
tinuous, G-equivariant map. Every G-flow contains a minimal G-flow:
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one with no proper subflows. A well-known result in topological dy-
namics states that every Hausdorff topological group G has a universal
minimal flow, unique up to isomorphism: a G-flow M(G) which has
a surjective G-flow morphism onto any other minimal G-flow (see, for
example, [1], Ch. 8).

We call G extremely amenable if every G-flow has a G-fixed point, or
equivalently, if M(G) is trivial (i.e. a singleton). G is amenable if every
G-flow has a G-invariant Borel probability measure. (We have that
extreme amenability implies amenability by taking the Dirac measure
on the fixed point).

For Polish groups G, M(G) may be very complicated - i.e. M(G) may
be non-metrisable. However, in the case of M(G) being trivial, there
is a connection to structural Ramsey theory, as seen in the KPT cor-
respondence, first developed by Kechris-Pestov-Todorčević in [19] and
further extended in [24], [25], [2] by Nguyen Van Thé, Zucker, Ben
Yaacov, Melleray, Tsankov and others. We rephrase it here in terms of
strong classes.

Theorem 1.62 ([19], Th. 4.8; [24], Th. 1). Let M be a Fräıssé limit
of a strong amalgamation class (K,≤). Then Aut(M) is extremely
amenable iff (K,≤) is Ramsey and rigid.

Here, as usual in the context of homogeneous structures, Aut(M) has
the pointwise convergence topology, where an open basis is given by
left cosets of pointwise stabilisers of finite A ≤M . Rigidity means that
elements of K have trivial automorphism groups.

We now describe some further results in the context of the KPT cor-
respondence.

Let (K,≤) be an amalgamation class of L-structures, with Fräıssé limit
M and G = Aut(M). Let L ⊆ L+ be an expanded language, and let
D be a class of finite L-structures where K is the class of L-reducts of
D and where each structure in K has finitely many expansions in D
(together with a few other basic axioms - see Definition 1.63). We call
D a reasonable class of expansions of (K,≤) (following [25]).

Let

X(D) = {M+ an L+-expansion of M : for all finite A ≤M,AM
+ ∈ D}.

Here, AM
+

denotes the L+-structure induced on A by M+. Basic
open sets are given by fixing some AM

+
. We then have that X(D) is

an Aut(M)-flow (Lemma 1.69). For an example: D0 is a reasonable
class of expansions of (C0,≤s), and X(D0) is the flow Or(M0) of 2-
orientations of M0.

For D reasonable over (K,≤), D has the expansion property over (K,≤)
if for all A ∈ K, there exists A ≤ B ∈ K such that for all expansions
A+, B+ ∈ D, B+ contains a ≤-copy of A+.
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Theorem 1.73 ([24], Th. 4). The G-flow X(D) is minimal iff D has
the expansion property over (K,≤).

(An analogous result is Th. 7.4 of [19], but this only covers the case
where L is expanded by a single binary relation symbol. In this simpler
case the expansion property is referred to as the ordering property. The
paper [24] introduces the expansion property in full generality.)

For J ≤ Aut(M), we say J is a coprecompact subgroup of Aut(M)
if each Aut(M)-orbit on Mn splits into finitely many J-orbits. The
importance of coprecompactness was first explored in [24].

We then have the following extended KPT-type result, adapted for
strong classes (see [19], Th. 10.8, [24], Th. 5 and [25], Th. 5.7):

Theorem 1.76 (KPT, Nguyen Van Thé, Zucker). Let (K,≤) be an
amalgamation class with Fräıssé limit M , and let (K+,≤+) be a rea-
sonable strong expansion of (K,≤) which is an amalgamation class with
Fräıssé limit N . Suppose (K+,≤+) is rigid, Ramsey and has the ex-
pansion property, and suppose Aut(N) is a coprecompact subgroup of
Aut(M).

Then X(K+) is the universal minimal flow for Aut(M), and has a
comeagre orbit consisting of expansions of M isomorphic to N .

So, if G is the automorphism group of a countable homogeneous struc-
ture M and there exists a coprecompact extremely amenable subgroup
of G, then we control to some extent the universal minimal flow of G.

New behaviour in the KPT context: papers of Evans, Hubička
and Nešetřil

Evans, Hubička and Nešetřil (EHN) showed in [8] that such a copre-
compact extremely amenable subgroup need not exist in the case M
ω-categorical (specifically, proving this for the Hrushovski construction
MF ) and also in the cases M = M1,M0:

Theorem 2.2 ([8], Th. 1.2, 3.7). The automorphism group Aut(MF )
has no coprecompact extremely amenable subgroup.

Theorem 2.3 ([8], Th. 3.16). Let M = M1 or M0. Then Aut(M) has
no coprecompact extremely amenable subgroup.

The proof of Theorem 2.2 uses the Aut(MF )-flow of orientations Or(MF ).
This flow of orientations will be a key tool throughout this thesis.
Specifically, the result in [8] states:

Proposition 2.1 ([8], Th. 3.7). Let M be an infinite 2-sparse graph
in which all vertices have infinite valency. Let G = Aut(M).

Consider the G-flow G y Or(M). If J ≤ G fixes a 2-orientation of
M , then J has infinitely many orbits on M2.
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(This result applies to M = MF with a few basic assumptions on the
control function F to guarantee that all vertices have infinite valency
- see Section 1.5.)

The proof technique for Theorem 2.3 is quite similar.

The paper [8] contains two further results relevant to this thesis, which
demonstrate that the automorphism groups of the Hrushovski con-
structions M1,M0,MF display dramatically different behaviour to the
case where the automorphism group G has a coprecompact extremely
amenable subgroup.

Theorem ([8], Cor. 3.11). Aut(MF ) has no coprecompact amenable
subgroup.

Theorem ([8], Th. 5.2). Let M = M1,M0,MF , G = Aut(M). Let Y
be a minimal subflow of the G-flow of 2-orientations Or(M). Then all
G-orbits of Y are meagre in Y .

New results

The new results in this thesis are contained in Chapters 2 to 6, and we
summarise the most important results below:

Chapter 2: this contains the new result that Aut(M0) does not have a
coprecompact amenable subgroup, via a straightforward
combination of arguments in Section 3 of [8].

Chapter 3: we investigate the fixed points on type spaces property
(FPT), and show thatMF does not have any ω-categorical
expansion whose automorphism group has FPT.

Chapter 4: we investigate the Aut(M1)-flow LO(M1) of linear orders
on M1, and show that all orbits on minimal subflows of
LO(M1) are meagre.

Chapter 5: we attempt to carry out the same analysis for the Aut(M0)-
flow LO(M0) as we did for LO(M1) in the previous chap-
ter, but without complete success. We obtain some results
on stabilisers of linear orders, and a result that clarifies
the difficulty of the M0 case.

Chapter 6: we find the universal minimal flow of Aut(M00), the au-
tomorphism group of the predimension zero part of M0.

We briefly describe these new results in the rest of this introduction.

Fixed points on type spaces

In Chapter 3, we investigate a weakening of extreme amenability, the
fixed points on type spaces (FPT) property.

Let M be a first-order structure, and let G = Aut(M) with the point-
wise convergence topology. Then G acts continuously on the Stone
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spaces Sn(M) of n-types with parameters in M , via the action

g · p(x) = {φ(gm, x) : φ(m,x) ∈ p(x)}.

This gives a natural source of G-flows.

G has the fixed points on type spaces property (FPT) if every subflow
of Sn(M) (n ≥ 1) has a fixed point.

Investigating the fixed points on type spaces property was suggested
by David Evans, the PhD supervisor of the author. The motivation
arose both from the simple fact that type spaces give a natural flow,
and also from some unpublished examples (personal communication,
Evans) where Ramsey expansions of certain classes had been found
by noting that the automorphism groups of the Fräıssé limits of these
Ramsey expansions would have to fix points on type spaces.

An additional motivation was the paper [8] of Evans, Hubička and
Nešetřil. David Evans raised the following question:

Question. MF does not have an ω-categorical expansion whose au-
tomorphism group is extremely amenable (Th. 2.2). Does MF have
an ω-categorical expansion whose automorphism group has the fixed
points on type spaces property?

In Chapter 3 we show directly, as an introduction, that the automor-
phism group of the random graph has FPT, without using strong Ram-
sey results. This introductory example demonstrates interesting be-
haviour (FPT for the random graph is equivalent to the pigeonhole
property of the random graph: any 2-colouring of the random graph
must have a monochromatic copy of the random graph itself).

We then answer the question of Evans in the negative:

Theorem 3.6. MF does not have any ω-categorical expansion N with
Aut(N) having FPT.

Proof idea. Encode each orientation of MF as a 1-type. We then
define an Aut(MF )-map γ : S1(MF )→ 2MF

2
which sends our encoded

1-types back to the original orientations. Any H ≤ Aut(MF ) with FPT
fixes a point in the subflow of encoded types, so fixes an orientation.
We then use Proposition 2.1 to see that H has infinitely many orbits
on M2

F . �

Linear orders on sparse graphs

This topic forms the greater part of this thesis. Th. 5.2 from [8] shows
that Aut(M0),Aut(MF ) have metrisable minimal flows all of whose or-
bits are meagre. Tsankov asked the following question ([8], concluding
remarks):
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Question (Tsankov). Do Aut(M0) or Aut(MF ) have a (non-trivial)
metrisable minimal flow with a comeagre orbit?

David Evans suggested that the author investigate the Aut(M)-flow
LO(M) of linear orders on M = M1,M0,MF . We obtain the following
result for M1:

Theorem 4.18. Let Y ⊆ LO(M1) be a minimal subflow. Then all
Aut(M1)-orbits on Y are meagre.

The proof involves using the admissible orders from Section 3.1 of [9],
a paper which accompanies [8] and proves new Ramsey theorems for
structures with relations and set-valued functions. This framework
of languages with set-valued functions is used to encode the strong
closures associated with Hrushovski constructions.

For A ∈ D1, we may define the level l(x) of a vertex x ∈ A as the
maximal length of an out-path from x. A linear order ≺ on A is
admissible if:

• for x, y ∈ A with l(x) < l(y), x ≺ y;
• for x, y ∈ A of the same level, x ≺ y if the descending chain of

successors of x is lexicographically before the descending chain
of successors of y.

The class (E1,vs) of (A,≺), with A ∈ D1 and ≺ admissible, is a Ram-
sey class with free amalgamation (and indeed also has the expansion
property over (D1,vs)), as we show in Proposition 4.10. This is a
particular case of the more general Theorem 1.4 of [9], though in this
thesis we will keep our presentation self-contained.

Let the Fräıssé limit of (E1,vs) be (N1, α), where α is the linear order of
the Fräıssé limit and N1 is the oriented graph, and let H = Aut(N1, α).

H is extremely amenable, so fixes some linear order β on Y . We may
then show the failure of the weak amalgamation property (see Section
1.11) for Age(M1, β), which shows that all Y -orbits are meagre by an
adapted result of Kechris & Rosendal (Theorem 3.4 of [20], Lemma
1.78 here). We do this by using H-automorphisms to find out informa-
tion about β (β agrees with α or its reverse on sets of α-indiscernible
vertices), and then, assuming the weak amalgamation property and
seeking a contradiction, use β to force certain incompatible orienta-
tions.

We may define admissible orders in a similar (but more complicated)
way for M0,MF (indeed, [9] defines admissible orders in a general fash-
ion so that they may also be defined on e.g. Steiner systems and bowtie-
free graphs). The author has not yet extended Theorem 4.18 to M0

and MF due to unanticipated technical difficulties, but has some partial
results.
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For M0, we will show in Chapter 5, with an analogous setup to the
previous chapter, that Aut(M0, α) = Aut(M0, β). We will also show in
Chapter 6 that:

Theorem 6.13. Aut(M0) has a non-trivial metrisable minimal flow
with comeagre orbit.

However, this particular flow is not faithful, so does not answer the
question of Tsankov in a satisfying way. The flow results from the “di-
mension 0” part of M0. Let C00 be the class of graphs A with A ∈ C0 and
δ(A) = 0, and let M00 ⊆ M0 be the Fräıssé limit of (C00,≤s). Then
G00 = Aut(M00) has a coprecompact extremely amenable subgroup,
given by the automorphism group of the class of admissibly ordered
orientations of C00, so we may use Theorem 1.76 to produce the uni-
versal minimal flow of G00 with a comeagre orbit, and from this we
may produce a G0-flow. (We have coprecompactness here because for
A ∈ C00, any orientation of A must have the same strongly connected
components and orientation of edges between strongly connected com-
ponents.)

These partial results represent some progress towards extending Theo-
rem 4.18 to M0 and MF , but the question is still open for these cases.



Chapter 1

Background

In this chapter, we introduce the background material for this the-
sis. A reader familiar with Hrushovski constructions and the KPT
correspondence should hopefully have seen most of the results in this
chapter before - though we reformulate the KPT correspondence for
strong classes, and the Ramsey result of Section 1.7 will possibly be
unfamiliar.

We assume that the reader is familiar with the classical Fräıssé theory,
the pointwise convergence topology on automorphism groups of first-
order structures, and the Ryll-Nardzewski theorem. (The background
for these three topics can be found in Ch. 7 of [14] and Sections 1-2 of
[5].)

None of the material in this chapter is new. The presentation is strongly
influenced by [8], [7] and [5], which are key references for this back-
ground material.

All first-order languages considered in this thesis will be countable and
relational.

1.1 Graphs and oriented graphs: notation and
setup

A graph (A,E(A)) consists of a set A, the vertex set, and a set E(A) ⊆
A(2), the edge set. (Here, A(2) denotes the set of unordered pairs of
distinct elements of A.) We will usually just write A to denote the
graph (A,E(A)) when this is clear from context. We will sometimes
write V(A) for the vertex set. By the above definition, here we only
work with simple graphs: graphs having no loops on a single vertex or
multiple edges between two vertices.

Definition 1.1. Let (A,E(A)) be a graph. A set ρA ⊆ A2 is an
orientation of (A,E(A)) if:

• for xy ∈ E(A), exactly one of (x, y), (y, x) is in ρA;
• for (x, y) ∈ ρA, xy ∈ E(A).

Note that this implies that ρA contains no directed loops or directed
2-cycles. We will refer to (A,E(A), ρA) as an oriented graph.

(We use ρ as a mnemonic for orientation.)

16
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Definition 1.2. Let (A,E(A), ρA) be an oriented graph. (See Figure
1.1 for an example.)

If (x, y) ∈ ρA, we refer to (x, y) as an out-edge of x and an in-edge of
y. We call y an out-vertex or successor of x, and x an in-vertex or
predecessor of y.

The out-neighbourhood N+(x) of x consists of the out-vertices of x. The
in-neighbourhood N–(x) of x consists of the in-vertices of x. The out-
degree d+(x) of x is defined to be d+(x) = |N+(x)|, and the in-degree
d–(x) of x is defined similarly.

If x1, · · · , xn is a path of the graph A and (xi, xi+1) ∈ ρA for i < n, we
will say that x1, · · · , xn is an out-path of ρA. We define in-paths in the
corresponding fashion.

For B ⊆ A, we write B vs A to mean that B is successor-closed in
A: for b ∈ B, if (b, a) ∈ ρA then a ∈ B. Note that intersections of
successor-closed subsets are also successor-closed.

For B ⊆ A, scl(B), the successor-closure of B, is defined to be the
smallest successor-closed subset ofA containingB. Equivalently, scl(B)
consists of the vertices of A reachable by an out-path starting in B.

For x, y ∈ A, we write x ∼ y if scl(x) = scl(y). Then ∼ is an equiva-
lence relation, and we call the equivalence classes the strongly connected
components (sccs) of A. We write scc(x) for the strongly connected
component of x. (As a reminder to the reader, we note the difference
between scl(x) and scc(x)). We have that x ∼ y iff there exist out-paths
from x to y and from y to x.

Let S be a scc of A. We define the out-neighbourhood N+(S) of S to
be the set

N+(S) = {v ∈ A : v /∈ S and there exists x ∈ S with (x, v) ∈ ρA}.
Any out-edge from a vertex of S to the out-neighbourhood of S will
be called an exiting out-edge from S (note that this excludes out-edges
whose vertices both lie in S).

Definition 1.3. Let (A,E(A), ρA) be a finite oriented graph.

For x ∈ A, we inductively define the level lA(x) of x as follows. If
scl(x) = scc(x), then lA(x) = 0. Otherwise, let y be a vertex of scl(x)−
scc(x) of maximum level, and then lA(x) = lA(y) + 1. For B ⊆ A, we
define the level lA(B) of B to be the maximum of the levels of its
vertices.

We write Ln(A) (n ≥ 0) for the set of vertices of A of level n. We
define A↑n (read ‘A up to n’) to be the oriented subgraph of A whose
vertex set consists of the vertices of A of level ≤ n, and A↓n to be the
oriented subgraph of A whose vertex set is all the vertices of A of level
≥ n.
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xy

z

S

Figure 1.1. An example of a 2-oriented graph. Sccs are
in grey. The out-neighbourhood of x is {y, z}. (x, z) is
an exiting out-edge from the scc S, and z lies in N+(S),
but y does not. x has level 2, and z has level 1.

Remark 1.4. The definitions of successor-closure, scc and levels of
vertices have been taken from [6], an early, unpublished version of [8],
but are well-known to graph theorists. These definitions are a specific
case of the more general notions of closure, closure-components and
levels of vertices found in Section 3.1 of [9].

We will work with graphs and oriented graphs in first-order languages
as follows. The language of graphs Lgraph = {E} consists of a single bi-
nary relation E. A Lgraph-structure (A,EA) is then a graph if EA ⊆ A2,
the interpretation of E, is symmetric and irreflexive. (It is clear how
to switch between E(A) and EA. We will be flexible and switch be-
tween the standard graph theory notation and the first order formalism
without comment.)

We expand Lgraph to the language of oriented graphs Lor = {E, ρ},
where ρ is a binary relation. A Lor-structure (A,EA, ρA) is an oriented
graph if ρA is an orientation of the graph (A,EA).

When we refer to a subgraph of a graph, or an oriented subgraph of
an oriented graph, we mean an Lgraph- or Lor-substructure respectively.
This is standard in model theory, but for graph theorists these sub-
structures might be referred to as induced subgraphs.
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(We use the full notation for structures in this section for clarity, but
henceforth we will usually denote graphs (A,EA) by A, and oriented
graphs (A,EA, ρA) by A or (A, ρA).)

1.2 Sparse graphs: C0 and C1

We will now define the classes of sparse graphs that we will be con-
cerned with in this thesis.

Definition 1.5. Take k ∈ N+. A graph A is k-sparse if ∀B ⊆fin. A,
|E(B)| ≤ k|B|.

Definition 1.6. Let (A, ρA) be an oriented graph. Take k ∈ N+. We
call ρA a k-orientation if for x ∈ A, |N+(x)| ≤ k. We refer to (A, ρA)
as a k-oriented graph, and if a graph A has a k-orientation, we say it
is k-orientable.

The following proposition is well known in graph theory ([22]), and
will be a key tool here.

Proposition 1.7 ([8], Th. 3.4). A graph A is k-orientable iff it is
k-sparse.

Proof. ⇒: easy. ⇐: We will first prove the statement for finite A. We
wish to produce a k-orientation of A, and so to do this, we must direct
each edge. We will use Hall’s Marriage Theorem ([3], III.3), which for
the convenience of the reader we briefly restate: for a finite bipartite
graph with left set X and right set Y , then there is an X-saturated
matching iff |W | ≤ |N(W )| for W ⊆ X.

Form a bipartite graph B with left set E(A) and right set A× [k], and
place an edge between e ∈ E(A) and (x, i) ∈ A× [k] if x ∈ e. If there
is a left-saturated matching, then if e is matched to (x, i), we orient e
so that x is the start-vertex of e, and this gives a k-orientation of A.

To see that a left-saturated matching exists, take W ⊆ E(A). Let V be
the set of vertices of the edges which lie in W . Then |NB(W )| = k|V |,
and as A is k-sparse, we have that k|V | ≥ |EA(V )|, where EA(V ) is
the set of edges in A whose vertices lie in V . As |EA(V )| ≥ |W |, by
Hall’s Marriage Theorem there exists a left-saturated matching of the
bipartite graph B. �

For presentational simplicity, we will usually work with k = 2. Our
results generalise straightforwardly for k > 2.

Note: in this thesis, we may occasionally say “oriented graph” to in
fact mean “2-oriented graph”, as most of the oriented graphs we are
concerned with are 2-oriented. We will try to avoid this in general, but
when this does occur the meaning will be clear from context.
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x

y

z

w

Figure 1.2. An example of an element A of D1: a 2-
oriented graph with no directed cycles. x has level 3, and
y has level 1. The roots of A of multiplicity 1 are z, w.
The roots of A of multiplicity 2 are the 6 vertices on level
0. We have δ(A) = 14.

Definition 1.8. We let C0 be the class of finite 2-sparse graphs. We
let D0 be the class of finite 2-oriented graphs.

By Proposition 1.7, C0 is the class of graph reducts of D0.

We now introduce a “simplified” version of D0 ([7], Section 3.4 and
[10]), for which it will be usually easier to prove results.

Definition 1.9. We defineD1 to be the class of finite 2-oriented graphs
with no directed cycles. (See Figure 1.2.) By a slight abuse of termi-
nology, we will refer to a 2-oriented graph with no directed cycles as an
acyclic 2-oriented graph. We define C1 to be the class of graph reducts
of D1.

We may also define C1 purely in terms of graphs, as per the lemma
below.

Lemma 1.10 ([10], Lem. 1.3). A finite graph A has a k-orientation
with no directed cycles iff every non-empty subgraph B has a vertex of
degree ≤ k in B.

Proof. ⇒: Take ∅ 6= B ⊆ A a subgraph of A where A has an acyclic
k-orientation. Consider the induced orientation on B. As this orienta-
tion is acyclic, B contains a vertex v which has no in-edges in B, and
therefore the degree of v in B is equal to its out-degree in B, which is
≤ k.

⇐: We prove the claim by induction on |A|. For |A| = 1, the claim is
trivial. For the inductive step, take a vertex a ∈ A of degree ≤ k. By
the induction assumption, we may give A−{a} an acyclic k-orientation.
Then orient the edges of a outwards from a to produce an acyclic k-
orientation of A. �
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Proposition 1.11. C1 consists of the finite graphs A where every non-
empty subgraph B ⊆ A has a vertex of degree ≤ 2.

Proof. Clear by Lemma 1.10. �

1.2.1 Graph predimension

One way to characterise k-sparsity is in terms of graph predimension.

Definition 1.12. Let A be a finite graph. We define the predimension
δ(A) of A to be δ(A) = 2|A| − |E(A)|.
For B ⊆ A, we define the relative predimension of A over B to be
δ(A/B) = δ(A)− δ(B).

We can therefore characterise C0 as the class of finite graphs A such
that all subgraphs of A have non-negative predimension. (This forms
part of the ‘ab initio’ Hrushovski construction M0 described in [16].
An accessible treatment is in Section 3.2 of [5].)

Definition 1.13. Let A ∈ D0. Take a ∈ A. a is a root of A if
d+(a) < 2.

For a ∈ A a root of A, we define the multiplicity ma of a to be ma =
2− d+(a).

Lemma 1.14. Let A ∈ D0. Then we have that δ(A) is the sum of the
multiplicities of the roots of A.

The proof is straightforward. (This is from Section 4 of [8].)

1.3 Strong classes and Fräıssé limits

1.3.1 Strong classes

The classes of graphs and oriented graphs detailed in the previous two
sections will each come with certain particular distinguished embed-
dings between structures in the class.

(Throughout this section, L will be a countable relational first-order
language.)

Definition 1.15. Let K be a class of finite L-structures closed under
isomorphisms. Let S ⊆ Emb(K) be a class of embeddings between
structures in K satisfying the following:

(S1) S contains all isomorphisms;
(S2) S is closed under composition;
(S3) if f : A → C is in S and f(A) ⊆ B ⊆ C with B ∈ K, then

f : A→ B is in S.
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Then we call (K,S) a strong class, and call the elements of S strong
embeddings.

(This is originally due to Hrushovski: see [15] and [16]. An accessible
exposition of strong classes is in Section 3 of [5].)

If A,B ∈ K, A ⊆ B and the inclusion map ι : A ↪→ B is in S, then we
write A ≤ B and say A is a strong substructure of B. We have that:

(L1) ≤ is reflexive;
(L2) ≤ is transitive;
(L3) if A ≤ C and A ⊆ B ⊆ C with B ∈ K, then A ≤ B.

We will often write (K,≤) instead of (K,S), and we will use different
symbols resembling ≤ (e.g. ≤1,≤s,vs) to indicate different classes of
embeddings.

Remark 1.16. If we start with a distinguished class of strong sub-
structures of elements of K, where we write A ≤ B to mean that A
is a strong substructure of B, we could define a distinguished class of
embeddings S by stating that f : A → B is in S if f(A) ≤ B. How-
ever, if ≤ satisfies (L1), (L2), (L3), this does not necessarily formally
imply that S satisfies (S1), (S2), (S3), and embeddings in S do not
necessarily preserve ≤.

However, in any examples of strong classes in this thesis, this some-
what pedantic technical distinction will not appear, and defining S
will be equivalent to defining ≤ because of the particular details of the
example.

If (K,≤) is a strong class (i.e. S satisfies (S1), (S2), (S3)), then we have
that for f : A→ B in S, if X ≤ A, then f(X) ≤ B.

1.3.2 Strong classes: infinite structures

Suppose (K,≤) is a strong class. Let A1 ≤ A2 ≤ · · · be an increasing
≤-chain of structures in K, and let M =

⋃
i≥1Ai. Let A ⊆fin. M .

Then we write A ≤ M to mean that there is some Ai (i ≥ 1) with
A ≤ Ai. Say M is also the union of the elements of the increasing
≤-chain B1 ≤ B2 ≤ · · · of K-structures. Take some Ai (i ≥ 1). Then
Ai ⊆ Bj for some j ≥ 1, and Bj ⊆ Ak for some k ≥ i. As Ai ≤ Ak, by
(S3) Ai ≤ Bj. Thus we see that when we write A ≤ M , this does not
depend on any particular ≤-chain.

Take g ∈ Aut(M). Take some Ai ≤ Aj (i < j). Then g|Aj
: Aj → gAj

is an isomorphism, so g|Aj
∈ S, and so gAi ≤ gAj. Thus M is also the

union of the increasing ≤-chain gA1 ≤ gA2 ≤ · · · . So if A ≤ M , then
gA ≤M : that is, all g ∈ Aut(M) preserve ≤.
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1.3.3 Fräıssé theory for strong classes

We now develop an analogue of the classical Fräıssé theory for strong
classes. As the details are entirely analogous to the classical case, we
omit the proofs and state the relevant material as a series of definitions
and lemmas. (For the classical Fräıssé theory, originally developed in
[13], see [14], and for a more complete treatment of Fräıssé theory for
strong classes, see Section 3 of [5].)

Definition 1.17. Let (K,≤) be a strong class of L-structures.

• (K,≤) has the joint embedding property (JEP) if for A1, A2 in
K, there is B ∈ K with ≤-embeddings f1 : A1 → B, f2 : A2 →
B.
• (K,≤) has the amalgamation property (AP) if, for any ≤-

embeddings f1 : A → C1, f2 : A → C2 of A ∈ K, there exists
D ∈ K with ≤-embeddings g1 : C1 → D, g2 : C2 → D such
that g1f1 = g2f2.
• For A,C1, C2 ∈ K with A ≤ C1, C2, the free amalgam F of
C1, C2 over A is the L-structure F whose domain is the disjoint
union of C1, C2 over A and whose relations RF are exactly the
unions RC1 ∪RC2 of the relations RC1 , RC2 on C1, C2 (for R a
relation symbol in L). If for all L-structures A ≤ C1, C2 in K
we have that the free amalgam F of C1, C2 over A is in K with
C1, C2 ≤ F , then we say that (K,≤) is a free amalgamation
class.

We will usually not mention the distinguished class of embeddings in
our terminology, as it will be clear from context and the fact that we
are working with strong classes. For instance, we say that (K,≤) has
the amalgamation property - even though perhaps more strictly we
should say that (K,≤) has the ≤-amalgamation property.

In the following definitions and lemmas, let (K,≤) be a strong class,
and let M be the union of an increasing ≤-chain A1 ≤ A2 ≤ · · · in
(K,≤).

Definition 1.18. The ≤-age of M , written Age≤(M), is the class of
A ∈ K such that there is a ≤-embedding A→M .

(Age≤(M),≤) is a hereditary strong subclass of (K,≤), and has the
joint embedding property.

Definition 1.19. M has the ≤-extension property if for all A,B ∈
Age≤(M) and ≤-embeddings f : A → M, g : A → B, there exists a
≤-embedding h : B →M with hg = f .

M is ≤-homogeneous if each isomorphism f : A → A′ between strong
substructures A,A′ of M extends to an automorphism of M .



24

(Again, to avoid presentational clutter, we will often omit the ≤- prefix
and just say that M has the extension property or is homogeneous,
when it is clear from context that M is the union of an increasing
≤-chain A1 ≤ A2 ≤ · · · in a strong class (K,≤).)

Lemma 1.20. Let M ′ also be a union of an increasing ≤-chain in K.
Suppose M,M ′ have the same ≤-age and both have the ≤-extension
property. Then M,M ′ are isomorphic.

Lemma 1.21. M is ≤-homogeneous iff M has the ≤-extension property.

Lemma 1.22. Suppose M is ≤-homogeneous. Then (Age≤(M),≤) has
the amalgamation property.

Definition 1.23. Let (K,≤) be a strong class. We say that (K,≤)
is an amalgamation class or Fräıssé class if (K ≤) contains countably
many isomorphism types, and has the joint embedding and amalgama-
tion properties.

Theorem 1.24 (Fräıssé-Hrushovski). Let (K,≤) be an amalgamation
class. Then there is a structure M which is a union of an increasing
≤-chain, unique up to isomorphism, such that M is ≤-homogeneous
and Age≤(M) = K.

We call this structure the Fräıssé limit or generic structure of K.

1.3.4 Strong expansions

We will often be concerned with the situation where we have a strong
class of L-structures together with a strong class of L+-structures (with
a potentially different notion of distinguished embedding), where L+ ⊇
L is a relational language expanded from L.

Definition 1.25 ([8], Def. 2.9). Let (K,≤) be a strong class of L-
structures, and let (K+,≤+) be a strong class of L+-structures.

(K+,≤+) is a strong expansion of (K,≤) if:

(1) K is the class of L-reducts of K+;
(2) for ≤+-strong f : A+ → B+, f : A+|L → B+|L is ≤-strong;
(3) for ≤-strong f : A→ B and A+ ∈ K+ an expansion of A, there

exists an expansion B+ ∈ K+ of B such that f : A+ → B+ is
≤+-strong.

Lemma 1.26. Let (K+,≤+) be a strong expansion of the strong class
(K,≤). If (K+,≤+) is a (free) amalgamation class, then so is (K,≤).
If M+ is the Fräıssé limit of (K+,≤+), then M = M+|L is the Fräıssé
limit of (K,≤), and Aut(M+) is a closed subgroup of Aut(M).

The proof is straightforward. (To show that Aut(M+) is closed in
Aut(M), show that the complement is open by witnessing failure to be
in Aut(M+) on a finite set.)
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Definition 1.27. A particular case of Definition 1.25 is the order ex-
pansion of a strong class.

Let (K,≤) be a strong class of L-structures, and let L+ be an expansion
of L by a binary relation symbol.

Let K≺ be the class of L+-structures (A, γA), where A ∈ K and γA is
a linear order on A (here interpreting the additional binary relation
symbol of L+).

For (A, γA), (B, γB) ∈ K≺, write (A, γA) ≤ (B, γB) if A ≤ B and
γA = γB|A. We then have that (K≺,≤) is a strong class and a strong
expansion of (K,≤). We call (K≺,≤) the order expansion of the strong
class (K,≤).

Note: Throughout this thesis, we will tend to use letters at the start of
the Greek alphabet (α, β, γ) for linear orders. This will avoid confusion
with the notation A ≤ B for strong substructure, and also enables us
to conveniently handle the situation where there are several different
linear orders on the same structure.

1.4 Sparse graphs: ≤s, vs and ≤1

We will now describe the distinguished notions of embedding involved
in defining particular strong classes for C0 and D0, and for C1 and D1.

1.4.1 Self-sufficiency: ≤s

Definition 1.28. Let A,B ∈ C0, A ⊆ B. We say that A is self-
sufficient in B, written A ≤s B, if for A ⊆ C ⊆ B, δ(C) ≥ δ(A).

(This is a part of the ‘ab initio’ Hrushovski construction from [16], as
are the other lemmas in this subsection. The presentation here is from
Section 3.2 of [5].)

Lemma 1.29 (Submodularity). Take A ∈ C0, B,C ⊆ A. Then we
have that δ(B ∪ C) ≤ δ(B) + δ(C) − δ(B ∩ C). We have equality iff
E(B ∪C) = E(B)∪E(C), i.e. B,C are freely amalgamated over B ∩C
in A.

Proof. Straightforward. �

Lemma 1.30. Let B ∈ C0.

(1) A ≤s B, X ⊆ B ⇒ A ∩X ≤s X.
(2) A ≤s C ≤s B ⇒ A ≤s B.
(3) A1, A2 ≤s B ⇒ A1 ∩ A2 ≤s B.

(Recall that for B ∈ C0, if A ⊆ B then A ∈ C0. Therefore we only need
to prove self-sufficiency in the above.)
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Proof.

(1) Take A ∩ X ( Y ⊆ X. Note that A ∩ Y = A ∩ X. By
submodularity,

δ(A ∪ Y ) ≤ δ(A) + δ(Y )− δ(A ∩ Y )

= δ(A) + δ(Y )− δ(A ∩X),

so δ(Y )− δ(A ∩X) ≥ δ(A ∪ Y )− δ(A) ≥ 0.
(2) Take A ( X ⊆ B. By (1), C∩X ≤s X. Also A ⊆ C∩X ⊆ C.

So δ(A) ≤ δ(C ∩X) ≤ δ(X).
(3) By (1), A1 ∩ A2 ≤ A1. Then use (2).

�

The previous lemma shows us that (C0,≤s) satisfies (S1), (S2), (S3) -
that is:

Lemma 1.31. (C0,≤s) is a strong class.

For B ∈ C0, by (3) we see that for A ⊆ B we have that⋂
{A′ : A ⊆ A′ ≤s B} ≤s B,

so we can define the closure of A in B as this intersection, written
clsB(A). This is a closure operation.1.

Lemma 1.32. Let B ∈ C0 and let A ⊆ B. Then δ(A) ≥ δ(clsB(A)).

Proof. Amongst all A ⊆ X ⊆ B, consider those for which δ(X) is
smallest, and then out of these choose a C of greatest size. By the first
stage of selection, we have δ(C) ≤ δ(A), and by the second stage, if
C ⊆ D ⊆ B then δ(C) < δ(D), so C ≤s B. So clsB(A) ⊆ C ⊆ B, and
as clsB(A) ≤s B, δ(clsB(A)) ≤ δ(C). �

1.4.2 Self-sufficiency and successor-closure: ≤s and vs

It is straightforward to see that Lemma 1.30 holds for D0 with ≤s
replaced by vs, and thus we have:

Lemma 1.33. (D0,vs) is a strong class.

We have the following link between the strong classes (C0,≤s) and
(D0,vs) ([11], Lemma 1.5):

Proposition 1.34. Take A,B ∈ C0, A ⊆ B. Then A ≤s B iff there
exists a 2-orientation B+ of B for which the induced 2-orientation A+

on A is successor-closed.

1Let X be a set, and let cl : P(X) → P(X) be a function on the power set of
X. cl is a closure operator if it is (1) extensive: A ⊆ cl(A), (2) increasing : A ⊆ B
⇒ cl(A) ⊆ cl(B) and (3) idempotent : cl(cl(A)) = cl(A).
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Proof. ⇒: This is an extension of the proof technique of Proposition
1.7. As A ∈ C0, by Proposition 1.7 there is a 2-orientation A+ of A.
Define a bipartite graph (X, Y ) as follows. Let X = E(B)− E(A) (so
X consists of edges with both vertices not in A together with edges
with exactly one vertex in A). Let Y = (B − A) × [2]. Place an edge
between e ∈ X and (b, i) ∈ Y if b ∈ e. If there is an X-saturated
matching of (X, Y ), we can produce a 2-orientation B+ of B in which
A+ vs B+: take A+, and to orient the remaining edges of B, if e ∈ X
matches with (b, i) ∈ Y , direct e so that b is the start-vertex of e.

We show that there is an X-saturated matching using Hall’s Marriage
Theorem. Take W ⊆ X, and let

V = {v ∈ B − A : v ∈ w for some w ∈ W}.
Let C = A ∪ V , considering C as a subgraph of B. Then δ(C/A) ≥ 0
as A ≤s B, so

2|V | ≥ |E(V )|+ |edges between V and A| ≥ |W |,
and as |N(W )| = 2|V |, we are done. �

Lemma 1.35. (D0,vs) is a strong expansion of (C0,≤s).

Proof. C0 is the class of graph reducts of D0 by Proposition 1.7, and
if A vs B, A,B ∈ D0, then A ≤s B by Proposition 1.34.

Take A ≤s B ∈ C0, and let A+ ∈ D0 be an expansion of A. As A ≤s B,
there exists an orientation B′ of B in which the induced orientation
A′ on A has A′ vs B′. Let B+ be the orientation of the edges of B
given by taking B′ and replacing A′ with A+ on A. Then B+ is still a
2-orientation, and we have A+ vs B+. �

In the above proof, we produce a new orientation B+ by replacing an
orientation on a successor-closed subset, and this argument will be used
frequently in this thesis - often without explicit comment.

Remark 1.36. We could have easily proved Lemma 1.30 and shown
that (C0,≤s) was a strong class using Proposition 1.34, rather than
using the original definition of ≤s in terms of predimension. (To show
that A ≤s B ≤s C ⇒ A ≤s C, we use the method of replacing an
orientation on a successor-closed subset, as in the proof of Lemma
1.35.)

However, the disadvantage of this is that the proof in terms of vs is
specific to our particular choice of predimension. For a generalised
notion of predimension (see [5]), our first proof using submodularity of
δ is still valid.

Lemma 1.37. (C0,≤s) and (D0,vs) are free amalgamation classes.

Proof. It is clear that (D0,vs) is a free amalgamation class. Using
Lemma 1.26, we have that (C0,≤s) is a free amalgamation class. �
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Definition 1.38. Let M0 denote the Fräıssé limit of (C0,≤s).
As M0 can be written as the union of an increasing ≤s-chain of struc-
tures in C0, we already have a definition of A ≤s M0 for finite A from
Section 1.3.2. Namely, writing M0 as the union of an increasing ≤s-
chain A0 ≤s A1 ≤s · · · , for finite A ⊆ M0 we say that A ≤s M0

if A ≤s Ai for some i ≥ 0. This definition is not dependent on the
particular ≤s-chain we take - this is shown in Section 1.3.2.

For finite A ⊆ M0, we define clsM0
(A) to be the smallest finite ≤s-

closed subset of M0 containing A. (We know that there exists finite
B ≤s M with A ⊆ B, as we can write M0 as the union of an increasing
≤s-chain.)

Definition 1.39. For A ⊆ M0 with A possibly infinite, we will say
A ≤s M0 if A ∩ X ≤s X for all finite X ⊆ M0. (Note that this is
consistent with the definition for finite A by part (1) of Lemma 1.30.)

As A ≤s M0, B ≤s M0 implies that A∩B ≤s M0 by the above definition
(using Lemma 1.30), we can define clsM0

(A) for A ⊆M0 as the smallest
≤s-closed subset of M0 containing A. Note that this is consistent with
our definition of clsM0

(A) for finite A: if A ⊆M0 is finite, then clsM0
(A)

is finite.

1.4.3 The acyclic case: ≤1

Definition 1.40. Let A,B ∈ C1 with A ⊆ B. We write A ≤1 B if
there exists an acyclic 2-orientation B+ ∈ D1 of B in which the induced
orientation A+ ∈ D1 on A has A+ vs B+.

We have an analogue of Lemma 1.30:

Lemma 1.41. Let B ∈ C1.

(1) A ≤1 B, X ⊆ B ⇒ A ∩X ≤1 X.
(2) A ≤1 C ≤1 B ⇒ A ≤1 B.
(3) A1, A2 ≤1 B ⇒ A1 ∩ A2 ≤1 B.

Proof. (1) is immediate. (2) follows by replacing an orientation on
a successor-closed subset, as in the proof of Lemma 1.35. (3) follows
from (1) and (2). �

Therefore we have that:

Lemma 1.42. (C1,≤1) is a strong class.

Lemma 1.43. (D1,vs) is a strong class, and is a strong expansion of
(C1,≤1).

(C1,≤1) and (D1,vs) are free amalgamation classes.

The proofs are as in the previous section.
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(The material in this section is based on Section 3.4 of [7], and was
originally developed in [11].)

1.5 Sparse graphs: ≤d and the ω-categorical MF

We now construct an amalgamation class of sparse graphs whose Fräıssé
limit is ω-categorical (specifically, the ω-categorical Hrushovski con-
struction MF , first presented by Hrushovski in [15]). We will do this
by defining a new closure (i.e. a new notion of strong substructure),
d-closure, which will be uniformly bounded. The relevance of this can
be seen in the lemma below.

Lemma 1.44. Let (K,≤) be an amalgamation class such that for n ∈ N,
(K,≤) contains only finitely many isomorphism types of structures of
size n. Suppose there is a function F : N → N such that for B ∈ K,
A ⊆ B with |A| ≤ n, then there exists A ⊆ C ≤ B with |C| ≤ F (n).
(F will be a uniform bound on the size of ≤-closures.)

Then the Fräıssé limit M of (K,≤) is ω-categorical.

Proof. By the Ryll-Nardzewski theorem, it is enough to show that
Aut(M) is oligomorphic, i.e. that, for n ≥ 1, Aut(M) has finitely many
orbits on Mn. Take n ≥ 1. As there are only finitely many isomorphism
types of structures of size ≤ F (n) in K and M is ≤-homogeneous,
Aut(M) has finitely many orbits on {c ∈ MF (n) : c ≤ M}. We can
extend any a ∈Mn to an element of this set (note that when we work
with ordered tuples, we can have repeats). If a, a′ are not in the same
orbit, then nor will their extensions be, so we are done. �

Definition 1.45. Let C>0 be the class of finite graphs A such that for
B ⊆ A, δ(B) > 0.

Definition 1.46. Take A,B ∈ C>0 with A ⊆ B. We say that A is
d-closed in B, written A ≤d B, if for A ( C ⊆ B, δ(A) < δ(C).

As in the cases of ≤s and ≤1, we have the following lemma:

Lemma 1.47. Let B ∈ C>0.

(1) A ≤d B, X ⊆ B ⇒ A ∩X ≤d X.
(2) A ≤d C ≤d B ⇒ A ≤d B.
(3) A1, A2 ≤d B ⇒ A1 ∩ A2 ≤d B.

The proof is similar to that of Lemma 1.30. Similarly to the case of ≤s,
for A ⊆ B ∈ C>0 we may define cldB(A) as the intersection of all d-closed
substructures of B which contain A, and as before (by an analogous
proof), we have that δ(A) ≥ δ(cldB(A)).

Lemma 1.48. (C>0,≤d) is a free amalgamation class.
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Proof. It only remains to check the free amalgamation property (which
implies JEP). We prove a stronger claim: given A ≤d B1, A ⊆ B2 with
B1, B2 ⊆ E, where E is the free amalgam of B1, B2 over A, we claim
that B2 ≤d E. Once we have the claim, note that ∅ ≤d B2 ≤d E im-
plies that E ∈ C>0. Take B2 ( X ⊆ E. Then letting Y = X ∩B1 ) A,
X = B2 ∪ Y , and X is the free amalgam of B2, Y over A. So

δ(X) = δ(B2 ∪ Y ) = δ(B2) + δ(Y )− δ(A),

and so
δ(X)− δ(B2) = δ(Y )− δ(A) > 0,

as A ≤d B1. �

The generic structure M>0 of (C>0,≤d) is not ω-categorical, as for
A ⊆fin. M>0, there is no uniform bound on | cld(A)| in terms of |A|,
and we have the same problem for M0.

To construct ω-categorical examples, as mentioned at the start of this
section, we consider subclasses of C>0 in which d-closure is uniformly
bounded.

Definition 1.49. Let F : R≥0 → R≥0 be a continuous, increasing
function with F (0) = 0 and F (x)→∞ as x→∞. We define

CF := {B ∈ C>0 : δ(A) ≥ F (|A|) ∀A ⊆ B}.
Lemma 1.50.

(1) If B ∈ CF , A ⊆ B, then | cldB(A)| ≤ F−1(2|A|).
(2) If (CF ,≤d) is an amalgamation class, then the generic struc-

ture MF is ω-categorical.

Proof.

(1) From Lemma 1.32 and the fact that cldB(A) ∈ CF , we have
F (| cldB(A)|) ≤ δ(cldB(A)) ≤ δ(A) ≤ 2|A|.

(2) This follows from Lemma 1.44.

�

Definition 1.51. Analogously to Definition 1.38 and Definition 1.39,
for A ⊆MF with A possibly infinite, we say that A ≤d MF if A∩X ≤d
X for all finite X ⊆ MF . Similarly we define cldMF

(A) as the smallest
≤d-closed subset of MF containing A.

Lemma 1.52. Let F be as in Definition 1.49, and assume additionally
that F is piecewise smooth, its right derivative F ′ is decreasing and
F ′(x) ≤ 1/x for x > 0. Then (CF ,≤d) is a free amalgamation class.

Proof. Let A,B1, B2 ∈ CF , A ≤d B1, B2. Let E be the free amalgam
of B1, B2 over A. By Lemma 1.48, E ∈ C>0 and B1, B2 ≤d E. We need
to show that E ∈ CF . Assuming E 6= B1, B2, we have A 6= B1, B2.
Suppose X ⊆ E: we need to show that δ(X) ≥ F (|X|). As X is the
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free amalgam of B1 ∩X, B2 ∩X over A∩X and as A∩X ≤d Bi ∩X,
it suffices to check just for X = E.

We have that

δ(E) = δ(B1) + δ(B2)− δ(A) = δ(B1) + (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
.

Without loss of generality,

δ(B2)− δ(A)

|B2| − |A|
≥ δ(B1)− δ(A)

|B1| − |A|
,

and as δ is integer-valued and A ≤d B1, A 6= B1, the latter is ≥ 1/|B1|.
So

δ(E) ≥ δ(B1) +
|B2| − |A|
|B1|

≥ F (|B1|) +
|B2| − |A|
|B1|

,

and the conditions on F ensure that

(∗) F (x+ y) ≤ F (x) + y/x,

so

δ(E) ≥ F (|B1|+ |B2| − |A|) = F (|E|).
�

Lemma 1.53. Let F be as in Definition 1.49, and suppose that (CF ,≤d)
is a free amalgamation class. Assume in addition that F is strictly
increasing, F (1) = 2 and F (2) = 3. Then:

(1) CF contains a point and an edge;
(2) if a ∈ A ∈ CF , then a ≤d A;
(3) if ab ⊆ A ∈ CF is an edge, then ab ≤d A;
(4) each vertex of MF has infinite valency.

Proof. (1): As F (1) = 2, if x is a point then δ({x}) = 2 = F (|{x}|),
so {x} ∈ CF . If ab is an edge, then δ(ab) = 3 = F (2), so ab ∈ CF .

(2), (3): These result from the fact that F is strictly increasing.

(4): Let k ≥ 1. Let ax ∈ CF be an edge. a is d-closed in ax, and so by
taking the free amalgamation of k copies ax1, · · · , axk of ax over a, we
have that the star graph Sk is in CF (where Sk is the complete bipartite
graph K1,k). Using the ≤d-extension property of MF , this implies that
each vertex of MF has infinite valency. �

Note: For all examples of MF in this thesis, we will take F satisfying
the conditions of Lemma 1.53. We thus eliminate trivial examples such
as the case where MF has no edges.

Example 1.54. We will illustrate the flexibility of the above construc-
tion. We construct a connected ω-categorical graph with a vertex-
transitive and edge-transitive automorphism group whose smallest cy-
cle is a 5-cycle (this example originally appears in [15]).
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Take F piecewise linear for 0 ≤ x ≤ 5 where F (0) = 0, F (1) = 2,
F (2) = 3, F (5) = 5, and let F (k) = log(k) + 5 − log(5) for k ≥ 5. So
F is as in Definition 1.49, but only satisfies the conditions of Lemma
1.52 for k ≥ 5. Then we have:

• (CF ,≤d) is a free amalgamation class (we can use lemma 1.52
if |B1| or |B2| ≥ 5 - this is what is needed for (∗) to be true -
and check the other cases individually);
• the smallest cycle in CF is a 5-cycle (just check), so the same

is true for MF ;
• if a ∈ A ∈ CF then a ≤d A (as F (k) ≥ 2 for k ≥ 1), so

Aut(MF ) is vertex-transitive;
• if ab ⊆ B ∈ CF is an edge then ab ≤d B (as F(2) = 3), so

Aut(MF ) is edge-transitive;
• MF is connected: for non-adjacent a, b ∈MF , letA = cldMF

(ab).
δ(A) ≤ δ(ab) = 4, so |A| ≤ 3. So either A is a path of length
two with endpoints a, b or A = ab, so ab ≤d MF . In the latter
case, consider B a path of length 3 between a, b. We have
ab ≤d B, so by the extension property there is a ≤d-copy of B
in MF over ab, and so a, b have distance 3 in MF .

(The material in this section is based on Section 3.2 of [5].)

1.6 The Ramsey property

We will now define the Ramsey property for strong classes. (This
section is based on Section 2.2 of [8], which is based on [9] and [17],
where general Ramsey theorems are developed for classes of structures
with closures.)

Definition 1.55. Let (K,≤) be a strong class. For A,B ∈ K, we
write

(
B
A

)
= {A′ ≤ B : A′ ∼= A} for the set of ≤-copies of A inside

B. (Note that by parts (S2), (S3) in the definition of a strong class, if
B ≤ C ∈ K, then

(
B
A

)
=
(
C
A

)
∩ P(B).)

For A,B ∈ K, r ∈ N+, an r-colouring of the set
(
B
A

)
is a function

χ :
(
B
A

)
→ {1, · · · , r}. We say that

(
B
A

)
is monochromatic in the r-

colouring χ if χ is constant on
(
B
A

)
.

For A,B,C ∈ K, r ∈ N+, we write C → (B)Ar if for every r-colouring

χ of
(
C
A

)
, there exists B′ ∈

(
C
B

)
such that

(
B′

A

)
is monochromatic in χ.

We say that (K,≤) has the Ramsey property if for r ∈ N+, A,B ∈ K,
there exists C ∈ K with C → (B)Ar .

The following is a well-known observation of Nešetřil ([23]) which shows
a strong connection between Fräıssé theory and structural Ramsey the-
ory:
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Proposition 1.56. Let (K,≤) be a strong, rigid class with JEP and
the Ramsey property. Then (K,≤) has the amalgamation property.

Proof. Let A,B,C ∈ K with f : A → B, g : A → C ≤-embeddings.
By JEP, find E ∈ K which B,C ≤-embed into. Then, by the Ramsey
property, find D ∈ K such that D → (E)A4 . Define a 4-colouring
c :
(
D
A

)
→ {∅, {B}, {C}, {B,C}} by:

B ∈ c(A0)⇔ there is a ≤-embedding r : B → D with rf(A) = A0,

and similarly for C. Take E0 ∈
(
D
E

)
monochromatic. By considering

the ≤-embeddings A
f−→ B → E0 and A

g−→ C → E0, we see that for
all A0 ∈

(
E0

A

)
, c(A0) = {B,C}. Take A0 ∈

(
E0

A

)
. Then there are ≤-

embeddings r : B → D, s : C → D with rf(A) = sg(A) = A0, so

rf, sg are isomorphisms A
∼−→ A0, so rf = sg as A is rigid. So we have

the amalgamation property with r, s the ≤-embeddings into D. �

1.7 A Ramsey result

We now prove a Ramsey result that will be a fundamental tool in
Chapters 4, 5 and 6: we will use it to construct Ramsey expansions of
(D1,vs) and (D0,vs), namely the admissibly ordered orientations of
these classes. The novelty here is that this result is for strong classes
- the classical Fräıssé theory generalises straightforwardly to strong
classes, but the construction of Ramsey objects does not.

We will keep our presentation of this Ramsey result self-contained, but
in [9], the authors prove Ramsey theorems for strong classes as an
example of a more general framework, which we now briefly sketch.
Theorems 1.3 and 1.4 of [9] give Ramsey-type theorems for structures
in a language consisting of relation and set-valued function symbols,
i.e. the codomain of each function is the power set of the structure. In
Section 5 of [9], these results are then applied to (D0,vs) by encoding
the notion of vs-substructure using an expanded language with set-
valued functions. We expand the language of oriented graphs L by
a single unary function symbol F , calling the expanded language L+,
and take the class D+

0 of L+-structures (A,FA) where A ∈ D0 and
FA : A→ P(A) is a unary set-valued function taking each vertex of A
to its out-neighbourhood. We then have that L+-embeddings between
elements of D+

0 are vs-embeddings when considered in the language L,
and so the Ramsey result of Theorem 1.3 of [9] applied to D+

0 will give
an equivalent Ramsey result for the strong class (D0,vs).
We will not take this approach, as the Ramsey theorem that we re-
quire is simple enough to be proved independently. The below is an
adaptation of Theorem 6.6 of [7] (a version of Theorem 4.29 of [17]):
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A B

b12∗
2 b14∗

2 , b1∗4
3

b15∗
2 , b1∗5

3b13∗
2 , b1∗3

3

b1∗6
3

b1∗∗
1 b2∗∗

1

b23∗
2 b24∗

2 , b2∗4
3 b2∗6

3b25∗
2 , b2∗5

3

b3∗∗
1

b34∗
2 b35∗

2 , b3∗5
3 b3∗6

3

b4∗∗
1

b45∗
2 b4∗6

3

C :

b1

b2 b3

a1

a2

|A| = 2, |B| = 3 ⇒ N = 6.

Figure 1.3. An example of the construction of the
Ramsey witness C for A,B in the proof of Theorem 1.57.
The order on A,B is by increasing index. In the above
figure we label the vertices of C by the vertices contained
in each equivalence class of ∼ on P , where, for example,
b34∗

2 means the equivalence class contains {b345
2 , b346

2 }.

Theorem 1.57. Let (K,vs) be a hereditary subclass of (D≺0 ,vs), the
class of linearly ordered elements of D0. Suppose (K,vs) has free amal-
gamation for any completion of the linear order, i.e.

(∗) for (A, γA) vs (B1, γ1), (B2, γ2) ∈ K, if C is the free amalga-
mation of B1, B2 over A and γ is a linear order on C extending
γ1, γ2, then (C, γ) ∈ K.

Then (K,vs) is a Ramsey class.

Proof. Take A vs B ∈ K (where A,B are ordered oriented graphs -
we will not indicate the order in the notation, for presentational sim-
plicity). We will construct C ∈ K with C → (B)A2 .

We label B as B = {b1, · · · , bk} with b1 < · · · < bk in the order of B.

Using the Ramsey theorem for sets, take N ∈ N with N → (k)
|A|
2 .
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Let L denote the language of ordered oriented graphs. Expand L to a
new language L+ by adding unary relation symbols Ri for 1 ≤ i ≤ N .

Construct an L+-structure P as follows (where we also write Ri for the
interpretation of the symbol Ri):

(1) for each k-tuple v = (v1, · · · , vk) with vi ∈ {1, · · · , N} (1 ≤
i ≤ k) and v1 < · · · < vk, put a disjoint copy Bv = {bv1, · · · , bvk}
of the ordered oriented graph B in P , where we place bvi in Rvi ;

(2) complete the order on P in an arbitrary manner so that V(R1) <
· · · < V(RN), where V(Ri) denotes the vertices inside Ri.

Define an equivalence relation ∼ on P where for x, y ∈ P , x ∼ y if
sclP (x), sclP (y) with the induced order and unary relations are L+-
isomorphic.

Let Q be the set of ∼-equivalence classes, and use the quotient map
π : P → Q to induce an L+-structure on Q (which we also denote by
Q): it is straightforward to check that this L+-structure is well-defined.
π is then a L+-homomorphism which is an L+-embedding on every Bv.

Let C be the reduct of Q to the language L of ordered oriented graphs,
forgetting the unary relations. (See Figure 1.3.)

Recall that (K,vs) has free amalgamation for any completion of the
linear order. As the L-reduct of P is a disjoint union of copies of B,
thus P |L ∈ K. We then obtain C from P |L by taking a quotient over a
set of successor-closed substructures. We can therefore reconstruct C
via a sequence of free amalgamations of successor-closed substructures
of B, and thus C ∈ K.

Define a map f : Q → {1, · · · , N} which, for x ∈ Q, sends x to the
index i of the unary relation Ri for which x ∈ Ri. (It is easy to check
that f is well-defined: recall that equivalence classes were defined via
L+-isomorphisms.) For X vs C (here we work with L-structures), we
can then regard f as a map from

(
C
X

)
, the set of vs-copies (via L-

embeddings) of X in C, to
(
N
|X|

)
, the set of subsets of {1, · · · , N} of

size |X|. It is an easy check that f :
(
C
X

)
→
(
N
|X|

)
is an injection.

Also, by the construction of Q, we have that f :
(
C
B

)
→
(
N
|B|

)
is a

bijection.

Therefore, given a 2-colouring χ :
(
C
A

)
→ 2, we may induce a 2-colouring

on a subset of
(
N
|A|

)
, which we extend to a colouring χ′ of

(
N
|A|

)
. By our

choice of N , we have a χ′-monochromatic subset {v1, · · · , vk} (where
v1 < · · · < vk), and this corresponds to a vs-copy B′ of B in C with(
B′

A

)
monochromatic. �
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1.8 Topological dynamics: G-flows

A central object of study in topological dynamics is the following (see
[1] for more of a background):

Definition 1.58. A G-flow is a continuous action Gy X of a Haus-
dorff topological groupG on a nonempty compact Hausdorff topological
space X.

We will often simply write X to refer to the G-flow Gy X when this
is clear from context. Given a G-flow on X, G · x, the orbit closure
of a point x ∈ X, is a G-invariant compact subset of X. In general,
a nonempty compact G-invariant subset Y ⊆ X defines a subflow by
restricting the G-action to Y . A G-flow on X is minimal if it contains
no proper subflows. A G-flow is minimal iff every orbit is dense.

Zorn’s lemma shows that every G-flow contains a minimal subflow.
(The proof is straightforward, remembering that everything is Haus-
dorff.)

Let X, Y be G-flows. A G-flow morphism X → Y is a continuous map
π : X → Y such that π(g · x) = g · π(x) (this property is called G-
equivariance). Bijective G-flow morphisms are isomorphisms, as they
are between compact Hausdorff spaces.

If Y is minimal, then any G-flow morphism X → Y is surjective, as
the image is a subflow.

We now state a well-known theorem from topological dynamics that
we shall use without proof (for more details see, for example, [1], Ch.
8):

Theorem 1.59. Let G be a Hausdorff topological group. Then there
is a minimal G-flow M(G) such that for any minimal G-flow X, there
is a surjective G-flow morphism M(G) → X, and M(G) is uniquely
determined up to isomorphism by this property.

M(G) is called the universal minimal flow of G.

Definition 1.60. Let G be a Hausdorff topological group. If every
G-flow has a G-fixed point, we call G extremely amenable.

We immediately have that G is extremely amenable iff M(G) is a sin-
gleton.

Definition 1.61. Let G be a Hausdorff topological group. If every G-
flow has a G-invariant Borel probability measure, we call G amenable.

Note that extreme amenability implies amenability by taking the Dirac
probability measure on the fixed point given by extreme amenability.
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We have the fact that if G is separable metrisable, then it is sufficient
for metrisable G-flows to have a fixed point for G to be extremely
amenable (see [19]).

1.9 The KPT correspondence

In many cases, for a general Hausdorff topological group G, M(G) can
be quite complicated - i.e. non-metrisable (see the introduction of [19]
for an exploration of the broader context).

We will be concerned in this thesis with the case where G is the auto-
morphism group of a countable first-order structure, with the pointwise
convergence topology whose open basis is given by left cosets of point-
wise stabilisers of finite sets. G is thus a Polish group. (For the details
- which are not technically difficult - see the notes [5].) In this partic-
ular context, there is a connection between triviality of the universal
minimal flow M(G) and structural Ramsey theory.

This was first shown by Kechris-Pestov-Todorčević in [19], and then
further extended by work of Nguyen Van Thé, Zucker, Ben Yaacov,
Melleray, Tsankov and others, e.g. in [24], [25], [2]. These extensions
of the results in [19] will be discussed in the next section. Our presen-
tation will be based on Section 2 of [8].

Theorem 1.62 ([19], Th. 4.8; [24], Th. 1). Let (K,≤) be an amalgama-
tion class of rigid L-structures, with Fräıssé limit M and G = Aut(M).

Then G is extremely amenable iff (K,≤) has the Ramsey property.

Here, a finite L-structure is rigid if it has trivial automorphism group.

1.10 Further KPT: the expansion property

Throughout this section, L,L+ will be first order relational languages,
with L+ ⊇ L an expansion of L.

1.10.1 Reasonable expansions

Here we follow Section 2.3 of [8], which takes the notion of a reasonable
expansion from [25].

Definition 1.63. Let (K,≤) be an amalgamation class of L-structures.
A class D of finite L+-structures is a reasonable expansion ([25]) of
(K,≤) if D is closed under isomorphisms and satisfies the following:

(1) K is the class of L-reducts of D;
(2) for A ∈ K, A has finitely many expansions in D (weak copre-

compactness);
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(3) for B+ ∈ D, if A+ ⊆ B+ and A+|L ≤ B+|L, then A+ ∈ D;
(4) for f : A→ B a strong embedding in (K,≤), if A+ ∈ D is an

expansion of A, then there exists an expansion B+ ∈ D of B
such that f : A+ → B+ is an embedding.

Lemma 1.64. For any amalgamation class (K,≤) of L-structures, the
order expansion K≺ of (K,≤) (see Definition 1.27) is a reasonable ex-
pansion of the class (K,≤).

Proof. Straightforward. �

Definition 1.65. Let DF be the class of all 2-orientations of graphs
in CF .

Lemma 1.66. The classes D1, D0 and DF are reasonable expansions of
(C1,≤1), (C0,≤s) and (CF ,≤d) respectively.

Proof. We check parts (1)-(4) of Definition 1.63 for D0. Part (1)
results from Proposition 1.7. Parts (2) and (3) are immediate. Part
(4) follows by a similar argument to that used in the proof of Lemma
1.35.

The proof for DF is similar.

For D1, part (1) of Definition 1.63 follows by the definition of C1 as
the class of graph reducts of D1. Parts (2)-(4) are similar to the D0

case. �

Definition 1.67. Let D be a reasonable L+-expansion of the amal-
gamation class (K,≤). Then we define a topological space X(D) as
follows.

Let X(D) = {(M, s) an L+-expansion of M : ∀A ≤M , (A, s|A) ∈ D}.
Each basic open set ofX(D) is given by first fixingB ≤M, (B, rB) ∈ D,
and then taking U(rB) = {(M, s) ∈ X(D) : s|B = rB} as the basic open
set. It is straightforward to check that this does in fact form a basis.
We will see below that X(D) gives a G-flow.

Lemma 1.68. Let D be a reasonable L+-expansion of the amalgamation
class (K,≤). Let M be the Fräıssé limit of (K,≤).

Then for A ≤M, (A, rA) ∈ D, there is an expansion (M, r) ∈ X(D) of
M with r|A = rA.

Proof. Write M as the union of an increasing ≤-chain A = A1 ≤
A2 ≤ · · · starting at A. Let r1 = rA. By part (4) of reasonableness,
we may inductively define ri on Ai (i ≥ 2) such that (Ai−1, ri−1) ≤
(Ai, ri) ∈ D. We then take r =

⋃
i≥1 ri. For B ≤ M , B ≤ Ai for some

i, so by part (3) of reasonableness, (B, r) ∈ D. So (M, r) ∈ X(D). �

Lemma 1.69 (after Prop. 5.3, [25]). Let D be a reasonable expansion
of the amalgamation class (K,≤). Let M be the Fräıssé limit of (K,≤)
and let G = Aut(M). Then X(D) is a G-flow with the natural action.
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Proof. By Lemma 1.68, X(D) is non-empty.

Checking the continuity of the action Gy X(D), g · (M, s) = (M, gs)
is straightforward, as is checking that X(D) is Hausdorff.

To see that X(D) is compact, consider the topological space P =∏
A≤M{expansions A+ of A}, where each set of the product has the

discrete topology and P has the product topology. Basic open sets of
P are given by fixing A1, · · · , An ≤ M and then fixing expansions of
each Ai.

We define a map γ : X(D) → P , γ((M, s)) = (s|A)A≤M , and it is
straightforward to see that γ is a homeomorphism onto its image.

Let Q =
∏

A≤M{expansions A+ ∈ D of A}. Using part (2) of rea-
sonableness (weak coprecompactness) and the fact that finite discrete
topological spaces are compact, Q ⊆ P is compact. As Im(γ) ⊆ Q, it
suffices to show that Im(γ) is a closed subspace of Q. We have that

Im(γ) = {(pA)A≤M ∈ Q : ∀B ≤ C ≤M, pC |B = pB},
and so if an element of Q lies in the complement of Im(γ), this is
witnessed on a finite set. �

Definition 1.70. Let (K,≤) be an amalgamation class with Fräıssé
limit M and G = Aut(M). Then, as the order expansion K≺ is a
reasonable expansion of (K,≤), we have that X(K≺) is a G-flow: we
denote this by LO(M) and call it the flow of linear orders on M .

As D1,D0 and DF are reasonable expansions of (C1,≤1), (C0,≤s) and
(CF ,≤d) respectively, we have that X(D1) is a G1-flow, X(D0) is a G0-
flow and X(DF ) is a GF flow. We will denote these flows by Or(M1),
Or(M0) and Or(MF ) respectively, and call them flows of orientations.

Lemma 1.71 (Lem. 2.16, [8]). Let D be a reasonable expansion of the
amalgamation class (K,≤). Let M be the Fräıssé limit of (K,≤) and
let G = Aut(M).

Let Y ⊆ X(D) be a subflow. Then there exists D′ ⊆ D which is a
reasonable expansion of (K,≤) with X(D′) = Y .

Proof. Let
D′ =

⋃
(M,s)∈Y

Age≤(M, s),

i.e. D′ is the class of finite L+-structures which ≤-embed into an ele-
ment of Y . So D′ ⊆ D. Parts (1), (2), (3) of reasonableness of D′ are
straightforward, and (4) follows from the ≤-homogeneity of M and the
G-invariance of Y . Clearly Y ⊆ X(D′). To see that X(D′) ⊆ Y , take
(M, s) ∈ X(D′) and show that (M, s) ∈ clX(D′)(Y ) = Y : this follows
from the ≤-homogeneity of M and the G-invariance of Y . �

Definition 1.72. Let D be a reasonable expansion of the amalga-
mation class (K,≤). We say that D has the expansion property over
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(K,≤) if for A ∈ K, there exists B in K with A ≤ B such that for all
expansions A+, B+ of A,B inD, there exists a≤-embedding A+ → B+.

It is straightforward to see that to prove the expansion property for D,
it suffices to show that for A+ ∈ D, there exists B ∈ K such that for
all expansions B+ ∈ D of B, there exists a ≤-embedding A+ → B+

(use weak coprecompactness of D and JEP for K).

(The above notion of expansion property first appears in [24], gener-
alising the ordering property found in [19] where L is expanded by a
single binary relation symbol.)

Theorem 1.73 ([24], Th. 4). Let D be a reasonable expansion of the
amalgamation class (K,≤) with Fräıssé limit M and G = Aut(M).

Then the G-flow X(D) is minimal iff D has the expansion property
over (K,≤).

1.10.2 Coprecompact expansions

We now define coprecompactness, the final definition we need to state
our extended KPT result.

Definition 1.74 (above Th. 2.20, [8]). Let (K+,≤+) be an amalga-
mation class of L+-structures which is a strong expansion of (K,≤).
Let M+ denote the Fräıssé limit of (K+,≤+). By Lemma 1.26, (K,≤)
is an amalgamation class with Fräıssé limit M = M+|L.

We will say that (K+,≤+) is a coprecompact expansion of (K,≤) if
every Aut(M)-orbit on Mn (n ≥ 1) splits into finitely many Aut(M+)
orbits (equivalently, Aut(M+) is a coprecompact subgroup of Aut(M)).

In the context of strong classes, this definition of coprecompactness
(first formulated for strong classes in [8]) is stronger than the weak
coprecompactness seen in the definition of a reasonable expansion. In
the simpler non-strong case of classes with no distinguished notion of
embedding (i.e. the standard classical Fräıssé theory), these two notions
coincide.

Lemma 1.75. Let (K+,≤+) be an L+-amalgamation class which is a
strong expansion of (K,≤). Then (K+,≤+) is a coprecompact strong
expansion of (K,≤) iff:

for A ∈ K, there exist finitely many ≤-embeddings fi : A → B+
i (1 ≤

i ≤ n), B+
i ∈ K+, such that for any ≤-embedding g : A → C+,

C+ ∈ K+, there exists 1 ≤ i ≤ n and a ≤+-embedding h : B+
i → C+

with g = hfi.

The proof is straightforward.
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1.10.3 The extended KPT correspondence

The following collates the results of Theorem 10.8 of [19], Theorem 5
of [24] and Theorem 5.7 of [25], reformulating these for strong classes
as in Section 2 of [8]:

Theorem 1.76. Let (K,≤) be an amalgamation class with Fräıssé limit
M and G = Aut(M). Let (K+,≤+) be a strong, reasonable, coprecom-
pact expansion of (K,≤) consisting of rigid L+-structures, with Fräıssé
limit M+.

If (K+,≤+) is a Ramsey class and K+ has the expansion property over
(K,≤), then X(K+) is the universal minimal flow of G. X(K+) has a
comeagre orbit consisting of the expansions of M which are isomorphic
to M+.

1.11 Meagre orbits

We now introduce the weak amalgamation property, which will be es-
sential in the proof of Theorem 4.18, one of the main results of this
thesis.

(A similar property (the almost amalgamation property) was intro-
duced by Ivanov ([18]). This was then adapted to the weak amalga-
mation property by Kechris & Rosendal in [20].)

Definition 1.77 ([20]). Let D be a reasonable class of L+-expansions
of an L-amalgamation class (K,≤). We say that (D,≤) has the weak
amalgamation property (WAP) if:

for all A ∈ D, there exists B ∈ D and a ≤-strong L+-embedding f :
A → B such that, for any ≤-strong L+-embeddings fi : B → Ci ∈ D
(i = 0, 1), there existsD ∈ D and≤-strong L+-embeddings gi : Ci → D
(i = 0, 1) with g0 ◦ f0 ◦ f = g1 ◦ f1 ◦ f . (Note that here we specify only
that the diagram commutes for A.)

C0

A B D

C1

g0

f

f0

f1 g1

Lemma 1.78 (Lem. 2.23, [8] - adapting Th. 3.4 of [20]). Let D be a
reasonable class of L+-expansions of an L-amalgamation class (K,≤).
Let M be the Fräıssé limit of (K,≤) and let G = Aut(M). Suppose
that X(D) is a minimal flow.

If (D,≤) does not have the weak amalgamation property, then all G-
orbits on X(D) are meagre.
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Proof. We assume (D,≤) does not have the weak amalgamation
property. Suppose (A, rA) ∈ D witnesses the failure of WAP for (D,≤).
We may assume A ≤M .

Recall that X(D) has a basis where we specify P ≤ M, (P, rP ) ∈ D,
and then take U(rP ) = {(M, s) ∈ X(D) : s|P = rP} as the basic open
set.

Take (M, t) ∈ X(D). As X(D) is minimal, X(D) is the G-orbit closure
of (M, t). By Lemma 1.68, we may extend rA to an element of X(D),
and so U(rA) is non-empty. Then there is g ∈ G such that g−1(M, t) ∈
U(rA), and thus g is a ≤-embedding (A, rA)→ (M, t). Let A′ = gA.

Let J = G(A′), the pointwise stabiliser of A′ in G. As M is countable,
there are countably many ≤-copies of A′ in M , and so J is of countable
index in G. We will show that Jt is nowhere dense in X(D), and as
|G : J | = ℵ0, thus we will have that Gt is meagre in X(D), and given
that (M, t) was an arbitrary element of X(D), this will complete the
proof.

For a contradiction, say Jt is not nowhere-dense in X(D), i.e. Jt is
dense in some non-empty open set of X(D), which we may take to be
a basic open set U(rP ) for some (P, rP ) ∈ D, P ≤ M . As A′, P ≤ M ,
there is finite B ≤M with A′, P ≤ B, and by part (4) of reasonableness
there is an expansion (B, rB) ∈ D with rB|P = rP . So Jt is dense in
U(rB), and A′ ≤ B. By Lemma 1.68, we may extend (B, rB) to an
element of U(rB), so there exists j ∈ J with jt ∈ U(rB), and as j fixes
A′ pointwise, rB|A′ = t|A′ .
For (B, rB) ≤ (C, rC) ∈ D, by the extension property of M and Lemma
1.68, there is r ∈ U(rB) and a ≤-embedding f : (C, rC)→ (M, r) which
is the identity on (B, rB).

As Jt is dense in U(rB), there is j ∈ J such that (jt)|f(C) = r|f(C). So
then j−1f : (C, rC) → (M, t) is a ≤-embedding which is the identity
on (A′, t). As we have found a ≤-embedding (C, rC) → (M, t) which
is the identity on (A′, t) for (C, rC) any arbitrary element of D with
(B, rB) ≤ (C, rC), we therefore have that (A′, t) has WAP, and thus so
does (A, rA) - contradiction. �



Chapter 2

Amenable and extremely amenable
subgroups of the automorphism groups of

sparse graphs

In this chapter, we first prove that Aut(MF ),Aut(M0) have no co-
precompact extremely amenable subgroup, restating results from [8].
Theorem 3.8 of [8] also provides a criterion for non-amenability, and
uses this to show that Aut(MF ) has no coprecompact amenable sub-
group. We use this criterion to prove the new result that Aut(M0) has
no coprecompact amenable subgroup, extending proof techniques from
[8].

2.1 Extremely amenable subgroups

Proposition 2.1 (adaptation of [8], Th. 3.7). Let M be an infinite
2-sparse graph in which all vertices have infinite valency. Let G =
Aut(M).

Consider the G-flow G y Or(M). (Recall that Or(M) denotes the
space of 2-orientations of M , introduced in Definition 1.70.)

If J ≤ G fixes a 2-orientation of M , then J has infinitely many orbits
on M2.

Proof. Let τ ∈ Or(M) be an orientation of M fixed by J . So
J ≤ Aut(M, τ). Let K = Aut(M, τ). It suffices to show that K
has infinitely many orbits on M2.

Seeking a contradiction, suppose K has a finite number m of orbits on
M2. Note that for a, x, y ∈ M , if there is no element of Ka taking x
to y, then there is no element of K taking (a, x) to (a, y)). So for all
a ∈ M , Ka has finitely many orbits on M , and the number of orbits
on M of Ka is bounded uniformly in a by the number of orbits m of
K on M2.

Take a ∈ M . Say x, y ∈ sclτ (a) (the successor-closure of a in the
orientation τ) and let p, q be the lengths of the shortest out-paths from
a to x, y respectively. If p 6= q, then x, y lie in different Ka-orbits.

Also, if there is an out-path ax1 · · ·xr from a to xr of minimal length
r amongst out-paths from a to xr, then the out-path ax1 · · ·xi is of
minimal length i amongst out-paths from a to xi.

43
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So all vertices in sclτ (a) must be reachable via an out-path from a
of length at most m − 1. As τ is a 2-orientation, this means that
| sclτ (a)| ≤ 1 + 2 + · · · + 2m−1 = 2m − 1. This bound is uniform in a.
Let l ≤ 2m − 1 be the minimal uniform upper bound, and let a ∈ M
be a vertex that attains this. (So for b ∈ M , | sclτ (b)| ≤ l, and in
particular for a, | sclτ (a)| = l.)

As a has infinite valency and τ is a 2-orientation, a has an in-vertex c.
But then | sclτ (c)| ≥ l + 1, contradiction. �

Theorem 2.2 (adaptation of [8], Th. 1.2, Th. 3.7). Aut(MF ) has no
coprecompact extremely amenable subgroup.

(Recall that, as stated after Lemma 1.53, throughout this thesis we
assume that we have taken the control function F such that (CF ,≤d) is
a free amalgamation class, vertices and edges lie in CF and are d-closed
in MF , and every vertex of MF has infinite valency.)

Proof. Write M = MF , G = Aut(M). Let J be an extremely
amenable subgroup of G. As J must fix an orientation of M , by Propo-
sition 2.1 we have that J has infinitely many orbits on M2.

As G is oligomorphic, G has finitely many orbits on M2, and so any
coprecompact subgroup of G must have finitely many orbits on M2.
So J is not coprecompact. �

Theorem 2.3 ([8], Th. 3.16). Aut(M0) has no coprecompact extremely
amenable subgroup.

Proof. We write M = M0, G = Aut(M0). Suppose J ≤ G is ex-
tremely amenable. Consider the flow G y Or(M). As J is extremely
amenable, J fixes some orientation σ ∈ Or(M). So J ≤ Aut(M,σ). We
will show that there is a G-orbit P on M2 which splits into infinitely
many J-orbits, so J is not a coprecompact subgroup of G.

Take non-adjacent x, y ∈ M with {x, y} ≤s M . Let P ⊆ M2 be the
G-orbit of (x, y). Suppose, seeking a contradiction, that P splits into
finitely many J-orbits.

Take m ∈ N, and take a rooted tree T of height m+1 with each non-leaf
vertex having 3 children, where the shortest path from each leaf vertex
to the head has exactly m+1 edges. (To avoid terminological confusion
with the definition of roots in Definition 1.13, what is ordinarily referred
to in graph theory terminology as the root vertex of a rooted tree will
be called the head vertex. Specifically, the head vertex is the vertex
which has no parent, i.e. the vertex furthest away from the leaves.)

By directing the edges of T from leaves towards head, we obtain a
2-orientation τ of T , so T ∈ C0, and we may take T ≤s M .
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As each non-leaf vertex a ∈ T has 3 children and σ is a 2-orientation,
some child of a must be an in-vertex of a in σ, and so there is an out-
path v = v−1, v0, · · · , vm of length m+ 1 in (T, σ) going from some leaf
vertex to the head. We denote this by (Q, σ).

As σ, τ agree on Q and (Q, τ) is successor-closed in (T, τ), we have
that Q ≤s M by Proposition 1.34. For 1 ≤ i ≤ m, we may reverse τ
on (v−1, v0), (vi, vi+1) to produce an orientation of Q in which {v, vi} is
successor-closed, and so {v, vi} ≤s M . Hence (v, vi) ∈ P .

To sum up, for m ∈ N we have shown that there exists a (m + 1)-
length path v = v−1, v0, · · · , vm in M with (vi, vi+1) ∈ σ (i ≥ −1) and
(v, vi) ∈ P (i ≥ 1).

Let k = 2. Define a function s : Z+ → Z+ by s(1) = 1, s(t+1) = ks(t)+2.
We claim that for t ≥ 1, m ≥ s(t), we have that v1, · · · , vm lie in at
least t different Jv-orbits. This will contradict P splitting into finitely
many J-orbits.

First, let B(v, j) be the set consisting of vertices w which are reachable
via an out-directed path in σ from v of length at most j (j ∈ N). So
|B(v, j)| ≤ 1 + k + · · · + kj < kj+1 − 1. We then prove the claim by
induction. Note that the case t = 1 is trivial. Seeking a contradiction,
assume the claim is true for t, but not for t+1. Then vs(t)+1, · · · , vs(t+1)

lie in the same Jv-orbits as v1, · · · , vs(t), and so as J ≤ Aut(M,σ),

{v1, · · · , vs(t+1)} ⊆ B(v, s(t)+1). But s(t+1) = ks(t)+2 and |B(v, s(t)+

1)| < ks(t)+2 − 1, contradiction. This completes the proof of the claim.
�

2.2 A criterion for non-amenability

Lemma 2.4 ([8], Th. 3.8). Let M be M1,M0 or MF , and let J ≤
Aut(M). Suppose there is an edge ab of M such that Jab, Jba are both
infinite. Then J is not amenable.

Proof. Seeking a contradiction, suppose J is amenable. So the J-flow
Or(M) has a J-invariant Borel probability measure µ. For x, y ∈ M ,
let Uxy = {σ ∈ Or(M) : (x, y) ∈ σ}. Uxy is open in Or(M). We have
that Uab ∪ Uba = Or(M), so without loss of generality, µ(Uab) = p > 0.

For r ≥ 1, let b1, · · · , br be distinct elements of Jab. Let χi be the
characteristic function of Uabi in Or(M). As µ is J-invariant, for each
bi, µ(Uabi) = p. So

∫
σ∈Or(M)

χi(σ) dµ(σ) = p.

Also, for σ ∈ Or(M),
∑

i≤r χi(σ) ≤ 2, as a has at most 2 out-vertices

in σ. So
∫
σ∈Or(M)

∑
i≤r χi(σ) dµ(σ) ≤ 2, which implies that rp ≤ 2. As

r is an arbitrary positive integer, this is a contradiction. �
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2.3 Amenable subgroups

The following is stated in [8] but not proved explicitly (the construction
of σ in the below proof was rediscovered by the author of this thesis,
though it is implied in [8] that the authors already know how to do
this.)

Theorem 2.5 ([8], Cor. 3.11). G = Aut(MF ) has no coprecompact
amenable subgroup.

Proof. Write M = MF . For a contradiction, suppose J is a copre-
compact amenable subgroup of G.

Define a binary relation σ on M by σ = {(a, b) ∈ EM : Jab is finite}.
By Lemma 2.4, σ is a direction of the edges of M , where we may
possibly direct some edges in both directions (i.e. we may have (a, b) ∈
σ, (b, a) ∈ σ).

Take (a, b) ∈ EM , j ∈ J . Then Jja = jJaj
−1, so Jjajb = jJab, and thus

|Jjajb| = |Jab|. So if (a, b) ∈ EM , (a′, b′) ∈ EM lie in the same J-orbit,
|Jab| = |Ja′b′|. Specifically, if (a, b) ∈ σ, then for (a′, b′) in the J-orbit
of (a, b), |Ja′b′| = |Jab| <∞. So J ≤ Aut(M,σ).

Also as G is oligomorphic and J is a coprecompact subgroup of G, J
has finitely many orbits on M2.

Thus for (a, b) ∈ σ, there is a uniform bound k, independent of a, on
the number of out-edges of a in σ. (We think of σ as a k-orientation
where some edges are oriented in both directions.)

The rest of the proof follows that of Proposition 2.1, with σ replacing
the 2-orientation. �

We will now combine Lemma 2.4, used in a similar way to the proof
of Theorem 2.5, with the proof argument of Theorem 2.3 to obtain the
new result in this chapter below.

Theorem 2.6 (**). G = Aut(M0) has no coprecompact amenable sub-
group.

Proof. Seeking a contradiction, say J ≤ G is coprecompact and
amenable.

Let x, y be adjacent vertices of M0 with {x, y} ≤s M0 (a single edge is
2-sparse and thus in C0), and let X be the G-orbit of (x, y) ∈M0

2.

For (a, b) ∈ X, a and b are adjacent, and so as J is amenable, by
Lemma 2.4 at least one of Jab, Jba is finite. Define a binary relation σ
on M0 by σ = {(a, b) ∈ X : Jab is finite}. σ is a direction of the edges
of X, where we may possibly direct some edges in both directions (i.e.
we may have (a, b) ∈ σ, (b, a) ∈ σ).

Take (a, b) ∈ X, j ∈ J . Then Jja = jJaj
−1, so Jjajb = jJab, and thus

|Jjajb| = |Jab|. So if (a, b) ∈ X, (a′, b′) ∈ X lie in the same J-orbit,
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|Jab| = |Ja′b′|. Specifically, if (a, b) ∈ σ, then for (a′, b′) in the J-orbit
of (a, b), |Ja′b′| = |Jab| <∞. So J ≤ Aut(M0, σ).

Also, as J is coprecompact, X splits into finitely many J-orbits. Thus
for (a, b) ∈ σ, there is a uniform bound k, independent of a, on the
number of out-edges of a in σ.

Let x′, y′ be non-adjacent vertices of M0 with {x′, y′} ≤s M0, and let
Y be the G-orbit of (x′, y′) ∈M0

2. As J is coprecompact, Y splits into
finitely many J-orbits.

Take m ∈ N. Take a rooted tree T of height m+ 1, with each non-leaf
vertex having k + 1 children (here, the terminology is as in the proof
of Theorem 2.3). Let τ be the direction of T given by directing the
tree “upside down” from the leaves to the head, i.e. if a ∈ T has child
vertex b, then (b, a) ∈ τ . Each non-head vertex of T has out-degree 1
in τ and the head vertex has out-degree 0, so τ is a 2-orientation, and
so T ∈ C0. We may take T ≤s M0. For (b, a) ∈ τ , if a has a successor
c in τ (i.e. (a, c) ∈ τ), then we may reverse the orientation of (a, c) to
produce a 2-orientation of T in which {a, b} is successor-closed, and so
{a, b} ≤s T ≤s M . Thus for ab an edge of T , (a, b) ∈ X.

As each non-leaf vertex a ∈ T has k + 1 in-edges in τ and a has
at most k out-edges in σ, a must have some τ -in-vertex b for which
(b, a) ∈ σ. Therefore, (T, τ) contains an out-directed path of length
m+ 1, successor-closed in τ , where each out-edge also lies in σ. Label
this path as v = v−1, v0, · · · , vm, where (vi, vi+1) ∈ τ for i ≥ −1. We
have that {v, vi} ≤s M0 for i ≥ 1 and so (v, vi) ∈ Y , as we may
simply reverse the orientation τ on (v−1, v0), (vi, vi + 1) to produce an
orientation of the path in which {v, vi} is successor-closed.

To sum up, for m ∈ N we have shown that there exists a (m + 1)-
length path v = v−1, v0, · · · , vm in M0 with (vi, vi+1) ∈ σ (i ≥ −1) and
(v, vi) ∈ Y (i ≥ 1).

Define a function s : Z+ → Z+ by s(1) = 1, s(t + 1) = ks(t)+2. We
claim that for t ≥ 1, m ≥ s(t), we have that v1, · · · , vm lie in at least t
different Jv-orbits. This will contradict Y splitting into finitely many
J-orbits, meaning that G has no coprecompact amenable subgroup.

First, let B(v, j) be the set consisting of vertices w which are reachable
via an out-directed path in σ from v of length at most j (j ∈ N). So
|B(v, j)| ≤ 1 + k + · · · + kj < kj+1 − 1. We then prove the claim by
induction. Note that the case t = 1 is trivial. Seeking a contradiction,
assume the claim is true for t, but not for t+1. Then vs(t)+1, · · · , vs(t+1)

lie in the same Jv-orbits as v1, · · · , vs(t), and so as J ≤ Aut(M0, σ),

{v1, · · · , vs(t+1)} ⊆ B(v, s(t)+1). But s(t+1) = ks(t)+2 and |B(v, s(t)+

1)| < ks(t)+2 − 1, contradiction. This completes the proof of the claim.
�



Chapter 3

Fixed points on type spaces

3.1 Introduction and definition

We investigate a weakening of extreme amenability, which we call the
fixed points on type spaces property (FPT).

The following is folklore:

Lemma 3.1. Let M be an L-structure, and let G = Aut(M) with the
pointwise convergence topology. Then G acts continuously on the Stone
spaces Sn(M), with the action given by

g · p(x̄) = {φ(gm̄, x̄) : φ(m̄, x̄) ∈ p(x̄)}.
That is, Gy Sn(M) with the action defined above is a G-flow.

Note that we define the action of G on L(M)-formulae as

g · φ(m̄, x̄) = φ(gm̄, x̄).

Proof. We need to show that g · p(x̄) is a complete theory in L(M)∪
{x̄} containing the diagram ThL(M)(M) of M . For consistency, by
compactness we need only show the consistency of a finite collection of
formulae {φ1(gm̄, x̄), · · · , φr(gm̄, x̄)} in g · p(x̄). We have that

g · (φ1(m̄, x̄) ∧ · · · ∧ φr(m̄, x̄)) = φ1(gm̄, x̄) ∧ · · · ∧ φr(gm̄, x̄),

so it suffices to show the consistency of φ(gm̄, x̄) given φ(m̄, x̄) ∈ p(x̄).
The type p(x̄) is realised in some elementary extension M ′ � M , so
M ′ |= (∃ x̄)φ(m̄, x̄) implies that M |= (∃ x̄)φ(m̄, x̄), and thus M |=
φ(m̄, n̄) for some n̄ ∈ M . As automorphisms of structures preserve
functions, relations and constants, M |= φ(gm̄, gn̄), and so we have
consistency (formally, this is by induction on the complexity of the
formula).

Take a formula φ(m̄, x̄). Either φ(g−1m̄, x̄) or ¬φ(g−1m̄, x̄) is in p(x̄),
and as the action of G commutes with Boolean connectives, we have
that g·p(x̄) is a complete theory - it is clear that it contains the diagram
of M .

To show that the action is continuous, take a basic open set

〈ψ(m̄, x̄)〉 = {p(x̄) : p(x̄) 3 ψ(m̄, x̄)}
of Sn(M). Then the preimage of this set under the action is

{(g, p(x̄)) : g · p(x̄) 3 ψ(m̄, x̄)},
48
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and taking g0, p0(x̄) such that g0 · p0(x̄) 3 ψ(m̄, x̄), we have p0 3
ψ(g−1

0 m̄, x̄), and then {g : g−1m̄ = g−1
0 m̄} × 〈ψ(g−1

0 m̄, x̄)〉 is the open
neighbourhood we seek. �

Definition 3.2 (**). Let M be an L-structure with automorphism
group G = Aut(M). We say that G has the fixed points on type spaces
property (FPT) if every subflow of G y Sn(M), n ≥ 1, has a fixed
point.

Note that FPT is equivalent to every orbit closure G · p(x̄) in Sn(M)
having a fixed point.

Remark 3.3. p(x̄) ∈ Sn(M) is a G-invariant type (i.e. a fixed point
of the action) iff for all formulae φ(ȳ, x̄), {m̄ : φ(m̄, x̄) ∈ p(x̄)} is G-
invariant, and for ω-categorical structures, this is equivalent to p(x̄)
being ∅-definable.

3.2 An example: the random graph.

In this section, let M denote the random graph (i.e. the Fräıssé limit
of the class of finite graphs). We will prove that:

Theorem 3.4. The random graph M has FPT for subflows of S1(M).

In fact, it is a straightforward generalisation to show that the random
graph has FPT for subflows of Sn(M), n ≥ 1, and therefore has FPT in
the full sense. The full argument will appear in the published version
of this material.

Before proving Theorem 3.4, we recall the following:

Proposition 3.5. The random graph M is indivisible, i.e. for any
2-colouring of the vertices of M , there is a monochromatic copy of M .

A very short proof of a stronger fact (the pigeonhole property of the
random graph) may be found in [4].

Proof of Theorem 3.4. The random graph M is homogeneous in a
finite relational language, and so is ω-categorical. Therefore M admits
quantifier elimination. Let G = Aut(M).

Consider the space S1(M) of (1-)types of M . Given a G-invariant type
p(x), we can realise it in some elementary extension of M and use
quantifier elimination to see that we just have a point a outside M
which is adjacent to some of the vertices of M . If a were adjacent to a
vertex of M and not adjacent to another, then by extending the local
isomorphism sending the first vertex to the second to an automorphism
of M (by homogeneity), we can see that p(x) would not be G-invariant.
Therefore the only G-invariant 1-types of M are p0(x), the type of the
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point not adjacent to any vertices of M , and p1(x), the type of the
point adjacent to all vertices of M .

From the above, we see that G has FPT for 1-types iff p0(x) or p1(x)

belongs to every Gp(x). Let p(x) be a type, realised as a point a outside
M . Let X0 be the set of vertices of M not adjacent to a, and let X1

be the set of vertices of M adjacent to a. Then p1(x) ∈ Gp(x) ⇔ for
every basic open set 〈f(m̄, x)〉 3 p1(x), there exists g ∈ G with gp(x) ∈
〈f(m̄, x)〉, i.e. f(g−1m̄, x) ∈ p(x). By quantifier elimination, we see
that f(m̄, x) specifies a finite subgraph A ⊆ M that the realisation

point of p1(x) is adjacent to, and so p1(x) ∈ Gp(x) ⇔ for all finite
subgraphs A ⊆ M , there exists g ∈ G with gA ⊆ X1. Clearly a
corresponding statement is true for p0(x) and X0.

We can regard X0 and X1 as a colouring of M . Thus, FPT for 1-types
is equivalent to the statement that

(∗) for every colouring c : M → {0, 1}, there is a colour i such
that for all finite A ⊆M , there is a copy of A of colour i.

The statement (∗) follows immediately from the indivisibility of the
random graph.

�

3.3 An ω-categorical structure having no
ω-categorical expansion with FPT

Theorem 3.6 (**). There is a countable ω-categorical structure M
which does not have any ω-categorical expansion M ′ with Aut(M ′) hav-
ing FPT, the fixed points on type spaces property.

The ω-categorical structure M in the above theorem will be a particular
case of the ω-categorical Hrushovski construction MF (see Section 1.5).

Recall that, as stated after Lemma 1.53, throughout this thesis we
assume that we have taken the control function F such that (CF ,≤d) is a
free amalgamation class, vertices and edges lie in CF and are d-closed in
MF , and every vertex of MF has infinite valency. The particular control
function F used in the proof of Theorem 3.6 will satisfy additional
conditions on top of this (these additional conditions only apply in this
chapter).

The proof will depend on Proposition 2.1, which we recall below:

Proposition 2.1. Let M be an infinite 2-sparse graph in which all
vertices have infinite valency. Let G = Aut(M).

Consider the G-flow G y Or(M). If J ≤ G fixes a 2-orientation of
M , then J has infinitely many orbits on M2.
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Before giving the details of the proof of Theorem 3.6, we first give an
informal general outline.

For each orientation τ ∈ Or(MF ), we will construct a 1-type pτ (x) ∈
S1(MF ) which “encodes” the orientation, by use of the label structure
Nτ described below.

We will construct a G-morphism u : S1(MF )→ 2MF
2
, with u(pτ (x)) =

τ for τ ∈ Or(MF ). We have that Or(MF ) is a subflow of 2MF
2
, and so

D = u−1(Or(MF )) is a subflow of S1(MF ).

Say we have an expansion M ′ of MF with automorphism group H =
Aut(M ′) having FPT. As there is a natural H-morphism w : S1(M ′)→
S1(MF ) (where we forget the formulae that use relation symbols from
the expanded language), w−1(D) is a subflow of the H-flow S1(M ′),
and as H has FPT, H will fix a point of w−1(D). So via the H-
morphism u ◦ w, H will fix an orientation of MF . By Theorem 2.1,
H has infinitely many orbits on MF

2, so is not oligomorphic, and thus
by the Ryll-Nardzewski theorem (see chapter 4 of [21]) M ′ is not ω-
categorical, concluding the proof of Theorem 3.6.

We now start the formal details of the proof of Theorem 3.6.

We begin with a description of the control function F and properties
of the class CF .

Lemma 3.7 (*). Let F be a control function for the class CF satisfying
the conditions of Definition 1.49, and additionally assume:

• F is strictly increasing;
• F is piecewise smooth, and its right derivative F ′(x) is de-

creasing;
• F (1) = 2, F (2) = 3;
• F ′(x) ≤ 2

8x+1
for x ≥ 2, where F ′ denotes the right derivative.

Then:

(1) for a ∈MF , we have a ∈ CF and a ≤d MF ;
(2) for ab ∈ E(MF ), we have ab ∈ CF and ab ≤d MF ;
(3) (CF ,≤d) is a free amalgamation class;
(4) if a0a1 · · · an−1 ⊆MF is a path, then a0a1 · · · an−1 ∈ CF ;
(5) F (4) < 4, F (5) < 4, F (6) < 4;
(6) if abcd ⊆MF is a 4-cycle, then abcd ∈ CF .

Proof.

(1) This follows from Lemma 1.53.
(2) This also follows from Lemma 1.53.
(3) Take A,B1, B2 ∈ CF with A ≤d B1, B2. Then as F ′(x) ≤

2
8x+1

< 1/x for x ≥ 2, Lemma 1.52 states that the free amal-
gam of B1, B2 over A lies in CF if |B1| ≥ 2 or |B2| ≥ 2. The



52

only remaining possibility is |B1|, |B2| ≤ 1, and the only non-
trivial case is where A = ∅: if b1, b2 are non-adjacent points
then δ({b1, b2}) = 4 > F (2). So (CF ,≤d) is a free amalgama-
tion class.

(4) Proceed by induction, and obtain a0 · · · an−1 ∈ CF by the free
amalgamation of a0 · · · an−2, an−2an−1 over an−2.

(5) F is strictly increasing, and so it suffices to show F (6) < 4.

F (6) ≤ F (2) +
∫ 6

2
2

8x+1
dx = 3 + 1

4
log(49)− 1

4
log(17) < 4.

(6) Let abcd ⊆ MF be a 4-cycle. Then δ(abcd) = 4 > F (4). For
C ( abcd, C either consists of a path of length 2, an edge, two
non-adjacent points or a single point. All of these lie in CF .

�

Throughout the rest of this chapter, we will assume F is a control
function satisfying the conditions of Lemma 3.7.

Note that control functions satisfying the conditions of the above lemma
exist: take F piecewise linear with F (0) = 0, F (1) = 2, F (2) = 3, and
then for x ≥ 2 define F (x) = 1

4
log(8x+ 1) + 3− 1

4
log(17).

We now describe how to encode orientations of MF as 1-types.

Take an orientation τ ∈ Or(MF ). Define a graph Nτ with distinguished
point c as follows:

• Nτ includes MF as a substructure (in the language of graphs);
• add a new vertex c to Nτ , with c /∈MF ;
• for (a, b) ∈ τ (i.e. the edge ab is oriented from a to b in the

orientation τ), add to Nτ four new vertices

l
(a,b)
1 , l

(a,b)
2 , l

(a,b)
3 , l

(a,b)
4

and new edges

cl
(a,b)
1 , l

(a,b)
1 l

(a,b)
2 , l

(a,b)
2 l

(a,b)
3 , l

(a,b)
3 l

(a,b)
4 , l

(a,b)
4 l

(a,b)
1 ,

and attach two edges from l
(a,b)
2 , l

(a,b)
4 to a (the “start vertex”)

and one edge from l
(a,b)
3 to b (the “end vertex”).

The resulting structure Nτ is depicted in Figure 3.1. For (a, b) ∈ τ ,

let L(a,b) = {c, l(a,b)1 , l
(a,b)
2 , l

(a,b)
3 , l

(a,b)
4 }. Informally, each (a, b) ∈ τ has its

orientation labelled by L(a,b). So we have that

Nτ =
⋃
{L(a,b) : (a, b) ∈ τ} ∪ MF ,

and the L(a,b) intersect only in c.

Let A0 ≤d A1 ≤d · · · be an increasing ≤d-chain with MF = ∪i∈NAi.
Let Li =

⋃
{L(a,b) : (a, b) ∈ τ |Ai

}, and let Bi = Ai ∪ Li, regarding Bi

as a substructure of Nτ .

Lemma 3.8 (**). For i ∈ N, we have Ai ≤d Bi.
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c

a b a′ b′

l
(a,b)
1

l
(a,b)
2 l

(a,b)
3

l
(a,b)
4 l

(a′,b′)
1

l
(a′,b′)
2 l

(a′,b′)
3

l
(a′,b′)
4

MF

Figure 3.1

Proof. Take i ∈ N and write A = Ai, B = Bi. For A ( C ⊆ B, we
need to show δ(C) > δ(A).

First consider the case where A consists of a single edge ab, with (a, b) ∈
τ . Then, suppressing subscripts for notational convenience, we have
B = {c, l1, l2, l3, l4, a, b}. We calculate the relative predimension of
some A ( C ⊆ B in the table below.

C − A δ(C/A)
l2 1
l3 1
l4 1
l1, l2 2
l1, l4 2
l2, l3 1
l3, l4 1
c, l1 3

l1, l2, l3 2
l1, l2, l4 2
l1, l3, l4 2
l2, l3, l4 1
l1, l2, l3, l4 1
c, l1, l2, l3, l4 2

The remaining cases result from free amalgamations over A, and so
also have positive predimension (if X, Y are freely amalgamated over
Z, then δ((X ∪ Y )/Z) = δ(X/Z) + δ(Y/Z)). The remaining cases are
where C − A is equal to {l1}, {c}, {l1, l3}, {l2, l4} or {c} ∪ X, where
X ⊆ {l2, l3, l4}.
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Now consider general A ≤d MF . Given A ( C ⊆ B, the vertices of C
consist of A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A.
For (a, b) ∈ τ |A, let J ′(a,b) = J(a,b) ∪ A.

If c /∈ C, then the J ′(a,b) are freely amalgamated over A, and so from

the single-edge case we see that δ(C/A) > 0.

We now consider the case where c ∈ C. If l
(a,b)
1 /∈ J(a,b) for all (a, b) ∈

τ |A, then C consists of a vertex c with no neighbours together with a
free amalgamation over A of each of the J ′(a,b) − {c}, (a, b) ∈ τ |A. So,

from the single-edge case and the fact that δ({c}) = 2, we have that
δ(C/A) > 0.

If c ∈ C and there exists (a′, b′) ∈ τ |A with l
(a′,b′)
1 ∈ J(a′,b′), then C is a

free amalgamation over A of each of the J ′(a,b) − {c}, (a, b) ∈ τ |A, for

which l
(a,b)
1 /∈ J(a,b), together with

⋃
{J ′(a,b) : (a, b) ∈ τ |A, l(a,b)1 ∈ J(a,b)}.

Therefore we need only consider the case where l
(a,b)
1 ∈ J(a,b) for all

(a, b) ∈ τ |A. The single-edge calculation shows that δ(J(a,b)−{c}/A) ≥
1 for each J(a,b), and these J ′(a,b) − {c} are freely amalgamated over A.

Each addition of an edge l
(a,b)
1 c reduces the predimension by one, but

the single addition of the vertex c adds two to the predimension, so in
total δ(C/A) > 0. �

Lemma 3.9 (**). For (a, b) ∈ τ , we have {a, b, l(a,b)1 , l
(a,b)
2 , l

(a,b)
3 , l

(a,b)
4 } ∈

CF and L(a,b) ∈ CF , where these structures are considered as substruc-
tures of Nτ .

Proof. We write l1, l2, l3, l4, suppressing superscripts.

To show that {a, b, l1, l2, l3, l4} ∈ CF , we consider each subset C ⊆
{a, b, l1, l2, l3, l4} and show that δ(C) ≥ F (|C|). To speed up the process
of checking each subset C, in the below table we show that certain
subsets C ⊆ {a, b, l1, l2, l3, l4} lie in CF , and therefore every C ′ ⊆ C
must satisfy δ(C ′) ≥ F (|C ′|).

C Proof that C ∈ CF
l1l2l3l4, l2l3ab, l3l4ab, l1l2l4a, l2l3l4a C is a 4-cycle

l1l2l3ab free amalgam of l2l3ab, l1l2 over l2
l1l3l4ab free amalgam of l3l4ab, l1l4 over l4
l1l2l4ab free amalgam of l1l2l4a, ab over a
l1l2l3l4b free amalgam of l1l2l3l4, l3b over l3

We now check the remaining subsets C ⊆ {a, b, l1, l2, l3, l4} by directly
calculating the predimension:
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C δ(C) F (|C|)
l2l3l4ab 4 F (5) < 4
l1l2l3l4a 4 F (5) < 4
l1l2l3l4ab 4 F (6) < 4

In the above we showed that {a, b, l1, l2, l3, l4} ∈ CF , and so for the
second part of the lemma, we obtain L(a,b) ∈ CF via the free amalgam
of L(a,b) and cl1 over l1 (recalling that we have defined our control
function F so that points are always d-closed). �

Lemma 3.10 (**). For i ∈ N, we have that Bi ∈ CF .

Proof. Take i ∈ N and write A = Ai, B = Bi. For a finite graph
X, recall that we write |X| and |E(X)| for the number of vertices and
edges of X respectively.

We have to show that δ(C) ≥ F (|C|) for C ⊆ B. The vertices of C
consist of C∩A together with subsets J(a,b) of L(a,b) for each (a, b) ∈ τ |A
(some of these J(a,b) may be empty). For (a, b) ∈ τ |A, let J ′(a,b) =
J(a,b) ∪ (C ∩ A).

First we consider the case where c /∈ C. C is then the free amalgam of
the J ′(a,b), (a, b) ∈ τ |A, over C∩A. Given that CF is a free amalgamation

class and C ∩ A ≤d C, it therefore suffices to show that J ′(a,b) ∈ CF for

(a, b) ∈ τ |A. Fix (a, b) ∈ τ |A. To show that J ′(a,b) ∈ CF , as J ′(a,b) is a free

amalgam of J(a,b)∪ ({a, b}∩C) and C ∩A ∈ CF over {a, b}∩C ∈ CF , it
suffices to show that J(a,b)∪ ({a, b}∩C) lies in CF , and we have already
checked this in Lemma 3.9.

Now we consider the case where c ∈ C. If l
(a,b)
1 /∈ J(a,b) for each (a, b) ∈

τ |A, then C consists of a vertex c with no neighbours together with the
free amalgam over C ∩ A of each J ′(a,b) − {c}, (a, b) ∈ τ |A, and so we
are done by the first case in the previous paragraph. Otherwise, C is

the free amalgam over C ∩ A of
⋃
{J ′(a,b) : l

(a,b)
1 ∈ J(a,b), (a, b) ∈ τ |A}

with each J ′(a,b)−{c} for which l
(a,b)
1 /∈ J(a,b), and so using the first case

considered above we may reduce to the case where each non-empty

J(a,b) contains l
(a,b)
1 .

Similarly, we may exclude the case where C contains sets J(a,b) for

which J(a,b) = {c, l(a,b)1 , l
(a,b)
3 }, as C is the free amalgam over C ∩ A of

⋃
{J ′(a,b) : (a, b) ∈ τ |A, J(a,b) 6= {c, l(a,b)1 , l

(a,b)
3 }}∪⋃

{{c, l(a,b)1 } ∪ (C ∩ A) : J(a,b) = {c, l(a,b)1 , l
(a,b)
3 }}

with each {l(a,b)3 } ∪ (C ∩ A) (in CF by Lemma 3.9) for which J(a,b) =

{c, l(a,b)1 , l
(a,b)
3 }. We may likewise free amalgamate over c to exclude the
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cases where C contains sets J(a,b) for which J(a,b) = {c, l(a,b)1 }, or for
which J(a,b) is any subset of L(a,b) but a, b /∈ C ∩ A.

So, the case remaining is where C consists of C ∩A together with sets

J(a,b) containing c, l
(a,b)
1 and at least one of l

(a,b)
2 , l

(a,b)
4 , where each J(a,b)

has some edge to C ∩ A. We need to show that δ(C) ≥ F (|C|).
We now calculate the relative predimension over A ∪ {c} of each re-
maining possible J(a,b) ∪ X, X ⊆ {a, b}, in the following table, where
we label each structure as Yi, 1 ≤ i ≤ 11:

J(a,b) ∪X Label δ(J(a,b) ∪X/A ∪ {c})
cl1l2a Y1 1
cl1l4a Y2 1
cl1l2l3a Y3 2
cl1l2l3b Y4 2
cl1l2l3ab Y5 1
cl1l3l4a Y6 2
cl1l3l4b Y7 2
cl1l3l4ab Y8 1
cl1l2l3l4a Y9 1
cl1l2l3l4b Y10 2
cl1l2l3l4ab Y11 0

We write ki for how many times Yi occurs in C. We also write δi =
δ(Yi/A ∪ {c}). Let λi = |{l1, l2, l3, l4} ∩ Yi|.
Then, recalling that the vertex c also adds 2 to the predimension, we
have that

δ(C) =
∑

1≤i≤11

δiki + 2 + δ(C ∩ A).

Now,

F (|C|) = F (1 + |C ∩ A|+
∑

1≤i≤11

λiki)

≤ F (1 + |C ∩ A|+ 4
∑

1≤i≤11

ki)

= F (1 + |C ∩ A|+ 4(k4 + k7 + k10) + 4
∑

i≤11, i/∈{4,7,10}

ki).

As τ |C∩A is a 2-orientation, we have that each a ∈ C ∩ A can have at
most two label structures with a as the starting vertex (i.e. with edges
to a from l2, l4), and so ∑

i≤11, i/∈{4,7,10}

ki ≤ 2|C ∩ A|.

So
F (|C|) ≤ F (8|C ∩ A|+ 4(k4 + k7 + k10) + 1 + |C ∩ A|).
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As F (u + v) ≤ F (u) + vF ′(u) and F ′(x) ≤ 2
8x+1

for x ≥ 2, we have
that if |C ∩ A| ≥ 2, then

F (|C|) ≤ F (|C ∩ A|) +
2

8|C ∩ A|+ 1
(8|C ∩ A|+ 4(k4 + k7 + k10) + 1)

< F (|C ∩ A|) + 2 + k4 + k7 + k10

≤ δ(C).

If |C ∩ A| = 1, then

F (|C|) ≤ F (1 + |C ∩ A|) + (8|C ∩ A|+ 4(k4 + k7 + k10))F ′(1 + |C ∩ A|)

= 3 +
2

8 · 2 + 1
(8|C ∩ A|+ 4(k4 + k7 + k10))

< 4 +
8

17
(k4 + k7 + k10)

≤ δ(C)

(as δ(C ∩ A) = 2). �

Lemma 3.11 (**). For i ∈ N, we have Bi ≤d Bi+1.

Proof. Take Bi ( C ⊆ Bi+1. Then, by counting vertices and edges
and using the definition of the predimension δ,

δ(C/Bi) = δ(C ∩ Ai+1/Bi) + δ(C − Ai+1/Bi ∪ (C ∩ Ai+1)).

We have that δ(C ∩ Ai+1/Bi) = δ(C ∩ Ai+1/Ai), and as Ai ≤d Ai+1, if
C ∩ Ai+1 6= ∅ then δ(C ∩ Ai+1/Ai) > 0.

Also

δ(C − Ai+1/Bi ∪ (C ∩ Ai+1)) ≥ δ(C − Ai+1/Ai+1 ∪ {c}),

as we are just adding extra edges to Ai+1. From the calculations in the
proof of Lemma 3.8, we see that δ(C −Ai+1/Ai+1 ∪ {c}) ≥ 0, and so if
C ∩ Ai+1 6= ∅, then δ(C/Bi) > 0.

If C ∩ Ai+1 = ∅, then (C − Bi) ∪ {c} is a substructure of
⋃
{L(a,b) :

(a, b) ∈ τ |Ai+1
}, which consists of disjoint 4-cycles {l(a,b)1 , l

(a,b)
2 , l

(a,b)
3 , l

(a,b)
4 }

for (a, b) ∈ τ |Ai+1
, with each 4-cycle having an extra edge l

(a,b)
1 c. It

is then a straightforward calculation to see that any substructure of⋃
{L(a,b) : (a, b) ∈ τ |Ai+1

} has positive predimension over c, so δ(C/Bi) >
0. �

For a, b ∈ MF , we define the label formula f(a, b, x) in the language
L(MF ) with variable x to be:
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f(a, b, x) ≡ (x 6= a ∧ x 6= b ∧ a 6= b ∧ a ∼ b)∧

(∃ l1, l2, l3, l4)((
∧
i<j

li 6= lj) ∧ (
∧
i

li 6= x ∧ li 6= a ∧ li 6= b)∧

(x ∼ l1 ∧ l1 ∼ l2 ∧ l2 ∼ l3 ∧ l3 ∼ l4 ∧ l4 ∼ l1 ∧ l2 ∼ a ∧ l4 ∼ a ∧ l3 ∼ b)).

Informally, f(a, b, x) will test if (a, b) has a label structure L(a,b) at-
tached with x = c.

Define a map u : S1(MF )→ 2MF
2

by

u(p(x)) = {(a, b) ∈MF
2 : f(a, b, x) ∈ p(x)}.

Note that we will often use subset notation when formally we in fact
mean the characteristic function of that subset within MF

2.

Lemma 3.12 (**). The map u is a G-flow morphism.

Proof. First we show G-equivariance.

u(g · p(x)) = u({φ(gm, x) : φ(m,x) ∈ p(x)})
= {(a, b) ∈MF

2 : f(g−1a, g−1b, x) ∈ p(x)}
= g · {(c, d) ∈MF

2 : f(c, d, x) ∈ p(x)}.

Now we show continuity. Let S ⊆ 2MF
2

be a subbasic open set, i.e. for
some (a, b) ∈MF

2,

S = {ψ ∈ 2MF
2

: ψ((a, b)) = 1}
or

S = {ψ ∈ 2MF
2

: ψ((a, b)) = 0}.

If S = {ψ ∈ 2MF
2

: ψ((a, b)) = 1}, then

u−1(S) = {p(x) : f(a, b, x) ∈ p(x)},
an open set in the Stone space S1(MF ).

If S = {ψ ∈ 2MF
2

: ψ((a, b)) = 0}, then

u−1(S) = {p(x) : f(a, b, x) /∈ p(x)} = {p(x) : ¬f(a, b, x) ∈ p(x)},
also an open set. �

Proposition 3.13 (**). For τ ∈ Or(MF ), there exists pτ (x) ∈ S1(MF )
with u(pτ (x)) = τ .

Proof. From Lemma 3.11, we have that Nτ is a union of the chain of
d-closed structures B0 ≤d B1 ≤d · · · . Let N = MF . We will construct
a ≤d-embedding r : Nτ → N using a standard “forth” proof (only the
forward direction of the back and forth construction).
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N is the Fräıssé limit of CF , and as such has Age≤d
(N) = CF and the

extension property.

We construct r by induction. As B0 ∈ CF , there exists a ≤d-embedding
r0 : B0 → N . For the inductive step, assume we have already con-
structed compatible ≤d-embeddings ri : Bi → N for i ≤ k. Then by
the extension property, there exists a ≤d-embedding rk+1 : Bk+1 → N
which extends rk. This completes the inductive definition of the rk,
k ∈ N. Let r =

⋃
k∈N rk. Then r is a ≤d-embedding Nτ → N .

We now show that r(MF ) � N using Tarski’s test (see Prop 2.3.5 of
[21]). It suffices to show that for m ∈ r(MF )k, n ∈ N , there exists
g ∈ Aut(N) with gm = m, gn ∈ r(MF ).

Let X = cldr(MF )(m), and let Y = cldN(X ∪ {n}). Then Y ∈ CF , and
so using the extension property of r(MF ), there is a ≤d-embedding
s : Y → r(MF ) extending the inclusion X ⊆ r(MF ). We have that
s(Y ) ≤d r(MF ), so s(Y ) ≤d N as r is a ≤d-embedding, and we can
then extend the ≤d-local isomorphism s : Y → s(Y ) to g ∈ Aut(N).
We have that g is the identity on X and gn ∈ r(MF ), so g satisfies the
conditions we require.

We now have a ≤d-embedding r : Nτ → N , such that r(MF ) � N .
We may therefore construct a structure N ′ with Nτ ⊆ N ′, with the set
inclusion Nτ ↪→ N ′ being a ≤d-embedding, and with MF ⊆ Nτ as an
elementary substructure MF � N ′. We do this purely for notational
convenience.

We now have c ∈ Nτ ≤d N ′. Let pτ (x) = tpN ′(c/MF ). As MF � N ′,
we have pτ (x) ∈ S1(MF ). From the construction of Nτ , we have that
τ ⊆ u(pτ (x)). To see that u(pτ (x)) ⊆ τ , note that it suffices to show
that for (a, b) ∈ M2

F , if N ′ |= f(a, b, c) then the li, 1 ≤ i ≤ 4, that
f(a, b, c) specifies must lie in cldN ′({a, b, c}), and therefore in Nτ , as
Nτ ≤d N ′. We show that {l1, l2, l3, l4} ⊆ cldN ′({a, b, c}) in the table
below.
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X/Y δ(X/Y )
l1, l2, l3, l4/a, b, c 0
l1, l2, l3/l4, a, b, c −1
l1, l2, l4/l3, a, b, c −1
l1, l3, l4/l2, a, b, c −1
l2, l3, l4/l1, a, b, c −1
l1, l2/l3, l4, a, b, c −1
l1, l3/l2, l4, a, b, c −2
l1, l4/l2, l3, a, b, c −1
l2, l3/l1, l4, a, b, c −1
l2, l4/l1, l3, a, b, c −2
l3, l4/l1, l2, a, b, c −1
l1/l2, l3, l4, a, b, c −1
l2/l1, l3, l4, a, b, c −1
l3/l1, l2, l4, a, b, c −1
l4/l1, l2, l3, a, b, c −1

This completes the proof of Proposition 3.13. �

Proof of Theorem 3.6. Let M ′ be an expansion of MF whose au-
tomorphism group H = Aut(M ′) has FPT.

We have a natural H-morphism w : S1(M ′) → S1(MF ) given by
w(p(x)) = {φ(x) ∈ p(x) : φ(x) is a formula in the language L(MF )}.
u : S1(MF )→ 2MF

2
is a G-morphism, and Or(MF ) is a subflow of 2MF

2
.

So w−1u−1(Or(MF )) is a subflow of the H-flow S1(M ′), and thus has an
H-fixed point p(x). Therefore, as u◦w is an H-morphism, (u◦w)(p(x))
is an H-fixed point, i.e. H fixes an orientation of MF . By Theorem
2.1, H has infinitely many orbits on MF

2, and so is not oligomorphic.
ThereforeM ′ is not ω-categorical, by the Ryll-Nardzewski theorem. �



Chapter 4

Linear orders and orientations on M1

In this chapter, we investigate the G1-flow LO(M1) of linear orders
on M1 (where G1 = Aut(M1)). The main theorem of this chapter is
Theorem 4.18, which states that minimal subflows of LO(M1) have all
G1-orbits meagre. This complements results in Section 5 of [8], which
show that minimal subflows of Or(M) (M = M1,M0,MF ) have all G-
orbits meagre - in fact the proof for LO(M1) is strongly inspired by
the proof for Or(M0).

The main tool here is a Ramsey expansion (E1,vs) of (C1,≤1), the class
of admissibly ordered orientations of graphs in C1 ([9]). Writing (N1, α)
for the Fräıssé limit of (E1,vs), where N1 is the oriented graph and α
is the order of the Fräıssé limit, and also writing H1 = Aut(N1, α),
we have that H1 is extremely amenable. Given a minimal subflow
Y ⊆ LO(M1), H1 therefore fixes a point β of Y , and by minimality
we have that Y is the G1-orbit-closure of β. Via H1-automorphisms,
we then use information about α to give us some knowledge of β, and
then we use the linear order β to force certain orientations and prove
Theorem 4.18. This interplay between linear orders and orientations
will be typical of the results in this chapter.

After proving Theorem 4.18, in Section 4.5 we then find out more
information about β: we show, independently of Theorem 4.18, that
H1, equal to the G1-stabiliser of α in the G1-flow LO(M1), is also the
G1-stabiliser of β. This was in fact the author’s original approach in
an unsuccessful attempt to prove Theorem 4.18 - though the author
has not been able to use this result on stabilisers to prove the main
theorem, it is still of interest. We then conclude the chapter with an
example of a minimal subflow of LO(M1).

4.1 Orientations on M1

We reprove the below result from [7], as later proofs in this chapter of
the Expansion Property will have a similar proof method.

Proposition 4.1 ([7], Th. 6.1). Or(M1) is a minimal G1-flow.

Proof. Note that, by Lemma 1.66, D1 is a reasonable expansion of
(C1,≤1), and also recall that Or(M1) = X(D1) (see Definition 1.70).
Thus, to show that Or(M1) is a minimal G1-flow, by Lemma 1.73 it
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suffices to show that D1 has the expansion property over (C1,≤1), i.e.
for (A, τA) ∈ D1, there exists B ∈ C1 such that for any expansion
(B, τB) ∈ D1, there is a ≤1-embedding f : (A, τA)→ (B, τB). (Here we
use the second paragraph of Definition 1.72.)

We proceed by induction on |A|. The base case |A| = 1 is trivial.

As τA is acyclic, there exists a ∈ A with no in-edge. Let X = A−{a},
and let τX = τA|X . Then (X, τX) vs (A, τA), so (X, τX) ∈ D1 and
X ≤1 A, so by the induction assumption there exists Y ∈ C1 such that
any expansion of Y in D1 contains a ≤1-copy of (X, τX).

Let X1, · · · , Xn be the ≤1-copies of X in Y . Let Y0 = Y , and induc-
tively define Yi (1 ≤ i ≤ n) to be the free amalgam of Yi−1 with 5
copies of A over Xi (where we take each copy A′ of A with Xi ≤ A′).
Let Z = Yn. As C1 is a free amalgamation class, Z ∈ C1, Yi ≤1 Z
(0 ≤ i ≤ n), and each copy of A in the inductive sequence of free
amalgamations is ≤1-closed in Z. We will show that Z witnesses the
expansion property for (A, τA).

Let (Z, τZ) be an expansion of Z in D1. As τZ induces an acyclic
2-orientation on any subgraph of Z, (Y, τZ) ∈ D1, and so there is a ≤1-
embedding f : (X, τX)→ (Y, τZ). f(X) is equal to some Xi, and so as
τZ is a 2-orientation and Z contains 5 copies of A freely amalgamated
over Xi, there is a ≤1-copy A′ of A in Z for which Xi vs A′. We may
then extend f to an isomorphism (A, τA) → (A′, τZ), and as A′ ≤1 Z,
f is a ≤1-embedding into (Z, τZ). �

4.2 LO(M1) is not minimal

Before investigating minimal subflows of LO(M1), we first check that
LO(M1) is not in fact minimal itself.

Proposition 4.2 (**). LO(M1) is not a minimal flow.

Proof. Let Q1 denote the class of ordered graphs (A, γ) where A ∈ C1

and the linear order γ induces an acyclic 2-orientation τγ on A, i.e.
τγ = {(x, y) ∈ EA : x >γ y} is an acyclic 2-orientation.

We will show that Q1 is a reasonable class of expansions of (C1,≤1)
(see Definition 1.63).

For part (1) of reasonableness, take A ∈ C1, and let τ be an acyclic
2-orientation of A. Let γ0 = {(x, y) ∈ A2 : x 6= y and there exists an
out-path from y to x in τ}. Then γ0 is irreflexive and transitive, and as
τ is acyclic, γ0 is antisymmetric. So γ0 is a strict partial order. Extend
γ0 arbitrarily to a linear order γ on A. Let τγ = {(a, b) ∈ EA : a >γ b}.
Then τγ = τ , so (A, γ) ∈ Q1, and so C1 is the class of graph reducts of
Q1.
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Part (2) of reasonableness follows from the fact that there are only
finitely many linear orders on a finite set, and part (3) results from
the fact that a sub-digraph of an acyclic 2-orientation is still an acyclic
2-orientation.

For part (4), take A,B ∈ C1, A ≤1 B, with (A, γA) ∈ Q1. Let τA be
the acyclic 2-orientation induced by γA on A. As A ≤1 B, there exists
an acyclic 2-orientation τB of B extending τA. Let γ0 = {(x, y) ∈ B2 :
x 6= y and there exists an out-path from y to x in τB}. Then as before,
γ0 is a strict partial order. γA and γ0 are compatible, and so we may
extend the partial order γA ∪ γ0 arbitrarily to a linear order γB on B.
Then γB induces τB, so (B, γB) ∈ Q1. This concludes the proof that
Q1 is a reasonable class of expansions of (C1,≤1).

By Lemma 1.69, we therefore have that X(Q1) is a subflow of LO(M1).
To see that it is a proper subflow, we produce a linear order onM1 which
does not induce an acyclic 2-orientation. (C≺1 ,≤1) is an amalgamation
class and a strong expansion of (C1,≤1), so let γ be the generic linear
order of the Fräıssé limit (M1, γ). By genericity, there exists a graph
A ≤1 M1 consisting of vertices a, b1, · · · , b3 and edges abi with a >γ bi
(1 ≤ i ≤ 3), so γ does not induce a 2-orientation. �

4.3 Admissibly ordered orientations on M1

We now describe how to construct a Ramsey expansion of (C1,≤1): the
class of admissibly ordered orientations (E1,vs). This Ramsey expan-
sion is taken from [7], Section 6. It is a simple case of the admissible
orders defined in [9] (see Theorem 1.4 and Section 3 of [9]). However,
we will keep our presentation self-contained.

Definition 4.3. Take A ∈ D1. For a ∈ A, the level of a in A, denoted
lA(a), was defined in Definition 1.2 for general oriented graphs. In the
case of D1, the 2-oriented graphs with no directed cycles, the definition
of lA(a) simplifies to the following:

• if a has no successor, lA(a) := 0;
• otherwise lA(a) := max{lA(b) : b a successor of a}+ 1.

Note that if A vs B ∈ D1 and a ∈ A, then lA(a) = lB(a).

Definition 4.4 ([7], Def. 6.7). Take A ∈ D1. A linear order γ on A is
admissible if for all x, y ∈ A, x 6= y, we have:

(1) if lA(x) < lA(y), then x <γ y;
(2) if lA(x) = lA(y), then x <γ y if the decreasing chain of suc-

cessors of x in γ is lexicographically less than the decreasing
chain of successors of y in γ.
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a b c

x y

Figure 4.1. a < b < c < x < y is an admissible order
on the above acyclic 2-oriented graph.

Example 4.5. (See Figure 4.1.) Let A ∈ D1 be the 2-oriented graph
with vertex set {a, b, c, x, y} and out-edges xa, xc, yb, yc. Let γ be the
linear order a < b < c < x < y.

Then a, b, c are on level 0 of A, and x, y are on level 1. γ is admissible:
(2) is vacuously true for a, b, c, (1) is satisfied by a, b, c < x, y, and
finally the decreasing chain (c, a) of successors of x is lexicographically
less than the decreasing chain (c, b) of successors of y and we have x < y
in γ, so (2) is satisfied for x, y.

Definition 4.6. Take A ∈ D1, x ∈ A. Let the cone QA(x) of x in A
be the set QA(x) = {y ∈ A : NA

+(y) = NA
+(x)}, i.e. the set of vertices

of A with the same successors as x. Let the base x◦ of x be the set
x◦ = sclA(x)− {x}.

Lemma 4.7 (*). Take (A, τA) ∈ D1 and let γ be an admissible order on
(A, τA). Then γ induces an acyclic 2-orientation τγ on A, and τγ = τA.

Proof. If xy ∈ τA, then lA(x) > lA(y), so x >γ y and so xy ∈ τγ. If
xy ∈ τγ, then xy is an edge of A and x >γ y, so lA(x) > lA(y), and so
xy ∈ τA. �

We next show that, given A ∈ D1, it suffices to specify an order on
cones to define an admissible order on A.

Lemma 4.8 (*). Take A ∈ D1. Let {γQ : Q a cone of A} be a set of
linear orders on the cones of A. Then there exists a unique admissible
order γ on A such that for each cone Q, γ agrees with γQ.

Proof. We will show by induction on n that there exists a unique
admissible order γn on A↑n such that for each cone Q of A↑n, γn agrees
with γQ. For n = 0, note that all the vertices of A↑0 = L0(A) lie in a
single cone Q0, and have no successors. So γQ0 is trivially the unique
admissible order on A↑0 agreeing with itself.

Now assume the induction claim for n− 1, so we have a unique admis-
sible order γn−1 on A↑n−1 agreeing with γQ for each cone Q of A↑n−1.

To show existence for A↑n, we define a linear order γn as follows:
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(1) γn extends γn−1;
(2) if x ∈ A↑n−1 and y ∈ Ln(A), then x < y in γn;
(3) if x, y ∈ Ln(A) and the decreasing chain of successors of x is

lexicographically less than the decreasing chain of successors
of y, then x < y in γn;

(4) if x, y ∈ Ln(A) and x, y have the same successors, then x, y lie
in some cone Q, so let x < y in γn if x < y in γQ.

γn is clearly admissible and agrees with all γQ on cones Q of A↑n by
definition, and uniqueness is clear. �

Let E1 denote the class of ordered digraphs (A, γ) where A ∈ D1 and
γ is an admissible order on A. For (A1, γ1), (A2, γ2) ∈ E1, we write
(A1, γ1) vs (A2, γ2) to mean A1 vs A2, γ1 = γ2|A1 .

Lemma 4.9. (E1,vs) has the hereditary property, i.e. for (B, γB) ∈ E1,
if (A, γA) ∈ D≺1 and (A, γA) vs (B, γB), then (A, γA) ∈ E1.

Proof. As A vs B, for x ∈ A, lA(x) = lB(x). So for x, y ∈ A with
lA(x) < lA(y), we have that lB(x) < lB(y), so x < y in γB, and thus
x < y in γA, showing that γA satisfies part (1) of Definition 4.4.

For x, y ∈ A with lA(x) = lA(y), as x, y have the same successors in A
and in B, if the decreasing chain of successors of x in A is lexicograph-
ically less than the decreasing chain of successors of y in A, then the
same is true in B, so x < y in γB and therefore in γA, showing part (2)
of Definition 4.4. �

Proposition 4.10 ([7], Th. 6.9). (E1,vs) is:

(1) a free amalgamation class, i.e. for (A, γA), (B1, γ1), (B2, γ2) ∈
E1 with (A, γA) vs (B1, γ1), (B2, γ2), there exists (C, γC) ∈ E1

with C the free amalgam of B1, B2 over A and γC extending
γ1, γ2;

(2) a Ramsey class;
(3) a reasonable class of expansions of (D1,vs), and has the ex-

pansion property over (D1,vs).

Proof. (1): We first show that in the case where B1 has a single
vertex x of maximum level k, A = x◦ and l(B1) ≥ l(B2), then (C, γ)
exists and is unique up to isomorphism (*).

Let C be the free amalgam of B1, B2 over A. We will define a linear
order γ on C as follows. We require that γ extend γ1, γ2, and then
we need only define γ for x. Take x greater than all vertices of B2 of
level < k, and amongst the vertices of B2 of level k, order x according
to (2) of Definition 4.4, ordering x within its cone arbitrarily. Then
γ is admissible, and uniqueness up to isomorphism is clear. (We may
reorder x within its cone, but these reorderings will be ordered digraph-
isomorphic.)
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For the general case, we use induction on the total number n of vertices
of the free amalgam of B1, B2 over A. The base case n = 1 is trivial,
as are the cases B1 = A,B2 = A. So we assume B1, B2 have vertices
outside A. Without loss of generality, l(B1) ≥ l(B2).

In the case l(A) < l(B1), let x ∈ B1 − A be of maximum level in B1.
As (E1,vs) has the hereditary property, (B1−{x}, γ1) ∈ E1, and so by
the induction assumption, there exists (D, γD) ∈ E1 with D the free
amalgam of B1 − {x}, B2 over A and γD extending γ1|B1−{x}, γ2. By
(*), there is (C, γ) ∈ E1 with C the free amalgam of sclB1(x), D over
x◦ and γ extending γ1|sclB1

(x), γD. (C, γ) contains the free amalgam of
(sclB1(x), γ1), (B1 − {x}, γ1) over (x◦, γ1), so by the uniqueness part of
(*), (C, γ) contains an isomorphic copy of (B1, γ1).

In the case l(A) = l(B1), let x be a vertex of A of maximum level, so
x has no predecessors. Then using the hereditary property of (E1,vs
) and the induction assumption, there is (D, γD) ∈ E1 with D the
free amalgam of B1 − {x}, B2 − {x} over A − {x} and γD extending
γ1|B1−{x}, γ2|B2−{x}. Then use (*) and let (C, γ) be the free amalgam of
sclA(x), D over x◦ with γ extending γA, γD. By the uniqueness part of
(*), (C, γ) is the free amalgam of isomorphic copies of (B1, γ1), (B2, γ2)
over an isomorphic copy of (A, γA), with γ extending γ1, γ2.

(2): Take (A, γA) vs (B, γB) ∈ E1. By Theorem 1.57 applied to D≺1 ,

there is (C, γC) ∈ D≺1 with (C, γC) → ((B, γB))
(A,γA)
2 . Let C ′ = ∪

(
C
B

)
.

Then C ′ vs C and (C ′, γC) ∈ D≺1 still has (C ′, γC)→ ((B, γB))
(A,γA)
2 .

So it will suffice to show that there is a linear order γ on C ′ with
(C ′, γ) ∈ E1 such that γ agrees with γC on each vs-copy of (B, γB)
inside (C ′, γC), as then (C ′, γ) will still witness the Ramsey property
for (A, γA) and (B, γB).

That is, it suffices to prove the following statement:

(∗) if (X, γX) ∈ E1 and (Y, γY ) ∈ D≺1 is such that every vertex of
(Y, γY ) lies in a vs-copy of (X, γX), then there exists a linear
order γ on Y with (Y, γ) ∈ E1 such that γ agrees with γY on
every vs-copy of (X, γX).

To prove (∗), we will define γ inductively. Index the vertices of Y
as y1, · · · , yn, where if i < j then l(yi) ≤ l(yj). Let γ be the trivial
linear order on {y1}. Now suppose that γ has already been defined
on {y1, · · · , yi−1} such that ({y1, · · · , yi−1}, γ) ∈ E1 and γ agrees with
γY on every vs-copy of (X, γX) where γ is defined. We define γ on
{y1, · · · , yi}. Let k = l(yi). We specify that:

(A) yi is greater in γ than all vertices of level < k;
(B) for yj (j < i) of level k, if the descending chain of succes-

sors of yj is lexicographically less than the descending chain of
successors of yi in γ, then yj < yi in γ;
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(C) for yj (j < i) of level k in the same cone as yi, yj, yi are ordered
in γ according to γY .

Then clearly ({y1, · · · , yi}, γ) ∈ E1. We show that γ, γY agree on vs-
copies of (X, γX). By the induction assumption, we know that this is
the case on {y1, · · · , yi−1}. Say yj, yi (j < i) lie in a vs-copy (X ′, γX′)
of (X, γX). If l(yj) < k, then by part (1) of Definition 4.4, yj < yi in
γX′ , and by (A) yj < yi in γ. If l(yj) = k, then as γX′ , γ agree on levels
< k, the lexicographic preorders agree by (B), and if yj, yi are in the
same cone, then γX′ , γ agree by (C).

(3): We now show that E1 is a reasonable class of expansions of (D1,vs).
To show (1) and (4) in the definition of reasonableness, it suffices to
show that if A vs B ∈ D1 and A+ ∈ E1 is an expansion of A, then
there exists an expansion B+ ∈ E1 of B with A+ vs B+ (we allow
A = ∅). Fix A+ ∈ E1, and proceed by induction on |B|. The base case
is trivial. For the induction step, take b ∈ B − A of maximum level.
b has no predecessors in B. Let C = B − {b}, and let C+ ∈ E1 be an
expansion of C with A+ vs C+. To define an order γ on B extending
C+, we need only define the order between b and each c ∈ C+, which we
do according to (1), (2) of Definition 4.4, where we order b arbitrarily
within its cone QB(b). γ is clearly admissible.

Part (2) of reasonableness results from the fact that there are finitely
many linear orders on a finite set. Part (3) is clear: successor-closed
subsets preserve levels, and part (2) of Definition 4.4 is preserved for
successor-closed subsets (formally, we prove (3) by induction on |A|).
To show that E1 has the expansion property over (D1,vs), the proof
is similar to that of Proposition 4.1, except that we take X = A −
QA(a). �

Definition 4.11. Let (M1, ρ, α) be the Fräıssé limit of (E1,vs), where
ρ is the orientation and α is the linear order of the Fräıssé limit.

Let N1 = (M1, ρ). As (E1,vs) is a strong expansion of (D1,vs), we
have that N1 is the Fräıssé limit of (D1,vs).
Recall thatG1 = Aut(M1). LetK1 = Aut(N1), and letH1 = Aut(N1, α).
Then by Proposition 4.10, H1 is extremely amenable.

We will write G = G1, K = K1, H = H1 in this chapter for notational
brevity.

Lemma 4.12. For x ∈ N1, sclN1(x) is finite.

(We will usually just write sclρ(x) or scl(x), when this is clear from
context. Recall that ρ is the orientation of the oriented graph N1 =
(M1, ρ).)

Proof. Take x ∈ N1. As N1 is the Fräıssé limit of (D1,vs), we can
write N1 as the union of an increasing vs-chain A0 vs A1 vs · · · of
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elements of D1. Note that each element of D1 is a finite oriented graph.
As there is i ∈ N such that x is in Ai, and as sclN1(x) is contained in
every successor-closed subset of N1 containing x, we have that sclN1(x)
is contained in the finite set Ai, and so sclN1(x) is finite. �

Definition 4.13. Let x ∈ N1. We define the level lN1(x) of x in N1,
usually just denoted lρ(x) or l(x) when clear from context, to be the
level of x in sclN1(x). (Note that the level of a vertex in a finite oriented
graph was defined in Definition 1.3, and we know that sclN1(x) is finite
by the previous lemma.)

Note that for A vs N1 with x ∈ A, as sclN1(x) vs A, we have that
lN1(x) = lA(x).

Definition 4.14. Let x ∈ N1. Define the cone QN1(x) of x in N1,
usually just denoted Qρ(x) or Q(x), to be the set QN1(x) = {y ∈
N1 : NN1

+ (y) = NN1
+ (x)}, i.e. the set of vertices of N1 with the same

successors as x. Let the base x◦ of x be the set x◦ = sclN1(x)− {x}.
Note that QN1(x) is the orbit of x in N1 under the pointwise stabiliser
of x◦ in Aut(N1), by vs-homogeneity of N1.

Lemma 4.15 (*). Consider the G-flow G y LO(M1). Let Gα denote
the G-stabiliser of α for this flow. Then H = Gα.

Proof. Clearly H ≤ Gα. Take g ∈ Gα. We must show that g pre-
serves the generic orientation ρ. Take an out-edge xy ∈ ρ. Then as
lρ(x) > lρ(y), x > y in α, and so gx > gy. g is a graph automorphism,
so {gx, gy} is an edge of M1, and so we have that (gx, gy) ∈ ρ. So
g ∈ H. �

Lemma 4.16 (**). Let β ∈ LO(M1) be an H-fixed point in the flow
G y LO(M1), and let Q be a cone of N1. Then β agrees with either
α or α′ on Q, where α′ denotes the reverse of the linear order α.

Proof. Take x0, y0 ∈ Q with x0 <α y0. Then for x, y ∈ Q with x <α y,
there exists an ordered digraph isomorphism f : scl(x0, y0)→ scl(x, y)
with f(x0) = x, f(y0) = y, and by homogeneity we may extend to an
element f ∈ H.

As H ⊆ Gβ, f is β-preserving. If x0 <β y0, then f(x0) <β f(y0), i.e.
x <β y, and so as x <α y implies x <β y, β agrees with α on Q. If
x0 >β y0, then β agrees with α′ on Q. �

We now show that (E1,vs) is in some sense an “optimal” Ramsey
expansion: the automorphism group H of its Fräıssé limit is maximal
amongst extremely amenable subgroups of G.

Proposition 4.17 ([7], Th. 6.10). If H ≤ J ≤ G and J is extremely
amenable, then J = H.
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Proof. Recall that H = Aut(M1, ρ, α). Say σ ∈ Or(M1) is an H-
fixed point. If σ 6= ρ, then there exist adjacent a, b ∈ M1 such that
(a, b) ∈ ρ, (b, a) ∈ σ. As (a, b) ∈ ρ, the Hb-orbit of a is infinite. But
H fixes σ, so this contradicts σ being a 2-orientation. So ρ is the only
orientation of M1 fixed by H. As J is extremely amenable, J must fix
ρ. So J ≤ Aut(N1) = K.

As E1 is a reasonable class of expansions of (D1,vs), X(E1) is a K-flow.
X(E1) is the space of admissible orders on N1. J ≤ K, so J fixes some
admissible order γ on N1. Thus H preserves γ on N1, and therefore
by Lemma 4.16, γ agrees with α or α′ on cones of N1. But if k ∈ K
preserves a linear order on a cone, it also preserves its reverse. So J
preserves α on cones, and so by Lemma 4.8, J preserves α. Therefore
J ≤ H. �

4.4 Minimal subflows of LO(M1) and their orbits

We now state the main new theorem of this chapter.

Theorem 4.18 (**). Let Y ⊆ LO(M1) be a minimal subflow of LO(M1).
Then all G-orbits on Y are meagre.

4.4.1 Setup and proof notation

Before beginning the proof, we first need to set up our approach.

Let Y ⊆ LO(M1) be a minimal subflow of LO(M1), and using Lemma
1.71, let J be the class of finite ordered graphs such that Y = X(J ),
i.e. J is the class of isomorphism types of (A, λ), where A ≤ M1 and
λ is a linear order induced on A by an element of Y .

Recall that H = Aut(N1, α) is extremely amenable. So H fixes an

element (M1, β) of Y . As Y is a minimal G-flow, Y = G(M1, β).

Take (M1, γ) ∈ G(M1, β). Then for A ≤ M1 finite, there exists g ∈ G
such that gβ and γ agree on A, i.e. there exists a ≤1-ordered graph
embedding (A, γ)→ (M1, β). Conversely, if (M1, γ) ∈ LO(M1) is such
that for all finite A ≤ M1, there exists a ≤1-ordered graph embedding
(A, γ) → (M1, β), then by homogeneity we can extend these embed-
dings to elements of G.

Thus we see that J is exactly the class of finite ordered graphs (A, λ)
where A ∈ C1 and there exists a ≤1-ordered graph embedding (A, λ)→
(M1, β) - concisely, we have that J = Age≤(M1, β). (Note that here
we do not assume homogeneity of (M1, β)).

We will show that (J ,≤1) does not have the weak amalgamation prop-
erty (WAP), which implies that all G-orbits on Y are meagre by Lemma
1.78.
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To sum up: given a minimal subflow Y ⊆ LO(M1), H fixes a linear
order β inside Y . To show that Y has all G-orbits meagre, it suffices
to show that J = Age≤(M1, β) does not have the weak amalgamation
property with ≤1-embeddings.

We will now use the above notation throughout the rest of section 4.4.

4.4.2 Proof idea - informal overview

We will assume (J ,≤1) has WAP, seeking a contradiction. Take some
vertex a0. Let A0 = {a0}, and let λ0 be the trivial order on A0. By
assumption (A0, λ0) has a WAP-witness (A, λ). We will then construct
≤1-embeddings of (A, λ) into two ordered graphs (C0, γ0), (C1, γ1) ∈ J
which are WAP-incompatible: it will not be possible to have (D, γ)
completing the WAP commutative diagram for (A0, λ0) with the two
embeddings, and thereby we will obtain our contradiction.

The incompatibility of the two ordered graphs (Ci, γi) in J will result
from them forcing incompatible orientations: it turns out that we can
use the order β to force certain orientations of edges in ρ (see Figure
4.3). The incompatible orientations will essentially consist of a binary
out-directed tree T0 and a binary out-directed tree with the successor-
closures of two vertices identified, which we denote by T1: these cannot
start from the same point of a 2-orientation, as one contains a 4-cycle
and the other does not.

The idea to use two incompatible orientations in the WAP commutative
diagram and thereby obtain a contradiction comes from the proof of
Theorem 5.2 of [8]:

Theorem (Th. 5.2, [8]). Let M = M1, M0 or MF , and let G =
Aut(M). Let Y be a minimal subflow of the G-flow Or(M). Then all
G-orbits on Y are meagre.

Theorem 4.18 will not depend on the above result, though, as stated,
several aspects of the proof are inspired by it. The key difficulties in
the proof of Theorem 4.18 are showing that we can use β (specifically,
particular finite ordered graphs in J = Age≤1

(M1, β)) to force orien-
tations of edges in ρ (Lemma 4.20), and also showing that the ordered
graphs that we construct to force orientations of edges in ρ do in fact
lie in J (Lemma 4.21).

4.4.3 Attaching trees and near-trees

For q ∈ N, let T0(q) be a binary tree of height 2q+1, oriented outwards
towards the leaves and with head vertex c. Let T1(q) be the digraph
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given by taking T0(q) and identifying the successor-closures of two ver-
tices at height q + 2 whose paths to the head vertex c meet at height
q. We have T0(q), T1(q) ∈ D1.

Let T be one of the digraphs T0(q) or T1(q), for some q ∈ N. Take
C ∈ D1 with each vertex having out-degree 2 or 0. Let DT be the
digraph consisting of C together with, for each vertex v ∈ C with
d+(v) = 0, a copy of T attached at v, where we identify c and v. Let
ZT denote the sub-digraph of DT whose vertices are the vertices of the
copies of T attached to C in DT . Let D−T denote the graph reduct of
DT . (We will use this notation throughout this section.)

We have that DT is still 2-oriented and has no directed cycles, and so
DT ∈ D1. Let DT

′ be the acyclic reorientation of DT where the copies
of T have been oriented so that the non-head vertices of each copy of
T are directed towards the head vertex c, leaving the orientation on
vertices of C unchanged. Then we have C vs DT

′ in this reorientation,
and so C− ≤1 D

−
T .

Definition 4.19. Let C ∈ D1 with each vertex having out-degree 2 or
0, and let DT be defined as above.

An ordered graph (CT , γ) ∈ J is a T -witness ordered graph for C if:

• CT consists of the graph reduct DT
− of DT together with, for

each non-leaf tree vertex v of DT , an additional 10 copies of
sclDT

(v) freely amalgamated (as graphs) over sclDT
(v)◦, and

C ≤1 CT ;
• for each non-leaf tree vertex v ∈ DT , the additional 10 copies

of v may be labelled as v−5, · · · , v−1, v1, · · · , v5 so that v−5 <
· · · < v−1 < v < v1 < · · · < v5 in γ. (We call these vi the
witness vertices of v.)

(See Figure 4.2.)

The following is the key lemma here.

Lemma 4.20 (**). Let C ∈ D1 with each vertex having out-degree 2
or 0, and let (CT , γ) ∈ J be a T -witness ordered graph for C (as
defined above). As (CT , γ) is an element of J , there exists a ≤1-ordered
graph embedding θ : (CT , γ)→ (M1, β). Then, considering the digraph
structure on ZT induced by DT , θ|ZT

: ZT → (M1, ρ) is also a digraph
embedding. (See Figure 4.3.)

Proof. Take v ∈ ZT with out-edges (v, x), (v, y), where x, y ∈ ZT .
We need to show that θ(v) has out-edges (θ(v), θ(x)), (θ(v), θ(y)) in the
orientation ρ of M1. Let v−5, · · · , v−1, v1, · · · , v5 be the witness vertices
of v in (CT , γ), and let v0 = v. As θ is a ≤1-ordered graph embedding,
we have that θ(vi) <β θ(vj) for i < j, and we have undirected edges
θ(vi)θ(x), θ(vi)θ(y) for −5 ≤ i ≤ 5.
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· · · · · ·

C

ZT

T T

the oriented graph DT

· · · · · ·

C

T T

... ...v−5 v5v

the ordered graph (CT , γ), with
witness vertices vi indicated on

one vertex v of ZT

Figure 4.2

v−5 < · · · < v−1 < v < v1 < · · · < v5

in β:
v vjvi <<

A

in β:

x y x y

Figure 4.3. The key idea in the proof of Theorem 4.18:
we can use the linear order β to force orientations of
edges. If the ordered graph (A, β) ≤ (M1, β), then con-
sidering A in the generic orientation ρ of M1, the right-
hand oriented graph in the figure cannot occur, and we
must have that vx, vy are out-edges in ρ.

As ρ is a 2-orientation, for some i with −5 ≤ i ≤ −1 we must have
that (θ(vi), θ(x)), (θ(vi), θ(y)) are out-edges of ρ, and likewise for some
j with 1 ≤ j ≤ 5 we must have that (θ(vj), θ(x)), (θ(vj), θ(y)) are
out-edges of ρ. If either (θ(x), θ(v0)) ∈ ρ or (θ(y), θ(v0)) ∈ ρ, then
θ(v0) ∈ sclρ(θ(x), θ(y)), and as θ(vi), θ(vj) lie in the same α-cone, there
exists h ∈ Gα with hθ(vi) = θ(vj) and h fixing θ(v0). As Gα ⊆ Gβ,
we have that h ∈ Gβ. But θ(vi) <β θ(v0), so hθ(vi) <β hθ(v0), thus
θ(vj) <β θ(v0) - contradiction. So therefore both (θ(v0), θ(x)) ∈ ρ and
(θ(v0), θ(y)) ∈ ρ. �

Lemma 4.21 (**). Let C ∈ D1 with each vertex having out-degree 2
or 0. Then there exists a T -witness ordered graph (CT , γ) for C, with
(CT , γ) ∈ J .



73

Proof. Let d1, · · · , dk be an enumeration of the non-leaf tree vertices
of DT which preserves the order of levels, i.e. for i < j, lDT

(di) ≤
lDT

(dj). We will show, by induction on i, that for 0 ≤ i ≤ k there
exists an ordered graph (Ci, γi) ∈ J such that:

(1) Ci consists of DT together with, for 1 ≤ j ≤ i, an additional
10 copies of sclDT

(dj) freely amalgamated (as graphs) over
sclDT

(dj)
◦;

(2) for 1 ≤ j ≤ i, the additional 10 copies of dj may be labelled
as dj,−5, · · · , dj,−1, dj,1, · · · , dj,5 such that dj,−5 < · · · < dj,−1 <
dj < dj,1 < · · · < dj,5 in γi. We will call these the witness
vertices of dj, and let Wj denote the set of witness vertices of
dj.

For the base case i = 0, take C0 = DT
−. As C0 ∈ C1 and J is a

reasonable class of expansions of (C1,≤1), there exists a linear order γ0

on C0 such that (C0, γ0) ∈ J . (C0, γ0) satisfies (1) and (2) vacuously.

For the induction step, assume we have (Ci, γi) ∈ J satisfying (1) and
(2). Let

X = L0(DT ) ∪
⋃

1≤j≤i

sclDT
(dj) ∪

⋃
1≤j≤i

Wj.

There is an acyclic orientation τi of Ci in which X is successor-closed:
take the orientation of DT , and orient the two edges of each witness
vertex dj,m outwards from dj,m. Thus X ≤1 Ci. Note that for j′ > i ≥
j, lDT

(dj′) ≥ lDT
(dj), so dj′ /∈ X for j′ > i.

Let (E, τ) be the free amalgam of (Ci, τi) 11 times over (X, τi). As D1

is a free amalgamation class, (E, τ) ∈ D1. Hence E ∈ C1, and we have
X ≤ E.

Let γX = γi|X . We have that (X, γX) ∈ J , so let θX : (X, γX) →
(M1, β) be a ≤1-ordered graph embedding. By the extension property
of M1, we have a ≤1-graph embedding θ : E →M1 extending θX .

Let ζ = θ−1(β), i.e. for x, y ∈ E, x <ζ y iff θ(x) <β θ(y). We have that ζ
is a linear order on E extending γX on X, and that θ : (E, ζ)→ (M1, β)
is a ≤1-ordered graph embedding.

We may label the 11 copies of Ci in E as Ci,m (−5 ≤ m ≤ 5), with
≤1-embeddings ηm : Ci → Ci,m ≤ E, and the corresponding copies of
di+1 as di+1,m ∈ Ci,m (−5 ≤ m ≤ 5), such that di+1,−5 < · · · < di+1,5

in ζ. Let Ci+1
′ = Ci,0 ∪ {di+1,m : −5 ≤ m ≤ 5}. We have that

(Ci+1
′, τ) vs (E, τ), so Ci+1

′ ≤ E. So θ : (Ci+1
′, ζ) → (M1, β) is a

≤1-ordered graph embedding.

We have that Ci+1
′ consists of a copy Ci,0 = η0(Ci) of Ci, where

η0|X = idX and η0|X : (X, γX) → (X, ζ) is order-preserving, to-
gether with witness vertices di+1,−5, · · · , di+1,−1, di+1,1, · · · , di+1,5 for
di+1,0 = η(di+1).
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Recall that Ci consists of DT together with, for 1 ≤ j ≤ i, the witness
vertices for dj, and also that X consists of L0(DT ) together with, for
1 ≤ j ≤ i, dj and its witness vertices.

Therefore (Ci+1
′, ζ) consists of a graph-isomorphic copy η0(DT ) of DT ,

together with witness vertices in ζ for η0(d1) = d1, · · · , η0(di) = di and
witness vertices in ζ for an additional vertex η0(di+1). We can therefore
construct an ordered graph (Ci+1, γi+1) isomorphic to (Ci+1

′, ζ) ∈ J
such that Ci+1 consists of DT together with witness vertices for dj,
1 ≤ j ≤ i+1. This completes the induction step. We then let (CT , γ) =
(Ck, γk). �

4.4.4 (J ,≤1) does not have WAP

Proposition 4.22 (**). The class (J ,≤1) does not have the weak
amalgamation property.

Proof. Suppose (J ,≤1) has WAP, seeking a contradiction. Let a0 be
a point. Take A0 = {a0} and λ0 the trivial order on A0, so (A0, λ0) ∈
J . Then there exists (A0, λ0) ≤1 (A, λ) ∈ J with (A, λ) witnessing
the weak amalgamation property for (A0, λ0). Take A ≤1 B ∈ C1

witnessing for A the expansion property of J over (C1,≤1). (Here we
use Theorem 1.73, recalling that Y = X(J ) is a minimal G-flow.)

Take B+ ∈ D1 such that the undirected reduct of B+ is B. For each
v ∈ B+ with d+(v) = 1, add to B+ a new vertex v′ and out-edge vv′,
and call the resulting digraph C ∈ D1. Note that each vertex of C has
out-degree 0 or 2. We have that B ≤1 C

−.

Let q be the maximum number of levels in any acyclic reorientation of
C (i.e. if C when reoriented has levels 0, · · · , n, then q = n+ 1).

For i = 0, 1, let (Ci, γi) ∈ J be Ti(q)-witness ordered graphs for C,
using Lemma 4.21, and let Di, Zi denote DTi(q), ZTi(q) (the notation
here is introduced just above Definition 4.19).

As B ≤ Ci witnesses the expansion property for A, there exist ≤1-
ordered graph embeddings ζi : (A, λ) → (B, γi) ≤ (Ci, γi) (i = 0, 1).
As (A, λ) witnesses WAP for (A0, λ0), there exists D ≤ M1 and ≤1-
ordered graph embeddings θi : (Ci, γi)→ (D, β) with θ0ζ0(a) = θ1ζ1(a).
By Lemma 4.20, θi|Zi

: Zi → (D, ρ) are also digraph embeddings.

If r is a vertex of C of out-degree 0 in C, then as θi|Zi
is a digraph

embedding, θi(r) has out-degree 0 in θi(C). Also θi preserves pred-
imension, being a graph embedding, so δ(θi(C)) = δ(C). Thus the
roots of θi(C) are exactly the θi(r) for r a root of C, and they all have
out-degree 0. (Recall that a root vertex is one that has out-degree less
than 2 - see Definition 1.13.)

Let d = θiζi(a), and let Un be the set of vertices of (M1, ρ) that can
be reached from d by an outward-directed path of length ≤ n. As the
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only vertices of θi(Di) of out-degree less than 2 are the leaves of the
copies of Ti, U2q+1 ⊆ θi(Di) (i = 0, 1).

We now obtain a contradiction by comparing the two cases i = 0
and i = 1. As U2q+1 ⊆ θ0(D0), we have that U2q+1 − Uq−1 does not
contain any (undirected) cycles. But as U2q+1 ⊆ θ1(D1), we have that
U2q+1 − Uq−1 contains a 4-cycle - contradiction. �

This completes the proof of Theorem 4.18.

4.5 Stabilisers of H-fixed points

Recall that we write G = G1 = Aut(M1), K = K1 = Aut(N1), H =
H1 = Aut(N1, α).

In this section, β is an arbitrary linear order on M1. We will show, as
the main result of this section, that if Gα ⊆ Gβ, then Gα = Gβ. (Here
Gα, Gβ denote the G-stabilisers of α, β in the flow G y LO(M1).)
Note that we may easily obtain examples of such β ∈ LO(M1) with
Gα ⊆ Gβ by permuting the order of the levels of α.

This result originally formed part of the author’s first attempt at prov-
ing Theorem 4.18.

First attempt at a proof approach: let Y ⊆ LO(M1) be a minimal
subflow, and let β be an H-fixed point inside Y as before. So Gα ⊆ Gβ.
If we have that Gα = Gβ (as proved below), then we may define a
surjective map between orbits p : Gβ → Gα, g · β 7→ g · α. By Lemma
4.15, there is a well-defined continuous map q : Gα→ Or(M1), g ·α 7→
g · ρ, and if we could show that q ◦ p : Gβ → Or(M1) were uniformly
continuous, we could continuously extend q ◦ p to Y = Gβ → Or(M1),
and perhaps use the fact that minimal subflows of Or(M1) have all
G-orbits meagre to show that minimal subflows of LO(M1) have all
G-orbits meagre. Unfortunately, the author was not able to show that
q ◦ p was uniformly continuous.

Nonetheless, the results in this section are still of interest, as they give
us some more information about what β can be.

Lemma 4.23 (**). For β ∈ LO(M1), if Kα ⊆ Kβ then Kα = Kβ.

Proof. Note that given an edge xy of M1, (x, y) ∈ ρ iff x >α y, so we
have that H = Kα = Gα.

Take k ∈ K −Kα. k preserves the orientation ρ but not the order α.
So there exist x, y ∈M1 with x >α y and kx <α ky. Take x of minimal
level n satisfying this. So k preserves α on levels below n.

As k is a digraph isomorphism, it preserves the level of vertices, i.e.
l(kv) = l(v) for v ∈ N1. If x, y are not in the same cone, then as
y <α x, either l(y) < l(x), or l(y) = l(x) and the descending chain
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of successors of y is lexicographically before that of x. If l(y) < l(x),
then l(ky) < l(kx), contradicting kx <α ky. If l(y) = l(x) and the
decreasing chain of successors of y is lexicographically before that of
x, given that k preserves α on levels below n, the decreasing chain
of successors of ky must be lexicographically before that of kx, again
contradicting kx <α ky.

So x, y lie in the same cone, and as k is a digraph isomorphism, kx, ky
also lie in the same cone. As k preserves α on levels below n, we have
that scl(x), scl(kx) are isomorphic as ordered digraphs, and similarly
for scl(y), scl(ky). So, as y <α x and kx <α ky, there exists an ordered
digraph automorphism h ∈ H taking scl(y) to scl(kx) and scl(x) to
scl(ky). We have that h(y) = kx, h(x) = ky, so k−1h(y) = x, k−1h(x) =
y, and thus k−1h does not preserve any linear order. Therefore, as h
preserves β, k cannot preserve β, i.e. k /∈ Kβ. �

Lemma 4.24 (**). For β ∈ LO(M1), if Gα ⊆ Gβ then Gα = Gβ.

Proof. Seeking a contradiction, say there exists g ∈ Gβ − Gα. We
have Kα = Gα and Kα ⊆ K ∩ Gβ = Kβ, so Kα = Kβ by Lemma
4.23. So g /∈ K, i.e. there exist x, y ∈ M1 such that (x, y) ∈ ρ and
(gy, gx) ∈ ρ.

We will eliminate this possibility case by case.

Case 1: In ρ, x has out-degree 2, with out-edges to y, z.

Consider the cone Qρ(x) of x in the orientation ρ. As (Qρ(x), α) is
order-isomorphic to Q, there exist v−5, · · · , v−1, v1, · · · , v5 in Qα(x)
with v−5 < · · · < v−1 < x < v1 < · · · < v5 in α. We have that ρ
is a 2-orientation, and so there exists some −5 ≤ i ≤ −1 such that
(gvi, gy) ∈ ρ and (gvi, gz) ∈ ρ, i.e. g does not reverse the orientation of
the out-edges (vi, y), (vi, z). Likewise there exists some 1 ≤ j ≤ 5 with
(gvj, gy) ∈ ρ, (gvj, gz) ∈ ρ.

So gvi, gvj lie in the same cone, and so by homogeneity of (N1, α) there
exists h ∈ H sending (scl(gvi), α) to (scl(gvj), α) with hgvi = gvj and
scl(gvi)

◦ = scl(gvj)
◦ fixed. As gy ∈ scl(gvi)

◦ and (gy, gx) ∈ ρ by
assumption, hgx = gx.

As β agrees with α or α′ on Qα(x) by Lemma 4.16, we have vi < x < vj
or vj < x < vi in β, and as g ∈ Gβ, therefore we have gvi < gx < gvj
or gvj < gx < gvi in β.

But h ∈ Gβ, hgx = gx and hgvi = gvj, so we obtain a contradiction.

Case 2: In ρ, x has out-degree 1, with out-edge to y.

As Qα(x) is order-isomorphic to Q, there exist v−3, · · · , v−1, v1, · · · , v3

in Qα(x) with v−3 < · · · < v−1 < x < v1 < · · · < v3 in α. As ρ is a
2-orientation, we have some −3 ≤ i ≤ −1 such that (gvi, gy) ∈ ρ, and
likewise we have some 1 ≤ j ≤ 3 such that (gvj, gy) ∈ ρ.
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Take u ∈ M1 with out-edge (u, vi) ∈ ρ. If g reverses the orientation of
(u, vi), i.e. (gvi, gu) ∈ ρ, then gvi has out-degree 2. But Case 1 applied
to g−1 ∈ Gβ−Gα shows that g−1 preserves the orientation of out-edges
of vertices of out-degree 2, and so (vi, u) ∈ ρ, contradiction. Thus g
preserves the orientation of the in-edges of vi, and likewise also of vj.
So gvi, gvj have out-degree 1. Thus gvi, gvj lie in the same cone, and
the rest of the argument for Case 2 is the same as for Case 1. �

4.6 An example of a minimal subflow of LO(M1)

We now give an example of a minimal subflow of LO(M1).

Let A1 ⊆ C≺1 be the class of ordered graphs (A, γ) where A ∈ C1 and:

(1) γ induces an acyclic 2-orientation τγ on A;
(2) γ is admissible for (A, τγ).

A1 is the reduct of E1 to the language of ordered graphs. We will refer
to an order γ satisfying (1), (2) as an admissible order on a graph.

(This section is essentially a straightforward translation of section 6.4
of [7] from E1 to A1, with some minor modifications.)

Note that if (B, γB) ∈ A1 and A ≤1 B, the restriction of γB to A
may not be an admissible order. Consider the ordered graph (B, γB)
consisting of two disjoint edges x0x1, y0y1 where x0 < y0 < x1 < y1.
Then γB is admissible, so (B, γB) ∈ A1. Let (A, γA) be the ordered
subgraph of (B, γB) with vertex set {x0, x1, y1}. Then by reversing the
orientation of y1y0 ∈ τγB we see that A ≤1 B, but γA is not admissible:
y1 is on level 0 of τγA , x1 is on level 1 of τγA , but x1 < y1 in γA.

As E1 satisfies parts (1), (2) and (4) of reasonableness over (C1,≤1),
so does A1, but as we have just seen, A1 does not satisfy (3). The
same problem occurs with E1. So let E ′1 be the class of ordered oriented
graphs A+ such that A+ ≤1 B

+ for some B+ ∈ E1, and let A′1 be the
class of ordered graphs (A, γA) such that (A, γA) ≤1 (B, γB) for some
(B, γB) ∈ A1. That is, E ′1 and A′1 are the ≤1-closures of E1,A1.

Lemma 4.25 (*). E ′1 is a reasonable class of expansions of (C1,≤1).

Proof. Parts (1), (2) of reasonableness for E ′1 follow from the fact that
E1 satisfies (1) and (2), and (3) follows by the definition of E ′1 as the ≤1-
closure of E1. To check (4), take f : A1 → B a strong map of (C1,≤1),
and let A+

1 = (A1, ρ1, γ1) ∈ E ′1 be an expansion of A1. (A1, ρ1, γ1) is a
≤1-substructure of some (A2, ρ2, γ2) ∈ E1. Let D be the free amalgam
of B and a copy C of A2 over f(A1) (where we take C with f(A1) ≤1 C.
Give C the orientation ρC and order γC induced from (A2, ρ2, γ2) (so
f : A+

1 → (C, ρC , γC) is an ordered digraph embedding). As C ≤1 D,
there is an expansion (D, ρD) ∈ D1 with (C, ρC) vs (D, ρD). As E1 is a
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reasonable class of expansions of (D1,vs), there is an admissible order
γD on (D, ρD) extending γC . B ≤1 D, so (B, γD) ∈ E ′1. �

Lemma 4.26 (*). A′1 is a reasonable class of expansions of (C1,≤1).

The proof is analogous to that of the previous lemma.

Lemma 4.27. Take C ∈ E1 and k ≥ 0. Then C↓k ∈ E1.

Proof. Straightforward. �

Lemma 4.28. Let A ∈ D1. Then there exists B ∈ D1, A ≤1 B, such
that for C ∈ D1, if B ⊆ C, then there exists k ≥ 0 such that A vs C↓k.

Proof. Let r1, · · · , rn be the vertices of A of out-degree 0, and let
s1, · · · , sm be the vertices of A of out-degree 1. Let N = 2n+m.

Let B consist of A together with new vertices vi,j (1 ≤ i, j ≤ N) and
new out-edges:

• riv1,2i−1, riv1,2i (1 ≤ i ≤ n);
• siv1,2n+i (1 ≤ i ≤ m);
• vi,jvi+1,j (1 ≤ i < N, 1 ≤ j ≤ N);
• vi,jvi+1,j+1 (mod N) (1 ≤ i < N, 1 ≤ j ≤ N).

See Figure 4.4 for an example.

To see that A ≤1 B, note that we may reorient B by reversing the
orientation of all new out-edges not in A, forming an acyclic orientation
in which A is successor-closed.

Now take B ⊆ C ∈ D1. Note that it is possible for the vN,j to be on
different levels of C. However, we will show that the ri all lie on the
same level of C.
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Take some particular vN,b, v1,c. Then any out-path from v1,c to vN,b
must be of length N − 1, as an out-edge from any new vertex vi,j goes
to an out-vertex with i component increased by one.

There is an out-path from v1,c to vN,b of length N − 1, namely:

• for b < c: v1,c, v2,c+1 (mod N), · · · , v1+(N−c)+b,b, · · · , vN,b;
• for b ≥ c: v1,c, · · · , v1+(b−c),b, · · · , vN,b.

(Informally, in these specified paths, we move diagonally first.)

Thus all the v1,j lie on the same level l of C, where l = max{lC(vN,j) :
1 ≤ j ≤ N}+N − 1. Let k = l + 1. Then all the ri lie on level k, and
each sa is of level > k, with one successor in A and one successor being
one of the v1,j on level k−1. Each vertex of A of out-degree 2 is of level
> k and its successors lie in A and are of level ≥ k. So A vs C↓k. �

Proposition 4.29. E ′1 has the expansion property over (C1,≤1).

Proof. Take (A′, γA′) ∈ E ′1. There is (A, γA) ∈ E1 with (A′, γA′) ≤1

(A, γA). We will find B ∈ C1 such that for any expansion (B+, γ) ∈ E ′1
(where B+ ∈ D1), (B+, γ) contains a ≤1-copy of (A, γA), and therefore
of (A′, γA′). We do this in three steps.

(1) By Proposition 4.10, E1 has the expansion property over (D1,vs
), so take X ∈ D1 such that every expansion to E1 contains a
vs-copy of (A, γA).

(2) Then, using Lemma 4.28, take Y ∈ D1 with X ≤1 Y such that
for any C ∈ D1 with f : Y → C an embedding (not necessarily
strong), there exists k ≥ 0 with f(X) vs C↓k.

(3) Finally, as D1 has the expansion property over (C1,≤1) by
Proposition 4.1, take B ∈ C1 such that any expansion to D1

contains a ≤1-copy of Y .

We now show that B witnesses the expansion property for (A, γA) of
E ′1 over (C1,≤1). Let (B, ρB, γB) ∈ E ′1 be an expansion of B. There
is (C, ρC , γC) ∈ E1 with (B, ρB, γB) ≤1 (C, ρC , γC). By (3), there is
a ≤1-embedding f : Y → (B, ρB), and we may regard f as a ≤1-
embedding into (C, ρC). By (2), there is k ≥ 0 such that f(X) vs
(C, ρC)↓k. We have that (f(X), γB) = (f(X), γC) vs (C, ρC , γC)↓k, so
as (C, ρC , γC) ∈ E1, by Lemma 4.27 we have that (C, ρC , γC)↓k ∈ E1, so
(f(X), γB) ∈ E1. So by (1), (f(X), γB) contains a vs-copy of (A, γA),
and as (f(X), γB) ≤1 (B, γB), B witnesses the expansion property for
(A, γA). �

Proposition 4.30 (*). A′1 has the expansion property over (C1,≤1).

Proof. Take (A′, γA′) ∈ A′1. Then there is (A, γA) ∈ A1 such that
(A′, γA′) ≤1 (A, γA). Let ρA be the acyclic 2-orientation induced on A
by γA, so (A, ρA, γA) ∈ E1. By Proposition 4.29, take B ∈ C1 such that
any expansion (B, ρB, γB) ∈ E ′1 contains a ≤1-copy of (A, ρA, γA).
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Let (B, γB) ∈ A′1 be an expansion of B. Then (B, γB) ≤1 (C, γC) for
some (C, γC) ∈ A1. Let ρC be the acyclic 2-orientation induced on
C by γC , so (C, ρC , γC) ∈ E1. Let ρB = ρC |B. Then (B, ρB, γB) ≤1

(C, ρC , γC), so (B, ρB, γB) ∈ E ′1, and so (B, ρB, γB) contains a ≤1-copy
of (A, ρA, γA). �



Chapter 5

Linear orders and orientations on M0

In this chapter, we attempt to carry out the same analysis for M0

as we did for M1 in the previous chapter. As before, we describe a
Ramsey expansion (Efin,vs) of (C0,≤s), the class of admissibly ordered
fine orientations of C0. We write (NE , α) for the Fräıssé limit and
HE = Aut(NE , α), where α is the linear order and NE is the oriented
graph of the Fräıssé limit. We then have thatHE is extremely amenable,
so, as in Chapter 4, any minimal subflow Y ⊆ LO(M0) of the G0-flow
LO(M0) is the G0-orbit closure of a HE -fixed point β.

The author has not been able to prove that any minimal subflow of
LO(M0) has all orbits meagre, due to a difficulty elaborated in Section
5.4: when we try to prove an analogue of Theorem 4.18, and want
to find information about β using HE -automorphisms (i.e. information
about α), we do not know anything about β inside strongly connected
components (the details here are somewhat technical). However, we do
manage to prove the equivalent result on stabilisers: we show that the
G0-stabiliser of β in the G0-flow LO(M0) is HE , the G0-stabiliser of α,
and this at least gives us some information about β.

5.1 LO(M0) is not minimal

As in the previous chapter, we first check that LO(M0) is not itself a
minimal flow.

Lemma 5.1 ([10], Lem. 1.14). Let A,B ∈ C0 with A ≤s B. Then there
is an acyclic 4-orientation of B in which A is successor-closed.

Proof. Take ∅ 6= C ⊆ A. The average vertex degree of C is 2|E(C)|
|C| ,

which is ≤ 4 as δ(C) = 2|C| − |E(C)| ≥ 0. So C has a vertex of degree
≤ 4, and so by Lemma 1.10, A has an acyclic 4-orientation τA.

Take A ⊆ C ⊆ B. We’ll show by induction on |C| that C has an acyclic
4-orientation extending τA in which A is successor-closed. |C| = |A|
is trivial. We now do the inductive step. The average degree in C of
C − A is

2|E(C)| − 2|E(A)| − |E(C − A,A)|
|C − A|

≤ 2|E(C)| − 2|E(A)|
|C − A|

≤ 4

81
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(where to show the rightmost inequality we recall that δ(C) ≥ δ(A)).
So there exists c ∈ C − A with degree ≤ 4 in C. By the induction
assumption we may give C −{c} an acyclic 4-orientation extending τA
in which A is successor-closed. Then we orient the edges of c outwards
from c. �

Proposition 5.2 (**). LO(M0) is not a minimal flow.

Proof. Let Q0 denote the class of ordered graphs (A, γ) where A ∈ C0

and the linear order γ induces an acyclic 4-orientation on A, i.e. τγ =
{(x, y) ∈ EA : x >γ y} is an acyclic 4-orientation.

The proof that Q0 is a reasonable class of expansions of (C0,≤s) is
entirely analogous to the proof of Proposition 4.2, replacing acyclic
2-orientations with acyclic 4-orientations and using Lemma 5.1.

We therefore have that X(Q0) is a subflow of LO(M0). To see that it
is a proper subflow, we produce a linear order on M0 which does not
induce an acyclic 4-orientation. (C≺0 ,≤s) is an amalgamation class and
a strong expansion of (C0,≤s), so let γ be the linear order of the Fräıssé
limit (M0, γ). By genericity, there exists a graph A ≤s M0 consisting
of vertices a, b1, · · · , b5 and edges abi with a >γ bi (1 ≤ i ≤ 5), so γ
does not induce a 4-orientation. �

5.2 Admissibly ordered fine orientations:
constructing a Ramsey expansion of C0

We will now construct a Ramsey expansion (Efin,vs) of (C0,≤s). The
material in this section is a modified and elaborated version of Section
7 of [6], an unpublished early version of the paper [8]. We can also view
this Ramsey expansion construction as a particular case of the more
general treatment of admissible orders seen in Section 3 of [9]. (In fact,
the material from Section 7 of the unpublished paper [6] was removed
before the final published version in [8], in order to be generalised and
published in [9] instead).

However, here we keep our presentation self-contained. We use the
standalone Ramsey result of Theorem 1.57.

(The new material in this section is a characterisation of fine extensions
in terms of predimension, and a new definition of similarity. The new
definition of similarity requires a straightforward modification of the
construction of the Ramsey expansion.)

Throughout this section, we will use the notation and terminology
of Definition 1.2: we refer the reader to this for the definition of
scl (successor-closure), scc (strongly connected component) and N+(A)
(the out-neighbourhood of A).
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5.2.1 Out-degree-preserving graph isomorphisms

In order to construct a Ramsey expansion of (C0,≤s), we will need to
know which graph isomorphisms preserve the “scc structure” of ele-
ments of D0. The following is folklore:

Lemma 5.3 (Lem. 7.11, [6]). Take A ∈ C0, and let A1, A2 ∈ D0 be two
orientations of A such that the out-degree of each vertex is the same in
each orientation. Then A1, A2 have the same successor-closed subsets,
sccs and orientation of edges between sccs.

Proof. C ⊆ A is successor-closed in an orientation iff the number of
edges of C is equal to the sum of the out-degrees in A of the vertices
of C in that orientation. Thus A1, A2 have the same successor-closed
subsets.

For C,D ⊆ A, if C vs D vs A′ in some orientation A′ of A and there
does not exist E ⊆ A, E 6= C,D with C vs E vs D, we will say that
C vs D is an unrefinable vs-chain of A′. So A1, A2 have the same
unrefinable vs-chains.

We will show by induction on n that:

• C ⊆ A is a scc of A1 of level n iff it is a scc of A2 of level n;
• if C ⊆ A is a scc of A1 or A2 of level n, the out-edges from C

are the same in either orientation.

For the base case n = 0, observe that C ⊆ A is a level 0 scc of Ai iff
C vs Ai and ∅ vs C is an unrefinable vs-chain of Ai. Assume the
induction claim for levels < n, and let C be a scc of A1 of level n. Let
X = sclA1(C) − C. Then X vs A1, so X vs A2. So if (c, x) is an
out-edge from C to X in A1, then (c, x) is an out-edge in A2. By the
induction assumption, as X has level n− 1 in A1, X has the same sccs
and orientation of edges between them in A1 and A2. So C has level
≥ n in A2. X vs sclA1(C) is unrefinable in A1, and thus in A2, and so
C is a scc of level n in A2. The reverse direction is identical, swapping
A1 and A2. �

Lemma 5.4 (*). Take A ∈ C0 with δ(A) = 0. Then any orientation of
A has the same successor-closed subsets, sccs and orientation of edges
between sccs.

Proof. As δ(A) is the sum of the multiplicities of the roots in any
orientation (Lemma 1.14), A has no roots in any orientation, i.e. every
vertex is of out-degree two. Then use Lemma 5.3. �

5.2.2 Fine orientations

Definition 5.5 (Def. 7.6, [6]). Take A ∈ D0. A is an extension if it
has a unique scc C of maximum level and A = sclA(C).
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A◦

A B

B◦

Figure 5.1. The extension A is fine. The extension B
is not fine.

If A is an extension, we denote its unique scc of maximum level by
hd(A) (the head scc). We define the base A◦ of A to be A◦ = A−hd(A).
Note that A◦ vs A.

It is straightforward to see that any element of D0 can be built via a
sequence of free amalgamations of extensions over successor-closed sub-
structures (formally, we proceed by induction on the number of sccs).
If required, we can also carry out the sequence of free amalgamations
in order of increasing level.

Our Ramsey expansion will orient elements of C0 in a particular way:
we will work with fine orientations, which we now define.

Definition 5.6. Let A ∈ D0 be an extension. A is a fine extension if,
in any 2-reorientation A′ of A with A◦ vs A′, we have that A′ − A◦ is
strongly connected.

If A is a fine extension, we will also say that the head scc hd(A) of the
extension is fine.

Lemma 5.7 (*). Let A ∈ D0 be an extension. A is fine iff A◦ ≤s A is
an unrefinable ≤s-chain.

Proof. ⇒: If A◦ ≤s B ≤s A, then there exists an orientation A′

of A such that B vs A′ (where B has the induced orientation from
A′), and there exists an orientation B+ of B such that A◦ vs B+.
Reorient B vs A′ with the orientation from B+, and call the resulting
orientation A′′. Then A◦ vs B vs A′′, so by fineness B = A◦ or B = A.

⇐: Let A′ be a reorientation of A with A◦ vs A′. If A′ − A◦ is not
strongly connected, there exists y ∈ A′ − A◦ with sclA′(y) 6= A′. Then
sclA′(y) ∪ A◦ refines A◦ ≤s A, contradiction. �

Definition 5.8. Take B ∈ D0. We say that B is a fine orientation if,
for every extension A with A vs B, A is fine.

We let Dfin denote the class of fine orientations.

Lemma 5.9 (*). Take A,B ∈ C0 with A 6= B and A ≤s B unrefinable.
Suppose there is an expansion A+ ∈ Dfin of A. Then there exists an
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expansion B+ ∈ Dfin of B with A+ vs B+, and B+ consists of the free
amalgamation of A+ and a fine extension D over D◦, where D◦ vs A+.

Proof. Let B+ ∈ D0 be an expansion of B with A+ vs B+. As
A 6= B, B+ has some scc C disjoint from A+. As A ≤s B is unrefinable,
we have that C is the only scc of B+ not contained in A+. Let D =
sclB+(C). Then D◦ vs A+, and as A ≤s B is unrefinable, D◦ ≤s D
must be unrefinable, so D is fine. B+ is the free amalgamation over
D◦ of D and A+, and so as (Dfin,vs) is a free amalgamation class,
B+ ∈ Dfin. �

Lemma 5.10 (*). (Dfin,vs) is a strong expansion of (C0,≤s).

Proof. We have to show that for A ≤s B ∈ C0, if A+ ∈ Dfin is an
expansion of A, then there exists an expansion B+ ∈ Dfin of B with
A+ vs B+.

It suffices to show that for A+ ∈ Dfin with a sccs, then for A+ vs B′ ∈
D0 with n ≥ a sccs, there exists a reorientation B+ ∈ Dfin of B′ such
that A+ vs B+.

We use induction on n ≥ a. The base case is trivial. For the induction
step, take C to be a scc of B′−A+ of maximum level. Let D = B−C,
and let D′ denote the orientation induced on D by B′. We have that
D′ vs D′ ∪ C = B′. A+ vs D′, so by the induction assumption
we may reorient D′ to D+ ∈ Dfin such that A+ vs D+. Let B′′ be
the reorientation of B′ obtained by replacing D′ with D+. So D+ vs
D+ ∪ C = B′′. We may refine D ≤s B to an unrefinable ≤s-chain
D = D0 ≤s · · · ≤s Dk = B. By Lemma 5.9 applied to D0 ≤s D1

with the expansion D+, we obtain an expansion D+
1 ∈ Dfin of D1 with

A+ vs D+ vs D+
1 . Assuming the expansion D+

i has already been
defined, we likewise apply Lemma 5.9 up the chain on Di ≤s Di+1

to obtain an expansion D+
i+1, and thus by induction we obtain the

reorientation B+ required. �

We now partially characterise fine extensions in terms of predimension.

Lemma 5.11 (**). Let A ∈ D0 be an extension. Then:

(1) if l(A) > 0, then A is fine iff |A− A◦| = 1 or δ(A) = δ(A◦);
(2) if l(A) = 0 and A is fine, then |A| = 1 or δ(A) ≤ 1;
(3) if l(A) = 0, then if |A| = 1 or δ(A) = 0 then A is fine.

(See Example 5.12.)

Proof. (1): ⇒: Let C = hd(A). If C has no roots of A, then by
δ(A) = δ(A◦) (here we use Lemma 1.14). Otherwise, let r ∈ C be a
root of A. r must have out-degree 1. If the out-vertex of r lies in A◦,
then as C is a scc, |C| = 1. Seeking a contradiction, if the out-vertex
of r does not lie in A◦, then there must exist x ∈ C, x 6= r, with an
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out-edge into A◦, and as C is strongly connected, there is an out-path
from x to r (so x is of out-degree 2). Reverse the orientation of the
out-edges of this out-path, giving another 2-orientation as r is a root.
In this new orientation, there is no out-path from x to r, and so C is
no longer strongly connected, contradicting fineness.

⇐: If |A−A◦| = 1 then it is trivial that A is fine. Suppose δ(A) = δ(A◦)
and |A − A◦| > 1. Take A◦ ( B ( A. Let C be the head scc of A.
Then B must have a vertex v with an out-edge to a vertex of C − B,
as C is strongly connected, and so v is a root of B (considering out-
degrees only within B). Therefore δ(B) > δ(A◦), and so we cannot
have A◦ ≤s B ≤s A.

(2): If A contains two roots r1, r2, then the orientation obtained by
reversing the out-path from r1 to r2 is not strongly connected, contra-
diction. So A has at most one root. If |A| > 1, then if there is a root r
of A, as A is strongly connected r must have an out-edge, so δ(A) = 1.

(3): The argument is the same as for the right-to-left direction of (1).
�

Example 5.12 (**).

(1) For an example of a level 0 fine extension A with δ(A) = 0, let
A be any orientation of a K5. It is straightforward to check
that any orientation of K5 is strongly connected.

(2) For an example of a level 0 fine extension A with δ(A) = 1,
take any orientation of a K5 with one edge deleted. (It is
straightforward case-checking to see that any orientation is
strongly connected. For case-checking, it is convenient to begin
by categorising the orientations into those that have the root
at a vertex of the deleted edge, and those that do not.)

(3) We give an example of a level 0 extension A with δ(A) = 1
which is not fine. Let B be an orientation of a K5 with an
edge removed. Let r be the root vertex of B, and let b be a
non-root vertex of B. Let A be the oriented graph B together
with a new vertex a with out-edges ra, ab. Then A is strongly
connected and δ(A) = 1. By reversing the orientation of the
out-edge ra, making {a} a scc, we may refine A, so A is not
fine.

5.2.3 Admissibly ordered fine orientations

Definition 5.13. Take A ∈ D≺fin. Let S be an ordered scc of A. The
cone of S, denoted QA(S), is the set consisting of the ordered sccs S ′

of A for which:

(1) sclA(S)◦ = sclA(S ′)◦;
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(2) there exists an ordered digraph isomorphism fS′ : scl(S) →
scl(S ′) fixing scl(S)◦ = scl(S ′)◦ and sending S to S ′.

Note that by the rigidity of finite linearly ordered sets, fS′ is unique.

Take a vertex x ∈ A, and let S = sccA(x). The cone of x is QA(x) :=
{fS′(x) : S ′ ∈ QA(S)}.

Definition 5.14 (**). Let A,B ∈ D≺fin be ordered extensions. A,B
are similar if one of the following holds:

(1) l(A), l(B) > 0 and there exists an out-degree-preserving graph
isomorphism A→ B which is also an ordered digraph isomor-
phism A◦ → B◦;

(2) l(A) = l(B) = 0 and there exists a graph isomorphism A→ B.

Our class of admissibly ordered fine orientations will only contain one
element (up to ordered digraph isomorphism) of each similarity class
of fine ordered extensions.

Definition 5.15 (adapted from Lem. 7.9, [6]). We fix an arbitrary
linear order E between isotypes of ordered extensions in D≺0 .

Let (C, γC) ∈ D≺fin be of level k and such that each scc of C is an
interval in γC . We will define a preorder λC , which we call the level-lex
preorder, on the set of level k sccs of C. This preorder λC will depend
on E (which is arbitrary, fixed and will not change throughout this
section) and γC .

Let C1, C2 be sccs of C of level k. Let C l
i = (sclC(Ci))

↓l (i = 1, 2,
0 ≤ l ≤ k). For 0 ≤ l ≤ k, we define preorders El,�l:

• C1 El C2 if isotype(C l
1, γC) E isotype(C l

2, γC);
• C1 �l C2 if the decreasing chain of successor sccs of C l

1 or-
dered by γC is lexicographically before the decreasing chain of
successor sccs of C l

2 ordered by γC .

We define the level-lex preorder λC to be the lexicographic preorder
(Ek,�k−1,Ek−1, · · · ,�0,E0).

If C1, C2 are equivalent in λC , then we write C1 ∼λC C2.

Lemma 5.16. Let (C, γC) ∈ D≺fin be of level k and such that each scc of
C is an interval. Let C1, C2 be sccs of C of level k. Then C1 ∼λC C2

iff (C1, γC), (C2, γC) lie in the same cone of (C, γC).

Proof. ⇒: C1 ∼λC C2 implies that C1 �0 C2, C2 �0 C1, so C1, C2 have
the same successors, i.e. scl(C1)◦ = scl(C2)◦. As C1 E0 C2, C2 E0 C1,
we have that (scl(C1), γC), (scl(C2), γC) have the same ordered digraph
isomorphism type, i.e. there exists an ordered digraph isomorphism
f : (scl(C1), γC) → (scl(C2), γC). As f preserves levels, f(scl(C1)◦) =
scl(C2)◦, and so as f preserves a linear order on a finite set, f |scl(C1)◦ is
the identity. So f is an ordered digraph isomorphism taking scl(C1) to
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scl(C2) which is the identity on scl(C1)◦ = scl(C2)◦, so (C1, γC), (C2, γC)
are in the same cone. The ⇐ direction is clear. �

Definition 5.17 (* - adapted and modified from Lem. 7.9 of [6]). Let
Efin ⊆ Dfin

≺. We will say that (Efin,vs) is a class of admissibly ordered
fine orientations of (C0,≤s) if the following hold:

(1) C0 is the class of graph reducts of Efin;
(2) if A ≤s B in C0 and A+ ∈ Efin is an expansion of A, then there

exists an expansion B+ ∈ Efin of B with A+ vs B+;
(3) if B ∈ Efin and A ∈ D≺fin with A vs B, then A ∈ Efin;
(4) if (B1, γ1), (B2, γ2) ∈ Efin, and (A, γA) ∈ Efin with (A, γA) vs

(B1, γ1), (B2, γ2), then:
(a) there exists (C, γ) ∈ Efin with C the free amalgam of

B1, B2 over A and γ extending γ1, γ2;
(b) if B1 is an extension with A = B◦1 and l(B1) ≥ l(B2), then

(C, γ) is unique up to isomorphism;
(5) for ordered extensions A,B ∈ Efin, if A,B are similar then A,B

are isomorphic as ordered digraphs (the isomorphism need not
be the same as the similarity isomorphism);

(6) for (A, γA) ∈ Efin, sccs form intervals in γA, and
(a) if C1, C2 are sccs of A with l(C1) < l(C2), then C1 < C2

in γA;
(b) the linear order γA between sccs of the same level extends

the level-lex preorder λA;
(7) if (A, γA) ∈ Efin and (B, γB) ∈ D≺fin is such that every vertex of

(B, γB) lies in a vs-copy of (A, γA), then there exists a linear
order γ on B with (B, γ) ∈ Efin such that γ agrees with γB on
every vs-copy of (A, γA).

Proposition 5.18 (* - modified from Lem. 7.9 of [6]). There exists a
class (Efin,vs) of admissibly ordered fine orientations of (C0,≤s).

Proof. We define inductively a family Xk of ordered fine extensions
of level k, which we use to build a family Yk of ordered oriented graphs
of level k, again defined inductively. We will then take Efin =

⋃
k≥0 Yk.

To define X0, take a single element of each similarity class of ordered
extensions of level 0, and close under ordered digraph isotypes. Let Y0

consist of (C, γC) where (C, γC) is a disjoint union of ordered extensions
in X0, with γC completed to a linear order where:

(Str0) every scc of C is an interval in γC , and γC extends the level-lex
preorder λC .

(In this particular case, λC is just E.)

Suppose Xi,Yi have already been defined for i < k.

Let X ′k consist of ordered extensions (A, γA) ∈ D≺fin of level k such that
(A◦, γA) ∈ Yk−1 and hd(A) > A◦ in γA. Define Xk by taking one
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element of each similarity class of X ′k, closing under ordered digraph
isotypes. So Xk satisfies:

(Ext1) Xk contains ≤ 1 element from each similarity class of level k
extensions of D≺fin;

(Ext2) for (A, γA) ∈ Xk, (A◦, γA) ∈ Yk−1;
(Ext3) for (A, γA) ∈ D≺fin an ordered extension of level k such that

(A◦, γA) ∈ Yk−1, there exists (B, γB) ∈ Xk similar to (A, γA);
(Ext4) for (A, γA) ∈ Xk, hd(A) > A◦ in γA.

We now define Yk. Let Yk consist of (C, γC) ∈ D≺fin of level k such that
(C, γC) results from a sequence of free amalgamations of elements of
Xk ∪

⋃
i<k Yi, with γC completed to a linear order where:

(Str1) (C↑k−1, γC) ∈ Yk−1;
(Str2) the vertices of C of level k are greatest in γC ;
(Str3) each scc of C of level k is an interval in γC , and γC extends

the level-lex preorder λC on sccs of level k.

We let Efin =
⋃
k≥0 Yk, and now check properties (1)-(7) in the definition

of admissibility.

We prove (3), the vs-hereditary property. Say A 6= B. We use in-
duction on n the number of sccs of B. The base case n = 1 is trivial.
Let k = l(B). B is a free amalgam of elements of Xk ∪

⋃
i<k Yi. Let

S be the head scc of a level k ordered extension which is part of the
sequence of free amalgamations forming B, where S ∩ A = ∅. So
sclB(S) ∈ Xk, and so sclB(S)◦ ∈ Yk−1. So B − S is a free amalgam of
elements of Xk ∪

⋃
i<k Yi, and also still satisfies (Str1), (Str2), (Str3),

so B−S ∈ Efin. As A vs B−S, by the induction assumption A ∈ Efin.

For (4), the free amalgamation property, we start by proving (4)(b).
Let (B1, γ1) ∈ Efin be an ordered extension and let (B2, γ2) ∈ Efin with
(B1

◦, γ1) vs (B2, γ2) and l(B1) ≥ l(B2).

If l(B1) = 0, then (B1, γ1) ∈ X0, B1
◦ = ∅ and (B2, γ2) ∈ Y0. (B2, γ2) is

a disjoint union of ordered extensions in X0. Let (C, γ) be the disjoint
union of (B1, γ1), (B2, γ2) where we complete γ according to (Str0).
Then (C, γ) ∈ Y0, and uniqueness up to ordered digraph isomorphism
is clear.

For the case l(B1) = k > 0, we have that (B1, γ1) ∈ Xk. By (Ext4), the
vertices of hd(B1) are greatest in γ1. By (Str2), the vertices of maxi-
mum level l(B2) are greatest in γ2. Let (C, γ) be the free amalgamation
of (B1, γ1), (B2, γ2) over (B1

◦, γ1), where we complete the linear order
γ as follows. Note that as (B1

◦, γ1) vs (B2, γ2) and l(B1) ≥ l(B2), all
elements of C of level < k are already comparable in γ, and we need
only complete γ for level k. We do this by taking all vertices of hd(B1)
to be greater than all vertices of level < k in B2, taking hd(B1) to be an
interval, and, if l(B2) = k, ordering hd(B1) amongst the sccs of level k
in B2 via λB, where we order hd(B1) amongst the sccs of its cone in C
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arbitrarily. Then (C, γ) satisfies (Str1), (Str2), (Str3), and uniqueness
up to isomorphism is clear. (We may reorder sccs within a cone, but
these reorderings will be ordered digraph-isomorphic.)

We now prove (4)(a). We use induction on the total number n of sccs
of the free amalgamation of B1, B2 over A. The base case n = 1 is
trivial. The case B1 = A or B2 = A is also trivial, so we assume B1, B2

have sccs outside A. Without loss of generality l(B1) ≥ l(B2).

In the case l(A) < l(B1), take a scc S of B1 of maximum level, with S
outside A. By (3), (B1 − S, γ1) ∈ Efin. By the induction assumption,
there exists (D, γD) ∈ Efin with D the free amalgam of B1−S,B2 over A
and γD extending γ1|B1−S, γ2. Then use (4)(b) and let (C, γ) be the free
amalgam of (sclB1(S), γ1), (D, γD) over (sclB1(S)◦, γ1) with γ extending
γ1|sclB1

(S), γD. (C, γ) contains the free amalgam of (sclB1(S), γ1), (B1−
S, γ1) over (sclB1(S)◦, γ1), and so by the uniqueness up to isomorphism
part of (4)(b), (C, γ) contains an isomorphic copy of (B1, γ1).

In the case l(A) ≥ l(B1), let S be a scc of A with no predecessors.
Then, using (3) and the induction assumption, there is (D, γD) ∈ Efin

with D the free amalgam of B1−S,B2−S over A−S and γD extending
γ1|B1−S, γ2|B2−S. Then use (4)(b) and let (C, γ) be the free amalgam
of (sclA(S), γA), (D, γD) over (sclA(S)◦, γA) with γ extending γA, γD.
By the uniqueness up to isomorphism part of (4)(b), (C, γ) is the free
amalgam of isomorphic copies of (B1, γ1), (B2, γ2) over an isomorphic
copy of (A, γA), with γ extending γ1, γ2.

We now prove (2). We allow A = ∅ and thereby also prove (1). It
suffices to show that for A+ ∈ Efin, with a sccs, that if A+ vs B′ ∈
D≺fin, where B′ has n ≥ a sccs, then there exists a reordering and
reorientation of B+ ∈ Efin of B′, preserving sccs and the orientation of
edges between them, with A+ vs B+. We show this by induction on
n ≥ a. The base case n = a is trivial. For the induction step, let S be
a scc of B′ − A+ of maximum level k, so B′ − S vs B′. Let D ∈ Efin

be a reordering and reorientation of B′ − S with A+ vs D, using the
induction assumption. Let B′′ be the reordering and reorientation of B′

given by replacing B′ on B′−S with D. We then use (Ext3) to obtain
E ∈ Xk similar to sclB′′(S), and by (4) we use free amalgamation of
E,B′′ − S over E◦ to obtain a reordering and reorientation B+ ∈ Efin

with A+ vs B+.

(5) and (6) are clear by the construction of Efin above.

We now prove (7). We will define γ inductively, and also check that
(B, γ) ∈ Efin and that γ agrees with γB on vs-copies of (A, γA) induc-
tively.

Index the sccs of B as C1, · · · , Cn, where if i < j then l(Ci) ≤ l(Cj). For
C1, observe that for any orders γ1, γ2 on C1 such that (C1, γ1), (C1, γ2) ∈
Efin, we have that γ1 = γ2 by (5). So take γ on C1 such that (C1, γ) ∈
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Efin, and then γ must agree with any vs-copy of γA on C1, as (C, γA) ∈
Efin.

Now suppose that γ has already been defined on C1, · · · , Ci−1 such that
(C1 ∪ · · · ∪ Ci−1, γ) ∈ Efin and γ agrees with γB on every vs-copy of
(A, γA) where γ is defined. We define γ on D := C1 ∪ · · · ∪ Ci. Let k
be the level of Ci. Let X = sclB(Ci). Then (X◦, γ) ∈ Efin, so take γ on
Ci such that (X, γ) ∈ Xk.
Then, to define γ on D, specify that:

(i) Ci is an interval in γ;
(ii) Ci is greater than all vertices of level < k;

(iii) for Cj (j < i) of level k, Cj < Ci in γ if Cj < Ci in the level-lex
preorder λD (which depends only on γ on levels < k);

(iv) for Cj (j < i) of level k with Cj, Ci lying in the same cone,
then order Cj, Ci by their first vertices in γB.

Then we have that (D, γ) ∈ Efin, as we satisfy (Str1), (Str2), (Str3).
We now show that γ agrees with γB on vs-copies of (A, γA). By the
induction assumption, we know that this is the case on C1∪ · · · ∪Ci−1.
Ci lies in some vs-copy (A′, γA′) of (A, γA). As γ, γA′ agree on X◦ and
as (X, γ), (X, γA′) ∈ Efin, by (Ext1) we know that γ, γA′ agree on Ci.

Each Cj (j ≤ i) is an interval in γ, and also in any vs-copy of (A, γA)
by (Str3).

Say Cj, Ci (j < i) lie in a vs-copy (A′, γA′) of (A, γA). If Cj is of level
< k, then by (Str2) Cj < Ci in γA′ , and by (ii) Cj < Ci in γ. If Cj
is of level k, then as γA′ , γ agree on levels < k, the level-lex preorders
λγA′ , λγ agree, and if Cj, Ci lie in the same cone, then by (iv) Cj < Ci
in γA′ iff Cj < Ci in γ. �

Proposition 5.19 (Cor. 7.16, [6]). (Efin,vs) is a Ramsey class.

Proof. This is analogous to the proof for (E1,vs) - i.e. the proof of
part (2) of Proposition 4.10. We apply Theorem 1.57 to D≺fin, and use
part (7) in the definition of Efin. �

Proposition 5.20 (adapted from Lem. 7.9, [6]). We have that:

(1) (Efin,vs) is a strong expansion of (Dfin,vs);
(2) Efin is a reasonable expansion of (Dfin,vs);
(3) Efin has the expansion property over (Dfin,vs).

Proof. (1), (2): Considering Definition 5.17 (the definition of Efin)
and its seven parts, we have that:

• part (1) implies part (1) of reasonableness and part (1) of the
definition of strong expansion;
• part (2) implies part (4) of reasonableness and part (3) of the

definition of strong expansion;
• part (3) implies part (3) of reasonableness.
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Part (2) of reasonableness and part (2) of the definition of strong ex-
pansions are clear.

(3): The proof of the expansion property is analogous to that of part
(3) of Proposition 4.10, with a scc with no predecessors replacing a
point. For a very similar proof, see the proof of Lemma 6.10. �

Definition 5.21. We denote the Fräıssé limit of (Efin,vs) by (M0, ρ, α),
where ρ is the generic orientation and α is the generic linear order. (The
notation is the same as in the previous chapter.)

We let NE = (M0, ρ), KE = Aut(NE) and HE = Aut(NE , α).

5.3 Stabilisers of H-fixed points

In this section, we write H = HE , K = KE , G = G0 = Aut(M0) for
brevity. We carry out the same analysis for M0 as we did for M1 in
Section 4.5. We consider the G-flow G y LO(M0), and show that for
β ∈ LO(M0), if Gα ⊆ Gβ then Gα = Gβ. (Here, as before, Gα, Gβ

denote the G-stabilisers of α and β in this flow.) This gives us some
information about what β can be in the case where β is an H-fixed
point inside a minimal subflow of LO(M0).

As just mentioned, we are able to prove the equivalent results on sta-
bilisers of H-fixed points for M0 as for M1. The proofs of these results
on stabilisers in the M1 case were similar to the proof of Theorem 4.18
- unfortunately the author has not been able to prove an equivalent of
Theorem 4.18 in the case of M0. There is an added difficulty in the M0

case which will be explained in the next section.

In the lemma below, recall that H is the automorphism group of
(NE , α), the Fräıssé limit of (Efin,vs). (See Definition 5.21.)

Lemma 5.22 (**). Consider the G-flow G y LO(M0), and let Gα

denote the stabiliser of α in this flow. Then Gα = H.

Proof. Seeking a contradiction, suppose there exists g ∈ Gα − H.
Then g must reverse the direction of some out-edge (x, y) ∈ ρ, i.e.
(gy, gx) ∈ ρ.

Suppose x /∈ scc(y). So l(x) > l(y), and thus x >α y. As g preserves α,
gx >α gy. As (gy, gx) ∈ ρ, we must have that gy ∈ scc(gx). But the
closed interval [y, x] in α is infinite, and sccs are convex in α, so this
would imply that scc(gx) were infinite - as sccs are finite, this gives a
contradiction, and so we have that x ∈ scc(y).

So we know that g preserves the orientation of out-edges between sccs,
and by the same argument, so does g−1.

Take (x, y) ∈ ρ with y of minimal level k such that (gy, gx) ∈ ρ. So
x ∈ scc(y) and gy ∈ scc(gx). Let A = scl(x). By the minimality of k,
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g does not flip any out-edge within or into A◦. By fineness, g · scc(x) is
strongly connected, so is the subset of a scc. Any out-edge into scc(x)
must have its orientation preserved by g, so g · scc(x) is a scc. So gA
is an extension of level k with head scc equal to g · scc(x).

If k = 0, then as g is a graph isomorphism, case (2) of similarity
(Definition 5.14) is satisfied. If k > 0, then by fineness (part (1) of
Lemma 5.11), δ(A) = δ(A◦), and g as a graph isomorphism preserves
predimension, so δ(gA) = δ(g(A◦)) = δ((gA)◦). Thus g is out-degree-
preserving, so case (1) of similarity is satisfied.

So (A,α), (gA, α) are similar extensions, and so are isomorphic as or-
dered digraphs. By the rigidity of finite linear orders and the fact that
g preserves α, g must in fact be the ordered digraph isomorphism given
by similarity, and cannot reverse (x, y) - contradiction. So Gα = H. �

In the lemma below, recall that K is the automorphism group of NE =
(M0, ρ), the oriented graph in the Fräıssé limit (NE , α) = (M0, ρ, α) of
(Efin,vs). (See Definition 5.21.)

Lemma 5.23 (**). Consider the G-flow Gy LO(M0).

For β ∈ LO(M0), if Kα ⊆ Kβ, then Kα = Kβ.

Proof. From Lemma 5.22, we know that H = Kα = Gα. Take g ∈
K −Kα. We will show that g /∈ Kβ.

g preserves the orientation ρ but not the order α. So there exist x, y ∈
M0 with x >α y, gx <α gy, and take x of minimal level k satisfying
this. So g preserves α on levels below k.

Thus (scl(x), α), (scl(gx), α) are similar, and so are isomorphic as or-
dered digraphs (note that the ordered digraph isomorphism is not nec-
essarily g), and likewise for (scl(y), α), (scl(gy), α).

If scc(x), scc(y) are not in the same cone, then as x >α y, we must either
have that (i) l(y) < l(x), in which case l(gy) < l(gx), so gy <α gx,
contradiction; or (ii) scc(y) < scc(x) in the level-lex preorder λ = (Ek
,�k−1,Ek−1, · · · ,�0,E0). If the first coordinate of λ for which scc(y)
is less than scc(x) is El or �l, then the same is true for scc(gy) and
scc(gx), so gy <α gx, contradiction. So scc(x), scc(y) lie in the same
cone.

Therefore there exists h ∈ H taking scl(y) to scl(gx) and scl(x) to
scl(gy). h−1g cannot be the identity on scl(y) ∪ scl(x), as y <α x but
h−1gy >α h

−1gx, and therefore h−1g does not fix a linear order. So, as
H = Kα ⊆ Kβ, g cannot fix β. �

Theorem 5.24 (**). Consider the G-flow Gy LO(M0).

For β ∈ LO(M0), if Gα ⊆ Gβ then Gα = Gβ.
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Proof. Seeking a contradiction, say there exists g ∈ Gβ − Gα. We
have that Kα = Gα and Kα ⊆ K ∩Gβ = Kβ, so Kα = Kβ. So g /∈ K,
i.e. there exist x, y ∈M0 such that (x, y) ∈ ρ, (gy, gx) ∈ ρ.

We will eliminate this possibility case-by-case.

Case 1: x has out-degree 2, with out-edges to y, z, and y is not in the
same scc as x.

Let C = scc(x), and let A = scl(C). As C is fine and contains a vertex
of out-degree 2 in NE , we have that δ(A) = δ(A◦) by Lemma 5.11.

Let n = 2|N+(C)|+1. The cone Qα(C) is order-isomorphic to Q, and so
as scl(gA) is finite, there exist sccs C−n, · · · , C−1, C1, · · · , Cn ∈ Qα(C)
with C−n < · · · < C−1 < C < C1 < · · · < Cn in α and each gCi
disjoint from scl(gA). Let fi ∈ H denote the (unique) ordered digraph
isomorphism sending C to Ci, and let xi = fi(x).

As ρ is a 2-orientation, each vertex of g ·N+(C) has out-degree ≤ 2, and
so as n = 2|N+(C)|+1, there is −n ≤ i ≤ −1 such that the orientation
of out-edges from Ci to N+(C) is preserved by g, i.e. for (v, w) ∈ ρ with
v ∈ Ci, w ∈ N+(C), then (gv, gw) ∈ ρ. Likewise there is 1 ≤ j ≤ n
such that the orientation of out-edges from Cj to N+(C) is preserved
by g.

As g is a graph isomorphism, it preserves predimension. We have that
δ(Ci/N+(C)) = δ(C/N+(C)) = 0, and so δ(gCi/gN+(C)) = 0. Hence
if v ∈ gCi, w ∈ M0 and (v, w) ∈ ρ, then w ∈ gCi ∪ gN+(C). So for
v ∈ Ci, v has out-degree k within Ci iff gvi has out-degree k within
gCi. Therefore (Ci, g

−1ρ) is a reorientation of Ci in which out-degrees
within Ci have been preserved, and so (Ci, g

−1ρ) is strongly connected
by fineness. Thus gCi is strongly connected in ρ, and therefore is a
subset of a scc. As all out-edges from gCi lie in gN+(C) ⊆ gA and gCi
is disjoint from scl(gA), gCi is a scc. Likewise, gCj is a scc.

We have that gCi is a scc and for v ∈ gCi, w ∈M0, (v, w) is an exiting
out-edge from gCi iff (g−1v, g−1w) is an exiting out-edge from Ci -
and likewise for gCj. Therefore we have that the ordered extensions
(scl(gCi), α), (scl(gCj), α) with head sccs gCi, gCj are similar, so are
isomorphic as ordered digraphs by part (5) of Definition 5.15, and so
by homogeneity of (NE , α) there exists h ∈ H sending (scl(gCi), α) to
(scl(gCj), α) with h(gCi) = gCj. As Gα ⊆ Gβ, we have gfif

−1
j g−1h ∈

Gβ, and as gfif
−1
j g−1h fixes gCi setwise, gfif

−1
j g−1h is the identity on

gCi. Therefore hgxi = gxj.

The orientation of out-edges from Ci, Cj is preserved by g, so (gxi, gy) ∈
ρ, (gxj, gy) ∈ ρ, and since by assumption (gy, gx) ∈ ρ, we have that
gx ∈ scl(gCi)

◦ = scl(gCj)
◦. Therefore h fixes gx.

We have that either xi < x < xj or xj < x < xi in β, and as g ∈ Gβ,
therefore gxi < gx < gxj or gxj < gx < gxi in β. As h fixes gx,
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hgxi = gxj and h ∈ Gβ, we obtain our contradiction, completing the
elimination of Case 1.

We have shown that the orientation of out-edges from sccs of relative
predimension zero is preserved by g. Before eliminating Case 2, we will
prove the following claim:

Claim: g preserves sccs.

Proof of claim: first we show that if C is a scc, then gC is strongly
connected. There are three cases for C.

Consider the case where C is a scc of relative predimension zero (i.e.
δ(C/C◦) = 0). We know from Case 1 that g preserves the orientation of
out-edges from C. As δ(C/N+(C)) = 0 and g preserves predimension,
we have that δ(gC/gN+(C)) = 0. Thus if v ∈ gC,w ∈M0 and (v, w) ∈
ρ then w ∈ gC ∪ gN+(C). So for v ∈ C, v has out-degree k within C
iff gv has out-degree k within gC, and so by fineness (as in Case 1),
gC is strongly connected.

In the case |C| = 1, then gC is trivially strongly connected.

In the final case where l(C) = 0 (including the case δ(C) = 1), then
(C, g−1ρ) is a reorientation of C, so is strongly connected by fineness -
i.e. gC is strongly connected in ρ. This completes the proof that if C
is a scc, then gC is strongly connected.

Hence, for any scc C, |C| ≤ | scc(gC)|. The same argument for g−1 ∈
Gβ − Gα applied to scc(gC) shows that g−1 scc(gC) is strongly con-
nected. But C ⊆ g−1 scc(gC) is a scc, and so g−1 scc(gC) = C. Hence
| scc(gC)| ≤ |C|, so |C| = | scc(gC)| and thus gC is a scc, proving the
claim.

Case 2: x has out-degree 1, with out-edge to y, where y /∈ scc(x).

The cone Qα(x) is order-isomorphic to Q, and so as scl(gy) is finite,
there exist x−3, x−2, x−1, x1, x2, x3 ∈ Qα(x) with x−3 < x−2 < x−1 <
x < x1 < x2 < x3 in α and each gxi /∈ scl(gy). As ρ is a 2-orientation,
there are i, j with −3 ≤ i ≤ −1 and 1 ≤ j ≤ 3 such that g preserves
the orientation of (xi, y), (xj, y), i.e. (gxi, gy) ∈ ρ, (gxj, gy) ∈ ρ.

Let (w, xi) ∈ ρ be an in-edge of xi. Seeking a contradiction, suppose
(gxi, gw) ∈ ρ. If gw /∈ scc(gxi), then (gxi, gw) is an out-edge of scc(gxi)
which is of relative predimension zero, so by Case 1 applied to g−1,
(xi, w) ∈ ρ, contradiction. If gw ∈ scc(gxi), as g−1 preserves sccs,
w ∈ scc(xi), contradiction. Thus g preserves the orientation of in-
edges of xi, and so {gxi} is a scc, as (gxi, gy) is the only out-edge of
gxi and gxi /∈ scl(gy). Likewise {gxj} is a scc.

Hence, the ordered extensions (scl(gxi), α), (scl(gxj), α) with head sccs
{gxi}, {gxj} are similar, so are isomorphic as ordered digraphs by part
(5) of Definition 5.15, and so by homogeneity of (NE , α) there exists h ∈
H sending (scl(gxi), α) to (scl(gxj), α) with hgxi = gxj and scl(gxi)

◦ =
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scl(gxj)
◦ fixed. Specifically, as (gxi, gy) ∈ ρ, (gy, gx) ∈ ρ, we have that

h fixes gx.

We have that either xi < x < xj or xj < x < xi in β, and as g ∈ Gβ,
thus gxi < gx < gxj or gxj < gx < gxi in β. As h ∈ Gβ, h fixes gx
and hgxi = hgxj, we obtain a contradiction.

Case 3: x has out-degree 2, with out-edges to y, z, and y is in the
same scc as x.

Let C = scc(x), and assume C is of minimum level - that is, C is a scc of
minimum level such that there are x, y ∈ C with (x, y) ∈ ρ, (gy, gx) ∈ ρ.
Let A = scl(C). We have already shown that g preserves sccs and out-
edges from sccs, and by the minimality of the level of C we know that g
preserves the orientation of edges within sccs of A◦. Therefore (gA, α)
is an ordered extension with head scc gC which is similar to (A,α),
and so as before, by part (5) of Definition 5.15 and homogeneity of
(NE , α), there exists h ∈ H sending (A,α) to (gA, α). In particular, h
sends C to gC, and as h ∈ Gβ, by the rigidity of finite linear orders h
agrees with g on C. But h is a digraph isomorphism, so (x, y) ∈ ρ ⇒
(hx, hy) ∈ ρ, i.e. (gx, gy) ∈ ρ, contradiction.

Case 4: x has out-degree 1, with out-edge to y ∈ scc(x).

Let C = scc(x). By Lemma 5.11, we have that l(C) = 0, δ(C) = 1. As g
preserves sccs and out-edges from sccs, gC is also a scc with l(gC) = 0,
and as g preserves predimension δ(gC) = 1. So (C, α), (gC, α) are
similar (by case (2) of similarity, where we need only have a graph
isomorphism). The rest of the argument is as for Case 3. �

5.4 A difficulty in extending results from M1 to
M0

We now explain why the proof of Theorem 4.18 does not immediately
carry over to the case of M0.

The problem is as follows. In the proof of Theorem 4.18, we use a
finite ordered graph in Age(M1, β) to force a certain orientation in the
generic orientation ρ, and we do this using α-automorphisms and the
fact that Gα ⊆ Gβ (see Figure 4.3). However, in the M0 case, it could
be that an element A of Age(M0, β), when ≤s-embedded in ρ, is inside
a scc - as seen in the below proposition. This seems to prevent us from
using α-automorphisms and vs-homogeneity to find out information
about the order β on A.

More specifically, the below proposition shows that we cannot use the
graph structure alone to guarantee that A does not lie inside a scc. It
may be that the order β on A can be used to show that A cannot lie
inside a scc, but it is not clear to the author how to do this.
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Figure 5.2

Proposition 5.25 (**). Take A ∈ Dfin with δ(A) > 0. Let A0 be
the maximal successor-closed substructure of A with δ(A0) = 0. Then
there exists B ∈ Dfin and a ≤s-digraph embedding f : A→ B such that
f(A− A0) is contained within a scc of B.

Proof. Let a1, · · · , an be the vertices of A − A0. As δ(A) > 0, A
must have at least one root. Let r1, · · · , rk be the roots of A, with
multiplicities m1, · · · ,mk. As δ(A0) = 0, r1, · · · , rk lie in A− A0.

Let B be the 2-oriented graph given by the following (see Figure 5.2
for an example):

• B contains A;
• for each root ri of A with multiplicity mi, add new vertices
vi,0, · · · , vi,mi

and out-edges (ri, vi,j) (1 ≤ j ≤ mi), (vi,1, vi,0);
• add new vertices w1, · · · , wn+1 and out-edges (vi,1, w1) (1 ≤
i ≤ k), (wj, aj) (for 1 ≤ j ≤ n), (wj, wj+1) (for 1 ≤ j ≤ n).

We have that B ∈ D0, and we can reverse the orientations of the out-
edges (vi,1, vi,0), (ri, vi,j) (1 ≤ i ≤ k, 1 ≤ j ≤ mi) to produce a new
orientation B′ of B in which A vs B′, so A ≤s B.

Let C = (A − A0) ∪ {vi,1 : 1 ≤ i ≤ k} ∪ {wj : 1 ≤ j ≤ n}. First
we show that C is a scc of B. For 1 ≤ i ≤ k, the sequence of out-
edges (vi,1, w1), (w1, w2), · · · , (wj−1, wj) gives an out-path from vi,1 to
wj (1 ≤ j ≤ n), which with the additional out-edge (wj, aj) gives an
out-path from vi,1 to aj (1 ≤ j ≤ n). As each rl (1 ≤ l ≤ k) is a vertex
of A − A0 (i.e. ri = aj for some j), the additional out-edge (rl, vl,1)
gives an out-path from vi,1 to vl,1. We therefore have an out-path from
vi,1 to each vertex of C. For a ∈ A − A0, sclA(a) must contain some
root ri, and so with the out-edge (ri, vi,1) we must have an out-path
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from a to vi,1, and thus from a to each vertex of C. Finally, for each
wj (1 ≤ j ≤ n), the out-edge (wj, aj) gives an out-path from wj to aj,
and therefore we have an out-path from wj to each vertex of C. Thus
C is a scc.

As each vertex of C has out-degree 2 in B, C is a fine scc, and as
each out-edge from C either has its out-vertex in A0 ∈ Dfin or has its
out-vertex forming a scc of size one (as in the case of the out-edges
(vi,1, vi,0) (1 ≤ i ≤ k), (ri, vi,j) (1 ≤ i ≤ k, 2 ≤ j ≤ mi), (wn, wn+1)),
we have that B ∈ Dfin. �

Note that the proof of the above proposition can easily be adapted to
show an analogous result for D0 in place of Dfin.



Chapter 6

The universal minimal flow of Aut(M00)

In this chapter, we find a coprecompact (reasonable, strong) expansion
E00 of C00 (the class of 2-sparse graphs of predimension zero), which is
rigid and has the Ramsey property and the expansion property, and
therefore specifies the universal minimal flow of G00, the automorphism
group of the Fräıssé limit of (C00,≤s). We do this by using the admis-
sibly ordered orientations from the previous chapter, which behave in
a much simpler fashion for the predimension zero case. We then use a
simplified version of a result of Evans, Ghadernezhad and Tent ([12]),
which states that any element of G00 may be extended to an element
of G0, to obtain a G0-flow with a comeagre orbit.

6.1 A key observation

Definition 6.1. Let C00 be the class of finite 2-sparse graphs of pred-
imension zero - that is, C00 consists of A ∈ C0 with δ(A) = 0.

Let D00 be the class of finite 2-oriented graphs of predimension zero.
As predimension is dependent only on the underlying graph structure,
by Proposition 1.7 we have that C00 is the class of graph reducts of D00.

Note that for B ∈ C00 and A ⊆ B, we do not necessarily have A ∈ C00,
unlike in the case of C0.

Lemma 6.2.

(1) (C00,≤s) and (D00,vs) are strong classes.
(2) (D00,vs) is a strong expansion of (C00,≤s).
(3) (D00,vs) and (C00,≤s) are free amalgamation classes.

Proof. (1): this follows by a straightforward check of (S1)-(S3) in
Definition 1.15. (Note that we cannot use Lemma 1.30.)

(2): this is analogous to the proof of Lemma 1.35.

(3): Recall the fact that for A,B,C ∈ C0, if B,C are freely amalga-
mated over A then δ(B ∪C) = δ(B) + δ(C)− δ(A) (this is the equality
case of Lemma 1.29). Therefore (D00,vs) is immediately a free amal-
gamation class. Using part (2), by Lemma 1.26 we have that (C00,≤s)
is a free amalgamation class. �
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Definition 6.3. Let M00 denote the Fräıssé limit of (C00,≤s). As
C00 ⊆ C0, by the extension property of M0 we may take M00 ⊆M0. Let
G00 = Aut(M00).

Many aspects of the analysis in the preceding chapter are rather sim-
plified in the predimension zero case.

Every oriented graph in D00 consists entirely of vertices of out-degree 2,
and so all graph isomorphisms between elements of D00 are out-degree-
preserving. By Lemma 5.4, any two orientations of A ∈ C00 must
have the same successor-closed subsets, sccs and orientation of edges
between sccs. So, with the same definition of extension as before, there
is no distinction between orientations and fine orientations within D00:
all orientations within D00 are fine.

The below key observation shows that ≤s, vs are essentially synony-
mous in the predimension zero case:

Lemma 6.4 (*). Let A ≤s B ∈ C00, and let B+ ∈ D00 be an orientation
of B. Then A vs B+, i.e. the orientation induced on A by B+ is
successor-closed in B+.

Proof 1. As A ≤s B, there exists an orientation B′ of B in which
A vs B′. As any two orientations of B have the same successor-closed
subsets, A vs B+. �

Proof 2. As δ(A) = 0, A has no roots (considered in A). So there
are no out-edges from A to B+ − A. �

6.2 Admissibly ordered orientations on C00

The definition of similarity in D≺fin reduces to the following:

Definition 6.5. Let A,B ∈ D≺00 be ordered extensions. A,B are
similar if there exists a graph isomorphism A → B which is also an
ordered digraph isomorphism A◦ → B◦.

Definition 6.6. E00 ⊆ D≺00 is a class of admissibly ordered orienta-
tions of C00 if E00 satisfies parts (1)-(7) of Definition 5.17 with C00,D≺00

replacing C0,D≺fin.

The proofs in the previous chapter straightforwardly restricted to the
case of graphs of predimension zero give:

Proposition 6.7. There exists a class (E00,vs) of admissibly ordered
orientations of C00.

(E00,vs) is a Ramsey class, and a strong, reasonable expansion of
(D00,vs).

Differently to the case of Efin, we have that:
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Lemma 6.8. E00 is a reasonable expansion of (C00,≤s).

Proof. The only part of reasonableness left to check is part (3): we
need to show that E00 is ≤s-closed. This follows immediately from
Lemma 6.4 and the fact that (E00,vs) has the hereditary property. �

We will now show that (E00,vs) has the properties required for X(E00)
to be the universal minimal flow of G00.

Lemma 6.9 (**). E00 is a coprecompact expansion of C00.

Proof. For A ∈ C00, C+ ∈ E00 with A ≤s C+, let A+ ∈ E00 be the
ordered orientation induced on A by C+. Then A+ vs C+. As A ∈ C00

has finitely many expansions in E00, this shows coprecompactness by
Lemma 1.75. �

Lemma 6.10 (**). E00 has the expansion property over (C00,≤s).

Proof. We must show that for A+ = (A, ρA, γA) ∈ E00, there exists
B ∈ C00 such that for any expansion (B, ρB, γB) ∈ E00, there exists a
≤s-embedding A+ → (B, ρB, γB). We use induction on |A|, and the
base case |A| = 1 is trivial.

There exists a scc S of A+ with no predecessors. Let X+ = A+ −
QA+(S), with the induced ordered orientation from A+. Then X+ vs
A+, so X+ ∈ E00, and by the induction assumption there exists Y ∈ C00

such that any expansion Y + ∈ E00 of Y contains a ≤s-copy of X+. Let
X be the underlying graph of X+.

Let X1, · · · , Xn be the ≤s-copies of X in Y . Let Y0 = Y , and induc-
tively define Yi (1 ≤ i ≤ n) to be the free amalgam of Yi−1 with a
copy of A over Xi (where we take the copy A′ of A with Xi ≤s A′).
Let Z = Yn. As C00 is a free amalgamation class, Z ∈ C00. We have
that Yi ≤s Z (0 ≤ i ≤ n), and each copy of A in the sequence of free
amalgamations is ≤s-closed in Z. We will show that Z witnesses the
expansion property for A+.

Let Z+ = (Z, ρZ , γZ) ∈ E00 be an expansion of Z. As Y ≤s Z, by
Lemma 6.4 (Y, ρZ , γZ) vs Z+, so (Y, ρZ , γZ) ∈ E00, and so there is a
≤s-embedding f : X+ → (Y, ρZ , γZ). f(X) is equal to some Xi, and
Xi ≤s A′ for some copy A′ ≤s Z of A in Z.

By Lemma 6.4, f is a vs-embedding and f(X+) vs (A′, ρZ , γZ) vs Z+.

By Lemma 5.4, there is a graph isomorphism g : A→ A′ which extends
f and preserves sccs and the orientation of edges between them for A+

and (A′, ρZ).

Let T be a scc of (A′, ρZ) lying outside f(X+). Then we have that
(sclA′(T ), γZ), (sclA+(S), γA) are similar, and so they are ordered di-
graph isomorphic. We may therefore take g to be an ordered digraph
isomorphism. We have that g : A+ → (A′, ρZ , γZ) ≤s Z, so g witnesses
the expansion property for A+. �
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Theorem 6.11. X(E00) is the universal minimal flow of G00, and has
a comeagre orbit consisting of the expansions of M00 which are isomor-
phic to the Fräıssé limit of (E00,vs).

Proof. This follows immediately by Theorem 1.76. �

6.3 A G0-flow with a comeagre orbit

The following lemma is a simple particular case of [12], Lemma 4.2.1:

Lemma 6.12. Let j ∈ G00. Then j can be extended to an element of
G0.

Proof. Take A0 ≤s M0 with δ(A0) = 0, and take Ai, i ≥ 1, such
that A0 ≤s A1 ≤s · · · is an increasing ≤s-chain with M0 =

⋃
i≥0Ai.

Let B0 = jA0, and take Bi, i ≥ 1, such that B0 ≤s B1 ≤s · · · is an
increasing ≤s-chain with M0 =

⋃
i≥0Bi.

We will find g ∈ Aut(M0) extending j via a back-and-forth argument.
Specifically, we will define a sequence of partial isomorphisms gi : Ci →
Di, Ci, Di ≤s M0, i ∈ N, such that, for i ∈ N,

(1) gi+1 extends gi;
(2) Ai ⊆ Ci and Bi ⊆ Di;
(3) gi, j agree on Ci ∩M00.

(Note that because graph isomorphisms preserve predimen-
sion, gi(Ci ∩M00) = Di ∩M00.)

Once this sequence (gi)i∈N has been defined, we will let g =
⋃
i∈N gi,

and then g will be the automorphism of M0 extending j that we seek.

We define (gi)i∈N by induction. Let g0 = j|A0 : A0 → B0 (so here we
have C0 = A0, D0 = B0 = jA0). Suppose we have already defined
g0, · · · , gn−1 satisfying (1), (2), (3). We now define gn.

Let P = cls(Cn−1 ∪ An). Then Cn−1 ∪ (P ∩ M00) ≤s P : we may
see this by noting that as Cn−1 ≤s M0, therefore Cn−1 ≤s P , and so
there exists a 2-orientation of P in which Cn−1 is successor-closed; as
δ(P ∩M00) = 0, P ∩M00 is successor-closed in this orientation.

By (3), gn−1 : Cn−1 → Dn−1 and j|P∩M00 are compatible functions.
We have that Dn−1 ∪ j(P ∩ M00) ≤s M0 by a similar argument to
the previous paragraph, and therefore we have a partial isomorphism
gn−1 ∪ j|P∩M00 between ≤s-substructures of M0. By ≤s-homogeneity
of M0, there is hn ∈ Aut(M0) extending gn−1 ∪ j|P∩M00 . Let Q =
hn(P ) ≤s M0.

Then hn : P → Q is a partial isomorphism between ≤s-substructures
of M0 extending gn−1 with An ⊆ P such that hn, j agree on P ∩M00.
This completes the “forth” step of the back-and-forth construction.
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The “back” step is similar. We let Dn = cls(Q∪Bn), and as before, we
haveQ∪(Dn∩M00) ≤s Dn. As hn, j agree on P∩M00 and hn(P∩M00) =
Q∩M00 (as graph isomorphisms preserve predimension), we have that
h−1
n , j−1 agree on Q ∩ M00, and so h−1

n : Q → P , j−1|Dn∩M00 are
compatible functions. As before, P ∪ j−1(Dn ∩M00) ≤s M0, and so we
have a partial isomorphism h−1

n ∪ j−1|Dn∩M00 between ≤s-substructures
of M0. By ≤s-homogeneity of M0, there is gn ∈ Aut(M0) such that
g−1
n extends h−1

n ∪ j−1|Dn∩M00 . Let Cn = g−1
n (Dn) ≤s M0. Then gn :

Cn → Dn is a partial isomorphism between ≤s-substructures of M0

with Bn ⊆ Dn and An ⊆ P ⊆ Cn. As g−1
n , j−1 agree on Dn ∩ M00

and Cn ∩M00 = g−1
n (Dn ∩M00), we have that gn, j agree on Cn ∩M00,

completing the “back” step of the back-and-forth construction. �

Thus we have that:

Theorem 6.13. There is a G0-flow with a comeagre orbit.

Proof. Let r : G0 → G00, r(g) = g|M00 be the restriction map. By
the above lemma r is surjective, and it is straightforward to see that r
is continuous. Therefore, taking the universal minimal flow X(E00) of
G00 and precomposing with r, we obtain a G0-flow G0 y X(E00) with
a comeagre G0-orbit. �

Remark 6.14. Note that the G0-flow G0 y X(E00) is not faithful.



Chapter 7

Further questions

Question 7.1. Do minimal subflows of LO(M0) or LO(MF ) have all
G-orbits meagre?

Question 7.2. Can we adapt the construction of Efin to force certain
orientations within sccs, and thereby extend Theorem 4.18 from M1 to
M0?

Question 7.3. Is there an “acyclic” version of MF ? Can we then
apply the proof method of Theorem 4.18?

Specifically, for A,B ∈ C1, say A ≤e B if there exists an acyclic 2-
orientation B+ of B in which A vs B+ and there does not exist b ∈ B
with two out-edges into A. Can we define a subclass CG of C1 such that
(CG,≤e) is a free amalgamation class with ω-categorical Fräıssé limit?
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[9] D. Evans, J. Hubička, and J. Nešetřil. Ramsey properties and extending partial
automorphisms for classes of finite structures. Fund. Math., 253(2):121–153,
2021.

[10] D. M. Evans. Ample dividing. J. Symbolic Logic, 68(4):1385–1402, 2003.
[11] D. M. Evans. Trivial stable structures with non-trivial reducts. J. London

Math. Soc. (2), 72(2):351–363, 2005.
[12] D. M. Evans, Z. Ghadernezhad, and K. Tent. Simplicity of the automorphism

groups of some Hrushovski constructions. Ann. Pure Appl. Logic, 167(1):22–48,
2016.
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