Aspects of the topological dynamics of sparse graph automorphism groups

Robert Sullivan

Department of Mathematics, Imperial College London

Statement of originality:

I declare that the material in this thesis is my own work, other than where I have indicated and appropriately referenced the work of others.

Copyright declaration:

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution - Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.

Abstract

: We examine sparse graph automorphism groups from the perspective of the Kechris-Pestov-Todorčević (KPT) correspondence. The sparse graphs that we discuss are Hrushovski constructions: we consider the 'ab initio' Hrushovski construction M_{0}, the Fraïssé limit of the class of 2-sparse graphs with self-sufficient closure; M_{1}, a simplified version of M_{0}; and the ω-categorical Hrushovski construction M_{F}. We prove a series of results that show that the automorphism groups of these Hrushovski constructions demonstrate very different behaviour to previous classes studied in the KPT context. Extending results of Evans, Hubička and Nešetřil, we show that $\operatorname{Aut}\left(M_{0}\right)$ has no coprecompact amenable subgroup. We investigate the fixed points on type spaces property, a weakening of extreme amenability, and show that for a particular choice of control function $F, \operatorname{Aut}\left(M_{F}\right)$ does not have any closed oligomorphic subgroup with this property. Next we consider the Aut $\left(M_{1}\right)$-flow of linear orders on M_{1}, and show that minimal subflows of this have all $\operatorname{Aut}\left(M_{1}\right)$-orbits meagre. We give partial analogous results for the $\operatorname{Aut}\left(M_{0}\right)$-flow of linear orders on M_{0}, and find the universal minimal flow of the automorphism group of the "dimension 0" part of M_{0}.

Contents

Acknowledgements 5
Notation and terminology 6
Introduction 8
Chapter 1. Background 16
1.1 Graphs and oriented graphs: notation and setup 16
1.2 Sparse graphs: \mathcal{C}_{0} and \mathcal{C}_{1} 19
1.3 Strong classes and Fraïssé limits 21
1.4 Sparse graphs: $\leq_{s}, \sqsubseteq_{s}$ and \leq_{1} 25
1.5 Sparse graphs: \leq_{d} and the ω-categorical M_{F} 29
1.6 The Ramsey property 32
1.7 A Ramsey result 33
1.8 Topological dynamics: G-flows 36
1.9 The KPT correspondence 37
1.10 Further KPT: the expansion property 37
1.11 Meagre orbits 41
Chapter 2. Amenable and extremely amenable subgroups of the automorphism groups of sparse graphs 43
2.1 Extremely amenable subgroups 43
2.2 A criterion for non-amenability 45
2.3 Amenable subgroups 46
Chapter 3. Fixed points on type spaces 48
3.1 Introduction and definition 48
3.2 An example: the random graph. 49
3.3 An ω-categorical structure having no ω-categorical ex- pansion with FPT 50
Chapter 4. Linear orders and orientations on M_{1} 61
4.1 Orientations on M_{1} 61
$4.2 \mathcal{L O}\left(M_{1}\right)$ is not minimal 62
4.3 Admissibly ordered orientations on M_{1} 63
4.4 Minimal subflows of $\mathcal{L O}\left(M_{1}\right)$ and their orbits 69
4.5 Stabilisers of H-fixed points. 75
4.6 An example of a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$ 77
Chapter 5. Linear orders and orientations on M_{0} 81
$5.1 \mathcal{L O}\left(M_{0}\right)$ is not minimal 81
5.2 Admissibly ordered fine orientations: constructing a Ram- sey expansion of \mathcal{C}_{0} 82
5.3 Stabilisers of H-fixed points 92
5.4 A difficulty in extending results from M_{1} to M_{0} 96
Chapter 6. The universal minimal flow of $\operatorname{Aut}\left(M_{00}\right)$ 99
6.1 A key observation 99
6.2 Admissibly ordered orientations on \mathcal{C}_{00} 100
6.3 A G_{0}-flow with a comeagre orbit. 102
Chapter 7. Further questions 104
Bibliography 105

Acknowledgements

Firstly, I would like to thank my supervisor David Evans, who guided me through the PhD with patience and persistence.

I would also like to thank Anderson Santos, the former PhD administrator for the Department of Mathematics, whose advice, reassurance and humour was invaluable at crucial points.

Thank you to my colleagues in office 617, my friends and my family.
I would like to thank some of the artists whose music has accompanied me over the PhD: DJ Screw, Aphex Twin, Mobb Deep, Kraftwerk, Actress, DJ Rashad, Autechre, UGK, Robert Hood, E.R.P., Roy Ayers, Cutty Ranks, Manuel Göttsching, Anthony Linell, Terry Riley, Miles Davis, Peverelist, Fela Kuti, Photek, Pérotin, Tony Allen, Drexciya, Timbaland, Demdike Stare, J Dilla, Equiknoxx, The Abyssinians, Horace Andy, Roll Deep, Scientist, Theo Parrish, Gregory Isaacs, Mr. Fingers, DJ Pierre, African Head Charge, Adrian Sherwood, ParliamentFunkadelic, Lee Scratch Perry, Basic Channel, Skee Mask, Triple Six Mafia, The Black Dog, Model 500, Dr. Dre, Curren\$y, Freddie Gibbs, The Notorious B.I.G., OutKast, Héctor Lavoe, Beenie Man, Buju Banton, MC Lan, Lunatic, Idéal J, Suprême NTM, the Wu-Tang Clan, YG, Faze Miyake, Footsie, D Double E, Wiley, The Congos, Max Romeo and the Upsetters, Barrington Levy, Kanye, Rosalía, More Fire Crew, Source Direct, Remarc, Ghetts, Lil' Kim, Skepta, MF Doom, Anderson .Paak, Scarface and Pauline Anna Strom.

Finally, special thanks go to my cat Sisqo, who sat on my thesis as I was trying to write it.

Notation and terminology

Classes of graphs:

Class	Fraïssé limit	Automorphism group	Definition
\mathcal{C}_{1}	M_{1}	G_{1}	finite graphs B s.t.
\mathcal{C}_{0}	M_{0}	G_{0}	$\forall A \subseteq B, \exists a \in A, \mathrm{~d}(a) \leq 2$
\mathcal{C}_{00}	M_{00}	G_{00}	2 -sparse graphs
\mathcal{C}_{F}	M_{F}	G_{F}	$A \in \mathcal{C}_{0}, \delta(A)=0$
			$B \in \mathcal{C}_{0}, \delta(A) \geq F(\|A\|)$
		$\forall A \subseteq B$, with Fraïssé limit	
$M_{F} \omega$-categorical			

Classes of oriented graphs:

Class	Fraïssé limit	Automorphism group	Definition
\mathcal{D}_{1}	N_{1}	K_{1}	2-oriented graphs with no
		\times	directed cycles
\mathcal{D}_{0}	\times	\times	2-oriented graphs
$\mathcal{D}_{\text {fin }}$	\times	$K_{\mathcal{E}}$	finely 2-oriented graphs
$\mathcal{D}_{\mathcal{E}}$	$N_{\mathcal{E}}$	\times	digraph reducts of $\mathcal{E}_{\text {fin }}$
\mathcal{D}_{00}	\times	2-oriented graphs with	
		$\delta=0$	

Classes of ordered oriented graphs:

Class	Fraïssé limit	Automorphism group	Definition
\mathcal{E}_{1}	$\left(N_{1}, \alpha\right)$	H_{1}	admissibly ordered 2-oriented graphs with no directed cycles
$\mathcal{E}_{\text {fin }}$	$\left(N_{\mathcal{E}}, \alpha\right)$	$H_{\mathcal{E}}$	admissibly ordered finely
\mathcal{E}_{00}	$\left(N_{00}, \alpha\right)$	H_{00}	2-oriented graphs
			admissibly ordered
2-oriented graphs with			
		$\delta=0$	

In Chapter 4, where we study linear orders on M_{1}, we write:

$$
G=G_{1}, K=K_{1}, H=H_{1} .
$$

In Chapter 5, where we study linear orders on M_{0}, we write

$$
G=G_{0}, K=K_{\mathcal{E}}, H=H_{\mathcal{E}} .
$$

Other notation:

Notation	Description
\mathcal{K}^{2}	(A, γ) with $A \in \mathcal{K}$ and γ a linear order on A
$\mathcal{L O}(M)$	the flow of linear orders on M
$\operatorname{Or}(M)$	the flow of 2-orientations on M
$\delta(A)$	the predimension $\delta(A)=2\|A\|-\|\mathrm{E}(A)\|$
$\mathrm{V}(A)$	vertex set of the graph A
$\mathrm{E}(A)$	edge set $\mathrm{E}(A) \subseteq A^{(2)}$ of the graph A
E_{A}	symmetric, irreflexive edge relation $E_{A} \subseteq A^{2}$
$A \leq_{s} B$	$\delta(C) \geq \delta(A) \forall A \subseteq C \subseteq B$
$A \sqsubseteq_{s} B$	A is successor-closed in B
$\left(A, \gamma_{A}\right) \sqsubseteq_{s}\left(B, \gamma_{B}\right)$	for A, B oriented graphs with orders $\gamma_{A}, \gamma_{B}:$
$A \coprod_{d} B$	$\delta(C)>\delta(A)$ for all $A \subsetneq C \subseteq B$
$A \leq_{1} B$	there exists a 2-orientation of B w/o directed
	cycles in which A is successor closed
scc	strongly connected component
scl	successor-closure
$Q_{\rho}(x)$	the cone of x in the orientation ρ
G_{x}	the stabiliser of x in the group G
$G x$	the G-orbit of x

Attribution of results. Results due to other authors will usually be explicitly referenced. New results due to the author (in collaboration with the author's PhD supervisor David Evans) will be indicated as follows:
$\left.{ }^{*}\right)$ indicates a new result which is a straightforward translation of earlier results.
${ }^{(* *)}$ indicates a new result whose proof contains an original idea.
If a result is not explicitly referenced and is not indicated by asterisks, then it is either folklore, or comes from $[\mathbf{6}],[\mathbf{7}],[\mathbf{8}]$, the key paper which provides the starting point for this PhD thesis (of which we use results from several versions).

Introduction

This thesis examines the automorphism groups of sparse graphs from the perspective of the Kechris-Pestov-Todorčević correspondence (KPT), a series of results linking the topological dynamics of automorphism groups of countable homogeneous structures with structural Ramsey theory. Classes of sparse graphs demonstrate different behaviour to previous classes studied in the KPT context.

Sparse graphs.

A graph A is k-sparse if for all finite $B \subseteq A$, the number of edges of B is at most k times the number of vertices of B. We will take $k=2$ throughout this thesis for presentational simplicity.
Predimension. The classes of sparse graphs that we study are examples of Hrushovski constructions, an important source of examples in model theory. One way to phrase 2 -sparsity is in terms of graph predimension. For A a finite graph, the predimension $\delta(A)$ of A is given by $2|\mathrm{~V}(A)|-|\mathrm{E}(A)|$, i.e. twice the number of vertices minus the number of edges. A graph is then 2-sparse iff all its finite subgraphs have non-negative predimension. The predimension we use here is a particular case of a more general notion of predimension used in Hrushovski constructions, where $\delta(A)=c|\mathrm{~V}(A)|-|\mathrm{E}(A)|$ with $c \in \mathbb{R}_{+}$(see [5] for more details, and $[\mathbf{1 5}],[\mathbf{1 6}]$ for the original papers of Hrushovski where these constructions were introduced).
Strong classes. The classes of sparse graphs that we study will also be strong classes: they will have a distinguished notion of embedding, which we call strong embeddings.
Let \mathcal{C}_{0} denote the class of finite 2 -sparse graphs. For $A \subseteq B \in \mathcal{C}_{0}$, we will say A is self-sufficient in B, written $A \leq_{s} B$, if for $A \subseteq C \subseteq B$, $\delta(C) \geq \delta(A)$, and \mathcal{C}_{0} together with this distinguished notion of $\leq_{s^{-}}$ substructure gives the strong class $\left(\mathcal{C}_{0}, \leq_{s}\right)$. The classical Fraïssé theory (see [14], Section 7.1), which gives a correspondence between countable homogeneous structures and amalgamation classes, carries over to strong classes, where in our definition of homogeneity, the amalgamation property and so on we restrict to strong embeddings.
We then have that $\left(\mathcal{C}_{0}, \leq_{s}\right)$ is a \leq_{s}-free amalgamation class, with Fraïssé limit M_{0}.
Orientations. A central fact in the analysis of sparse graphs is that a graph is k-sparse iff it is k-orientable: its edges may be oriented so that each vertex has at most k out-edges. This fact is well known to
graph theorists, and the proof is by Hall's Marriage Theorem. Writing \mathcal{D}_{0} for the class of finite 2 -oriented graphs, we thus have that \mathcal{C}_{0} is the class of graph reducts of \mathcal{D}_{0}. For $A \subseteq B \in \mathcal{D}_{0}$, we write $A \sqsubseteq_{s} B$ if A is successor-closed in B, and ($\mathcal{D}_{0}, \sqsubseteq_{s}$) gives another example of a \sqsubseteq_{s}-free amalgamation class. In fact, as shown in Lemma 1.5 of [11], we may again use Hall's Marriage Theorem to show that for $A \subseteq B \in \mathcal{C}_{0}$, $A \leq_{s} B$ iff there exists a 2 -orientation B^{+}of B in which $A \sqsubseteq_{s} B^{+}$, so the strong classes $\left(\mathcal{C}_{0}, \leq_{s}\right),\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ are very closely linked. Throughout this thesis, orientations will be a key tool in studying sparse graphs.
More classes of sparse graphs. We will also study two more examples of Hrushovski constructions. The first is M_{1}, a "simplified" version of M_{0}. Let \mathcal{D}_{1} denote the class of finite 2 -oriented graphs where the orientation has no directed cycles. ($\mathcal{D}_{1}, \sqsubseteq_{s}$) is a \sqsubseteq_{s}-free amalgamation class. Let \mathcal{C}_{1} be the class of graph reducts of \mathcal{D}_{1}. For $A \subseteq B \in \mathcal{C}_{1}$, write $A \leq_{1} B$ if there exists an expansion $B^{+} \in \mathcal{D}_{1}$ of B with $A^{+} \sqsubseteq_{s} B^{+}$, where we write A^{+}for the orientation induced on A by B^{+}. We then have that $\left(\mathcal{C}_{1}, \leq_{1}\right)$ is a \leq_{1}-free amalgamation class, whose Fraïssé limit we denote by M_{1}. We can regard $\left(\mathcal{C}_{1}, \leq_{1}\right)$ as, in some sense, a simplified version of $\left(\mathcal{C}_{0}, \leq_{s}\right)$: often the same results are true for M_{1} and M_{0} but easier to prove for M_{1}, and the simpler proof for M_{1} can then provide a proof idea for the M_{0} case.
The second example of a Hrushovski construction that we study is the ω-categorical M_{F} (first introduced in [15]). The details of the construction are somewhat more technical than for M_{1} and M_{0}, and we provide an outline. Let $\mathcal{C}_{>0}$ be the class of graphs in \mathcal{C}_{0} whose nonempty subgraphs all have positive predimension. For $A \subseteq B \in \mathcal{C}_{>0}$, write $A \leq_{d} B$ if $\delta(C)>\delta(A)$ for all $A \subsetneq C \subseteq B$. Then $\left(\mathcal{C}_{>0}, \leq_{d}\right)$ is a \leq_{d}-free amalgamation class, but its Fraïssé limit is not ω-categorical. To obtain an ω-categorical Fraïssé limit, we specify a uniform bound on the d-closure, which we do by means of a control function F. Let F be a function starting at zero whose growth rate is that of $\log (x)$ (with a few additional assumptions), and let \mathcal{C}_{F} be the class of $A \in \mathcal{C}_{>0}$ such that for $B \subseteq A, \delta(B) \geq F(|B|) .\left(\mathcal{C}_{F}, \leq_{d}\right)$ will then have a uniformly bounded d-closure, so writing M_{F} for the Fraïssé limit, $\operatorname{Aut}\left(M_{F}\right)$ is oligomorphic (i.e. has finitely many orbits on M_{F}^{n} for $n \geq 1$), and so by the Ryll-Nardzewski theorem, M_{F} is ω-categorical.

The KPT correspondence

A G-flow is a continuous action of a Hausdorff topological group G on a (non-empty) compact Hausdorff space X. The study of G-flows is a central topic in topological dynamics. A G-flow morphism is a continuous, G-equivariant map. Every G-flow contains a minimal G-flow:
one with no proper subflows. A well-known result in topological dynamics states that every Hausdorff topological group G has a universal minimal flow, unique up to isomorphism: a G-flow $M(G)$ which has a surjective G-flow morphism onto any other minimal G-flow (see, for example, [1], Ch. 8).
We call G extremely amenable if every G-flow has a G-fixed point, or equivalently, if $M(G)$ is trivial (i.e. a singleton). G is amenable if every G-flow has a G-invariant Borel probability measure. (We have that extreme amenability implies amenability by taking the Dirac measure on the fixed point).
For Polish groups $G, M(G)$ may be very complicated - i.e. $M(G)$ may be non-metrisable. However, in the case of $M(G)$ being trivial, there is a connection to structural Ramsey theory, as seen in the KPT correspondence, first developed by Kechris-Pestov-Todorčević in [19] and further extended in [24], [25], [2] by Nguyen Van Thé, Zucker, Ben Yaacov, Melleray, Tsankov and others. We rephrase it here in terms of strong classes.

Theorem 1.62 ([19], Th. 4.8; [24], Th. 1). Let M be a Fraïssé limit of a strong amalgamation class (\mathcal{K}, \leq). Then $\operatorname{Aut}(M)$ is extremely amenable iff (\mathcal{K}, \leq) is Ramsey and rigid.

Here, as usual in the context of homogeneous structures, $\operatorname{Aut}(M)$ has the pointwise convergence topology, where an open basis is given by left cosets of pointwise stabilisers of finite $A \leq M$. Rigidity means that elements of \mathcal{K} have trivial automorphism groups.
We now describe some further results in the context of the KPT correspondence.
Let (\mathcal{K}, \leq) be an amalgamation class of L-structures, with Fraïssé limit M and $G=\operatorname{Aut}(M)$. Let $L \subseteq L^{+}$be an expanded language, and let \mathcal{D} be a class of finite L-structures where \mathcal{K} is the class of L-reducts of \mathcal{D} and where each structure in \mathcal{K} has finitely many expansions in \mathcal{D} (together with a few other basic axioms - see Definition 1.63). We call \mathcal{D} a reasonable class of expansions of (\mathcal{K}, \leq) (following [25]).
Let
$X(\mathcal{D})=\left\{M^{+}\right.$an L^{+}-expansion of M : for all finite $\left.A \leq M, A^{M^{+}} \in \mathcal{D}\right\}$.
Here, $A^{M^{+}}$denotes the L^{+}-structure induced on A by M^{+}. Basic open sets are given by fixing some $A^{M^{+}}$. We then have that $X(\mathcal{D})$ is an $\operatorname{Aut}(M)$-flow (Lemma 1.69). For an example: \mathcal{D}_{0} is a reasonable class of expansions of $\left(\mathcal{C}_{0}, \leq_{s}\right)$, and $X\left(\mathcal{D}_{0}\right)$ is the flow $\operatorname{Or}\left(M_{0}\right)$ of 2orientations of M_{0}.
For \mathcal{D} reasonable over $(\mathcal{K}, \leq), \mathcal{D}$ has the expansion property over (\mathcal{K}, \leq) if for all $A \in \mathcal{K}$, there exists $A \leq B \in \mathcal{K}$ such that for all expansions $A^{+}, B^{+} \in \mathcal{D}, B^{+}$contains a \leq-copy of A^{+}.

Theorem 1.73 ([24], Th. 4). The G-flow $X(\mathcal{D})$ is minimal iff \mathcal{D} has the expansion property over (\mathcal{K}, \leq).
(An analogous result is Th. 7.4 of [19], but this only covers the case where L is expanded by a single binary relation symbol. In this simpler case the expansion property is referred to as the ordering property. The paper [24] introduces the expansion property in full generality.)
For $J \leq \operatorname{Aut}(M)$, we say J is a coprecompact subgroup of $\operatorname{Aut}(M)$ if each $\operatorname{Aut}(M)$-orbit on M^{n} splits into finitely many J-orbits. The importance of coprecompactness was first explored in [24].
We then have the following extended KPT-type result, adapted for strong classes (see [19], Th. 10.8, [24], Th. 5 and [25], Th. 5.7):
Theorem 1.76 (KPT, Nguyen Van Thé, Zucker). Let (\mathcal{K}, \leq) be an amalgamation class with Fraïssé limit M, and let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be a reasonable strong expansion of (\mathcal{K}, \leq) which is an amalgamation class with Fraïssé limit N. Suppose $\left(\mathcal{K}^{+}, \leq^{+}\right)$is rigid, Ramsey and has the expansion property, and suppose $\operatorname{Aut}(N)$ is a coprecompact subgroup of Aut(M).
Then $X\left(\mathcal{K}^{+}\right)$is the universal minimal flow for $\operatorname{Aut}(M)$, and has a comeagre orbit consisting of expansions of M isomorphic to N.

So, if G is the automorphism group of a countable homogeneous structure M and there exists a coprecompact extremely amenable subgroup of G, then we control to some extent the universal minimal flow of G.

New behaviour in the KPT context: papers of Evans, Hubička and Nešetřil

Evans, Hubička and Nešetřil (EHN) showed in [8] that such a coprecompact extremely amenable subgroup need not exist in the case M ω-categorical (specifically, proving this for the Hrushovski construction M_{F}) and also in the cases $M=M_{1}, M_{0}$:
Theorem 2.2 ([8], Th. 1.2, 3.7). The automorphism group $\operatorname{Aut}\left(M_{F}\right)$ has no coprecompact extremely amenable subgroup.
Theorem 2.3 ([8], Th. 3.16). Let $M=M_{1}$ or M_{0}. Then $\operatorname{Aut}(M)$ has no coprecompact extremely amenable subgroup.

The proof of Theorem 2.2 uses the $\operatorname{Aut}\left(M_{F}\right)$-flow of orientations $\operatorname{Or}\left(M_{F}\right)$. This flow of orientations will be a key tool throughout this thesis. Specifically, the result in [8] states:
Proposition 2.1 ([8], Th. 3.7). Let M be an infinite 2-sparse graph in which all vertices have infinite valency. Let $G=\operatorname{Aut}(M)$.
Consider the G-flow $G \curvearrowright \operatorname{Or}(M)$. If $J \leq G$ fixes a 2 -orientation of M, then J has infinitely many orbits on M^{2}.
(This result applies to $M=M_{F}$ with a few basic assumptions on the control function F to guarantee that all vertices have infinite valency - see Section 1.5.)

The proof technique for Theorem 2.3 is quite similar.
The paper $[8]$ contains two further results relevant to this thesis, which demonstrate that the automorphism groups of the Hrushovski constructions M_{1}, M_{0}, M_{F} display dramatically different behaviour to the case where the automorphism group G has a coprecompact extremely amenable subgroup.
Theorem ([8], Cor. 3.11). $\operatorname{Aut}\left(M_{F}\right)$ has no coprecompact amenable subgroup.
Theorem ([8], Th. 5.2). Let $M=M_{1}, M_{0}, M_{F}, G=\operatorname{Aut}(M)$. Let Y be a minimal subflow of the G-flow of 2-orientations $\operatorname{Or}(M)$. Then all G-orbits of Y are meagre in Y.

New results

The new results in this thesis are contained in Chapters 2 to 6 , and we summarise the most important results below:
Chapter 2: this contains the new result that $\operatorname{Aut}\left(M_{0}\right)$ does not have a coprecompact amenable subgroup, via a straightforward combination of arguments in Section 3 of [8].
Chapter 3: we investigate the fixed points on type spaces property (FPT), and show that M_{F} does not have any ω-categorical expansion whose automorphism group has FPT.
Chapter 4: we investigate the $\operatorname{Aut}\left(M_{1}\right)$-flow $\mathcal{L O}\left(M_{1}\right)$ of linear orders on M_{1}, and show that all orbits on minimal subflows of $\mathcal{L O}\left(M_{1}\right)$ are meagre.
Chapter 5: we attempt to carry out the same analysis for the $\operatorname{Aut}\left(M_{0}\right)$ flow $\mathcal{L O}\left(M_{0}\right)$ as we did for $\mathcal{L O}\left(M_{1}\right)$ in the previous chapter, but without complete success. We obtain some results on stabilisers of linear orders, and a result that clarifies the difficulty of the M_{0} case.
Chapter 6: we find the universal minimal flow of $\operatorname{Aut}\left(M_{00}\right)$, the automorphism group of the predimension zero part of M_{0}.
We briefly describe these new results in the rest of this introduction.

Fixed points on type spaces

In Chapter 3, we investigate a weakening of extreme amenability, the fixed points on type spaces (FPT) property.
Let M be a first-order structure, and let $G=\operatorname{Aut}(M)$ with the pointwise convergence topology. Then G acts continuously on the Stone
spaces $S_{n}(M)$ of n-types with parameters in M, via the action

$$
g \cdot p(\bar{x})=\{\phi(g \bar{m}, \bar{x}): \phi(\bar{m}, \bar{x}) \in p(\bar{x})\} .
$$

This gives a natural source of G-flows.
G has the fixed points on type spaces property (FPT) if every subflow of $S_{n}(M)(n \geq 1)$ has a fixed point.
Investigating the fixed points on type spaces property was suggested by David Evans, the PhD supervisor of the author. The motivation arose both from the simple fact that type spaces give a natural flow, and also from some unpublished examples (personal communication, Evans) where Ramsey expansions of certain classes had been found by noting that the automorphism groups of the Fraïssé limits of these Ramsey expansions would have to fix points on type spaces.
An additional motivation was the paper [8] of Evans, Hubička and Nešetřil. David Evans raised the following question:

Question. M_{F} does not have an ω-categorical expansion whose automorphism group is extremely amenable (Th. 2.2). Does M_{F} have an ω-categorical expansion whose automorphism group has the fixed points on type spaces property?

In Chapter 3 we show directly, as an introduction, that the automorphism group of the random graph has FPT, without using strong Ramsey results. This introductory example demonstrates interesting behaviour (FPT for the random graph is equivalent to the pigeonhole property of the random graph: any 2 -colouring of the random graph must have a monochromatic copy of the random graph itself).
We then answer the question of Evans in the negative:
Theorem 3.6. M_{F} does not have any ω-categorical expansion N with Aut (N) having FPT.

Proof idea. Encode each orientation of M_{F} as a 1-type. We then define an $\operatorname{Aut}\left(M_{F}\right)$-map $\gamma: S_{1}\left(M_{F}\right) \rightarrow 2^{M_{F}{ }^{2}}$ which sends our encoded 1-types back to the original orientations. Any $H \leq \operatorname{Aut}\left(M_{F}\right)$ with FPT fixes a point in the subflow of encoded types, so fixes an orientation. We then use Proposition 2.1 to see that H has infinitely many orbits on M_{F}^{2}.

Linear orders on sparse graphs

This topic forms the greater part of this thesis. Th. 5.2 from [8] shows that $\operatorname{Aut}\left(M_{0}\right), \operatorname{Aut}\left(M_{F}\right)$ have metrisable minimal flows all of whose orbits are meagre. Tsankov asked the following question ([8], concluding remarks):

Question (Tsankov). Do $\operatorname{Aut}\left(M_{0}\right)$ or $\operatorname{Aut}\left(M_{F}\right)$ have a (non-trivial) metrisable minimal flow with a comeagre orbit?

David Evans suggested that the author investigate the Aut (M)-flow $\mathcal{L O}(M)$ of linear orders on $M=M_{1}, M_{0}, M_{F}$. We obtain the following result for M_{1} :

Theorem 4.18. Let $Y \subseteq \mathcal{L O}\left(M_{1}\right)$ be a minimal subflow. Then all Aut $\left(M_{1}\right)$-orbits on Y are meagre.

The proof involves using the admissible orders from Section 3.1 of [$\mathbf{9}]$, a paper which accompanies $[8]$ and proves new Ramsey theorems for structures with relations and set-valued functions. This framework of languages with set-valued functions is used to encode the strong closures associated with Hrushovski constructions.
For $A \in \mathcal{D}_{1}$, we may define the level $\mathrm{l}(x)$ of a vertex $x \in A$ as the maximal length of an out-path from x. A linear order \prec on A is admissible if:

- for $x, y \in A$ with $\mathrm{l}(x)<\mathrm{l}(y), x \prec y ;$
- for $x, y \in A$ of the same level, $x \prec y$ if the descending chain of successors of x is lexicographically before the descending chain of successors of y.

The class $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ of (A, \prec), with $A \in \mathcal{D}_{1}$ and \prec admissible, is a Ramsey class with free amalgamation (and indeed also has the expansion property over $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$), as we show in Proposition 4.10. This is a particular case of the more general Theorem 1.4 of [9$]$, though in this thesis we will keep our presentation self-contained.
Let the Fraïssé limit of $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ be $\left(N_{1}, \alpha\right)$, where α is the linear order of the Fraïssé limit and N_{1} is the oriented graph, and let $H=\operatorname{Aut}\left(N_{1}, \alpha\right)$. H is extremely amenable, so fixes some linear order β on Y. We may then show the failure of the weak amalgamation property (see Section 1.11) for $\operatorname{Age}\left(M_{1}, \beta\right)$, which shows that all Y-orbits are meagre by an adapted result of Kechris \& Rosendal (Theorem 3.4 of [20], Lemma 1.78 here). We do this by using H-automorphisms to find out information about β (β agrees with α or its reverse on sets of α-indiscernible vertices), and then, assuming the weak amalgamation property and seeking a contradiction, use β to force certain incompatible orientations.
We may define admissible orders in a similar (but more complicated) way for M_{0}, M_{F} (indeed, $[\mathbf{9}]$ defines admissible orders in a general fashion so that they may also be defined on e.g. Steiner systems and bowtiefree graphs). The author has not yet extended Theorem 4.18 to M_{0} and M_{F} due to unanticipated technical difficulties, but has some partial results.

For M_{0}, we will show in Chapter 5, with an analogous setup to the previous chapter, that $\operatorname{Aut}\left(M_{0}, \alpha\right)=\operatorname{Aut}\left(M_{0}, \beta\right)$. We will also show in Chapter 6 that:

Theorem 6.13. Aut $\left(M_{0}\right)$ has a non-trivial metrisable minimal flow with comeagre orbit.

However, this particular flow is not faithful, so does not answer the question of Tsankov in a satisfying way. The flow results from the "dimension 0 " part of M_{0}. Let \mathcal{C}_{00} be the class of graphs A with $A \in \mathcal{C}_{0}$ and $\delta(A)=0$, and let $M_{00} \subseteq M_{0}$ be the Fraïssé limit of ($\left.\mathcal{C}_{00}, \leq_{s}\right)$. Then $G_{00}=\operatorname{Aut}\left(M_{00}\right)$ has a coprecompact extremely amenable subgroup, given by the automorphism group of the class of admissibly ordered orientations of \mathcal{C}_{00}, so we may use Theorem 1.76 to produce the universal minimal flow of G_{00} with a comeagre orbit, and from this we may produce a G_{0}-flow. (We have coprecompactness here because for $A \in \mathcal{C}_{00}$, any orientation of A must have the same strongly connected components and orientation of edges between strongly connected components.)
These partial results represent some progress towards extending Theorem 4.18 to M_{0} and M_{F}, but the question is still open for these cases.

Chapter 1

Background

In this chapter, we introduce the background material for this thesis. A reader familiar with Hrushovski constructions and the KPT correspondence should hopefully have seen most of the results in this chapter before - though we reformulate the KPT correspondence for strong classes, and the Ramsey result of Section 1.7 will possibly be unfamiliar.
We assume that the reader is familiar with the classical Fraisse theory, the pointwise convergence topology on automorphism groups of firstorder structures, and the Ryll-Nardzewski theorem. (The background for these three topics can be found in Ch. 7 of [14] and Sections 1-2 of [5].)
None of the material in this chapter is new. The presentation is strongly influenced by $[\mathbf{8}],[\mathbf{7}]$ and $[5]$, which are key references for this background material.
All first-order languages considered in this thesis will be countable and relational.

1.1 Graphs and oriented graphs: notation and setup

A graph $(A, \mathrm{E}(A))$ consists of a set A, the vertex set, and a set $\mathrm{E}(A) \subseteq$ $A^{(2)}$, the edge set. (Here, $A^{(2)}$ denotes the set of unordered pairs of distinct elements of A.) We will usually just write A to denote the graph $(A, \mathrm{E}(A))$ when this is clear from context. We will sometimes write $\mathrm{V}(A)$ for the vertex set. By the above definition, here we only work with simple graphs: graphs having no loops on a single vertex or multiple edges between two vertices.

Definition 1.1. Let $(A, \mathrm{E}(A))$ be a graph. A set $\rho_{A} \subseteq A^{2}$ is an orientation of $(A, \mathrm{E}(A))$ if:

- for $x y \in \mathrm{E}(A)$, exactly one of $(x, y),(y, x)$ is in ρ_{A};
- for $(x, y) \in \rho_{A}, x y \in \mathrm{E}(A)$.

Note that this implies that ρ_{A} contains no directed loops or directed 2 -cycles. We will refer to $\left(A, \mathrm{E}(A), \rho_{A}\right)$ as an oriented graph.
(We use ρ as a mnemonic for orientation.)

Definition 1.2. Let $\left(A, \mathrm{E}(A), \rho_{A}\right)$ be an oriented graph. (See Figure 1.1 for an example.)

If $(x, y) \in \rho_{A}$, we refer to (x, y) as an out-edge of x and an in-edge of y. We call y an out-vertex or successor of x, and x an in-vertex or predecessor of y.
The out-neighbourhood $\mathrm{N}_{+}(x)$ of x consists of the out-vertices of x. The in-neighbourhood $\mathrm{N}(x)$ of x consists of the in-vertices of x. The outdegree $\mathrm{d}_{+}(x)$ of x is defined to be $\mathrm{d}_{+}(x)=\left|\mathrm{N}_{+}(x)\right|$, and the in-degree $\mathrm{d}(x)$ of x is defined similarly.
If x_{1}, \cdots, x_{n} is a path of the graph A and $\left(x_{i}, x_{i+1}\right) \in \rho_{A}$ for $i<n$, we will say that x_{1}, \cdots, x_{n} is an out-path of ρ_{A}. We define in-paths in the corresponding fashion.
For $B \subseteq A$, we write $B \sqsubseteq_{s} A$ to mean that B is successor-closed in A : for $b \in B$, if $(b, a) \in \rho_{A}$ then $a \in B$. Note that intersections of successor-closed subsets are also successor-closed.
For $B \subseteq A, \operatorname{scl}(B)$, the successor-closure of B, is defined to be the smallest successor-closed subset of A containing B. Equivalently, $\operatorname{scl}(B)$ consists of the vertices of A reachable by an out-path starting in B.
For $x, y \in A$, we write $x \sim y$ if $\operatorname{scl}(x)=\operatorname{scl}(y)$. Then \sim is an equivalence relation, and we call the equivalence classes the strongly connected components (sccs) of A. We write $\operatorname{scc}(x)$ for the strongly connected component of x. (As a reminder to the reader, we note the difference between $\operatorname{scl}(x)$ and $\operatorname{scc}(x))$. We have that $x \sim y$ iff there exist out-paths from x to y and from y to x.
Let S be a scc of A. We define the out-neighbourhood $\mathrm{N}_{+}(S)$ of S to be the set
$\mathrm{N}_{+}(S)=\left\{v \in A: v \notin S\right.$ and there exists $x \in S$ with $\left.(x, v) \in \rho_{A}\right\}$.
Any out-edge from a vertex of S to the out-neighbourhood of S will be called an exiting out-edge from S (note that this excludes out-edges whose vertices both lie in S).

Definition 1.3. Let $\left(A, \mathrm{E}(A), \rho_{A}\right)$ be a finite oriented graph.
For $x \in A$, we inductively define the level $\mathrm{l}_{A}(x)$ of x as follows. If $\operatorname{scl}(x)=\operatorname{scc}(x)$, then $\mathrm{l}_{A}(x)=0$. Otherwise, let y be a vertex of $\operatorname{scl}(x)-$ $\operatorname{scc}(x)$ of maximum level, and then $\mathrm{l}_{A}(x)=\mathrm{l}_{A}(y)+1$. For $B \subseteq A$, we define the level $\mathrm{l}_{A}(B)$ of B to be the maximum of the levels of its vertices.
We write $\mathrm{L}_{n}(A)(n \geq 0)$ for the set of vertices of A of level n. We define $A^{\uparrow n}$ (read ' A up to n ') to be the oriented subgraph of A whose vertex set consists of the vertices of A of level $\leq n$, and $A^{\downarrow n}$ to be the oriented subgraph of A whose vertex set is all the vertices of A of level $\geq n$.

Figure 1.1. An example of a 2-oriented graph. Sccs are in grey. The out-neighbourhood of x is $\{y, z\}$. (x, z) is an exiting out-edge from the scc S, and z lies in $\mathrm{N}_{+}(S)$, but y does not. x has level 2 , and z has level 1 .

Remark 1.4. The definitions of successor-closure, scc and levels of vertices have been taken from [6], an early, unpublished version of [8], but are well-known to graph theorists. These definitions are a specific case of the more general notions of closure, closure-components and levels of vertices found in Section 3.1 of [9].

We will work with graphs and oriented graphs in first-order languages as follows. The language of graphs $L_{\text {graph }}=\{E\}$ consists of a single binary relation E. A L_{graph}-structure $\left(A, E_{A}\right)$ is then a graph if $E_{A} \subseteq A^{2}$, the interpretation of E, is symmetric and irreflexive. (It is clear how to switch between $\mathrm{E}(A)$ and E_{A}. We will be flexible and switch between the standard graph theory notation and the first order formalism without comment.)
We expand $L_{\text {graph }}$ to the language of oriented graphs $L_{\text {or }}=\{E, \rho\}$, where ρ is a binary relation. A L_{or}-structure $\left(A, E_{A}, \rho_{A}\right)$ is an oriented graph if ρ_{A} is an orientation of the graph $\left(A, E_{A}\right)$.
When we refer to a subgraph of a graph, or an oriented subgraph of an oriented graph, we mean an L_{graph} or L_{or}-substructure respectively. This is standard in model theory, but for graph theorists these substructures might be referred to as induced subgraphs.
(We use the full notation for structures in this section for clarity, but henceforth we will usually denote graphs $\left(A, E_{A}\right)$ by A, and oriented graphs ($\left.A, E_{A}, \rho_{A}\right)$ by A or $\left(A, \rho_{A}\right)$.)

1.2 Sparse graphs: \mathcal{C}_{0} and \mathcal{C}_{1}

We will now define the classes of sparse graphs that we will be concerned with in this thesis.

Definition 1.5. Take $k \in \mathbb{N}_{+}$. A graph A is k-sparse if $\forall B \subseteq_{\text {fin. }} A$, $|\mathrm{E}(B)| \leq k|B|$.

Definition 1.6. Let $\left(A, \rho_{A}\right)$ be an oriented graph. Take $k \in \mathbb{N}_{+}$. We call ρ_{A} a k-orientation if for $x \in A,\left|\mathrm{~N}_{+}(x)\right| \leq k$. We refer to $\left(A, \rho_{A}\right)$ as a k-oriented graph, and if a graph A has a k-orientation, we say it is k-orientable.

The following proposition is well known in graph theory ([22]), and will be a key tool here.
Proposition 1.7 ([8], Th. 3.4). A graph A is k-orientable iff it is k-sparse.

Proof. \Rightarrow : easy. \Leftarrow : We will first prove the statement for finite A. We wish to produce a k-orientation of A, and so to do this, we must direct each edge. We will use Hall's Marriage Theorem ([3], III.3), which for the convenience of the reader we briefly restate: for a finite bipartite graph with left set X and right set Y, then there is an X-saturated matching iff $|W| \leq|\mathrm{N}(W)|$ for $W \subseteq X$.
Form a bipartite graph B with left set $\mathrm{E}(A)$ and right set $A \times[k]$, and place an edge between $e \in \mathrm{E}(A)$ and $(x, i) \in A \times[k]$ if $x \in e$. If there is a left-saturated matching, then if e is matched to (x, i), we orient e so that x is the start-vertex of e, and this gives a k-orientation of A.
To see that a left-saturated matching exists, take $W \subseteq \mathrm{E}(A)$. Let V be the set of vertices of the edges which lie in W. Then $\left|\mathrm{N}_{B}(W)\right|=k|V|$, and as A is k-sparse, we have that $k|V| \geq\left|\mathrm{E}_{A}(V)\right|$, where $\mathrm{E}_{A}(V)$ is the set of edges in A whose vertices lie in V. As $\left|\mathrm{E}_{A}(V)\right| \geq|W|$, by Hall's Marriage Theorem there exists a left-saturated matching of the bipartite graph B.

For presentational simplicity, we will usually work with $k=2$. Our results generalise straightforwardly for $k>2$.
Note: in this thesis, we may occasionally say "oriented graph" to in fact mean "2-oriented graph", as most of the oriented graphs we are concerned with are 2-oriented. We will try to avoid this in general, but when this does occur the meaning will be clear from context.

Figure 1.2. An example of an element A of \mathcal{D}_{1} : a $2-$ oriented graph with no directed cycles. x has level 3 , and y has level 1 . The roots of A of multiplicity 1 are z, w. The roots of A of multiplicity 2 are the 6 vertices on level 0 . We have $\delta(A)=14$.

Definition 1.8. We let \mathcal{C}_{0} be the class of finite 2 -sparse graphs. We let \mathcal{D}_{0} be the class of finite 2 -oriented graphs.

By Proposition 1.7, \mathcal{C}_{0} is the class of graph reducts of \mathcal{D}_{0}.
We now introduce a "simplified" version of $\mathcal{D}_{0}([7]$, Section 3.4 and [10]), for which it will be usually easier to prove results.

Definition 1.9. We define \mathcal{D}_{1} to be the class of finite 2-oriented graphs with no directed cycles. (See Figure 1.2.) By a slight abuse of terminology, we will refer to a 2 -oriented graph with no directed cycles as an acyclic 2 -oriented graph. We define \mathcal{C}_{1} to be the class of graph reducts of \mathcal{D}_{1}.

We may also define \mathcal{C}_{1} purely in terms of graphs, as per the lemma below.

Lemma 1.10 ([10], Lem. 1.3). A finite graph A has a k-orientation with no directed cycles iff every non-empty subgraph B has a vertex of degree $\leq k$ in B.

Proof. \Rightarrow : Take $\varnothing \neq B \subseteq A$ a subgraph of A where A has an acyclic k-orientation. Consider the induced orientation on B. As this orientation is acyclic, B contains a vertex v which has no in-edges in B, and therefore the degree of v in B is equal to its out-degree in B, which is $\leq k$.
\Leftarrow : We prove the claim by induction on $|A|$. For $|A|=1$, the claim is trivial. For the inductive step, take a vertex $a \in A$ of degree $\leq k$. By the induction assumption, we may give $A-\{a\}$ an acyclic k-orientation. Then orient the edges of a outwards from a to produce an acyclic k orientation of A.

Proposition 1.11. \mathcal{C}_{1} consists of the finite graphs A where every nonempty subgraph $B \subseteq A$ has a vertex of degree ≤ 2.

Proof. Clear by Lemma 1.10 .

1.2.1 Graph predimension

One way to characterise k-sparsity is in terms of graph predimension.
Definition 1.12. Let A be a finite graph. We define the predimension $\delta(A)$ of A to be $\delta(A)=2|A|-|\mathrm{E}(A)|$.
For $B \subseteq A$, we define the relative predimension of A over B to be $\delta(A / B)=\delta(A)-\delta(B)$.

We can therefore characterise \mathcal{C}_{0} as the class of finite graphs A such that all subgraphs of A have non-negative predimension. (This forms part of the 'ab initio' Hrushovski construction M_{0} described in [16]. An accessible treatment is in Section 3.2 of [5].)

Definition 1.13. Let $A \in \mathcal{D}_{0}$. Take $a \in A . a$ is a root of A if $\mathrm{d}_{+}(a)<2$.
For $a \in A$ a root of A, we define the multiplicity m_{a} of a to be $m_{a}=$ $2-\mathrm{d}_{+}(a)$.

Lemma 1.14. Let $A \in \mathcal{D}_{0}$. Then we have that $\delta(A)$ is the sum of the multiplicities of the roots of A.

The proof is straightforward. (This is from Section 4 of [8].)

1.3 Strong classes and Fraïssé limits

1.3.1 Strong classes

The classes of graphs and oriented graphs detailed in the previous two sections will each come with certain particular distinguished embeddings between structures in the class.
(Throughout this section, L will be a countable relational first-order language.)
Definition 1.15. Let \mathcal{K} be a class of finite L-structures closed under isomorphisms. Let $\mathcal{S} \subseteq \operatorname{Emb}(\mathcal{K})$ be a class of embeddings between structures in \mathcal{K} satisfying the following:
(S1) \mathcal{S} contains all isomorphisms;
(S2) \mathcal{S} is closed under composition;
(S3) if $f: A \rightarrow C$ is in \mathcal{S} and $f(A) \subseteq B \subseteq C$ with $B \in \mathcal{K}$, then $f: A \rightarrow B$ is in \mathcal{S}.

Then we call $(\mathcal{K}, \mathcal{S})$ a strong class, and call the elements of \mathcal{S} strong embeddings.
(This is originally due to Hrushovski: see [15] and [16]. An accessible exposition of strong classes is in Section 3 of [5].)
If $A, B \in \mathcal{K}, A \subseteq B$ and the inclusion map $\iota: A \hookrightarrow B$ is in \mathcal{S}, then we write $A \leq B$ and say A is a strong substructure of B. We have that:
$(\mathrm{L} 1) \leq$ is reflexive;
(L2) \leq is transitive;
(L3) if $A \leq C$ and $A \subseteq B \subseteq C$ with $B \in \mathcal{K}$, then $A \leq B$.
We will often write (\mathcal{K}, \leq) instead of $(\mathcal{K}, \mathcal{S})$, and we will use different symbols resembling \leq (e.g. $\leq_{1}, \leq_{s}, \coprod_{s}$) to indicate different classes of embeddings.

REmark 1.16. If we start with a distinguished class of strong substructures of elements of \mathcal{K}, where we write $A \leq B$ to mean that A is a strong substructure of B, we could define a distinguished class of embeddings \mathcal{S} by stating that $f: A \rightarrow B$ is in \mathcal{S} if $f(A) \leq B$. However, if \leq satisfies (L1), (L2), (L3), this does not necessarily formally imply that \mathcal{S} satisfies (S1), (S2), (S3), and embeddings in \mathcal{S} do not necessarily preserve \leq.
However, in any examples of strong classes in this thesis, this somewhat pedantic technical distinction will not appear, and defining \mathcal{S} will be equivalent to defining \leq because of the particular details of the example.

If (\mathcal{K}, \leq) is a strong class (i.e. \mathcal{S} satisfies (S1), (S2), (S3)), then we have that for $f: A \rightarrow B$ in \mathcal{S}, if $X \leq A$, then $f(X) \leq B$.

1.3.2 Strong classes: infinite structures

Suppose (\mathcal{K}, \leq) is a strong class. Let $A_{1} \leq A_{2} \leq \cdots$ be an increasing \leq-chain of structures in \mathcal{K}, and let $M=\bigcup_{i \geq 1} A_{i}$. Let $A \subseteq_{\text {fin. }} M$. Then we write $A \leq M$ to mean that there is some $A_{i}(i \geq 1)$ with $A \leq A_{i}$. Say M is also the union of the elements of the increasing \leq-chain $B_{1} \leq B_{2} \leq \cdots$ of \mathcal{K}-structures. Take some $A_{i}(i \geq 1)$. Then $A_{i} \subseteq B_{j}$ for some $j \geq 1$, and $B_{j} \subseteq A_{k}$ for some $k \geq i$. As $A_{i} \leq A_{k}$, by (S3) $A_{i} \leq B_{j}$. Thus we see that when we write $A \leq M$, this does not depend on any particular \leq-chain.
Take $g \in \operatorname{Aut}(M)$. Take some $A_{i} \leq A_{j}(i<j)$. Then $\left.g\right|_{A_{j}}: A_{j} \rightarrow g A_{j}$ is an isomorphism, so $\left.g\right|_{A_{j}} \in \mathcal{S}$, and so $g A_{i} \leq g A_{j}$. Thus M is also the union of the increasing \leq-chain $g A_{1} \leq g A_{2} \leq \cdots$. So if $A \leq M$, then $g A \leq M:$ that is, all $g \in \operatorname{Aut}(M)$ preserve \leq.

1.3.3 Fraïssé theory for strong classes

We now develop an analogue of the classical Fraïssé theory for strong classes. As the details are entirely analogous to the classical case, we omit the proofs and state the relevant material as a series of definitions and lemmas. (For the classical Fraïssé theory, originally developed in [13], see [14], and for a more complete treatment of Fraïssé theory for strong classes, see Section 3 of [5].)
Definition 1.17. Let (\mathcal{K}, \leq) be a strong class of L-structures.

- (\mathcal{K}, \leq) has the joint embedding property (JEP) if for A_{1}, A_{2} in \mathcal{K}, there is $B \in \mathcal{K}$ with \leq-embeddings $f_{1}: A_{1} \rightarrow B, f_{2}: A_{2} \rightarrow$ B.
- (\mathcal{K}, \leq) has the amalgamation property (AP) if, for any $\leq-$ embeddings $f_{1}: A \rightarrow C_{1}, f_{2}: A \rightarrow C_{2}$ of $A \in \mathcal{K}$, there exists $D \in \mathcal{K}$ with \leq-embeddings $g_{1}: C_{1} \rightarrow D, g_{2}: C_{2} \rightarrow D$ such that $g_{1} f_{1}=g_{2} f_{2}$.
- For $A, C_{1}, C_{2} \in \mathcal{K}$ with $A \leq C_{1}, C_{2}$, the free amalgam F of C_{1}, C_{2} over A is the L-structure F whose domain is the disjoint union of C_{1}, C_{2} over A and whose relations R_{F} are exactly the unions $R_{C_{1}} \cup R_{C_{2}}$ of the relations $R_{C_{1}}, R_{C_{2}}$ on C_{1}, C_{2} (for R a relation symbol in L). If for all L-structures $A \leq C_{1}, C_{2}$ in \mathcal{K} we have that the free amalgam F of C_{1}, C_{2} over A is in \mathcal{K} with $C_{1}, C_{2} \leq F$, then we say that (\mathcal{K}, \leq) is a free amalgamation class.

We will usually not mention the distinguished class of embeddings in our terminology, as it will be clear from context and the fact that we are working with strong classes. For instance, we say that (\mathcal{K}, \leq) has the amalgamation property - even though perhaps more strictly we should say that (\mathcal{K}, \leq) has the \leq-amalgamation property.

In the following definitions and lemmas, let (\mathcal{K}, \leq) be a strong class, and let M be the union of an increasing \leq-chain $A_{1} \leq A_{2} \leq \cdots$ in (\mathcal{K}, \leq).

Definition 1.18. The \leq-age of M, written $\operatorname{Age}_{\leq}(M)$, is the class of $A \in \mathcal{K}$ such that there is a \leq-embedding $A \rightarrow M$.
$\left(\operatorname{Age}_{\leq}(M), \leq\right)$ is a hereditary strong subclass of (\mathcal{K}, \leq), and has the joint embedding property.

Definition 1.19. M has the \leq-extension property if for all $A, B \in$ $\operatorname{Age}_{\leq}(M)$ and \leq-embeddings $f: A \rightarrow M, g: A \rightarrow B$, there exists a $\leq-$ embedding $h: B \rightarrow M$ with $h g=f$.
M is \leq-homogeneous if each isomorphism $f: A \rightarrow A^{\prime}$ between strong substructures A, A^{\prime} of M extends to an automorphism of M.
(Again, to avoid presentational clutter, we will often omit the \leq - prefix and just say that M has the extension property or is homogeneous, when it is clear from context that M is the union of an increasing \leq-chain $A_{1} \leq A_{2} \leq \cdots$ in a strong class (\mathcal{K}, \leq).)
Lemma 1.20. Let M^{\prime} also be a union of an increasing \leq-chain in \mathcal{K}. Suppose M, M^{\prime} have the same \leq-age and both have the \leq-extension property. Then M, M^{\prime} are isomorphic.
Lemma 1.21. M is \leq-homogeneous iff M has the \leq-extension property.
Lemma 1.22. Suppose M is \leq-homogeneous. Then $\left(\operatorname{Age}_{\leq}(M), \leq\right)$ has the amalgamation property.
Definition 1.23. Let (\mathcal{K}, \leq) be a strong class. We say that (\mathcal{K}, \leq) is an amalgamation class or Fraïssé class if ($\mathcal{K} \leq$) contains countably many isomorphism types, and has the joint embedding and amalgamation properties.

Theorem 1.24 (Fraïssé-Hrushovski). Let (\mathcal{K}, \leq) be an amalgamation class. Then there is a structure M which is a union of an increasing $\leq-c h a i n$, unique up to isomorphism, such that M is \leq-homogeneous and $\operatorname{Age}_{\leq}(M)=\mathcal{K}$.
We call this structure the Fraïssé limit or generic structure of \mathcal{K}.

1.3.4 Strong expansions

We will often be concerned with the situation where we have a strong class of L-structures together with a strong class of L^{+}-structures (with a potentially different notion of distinguished embedding), where $L^{+} \supseteq$ L is a relational language expanded from L.
Definition 1.25 ([8], Def. 2.9). Let (\mathcal{K}, \leq) be a strong class of L structures, and let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be a strong class of L^{+}-structures.
$\left(\mathcal{K}^{+}, \leq^{+}\right)$is a strong expansion of (\mathcal{K}, \leq) if:
(1) \mathcal{K} is the class of L-reducts of \mathcal{K}^{+};
(2) for \leq^{+}-strong $f: A^{+} \rightarrow B^{+}, f:\left.\left.A^{+}\right|_{L} \rightarrow B^{+}\right|_{L}$ is \leq-strong;
(3) for \leq-strong $f: A \rightarrow B$ and $A^{+} \in \mathcal{K}^{+}$an expansion of A, there exists an expansion $B^{+} \in \mathcal{K}^{+}$of B such that $f: A^{+} \rightarrow B^{+}$is \leq^{+}-strong.

Lemma 1.26. Let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be a strong expansion of the strong class (\mathcal{K}, \leq). If $\left(\mathcal{K}^{+}, \leq^{+}\right)$is a (free) amalgamation class, then so is (\mathcal{K}, \leq). If M^{+}is the Fraïssé limit of $\left(\mathcal{K}^{+}, \leq^{+}\right)$, then $M=\left.M^{+}\right|_{L}$ is the Fraïssé limit of (\mathcal{K}, \leq), and $\operatorname{Aut}\left(M^{+}\right)$is a closed subgroup of $\operatorname{Aut}(M)$.

The proof is straightforward. (To show that $\operatorname{Aut}\left(M^{+}\right)$is closed in Aut (M), show that the complement is open by witnessing failure to be in $\operatorname{Aut}\left(M^{+}\right)$on a finite set.)

Definition 1.27. A particular case of Definition 1.25 is the order expansion of a strong class.
Let (\mathcal{K}, \leq) be a strong class of L-structures, and let L^{+}be an expansion of L by a binary relation symbol.
Let \mathcal{K}^{\prec} be the class of L^{+}-structures $\left(A, \gamma_{A}\right)$, where $A \in \mathcal{K}$ and γ_{A} is a linear order on A (here interpreting the additional binary relation symbol of L^{+}).
For $\left(A, \gamma_{A}\right),\left(B, \gamma_{B}\right) \in \mathcal{K}^{\prec}$, write $\left(A, \gamma_{A}\right) \leq\left(B, \gamma_{B}\right)$ if $A \leq B$ and $\gamma_{A}=\left.\gamma_{B}\right|_{A}$. We then have that $\left(\mathcal{K}^{\prec}, \leq\right)$ is a strong class and a strong expansion of (\mathcal{K}, \leq). We call $\left(\mathcal{K}^{\prec}, \leq\right)$ the order expansion of the strong class (\mathcal{K}, \leq).

Note: Throughout this thesis, we will tend to use letters at the start of the Greek alphabet (α, β, γ) for linear orders. This will avoid confusion with the notation $A \leq B$ for strong substructure, and also enables us to conveniently handle the situation where there are several different linear orders on the same structure.

1.4 Sparse graphs: $\leq_{s}, \sqsubseteq_{s}$ and \leq_{1}

We will now describe the distinguished notions of embedding involved in defining particular strong classes for \mathcal{C}_{0} and \mathcal{D}_{0}, and for \mathcal{C}_{1} and \mathcal{D}_{1}.

1.4.1 Self-sufficiency: \leq_{s}

Definition 1.28. Let $A, B \in \mathcal{C}_{0}, A \subseteq B$. We say that A is selfsufficient in B, written $A \leq_{s} B$, if for $A \subseteq C \subseteq B, \delta(C) \geq \delta(A)$.
(This is a part of the 'ab initio' Hrushovski construction from [16], as are the other lemmas in this subsection. The presentation here is from Section 3.2 of [5].)
Lemma 1.29 (Submodularity). Take $A \in \mathcal{C}_{0}, B, C \subseteq A$. Then we have that $\delta(B \cup C) \leq \delta(B)+\delta(C)-\delta(B \cap C)$. We have equality iff $\mathrm{E}(B \cup C)=\mathrm{E}(B) \cup \mathrm{E}(C)$, i.e. B, C are freely amalgamated over $B \cap C$ in A.

Proof. Straightforward.
Lemma 1.30. Let $B \in \mathcal{C}_{0}$.
(1) $A \leq_{s} B, X \subseteq B \Rightarrow A \cap X \leq_{s} X$.
(2) $A \leq_{s} C \leq_{s} B \Rightarrow A \leq_{s} B$.
(3) $A_{1}, A_{2} \leq_{s} B \Rightarrow A_{1} \cap A_{2} \leq_{s} B$.
(Recall that for $B \in \mathcal{C}_{0}$, if $A \subseteq B$ then $A \in \mathcal{C}_{0}$. Therefore we only need to prove self-sufficiency in the above.)

Proof.
(1) Take $A \cap X \subsetneq Y \subseteq X$. Note that $A \cap Y=A \cap X$. By submodularity,

$$
\begin{aligned}
\delta(A \cup Y) & \leq \delta(A)+\delta(Y)-\delta(A \cap Y) \\
& =\delta(A)+\delta(Y)-\delta(A \cap X)
\end{aligned}
$$

so $\delta(Y)-\delta(A \cap X) \geq \delta(A \cup Y)-\delta(A) \geq 0$.
(2) Take $A \subsetneq X \subseteq B$. By (1), $C \cap X \leq_{s} X$. Also $A \subseteq C \cap X \subseteq C$. So $\delta(A) \leq \delta(C \cap X) \leq \delta(X)$.
(3) By (1), $A_{1} \cap A_{2} \leq A_{1}$. Then use (2).

The previous lemma shows us that $\left(\mathcal{C}_{0}, \leq_{s}\right)$ satisfies (S1), (S2), (S3) that is:

Lemma 1.31. $\left(\mathcal{C}_{0}, \leq_{s}\right)$ is a strong class.
For $B \in \mathcal{C}_{0}$, by (3) we see that for $A \subseteq B$ we have that

$$
\bigcap\left\{A^{\prime}: A \subseteq A^{\prime} \leq_{s} B\right\} \leq_{s} B
$$

so we can define the closure of A in B as this intersection, written $\operatorname{cl}_{B}^{s}(A)$. This is a closure operation. ${ }^{1}$.
Lemma 1.32. Let $B \in \mathcal{C}_{0}$ and let $A \subseteq B$. Then $\delta(A) \geq \delta\left(\mathrm{cl}_{B}^{s}(A)\right)$.
Proof. Amongst all $A \subseteq X \subseteq B$, consider those for which $\delta(X)$ is smallest, and then out of these choose a C of greatest size. By the first stage of selection, we have $\delta(C) \leq \delta(A)$, and by the second stage, if $C \subseteq D \subseteq B$ then $\delta(C)<\delta(D)$, so $C \leq_{s} B$. So cl ${ }_{B}^{s}(A) \subseteq C \subseteq B$, and $\operatorname{ascl}_{B}^{s}(A) \leq{ }_{s} B, \delta\left(\operatorname{cl}_{B}^{s}(A)\right) \leq \delta(C)$.

1.4.2 Self-sufficiency and successor-closure: \leq_{s} and \sqsubseteq_{s}

It is straightforward to see that Lemma 1.30 holds for \mathcal{D}_{0} with \leq_{s} replaced by \sqsubseteq_{s}, and thus we have:

Lemma 1.33. $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ is a strong class.
We have the following link between the strong classes $\left(\mathcal{C}_{0}, \leq_{s}\right)$ and $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)([11]$, Lemma 1.5):

Proposition 1.34. Take $A, B \in \mathcal{C}_{0}, A \subseteq B$. Then $A \leq_{s} B$ iff there exists a 2-orientation B^{+}of B for which the induced 2-orientation A^{+} on A is successor-closed.

[^0]Proof. \Rightarrow : This is an extension of the proof technique of Proposition 1.7. As $A \in \mathcal{C}_{0}$, by Proposition 1.7 there is a 2 -orientation A^{+}of A. Define a bipartite graph (X, Y) as follows. Let $X=\mathrm{E}(B)-\mathrm{E}(A)$ (so X consists of edges with both vertices not in A together with edges with exactly one vertex in A). Let $Y=(B-A) \times[2]$. Place an edge between $e \in X$ and $(b, i) \in Y$ if $b \in e$. If there is an X-saturated matching of (X, Y), we can produce a 2-orientation B^{+}of B in which $A^{+} \sqsubseteq_{s} B^{+}$: take A^{+}, and to orient the remaining edges of B, if $e \in X$ matches with $(b, i) \in Y$, direct e so that b is the start-vertex of e.
We show that there is an X-saturated matching using Hall's Marriage Theorem. Take $W \subseteq X$, and let

$$
V=\{v \in B-A: v \in w \text { for some } w \in W\} .
$$

Let $C=A \cup V$, considering C as a subgraph of B. Then $\delta(C / A) \geq 0$ as $A \leq_{s} B$, so

$$
2|V| \geq|\mathrm{E}(V)|+\mid \text { edges between } V \text { and } A|\geq|W|
$$

and as $|\mathrm{N}(W)|=2|V|$, we are done.
Lemma 1.35. $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ is a strong expansion of $\left(\mathcal{C}_{0}, \leq_{s}\right)$.
Proof. \mathcal{C}_{0} is the class of graph reducts of \mathcal{D}_{0} by Proposition 1.7, and if $A \sqsubseteq_{s} B, A, B \in \mathcal{D}_{0}$, then $A \leq_{s} B$ by Proposition 1.34.
Take $A \leq_{s} B \in \mathcal{C}_{0}$, and let $A^{+} \in \mathcal{D}_{0}$ be an expansion of A. As $A \leq_{s} B$, there exists an orientation B^{\prime} of B in which the induced orientation A^{\prime} on A has $A^{\prime} \sqsubseteq_{s} B^{\prime}$. Let B^{+}be the orientation of the edges of B given by taking B^{\prime} and replacing A^{\prime} with A^{+}on A. Then B^{+}is still a 2-orientation, and we have $A^{+} \sqsubseteq_{s} B^{+}$.

In the above proof, we produce a new orientation B^{+}by replacing an orientation on a successor-closed subset, and this argument will be used frequently in this thesis - often without explicit comment.

Remark 1.36. We could have easily proved Lemma 1.30 and shown that $\left(\mathcal{C}_{0}, \leq_{s}\right)$ was a strong class using Proposition 1.34, rather than using the original definition of \leq_{s} in terms of predimension. (To show that $A \leq_{s} B \leq_{s} C \Rightarrow A \leq_{s} C$, we use the method of replacing an orientation on a successor-closed subset, as in the proof of Lemma 1.35.)

However, the disadvantage of this is that the proof in terms of \sqsubseteq_{s} is specific to our particular choice of predimension. For a generalised notion of predimension (see [5]), our first proof using submodularity of δ is still valid.

Lemma 1.37. $\left(\mathcal{C}_{0}, \leq_{s}\right)$ and $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ are free amalgamation classes.
Proof. It is clear that $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ is a free amalgamation class. Using Lemma 1.26, we have that $\left(\mathcal{C}_{0}, \leq_{s}\right)$ is a free amalgamation class.

Definition 1.38. Let M_{0} denote the Fraïssé limit of $\left(\mathcal{C}_{0}, \leq_{s}\right)$.
As M_{0} can be written as the union of an increasing \leq_{s}-chain of structures in \mathcal{C}_{0}, we already have a definition of $A \leq_{s} M_{0}$ for finite A from Section 1.3.2. Namely, writing M_{0} as the union of an increasing $\leq_{s^{-}}$ chain $A_{0} \leq_{s} A_{1} \leq_{s} \cdots$, for finite $A \subseteq M_{0}$ we say that $A \leq_{s} M_{0}$ if $A \leq_{s} A_{i}$ for some $i \geq 0$. This definition is not dependent on the particular \leq_{s}-chain we take - this is shown in Section 1.3.2.
For finite $A \subseteq M_{0}$, we define $\operatorname{cl}_{M_{0}}^{s}(A)$ to be the smallest finite $\leq_{s^{-}}$ closed subset of M_{0} containing A. (We know that there exists finite $B \leq_{s} M$ with $A \subseteq B$, as we can write M_{0} as the union of an increasing \leq_{s}-chain.)

Definition 1.39. For $A \subseteq M_{0}$ with A possibly infinite, we will say $A \leq_{s} M_{0}$ if $A \cap X \leq_{s} X$ for all finite $X \subseteq M_{0}$. (Note that this is consistent with the definition for finite A by part (1) of Lemma 1.30.) As $A \leq_{s} M_{0}, B \leq_{s} M_{0}$ implies that $A \cap B \leq_{s} M_{0}$ by the above definition (using Lemma 1.30), we can define $\operatorname{cl}_{M_{0}}^{s}(A)$ for $A \subseteq M_{0}$ as the smallest \leq_{s}-closed subset of M_{0} containing A. Note that this is consistent with our definition of $\mathrm{cl}_{M_{0}}^{s}(A)$ for finite A : if $A \subseteq M_{0}$ is finite, then $\mathrm{cl}_{M_{0}}^{s}(A)$ is finite.

1.4.3 The acyclic case: \leq_{1}

Definition 1.40. Let $A, B \in \mathcal{C}_{1}$ with $A \subseteq B$. We write $A \leq_{1} B$ if there exists an acyclic 2-orientation $B^{+} \in \mathcal{D}_{1}$ of B in which the induced orientation $A^{+} \in \mathcal{D}_{1}$ on A has $A^{+} \sqsubseteq_{s} B^{+}$.

We have an analogue of Lemma 1.30:
Lemma 1.41. Let $B \in \mathcal{C}_{1}$.
(1) $A \leq_{1} B, X \subseteq B \Rightarrow A \cap X \leq_{1} X$.
(2) $A \leq_{1} C \leq_{1} B \Rightarrow A \leq_{1} B$.
(3) $A_{1}, A_{2} \leq_{1} B \Rightarrow A_{1} \cap A_{2} \leq_{1} B$.

Proof. (1) is immediate. (2) follows by replacing an orientation on a successor-closed subset, as in the proof of Lemma 1.35. (3) follows from (1) and (2).

Therefore we have that:
Lemma 1.42. $\left(\mathcal{C}_{1}, \leq_{1}\right)$ is a strong class.
Lemma 1.43. $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$ is a strong class, and is a strong expansion of $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
$\left(\mathcal{C}_{1}, \leq_{1}\right)$ and $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$ are free amalgamation classes.
The proofs are as in the previous section.
(The material in this section is based on Section 3.4 of [7], and was originally developed in [11].)

1.5 Sparse graphs: \leq_{d} and the ω-categorical M_{F}

We now construct an amalgamation class of sparse graphs whose Fraïssé limit is ω-categorical (specifically, the ω-categorical Hrushovski construction M_{F}, first presented by Hrushovski in [15]). We will do this by defining a new closure (i.e. a new notion of strong substructure), d-closure, which will be uniformly bounded. The relevance of this can be seen in the lemma below.

Lemma 1.44. Let (\mathcal{K}, \leq) be an amalgamation class such that for $n \in \mathbb{N}$, (\mathcal{K}, \leq) contains only finitely many isomorphism types of structures of size n. Suppose there is a function $F: \mathbb{N} \rightarrow \mathbb{N}$ such that for $B \in \mathcal{K}$, $A \subseteq B$ with $|A| \leq n$, then there exists $A \subseteq C \leq B$ with $|C| \leq F(n)$. (F will be a uniform bound on the size of \leq-closures.)
Then the Fraïssé limit M of (\mathcal{K}, \leq) is ω-categorical.
Proof. By the Ryll-Nardzewski theorem, it is enough to show that $\operatorname{Aut}(M)$ is oligomorphic, i.e. that, for $n \geq 1, \operatorname{Aut}(M)$ has finitely many orbits on M^{n}. Take $n \geq 1$. As there are only finitely many isomorphism types of structures of size $\leq F(n)$ in \mathcal{K} and M is \leq-homogeneous, $\operatorname{Aut}(M)$ has finitely many orbits on $\left\{\bar{c} \in M^{F(n)}: \bar{c} \leq M\right\}$. We can extend any $\bar{a} \in M^{n}$ to an element of this set (note that when we work with ordered tuples, we can have repeats). If $\bar{a}, \overline{a^{\prime}}$ are not in the same orbit, then nor will their extensions be, so we are done.

Definition 1.45. Let $\mathcal{C}_{>0}$ be the class of finite graphs A such that for $B \subseteq A, \delta(B)>0$.

Definition 1.46. Take $A, B \in \mathcal{C}_{>0}$ with $A \subseteq B$. We say that A is d-closed in B, written $A \leq_{d} B$, if for $A \subsetneq C \subseteq B, \delta(A)<\delta(C)$.

As in the cases of \leq_{s} and \leq_{1}, we have the following lemma:
Lemma 1.47. Let $B \in \mathcal{C}_{>0}$.
(1) $A \leq_{d} B, X \subseteq B \Rightarrow A \cap X \leq_{d} X$.
(2) $A \leq_{d} C \leq_{d} B \Rightarrow A \leq_{d} B$.
(3) $A_{1}, A_{2} \leq_{d} B \Rightarrow A_{1} \cap A_{2} \leq_{d} B$.

The proof is similar to that of Lemma 1.30. Similarly to the case of \leq_{s}, for $A \subseteq B \in \mathcal{C}_{>0}$ we may define $\operatorname{cl}_{B}^{d}(A)$ as the intersection of all d-closed substructures of B which contain A, and as before (by an analogous proof), we have that $\delta(A) \geq \delta\left(\operatorname{cl}_{B}^{d}(A)\right)$.
Lemma 1.48. $\left(\mathcal{C}_{>0}, \leq_{d}\right)$ is a free amalgamation class.

Proof. It only remains to check the free amalgamation property (which implies JEP). We prove a stronger claim: given $A \leq_{d} B_{1}, A \subseteq B_{2}$ with $B_{1}, B_{2} \subseteq E$, where E is the free amalgam of B_{1}, B_{2} over A, we claim that $B_{2} \leq_{d} E$. Once we have the claim, note that $\varnothing \leq_{d} B_{2} \leq_{d} E$ implies that $E \in \mathcal{C}_{>0}$. Take $B_{2} \subsetneq X \subseteq E$. Then letting $Y=X \cap B_{1} \supsetneq A$, $X=B_{2} \cup Y$, and X is the free amalgam of B_{2}, Y over A. So

$$
\delta(X)=\delta\left(B_{2} \cup Y\right)=\delta\left(B_{2}\right)+\delta(Y)-\delta(A),
$$

and so

$$
\delta(X)-\delta\left(B_{2}\right)=\delta(Y)-\delta(A)>0
$$

as $A \leq_{d} B_{1}$.
The generic structure $M_{>0}$ of $\left(\mathcal{C}_{>0}, \leq_{d}\right)$ is not ω-categorical, as for $A \subseteq_{\text {fin. }} M_{>0}$, there is no uniform bound on $\left|\mathrm{cl}^{d}(A)\right|$ in terms of $|A|$, and we have the same problem for M_{0}.
To construct ω-categorical examples, as mentioned at the start of this section, we consider subclasses of $\mathcal{C}_{>0}$ in which d-closure is uniformly bounded.

Definition 1.49. Let $F: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be a continuous, increasing function with $F(0)=0$ and $F(x) \rightarrow \infty$ as $x \rightarrow \infty$. We define

$$
\mathcal{C}_{F}:=\left\{B \in \mathcal{C}_{>0}: \delta(A) \geq F(|A|) \forall A \subseteq B\right\} .
$$

Lemma 1.50 .
(1) If $B \in \mathcal{C}_{F}, A \subseteq B$, then $\left|\mathrm{cl}_{B}^{d}(A)\right| \leq F^{-1}(2|A|)$.
(2) If $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is an amalgamation class, then the generic structure M_{F} is ω-categorical.

Proof.
(1) From Lemma 1.32 and the fact that $\operatorname{cl}_{B}^{d}(A) \in \mathcal{C}_{F}$, we have $F\left(\left|\operatorname{cl}_{B}^{d}(A)\right|\right) \leq \delta\left(\operatorname{cl}_{B}^{d}(A)\right) \leq \delta(A) \leq 2|A|$.
(2) This follows from Lemma 1.44.

Definition 1.51. Analogously to Definition 1.38 and Definition 1.39, for $A \subseteq M_{F}$ with A possibly infinite, we say that $A \leq_{d} M_{F}$ if $A \cap X \leq_{d}$ X for all finite $X \subseteq M_{F}$. Similarly we define $\operatorname{cl}_{M_{F}}^{d}(A)$ as the smallest \leq_{d}-closed subset of M_{F} containing A.

Lemma 1.52. Let F be as in Definition 1.49, and assume additionally that F is piecewise smooth, its right derivative F^{\prime} is decreasing and $F^{\prime}(x) \leq 1 / x$ for $x>0$. Then $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class.

Proof. Let $A, B_{1}, B_{2} \in \mathcal{C}_{F}, A \leq_{d} B_{1}, B_{2}$. Let E be the free amalgam of B_{1}, B_{2} over A. By Lemma 1.48, $E \in \mathcal{C}_{>0}$ and $B_{1}, B_{2} \leq_{d} E$. We need to show that $E \in \mathcal{C}_{F}$. Assuming $E \neq B_{1}, B_{2}$, we have $A \neq B_{1}, B_{2}$. Suppose $X \subseteq E$: we need to show that $\delta(X) \geq F(|X|)$. As X is the
free amalgam of $B_{1} \cap X, B_{2} \cap X$ over $A \cap X$ and as $A \cap X \leq{ }_{d} B_{i} \cap X$, it suffices to check just for $X=E$.
We have that

$$
\delta(E)=\delta\left(B_{1}\right)+\delta\left(B_{2}\right)-\delta(A)=\delta\left(B_{1}\right)+\left(\left|B_{2}\right|-|A|\right) \frac{\delta\left(B_{2}\right)-\delta(A)}{\left|B_{2}\right|-|A|}
$$

Without loss of generality,

$$
\frac{\delta\left(B_{2}\right)-\delta(A)}{\left|B_{2}\right|-|A|} \geq \frac{\delta\left(B_{1}\right)-\delta(A)}{\left|B_{1}\right|-|A|}
$$

and as δ is integer-valued and $A \leq_{d} B_{1}, A \neq B_{1}$, the latter is $\geq 1 /\left|B_{1}\right|$. So

$$
\delta(E) \geq \delta\left(B_{1}\right)+\frac{\left|B_{2}\right|-|A|}{\left|B_{1}\right|} \geq F\left(\left|B_{1}\right|\right)+\frac{\left|B_{2}\right|-|A|}{\left|B_{1}\right|}
$$

and the conditions on F ensure that

$$
\begin{equation*}
F(x+y) \leq F(x)+y / x \tag{*}
\end{equation*}
$$

so

$$
\delta(E) \geq F\left(\left|B_{1}\right|+\left|B_{2}\right|-|A|\right)=F(|E|)
$$

Lemma 1.53. Let F be as in Definition 1.49, and suppose that $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class. Assume in addition that F is strictly increasing, $F(1)=2$ and $F(2)=3$. Then:
(1) \mathcal{C}_{F} contains a point and an edge;
(2) if $a \in A \in \mathcal{C}_{F}$, then $a \leq{ }_{d} A$;
(3) if $a b \subseteq A \in \mathcal{C}_{F}$ is an edge, then $a b \leq{ }_{d} A$;
(4) each vertex of M_{F} has infinite valency.

Proof. (1): As $F(1)=2$, if x is a point then $\delta(\{x\})=2=F(|\{x\}|)$, so $\{x\} \in \mathcal{C}_{F}$. If $a b$ is an edge, then $\delta(a b)=3=F(2)$, so $a b \in \mathcal{C}_{F}$.
(2), (3): These result from the fact that F is strictly increasing.
(4): Let $k \geq 1$. Let $a x \in \mathcal{C}_{F}$ be an edge. a is d-closed in $a x$, and so by taking the free amalgamation of k copies $a x_{1}, \cdots, a x_{k}$ of $a x$ over a, we have that the star graph S_{k} is in \mathcal{C}_{F} (where S_{k} is the complete bipartite graph $\left.K_{1, k}\right)$. Using the \leq_{d}-extension property of M_{F}, this implies that each vertex of M_{F} has infinite valency.

Note: For all examples of M_{F} in this thesis, we will take F satisfying the conditions of Lemma 1.53. We thus eliminate trivial examples such as the case where M_{F} has no edges.

Example 1.54. We will illustrate the flexibility of the above construction. We construct a connected ω-categorical graph with a vertextransitive and edge-transitive automorphism group whose smallest cycle is a 5 -cycle (this example originally appears in [15]).

Take F piecewise linear for $0 \leq x \leq 5$ where $F(0)=0, F(1)=2$, $F(2)=3, F(5)=5$, and let $F(k)=\log (k)+5-\log (5)$ for $k \geq 5$. So F is as in Definition 1.49, but only satisfies the conditions of Lemma 1.52 for $k \geq 5$. Then we have:

- $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class (we can use lemma 1.52 if $\left|B_{1}\right|$ or $\left|B_{2}\right| \geq 5$ - this is what is needed for $(*)$ to be true and check the other cases individually);
- the smallest cycle in \mathcal{C}_{F} is a 5 -cycle (just check), so the same is true for M_{F};
- if $a \in A \in \mathcal{C}_{F}$ then $a \leq_{d} A$ (as $F(k) \geq 2$ for $k \geq 1$), so Aut $\left(M_{F}\right)$ is vertex-transitive;
- if $a b \subseteq B \in \mathcal{C}_{F}$ is an edge then $a b \leq_{d} B$ (as $\mathrm{F}(2)=3$), so Aut $\left(M_{F}\right)$ is edge-transitive;
- M_{F} is connected: for non-adjacent $a, b \in M_{F}$, let $A=c l_{M_{F}}^{d}(a b)$. $\delta(A) \leq \delta(a b)=4$, so $|A| \leq 3$. So either A is a path of length two with endpoints a, b or $A=a b$, so $a b \leq_{d} M_{F}$. In the latter case, consider B a path of length 3 between a, b. We have $a b \leq_{d} B$, so by the extension property there is a \leq_{d}-copy of B in M_{F} over $a b$, and so a, b have distance 3 in M_{F}.
(The material in this section is based on Section 3.2 of [5].)

1.6 The Ramsey property

We will now define the Ramsey property for strong classes. (This section is based on Section 2.2 of [8], which is based on $[\mathbf{9}]$ and $[\mathbf{1 7}]$, where general Ramsey theorems are developed for classes of structures with closures.)

Definition 1.55. Let (\mathcal{K}, \leq) be a strong class. For $A, B \in \mathcal{K}$, we write $\binom{B}{A}=\left\{A^{\prime} \leq B: A^{\prime} \cong A\right\}$ for the set of \leq-copies of A inside B. (Note that by parts (S2), (S3) in the definition of a strong class, if $B \leq C \in \mathcal{K}$, then $\binom{B}{A}=\binom{C}{A} \cap \mathcal{P}(B)$.)
For $A, B \in \mathcal{K}, r \in \mathbb{N}_{+}$, an r-colouring of the $\operatorname{set}\binom{B}{A}$ is a function $\chi:\binom{B}{A} \rightarrow\{1, \cdots, r\}$. We say that $\binom{B}{A}$ is monochromatic in the r colouring χ if χ is constant on $\binom{B}{A}$.
For $A, B, C \in \mathcal{K}, r \in \mathbb{N}_{+}$, we write $C \rightarrow(B)_{r}^{A}$ if for every r-colouring χ of $\binom{C}{A}$, there exists $B^{\prime} \in\binom{C}{B}$ such that $\binom{B^{\prime}}{A}$ is monochromatic in χ. We say that (\mathcal{K}, \leq) has the Ramsey property if for $r \in \mathbb{N}_{+}, A, B \in \mathcal{K}$, there exists $C \in \mathcal{K}$ with $C \rightarrow(B)_{r}^{A}$.

The following is a well-known observation of Nešetřil ([23]) which shows a strong connection between Fraïssé theory and structural Ramsey theory:

Proposition 1.56. Let (\mathcal{K}, \leq) be a strong, rigid class with JEP and the Ramsey property. Then (\mathcal{K}, \leq) has the amalgamation property.

Proof. Let $A, B, C \in \mathcal{K}$ with $f: A \rightarrow B, g: A \rightarrow C \leq$-embeddings. By JEP, find $E \in \mathcal{K}$ which $B, C \leq$-embed into. Then, by the Ramsey property, find $D \in \mathcal{K}$ such that $D \rightarrow(E)_{4}^{A}$. Define a 4-colouring $c:\binom{D}{A} \rightarrow\{\varnothing,\{B\},\{C\},\{B, C\}\}$ by:

$$
B \in c\left(A_{0}\right) \Leftrightarrow \text { there is a } \leq \text {-embedding } r: B \rightarrow D \text { with } r f(A)=A_{0}
$$

and similarly for C. Take $E_{0} \in\binom{D}{E}$ monochromatic. By considering the \leq-embeddings $A \xrightarrow{f} B \rightarrow E_{0}$ and $A \xrightarrow{g} C \rightarrow E_{0}$, we see that for all $\overline{A_{0}} \in\binom{E_{0}}{A}, c\left(A_{0}\right)=\{B, C\}$. Take $A_{0} \in\binom{E_{0}}{A}$. Then there are $\leq-$ embeddings $r: B \rightarrow D, s: C \rightarrow D$ with $r f(A)=s g(A)=A_{0}$, so $r f, s g$ are isomorphisms $A \xrightarrow{\sim} A_{0}$, so $r f=s g$ as A is rigid. So we have the amalgamation property with r, s the \leq-embeddings into D.

1.7 A Ramsey result

We now prove a Ramsey result that will be a fundamental tool in Chapters 4, 5 and 6: we will use it to construct Ramsey expansions of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$ and $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$, namely the admissibly ordered orientations of these classes. The novelty here is that this result is for strong classes - the classical Fraïssé theory generalises straightforwardly to strong classes, but the construction of Ramsey objects does not.
We will keep our presentation of this Ramsey result self-contained, but in [9], the authors prove Ramsey theorems for strong classes as an example of a more general framework, which we now briefly sketch. Theorems 1.3 and 1.4 of [$\mathbf{9}]$ give Ramsey-type theorems for structures in a language consisting of relation and set-valued function symbols, i.e. the codomain of each function is the power set of the structure. In Section 5 of $[\mathbf{9}]$, these results are then applied to $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$ by encoding the notion of \sqsubseteq_{s}-substructure using an expanded language with setvalued functions. We expand the language of oriented graphs L by a single unary function symbol F, calling the expanded language L^{+}, and take the class \mathcal{D}_{0}^{+}of L^{+}-structures $\left(A, F_{A}\right)$ where $A \in \mathcal{D}_{0}$ and $F_{A}: A \rightarrow \mathcal{P}(A)$ is a unary set-valued function taking each vertex of A to its out-neighbourhood. We then have that L^{+}-embeddings between elements of \mathcal{D}_{0}^{+}are \sqsubseteq_{s}-embeddings when considered in the language L, and so the Ramsey result of Theorem 1.3 of $[\mathbf{9}]$ applied to \mathcal{D}_{0}^{+}will give an equivalent Ramsey result for the strong class $\left(\mathcal{D}_{0}, \sqsubseteq_{s}\right)$.
We will not take this approach, as the Ramsey theorem that we require is simple enough to be proved independently. The below is an adaptation of Theorem 6.6 of [$\mathbf{7}]$ (a version of Theorem 4.29 of [$\mathbf{1 7}]$):
A

$$
|A|=2,|B|=3 \Rightarrow N=6
$$

C :

Figure 1.3. An example of the construction of the Ramsey witness C for A, B in the proof of Theorem 1.57. The order on A, B is by increasing index. In the above figure we label the vertices of C by the vertices contained in each equivalence class of \sim on P, where, for example, $b_{2}^{34 *}$ means the equivalence class contains $\left\{b_{2}^{345}, b_{2}^{346}\right\}$.

Theorem 1.57. Let $\left(\mathcal{K}, \sqsubseteq_{s}\right)$ be a hereditary subclass of $\left(\mathcal{D}_{0}^{\prec}, \sqsubseteq_{s}\right)$, the class of linearly ordered elements of \mathcal{D}_{0}. Suppose $\left(\mathcal{K}, \sqsubseteq_{s}\right)$ has free amalgamation for any completion of the linear order, i.e.
$(*)$ for $\left(A, \gamma_{A}\right) \sqsubseteq_{s}\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right) \in \mathcal{K}$, if C is the free amalgamation of B_{1}, B_{2} over A and γ is a linear order on C extending γ_{1}, γ_{2}, then $(C, \gamma) \in \mathcal{K}$.
Then $\left(\mathcal{K}, \sqsubseteq_{s}\right)$ is a Ramsey class.
Proof. Take $A \sqsubseteq_{s} B \in \mathcal{K}$ (where A, B are ordered oriented graphs we will not indicate the order in the notation, for presentational simplicity). We will construct $C \in \mathcal{K}$ with $C \rightarrow(B)_{2}^{A}$.
We label B as $B=\left\{b_{1}, \cdots, b_{k}\right\}$ with $b_{1}<\cdots<b_{k}$ in the order of B. Using the Ramsey theorem for sets, take $N \in \mathbb{N}$ with $N \rightarrow(k)_{2}^{|A|}$.

Let L denote the language of ordered oriented graphs. Expand L to a new language L^{+}by adding unary relation symbols R_{i} for $1 \leq i \leq N$. Construct an L^{+}-structure P as follows (where we also write R_{i} for the interpretation of the symbol R_{i}):
(1) for each k-tuple $\bar{v}=\left(v_{1}, \cdots, v_{k}\right)$ with $v_{i} \in\{1, \cdots, N\}(1 \leq$ $i \leq k)$ and $v_{1}<\cdots<v_{k}$, put a disjoint copy $B^{\bar{v}}=\left\{b_{1}^{\bar{v}}, \cdots, b_{k}^{\bar{v}}\right\}$ of the ordered oriented graph B in P, where we place $b_{i}^{\bar{v}}$ in $R_{v_{i}}$;
(2) complete the order on P in an arbitrary manner so that $\mathrm{V}\left(R_{1}\right)<$ $\cdots<\mathrm{V}\left(R_{N}\right)$, where $\mathrm{V}\left(R_{i}\right)$ denotes the vertices inside R_{i}.

Define an equivalence relation \sim on P where for $x, y \in P, x \sim y$ if $\operatorname{scl}_{P}(x), \operatorname{scl}_{P}(y)$ with the induced order and unary relations are L^{+}isomorphic.
Let Q be the set of \sim-equivalence classes, and use the quotient map $\pi: P \rightarrow Q$ to induce an L^{+}-structure on Q (which we also denote by $Q)$: it is straightforward to check that this L^{+}-structure is well-defined. π is then a L^{+}-homomorphism which is an L^{+}-embedding on every $B^{\bar{v}}$.
Let C be the reduct of Q to the language L of ordered oriented graphs, forgetting the unary relations. (See Figure 1.3.)
Recall that $\left(\mathcal{K}, \sqsubseteq_{s}\right)$ has free amalgamation for any completion of the linear order. As the L-reduct of P is a disjoint union of copies of B, thus $\left.P\right|_{L} \in \mathcal{K}$. We then obtain C from $\left.P\right|_{L}$ by taking a quotient over a set of successor-closed substructures. We can therefore reconstruct C via a sequence of free amalgamations of successor-closed substructures of B, and thus $C \in \mathcal{K}$.
Define a map $f: Q \rightarrow\{1, \cdots, N\}$ which, for $x \in Q$, sends x to the index i of the unary relation R_{i} for which $x \in R_{i}$. (It is easy to check that f is well-defined: recall that equivalence classes were defined via L^{+}-isomorphisms.) For $X \sqsubseteq_{s} C$ (here we work with L-structures), we can then regard f as a map from $\binom{C}{X}$, the set of \sqsubseteq_{s}-copies (via L embeddings) of X in C, to $\binom{N}{|X|}$, the set of subsets of $\{1, \cdots, N\}$ of size $|X|$. It is an easy check that $f:\binom{C}{X} \rightarrow\binom{N}{|X|}$ is an injection.
Also, by the construction of Q, we have that $f:\binom{C}{B} \rightarrow\binom{N}{|B|}$ is a bijection.
Therefore, given a 2-colouring $\chi:\binom{C}{A} \rightarrow 2$, we may induce a 2 -colouring on a subset of $\binom{N}{|A|}$, which we extend to a colouring χ^{\prime} of $\binom{N}{|A|}$. By our choice of N, we have a χ^{\prime}-monochromatic subset $\left\{v_{1}, \cdots, v_{k}\right\}$ (where $v_{1}<\cdots<v_{k}$), and this corresponds to a \sqsubseteq_{s}-copy B^{\prime} of B in C with $\binom{B^{\prime}}{A}$ monochromatic.

1.8 Topological dynamics: G-flows

A central object of study in topological dynamics is the following (see [1] for more of a background):

Definition 1.58. A G-flow is a continuous action $G \curvearrowright X$ of a Hausdorff topological group G on a nonempty compact Hausdorff topological space X.

We will often simply write X to refer to the G-flow $G \curvearrowright X$ when this is clear from context. Given a G-flow on $X, \overline{G \cdot x}$, the orbit closure of a point $x \in X$, is a G-invariant compact subset of X. In general, a nonempty compact G-invariant subset $Y \subseteq X$ defines a subflow by restricting the G-action to Y. A G-flow on X is minimal if it contains no proper subflows. A G-flow is minimal iff every orbit is dense.
Zorn's lemma shows that every G-flow contains a minimal subflow. (The proof is straightforward, remembering that everything is Hausdorff.)
Let X, Y be G-flows. A G-flow morphism $X \rightarrow Y$ is a continuous map $\pi: X \rightarrow Y$ such that $\pi(g \cdot x)=g \cdot \pi(x)$ (this property is called G equivariance). Bijective G-flow morphisms are isomorphisms, as they are between compact Hausdorff spaces.
If Y is minimal, then any G-flow morphism $X \rightarrow Y$ is surjective, as the image is a subflow.
We now state a well-known theorem from topological dynamics that we shall use without proof (for more details see, for example, [1], Ch. 8):

Theorem 1.59. Let G be a Hausdorff topological group. Then there is a minimal G-flow $M(G)$ such that for any minimal G-flow X, there is a surjective G-flow morphism $M(G) \rightarrow X$, and $M(G)$ is uniquely determined up to isomorphism by this property.
$M(G)$ is called the universal minimal flow of G.
Definition 1.60. Let G be a Hausdorff topological group. If every G-flow has a G-fixed point, we call G extremely amenable.

We immediately have that G is extremely amenable iff $M(G)$ is a singleton.

Definition 1.61. Let G be a Hausdorff topological group. If every G flow has a G-invariant Borel probability measure, we call G amenable.

Note that extreme amenability implies amenability by taking the Dirac probability measure on the fixed point given by extreme amenability.

We have the fact that if G is separable metrisable, then it is sufficient for metrisable G-flows to have a fixed point for G to be extremely amenable (see [19]).

1.9 The KPT correspondence

In many cases, for a general Hausdorff topological group $G, M(G)$ can be quite complicated - i.e. non-metrisable (see the introduction of [19] for an exploration of the broader context).
We will be concerned in this thesis with the case where G is the automorphism group of a countable first-order structure, with the pointwise convergence topology whose open basis is given by left cosets of pointwise stabilisers of finite sets. G is thus a Polish group. (For the details - which are not technically difficult - see the notes [5].) In this particular context, there is a connection between triviality of the universal minimal flow $M(G)$ and structural Ramsey theory.
This was first shown by Kechris-Pestov-Todorčević in [19], and then further extended by work of Nguyen Van Thé, Zucker, Ben Yaacov, Melleray, Tsankov and others, e.g. in [24], [25], [2]. These extensions of the results in $[\mathbf{1 9}]$ will be discussed in the next section. Our presentation will be based on Section 2 of [8].

Theorem 1.62 ([19], Th. 4.8; [24], Th. 1). Let (\mathcal{K}, \leq) be an amalgamation class of rigid L-structures, with Fraissé limit M and $G=\operatorname{Aut}(M)$.
Then G is extremely amenable iff (\mathcal{K}, \leq) has the Ramsey property.
Here, a finite L-structure is rigid if it has trivial automorphism group.

1.10 Further KPT: the expansion property

Throughout this section, L, L^{+}will be first order relational languages, with $L^{+} \supseteq L$ an expansion of L.

1.10.1 Reasonable expansions

Here we follow Section 2.3 of [8], which takes the notion of a reasonable expansion from [25].
Definition 1.63. Let (\mathcal{K}, \leq) be an amalgamation class of L-structures. A class \mathcal{D} of finite L^{+}-structures is a reasonable expansion ([25]) of (\mathcal{K}, \leq) if \mathcal{D} is closed under isomorphisms and satisfies the following:
(1) \mathcal{K} is the class of L-reducts of \mathcal{D};
(2) for $A \in \mathcal{K}, A$ has finitely many expansions in \mathcal{D} (weak coprecompactness);
(3) for $B^{+} \in \mathcal{D}$, if $A^{+} \subseteq B^{+}$and $\left.A^{+}\right|_{L} \leq\left. B^{+}\right|_{L}$, then $A^{+} \in \mathcal{D}$;
(4) for $f: A \rightarrow B$ a strong embedding in ($\mathcal{K}, \leq)$, if $A^{+} \in \mathcal{D}$ is an expansion of A, then there exists an expansion $B^{+} \in \mathcal{D}$ of B such that $f: A^{+} \rightarrow B^{+}$is an embedding.
Lemma 1.64. For any amalgamation class (\mathcal{K}, \leq) of L-structures, the order expansion \mathcal{K}^{\prec} of (\mathcal{K}, \leq) (see Definition 1.27) is a reasonable expansion of the class (\mathcal{K}, \leq).

Proof. Straightforward.
Definition 1.65. Let \mathcal{D}_{F} be the class of all 2-orientations of graphs in \mathcal{C}_{F}.

Lemma 1.66. The classes $\mathcal{D}_{1}, \mathcal{D}_{0}$ and \mathcal{D}_{F} are reasonable expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right),\left(\mathcal{C}_{0}, \leq_{s}\right)$ and $\left(\mathcal{C}_{F}, \leq_{d}\right)$ respectively.

Proof. We check parts (1)-(4) of Definition 1.63 for \mathcal{D}_{0}. Part (1) results from Proposition 1.7. Parts (2) and (3) are immediate. Part (4) follows by a similar argument to that used in the proof of Lemma 1.35.

The proof for \mathcal{D}_{F} is similar.
For \mathcal{D}_{1}, part (1) of Definition 1.63 follows by the definition of \mathcal{C}_{1} as the class of graph reducts of \mathcal{D}_{1}. Parts (2)-(4) are similar to the \mathcal{D}_{0} case.
Definition 1.67. Let \mathcal{D} be a reasonable L^{+}-expansion of the amalgamation class (\mathcal{K}, \leq). Then we define a topological space $X(\mathcal{D})$ as follows.
Let $X(\mathcal{D})=\left\{(M, s)\right.$ an L^{+}-expansion of $\left.M: \forall A \leq M,\left(A,\left.s\right|_{A}\right) \in \mathcal{D}\right\}$.
Each basic open set of $X(\mathcal{D})$ is given by first fixing $B \leq M,\left(B, r_{B}\right) \in \mathcal{D}$, and then taking $U\left(r_{B}\right)=\left\{(M, s) \in X(\mathcal{D}):\left.s\right|_{B}=r_{B}\right\}$ as the basic open set. It is straightforward to check that this does in fact form a basis. We will see below that $X(\mathcal{D})$ gives a G-flow.
Lemma 1.68. Let \mathcal{D} be a reasonable L^{+}-expansion of the amalgamation class (\mathcal{K}, \leq). Let M be the Fraïssé limit of (\mathcal{K}, \leq).
Then for $A \leq M,\left(A, r_{A}\right) \in \mathcal{D}$, there is an expansion $(M, r) \in X(\mathcal{D})$ of M with $\left.r\right|_{A}=r_{A}$.

Proof. Write M as the union of an increasing \leq-chain $A=A_{1} \leq$ $A_{2} \leq \cdots$ starting at A. Let $r_{1}=r_{A}$. By part (4) of reasonableness, we may inductively define r_{i} on $A_{i}(i \geq 2)$ such that $\left(A_{i-1}, r_{i-1}\right) \leq$ $\left(A_{i}, r_{i}\right) \in \mathcal{D}$. We then take $r=\bigcup_{i \geq 1} r_{i}$. For $B \leq M, B \leq A_{i}$ for some i, so by part (3) of reasonableness, $(B, r) \in \mathcal{D}$. So $(M, r) \in X(\mathcal{D})$.
Lemma 1.69 (after Prop. 5.3, [25]). Let \mathcal{D} be a reasonable expansion of the amalgamation class (\mathcal{K}, \leq). Let M be the Fraïssé limit of (\mathcal{K}, \leq) and let $G=\operatorname{Aut}(M)$. Then $X(\mathcal{D})$ is a G-flow with the natural action.

Proof. By Lemma 1.68, $X(\mathcal{D})$ is non-empty.
Checking the continuity of the action $G \curvearrowright X(\mathcal{D}), g \cdot(M, s)=(M, g s)$ is straightforward, as is checking that $X(\mathcal{D})$ is Hausdorff.
To see that $X(\mathcal{D})$ is compact, consider the topological space $P=$ $\prod_{A \leq M}\left\{\operatorname{expansions} A^{+}\right.$of $\left.A\right\}$, where each set of the product has the discrete topology and P has the product topology. Basic open sets of P are given by fixing $A_{1}, \cdots, A_{n} \leq M$ and then fixing expansions of each A_{i}.
We define a map $\gamma: X(\mathcal{D}) \rightarrow P, \gamma((M, s))=\left(\left.s\right|_{A}\right)_{A \leq M}$, and it is straightforward to see that γ is a homeomorphism onto its image.
Let $Q=\prod_{A \leq M}\left\{\right.$ expansions $A^{+} \in \mathcal{D}$ of $\left.A\right\}$. Using part (2) of reasonableness (weak coprecompactness) and the fact that finite discrete topological spaces are compact, $Q \subseteq P$ is compact. As $\operatorname{Im}(\gamma) \subseteq Q$, it suffices to show that $\operatorname{Im}(\gamma)$ is a closed subspace of Q. We have that

$$
\operatorname{Im}(\gamma)=\left\{\left(p_{A}\right)_{A \leq M} \in Q: \forall B \leq C \leq M,\left.p_{C}\right|_{B}=p_{B}\right\},
$$

and so if an element of Q lies in the complement of $\operatorname{Im}(\gamma)$, this is witnessed on a finite set.

Definition 1.70. Let (\mathcal{K}, \leq) be an amalgamation class with Fraïssé limit M and $G=\operatorname{Aut}(M)$. Then, as the order expansion \mathcal{K}^{\prec} is a reasonable expansion of (\mathcal{K}, \leq), we have that $X\left(\mathcal{K}^{\prec}\right)$ is a G-flow: we denote this by $\mathcal{L O}(M)$ and call it the flow of linear orders on M.
As $\mathcal{D}_{1}, \mathcal{D}_{0}$ and \mathcal{D}_{F} are reasonable expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right),\left(\mathcal{C}_{0}, \leq_{s}\right)$ and $\left(\mathcal{C}_{F}, \leq_{d}\right)$ respectively, we have that $X\left(\mathcal{D}_{1}\right)$ is a G_{1}-flow, $X\left(\mathcal{D}_{0}\right)$ is a $G_{0}-$ flow and $X\left(\mathcal{D}_{F}\right)$ is a G_{F} flow. We will denote these flows by $\operatorname{Or}\left(M_{1}\right)$, $\operatorname{Or}\left(M_{0}\right)$ and $\operatorname{Or}\left(M_{F}\right)$ respectively, and call them flows of orientations.
Lemma 1.71 (Lem. 2.16, [8]). Let \mathcal{D} be a reasonable expansion of the amalgamation class (\mathcal{K}, \leq). Let M be the Fraïssé limit of (\mathcal{K}, \leq) and let $G=\operatorname{Aut}(M)$.
Let $Y \subseteq X(\mathcal{D})$ be a subflow. Then there exists $\mathcal{D}^{\prime} \subseteq \mathcal{D}$ which is a reasonable expansion of (\mathcal{K}, \leq) with $X\left(\mathcal{D}^{\prime}\right)=Y$.

Proof. Let

$$
\mathcal{D}^{\prime}=\bigcup_{(M, s) \in Y} \operatorname{Age}_{\leq}(M, s),
$$

i.e. \mathcal{D}^{\prime} is the class of finite L^{+}-structures which \leq-embed into an element of Y. So $\mathcal{D}^{\prime} \subseteq \mathcal{D}$. Parts (1), (2), (3) of reasonableness of \mathcal{D}^{\prime} are straightforward, and (4) follows from the \leq-homogeneity of M and the G-invariance of Y. Clearly $Y \subseteq X\left(\mathcal{D}^{\prime}\right)$. To see that $X\left(\mathcal{D}^{\prime}\right) \subseteq Y$, take $(M, s) \in X\left(\mathcal{D}^{\prime}\right)$ and show that $(M, s) \in \operatorname{cl}_{X\left(\mathcal{D}^{\prime}\right)}(Y)=Y$: this follows from the \leq-homogeneity of M and the G-invariance of Y.
Definition 1.72. Let \mathcal{D} be a reasonable expansion of the amalgamation class (\mathcal{K}, \leq). We say that \mathcal{D} has the expansion property over
(\mathcal{K}, \leq) if for $A \in \mathcal{K}$, there exists B in \mathcal{K} with $A \leq B$ such that for all expansions A^{+}, B^{+}of A, B in \mathcal{D}, there exists a \leq-embedding $A^{+} \rightarrow B^{+}$. It is straightforward to see that to prove the expansion property for \mathcal{D}, it suffices to show that for $A^{+} \in \mathcal{D}$, there exists $B \in \mathcal{K}$ such that for all expansions $B^{+} \in \mathcal{D}$ of B, there exists a \leq-embedding $A^{+} \rightarrow B^{+}$ (use weak coprecompactness of \mathcal{D} and JEP for \mathcal{K}).
(The above notion of expansion property first appears in [24], generalising the ordering property found in [19] where L is expanded by a single binary relation symbol.)

Theorem 1.73 ([24], Th. 4). Let \mathcal{D} be a reasonable expansion of the amalgamation class (\mathcal{K}, \leq) with Fraïssé limit M and $G=\operatorname{Aut}(M)$.
Then the G-flow $X(\mathcal{D})$ is minimal iff \mathcal{D} has the expansion property over (\mathcal{K}, \leq).

1.10.2 Coprecompact expansions

We now define coprecompactness, the final definition we need to state our extended KPT result.

Definition 1.74 (above Th. 2.20, $[\mathbf{8}]$). Let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be an amalgamation class of L^{+}-structures which is a strong expansion of (\mathcal{K}, \leq). Let M^{+}denote the Fraïssé limit of $\left(\mathcal{K}^{+}, \leq^{+}\right)$. By Lemma 1.26, (\mathcal{K}, \leq) is an amalgamation class with Fraïssé limit $M=\left.M^{+}\right|_{L}$.
We will say that $\left(\mathcal{K}^{+}, \leq^{+}\right)$is a coprecompact expansion of ($\left.\mathcal{K}, \leq\right)$ if every $\operatorname{Aut}(M)$-orbit on $M^{n}(n \geq 1)$ splits into finitely many $\operatorname{Aut}\left(M^{+}\right)$ orbits (equivalently, $\operatorname{Aut}\left(M^{+}\right)$is a coprecompact subgroup of $\left.\operatorname{Aut}(M)\right)$.

In the context of strong classes, this definition of coprecompactness (first formulated for strong classes in [8]) is stronger than the weak coprecompactness seen in the definition of a reasonable expansion. In the simpler non-strong case of classes with no distinguished notion of embedding (i.e. the standard classical Fraïssé theory), these two notions coincide.

Lemma 1.75. Let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be an L^{+}-amalgamation class which is a strong expansion of (\mathcal{K}, \leq). Then $\left(\mathcal{K}^{+}, \leq^{+}\right)$is a coprecompact strong expansion of (\mathcal{K}, \leq) iff:
for $A \in \mathcal{K}$, there exist finitely many \leq-embeddings $f_{i}: A \rightarrow B_{i}^{+}(1 \leq$ $i \leq n), B_{i}^{+} \in \mathcal{K}^{+}$, such that for any \leq-embedding $g: A \rightarrow C^{+}$, $C^{+} \in \mathcal{K}^{+}$, there exists $1 \leq i \leq n$ and $a \leq^{+}$-embedding $h: B_{i}^{+} \rightarrow C^{+}$ with $g=h f_{i}$.

The proof is straightforward.

1.10.3 The extended KPT correspondence

The following collates the results of Theorem 10.8 of [19], Theorem 5 of [24] and Theorem 5.7 of [25], reformulating these for strong classes as in Section 2 of [8]:

Theorem 1.76. Let (\mathcal{K}, \leq) be an amalgamation class with Fraïssé limit M and $G=\operatorname{Aut}(M)$. Let $\left(\mathcal{K}^{+}, \leq^{+}\right)$be a strong, reasonable, coprecompact expansion of (\mathcal{K}, \leq) consisting of rigid L^{+}-structures, with Fraïssé limit M^{+}.
If $\left(\mathcal{K}^{+}, \leq^{+}\right)$is a Ramsey class and \mathcal{K}^{+}has the expansion property over (\mathcal{K}, \leq), then $X\left(\mathcal{K}^{+}\right)$is the universal minimal flow of $G . X\left(\mathcal{K}^{+}\right)$has a comeagre orbit consisting of the expansions of M which are isomorphic to M^{+}.

1.11 Meagre orbits

We now introduce the weak amalgamation property, which will be essential in the proof of Theorem 4.18, one of the main results of this thesis.
(A similar property (the almost amalgamation property) was introduced by Ivanov ([18]). This was then adapted to the weak amalgamation property by Kechris \& Rosendal in [20].)

Definition 1.77 ([20]). Let \mathcal{D} be a reasonable class of L^{+}-expansions of an L-amalgamation class (\mathcal{K}, \leq). We say that (\mathcal{D}, \leq) has the weak amalgamation property (WAP) if:
for all $A \in \mathcal{D}$, there exists $B \in \mathcal{D}$ and a \leq-strong L^{+}-embedding f : $A \rightarrow B$ such that, for any \leq-strong L^{+}-embeddings $f_{i}: B \rightarrow C_{i} \in \mathcal{D}$ ($i=0,1$), there exists $D \in \mathcal{D}$ and \leq-strong L^{+}-embeddings $g_{i}: C_{i} \rightarrow D$ ($i=0,1$) with $g_{0} \circ f_{0} \circ f=g_{1} \circ f_{1} \circ f$. (Note that here we specify only that the diagram commutes for A.)

Lemma 1.78 (Lem. 2.23, [8] - adapting Th. 3.4 of [20]). Let \mathcal{D} be a reasonable class of L^{+}-expansions of an L-amalgamation class (\mathcal{K}, \leq). Let M be the Fraïssé limit of (\mathcal{K}, \leq) and let $G=\operatorname{Aut}(M)$. Suppose that $X(\mathcal{D})$ is a minimal flow.
If (\mathcal{D}, \leq) does not have the weak amalgamation property, then all G orbits on $X(\mathcal{D})$ are meagre.

Proof. We assume (\mathcal{D}, \leq) does not have the weak amalgamation property. Suppose $\left(A, r_{A}\right) \in \mathcal{D}$ witnesses the failure of WAP for (\mathcal{D}, \leq). We may assume $A \leq M$.
Recall that $X(\mathcal{D})$ has a basis where we specify $P \leq M,\left(P, r_{P}\right) \in \mathcal{D}$, and then take $U\left(r_{P}\right)=\left\{(M, s) \in X(\mathcal{D}):\left.s\right|_{P}=r_{P}\right\}$ as the basic open set.
Take $(M, t) \in X(\mathcal{D})$. As $X(\mathcal{D})$ is minimal, $X(\mathcal{D})$ is the G-orbit closure of (M, t). By Lemma 1.68, we may extend r_{A} to an element of $X(\mathcal{D})$, and so $U\left(r_{A}\right)$ is non-empty. Then there is $g \in G$ such that $g^{-1}(M, t) \in$ $U\left(r_{A}\right)$, and thus g is a \leq-embedding $\left(A, r_{A}\right) \rightarrow(M, t)$. Let $A^{\prime}=g A$.
Let $J=G_{\left(A^{\prime}\right)}$, the pointwise stabiliser of A^{\prime} in G. As M is countable, there are countably many \leq-copies of A^{\prime} in M, and so J is of countable index in G. We will show that $J t$ is nowhere dense in $X(\mathcal{D})$, and as $|G: J|=\aleph_{0}$, thus we will have that $G t$ is meagre in $X(\mathcal{D})$, and given that (M, t) was an arbitrary element of $X(\mathcal{D})$, this will complete the proof.
For a contradiction, say $J t$ is not nowhere-dense in $X(\mathcal{D})$, i.e. $J t$ is dense in some non-empty open set of $X(\mathcal{D})$, which we may take to be a basic open set $U\left(r_{P}\right)$ for some $\left(P, r_{P}\right) \in \mathcal{D}, P \leq M$. As $A^{\prime}, P \leq M$, there is finite $B \leq M$ with $A^{\prime}, P \leq B$, and by part (4) of reasonableness there is an expansion $\left(B, r_{B}\right) \in \mathcal{D}$ with $\left.r_{B}\right|_{P}=r_{P}$. So $J t$ is dense in $U\left(r_{B}\right)$, and $A^{\prime} \leq B$. By Lemma 1.68, we may extend $\left(B, r_{B}\right)$ to an element of $U\left(r_{B}\right)$, so there exists $j \in J$ with $j t \in U\left(r_{B}\right)$, and as j fixes A^{\prime} pointwise, $\left.r_{B}\right|_{A^{\prime}}=\left.t\right|_{A^{\prime}}$.
For $\left(B, r_{B}\right) \leq\left(C, r_{C}\right) \in \mathcal{D}$, by the extension property of M and Lemma 1.68, there is $r \in U\left(r_{B}\right)$ and a \leq-embedding $f:\left(C, r_{C}\right) \rightarrow(M, r)$ which is the identity on $\left(B, r_{B}\right)$.
As $J t$ is dense in $U\left(r_{B}\right)$, there is $j \in J$ such that $\left.(j t)\right|_{f(C)}=\left.r\right|_{f(C)}$. So then $j^{-1} f:\left(C, r_{C}\right) \rightarrow(M, t)$ is a \leq-embedding which is the identity on $\left(A^{\prime}, t\right)$. As we have found a \leq-embedding $\left(C, r_{C}\right) \rightarrow(M, t)$ which is the identity on $\left(A^{\prime}, t\right)$ for $\left(C, r_{C}\right)$ any arbitrary element of \mathcal{D} with $\left(B, r_{B}\right) \leq\left(C, r_{C}\right)$, we therefore have that $\left(A^{\prime}, t\right)$ has WAP, and thus so does $\left(A, r_{A}\right)$ - contradiction.

Chapter 2

Amenable and extremely amenable subgroups of the automorphism groups of sparse graphs

In this chapter, we first prove that $\operatorname{Aut}\left(M_{F}\right), \operatorname{Aut}\left(M_{0}\right)$ have no coprecompact extremely amenable subgroup, restating results from [8]. Theorem 3.8 of [8] also provides a criterion for non-amenability, and uses this to show that $\operatorname{Aut}\left(M_{F}\right)$ has no coprecompact amenable subgroup. We use this criterion to prove the new result that $\operatorname{Aut}\left(M_{0}\right)$ has no coprecompact amenable subgroup, extending proof techniques from [8].

2.1 Extremely amenable subgroups

Proposition 2.1 (adaptation of [8], Th. 3.7). Let M be an infinite 2 -sparse graph in which all vertices have infinite valency. Let $G=$ Aut (M).
Consider the G-flow $G \curvearrowright \operatorname{Or}(M)$. (Recall that $\operatorname{Or}(M)$ denotes the space of 2-orientations of M, introduced in Definition 1.70.)
If $J \leq G$ fixes a 2-orientation of M, then J has infinitely many orbits on M^{2}.

Proof. Let $\tau \in \operatorname{Or}(M)$ be an orientation of M fixed by J. So $J \leq \operatorname{Aut}(M, \tau)$. Let $K=\operatorname{Aut}(M, \tau)$. It suffices to show that K has infinitely many orbits on M^{2}.
Seeking a contradiction, suppose K has a finite number m of orbits on M^{2}. Note that for $a, x, y \in M$, if there is no element of K_{a} taking x to y, then there is no element of K taking (a, x) to $(a, y))$. So for all $a \in M, K_{a}$ has finitely many orbits on M, and the number of orbits on M of K_{a} is bounded uniformly in a by the number of orbits m of K on M^{2}.
Take $a \in M$. Say $x, y \in \operatorname{scl}_{\tau}(a)$ (the successor-closure of a in the orientation τ) and let p, q be the lengths of the shortest out-paths from a to x, y respectively. If $p \neq q$, then x, y lie in different K_{a}-orbits.
Also, if there is an out-path $a x_{1} \cdots x_{r}$ from a to x_{r} of minimal length r amongst out-paths from a to x_{r}, then the out-path $a x_{1} \cdots x_{i}$ is of minimal length i amongst out-paths from a to x_{i}.

So all vertices in $\operatorname{scl}_{\tau}(a)$ must be reachable via an out-path from a of length at most $m-1$. As τ is a 2 -orientation, this means that $\left|\operatorname{scl}_{\tau}(a)\right| \leq 1+2+\cdots+2^{m-1}=2^{m}-1$. This bound is uniform in a. Let $l \leq 2^{m}-1$ be the minimal uniform upper bound, and let $a \in M$ be a vertex that attains this. (So for $b \in M,\left|\operatorname{scl}_{\tau}(b)\right| \leq l$, and in particular for $a,\left|\operatorname{scl}_{\tau}(a)\right|=l$.)
As a has infinite valency and τ is a 2 -orientation, a has an in-vertex c. But then $\left|\operatorname{scl}_{\tau}(c)\right| \geq l+1$, contradiction.

Theorem 2.2 (adaptation of [8], Th. 1.2, Th. 3.7). $\operatorname{Aut}\left(M_{F}\right)$ has no coprecompact extremely amenable subgroup.
(Recall that, as stated after Lemma 1.53, throughout this thesis we assume that we have taken the control function F such that $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class, vertices and edges lie in \mathcal{C}_{F} and are d-closed in M_{F}, and every vertex of M_{F} has infinite valency.)

Proof. Write $M=M_{F}, G=\operatorname{Aut}(M)$. Let J be an extremely amenable subgroup of G. As J must fix an orientation of M, by Proposition 2.1 we have that J has infinitely many orbits on M^{2}.
As G is oligomorphic, G has finitely many orbits on M^{2}, and so any coprecompact subgroup of G must have finitely many orbits on M^{2}. So J is not coprecompact.

Theorem 2.3 ([8], Th. 3.16). Aut $\left(M_{0}\right)$ has no coprecompact extremely amenable subgroup.

Proof. We write $M=M_{0}, G=\operatorname{Aut}\left(M_{0}\right)$. Suppose $J \leq G$ is extremely amenable. Consider the flow $G \curvearrowright \operatorname{Or}(M)$. As J is extremely amenable, J fixes some orientation $\sigma \in \operatorname{Or}(M)$. So $J \leq \operatorname{Aut}(M, \sigma)$. We will show that there is a G-orbit P on M^{2} which splits into infinitely many J-orbits, so J is not a coprecompact subgroup of G.
Take non-adjacent $x, y \in M$ with $\{x, y\} \leq_{s} M$. Let $P \subseteq M^{2}$ be the G-orbit of (x, y). Suppose, seeking a contradiction, that P splits into finitely many J-orbits.
Take $m \in \mathbb{N}$, and take a rooted tree T of height $m+1$ with each non-leaf vertex having 3 children, where the shortest path from each leaf vertex to the head has exactly $m+1$ edges. (To avoid terminological confusion with the definition of roots in Definition 1.13, what is ordinarily referred to in graph theory terminology as the root vertex of a rooted tree will be called the head vertex. Specifically, the head vertex is the vertex which has no parent, i.e. the vertex furthest away from the leaves.)
By directing the edges of T from leaves towards head, we obtain a 2-orientation τ of T, so $T \in \mathcal{C}_{0}$, and we may take $T \leq_{s} M$.

As each non-leaf vertex $a \in T$ has 3 children and σ is a 2-orientation, some child of a must be an in-vertex of a in σ, and so there is an outpath $v=v_{-1}, v_{0}, \cdots, v_{m}$ of length $m+1$ in (T, σ) going from some leaf vertex to the head. We denote this by (Q, σ).
As σ, τ agree on Q and (Q, τ) is successor-closed in (T, τ), we have that $Q \leq_{s} M$ by Proposition 1.34. For $1 \leq i \leq m$, we may reverse τ on $\left(v_{-1}, v_{0}\right),\left(v_{i}, v_{i+1}\right)$ to produce an orientation of Q in which $\left\{v, v_{i}\right\}$ is successor-closed, and so $\left\{v, v_{i}\right\} \leq_{s} M$. Hence $\left(v, v_{i}\right) \in P$.
To sum up, for $m \in \mathbb{N}$ we have shown that there exists a $(m+1)$ length path $v=v_{-1}, v_{0}, \cdots, v_{m}$ in M with $\left(v_{i}, v_{i+1}\right) \in \sigma(i \geq-1)$ and $\left(v, v_{i}\right) \in P(i \geq 1)$.
Let $k=2$. Define a function $s: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$by $s(1)=1, s(t+1)=k^{s(t)+2}$. We claim that for $t \geq 1, m \geq s(t)$, we have that v_{1}, \cdots, v_{m} lie in at least t different J_{v}-orbits. This will contradict P splitting into finitely many J-orbits.
First, let $B(v, j)$ be the set consisting of vertices w which are reachable via an out-directed path in σ from v of length at most $j(j \in \mathbb{N})$. So $|B(v, j)| \leq 1+k+\cdots+k^{j}<k^{j+1}-1$. We then prove the claim by induction. Note that the case $t=1$ is trivial. Seeking a contradiction, assume the claim is true for t, but not for $t+1$. Then $v_{s(t)+1}, \cdots, v_{s(t+1)}$ lie in the same J_{v}-orbits as $v_{1}, \cdots, v_{s(t)}$, and so as $J \leq \operatorname{Aut}(M, \sigma)$, $\left\{v_{1}, \cdots, v_{s(t+1)}\right\} \subseteq B(v, s(t)+1)$. But $s(t+1)=k^{s(t)+2}$ and $\mid B(v, s(t)+$ 1) $\mid<k^{s(t)+2}-1$, contradiction. This completes the proof of the claim.

2.2 A criterion for non-amenability

Lemma 2.4 ([8], Th. 3.8). Let M be M_{1}, M_{0} or M_{F}, and let $J \leq$ $\operatorname{Aut}(M)$. Suppose there is an edge ab of M such that $J_{a} b, J_{b} a$ are both infinite. Then J is not amenable.

Proof. Seeking a contradiction, suppose J is amenable. So the J-flow $\operatorname{Or}(M)$ has a J-invariant Borel probability measure μ. For $x, y \in M$, let $U_{x y}=\{\sigma \in \operatorname{Or}(M):(x, y) \in \sigma\} . U_{x y}$ is open in $\operatorname{Or}(M)$. We have that $U_{a b} \cup U_{b a}=\operatorname{Or}(M)$, so without loss of generality, $\mu\left(U_{a b}\right)=p>0$. For $r \geq 1$, let b_{1}, \cdots, b_{r} be distinct elements of $J_{a} b$. Let χ_{i} be the characteristic function of $U_{a b_{i}}$ in $\operatorname{Or}(M)$. As μ is J-invariant, for each $b_{i}, \mu\left(U_{a b_{i}}\right)=p$. So $\int_{\sigma \in \operatorname{Or}(M)} \chi_{i}(\sigma) \mathrm{d} \mu(\sigma)=p$.
Also, for $\sigma \in \operatorname{Or}(M), \sum_{i \leq r} \chi_{i}(\sigma) \leq 2$, as a has at most 2 out-vertices in σ. So $\int_{\sigma \in \operatorname{Or}(M)} \sum_{i \leq r} \chi_{i}(\sigma) \mathrm{d} \mu(\sigma) \leq 2$, which implies that $r p \leq 2$. As r is an arbitrary positive integer, this is a contradiction.

2.3 Amenable subgroups

The following is stated in [8] but not proved explicitly (the construction of σ in the below proof was rediscovered by the author of this thesis, though it is implied in [8] that the authors already know how to do this.)
Theorem 2.5 ([8], Cor. 3.11). $G=\operatorname{Aut}\left(M_{F}\right)$ has no coprecompact amenable subgroup.

Proof. Write $M=M_{F}$. For a contradiction, suppose J is a coprecompact amenable subgroup of G.
Define a binary relation σ on M by $\sigma=\left\{(a, b) \in E_{M}: J_{a} b\right.$ is finite $\}$. By Lemma 2.4, σ is a direction of the edges of M, where we may possibly direct some edges in both directions (i.e. we may have $(a, b) \in$ $\sigma,(b, a) \in \sigma)$.
Take $(a, b) \in E_{M}, j \in J$. Then $J_{j a}=j J_{a} j^{-1}$, so $J_{j a} j b=j J_{a} b$, and thus $\left|J_{j a} j b\right|=\left|J_{a} b\right|$. So if $(a, b) \in E_{M},\left(a^{\prime}, b^{\prime}\right) \in E_{M}$ lie in the same J-orbit, $\left|J_{a} b\right|=\left|J_{a^{\prime}} b^{\prime}\right|$. Specifically, if $(a, b) \in \sigma$, then for $\left(a^{\prime}, b^{\prime}\right)$ in the J-orbit of $(a, b),\left|J_{a^{\prime}} b^{\prime}\right|=\left|J_{a} b\right|<\infty$. So $J \leq \operatorname{Aut}(M, \sigma)$.
Also as G is oligomorphic and J is a coprecompact subgroup of G, J has finitely many orbits on M^{2}.
Thus for $(a, b) \in \sigma$, there is a uniform bound k, independent of a, on the number of out-edges of a in σ. (We think of σ as a k-orientation where some edges are oriented in both directions.)
The rest of the proof follows that of Proposition 2.1, with σ replacing the 2 -orientation.

We will now combine Lemma 2.4, used in a similar way to the proof of Theorem 2.5, with the proof argument of Theorem 2.3 to obtain the new result in this chapter below.
Theorem $2.6\left(^{* *}\right) . G=\operatorname{Aut}\left(M_{0}\right)$ has no coprecompact amenable subgroup.

Proof. Seeking a contradiction, say $J \leq G$ is coprecompact and amenable.
Let x, y be adjacent vertices of M_{0} with $\{x, y\} \leq_{s} M_{0}$ (a single edge is 2 -sparse and thus in \mathcal{C}_{0}), and let X be the G-orbit of $(x, y) \in M_{0}{ }^{2}$.
For $(a, b) \in X, a$ and b are adjacent, and so as J is amenable, by Lemma 2.4 at least one of $J_{a} b, J_{b} a$ is finite. Define a binary relation σ on M_{0} by $\sigma=\left\{(a, b) \in X: J_{a} b\right.$ is finite $\}$. σ is a direction of the edges of X, where we may possibly direct some edges in both directions (i.e. we may have $(a, b) \in \sigma,(b, a) \in \sigma)$.
Take $(a, b) \in X, j \in J$. Then $J_{j a}=j J_{a} j^{-1}$, so $J_{j a} j b=j J_{a} b$, and thus $\left|J_{j a} j b\right|=\left|J_{a} b\right|$. So if $(a, b) \in X,\left(a^{\prime}, b^{\prime}\right) \in X$ lie in the same J-orbit,
$\left|J_{a} b\right|=\left|J_{a^{\prime} b^{\prime}}\right|$. Specifically, if $(a, b) \in \sigma$, then for $\left(a^{\prime}, b^{\prime}\right)$ in the J-orbit of $(a, b),\left|J_{a^{\prime}} b^{\prime}\right|=\left|J_{a} b\right|<\infty$. So $J \leq \operatorname{Aut}\left(M_{0}, \sigma\right)$.
Also, as J is coprecompact, X splits into finitely many J-orbits. Thus for $(a, b) \in \sigma$, there is a uniform bound k, independent of a, on the number of out-edges of a in σ.
Let x^{\prime}, y^{\prime} be non-adjacent vertices of M_{0} with $\left\{x^{\prime}, y^{\prime}\right\} \leq_{s} M_{0}$, and let Y be the G-orbit of $\left(x^{\prime}, y^{\prime}\right) \in M_{0}{ }^{2}$. As J is coprecompact, Y splits into finitely many J-orbits.
Take $m \in \mathbb{N}$. Take a rooted tree T of height $m+1$, with each non-leaf vertex having $k+1$ children (here, the terminology is as in the proof of Theorem 2.3). Let τ be the direction of T given by directing the tree "upside down" from the leaves to the head, i.e. if $a \in T$ has child vertex b, then $(b, a) \in \tau$. Each non-head vertex of T has out-degree 1 in τ and the head vertex has out-degree 0 , so τ is a 2-orientation, and so $T \in \mathcal{C}_{0}$. We may take $T \leq_{s} M_{0}$. For $(b, a) \in \tau$, if a has a successor c in τ (i.e. $(a, c) \in \tau)$, then we may reverse the orientation of (a, c) to produce a 2 -orientation of T in which $\{a, b\}$ is successor-closed, and so $\{a, b\} \leq_{s} T \leq_{s} M$. Thus for $a b$ an edge of $T,(a, b) \in X$.
As each non-leaf vertex $a \in T$ has $k+1$ in-edges in τ and a has at most k out-edges in σ, a must have some τ-in-vertex b for which $(b, a) \in \sigma$. Therefore, (T, τ) contains an out-directed path of length $m+1$, successor-closed in τ, where each out-edge also lies in σ. Label this path as $v=v_{-1}, v_{0}, \cdots, v_{m}$, where $\left(v_{i}, v_{i+1}\right) \in \tau$ for $i \geq-1$. We have that $\left\{v, v_{i}\right\} \leq_{s} M_{0}$ for $i \geq 1$ and so $\left(v, v_{i}\right) \in Y$, as we may simply reverse the orientation τ on $\left(v_{-1}, v_{0}\right),\left(v_{i}, v_{i}+1\right)$ to produce an orientation of the path in which $\left\{v, v_{i}\right\}$ is successor-closed.
To sum up, for $m \in \mathbb{N}$ we have shown that there exists a $(m+1)$ length path $v=v_{-1}, v_{0}, \cdots, v_{m}$ in M_{0} with $\left(v_{i}, v_{i+1}\right) \in \sigma(i \geq-1)$ and $\left(v, v_{i}\right) \in Y(i \geq 1)$.
Define a function $s: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$by $s(1)=1, s(t+1)=k^{s(t)+2}$. We claim that for $t \geq 1, m \geq s(t)$, we have that v_{1}, \cdots, v_{m} lie in at least t different J_{v}-orbits. This will contradict Y splitting into finitely many J-orbits, meaning that G has no coprecompact amenable subgroup.
First, let $B(v, j)$ be the set consisting of vertices w which are reachable via an out-directed path in σ from v of length at most $j(j \in \mathbb{N})$. So $|B(v, j)| \leq 1+k+\cdots+k^{j}<k^{j+1}-1$. We then prove the claim by induction. Note that the case $t=1$ is trivial. Seeking a contradiction, assume the claim is true for t, but not for $t+1$. Then $v_{s(t)+1}, \cdots, v_{s(t+1)}$ lie in the same J_{v}-orbits as $v_{1}, \cdots, v_{s(t)}$, and so as $J \leq \operatorname{Aut}\left(M_{0}, \sigma\right)$, $\left\{v_{1}, \cdots, v_{s(t+1)}\right\} \subseteq B(v, s(t)+1)$. But $s(t+1)=k^{s(t)+2}$ and $\mid B(v, s(t)+$ 1) $\mid<k^{s(t)+2}-1$, contradiction. This completes the proof of the claim.

Chapter 3

Fixed points on type spaces

3.1 Introduction and definition

We investigate a weakening of extreme amenability, which we call the fixed points on type spaces property (FPT).
The following is folklore:
Lemma 3.1. Let M be an L-structure, and let $G=\operatorname{Aut}(M)$ with the pointwise convergence topology. Then G acts continuously on the Stone spaces $S_{n}(M)$, with the action given by

$$
g \cdot p(\bar{x})=\{\phi(g \bar{m}, \bar{x}): \phi(\bar{m}, \bar{x}) \in p(\bar{x})\} .
$$

That is, $G \curvearrowright S_{n}(M)$ with the action defined above is a G-flow.
Note that we define the action of G on $L(M)$-formulae as

$$
g \cdot \phi(\bar{m}, \bar{x})=\phi(g \bar{m}, \bar{x}) .
$$

Proof. We need to show that $g \cdot p(\bar{x})$ is a complete theory in $L(M) \cup$ $\{\bar{x}\}$ containing the diagram $\operatorname{Th}_{L(M)}(M)$ of M. For consistency, by compactness we need only show the consistency of a finite collection of formulae $\left\{\phi_{1}(g \bar{m}, \bar{x}), \cdots, \phi_{r}(g \bar{m}, \bar{x})\right\}$ in $g \cdot p(\bar{x})$. We have that

$$
g \cdot\left(\phi_{1}(\bar{m}, \bar{x}) \wedge \cdots \wedge \phi_{r}(\bar{m}, \bar{x})\right)=\phi_{1}(g \bar{m}, \bar{x}) \wedge \cdots \wedge \phi_{r}(g \bar{m}, \bar{x}),
$$

so it suffices to show the consistency of $\phi(g \bar{m}, \bar{x})$ given $\phi(\bar{m}, \bar{x}) \in p(\bar{x})$. The type $p(\bar{x})$ is realised in some elementary extension $M^{\prime} \succeq M$, so $M^{\prime} \models(\exists \bar{x}) \phi(\bar{m}, \bar{x})$ implies that $M \models(\exists \bar{x}) \phi(\bar{m}, \bar{x})$, and thus $M \models$ $\phi(\bar{m}, \bar{n})$ for some $\bar{n} \in M$. As automorphisms of structures preserve functions, relations and constants, $M \models \phi(g \bar{m}, g \bar{n})$, and so we have consistency (formally, this is by induction on the complexity of the formula).
Take a formula $\phi(\bar{m}, \bar{x})$. Either $\phi\left(g^{-1} \bar{m}, \bar{x}\right)$ or $\neg \phi\left(g^{-1} \bar{m}, \bar{x}\right)$ is in $p(\bar{x})$, and as the action of G commutes with Boolean connectives, we have that $g \cdot p(\bar{x})$ is a complete theory - it is clear that it contains the diagram of M.
To show that the action is continuous, take a basic open set

$$
\langle\psi(\bar{m}, \bar{x})\rangle=\{p(\bar{x}): p(\bar{x}) \ni \psi(\bar{m}, \bar{x})\}
$$

of $S_{n}(M)$. Then the preimage of this set under the action is

$$
\{(g, p(\bar{x})): g \cdot p(\bar{x}) \ni \psi(\bar{m}, \bar{x})\}
$$

and taking $g_{0}, p_{0}(\bar{x})$ such that $g_{0} \cdot p_{0}(\bar{x}) \ni \psi(\bar{m}, \bar{x})$, we have $p_{0} \ni$ $\psi\left(g_{0}^{-1} \bar{m}, \bar{x}\right)$, and then $\left\{g: g^{-1} \bar{m}=g_{0}^{-1} \bar{m}\right\} \times\left\langle\psi\left(g_{0}^{-1} \bar{m}, \bar{x}\right)\right\rangle$ is the open neighbourhood we seek.

Definition $3.2\left({ }^{* *}\right)$. Let M be an L-structure with automorphism group $G=\operatorname{Aut}(M)$. We say that G has the fixed points on type spaces property (FPT) if every subflow of $G \curvearrowright S_{n}(M), n \geq 1$, has a fixed point.

Note that FPT is equivalent to every orbit closure $\overline{G \cdot p(\bar{x})}$ in $S_{n}(M)$ having a fixed point.
Remark 3.3. $p(\bar{x}) \in S_{n}(M)$ is a G-invariant type (i.e. a fixed point of the action) iff for all formulae $\phi(\bar{y}, \bar{x}),\{\bar{m}: \phi(\bar{m}, \bar{x}) \in p(\bar{x})\}$ is G invariant, and for ω-categorical structures, this is equivalent to $p(\bar{x})$ being \varnothing-definable.

3.2 An example: the random graph.

In this section, let M denote the random graph (i.e. the Fraïssé limit of the class of finite graphs). We will prove that:

Theorem 3.4. The random graph M has FPT for subflows of $S_{1}(M)$.
In fact, it is a straightforward generalisation to show that the random graph has FPT for subflows of $S_{n}(M), n \geq 1$, and therefore has FPT in the full sense. The full argument will appear in the published version of this material.
Before proving Theorem 3.4, we recall the following:
Proposition 3.5. The random graph M is indivisible, i.e. for any 2 -colouring of the vertices of M, there is a monochromatic copy of M.

A very short proof of a stronger fact (the pigeonhole property of the random graph) may be found in [4].

Proof of Theorem 3.4. The random graph M is homogeneous in a finite relational language, and so is ω-categorical. Therefore M admits quantifier elimination. Let $G=\operatorname{Aut}(M)$.
Consider the space $S_{1}(M)$ of (1-)types of M. Given a G-invariant type $p(x)$, we can realise it in some elementary extension of M and use quantifier elimination to see that we just have a point a outside M which is adjacent to some of the vertices of M. If a were adjacent to a vertex of M and not adjacent to another, then by extending the local isomorphism sending the first vertex to the second to an automorphism of M (by homogeneity), we can see that $p(x)$ would not be G-invariant. Therefore the only G-invariant 1 -types of M are $p_{0}(x)$, the type of the
point not adjacent to any vertices of M, and $p_{1}(x)$, the type of the point adjacent to all vertices of M.
From the above, we see that G has FPT for 1-types iff $p_{0}(x)$ or $p_{1}(x)$ belongs to every $\overline{G p(x)}$. Let $p(x)$ be a type, realised as a point a outside M. Let X_{0} be the set of vertices of M not adjacent to a, and let X_{1} be the set of vertices of M adjacent to a. Then $p_{1}(x) \in \overline{G p(x)} \Leftrightarrow$ for every basic open set $\langle f(\bar{m}, x)\rangle \ni p_{1}(x)$, there exists $g \in G$ with $g p(x) \in$ $\langle f(\bar{m}, x)\rangle$, i.e. $f\left(g^{-1} \bar{m}, x\right) \in p(x)$. By quantifier elimination, we see that $f(\bar{m}, x)$ specifies a finite subgraph $A \subseteq M$ that the realisation point of $p_{1}(x)$ is adjacent to, and so $p_{1}(x) \in \overline{G p(x)} \Leftrightarrow$ for all finite subgraphs $A \subseteq M$, there exists $g \in G$ with $g A \subseteq X_{1}$. Clearly a corresponding statement is true for $p_{0}(x)$ and X_{0}.
We can regard X_{0} and X_{1} as a colouring of M. Thus, FPT for 1-types is equivalent to the statement that
$(*)$ for every colouring $c: M \rightarrow\{0,1\}$, there is a colour i such that for all finite $A \subseteq M$, there is a copy of A of colour i.

The statement $(*)$ follows immediately from the indivisibility of the random graph.

3.3 An ω-categorical structure having no ω-categorical expansion with FPT

Theorem $3.6\left({ }^{* *}\right)$. There is a countable ω-categorical structure M which does not have any ω-categorical expansion M^{\prime} with $\operatorname{Aut}\left(M^{\prime}\right)$ having FPT, the fixed points on type spaces property.

The ω-categorical structure M in the above theorem will be a particular case of the ω-categorical Hrushovski construction M_{F} (see Section 1.5). Recall that, as stated after Lemma 1.53, throughout this thesis we assume that we have taken the control function F such that $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class, vertices and edges lie in \mathcal{C}_{F} and are d-closed in M_{F}, and every vertex of M_{F} has infinite valency. The particular control function F used in the proof of Theorem 3.6 will satisfy additional conditions on top of this (these additional conditions only apply in this chapter).
The proof will depend on Proposition 2.1, which we recall below:
Proposition 2.1. Let M be an infinite 2-sparse graph in which all vertices have infinite valency. Let $G=\operatorname{Aut}(M)$.
Consider the G-flow $G \curvearrowright \operatorname{Or}(M)$. If $J \leq G$ fixes a 2 -orientation of M, then J has infinitely many orbits on M^{2}.

Before giving the details of the proof of Theorem 3.6, we first give an informal general outline.
For each orientation $\tau \in \operatorname{Or}\left(M_{F}\right)$, we will construct a 1-type $p_{\tau}(x) \in$ $S_{1}\left(M_{F}\right)$ which "encodes" the orientation, by use of the label structure N_{τ} described below.
We will construct a G-morphism $u: S_{1}\left(M_{F}\right) \rightarrow 2^{M_{F}{ }^{2}}$, with $u\left(p_{\tau}(x)\right)=$ τ for $\tau \in \operatorname{Or}\left(M_{F}\right)$. We have that $\operatorname{Or}\left(M_{F}\right)$ is a subflow of $2^{M_{F}{ }^{2}}$, and so $D=u^{-1}\left(\operatorname{Or}\left(M_{F}\right)\right)$ is a subflow of $S_{1}\left(M_{F}\right)$.
Say we have an expansion M^{\prime} of M_{F} with automorphism group $H=$ $\operatorname{Aut}\left(M^{\prime}\right)$ having FPT. As there is a natural H-morphism $w: S_{1}\left(M^{\prime}\right) \rightarrow$ $S_{1}\left(M_{F}\right)$ (where we forget the formulae that use relation symbols from the expanded language), $w^{-1}(D)$ is a subflow of the H-flow $S_{1}\left(M^{\prime}\right)$, and as H has FPT, H will fix a point of $w^{-1}(D)$. So via the H morphism $u \circ w, H$ will fix an orientation of M_{F}. By Theorem 2.1, H has infinitely many orbits on $M_{F}{ }^{2}$, so is not oligomorphic, and thus by the Ryll-Nardzewski theorem (see chapter 4 of $[\mathbf{2 1}]$) M^{\prime} is not ω categorical, concluding the proof of Theorem 3.6.
We now start the formal details of the proof of Theorem 3.6.
We begin with a description of the control function F and properties of the class \mathcal{C}_{F}.

Lemma $3.7\left(^{*}\right)$. Let F be a control function for the class \mathcal{C}_{F} satisfying the conditions of Definition 1.49, and additionally assume:

- F is strictly increasing;
- F is piecewise smooth, and its right derivative $F^{\prime}(x)$ is decreasing;
- $F(1)=2, F(2)=3$;
- $F^{\prime}(x) \leq \frac{2}{8 x+1}$ for $x \geq 2$, where F^{\prime} denotes the right derivative.

Then:
(1) for $a \in M_{F}$, we have $a \in \mathcal{C}_{F}$ and $a \leq_{d} M_{F}$;
(2) for $a b \in \mathrm{E}\left(M_{F}\right)$, we have $a b \in \mathcal{C}_{F}$ and $a b \leq_{d} M_{F}$;
(3) $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class;
(4) if $a_{0} a_{1} \cdots a_{n-1} \subseteq M_{F}$ is a path, then $a_{0} a_{1} \cdots a_{n-1} \in \mathcal{C}_{F}$;
(5) $F(4)<4, F(5)<4, F(6)<4$;
(6) if abcd $\subseteq M_{F}$ is a 4-cycle, then abcd $\in \mathcal{C}_{F}$.

Proof.

(1) This follows from Lemma 1.53 .
(2) This also follows from Lemma 1.53.
(3) Take $A, B_{1}, B_{2} \in \mathcal{C}_{F}$ with $A \leq_{d} B_{1}, B_{2}$. Then as $F^{\prime}(x) \leq$ $\frac{2}{8 x+1}<1 / x$ for $x \geq 2$, Lemma 1.52 states that the free amalgam of B_{1}, B_{2} over A lies in \mathcal{C}_{F} if $\left|B_{1}\right| \geq 2$ or $\left|B_{2}\right| \geq 2$. The
only remaining possibility is $\left|B_{1}\right|,\left|B_{2}\right| \leq 1$, and the only nontrivial case is where $A=\varnothing$: if b_{1}, b_{2} are non-adjacent points then $\delta\left(\left\{b_{1}, b_{2}\right\}\right)=4>F(2)$. So $\left(\mathcal{C}_{F}, \leq_{d}\right)$ is a free amalgamation class.
(4) Proceed by induction, and obtain $a_{0} \cdots a_{n-1} \in \mathcal{C}_{F}$ by the free amalgamation of $a_{0} \cdots a_{n-2}, a_{n-2} a_{n-1}$ over a_{n-2}.
(5) F is strictly increasing, and so it suffices to show $F(6)<4$. $F(6) \leq F(2)+\int_{2}^{6} \frac{2}{8 x+1} \mathrm{~d} x=3+\frac{1}{4} \log (49)-\frac{1}{4} \log (17)<4$.
(6) Let $a b c d \subseteq M_{F}$ be a 4 -cycle. Then $\delta(a b c d)=4>F(4)$. For $C \subsetneq a b c d, C$ either consists of a path of length 2 , an edge, two non-adjacent points or a single point. All of these lie in \mathcal{C}_{F}.

Throughout the rest of this chapter, we will assume F is a control function satisfying the conditions of Lemma 3.7.
Note that control functions satisfying the conditions of the above lemma exist: take F piecewise linear with $F(0)=0, F(1)=2, F(2)=3$, and then for $x \geq 2$ define $F(x)=\frac{1}{4} \log (8 x+1)+3-\frac{1}{4} \log (17)$.
We now describe how to encode orientations of M_{F} as 1-types.
Take an orientation $\tau \in \operatorname{Or}\left(M_{F}\right)$. Define a graph N_{τ} with distinguished point c as follows:

- N_{τ} includes M_{F} as a substructure (in the language of graphs);
- add a new vertex c to N_{τ}, with $c \notin M_{F}$;
- for $(a, b) \in \tau$ (i.e. the edge $a b$ is oriented from a to b in the orientation τ), add to N_{τ} four new vertices

$$
l_{1}^{(a, b)}, l_{2}^{(a, b)}, l_{3}^{(a, b)}, l_{4}^{(a, b)}
$$

and new edges

$$
c l_{1}^{(a, b)}, l_{1}^{(a, b)} l_{2}^{(a, b)}, l_{2}^{(a, b)} l_{3}^{(a, b)}, l_{3}^{(a, b)} l_{4}^{(a, b)}, l_{4}^{(a, b)} l_{1}^{(a, b)}
$$

and attach two edges from $l_{2}^{(a, b)}, l_{4}^{(a, b)}$ to a (the "start vertex") and one edge from $l_{3}^{(a, b)}$ to b (the "end vertex").
The resulting structure N_{τ} is depicted in Figure 3.1. For $(a, b) \in \tau$, let $L_{(a, b)}=\left\{c, l_{1}^{(a, b)}, l_{2}^{(a, b)}, l_{3}^{(a, b)}, l_{4}^{(a, b)}\right\}$. Informally, each $(a, b) \in \tau$ has its orientation labelled by $L_{(a, b)}$. So we have that

$$
N_{\tau}=\bigcup\left\{L_{(a, b)}:(a, b) \in \tau\right\} \cup M_{F},
$$

and the $L_{(a, b)}$ intersect only in c.
Let $A_{0} \leq_{d} A_{1} \leq_{d} \cdots$ be an increasing \leq_{d}-chain with $M_{F}=\cup_{i \in \mathbb{N}} A_{i}$. Let $L_{i}=\bigcup\left\{L_{(a, b)}:\left.(a, b) \in \tau\right|_{A_{i}}\right\}$, and let $B_{i}=A_{i} \cup L_{i}$, regarding B_{i} as a substructure of N_{τ}.

Lemma $3.8\left(^{* *}\right)$. For $i \in \mathbb{N}$, we have $A_{i} \leq_{d} B_{i}$.

Figure 3.1

Proof. Take $i \in \mathbb{N}$ and write $A=A_{i}, B=B_{i}$. For $A \subsetneq C \subseteq B$, we need to show $\delta(C)>\delta(A)$.
First consider the case where A consists of a single edge $a b$, with $(a, b) \in$ τ. Then, suppressing subscripts for notational convenience, we have $B=\left\{c, l_{1}, l_{2}, l_{3}, l_{4}, a, b\right\}$. We calculate the relative predimension of some $A \subsetneq C \subseteq B$ in the table below.

$C-A$	$\delta(C / A)$
l_{2}	1
l_{3}	1
l_{4}	1
l_{1}, l_{2}	2
l_{1}, l_{4}	2
l_{2}, l_{3}	1
l_{3}, l_{4}	1
c, l_{1}	3
l_{1}, l_{2}, l_{3}	2
l_{1}, l_{2}, l_{4}	2
l_{1}, l_{3}, l_{4}	2
l_{2}, l_{3}, l_{4}	1
$l_{1}, l_{2}, l_{3}, l_{4}$	1
$c, l_{1}, l_{2}, l_{3}, l_{4}$	2

The remaining cases result from free amalgamations over A, and so also have positive predimension (if X, Y are freely amalgamated over Z, then $\delta((X \cup Y) / Z)=\delta(X / Z)+\delta(Y / Z))$. The remaining cases are where $C-A$ is equal to $\left\{l_{1}\right\},\{c\},\left\{l_{1}, l_{3}\right\},\left\{l_{2}, l_{4}\right\}$ or $\{c\} \cup X$, where $X \subseteq\left\{l_{2}, l_{3}, l_{4}\right\}$.

Now consider general $A \leq{ }_{d} M_{F}$. Given $A \subsetneq C \subseteq B$, the vertices of C consist of A together with subsets $J_{(a, b)}$ of $L_{(a, b)}$ for each $\left.(a, b) \in \tau\right|_{A}$. For $\left.(a, b) \in \tau\right|_{A}$, let $J_{(a, b)}^{\prime}=J_{(a, b)} \cup A$.
If $c \notin C$, then the $J_{(a, b)}^{\prime}$ are freely amalgamated over A, and so from the single-edge case we see that $\delta(C / A)>0$.
We now consider the case where $c \in C$. If $l_{1}^{(a, b)} \notin J_{(a, b)}$ for all $(a, b) \in$ $\left.\tau\right|_{A}$, then C consists of a vertex c with no neighbours together with a free amalgamation over A of each of the $J_{(a, b)}^{\prime}-\{c\},\left.(a, b) \in \tau\right|_{A}$. So, from the single-edge case and the fact that $\delta(\{c\})=2$, we have that $\delta(C / A)>0$.
If $c \in C$ and there exists $\left.\left(a^{\prime}, b^{\prime}\right) \in \tau\right|_{A}$ with $l_{1}^{\left(a^{\prime}, b^{\prime}\right)} \in J_{\left(a^{\prime}, b^{\prime}\right)}$, then C is a free amalgamation over A of each of the $J_{(a, b)}^{\prime}-\{c\},\left.(a, b) \in \tau\right|_{A}$, for which $l_{1}^{(a, b)} \notin J_{(a, b)}$, together with $\bigcup\left\{J_{(a, b)}^{\prime}:\left.(a, b) \in \tau\right|_{A}, l_{1}^{(a, b)} \in J_{(a, b)}\right\}$. Therefore we need only consider the case where $l_{1}^{(a, b)} \in J_{(a, b)}$ for all $\left.(a, b) \in \tau\right|_{A}$. The single-edge calculation shows that $\delta\left(J_{(a, b)}-\{c\} / A\right) \geq$ 1 for each $J_{(a, b)}$, and these $J_{(a, b)}^{\prime}-\{c\}$ are freely amalgamated over A. Each addition of an edge $l_{1}^{(a, b)} c$ reduces the predimension by one, but the single addition of the vertex c adds two to the predimension, so in total $\delta(C / A)>0$.

Lemma $3.9\left(^{* *}\right)$. For $(a, b) \in \tau$, we have $\left\{a, b, l_{1}^{(a, b)}, l_{2}^{(a, b)}, l_{3}^{(a, b)}, l_{4}^{(a, b)}\right\} \in$ \mathcal{C}_{F} and $L_{(a, b)} \in \mathcal{C}_{F}$, where these structures are considered as substructures of N_{τ}.

Proof. We write $l_{1}, l_{2}, l_{3}, l_{4}$, suppressing superscripts.
To show that $\left\{a, b, l_{1}, l_{2}, l_{3}, l_{4}\right\} \in \mathcal{C}_{F}$, we consider each subset $C \subseteq$ $\left\{a, b, l_{1}, l_{2}, l_{3}, l_{4}\right\}$ and show that $\delta(C) \geq F(|C|)$. To speed up the process of checking each subset C, in the below table we show that certain subsets $C \subseteq\left\{a, b, l_{1}, l_{2}, l_{3}, l_{4}\right\}$ lie in \mathcal{C}_{F}, and therefore every $C^{\prime} \subseteq C$ must satisfy $\delta\left(C^{\prime}\right) \geq F\left(\left|C^{\prime}\right|\right)$.

C	Proof that $C \in \mathcal{C}_{F}$
$l_{1} l_{2} l_{3} l_{4}, l_{2} l_{3} a b, l_{3} l_{4} a b, l_{1} l_{2} l_{4} a, l_{2} l_{3} l_{4} a$	C is a 4 -cycle
$l_{1} l_{2} l_{3} a b$	free amalgam of $l_{2} l_{3} a b, l_{1} l_{2}$ over l_{2}
$l_{1} l_{3} l_{4} a b$	free amalgam of $l_{3} l_{4} a b, l_{1} l_{4}$ over l_{4}
$l_{1} l_{2} l_{4} a b$	free amalgam of $l_{1} l_{2} l_{4} a, a b$ over a
$l_{1} l_{2} l_{3} l_{4} b$	free amalgam of $l_{1} l_{2} l_{3} l_{4}, l_{3} b$ over l_{3}

We now check the remaining subsets $C \subseteq\left\{a, b, l_{1}, l_{2}, l_{3}, l_{4}\right\}$ by directly calculating the predimension:

C	$\delta(C)$	$F(\|C\|)$
$l_{2} l_{3} l_{4} a b$	4	$F(5)<4$
$l_{1} l_{2} l_{3} l_{4} a$	4	$F(5)<4$
$l_{1} l_{2} l_{3} l_{4} a b$	4	$F(6)<4$

In the above we showed that $\left\{a, b, l_{1}, l_{2}, l_{3}, l_{4}\right\} \in \mathcal{C}_{F}$, and so for the second part of the lemma, we obtain $L_{(a, b)} \in \mathcal{C}_{F}$ via the free amalgam of $L_{(a, b)}$ and $c l_{1}$ over l_{1} (recalling that we have defined our control function F so that points are always d-closed).
Lemma $3.10\left({ }^{* *}\right)$. For $i \in \mathbb{N}$, we have that $B_{i} \in \mathcal{C}_{F}$.
Proof. Take $i \in \mathbb{N}$ and write $A=A_{i}, B=B_{i}$. For a finite graph X, recall that we write $|X|$ and $|E(X)|$ for the number of vertices and edges of X respectively.
We have to show that $\delta(C) \geq F(|C|)$ for $C \subseteq B$. The vertices of C consist of $C \cap A$ together with subsets $J_{(a, b)}$ of $L_{(a, b)}$ for each $\left.(a, b) \in \tau\right|_{A}$ (some of these $J_{(a, b)}$ may be empty). For $\left.(a, b) \in \tau\right|_{A}$, let $J_{(a, b)}^{\prime}=$ $J_{(a, b)} \cup(C \cap A)$.
First we consider the case where $c \notin C . C$ is then the free amalgam of the $J_{(a, b)}^{\prime},\left.(a, b) \in \tau\right|_{A}$, over $C \cap A$. Given that \mathcal{C}_{F} is a free amalgamation class and $C \cap A \leq{ }_{d} C$, it therefore suffices to show that $J_{(a, b)}^{\prime} \in \mathcal{C}_{F}$ for $\left.(a, b) \in \tau\right|_{A}$. Fix $\left.(a, b) \in \tau\right|_{A}$. To show that $J_{(a, b)}^{\prime} \in \mathcal{C}_{F}$, as $J_{(a, b)}^{\prime}$ is a free amalgam of $J_{(a, b)} \cup(\{a, b\} \cap C)$ and $C \cap A \in \mathcal{C}_{F}$ over $\{a, b\} \cap C \in \mathcal{C}_{F}$, it suffices to show that $J_{(a, b)} \cup(\{a, b\} \cap C)$ lies in \mathcal{C}_{F}, and we have already checked this in Lemma 3.9.
Now we consider the case where $c \in C$. If $l_{1}^{(a, b)} \notin J_{(a, b)}$ for each $(a, b) \in$ $\left.\tau\right|_{A}$, then C consists of a vertex c with no neighbours together with the free amalgam over $C \cap A$ of each $J_{(a, b)}^{\prime}-\{c\},\left.(a, b) \in \tau\right|_{A}$, and so we are done by the first case in the previous paragraph. Otherwise, C is the free amalgam over $C \cap A$ of $\bigcup\left\{J_{(a, b)}^{\prime}: l_{1}^{(a, b)} \in J_{(a, b)},\left.(a, b) \in \tau\right|_{A}\right\}$ with each $J_{(a, b)}^{\prime}-\{c\}$ for which $l_{1}^{(a, b)} \notin J_{(a, b)}$, and so using the first case considered above we may reduce to the case where each non-empty $J_{(a, b)}$ contains $l_{1}^{(a, b)}$.
Similarly, we may exclude the case where C contains sets $J_{(a, b)}$ for which $J_{(a, b)}=\left\{c, l_{1}^{(a, b)}, l_{3}^{(a, b)}\right\}$, as C is the free amalgam over $C \cap A$ of

$$
\begin{aligned}
& \bigcup\left\{J_{(a, b)}^{\prime}:\left.(a, b) \in \tau\right|_{A}, J_{(a, b)} \neq\left\{c, l_{1}^{(a, b)}, l_{3}^{(a, b)}\right\}\right\} \cup \\
& \bigcup\left\{\left\{c, l_{1}^{(a, b)}\right\} \cup(C \cap A): J_{(a, b)}=\left\{c, l_{1}^{(a, b)}, l_{3}^{(a, b)}\right\}\right\}
\end{aligned}
$$

with each $\left\{l_{3}^{(a, b)}\right\} \cup(C \cap A)$ (in \mathcal{C}_{F} by Lemma 3.9) for which $J_{(a, b)}=$ $\left\{c, l_{1}^{(a, b)}, l_{3}^{(a, b)}\right\}$. We may likewise free amalgamate over c to exclude the
cases where C contains sets $J_{(a, b)}$ for which $J_{(a, b)}=\left\{c, l_{1}^{(a, b)}\right\}$, or for which $J_{(a, b)}$ is any subset of $L_{(a, b)}$ but $a, b \notin C \cap A$.
So, the case remaining is where C consists of $C \cap A$ together with sets $J_{(a, b)}$ containing $c, l_{1}^{(a, b)}$ and at least one of $l_{2}^{(a, b)}, l_{4}^{(a, b)}$, where each $J_{(a, b)}$ has some edge to $C \cap A$. We need to show that $\delta(C) \geq F(|C|)$.
We now calculate the relative predimension over $A \cup\{c\}$ of each remaining possible $J_{(a, b)} \cup X, X \subseteq\{a, b\}$, in the following table, where we label each structure as $Y_{i}, 1 \leq i \leq 11$:

$J_{(a, b)} \cup X$	Label	$\delta\left(J_{(a, b)} \cup X / A \cup\{c\}\right)$
$c l_{1} l_{2} a$	Y_{1}	1
$c l_{1} l_{4} a$	Y_{2}	1
$c l_{1} l_{2} l_{3} a$	Y_{3}	2
$c l_{1} l_{2} l_{3} b$	Y_{4}	2
$c l_{1} l_{2} l_{3} a b$	Y_{5}	1
$c l_{1} l_{3} l_{4} a$	Y_{6}	2
$c l_{1} l_{3} l_{4} b$	Y_{7}	2
$c l_{1} l_{3} l_{4} a b$	Y_{8}	1
$c l_{1} l_{2} l_{3} l_{4} a$	Y_{9}	1
$c l_{1} l_{2} l_{3} l_{4} b$	Y_{10}	2
$c l_{1} l_{2} l_{3} l_{4} a b$	Y_{11}	0

We write k_{i} for how many times Y_{i} occurs in C. We also write $\delta_{i}=$ $\delta\left(Y_{i} / A \cup\{c\}\right)$. Let $\lambda_{i}=\left|\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\} \cap Y_{i}\right|$.
Then, recalling that the vertex c also adds 2 to the predimension, we have that

$$
\delta(C)=\sum_{1 \leq i \leq 11} \delta_{i} k_{i}+2+\delta(C \cap A) .
$$

Now,

$$
\begin{aligned}
F(|C|) & =F\left(1+|C \cap A|+\sum_{1 \leq i \leq 11} \lambda_{i} k_{i}\right) \\
& \leq F\left(1+|C \cap A|+4 \sum_{1 \leq i \leq 11} k_{i}\right) \\
& =F\left(1+|C \cap A|+4\left(k_{4}+k_{7}+k_{10}\right)+4 \sum_{i \leq 11, i \notin\{4,7,10\}} k_{i}\right) .
\end{aligned}
$$

As $\left.\tau\right|_{C \cap A}$ is a 2-orientation, we have that each $a \in C \cap A$ can have at most two label structures with a as the starting vertex (i.e. with edges to a from l_{2}, l_{4}), and so

$$
\sum_{i \leq 11, i \notin\{4,7,10\}} k_{i} \leq 2|C \cap A| .
$$

So

$$
F(|C|) \leq F\left(8|C \cap A|+4\left(k_{4}+k_{7}+k_{10}\right)+1+|C \cap A|\right) .
$$

As $F(u+v) \leq F(u)+v F^{\prime}(u)$ and $F^{\prime}(x) \leq \frac{2}{8 x+1}$ for $x \geq 2$, we have that if $|C \cap A| \geq 2$, then

$$
\begin{aligned}
F(|C|) & \leq F(|C \cap A|)+\frac{2}{8|C \cap A|+1}\left(8|C \cap A|+4\left(k_{4}+k_{7}+k_{10}\right)+1\right) \\
& <F(|C \cap A|)+2+k_{4}+k_{7}+k_{10} \\
& \leq \delta(C) .
\end{aligned}
$$

If $|C \cap A|=1$, then

$$
\begin{aligned}
F(|C|) & \leq F(1+|C \cap A|)+\left(8|C \cap A|+4\left(k_{4}+k_{7}+k_{10}\right)\right) F^{\prime}(1+|C \cap A|) \\
& =3+\frac{2}{8 \cdot 2+1}\left(8|C \cap A|+4\left(k_{4}+k_{7}+k_{10}\right)\right) \\
& <4+\frac{8}{17}\left(k_{4}+k_{7}+k_{10}\right) \\
& \leq \delta(C)
\end{aligned}
$$

(as $\delta(C \cap A)=2)$.
Lemma $3.11\left(^{(* *)}\right.$. For $i \in \mathbb{N}$, we have $B_{i} \leq_{d} B_{i+1}$.
Proof. Take $B_{i} \subsetneq C \subseteq B_{i+1}$. Then, by counting vertices and edges and using the definition of the predimension δ,

$$
\delta\left(C / B_{i}\right)=\delta\left(C \cap A_{i+1} / B_{i}\right)+\delta\left(C-A_{i+1} / B_{i} \cup\left(C \cap A_{i+1}\right)\right) .
$$

We have that $\delta\left(C \cap A_{i+1} / B_{i}\right)=\delta\left(C \cap A_{i+1} / A_{i}\right)$, and as $A_{i} \leq_{d} A_{i+1}$, if $C \cap A_{i+1} \neq \varnothing$ then $\delta\left(C \cap A_{i+1} / A_{i}\right)>0$.
Also

$$
\delta\left(C-A_{i+1} / B_{i} \cup\left(C \cap A_{i+1}\right)\right) \geq \delta\left(C-A_{i+1} / A_{i+1} \cup\{c\}\right),
$$

as we are just adding extra edges to A_{i+1}. From the calculations in the proof of Lemma 3.8, we see that $\delta\left(C-A_{i+1} / A_{i+1} \cup\{c\}\right) \geq 0$, and so if $C \cap A_{i+1} \neq \varnothing$, then $\delta\left(C / B_{i}\right)>0$.
If $C \cap A_{i+1}=\varnothing$, then $\left(C-B_{i}\right) \cup\{c\}$ is a substructure of $\bigcup\left\{L_{(a, b)}\right.$: $\left.\left.(a, b) \in \tau\right|_{A_{i+1}}\right\}$, which consists of disjoint 4-cycles $\left\{l_{1}^{(a, b)}, l_{2}^{(a, b)}, l_{3}^{(a, b)}, l_{4}^{(a, b)}\right\}$ for $\left.(a, b) \in \tau\right|_{A_{i+1}}$, with each 4 -cycle having an extra edge $l_{1}^{(a, b)} c$. It is then a straightforward calculation to see that any substructure of $\bigcup\left\{L_{(a, b)}:\left.(a, b) \in \tau\right|_{A_{i+1}}\right\}$ has positive predimension over c, so $\delta\left(C / B_{i}\right)>$ 0.

For $a, b \in M_{F}$, we define the label formula $f(a, b, x)$ in the language $L\left(M_{F}\right)$ with variable x to be:
$f(a, b, x) \equiv(x \neq a \wedge x \neq b \wedge a \neq b \wedge a \sim b) \wedge$
$\left(\exists l_{1}, l_{2}, l_{3}, l_{4}\right)\left(\left(\bigwedge_{i<j} l_{i} \neq l_{j}\right) \wedge\left(\bigwedge_{i} l_{i} \neq x \wedge l_{i} \neq a \wedge l_{i} \neq b\right) \wedge\right.$
$\left(x \sim l_{1} \wedge l_{1} \sim l_{2} \wedge l_{2} \sim l_{3} \wedge l_{3} \sim l_{4} \wedge l_{4} \sim l_{1} \wedge l_{2} \sim a \wedge l_{4} \sim a \wedge l_{3} \sim b\right)$.

Informally, $f(a, b, x)$ will test if (a, b) has a label structure $L_{(a, b)}$ attached with $x=c$.
Define a map $u: S_{1}\left(M_{F}\right) \rightarrow 2^{M_{F}{ }^{2}}$ by

$$
u(p(x))=\left\{(a, b) \in M_{F}^{2}: f(a, b, x) \in p(x)\right\} .
$$

Note that we will often use subset notation when formally we in fact mean the characteristic function of that subset within $M_{F}{ }^{2}$.

Lemma $3.12\left({ }^{(* *)}\right.$. The map u is a G-flow morphism.
Proof. First we show G-equivariance.

$$
\begin{aligned}
u(g \cdot p(x)) & =u(\{\phi(g \bar{m}, x): \phi(\bar{m}, x) \in p(x)\}) \\
& =\left\{(a, b) \in M_{F}{ }^{2}: f\left(g^{-1} a, g^{-1} b, x\right) \in p(x)\right\} \\
& =g \cdot\left\{(c, d) \in M_{F}{ }^{2}: f(c, d, x) \in p(x)\right\}
\end{aligned}
$$

Now we show continuity. Let $S \subseteq 2^{M_{F}{ }^{2}}$ be a subbasic open set, i.e. for some $(a, b) \in M_{F}{ }^{2}$,

$$
S=\left\{\psi \in 2^{M_{F}^{2}}: \psi((a, b))=1\right\}
$$

or

$$
S=\left\{\psi \in 2^{M_{F}^{2}}: \psi((a, b))=0\right\}
$$

If $S=\left\{\psi \in 2^{M_{F^{2}}}: \psi((a, b))=1\right\}$, then

$$
u^{-1}(S)=\{p(x): f(a, b, x) \in p(x)\}
$$

an open set in the Stone space $S_{1}\left(M_{F}\right)$.
If $S=\left\{\psi \in 2^{M_{F}{ }^{2}}: \psi((a, b))=0\right\}$, then

$$
u^{-1}(S)=\{p(x): f(a, b, x) \notin p(x)\}=\{p(x): \neg f(a, b, x) \in p(x)\}
$$

also an open set.
Proposition $3.13\left({ }^{* *}\right)$. For $\tau \in \operatorname{Or}\left(M_{F}\right)$, there exists $p_{\tau}(x) \in S_{1}\left(M_{F}\right)$ with $u\left(p_{\tau}(x)\right)=\tau$.

Proof. From Lemma 3.11, we have that N_{τ} is a union of the chain of d-closed structures $B_{0} \leq_{d} B_{1} \leq_{d} \cdots$. Let $N=M_{F}$. We will construct a \leq_{d}-embedding $r: N_{\tau} \rightarrow N$ using a standard "forth" proof (only the forward direction of the back and forth construction).
N is the Fraïssé limit of \mathcal{C}_{F}, and as such has $\operatorname{Age}_{\leq_{d}}(N)=\mathcal{C}_{F}$ and the extension property.
We construct r by induction. As $B_{0} \in \mathcal{C}_{F}$, there exists a \leq_{d}-embedding $r_{0}: B_{0} \rightarrow N$. For the inductive step, assume we have already constructed compatible \leq_{d}-embeddings $r_{i}: B_{i} \rightarrow N$ for $i \leq k$. Then by the extension property, there exists a \leq_{d}-embedding $r_{k+1}: B_{k+1} \rightarrow N$ which extends r_{k}. This completes the inductive definition of the r_{k}, $k \in \mathbb{N}$. Let $r=\bigcup_{k \in \mathbb{N}} r_{k}$. Then r is a \leq_{d}-embedding $N_{\tau} \rightarrow N$.
We now show that $r\left(M_{F}\right) \preceq N$ using Tarski's test (see Prop 2.3.5 of [21]). It suffices to show that for $\bar{m} \in r\left(M_{F}\right)^{k}, n \in N$, there exists $g \in \operatorname{Aut}(N)$ with $g \bar{m}=\bar{m}, g n \in r\left(M_{F}\right)$.
Let $X=\operatorname{cl}_{r\left(M_{F}\right)}^{d}(\bar{m})$, and let $Y=\operatorname{cl}_{N}^{d}(X \cup\{n\})$. Then $Y \in \mathcal{C}_{F}$, and so using the extension property of $r\left(M_{F}\right)$, there is a \leq_{d}-embedding $s: Y \rightarrow r\left(M_{F}\right)$ extending the inclusion $X \subseteq r\left(M_{F}\right)$. We have that $s(Y) \leq_{d} r\left(M_{F}\right)$, so $s(Y) \leq_{d} N$ as r is a \leq_{d}-embedding, and we can then extend the \leq_{d}-local isomorphism $s: Y \rightarrow s(Y)$ to $g \in \operatorname{Aut}(N)$. We have that g is the identity on X and $g n \in r\left(M_{F}\right)$, so g satisfies the conditions we require.
We now have a \leq_{d}-embedding $r: N_{\tau} \rightarrow N$, such that $r\left(M_{F}\right) \preceq N$. We may therefore construct a structure N^{\prime} with $N_{\tau} \subseteq N^{\prime}$, with the set inclusion $N_{\tau} \hookrightarrow N^{\prime}$ being a \leq_{d}-embedding, and with $M_{F} \subseteq N_{\tau}$ as an elementary substructure $M_{F} \preceq N^{\prime}$. We do this purely for notational convenience.
We now have $c \in N_{\tau} \leq_{d} N^{\prime}$. Let $p_{\tau}(x)=\operatorname{tp}_{N^{\prime}}\left(c / M_{F}\right)$. As $M_{F} \preceq N^{\prime}$, we have $p_{\tau}(x) \in S_{1}\left(M_{F}\right)$. From the construction of N_{τ}, we have that $\tau \subseteq u\left(p_{\tau}(x)\right)$. To see that $u\left(p_{\tau}(x)\right) \subseteq \tau$, note that it suffices to show that for $(a, b) \in M_{F}^{2}$, if $N^{\prime} \models f(a, b, c)$ then the $l_{i}, 1 \leq i \leq 4$, that $f(a, b, c)$ specifies must lie in $\operatorname{cl}_{N^{\prime}}^{d}(\{a, b, c\})$, and therefore in N_{τ}, as $N_{\tau} \leq_{d} N^{\prime}$. We show that $\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\} \subseteq \operatorname{cl}_{N^{\prime}}^{d}(\{a, b, c\})$ in the table below.

X / Y	$\delta(X / Y)$
$l_{1}, l_{2}, l_{3}, l_{4} / a, b, c$	0
$l_{1}, l_{2}, l_{3} / l_{4}, a, b, c$	-1
$l_{1}, l_{2}, l_{4} / l_{3}, a, b, c$	-1
$l_{1}, l_{3}, l_{4} / l_{2}, a, b, c$	-1
$l_{2}, l_{3}, l_{4} / l_{1}, a, b, c$	-1
$l_{1}, l_{2} / l_{3}, l_{4}, a, b, c$	-1
$l_{1}, l_{3} / l_{2}, l_{4}, a, b, c$	-2
$l_{1}, l_{4} / l_{2}, l_{3}, a, b, c$	-1
$l_{2}, l_{3} / l_{1}, l_{4}, a, b, c$	-1
$l_{2}, l_{4} / l_{1}, l_{3}, a, b, c$	-2
$l_{3}, l_{4} / l_{,}, l_{2}, a, b, c$	-1
$l_{1} / l_{2}, l_{3}, l_{4}, a, b, c$	-1
$l_{2} / l_{1}, l_{3}, l_{4}, a, b, c$	-1
$l_{3} / l_{1}, l_{2}, l_{4}, a, b, c$	-1
$l_{4} / l_{1}, l_{2}, l_{3}, a, b, c$	-1

This completes the proof of Proposition 3.13.
Proof of Theorem 3.6. Let M^{\prime} be an expansion of M_{F} whose automorphism group $H=\operatorname{Aut}\left(M^{\prime}\right)$ has FPT.
We have a natural H-morphism $w: S_{1}\left(M^{\prime}\right) \rightarrow S_{1}\left(M_{F}\right)$ given by $w(p(x))=\left\{\phi(x) \in p(x): \phi(x)\right.$ is a formula in the language $\left.L\left(M_{F}\right)\right\}$. $u: S_{1}\left(M_{F}\right) \rightarrow 2^{M_{F}{ }^{2}}$ is a G-morphism, and $\operatorname{Or}\left(M_{F}\right)$ is a subflow of $2^{M_{F}{ }^{2}}$. So $w^{-1} u^{-1}\left(\operatorname{Or}\left(M_{F}\right)\right)$ is a subflow of the H-flow $S_{1}\left(M^{\prime}\right)$, and thus has an H-fixed point $p(x)$. Therefore, as $u \circ w$ is an H-morphism, $(u \circ w)(p(x))$ is an H-fixed point, i.e. H fixes an orientation of M_{F}. By Theorem 2.1, H has infinitely many orbits on $M_{F}{ }^{2}$, and so is not oligomorphic. Therefore M^{\prime} is not ω-categorical, by the Ryll-Nardzewski theorem.

Chapter 4

Linear orders and orientations on M_{1}

In this chapter, we investigate the G_{1}-flow $\mathcal{L O}\left(M_{1}\right)$ of linear orders on $M_{1}\left(\right.$ where $\left.G_{1}=\operatorname{Aut}\left(M_{1}\right)\right)$. The main theorem of this chapter is Theorem 4.18, which states that minimal subflows of $\mathcal{L O}\left(M_{1}\right)$ have all G_{1}-orbits meagre. This complements results in Section 5 of [8], which show that minimal subflows of $\operatorname{Or}(M)\left(M=M_{1}, M_{0}, M_{F}\right)$ have all G orbits meagre - in fact the proof for $\mathcal{L O}\left(M_{1}\right)$ is strongly inspired by the proof for $\operatorname{Or}\left(M_{0}\right)$.
The main tool here is a Ramsey expansion $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ of $\left(\mathcal{C}_{1}, \leq_{1}\right)$, the class of admissibly ordered orientations of graphs in $\mathcal{C}_{1}([\mathbf{9}])$. Writing $\left(N_{1}, \alpha\right)$ for the Fraïssé limit of $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$, where N_{1} is the oriented graph and α is the order of the Fraïssé limit, and also writing $H_{1}=\operatorname{Aut}\left(N_{1}, \alpha\right)$, we have that H_{1} is extremely amenable. Given a minimal subflow $Y \subseteq \mathcal{L O}\left(M_{1}\right), H_{1}$ therefore fixes a point β of Y, and by minimality we have that Y is the G_{1}-orbit-closure of β. Via H_{1}-automorphisms, we then use information about α to give us some knowledge of β, and then we use the linear order β to force certain orientations and prove Theorem 4.18. This interplay between linear orders and orientations will be typical of the results in this chapter.
After proving Theorem 4.18, in Section 4.5 we then find out more information about β : we show, independently of Theorem 4.18, that H_{1}, equal to the G_{1}-stabiliser of α in the G_{1}-flow $\mathcal{L O}\left(M_{1}\right)$, is also the G_{1}-stabiliser of β. This was in fact the author's original approach in an unsuccessful attempt to prove Theorem 4.18-though the author has not been able to use this result on stabilisers to prove the main theorem, it is still of interest. We then conclude the chapter with an example of a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$.

4.1 Orientations on M_{1}

We reprove the below result from [7], as later proofs in this chapter of the Expansion Property will have a similar proof method.

Proposition 4.1 ([7], Th. 6.1). $\operatorname{Or}\left(M_{1}\right)$ is a minimal G_{1}-flow.
Proof. Note that, by Lemma $1.66, \mathcal{D}_{1}$ is a reasonable expansion of $\left(\mathcal{C}_{1}, \leq_{1}\right)$, and also recall that $\operatorname{Or}\left(M_{1}\right)=X\left(\mathcal{D}_{1}\right)$ (see Definition 1.70). Thus, to show that $\operatorname{Or}\left(M_{1}\right)$ is a minimal G_{1}-flow, by Lemma 1.73 it
suffices to show that \mathcal{D}_{1} has the expansion property over $\left(\mathcal{C}_{1}, \leq_{1}\right)$, i.e. for $\left(A, \tau_{A}\right) \in \mathcal{D}_{1}$, there exists $B \in \mathcal{C}_{1}$ such that for any expansion $\left(B, \tau_{B}\right) \in \mathcal{D}_{1}$, there is a \leq_{1}-embedding $f:\left(A, \tau_{A}\right) \rightarrow\left(B, \tau_{B}\right)$. (Here we use the second paragraph of Definition 1.72.)
We proceed by induction on $|A|$. The base case $|A|=1$ is trivial.
As τ_{A} is acyclic, there exists $a \in A$ with no in-edge. Let $X=A-\{a\}$, and let $\tau_{X}=\left.\tau_{A}\right|_{X}$. Then $\left(X, \tau_{X}\right) \sqsubseteq_{s}\left(A, \tau_{A}\right)$, so $\left(X, \tau_{X}\right) \in \mathcal{D}_{1}$ and $X \leq{ }_{1} A$, so by the induction assumption there exists $Y \in \mathcal{C}_{1}$ such that any expansion of Y in \mathcal{D}_{1} contains a \leq_{1}-copy of $\left(X, \tau_{X}\right)$.
Let X_{1}, \cdots, X_{n} be the \leq_{1}-copies of X in Y. Let $Y_{0}=Y$, and inductively define $Y_{i}(1 \leq i \leq n)$ to be the free amalgam of Y_{i-1} with 5 copies of A over X_{i} (where we take each copy A^{\prime} of A with $X_{i} \leq A^{\prime}$). Let $Z=Y_{n}$. As \mathcal{C}_{1} is a free amalgamation class, $Z \in \mathcal{C}_{1}, Y_{i} \leq_{1} Z$ $(0 \leq i \leq n)$, and each copy of A in the inductive sequence of free amalgamations is \leq_{1}-closed in Z. We will show that Z witnesses the expansion property for $\left(A, \tau_{A}\right)$.
Let $\left(Z, \tau_{Z}\right)$ be an expansion of Z in \mathcal{D}_{1}. As τ_{Z} induces an acyclic 2-orientation on any subgraph of $Z,\left(Y, \tau_{Z}\right) \in \mathcal{D}_{1}$, and so there is a $\leq_{1^{-}}$ embedding $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Z}\right) . f(X)$ is equal to some X_{i}, and so as τ_{Z} is a 2 -orientation and Z contains 5 copies of A freely amalgamated over X_{i}, there is a \leq_{1}-copy A^{\prime} of A in Z for which $X_{i} \sqsubseteq_{s} A^{\prime}$. We may then extend f to an isomorphism $\left(A, \tau_{A}\right) \rightarrow\left(A^{\prime}, \tau_{Z}\right)$, and as $A^{\prime} \leq_{1} Z$, f is a \leq_{1}-embedding into $\left(Z, \tau_{Z}\right)$.

$4.2 \mathcal{L O}\left(M_{1}\right)$ is not minimal

Before investigating minimal subflows of $\mathcal{L O}\left(M_{1}\right)$, we first check that $\mathcal{L O}\left(M_{1}\right)$ is not in fact minimal itself.

Proposition $4.2\left({ }^{(* *)}\right.$. $\mathcal{L O}\left(M_{1}\right)$ is not a minimal flow.
Proof. Let \mathcal{Q}_{1} denote the class of ordered graphs (A, γ) where $A \in \mathcal{C}_{1}$ and the linear order γ induces an acyclic 2 -orientation τ_{γ} on A, i.e. $\tau_{\gamma}=\left\{(x, y) \in E_{A}: x>_{\gamma} y\right\}$ is an acyclic 2-orientation.
We will show that \mathcal{Q}_{1} is a reasonable class of expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right)$ (see Definition 1.63).
For part (1) of reasonableness, take $A \in \mathcal{C}_{1}$, and let τ be an acyclic 2-orientation of A. Let $\gamma_{0}=\left\{(x, y) \in A^{2}: x \neq y\right.$ and there exists an out-path from y to x in $\tau\}$. Then γ_{0} is irreflexive and transitive, and as τ is acyclic, γ_{0} is antisymmetric. So γ_{0} is a strict partial order. Extend γ_{0} arbitrarily to a linear order γ on A. Let $\tau_{\gamma}=\left\{(a, b) \in E_{A}: a>_{\gamma} b\right\}$. Then $\tau_{\gamma}=\tau$, so $(A, \gamma) \in \mathcal{Q}_{1}$, and so \mathcal{C}_{1} is the class of graph reducts of \mathcal{Q}_{1}.

Part (2) of reasonableness follows from the fact that there are only finitely many linear orders on a finite set, and part (3) results from the fact that a sub-digraph of an acyclic 2-orientation is still an acyclic 2 -orientation.
For part (4), take $A, B \in \mathcal{C}_{1}, A \leq_{1} B$, with $\left(A, \gamma_{A}\right) \in \mathcal{Q}_{1}$. Let τ_{A} be the acyclic 2 -orientation induced by γ_{A} on A. As $A \leq_{1} B$, there exists an acyclic 2-orientation τ_{B} of B extending τ_{A}. Let $\gamma_{0}=\left\{(x, y) \in B^{2}\right.$: $x \neq y$ and there exists an out-path from y to x in $\left.\tau_{B}\right\}$. Then as before, γ_{0} is a strict partial order. γ_{A} and γ_{0} are compatible, and so we may extend the partial order $\gamma_{A} \cup \gamma_{0}$ arbitrarily to a linear order γ_{B} on B. Then γ_{B} induces τ_{B}, so $\left(B, \gamma_{B}\right) \in \mathcal{Q}_{1}$. This concludes the proof that \mathcal{Q}_{1} is a reasonable class of expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
By Lemma 1.69, we therefore have that $X\left(\mathcal{Q}_{1}\right)$ is a subflow of $\mathcal{L O}\left(M_{1}\right)$. To see that it is a proper subflow, we produce a linear order on M_{1} which does not induce an acyclic 2-orientation. ($\mathcal{C}_{1}^{\prec}, \leq_{1}$) is an amalgamation class and a strong expansion of $\left(\mathcal{C}_{1}, \leq_{1}\right)$, so let γ be the generic linear order of the Fraïssé limit $\left(M_{1}, \gamma\right)$. By genericity, there exists a graph $A \leq_{1} M_{1}$ consisting of vertices a, b_{1}, \cdots, b_{3} and edges $a b_{i}$ with $a>_{\gamma} b_{i}$ ($1 \leq i \leq 3$), so γ does not induce a 2 -orientation.

4.3 Admissibly ordered orientations on M_{1}

We now describe how to construct a Ramsey expansion of ($\mathcal{C}_{1}, \leq_{1}$): the class of admissibly ordered orientations $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$. This Ramsey expansion is taken from [7], Section 6. It is a simple case of the admissible orders defined in [9] (see Theorem 1.4 and Section 3 of [9]). However, we will keep our presentation self-contained.

Definition 4.3. Take $A \in \mathcal{D}_{1}$. For $a \in A$, the level of a in A, denoted $l_{A}(a)$, was defined in Definition 1.2 for general oriented graphs. In the case of \mathcal{D}_{1}, the 2 -oriented graphs with no directed cycles, the definition of $l_{A}(a)$ simplifies to the following:

- if a has no successor, $1_{A}(a):=0$;
- otherwise $l_{A}(a):=\max \left\{l_{A}(b): b\right.$ a successor of $\left.a\right\}+1$.

Note that if $A \sqsubseteq_{s} B \in \mathcal{D}_{1}$ and $a \in A$, then $l_{A}(a)=l_{B}(a)$.
Definition 4.4 ([7], Def. 6.7). Take $A \in \mathcal{D}_{1}$. A linear order γ on A is admissible if for all $x, y \in A, x \neq y$, we have:
(1) if $\mathrm{l}_{A}(x)<\mathrm{l}_{A}(y)$, then $x<_{\gamma} y$;
(2) if $\mathrm{l}_{A}(x)=\mathrm{l}_{A}(y)$, then $x<_{\gamma} y$ if the decreasing chain of successors of x in γ is lexicographically less than the decreasing chain of successors of y in γ.

Figure 4.1. $a<b<c<x<y$ is an admissible order on the above acyclic 2 -oriented graph.

Example 4.5. (See Figure 4.1.) Let $A \in \mathcal{D}_{1}$ be the 2-oriented graph with vertex set $\{a, b, c, x, y\}$ and out-edges $x a, x c, y b, y c$. Let γ be the linear order $a<b<c<x<y$.
Then a, b, c are on level 0 of A, and x, y are on level 1. γ is admissible: (2) is vacuously true for a, b, c, (1) is satisfied by $a, b, c<x, y$, and finally the decreasing chain (c, a) of successors of x is lexicographically less than the decreasing chain (c, b) of successors of y and we have $x<y$ in γ, so (2) is satisfied for x, y.

Definition 4.6. Take $A \in \mathcal{D}_{1}, x \in A$. Let the cone $Q_{A}(x)$ of x in A be the set $Q_{A}(x)=\left\{y \in A: \mathrm{N}_{+}^{A}(y)=\mathrm{N}_{+}^{A}(x)\right\}$, i.e. the set of vertices of A with the same successors as x. Let the base x° of x be the set $x^{\circ}=\operatorname{scl}_{A}(x)-\{x\}$.
Lemma $4.7\left(^{*}\right)$. Take $\left(A, \tau_{A}\right) \in \mathcal{D}_{1}$ and let γ be an admissible order on $\left(A, \tau_{A}\right)$. Then γ induces an acyclic 2 -orientation τ_{γ} on A, and $\tau_{\gamma}=\tau_{A}$.
Proof. If $x y \in \tau_{A}$, then $\mathrm{l}_{A}(x)>\mathrm{l}_{A}(y)$, so $x>_{\gamma} y$ and so $x y \in \tau_{\gamma}$. If $x y \in \tau_{\gamma}$, then $x y$ is an edge of A and $x>_{\gamma} y$, so $l_{A}(x)>l_{A}(y)$, and so $x y \in \tau_{A}$.

We next show that, given $A \in \mathcal{D}_{1}$, it suffices to specify an order on cones to define an admissible order on A.
Lemma $4.8\left(^{*}\right)$. Take $A \in \mathcal{D}_{1}$. Let $\left\{\gamma_{Q}: Q\right.$ a cone of $\left.A\right\}$ be a set of linear orders on the cones of A. Then there exists a unique admissible order γ on A such that for each cone Q, γ agrees with γ_{Q}.

Proof. We will show by induction on n that there exists a unique admissible order γ_{n} on $A^{\uparrow n}$ such that for each cone Q of $A^{\uparrow n}, \gamma_{n}$ agrees with γ_{Q}. For $n=0$, note that all the vertices of $A^{\uparrow 0}=\mathrm{L}_{0}(A)$ lie in a single cone Q_{0}, and have no successors. So $\gamma_{Q_{0}}$ is trivially the unique admissible order on $A^{\uparrow 0}$ agreeing with itself.
Now assume the induction claim for $n-1$, so we have a unique admissible order γ_{n-1} on $A^{\uparrow n-1}$ agreeing with γ_{Q} for each cone Q of $A^{\uparrow n-1}$.
To show existence for $A^{\uparrow n}$, we define a linear order γ_{n} as follows:
(1) γ_{n} extends γ_{n-1};
(2) if $x \in A^{\uparrow n-1}$ and $y \in \mathrm{~L}_{n}(A)$, then $x<y$ in γ_{n};
(3) if $x, y \in \mathrm{~L}_{n}(A)$ and the decreasing chain of successors of x is lexicographically less than the decreasing chain of successors of y, then $x<y$ in γ_{n};
(4) if $x, y \in \mathrm{~L}_{n}(A)$ and x, y have the same successors, then x, y lie in some cone Q, so let $x<y$ in γ_{n} if $x<y$ in γ_{Q}.
γ_{n} is clearly admissible and agrees with all γ_{Q} on cones Q of $A^{\uparrow n}$ by definition, and uniqueness is clear.

Let \mathcal{E}_{1} denote the class of ordered digraphs (A, γ) where $A \in \mathcal{D}_{1}$ and γ is an admissible order on A. For $\left(A_{1}, \gamma_{1}\right),\left(A_{2}, \gamma_{2}\right) \in \mathcal{E}_{1}$, we write $\left(A_{1}, \gamma_{1}\right) \sqsubseteq_{s}\left(A_{2}, \gamma_{2}\right)$ to mean $A_{1} \sqsubseteq_{s} A_{2}, \gamma_{1}=\left.\gamma_{2}\right|_{A_{1}}$.

LEMMA 4.9. $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ has the hereditary property, i.e. for $\left(B, \gamma_{B}\right) \in \mathcal{E}_{1}$, if $\left(A, \gamma_{A}\right) \in \mathcal{D}_{1}^{\prec}$ and $\left(A, \gamma_{A}\right) \sqsubseteq_{s}\left(B, \gamma_{B}\right)$, then $\left(A, \gamma_{A}\right) \in \mathcal{E}_{1}$.

Proof. As $A \sqsubseteq_{s} B$, for $x \in A, l_{A}(x)=l_{B}(x)$. So for $x, y \in A$ with $l_{A}(x)<l_{A}(y)$, we have that $l_{B}(x)<l_{B}(y)$, so $x<y$ in γ_{B}, and thus $x<y$ in γ_{A}, showing that γ_{A} satisfies part (1) of Definition 4.4.
For $x, y \in A$ with $\mathrm{l}_{A}(x)=\mathrm{l}_{A}(y)$, as x, y have the same successors in A and in B, if the decreasing chain of successors of x in A is lexicographically less than the decreasing chain of successors of y in A, then the same is true in B, so $x<y$ in γ_{B} and therefore in γ_{A}, showing part (2) of Definition 4.4.

Proposition $4.10\left([7]\right.$, Th. 6.9). $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ is:
(1) a free amalgamation class, i.e. for $\left(A, \gamma_{A}\right),\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right) \in$ \mathcal{E}_{1} with $\left(A, \gamma_{A}\right) \sqsubseteq_{s}\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$, there exists $\left(C, \gamma_{C}\right) \in \mathcal{E}_{1}$ with C the free amalgam of B_{1}, B_{2} over A and γ_{C} extending γ_{1}, γ_{2};
(2) a Ramsey class;
(3) a reasonable class of expansions of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$, and has the expansion property over $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$.

Proof. (1): We first show that in the case where B_{1} has a single vertex x of maximum level $k, A=x^{\circ}$ and $1\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$, then (C, γ) exists and is unique up to isomorphism $\left({ }^{*}\right)$.
Let C be the free amalgam of B_{1}, B_{2} over A. We will define a linear order γ on C as follows. We require that γ extend γ_{1}, γ_{2}, and then we need only define γ for x. Take x greater than all vertices of B_{2} of level $<k$, and amongst the vertices of B_{2} of level k, order x according to (2) of Definition 4.4, ordering x within its cone arbitrarily. Then γ is admissible, and uniqueness up to isomorphism is clear. (We may reorder x within its cone, but these reorderings will be ordered digraphisomorphic.)

For the general case, we use induction on the total number n of vertices of the free amalgam of B_{1}, B_{2} over A. The base case $n=1$ is trivial, as are the cases $B_{1}=A, B_{2}=A$. So we assume B_{1}, B_{2} have vertices outside A. Without loss of generality, $\mathrm{l}\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$.
In the case $\mathrm{l}(A)<\mathrm{l}\left(B_{1}\right)$, let $x \in B_{1}-A$ be of maximum level in B_{1}. As $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ has the hereditary property, $\left(B_{1}-\{x\}, \gamma_{1}\right) \in \mathcal{E}_{1}$, and so by the induction assumption, there exists $\left(D, \gamma_{D}\right) \in \mathcal{E}_{1}$ with D the free amalgam of $B_{1}-\{x\}, B_{2}$ over A and γ_{D} extending $\left.\gamma_{1}\right|_{B_{1}-\{x\}}, \gamma_{2}$. By $\left.{ }^{*}\right)$, there is $(C, \gamma) \in \mathcal{E}_{1}$ with C the free amalgam of $\operatorname{scl}_{B_{1}}(x), D$ over x° and γ extending $\left.\gamma_{1}\right|_{\text {scl }_{B_{1}}(x)}, \gamma_{D} .(C, \gamma)$ contains the free amalgam of $\left(\operatorname{scl}_{B_{1}}(x), \gamma_{1}\right),\left(B_{1}-\{x\}, \gamma_{1}\right)$ over $\left(x^{\circ}, \gamma_{1}\right)$, so by the uniqueness part of $\left(^{*}\right),(C, \gamma)$ contains an isomorphic copy of $\left(B_{1}, \gamma_{1}\right)$.
In the case $\mathrm{l}(A)=\mathrm{l}\left(B_{1}\right)$, let x be a vertex of A of maximum level, so x has no predecessors. Then using the hereditary property of $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right.$) and the induction assumption, there is $\left(D, \gamma_{D}\right) \in \mathcal{E}_{1}$ with D the free amalgam of $B_{1}-\{x\}, B_{2}-\{x\}$ over $A-\{x\}$ and γ_{D} extending $\left.\gamma_{1}\right|_{B_{1}-\{x\}},\left.\gamma_{2}\right|_{B_{2}-\{x\}}$. Then use $\left(^{*}\right)$ and let (C, γ) be the free amalgam of $\operatorname{scl}_{A}(x), D$ over x° with γ extending γ_{A}, γ_{D}. By the uniqueness part of $\left.{ }^{*}\right),(C, \gamma)$ is the free amalgam of isomorphic copies of $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$ over an isomorphic copy of $\left(A, \gamma_{A}\right)$, with γ extending γ_{1}, γ_{2}.
(2): Take $\left(A, \gamma_{A}\right) \sqsubseteq_{s}\left(B, \gamma_{B}\right) \in \mathcal{E}_{1}$. By Theorem 1.57 applied to \mathcal{D}_{1}^{\prec}, there is $\left(C, \gamma_{C}\right) \in \mathcal{D}_{1}^{\prec}$ with $\left(C, \gamma_{C}\right) \rightarrow\left(\left(B, \gamma_{B}\right)\right)_{2}^{\left(A, \gamma_{A}\right)}$. Let $C^{\prime}=\cup\binom{C}{B}$. Then $C^{\prime} \sqsubseteq_{s} C$ and $\left(C^{\prime}, \gamma_{C}\right) \in \mathcal{D}_{1}^{\prec}$ still has $\left(C^{\prime}, \gamma_{C}\right) \rightarrow\left(\left(B, \gamma_{B}\right)\right)_{2}^{\left(A, \gamma_{A}\right)}$.
So it will suffice to show that there is a linear order γ on C^{\prime} with $\left(C^{\prime}, \gamma\right) \in \mathcal{E}_{1}$ such that γ agrees with γ_{C} on each \sqsubseteq_{s}-copy of $\left(B, \gamma_{B}\right)$ inside $\left(C^{\prime}, \gamma_{C}\right)$, as then $\left(C^{\prime}, \gamma\right)$ will still witness the Ramsey property for $\left(A, \gamma_{A}\right)$ and $\left(B, \gamma_{B}\right)$.
That is, it suffices to prove the following statement:
$(*)$ if $\left(X, \gamma_{X}\right) \in \mathcal{E}_{1}$ and $\left(Y, \gamma_{Y}\right) \in \mathcal{D}_{1}^{\prec}$ is such that every vertex of $\left(Y, \gamma_{Y}\right)$ lies in a \sqsubseteq_{s}-copy of $\left(X, \gamma_{X}\right)$, then there exists a linear order γ on Y with $(Y, \gamma) \in \mathcal{E}_{1}$ such that γ agrees with γ_{Y} on every \sqsubseteq_{s}-copy of $\left(X, \gamma_{X}\right)$.

To prove (*), we will define γ inductively. Index the vertices of Y as y_{1}, \cdots, y_{n}, where if $i<j$ then $\mathrm{l}\left(y_{i}\right) \leq \mathrm{l}\left(y_{j}\right)$. Let γ be the trivial linear order on $\left\{y_{1}\right\}$. Now suppose that γ has already been defined on $\left\{y_{1}, \cdots, y_{i-1}\right\}$ such that $\left(\left\{y_{1}, \cdots, y_{i-1}\right\}, \gamma\right) \in \mathcal{E}_{1}$ and γ agrees with γ_{Y} on every \sqsubseteq_{s}-copy of $\left(X, \gamma_{X}\right)$ where γ is defined. We define γ on $\left\{y_{1}, \cdots, y_{i}\right\}$. Let $k=1\left(y_{i}\right)$. We specify that:
(A) y_{i} is greater in γ than all vertices of level $<k$;
(B) for $y_{j}(j<i)$ of level k, if the descending chain of successors of y_{j} is lexicographically less than the descending chain of successors of y_{i} in γ, then $y_{j}<y_{i}$ in γ;
(C) for $y_{j}(j<i)$ of level k in the same cone as y_{i}, y_{j}, y_{i} are ordered in γ according to γ_{Y}.

Then clearly $\left(\left\{y_{1}, \cdots, y_{i}\right\}, \gamma\right) \in \mathcal{E}_{1}$. We show that γ, γ_{Y} agree on $\sqsubseteq_{s^{-}}$ copies of $\left(X, \gamma_{X}\right)$. By the induction assumption, we know that this is the case on $\left\{y_{1}, \cdots, y_{i-1}\right\}$. Say $y_{j}, y_{i}(j<i)$ lie in a \sqsubseteq_{s}-copy $\left(X^{\prime}, \gamma_{X^{\prime}}\right)$ of $\left(X, \gamma_{X}\right)$. If $\mathrm{l}\left(y_{j}\right)<k$, then by part (1) of Definition 4.4, $y_{j}<y_{i}$ in $\gamma_{X^{\prime}}$, and by (A) $y_{j}<y_{i}$ in γ. If $\mathrm{l}\left(y_{j}\right)=k$, then as $\gamma_{X^{\prime}}, \gamma$ agree on levels $<k$, the lexicographic preorders agree by (B), and if y_{j}, y_{i} are in the same cone, then $\gamma_{X^{\prime}}, \gamma$ agree by (C).
(3): We now show that \mathcal{E}_{1} is a reasonable class of expansions of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$. To show (1) and (4) in the definition of reasonableness, it suffices to show that if $A \sqsubseteq_{s} B \in \mathcal{D}_{1}$ and $A^{+} \in \mathcal{E}_{1}$ is an expansion of A, then there exists an expansion $B^{+} \in \mathcal{E}_{1}$ of B with $A^{+} \sqsubseteq_{s} B^{+}$(we allow $A=\varnothing$). Fix $A^{+} \in \mathcal{E}_{1}$, and proceed by induction on $|B|$. The base case is trivial. For the induction step, take $b \in B-A$ of maximum level. b has no predecessors in B. Let $C=B-\{b\}$, and let $C^{+} \in \mathcal{E}_{1}$ be an expansion of C with $A^{+} \sqsubseteq_{s} C^{+}$. To define an order γ on B extending C^{+}, we need only define the order between b and each $c \in C^{+}$, which we do according to (1), (2) of Definition 4.4, where we order b arbitrarily within its cone $Q_{B}(b) . \gamma$ is clearly admissible.
Part (2) of reasonableness results from the fact that there are finitely many linear orders on a finite set. Part (3) is clear: successor-closed subsets preserve levels, and part (2) of Definition 4.4 is preserved for successor-closed subsets (formally, we prove (3) by induction on $|A|$).
To show that \mathcal{E}_{1} has the expansion property over $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$, the proof is similar to that of Proposition 4.1, except that we take $X=A-$ $Q_{A}(a)$.

Definition 4.11. Let $\left(M_{1}, \rho, \alpha\right)$ be the Fraïssé limit of $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$, where ρ is the orientation and α is the linear order of the Fraïssé limit.
Let $N_{1}=\left(M_{1}, \rho\right)$. As $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ is a strong expansion of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$, we have that N_{1} is the Fraïssé limit of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$.
Recall that $G_{1}=\operatorname{Aut}\left(M_{1}\right)$. Let $K_{1}=\operatorname{Aut}\left(N_{1}\right)$, and let $H_{1}=\operatorname{Aut}\left(N_{1}, \alpha\right)$. Then by Proposition 4.10, H_{1} is extremely amenable.
We will write $G=G_{1}, K=K_{1}, H=H_{1}$ in this chapter for notational brevity.

Lemma 4.12. For $x \in N_{1}, \operatorname{scl}_{N_{1}}(x)$ is finite.
(We will usually just write $\operatorname{scl}_{\rho}(x)$ or $\operatorname{scl}(x)$, when this is clear from context. Recall that ρ is the orientation of the oriented graph $N_{1}=$ $\left(M_{1}, \rho\right)$.)

Proof. Take $x \in N_{1}$. As N_{1} is the Fraïssé limit of ($\mathcal{D}_{1}, \sqsubseteq_{s}$), we can write N_{1} as the union of an increasing \sqsubseteq_{s}-chain $A_{0} \sqsubseteq_{s} A_{1} \sqsubseteq_{s} \cdots$ of
elements of \mathcal{D}_{1}. Note that each element of \mathcal{D}_{1} is a finite oriented graph. As there is $i \in \mathbb{N}$ such that x is in A_{i}, and as $\operatorname{scl}_{N_{1}}(x)$ is contained in every successor-closed subset of N_{1} containing x, we have that $\operatorname{scl}_{N_{1}}(x)$ is contained in the finite set A_{i}, and so $\operatorname{scl}_{N_{1}}(x)$ is finite.

Definition 4.13. Let $x \in N_{1}$. We define the level $1_{N_{1}}(x)$ of x in N_{1}, usually just denoted $\mathrm{l}_{\rho}(x)$ or $\mathrm{l}(x)$ when clear from context, to be the level of x in $\operatorname{scl}_{N_{1}}(x)$. (Note that the level of a vertex in a finite oriented graph was defined in Definition 1.3, and we know that $\operatorname{scl}_{N_{1}}(x)$ is finite by the previous lemma.)
Note that for $A \sqsubseteq_{s} N_{1}$ with $x \in A$, as $\operatorname{scl}_{N_{1}}(x) \sqsubseteq_{s} A$, we have that $l_{N_{1}}(x)=l_{A}(x)$.

Definition 4.14. Let $x \in N_{1}$. Define the cone $Q_{N_{1}}(x)$ of x in N_{1}, usually just denoted $Q_{\rho}(x)$ or $Q(x)$, to be the set $Q_{N_{1}}(x)=\{y \in$ $\left.N_{1}: \mathrm{N}_{+}^{N_{1}}(y)=\mathrm{N}_{+}^{N_{1}}(x)\right\}$, i.e. the set of vertices of N_{1} with the same successors as x. Let the base x° of x be the set $x^{\circ}=\operatorname{scl}_{N_{1}}(x)-\{x\}$.
Note that $Q_{N_{1}}(x)$ is the orbit of x in N_{1} under the pointwise stabiliser of x° in $\operatorname{Aut}\left(N_{1}\right)$, by \sqsubseteq_{s}-homogeneity of N_{1}.

Lemma $4.15\left(^{*}\right)$. Consider the G-flow $G \curvearrowright \mathcal{L O}\left(M_{1}\right)$. Let G_{α} denote the G-stabiliser of α for this flow. Then $H=G_{\alpha}$.

Proof. Clearly $H \leq G_{\alpha}$. Take $g \in G_{\alpha}$. We must show that g preserves the generic orientation ρ. Take an out-edge $x y \in \rho$. Then as $l_{\rho}(x)>l_{\rho}(y), x>y$ in α, and so $g x>g y . g$ is a graph automorphism, so $\{g x, g y\}$ is an edge of M_{1}, and so we have that $(g x, g y) \in \rho$. So $g \in H$.

Lemma $4.16{ }^{(* *)}$. Let $\beta \in \mathcal{L O}\left(M_{1}\right)$ be an H-fixed point in the flow $G \curvearrowright \mathcal{L O}\left(M_{1}\right)$, and let Q be a cone of N_{1}. Then β agrees with either α or α^{\prime} on Q, where α^{\prime} denotes the reverse of the linear order α.

Proof. Take $x_{0}, y_{0} \in Q$ with $x_{0}<{ }_{\alpha} y_{0}$. Then for $x, y \in Q$ with $x<_{\alpha} y$, there exists an ordered digraph isomorphism $f: \operatorname{scl}\left(x_{0}, y_{0}\right) \rightarrow \operatorname{scl}(x, y)$ with $f\left(x_{0}\right)=x, f\left(y_{0}\right)=y$, and by homogeneity we may extend to an element $f \in H$.
As $H \subseteq G_{\beta}, f$ is β-preserving. If $x_{0}<_{\beta} y_{0}$, then $f\left(x_{0}\right)<_{\beta} f\left(y_{0}\right)$, i.e. $x<_{\beta} y$, and so as $x<_{\alpha} y$ implies $x<_{\beta} y, \beta$ agrees with α on Q. If $x_{0}>_{\beta} y_{0}$, then β agrees with α^{\prime} on Q.

We now show that $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ is in some sense an "optimal" Ramsey expansion: the automorphism group H of its Fraïssé limit is maximal amongst extremely amenable subgroups of G.

Proposition 4.17 ([7], Th. 6.10). If $H \leq J \leq G$ and J is extremely amenable, then $J=H$.

Proof. Recall that $H=\operatorname{Aut}\left(M_{1}, \rho, \alpha\right)$. Say $\sigma \in \operatorname{Or}\left(M_{1}\right)$ is an H fixed point. If $\sigma \neq \rho$, then there exist adjacent $a, b \in M_{1}$ such that $(a, b) \in \rho,(b, a) \in \sigma$. As $(a, b) \in \rho$, the H_{b}-orbit of a is infinite. But H fixes σ, so this contradicts σ being a 2 -orientation. So ρ is the only orientation of M_{1} fixed by H. As J is extremely amenable, J must fix ρ. So $J \leq \operatorname{Aut}\left(N_{1}\right)=K$.
As \mathcal{E}_{1} is a reasonable class of expansions of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right), X\left(\mathcal{E}_{1}\right)$ is a K-flow. $X\left(\mathcal{E}_{1}\right)$ is the space of admissible orders on $N_{1} . J \leq K$, so J fixes some admissible order γ on N_{1}. Thus H preserves γ on N_{1}, and therefore by Lemma 4.16, γ agrees with α or α^{\prime} on cones of N_{1}. But if $k \in K$ preserves a linear order on a cone, it also preserves its reverse. So J preserves α on cones, and so by Lemma 4.8, J preserves α. Therefore $J \leq H$.

4.4 Minimal subflows of $\mathcal{L O}\left(M_{1}\right)$ and their orbits

We now state the main new theorem of this chapter.
THEOREM $4.18\left({ }^{* *}\right)$. Let $Y \subseteq \mathcal{L O}\left(M_{1}\right)$ be a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$. Then all G-orbits on Y are meagre.

4.4.1 Setup and proof notation

Before beginning the proof, we first need to set up our approach.
Let $Y \subseteq \mathcal{L O}\left(M_{1}\right)$ be a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$, and using Lemma 1.71, let \mathcal{J} be the class of finite ordered graphs such that $Y=X(\mathcal{J})$, i.e. \mathcal{J} is the class of isomorphism types of (A, λ), where $A \leq M_{1}$ and λ is a linear order induced on A by an element of Y.
Recall that $H=\operatorname{Aut}\left(N_{1}, \alpha\right)$ is extremely amenable. So H fixes an element $\left(M_{1}, \beta\right)$ of Y. As Y is a minimal G-flow, $Y=\overline{G\left(M_{1}, \beta\right)}$.
Take $\left(M_{1}, \gamma\right) \in \overline{G\left(M_{1}, \beta\right)}$. Then for $A \leq M_{1}$ finite, there exists $g \in G$ such that $g \beta$ and γ agree on A, i.e. there exists a \leq_{1}-ordered graph embedding $(A, \gamma) \rightarrow\left(M_{1}, \beta\right)$. Conversely, if $\left(M_{1}, \gamma\right) \in \mathcal{L O}\left(M_{1}\right)$ is such that for all finite $A \leq M_{1}$, there exists a \leq_{1}-ordered graph embedding $(A, \gamma) \rightarrow\left(M_{1}, \beta\right)$, then by homogeneity we can extend these embeddings to elements of G.
Thus we see that \mathcal{J} is exactly the class of finite ordered graphs (A, λ) where $A \in \mathcal{C}_{1}$ and there exists a \leq_{1}-ordered graph embedding $(A, \lambda) \rightarrow$ $\left(M_{1}, \beta\right)$ - concisely, we have that $\mathcal{J}=\operatorname{Age}_{\leq}\left(M_{1}, \beta\right)$. (Note that here we do not assume homogeneity of $\left.\left(M_{1}, \beta\right)\right)$.
We will show that $\left(\mathcal{J}, \leq_{1}\right)$ does not have the weak amalgamation property (WAP), which implies that all G-orbits on Y are meagre by Lemma 1.78.

To sum up: given a minimal subflow $Y \subseteq \mathcal{L} \mathcal{O}\left(M_{1}\right)$, H fixes a linear order β inside Y. To show that Y has all G-orbits meagre, it suffices to show that $\mathcal{J}=\operatorname{Age}_{\leq}\left(M_{1}, \beta\right)$ does not have the weak amalgamation property with \leq_{1}-embeddings.
We will now use the above notation throughout the rest of section 4.4.

4.4.2 Proof idea - informal overview

We will assume $\left(\mathcal{J}, \leq_{1}\right)$ has WAP, seeking a contradiction. Take some vertex a_{0}. Let $A_{0}=\left\{a_{0}\right\}$, and let λ_{0} be the trivial order on A_{0}. By assumption $\left(A_{0}, \lambda_{0}\right)$ has a WAP-witness (A, λ). We will then construct \leq_{1}-embeddings of (A, λ) into two ordered graphs $\left(C_{0}, \gamma_{0}\right),\left(C_{1}, \gamma_{1}\right) \in \mathcal{J}$ which are WAP-incompatible: it will not be possible to have (D, γ) completing the WAP commutative diagram for $\left(A_{0}, \lambda_{0}\right)$ with the two embeddings, and thereby we will obtain our contradiction.
The incompatibility of the two ordered graphs $\left(C_{i}, \gamma_{i}\right)$ in \mathcal{J} will result from them forcing incompatible orientations: it turns out that we can use the order β to force certain orientations of edges in ρ (see Figure 4.3). The incompatible orientations will essentially consist of a binary out-directed tree T_{0} and a binary out-directed tree with the successorclosures of two vertices identified, which we denote by T_{1} : these cannot start from the same point of a 2-orientation, as one contains a 4-cycle and the other does not.
The idea to use two incompatible orientations in the WAP commutative diagram and thereby obtain a contradiction comes from the proof of Theorem 5.2 of [8]:

Theorem (Th. 5.2, [8]). Let $M=M_{1}, M_{0}$ or M_{F}, and let $G=$ Aut (M). Let Y be a minimal subflow of the G-flow $\operatorname{Or}(M)$. Then all G-orbits on Y are meagre.

Theorem 4.18 will not depend on the above result, though, as stated, several aspects of the proof are inspired by it. The key difficulties in the proof of Theorem 4.18 are showing that we can use β (specifically, particular finite ordered graphs in $\left.\mathcal{J}=\operatorname{Age}_{\leq_{1}}\left(M_{1}, \beta\right)\right)$ to force orientations of edges in ρ (Lemma 4.20), and also showing that the ordered graphs that we construct to force orientations of edges in ρ do in fact lie in \mathcal{J} (Lemma 4.21).

4.4.3 Attaching trees and near-trees

For $q \in \mathbb{N}$, let $T_{0}(q)$ be a binary tree of height $2 q+1$, oriented outwards towards the leaves and with head vertex c. Let $T_{1}(q)$ be the digraph
given by taking $T_{0}(q)$ and identifying the successor-closures of two vertices at height $q+2$ whose paths to the head vertex c meet at height q. We have $T_{0}(q), T_{1}(q) \in \mathcal{D}_{1}$.
Let T be one of the digraphs $T_{0}(q)$ or $T_{1}(q)$, for some $q \in \mathbb{N}$. Take $C \in \mathcal{D}_{1}$ with each vertex having out-degree 2 or 0 . Let D_{T} be the digraph consisting of C together with, for each vertex $v \in C$ with $\mathrm{d}_{+}(v)=0$, a copy of T attached at v, where we identify c and v. Let Z_{T} denote the sub-digraph of D_{T} whose vertices are the vertices of the copies of T attached to C in D_{T}. Let D_{T}^{-}denote the graph reduct of D_{T}. (We will use this notation throughout this section.)
We have that D_{T} is still 2-oriented and has no directed cycles, and so $D_{T} \in \mathcal{D}_{1}$. Let $D_{T}{ }^{\prime}$ be the acyclic reorientation of D_{T} where the copies of T have been oriented so that the non-head vertices of each copy of T are directed towards the head vertex c, leaving the orientation on vertices of C unchanged. Then we have $C \sqsubseteq_{s} D_{T}{ }^{\prime}$ in this reorientation, and so $C^{-} \leq_{1} D_{T}^{-}$.

Definition 4.19. Let $C \in \mathcal{D}_{1}$ with each vertex having out-degree 2 or 0 , and let D_{T} be defined as above.
An ordered graph $\left(C_{T}, \gamma\right) \in \mathcal{J}$ is a T-witness ordered graph for C if:

- C_{T} consists of the graph reduct $D_{T}{ }^{-}$of D_{T} together with, for each non-leaf tree vertex v of D_{T}, an additional 10 copies of $\operatorname{scl}_{D_{T}}(v)$ freely amalgamated (as graphs) over $\operatorname{scl}_{D_{T}}(v)^{\circ}$, and $C \leq_{1} C_{T} ;$
- for each non-leaf tree vertex $v \in D_{T}$, the additional 10 copies of v may be labelled as $v_{-5}, \cdots, v_{-1}, v_{1}, \cdots, v_{5}$ so that $v_{-5}<$ $\cdots<v_{-1}<v<v_{1}<\cdots<v_{5}$ in γ. (We call these v_{i} the witness vertices of v.)
(See Figure 4.2.)
The following is the key lemma here.
Lemma 4.20 (**). Let $^{(*)} \in \mathcal{D}_{1}$ with each vertex having out-degree 2 or 0 , and let $\left(C_{T}, \gamma\right) \in \mathcal{J}$ be a T-witness ordered graph for C (as defined above). As $\left(C_{T}, \gamma\right)$ is an element of \mathcal{J}, there exists $a \leq_{1}$-ordered graph embedding $\theta:\left(C_{T}, \gamma\right) \rightarrow\left(M_{1}, \beta\right)$. Then, considering the digraph structure on Z_{T} induced by $D_{T},\left.\theta\right|_{Z_{T}}: Z_{T} \rightarrow\left(M_{1}, \rho\right)$ is also a digraph embedding. (See Figure 4.3.)

Proof. Take $v \in Z_{T}$ with out-edges $(v, x),(v, y)$, where $x, y \in Z_{T}$. We need to show that $\theta(v)$ has out-edges $(\theta(v), \theta(x)),(\theta(v), \theta(y))$ in the orientation ρ of M_{1}. Let $v_{-5}, \cdots, v_{-1}, v_{1}, \cdots, v_{5}$ be the witness vertices of v in $\left(C_{T}, \gamma\right)$, and let $v_{0}=v$. As θ is a \leq_{1}-ordered graph embedding, we have that $\theta\left(v_{i}\right)<{ }_{\beta} \theta\left(v_{j}\right)$ for $i<j$, and we have undirected edges $\theta\left(v_{i}\right) \theta(x), \theta\left(v_{i}\right) \theta(y)$ for $-5 \leq i \leq 5$.

the oriented graph D_{T}

the ordered graph $\left(C_{T}, \gamma\right)$, with witness vertices v_{i} indicated on one vertex v of Z_{T}

Figure 4.2

Figure 4.3. The key idea in the proof of Theorem 4.18: we can use the linear order β to force orientations of edges. If the ordered graph $(A, \beta) \leq\left(M_{1}, \beta\right)$, then considering A in the generic orientation ρ of M_{1}, the righthand oriented graph in the figure cannot occur, and we must have that $v x, v y$ are out-edges in ρ.

As ρ is a 2-orientation, for some i with $-5 \leq i \leq-1$ we must have that $\left(\theta\left(v_{i}\right), \theta(x)\right),\left(\theta\left(v_{i}\right), \theta(y)\right)$ are out-edges of ρ, and likewise for some j with $1 \leq j \leq 5$ we must have that $\left(\theta\left(v_{j}\right), \theta(x)\right),\left(\theta\left(v_{j}\right), \theta(y)\right)$ are out-edges of ρ. If either $\left(\theta(x), \theta\left(v_{0}\right)\right) \in \rho$ or $\left(\theta(y), \theta\left(v_{0}\right)\right) \in \rho$, then $\theta\left(v_{0}\right) \in \operatorname{scl}_{\rho}(\theta(x), \theta(y))$, and as $\theta\left(v_{i}\right), \theta\left(v_{j}\right)$ lie in the same α-cone, there exists $h \in G_{\alpha}$ with $h \theta\left(v_{i}\right)=\theta\left(v_{j}\right)$ and h fixing $\theta\left(v_{0}\right)$. As $G_{\alpha} \subseteq G_{\beta}$, we have that $h \in G_{\beta}$. But $\theta\left(v_{i}\right)<{ }_{\beta} \theta\left(v_{0}\right)$, so $h \theta\left(v_{i}\right)<_{\beta} h \theta\left(v_{0}\right)$, thus $\theta\left(v_{j}\right)<{ }_{\beta} \theta\left(v_{0}\right)$ - contradiction. So therefore both $\left(\theta\left(v_{0}\right), \theta(x)\right) \in \rho$ and $\left(\theta\left(v_{0}\right), \theta(y)\right) \in \rho$.

Lemma 4.21 (**). Let $^{(*} \in \mathcal{D}_{1}$ with each vertex having out-degree 2 or 0 . Then there exists a T-witness ordered graph $\left(C_{T}, \gamma\right)$ for C, with $\left(C_{T}, \gamma\right) \in \mathcal{J}$.

Proof. Let d_{1}, \cdots, d_{k} be an enumeration of the non-leaf tree vertices of D_{T} which preserves the order of levels, i.e. for $i<j, l_{D_{T}}\left(d_{i}\right) \leq$ $\mathrm{l}_{D_{T}}\left(d_{j}\right)$. We will show, by induction on i, that for $0 \leq i \leq k$ there exists an ordered graph $\left(C_{i}, \gamma_{i}\right) \in \mathcal{J}$ such that:
(1) C_{i} consists of D_{T} together with, for $1 \leq j \leq i$, an additional 10 copies of $\operatorname{scl}_{D_{T}}\left(d_{j}\right)$ freely amalgamated (as graphs) over $\operatorname{scl}_{D_{T}}\left(d_{j}\right)^{\circ}$;
(2) for $1 \leq j \leq i$, the additional 10 copies of d_{j} may be labelled as $d_{j,-5}, \cdots, d_{j,-1}, d_{j, 1}, \cdots, d_{j, 5}$ such that $d_{j,-5}<\cdots<d_{j,-1}<$ $d_{j}<d_{j, 1}<\cdots<d_{j, 5}$ in γ_{i}. We will call these the witness vertices of d_{j}, and let W_{j} denote the set of witness vertices of d_{j}.

For the base case $i=0$, take $C_{0}=D_{T}{ }^{-}$. As $C_{0} \in \mathcal{C}_{1}$ and \mathcal{J} is a reasonable class of expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right)$, there exists a linear order γ_{0} on C_{0} such that $\left(C_{0}, \gamma_{0}\right) \in \mathcal{J}$. $\left(C_{0}, \gamma_{0}\right)$ satisfies (1) and (2) vacuously. For the induction step, assume we have $\left(C_{i}, \gamma_{i}\right) \in \mathcal{J}$ satisfying (1) and (2). Let

$$
X=\mathrm{L}_{0}\left(D_{T}\right) \cup \bigcup_{1 \leq j \leq i} \operatorname{scl}_{D_{T}}\left(d_{j}\right) \cup \bigcup_{1 \leq j \leq i} W_{j} .
$$

There is an acyclic orientation τ_{i} of C_{i} in which X is successor-closed: take the orientation of D_{T}, and orient the two edges of each witness vertex $d_{j, m}$ outwards from $d_{j, m}$. Thus $X \leq_{1} C_{i}$. Note that for $j^{\prime}>i \geq$ $j, l_{D_{T}}\left(d_{j^{\prime}}\right) \geq l_{D_{T}}\left(d_{j}\right)$, so $d_{j^{\prime}} \notin X$ for $j^{\prime}>i$.
Let (E, τ) be the free amalgam of $\left(C_{i}, \tau_{i}\right) 11$ times over $\left(X, \tau_{i}\right)$. As \mathcal{D}_{1} is a free amalgamation class, $(E, \tau) \in \mathcal{D}_{1}$. Hence $E \in \mathcal{C}_{1}$, and we have $X \leq E$.
Let $\gamma_{X}=\left.\gamma_{i}\right|_{X}$. We have that $\left(X, \gamma_{X}\right) \in \mathcal{J}$, so let $\theta_{X}:\left(X, \gamma_{X}\right) \rightarrow$ $\left(M_{1}, \beta\right)$ be a \leq_{1}-ordered graph embedding. By the extension property of M_{1}, we have a \leq_{1}-graph embedding $\theta: E \rightarrow M_{1}$ extending θ_{X}.
Let $\zeta=\theta^{-1}(\beta)$, i.e. for $x, y \in E, x<_{\zeta} y$ iff $\theta(x)<_{\beta} \theta(y)$. We have that ζ is a linear order on E extending γ_{X} on X, and that $\theta:(E, \zeta) \rightarrow\left(M_{1}, \beta\right)$ is a \leq_{1}-ordered graph embedding.
We may label the 11 copies of C_{i} in E as $C_{i, m}(-5 \leq m \leq 5)$, with \leq_{1}-embeddings $\eta_{m}: C_{i} \rightarrow C_{i, m} \leq E$, and the corresponding copies of d_{i+1} as $d_{i+1, m} \in C_{i, m}(-5 \leq m \leq 5)$, such that $d_{i+1,-5}<\cdots<d_{i+1,5}$ in ζ. Let $C_{i+1}{ }^{\prime}=C_{i, 0} \cup\left\{d_{i+1, m}:-5 \leq m \leq 5\right\}$. We have that $\left(C_{i+1}{ }^{\prime}, \tau\right) \sqsubseteq_{s}(E, \tau)$, so $C_{i+1}{ }^{\prime} \leq E$. So $\theta:\left(C_{i+1}{ }^{\prime}, \zeta\right) \rightarrow\left(M_{1}, \beta\right)$ is a \leq_{1}-ordered graph embedding.
We have that $C_{i+1}{ }^{\prime}$ consists of a copy $C_{i, 0}=\eta_{0}\left(C_{i}\right)$ of C_{i}, where $\left.\eta_{0}\right|_{X}=\operatorname{id}_{X}$ and $\left.\eta_{0}\right|_{X}:\left(X, \gamma_{X}\right) \rightarrow(X, \zeta)$ is order-preserving, together with witness vertices $d_{i+1,-5}, \cdots, d_{i+1,-1}, d_{i+1,1}, \cdots, d_{i+1,5}$ for $d_{i+1,0}=\eta\left(d_{i+1}\right)$.

Recall that C_{i} consists of D_{T} together with, for $1 \leq j \leq i$, the witness vertices for d_{j}, and also that X consists of $\mathrm{L}_{0}\left(D_{T}\right)$ together with, for $1 \leq j \leq i, d_{j}$ and its witness vertices.
Therefore $\left(C_{i+1}{ }^{\prime}, \zeta\right)$ consists of a graph-isomorphic copy $\eta_{0}\left(D_{T}\right)$ of D_{T}, together with witness vertices in ζ for $\eta_{0}\left(d_{1}\right)=d_{1}, \cdots, \eta_{0}\left(d_{i}\right)=d_{i}$ and witness vertices in ζ for an additional vertex $\eta_{0}\left(d_{i+1}\right)$. We can therefore construct an ordered graph $\left(C_{i+1}, \gamma_{i+1}\right)$ isomorphic to $\left(C_{i+1}{ }^{\prime}, \zeta\right) \in \mathcal{J}$ such that C_{i+1} consists of D_{T} together with witness vertices for d_{j}, $1 \leq j \leq i+1$. This completes the induction step. We then let $\left(C_{T}, \gamma\right)=$ $\left(C_{k}, \gamma_{k}\right)$.

4.4.4 $\left(\mathcal{J}, \leq_{1}\right)$ does not have WAP

Proposition $4.22\left({ }^{(* *)}\right.$. The class $\left(\mathcal{J}, \leq_{1}\right)$ does not have the weak amalgamation property.

Proof. Suppose $\left(\mathcal{J}, \leq_{1}\right)$ has WAP, seeking a contradiction. Let a_{0} be a point. Take $A_{0}=\left\{a_{0}\right\}$ and λ_{0} the trivial order on A_{0}, so $\left(A_{0}, \lambda_{0}\right) \in$ \mathcal{J}. Then there exists $\left(A_{0}, \lambda_{0}\right) \leq_{1}(A, \lambda) \in \mathcal{J}$ with (A, λ) witnessing the weak amalgamation property for $\left(A_{0}, \lambda_{0}\right)$. Take $A \leq_{1} B \in \mathcal{C}_{1}$ witnessing for A the expansion property of \mathcal{J} over $\left(\mathcal{C}_{1}, \leq_{1}\right)$. (Here we use Theorem 1.73, recalling that $Y=X(\mathcal{J})$ is a minimal G-flow.)
Take $B^{+} \in \mathcal{D}_{1}$ such that the undirected reduct of B^{+}is B. For each $v \in B^{+}$with $\mathrm{d}_{+}(v)=1$, add to B^{+}a new vertex v^{\prime} and out-edge $v v^{\prime}$, and call the resulting digraph $C \in \mathcal{D}_{1}$. Note that each vertex of C has out-degree 0 or 2 . We have that $B \leq_{1} C^{-}$.
Let q be the maximum number of levels in any acyclic reorientation of C (i.e. if C when reoriented has levels $0, \cdots, n$, then $q=n+1$).
For $i=0,1$, let $\left(C_{i}, \gamma_{i}\right) \in \mathcal{J}$ be $T_{i}(q)$-witness ordered graphs for C, using Lemma 4.21, and let D_{i}, Z_{i} denote $D_{T_{i}(q)}, Z_{T_{i}(q)}$ (the notation here is introduced just above Definition 4.19).
As $B \leq C_{i}$ witnesses the expansion property for A, there exist $\leq_{1^{-}}$ ordered graph embeddings $\zeta_{i}:(A, \lambda) \rightarrow\left(B, \gamma_{i}\right) \leq\left(C_{i}, \gamma_{i}\right)(i=0,1)$. As (A, λ) witnesses WAP for $\left(A_{0}, \lambda_{0}\right)$, there exists $D \leq M_{1}$ and $\leq_{1^{-}}$ ordered graph embeddings $\theta_{i}:\left(C_{i}, \gamma_{i}\right) \rightarrow(D, \beta)$ with $\theta_{0} \zeta_{0}(a)=\theta_{1} \zeta_{1}(a)$. By Lemma 4.20, $\left.\theta_{i}\right|_{Z_{i}}: Z_{i} \rightarrow(D, \rho)$ are also digraph embeddings.
If r is a vertex of C of out-degree 0 in C, then as $\left.\theta_{i}\right|_{Z_{i}}$ is a digraph embedding, $\theta_{i}(r)$ has out-degree 0 in $\theta_{i}(C)$. Also θ_{i} preserves predimension, being a graph embedding, so $\delta\left(\theta_{i}(C)\right)=\delta(C)$. Thus the roots of $\theta_{i}(C)$ are exactly the $\theta_{i}(r)$ for r a root of C, and they all have out-degree 0 . (Recall that a root vertex is one that has out-degree less than 2 - see Definition 1.13.)
Let $d=\theta_{i} \zeta_{i}(a)$, and let U_{n} be the set of vertices of $\left(M_{1}, \rho\right)$ that can be reached from d by an outward-directed path of length $\leq n$. As the
only vertices of $\theta_{i}\left(D_{i}\right)$ of out-degree less than 2 are the leaves of the copies of $T_{i}, U_{2 q+1} \subseteq \theta_{i}\left(D_{i}\right)(i=0,1)$.
We now obtain a contradiction by comparing the two cases $i=0$ and $i=1$. As $U_{2 q+1} \subseteq \theta_{0}\left(D_{0}\right)$, we have that $U_{2 q+1}-U_{q-1}$ does not contain any (undirected) cycles. But as $U_{2 q+1} \subseteq \theta_{1}\left(D_{1}\right)$, we have that $U_{2 q+1}-U_{q-1}$ contains a 4-cycle - contradiction.

This completes the proof of Theorem 4.18.

4.5 Stabilisers of H-fixed points

Recall that we write $G=G_{1}=\operatorname{Aut}\left(M_{1}\right), K=K_{1}=\operatorname{Aut}\left(N_{1}\right), H=$ $H_{1}=\operatorname{Aut}\left(N_{1}, \alpha\right)$.
In this section, β is an arbitrary linear order on M_{1}. We will show, as the main result of this section, that if $G_{\alpha} \subseteq G_{\beta}$, then $G_{\alpha}=G_{\beta}$. (Here G_{α}, G_{β} denote the G-stabilisers of α, β in the flow $G \curvearrowright \mathcal{L} \mathcal{O}\left(M_{1}\right)$.) Note that we may easily obtain examples of such $\beta \in \mathcal{L O}\left(M_{1}\right)$ with $G_{\alpha} \subseteq G_{\beta}$ by permuting the order of the levels of α.
This result originally formed part of the author's first attempt at proving Theorem 4.18.
First attempt at a proof approach: let $Y \subseteq \mathcal{L O}\left(M_{1}\right)$ be a minimal subflow, and let β be an H-fixed point inside Y as before. So $G_{\alpha} \subseteq G_{\beta}$. If we have that $G_{\alpha}=G_{\beta}$ (as proved below), then we may define a surjective map between orbits $p: G \beta \rightarrow G \alpha, g \cdot \beta \mapsto g \cdot \alpha$. By Lemma 4.15, there is a well-defined continuous map $q: G \alpha \rightarrow \operatorname{Or}\left(M_{1}\right), g \cdot \alpha \mapsto$ $g \cdot \rho$, and if we could show that $q \circ p: G \beta \rightarrow \operatorname{Or}\left(M_{1}\right)$ were uniformly continuous, we could continuously extend $q \circ p$ to $Y=\overline{G \beta} \rightarrow \operatorname{Or}\left(M_{1}\right)$, and perhaps use the fact that minimal subflows of $\operatorname{Or}\left(M_{1}\right)$ have all G-orbits meagre to show that minimal subflows of $\mathcal{L O}\left(M_{1}\right)$ have all G-orbits meagre. Unfortunately, the author was not able to show that $q \circ p$ was uniformly continuous.
Nonetheless, the results in this section are still of interest, as they give us some more information about what β can be.
Lemma $4.23\left(^{* *}\right)$. For $\beta \in \mathcal{L O}\left(M_{1}\right)$, if $K_{\alpha} \subseteq K_{\beta}$ then $K_{\alpha}=K_{\beta}$.
Proof. Note that given an edge $x y$ of $M_{1},(x, y) \in \rho$ iff $x>_{\alpha} y$, so we have that $H=K_{\alpha}=G_{\alpha}$.
Take $k \in K-K_{\alpha}$. k preserves the orientation ρ but not the order α. So there exist $x, y \in M_{1}$ with $x>_{\alpha} y$ and $k x<_{\alpha} k y$. Take x of minimal level n satisfying this. So k preserves α on levels below n.
As k is a digraph isomorphism, it preserves the level of vertices, i.e. $\mathrm{l}(k v)=\mathrm{l}(v)$ for $v \in N_{1}$. If x, y are not in the same cone, then as $y<\alpha x$, either $\mathrm{l}(y)<\mathrm{l}(x)$, or $\mathrm{l}(y)=\mathrm{l}(x)$ and the descending chain
of successors of y is lexicographically before that of x. If $\mathrm{l}(y)<\mathrm{l}(x)$, then $\mathrm{l}(k y)<\mathrm{l}(k x)$, contradicting $k x<_{\alpha} k y$. If $\mathrm{l}(y)=\mathrm{l}(x)$ and the decreasing chain of successors of y is lexicographically before that of x, given that k preserves α on levels below n, the decreasing chain of successors of $k y$ must be lexicographically before that of $k x$, again contradicting $k x<_{\alpha} k y$.
So x, y lie in the same cone, and as k is a digraph isomorphism, $k x, k y$ also lie in the same cone. As k preserves α on levels below n, we have that $\operatorname{scl}(x), \operatorname{scl}(k x)$ are isomorphic as ordered digraphs, and similarly for $\operatorname{scl}(y), \operatorname{scl}(k y)$. So, as $y<_{\alpha} x$ and $k x<_{\alpha} k y$, there exists an ordered digraph automorphism $h \in H$ taking $\operatorname{scl}(y)$ to $\operatorname{scl}(k x)$ and $\operatorname{scl}(x)$ to $\operatorname{scl}(k y)$. We have that $h(y)=k x, h(x)=k y$, so $k^{-1} h(y)=x, k^{-1} h(x)=$ y, and thus $k^{-1} h$ does not preserve any linear order. Therefore, as h preserves β, k cannot preserve β, i.e. $k \notin K_{\beta}$.

Lemma $4.24\left(^{* *}\right)$. For $\beta \in \mathcal{L O}\left(M_{1}\right)$, if $G_{\alpha} \subseteq G_{\beta}$ then $G_{\alpha}=G_{\beta}$.

Proof. Seeking a contradiction, say there exists $g \in G_{\beta}-G_{\alpha}$. We have $K_{\alpha}=G_{\alpha}$ and $K_{\alpha} \subseteq K \cap G_{\beta}=K_{\beta}$, so $K_{\alpha}=K_{\beta}$ by Lemma 4.23. So $g \notin K$, i.e. there exist $x, y \in M_{1}$ such that $(x, y) \in \rho$ and $(g y, g x) \in \rho$.
We will eliminate this possibility case by case.
Case 1: In ρ, x has out-degree 2, with out-edges to y, z.
Consider the cone $Q_{\rho}(x)$ of x in the orientation ρ. As $\left(Q_{\rho}(x), \alpha\right)$ is order-isomorphic to \mathbb{Q}, there exist $v_{-5}, \cdots, v_{-1}, v_{1}, \cdots, v_{5}$ in $Q_{\alpha}(x)$ with $v_{-5}<\cdots<v_{-1}<x<v_{1}<\cdots<v_{5}$ in α. We have that ρ is a 2 -orientation, and so there exists some $-5 \leq i \leq-1$ such that $\left(g v_{i}, g y\right) \in \rho$ and $\left(g v_{i}, g z\right) \in \rho$, i.e. g does not reverse the orientation of the out-edges $\left(v_{i}, y\right),\left(v_{i}, z\right)$. Likewise there exists some $1 \leq j \leq 5$ with $\left(g v_{j}, g y\right) \in \rho,\left(g v_{j}, g z\right) \in \rho$.
So $g v_{i}, g v_{j}$ lie in the same cone, and so by homogeneity of $\left(N_{1}, \alpha\right)$ there exists $h \in H$ sending $\left(\operatorname{scl}\left(g v_{i}\right), \alpha\right)$ to $\left(\operatorname{scl}\left(g v_{j}\right), \alpha\right)$ with $h g v_{i}=g v_{j}$ and $\operatorname{scl}\left(g v_{i}\right)^{\circ}=\operatorname{scl}\left(g v_{j}\right)^{\circ}$ fixed. As $g y \in \operatorname{scl}\left(g v_{i}\right)^{\circ}$ and $(g y, g x) \in \rho$ by assumption, $h g x=g x$.
As β agrees with α or α^{\prime} on $Q_{\alpha}(x)$ by Lemma 4.16, we have $v_{i}<x<v_{j}$ or $v_{j}<x<v_{i}$ in β, and as $g \in G_{\beta}$, therefore we have $g v_{i}<g x<g v_{j}$ or $g v_{j}<g x<g v_{i}$ in β.
But $h \in G_{\beta}, h g x=g x$ and $h g v_{i}=g v_{j}$, so we obtain a contradiction.
Case 2: In ρ, x has out-degree 1 , with out-edge to y.
As $Q_{\alpha}(x)$ is order-isomorphic to \mathbb{Q}, there exist $v_{-3}, \cdots, v_{-1}, v_{1}, \cdots, v_{3}$ in $Q_{\alpha}(x)$ with $v_{-3}<\cdots<v_{-1}<x<v_{1}<\cdots<v_{3}$ in α. As ρ is a 2 -orientation, we have some $-3 \leq i \leq-1$ such that $\left(g v_{i}, g y\right) \in \rho$, and likewise we have some $1 \leq j \leq 3$ such that $\left(g v_{j}, g y\right) \in \rho$.

Take $u \in M_{1}$ with out-edge $\left(u, v_{i}\right) \in \rho$. If g reverses the orientation of $\left(u, v_{i}\right)$, i.e. $\left(g v_{i}, g u\right) \in \rho$, then $g v_{i}$ has out-degree 2. But Case 1 applied to $g^{-1} \in G_{\beta}-G_{\alpha}$ shows that g^{-1} preserves the orientation of out-edges of vertices of out-degree 2 , and so $\left(v_{i}, u\right) \in \rho$, contradiction. Thus g preserves the orientation of the in-edges of v_{i}, and likewise also of v_{j}. So $g v_{i}, g v_{j}$ have out-degree 1. Thus $g v_{i}, g v_{j}$ lie in the same cone, and the rest of the argument for Case 2 is the same as for Case 1.

4.6 An example of a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$

We now give an example of a minimal subflow of $\mathcal{L O}\left(M_{1}\right)$.
Let $\mathcal{A}_{1} \subseteq \mathcal{C}_{1}^{\prec}$ be the class of ordered graphs (A, γ) where $A \in \mathcal{C}_{1}$ and:
(1) γ induces an acyclic 2-orientation τ_{γ} on A;
(2) γ is admissible for $\left(A, \tau_{\gamma}\right)$.
\mathcal{A}_{1} is the reduct of \mathcal{E}_{1} to the language of ordered graphs. We will refer to an order γ satisfying (1), (2) as an admissible order on a graph.
(This section is essentially a straightforward translation of section 6.4 of $[7]$ from \mathcal{E}_{1} to \mathcal{A}_{1}, with some minor modifications.)
Note that if $\left(B, \gamma_{B}\right) \in \mathcal{A}_{1}$ and $A \leq_{1} B$, the restriction of γ_{B} to A may not be an admissible order. Consider the ordered graph $\left(B, \gamma_{B}\right)$ consisting of two disjoint edges $x_{0} x_{1}, y_{0} y_{1}$ where $x_{0}<y_{0}<x_{1}<y_{1}$. Then γ_{B} is admissible, so $\left(B, \gamma_{B}\right) \in \mathcal{A}_{1}$. Let $\left(A, \gamma_{A}\right)$ be the ordered subgraph of $\left(B, \gamma_{B}\right)$ with vertex set $\left\{x_{0}, x_{1}, y_{1}\right\}$. Then by reversing the orientation of $y_{1} y_{0} \in \tau_{\gamma_{B}}$ we see that $A \leq_{1} B$, but γ_{A} is not admissible: y_{1} is on level 0 of $\tau_{\gamma_{A}}, x_{1}$ is on level 1 of $\tau_{\gamma_{A}}$, but $x_{1}<y_{1}$ in γ_{A}.
As \mathcal{E}_{1} satisfies parts (1), (2) and (4) of reasonableness over $\left(\mathcal{C}_{1}, \leq_{1}\right)$, so does \mathcal{A}_{1}, but as we have just seen, \mathcal{A}_{1} does not satisfy (3). The same problem occurs with \mathcal{E}_{1}. So let \mathcal{E}_{1}^{\prime} be the class of ordered oriented graphs A^{+}such that $A^{+} \leq_{1} B^{+}$for some $B^{+} \in \mathcal{E}_{1}$, and let \mathcal{A}_{1}^{\prime} be the class of ordered graphs $\left(A, \gamma_{A}\right)$ such that $\left(A, \gamma_{A}\right) \leq_{1}\left(B, \gamma_{B}\right)$ for some $\left(B, \gamma_{B}\right) \in \mathcal{A}_{1}$. That is, \mathcal{E}_{1}^{\prime} and \mathcal{A}_{1}^{\prime} are the \leq_{1}-closures of $\mathcal{E}_{1}, \mathcal{A}_{1}$.

Lemma $4.25\left(^{*}\right) . \mathcal{E}_{1}^{\prime}$ is a reasonable class of expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
Proof. Parts (1), (2) of reasonableness for \mathcal{E}_{1}^{\prime} follow from the fact that \mathcal{E}_{1} satisfies (1) and (2), and (3) follows by the definition of \mathcal{E}_{1}^{\prime} as the \leq_{1} closure of \mathcal{E}_{1}. To check (4), take $f: A_{1} \rightarrow B$ a strong map of $\left(\mathcal{C}_{1}, \leq_{1}\right)$, and let $A_{1}^{+}=\left(A_{1}, \rho_{1}, \gamma_{1}\right) \in \mathcal{E}_{1}^{\prime}$ be an expansion of A_{1}. $\left(A_{1}, \rho_{1}, \gamma_{1}\right)$ is a \leq_{1}-substructure of some $\left(A_{2}, \rho_{2}, \gamma_{2}\right) \in \mathcal{E}_{1}$. Let D be the free amalgam of B and a copy C of A_{2} over $f\left(A_{1}\right)$ (where we take C with $f\left(A_{1}\right) \leq_{1} C$. Give C the orientation ρ_{C} and order γ_{C} induced from $\left(A_{2}, \rho_{2}, \gamma_{2}\right)$ (so $f: A_{1}^{+} \rightarrow\left(C, \rho_{C}, \gamma_{C}\right)$ is an ordered digraph embedding). As $C \leq_{1} D$, there is an expansion $\left(D, \rho_{D}\right) \in \mathcal{D}_{1}$ with $\left(C, \rho_{C}\right) \sqsubseteq_{s}\left(D, \rho_{D}\right)$. As \mathcal{E}_{1} is a

Figure 4.4
reasonable class of expansions of $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right)$, there is an admissible order γ_{D} on $\left(D, \rho_{D}\right)$ extending $\gamma_{C} . B \leq_{1} D$, so $\left(B, \gamma_{D}\right) \in \mathcal{E}_{1}^{\prime}$.
Lemma $4.26\left(^{*}\right)$. \mathcal{A}_{1}^{\prime} is a reasonable class of expansions of $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
The proof is analogous to that of the previous lemma.
Lemma 4.27. Take $C \in \mathcal{E}_{1}$ and $k \geq 0$. Then $C^{\downarrow k} \in \mathcal{E}_{1}$.
Proof. Straightforward.
Lemma 4.28. Let $A \in \mathcal{D}_{1}$. Then there exists $B \in \mathcal{D}_{1}, A \leq_{1} B$, such that for $C \in \mathcal{D}_{1}$, if $B \subseteq C$, then there exists $k \geq 0$ such that $A \sqsubseteq_{s} C^{\downarrow k}$.

Proof. Let r_{1}, \cdots, r_{n} be the vertices of A of out-degree 0 , and let s_{1}, \cdots, s_{m} be the vertices of A of out-degree 1 . Let $N=2 n+m$.
Let B consist of A together with new vertices $v_{i, j}(1 \leq i, j \leq N)$ and new out-edges:

- $r_{i} v_{1,2 i-1}, r_{i} v_{1,2 i}(1 \leq i \leq n)$;
- $s_{i} v_{1,2 n+i}(1 \leq i \leq m)$;
- $v_{i, j} v_{i+1, j}(1 \leq i<N, 1 \leq j \leq N)$;
- $v_{i, j} v_{i+1, j+1(\bmod N)}(1 \leq i<N, 1 \leq j \leq N)$.

See Figure 4.4 for an example.
To see that $A \leq_{1} B$, note that we may reorient B by reversing the orientation of all new out-edges not in A, forming an acyclic orientation in which A is successor-closed.
Now take $B \subseteq C \in \mathcal{D}_{1}$. Note that it is possible for the $v_{N, j}$ to be on different levels of C. However, we will show that the r_{i} all lie on the same level of C.

Take some particular $v_{N, b}, v_{1, c}$. Then any out-path from $v_{1, c}$ to $v_{N, b}$ must be of length $N-1$, as an out-edge from any new vertex $v_{i, j}$ goes to an out-vertex with i component increased by one.
There is an out-path from $v_{1, c}$ to $v_{N, b}$ of length $N-1$, namely:

- for $b<c: v_{1, c}, v_{2, c+1(\bmod N)}, \cdots, v_{1+(N-c)+b, b}, \cdots, v_{N, b}$;
- for $b \geq c: v_{1, c}, \cdots, v_{1+(b-c), b}, \cdots, v_{N, b}$.
(Informally, in these specified paths, we move diagonally first.)
Thus all the $v_{1, j}$ lie on the same level l of C, where $l=\max \left\{l_{C}\left(v_{N, j}\right)\right.$: $1 \leq j \leq N\}+N-1$. Let $k=l+1$. Then all the r_{i} lie on level k, and each s_{a} is of level $>k$, with one successor in A and one successor being one of the $v_{1, j}$ on level $k-1$. Each vertex of A of out-degree 2 is of level $>k$ and its successors lie in A and are of level $\geq k$. So $A \sqsubseteq_{s} C^{\downarrow k}$.
Proposition 4.29. \mathcal{E}_{1}^{\prime} has the expansion property over $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
Proof. Take $\left(A^{\prime}, \gamma_{A^{\prime}}\right) \in \mathcal{E}_{1}^{\prime}$. There is $\left(A, \gamma_{A}\right) \in \mathcal{E}_{1}$ with $\left(A^{\prime}, \gamma_{A^{\prime}}\right) \leq_{1}$ $\left(A, \gamma_{A}\right)$. We will find $B \in \mathcal{C}_{1}$ such that for any expansion $\left(B^{+}, \gamma\right) \in \mathcal{E}_{1}^{\prime}$ (where $\left.B^{+} \in \mathcal{D}_{1}\right),\left(B^{+}, \gamma\right)$ contains a \leq_{1}-copy of $\left(A, \gamma_{A}\right)$, and therefore of $\left(A^{\prime}, \gamma_{A^{\prime}}\right)$. We do this in three steps.
(1) By Proposition $4.10, \mathcal{E}_{1}$ has the expansion property over $\left(\mathcal{D}_{1}, \sqsubseteq_{s}\right.$), so take $X \in \mathcal{D}_{1}$ such that every expansion to \mathcal{E}_{1} contains a \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$.
(2) Then, using Lemma 4.28, take $Y \in \mathcal{D}_{1}$ with $X \leq_{1} Y$ such that for any $C \in \mathcal{D}_{1}$ with $f: Y \rightarrow C$ an embedding (not necessarily strong), there exists $k \geq 0$ with $f(X) \sqsubseteq_{s} C^{\downarrow k}$.
(3) Finally, as \mathcal{D}_{1} has the expansion property over $\left(\mathcal{C}_{1}, \leq_{1}\right)$ by Proposition 4.1, take $B \in \mathcal{C}_{1}$ such that any expansion to \mathcal{D}_{1} contains a \leq_{1}-copy of Y.
We now show that B witnesses the expansion property for $\left(A, \gamma_{A}\right)$ of \mathcal{E}_{1}^{\prime} over $\left(\mathcal{C}_{1}, \leq_{1}\right)$. Let $\left(B, \rho_{B}, \gamma_{B}\right) \in \mathcal{E}_{1}^{\prime}$ be an expansion of B. There is $\left(C, \rho_{C}, \gamma_{C}\right) \in \mathcal{E}_{1}$ with $\left(B, \rho_{B}, \gamma_{B}\right) \leq_{1}\left(C, \rho_{C}, \gamma_{C}\right)$. By (3), there is a \leq_{1}-embedding $f: Y \rightarrow\left(B, \rho_{B}\right)$, and we may regard f as a $\leq_{1^{-}}$ embedding into $\left(C, \rho_{C}\right)$. By (2), there is $k \geq 0$ such that $f(X) \sqsubseteq_{s}$ $\left(C, \rho_{C}\right)^{\downarrow k}$. We have that $\left(f(X), \gamma_{B}\right)=\left(f(X), \gamma_{C}\right) \sqsubseteq_{s}\left(C, \rho_{C}, \gamma_{C}\right)^{\downarrow k}$, so as $\left(C, \rho_{C}, \gamma_{C}\right) \in \mathcal{E}_{1}$, by Lemma 4.27 we have that $\left(C, \rho_{C}, \gamma_{C}\right)^{\downarrow k} \in \mathcal{E}_{1}$, so $\left(f(X), \gamma_{B}\right) \in \mathcal{E}_{1}$. So by $(1),\left(f(X), \gamma_{B}\right)$ contains a \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$, and as $\left(f(X), \gamma_{B}\right) \leq_{1}\left(B, \gamma_{B}\right), B$ witnesses the expansion property for $\left(A, \gamma_{A}\right)$.

Proposition $4.30\left(^{*}\right)$. \mathcal{A}_{1}^{\prime} has the expansion property over $\left(\mathcal{C}_{1}, \leq_{1}\right)$.
Proof. Take $\left(A^{\prime}, \gamma_{A^{\prime}}\right) \in \mathcal{A}_{1}^{\prime}$. Then there is $\left(A, \gamma_{A}\right) \in \mathcal{A}_{1}$ such that $\left(A^{\prime}, \gamma_{A^{\prime}}\right) \leq_{1}\left(A, \gamma_{A}\right)$. Let ρ_{A} be the acyclic 2-orientation induced on A by γ_{A}, so $\left(A, \rho_{A}, \gamma_{A}\right) \in \mathcal{E}_{1}$. By Proposition 4.29 , take $B \in \mathcal{C}_{1}$ such that any expansion $\left(B, \rho_{B}, \gamma_{B}\right) \in \mathcal{E}_{1}^{\prime}$ contains a \leq_{1}-copy of $\left(A, \rho_{A}, \gamma_{A}\right)$.

Let $\left(B, \gamma_{B}\right) \in \mathcal{A}_{1}^{\prime}$ be an expansion of B. Then $\left(B, \gamma_{B}\right) \leq_{1}\left(C, \gamma_{C}\right)$ for some $\left(C, \gamma_{C}\right) \in \mathcal{A}_{1}$. Let ρ_{C} be the acyclic 2-orientation induced on C by γ_{C}, so $\left(C, \rho_{C}, \gamma_{C}\right) \in \mathcal{E}_{1}$. Let $\rho_{B}=\left.\rho_{C}\right|_{B}$. Then $\left(B, \rho_{B}, \gamma_{B}\right) \leq_{1}$ $\left(C, \rho_{C}, \gamma_{C}\right)$, so $\left(B, \rho_{B}, \gamma_{B}\right) \in \mathcal{E}_{1}^{\prime}$, and so $\left(B, \rho_{B}, \gamma_{B}\right)$ contains a \leq_{1}-copy of $\left(A, \rho_{A}, \gamma_{A}\right)$.

Chapter 5

Linear orders and orientations on M_{0}

In this chapter, we attempt to carry out the same analysis for M_{0} as we did for M_{1} in the previous chapter. As before, we describe a Ramsey expansion ($\mathcal{E}_{\mathrm{fin}}, \sqsubseteq_{s}$) of $\left(\mathcal{C}_{0}, \leq_{s}\right)$, the class of admissibly ordered fine orientations of \mathcal{C}_{0}. We write $\left(N_{\mathcal{E}}, \alpha\right)$ for the Fraïssé limit and $H_{\mathcal{E}}=\operatorname{Aut}\left(N_{\mathcal{E}}, \alpha\right)$, where α is the linear order and $N_{\mathcal{E}}$ is the oriented graph of the Fraïssé limit. We then have that $H_{\mathcal{E}}$ is extremely amenable, so, as in Chapter 4, any minimal subflow $Y \subseteq \mathcal{L O}\left(M_{0}\right)$ of the G_{0}-flow $\mathcal{L O}\left(M_{0}\right)$ is the G_{0}-orbit closure of a $H_{\mathcal{E}}$-fixed point β.
The author has not been able to prove that any minimal subflow of $\mathcal{L O}\left(M_{0}\right)$ has all orbits meagre, due to a difficulty elaborated in Section 5.4: when we try to prove an analogue of Theorem 4.18, and want to find information about β using $H_{\mathcal{E}}$-automorphisms (i.e. information about α), we do not know anything about β inside strongly connected components (the details here are somewhat technical). However, we do manage to prove the equivalent result on stabilisers: we show that the G_{0}-stabiliser of β in the G_{0}-flow $\mathcal{L O}\left(M_{0}\right)$ is $H_{\mathcal{E}}$, the G_{0}-stabiliser of α, and this at least gives us some information about β.

5.1 $\mathcal{L O}\left(M_{0}\right)$ is not minimal

As in the previous chapter, we first check that $\mathcal{L O}\left(M_{0}\right)$ is not itself a minimal flow.

Lemma 5.1 ([10], Lem. 1.14). Let $A, B \in \mathcal{C}_{0}$ with $A \leq_{s} B$. Then there is an acyclic 4-orientation of B in which A is successor-closed.

Proof. Take $\varnothing \neq C \subseteq A$. The average vertex degree of C is $\frac{2|E(C)|}{|C|}$, which is ≤ 4 as $\delta(C)=2|C|-|E(C)| \geq 0$. So C has a vertex of degree ≤ 4, and so by Lemma 1.10, A has an acyclic 4 -orientation τ_{A}.
Take $A \subseteq C \subseteq B$. We'll show by induction on $|C|$ that C has an acyclic 4-orientation extending τ_{A} in which A is successor-closed. $|C|=|A|$ is trivial. We now do the inductive step. The average degree in C of $C-A$ is

$$
\frac{2|E(C)|-2|E(A)|-|E(C-A, A)|}{|C-A|} \leq \frac{2|E(C)|-2|E(A)|}{|C-A|} \leq 4
$$

(where to show the rightmost inequality we recall that $\delta(C) \geq \delta(A)$). So there exists $c \in C-A$ with degree ≤ 4 in C. By the induction assumption we may give $C-\{c\}$ an acyclic 4-orientation extending τ_{A} in which A is successor-closed. Then we orient the edges of c outwards from c.

Proposition $5.2\left({ }^{(* *}\right) . \mathcal{L O}\left(M_{0}\right)$ is not a minimal flow.
Proof. Let \mathcal{Q}_{0} denote the class of ordered graphs (A, γ) where $A \in \mathcal{C}_{0}$ and the linear order γ induces an acyclic 4-orientation on A, i.e. $\tau_{\gamma}=$ $\left\{(x, y) \in E_{A}: x>_{\gamma} y\right\}$ is an acyclic 4-orientation.
The proof that \mathcal{Q}_{0} is a reasonable class of expansions of $\left(\mathcal{C}_{0}, \leq_{s}\right)$ is entirely analogous to the proof of Proposition 4.2, replacing acyclic 2 -orientations with acyclic 4 -orientations and using Lemma 5.1.
We therefore have that $X\left(\mathcal{Q}_{0}\right)$ is a subflow of $\mathcal{L O}\left(M_{0}\right)$. To see that it is a proper subflow, we produce a linear order on M_{0} which does not induce an acyclic 4 -orientation. $\left(\mathcal{C}_{0}^{\alpha}, \leq_{s}\right)$ is an amalgamation class and a strong expansion of $\left(\mathcal{C}_{0}, \leq_{s}\right)$, so let γ be the linear order of the Fraïssé limit $\left(M_{0}, \gamma\right)$. By genericity, there exists a graph $A \leq_{s} M_{0}$ consisting of vertices a, b_{1}, \cdots, b_{5} and edges $a b_{i}$ with $a>_{\gamma} b_{i}(1 \leq i \leq 5)$, so γ does not induce a 4 -orientation.

5.2 Admissibly ordered fine orientations: constructing a Ramsey expansion of \mathcal{C}_{0}

We will now construct a Ramsey expansion $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$ of $\left(\mathcal{C}_{0}, \leq_{s}\right)$. The material in this section is a modified and elaborated version of Section 7 of [6], an unpublished early version of the paper [8]. We can also view this Ramsey expansion construction as a particular case of the more general treatment of admissible orders seen in Section 3 of [9]. (In fact, the material from Section 7 of the unpublished paper [6] was removed before the final published version in [8], in order to be generalised and published in [9] instead).
However, here we keep our presentation self-contained. We use the standalone Ramsey result of Theorem 1.57.
(The new material in this section is a characterisation of fine extensions in terms of predimension, and a new definition of similarity. The new definition of similarity requires a straightforward modification of the construction of the Ramsey expansion.)
Throughout this section, we will use the notation and terminology of Definition 1.2: we refer the reader to this for the definition of scl (successor-closure), scc (strongly connected component) and $\mathrm{N}_{+}(A)$ (the out-neighbourhood of A).

5.2.1 Out-degree-preserving graph isomorphisms

In order to construct a Ramsey expansion of $\left(\mathcal{C}_{0}, \leq_{s}\right)$, we will need to know which graph isomorphisms preserve the "scc structure" of elements of \mathcal{D}_{0}. The following is folklore:

Lemma 5.3 (Lem. 7.11, [6]). Take $A \in \mathcal{C}_{0}$, and let $A_{1}, A_{2} \in \mathcal{D}_{0}$ be two orientations of A such that the out-degree of each vertex is the same in each orientation. Then A_{1}, A_{2} have the same successor-closed subsets, sccs and orientation of edges between sccs.

Proof. $C \subseteq A$ is successor-closed in an orientation iff the number of edges of C is equal to the sum of the out-degrees in A of the vertices of C in that orientation. Thus A_{1}, A_{2} have the same successor-closed subsets.
For $C, D \subseteq A$, if $C \sqsubseteq_{s} D \sqsubseteq_{s} A^{\prime}$ in some orientation A^{\prime} of A and there does not exist $E \subseteq A, E \neq C, D$ with $C \sqsubseteq_{s} E \sqsubseteq_{s} D$, we will say that $C \sqsubseteq_{s} D$ is an unrefinable \sqsubseteq_{s}-chain of A^{\prime}. So A_{1}, A_{2} have the same unrefinable \sqsubseteq_{s}-chains.
We will show by induction on n that:

- $C \subseteq A$ is a scc of A_{1} of level n iff it is a scc of A_{2} of level n;
- if $C \subseteq A$ is a scc of A_{1} or A_{2} of level n, the out-edges from C are the same in either orientation.

For the base case $n=0$, observe that $C \subseteq A$ is a level 0 scc of A_{i} iff $C \sqsubseteq_{s} A_{i}$ and $\varnothing \sqsubseteq_{s} C$ is an unrefinable \sqsubseteq_{s}-chain of A_{i}. Assume the induction claim for levels $<n$, and let C be a scc of A_{1} of level n. Let $X=\operatorname{scl}_{A_{1}}(C)-C$. Then $X \sqsubseteq_{s} A_{1}$, so $X \sqsubseteq_{s} A_{2}$. So if (c, x) is an out-edge from C to X in A_{1}, then (c, x) is an out-edge in A_{2}. By the induction assumption, as X has level $n-1$ in A_{1}, X has the same sccs and orientation of edges between them in A_{1} and A_{2}. So C has level $\geq n$ in $A_{2} . X \sqsubseteq_{s} \operatorname{scl}_{A_{1}}(C)$ is unrefinable in A_{1}, and thus in A_{2}, and so C is a scc of level n in A_{2}. The reverse direction is identical, swapping A_{1} and A_{2}.

Lemma $5.4\left(^{*}\right)$. Take $A \in \mathcal{C}_{0}$ with $\delta(A)=0$. Then any orientation of A has the same successor-closed subsets, sccs and orientation of edges between sccs.

Proof. As $\delta(A)$ is the sum of the multiplicities of the roots in any orientation (Lemma 1.14), A has no roots in any orientation, i.e. every vertex is of out-degree two. Then use Lemma 5.3.

5.2.2 Fine orientations

Definition 5.5 (Def. 7.6, [6]). Take $A \in \mathcal{D}_{0} . A$ is an extension if it has a unique scc C of maximum level and $A=\operatorname{scl}_{A}(C)$.

Figure 5.1. The extension A is fine. The extension B is not fine.

If A is an extension, we denote its unique scc of maximum level by $\operatorname{hd}(A)$ (the head scc). We define the base A° of A to be $A^{\circ}=A-\operatorname{hd}(A)$. Note that $A^{\circ} \sqsubseteq_{s} A$.

It is straightforward to see that any element of \mathcal{D}_{0} can be built via a sequence of free amalgamations of extensions over successor-closed substructures (formally, we proceed by induction on the number of sccs). If required, we can also carry out the sequence of free amalgamations in order of increasing level.
Our Ramsey expansion will orient elements of \mathcal{C}_{0} in a particular way: we will work with fine orientations, which we now define.
Definition 5.6. Let $A \in \mathcal{D}_{0}$ be an extension. A is a fine extension if, in any 2-reorientation A^{\prime} of A with $A^{\circ} \sqsubseteq_{s} A^{\prime}$, we have that $A^{\prime}-A^{\circ}$ is strongly connected.
If A is a fine extension, we will also say that the head scc $\operatorname{hd}(A)$ of the extension is fine.
Lemma 5.7 $\left(^{*}\right)$. Let $A \in \mathcal{D}_{0}$ be an extension. A is fine iff $A^{\circ} \leq_{s} A$ is an unrefinable \leq_{s}-chain.

Proof. \Rightarrow : If $A^{\circ} \leq_{s} B \leq_{s} A$, then there exists an orientation A^{\prime} of A such that $B \sqsubseteq_{s} A^{\prime}$ (where B has the induced orientation from A^{\prime}), and there exists an orientation B^{+}of B such that $A^{\circ} \sqsubseteq_{s} B^{+}$. Reorient $B \sqsubseteq_{s} A^{\prime}$ with the orientation from B^{+}, and call the resulting orientation $A^{\prime \prime}$. Then $A^{\circ} \sqsubseteq_{s} B \sqsubseteq_{s} A^{\prime \prime}$, so by fineness $B=A^{\circ}$ or $B=A$. \Leftarrow : Let A^{\prime} be a reorientation of A with $A^{\circ} \sqsubseteq_{s} A^{\prime}$. If $A^{\prime}-A^{\circ}$ is not strongly connected, there exists $y \in A^{\prime}-A^{\circ}$ with $\operatorname{scl}_{A^{\prime}}(y) \neq A^{\prime}$. Then $\operatorname{scl}_{A^{\prime}}(y) \cup A^{\circ}$ refines $A^{\circ} \leq_{s} A$, contradiction.
Definition 5.8. Take $B \in \mathcal{D}_{0}$. We say that B is a fine orientation if, for every extension A with $A \sqsubseteq_{s} B, A$ is fine.
We let $\mathcal{D}_{\mathrm{fin}}$ denote the class of fine orientations.
Lemma $5.9\left(^{*}\right)$. Take $A, B \in \mathcal{C}_{0}$ with $A \neq B$ and $A \leq_{s} B$ unrefinable. Suppose there is an expansion $A^{+} \in \mathcal{D}_{\text {fin }}$ of A. Then there exists an
expansion $B^{+} \in \mathcal{D}_{\text {fin }}$ of B with $A^{+} \sqsubseteq_{s} B^{+}$, and B^{+}consists of the free amalgamation of A^{+}and a fine extension D over D°, where $D^{\circ} \sqsubseteq_{s} A^{+}$.

Proof. Let $B^{+} \in \mathcal{D}_{0}$ be an expansion of B with $A^{+} \sqsubseteq_{s} B^{+}$. As $A \neq B, B^{+}$has some scc C disjoint from A^{+}. As $A \leq_{s} B$ is unrefinable, we have that C is the only scc of B^{+}not contained in A^{+}. Let $D=$ $\operatorname{scl}_{B^{+}}(C)$. Then $D^{\circ} \sqsubseteq_{s} A^{+}$, and as $A \leq_{s} B$ is unrefinable, $D^{\circ} \leq_{s} D$ must be unrefinable, so D is fine. B^{+}is the free amalgamation over D° of D and A^{+}, and so as ($\mathcal{D}_{\mathrm{fin}}, \sqsubseteq_{s}$) is a free amalgamation class, $B^{+} \in \mathcal{D}_{\text {fin }}$.
Lemma $5.10\left(^{*}\right) .\left(\mathcal{D}_{f i n}, \sqsubseteq_{s}\right)$ is a strong expansion of $\left(\mathcal{C}_{0}, \leq_{s}\right)$.
Proof. We have to show that for $A \leq_{s} B \in \mathcal{C}_{0}$, if $A^{+} \in \mathcal{D}_{\mathrm{fin}}$ is an expansion of A, then there exists an expansion $B^{+} \in \mathcal{D}_{\mathrm{fin}}$ of B with $A^{+} \sqsubseteq_{s} B^{+}$.
It suffices to show that for $A^{+} \in \mathcal{D}_{\text {fin }}$ with a sccs, then for $A^{+} \sqsubseteq_{s} B^{\prime} \in$ \mathcal{D}_{0} with $n \geq a$ sccs, there exists a reorientation $B^{+} \in \mathcal{D}_{\text {fin }}$ of B^{\prime} such that $A^{+} \sqsubseteq_{s} B^{+}$.
We use induction on $n \geq a$. The base case is trivial. For the induction step, take C to be a scc of $B^{\prime}-A^{+}$of maximum level. Let $D=B-C$, and let D^{\prime} denote the orientation induced on D by B^{\prime}. We have that $D^{\prime} \sqsubseteq_{s} D^{\prime} \cup C=B^{\prime} . A^{+} \sqsubseteq_{s} D^{\prime}$, so by the induction assumption we may reorient D^{\prime} to $D^{+} \in \mathcal{D}_{\mathrm{fin}}$ such that $A^{+} \sqsubseteq_{s} D^{+}$. Let $B^{\prime \prime}$ be the reorientation of B^{\prime} obtained by replacing D^{\prime} with D^{+}. So $D^{+} \sqsubseteq_{s}$ $D^{+} \cup C=B^{\prime \prime}$. We may refine $D \leq_{s} B$ to an unrefinable \leq_{s}-chain $D=D_{0} \leq_{s} \cdots \leq_{s} D_{k}=B$. By Lemma 5.9 applied to $D_{0} \leq_{s} D_{1}$ with the expansion D^{+}, we obtain an expansion $D_{1}^{+} \in \mathcal{D}_{\text {fin }}$ of D_{1} with $A^{+} \sqsubseteq_{s} D^{+} \sqsubseteq_{s} D_{1}^{+}$. Assuming the expansion D_{i}^{+}has already been defined, we likewise apply Lemma 5.9 up the chain on $D_{i} \leq_{s} D_{i+1}$ to obtain an expansion D_{i+1}^{+}, and thus by induction we obtain the reorientation B^{+}required.

We now partially characterise fine extensions in terms of predimension.
Lemma $5.11\left(^{* *}\right)$. Let $A \in \mathcal{D}_{0}$ be an extension. Then:
(1) if $\mathrm{l}(A)>0$, then A is fine iff $\left|A-A^{\circ}\right|=1$ or $\delta(A)=\delta\left(A^{\circ}\right)$;
(2) if $\mathrm{l}(A)=0$ and A is fine, then $|A|=1$ or $\delta(A) \leq 1$;
(3) if $\mathrm{l}(A)=0$, then if $|A|=1$ or $\delta(A)=0$ then A is fine.
(See Example 5.12.)
Proof. (1): \Rightarrow : Let $C=\operatorname{hd}(A)$. If C has no roots of A, then by $\delta(A)=\delta\left(A^{\circ}\right)$ (here we use Lemma 1.14). Otherwise, let $r \in C$ be a root of $A . r$ must have out-degree 1. If the out-vertex of r lies in A°, then as C is a scc, $|C|=1$. Seeking a contradiction, if the out-vertex of r does not lie in A°, then there must exist $x \in C, x \neq r$, with an
out-edge into A°, and as C is strongly connected, there is an out-path from x to r (so x is of out-degree 2). Reverse the orientation of the out-edges of this out-path, giving another 2 -orientation as r is a root. In this new orientation, there is no out-path from x to r, and so C is no longer strongly connected, contradicting fineness.
$\Leftarrow:$ If $\left|A-A^{\circ}\right|=1$ then it is trivial that A is fine. Suppose $\delta(A)=\delta\left(A^{\circ}\right)$ and $\left|A-A^{\circ}\right|>1$. Take $A^{\circ} \subsetneq B \subsetneq A$. Let C be the head scc of A. Then B must have a vertex v with an out-edge to a vertex of $C-B$, as C is strongly connected, and so v is a root of B (considering outdegrees only within B). Therefore $\delta(B)>\delta\left(A^{\circ}\right)$, and so we cannot have $A^{\circ} \leq_{s} B \leq_{s} A$.
(2): If A contains two roots r_{1}, r_{2}, then the orientation obtained by reversing the out-path from r_{1} to r_{2} is not strongly connected, contradiction. So A has at most one root. If $|A|>1$, then if there is a root r of A, as A is strongly connected r must have an out-edge, so $\delta(A)=1$. (3): The argument is the same as for the right-to-left direction of (1).

Example $5.12\left({ }^{* *}\right)$.
(1) For an example of a level 0 fine extension A with $\delta(A)=0$, let A be any orientation of a K_{5}. It is straightforward to check that any orientation of K_{5} is strongly connected.
(2) For an example of a level 0 fine extension A with $\delta(A)=1$, take any orientation of a K_{5} with one edge deleted. (It is straightforward case-checking to see that any orientation is strongly connected. For case-checking, it is convenient to begin by categorising the orientations into those that have the root at a vertex of the deleted edge, and those that do not.)
(3) We give an example of a level 0 extension A with $\delta(A)=1$ which is not fine. Let B be an orientation of a K_{5} with an edge removed. Let r be the root vertex of B, and let b be a non-root vertex of B. Let A be the oriented graph B together with a new vertex a with out-edges $r a, a b$. Then A is strongly connected and $\delta(A)=1$. By reversing the orientation of the out-edge $r a$, making $\{a\}$ a scc, we may refine A, so A is not fine.

5.2.3 Admissibly ordered fine orientations

Definition 5.13. Take $A \in \mathcal{D}_{\text {fin }}^{\prec}$. Let S be an ordered scc of A. The cone of S, denoted $Q_{A}(S)$, is the set consisting of the ordered sccs S^{\prime} of A for which:
(1) $\operatorname{scl}_{A}(S)^{\circ}=\operatorname{scl}_{A}\left(S^{\prime}\right)^{\circ} ;$
(2) there exists an ordered digraph isomorphism $f_{S^{\prime}}: \operatorname{scl}(S) \rightarrow$ $\operatorname{scl}\left(S^{\prime}\right)$ fixing $\operatorname{scl}(S)^{\circ}=\operatorname{scl}\left(S^{\prime}\right)^{\circ}$ and sending S to S^{\prime}.

Note that by the rigidity of finite linearly ordered sets, $f_{S^{\prime}}$ is unique. Take a vertex $x \in A$, and let $S=\operatorname{scc}_{A}(x)$. The cone of x is $Q_{A}(x):=$ $\left\{f_{S^{\prime}}(x): S^{\prime} \in Q_{A}(S)\right\}$.
Definition $5.14\left({ }^{* *}\right)$. Let $A, B \in \mathcal{D}_{\text {fin }}^{\prec}$ be ordered extensions. A, B are similar if one of the following holds:
(1) $\mathrm{l}(A), \mathrm{l}(B)>0$ and there exists an out-degree-preserving graph isomorphism $A \rightarrow B$ which is also an ordered digraph isomorphism $A^{\circ} \rightarrow B^{\circ}$;
(2) $\mathrm{l}(A)=\mathrm{l}(B)=0$ and there exists a graph isomorphism $A \rightarrow B$.

Our class of admissibly ordered fine orientations will only contain one element (up to ordered digraph isomorphism) of each similarity class of fine ordered extensions.

Definition 5.15 (adapted from Lem. 7.9, [6]). We fix an arbitrary linear order \unlhd between isotypes of ordered extensions in \mathcal{D}_{0}^{\prec}.
Let $\left(C, \gamma_{C}\right) \in \mathcal{D}_{\text {fin }}^{\prec}$ be of level k and such that each scc of C is an interval in γ_{C}. We will define a preorder λ_{C}, which we call the level-lex preorder, on the set of level k sccs of C. This preorder λ_{C} will depend on \unlhd (which is arbitrary, fixed and will not change throughout this section) and γ_{C}.
Let C_{1}, C_{2} be sccs of C of level k. Let $C_{i}^{l}=\left(\operatorname{scl}_{C}\left(C_{i}\right)\right)^{\downarrow l}(i=1,2$, $0 \leq l \leq k)$. For $0 \leq l \leq k$, we define preorders \unlhd_{l}, \preceq_{l} :

- $C_{1} \unlhd_{l} C_{2}$ if isotype $\left(C_{1}^{l}, \gamma_{C}\right) \unlhd$ isotype $\left(C_{2}^{l}, \gamma_{C}\right)$;
- $C_{1} \preceq_{l} C_{2}$ if the decreasing chain of successor sces of C_{1}^{l} ordered by γ_{C} is lexicographically before the decreasing chain of successor sccs of C_{2}^{l} ordered by γ_{C}.
We define the level-lex preorder λ_{C} to be the lexicographic preorder $\left(\unlhd_{k}, \preceq_{k-1}, \unlhd_{k-1}, \cdots, \preceq_{0}, \unlhd_{0}\right)$.
If C_{1}, C_{2} are equivalent in λ_{C}, then we write $C_{1} \sim_{\lambda_{C}} C_{2}$.
Lemma 5.16. Let $\left(C, \gamma_{C}\right) \in \mathcal{D}_{f i n}^{\prec}$ be of level k and such that each scc of C is an interval. Let C_{1}, C_{2} be sccs of C of level k. Then $C_{1} \sim_{\lambda_{C}} C_{2}$ iff $\left(C_{1}, \gamma_{C}\right),\left(C_{2}, \gamma_{C}\right)$ lie in the same cone of $\left(C, \gamma_{C}\right)$.

Proof. $\Rightarrow: C_{1} \sim_{\lambda_{C}} C_{2}$ implies that $C_{1} \preceq_{0} C_{2}, C_{2} \preceq_{0} C_{1}$, so C_{1}, C_{2} have the same successors, i.e. $\operatorname{scl}\left(C_{1}\right)^{\circ}=\operatorname{scl}\left(C_{2}\right)^{\circ}$. As $C_{1} \unlhd_{0} C_{2}, C_{2} \unlhd_{0} C_{1}$, we have that $\left(\operatorname{scl}\left(C_{1}\right), \gamma_{C}\right),\left(\operatorname{scl}\left(C_{2}\right), \gamma_{C}\right)$ have the same ordered digraph isomorphism type, i.e. there exists an ordered digraph isomorphism $f:\left(\operatorname{scl}\left(C_{1}\right), \gamma_{C}\right) \rightarrow\left(\operatorname{scl}\left(C_{2}\right), \gamma_{C}\right)$. As f preserves levels, $f\left(\operatorname{scl}\left(C_{1}\right)^{\circ}\right)=$ $\operatorname{scl}\left(C_{2}\right)^{\circ}$, and so as f preserves a linear order on a finite set, $\left.f\right|_{\operatorname{scl}\left(C_{1}\right)^{\circ}}$ is the identity. So f is an ordered digraph isomorphism taking $\operatorname{scl}\left(C_{1}\right)$ to
$\operatorname{scl}\left(C_{2}\right)$ which is the identity on $\operatorname{scl}\left(C_{1}\right)^{\circ}=\operatorname{scl}\left(C_{2}\right)^{\circ}$, so $\left(C_{1}, \gamma_{C}\right),\left(C_{2}, \gamma_{C}\right)$ are in the same cone. The \Leftarrow direction is clear.

Definition 5.17 (* - adapted and modified from Lem. 7.9 of [6]). Let $\mathcal{E}_{\text {fin }} \subseteq \mathcal{D}_{\text {fin }}{ }^{\prec}$. We will say that $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$ is a class of admissibly ordered fine orientations of $\left(\mathcal{C}_{0}, \leq_{s}\right)$ if the following hold:
(1) \mathcal{C}_{0} is the class of graph reducts of $\mathcal{E}_{\text {fin }}$;
(2) if $A \leq_{s} B$ in \mathcal{C}_{0} and $A^{+} \in \mathcal{E}_{\text {fin }}$ is an expansion of A, then there exists an expansion $B^{+} \in \mathcal{E}_{\text {fin }}$ of B with $A^{+} \sqsubseteq_{s} B^{+}$;
(3) if $B \in \mathcal{E}_{\text {fin }}$ and $A \in \mathcal{D}_{\text {fin }}^{\prec}$ with $A \sqsubseteq_{s} B$, then $A \in \mathcal{E}_{\text {fin }}$;
(4) if $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right) \in \mathcal{E}_{\text {fin }}$, and $\left(A, \gamma_{A}\right) \in \mathcal{E}_{\text {fin }}$ with $\left(A, \gamma_{A}\right) \sqsubseteq_{s}$ $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$, then:
(a) there exists $(C, \gamma) \in \mathcal{E}_{\text {fin }}$ with C the free amalgam of B_{1}, B_{2} over A and γ extending γ_{1}, γ_{2};
(b) if B_{1} is an extension with $A=B_{1}^{\circ}$ and $\mathrm{l}\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$, then (C, γ) is unique up to isomorphism;
(5) for ordered extensions $A, B \in \mathcal{E}_{\text {fin }}$, if A, B are similar then A, B are isomorphic as ordered digraphs (the isomorphism need not be the same as the similarity isomorphism);
(6) for $\left(A, \gamma_{A}\right) \in \mathcal{E}_{\text {fin }}$, sccs form intervals in γ_{A}, and
(a) if C_{1}, C_{2} are sccs of A with $\mathrm{l}\left(C_{1}\right)<\mathrm{l}\left(C_{2}\right)$, then $C_{1}<C_{2}$ in γ_{A};
(b) the linear order γ_{A} between sccs of the same level extends the level-lex preorder λ_{A};
(7) if $\left(A, \gamma_{A}\right) \in \mathcal{E}_{\text {fin }}$ and $\left(B, \gamma_{B}\right) \in \mathcal{D}_{\text {fin }}^{\prec}$ is such that every vertex of $\left(B, \gamma_{B}\right)$ lies in a \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$, then there exists a linear order γ on B with $(B, \gamma) \in \mathcal{E}_{\text {fin }}$ such that γ agrees with γ_{B} on every \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$.

Proposition 5.18 (* - modified from Lem. 7.9 of [6]). There exists a class $\left(\mathcal{E}_{f i n}, \sqsubseteq_{s}\right)$ of admissibly ordered fine orientations of $\left(\mathcal{C}_{0}, \leq_{s}\right)$.

Proof. We define inductively a family \mathcal{X}_{k} of ordered fine extensions of level k, which we use to build a family \mathcal{Y}_{k} of ordered oriented graphs of level k, again defined inductively. We will then take $\mathcal{E}_{\text {fin }}=\bigcup_{k \geq 0} \mathcal{Y}_{k}$. To define \mathcal{X}_{0}, take a single element of each similarity class of ordered extensions of level 0 , and close under ordered digraph isotypes. Let \mathcal{Y}_{0} consist of $\left(C, \gamma_{C}\right)$ where $\left(C, \gamma_{C}\right)$ is a disjoint union of ordered extensions in \mathcal{X}_{0}, with γ_{C} completed to a linear order where:
$(\operatorname{Str} 0)$ every scc of C is an interval in γ_{C}, and γ_{C} extends the level-lex preorder λ_{C}.
(In this particular case, λ_{C} is just \unlhd.)
Suppose $\mathcal{X}_{i}, \mathcal{Y}_{i}$ have already been defined for $i<k$.
Let \mathcal{X}_{k}^{\prime} consist of ordered extensions $\left(A, \gamma_{A}\right) \in \mathcal{D}_{\text {fin }}^{\prec}$ of level k such that $\left(A^{\circ}, \gamma_{A}\right) \in \mathcal{Y}_{k-1}$ and $\operatorname{hd}(A)>A^{\circ}$ in γ_{A}. Define \mathcal{X}_{k} by taking one
element of each similarity class of \mathcal{X}_{k}^{\prime}, closing under ordered digraph isotypes. So \mathcal{X}_{k} satisfies:
(Ext1) \mathcal{X}_{k} contains ≤ 1 element from each similarity class of level k extensions of $\mathcal{D}_{\text {fin }}^{\prec}$;
(Ext2) for $\left(A, \gamma_{A}\right) \in \mathcal{X}_{k},\left(A^{\circ}, \gamma_{A}\right) \in \mathcal{Y}_{k-1}$;
(Ext3) for $\left(A, \gamma_{A}\right) \in \mathcal{D}_{\text {fin }}^{\prec}$ an ordered extension of level k such that $\left(A^{\circ}, \gamma_{A}\right) \in \mathcal{Y}_{k-1}$, there exists $\left(B, \gamma_{B}\right) \in \mathcal{X}_{k}$ similar to $\left(A, \gamma_{A}\right)$;
(Ext4) for $\left(A, \gamma_{A}\right) \in \mathcal{X}_{k}, \operatorname{hd}(A)>A^{\circ}$ in γ_{A}.
We now define \mathcal{Y}_{k}. Let \mathcal{Y}_{k} consist of $\left(C, \gamma_{C}\right) \in \mathcal{D}_{\mathrm{fin}}^{\prec}$ of level k such that $\left(C, \gamma_{C}\right)$ results from a sequence of free amalgamations of elements of $\mathcal{X}_{k} \cup \bigcup_{i<k} \mathcal{Y}_{i}$, with γ_{C} completed to a linear order where:
$(\mathrm{Str} 1)\left(C^{\uparrow k-1}, \gamma_{C}\right) \in \mathcal{Y}_{k-1}$;
(Str2) the vertices of C of level k are greatest in γ_{C};
(Str3) each scc of C of level k is an interval in γ_{C}, and γ_{C} extends the level-lex preorder λ_{C} on sccs of level k.

We let $\mathcal{E}_{\text {fin }}=\bigcup_{k \geq 0} \mathcal{Y}_{k}$, and now check properties (1)-(7) in the definition of admissibility.
We prove (3), the \sqsubseteq_{s}-hereditary property. Say $A \neq B$. We use induction on n the number of sccs of B. The base case $n=1$ is trivial. Let $k=1(B)$. B is a free amalgam of elements of $\mathcal{X}_{k} \cup \bigcup_{i<k} \mathcal{Y}_{i}$. Let S be the head scc of a level k ordered extension which is part of the sequence of free amalgamations forming B, where $S \cap A=\varnothing$. So $\operatorname{scl}_{B}(S) \in \mathcal{X}_{k}$, and so $\operatorname{scl}_{B}(S)^{\circ} \in \mathcal{Y}_{k-1}$. So $B-S$ is a free amalgam of elements of $\mathcal{X}_{k} \cup \bigcup_{i<k} \mathcal{Y}_{i}$, and also still satisfies (Str1), (Str2), (Str3), so $B-S \in \mathcal{E}_{\text {fin }}$. As $A \sqsubseteq_{s} B-S$, by the induction assumption $A \in \mathcal{E}_{\text {fin }}$. For (4), the free amalgamation property, we start by proving (4)(b). Let $\left(B_{1}, \gamma_{1}\right) \in \mathcal{E}_{\text {fin }}$ be an ordered extension and let $\left(B_{2}, \gamma_{2}\right) \in \mathcal{E}_{\text {fin }}$ with $\left(B_{1}{ }^{\circ}, \gamma_{1}\right) \sqsubseteq_{s}\left(B_{2}, \gamma_{2}\right)$ and $\mathrm{l}\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$.
If $\mathrm{l}\left(B_{1}\right)=0$, then $\left(B_{1}, \gamma_{1}\right) \in \mathcal{X}_{0}, B_{1}{ }^{\circ}=\varnothing$ and $\left(B_{2}, \gamma_{2}\right) \in \mathcal{Y}_{0} .\left(B_{2}, \gamma_{2}\right)$ is a disjoint union of ordered extensions in \mathcal{X}_{0}. Let (C, γ) be the disjoint union of $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$ where we complete γ according to (Str0). Then $(C, \gamma) \in \mathcal{Y}_{0}$, and uniqueness up to ordered digraph isomorphism is clear.
For the case $\mathrm{l}\left(B_{1}\right)=k>0$, we have that $\left(B_{1}, \gamma_{1}\right) \in \mathcal{X}_{k}$. By (Ext4), the vertices of $\operatorname{hd}\left(B_{1}\right)$ are greatest in γ_{1}. By (Str2), the vertices of maximum level $\mathrm{l}\left(B_{2}\right)$ are greatest in γ_{2}. Let (C, γ) be the free amalgamation of $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$ over $\left(B_{1}{ }^{\circ}, \gamma_{1}\right)$, where we complete the linear order γ as follows. Note that as $\left(B_{1}{ }^{\circ}, \gamma_{1}\right) \sqsubseteq_{s}\left(B_{2}, \gamma_{2}\right)$ and $\mathrm{l}\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$, all elements of C of level $<k$ are already comparable in γ, and we need only complete γ for level k. We do this by taking all vertices of $\operatorname{hd}\left(B_{1}\right)$ to be greater than all vertices of level $<k$ in B_{2}, taking $\operatorname{hd}\left(B_{1}\right)$ to be an interval, and, if $\mathrm{l}\left(B_{2}\right)=k$, ordering $\mathrm{hd}\left(B_{1}\right)$ amongst the sccs of level k in B_{2} via λ_{B}, where we order $\operatorname{hd}\left(B_{1}\right)$ amongst the sccs of its cone in C
arbitrarily. Then (C, γ) satisfies (Str1), (Str2), (Str3), and uniqueness up to isomorphism is clear. (We may reorder sccs within a cone, but these reorderings will be ordered digraph-isomorphic.)
We now prove (4)(a). We use induction on the total number n of sccs of the free amalgamation of B_{1}, B_{2} over A. The base case $n=1$ is trivial. The case $B_{1}=A$ or $B_{2}=A$ is also trivial, so we assume B_{1}, B_{2} have sccs outside A. Without loss of generality $\mathrm{l}\left(B_{1}\right) \geq \mathrm{l}\left(B_{2}\right)$.
In the case $\mathrm{l}(A)<\mathrm{l}\left(B_{1}\right)$, take a scc S of B_{1} of maximum level, with S outside A. By $(3),\left(B_{1}-S, \gamma_{1}\right) \in \mathcal{E}_{\text {fin }}$. By the induction assumption, there exists $\left(D, \gamma_{D}\right) \in \mathcal{E}_{\text {fin }}$ with D the free amalgam of $B_{1}-S, B_{2}$ over A and γ_{D} extending $\left.\gamma_{1}\right|_{B_{1}-S}, \gamma_{2}$. Then use (4)(b) and let (C, γ) be the free amalgam of $\left(\operatorname{scl}_{B_{1}}(S), \gamma_{1}\right),\left(D, \gamma_{D}\right)$ over $\left(\operatorname{scl}_{B_{1}}(S)^{\circ}, \gamma_{1}\right)$ with γ extending $\left.\gamma_{1}\right|_{\operatorname{scl}_{B_{1}}(S)}, \gamma_{D} .(C, \gamma)$ contains the free amalgam of $\left(\operatorname{scl}_{B_{1}}(S), \gamma_{1}\right),\left(B_{1}-\right.$ $\left.S, \gamma_{1}\right)$ over $\left(\operatorname{scl}_{B_{1}}(S)^{\circ}, \gamma_{1}\right)$, and so by the uniqueness up to isomorphism part of (4)(b), ($C, \gamma)$ contains an isomorphic copy of $\left(B_{1}, \gamma_{1}\right)$.
In the case $\mathrm{l}(A) \geq \mathrm{l}\left(B_{1}\right)$, let S be a scc of A with no predecessors. Then, using (3) and the induction assumption, there is $\left(D, \gamma_{D}\right) \in \mathcal{E}_{\text {fin }}$ with D the free amalgam of $B_{1}-S, B_{2}-S$ over $A-S$ and γ_{D} extending $\left.\gamma_{1}\right|_{B_{1}-S},\left.\gamma_{2}\right|_{B_{2}-S}$. Then use (4)(b) and let (C, γ) be the free amalgam of $\left(\operatorname{scl}_{A}(S), \gamma_{A}\right),\left(D, \gamma_{D}\right)$ over $\left(\operatorname{scl}_{A}(S)^{\circ}, \gamma_{A}\right)$ with γ extending γ_{A}, γ_{D}. By the uniqueness up to isomorphism part of $(4)(\mathrm{b}),(C, \gamma)$ is the free amalgam of isomorphic copies of $\left(B_{1}, \gamma_{1}\right),\left(B_{2}, \gamma_{2}\right)$ over an isomorphic copy of $\left(A, \gamma_{A}\right)$, with γ extending γ_{1}, γ_{2}.
We now prove (2). We allow $A=\varnothing$ and thereby also prove (1). It suffices to show that for $A^{+} \in \mathcal{E}_{\text {fin }}$, with a sccs, that if $A^{+} \sqsubseteq_{s} B^{\prime} \in$ $\mathcal{D}_{\text {fin }}^{\prec}$, where B^{\prime} has $n \geq a \operatorname{sccs}$, then there exists a reordering and reorientation of $B^{+} \in \mathcal{E}_{\text {fin }}$ of B^{\prime}, preserving sccs and the orientation of edges between them, with $A^{+} \sqsubseteq_{s} B^{+}$. We show this by induction on $n \geq a$. The base case $n=a$ is trivial. For the induction step, let S be a scc of $B^{\prime}-A^{+}$of maximum level k, so $B^{\prime}-S \sqsubseteq_{s} B^{\prime}$. Let $D \in \mathcal{E}_{\text {fin }}$ be a reordering and reorientation of $B^{\prime}-S$ with $A^{+} \sqsubseteq_{s} D$, using the induction assumption. Let $B^{\prime \prime}$ be the reordering and reorientation of B^{\prime} given by replacing B^{\prime} on $B^{\prime}-S$ with D. We then use (Ext3) to obtain $E \in \mathcal{X}_{k}$ similar to $\operatorname{scl}_{B^{\prime \prime}}(S)$, and by (4) we use free amalgamation of $E, B^{\prime \prime}-S$ over E° to obtain a reordering and reorientation $B^{+} \in \mathcal{E}_{\text {fin }}$ with $A^{+} \sqsubseteq_{s} B^{+}$.
(5) and (6) are clear by the construction of $\mathcal{E}_{\text {fin }}$ above.

We now prove (7). We will define γ inductively, and also check that $(B, \gamma) \in \mathcal{E}_{\text {fin }}$ and that γ agrees with γ_{B} on \sqsubseteq_{s}-copies of $\left(A, \gamma_{A}\right)$ inductively.
Index the sccs of B as C_{1}, \cdots, C_{n}, where if $i<j$ then $\mathrm{l}\left(C_{i}\right) \leq \mathrm{l}\left(C_{j}\right)$. For C_{1}, observe that for any orders γ_{1}, γ_{2} on C_{1} such that $\left(C_{1}, \gamma_{1}\right),\left(C_{1}, \gamma_{2}\right) \in$ $\mathcal{E}_{\text {fin }}$, we have that $\gamma_{1}=\gamma_{2}$ by (5). So take γ on C_{1} such that $\left(C_{1}, \gamma\right) \in$
$\mathcal{E}_{\text {fin }}$, and then γ must agree with any \sqsubseteq_{s}-copy of γ_{A} on C_{1}, as $\left(C, \gamma_{A}\right) \in$ $\mathcal{E}_{\text {fin }}$.
Now suppose that γ has already been defined on C_{1}, \cdots, C_{i-1} such that $\left(C_{1} \cup \cdots \cup C_{i-1}, \gamma\right) \in \mathcal{E}_{\text {fin }}$ and γ agrees with γ_{B} on every \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$ where γ is defined. We define γ on $D:=C_{1} \cup \cdots \cup C_{i}$. Let k be the level of C_{i}. Let $X=\operatorname{scl}_{B}\left(C_{i}\right)$. Then $\left(X^{\circ}, \gamma\right) \in \mathcal{E}_{\text {fin }}$, so take γ on C_{i} such that $(X, \gamma) \in \mathcal{X}_{k}$.
Then, to define γ on D, specify that:
(i) C_{i} is an interval in γ;
(ii) C_{i} is greater than all vertices of level $<k$;
(iii) for $C_{j}(j<i)$ of level $k, C_{j}<C_{i}$ in γ if $C_{j}<C_{i}$ in the level-lex preorder λ_{D} (which depends only on γ on levels $<k$);
(iv) for $C_{j}(j<i)$ of level k with C_{j}, C_{i} lying in the same cone, then order C_{j}, C_{i} by their first vertices in γ_{B}.
Then we have that $(D, \gamma) \in \mathcal{E}_{\text {fin }}$, as we satisfy ($\operatorname{Str} 1$), ($\operatorname{Str} 2$), ($\operatorname{Str} 3$). We now show that γ agrees with γ_{B} on \sqsubseteq_{s}-copies of $\left(A, \gamma_{A}\right)$. By the induction assumption, we know that this is the case on $C_{1} \cup \cdots \cup C_{i-1}$. C_{i} lies in some $\sqsubseteq_{s^{-c o p y}}\left(A^{\prime}, \gamma_{A^{\prime}}\right)$ of $\left(A, \gamma_{A}\right)$. As $\gamma, \gamma_{A^{\prime}}$ agree on X° and as $(X, \gamma),\left(X, \gamma_{A^{\prime}}\right) \in \mathcal{E}_{\text {fin }}$, by (Ext1) we know that $\gamma, \gamma_{A^{\prime}}$ agree on C_{i}.
Each $C_{j}(j \leq i)$ is an interval in γ, and also in any \sqsubseteq_{s}-copy of $\left(A, \gamma_{A}\right)$ by (Str 3).
Say $C_{j}, C_{i}(j<i)$ lie in a $\sqsubseteq_{s^{-}}$copy $\left(A^{\prime}, \gamma_{A^{\prime}}\right)$ of $\left(A, \gamma_{A}\right)$. If C_{j} is of level $<k$, then by $(\operatorname{Str} 2) C_{j}<C_{i}$ in $\gamma_{A^{\prime}}$, and by (ii) $C_{j}<C_{i}$ in γ. If C_{j} is of level k, then as $\gamma_{A^{\prime}}, \gamma$ agree on levels $<k$, the level-lex preorders $\lambda_{\gamma_{A^{\prime}}}, \lambda_{\gamma}$ agree, and if C_{j}, C_{i} lie in the same cone, then by (iv) $C_{j}<C_{i}$ in $\gamma_{A^{\prime}}$ iff $C_{j}<C_{i}$ in γ.
Proposition 5.19 (Cor. 7.16, [6]). $\left(\mathcal{E}_{f i n}, \sqsubseteq_{s}\right)$ is a Ramsey class.
Proof. This is analogous to the proof for $\left(\mathcal{E}_{1}, \sqsubseteq_{s}\right)$ - i.e. the proof of part (2) of Proposition 4.10. We apply Theorem 1.57 to $\mathcal{D}_{\text {fin }}^{\prec}$, and use part (7) in the definition of $\mathcal{E}_{\text {fin }}$.
Proposition 5.20 (adapted from Lem. 7.9, [6]). We have that:
(1) $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$ is a strong expansion of $\left(\mathcal{D}_{\text {fin }}, \sqsubseteq_{s}\right)$;
(2) $\mathcal{E}_{\text {fin }}$ is a reasonable expansion of $\left(\mathcal{D}_{\text {fin }}, \sqsubseteq_{s}\right)$;
(3) $\mathcal{E}_{\text {fin }}$ has the expansion property over $\left(\mathcal{D}_{\text {fin }}, \sqsubseteq_{s}\right)$.

Proof. (1), (2): Considering Definition 5.17 (the definition of $\mathcal{E}_{\text {fin }}$) and its seven parts, we have that:

- part (1) implies part (1) of reasonableness and part (1) of the definition of strong expansion;
- part (2) implies part (4) of reasonableness and part (3) of the definition of strong expansion;
- part (3) implies part (3) of reasonableness.

Part (2) of reasonableness and part (2) of the definition of strong expansions are clear.
(3): The proof of the expansion property is analogous to that of part
(3) of Proposition 4.10, with a scc with no predecessors replacing a point. For a very similar proof, see the proof of Lemma 6.10.

Definition 5.21. We denote the Fraïssé limit of $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$ by $\left(M_{0}, \rho, \alpha\right)$, where ρ is the generic orientation and α is the generic linear order. (The notation is the same as in the previous chapter.)
We let $N_{\mathcal{E}}=\left(M_{0}, \rho\right), K_{\mathcal{E}}=\operatorname{Aut}\left(N_{\mathcal{E}}\right)$ and $H_{\mathcal{E}}=\operatorname{Aut}\left(N_{\mathcal{E}}, \alpha\right)$.

5.3 Stabilisers of H-fixed points

In this section, we write $H=H_{\mathcal{E}}, K=K_{\mathcal{E}}, G=G_{0}=\operatorname{Aut}\left(M_{0}\right)$ for brevity. We carry out the same analysis for M_{0} as we did for M_{1} in Section 4.5. We consider the G-flow $G \curvearrowright \mathcal{L O}\left(M_{0}\right)$, and show that for $\beta \in \mathcal{L O}\left(M_{0}\right)$, if $G_{\alpha} \subseteq G_{\beta}$ then $G_{\alpha}=G_{\beta}$. (Here, as before, G_{α}, G_{β} denote the G-stabilisers of α and β in this flow.) This gives us some information about what β can be in the case where β is an H-fixed point inside a minimal subflow of $\mathcal{L O}\left(M_{0}\right)$.
As just mentioned, we are able to prove the equivalent results on stabilisers of H-fixed points for M_{0} as for M_{1}. The proofs of these results on stabilisers in the M_{1} case were similar to the proof of Theorem 4.18 - unfortunately the author has not been able to prove an equivalent of Theorem 4.18 in the case of M_{0}. There is an added difficulty in the M_{0} case which will be explained in the next section.
In the lemma below, recall that H is the automorphism group of $\left(N_{\mathcal{E}}, \alpha\right)$, the Fraïssé limit of $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$. (See Definition 5.21.)

Lemma $5.22\left({ }^{(* *)}\right.$. Consider the G-flow $G \curvearrowright \mathcal{L O}\left(M_{0}\right)$, and let G_{α} denote the stabiliser of α in this flow. Then $G_{\alpha}=H$.

Proof. Seeking a contradiction, suppose there exists $g \in G_{\alpha}-H$. Then g must reverse the direction of some out-edge $(x, y) \in \rho$, i.e. $(g y, g x) \in \rho$.
Suppose $x \notin \operatorname{scc}(y)$. So $\mathrm{l}(x)>\mathrm{l}(y)$, and thus $x>_{\alpha} y$. As g preserves α, $g x>_{\alpha} g y$. As $(g y, g x) \in \rho$, we must have that $g y \in \operatorname{scc}(g x)$. But the closed interval $[y, x]$ in α is infinite, and sccs are convex in α, so this would imply that $\operatorname{scc}(g x)$ were infinite - as sccs are finite, this gives a contradiction, and so we have that $x \in \operatorname{scc}(y)$.
So we know that g preserves the orientation of out-edges between sccs, and by the same argument, so does g^{-1}.
Take $(x, y) \in \rho$ with y of minimal level k such that $(g y, g x) \in \rho$. So $x \in \operatorname{scc}(y)$ and $g y \in \operatorname{scc}(g x)$. Let $A=\operatorname{scl}(x)$. By the minimality of k,
g does not flip any out-edge within or into A°. By fineness, $g \cdot \operatorname{scc}(x)$ is strongly connected, so is the subset of a scc. Any out-edge into $\operatorname{scc}(x)$ must have its orientation preserved by g, so $g \cdot \operatorname{scc}(x)$ is a scc. So $g A$ is an extension of level k with head scc equal to $g \cdot \operatorname{scc}(x)$.
If $k=0$, then as g is a graph isomorphism, case (2) of similarity (Definition 5.14) is satisfied. If $k>0$, then by fineness (part (1) of Lemma 5.11), $\delta(A)=\delta\left(A^{\circ}\right)$, and g as a graph isomorphism preserves predimension, so $\delta(g A)=\delta\left(g\left(A^{\circ}\right)\right)=\delta\left((g A)^{\circ}\right)$. Thus g is out-degreepreserving, so case (1) of similarity is satisfied.
So $(A, \alpha),(g A, \alpha)$ are similar extensions, and so are isomorphic as ordered digraphs. By the rigidity of finite linear orders and the fact that g preserves α, g must in fact be the ordered digraph isomorphism given by similarity, and cannot reverse (x, y) - contradiction. So $G_{\alpha}=H$.

In the lemma below, recall that K is the automorphism group of $N_{\mathcal{E}}=$ $\left(M_{0}, \rho\right)$, the oriented graph in the Fraïssé limit $\left(N_{\mathcal{E}}, \alpha\right)=\left(M_{0}, \rho, \alpha\right)$ of $\left(\mathcal{E}_{\text {fin }}, \sqsubseteq_{s}\right)$. (See Definition 5.21.)

Lemma $5.23\left(^{* *}\right)$. Consider the G-flow $G \curvearrowright \mathcal{L O}\left(M_{0}\right)$.
For $\beta \in \mathcal{L O}\left(M_{0}\right)$, if $K_{\alpha} \subseteq K_{\beta}$, then $K_{\alpha}=K_{\beta}$.

Proof. From Lemma 5.22, we know that $H=K_{\alpha}=G_{\alpha}$. Take $g \in$ $K-K_{\alpha}$. We will show that $g \notin K_{\beta}$.
g preserves the orientation ρ but not the order α. So there exist $x, y \in$ M_{0} with $x>_{\alpha} y, g x<_{\alpha} g y$, and take x of minimal level k satisfying this. So g preserves α on levels below k.
Thus $(\operatorname{scl}(x), \alpha),(\operatorname{scl}(g x), \alpha)$ are similar, and so are isomorphic as ordered digraphs (note that the ordered digraph isomorphism is not necessarily $g)$, and likewise for $(\operatorname{scl}(y), \alpha),(\operatorname{scl}(g y), \alpha)$.
If $\operatorname{scc}(x), \operatorname{scc}(y)$ are not in the same cone, then as $x>_{\alpha} y$, we must either have that (i) $\mathrm{l}(y)<\mathrm{l}(x)$, in which case $\mathrm{l}(g y)<\mathrm{l}(g x)$, so $g y<_{\alpha} g x$, contradiction; or (ii) $\operatorname{scc}(y)<\operatorname{scc}(x)$ in the level-lex preorder $\lambda=\left(\unlhd_{k}\right.$, $\left.\preceq_{k-1}, \unlhd_{k-1}, \cdots, \preceq_{0}, \unlhd_{0}\right)$. If the first coordinate of λ for which $\operatorname{scc}(y)$ is less than $\operatorname{scc}(x)$ is \unlhd_{l} or \preceq_{l}, then the same is true for $\operatorname{scc}(g y)$ and $\operatorname{scc}(g x)$, so $g y<_{\alpha} g x$, contradiction. So $\operatorname{scc}(x), \operatorname{scc}(y)$ lie in the same cone.
Therefore there exists $h \in H$ taking $\operatorname{scl}(y)$ to $\operatorname{scl}(g x)$ and $\operatorname{scl}(x)$ to $\operatorname{scl}(g y) . h^{-1} g$ cannot be the identity on $\operatorname{scl}(y) \cup \operatorname{scl}(x)$, as $y<_{\alpha} x$ but $h^{-1} g y>_{\alpha} h^{-1} g x$, and therefore $h^{-1} g$ does not fix a linear order. So, as $H=K_{\alpha} \subseteq K_{\beta}, g$ cannot fix β.

Theorem $5.24\left(^{* *}\right)$. Consider the G-flow $G \curvearrowright \mathcal{L O}\left(M_{0}\right)$.
For $\beta \in \mathcal{L O}\left(M_{0}\right)$, if $G_{\alpha} \subseteq G_{\beta}$ then $G_{\alpha}=G_{\beta}$.

Proof. Seeking a contradiction, say there exists $g \in G_{\beta}-G_{\alpha}$. We have that $K_{\alpha}=G_{\alpha}$ and $K_{\alpha} \subseteq K \cap G_{\beta}=K_{\beta}$, so $K_{\alpha}=K_{\beta}$. So $g \notin K$, i.e. there exist $x, y \in M_{0}$ such that $(x, y) \in \rho,(g y, g x) \in \rho$.

We will eliminate this possibility case-by-case.
Case 1: x has out-degree 2, with out-edges to y, z, and y is not in the same scc as x.
Let $C=\operatorname{scc}(x)$, and let $A=\operatorname{scl}(C)$. As C is fine and contains a vertex of out-degree 2 in $N_{\mathcal{E}}$, we have that $\delta(A)=\delta\left(A^{\circ}\right)$ by Lemma 5.11.
Let $n=2\left|\mathrm{~N}_{+}(C)\right|+1$. The cone $Q_{\alpha}(C)$ is order-isomorphic to \mathbb{Q}, and so as $\operatorname{scl}(g A)$ is finite, there exist $\operatorname{sccs} C_{-n}, \cdots, C_{-1}, C_{1}, \cdots, C_{n} \in Q_{\alpha}(C)$ with $C_{-n}<\cdots<C_{-1}<C<C_{1}<\cdots<C_{n}$ in α and each $g C_{i}$ disjoint from $\operatorname{scl}(g A)$. Let $f_{i} \in H$ denote the (unique) ordered digraph isomorphism sending C to C_{i}, and let $x_{i}=f_{i}(x)$.
As ρ is a 2-orientation, each vertex of $g \cdot \mathrm{~N}_{+}(C)$ has out-degree ≤ 2, and so as $n=2\left|\mathrm{~N}_{+}(C)\right|+1$, there is $-n \leq i \leq-1$ such that the orientation of out-edges from C_{i} to $\mathrm{N}_{+}(C)$ is preserved by g, i.e. for $(v, w) \in \rho$ with $v \in C_{i}, w \in \mathrm{~N}_{+}(C)$, then $(g v, g w) \in \rho$. Likewise there is $1 \leq j \leq n$ such that the orientation of out-edges from C_{j} to $\mathrm{N}_{+}(C)$ is preserved by g.
As g is a graph isomorphism, it preserves predimension. We have that $\delta\left(C_{i} / \mathrm{N}_{+}(C)\right)=\delta\left(C / \mathrm{N}_{+}(C)\right)=0$, and so $\delta\left(g C_{i} / g \mathrm{~N}_{+}(C)\right)=0$. Hence if $v \in g C_{i}, w \in M_{0}$ and $(v, w) \in \rho$, then $w \in g C_{i} \cup g \mathrm{~N}_{+}(C)$. So for $v \in C_{i}$, v has out-degree k within C_{i} iff $g v_{i}$ has out-degree k within $g C_{i}$. Therefore ($C_{i}, g^{-1} \rho$) is a reorientation of C_{i} in which out-degrees within C_{i} have been preserved, and so ($C_{i}, g^{-1} \rho$) is strongly connected by fineness. Thus $g C_{i}$ is strongly connected in ρ, and therefore is a subset of a scc. As all out-edges from $g C_{i}$ lie in $g \mathrm{~N}_{+}(C) \subseteq g A$ and $g C_{i}$ is disjoint from $\operatorname{scl}(g A), g C_{i}$ is a scc. Likewise, $g C_{j}$ is a scc.
We have that $g C_{i}$ is a scc and for $v \in g C_{i}, w \in M_{0},(v, w)$ is an exiting out-edge from $g C_{i}$ iff $\left(g^{-1} v, g^{-1} w\right)$ is an exiting out-edge from C_{i} and likewise for $g C_{j}$. Therefore we have that the ordered extensions $\left(\operatorname{scl}\left(g C_{i}\right), \alpha\right),\left(\operatorname{scl}\left(g C_{j}\right), \alpha\right)$ with head $\operatorname{sccs} g C_{i}, g C_{j}$ are similar, so are isomorphic as ordered digraphs by part (5) of Definition 5.15, and so by homogeneity of $\left(N_{\mathcal{E}}, \alpha\right)$ there exists $h \in H$ sending $\left(\operatorname{scl}\left(g C_{i}\right), \alpha\right)$ to $\left(\operatorname{scl}\left(g C_{j}\right), \alpha\right)$ with $h\left(g C_{i}\right)=g C_{j}$. As $G_{\alpha} \subseteq G_{\beta}$, we have $g f_{i} f_{j}^{-1} g^{-1} h \in$ G_{β}, and as $g f_{i} f_{j}^{-1} g^{-1} h$ fixes $g C_{i}$ setwise, $g f_{i} f_{j}^{-1} g^{-1} h$ is the identity on $g C_{i}$. Therefore $h g x_{i}=g x_{j}$.
The orientation of out-edges from C_{i}, C_{j} is preserved by g, so $\left(g x_{i}, g y\right) \in$ $\rho,\left(g x_{j}, g y\right) \in \rho$, and since by assumption $(g y, g x) \in \rho$, we have that $g x \in \operatorname{scl}\left(g C_{i}\right)^{\circ}=\operatorname{scl}\left(g C_{j}\right)^{\circ}$. Therefore h fixes $g x$.
We have that either $x_{i}<x<x_{j}$ or $x_{j}<x<x_{i}$ in β, and as $g \in G_{\beta}$, therefore $g x_{i}<g x<g x_{j}$ or $g x_{j}<g x<g x_{i}$ in β. As h fixes $g x$,
$h g x_{i}=g x_{j}$ and $h \in G_{\beta}$, we obtain our contradiction, completing the elimination of Case 1.
We have shown that the orientation of out-edges from sces of relative predimension zero is preserved by g. Before eliminating Case 2, we will prove the following claim:
Claim: g preserves sccs.
Proof of claim: first we show that if C is a scc, then $g C$ is strongly connected. There are three cases for C.
Consider the case where C is a scc of relative predimension zero (i.e. $\left.\delta\left(C / C^{\circ}\right)=0\right)$. We know from Case 1 that g preserves the orientation of out-edges from C. As $\delta\left(C / \mathrm{N}_{+}(C)\right)=0$ and g preserves predimension, we have that $\delta\left(g C / g \mathrm{~N}_{+}(C)\right)=0$. Thus if $v \in g C, w \in M_{0}$ and $(v, w) \in$ ρ then $w \in g C \cup g \mathrm{~N}_{+}(C)$. So for $v \in C, v$ has out-degree k within C iff $g v$ has out-degree k within $g C$, and so by fineness (as in Case 1), $g C$ is strongly connected.
In the case $|C|=1$, then $g C$ is trivially strongly connected.
In the final case where $\mathrm{l}(C)=0$ (including the case $\delta(C)=1$), then $\left(C, g^{-1} \rho\right)$ is a reorientation of C, so is strongly connected by fineness i.e. $g C$ is strongly connected in ρ. This completes the proof that if C is a scc, then $g C$ is strongly connected.
Hence, for any scc $C,|C| \leq|\operatorname{scc}(g C)|$. The same argument for $g^{-1} \in$ $G_{\beta}-G_{\alpha}$ applied to $\operatorname{scc}(g C)$ shows that $g^{-1} \operatorname{scc}(g C)$ is strongly connected. But $C \subseteq g^{-1} \operatorname{scc}(g C)$ is a scc, and so $g^{-1} \operatorname{scc}(g C)=C$. Hence $|\operatorname{scc}(g C)| \leq|C|$, so $|C|=|\operatorname{scc}(g C)|$ and thus $g C$ is a scc, proving the claim.
Case 2: x has out-degree 1, with out-edge to y, where $y \notin \operatorname{scc}(x)$.
The cone $Q_{\alpha}(x)$ is order-isomorphic to \mathbb{Q}, and so as $\operatorname{scl}(g y)$ is finite, there exist $x_{-3}, x_{-2}, x_{-1}, x_{1}, x_{2}, x_{3} \in Q_{\alpha}(x)$ with $x_{-3}<x_{-2}<x_{-1}<$ $x<x_{1}<x_{2}<x_{3}$ in α and each $g x_{i} \notin \operatorname{scl}(g y)$. As ρ is a 2-orientation, there are i, j with $-3 \leq i \leq-1$ and $1 \leq j \leq 3$ such that g preserves the orientation of $\left(x_{i}, y\right),\left(x_{j}, y\right)$, i.e. $\left(g x_{i}, g y\right) \in \rho,\left(g x_{j}, g y\right) \in \rho$.
Let $\left(w, x_{i}\right) \in \rho$ be an in-edge of x_{i}. Seeking a contradiction, suppose $\left(g x_{i}, g w\right) \in \rho$. If $g w \notin \operatorname{scc}\left(g x_{i}\right)$, then $\left(g x_{i}, g w\right)$ is an out-edge of $\operatorname{scc}\left(g x_{i}\right)$ which is of relative predimension zero, so by Case 1 applied to g^{-1}, $\left(x_{i}, w\right) \in \rho$, contradiction. If $g w \in \operatorname{scc}\left(g x_{i}\right)$, as g^{-1} preserves sccs, $w \in \operatorname{scc}\left(x_{i}\right)$, contradiction. Thus g preserves the orientation of inedges of x_{i}, and so $\left\{g x_{i}\right\}$ is a scc, as $\left(g x_{i}, g y\right)$ is the only out-edge of $g x_{i}$ and $g x_{i} \notin \operatorname{scl}(g y)$. Likewise $\left\{g x_{j}\right\}$ is a scc.
Hence, the ordered extensions $\left(\operatorname{scl}\left(g x_{i}\right), \alpha\right),\left(\operatorname{scl}\left(g x_{j}\right), \alpha\right)$ with head sccs $\left\{g x_{i}\right\},\left\{g x_{j}\right\}$ are similar, so are isomorphic as ordered digraphs by part (5) of Definition 5.15, and so by homogeneity of $\left(N_{\mathcal{E}}, \alpha\right)$ there exists $h \in$ H sending $\left(\operatorname{scl}\left(g x_{i}\right), \alpha\right)$ to $\left(\operatorname{scl}\left(g x_{j}\right), \alpha\right)$ with $h g x_{i}=g x_{j}$ and $\operatorname{scl}\left(g x_{i}\right)^{\circ}=$
$\operatorname{scl}\left(g x_{j}\right)^{\circ}$ fixed. Specifically, as $\left(g x_{i}, g y\right) \in \rho,(g y, g x) \in \rho$, we have that h fixes $g x$.
We have that either $x_{i}<x<x_{j}$ or $x_{j}<x<x_{i}$ in β, and as $g \in G_{\beta}$, thus $g x_{i}<g x<g x_{j}$ or $g x_{j}<g x<g x_{i}$ in β. As $h \in G_{\beta}$, h fixes $g x$ and $h g x_{i}=h g x_{j}$, we obtain a contradiction.
Case 3: x has out-degree 2, with out-edges to y, z, and y is in the same scc as x.
Let $C=\operatorname{scc}(x)$, and assume C is of minimum level - that is, C is a scc of minimum level such that there are $x, y \in C$ with $(x, y) \in \rho,(g y, g x) \in \rho$. Let $A=\operatorname{scl}(C)$. We have already shown that g preserves sccs and outedges from sccs, and by the minimality of the level of C we know that g preserves the orientation of edges within sccs of A°. Therefore $(g A, \alpha)$ is an ordered extension with head scc $g C$ which is similar to (A, α), and so as before, by part (5) of Definition 5.15 and homogeneity of $\left(N_{\mathcal{E}}, \alpha\right)$, there exists $h \in H$ sending (A, α) to $(g A, \alpha)$. In particular, h sends C to $g C$, and as $h \in G_{\beta}$, by the rigidity of finite linear orders h agrees with g on C. But h is a digraph isomorphism, so $(x, y) \in \rho \Rightarrow$ $(h x, h y) \in \rho$, i.e. $(g x, g y) \in \rho$, contradiction.
Case 4: x has out-degree 1, with out-edge to $y \in \operatorname{scc}(x)$.
Let $C=\operatorname{scc}(x)$. By Lemma 5.11, we have that $\mathrm{l}(C)=0, \delta(C)=1$. As g preserves sccs and out-edges from sccs, $g C$ is also a scc with $\mathrm{l}(g C)=0$, and as g preserves predimension $\delta(g C)=1$. So $(C, \alpha),(g C, \alpha)$ are similar (by case (2) of similarity, where we need only have a graph isomorphism). The rest of the argument is as for Case 3.

5.4 A difficulty in extending results from M_{1} to M_{0}

We now explain why the proof of Theorem 4.18 does not immediately carry over to the case of M_{0}.
The problem is as follows. In the proof of Theorem 4.18, we use a finite ordered graph in $\operatorname{Age}\left(M_{1}, \beta\right)$ to force a certain orientation in the generic orientation ρ, and we do this using α-automorphisms and the fact that $G_{\alpha} \subseteq G_{\beta}$ (see Figure 4.3). However, in the M_{0} case, it could be that an element A of $\operatorname{Age}\left(M_{0}, \beta\right)$, when \leq_{s}-embedded in ρ, is inside a scc - as seen in the below proposition. This seems to prevent us from using α-automorphisms and \sqsubseteq_{s}-homogeneity to find out information about the order β on A.
More specifically, the below proposition shows that we cannot use the graph structure alone to guarantee that A does not lie inside a scc. It may be that the order β on A can be used to show that A cannot lie inside a scc, but it is not clear to the author how to do this.

Figure 5.2
Proposition $5.25\left(^{(* *)}\right.$. Take $A \in \mathcal{D}_{\text {fin }}$ with $\delta(A)>0$. Let A_{0} be the maximal successor-closed substructure of A with $\delta\left(A_{0}\right)=0$. Then there exists $B \in \mathcal{D}_{\text {fin }}$ and $a \leq_{s}$-digraph embedding $f: A \rightarrow B$ such that $f\left(A-A_{0}\right)$ is contained within a scc of B.

Proof. Let a_{1}, \cdots, a_{n} be the vertices of $A-A_{0}$. As $\delta(A)>0, A$ must have at least one root. Let r_{1}, \cdots, r_{k} be the roots of A, with multiplicities m_{1}, \cdots, m_{k}. As $\delta\left(A_{0}\right)=0, r_{1}, \cdots, r_{k}$ lie in $A-A_{0}$.
Let B be the 2-oriented graph given by the following (see Figure 5.2 for an example):

- B contains A;
- for each root r_{i} of A with multiplicity m_{i}, add new vertices $v_{i, 0}, \cdots, v_{i, m_{i}}$ and out-edges $\left(r_{i}, v_{i, j}\right)\left(1 \leq j \leq m_{i}\right),\left(v_{i, 1}, v_{i, 0}\right)$;
- add new vertices w_{1}, \cdots, w_{n+1} and out-edges $\left(v_{i, 1}, w_{1}\right)(1 \leq$ $i \leq k),\left(w_{j}, a_{j}\right)($ for $1 \leq j \leq n),\left(w_{j}, w_{j+1}\right)($ for $1 \leq j \leq n)$.
We have that $B \in \mathcal{D}_{0}$, and we can reverse the orientations of the outedges $\left(v_{i, 1}, v_{i, 0}\right),\left(r_{i}, v_{i, j}\right)\left(1 \leq i \leq k, 1 \leq j \leq m_{i}\right)$ to produce a new orientation B^{\prime} of B in which $A \sqsubseteq_{s} B^{\prime}$, so $A \leq_{s} B$.
Let $C=\left(A-A_{0}\right) \cup\left\{v_{i, 1}: 1 \leq i \leq k\right\} \cup\left\{w_{j}: 1 \leq j \leq n\right\}$. First we show that C is a scc of B. For $1 \leq i \leq k$, the sequence of outedges $\left(v_{i, 1}, w_{1}\right),\left(w_{1}, w_{2}\right), \cdots,\left(w_{j-1}, w_{j}\right)$ gives an out-path from $v_{i, 1}$ to $w_{j}(1 \leq j \leq n)$, which with the additional out-edge $\left(w_{j}, a_{j}\right)$ gives an out-path from $v_{i, 1}$ to $a_{j}(1 \leq j \leq n)$. As each $r_{l}(1 \leq l \leq k)$ is a vertex of $A-A_{0}$ (i.e. $r_{i}=a_{j}$ for some j), the additional out-edge ($r_{l}, v_{l, 1}$) gives an out-path from $v_{i, 1}$ to $v_{l, 1}$. We therefore have an out-path from $v_{i, 1}$ to each vertex of C. For $a \in A-A_{0}, \operatorname{scl}_{A}(a)$ must contain some root r_{i}, and so with the out-edge $\left(r_{i}, v_{i, 1}\right)$ we must have an out-path
from a to $v_{i, 1}$, and thus from a to each vertex of C. Finally, for each $w_{j}(1 \leq j \leq n)$, the out-edge $\left(w_{j}, a_{j}\right)$ gives an out-path from w_{j} to a_{j}, and therefore we have an out-path from w_{j} to each vertex of C. Thus C is a scc.
As each vertex of C has out-degree 2 in B, C is a fine scc, and as each out-edge from C either has its out-vertex in $A_{0} \in \mathcal{D}_{\text {fin }}$ or has its out-vertex forming a scc of size one (as in the case of the out-edges $\left.\left(v_{i, 1}, v_{i, 0}\right)(1 \leq i \leq k),\left(r_{i}, v_{i, j}\right)\left(1 \leq i \leq k, 2 \leq j \leq m_{i}\right),\left(w_{n}, w_{n+1}\right)\right)$, we have that $B \in \mathcal{D}_{\text {fin }}$.
Note that the proof of the above proposition can easily be adapted to show an analogous result for \mathcal{D}_{0} in place of $\mathcal{D}_{\text {fin }}$.

Chapter 6

The universal minimal flow of $\operatorname{Aut}\left(M_{00}\right)$

In this chapter, we find a coprecompact (reasonable, strong) expansion \mathcal{E}_{00} of \mathcal{C}_{00} (the class of 2 -sparse graphs of predimension zero), which is rigid and has the Ramsey property and the expansion property, and therefore specifies the universal minimal flow of G_{00}, the automorphism group of the Fraïssé limit of $\left(\mathcal{C}_{00}, \leq_{s}\right)$. We do this by using the admissibly ordered orientations from the previous chapter, which behave in a much simpler fashion for the predimension zero case. We then use a simplified version of a result of Evans, Ghadernezhad and Tent ([12]), which states that any element of G_{00} may be extended to an element of G_{0}, to obtain a G_{0}-flow with a comeagre orbit.

6.1 A key observation

Definition 6.1. Let \mathcal{C}_{00} be the class of finite 2 -sparse graphs of predimension zero - that is, \mathcal{C}_{00} consists of $A \in \mathcal{C}_{0}$ with $\delta(A)=0$.
Let \mathcal{D}_{00} be the class of finite 2-oriented graphs of predimension zero. As predimension is dependent only on the underlying graph structure, by Proposition 1.7 we have that \mathcal{C}_{00} is the class of graph reducts of \mathcal{D}_{00}.

Note that for $B \in \mathcal{C}_{00}$ and $A \subseteq B$, we do not necessarily have $A \in \mathcal{C}_{00}$, unlike in the case of \mathcal{C}_{0}.

Lemma 6.2.
(1) $\left(\mathcal{C}_{00}, \leq_{s}\right)$ and $\left(\mathcal{D}_{00}, \sqsubseteq_{s}\right)$ are strong classes.
(2) $\left(\mathcal{D}_{00}, \sqsubseteq_{s}\right)$ is a strong expansion of $\left(\mathcal{C}_{00}, \leq_{s}\right)$.
(3) $\left(\mathcal{D}_{00}, \sqsubseteq_{s}\right)$ and $\left(\mathcal{C}_{00}, \leq_{s}\right)$ are free amalgamation classes.

Proof. (1): this follows by a straightforward check of (S1)-(S3) in Definition 1.15. (Note that we cannot use Lemma 1.30.)
(2): this is analogous to the proof of Lemma 1.35.
(3): Recall the fact that for $A, B, C \in \mathcal{C}_{0}$, if B, C are freely amalgamated over A then $\delta(B \cup C)=\delta(B)+\delta(C)-\delta(A)$ (this is the equality case of Lemma 1.29). Therefore ($\mathcal{D}_{00}, \sqsubseteq_{s}$) is immediately a free amalgamation class. Using part (2), by Lemma 1.26 we have that ($\mathcal{C}_{00}, \leq_{s}$) is a free amalgamation class.

Definition 6.3. Let M_{00} denote the Fraïssé limit of $\left(\mathcal{C}_{00}, \leq_{s}\right)$. As $\mathcal{C}_{00} \subseteq \mathcal{C}_{0}$, by the extension property of M_{0} we may take $M_{00} \subseteq M_{0}$. Let $G_{00}=\operatorname{Aut}\left(M_{00}\right)$.

Many aspects of the analysis in the preceding chapter are rather simplified in the predimension zero case.
Every oriented graph in \mathcal{D}_{00} consists entirely of vertices of out-degree 2, and so all graph isomorphisms between elements of \mathcal{D}_{00} are out-degreepreserving. By Lemma 5.4, any two orientations of $A \in \mathcal{C}_{00}$ must have the same successor-closed subsets, sccs and orientation of edges between sccs. So, with the same definition of extension as before, there is no distinction between orientations and fine orientations within \mathcal{D}_{00} : all orientations within \mathcal{D}_{00} are fine.
The below key observation shows that $\leq_{s}, \sqsubseteq_{s}$ are essentially synonymous in the predimension zero case:
Lemma $6.4\left(^{*}\right)$. Let $A \leq_{s} B \in \mathcal{C}_{00}$, and let $B^{+} \in \mathcal{D}_{00}$ be an orientation of B. Then $A \sqsubseteq_{s} B^{+}$, i.e. the orientation induced on A by B^{+}is successor-closed in B^{+}.

Proof 1. As $A \leq_{s} B$, there exists an orientation B^{\prime} of B in which $A \sqsubseteq_{s} B^{\prime}$. As any two orientations of B have the same successor-closed subsets, $A \sqsubseteq_{s} B^{+}$.

Proof 2. As $\delta(A)=0, A$ has no roots (considered in A). So there are no out-edges from A to $B^{+}-A$.

6.2 Admissibly ordered orientations on \mathcal{C}_{00}

The definition of similarity in $\mathcal{D}_{\text {fin }}^{\prec}$ reduces to the following:
Definition 6.5. Let $A, B \in \mathcal{D}_{00}^{\prec}$ be ordered extensions. A, B are similar if there exists a graph isomorphism $A \rightarrow B$ which is also an ordered digraph isomorphism $A^{\circ} \rightarrow B^{\circ}$.

DEfinition 6.6. $\mathcal{E}_{00} \subseteq \mathcal{D}_{00}^{\prec}$ is a class of admissibly ordered orientations of \mathcal{C}_{00} if \mathcal{E}_{00} satisfies parts (1)-(7) of Definition 5.17 with $\mathcal{C}_{00}, \mathcal{D}_{00}^{\prec}$ replacing $\mathcal{C}_{0}, \mathcal{D}_{\text {fin }}^{\prec}$.

The proofs in the previous chapter straightforwardly restricted to the case of graphs of predimension zero give:

Proposition 6.7. There exists a class $\left(\mathcal{E}_{00}, \sqsubseteq_{s}\right)$ of admissibly ordered orientations of \mathcal{C}_{00}.
$\left(\mathcal{E}_{00}, \sqsubseteq_{s}\right)$ is a Ramsey class, and a strong, reasonable expansion of $\left(\mathcal{D}_{00}, \sqsubseteq_{s}\right)$.

Differently to the case of $\mathcal{E}_{\text {fin }}$, we have that:

Lemma 6.8. \mathcal{E}_{00} is a reasonable expansion of $\left(\mathcal{C}_{00}, \leq_{s}\right)$.
Proof. The only part of reasonableness left to check is part (3): we need to show that \mathcal{E}_{00} is \leq_{s}-closed. This follows immediately from Lemma 6.4 and the fact that $\left(\mathcal{E}_{00}, \sqsubseteq_{s}\right)$ has the hereditary property.
We will now show that $\left(\mathcal{E}_{00}, \sqsubseteq_{s}\right)$ has the properties required for $X\left(\mathcal{E}_{00}\right)$ to be the universal minimal flow of G_{00}.
Lemma $6.9\left({ }^{* *}\right) . \mathcal{E}_{00}$ is a coprecompact expansion of \mathcal{C}_{00}.
Proof. For $A \in \mathcal{C}_{00}, C^{+} \in \mathcal{E}_{00}$ with $A \leq_{s} C^{+}$, let $A^{+} \in \mathcal{E}_{00}$ be the ordered orientation induced on A by C^{+}. Then $A^{+} \sqsubseteq_{s} C^{+}$. As $A \in \mathcal{C}_{00}$ has finitely many expansions in \mathcal{E}_{00}, this shows coprecompactness by Lemma 1.75.
Lemma $6.10\left(^{* *}\right) . \mathcal{E}_{00}$ has the expansion property over $\left(\mathcal{C}_{00}, \leq_{s}\right)$.
Proof. We must show that for $A^{+}=\left(A, \rho_{A}, \gamma_{A}\right) \in \mathcal{E}_{00}$, there exists $B \in \mathcal{C}_{00}$ such that for any expansion $\left(B, \rho_{B}, \gamma_{B}\right) \in \mathcal{E}_{00}$, there exists a \leq_{s}-embedding $A^{+} \rightarrow\left(B, \rho_{B}, \gamma_{B}\right)$. We use induction on $|A|$, and the base case $|A|=1$ is trivial.
There exists a scc S of A^{+}with no predecessors. Let $X^{+}=A^{+}-$ $Q_{A^{+}}(S)$, with the induced ordered orientation from A^{+}. Then $X^{+} \sqsubseteq_{s}$ A^{+}, so $X^{+} \in \mathcal{E}_{00}$, and by the induction assumption there exists $Y \in \mathcal{C}_{00}$ such that any expansion $Y^{+} \in \mathcal{E}_{00}$ of Y contains a \leq_{s}-copy of X^{+}. Let X be the underlying graph of X^{+}.
Let X_{1}, \cdots, X_{n} be the \leq_{s}-copies of X in Y. Let $Y_{0}=Y$, and inductively define $Y_{i}(1 \leq i \leq n)$ to be the free amalgam of Y_{i-1} with a copy of A over X_{i} (where we take the copy A^{\prime} of A with $X_{i} \leq_{s} A^{\prime}$). Let $Z=Y_{n}$. As \mathcal{C}_{00} is a free amalgamation class, $Z \in \mathcal{C}_{00}$. We have that $Y_{i} \leq_{s} Z(0 \leq i \leq n)$, and each copy of A in the sequence of free amalgamations is \leq_{s}-closed in Z. We will show that Z witnesses the expansion property for A^{+}.
Let $Z^{+}=\left(Z, \rho_{Z}, \gamma_{Z}\right) \in \mathcal{E}_{00}$ be an expansion of Z. As $Y \leq_{s} Z$, by Lemma $6.4\left(Y, \rho_{Z}, \gamma_{Z}\right) \sqsubseteq_{s} Z^{+}$, so $\left(Y, \rho_{Z}, \gamma_{Z}\right) \in \mathcal{E}_{00}$, and so there is a \leq_{s}-embedding $f: X^{+} \rightarrow\left(Y, \rho_{Z}, \gamma_{Z}\right) . f(X)$ is equal to some X_{i}, and $X_{i} \leq_{s} A^{\prime}$ for some copy $A^{\prime} \leq_{s} Z$ of A in Z.
By Lemma 6.4, f is a \sqsubseteq_{s}-embedding and $f\left(X^{+}\right) \sqsubseteq_{s}\left(A^{\prime}, \rho_{Z}, \gamma_{Z}\right) \sqsubseteq_{s} Z^{+}$. By Lemma 5.4, there is a graph isomorphism $g: A \rightarrow A^{\prime}$ which extends f and preserves sccs and the orientation of edges between them for A^{+} and $\left(A^{\prime}, \rho_{Z}\right)$.
Let T be a scc of $\left(A^{\prime}, \rho_{Z}\right)$ lying outside $f\left(X^{+}\right)$. Then we have that $\left(\operatorname{scl}_{A^{\prime}}(T), \gamma_{Z}\right),\left(\operatorname{scl}_{A^{+}}(S), \gamma_{A}\right)$ are similar, and so they are ordered digraph isomorphic. We may therefore take g to be an ordered digraph isomorphism. We have that $g: A^{+} \rightarrow\left(A^{\prime}, \rho_{Z}, \gamma_{Z}\right) \leq_{s} Z$, so g witnesses the expansion property for A^{+}.

Theorem 6.11. $X\left(\mathcal{E}_{00}\right)$ is the universal minimal flow of G_{00}, and has a comeagre orbit consisting of the expansions of M_{00} which are isomorphic to the Fraïssé limit of $\left(\mathcal{E}_{00}, \sqsubseteq_{s}\right)$.

Proof. This follows immediately by Theorem 1.76.

6.3 A G_{0}-flow with a comeagre orbit

The following lemma is a simple particular case of [12], Lemma 4.2.1:
Lemma 6.12. Let $j \in G_{00}$. Then j can be extended to an element of G_{0}.

Proof. Take $A_{0} \leq_{s} M_{0}$ with $\delta\left(A_{0}\right)=0$, and take $A_{i}, i \geq 1$, such that $A_{0} \leq_{s} A_{1} \leq_{s} \cdots$ is an increasing \leq_{s}-chain with $M_{0}=\bigcup_{i \geq 0} A_{i}$. Let $B_{0}=j A_{0}$, and take $B_{i}, i \geq 1$, such that $B_{0} \leq_{s} B_{1} \leq_{s} \cdots$ is an increasing \leq_{s}-chain with $M_{0}=\bigcup_{i \geq 0} B_{i}$.
We will find $g \in \operatorname{Aut}\left(M_{0}\right)$ extending j via a back-and-forth argument. Specifically, we will define a sequence of partial isomorphisms $g_{i}: C_{i} \rightarrow$ $D_{i}, C_{i}, D_{i} \leq_{s} M_{0}, i \in \mathbb{N}$, such that, for $i \in \mathbb{N}$,
(1) g_{i+1} extends g_{i};
(2) $A_{i} \subseteq C_{i}$ and $B_{i} \subseteq D_{i}$;
(3) g_{i}, j agree on $C_{i} \cap M_{00}$.
(Note that because graph isomorphisms preserve predimension, $\left.g_{i}\left(C_{i} \cap M_{00}\right)=D_{i} \cap M_{00}.\right)$

Once this sequence $\left(g_{i}\right)_{i \in \mathbb{N}}$ has been defined, we will let $g=\bigcup_{i \in \mathbb{N}} g_{i}$, and then g will be the automorphism of M_{0} extending j that we seek.
We define $\left(g_{i}\right)_{i \in \mathbb{N}}$ by induction. Let $g_{0}=\left.j\right|_{A_{0}}: A_{0} \rightarrow B_{0}$ (so here we have $C_{0}=A_{0}, D_{0}=B_{0}=j A_{0}$). Suppose we have already defined g_{0}, \cdots, g_{n-1} satisfying (1), (2), (3). We now define g_{n}.
Let $P=\operatorname{cl}^{s}\left(C_{n-1} \cup A_{n}\right)$. Then $C_{n-1} \cup\left(P \cap M_{00}\right) \leq_{s} P$: we may see this by noting that as $C_{n-1} \leq_{s} M_{0}$, therefore $C_{n-1} \leq_{s} P$, and so there exists a 2-orientation of P in which C_{n-1} is successor-closed; as $\delta\left(P \cap M_{00}\right)=0, P \cap M_{00}$ is successor-closed in this orientation.
By (3), $g_{n-1}: C_{n-1} \rightarrow D_{n-1}$ and $\left.j\right|_{P \cap M_{00}}$ are compatible functions. We have that $D_{n-1} \cup j\left(P \cap M_{00}\right) \leq_{s} M_{0}$ by a similar argument to the previous paragraph, and therefore we have a partial isomorphism $\left.g_{n-1} \cup j\right|_{P \cap M_{00}}$ between \leq_{s}-substructures of M_{0}. By \leq_{s}-homogeneity of M_{0}, there is $h_{n} \in \operatorname{Aut}\left(M_{0}\right)$ extending $\left.g_{n-1} \cup j\right|_{P \cap M_{00}}$. Let $Q=$ $h_{n}(P) \leq_{s} M_{0}$.
Then $h_{n}: P \rightarrow Q$ is a partial isomorphism between \leq_{s}-substructures of M_{0} extending g_{n-1} with $A_{n} \subseteq P$ such that h_{n}, j agree on $P \cap M_{00}$. This completes the "forth" step of the back-and-forth construction.

The "back" step is similar. We let $D_{n}=\mathrm{cl}^{s}\left(Q \cup B_{n}\right)$, and as before, we have $Q \cup\left(D_{n} \cap M_{00}\right) \leq_{s} D_{n}$. As h_{n}, j agree on $P \cap M_{00}$ and $h_{n}\left(P \cap M_{00}\right)=$ $Q \cap M_{00}$ (as graph isomorphisms preserve predimension), we have that h_{n}^{-1}, j^{-1} agree on $Q \cap M_{00}$, and so $h_{n}^{-1}: Q \rightarrow P,\left.j^{-1}\right|_{D_{n} \cap M_{00}}$ are compatible functions. As before, $P \cup j^{-1}\left(D_{n} \cap M_{00}\right) \leq_{s} M_{0}$, and so we have a partial isomorphism $\left.h_{n}^{-1} \cup j^{-1}\right|_{D_{n} \cap M_{00}}$ between \leq_{s}-substructures of M_{0}. By \leq_{s}-homogeneity of M_{0}, there is $g_{n} \in \operatorname{Aut}\left(M_{0}\right)$ such that g_{n}^{-1} extends $\left.h_{n}^{-1} \cup j^{-1}\right|_{D_{n} \cap M_{00}}$. Let $C_{n}=g_{n}^{-1}\left(D_{n}\right) \leq_{s} M_{0}$. Then g_{n} : $C_{n} \rightarrow D_{n}$ is a partial isomorphism between \leq_{s}-substructures of M_{0} with $B_{n} \subseteq D_{n}$ and $A_{n} \subseteq P \subseteq C_{n}$. As g_{n}^{-1}, j^{-1} agree on $D_{n} \cap M_{00}$ and $C_{n} \cap M_{00}=g_{n}^{-1}\left(D_{n} \cap M_{00}\right)$, we have that g_{n}, j agree on $C_{n} \cap M_{00}$, completing the "back" step of the back-and-forth construction.

Thus we have that:
Theorem 6.13. There is a G_{0}-flow with a comeagre orbit.
Proof. Let $r: G_{0} \rightarrow G_{00}, r(g)=\left.g\right|_{M_{00}}$ be the restriction map. By the above lemma r is surjective, and it is straightforward to see that r is continuous. Therefore, taking the universal minimal flow $X\left(\mathcal{E}_{00}\right)$ of G_{00} and precomposing with r, we obtain a G_{0}-flow $G_{0} \curvearrowright X\left(\mathcal{E}_{00}\right)$ with a comeagre G_{0}-orbit.
Remark 6.14. Note that the G_{0}-flow $G_{0} \curvearrowright X\left(\mathcal{E}_{00}\right)$ is not faithful.

Chapter 7

Further questions

Question 7.1. Do minimal subflows of $\mathcal{L O}\left(M_{0}\right)$ or $\mathcal{L O}\left(M_{F}\right)$ have all G-orbits meagre?
Question 7.2. Can we adapt the construction of $\mathcal{E}_{\text {fin }}$ to force certain orientations within sccs, and thereby extend Theorem 4.18 from M_{1} to M_{0} ?

Question 7.3. Is there an "acyclic" version of M_{F} ? Can we then apply the proof method of Theorem 4.18?

Specifically, for $A, B \in \mathcal{C}_{1}$, say $A \leq_{e} B$ if there exists an acyclic 2orientation B^{+}of B in which $A \sqsubseteq_{s} B^{+}$and there does not exist $b \in B$ with two out-edges into A. Can we define a subclass \mathcal{C}_{G} of \mathcal{C}_{1} such that $\left(\mathcal{C}_{G}, \leq_{e}\right)$ is a free amalgamation class with ω-categorical Fraïssé limit?

Bibliography

[1] J. Auslander. Minimal flows and their extensions, volume 153 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1988. Notas de Matemática [Mathematical Notes], 122.
[2] I. Ben Yaacov, J. Melleray, and T. Tsankov. Metrizable universal minimal flows of Polish groups have a comeagre orbit. Geom. Funct. Anal., 27(1):67-77, 2017.
[3] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.
[4] P. Cameron. The pigeonhole property. https://cameroncounts.wordpress. com/2010/10/11/the-pigeonhole-property/, 2010.
[5] D. Evans. Homogeneous structures, omega-categoricity and amalgamation constructions. http://wwwf.imperial.ac.uk/~dmevans/Bonn2013_DE.pdf - unpublished notes from talks given at the Hausdorff Institute for Mathematics, Bonn, 2013.
[6] D. Evans, J. Hubička, and J. Nešetřil. Automorphism groups and Ramsey properties of sparse graphs. 2017. Personal communication - unpublished 2017 draft version of the 2019 published paper.
[7] D. Evans, J. Hubička, and J. Nešetřil. Automorphism groups and Ramsey properties of sparse graphs. 2018. arXiv:1801.01165v3-2018 preprint (version 3) of the 2019 published paper.
[8] D. Evans, J. Hubička, and J. Nešetřil. Automorphism groups and Ramsey properties of sparse graphs. Proceedings of the London Mathematical Society, 119(2):515-546, 2019.
[9] D. Evans, J. Hubička, and J. Nešetřil. Ramsey properties and extending partial automorphisms for classes of finite structures. Fund. Math., 253(2):121-153, 2021.
[10] D. M. Evans. Ample dividing. J. Symbolic Logic, 68(4):1385-1402, 2003.
[11] D. M. Evans. Trivial stable structures with non-trivial reducts. J. London Math. Soc. (2), 72(2):351-363, 2005.
[12] D. M. Evans, Z. Ghadernezhad, and K. Tent. Simplicity of the automorphism groups of some Hrushovski constructions. Ann. Pure Appl. Logic, 167(1):22-48, 2016.
[13] R. Fraïssé. Sur l'extension aux relations de quelques propriétés des ordres. Ann. Sci. Ecole Norm. Sup. (3), 71:363-388, 1954.
[14] W. Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
[15] E. Hrushovski. A stable \aleph_{0}-categorical pseudoplane. Unpublished notes, 1988.
[16] E. Hrushovski. A new strongly minimal set. Ann. Pure Appl. Logic, 62(2):147166, 1993.
[17] J. Hubička and J. Nešetřil. All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Adv. Math., 356:106791, 89, 2019.
[18] A. A. Ivanov. Generic expansions of ω-categorical structures and semantics of generalized quantifiers. J. Symbolic Logic, 64(2):775-789, 1999.
[19] A. S. Kechris, V. G. Pestov, and S. Todorcevic. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal., 15(1):106-189, 2005.
[20] A. S. Kechris and C. Rosendal. Turbulence, amalgamation, and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. (3), 94(2):302350, 2007.
[21] D. Marker. Model Theory: An Introduction, volume 217 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
[22] C. S. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. of London Math Soc., 39(1):12, 1964.
[23] J. Nešetřil. For graphs there are only four types of hereditary Ramsey classes. J. Combin. Theory Ser. B, 46(2):127-132, 1989.
[24] L. Nguyen Van Thé. More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions. Fund. Math., 222(1):19-47, 2013.
[25] A. Zucker. Topological dynamics of automorphism groups, ultrafilter combinatorics, and the generic point problem. Trans. Amer. Math. Soc., 368(9):67156740, 2016.

[^0]: ${ }^{1}$ Let X be a set, and let $\mathrm{cl}: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ be a function on the power set of X. cl is a closure operator if it is (1) extensive: $A \subseteq \operatorname{cl}(A),(2)$ increasing: $A \subseteq B$ $\Rightarrow \operatorname{cl}(A) \subseteq \operatorname{cl}(B)$ and (3) idempotent: $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.

