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Abstract 
 
 
Background 
 
There is an unmet need for real-time intraoperative colorectal tissue recognition, which would 

promote personalised oncologic decision making. Rapid Evaporative Ionization Mass Spectrometry 

(REIMS) analyses the composition of cellular lipids through the aerosol generated from 

electrosurgical instruments, providing a novel diagnostic platform and surgeon feedback.  

 
 
Thesis Hypothesis 
 
Colorectal lipid metabolism and cellular lipid composition are associated with the phenotype of 

colorectal adenomas and carcinomas, which can be leveraged for tissue recognition in vivo.   

 
 
Methods 
 
This thesis contains three work packages. First, a method for REIMS spectral quality control was 

developed based on a human dataset and analysis of a porcine model assessed the spectral impact 

of technical and environmental factors. Second, an ex vivo spectral reference database was 

constructed from analysis of human colorectal tissues, assessing the ability of REIMS for tissue 

recognition. Finally, REIMS was translated into the operating theatre, for proof-of-principle 

application of during transanal minimally invasive surgery (TAMIS).  

 
 
Results 
 
Sensitivity analyses revealed seven minimum quality criteria for REIMS spectra to be included in all 

future statistical analyses, with quality also impacted by low diathermy power, coagulation mode 

and tissue contamination. Based on tissue of 161 patients, REIMS could differentiate colorectal 

normal, adenoma and cancer tissue with 91.1% accuracy, and disease from normal with 93.5% 

accuracy. REIMS could risk-stratify adenomas by predicting grade of dysplasia, however not 

histological features of poor prognosis in cancers. 61 pertinent lipid metabolites were structurally 

identified. REIMS was coupled to TAMIS in seven patients. Optimisation of the workflow 
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successfully increased signal intensity, with tissue recognition showing high accuracy in vivo and 

identification of a cancer-involved margin.  

 
 
Discussion 
 

This thesis demonstrates that REIMS can be optimised and applied for accurate real-time 

colorectal tissue recognition based on cellular lipid composition. This can be translated in vivo, 

with promising results during first-in-man mass spectrometry-coupled TAMIS.  
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without (N 0) presence of nodal micrometastasis. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 
Figure 6.16 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with (N 1/2) or without (N 0) nodal micrometastasis based on the TNM criteria.  
 
Figure 6.17 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components (A) and a cross validated 
OPLS-DA plot (B) demonstrating the ability of REIMS to differentiate early (AJCC I/II) or advanced 
(AJCC III/IV) tumours. The tolerance ellipse in A represents the 95% boundary on the 2-
dimensional scores plot as per Hotelling’s T2 distribution.  
 
Figure 6.18 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
early (AJCC I/II) or advanced (AJCC III/IV) tumours.  
 
Figure 6.19 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.357 and Q2 of 0.285 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours with or without EMVI. The tolerance ellipse in A represents the 
95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 
Figure 6.20 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without EMVI.  
 
Figure 6.21 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.356 and Q2 of 0.389 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours with or without LVI. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
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Figure 6.22 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without LVI. 
 
Figure 6.23 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.35 and Q2 of 0.354 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of REIMS 
to differentiate tumours with or without tumour budding. The tolerance ellipse in A represents 
the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 
Figure 6.24 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without tumour budding. 
 
Figure 6.25 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.347 and Q2 of 0.368 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours that produce mucin from those that do not. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
 
Figure 6.26 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours that produce mucin from those that do not.  
 
Figure 6.27 – photos of validation polyp validation sections showing low-grade (A) and high-grade 
(B) dysplasia.  
 
Figure 6.28 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.473 and Q2 of 0.544 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate adenomas with low-grade from high-grade dysplasia. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
 
Figure 6.29 – confusion matrices of REIMS on LOPO CV of an LDA model for the prediction of 
adenomas that have HGD present in the validation section (A) or anywhere in the polyp on formal 
histopathology (B).  
 
Figure 6.30 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.503 and Q2 of 0.333 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to predict the highest grade of dysplasia within a sampled adenoma. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
 
Figure 6.31 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.529 and Q2 of 0.513 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate villous and tubular adenomas. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 
Figure 6.32 – confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
villous adenomas (VA) and tubular adenomas (TA). 
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Figure 6.33 – VIP score plots from OPLS-DA models of tumour vs normal (A), tumour vs adenoma 
(B) and adenoma vs normal (C). The bins are ordered by descending score on the x axis, with those 
highlighted in red selected for MS/MS.  
 
Figure 6.34 – MS/MS spectrum of PE_Cer(d18:1/16:0)-NH3-H in bin 642.45m/z, with structural 
annotations of the fragments (A) and the parent ion (B).  
 
Figure 6.35 – MS/MS spectrum of PE(18:1/18:1)-NH3-H and PE(18:0/18:2)-NH3-H in bin 725.55m/z, 
with structural annotations of the fragments (A) and the parent ion (B).  
 
Figure 6.36 – MS/MS spectrum of PCh(18:1/16:0)-CH3 in bin 744.55m/z, with structural 
annotations of the fragments (A) and the parent ion (B).  
 
Figure 6.37 – MS/MS spectrum of DG(20:3/18:2,O2)+Cl and DG(20:4/18:1,O2)+Cl in bin 
709.45m/z, with annotations of the fragments (A) and the parent ion structure presented(B).  
 
Figure 6.38 – box and whisker plots of the relative abundance of 9 metabolites across colorectal 
normal, adenoma and tumour tissue; with the exact mass and identity from MS/MS shown. The 
box reflects the 25-75th percentiles with a median line and the whiskers are 1.5 x interquartile 
range without extending beyond a datapoint. A jitter plot of the raw data is presented (grey).  
 
Figure 6.39 – box and whisker plots of the total relative abundance of 7 lipid classes across normal, 
adenoma and tumour tissue. The box reflects the 25-75th percentiles with a median line and the 
whiskers are 1.5 x interquartile range without extending beyond a datapoint. A jitter plot of the 
raw data is presented (grey).  
 
Figure 6.40 – heatmap of how the relative abundance of different lipid subtypes is associated with 
colorectal tissue type, with unsupervised clustering represented with a dendrogram.  
 
Figure 6.41 – heatmap of how the relative abundance of PUFAs and MUFAs within GPLs is 
associated with colorectal tissue type (A) and visualised in a box as whiskers plot with jitter (B and 
C respectively).  
 
Figure 6.42 – box and whisker plots of the total relative abundance of 7 lipid classes across normal, 
low-grade dysplastic adenomas, high-grade dysplastic adenomas and tumour tissue. 
 
Figure 6.43 – heatmap of how the relative abundance of PUFAs and MUFAs within GPLs is 
associated with colorectal tissue type with adenomas separated into those with high- and low-
grade dysplasia (A) and visualised in a box as whiskers plot with jitter (B and C respectively).  
 
Figure 6.44 – boxplots of the relative abundance of free PUFAs (A) and MUFAs (B) across 
colorectal tissue types with adenomas separated into those with high- and low-grade dysplasia. 
 
Figure 7.1 – PTFE tubing taped alongside the TAMIS dissection instrument to allow aerosol 
aspiration intraoperatively. 
 
Figure 7.2 – OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 0.424 
and Q2 of 0.538 differentiating spectra from rectal normal, adenoma and tumour tissues (A) and a 
confusion matrix of the diagnostic accuracy on LOPO CV from an LDA model (B).  
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Figure 7.3 – representative spectra over the 150-1000m/z range for the analysis of normal mucosa 
ex vivo (A), in vivo prior to the optimisation of the analytical system (B) and in vivo collection 
following optimisation (C). All spectra have the same y axis values to allow comparison.  
 
Figure 7.4 – still photographs from MS-TAMIS cases showing the impact of tubing position on the 
dissector – with a tubing that is prone to aspirate blood from the dissection (A), obscuring the 
view of the surgeon (B) and optimally positioned (C). 
  
Figure 7.5 – The internal connector used to adjoin two lengths of PTFE tubing, reducing the 
internal diameter from 3mm to approximately 1.5mm 
 
Figure 7.6 – the raw spectra collected in vivo during MS-TAMIS from rectal mucosa, submucosa 
and a mixture of the two. The ratio between the glycerophospholipids (blue box) and triglycerides 
(orange box) can be used to differentiate the layers. Reused from Mason et al.  
 
Figure 7.7 – confusion matrix of ability of REIMS to differentiate rectal disease from normal 
mucosa during MS-TAMIS in patient JLA 623.  
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Chapter 1 – Clinical Background and Introduction to Mass Spectrometry 
 

 

1.1 Colorectal Cancer 
 

 

1.1.1 Epidemiology 
 
Colorectal cancer (CRC) is a heterogenous disease that disproportionately impacts economically 

developed countries such as the United Kingdom (UK)1. In recent years, the overall incidence of 

the disease in the UK has remained stable at around 640 cases per million people, however from 

an age standardised perspective, it is increasing; driven by a rise in CRC in patients less than 50 

years of age1-3. Whilst annual mortality rate has fallen over the past 30 years and currently sits at 

250 deaths per million people, CRC is still the 2nd most common cause of cancer death in the UK3,4.   

 

Many risk factors and causative mechanisms have been described for the formation of CRC from a 

population to molecular level, however these are incomplete in describing the observed variation 

in the incidence of carcinogenesis. Familial CRC caused by single gene mutations account for 

approximately 10% of cancers, however, of those remaining, multiple attempts to develop risk 

models incorporating family history, lifestyle, environmental factors and single-nucleotide 

polymorphisms consistently show predictive accuracies in the region of 60-70%5-7. A cohort of 

lifestyle and environmental risk factors have repeatedly been shown to increase CRC risk in a dose-

dependent fashion, including alcohol intake, red and processed meat consumption, low fibre 

intake, tobacco smoking and obesity8-10. Gender also has an impact, with men in the UK suffering 

with a 50% higher age-standardised incidence and 56% higher age-standardised mortality3. 

 

 
1.1.2 Investigation and Diagnosis 
 

Early detection of CRC is recognised to improve patient outcomes by allowing surgical intervention 

when the cancer is at a lower stage and as such, a variety of national programs are in place to 

identify those patients who are at increased risk. The bowel cancer screening program (BCSP), the 

integration of rapid assessment pathways between primary and secondary care, and surveillance 
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programs all work to this end with noted success, however as a consequence, there has been a 

marked increase in demand for colonoscopy11-15.  

 

Colonoscopy is the gold-standard method for investigating the colorectum15. It allows magnified 

mucosal visualisation in high definition and once indeterminate lesions are detected, biopsies can 

be conducted. These are fixed in formalin, paraffin embedded, sectioned and stained with 

Haemotoxylin and Eosin, with the diagnosis made upon microscopy by a certified histopathologist. 

Whilst imaging modalities such as virtual colonoscopy by computerised tomography (CT) have a 

high sensitivity for CRC, the diagnosis can only be formally made with confirmation on biopsy16.  

 

 

1.1.3 Pathology  
 

The normal-adenoma-carcinoma progression describes a process by which colorectal 

carcinogenesis occurs through sequential genetic and epigenetic alterations, which is responsible 

for both the initiation and progression of the majority of neoplastic lesions17. The initial event is a 

mutation in the DNA of an epithelial stem cell, which clonally expands to fill the entire crypt and 

then further expands through crypt fission18,19. This process results in the formation of an 

adenoma, defined histologically by the presence of dysplastic cells; which can be considered a pre-

cancerous lesion17. As the mutational burden increases further (often over many years), the grade 

of dysplasia increases (from low to high) and eventually, cells invade through the muscularis 

mucosae into the submucosa as a carcinoma (Figure 1.1). The genetic hallmarks of this progression 

include the inactivation of tumour suppressor genes (such as APC and p53), activation of 

oncogenes (such as KRAS) and loss of heterozygosity for the long arm of chromosome 18; with 

some ongoing debate as to the order of mutations, which are required and how they correlate 

with morphology20-22. It is believed that this sequence is responsible for 70-80% of all CRCs, with 

the rest caused by de novo carcinogenesis23.  
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Figure 1.1 – The normal-adenoma-carcinoma progression with the timepoints of commonly 
accumulated genetic changes, which ultimately results in tumour cells invading through the 
muscularis mucosae (orange) as an invasive carcinoma. Adapted with permission from Walther et 

al.24 
APC – adenomatous polyposis coli; CDC4 – cell division control protein 4. 

 

 

Many histological subtypes of colorectal carcinoma are described, of which over 95% are 

adenocarcinoma, where they develop from the glandular columnar epithelium of the colorectum 

as described above25. The largest subgroup of adenocarcinomas are those that produce excess 

mucin, which when accounting for over 50% of the tumour volume, defines the presence of a 

‘mucinous’ adenocarcinoma and when predominantly intracellular, defines the signet-ring 

phenotype26. This historical categorisation of CRC based on morphology has been augmented by 

the discovery that they can also be defined by molecular subtype, which can often directly 

correlate with clinical phenotype including treatment response. An example is chromosomal 

instability (CIN), which accounts for 85% of the adenoma-carcinoma transitions and is 

characterized by gains or losses of large portions of chromosomes and loss of heterozygosity of 

tumour-suppressor genes17. Microsatellite instability (MSI) is a further subtype, found in 20% of 

sporadic and almost all hereditary non-polyposis colorectal cancers (HNPCC); where there is 

impaired DNA mismatch repair causing increased mutation rate17. The consensus molecular 

subtype (CMS) of colorectal cancers is another classification system which integrates factors which 

are increasingly understood to impact tumour proliferation, such as the immune system and 

stroma27,28. This describes four subtypes (CMS1 – immune; CMS2 – canonical; CMS3 – metabolic; 

CMS4 – mesenchymal), which despite being defined transcriptomically, correlate closely with 

significant genomic, histological and clinical features (including cancer specific survival and 

response to radiotherapy)27-29. Adenomas are subtyped morphologically, by whether they present 
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tubular (similar to normal mucosa), villous (finger-like projections), serrated (saw-tooth like) or 

mixed features30.  

 

The tumour, nodes and metastasis model (TNM), Dukes’ criteria and the American Joint 

Committee on Cancer (AJCC) are clinico-pathological (or purely pathological in the case of Dukes) 

methods of staging CRCs by assigning scores to the anatomical location of the tumour cells 

(appendix 1-2)31-33. These correlate with clinical outcomes such as overall survival, with a worse 

prognosis associated with higher stages31,34; however concerns have been raised regarding their 

lack of biological basis, changing criteria over time and interobserver reproducibility35,36. In order 

to better correlate disease with relevant clinical outcomes, it is likely that the future of CRC staging 

will be an integration of morphological, genomic, transcriptomic and metabolic features.  

 

 

1.1.4 Surgical and Endoscopic Management 
 

The approach to the management of colorectal polyps and cancers is significantly different. 

Colorectal polyps are found at 60% of colonoscopies (within a BCSP cohort), of which 

approximately 80% are adenomas37. Considering that adenomatous polyps may transform into 

carcinomas if left in situ for a sufficiently long time, removal via polypectomy has been 

demonstrated to reduce CRC mortality in the following 15 years by 53%22,38. This is commonly 

performed using a biopsy forceps for 1-3mm lesions, a ‘cold’ snare (where no diathermy is 

applied) or ‘hot’ snare using diathermy for lesions 4-9mm39. For larger polyps, endoscopic mucosal 

resection (EMR) can be performed, where the mucosa may be lifted from the muscularis using an 

injection, at which point a snare excises the lesion (using electrocautery)40. Whilst EMR is relatively 

simple and fast to perform, it suffers with an inability to remove large lesions in a single piece and 

it is believed that residual disease left after resection is responsible for the recurrence rate of 15-

20%41. An alternative is endoscopic submucosal dissection (ESD), which dissects through the 

submucosal plane using diathermy to remove colorectal lesions en bloc; however this is 

technically challenging, time consuming and has a higher risk of perforation compared to EMR42. 

The role of real-time polyp diagnosis and tailored management strategies dependent on this are 

explored in more detail later in this thesis.  
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For the most part, curative strategies for colorectal cancer require resection of all cancer cells en 

bloc and is therefore most commonly achieved with surgical resection such as hemicolectomy. 

This can be augmented with oncologic therapies such as chemotherapy and/or radiotherapy, 

which can be administered pre-, intra- or post-operatively dependent on the disease stage or 

histological features of risk. As pre-operative staging with high resolution MRI for rectal cancer has 

improved, there is an increasing use of local excision rather than radical resection of the total 

mesocolon for early rectal cancers (radiologically T1 N0 M0)43,44. The capability for successful 

transanal local excision advanced significantly with the advent of transanal endoscopic 

microsurgery (TEMS), which uses a specially designed rigid endoscopic platform for access and 

resection45,46. Whilst TEMS is still used, transanal minimally invasive surgery (TAMIS) is a 

progression of the technique, where instead of using dedicated equipment, a hybrid approach is 

employed using similar instruments to those used in single incision laparoscopic surgery47. Local 

excision benefits from lower morbidity, mortality and length of hospital stay compared to radical 

resection, with a quality of life similar to healthy controls48,49; however, concerns have been raised 

regarding oncological outcomes. A database study from the USA has revealed a 5-year local 

recurrence rate of 12.5 versus 6.9% when local excision is compared to radical resection for stage I 

rectal cancers, with another study finding a reduced disease-specific survival50,51. The reasons for 

this have been hypothesized to be that local excision does not remove nodal micrometastasis 

(which is estimated to be 7-18% in T1 cancers) and that the R0 resection rate (cancer-free surgical 

margins) is lower than with resectional surgery44,51-54.  

 

 

1.1.5 Electrosurgery 
 

Electrosurgery refers to the application of high frequency oscillating electric current to tissue in 

order to achieve a desired clinical effect, including haemostasis, tissue cutting and ablation55. 

Delivery of the current requires the formation of an electrical circuit, most commonly achieved 

using two electrodes (main and return). Monopolar diathermy integrates the main electrode into 

the surgical instrument, where the current passes through the patient to a broad pad used as the 

return electrode at a distant body site. Bipolar diathermy uses a surgical instrument containing 

both the main and return electrodes, for example forceps or scissors; with the current only 

passing through the tissue being manipulated. The nature of the electric current applied will 

influence the impact on tissues during electrosurgery, the most notable of which is the difference 
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between the modes of cut and coagulation. Cut uses continuous delivery of current with a 

sinusoidal waveform, creating significant heat to vaporise tissues, resulting in dissection. 

Coagulation mode uses a greater voltage however interrupts the delivery of current such that it is 

being applied for approximately 6% of the time, causing the formation of a coagulum due to the 

lower heat generation55. Furthermore, the magnitude of the power applied to the electrosurgical 

instrument (measured in watts) will relate to the degree of clinical effect.  

 

Electrosurgical devices are indispensable tools used by clinicians for tissue manipulation and given 

the simple principles upon which they function, many different devices have been designed. 

Monopolar diathermy is the most ubiquitously applied electrosurgical technique in the 

management of patients with colorectal disease, with the handheld diathermy, TAMIS dissector 

and endoscopic snare being the three most commonly used devices (Table 1.1).  

 

 Diathermy Pencil TAMIS Dissector Snare 

Picture 

   

Description 
Versatile handheld device with 

blade-style electrode most 
common 

Laparoscopic instrument with 
a bent shaft of 5mm 

diameter and a pointed 
electrode tip 

Retractable wire snare within 
a plastic sheath of 2-3mm 

diameter. The snare may be a 
single wire or braided, 

contain barbs and can open 
to varying shapes and sizes 

Method of 
Use 

Held like a pencil to apply current 
with the electrode tip. Finger 

switches to activate delivery of 
current in cut (yellow) or 
coagulation (blue) modes 

Instrument passed 
transanally through a 
dedicated port with 

diathermy applied using a 
foot pedal 

Passed down the working 
channel of an endoscope for 
snare deployment. Tissue is 

caught in the snare and 
diathermy applied during 

snare retraction. Activation is 
via a foot pedal 

Clinical 
Indications 

General purpose use in open 
surgery, including skin incision, 

tissue dissection and haemostasis 

Used during TAMIS for 
dissection and haemostasis 

Endoscopic mucosal 
resection (polypectomy) 

Common 
Settings 

25-30W 25-35W 15-25W 

 
Table 1.1 – Design and clinical application for commonly used monopolar electrosurgical devices in 
management of colorectal disease.  
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1.2 Lipids and Cancer Metabolism 
 

 

1.2.1 Common Lipid Structures 
 

Lipids are organic biomolecules which are insoluble in water but can be dissolved in non-polar 

solvents such as ethanol and chloroform56. This broad group of molecules can be divided into eight 

categories based on the presence of ketoacyl and isoprene groups, of which three are the most 

biologically abundant and the focus of this thesis – fatty acids, glycerolipids and 

glycerophospholipids57.  

 

Glycerolipids are characterized by a glycerol backbone of three carbon atoms, where groups can 

be esterified to the hydroxyl positions to create different complex lipids. Glycerophospholipids 

(GPLs) are where two hydroxyl groups are esterified by fatty acids (R1 and R2) and in the third 

position, a polar headgroup of an amino alcohol phosphate ester58. A large variety of alcohols can 

be substituted into the polar headgroup, which determines the subtype of GPL (examples given in 

figure 1.2). Furthermore, the fatty acids are commonly linear chains of between 12-22 carbons, 

with unsaturated versions having one or more C=C bonds (denoted as a:b, where a is the number 

of carbon atoms and b is the number of double bonds). Common glycerolipids without a 

phosphate ester linkage are the di- and tri- acylglycerols, containing two (DG) or three (TG) fatty 

acyl chains respectively.  

 

 
 
Figure 1.2 – The structure of glycerophospholipids, with the positions shown where fatty acyl 
chains (R1 and R2) and an amino alcohol (X) can be substituted to change the subtype and 
molecular species of the lipid. Example headgroup substitutions are given in the inset table.  
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1.2.2 Normal Function and Metabolism of Lipids Within Cells 
 

Lipids are abundant within mammalian cells, where they are responsible for a large variety of 

functions; most notably structure creation, signalling and energy provision59. 60% of cellular lipid 

mass is GPLs, which are largely located in bilayers to create the cellular membrane and intra-

cytoplasmic organelles such as endoplasmic reticulum59. PCh, PS, PI and PE species are the most 

common GPLs in cell membranes, with a differential abundance between the inner and outer layer 

for both the GPL subtype as well as the saturation of FAs; due to the necessary interaction with 

cholesterol and membrane proteins to create structures such as signalling lipid rafts60,61. The role 

of lipids in energy creation is evident when examining their metabolism.  

 

Lipids within the human body can be introduced through dietary intake or from de novo synthesis, 

which occurs mainly in the liver. De novo fatty acid biosynthesis is characterized by the creation of 

palmitic acid (16:0) through repeated condensations of acetyl groups from the TCA cycle by the 

fatty acid synthase enzyme (FASN). Chain lengths can be catabolized in the mitochondria or 

peroxisomes through a process called b-oxidation, where two carbon atoms are cleaved, 

producing acetyl-CoA which ultimately produces two ATP molecules following oxidative 

phosphorylation62. Considering the high number of carbon atoms in TGs that can undergo b-

oxidation, they are a primary energy source for mammalian cells. Fatty acid chain elongation is 

again in multiples of two carbon atoms, where a four-step enzymatic process is initiated by a 

family of elongation of very long fatty acid (ELOVL) enzymes63. Desaturation (the creation of C=C 

bonds) can be performed by a family of enzymes named stearoyl-CoA desaturase 

(SCD)64.  

 

 

1.2.3 Dysregulation of Lipid Metabolism in Cancer 
 

A century ago, it was recognised that the metabolism of a tumour cell is vastly different to its 

normal counterparts. Otto Warburg was the first to describe how despite the presence of 

adequate oxygen, tumour cells preferably metabolise glucose using glycolysis rather than 

oxidative phosphorylation; despite this being less efficient65,66. As knowledge has progressed, 

transcriptional activation of oncogenes has been revealed to dramatically change the metabolism 
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of almost all biomolecules, including small metabolites, nucleotides, hormones, proteins, 

carbohydrates and lipids65.  

 

When considering the key tenet of tumour cells – uncontrolled cellular growth and proliferation – 

it is possible to understand how regulatory changes to lipid metabolism may confer a selective 

advantage. Cell division is an energy intensive process which also requires de novo synthesis of 

fatty acids to be used in new lipid bilayers and as such, enzymes in the lipid biosynthesis pathway 

are commonly overexpressed67. This is driven by oncogenes such as p53 acting on the SREBP 

transcription factors, which impacts the expression of key enzymes such as FASN and SCD (figure 

1.3)57,67,68. Furthermore, lipids are used by cancer cells for specific functions beyond energy 

generation and structural integrity. Examples include how FAs are used as ligands for nuclear 

receptors such as PPAR, PAs activate kinases used in intra-cellular signalling and sphingolipids 

impact the ability of cancer cells to migrate69-71. As such, lipid metabolic changes have been 

directly linked to differences in tumour cell proliferation, metastatic ability, avoidance of immune 

detection and resistance to apoptosis67,70,72-75.  

 
 

 
 

Figure 1.3 – Dysregulation of lipid metabolism in cancer cells, revealing how changes to SREBP 

transcription factors influences enzymes in the lipid biosynthesis pathway. Adapted with 

permission from Santos & Schulze67.  
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The dysregulation of lipid metabolism seen in carcinogenesis will inevitably impact the relative 

abundance of lipid species within cancer cells, even if the total lipid content may decrease76. 

Multiple studies have assessed this in CRC and whilst differences are commonly found when 

making comparisons to normal mucosa, the exact nature and extent of the differences varies 

between studies57. Table 1.2 details the differential abundance of certain lipid metabolites when 

comparing CRC to normal mucosa; demonstrating differences across lipid subtype and fatty acyl 

chain length.  

 

Lipid Class Structure Relative Abundance in 
CRC Study 

Fatty Acids 

14:0 Mixed findings Mika77, Qiu78, Tian79 

16:0 Decreased Mika77, Li80 

16:1 Mixed findings Mika77, Zhang81, Qiu78, Tian79 

18:2 Mixed findings Zhang81, Yang82, Mika76 

20:1 Increased Guo83, Chen84 

20:5 Increased Mika77, Yang82 

Glycerophospholipids 

PA(34:0) Increased Alexander85 

PA(34:2) No change Wang86 

PA(36:2) Mixed findings Wang86, Guo83 

PCh(32:1) Increased Kurabe87, Shen88, Wang86 

PCh(36:1) Increased Wang86, Guo83 

PG(38:4) Decreased Alexander85 

PE(36:1) Increased Wang86 

PE(36:2) Increased Wang86 

PI(38:3) Increased Wang86 

Glycerolipids 

TG(54:0) Decreased Alexander85 

Total TGs Decreased Mika76 

DG(36:3) Decreased Alexander85 

Sphingolipids 

SM(36:1:2) Decreased Wang86 

SM(40:1:2) No change Wang86 

Cer(34:1:2) Increased Wang86 

Cer(42:1:2) No change Wang86 
 
 
Table 1.2 – a selection of lipid species found to have differential abundance when comparing CRC 
and normal mucosa from patients.  
PA – phosphatidic acid; PCh – phosphatidylcholine; PG – phosphatidylglycerol; PE – phosphatidylethanolamine; 
PI – phosphatidylinositol; TG – triglyceride; DG – diglyceride; SM – sphingomyelin; Cer – ceramide.  
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1.2.4 Lipid Abundance and Clinical Phenotype 
 

Considering the composition of lipid molecules in a cell (coined the lipidome) is based on its 

underlying metabolic processes, this may be sufficiently unique that it could be characteristic of 

the cell type itself89. This link between cellular lipid composition and clinical phenotype is realised 

when considering that unique lipid signatures can be used to distinguish organ of origin and 

presence of different metabolic, degenerative and neoplastic diseases70,90,91. Therefore, a 

technique whereby the lipidome can be measured clinically may give data regarding the presence 

of neoplastic disease. In addition, there is the potential to inform on other clinically relevant 

features, such as whether the tumour is in the early or advanced stage80,81 and whether DNA 

mismatch repair is deficient92. 

 

 
1.3 Metabolomics 
 

Metabolomics is the comprehensive and quantitative study of all metabolites generated in a 

biological system, referred to as the metabolome93. This set of molecules can be considered the 

ultimate consequence and therefore a convergence point between all influences on the regulation 

of cellular metabolism, whether related to host biology or the environment94.  These influences 

are often complex and dynamic systems themselves which can be intrinsically linked, including the 

host genome (DNA with its variants and mutations), the transcriptome (RNA transcripts of protein-

coding and non-coding regions of DNA) the proteome (translation of RNA into polypeptides with 

consequent post-translational modifications into biologically active proteins), the microbiome 

(symbiotic and pathogenic organisms, of which just bacteria are of a similar number to human 

cells) and the chemical influence of the environment (such as toxins, diet and medications)93,95-98. 

Despite their interconnectivity, these systems are often analysed in isolation. This has yielded 

some success in increasing the understanding of human disease and the associated cellular 

processes, for example, transcriptomic studies of CRC have revealed how differential expression of 

genes promotes carcinogenesis, relates to disease stage and can impact recurrence and survival99-

103.  Genomic analyses have started to reveal the basis for the 35% of cancers believed to be 

caused by heritable genetic susceptibility, the cascade of cumulative DNA mutations required for 

carcinogenesis and describing how DNA stability impacts response to chemotherapeutics20,104,105. 

Attempts have been made to integrate several of these complex systems to develop a more 
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holistic understanding of biology and bridge the ‘genotype-to-phenotype’ gap, however this has 

been limited by incomplete understanding of each component and difficulties appreciating the 

impact of process variation on end function106,107.  

 

Metabolites are the substrate of all metabolic processes such that they can be considered 

mechanistically linked to biochemical function and therefore, their relative abundance is intrinsic 

to cellular phenotype108. Metabolomics takes a systems biology approach, where large numbers of 

small metabolites in a relevant bio-sample (such as tissue, serum or urine) are measured and then 

statistically analysed to define the unique metabolic features associated with each phenotype. 

Differences in metabolite abundance can have many implications for human health and disease, 

where independent of whether they cause or are a consequence of the disease, they may be 

diagnostic (reveals presence of a pathology), predictive (forecasts response to treatment) or 

prognostic (insight into likely disease course). The profiling approach of metabolomics, where 

potentially thousands of diverse metabolites are measured to identify the few that are biologically 

relevant also benefits from the investigator not having to determine a priori which specific 

metabolites are of interest. As such, for pathologies where individual molecular biomarkers exist, 

metabolomics has been heralded as a promising discovery method109. In addition, for pathologies 

which share the same set of metabolites between groups with no novel biomarkers, metabolomics 

can assess how the fluctuations in their relative abundance correlate with disease phenotypes. By 

describing pathologies at such molecular resolution, researchers also have increasing ability to 

develop patient-specific diagnostics, monitoring and therapeutics; referred to as personalized 

medicine; which aims to optimise delivery of healthcare by reducing the impact of inter-patient 

variability110.  

 

Untargeted metabolomics requires the totality of the metabolites within a sample to be analysed 

(even if their structure is unknown) however, no analytical platform currently exists which can 

achieve this110. Considering the total metabolome consists of molecules with a vast array of 

masses, chemical structures and physical properties; each technique developed to date 

demonstrates a bias towards certain sub-classes of metabolites based on its design, technical 

parameters and sample type used110,111. As a result, profiling metabolomic research often aims to 

be semi-targeted - the investigator decides the general sub-classes of metabolites that are of 

potential interest, before selecting one or more complementary analytical techniques (and their 

relevant technical parameters) which are best suited. Further considerations are that each 
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platform differs in the required sample size, method of sample preparation, cost, acquisition time, 

sensitivity and ease of metabolite identification112-114. In addition to Nuclear Magnetic Resonance 

(NMR) spectrometry, mass spectrometry (MS) has been at the forefront of metabolomic 

research115. 

 

 

1.4 Mass Spectrometry 
 

Mass spectrometry is a technique for metabolomic analysis which generates spectral data for 

molecules within a bio-sample in the form of a mass:charge ratio (m/z) and a relative intensity116. 

The basic principle upon which this is achieved is by performing three processes in succession: 

ionisation, mass analysis and finally, detection.  

 

First, metabolites within the analyte must be ionized to have a charge of integer value. Positive 

ions can be generated through protonisation (gain of H+), cationisation (gain of cations such as Na+ 

and NH4
+) or electron ejection. Negative ions can be generated through deprotonisation (loss of 

H+), decationisation (loss of cations such as CH3
+), anionisation (gain of anions such as Cl- and 

HCOO-) or electron capture. Many ionisation techniques exist, with electrospray ionisation (ESI) 

and matrix-assisted laser desorption ionisation (MALDI) the most historically prominent. ESI 

passes a liquid analyte through a capillary tip subject to high voltages, creating an aerosol of 

charged droplets and after progressive evaporation of droplet solvent, the electric field strength 

reaches a critical point at which ions are ejected into the gas phase117. MALDI incorporates the 

analyte into a matrix of crystalised organic molecules, which are then excited by absorbing light 

from a laser, generating gas phase ions118. More recently, ambient ionisation techniques have 

been developed which do not require sample preparation and are therefore better designed for 

high-throughput or intraoperative use119. An example is desorption electrospray ionisation (DESI), 

which is a hybrid technique where a mist of charged solvent is pneumatically directed at a bio-

sample, absorbing molecules of the analyte on impact and then releasing these as secondary ions 

in the gas phase120. Each ionisation technique and metabolite have unique physical and chemical 

properties, such that selection of an optimum technique requires consideration of metabolite 

patterns of ionisation, degree of analyte molecule fragmentation, charge number generation, 

optimal mass ranges, sensitivity and adaptability to MS121.  
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Once in the gas phase, ions are injected into the mass spectrometer where mass analysis can take 

place. Whilst many different approaches have been invented for this, they rely on the principle 

that ions move differently in magnetic or electric fields based on their m/z value. Four of the most 

common techniques for mass analysis are presented in Table 1.3. It has long been recognised that 

there is no single mass analysis technique which is superior for all uses122, however their strengths 

can be augmented and weaknesses limited through the use of hybrid technologies. One such 

hybrid uses a quadrupole immediately preceding a time-of-flight (TOF) analyser, known as a Q-

TOF. Here, tandem MS can be conducted where the quadrupole is used for mass selection prior to 

fragmentation of the parent ion in a collision cell, with the fragments then entering the TOF for 

analysis across the whole mass range123. This complementary approach benefits from the high 

sensitivity of the quadrupole when selecting a single m/z and fast acquisition time with high mass 

accuracy using the TOF123.  

 

Following mass analysis ions reach a detector, which registers the arrival of incident ions through 

their impact creating secondary electrons (which are then amplified) or by recording the current 

generated from the ion’s moving electrical charge124. This allows formation of a mass spectrum, 

where the m/z ratios of detected ions can be plotted against the relative intensity, with the aim 

that this is closely representative of the relative intensity of the metabolites in the original bio-

sample.  

 

The vast potential number of molecules in a bio-sample undergoing analysis may create issues 

within the mass spectrometer. Ion suppression refers to biases in the ionisation efficiency due to 

other compounds that are present, whether they are part of the biological sample, additives (such 

as buffers) or contaminants (such as plasticisers from tubing)125. In addition, several distinct ions 

with similar m/z values arriving at the detector may cause peaks to overlap on the mass spectrum, 

causing a reduction in molecular specificity and ability to perform identification and 

quantification126,127. These errors can be addressed by performing a chromatography step prior to 

ionisation, as a method to separate complex matrices and reduce the number of species entering 

the mass spectrometer at each time point. One of the most popular techniques in metabolomic 

research is liquid chromatography (LC). In LC, a liquid bio-sample (or solution of extracted 

metabolites) travels through a column where the molecules separate based on an intrinsic 

physical or chemical property, such as polarity or hydrophobicity128,129. The compounds therefore 

elute into the mass spectrometer at different times and as a result, each ion detected will be 
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characterized by a retention time (time in the column until elution) and m/z ratio. This powerful 

technique can be used for complex samples containing a vast array of metabolite types (varying by 

biological class, polarity, volatility and mass), greatly reducing co-elution into the MS and its 

associated issues126. However, the addition of a chromatography step takes time (commonly 60 

minutes) and requires significant sample preparation. 
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Design Principle of Operation Method for m/z 
Calculation Diagram Strengths Weaknesses 

Time-of-
Flight 

Ions are accelerated in a vacuum flight 
tube using an electric field of known 
strength, such that they all have the 

same kinetic energy. Given that kinetic 
energy is ½mv2, lighter ions travel at a 

greater velocity than their heavier 
counterparts and reach the detector in a 

shorter time130 

Travel time 
between ion 
source and 

detector 

 

- Large mass range 
- High mass resolution 
- Fast acquisition time 

 

- Ion separation may be 
beneficial to avoid 

suppression at detector 
- High kinetic energies 

may cause 
fragmentation 

Sector 

Static electric or magnetic fields are 
applied to differentially deflect the 

trajectory of ions according to their m/z 
ratio (lighter ions and those with higher 
charge will deflect to a greater extent 

than their heavier and less charged 
counterparts)131 

Spatial differences 
between ions 
arriving at the 

detector 

 

- Very high 
reproducibility 

- High mass resolution 
and sensitivity 

- Less well suited to 
pulsed ion sources 

- Larger and higher cost 

Quadrupole 

Four parallel rods generate oscillating 
electric fields designed to stabilise or 

destabilise the spiral trajectory of ions 
based on their m/z ratio. Only ions with 
the selected m/z will pass through the 
quadrupole to the detector, with the 

others having unstable paths leading to 
collision with a rod and neutralisation123 

Known 
relationship 

between electric 
fields and flight of 
ions with selected 

m/z 
 

- Low cost 
- 3 can be placed in 

series for tandem MS 

- Low mass resolution 
- Low sensitivity when 
scanning large mass 

ranges 

Orbitrap 

An electrostatic field is applied between 
a central spindle and a surrounding 

electrode, with ions ‘trapped’ in 
elliptical trajectories. Their axial 

oscillations are harmonic - it 
independent of all factors other than 
the m/z. Ions induce an image current 
on the outer electrode allowing mass 

analysis132 

Fourier 
transformation of 

digitized image 
current  

 

- Small size 
- High mass resolution 

- Mass accuracy 
independent of 
dynamic range 

- Non-destructive ion 
detection 

- Requires ultra-high 
vacuum 

- Higher mass 
resolutions require 
greater acquisition 

times 
- Spectra prone to 

artefacts 

 
 
Table 1.3 – Summary of four common techniques for mass analysis within a mass spectrometer.  
m - ion mass; v - ion velocity 



 

 40 

1.5 Rapid Evaporative Ionisation Mass Spectrometry 
 

Rapid Evaporative Ionisation Mass Spectrometry (REIMS) is a technique first described in 2009, 

where aerosols containing biologically relevant molecules collide with a heated collision surface 

under ambient conditions, generating ions that can be injected directly into a mass spectrometer 

for analysis133,134. This approach benefits from not requiring sample storage or preparation, as it 

can be flexibly applied to continuously aspirate aerosols from a wide range of sources in real-time; 

most commonly electrosurgical devices, lasers and ultrasonic scalpels135. When coupled to a mass 

spectrometer designed for continuous ion injection (for example a TOF), it can create a rapid (and 

potentially high-throughput) platform for metabolite analysis and has been applied to tissue 

recognition, food safety, and microbiological detection136-138.  

 

To date, REIMS has been most commonly paired with aerosols generated from electrosurgical 

dissection. The application of an electric current to tissue during electrosurgery causes Joule 

heating through dissipation with non-zero impedance, resulting in temperatures of 700-800oC, 

where intracellular water boils and cells explosively rupture133.  This releases an aerosol of water 

droplets containing dissolved organic and inorganic components of the tissue, in addition to 

carbonized products from tissue burning139. This process also appears to create ions of tissue 

metabolites (both positive and negative), which can be within charged water droplets or as ionic 

clusters134,140. Surgical aerosols generated by electrosurgery are usually left to dissipate in the 

operating theatre or extracted using dedicated devices, however considering they contain 

biologically relevant molecules, could be used analyse the metabolome of the underlying tissue.  

 

A schematic of the REIMS ion source coupled to an electrosurgical instrument can be seen in 

Figure 1.4. The surgical aerosol is delivered to the source via a sample inlet tube, with a Venturi 

pump used to generate a sufficient negative pressure for timely delivery. An organic solvent such 

as isopropanol may also be co-aspirated with the surgical aerosol through an orthogonal 

additional inlet, as this has been demonstrated to increase the signal intensity by a factor of 2141. 

This matrix is directed using a transfer capillary towards a ceramic coil heated to 900oC, which acts 

as the collision surface. Upon impact, the ion-containing water droplets and ionic clusters in the 

aerosol release singly molecular ions in the gas phase, with some neutral species also ionized at 

this stage141. A stepwave ion guide then separates charged ions from neutral compounds and 

contaminants (such as carbonized material) and directs the ions to the MS for mass analysis142.  
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Figure 1.4 – schematic of a monopolar electrosurgical device coupled to a REIMS source. This 
demonstrates how the surgical aerosol is generated from tissue heating and is transported to the 
REIMS interface via PTFE tubing, powered by a Venturi device. The aerosol is then directed 
through a transfer capillary against a 900oC collision surface, generating gas-phase ions. Ions are 
then directed using a StepWave before injection into the mass spectrometer. The dashed blue line 
represents the path of the aerosol and ions (before and after the collision surface respectively).  
 

 

Lipids have been demonstrated to be the most effective class of molecule for metabonomic 

analysis of tissues using REIMS. This is likely due to several factors including that they are the most 

abundant metabolite class, do not denature at the temperatures applied by the electrosurgical 

devices (unlike proteins for example), are often charged under physiological conditions, do not 

easily fragment (conserving them from tissue to spectrometer) and as previously described, their 

metabolism is markedly impacted by the tissue type and in conditions of interest such as 

cancer89,141. 

 

 

1.6 Tandem Mass Spectrometry and Metabolite Identification 
 

When a lipid ion is submitted to conditions where there is sufficient energy to disassociate bonds 

and fragment the molecule into product ions, the pattern and position of this fragmentation 

occurs in a predictable manner143. Considering this, and that complex lipids are relatively simply 
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categorised based on their functional headgroup and fatty acyl chains, this creates an opportunity 

to use ion fragmentation as a method of structural identification for molecules of interest.  

 

This can be achieved by aligning two mass analysers, for example a single quadrupole which feeds 

into a TOF via a collision cell; hence the term ‘tandem’ MS (or MS/MS). First, it is necessary to 

identify in advance the m/z value of an ion that requires structural identification (referred to as 

the precursor or parent ion and is determined from statistical analyses). The quadrupole can then 

be used as a mass selector, where only ions of that m/z value coming from the source will be able 

to traverse the quadrupole. The parent ion will then enter the collision cell, where a technique will 

be used to cause fragmentation, commonly the bombardment with argon atoms (coined collision-

induced dissociation). The resulting product ions are then injected into the TOF, where their m/z 

values are calculated.  

 

A representative MS/MS spectrum can be seen in figure 1.5, which demonstrates the 

fragmentation of a parent ion with 747.52 m/z in negative mode, in addition to the chemical 

structure with the likely points of bond disassociation. This typical pattern of fragmentation is 

often seen with many classes of glycerophospholipids and consists of fatty acid loss from the 

headgroup. As such, headgroup peaks can be very specific and characteristic of a lipid class, such 

as at 140.01m/z for ethanolamine phosphate ion, 245.04 m/z for glycerophosphoglycerol ion or 

168.04 m/z for a demethylated phosphocholine. Fatty acyl loss will have a peak from the free ion 

(generally within the range 240-300 m/z), however neutral fatty acyl loss or loss as a ketene from 

the parent ion may also be seen. Therefore, identifying the likely structure of these fragments can 

assist in determining the identification of the parent metabolite.  
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Figure 1.5 – representative MS/MS spectrum demonstrating typical negatively charged product 
ions seen from fragmentation of PG(16:0/18:1), with the molecular structure presented (inset). 
The most common sites of fragmentation are annotated (dashed lines), with the green lines 
producing loss of fatty acid as a ketene and blue lines producing neutral loss of fatty acid. 
 

 

Four levels currently exist for metabolite identification144: 

1. Identified metabolites - where two pieces of independent and orthogonal data (such as 

retention time and mass spectrum) have been directly compared to a chemical standard 

2. Putatively annotated compounds - based on their physicochemical properties or spectral 

similarity with reference databases including METLIN145 and LIPID MAPS146 

3. Putatively characterized compound classes – as per level 2 but pertaining to a class of 

metabolite 

4. Unknown compounds – whilst not identified these compounds can still be differentiated 

from others based on their spectrum 

 

It is evident that MS/MS has a crucial role in reliable metabolite identification, however it may not 

always be able to provide level 1 identification even when chemical standards are used. MS/MS 

using a qToF from a REIMS source will not provide a retention time and therefore which fatty acyl 

chain is attached to the R1 and R2 positions (sn- isomerization), the location of double bonds 

within an acyl chain and cis/trans isomerisation at the double bonds cannot be reliably 

identified147,148. Additionally, chemical mixtures of precursor ions with sufficiently similar m/z 

values to traverse the quadrupole will hamper efforts to determine the parent ion for each distinct 

fragment.  
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1.7 REIMS Data Handling and Analysis  
 

As REIMS does not have a chromatography step, the raw data for each analysis can be 

represented as a single mass spectrum in terms of m/z against intensity (figure 1.6). In order to 

create data most optimal for statistical analyses, where the impact of systematic errors and 

random noise are minimised, the raw data requires transformation through several pre-processing 

stages: 

1. Background subtraction. Random signal from the instrument detector and background 

contaminants (for example from tubing) do not contain biological signal and therefore can 

be defined and subtracted from the spectrum 

2. Lock-mass correction. The m/z values registered by the detector will undergo calibration 

prior to each analytical run, however this can be slightly different between days and there 

can also be mass drift in the hours following calibration. This can be addressed using a lock-

mass standard of known m/z which is either in the bio-sample or is added during analysis, 

such that errors in the detected m/z can be measured and the whole spectrum corrected 

accordingly 

3. Binning. This reduces the dimensionality of data by applying an intensity to equally spaced 

intervals (‘bins’) throughout the range of m/z, ideally having each metabolite falling solely 

within each bin. This process also helps mitigate for small mass drifts between analyses 

4. Normalisation. There can be marked variation in the total ion current (TIC) between 

analyses, which may bias results if not corrected. This can be achieved through 

normalisation of each spectrum, such that metabolites are described using relative 

intensities 
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Figure 1.6 – a representative mass spectrum, where 150-1200 m/z is plotted against intensity. The 
m/z ranges in negative mode where fatty acid (red), glycerophospholipid (GPL; blue) and 
triglyceride (TG; green) metabolites are commonly found are highlighted. 
 

 

1.8 Statistical Principles and Techniques 
 

Untargeted metabolomics is used for the purposes of hypothesis generation, where the 

investigator is simultaneously exploring an array of known and unknown metabolic processes149. It 

often uses an approach termed ‘metabolic fingerprinting’. This refers to using a set of descriptive 

and predictive modelling techniques to compare the relative metabolic differences between 

normal and perturbed systems, where the perturbation can be any clinically relevant disease 

phenotype150,151. The statistical models can also be used to make predictions of sample 

classification and therefore these metabolic fingerprints can be used for diagnostics; where 

metrics such as diagnostic accuracy, sensitivity or specificity can be defined. In order to achieve 

this, spectra must be ‘annotated’ with high-quality and validated clinical metadata, such as patient 

demographics, disease severity according to established criteria, radiological images and 

histological diagnosis of the bio-sample.  

 

The relative metabolic differences between disease states generated from this profiling approach 

can be used to infer a biological basis for the changes and as such, would generate a hypothesis 

for future hypothesis-driven targeted studies. This work will explore the techniques used for 

profiling and the methods of hypothesis generation. 
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1.8.1 Unsupervised Methods 
 

Unsupervised statistical techniques manipulate and analyse metabolomic data without reference 

to the underlying class of the samples. This multivariate approach is used to provide an initial 

simplification of the data, allowing detection of general patterns such as variation by a biological 

or technical factor116.  

 

Principal Components Analysis (PCA) is the most common method for unsupervised analysis, 

where the dimensionality of complex data is reduced to explore the variance across a dataset with 

minimal data loss, assisting in processes such as outlier detection and visualization152. This is 

achieved by creating a series of orthogonal linear vectors as functions of the metabolite intensities 

measured, which are designed to reflect the maximum variance between samples153. As additional 

vectors (or ‘components’) are added to the model, a greater proportion of the total variance will 

be addressed, and therefore a small number of principal components (PCs) may account for the 

large majority of a dataset’s total variation.  

 

Two or three PCs can be graphed against each other to generate a PCA loadings plot (in two or 

three dimensions respectively), as demonstrated in figure 1.7. In order to visualise the greatest 

variance, the PCs are graphed in succession starting with PC1. Given that PCA is unsupervised, it 

will only reveal clustering by group when the inter-group variance is greater than the intra-group 

variance and therefore lack of clustering does not imply insignificant inter-group variance (the 

biological signal the investigator will want to assess). Outliers can be identified visually or using a 

statistical test such as Hotelling’s T2 to create a boundary outside of which outliers will fall154.  

 

 
 
Figure 1.7 – representative PCA of six variables demonstrating a variety of intra- and inter-group 
variation and clustering.  
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1.8.2 Supervised Methods 
 

Supervised statistical analyses identify the metabolic features which are most able to discriminate 

spectra based on the group or class of interest, whilst minimizing other sources of variation116. 

This can be used to create models able to predict the class of hitherto unknown spectra based on 

metabolite abundances and therefore can be applied to diagnostics and classification problems. Its 

strength lies in the fact that it can identify subtle relationships buried in large datasets whilst 

discounting other effects and correlations present (such as differences between study subjects 

unrelated to the disease of interest)155.  

 

Partial Least Squares Discriminant Analysis (PLS-DA) is a regression-based technique to fit 

multivariate metabolic data to a categorical outcome, for example, the presence or absence of a 

disease. It involves creation of PLS components, which are subspace linear explanatory variables 

aiming to maximise the covariance between the independent and dependent variables156. These 

explain how the metabolic data maps to the outcome of interest through the subspace. One 

limitation of PLS-DA is that some features that are not correlated with the outcome may impact 

the model and to address this, an orthogonal component may be added (OPLS-DA)116. In OPLS-DA, 

the data variance is expressed as two values, one which directly contributes to the outcome and 

another which does not (and is assigned orthogonally); and similarly to PCA, these components 

can be graphed on a scores plot. The PLS-DA approach benefits from transparency regarding the 

relative importance of different metabolic features in the predictive ability of the model, through 

values such as the Variable Importance in Projection (VIP). 

 

Linear Discriminant Analysis (LDA) has similarities with PCA in that it involves the creation of linear 

components however these are not orthogonal to each other and given that this is a supervised 

method, will maximise variance by group. It is a recognised limitation of LDA that the predictive 

ability is compromised if the variables significantly outnumber the observations (as is common 

with metabolomic data) and as such, it is often preceded by PCA as a method to reduce the 

number of input variables157. Metrics can be applied to LDA models to describe how well they fit 

the data, including R2 (the variation in the model explained by the variables, scaled from 0-1) and 

Q2 (an estimate of predictive ability using a cross validation technique and calculating the residual 

sum of squares, scaled from 0-1).  
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Once an LDA model has been plotted, unknown spectra can be classified by determining their 

location on the plot and calculating a distance to the centroid of each group cluster. This is 

weighted by the variance of the variables and known as the Mahalanobis distance, where the class 

is assigned where this is the shortest158. A consequence of this is the creation of a linear decision 

line (hence linear discriminant analysis), which separates the regions of the plot where each group 

will be assigned. The Mahalanobis distance can also be used for detection of outliers, where the 

mean distance and standard deviation for a group is calculated and then a threshold for maximum 

distance is defined as a multiple of the standard deviation from the mean159. 

 

 

1.8.3 Cross Validation and Diagnostic Accuracy 
 

Once a model has been created to predict a dependent variable such as through LDA, it is 

necessary to assess the model’s accuracy. Ideally, this is achieved by determining a training 

dataset, upon which the model is trained and then a separate (ideally from a distinct patient 

cohort) validation dataset, to assess its predictive ability. Whilst this process mitigates against 

biases in the training dataset artificially increasing its perceived accuracy, it is also a powerful 

technique to assess for (and therefore take steps to avoid) over-fitting of the model. Over-fitting 

refers to when a model has over-utilised both the random noise and biological signal within a 

dataset, where relationships identified are not generalizable and therefore the goodness of fit (or 

R2) is inflated160. This is a particular concern with metabolomic datasets as they have high numbers 

of variables compared to observations, giving a relatively large amount of data with which models 

can over-fit. As additional components are added to model and it becomes over-fitted the Q2 will 

start to fall and as such, no additional increase in Q2 when a new component is added can be used 

as mark to avoid over-fitting161. 

 

When a validation dataset is not available, internal cross validation (CV) can be conducted, where 

the single dataset can be partitioned into its own training and validation sets161. A common 

approach is to use k-fold CV, where the dataset is randomly divided into k approximately equal 

sections, where k-1 are used to generate a model which is tested on the remaining portion; a 

process which is then repeated k times so each partition of the data has been used as the test set 

once. Metabolomic data often has several observations for each patient and therefore it is 

desirable to ensure that a single patient’s data are not spread across the training and test sets, as 
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for example, similarities in spectra from the same patient could influence the model162. This can be 

achieved using leave-one-patient-out CV (LOPO CV), which is similar to k-fold however each data 

partition is that of each patient. This approach benefits from being more suitable to datasets 

where there is significantly less observations than variables, it reflects the real-world application 

of the models (as they will be exposed to each new patient in turn) and it is likely to have a 

reduced bias in estimating the model error compared to k-fold163.  

 

During the test phase of CV, the predictive ability of the model is determined by describing the 

number of true positive, true negative, false positive and false negative predictions; which can 

then be formulated into a confusion matrix and used to calculate relevant metrics of diagnostic 

accuracy (figure 1.8). Furthermore, as the threshold for determining whether a test returns a 

positive or negative result can be changed, plotting sensitivity against 1-specificity for all 

thresholds reveals a receiver operating characteristic (ROC) curve, where the area under the curve 

can be used as an accuracy metric164.  

 

 
Figure 1.8 – a representative 2x2 confusion matrix, denoting how common metrics of diagnostic 
accuracy are calculated.  
 

 

1.8.4 Tissue Recognition 
 

Following ex vivo data collection and formation of a high-quality spectral database with clinical 

annotation, models can be created to predict any characteristic associated with each spectrum, 

including the ability to recognise different tissue histological subtypes (for example, colorectal 
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normal, adenoma and carcinoma). The ability of a predictive model to classify a new spectrum is 

not computationally demanding and can be conducted in a fraction of a second. As a result, 

models can be loaded into a graphical interface and feedback can be given to a surgeon in real-

time (2-3 seconds) during application of the energy device137. This provides the basis for 

translation of metabolomic technologies into clinical settings, where intraoperative decisions can 

be made based upon the histological subtype of the tissue encountered.  

 

 

1.8.5 Univariate Methods 
 

In addition to feature extraction from predictive models using techniques such as the VIP score, 

differential relative abundance of metabolites between groups of interest can be determined 

using simple statistical processes. A t-test compares the means of a continuous variable in two 

independent parametric datasets and is able to give the probability that these are from the same 

overall distribution165. Analysis of variance (ANOVA) is able to compare more than two groups 

simultaneously (in a similar fashion to performing repeated t-tests) and will reveal if at least one 

group’s mean is different; requiring further tests to determine where that difference is found.   

 

Whether differences are deemed statistically significant or not are based on a threshold a, which 

is the probability of rejecting the null hypothesis when it is in fact true. Historically for biomedical 

research, this is set at 0.05 (corresponding to a 95% chance of true effect), however, considering 

many thousands of metabolites may be compared in metabolomic datasets, multiple testing 

dramatically increases the probability of incorrectly rejecting the null hypothesis by chance 

(referred to as a type I error)160. This can be addressed by correcting the p value when performing 

multiple testing, using techniques such as the Bonferroni correction and Benjamini-Hochberg 

procedure. Debate exists as to which technique is optimal, with the Bonferroni correction 

generally considered more conservative153,160,166.  
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1.9 Tissue Recognition using Mass Spectrometry 
 

 
1.9.1 REIMS 
 

The initial validation work of REIMS studied a variety of animal tissues, primarily porcine and 

murine models; demonstrating that REIMS generates rich biological data, particularly in the lipid 

region. The large number of metabolites detected were analysed using supervised and 

unsupervised techniques, showing that cellular lipid composition was able to differentiate tissues 

by species, in addition to anatomical locations within species with high levels of accuracy133,134.  

 

Studies which demonstrate the use of REIMS in recognition of human tissues are presented in 

table 1.4. The technology has been applied across multiple organ systems using a monopolar 

handpiece (referred to as the ‘iKnife’), monopolar endoscopy snare and bipolar forceps. The 

majority of the focus has been the ability of REIMS in differentiating cancerous from pre-

cancerous and normal tissues, with initial diagnostic accuracies showing promise. The approach 

has tended to be the creation of a validated spectral databases ex vivo and then generating 

diagnostic accuracy metrics using LOPO-CV or more robustly, a distinct validation cohort (whether 

ex vivo or in vivo). Both of these approaches showed that during the validation, REIMS appears to 

be consistent with its diagnostic accuracies. Colorectal tissue constitutes approximately 30% of the 

samples analysed to date, with its in vivo application (at open and endoscopic surgery) being 

limited largely to proof-of-concept studies. Ex vivo, REIMS of colorectal tissue has some degree of 

diagnostic accuracy, however, appears limited by false negatives for cancer in the range of 3-21%.  

 

Many studies describe the lipid features that are responsible for differentiating pathological 

subtypes of tissue, which is most commonly achieved by cross-referencing the exact mass with 

known lipids; however, some studies did perform selected tandem MS. It is challenging to identify 

trends in how complex lipid metabolism changes with the development of cancer considering the 

range of organs analysed and the relative sparseness of metabolites identified. Certainly, there is 

no clear evidence of single biomarkers which can be used as simple diagnostic tools. One of the 

challenges in metabolite identification with the REIMS studies is that the ionisation method 

appears to commonly cause adducts and loss of small function groups, although this may be 

related somewhat to the class of lipid133,167. Adducts include chloride (Cl-, additional mass of 35Da, 
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seen in PChs and TGs) and function group loss including ammonia (NH3, mass loss of 17Da seen 

particularly with PEs) and methyl (CH3, mass loss of 15Da seen particularly with PChs).  



 

 53 

Author Year Energy 
Device 

Mass 
Analyser 

Analysis 
Location 

Patients 
(n) 

Tissue 
Analysed 

Pathological 
Subtypes 

Accuracy for Tissue 
Recognition Other Findings 

Balog137 2013 
Pencil monopolar 

diathermy and 
bipolar forceps 

Quadrupole ex vivo 302 

Liver, lung, 
colon, 

stomach, 
breast, brain 

Carcinoma, 
inflammatory, 

normal 

70-98% accuracy for 
recognition of cancer, 0-8% 

false negative rate, 80-
100% accuracy for normal 

Able to differentiate some 
cancer subtypes  

Balog137 2013 
Pencil monopolar 

diathermy and 
bipolar forceps 

Quadrupole in vivo 81 

Liver, lung, 
colon, 

stomach, 
breast, brain 

Carcinoma, 
normal 

98% sensitivity, 97% 
specificity for cancer tissue 

recognition 

REIMS identified benign tissue in 
9 cases where pre-operative 

biopsy implied cancer 

Alexander85 2017 
Handheld pencil 

monopolar 
diathermy 

TOF ex vivo 26 Colorectum 
Carcinoma, 
adenoma, 

normal 

94% accuracy distinguishing 
three tissue types, 79-92% 

NPV for cancer 

Proof of concept for endoscopic 
collection. Ceramide and TGs 
differentiating groups. Some 

ability to distinguish cancers by 
histological features 

Phelps168 2018 
Handheld pencil 

monopolar 
diathermy 

TOF ex vivo 192 
Fallopian 

tube, ovary, 
peritoneum 

Carcinoma, 
normal 

98% accuracy distinguishing 
four tissue types, 90% 

accuracy for borderline vs 
true ovarian cancer 

Proof of concept for in vivo 
collection in 6 patients but no 

accuracy data. 

Balog169 2015 Endoscopic 
snare, monopolar TOF ex vivo 25 Stomach, 

colorectum 

Carcinoma, 
adenoma, 

normal 
No accuracy given 

Gastric: increased TGs and PIs in 
submucosa, plasmalogens 

depleted in cancer. Colorectum: 
heterogeneity in lipid 

metabolism within adenomas 

Balog169 2015 Endoscopic 
snare, monopolar TOF in vivo 3 Colorectum Adenoma, 

normal 
2 colon polyps correctly 

identified as benign 

Lipid metabolism differed along 
the normal colorectum. Polyps 

were  

St John167 2017 Handheld pencil 
diathermy TOF ex vivo 113 Breast Carcinoma, 

normal 
Test set: 95% accuracy, 97% 

NPV for cancer 

Slightly improved accuracy using 
cut rather than coagulation 

mode 

St John167 2017 
Handheld pencil 

monopolar 
diathermy 

TOF ex vivo Unknown Breast Carcinoma, 
normal 

Validation set: 96% 
accuracy, 95% NPV for 

cancer 
- 

St John167 2017 
Handheld pencil 

monopolar 
diathermy 

TOF in vivo 6 Breast Normal No accuracy given 
Proof of concept for in vivo 

sampling, showing high quality 
spectra with 0.7% outliers 

 

Table 1.4 – selected study cohorts where REIMS has been used for human tissue recognition 
TOF – time of flight; NPV – Negative Predictive Value; TG – triglyceride; PI – phosphatidylinositol 
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1.9.2 Alternative Technologies for Intraoperative Use 
 

Beyond REIMS, a variety of ambient MS technologies have been invented and assessed for 

differentiation of tissue pathological subtypes both ex and in vivo170. The devices which have 

shown the most promise as a translatable MS technology for use on solid tissue intraoperatively, 

particularly with a focus on colorectal tissue recognition, are summarised in table 1.5. It is 

apparent that whilst these technologies have been applied to a variety of cancer types, they have 

been almost entirely ex vivo, with very little in vivo translation. Furthermore, the patient numbers 

are low (often less than 20), with almost no diagnostic accuracy presented and very little 

application to colorectal tissues. Lipids were the class of metabolites studied across all studies with 

glycerophospholipids of highest intensity. The lack of in vivo translation may be due to the design 

of some platforms and their lack of suitability for intraoperative use. An example would be DESI, 

which requires optimised sprayer geometry for metabolite ionisation and retrieval; and is 

therefore most prominently used for imaging when tissue sections can be cut171. Probe-based 

technologies which require placement on tissue to conduct analysis will interrupt the surgical 

process and increase operative time, the impact of which cannot be fully assessed from such pilot 

data. Conversely, those that contemporaneously analyse the products of surgical dissection 

(including REIMS), are by definition coupled to a destructive technology, where diagnostic 

application on normal tissue may cause additional damage.  

 

 

1.9.3 Requirements for Future Technologies  
 

Successful translation of MS technologies to support clinical decision making (such as the ‘resect 

and discard strategy’) places certain efficacy, logistic, safety, acceptability and economic demands 

on a platform. From the perspective of the clinical team, the greatest priority is patient safety, 

followed by the need for a platform which can seamlessly and reliably integrate into clinical 

pathways, to deliver clinically relevant information which will synergise with their expertise to 

generate improvements in patient outcome. The technology will therefore need to be proven to 

demonstrate a consistently high level of accuracy in clinical settings, analysing unprepared tissue 

rapidly and objectively, whilst being flexible to couple to devices and interfere as little as possible 

with the clinical process. The operator’s learning curve must be short, with a clear decision-making 

support structure to enable real-time decisions that improve patient care. Logistically, this needs 
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to be achieved using a platform which is not burdensome to set-up and operate, which requires 

little maintenance and does not cause significant delays to care. The use of machine learning 

algorithms to make decisions impacting delivery of care may cause concern for both patients and 

clinicians, where it raises both ethical and legal concerns. Finally, most healthcare systems globally 

have finite resources and the MS technology should therefore be able to make a compelling 

business case for its implementation.  
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Technology Details of Operation Colorectal 
Trial Use Other Use Key Findings Limitations 

Desorption 
electrospray 

ionisation 
(DESI)172 

Pneumatic electrospraying of solvent 
onto tissues and collection of 
secondary droplets containing 

ionised metabolites. Endoscopic DESI 
probe with 4m transfer tube can be 

used 

Ex vivo proof-of-
concept in 

murine model 
- 

1. Adequate transfer 
efficiency to sample lipids 
through colonoscope but 
low TICs 

2. High relative intensity of FA 
oligomers from intestine 

1. Organic solvents are toxic and cannot 
be used in vivo 

2. Optimised for sections on stable 
stage where sprayer mechanics can 
be controlled 

MasSpec 
Pen173,174 

Handheld probe placed on tissue 
where 4-10µL water droplet used to 

extract metabolites from tissue 
surface before being retrieved. Total 

analysis time of 10s 

- 

Thyroid, breast, 
lung, ovary ex 
vivo, murine 
breast PDX in 

vivo   

1. Rich biological information 
with minimal tissue 
damage 

2. Overall accuracy 
differentiating cancer and 
normal of 96.3% after CV 

1. Lipophobic solvent (water) generates 
low TICs when fat composition high 

2. Vacuum may cause aspiration of 
contaminants such as blood on tissue 

Laser desorption 
ionisation175 

CO2 and Nd:YAG surgical lasers cause 
explosive cell rupture through 
heating, releasing an aerosol 

containing ionised metabolites 

Ex vivo 
carcinoma as 

liver metastasis 
- 

1. Detects free FAs and GPLs 
2. Some differentiation of 

CRC from normal liver on 
PCA 

1. Lasers are not commonly used in 
many surgical specialities 

2. Cost for infrastructure and laser 
equipment 

Probe 
electrospray 

ionisation176-179 

Oscillating solid needle probe picks 
up bio-sample from tissue surface 
and then undergoes electrospray 

when retracted 

Ex vivo 
Renal cell 

carcinoma and 
HNSCC ex vivo 

1. Wide range of lipid 
metabolites identified 

2. Can differentiate CRC from 
normal on PCA and HNSCC 
from normal using LDA 

1. Only 40pL of fluid bio-sample can be 
analysed each minute, causing 
generally low TICs 

2. More suited to liquid bio-samples 

SpiderMass180,181 
Nd:YAG laser in infrared region used 
to excite vibrations in O-H bond in 

tissue water, with the water acting as 
an endogenous matrix 

- Ovarian ex vivo, 
canine in vivo 

1. Lipid metabolites detected 
across large m/z range 

2.  Up to 500µm tissue depth 
analysed with little damage 

1. 30s acquisition time 
2. Platform has limited degrees of 

freedom 
3. Very little diagnostic accuracy data 

CUSA with Sonic 
Spray182 

Ultrasound waves transmitted by 
water jet cause mechanical tissue 
disintegration and nebulisation of 

metabolites where they can be 
ionised 

- Ex vivo liver, 
breast and brain 

1. Negative ion mode 
produced greater variety of 
lipid metabolites 

2. Normal liver from 
metastasis differentiated 
on PCA 

1. Tissue debris may block tubing or 
inlet capillary 

2. Full spectral information requires at 
least 500µg tissue 

 
 

Table 1.5 – mass spectrometric technologies other than REIMS which can be used to differentiate cancerous from normal tissues without sample 
preparation and with the potential to be applied in vivo. 
TIC – total ion current; FA – fatty acid; PDX – patient-derived xenograph; CV – cross validation; HNSCC – head and neck squamous cell carcinoma; PCA – principal components 
analysis; LDA – linear discriminant analysis; CUSA – Cavitron ultrasonic surgical aspirator 
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Chapter 2 – Optical Technologies for Endoscopic Real-Time Histological 
Assessment of Colorectal Polyps: A Meta-Analysis 
 

 

2.1 Introduction 
 

Polyps of the colorectum that may be encountered during colonoscopy can confer a wide variety 

of clinical risk to the patient depending on the histological subtype. The current gold standard 

approach for polyp assessment is histopathological analysis following EMR, however, this takes 

greater than one week to report and as a consequence; clinical management pathways must be 

applied post hoc (largely through determining surveillance intervals).  

 

There is a need for real-time (intra-procedure) technologies to be applied endoscopically in order 

to accurately determine polyp histological subtype in vivo and allow personalized decision-making 

for necessary interventions. This has the potential to confer several benefits. First, 43% of resected 

polyps are benign and therefore an unnecessary EMR exposes the patient to additional risks such 

as perforation and bleeding (at 1.4% and 3.5% respectively)183,184. An effective “diagnose and 

leave” strategy, particularly for benign hyperplastic polyps of the recto-sigmoid, would be 

successful in mitigating these risks185. Second, 1% of encountered colorectal polyps have become 

malignant, where it may be more appropriate to perform enhanced staging (using imaging) or 

surgical oncological resection183. Finally, real-time tissue recognition would allow implementation 

of the “resect and discard” strategy (low-risk adenomas can be discarded without pathological 

analysis), resulting in cost savings which have been estimated at $1bn annually185,186.   

 

The focus of this thesis will be the use of REIMS for real-time assessment of colorectal tissues 

(including polyps), however, it is therefore necessary to explore the existing and competing 

technologies which can be applied endoscopically. This is most commonly performed with the 

augmentation or manipulation of optical data, where clinicians make predictions of histological 

subtype based on a doctored image; however, concerns have been raised about the accuracy and 

safety of such approaches187. Previous work is limited by allowing post hoc diagnosis from images 

or videos, methodological incorporation of heterogeneity, preselecting a limited number of 

technologies and poorly presented accuracy data185,188,189.  
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The aim of this systematic review and meta-analysis was to determine the diagnostic accuracy of 

endoscopic optical technologies for the real-time histological assessment of colorectal polyps.  

 

 

2.2 Methods 
 

This meta-analysis was conducted in accordance with the preferred reporting items for systematic 

reviews and meta-analyses of diagnostic test accuracy (PRISMA-DTA)190. 

 

 
2.2.1 Search Strategy 
 

A combination of electronic database search, bibliography appraisal and broad internet searching 

was conducted to identify peer-reviewed manuscripts to be considered for inclusion. Medline 

(1946 – present), EMBASE (1947 – present) and the Cochrane database were searched on the 1st 

March 2018, using a comprehensive search strategy including the following terms and Boolean 

operators: ((exp Intestine, Large/ OR colon* OR rect*) AND (adenoma* OR polyp*) OR exp Colonic 

Polyps/) AND (exp Colonoscopy/ OR Endoscop*) AND (Real adj time OR in adj vivo OR 

spectroscop*OR narrow adj band OR optical) AND (diagnos* OR classif*), with a full strategy 

presented in appendix 3. Additional studies were captured by hand-searching the bibliographies of 

relevant studies and a Google Scholar search using selected key words.  

 

 

2.2.2 Criteria for Study Inclusion 
 

Manuscripts identified in the search were appraised independently by two reviewers (SM and LP), 

with the application of pre-defined inclusion and exclusion criteria. Studies were suitable for 

inclusion if they had prospectively compared the real-time diagnostic accuracy of an 

endoscopically deployed optical technology against histopathological analysis for colorectal polyps 

in a human population. The following outcomes were of interest: presence of adenoma, 

differentiation of low- and high-grade dysplasia in conventional adenomas, determination of 

adenoma subtype, or presence of invasive carcinoma. Histopathological analysis must have 

consisted of microscopy following H&E staining of sections and application of internationally 
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recognised diagnostic criteria, such as the Vienna criteria191. Studies were excluded if they 

presented data from less than 10 patients, predictions were made post hoc from videos or 

photographs, or patients had hereditary polyposis syndromes or inflammatory bowel disease. If 

multiple technologies had been used in conjunction, these studies were excluded as it was not 

possible to determine the accuracy of each individual technology. Data presented must have been 

primary, fully peer-reviewed (conference proceedings were not accepted) and diagnostic accuracy 

must have been presented to allow the reconstruction of a 2x2 confusion matrix. 

 

 

2.2.3 Data Extraction and Analysis 
 

The same two reviewers independently extracted the raw data from all included manuscripts as 

absolute values of the 2x2 diagnostic contingency table, defining adenocarcinoma and adenoma 

as ‘positive’ and benign tissues as ‘negative’. If only a sensitivity was presented without a 

prevalence, authors were contacted by email to provide the necessary data. Other datapoints 

collected were country, specifications of technology used, endoscopist experience (defined as 

having undergone training or having previously used the technology on greater than 50 cases), 

separate analyses for diminutive (< 5mm) polyps and subgroups of predictions made with high 

confidence. Each included study underwent quality assessment using the QUADAS-2 score192.  

 

If a technology had been assessed in at least three studies for the same outcome, Bayesian 

bivariate meta-analysis was performed using Laplace approximation in the meta4diag package193 

of RStudio v1.1.442 (with the rest undergoing narrative review). Diagnostic accuracy was assessed 

using the metrics sensitivity, specificity and the area under the ROC curve; with publication bias 

assessed using funnel plots. a was set at 0.05 with 95% confidence intervals (CI) presented. 

Selected subgroup analyses were conducted based on the following clinically relevant factors: 

polyp size, prediction confidence, endoscopist experience, technical specifications of the 

technology and location of polyp. Chronological assessment of diagnostic accuracy was conducted 

by plotting the pooled estimate of NPV for each year. 
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2.3 Results 
 

A total of 4,084 studies were identified from the search, of which 284 required full manuscript 

review (figure 2.1). The manuscript could not be sourced for three studies either through the 

British Library or directly contacting the authors and therefore had to be excluded. This generated 

102 studies which were deemed suitable for inclusion in the meta-analysis, covering 129 patient 

cohorts and the assessment of 33,123 polyps.  

 
 

 
 
Figure 2.1 – PRISMA flowchart for the identification, screening, eligibility and inclusion of studies. 
Reproduced with permission Mason et al.194 
*Some manuscripts presented multiple patient cohorts, each assessing a different optical 
technology.  
 

 

The vast majority of studies were carried out in developed countries (89%), the most two common 

of which were Japan and the USA. China was the most represented developing country, 

accounting for 6% of studies. The indication for performing the colonoscopy was often unclear, 

however when stated, it was most commonly for bowel cancer screening of surveillance following 

polypectomy. The nine distinct optical technologies that were included could be classified into five 

categories: digital chromoendoscopy, dye chromoendoscopy, fluorescence analysis, microscopic 

imaging and computer-aided recognition.   
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2.3.1 Digital Chromoendoscopy 
 

Digital chromoendoscopy refers to the preselection of light wavelengths that are to be shown on 

the output screen, in order to enhance specific features of the mucosal surface. This was applied 

to 23,099 polyps in 84 patient cohorts across 71 trials, using three technologies – narrow band 

imaging (NBI; Olympus Medical Systems), Fuji Intelligent Chromo Endoscopy (FICE; Fujinon) and i-

SCAN (PENTAX Medical).  

 

NBI is designed to create a greater contrast between blood vessels and the mucosa, and performs 

this by only emitting light with the absorption spectrum of haemoglobin (blue 415nm and green 

540nm)195. This technology underwent meta-analysis in 48 studies, where it assessed 17,568 

polyps196-243. This assessment was most commonly performed by the endoscopist comparing the 

surface ‘pit’ patterns or the microvasculature to published criteria (from Kudo, Sano or NICE), 

which have been independently correlated to histological diagnosis241,244,245. Whilst the vast 

majority of studies defined neoplasia as only conventional adenomas or adenocarcinoma, 23 

included a low prevalence of serrated adenomas and polyps at 2.8%. In all but one case225, the 

presence of dysplasia in these lesions was sufficient that it would be categorised into the 

neoplastic group. Five studies assessing 497 polyps could not be included in the meta-analysis as 

they only assessed serrated lesions, grades of dysplasia in conventional adenomas or the 

differentiation of adenocarcinoma from adenoma246-250. FICE and i-SCAN are technologies which 

emit and collect white light and then use spectral estimation to select the wavelengths of choice 

to output. This is used to enhance mucosal surface structure, tone and contrast; with the 

endoscopist again comparing the features to published standards in order to make the 

diagnosis251. The 12 studies included in the meta-analysis using FICE on 3,226 polyps197,232,252-261 

and the 9 studies using i-SCAN on 1,808 polyps204,262-269 had an almost identical prevalence of 

serrated adenomas compared to the NBI cohort (2.1% across half of the studies), with a serrated 

polyp without dysplasia defined as benign in one study267.  

 

Table 2.1 presents the diagnostic accuracy of digital chromoendoscopy and its constituent 

technologies across all polyps and for subgroup analyses. It demonstrates a moderate diagnostic 

ability, with an AUC of 0.885 and a sensitivity which is outperforming specificity (implying that 

false positives are a greater issue than false negatives). The subgroup analyses reveal that there is 

no statistically significant improvement in diagnostic accuracy when only high confidence 
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predictions are used, endoscopists are of high experience, high magnification is used, the output 

screen is in high definition or only diminutive polyps were included. A further set of subgroup 

analyses were conducted where experienced endoscopists made high confidence predictions of 

diminutive polyps, demonstrating an NPV of 86.8% (80.9-91.6% CI). When limited to left-sided 

polyps, the NPV increased to 92.7% (88.3-96.1% CI) and when only for recto-sigmoid polyps, it was 

93.8% (90.9-96.4% CI). Whilst very clinically relevant, it was found that relatively few studies 

presented data on this final cohort, such that it was limited to only 2,149 polyps across 10 studies. 

When comparing the constituent digital chromoendoscopy technologies, there was no apparent 

difference in their diagnostic accuracies (figure 2.2).  
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NBI        

 Studies (n) Polyps (n) Sensitivity (%) Specificity (%) AUC PPV (%) NPV (%) 

All Polyps 48 17 568 93.1 (90.9-94.9) 82.1 (79.1-85.0) 0.909 (0.858-0.903) 90.5 (88.5-92.3) 86.5 (82.9-89.8) 

Diminutive Polyps 22 8 299 92.4 (89.2-95.0) 83.9 (79.3-88.1) 0.921 (0.832-0.957) 89.0 (86.5-91.5) 88.5 (84.2-92.2) 

High Confidence 17 8 055 94.7 (92.4-96.6) 82.0 (76.3-87.2) 0.898 (0.783-0.964) 90.0 (87.1-92.7) 90.2 (85.7-93.9) 

Experienced Endoscopist 34 14 205 91.9 (89.0-94.3) 78.7 (75.6-81.8) 0.913 (0.870-0.944) 88.4 (86.2-90.4) 84.7 (80.6-88.4) 

High Magnification 27 8 186 95.8 (93.9-97.4) 85.8 (81.3-89.8) 0.910 (0.783-0.967) 92.9 (90.0-95.2) 91.5 (87.6-94.8) 

High Definition 39 14 254 93.2 (91.1-95.1) 81.9 (78.6-85.1) 0.909 (0.872-952) 89.5 (87.5-91.4) 87.9 (84.3-91.0) 

        

FICE        
 Studies (n) Polyps (n) Sensitivity (%) Specificity (%) AUC PPV (%) NPV (%) 

All Polyps 11* 3 226 90.2 (86.8-93.2) 86.0 (79.2-91.4) 0.853 (0.413-0.946) 92.9 (89.8-95.4) 81.1 (75.6-85.9) 

Diminutive Polyps 6 1 257 85.0 (78.9-90.3) 84.6 (79.4-88.8) 0.915 (0.674-0.934) 89.5 (85.6-93.1) 77.8 (72.0-83.0) 

High Confidence 0 - - - - - - 

Experienced Endoscopist 7 2 236 88.5 (83.4-92.5) 88.5 (81.9-93.6) 0.631 (0.246-0.802) 93.9 (89.6-96.9) 79.3 (72.8-84.9) 

High Magnification 6 2 096 91.1 (88.2-93.6) 90.3 (83.4-95.3) 0.821 (0.109-0.959) 94.7 (90.5-97.7) 84.5 (79.2-88.7) 

High Definition 10 2 919 90.3 (86.3-93.6) 85.0 (77.1-91.1) 0.875 (0.468-0.954) 92.3 (89.1-94.9) 81.5 (75.0-86.9) 

        

iSCAN        
 Studies (n) Polyps (n) Sensitivity (%) Specificity (%) AUC PPV (%) NPV (%) 

All Polyps 9 1 808 91.3 (85.5-95.5) 88.7 (82.3-93.9) 0.536 (0.376-0.850) 92.4 (87.3-96.2) 87.3 (77.8-94.1) 

Diminutive Polyps 3 419 96.4 (91.7-99.0) 89.9 (80.2-96.1) 0.886 (0.176-0.991) 92.0 (84.3-96.8) 95.4 (89.3-98.7) 

High Confidence 1 - - - - - - 

Experienced Endoscopist 7 1 551 89.4 (81.8-94.9) 88.0 (79.3-94.6) 0.568 (0.293-0.858) 91.2 (84.3-96.1) 85.8 (74.3-93.9) 

High Magnification 0 - - - - - - 

High Definition 9 1 808 91.3 (85.5-95.5) 88.7 (82.3-93.9) 0.536 (0.384-0.855) 92.4 (87.3-96.2) 87.3 (77.8-94.1) 
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All Digital 
Chromoendoscopy        

 Studies (n) Polyps (n) Sensitivity (%) Specificity (%) AUC PPV (%) NPV (%) 

All Polyps 65* 22 602 92.2 (90.6-93.9) 84.0 (81.5-86.3) 0.885 (0.825-0.926) 91.3 (89.7-92.7) 85.7 (82.9-88.4) 

Diminutive Polyps 29 9 969 91.7 (89.1-94.0) 84.6 (81.3-87.7) 0.908 (0.839-0.948) 89.3 (87.5-91.2) 87.7 (84.2-90.8) 

High Confidence 18 8 156 94.9 (92.7-96.8) 82.9 (77.3-87.9) 0.890 (0.765-0.962) 90.2 (87.5-92.8) 90.8 (86.6-94.4) 

Experienced Endoscopist 44 17 992 91.1 (88.7-93.1) 82.0 (79.2-84.7) 0.888 (0.833-0.927) 89.9 (88.0-91.6) 84.0 (80.7-87.0) 

High Magnification 33 10 282 94.8 (93.1-96.3) 87.0 (83.3-90.3) 0.892 (0.750-0.958) 93.4 (91.2-95.3) 89.6 (86.3-92.6) 

High Definition 54 18 981 92.5 (90.7-94.0) 83.8 (81.1-86.3) 0.880 (0.836-0.936) 90.5 (89.0-92.0) 86.8 (83.9-89.4) 

 
Table 2.1 – Diagnostic accuracy of digital chromoendoscopy and its constituent technologies with subgroup analyses. 95% CIs are presented in 
brackets. Reproduced with permission Mason et al.194 
AUC – area under curve; PPV – positive predictive value; NPV – negative predictive value.  
*One author presented duplicated results of a diminutive polyp subgroup in a later study, such that the total number of studies in this meta-analysis are one greater than the 
number in the ‘all polyps’ analysis.  
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Figure 2.2 – the summary ROC curve for the three digital chromoendoscopy technologies. This 

demonstrated that there is little apparent difference in accuracy between them, with summary 

points which plot closely. Reproduced with permission from Mason et al.194 
Asterisk – summary point; circles – each study; dashed line – 95% prediction region.  

 

 

A funnel plot was constructed for all digital chromoendoscopy studies within the meta-analysis, 

which revealed a marked paucity of studies with a low diagnostic odds ratio and high standard 

deviation (Figure 2.3.A). This lack of ‘small negative’ studies represents a high likelihood of there 

being a publication bias which acts to over-estimate the diagnostic accuracy of this technology. 

The quality of the included studies was high, with 57% of studies scoring full marks on the 

QUADAS-2 (appendix 4). The greatest potential sources of bias were the methods of patient 

selection and the application of the index test. It was unclear in 24% of the patient cohorts if 

consecutive patients were eligible for the study and therefore, the exact method by which they 

were selected. The most prevalent risk of bias associated with the index test was that the 

experience of the endoscopist using digital chromoendoscopy was unclear and therefore they may 

have still been on their learning curve. Additionally, blinding was compromised in some cohorts by 

the endoscopist potentially knowing that a patient had an adenoma prior to the procedure or 

having just used a different technology to assess the polyp. 6% of patient cohorts had unusually 

high incidences of adenomas or serrated lesions (89% in one study)208 and therefore this limits the 

validity of the findings when comparing to a routine clinical scenario. Despite these potential 
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sources of bias, performing the same analysis only with studies that scored 100% on the QUADAS-

2 did not impact the diagnostic accuracy.  

 

 
 

Figure 2.3 – funnel plots of digital chromoendoscopy (A) and dye chromoendoscopy (B) studies, 

with a shaded area representing the location that published studies are under-represented. 

Reproduced with permission from Mason et al.194 
DOR – diagnostic odds ratio. 

 

 

2.3.2 Dye Chromoendoscopy 
 

Dye chromoendoscopy is a method whereby a dye solution is sprayed down the working channel 

of an endoscope onto the mucosa, most commonly used for detection of dysplasia in 

inflammatory bowel disease, however, it can also be used for polyp characterisation270. A total of 

30 studies assessed the technology across 32 patient cohorts on 8,336 colorectal polyps, of which 

29 were suitable for meta-analysis205,208,252-256,258,261,271-290. All but two studies applied the Indigo 

Carmine dye, which lies on the mucosal surface without being absorbed to enhance its 

morphology; at which point the Kudo criteria were used to make a prediction of histological 

subtype244. The included studies were designed to assess the technology in differentiating 

neoplastic from benign polyps, where the neoplastic group largely consisted of conventional 

adenomas, with a small number of adenocarcinomas and serrated adenomas (1.5% prevalence in 

seven studies). The diagnostic accuracy is presented in table 2.2, with marked similarities with the 

ability of digital chromoendoscopy and with no significant difference between the two. Again, the 

accuracy is moderate, with an AUC of 0.866 and a sensitivity higher than the specificity. Whilst no 

subgroup analysis showed a statistically significant change in accuracy, there was a trend towards 

lower accuracy when only diminutive polyps were analysed (AUC 0.866 to 0.756). In all analyses 

the estimated NPV was below 90%. The single study that could not be included in the meta-
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analysis used crystal violet dye to predict the presence of adenocarcinoma in adenomatous 

polyps, with a sensitivity and specificity of 82.9% and 67.7% respectively246.  

 

The issues found with publication bias and risk of systematic bias in digital chromoendoscopy 

studies are again apparent when assessing those using dye chromoendoscopy. The funnel plot for 

the dye chromoendoscopy strongly implies the presence of a publication bias which is over-

estimating the diagnostic accuracy (figure 2.3.B). The QUADAS-2 scores (appendix 5) were often 

displaying potential biases from an unclear patient selection process (and whether consecutive 

patients were eligible, evident in 35%), unclear endoscopist training (39%) and a lack of blinding 

where another diagnostic technology was used just prior to the dye instillation (16%). A subgroup 

analysis of the 29% of patient cohorts with 100% QUADAS-2 score did not significantly change the 

diagnostic accuracy.  
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Dye Chromoendoscopy       

 Studies (n) Polyps (n) Sensitivity (%) Specificity (%) AUC PPV (%) NPV (%) 

All Polyps 28* 8 267 92.7 (90.1-94.9) 86.6 (82.9-89.9) 0.866 (0.778-0.948) 91.7 (88.6-94.3) 88.0 (84.0-91.5) 

Diminutive Polyps 9 1 903 87.2 (78.3-93.6) 85.1 (77.4-91.0) 0.756 (0.598-0.937) 85.3 (77.9-91.0) 86.8 (75.9-94.1) 

High Confidence 1 - - - - - - 

Experienced Endoscopist 13 2 931 94.7 (91.1-97.2) 88.2 (83.9-91.9) 0.881 (0.811-0.974) 93.5 (89.3-96.5) 89.7 (84.9-93.7) 

High Magnification 21 6 318 93.5 (90.1-96.1) 88.4 (84.1-92.1) 0.865 (0.771-0.961) 93.1 (89.4-95.9) 89.1 (83.9-93.3) 

High Definition 16 3 440 90.3 (85.8-93.9) 85.6 (80.2-90.0) 0.861 (0.693-0.947) 86.6 (81.5-90.8) 89.2 (83.2-93.7) 

 
Table 2.2 – the diagnostic accuracy of dye chromoendoscopy in differentiating neoplastic and benign colorectal polyps. Reproduced with permission 
from Mason et al.194 
*One author presented duplicated results of a diminutive polyp subgroup in a later study, such that the total number of studies in this meta-analysis 
are 29 but only 28 are included in the ‘all polyps’ analysis.  
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2.3.3 Fluorescence Analysis 

 

Colorectal tissues can be analysed using fluorescence technology in two primary ways. The first is 

termed autofluorescence, where endogenous molecules within the tissue have the property of 

being a fluorophore (such as flavins and aromatic acids), and can undergo excitation in order to 

release characteristic emissions291. This was used in three studies on 525 colorectal polyps, where 

light at 390-470nm and 540-560nm was used to excite tissues and generate images that were a 

mixture of green (benign) or magenta (neoplastic)196,202,292. The green:magenta ratio could be 

calculated or subjective assessment could be used to make a prediction of the histological 

subtype, which had a sensitivity, specificity, PPV and NPV of 94.4% (84.0-99.1% CI), 50.9% (13.2-

88.8% CI), 72.7% (31.8-95.9%) and 85.6% (68.6-96.6% CI) respectively. There was insufficient data 

to conduct any subgroup analyses, however QUADAS-2 quality scoring was conducted; which 

revealed a high risk of bias in two studies. This was caused by the endoscopist using NBI 

immediately prior to the fluoroscopic assessment and therefore blinding may have been impacted 

(appendix 6).  

 

The second fluoroscopic principle that can be applied is where an exogenous photosensitiser is 

administered. This accumulates in the tissue of interest and then when a specific wavelength of 

light is used for excitation, the tissue can be indirectly visualised291. This technology was used in 

one study to predict the presence of adenocarcinoma in 33 adenomatous polyps using a 

fluorescein-labelled antibody to carcinoembryonic antigen, demonstrating low diagnostic accuracy 

with a NPV of 45%293.  

 

 

2.3.4 Microscopic Imaging 

 

Microscopic imaging technologies display colorectal tissues on a cellular level in real-time, with 

two techniques identified in this review. Confocal laser endomicroscopy (CLE) can give a x1000 

magnification of the colorectal mucosa with a resolution of 1µm, at which point classification 

systems can be applied to assess thickening of the epithelial layer (indicative of dysplasia)294-296. 

This was the most commonly used microscopic imaging technique, where four studies used it to 

assess 519 colorectal polyps295,297-299.  When differentiating neoplastic from benign polyps, CLE 

demonstrated a sensitivity, specificity, PPV and NPV of 93.6% (85.3-98.3% CI), 92.5% (81.8-98.1% 
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CI), 92.8% (83.5-98.1% CI) and 93.1% (82.5-98.5% CI) respectively. This level of accuracy was not 

significantly higher than the chromoendoscopy approaches however, there was a trend in this 

direction. Funnel plotting demonstrated evidence of a publication bias and QUADAS-2 showed an 

unclear risk of bias from unknown endoscopist experience and unclear patient sampling (appendix 

7).  

 

The second microscopic imaging technique was endocytoscopy, which uses nuclear dyes (such as 

methylene blue and toluidine) to perform imaging on a supra- and sub-cellular level, allowing 

visualisation of glandular structure and cellular atypia300. The images produced are similar to H&E 

stained sections and can therefore be interpreted using similar diagnostic criteria301. This was 

conducted in two studies on 149 polyps and therefore was not suitable for meta-analysis302,303. 

This early data on small cohorts appears to show high levels of diagnostic accuracy in 

differentiating neoplastic from benign polyps (greater than 90%), with one study showing non-

inferiority to traditional biopsy303.  

 

 

2.3.5 Computer-aided Recognition 

 

The use of computer algorithms to make histological predictions based on optical inputs from the 

endoscope were assessed by three studies, where it was applied to differentiate adenomatous 

and benign polyps. The wavSTAT4 probe (Spectra Science, USA) was used in two studies on 344 

polyps, which emits 337nm light to cause laser-induced fluorescence; where the emissions are 

analysed with a proprietary algorithm to determine if the lesion is “suspect” or “non-

suspect”304,305. One study trained machine learning algorithms on 2,247 clinically annotated 

images of neoplastic features on NBI, before applying it in real-time on 118 polyps306. These three 

studies underwent meta-analysis showing a sensitivity, specificity, PPV and NPV of 88.9% (74.2-

96.7% CI), 80.4% (52.6-95.7% CI), 76.9% (38.8-96.5% CI) and 88.7% (67.3-98.1% CI) respectively. 

There was evidence of marked heterogeneity (for example, specificity ranged from 59-93% and 

PPV from 51-96%), however, there was a low risk of bias on QUADAS-2 (appendix 8).  
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2.3.6 Chronologic Analysis 

 

In order to understand how the diagnostic accuracies of the optical technologies have been 

progressing over time, chronological meta-analyses were performed based on all studies 

published at each timepoint. NPV was chosen as the metric to plot given its importance as a 

threshold, where 90% must be exceeded to consider routine clinical implementation of a 

technology in certain clinical scenarios307. Given the similarity in constituent digital 

chromoendoscopy studies, they were pooled for this analysis. Figure 2.4 demonstrates that both 

digital and dye chromoendoscopy do not exceed the 90% NPV threshold, with the value having 

generally plateaued for over a decade. As the power of the meta-analyses increased with more 

studies (reflected by narrowing CIs), it appears to confirm that the true NPV of digital 

chromoendoscopy will remain below 90%. The NPV of dye chromoendoscopy appears likely to 

become statistically significantly below 90% in the coming years.  

 

 
 

Figure 2.4 – the negative predictive value of digital chromoendoscopy (A) and dye 
chromoendoscopy (B) plotted chronologically based on the year that each study was published. 
Reproduced with permission from Mason et al.194 
CI – confidence interval; NPV – negative predictive value.  

 

 

2.4 Discussion 
 

This systematic review and meta-analysis assessed endoscopic optical technologies for the real-

time prediction of histological subtype for colorectal polyps, chosen as an exemplar of technology 

being used for colorectal tissue recognition. The diagnostic accuracy of the nine included 

technologies in differentiating neoplastic from benign polyps was moderate and insufficient for 
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recommending routine clinical implementation. Furthermore, chronological analysis 

demonstrated that the accuracies have not been improving over the past decade and appear 

unlikely to meet clinical implementation thresholds in the coming years. 

 

The ability to determine the histology of a colorectal polyp in real-time provides the endoscopist 

with an opportunity to make personalized management decisions during the procedure, to reduce 

risk exposure, improve clinical outcome, save time and reduce costs184-186. Historical studies could 

not confirm their hypothesis that white light reflected from the surface of a polyp contained 

sufficient information for accurate histological prediction, with data showing limited accuracies of 

59-84%308. As this review demonstrates, this prompted the development of the several optical 

technologies, which use a combination of manipulation, wavelength selection, fluorescence 

techniques and computer analysis to increase prediction accuracy. The level of accuracy that a 

technology must achieve to be used routinely in clinical practice is contested, with 

recommendations from a variety of sources309. The American Society of Gastrointestinal 

Endoscopy (ASGE) has described the Preservation and Incorporation of Valuable endoscopic 

Innovation (PIVI) criteria. In brief, the first PIVI statement requires that diminutive polyps 

characterized with high confidence (in conjunction with histological assessment of those 6-9mm) 

should have a greater than 90% agreement in surveillance interval compared to histology185. The 

second statement requires the NPV for adenoma in diminutive recto-sigmoid polyps to be greater 

than 90%185. The large, multicentre DISCARD study appeared to prefer overall accuracy for small 

(<10mm) polyps308 and the DISCARD-II trial determined the success of NBI for all small colorectal 

polyps aiming for a sensitivity of >95%236. It is beyond the scope of this thesis to debate the exact 

implementation threshold that should be applied and it is likely that there would be some debate 

between experts if a consensus was to be required for assessing tissue recognition technologies.  

An NPV for adenoma of greater than 90% was used in this thesis considering it is the most 

commonly applied in the literature, is used by the influential ASGE and focusses on minimising the 

most clinically impactful misclassification, the false negative.  

 

Digital chromoendoscopy and its constituent technologies of NBI, FICE and i-SCAN were found to 

be the most commonly deployed in this review (68%), which is likely to be as a consequence of 

their ubiquity in endoscopy suites worldwide; where they are used throughout the gastrointestinal 

tract for lesion detection and optical biopsy310. It does not appear that there is any significant 

difference in the accuracy between the digital chromoendoscopy technologies, which is likely to 
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be as a result of their similar operating principles and diagnostic criteria employed. Whilst NBI was 

found to be the most commonly used, it is assumed this was due to greater availability of the 

technology with a more established evidence base, rather than a higher expected accuracy. This 

review highlighted that there is a single most important research question when it comes to the 

application of these technologies, which is whether they can accurately differentiate neoplastic 

(adenoma and adenocarcinoma) from benign (normal or hyperplastic) polyps. The estimated 

92.2% sensitivity, 84.0% specificity and 85.7% NPV of digital chromoendoscopy shown in this 

review is similar to previous reviews, however, must be considered within the context of the 

significant publication bias that is likely to be present, acting to over-estimate this accuracy. 

Kobayashi et al. used the Begg test to assess for publication bias statistically (rather than simply 

graphically) where is was found to not be significant (p = 0.07), however this was only in 10 NBI 

studies and was therefore likely underpowered311. Another perspective which implies a 

publication bias is that recently there have been higher quality, multicentre, well-powered studies 

using digital chromoendoscopy, which have been unable to match the accuracies demonstrated in 

earlier and lower-quality work203,236. When considering the PIVI II statement, digital 

chromoendoscopy of diminutive recto-sigmoid polyps appeared to demonstrate an NPV of over 

90%, however this finding should be met with caution. Only a small subset of studies (n=8) 

appraised this outcome, the total number of polyps was comparatively low, this was often a post 

hoc subgroup analysis and there was a clear inverse relationship between NPV and study size (the 

four largest studies contained the three lowest NPVs). It is unfortunate that high-quality 

implementation trials (such as DISCARD-II) did not assess the PIVI II statement in order to increase 

the power of this analysis. Considering these issues and the marked publication bias already 

described, using this finding to recommend routine clinical use is unlikely to be prudent. Future 

studies of this mature technology should be pre-registered, high-quality and multicentre; to 

ensure this publication bias is not perpetuated and ‘real world’ accuracies can be presented.  

 

Dye chromoendoscopy is most commonly used to increase the detection rate of dysplasia within 

the context of inflammatory bowel disease, rather than for polyp characterisation in low-risk 

cohorts. Consequently, it was applied much less frequently than digital chromoendoscopy in this 

review. This may be due to the historical differences in indication but may also be accounted for 

by the increased time it takes to instil the dye (compared to an immediate button press for the 

digital alternative), the non-zero risk of anaphylaxis to the dye itself, dye interfering with 

interpretation of adjacent mucosa and its considerable learning curve255. However, it should be 



 

 74 

noted that the lack of specialist equipment required (beyond a high magnification endoscope) may 

support its use in settings without the financial opportunity to have digital chromoendoscopy 

alternatives. The diagnostic accuracy of dye chromoendoscopy in differentiating neoplastic and 

non-neoplastic polyps was indistinguishable from digital chromoendoscopy, where it was 

considered moderate and insufficient to recommend routine clinical implementation. The 

heterogeneity in the method by which the dyes work may be such that one would have a greater 

diagnostic accuracy, however there was insufficient studies to be able to assess this. The 

publication bias seen in digital chromoendoscopy studies also appeared to be present here, once 

again raising a concern regarding headline diagnostic accuracy and reenforcing the need for pre-

registered high-quality trials in the future.  

 

Fluorescence and microscopic imaging technologies have been studied relatively rarely in 

comparison to chromoendoscopy, likely due to their younger age, the need for specialist 

equipment (such as dedicated probes) and the lack of evidence to support their clinical 

implementation. The limited number of polyps assessed was such that the power of the meta-

analyses were low (showing wide CIs) and therefore comparisons between the technologies is 

problematic. Despite this, a few themes have emerged. Fluorescence technologies appear to 

suffer with a relatively high number of false positives (benign tissue predicted to be neoplastic). 

Microscopic imaging appears to have the most promising accuracy of all technologies exhibited, 

which may be explained by the fact that it is designed to visualise cellular and tissue structures 

directly; the same method by which the gold standard histology makes diagnoses.  

 

Machine learning and artificial intelligence technologies are rapidly being developed and applied 

to a variety of healthcare problems, where they are able to find deep relationships in complex 

datasets; often vastly out forming human counterparts312. These techniques also benefit from 

theoretically increasing in accuracy as they are exposed to more data, they can be run in real-time 

on relatively inexpensive hardware and are not limited by the types of data input (as seen in this 

review, where it was applied to fluorescence and NBI images). When combined to an 

endocytoscope in vivo, real-time computer-aided recognition could differentiate neoplastic from 

benign polyps with an adenoma NPV of 96%313. Whilst these technologies have potential, caution 

should be taken when interpreting the headline diagnostic accuracies due to statistical models 

being prone to overfitting and lack of wider implementation studies in routine care settings.  
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This meta-analysis did not demonstrate that endoscopist experience is associated with higher 

accuracy levels, despite studies of training courses implying that this may be the case and findings 

in the DISCARD-II trial that BCSP endoscopists have test sensitivity of 83%, compared to 64% for 

those not in the BCSP188,236. This may be due to this meta-analysis using a different definition of 

experience and that this negative finding was a type II error. The fact that the diagnostic accuracy 

of technologies does not appear to change when only diminutive polyps are analysed implies that 

the difficulties of applying them to smaller surface areas is not clinically significant. Furthermore, 

the lack of improvement for high confidence predictions may be due to a bias from the 

endoscopist, who will have subconsciously assessed adenomatous risk during the initial WLE; and 

the post-test probability is not sufficiently increased to be identified statistically.  

 

Studies on real-time polyp tissue recognition in endoscopy largely focus on differentiation of 

conventional adenomas from benign lesions, however approximately half of the cohorts included 

sessile serrated lesions with an incidence of 1-2%. These lesions do have a different appearance to 

conventional adenomas and therefore this may have impacted the diagnostic accuracy of the 

technologies (considering many of the classification criteria are validated for conventional 

adenomas)314. This impact is likely to be small and excluding them entirely is not likely to be a 

pragmatic approach, as they are commonly found in patients and therefore, they are a clinically 

relevant tissue type to predict.  

 

The novel approach in this meta-analysis was the use of chronological meta-analyses, where NPV 

was plotted to determine how it has changed over time against the 90% threshold. The flat or 

falling NPV over the past decade is likely due to new large, multicentre studies; which have a 

greater power and the release of which counteracts some of the previous publication bias. 

Furthermore, the narrowing of the CIs over time is a reflection of overall analytical power 

increasing. Both of these factors raise a strong suspicion that digital and dye chromoendoscopy 

studies will not exceed the required 90% threshold in the coming years, implying that step-change 

innovation is required for it to be successful. Narrowing the clinical application of technologies, 

such as in the PIVI II statement where it is only focusing on diminutive recto-sigmoid polyps, limits 

the scale with which they can be employed clinically and makes recruitment for clinical trials more 

challenging. Whilst the quality of the studies included in this meta-analysis was generally good 

(according to the QUADAS-2), there were recurring issues with application of technologies 

immediately after one another on the same polyp, unclear selection of patients and a lack of 
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clarity whether endoscopists were still on their learning curves. This has an implication for future 

research, where methodological quality needs to be improved (for example, by randomising), 

whilst assessing pragmatically important outcomes such as the accuracy in ‘real world’ settings 

(rather than just academic hospitals).  

 

This meta-analysis was designed to be comprehensive and to avoid many of the limitations shown 

in previous reviews, which include the preselection of a limited number of technologies, including 

predictions not made in real-time in vivo (such as from videos or photos), methodological 

incorporation of heterogeneity and presenting limited accuracy metrics185,188,189. Despite stringent 

inclusion criteria, there was still significant heterogeneity of diagnostic accuracies between 

studies, which may be related to uncontrollable factors such as underlying adenoma prevalence, 

colonoscopy indication or undefined confounders. The eventual scope of the work was relatively 

narrow at only nine technologies, however assessing those earlier in the development process 

(such as Ramen and elastic scattering spectroscopy) would not have adequately addressed the 

research question.  

 

 
 
 

2.5 Conclusion 
 

This systematic review and meta-analysis demonstrated that optical technologies are currently 

insufficiently accurate for routine clinical use in differentiating neoplastic from benign colorectal 

polyps in vivo. Furthermore, this accuracy has been flat or reducing over the past decade, 

indicating that incremental improvements in optical technologies are unlikely to reap sufficient 

accuracies in the coming years. Successful technologies for colorectal tissue recognition are likely 

to require step-change innovation, which may be through the development and validation of 

novel technologies which sample biological rather than optical data.   
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Chapter 3 - Thesis Hypothesis, Rationale, Aims and Design 
 

 

3.1 Hypothesis 
 

The hypothesis of this thesis is that colorectal lipid metabolism and cellular lipid composition are 

associated with the phenotype of colorectal adenomas and carcinomas. This can be leveraged 

using REIMS for accurate real-time recognition of colorectal tissues in vivo and to give insight into 

the metabolic transitions along the normal-adenoma-carcinoma sequence.   

 

 

3.2 Rationale 
 

This thesis will apply REIMS to the problem of colorectal tissue recognition through metabolic 

phenotyping, the rationale for which can be described across 5 domains.  

 

1. Clinical need. There are several clinical scenarios in colorectal surgery where there is an unmet 

need for accurate, real-time tissue recognition; which when effectively employed, would directly 

improve the quality, safety and associated costs of patient care. TAMIS for advanced rectal 

adenomas and early cancers is an exemplar case, where en bloc resection with no tumour-

involved margins is paramount and correlated with improved oncologic outcome. Real-time tissue 

feedback for the surgeon during dissection would allow microscopic positive margins to be 

immediately recognised, dissection planes to be adapted and consequently; promotion of organ 

preservation through an increased R0 resection rate. This same principle applies endoscopically 

when performing an EMR to reduce the risk of polyp recurrence and transformation. Additionally, 

real-time tissue recognition would allow risk stratification and personalised management 

strategies for colorectal polyps, such as ‘resect and discard’ and ‘diagnose and leave’. A solution to 

these clinical problems would be applicable on a vast scale considering both the volume of 

patients it would benefit and the ubiquity of the problems worldwide.  

 

2. Inadequacy of existing technologies. Chapter 2 demonstrates that the most ubiquitous 

methods for real-time colorectal tissue recognition, optical technologies, are likely to remain 
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insufficiently accurate for routine clinical implementation in the coming years; despite extensive 

financial investment, research and staff training. This is reflected by its relatively low uptake by 

endoscopists, with them reporting that it is not sufficiently capable in its current form315. 

Furthermore, only 50-60% of patients are happy for use of the ‘resect and discard’ and ‘diagnose 

and leave’ strategies given the diagnostic accuracies of current technologies316.  

 

3. Potential of REIMS for accurate tissue recognition. REIMS pilot data has demonstrated high 

initial levels of accuracy for tissue recognition across a multitude of organs, including colorectal 

tissue. This is underpinned by strong biological plausibility, where the established metabolic 

changes of carcinogenesis are being directly sampled by the MS through differences in relative 

abundance of metabolites. Whilst the early data have shown promise, the true diagnostic accuracy 

of REIMS for colorectal tissues has yet to be established with a well-powered dataset and it has 

yet to be determined if this can be translated in vivo. There is potential for REIMS to supersede the 

diagnostic accuracies of its competitor technologies, which is likely to be necessary given that it is 

increasingly recognised that a 90% NPV implementation threshold is inadequately low from a 

patient safety and legal perspective309.  

 

4. Improvements over traditional histopathology.   

Tissue diagnosis using REIMS and its machine learning algorithms can be conducted in real-time 

unlike traditional histopathology, which can take up to 7 days to give results and therefore does 

not allow tailoring of management decision during the procedure. It also recognised to suffer with 

inter- and intra-observer variability, which can be mitigated with the objectivity and 

reproducibility that modern analytical techniques appear to offer317-319. Whilst the fixed costs of 

MS techniques such as REIMS are higher, the lower variable costs are such that it may be cheaper 

than histopathology if deployed at scale.  

 

5. Biological insight into the relationship between metabolism and tissue phenotype.  

Progression from relying simply on cancer morphology to the incorporation of biological features 

such as genotype has transformed the pan-specialty management of cancer. Considering the 

intimate relationship between metabolism and phenotype, sampling metabolic data is likely to 

give significant new insights from a research and clinical perspective into factors such as the 

drivers of carcinogenesis, determinants of clinical risk and optimal management strategies. Clinical 
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applications for integrated metabolomic data include diagnostics (such as risk stratification of 

early rectal cancers by predicting nodal micrometastasis), therapeutics (personalised use of anti-

cancer agents based on metabolic risk and vulnerabilities) and prognostics (treatment response 

and optimisation of long-term surveillance programs).  

 

 

3.3 Thesis Aims 
 

The aims of this thesis are to: 

1. Define the minimum quality of REIMS spectra which allows inclusion in tissue recognition 

models, with regards to technical, statistical and histological variables. 

2. Determine the impact of environmental and technical factors on the quality and biological 

composition of REIMS spectra from colorectal mucosa. 

3. Create a clinically and histologically validated ex vivo database of REIMS spectra from the 

analysis of colorectal tissues. 

4. Use multivariate statistical techniques to determine the diagnostic accuracy of REIMS in 

differentiating colorectal carcinoma, adenoma and normal mucosa. 

5. Assess the ability of REIMS to risk stratify colorectal cancers and adenomas. 

6. Identify the molecular structure of lipid metabolites which are responsible for differentiating 

groups in statistical models. 

7. Determine whether it is feasible for REIMS to be coupled to surgical instruments in vivo 

during TAMIS, to give real-time spectra of sufficient quality to undergo statistical analysis.  

 

 

3.4 Thesis Design 
 

The structure of this thesis is demonstrated in figure 3.1, where narrative questions have been 

used to explain both the journey of the thesis and the composition of each chapter. Chapters one 

and two have explored the clinical and scientific background of CRC, metabolomics and real-time 

tissue recognition, revealing unanswered research questions within the context of an unmet 

clinical need (as described in this chapter). The MS methodologies that will be employed across 

the experimental chapters share a common basis, which is described in detail in chapter four, to 

avoid unnecessary reproduction later. The three experimental chapters (five to seven) have been 



 

 80 

designed to directly address the aims of this thesis, where I will present results, provide biological 

context, interpret their clinical and research impact, appraise the methodology used and identify 

unanswered questions that remain. The final chapter will conclude the thesis by providing a 

summary of the work, giving my opinion on progress in the field and giving recommendations for 

future research. 

 

 

 
 
Figure 3.1 – the structure of the thesis with the narrative questions addressed in each chapter.  
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Chapter 4 – Materials and Methods 
 

 

4.1 Research oversight and governance 
 

All research described in this thesis was conducted in accordance with the regulations and 

principles laid out in the International Conference on Harmonization Good Clinical Practice, the 

Data Protection Act, the UK Policy Framework for Health and Social Care Research and the 

recommendations for physicians involved in research on human subjects adopted by the 18th 

World Medical Assembly, Helsinki 1964 and later revisions. Oversight was provided by the 

frameworks of Imperial College London and the research department of any included NHS trust.   

 

 

4.2 Ethical approval 
 

Ethical approval for the studies contained in this thesis was achieved from two sources. Ex vivo 

collection of tissue was conducted as a sub-collection (JK_17_046) of the Imperial College 

Healthcare Tissue Bank, under the HTA license 12275 and REC: 17/WA/0161. In vivo data 

collection (and accompanied ex vivo sampling of tissue) was conducted under a dedicated ethical 

application (14/EE/0024), which was approved by both the London REC and Imperial College Joint 

Research Office.  

 

 

4.3 Patient recruitment 
 

Patients were considered eligible for inclusion if they were undergoing surgical or endoscopic 

resection of colorectal tissues at Imperial College NHS Trust or the Royal Marsden NHS Trust. 

Patients were identified pre-operatively through screening of MDT records and theatre lists, 

following which they were approached by a member of the research team. Written and informed 

consent following provision of a patient information sheet was necessary for inclusion in all cases, 

at which point a patient was assigned a study ID. Patients were excluded if they suffered with 

hereditary polyposis syndromes, inflammatory bowel disease or if the age was less than 18 years.  
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4.4 Sample collection and storage 
 

 

4.4.1 Tissue collection from surgical and endoscopic resections 

 

Tissue was collected from segmental surgical colorectal resections (such as hemicolectomies or 

anterior resections), local excision of rectal lesions (such as TAMIS) and endoscopic resections 

(such as EMR). In all cases, once resection had been complete, the fresh tissue was transported 

immediately to the histopathology department for ex vivo dissection by a histopathologist. In the 

case of radical resections, the specimen was opened longitudinally using Mayo scissors, avoiding 

non-peritonealised surfaces and the tumour mass. Macroscopically normal (at 10cm from the 

primary lesion), polyp or tumour tissues were dissected for research using a scalpel blade in pieces 

ranging from 5-500mg, in such a fashion as not to compromise the clinical diagnosis (such as by 

sampling the invasive margin). Following research sampling, specimens were submitted as usual 

for clinical pathological diagnosis.  

 

 

4.4.2 Sample storage 

 

Tissue samples were placed in sterile 2ml microcentrifuge tubes with a screw cap (MicrewtubeTM, 

Simport Scientific, USA), labelled with tissue type, patient ID and if appropriate, location sampled. 

These were snap frozen in liquid nitrogen where possible, before being placed into a -80oC freezer 

for storage until analysis.  

 

 

4.5 REIMS tissue analysis 
 

 

4.5.1 Technical specifications  

 

 

4.5.1.1 MS Instrumentation 
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REIMS analysis was conducted on a Xevo G2-S qToF mass spectrometer (Waters Corporation, 

USA), which is a self-contained unit consisting of a wheel-mounted MS and computer screen; 

measuring approximately 69.2 x 162 x 101.8cm (W x H x D; figure 4.1.A).  

 

 
 
Figure 4.1 – The Xevo G2-S qToF mass spectrometer (Waters Corporation, USA) used for all ex vivo 
and in vivo analyses (A). A close view of the Venturi system attached to the REIMS source is 
presented (B), with the path of surgical aerosol shown (dashed maroon line).  
 

 

For successful operation of the instrument, several infrastructure components were required. 

Medical-grade gases were either supplied from cylinders or the infrastructure of the space (for 

example, the plumbed medical air supply for anaesthetic machines in the operating theatre could 

be shared using a splitter). The power supply to the MS was the commonly found 240V outlet, 

with a surge-protector used. It was necessary that power was uninterrupted in the hours 

proceeding use to ensure the TOF vacuum pressure is pumped sufficiently low (maximum 1.2x10-6 

mB) and to promote stability of the system electronics. The Venturi housing (shown in figure 

4.1.B) contains the connections for tubing carrying surgical aerosol and the inlet for capillaries 

containing solvents for co-aspiration.  

 

Calibration was performed using sodium formate, which forms clusters across the mass range with 

a m/z interval of approximately 68, with errors of <3ppm deemed acceptable. During MS 

acquisition, the device continuously acquired spectra across the 150-1200m/z mass range in 

negative ion mode, with a scan time of 1s. A solution of propan-2-ol (Sigma-Aldrich, UK) with 
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1ng/µl leucine enkephalin (Sigma-Aldrich, UK) was co-aspirated at a rate of 0.2ml/min, increasing 

the signal intensity whilst providing a lock mass reference standard. The collision surface of the 

REIMS source consisted of a Kanthal (an iron-chromium-aluminium) coil heated to 900oC.  

 

During MS/MS analyses, data was acquired over a 50-1200m/z range, with co-aspiration of only 

propan-2-ol. An m/z value of interest (identified using statistical analyses) was inputted for 

selective passage through the quadrupole, with the m/z window tuned using a high mass (most 

commonly set to 18), a low mass slider (most commonly set to 14) and an ion energy of 0.5. The 

collision gas was either nitrogen or argon, with collision energies ranging from 30-60meV, aiming 

for an intensity of parent ion that is one third that of the highest fragment.  

 

 

4.5.1.2 Aerosol generation and delivery 
 

Tissue was analysed using monopolar diathermy in the cut or coagulation modes at 20W power. 

Ex vivo, this was achieved using a generic handheld, finger-controlled diathermy pencil, with a 

short (approximately 1cm) flat blade acting as the main electrode (figure 4.2), with current 

generated by a commercially available electrosurgical unit (Covidien, Medtronic, UK; figure 4.3). In 

vivo application during TAMIS used the same electrosurgical generator but it was attached to a 

variety of pointed laparoscopic instruments and controlled by foot pedal.  
 

 
 
Figure 4.2 – the monopolar diathermy pencil handpiece used in ex vivo REIMS analysis. The main 
electrode tip applies the current to the tissue following activation of buttons by the operator’s 
thumb. An aperture at the base of the tip aspirates the surgical aerosol through the body of the 
handpiece and into the PTFE tubing to the mass spectrometer.  
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Figure 4.3 – the monopolar electrocautery current generator (Covidien, Medtronic, UK), used for 
ex vivo REIMS analysis and in vivo during TAMIS. 

 

 

Tissue was also analysed ex vivo using a 10.6mm CO2 laser (Omniguide Inc, USA), with a 1.46mm 

diameter flexible photonic bandgap fibre (Elevate Fibre, USA) inserting into a handpiece 

(BeamPath NEURO, OmniGuide Inc, USA). The laser was used with a power setting of 3W in 

superpulse mode, which equates to a peak power of 80W at a frequency of 330Hz, pulse on time 

of up to 100µs and pulse off time of 3.3ms. Pressurised helium gas (30psi) was used for fibre 

cooling. Experience applying the energy devices during ex vivo MS analysis was such that sufficient 

TICs could be generated from short applications, most commonly in the region of 1-2 s. Longer 

burns (2-5s) were used for MS/MS experiments, where a greater number of the parent ions was 

required to reduce noise.  

 

The aerosol generated from an energy device was aspirated through a polytetrafluoroethylene 

(PTFE) tube with an internal diameter of 3mm, which was either integrated (in the case of the 

handheld pencil, as shown in figure 4.2), or taped alongside the TAMIS dissection instrument with 

the opening 1cm from the tip. The standard length of this tubing was 2.5m and would only be 

increased during in vivo sampling if deemed necessary, for example, to ensure adequate distance 

from the sterile field. In order to rapidly transport aerosol contents to the MS, a negative pressure 

was applied from an atmospheric Venturi interface (figure 4.1.B). This Venturi system is driven by 
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pressurised medical air at 2bar, applied orthogonally to the aerosol flow and towards the heated 

capillary inlet.  

 

To protect the researchers from aerosols during ex vivo REIMS analyses, these were conducted in 

a hood equipped with a fume extractor (Wellar WFE 2ES) and the Venturi block was attached to a 

filtered extractor (RapidVacTM, Covidien, Medtronic, UK; as shown in figure 4.1). 

 

 

4.5.2 Workflow for ex vivo tissue analysis 

 

The workflow for ex vivo REIMS analysis is as follows: 

1. Prepare instrument including calibration  

2. Freshly thaw tissue sample to be analysed at room temperature 

3. Cut tissue pieces for optimal analysis: 

a. For larger samples  - cut each piece to approximately 125mm3, allowing easier 

histological validation by reducing the risk of there being multiple tissue subtypes 

b. For normal mucosa – remove the muscularis mucosae if possible to avoid solely 

muscle burns 

4. Apply the energy instrument 1-3 times per tissue piece to perform the REIMS analysis. The 

burns are targeted at the luminal surface (and away from the cut edge). A dedicated raw 

spectral file is created for the analysis of each tissue piece 

5. Tissue is placed in an embedding cassette with the burn placed face-down, labelled with 

the name of the raw spectral file 

6. The cassette is placed in a 10% formalin solution and submitted to the histopathology 

department 

7. Spectral files uploaded to research storage server 

8. Instrument cleaning  

 

 

4.5.3 Workflow for in vivo tissue analysis 

 

The workflow for in vivo REIMS analysis differs from the ex vivo approach as described below: 
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1. Transport mass spectrometer to the operating theatre the evening before to allow the TOF 

vacuum to pump down for at least 8 hours. The MS is to be positioned in a corner of the 

space to interfere as little as possible with the clinical procedure 

2. On the morning of analysis, prepare the instrument and solvents, including calibration  

3. Fix the PTFE aspiration tube alongside the TAMIS dissector using sterile adhesive sheets 

4. Video record the instrument screen and the clinical environment using mounted GoProTM 

cameras (GoPro, USA). The HD laparoscopic video output will be recorded directly through 

the stack system  

5. Create a single raw spectral file for the whole case and continually collect REIMS data as 

the energy devices are being used clinically 

6. The surgical specimen is to be transported to the pathology department where if 

necessary, the researcher will help orientate the specimen 

7. Following the case, all videos and raw spectral files to be uploaded to research storage 

server 

8. Instrument cleaning  

 

 

4.6 Histopathological validation 
 

Histopathological validation of REIMS tissue samples was conducted to confirm the pathological 

subtype of the tissue analysed. Following REIMS analysis, the research tissue samples were placed 

in foam-lined embedding cassettes (Acetal HistosetteTM, Simport Scientific, USA), appropriately 

labelled using a printer (Sakura IDentTM, Sakura, Netherlands) and fixed in solution of 10% neutral 

buffered formalin for at least 72 hours. Following fixation, samples were transported to the 

histopathology department for paraffin embedding following their standard protocols. In 

summary, this involved gradual dehydration with ethanol baths followed by impregnation of the 

tissue with molten paraffin wax attached to the original cassette. Once cooled, a 5µm section was 

cut on a microtome, floated out on a water bath at 45oC and then picked up into the centre of a 

labelled glass slide (SuperFrost PlusTM, Thermo Scientific, USA). Once dry, haematoxylin and eosin 

(H&E) staining was conducted.  

 

H&E sections were interpreted by a histopathology professor specializing in gastrointestinal 

disease (Professor Goldin), applying the same diagnostic criteria as are used clinically (such as the 
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revised Vienna Classification191). The following information was recorded: diagnosis, section 

percentage containing pathology of interest, pathological subtype of disease (such as adenoma 

type), grade of dysplasia (for adenomas only) and any other pertinent features (such as evidence 

of ischaemia or necrosis).  

 

 

4.7 Statistical Analyses 
 

 

4.7.1 Clinical data collection 

 

Clinico-pathological data were collected from the electronic healthcare record for each included 

patient and stored in a pseudo-anonymised research database. This included patient 

demographics, co-morbidity status, operation date, lesion descriptors, pathological report of 

resected lesions and the use of neoadjuvant or adjuvant chemoradiotherapy. Clinical outcomes 

such as cancer recurrence and death were assessed by reviewing the health record and 

surveillance radiographic images.  

 

 

4.7.2 Ex vivo REIMS data analysis 

 

 
4.7.2.1 Data pre-processing 
 

Pre-processing of raw spectral data was conducted in Abstract Model Builder (AMX v1.0.2055, 

Waters Research Centre, Hungary), where burns within each data file could be automatically or 

manually selected, generating one mass spectrum per burn. These then underwent background 

subtraction, lock mass correction (to 554.2615m/z for [M-H]- leucine enkephalin ion in negative 

mode), normalisation and binning to 0.1.  
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4.7.2.2 Univariate and multivariate statistical analysis 
 

The multivariate statistical technique of PCA and LDA were conducted in AMX, where between 30 

and 60 PCs were used (depending on the power of the dataset), applied over a selected m/z range. 

Analyses of the whole mass range were over 150-1200m/z and focused analyses for the complex 

lipids were conducted over 600-1000m/z. AMX could also be used to generate graphical outputs in 

addition to performing cross validation (CV), which was set at leave-one-patient-out (LOPO). 

Binned data that had undergone pre-processing could also be exported from AMX in the form of a 

CSV file, allowing further chemometric functions in other programs. Data was imported into 

SIMCA v15 (Umetrics, Sweden) to undergo multivariate statistical tests such as OPLS-DA, VIP 

scoring or plotting of S-curves. OPLS-DA models were built conservatively, where addition of new 

X-Y or orthogonal components would not cause a decrease in Q2 (and therefore should not suffer 

with over-fitting), with R2 used as the headline metric of goodness of fit. Univariate techniques 

such an ANOVA were conducted in RStudio v1.1.419 to determine differences in relative intensity 

between groups, with p value correction using the Bonferroni technique and a corrected p value 

of <0.05 used to determine statistical significance. Signal:noise ratio (defined as the median 

intensity of the 20 most intense peaks divided by the median intensity of all peaks in 600-

1000m/z) was calculated in Spectrum Quality Analyser (Waters Research Centre, Hungary).  

 

 

4.7.2.3 Metabolite identification 
 

ANOVA, S-plots and VIP scores were used to highlight the m/z values which were responsible for 

differentiating groups of interest, which could then undergo MS/MS analyses. The exact mass of 

the parent ion was determined using MassLynxTM (v4.1, Waters Research Centre, Hungary), with 

visual spectral interrogation used to ensure this was a true peak (defined as at least three times 

the background intensity). Identification of metabolites or their fragments was conducted with the 

assistance of publicly available databases (METLIN145 and LIPID MAPS146), published literature and 

calculation from first principles. The error accepted between the experimentally measured and 

theoretical mass of putatively identified molecules was 10ppm. 
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4.7.3 In vivo REIMS data analysis  

 

Intraoperative tissue recognition could be performed using AMX Recognition (v1.0.1581, 

proprietary to Waters Research Centre, Hungary), which is built upon the LDA models generated 

from ex vivo analysis of colorectal tissues. As new MS data is presented, this program gives 

continual predictions of tissue subtype at 1s intervals whenever the TIC intensity exceeds a set 

threshold, with programmable outlier detection and lock-mass correction. The prediction of the 

recognition software is accompanied by a probability, calculated based on the Mahalanobis 

distance of the new spectra from the existing groups, such that a 50% probability represents 

equidistance from two groups. A threshold for this probability to allow predictions of disease (such 

as tumour or adenoma) can be applied, with 90% used in this thesis (representing a 50% further 

distance to the normal group than to the disease group, aiming to reduce false positives). The 

AMX software can be run in real-time on the computer of the MS and the prediction can be 

presented and continually updated in real-time to the surgeon via a graphical interface, as shown 

in figure 4.4.  

 

To determine the in vivo accuracy of the recognition software, operative videos were co-

registered with the raw spectral file and the histological report of the tissue sample, allowing 

clinical annotation of each burn with data such as tissue type being analysed, layer being dissected 

and presence of contamination. This produces a 2x2 contingency table from which diagnostic 

accuracy metrics could be calculated.  
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Figure 4.4 – screenshot of the AMX Recognition software, with a visual alert given to the operator 
both as a colour warning and as a written prediction with percentage. The lower panel denotes 
the ion intensity over time and three distinct analyses can be demonstrated in this excerpt. The 
right-sided panel lists the classification predictions as they occur, with the scan number that they 
apply to.  

 

 

4.7.4 Non-spectral data analysis  

 

Non-spectral data underwent basic descriptive and analytical processes depending on the data 

type. Parametric data was described using mean and standard deviation (SD), whereas non-

parametric data is presented as median and interquartile range. Continuous datasets were 

compared using Student’s t-test or Kruskal-Wallis for parametric and non-parametric data 

respectively. Independent categorical variables were compared using the Pearson’s chi-squared 

test (c2) unless >20% of the expected cell totals were  less than five, in which case Fisher Exact test 

was used. Multivariate binary logistic regression was used to assess the effect of different 

dependent variables on an outcome. All of the above and their graphical outputs was conducted in 

RStudio v1.1.419 (using the tidyverse collection of packages320) or Excel (Microsoft Excel for Mac 

v16, Microsoft, USA).  
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Chapter 5 – WP1: REIMS spectral quality control 
 

 

5.1 Introduction 
 

Mass spectrometers are complex and sensitive instruments where a large variety of factors can be 

responsible for variability in data quality, which has prompted the use of quality control 

procedures in techniques such as LC-MS321. These are applied during the sample analysis stage as 

well as during data processing and analysis, to mitigate against reproducibility and accuracy 

vulnerabilities of the instrument. Initial work using REIMS has focused on method development 

and proof-of-concept in vivo translation, however little work has been published on spectral 

quality control. This would be required to create a viable clinical diagnostic device by ensuring 

robust and reliable generation of high quality data322.  

 

A significant challenge with REIMS data analysis is that no framework currently exists to appraise 

spectra for their quality and to define those with sufficiently high quality to allow inclusion in 

statistical analyses. Inclusion of poor-quality spectra with systematic biases would reduce the 

accuracy of the statistical models used for tissue recognition, increasing the probability of 

incorrect classifications that may adversely impact patient care. It is therefore necessary to 

systematically and objectively define these quality factors and create a REIMS data pipeline, where 

filtering can be used to select which spectra are included in creation of ex vivo databases and 

whether those collected in vivo are suitable for analysis. Once quality metrics have been defined 

for REIMS spectra and there is a better understanding of how these impact tissue recognition 

accuracies, it will then be possible to explore how other technical and environmental factors 

impact quality. This is of particular importance when considering translation of the technology 

into clinical settings, where the instrument operators have a much-reduced control in this dynamic 

and unpredictable environment.  

 

This work plan will address spectral quality in two parts – first, by attempting to define minimum 

quality thresholds for REIMS spectra and second, assessing the impact of technical and 

environmental factors on REIMS spectral quality.  
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5.2 Defining quality for REIMS spectra 
 

 

5.2.1 Aim  

 

The aim of this study was to assess how technical, statistical and histological variables impact the 

accuracy of REIMS for colorectal tissue recognition, allowing minimum spectral quality standards 

to be defined.   

 

 

5.2.2 Methods 

 

An annotated dataset was constructed for this study in November 2018, containing all REIMS 

spectra from ex vivo analysis of colorectal tissue conducted by the research group to date.  

 

 

5.2.2.1 Patient recruitment and sample collection 
 

Patients who had undergone surgical or endoscopic colorectal resection from November 2014-

August 2018 and had been recruited for colorectal tissue bio-banking were eligible for inclusion in 

this study (refer to chapter 4 for details). Patients with inflammatory bowel disease, hereditary 

polyposis syndromes or age less than 18 years were excluded.  

 

 

5.2.2.2 MS analysis and specifications 
 

Whole tissue samples were thawed immediately prior to MS analysis using either a handheld 

monopolar diathermy at 25W or a CO2 laser in ‘SuperPulse’ mode at 3W. The surgical aerosol was 

aspirated into the Xevo G2-S qTOF mass spectrometer (Waters Corporation, USA) with the Venturi 

interface and co-aspiration of leu-enkephalin in isopropanol (20ng/ml concentration) at a flow 

rate of 0.2ml/min. The instrument used to analyse tissue was often determined pragmatically 

based on which MS was functioning at the laboratory site storing the batch of tissue for analysis. 

Dolores was primarily used during 2015 and a batch in August 2018, with the rest performed on 
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Christina. Spectra were collected in negative mode across the 150-1200 m/z range. Following 

analysis, samples underwent histological validation. All tissue samples and spectra generated prior 

to October 2017 were collected by Dr James Alexander, with me responsible for all data collection 

after this time. All processing, analysis and interpretation of all data was performed by me. Full 

details of the analytical methodology can be found in chapter 4.  

 
 

5.2.2.3 Data Analysis 
 

Eight variables which have the potential to impact the quality of spectra and therefore the 

accuracy of REIMS in performing tissue recognition were chosen following discussion within the 

research group. These were:  

1. Non-mucosal sampling 

2. Percentage of histological section containing index tissue during validation 

3. Presence of technical batch effects 

4. Spectra signal:noise ratio 

5. Background noise between lipid peaks 

6. Total ion current 

7. Presence of contaminants 

8. Diathermy mode used 

 

Raw spectral data were pre-processed in Abstract Model Builder (Waters Corporation), with 

binning at 0.1, normalization, lock-mass correction and background subtraction. Modelling was 

conducted using PCA and LDA (60 PC components) between 600-1000m/z, with LOPO CV used to 

determine model accuracy. For binary variables (such as the presence or absence of a 

contaminant) the accuracy of REIMS in differentiating carcinoma, adenoma and normal mucosa 

was compared between each condition. For continuous or ordinal data (such as TIC), sensitivity 

analyses were conducted. For each variable, several thresholds were chosen which when applied, 

would determine which spectra were to be excluded from analysis. The accuracy of REIMS for 

colorectal tissue recognition was then determined for each threshold, with comparisons made 

between them. The minimum quality requirement for spectra was defined as the point at which 

increasing a variable threshold caused no significant further increase in diagnostic accuracy. 
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5.2.3 Results 

 

The dataset consisted of 1220 spectra generated from the tissue of 144 patients, with 589 spectra 

from normal mucosa, 443 from tumour and 188 from adenoma. Patient demographics in addition 

to clinico-pathological and analytical data for the spectra can be found in table 5.1.  

 

When spectra of all quality are analysed, the PCA plot demonstrates a lack of clear clustering by 

tissue type, with an LDA plot demonstrating significant overlap between the cluster borders and 

notable spectra a large distance from the group centroid (figure 5.1). This results in an 81.2% 

accuracy for REIMS in the prediction of tissue subtype, with misclassifications demonstrated 

across all tissue subtypes and notably with 19% of tumour samples predicted to be normal. 

 
 

 Factor  Number (%) 

Patient 
Demographics 

Gender 
Male 79 (55) 

Female 65 (45) 
   

Mean Age  70.3 
   

Ethnicity 

White 93 (65) 

Asian 18 (13) 

Black 9 (6) 

Other 4 (3) 

Unknown 20 (16) 

    
 

Factor  
Number of 
Spectra (%) 

Samples 

Location 

Right 505 (41) 

Left 238 (20) 

Rectum 422 (35) 

Unknown  55 (5) 
   

Tissue Subtype of 
Spectra 

Tumour 443 (36) 

Normal 589 (48) 

Adenoma 188 (15) 

    

Analysis Year 
2014 42 (3) 
2015 786 (64) 
2016 56 (5) 
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2017 68 (6) 
2018 268 (22) 

   

Instrument 

Dolores 191 (16) 

Christina 875 (72) 

Unknown 154 (13) 

 
Table 5.1 – characteristics of patients included in the dataset, with clinico-pathological and 
analytical features for spectra generated. 

 

 
Figure 5.1 – PCA (A) and LDA (B) plots for all analyses of colorectal tissue, with the confusion 
matrix following LOPO CV (C).  

 

 

5.2.3.1 Histological validation 
 

Samples may be considered to fail histological validation following analysis with REIMS for a 

variety of reasons. The technology is designed to sample the colorectal mucosa and therefore if a 

research sample contained only muscularis or fat, then it was excluded from analysis (n = 93). In 

addition, a greater intensity of TGs implies significant sampling of the submucosa and therefore if 

the maximum triglyceride intensity was greater than 50% of the maximum glycerophospholipid 

intensity, spectra were excluded (n = 35). If the histological section was non-diagnostic, all spectra 

from this sample were excluded (n = 21). These changes improved the accuracy of REIMS in 

differentiating carcinoma, adenoma and normal for the remaining 1071 spectra from 81.2 to 

83.6%; and therefore, these exclusion criteria were applied forthwith.  

 

When considering adenoma and carcinoma, it is also necessary to determine the minimum 

proportion of the validation section that needs to contain the tissue subtype in order to consider 
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validation successful. This is in consideration of the trade-off between diluting the metabolomic 

signal of tumour with an overwhelming proportion of normal tissue in the sample, against the 

need for REIMS to detect invasive margins where tumour cells may be in the minority. Sensitivity 

analyses were conducted for different threshold levels, where if the tumour or adenoma cells 

constituted less than the threshold level in the sample, all spectra from that analysis would be 

excluded (figure 5.2). This revealed that once 15% is reached, there is a relative plateau in 

diagnostic accuracy until 40%, where it increases to another plateau. In order to balance accuracy 

and sensitivity, a minimum of 15% of index tissue in the validation section was a requirement for 

the ongoing studies.  

 

 
 

 
Figure 5.2 – Scatter plot demonstrating how the accuracy of REIMS in differentiating cancer, 
adenoma and normal mucosa differs based on the minimum composition of cancer or adenoma 
tissue in the sample.  

 

 

5.2.3.2 Batch effect 
 

When using 3-dimensional PCA plotting of all spectra, it is apparent that there is a batch effect of 

samples clustering distinctly to the majority along PC3, including all tissue types (figure 5.3.A). The 

cause of this was interrogated using multivariate binary logistic regression, where the analysis of 

deviance revealed that the use of the Dolores instrument had the greatest impact on the model, 
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with a high level of statistical significance (p = 2.2x10-16). Deeper investigation revealed that the 

109 spectra in the batch effect were all conducted on the Dolores instrument between March and 

June 2015. Plotting the spectra of the samples identified that the batch was caused by a mass 

shift, where peaks drifted up or down by a 0.1 width bin depending on their position in the mass 

range (figure 5.4). It was revealed on review of the instrument logs that the mass shift was caused 

by not calibrating the instrument prior to analysing samples. When the 109 spectra in the batch 

effect are removed, the cluster on the PCA resolves (figure 5.3.B). Furthermore, the accuracy of 

the LDA model increases from 83.5 to 85.7%, with improvements in classification accuracy across 

all tissue types. It was decided that spectra involved in a batch effect seen on PCA due to mass 

shift would be excluded from final modelling.  

 

Figure 5.3 – 3-dimensional PCA plot of all data (A), revealing a batch effect (red circle) and a PCA 
plot after removal of all samples run by the Dolores instrument from March-June 2015 (B). 
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Figure 5.4 – plot of spectra coloured by whether they were present in the Dolores instrument 
batch effect or not, where masses were increased in the lower mass ranges and increased in the 
upper mass ranges.  

 

 

 

5.2.3.3 Signal:noise ratio 
 

Once spectra which had failed histological validation or which were involved in a batch effect had 

been excluded, the relationship between biological signal and random background noise was 

assessed for the 939 spectra remaining. This was achieved using the signal:noise ratio, based on 

the hypothesis that a higher value was more desirable as it indicated a greater relative sampling of 

biological and therefore metabolic data. The spectra demonstrated marked variation in 

signal:noise ratios, with a median of 3293, range of 101-49613 and a positive skew. Low 

signal:noise disproportionately impacted spectra from normal mucosa, with similarities between 

carcinoma and adenoma (figure 5.5). To understand how this impacts misclassification rate, 

spectra were ordered from low to high signal:noise and plotted against the cumulative count of 

REIMS misclassification, demonstrating that the lower signal:noise ratios appear to misclassify at a 

greater rate than their higher counterparts (figure 5.6). 

 

 
 

Figure 5.5 – cumulative count of spectra from carcinoma, adenoma and normal mucosa plotted as 
the signal:noise ratio increases from the lowest to highest value along the x axis.  
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Figure 5.6 – the cumulative misclassification rate (blue) when spectra are ordered along the x axis 
from low to high signal:noise ratio. An equal probability of misclassification across the signal:noise 
range is presented (orange dotted line).   
 

 

When plotting excess misclassifications for all tissue types (defined as observed - expected 

misclassification number and can be considered as the gap between the lines in figure 5.6), these 

appear to follow a pseudo-normal distribution, with an increase to a peak at approximately 

spectrum 330, corresponding to a signal:noise ratio of 2105 (figure 5.7.A). To assess whether this 

finding was specific to a particular tissue, this was also plotted for carcinoma, adenoma and 

normal mucosa. This demonstrates that low signal:noise spectra have the largest impact on 

misclassifications for tumour samples, with a rapid rise to a peak corresponding to a signal:noise 

ratio of 3000 (figure 5.7.B). Spectra from adenomas show a similar pattern however are impacted 

to a lesser degree, with a peak corresponding to a signal:noise of 2200 and a decreased gradient 

of downslope (reflecting a slower improvement in classification performance as spectral quality 

improves (figure 5.7.C)). Spectra from normal mucosa do not appear to have a clear relationship 

between misclassifications and signal:noise ratio, despite the earlier finding that they are over-

represented in spectra with low signal:noise (figure 5.7.D).  
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Figure 5.7 – Excess misclassifications as spectra are ordered along the x axis from low to high 
signal:noise ratio for all samples (A), carcinoma (B), adenoma (C) and normal mucosa (D). 
Polynomial trend lines are presented (dotted). A positive gradient denotes a greater rate of REIMS 
misclassifying tissue subtypes than expected.  

 

 

Tumour spectra which misclassify have a background noise which is 64% higher than those that 

correctly classify (p = <0.001), in addition to a signal that is 28% lower (p = <0.001). A similar 

pattern is seen with adenoma spectra, however with spectra from normal mucosa, the signal and 

background noise are the same between those that classify correctly and those that do not (p = 

0.45 and 0.65 respectively). The signal:noise also had an impact on how tumour spectra 

misclassify, with a significantly higher rate of incorrect normal predictions when the signal:noise is 

low (p = <0.001; figure 5.8).  
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Figure 5.8 – The impact of high and low signal:noise on how tumour spectra misclassify.  

 

 

A spectrum’s signal:noise ratio has been shown to dramatically impact the risk of misclassification 

and therefore it is necessary to determine a minimum threshold for signal:noise, below which 

spectra will be excluded from statistical analyses. A sensitivity analysis with a range of thresholds 

is shown in figure 5.9, showing a marked increase in accuracy in differentiating tissue subtypes 

when a minimum signal:noise of 1000 is used, with no clear increase when using a higher 

threshold. For future analyses, this threshold will be applied. 

 

 
 
Figure 5.9 – the impact of minimum signal:noise thresholds on the accuracy of REIMS in 
differentiating spectra from  tumour, adenoma and normal mucosa.  
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5.2.3.4 Exclusion of bins with high background noise between lipid peaks 
 

Following exclusion of spectra with a signal:noise of less than 1000, a PCA of the remaining 802 

spectra demonstrates a possible batch effect (figure 5.10.A). Exploring the analysis date, it is 

apparent that this batch is largely due to a single analytical run in January 2018 (figure 5.10.B). The 

loadings plot reveals that this difference is being driven by bins where glycerophospholipids are 

less commonly seen in negative mode, such as between the m/z decimal places of xn.85 - xn+1.35 

(figure 5.10.C). The cause for this is apparent when plotting the spectra, where it appears there is 

a markedly increased background noise across the bins between lipid peaks (figure 5.10.D). 

Excluding the bins that cover m/z xn.80 – xn+1.40 for the whole mass range and xn.70-xn.80 for the 

range 600-800 (to avoid excluding TGs found above this range), causes resolution of the batch 

effect on PCA (figure 5.10.E), however this process does not markedly improve diagnostic accuracy 

of REIMS, with a model accuracy changing from 87.2 to 87.4%. As such, the intensity of the 

background between lipid peaks was not used as a quality metric in future analyses. 
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Figure 5.10 – PCA plot of the 802 spectra labelled by tissue subtype (A), demonstrating a possible 
batch effect (red oval), with this batch effect again evident when labelling the analytical run in 
January 2018 (B). A loadings plot of a model differentiating the January 2018 batch and other 
analyses (C) demonstrates marked increase in the intensity of the bins between xn.75 - xn+1.25, as 
seen on the raw spectra (D). Plotting a PCA once the bins between common lipid peaks are 
excluded removes the batch effect (E). 
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5.2.3.5 Minimum TIC 
 

Whilst the exclusion of bins between the common lipid peaks did not influence the diagnostic 

accuracy of REIMS, the updated PCA did reveal a new batch of outliers (figure 5.11.A), which when 

labelled, appeared to be due to low TIC. Despite subsequent normalization, this batch 

demonstrated reduced variation and intensity of biological data compared to spectra not in the 

batch (figure 5.11.B-C). The majority of samples analysed in this run were adenomas, however this 

was not a tissue-specific finding when the spectra were compared to adenomas analysed on other 

dates.  

 

 
 

Figure 5.11 – PCA plot with the 60 (7.5%) spectra of lowest TIC labelled (A). An aggregate of 
spectra with high intensity (B) compared to those with lowest intensity (C).  
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A sensitivity analysis was conducted to assess for the impact of TIC on the accuracy of REIMS. 

Excluding the spectra with the lowest TIC in 5% increments did not appear to improve the 

diagnostic accuracy of REIMS significantly and therefore minimum TIC was not used as a quality 

metric (figure 5.12).  

 

 
 

Figure 5.12 – Accuracy of REIMS in differentiating carcinoma, adenoma and normal mucosa when 
spectra are excluded using different centile thresholds of TIC.   

 

 

5.2.3.6 Presence of sodium formate contamination 
 

On visual inspection of two spectra, there was a significant volume of sodium formate clusters 

present in the background of the spectra, most likely as a carry-over from the calibration step 

(figure 5.13.A). These peaks were still present after background subtraction (figure 5.13.B) 

contributing to them being outliers based on Hotelling’s T2. Furthermore, some of the sodium 

formate clusters were falling into the same bins as lipids, artificially increasing the relative 

intensity. An example is the cluster at 724.49 m/z, which joins the M+1 13C isotope of [PA(38:4)-H]- 

(exact mass 724.4998) in the bin covering 724.40 – 724.50 m/z. As a result, the presence of 

contaminants within the analytical mass range was considered sufficient for exclusion of spectra.  
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Figure 5.13 – spectrum of the background of an analytical run (A) demonstrating clusters of 
sodium formate at intervals of 67.99 (red arrows), which carry-over when analysing samples and 
can be seen alongside the lipid peaks (B).  

 

 

5.2.3.7 Energy device used 
 

Of the 800 remaining spectra, 4 were generated using the CO2 laser, 13 were from monopolar 

diathermy in coagulation mode, with the rest using cutting mode diathermy. Significant 

differences between spectra generated by coagulation and cutting diathermy modes are seen 

(described in detail later in section 5.3.3.2) and the combined misclassification rate of the laser 

and coagulation mode spectra was 30%. Consequently, a model was created where only spectra 

generated using monopolar diathermy in cutting mode were included, however this did not 

increase the diagnostic accuracy of REIMS (86.7 vs 87.1%). Despite this not having a direct impact 

on diagnostic accuracy, the marked heterogeneity in spectral composition from using a different 

mode of energy delivery may be causing a systematic error that this methodology was unable to 
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detect and as such, it will still be required that spectra are analysed using cutting mode in order to 

be included in statistical analyses from here on. 

 

 

5.2.4 Discussion 

 

This is the first attempt to systematically and robustly define minimum thresholds of quality for 

spectra generated by REIMS, in order to determine which are suitable for inclusion in statistical 

analyses. Whilst many different spectral characteristics were studied, it was determined that if 

spectra do not meet all the following seven requirements, they would be excluded from future 

analyses: 

1. No significant sampling of non-mucosal tissue 

2. Validation slide must be diagnostic  

3. ³15% of histological validation slide must include mucosa of the tissue of interest 

4. No evidence of a technical batch effect from mass shift 

5. Signal:noise ratio of ³1000  

6. No contamination with sodium formate 

7. Monopolar diathermy must have been applied in cutting mode 

 

Defining the ‘quality’ of REIMS spectra is a challenging process, where the impact of many factors 

required consideration and the optimal outcome against which they are measured was potentially 

unclear. The hypothesis of this thesis is that REIMS is able to differentiate tissue subtypes with 

high accuracy by sampling metabolites and this informed the decision for using diagnostic 

accuracy of models as the metric by which quality criteria can be compared. This approach 

benefited from being focused on the final goal of the technology (clinical diagnosis) whilst creating 

a simple metric which was easy to understand. Enforcement of the minimum quality standards for 

the spectra improves the diagnostic accuracy of REIMS in differentiating colorectal carcinoma, 

adenoma and normal mucosa from 81.2 to 86.7% in this preliminary dataset. Undergoing this 

process is vital to the development of the technology and understanding the biology of these 

tissue types. The inclusion of poor-quality spectra in statistical analyses increases the probability 

of making both type I and type II errors when performing tissue recognition or when exploring 

biological relationships. Whilst building models for tissue recognition, including spectra which are 

not truly representative of the annotated tissue type will move the group centroid in the 
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hyperplane and increase misclassification rate. Similarly, allowing such spectra to undergo 

recognition themselves will induce errors given that it is not a like-for-like comparison.  

 

This approach to defining spectral quality has focused on experimental, study design and technical 

factors, which are often unique to REIMS considering the distinct differences between it and 

alternative MS techniques. These often take a differing approach by using quality control samples 

within the analytical run, do not suffer with the sampling and ionisation variability seen with 

REIMS and use techniques to reduce heterogeneity between bio-samples323,324. From an 

experimental perspective with REIMS, it is imperative to ensure that the tissue being analysed is in 

fact the pathological subtype that is expected. When sampling tissue for research, it may 

macroscopically appear to be a tumour, however after analysis by REIMS, the validation section 

may reveal the tissue not to be malignant. Similarly, normal tissue may be sampled from a surgical 

specimen which when dissected for REIMS analysis, may no longer have any mucosa and instead, 

only other bowel wall components such as muscularis. It is therefore necessary to exclude spectra 

impacted by this sampling issue, as they are not contributing to the aims of the project; which are 

to analyse the metabolic profiles of relevant tissue types as they may be encountered clinically. 

This was similar for the requirement for the maximal TG level not to exceed 50% of the maximal 

GPL level, which implies that an excess of the submucosa has been sampled. Mucosal analysis in a 

clinical setting should not include a large proportion of submucosa and considering the submucosa 

is often obliterated in tumours, including such spectra may bias the models; placing undue weight 

on TGs in the prediction of normal tissue. Choosing the appropriate level was challenging 

considering there is no prior literature to refer to and no method of deduction by first principles in 

order to determine a threshold. 50% was chosen by instinct, to strike a balance between the 

inevitable (and acceptable) partial sampling of submucosa and occasions when this dominated. 

Choosing a different threshold may have had an impact on the models created, however this was 

beyond the scope of this work. It may be possible to consider performing a sensitivity analysis of 

this in the future to determine an optimal threshold, if a sufficiently large dataset exists with a 

sufficient range of GPL and TG ratios. 

 

Ideally, intraoperative REIMS would be able to detect the presence of a single tumour cell within 

an analysed region, even though this may represent a minute proportion of the bio-sample. This 

would be desirable considering microscopic extension of tumours can cause an ‘involved’ surgical 

margin and there are prognostic implications for the patient even if it is only a single cell causing 
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this involvement. The challenge with REIMS is that it is sampling the metabolic profile of the whole 

analysed region (approximately 1-5mg tissue), where the differential abundance of metabolites 

from a low number of tumour cells could be lost in the signal of the remaining normal tissue, 

causing a false negative prediction. This project identified that having a minimum 15% of the 

histological section containing tumour or adenoma decreases false negative predictions, whilst 

still having a large majority of normal tissue in the sample. Considering the development stage of 

the REIMS technology, the objectives of this project to document the unique metabolic profiles of 

different pathological subtypes and the need to reduce false negative predictions, a 15% minimum 

appears to be a fair balance. As the technology advances towards in vivo diagnostic use, it will be 

necessary to re-address this threshold and attempt to optimise the technology specifically to 

identify smaller proportions of tumour in samples.  

 

When considering spectral quality from a technical perspective, batch effects were evident upon 

visual inspection of the PCA plots. This is a common problem in mass spectrometry, where these 

sensitive instruments can be affected by a range of factors to cause systematic variation in the 

dataset unrelated to the biological component. These factors can be the ambient atmosphere 

(humidity, temperature, pressure), vacuum pressure within the instrument, changes in ionisation 

efficiency, different sampling techniques and many more; including unknown factors325,326. The 

mass shift caused by the lack of calibration of the Dolores instrument between March and June 

2015 were such that lipid peaks were shifting into adjacent bins, which could not be accounted for 

during supervised analysis and therefore, affected diagnostic accuracy. An alternative to excluding 

this cohort of 109 spectra would be to attempt to correct the masses by performing lock-mass 

correction on multiple peaks throughout the mass range, however, that functionality is not 

currently available on the AMX platform and requires metabolites at certain peaks to be identified 

in order to determine the exact mass. The strict adherence to calibration protocols following this 

period avoided any mass shift batches in the subsequent analyses and it is therefore anticipated 

that this will not be a recurring issue. It is unclear why the January 2018 analytical run had 

increased intensity in the background between lipid peaks despite background subtraction and 

normalisation, however given that supervised techniques were not impacted by this, it was not 

considered a metric of sufficiently poor quality that spectra should be excluded. Creating 

automated protocols for the recognition of future batches is troublesome considering the 

multitude of different factors which can cause batches on PCA, many of which will not impact 

diagnostic accuracy considering supervised techniques are used for model creation. One approach 
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to solving this is using the d statistic, which compares the variance of the first PC calculated by PCA 

and guided PCA; which is then compared between analytical runs327. Such statistical approaches 

could be augmented by analysing identical quality control samples at the start and end of each 

run, such as cancer cell lines, where the spectra generated can be compared to a historical dataset 

to identify possible technical batches328.   

 

It is relatively straightforward to conceive how the ratio of biological signal to random background 

noise in a spectrum could impact its suitability for inclusion in statistical analyses and therefore be 

considered a marker of quality. If background noise is sufficiently high compared to the signal 

from metabolites, this is in direct opposition to the efforts of this thesis, which is to link complex 

metabolic signatures with tissue subtypes. A challenge arises when attempting to define 

signal:noise ratio for REIMS. Traditionally in mass spectrometry, it is described on a per-peak basis 

as the ratio of true signal amplitude to the standard deviation of the noise329, however this can be 

challenging to define for REIMS spectra as they present many hundreds of peaks simultaneously. 

This thesis used the median intensity of the top 20 most intense bins to define the signal, which 

corresponded to lipid peaks consistently seen in high relative abundance in colorectal tissues such 

as PE(18:1/16:0)-NH3-H in bin 699.45m/z. Noise was defined as the median of all bins and 

considering the number of bins was considerably larger than the number of metabolites present 

(particularly in the complex lipid region), this was deemed a suitable measure by not appearing to 

include true peaks in its calculation. Approaches similar to this have been applied previously with 

MS data, however it is beyond the scope of this thesis to explore how different definitions of 

signal-noise ratio impact classification accuracy330,331. A vast range of signal:noise was 

demonstrated across the spectra in this thesis (a factor of greater than 100), with potential causes 

for this remaining unclear. Co-aspiration of IPA is recognised to increase the signal by a factor of 

2141, however this should have been running at the same flow rate throughout all analyses. It is 

possible this could reduce if the capillary geometry was suboptimal, however the impact of this 

should be relatively small. It does appear that the tissue type being analysed has a direct influence 

on the signal:noise, with normal tissue having a significantly higher median background noise and 

lower median signal than both tumour and adenoma spectra. Normal tissue was often sampled 

full thickness (unlike tumour and adenoma), which results in a significantly higher muscle 

component in the sample and REIMS analysis of this would be expected to cause an increase in 

noise and decrease in lipid signal (based on unpublished work from other members of the 

research group). This reflects the many potential causes of noise in analytical spectrometry data 
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(including electrical, biological and technical factors), with the relative impact of these requiring 

exploration in future work332,333. Inclusion of signal:noise as a marker of quality is justified by the 

clear finding of the inverse relationship between signal:noise and misclassification rate, notably 

for tumour and adenoma samples. Spectra with low signal:noise are also more likely to incorrectly 

classify spectra as normal rather than the other pathological state (false negative), which has a 

marked potential impact in the clinical setting. Tumour samples generated the spectra with the 

highest signal:noise, however it is unclear how factors such as necrosis, presence of mucin and 

non-viable cells would impact this metric. Additionally, it is beyond the scope of this work to 

determine if a different definition of signal:noise ratio would impact the threshold at which 

classification rate is most impacted.  

 

These data did not appear to demonstrate a clear impact of energy mode on diagnostic accuracy 

of REIMS, despite this being a large source of heterogeneity and the finding that coagulation and 

cut diathermy profiles cluster very distinctly on PCA (detailed in section 5.3.3.2). Whilst 

coagulation mode and laser spectra misclassified at double the rate of rest of the dataset (30%), it 

was surprising to find that excluding them did not affect diagnostic accuracy. The reason for this is 

unclear and likely reflects the complexities of metabolomic data how small changes can impact the 

findings of multivariate modelling. Despite this, a decision was taken to still exclude spectra 

generated using a device other than cut diathermy mode as there is a strong suspicion that the 

negative impact of coagulation mode spectra on model accuracy cannot be fully appreciated in 

this limited preliminary dataset.  

 

Whilst this project has been valuable in exploring quality of REIMS spectra, there are weaknesses 

in the approach used which must be understood. It has resulted in creation of stringent exclusion 

criteria and the loss of a significant portion of the dataset (447 spectra, 37%). This does raise 

concerns that the power of the statistical analyses may be impacted, such that nuances in the 

metabolic differences between groups may be under-recognised. Considering the diagnostic 

accuracy of REIMS increased when applying these quality metrics, this implies that the decreased 

number of observations are not impacting power. Furthermore, factors such as batch effects or 

failure in histological validation introduce systematic errors and it is desirable to remove or 

mitigate for these, even if there is some cost in terms of the model’s theoretical power. The 

reproducibility and external validity of the findings in this project are unclear and may be impacted 

by a variety of factors. The dataset used contained all REIMS analyses until November 2018 and it 
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is unclear if some of the findings are unique to this data and may not hold true for an updated or 

externally collected dataset. It is possible that random variation in the data caused type I errors 

and therefore incorrect assumptions of the relationship between a variable and quality. This is 

challenging to explore using the single dataset and exacerbated given the outcomes do not 

provide an indication of error or uncertainty (such as confidence intervals). Conversely, the 

sensitivity analyses may not have been able to detect all variables which have an impact on 

quality. The dataset used was colorectal tissue and considering the marked variation in metabolic 

profiles and spectral characteristics between organs, it is likely to need repeating if a different 

body site is sampled. Whilst this project has started to define ‘quality’ in REIMS spectra, in most 

cases it has been unable to inform how analyses can be conducted differently in the future to 

improve the quality of data produced (with notable examples such as the need for immediate 

calibration prior to each analytical run to avoid mass shift batch effects). Improving quality of 

produced spectra is beyond the scope of this thesis, however, the definitions provided here can be 

used as proxy in future work.   

 

 

5.3 Impact of Technical and Environmental Factors on REIMS Mass Spectra  
 

 

5.3.1 Aim and Rationale 

 

Collection of REIMS data ex vivo in the laboratory setting involves standardisation of technical 

parameters of the mass spectrometer and sampling device (such as aspiration tube length, power 

settings and diathermy mode), in addition to controlling many environmental factors (such as 

contamination on the tissue surface). This is performed in order to generate reproducible mass 

spectra of high enough quality that reliable results can be produced from statistical analyses. 

However, translating this technology in vivo involves taking it into a dynamic and unpredictable 

setting where it may not be possible to control or mitigate for many of these factors. For example, 

surgeons may choose to deploy diathermy differently in order to achieve a particular clinical goal, 

such as using coagulation instead of cut mode, changing the power settings and given the need to 

maintain a sterile field around the patient; a longer aspiration tube may be required to deliver the 

aerosol to the MS. Furthermore, the tissue being dissected may be contaminated by blood or 

mucus. The potential impact of such factors on spectra generated by REIMS is unknown, however 
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given this is a potential source of systematic error during in vivo translation (therefore impacting 

the ability of REIMS to accurately perform tissue recognition); it is necessary to explore this.  

 

The aim of this experiment is to define the impact of technical and environmental factors on the 

quality and biological composition of spectra from colorectal mucosa collected by REIMS. 

 

 

5.3.2 Methods 

 

 

5.3.2.1 Determination of Technical and Environmental Factors 
 

Colorectal surgeons and mass spectrometry scientists within the research group were consulted to 

reach consensus on which technical and environmental factors should be studied. This decision 

was based on the likelihood that a factor could make a significant impact on the REIMS spectra, its 

clinical relevance and the ability to manipulate it experimentally in the laboratory. The variables to 

be studied were: 

• Technical: 

o Diathermy power – 10W vs 20W vs 30W vs 40W 

o Diathermy mode – cut vs coagulation 

o Length of aspiration tube – 1m vs 2.5m vs 4m 

• Environmental: 

o Presence of contamination on tissue – none vs saline vs blood  

 

 

5.3.2.2 Experimental Model 
 

Apparatus was constructed in the laboratory consisting of a REIMS analytical space of 

approximately 4500cm3, in which technical and environmental conditions could be measured, 

modified and maintained (figure 5.14). Food grade porcine colorectum was procured (Fresh Tissue 

Supplies, UK) and stored at -80oC, before being freshly thawed just prior to analysis. A 12cm 

segment of distal colon (15-27cm from ano-rectal junction) was bisected longitudinally and 



 

 115 

everted, leaving a rectangle of full-thickness colon approximately 12x7cm, which could be placed 

into the analytic environment.  

 

 

 
 
Figure 5.14 – the environment used for analysis of porcine colorectum, with sensors to ensure no 
change in temperature or humidity throughout the analysis. 

 

 

 

5.3.2.3 Analytical Strategy 
 

A series of experiments were designed to determine the impact of each variable on REIMS spectra. 

First, the standard operating procedure (SOP) conditions were applied, which used monopolar 

diathermy in cut mode at 20W, with a 2.5m aspiration tube, room temperature, room humidity 

and no tissue contamination (full details of analytical processes are presented in chapter 4). 

Analysis of the colonic mucosa was conducted using the heel of a laparoscopic hook diathermy 

alongside which a PTFE aspiration tube with 3mm internal diameter was taped, with the opening 

1cm from the analytical site (figure 5.15). Diathermy current was applied to the colonic mucosa at 

10 points for approximately 3 seconds, with the same operator throughout aiming for consistent 

sampling. The following experiments then changed one variable from the SOP before repeating 

the 10 burns, for example, increasing the power to 30W; such that direct comparisons could be 
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made between experiments to determine the impact of variables individually. Finally, the SOP 

conditions were applied for analysis again at the end as a quality control.  

 

 
 
Figure 5.15 – Laparoscopic hook diathermy sampling device, annotated to show the point used for 
analysis on the heel and the PTFE aspiration tubing taped alongside the instrument.  

 

 

5.3.2.4 Control and Monitoring of Environmental Conditions 
 

Atmospheric humidity and temperature within the analytical environment were monitored using 

two independent BME680 sensors (Adafruit Industries, USA), which were placed within 5cm of the 

tissue and gave updates on 1 second intervals. Tissue temperature was measured using a K-type 

insulated thermocouple (RS Components Ltd, UK) attached to a digital multimeter (Keithley 2110, 

Keithley, Tektronix Inc, USA). Porcine blood (Fresh Tissue Supplies, UK) and a 1.8% NaCl solution 

(Sigma-Aldrich, UK) were pipetted onto the mucosa as necessary.  

 

 

5.3.2.5 Mass Spectrometer Specifications 
 

A Xevo G2-S qTOF mass spectrometer was used (Waters Corporation, USA) with a Venturi 

interface and co-aspiration of an internal standard of leucine-enkephalin in isopropanol (20ng/ml 

concentration) at a flow rate of 0.2ml/min. Spectra were collected in negative mode across the 

150-1200 m/z range. 
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5.3.2.6 Data Analysis 
 

Raw data were pre-processed using lock mass correction, background subtraction and 

normalisation. Analysis was conducted over the 600-1000 m/z range using binning of 0.1 and one 

spectrum per burn. A PCA plot was performed for each experiment to identify and exclude 

outliers. Once outliers had been excluded, the 150 most intense bins were identified for further 

analysis. This was achieved by exporting non-normalised binned data, preserving only the 150 m/z 

values with the highest median intensity and then performing the normalisation step. Experiments 

were compared based on TIC, signal:noise ratio, PCA, OPLS-DA and univariate regression.  

 

 

5.3.3 Results 

 

A total of 10 experiments were conducted to generate 106 REIMS spectra from porcine colonic 

mucosa whilst controlling six environmental and technical factors. PCA plotting for each 

experiment identified a total of 19 outliers, which were removed from further analyses (figure 

5.16). The 150 bins with the highest median intensity are presented in table 5.2, with level 2 or 3 

identification of 160 lipid metabolites achieved using either a search of a reference database using 

exact mass or MS/MS.  
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Figure 5.16 – PCA plots of the 10 experiments conducted and the environmental or technical 
factor that was being assessed. Red circles denote outliers that were identified visually and 
removed from further analyses.  
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Bin m/z 
Exact m/z 
Observed 

Molecular Identity ID Level 
Theoretical 

m/z 
Error 
(ppm) 

600.45 600.475 CerP(d34:0)-H2O-H Putative 600.4757 -1.17 

601.35 601.396 Background noise    

601.45 601.461 DG(32:1)+Cl Putative 601.4604 0.83 

602.45 602.463 13C isotope of DG(32:1)+Cl Putative 602.4638 -1.33 

603.45 603.478 DG(32:0)+Cl Putative 603.4761 3.81 

605.45 605.456 LPA(30:0)-H Putative 605.4552 1.49 

607.45 607.471 Unknown    

611.55 611.525 DG(34:0;O)-H Putative 611.5256 -0.98 

613.55 613.519 Background noise    

616.15 616.176 Unknown    

616.45 616.470 CerP(d18:1/16:0)-H MS/MS 616.4711 -0.97 

617.45 617.420 PA(30:1)-H Putative 617.4188 1.94 

618.15 618.172 Background noise    

620.25 620.237 Unknown    

629.45 629.490 DG(34:1)+Cl Putative 629.4917 -2.70 

630.45 630.487 PE(O-30:0)-H2O-H Putative 630.4863 0.79 

631.45 631.482 PE_Cer(d32:1)-H Putative 631.4820 -0.32 

633.45 633.485 LPA(32:0)-H Putative 633.4865 -2.37 

636.15 636.199 Unknown    

636.25 636.267 Same peak as m/z 636.15    

639.55 639.552 Unknown    

642.45 642.485 PE_Cer(d34:1)-NH3-H MSMS 642.4860 -0.93 

642.55  Same peak as m/z 642.45    

643.45 643.491 13C isotope of PE_Cer(d34:1)-NH3-H Putative 643.4940 -4.66 

643.55  Same peak as m/z 643.45    

644.45 644.503 Same peak as m/z 644.55    

644.55 644.503 PE_Cer(d34:0)-NH3-H MSMS 644.5019 1.71 

645.45 645.449 PA(32:1)-H Putative 645.4501 -1.08 

646.45 646.453 13C isotope of PA(32:1)-H Putative 646.4529 -0.46 

647.45 647.467 PA(32:0)-H Putative 647.4657 2.01 

656.55 656.574 Cer(40:1;O2)+Cl Putative 656.5754 -2.13 

657.45 657.485 PE(P-16:0/16:0)-NH3-H MSMS 657.4859 -1.52 

657.55 657.525 DG(36:1)+Cl MSMS 657.5230 3.04 

658.45 658.492 13C isotope of PE(P-16:0/16:0)-NH3-H Putative 658.4892 4.25 

658.55 658.525 13C isotope of DG(36:1)+Cl Putative 658.5263 -1.52 

659.15 659.182 Unknown    

659.45  Same peak as m/z 659.55    

659.55 659.505 PE(O-16:0/16:0)-NH3-H MSMS 659.5021 4.40 

659.55 659.505 PA(P-18:0/16:0)-H MSMS 659.5021 4.40 

659.55 659.505 PA(O-16:0/18:1)-H MSMS 659.5021 4.40 

659.55 659.505 PA(O-18:0/16:1)-H MSMS 659.5021 4.40 

660.45  Same peak as m/z 660.55    

660.55 660.505 13C isotope of PE(O-16:0/16:0)-NH3-H MSMS 660.5054 -0.61 

661.45 661.486 DG(34:1;O2)+Cl Putative 661.4816 6.65 

665.55 665.551 Unknown    

670.55 670.518 CerP(38:2)-H Putative 670.5181 -0.15 
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671.45 671.465 PE(16:0/16:1)-NH3-H Putative 671.4652 -0.30 

671.45 671.465 PE(18:1/14:0)-NH3-H Putative 671.4652 -0.30 

671.55 671.515 SM(d32:2)-H Putative 671.5133 2.53 

672.45 672.500 PCh(P-16:1/14:0)-CH3 MSMS 672.4974 3.87 

672.45 672.471 13C isotope of PE(16:1/16:0)-NH3-H MSMS 672.4685 3.72 

672.45 672.471 13C isotope of PE(18:1/14:0)-NH3-H MSMS 672.4685 3.72 

673.35  Background noise    

673.45 673.481 PA(18:1/16:0)-H MSMS 673.4814 -0.15 

673.55  Same peak as m/z 673.45    

674.45 674.487 13C isotope of PA(18:1/16:0)-H Putative 674.4847 3.41 

674.55  Same peak as m/z 674.45    

675.45 675.496 PA(34:0)-H Putative 675.4970 -1.48 

678.45 678.461 HexCer(32:5;O3)-H Putative 678.4587 3.10 

679.45 679.461 13C isotope of HexCer(32:5;O3)-H Putative 679.4620 -1.47 

680.45 680.465 CerP(38:5;O3)-H Putative 680.4661 -1.62 

682.55 682.588 Ceramide(d42:2)+Cl Putative 682.5911 -4.10 

683.55 683.594 13C isotope of Ceramide(d42:2)+Cl Putative 683.5944 -0.59 

684.55 684.594 Acer(44:4)-H or Cer(44:5)-H Putative 684.5936 0.73 

685.45  Same peak as m/z 685.55    

685.55 685.520 PE(P-18:0/16:0)-NH3-H MSMS 685.5172 4.08 

685.55 685.520 PE(O-16:0/18:1)-NH3-H MSMS 685.5172 4.08 

685.55 685.520 SM(d18:2/16:0)-CH3 MSMS 685.5290 -13.13 

686.55 686.519 13C isotopes of above mixture  MSMS 686.521 -1.75 

687.35 687.332 Unknown    

687.45  Same peak as m/z 687.55    

687.55 687.545 SM(d16:1/18:0)-CH3 MSMS 687.5447 0.44 

687.55 687.545 SM(d16:0/18:1)-CH3 MSMS 687.5447 0.44 

687.55 687.545 PE(O-18:0/16:0)-NH3-H MSMS 687.5329 17.6 

688.55 688.548 13C isotopes of above mixture Putative 688.5474 0.87 

689.55 689.550 x2 13C isotopes of above mixture MSMS 689.5508 -1.16 

690.55 690.552 X3 13C isotopes of above mixture Putative   

691.45 691.493 PA(34:0;O)-H Putative 691.4920 1.45 

697.45 697.479 PA(18:2/18:1)-H  MSMS 697.4814 -3.58 

697.45 697.479 PA(16:0/20:3)-H MSMS 697.4814 -3.58 

698.25  Background noise    

698.55 698.515 PE(P-34:2)-H Putative 698.5130 2.86 

699.45 699.496 PE(18:1/16:0)-NH3-H MSMS 699.4965 -0.14 

699.55  Same peak as m/z 699.45    

700.45  Same peak as m/z 700.45    

700.55 700.525 13C isotope of PE(18:1/16:0)-NH3-H MSMS 700.4999 35.8 

700.55 700.525 PE(P-18:0/16:1)-H MSMS 700.5287 -5.28 

700.55 700.525 PE(P-16:1/18:0)-H MSMS 700.5287 -5.28 

701.45  Same peak as m/z 701.55    

701.55 701.513 PA(18:1/18:0)-H MSMS 701.5127 1.00 

702.55 702.515 13C isotope of PA(18:1/18:0)-H Putative 702.516 -0.71 

703.55 703.530 PA(18:0/18:0)-H MSMS 703.5283 2.42 

703.55 703.530 SM(34:1;O3)-CH3 MSMS 703.5396 -13.65 
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704.55 704.547 ACer(42:4)-H or Cer(42:5)-H Putative 704.5471 -0.71 

707.45 707.486 Unknown    

709.45 709.4551 PA(34:1)+Cl Putative 709.4581 -4.23 

713.55 713.545 PE(P-18:0/18:0)-NH3-H MSMS 713.5485 -4.91 

713.55 713.545 PE(O-18:0/18:1)-NH3-H MSMS 713.5485 -4.91 

714.55 714.545 CerP(40:2;O3)-H Putative 714.5443 0.98 

715.55 715.582 SM(d20:0/16:1)-CH3 MSMS 715.5760 8.38 

716.55 716.525 PE(16:0/18:1)-H MSMS 716.5236 1.95 

716.55 716.525 PE(16:1/18:0)-H MSMS 716.5236 1.95 

717.45  Same peak as m/z 717.55    

717.55 717.530 13C isotope of PE(16:0/18:1)-H MSMS 717.5269 4.32 

717.55 717.530 13C isotope of PCh(16:1/16:0)-CH3 MSMS 717.5269 4.32 

718.55 718.538 PCh(16:0/16:0)-CH3 MSMS 718.5392 -0.97 

718.55 718.538 PE(18:0/16:0)-H MSMS 718.5392 -0.97 

719.45 719.486 PG(16:1/16:0)-H MSMS 719.4869 -1.81 

719.55 719.540 13C isotope of PCh(16:0/16:0)-CH3 MSMS 719.5420 -2.78 

719.55 719.540 13C isotope of PE(18:0/16:0)-H MSMS 719.5420 -2.78 

721.45 721.478 PE(20:4/16:0)-NH3-H MSMS 721.4811 -4.30 

722.55 722.512 PE(P-36:4)-H Putative 722.5130 -1.38 

723.45 723.496 PE(20:3/16:0)-NH3-H MSMS 723.4970 -0.28 

723.45 723.496 PA(20:4/18:0)-H MSMS 723.4970 -0.28 

725.55 725.512 PA(18:0/20:3)-H MSMS 725.5127 -0.96 

725.55 725.512 PA(18:1/20:2)-H MSMS 725.5127 -0.96 

725.55 725.512 PA(18:2/20:1)-H MSMS 725.5127 -0.96 

726.55 726.545 PE(P-18:1/18:1)-H MSMS 726.5443 -0.28 

726.55 726.545 PE(P-18:0/18:2)-H MSMS 726.5443 -0.28 

727.55 727.530 PA(18:2/20:0)-H MSMS 727.5283 2.06 

728.55 728.561 PE(P-18:0/18:1)-H MSMS 728.5600 1.37 

729.55 729.562 13C isotope of PE(P-18:0/18:1)-H Putative 729.5628 -1.10 

730.55 730.575 PE(O-18:0/18:1)-H MSMS 730.5756 -0.82 

730.55 730.575 PCh(P-18:0/16:0)-CH3 MSMS 730.5756 -0.82 

730.55 730.575 PCh(P-16:0/18:0)-CH3 MSMS 730.5756 -0.82 

731.55 731.579 13C isotope of above mixture Putative 731.5784 1.09 

732.55 732.580 x2 13C isotope of above mixture Putative 732.5818 -2.46 

733.55 733.515 PE(P-18:0/20:4)-NH3-H MSMS 733.5172 -3.00 

735.45 735.474 PA(36:2)+Cl Putative 735.4737 -0.95 

739.35 739.338 Unknown    

742.55 742.540 PE(18:1/18:1)-H MSMS 742.5392 0.81 

742.55 742.540 PE(18:2/18:0)-H MSMS 742.5392 0.81 

742.55 742.540 PCh(18:1/16:1)-CH3 MSMS 742.5392 0.81 

742.55 742.540 PCh(18:2/16:0)-CH3 MSMS 742.5392 0.81 

743.55 743.543 13C isotope of above mixture Putative 743.5420 1.75 

744.55 744.556 PE(18:1/18:0)-H MSMS 744.5549 1.48 

744.55 744.556 PCh(18:1/16:0)-CH3 MSMS 744.5549 1.48 

744.55 744.556 PCh(18:0/16:1)-CH3 MSMS 744.5549 1.48 

745.55 745.503 PG(18:2/16:0)-H MSMS 745.5025 0.67 

745.55 745.559 13C isotope of PE(18:1/18:0)-H MSMS 745.5577 1.74 
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745.55 745.559 13C isotope of PCh(18:1/16:0)-CH3 MSMS 745.5577 1.74 

746.55 746.559 x2 13C isotope of PE(18:1/18:0)-H Putative 746.5610 -2.68 

746.55 746.559 x2 13C isotope of PCh(18:1/16:0)-CH3 Putative 746.5610 -2.68 

747.45  Same peak as m/z 747.55    

747.55 747.517 PG(18:1/16:0)-H MSMS 747.5182 -2.01 

748.55 748.520 13C isotope of PG(18:1/16:0)-H MSMS 748.5210 -1.07 

749.55 749.525 x2 13C isotope of PG(18:1/16:0)-H MSMS 749.5243 0.93 

750.55 750.541 PE(P-18:0/20:4)-H MSMS 750.5443 -4.40 

750.55 750.541 PE(P-16:0/22:4)-H MSMS 750.5443 -4.40 

751.55 751.545 13C isotopes of above mixture Putative 751.5453 -0.40 

752.55 752.550 Unknown    

754.65 754.611 PE_Cer(d42:1)-NH3-H MSMS 754.6115 -0.66 

757.55 757.552 DG(44:7)+Cl Putative 757.5543 -2.51 

766.55 766.537 PE(20:4/18:0)-H MSMS 766.5392 -2.87 

768.55 768.558 PE(20:3/18:0)-H MSMS 768.5549 4.03 

770.55 770.572 PE(18:1/20:1)-H MSMS 770.5705 2.47 

770.55 770.572 PE(18:2/20:0)-H MSMS 770.5705 2.47 

770.55 770.572 PE(22:2/16:0)-H MSMS 770.5705 2.47 

771.55 771.521 PG(18:2/18:1)-H MSMS 771.5182 3.63 

771.65 771.635 SM(40:1)-CH3 MSMS 771.639 -4.67 

772.55 772.520 13C isotope of PG(18:2/18:1)-H MSMS 772.5210 -1.29 

772.55 772.585 PCh(18:1/18:0)-CH3 Putative 772.5862 -1.55 

772.65  Same peak as m/z 772.55    

773.55 773.532 PG(18:1/18:1)-H MSMS 773.5338 -1.94 

773.55 773.532 PG(18:2/18:0)-H MSMS 773.5338 -1.94 

774.55 774.535 13C isotopes of above mixture Putative 774.5366 -2.32 

775.55 775.549 PG(18:1/18:0)-H MSMS 775.5495 -0.64 

776.55 776.553 13C isotope of PG(18:1/18:0)-H MSMS 776.5523 0.90 

778.55 778.574 PCh(P-16:0/22:4)-CH3 MSMS 778.5756 -2.06 

788.55 788.544 PS(18:0/18:1)-H MSMS 788.5447 -0.89 

789.55 789.546 13C isotope of PS(18:0/18:1)-H MSMS 789.5475 -2.03 

794.55 794.570 PE(22:4/18:0)-H MSMS 794.5705 -0.63 

795.55 795.575 Unknown    

797.55 797.535 PG(20:3/18:1)-H MSMS 797.5338 2.01 

797.65 797.654 SM(42:2)-CH3 MSMS 797.6542 -0.25 

798.65 798.652 13C isotope of SM(42:2)-CH3 MSMS 798.6570 -6.26 

799.65 799.670 SM(42:1)-CH3 MSMS 799.6699 0.13 

816.75 816.744 Acer(52:2;O3)-H Putative 816.7451 -1.35 

818.75 818.759 Acer(52:1;O3)-H Putative 818.7607 -2.08 

819.75 819.761 13C isotope of Acer(52:1;O3)-H Putative 819.7640 -3.66 

820.75 820.772 Acer(52:0;O3)-H Putative 820.7764 -4.14 

875.75 875.771 Unknown    

893.75 893.736 TG(18:1/18:1/16:0)+Cl MSMS 893.7370 -1.12 

894.75 894.738 13C isotope of TG(18:1/18:1/16:0)+Cl Putative 894.7403 -2.57 

895.75 895.751 TG(18:1/18:0/16:0)+Cl MSMS 895.7527 -1.90 

896.75 896.756 13C isotope of TG(18:1/18:0/16:0)+Cl Putative 896.7560 0.00 
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897.75 897.751 37Cl isotope of TG(18:1/18:0/16:0)+Cl Putative 897.7498 1.34 

 
 
Table 5.2 – the 150 bins with the highest median intensity across all analyses and the molecular 
structure of the corresponding lipid metabolites. 160 metabolites could be identified, of which 50 
were 13C or 37Cl isotopes.  
CerP – ceramide-1-phospate; DG – diacylglycerol; LPA – lysophosphatidic acid; PA – phosphatidic acid; PE – 
phosphatidylethanolamine; PE_Cer – ceramide phosphatidylethanolamine; Cer - ceramide; HexCer – hexosylceramide; 
SM – sphingomyelin; PCh – phosphatidylcholine; PG – phosphatidylglycerol; PS – phosphatidylserine; Acer - 
acylceramide; TG - triacylglycerol.  

 
 
 

The impact of the technical and environmental variables on REIMS spectra is presented in table 

5.3, with the PCA plots revealing large sources of variation (figure 5.17). Some experiments form 

clusters distinct from the main bulk of analyses whilst having low intra-group variance and can be 

considered outliers using Hotelling’s T2 distribution (10W power and coagulation; figure 5.17.A). 

When these are removed from the PCA (figure 5.17.B) a greater degree of variation between the 

remaining experiments is apparent, however clusters have marked overlapping borders such that 

this 2 component PCA model would be poorly predictive (Q2 = 0.49). The two experiments using 

the normal operating conditions (20W diathermy in cut mode, 2.5m aspiration tube and no tissue 

contamination) at the beginning and end of the analytical run show greater intra- rather than 

inter-group variation on PCA, implying that no significant batch effect developed throughout the 

analyses. Whilst these two groups will be presented separately in PCA plots, they will be combined 

for OPLS-DA to avoid attempts to discriminate between them.   
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Factor Variable Burns 
Included 

Total Ion Count 
(x107) p value  Mean Signal x106 

(range) 
Mean Noise 
x103 (range) 

Mean 
Signal:Noise 
x103 (range) 

p value 

Power 

10W 8 0.6 (0.4-0.9) <0.001  0.7 (0.5-1.6) 0.5 (0.4-0.6) 1.4 (1.0-2.8) <0.001 

20W 20 4.3 (2.2-8.3) -  9.0 (3.7-17.9) 2.5 (1.7-4.1) 3.4 (2.2-5.1) - 

30W 9 6.5 (5.0-7.5) 0.001  13 .2 (10.0-16.2) 4.1 (3.2-4.7) 4.1 (3.2-4.7) 0.81 

40W 9 4.1 (3.4-4.6) 0.76  7.6 (5.8-9.1) 2.7 (2.3-3.1) 2.7 (2.3-3.1) 0.18 

Diathermy 
Mode 

Cut 20 4.3 (2.2-8.3) -  9.0 (3.7-17.9) 2.5 (1.7-4.1) 3.4 (2.2-5.1) - 

Coagulation 8 3.5 (3.1-4.0) 0.26  2.4 (1.9-2.8) 3.0 (2.7-3.5) 0.8 (0.7-0.9) <0.001 

Tubing Length 

Short (1m) 9 4.5 (3.0-6.1) 0.75  9.6 (5.8-86) 2.6 (1.9-3.3) 3.7 (3.0-4.2) 0.49 

Medium (2.5m) 20 4.3 (2.2-8.3) -  9.0 (3.7-17.9) 2.5 (1.7-4.1) 3.4 (2.2-5.1) - 

Long (4m) 8 2.9 (1.5-4.1) 0.04  5.2 (2.5-7.7) 2.0 (1.2-25) 2.6 (2.21-3.2) 0.10 

Contamination 

None 20 4.3 (2.2-8.3) -  9.0 (3.7-17.9) 2.5 (1.7-4.1) 3.4 (2.2-5.1) - 

Blood 8 3.4 (2.3-4.4) 0.18  5.8 (4.2-7.6) 2.3 (1.7-2.9) 2.5 (2.0-3.2) 0.07 

Saline 8 2.8 (1.3-3.8) 0.04  4.5 (1.6-6.0) 2.1 (1.1-2.7) 2.1 (1.4-2.8) 0.01 

 

Table 5.3 – the impact of technical sampling factors on spectral characteristics. ‘Signal’ is defined as the total intensity of the 20 highest peaks in 600-

1000mz, with ‘noise’ defined as the median intensity of peaks in 600-1000m/z. p values were determined using a two tailed t-test with statistically 

significant findings in bold. The comparator group for each analysis was the base-case settings of 20W diathermy in cut mode, using a 2.5m 

aspiration tube and with no tissue contamination. 
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Figure 5.17 – PCA plot of PC1 against PC2 across the 10 experiments (A) and with the two outlying 
clusters of 10W power and coagulation diathermy removed (B). The tolerance ellipse represents 
the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution 
 

 

Manipulating the diathermy power, diathermy mode, aspiration tube length and presence of 

contamination required experiments to be conducted with limited variation in ambient 

atmospheric conditions. It is evident that this was achieved, with room temperature varying from 

19.9-21.5oC, relative humidity varying from 48.1-56.2% and tissue temperature from 18.4-20.9oC.  

 

 

5.3.3.1 Power 
 

Adjusting the power of diathermy appears to have a dramatic impact on the spectra generated by 

REIMS. Use of 10W appeared to have insufficient power to consistently increase the temperature 

of the mucosa and cause tissue ablation, which is reflected in the significantly reduced TIC and 

signal. As a consequence, 10W is an outlier on the PCA (figure 5.18.A). Plotting the spectra of the 
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top 150 most intense bins demonstrates that this sparse signal causes large peaks to appear upon 

normalisation (as the impact of random noise is amplified), which are unrelated to the true 

biological signal generated consistently by the other power settings (figure 5.19).  

 

The PCA appears to differentiate the remaining 20W, 30W and 40W power settings along PC2, 

with relative cluster separation. Increasing the power from 20 to 30W significantly increased the 

TIC, however, this was not reflected in the signal:noise ratio as there was a marked increase in the 

background noise produced (2.5x103 to 4.1x103). This trend did not continue when raising the 

power to 40W, where a TIC and signal:noise ratio similar to 20W was demonstrated (7.6x106 vs 

9.0x106 and 2.7x103 vs 3.4x103 respectively). This is likely due to the characteristics of the thermal 

ablation, where the highest power caused rapid localized tissue evaporation and loss, causing the 

mean burn duration to reduce 30% (7.0 vs 4.9s) and therefore a decreased total sampling of 

biological data. Furthermore, this setting generated a greater amount of carbon products on the 

device and tissue. An OPLS-DA model continued to clearly distinguish the 10W analysis (and to a 

lesser degree the 20W), however was unable to accurately differentiate between the two highest 

power settings (figure 5.18.B). As a result, the model had a moderate predictive ability (R2X = 0.67, 

Q2 = 0.64).  
 

 
 
Figure 5.18 – PCA plot (A) and OPLS-DA plot with 2 X-Y and 1 orthogonal component (B) of the 
different power settings.  
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Figure 5.19 – aggregate spectra of the 150 most intense peaks across the four power settings 
used. 
 

 

5.3.3.2 Diathermy Mode 
 

Application of coagulation diathermy to the porcine mucosa causes markedly different spectra to 

be generated when compared to cut diathermy across the whole mass range (figure 5.20). These 

differences are characterized by a general reduction in the relative intensity of each peak, changes 

to which peaks have the highest intensity and a notable increase in total number of peaks 
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constituting background noise (particularly in the 150-450 m/z range). Cut diathermy generates a 

higher FA signal (250-350 m/z range) and GPL signal (600-800 m/z range), despite a similar TIC 

across the whole mass range. This signal difference caused a significant 76% reduction in 

signal:noise ratio in the 600-900 m/z range (p = <0.001).  

 

After normalising the 150 most intense bins in the 600-900 m/z range and plotting the spectra, 

there is a continued difference in the spectra between cut and coagulation diathermy (figure 5.20, 

inset). Some spectral regions show similarities, such as the GPLs between 742-753 m/z, which are 

largely consisting of ester linked PEs, PChs and PGs. However, the region 726-735 m/z show 

marked differences between diathermy modes, a region largely consisting of ether-linked PChs 

and PEs. There does not appear to be a difference of ionisation method as deprotonation 

dominates. In addition, coagulation mode generally seems to present a bias towards metabolites 

with a lower m/z, a finding which is corroborated by the loadings plot of the OPLS-DA model 

(figure 5.21.A). It is also apparent that less biological signal is being generated using coagulation 

diathermy even after normalisation, as the 10 metabolites with the highest relative abundance 

across all experiments are all statistically significantly less abundant in this group. The spectral 

differences are apparent in the PCA plot (figure 5.21.B), where there is clear clustering by mode 

and also in an OPLS-DA plot (figure 5.21.C), which has high predictive ability (R2Y = 0.99, Q2 = 0.99). 

ANOVA of the 150 most intense bins shows a statistically significant difference in 116 m/z values, 

with an almost equal split between an increase and decreased relative abundance.  
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Figure 5.20 – normalised REIMS spectra over 120-1200 m/z range comparing cut (A) and 
coagulation (B) diathermy, with the spectra normalised over 600-900 m/z presented in the inset.  
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Figure 5.21 – loadings plot of the OPLS-DA model differentiating cut and coagulation mode 
diathermy using the 150 most intense peaks in 600-900 m/z range (A), with the PCA plot (B) and 
OPLS-DA plot using 1 X-Y and 1 orthogonal component (C). 
 

 

5.3.3.3 Aspiration Tubing Length 
 

The length of aspiration tube used in the experiments were chosen as they represent the shortest 

possible (1m), the standard operating procedure length (2.5m) and a longest that might be 

required clinically such as during laparoscopic surgery (4m). The different tubing lengths did not 

appear to make a difference visually to the operator during the analyses and the tubing flexibility 

was such that it did not interfere with instrument handling. Whilst the short (1m) and medium 

(2.5m) aspiration tube lengths generated very similar TICs and signal:noise ratios, there was a 

greater than 20% drop in TIC when increasing the tubing length to 4m (p = 0.04). There was also a 
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concurrent drop in the background noise at 4m, such that there was no significant difference in 

signal:noise ratio between groups. Plotting the spectra of the 150 most intense bins shows great 

similarity between the biological signal transmitted using each tubing (figure 5.22). 

 

Whilst the long and short tubing lengths appear to cluster separately on PCA (figure 5.23.A), 

spectra from the medium length tubing are interspersed and show no clear clustering. When an 

OPLS-DA model is plotted (figure 5.23.B), the similarities between the short and medium tubing 

are again revealed, with a large intra-group compared to inter-group variance; contributing to a 

low predictive ability of the model (R2Y = 0.60, Q2 = 0.46). ANOVA revealed only 12 m/z values that 

were statistically significantly different between long and medium tubing lengths, representing 17 

distinct metabolites (of which five were 13C isotopes). There was no evidence of a clear 

relationship with differential lipid abundance and its subclass or adduct; however, the lower mass 

metabolites appeared to be of increased relative abundance in the shorter tubing length (table 

5.4).  
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Figure 5.22 – Spectra of the 150 peaks with highest intensity comparing 1m, 2.5m and 4m 
aspiration tube lengths.   
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Figure 5.23 – PCA plot (A) and OPLS-DA plot using 2 X-Y and 1 orthogonal component (B) 
comparing the different aspiration tube lengths.  
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Bin Metabolite Highest 
Intensity Length 

Fold 
Change 

Corrected 
p Value 

630.45 PE(O-30:0)-H2O-H 2.5m 1.22 0.01 

657.45 PE(P-16:0/16:0)-NH3-H 2.5m 1.29 0.02 

672.45 
PCh(P-16:1/14:0-CH3 

13C isotope of PE(16:1/16:0)-NH3-H 
13C isotope of PE(18:1/14:0)-NH3-H 

2.5m 1.60 0.03 

673.45 PA(16:0/18:1)-H 2.5m 1.25 0.05 

685.45 
PE(O-16:0/18:1)-NH3-H 
PE(P-18:0/16:0)-NH3-H 

SM(d18:2/16:0)-CH3 
2.5m 1.86 0.01 

701.45 PA(18:1/18:0)-H 2.5m 1.23 0.03 

719.45 PG(16:1/16:0)-H 2.5m 1.41 0.006 

743.55 
13C isotope of PE(36:2)-H 

13C isotope of PCh(34:2)-CH3 4m 1.30 <0.001 

816.75 Acer(52:2;O3)-H 4m 1.43 0.02 

818.75 Acer(52:1;O3)-H 4m 1.59 <0.001 

819.75 13C isotope of  Acer(52:1;O3)-H 4m 1.59 <0.001 

820.75 Acer(52:0;O3)-H 4m 1.51 0.004 
 
Table 5.4 – ANOVA results comparing the relative abundance of statistically significantly different 
metabolites using medium (2.5m) and long (4m) aspiration tube lengths. The fold change 
represents the degree of increase seen in the tube length with the highest intensity.  
PE – phosphatidylethanolamine; PCh – phosphatidylcholine; PA – phosphatidic acid; SM – sphingomyelin; PG – 
phosphatidylglycerol; Acer – acylceramide. 
 

 

5.3.3.4 Presence of Contamination 
 

The common contaminants blood and NaCl (as saline solution at 1.8%) were placed on the tissue 

at the point of dissection, which is similar to how it may be encountered clinically. It was observed 

during the analysis that having additional aqueous material on the tissue fractionally increased the 

time taken for tissue ablation to occur, however the burn duration in the MS was not increased 

compared to normal mucosal sampling. The presence of both contaminants appeared to have 

caused ion suppression, with the TIC falling by 21 and 54% respectively for blood and saline (Table 

5.3).  

 

The PCA plot reveals saline analyses clustering distinctly, however the presence of blood does not 

appear to cause additional variation from the analyses with no contamination (figure 5.24.A). An 
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OPLS-DA model (figure 5.24.B) is able to distinguish between each contaminant and normal tissue 

with a high degree of accuracy (R2Y = 0.88, Q2 = 0.84). When plotting the spectra of the 150 most 

intense bins (figure 5.25), it appears that the spectra have a generally similar biological signal, 

however the presence of saline causes a consistent increase in the relative abundance of certain 

metabolites, which in turn, impact the model loadings (figure 5.24.C). Table 5.5 lists the 30 bins 

with the most significantly different abundance with the addition of saline. When looking at the 

metabolites that ionize with a Cl- adduct, they tend to increase in abundance with the addition of 

saline (the case with all TGs and one DG). Those metabolites ionizing through deprotonation or 

demethylation only increase in 9% of cases when saline is added. 26 bins representing 42 

identified metabolites (including 15 isotopes) were found to be of significantly different relative 

abundance with the presence of blood, as shown in table 5.6. This demonstrates that 71% of bins 

with increased abundance contained a PE species (often in a mixture), in comparison to 29% of 

those that decreased in abundance.  
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Figure 5.24 – PCA (A) and OPLS-DA using 2 X-Y and 1 orthogonal component (B) plots of the 
spectra generated with and without tissue contamination. The loadings plot from the OPLS-DA 
model is shown (C). 
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Figure 5.25 - The spectra of the 150 most intense peaks comparing no contamination (A), blood on 
the mucosa (B) and saline on the mucosa (C).  
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Bin m/z Metabolite 
Relative 

Abundance with 
Saline 

Fold 
Change 

Corrected p 
Value 

600.45 CerP(d34:0)-H2O-H Decreased 2.18 1.99E-06 
601.35 Background noise Increased 0.43 1.78E-09 
629.45 DG(34:1)+Cl Increased 0.53 1.72E-09 
642.55 PE_Cer(34:1)-NH3-H Decreased 1.66 1.53E-07 
643.55 13C isotope of PE_Cer(34:1)-NH3-H Decreased 1.73 3.14E-07 
644.55 PE_Cer(34:0)-NH3-H Decreased 1.83 1.67E-08 
660.45 Same peak as m/z 660.55 Decreased 2.02 3.15E-10 
660.55 13C isotope of PE(O-16:0/16:0)-NH3-H Decreased 1.48 8.35E-07 
661.45 DG(34:1;O2)+Cl Decreased 2.33 1.57E-11 
665.55 Unknown Decreased 3.61 2.44E-07 
673.45 PA(16:0/18:1)-H Decreased 2.29 5.27E-10 
674.45 13C isotope of PA(16:0/18:1)-H Decreased 2.16 4.96E-09 
674.55 Same peak as m/z 674.45 Decreased 1.92 2.34E-06 

685.55 
PE(O-16:0/18:1)-NH3-H 
PE(P-18:0/16:0)-NH3-H 

SM(d18:2/16:0)-CH3 
Decreased 1.76 2.53E-06 

686.55 13C isotope of above mixture Decreased 1.86 7.83E-07 

703.55 PA(18:0/18:0)-H  
SM(34:1;O3)-CH3 Decreased 1.60 3.00E-07 

717.55 
13C isotope of PE(18:1/16:0)-H 

13C isotope of PCh(16:1/16:0)-CH3 Decreased 2.10 1.45E-08 

723.45 PE(20:3/16:0)-NH3-H 
PA(20:4/18:0)-H Increased 0.62 2.86E-07 

733.55 PE(P-18:0/20:4)-NH3-H Decreased 3.04 6.63E-08 
747.55 PG(18:1/16:0)-H Decreased 1.78 7.12E-08 
757.55 DG(44:7)+Cl Decreased 2.25 3.30E-06 
816.75 Acer(52:2;O3)-H Decreased 4.78 3.34E-09 
818.75 Acer(52:1;O3)-H Decreased 4.77 6.16E-08 
819.75 13C isotope of Acer(52:1;O3)-H Decreased 4.47 1.86E-07 
820.75 Acer(52:0;O3)-H Decreased 6.20 4.00E-09 
893.75 TG(18:1/18:1/16:0)+Cl Increased 0.15 4.39E-13 
894.75 13C isotope of TG(18:1/18:1/16:0)+Cl Increased 0.14 4.86E-13 
895.75 TG(18:1/18:0/16:0)+Cl Increased 0.15 8.90E-13 
896.75 13C isotope of TG(18:1/18:0/16:0)+Cl Increased 0.15 6.11E-13 
897.75 37Cl isotope of TG(18:1/18:0/16:0)+Cl Increased 0.17 2.47E-12 

 
 
Table 5.5 – the 30 most statistically significant m/z values on ANOVA between the spectra of saline 
and with no contamination. The fold change represents the degree of increase seen in the group 
with the highest intensity.  
CerP – ceramide-1-phospate; DG – diacylglycerol; PE_Cer – ceramide phosphatidylethanolamine; PE – 
phosphatidylethanolamine; PA – phosphatidic acid; SM – sphingomyelin; PCh – phosphatidylcholine; PG – 
phosphatidylglycerol; Acer - acylceramide; TG - triacylglycerol. 
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Bin m/z Metabolite Relative Abundance 
with Blood 

Fold 
Change 

Corrected p 
Value 

601.35 Background noise Increased 0.68 0.003 
630.45 PE(O-30:0)-H2O-H Decreased 1.23 0.005 
643.55 13C isotope of PE_Cer(34:1)-NH3-H Decreased 1.36 0.001 
660.55 13C isotope of PE(O-16:0/16:0)-NH3-H Decreased 1.24 0.008 
661.45 DG(34:1;O2)+Cl Decreased 1.26 0.045 

687.55 
SM(d16:1/18:0)-CH3 

SM(d16:0/18:1)-CH3 

PE(O-18:0/16:0)-NH3-H 
Increased 0.85 0.039 

688.55 13C isotopes of above mixture Increased 0.82 0.001 
689.55 x2 13C isotope of above mixture Increased 0.84 0.008 
698.25 Background noise Increased 0.45 1.6E-4 
719.45 PG(16:1/16:0)-H Decreased 1.40 0.007 

723.45 PE(20:3/16:0)-NH3-H 
PA(20:4/18:0)-H Increased 0.67 4.1E-4 

733.55 PE(P-18:0/20:4)-NH3-H Decreased 1.61 0.003 

742.55 

PE(18:1/18:1)-H 
PE(18:2/18:0)-H 

PCh(18:1/16:1)-CH3 
PCh(18:2/16:0)-CH3 

Increased 0.70 8.1E-7 

743.55 13C isotopes of above mixture Increased 0.70 2.4E-5 

744.55 
PE(18:1/18:0)-H 

PCh(18:1/16:0)-CH3 
PCh(18:0/16:1)-CH3 

Increased 0.77 7.4E-6 

745.55 
PG(18:2/16:0)-H 

13C isotope of PE(18:1/18:0)-H 
13C isotope of PCh(18:1/16:0)-CH3 

Increased 0.87 0.008 

747.55 PG(18:1/16:0)-H Decreased 1.28 0.01 

770.55 
PE(18:1/20:1)-H 
 PE(18:2/20:0)-H 
PE(22:2/16:0)-H 

Increased 0.61 0.03 

772.55 PCh(18:1/18:0)-CH3 
13C Isotope of PG(18:2/18:1)-H Increased 0.76 0.009 

772.65 Same peak as m/z 772.55 Increased 0.74 0.008 
775.55 PG(18:1/18:0)-H Decreased 1.21 0.04 
794.55 PE(22:4/18:0)-H Increased 0.47 7.8E-5 
795.55 Unknown Increased 0.65 1.9E-4 
816.75 Acer(52:2;O3)-H Decreased 1.48 0.02 
818.75 Acer(52:1;O3)-H Decreased 1.52 0.04 
820.75 Acer(52:0;O3)-H Decreased 1.56 0.02 

 
Table 5.6 – the 26 m/z values which were significantly different on ANOVA between the spectra of 
blood-covered mucosa and that with no contamination. The fold change represents the degree of 
increase seen in the group with the highest intensity.  
PE – phosphatidylethanolamine; PE_Cer – ceramide phosphatidylethanolamine; DG – diacylglycerol; SM – 
sphingomyelin; PG – phosphatidylglycerol; PA – phosphatidic acid; PCh – phosphatidylcholine; Acer – acylceramide. 
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5.3.4 Discussion 
 

This project explored the impact of technical and environmental factors on the quality and 

composition of spectra generated by REIMS when coupled to monopolar diathermy in a porcine 

model. It revealed that some factors dramatically impact REIMS spectra, which raises concern for 

how this would influence the ability of REIMS to accurately perform intraoperative tissue 

recognition and may prompt recommendations to be made for intraoperative use.  

 

When translating the REIMS technology into a clinical setting such as in the operating theatre, the 

nature of the procedure being undertaken will place requirements on the analytical platform for 

which there is little control. The variables studied in this project were chosen as there was reason 

to believe that they could impact REIMS spectra whilst being factors which could vary considerably 

between the laboratory setting and different in vivo scenarios. The analytical plan for this project 

was designed to generate the most representative spectra for each experimental condition, where 

spectra which were demonstrably outlying on PCA were removed; as these are, by definition, not 

characteristic of the rest of the group. This reduced the total number of analyses by 10-20% in 

some cases but was necessary to ensure experiment clusters had small intra-group variance, 

aiding discrimination between experiments using the inter-group variance. There was no apparent 

reason when conducting the analyses why some spectra would become outliers when plotted with 

PCA (they were macroscopically identical to the operator in a very controlled setting), with the 

possibility of it being a stochastic process. This is with the exception of the 10W power setting, 

where the power was insufficient to rapidly and reliably generate enough heat to cause explosive 

cell rupture; with this variability causing large differences when plotting a PCA. Whilst the possible 

impact of ambient humidity and temperature on REIMS spectra is unknown, these were diligently 

measured and maintained within tight bounds to ensure minimal impact on the findings. For 

pragmatic reasons these were set at standard room conditions (19.9-21.5oC temperature, 48.1-

56.2% relative humidity), however it is recognised that during in vivo use, the temperature and 

humidity may be very different (for example, the colon lumen is likely to have a humidity 

approaching 100%); or may fluctuate throughout a procedure. Humidity has previously been 

demonstrated to impact the relative abundance of small anionic electrolytes within aerosols when 

analysed by TOF MS, likely due to the impact on droplet size334. Whether this impacts REIMS is an 

important consideration and will need to be the focus of future work. The efforts to generate 

representative spectra for each condition appears a success when noting that the two ‘normal’ 
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conditions, performed at the beginning and end of the analytical run, cluster on PCA with an inter-

group variance that is less than the intra-group variance. This reassures that differences seen 

between the experiments are not as a function of time and therefore a possible technical batch 

effect (caused by factors such as mass drift or loss of TOF vacuum pressure).  

 

It was decided to use the 150 most intense m/z bins across the dataset to build the PCA and OPLS-

DA models, in order to identify group differences based on biologically relevant molecules and to 

exclude the impact of random background noise. It was also important to select a considered 

number of m/z values to be able to identify differences in abundance by lipid class and this was 

possible, where level 2 or 3 identification was achieved for 160 metabolites. Furthermore, 

considering only 5 m/z values appeared to be of background peaks, the number of variables 

chosen appears suitable. It may be possible that some differences between experiments would 

have been evident when including peaks of lesser intensity, however, models built with a variation 

in the number of m/z values showed little difference between them.  

 

When a clinician is deciding the diathermy power setting, it is standard practice to choose the 

lowest power that will efficiently achieve the surgical goal (usually concomitant dissection and 

coagulation), in order to avoid any unnecessary additional tissue damage due to thermal spread. 

This power may vary considerably depending on the clinical scenario and therefore guidelines are 

not prescriptive in which power setting to use and warn more of an inappropriately low rather 

than high power41. Whilst the inadequacy of 10W to reliably cause cell rupture has been 

discussed, relatively little difference was apparent between 20, 30 and 40W. It may be expected 

that increasing the power would cause a progressively greater TIC, however this was not apparent 

and instead, increased formation of carbonised products was witnessed over a shorter burn 

duration. This is consistent with previous findings, which also raise the concern that increased 

powers may also cause thermal degradation of lipids, such as loss of ammonia from PEs133. 

Considering the high-quality data generated using at least 20W power, the similarities between 

these power settings, and that intraoperative use of diathermy is typically at 20W or greater; 

variation in the power setting will not be considered a risk for successful translation of REIMS. The 

diathermy mode does, however, appear to cause dramatic differences in REIMS spectra; such that 

a large proportion of the biological information is lost when using coagulation rather than cut 

mode. In coagulation mode, the intermittent application of the current waveform is designed not 

to cause a thermal load sufficient for explosive cell rupture (as seen with cut mode) and instead, is 
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designed to dry cells and coagulate proteins to cause haemostasis335. Considering the majority of 

complex lipids are found in cell membrane bilayers336, which would require explosive rupture to 

be released in the aerosol; this explains why coagulation mode has a significantly decreased signal 

within 600-1000 m/z and a bias towards generating metabolites of a lower mass. A further 

consideration is the use of mixed or blended diathermy modes, where the waveform applied is 

somewhere on a continuum between pure cut and pure coagulation; designed to offer the 

benefits of both modes41. This is of particular clinical relevance for endoscopy, as the exact 

settings chosen can differ significantly between endoscopists337, which can be impacted by 

personal preference, local practice and the shape or size of the polyp being removed. The 

European Society of Gastrointestinal Endoscopy recommend the use of automated 

microprocessor-controlled blended diathermy, which will vary the electrocautery waveform 

administered during application; based on tissue response41. The impact of variation in blended 

diathermy modes on REIMS spectra is unclear and needs to be explored in future work. The loss of 

metabolic information when pure coagulation diathermy is used presents spectra as dramatic 

outliers on a PCA plot and therefore incorporating this source of heterogeneity (and systematic 

bias) when creating high quality ex vivo spectral databases counteracts the aims of this thesis. 

 

It was necessary to assess whether the distance between the analytical site and mass 

spectrometer impacts REIMS spectra considering the variation in aspiration tube length that can 

occur during in vivo deployment. For example, during colonoscopy, the surgical aerosol must 

travel the length of the colonoscope (circa. 1.7m) and then across the room to the MS, which must 

be away from the bedside as to not interfere with direct patient care. The concern is that during 

transport, there may be loss of ionic clusters or metabolite-containing water droplets due to ion-

ion interactions or impact with the tubing material338. Previous research has shown that free gas-

phase ions are largely eradicated over long tubing distances, with a 6 fold drop over just the first 

5cm, implying that these are not a significant component of the metabolites detected with 

REIMS339. This project demonstrated only a 35% TIC reduction between a 1 and 4m tube (similar to 

previous findings over 1 and 3m340), implying that the aerosol has a high degree of stability over 

this distance and that the majority of losses are likely to be between the point of formation and 

before the creation of a linear gas flow. The reduction in background noise when using long tubing 

was not as marked as when transporting ions in DESI340, most likely due to the collision surface 

used in REIMS and the additional background that this will create. However, the signal:noise ratio 

was preserved and therefore it is reassuring when longer tubing must be used in vivo. It is unclear 
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why there was a slight bias towards higher m/z metabolites within the 600-1000 m/z range when 

the tubing length was increased, raising the possibility that a higher mass protects against 

transport losses.  

 

Contamination of the mucosal surface during an interventional procedure is commonplace, with 

blood being a consequence of trauma (most often through tissue dissection) and NaCl (saline) 

solution being used as an irrigation fluid (to clear items such as tissue debris, blood and faecal 

residue). Both contaminants could be found at the point of dissection and the ion suppression that 

was evident was likely due to additional salts being carried into the MS within the polar water 

droplets. Furthermore, the chemical and biological constituents of saline and blood appear to 

impact REIMS spectra differently. The increase in metabolites with Cl- adducts when NaCl solution 

was added to the tissue surface is likely due to the increased concentration of free Cl- ions 

impacting the ionisation efficiency of those metabolite classes which are liable to ionize with this 

adduct, most notably TGs and DGs341. This is the first description of this phenomenon during 

REIMS, with it previously described during ESI using Cl-, Li+, NH4+ and Na+342-344. The concentration 

of NaCl solution was 1.8% in this project, which was deliberately chosen as double the isotonic 

solution used clinically in order to more clearly demonstrate the difference. Considering the 

difference in TG presence throughout the bowel wall (higher abundance in submucosa and peri-

colic fat, demonstrated in unpublished work by the research group), the presence of saline at the 

analytical surface may impact layer detection accuracy. The increase in relative abundance of PEs 

seen with the presence of blood may not represent a change in ionisation efficiency but instead an 

increase in PEs present at the point of analysis, as they are major constituents of the lipid bilayer 

of red blood cells and are free in plasma345,346. Blood is a complex mixture of many other biological 

materials (for example proteins and carbohydrates), electrolytes (of which the most abundant are 

Cl-, Na+, HCO3- and Ca2+) and environmental molecules such as medications; such that it is difficult 

to predict the response of REIMS spectra when variation in the constituents exist between 

patients. Considering the impact on REIMS spectra demonstrated by the presence of both blood 

and saline contaminants, it will be recommended that these are minimised during intraoperative 

use of the technology.  

 

The greatest limitation of this work is that although the impact on REIMS spectra between these 

technical and environmental factors have been described using a controlled and repeatable 

method in a porcine model, the impact on diagnostic accuracy has not been assessed. Achieving 
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this would require the use of a large volume of tissue from a single patient, which contains a 

variety of pathologically homogenous pathologies that are sufficient in size for the greater than 

100 required analyses. It is not possible to access such patient tissue (due to sampling limitations 

with the histopathology department) and any compromise would not allow the consistent and 

reproducible sampling methodology employed in this experiment. Another limitation is in 

understanding how the findings are to be applied for future experiments. For example, whilst 

recommendations have been made to exclude spectra generated using coagulation diathermy 

from the ex vivo reference spectral database (that is then used to build models for in vivo tissue 

recognition), if a clinician chooses to use coagulation diathermy during a case, it is unclear if that 

should be permitted to undergo tissue recognition. It is necessary to strike a balance between the 

accuracy of tissue recognition and being flexible to the requirements and variation that comes 

with clinical practice, which can be challenging when the experimental data to inform those 

decisions are limited.  

 

 

5.4 Chapter Conclusion  
 

This chapter has explored the raw spectral data generated by REIMS analysis of colorectal tissues 

in an attempt to understand how spectral quality can be defined in addition to the impact of 

technical and environmental variables. For the most part, the experiments conducted have never 

been described in the literature, with many insights generated here which will directly inform the 

development and application of the technology moving forward. By taking a rigorous and 

systematic approach to the experiments, the findings allow data-driven decisions which will be 

applied later in this thesis to improve the quality, reproducibility and applicability of REIMS. 

Ultimately, application of these findings will be used to improve the accuracy of REIMS in tissue 

recognition with the final goal of that positively impacting patient care.  

 

The next phase in developing this technology is the creation and curation of an ex vivo, high-

quality, clinically annotated spectral reference database. Improvements in the sample and data 

analysis derived from this chapter will allow this to be achieved to the highest potential whilst 

managing identified systemic biases. This can then be used to determine the accuracy of REIMS in 

differentiating colorectal pathologies using lipid metabolites and appraise the biological processes 

underpinning this.  
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Chapter 6 – WP2: Creation and analysis of an ex vivo colorectal REIMS 
spectral database 
 

 

6.1 Chapter Aims, Objectives and Research Questions 
 

The aim of this chapter is to create a high-quality, powerful, pathologically validated and clinically 

annotated spectral database of ex vivo REIMS analysis of colorectal tissues, upon which 

chemometric functions will be applied. This is necessary to understand how REIMS can be applied 

to clinically relevant problems such as tissue recognition and risk stratification, whilst having the 

potential to reveal the metabolic fingerprints associated with specific clinical phenotypes. It is also 

a fundamental requirement of the in vivo work presented in chapter 7, where this database will be 

used to power the machine learning algorithms for real-time tissue recognition.  

 

This task can be distilled into three phases, which have the following objectives: 

1. Creation of a spectral database 

a. To perform REIMS analysis of human colorectal tissues ex vivo  

b. To collect relevant experimental, clinical and pathological metadata to annotate 

each REIMS spectra  

c. To apply the minimum spectral quality requirements determined from chapter 5 

and formulate a finalised database suitable for statistical analysis 

2. Application of chemometric functions 

a. To build multivariate statistical models to assess REIMS’ ability to differentiate 

clinically and pathologically relevant groups based on the cellular composition of 

lipid metabolites 

b. To use univariate and multivariate techniques to identify the m/z of lipid 

metabolites that are of different relative abundance between groups in 

multivariate models 

3. Identification of lipid metabolites 

a. To perform REIMS MS/MS on colorectal normal, adenoma and carcinoma tissues to 

collect spectra detailing the fragmentation patterns of unknown metabolites 

b. To propose the molecular structure of lipid metabolites from their mass and 

fragmentation pattern 
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c. To understand how the relative abundance of lipid metabolites differs between 

clinically and pathologically relevant groups 

 

 

The completion of these objectives will allow the following research questions to be addressed: 

1. What is the diagnostic accuracy of REIMS in performing colorectal tissue recognition? Can 

it differentiate between normal, adenoma and carcinoma; or between normal and 

diseased tissues? 

2. Can REIMS risk-stratify colorectal adenomas and carcinomas by predicting the presence of 

histological features of poor prognosis? 

3. What are the unique lipid metabolic fingerprints associated with clinical phenotypes? 

 

 

6.2 Methods 
 

Full details of the methodologies used in this chapter regarding patient recruitment, sample 

collection, MS analysis and statistical processes can be found in chapter 4; with specific features to 

this study stated below.  

 

 

6.2.1 Patient recruitment and sample collection 

 

Patients who had undergone surgical or endoscopic colorectal resection between November 2014 

and November 2019 and had been recruited for colorectal tissue bio-banking were eligible for 

inclusion in this study. Patients with inflammatory bowel disease, hereditary polyposis syndromes, 

age less than 18 years or tissue samples of less than 5mg were excluded.  

 

 

6.2.2 MS analysis and specifications 

 

REIMS MS analysis was conducted ex vivo in 24 batches between January 2015 and November 

2019, using a handheld monopolar diathermy pencil at 20-25W or a CO2 laser in ‘SuperPulse’ 
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mode at 3W. The surgical aerosol was aspirated into the Xevo G2-S qTOF mass spectrometer with 

the Venturi interface and co-aspiration of leu-enkephalin in isopropanol (20ng/ml concentration) 

at a flow rate of 0.2ml/min. Spectra were collected in negative mode across the 150-1200 m/z 

range. All tissue samples and spectra generated prior to October 2017 were collected by Dr James 

Alexander, with me responsible for all data collection after this time. All processing, analysis and 

interpretation of all data was performed by me.  

 

MS/MS was conducted in 5 batches between November 2017 and October 2020 using the 

methodology previously described (see section 4.5.1.1). Where possible, additional tissue samples 

were sourced from the biobank from patients whose tissue had previously been analysed with MS 

to build the models. m/z values were prioritised for MS/MS based on a combination of the log fold 

change in relative abundance, the degree to which differences were statistically significant and 

their contribution to the statistical model.  

 

 

6.2.3 Statistical analyses 
 

Raw spectral data were binned at 0.1 and underwent normalization, lock-mass correction and 

background subtraction. The minimum thresholds of spectral quality as defined in chapter 5 was 

applied, with poor-quality spectra excluded from further analyses. Modelling was conducted using 

PCA and LDA (up to 60 PC components) between 150-1000m/z, with LOPO CV used to determine 

the accuracy of REIMS in differentiating the groups of interest. This was achieved in AMX, where 

clinico-pathological data of choice could be used to assign a ‘classification’ to each spectra ahead 

of building the models. OPLS-DA models were also built in SIMCA to assess the robustness of 

classification accuracy by using a cross-validation plot and using accuracy metrics such as R2 and 

Q2.  

 

 

6.3 Results 
 

1526 spectra were generated from the ex vivo REIMS analysis of colorectal tissue from 189 

patients. The minimum spectral quality thresholds defined in chapter 5 were applied, with the 

impact on spectra shown in table 6.1. There was 554 instances of spectra failing a quality 
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threshold, however due to some spectra failing for more than one reason, a total of 513 were 

excluded. Figure 6.1 presents examples of validation sections annotated with the tissue types 

present and explanations of how they were classified.  

 

Criteria for Exclusion Total Number of 
Spectra Affected Notes 

Presence in batch effect 116 

This covered the same batch of spectra 
described in section 5.2.3.2 where there was 

mass shift due to inadequate calibration of an 
instrument 

Inadequate signal:noise 171 
These spectra all had signal:noise ratios of 

<1000, with an average of 616 and range of 96-
998  

Sampling of non-mucosal tissue 160 

This was largely consisting of spectra 
demonstrating high TG levels (and therefore 

excess sampling of the submucosa) in addition to 
validation sections where no mucosa was 

present (most often showing only muscle or fat) 

Validation slide non-diagnostic 85 

The validation slide showed evidence of mucosa 
being present in the sample, but the proportion 

of the section that was the adenoma or 
carcinoma was below 15%.  

Energy device not monopolar 
diathermy 20 These consist of the use of coagulation 

diathermy (n=16) or a CO2 laser (n=4) 

Sodium formate contamination 2 
Clusters of sodium formate were seen across the 
mass range of one sample, including in bins with 

known lipid metabolites 
 
Table 6.1 – the number of spectra which did not meeting the minimum standards of quality and 
therefore would be eligible for exclusion from statistical modelling.  
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Figure 6.1 – four validation sections following REIMS analysis annotated with the tissue types seen 
and the final classification given. Section A shows no abnormalities but considering there was no 
mucosa evident (and instead only muscle), it was deemed non-diagnostic and the spectra 
generated were excluded. Section B shows a villous adenomatous polyp, which is deemed to be 
90% adenoma due to the small portion of muscle in the centre. Section C is heterogeneous with 
multiple different regions of tissue subtypes. Despite the diathermy burn not being in a tumour 
region directly, this was classified as 50% tumour. Section D is a mixed sample, which is diagnostic 
for cancer and is validated at 80% due to the 20% villous adenoma adjacent.  
 

 

After spectral quality control, data from 161 patients was suitable for inclusion in statistical 

modelling, generating a total of 1013 REIMS spectra from tumour (n=346), adenoma (n=247) and 

normal (n=420) colorectal tissues. The demographics of the included patients and sampling details 

are presented in table 6.2. REIMS analysis was conducted on 109 tissue samples from 79 distinct 
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tumours, 134 tissue samples from 56 polyps and 137 pieces of normal mucosa. Of the 56 polyps 

analysed by REIMS, 50 were validated as adenomas, 5 were carcinomas and one was a fibro-

epithelial polyp (classified as normal for classification models). Of the 79 tumours sampled, 75 

were histologically validated as carcinomas, 3 were adenomas and 1 only sampled normal tissue. 

The pathological metadata for the carcinomas and adenomas included in the study are presented 

in tables 6.3 and 6.4 respectively. 

  

Characteristic  Number (%) 

Mean age (range)  70 (34-91) 
Gender (M:F)  88:73 

Ethnicity 

White 98 (61) 
Asian 18 (11) 
Black 14 (9) 
Other 12 (7) 

Unknown 19 (12) 

Hospital of collection 
St Mary’s 139 (86) 

Royal Marsden 12 (7) 
Charing Cross 10 (6) 

Collection method 
Radical surgery 119 (74) 

Endoscopic 32 (20) 
Local excision 10 (6) 

Location of sample 

Right 62 (39) 
Left 36 (22) 

Rectum 57 (35) 
Unknown 6 (4) 

 
Table 6.2 – demographics of the 161 included patients with details of how samples were collected.  
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Pathology of Carcinomas  Number (%) 

Pathological subtype 

Adenocarcinoma 61 (76) 
Mucin-producing adenocarcinoma 3 (4) 

Mucinous adenocarcinoma 14 (18) 
Unknown 2 (3) 

Differentiation 

Well 9 (11) 
Moderate 49 (61) 

Poor 17 (21) 
Unknown 5 (6) 

Tumour budding 
Yes 54 (68) 
No 21 (26) 

Unknown 5 (6) 

Lymphovascular invasion 
Yes 29 (36) 
No 46 (58) 

Unknown 5 (6) 

Extramural venous invasion 
Yes 28 (35) 
No 46 (58) 

Unknown 6 (8) 

T stage 

1 5 (6) 
2 15 (19) 
3 41 (51) 
4 15 (19) 

Unknown 4 (5) 

N stage 

0 49 (61) 
1 18 (23) 
2 8 (10) 

Unknown 5 (6) 

M stage 
0 72 (90) 
1 5 (6) 

Unknown 3 (4) 

AJCC stage at diagnosis  

I 18 (23) 
II 31 (39) 
III 22 (28) 
IV 5 (6) 

Unknown 4 (5) 

Neoadjuvant oncologic 
therapy 

Yes 5 (6) 
No 73 (91) 

Unknown 2 (3) 

R0 resection 
Yes 73 (91) 
No 2 (3) 

Unknown 5 (6) 
 
 
Table 6.3 – the pathology of the colorectal carcinomas included in the REIMS analysis. Some cases 
are reported as ‘unknown’ due to patients not having a radical resection allowing complete 
staging or due to historically incomplete metadata. 
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Adenoma Pathology  Number (%) 

Mean lesion size (range)  33mm (5-80mm) 

Pathological subtype 

Tubulovillous 20 (38) 
Villous 15 (28) 
Tubular 12 (23) 
Serrated 3 (6) 
Unknown 3 (6) 

Grade of dysplasia 
High  8 (15) 
Low 42 (79) 

Unknown 3 (6) 
 
Table 6.4 – the pathology of the colorectal adenomas included in the REIMS analysis. Some cases 
are reported as ‘unknown’ due to multiple polyps being present and it not being clear which one 
was sampled or historically incomplete metadata. 
 

 

Representative REIMS spectra from the analysis of tumour, adenoma and normal tissues across 

the whole mass range (150-1000m/z) are presented in figure 6.2. These demonstrate that REIMS is 

capable of detecting large quantities of metabolites across multiple lipid subclasses, including the 

fatty acids (FAs; 220-310m/z), glycerophospholipids (GPLs; 600-850m/z) and triglycerides (TGs; 

850-950m/z). FAs appear to be the lipid subclass with the highest relative abundance across all 

tissue types, however it is not possible to determine from these data if they are free FAs in the 

tissue or are also a consequence of fragmentation of more complex lipids at the tissue interface or 

collision cell. The complex lipid region is presented in figure 6.3 over the 600-1000m/z range, 

demonstrating a large degree of similarity between tissue types. It appears that the differences 

are not due to novel metabolites in a specific tissue subtype (which would be represented by 

peaks which are present in one spectrum but completely absent in another), but differences in 

their relative intensity. Visual inspection reveals some regions where the relative intensities differ 

between tissue types, for example when comparing the peaks at 699.45m/z and 744.55m/z; 

however multivariate models will be required to start interrogating these differences in more 

detail.  
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Figure 6.2 – the mean spectrum generated from the REIMS analysis of tumour, adenoma and 
normal tissue in negative mode over the 150-1000 m/z range. Notable peaks across lipid classes 
are annotated.  
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Figure 6.3 – the mean spectrum generated from the REIMS analysis of tumour, adenoma and 
normal tissue over the 600-1000 m/z range in negative mode, focusing on GPLs and TGs.  
 

 

6.3.1 Tissue recognition using REIMS 

 

 

6.3.1.1 Tissue recognition using whole mass range 150-1000m/z 
 

The PCA plot of the 1013 included REIMS spectra over the whole mass range of 150-1000m/z can 

be seen in figure 6.4, demonstrating marked batch effects. A loading plot (figure 6.5.A) revealed 

that the batch along PC1 was caused by a contaminant at 367.264m/z, which was present in all 

samples analysed between February and March 2015 (figure 6.6.A). The batch along PC2 was 
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largely driven by a much-increased relative intensity of FAs compared to the GPLs (figure 6.5.B), 

particularly 16:0, 18:0, 18:1 and 18:2; seen in a single analytical run of 8 samples from 4 patients in 

January 2016 (figure 6.6.B). Variation along PC3 was largely caused by a contaminant at 

212.075m/z (figure 6.5.C), present in the spectra from a single analytical run in August 2018 

(figure 6.6.C).  

 

 
 

Figure 6.4 – PCA plot of the 1013 REIMS spectra across the 150-1000m/z range. PC1 accounted for 
40.5% of the variation, PC2 for 15.2% and PC3 for 12.1%.  
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Figure 6.5 – loading plot for the variation seen along PC1 (A), PC2 (B) and PC3 (C) in the 150-
1000m/z range.  

 

 
Figure 6.6 – spectrum from an adenoma sample of patient JLA055 (A), demonstrating the 
contaminant peak at 367.264m/z; a spectrum from normal tissue of patient JLA222 (B), 
demonstrating a high relative abundance of FAs compared to GPLs; and a spectrum from tumour 
tissue of patient JLA210 (C), demonstrating a contaminant peak at 212.075m/z.  
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An LDA model was constructed to assess ability of REIMS for tissue recognition over the mass 

range of 150-1000m/z, with LOPO CV demonstrating an accuracy of 84.6%, 80.3% sensitivity, 

90.9% specificity, 82.0% PPV and 89.9% NPV for tumour (figure 6.7). There was no apparent 

pattern to the misclassifications and they did not appear to focus on the spectra included in the 

batches on PCA. Exclusion of the bins covering the described contaminants did not dramatically 

change the model accuracy, with an increase from 84.6 to 85.3%. The significant variation 

between spectra in the lower mass ranges appears to be largely driven by unpredictable and 

undefined contaminant peaks and therefore, not by an underlying biological process. This 

variability may be a cause of the moderate diagnostic ability of REIMS, where the supervised 

chemometric functions incorporates these features into the models despite them not being a 

biological source of variability. To combat this, models will be assessed which focus on the well-

conserved complex lipid region of 600-1000m/z.  

 

 
 
Figure 6.7 - the accuracy of REIMS on LOPO CV for the prediction of normal, adenoma and tumour 
colorectal tissue across the 150-1000 m/z range.  
 

 

6.3.1.2 Tissue recognition focused on complex lipid mass range 600-1000m/z 
 

The PCA plot of the 1013 included REIMS spectra over the 600-1000m/z range can be seen in 

figure 6.8. It demonstrates that the greatest source of variability does not appear to be tissue 

type, considering the intra-group variance is markedly larger than the inter-group variance. This is 

reflected by the group clusters largely overlapping for tumour and normal tissue, however there is 

evidence of some degree of clustering separately for adenoma spectra. When the plot was 

labelled by experimental factors (such as MS instrument or date of analysis), clinical factors 
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(location of sample) or demographic data (such as patient sex and ethnicity), there was no 

evidence of a batch effect caused by these factors (data not shown). The loading plots for PC1 and 

PC2 can be seen in figure 6.9, demonstrating that the variability between spectra involves many 

different metabolites across the complex lipid range; with no evidence of single contaminants 

driving the models.  

 

 
Figure 6.8 – PCA plot of the 1013 spectra generated from the ex vivo analysis of colorectal tissues 
over 600-1000m/z mass range. PC1, PC2 and PC3 are responsible for 43.3, 21.7 and 4.9% of the 
variation respectively.  
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Figure 6.9 – loading plot of PC1 (A) and PC2 (B) over the mass range 600-1000m/z. 
 

 

The ability of REIMS to differentiate normal, adenoma and carcinoma colorectal tissues was 

assessed by building an LDA model (figure 6.10). This model demonstrates clear clustering by 

tissue type, with a particularly small intra-group variance for normal spectra. The tumour and 

adenoma groups appear to have a small degree of overlap, reflecting the model’s difficulty 

differentiating them completely based on the lipid metabolites. Across all three groups there are 

notable examples of spectra positioned in the centre of an incorrect cluster, many of which come 

from the same tissue sample (as shown by the arrows in figure 6.10).  
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Figure 6.10 – LDA plot of REIMS in the differentiation of normal, adenoma and tumour spectra 
over the 600-1000m/z range. The blue arrows represent spectra from the same tissue piece 
(JLA249) which appear to be positioned in an incorrect region of the plot.  
 

 

The results of LOPO CV can be seen in a confusion matrix in figure 6.11.A, demonstrating an 

overall accuracy for each spectrum of 91.1%, sensitivity of 86.4%, specificity of 95.4%, PPV of 

90.7% and NPV of 93.1% for tumour. There were two primary sources of misclassifications. The 

first was adenomas being misclassified as tumours and the second was tumours being 

misclassified as normal or adenoma. Closer inspection revealed that false negatives for tumour 

were commonly when larger tissue pieces generated multiple REIMS spectra and a small 

percentage of those collected made incorrect predictions. To address this, accuracy metrics were 

defined based on the ability of REIMS to predict the subtype of the whole tissue piece using all 

collected spectra (rather than the accuracy for each spectrum individually). The subtype of the 

whole tissue sample could then be defined as that which is most frequently predicted by the 

individual spectra (with the most clinically significant taken in cases of a tie). For example, if seven 

spectra were generated from a tissue sample and six were predicted to be tumour with one 
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predicted to be normal; the overall tissue prediction would be of tumour. Using this definition, the 

ability of REIMS in tissue recognition improved, with an accuracy of 93.1%, sensitivity of 91.5%, 

specificity of 95.7%, PPV of 90.7% and NPV of 96.1% for tumour (figure 6.11.B). The potential 

causes of adenoma spectra misclassifying to tumour were explored and it was found that 78% (21 

of 27) were adenoma samples with either high-grade dysplasia (HGD) or were sampled 

immediately adjacent to tumour cells (sampling aimed to collect macroscopic tumour however 

validation of the sections revealed only adenoma).  

 

Technical factors of the 89 misclassifying spectra were compared to the spectra that classified 

correctly, with no difference in mean TIC (p = 0.31 on ANOVA), however the signal:noise ratio was 

significantly higher in those that correctly classified (7242 vs 5803; p = 0.004 on Kruskal Wallis 

test). Excluding the spectra with the lowest 5% of signal:noise (equivalent to a threshold of 1294) 

increases the overall model accuracy for each spectrum from 91.1 to 92.2%, and notably, 

decreases false negatives for tumour from 4.6 to 3.6%. No other association with misclassifications 

could be demonstrated when assessing factors such as date of analysis or MS instrument used. 

 

Learning curve simulations were used to assess whether the dataset had sufficient power to 

differentiate carcinoma, adenoma and normal mucosa; or whether further tissue samples 

required analysis. This demonstrates that maximum classification accuracy was reached for all 

tissue subtypes with less than 140 spectra included in the modelling, markedly below the 247 

included in the smallest group. In addition, it appears that no more than 50 variables (metabolite 

abundances selected with the smallest p values) were required to reach maximum accuracy. 

 

 

 
 
Figure 6.11 – the accuracy of REIMS on LOPO CV for the prediction of normal, adenoma and 
tumour colorectal tissue; with the predictions for each spectrum collected (A) and for the overall 
tissue sample (B).  
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From a clinical perspective, both adenomas and carcinomas are lesions that require excision and 

therefore, may be considered as one group for the purposes of REIMS prediction. Models were 

created to assess the ability of REIMS in differentiating disease (tumour or adenoma) and normal 

colorectal tissue, with the accuracy for each spectrum of 93.5%, a sensitivity of 91.2%, specificity 

of 96.7%, PPV of 97.5% and NPV of 88.6% for disease (figure 6.12.A). This causes an overall 

increase in accuracy and specificity, however NPV suffers from the increased misclassifications of 

disease to normal tissue. When making predictions for each tissue sample analysed, the accuracy 

was 96.0%, sensitivity of 94.9%, specificity of 97.8%, PPV of 98.7% and NPV of 91.8% for disease 

(figure 6.12.B).  

 

 
 
Figure 6.12 - the accuracy of REIMS on LOPO CV for the prediction of disease (adenoma or 
tumour) vs normal colorectal tissue; with the predictions for each spectrum collected (A) and for 
the overall tissue sample (B). 
 

 

One objective of this thesis is to translate REIMS in vivo to accurately perform colorectal tissue 

recognition. It is evident that REIMS has a much-increased diagnostic accuracy over the 600-

1000m/z rather than 150-1000m/z range, with it focusing on the complex lipid region rather than 

additional smaller metabolites and regions prone to unpredictable contamination. For the reason 

of increased diagnostic accuracy, the 600-1000m/z range will be used for all further modelling in 

this thesis.  

 

 

6.3.2 REIMS in risk stratification of colorectal cancers 
 

The heterogeneity of CRC is such that there are a multitude of different factors which can 

influence the clinical pathway a patient will take, with research having focused on identifying 
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which features are associated with a poor outcome. These data are vital to support clinical 

decision-making, as it can determine the use of neoadjuvant or adjuvant oncologic therapies (such 

as chemo and radiotherapy), surgical strategy (radical vs local excision) and need for surveillance 

post-operatively.  

 

Features associated with poor prognosis are traditionally defined based on morphological factors, 

such as how the location of tumour cells relates to organ structures, most likely due to the fact 

that this data is readily determined during the usual diagnostic process of microscopy. Considering 

the relationship between phenotype and metabolism, this section hypothesises that the mucosal 

metabolome can be used to stratify cancers based on established features of risk.  

 

 

6.3.2.1 Tumour stage 
 

An advanced tumour stage (as per the TNM criteria) reflects an increased degree of local tumour 

invasion through the bowel wall, with a T1 and T2 staged cancers having a 5 year survival of 87% 

compared to 41% for T3 and T4 cancers347. Figure 6.13.A demonstrates that an OPLS-DA model of 

REIMS spectra has a limited ability to differentiate early (T1-2) from advanced (T3-4) tumours, 

with a large overlap of the groups and multiple outliers present. This is reflected with an R2X of 

0.337 and Q2 of 0.231. A cross validated plot (figure 6.13.B) supports this finding, where the little 

separation between groups is mostly lost, with many spectra crossing the line of 0 on the x axis 

(reflecting uncertainty in their classification). LOPO CV reveals an overall model accuracy of 52.6%, 

with a sensitivity of 52.6%, specificity of 52.6%, PPV of 78.4% and NPV of 25.3% for advanced 

stage (figure 6.14). Whilst the greatest absolute value of misclassifications is when advanced 

tumours were being classified as early, this is a consequence of the prevalence difference between 

the groups and in fact, there is an identical proportion of early tumours misclassifying as advanced 

(reflected in the equal sensitivity and specificity).  
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Figure 6.13 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components (A) and a cross validated 
OPLS-DA plot (B) demonstrating the ability of REIMS to differentiate early (T1-2) and advance (T3-
4) CRC. The tolerance ellipse in A represents the 95% boundary on the 2-dimensional scores plot 
as per Hotelling’s T2 distribution.  
 

 

 
 
Figure 6.14 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
early (T1/2) or advanced (T3/4) tumours based on the TNM criteria.  
 

 

6.3.2.2 Presence of nodal micrometastasis 
 

The presence of cancerous cells in the lymph nodes is believed to reflect micrometastasis along 

the lymphatic pathways, with its presence associated with a 5 year survival that decreases from 57 

to 7%347. The ability of REIMS to differentiate the presence or absence of nodal disease according 

to the TNM criteria was assessed using an OPLS-DA model (figure 6.15.A). This shows a moderately 

increased accuracy in comparison to tumour stage however this is still poor, with an R2X of 0.363 

and Q2 of 0.348. The cross validated model (figure 6.15.B) again shows a loss of clustering, with 

LOPO CV revealing an overall model accuracy of 62.3%, with a sensitivity of 66.0%, specificity of 

60.4%, PPV of 45.5% and NPV of 78.0% (figure 6.16).  
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Figure 6.15 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components (A) and a cross validated 
OPLS-DA plot (B) demonstrating the ability of REIMS to differentiate tumours with (N1-2) and 
without (N0) presence of nodal micrometastasis. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 

 

 
 
Figure 6.16 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with (N 1/2) or without (N 0) nodal micrometastasis based on the TNM criteria.  
 

 

6.3.2.3 AJCC stage 
 

The AJCC stage is based on the values of each TNM constituent and is considered an improved 

approach to risk stratification given that it incorporates more data than the individual components 

alone348. However, the limited ability of REIMS in differentiating tumour and nodal stages appears 

to extend to the AJCC. Early (AJCC I/II) and advanced (AJCC III/IV) clusters moderately overlap on 

an OPLS-DA plot (figure 6.17.A), with an R2X of 0.358 and Q2 of 0.326. The cross validated plot 

shows only a small number of AJCC III/IV spectra crossing the x value of 0 (figure 6.17.B), however 

LOPO CV shows poor predictive ability once again; with an accuracy of 60.9%, a sensitivity of 

65.1%, specificity of 58.8%, PPV of 44.4% and NPV of 77.0% for advanced stage (figure 6.18). 
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Figure 6.17 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components (A) and a cross validated 
OPLS-DA plot (B) demonstrating the ability of REIMS to differentiate early (AJCC I/II) or advanced 
(AJCC III/IV) tumours. The tolerance ellipse in A represents the 95% boundary on the 2-
dimensional scores plot as per Hotelling’s T2 distribution.  
 

 

 
 
Figure 6.18 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
early (AJCC I/II) or advanced (AJCC III/IV) tumours.  
 

 

6.3.2.4 Presence of extramural venous invasion 
 

Tumour cells exhibiting extramural venous invasion (EMVI) raises the concern for haematological 

spread of metastasis (particularly to the liver) and its absence is associated with increased 

metastasis free survival in rectal cancers (hazard ratio 0.5)349. REIMS had a poor level of accuracy 

in predicting which tumours had EMVI, which is evident on the OPLS-DA plots and on LOPO CV 

(figures 6.19 and 6.20). The overall accuracy was 53.8%, with no clear pattern to misclassifications.  
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Figure 6.19 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.357 and Q2 of 0.285 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours with or without EMVI. The tolerance ellipse in A represents the 
95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 

 

 
 

Figure 6.20 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without EMVI.  
 

 

6.3.2.5 Presence of lymphovascular invasion 
 

Lymphovascular invasion (LVI) is believed to be the precursor to lymph node micrometastasis and 

is associated with poor outcomes in many cancers including CRC350. It is of particular importance in 

stage I CRC, where the 5 year disease free survival (DFS) falls from 90.9 to 52.7% with the presence 

of LVI351. REIMS had a poor level of accuracy in predicting which tumours had LVI, which can be 

seen on an OPLS-DA plot and on LOPO CV (figures 6.21 and 6.22). The overall accuracy was 57.6%, 

with no clear pattern to misclassifications.  
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Figure 6.21 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.356 and Q2 of 0.389 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours with or without LVI. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 

 

 
Figure 6.22 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without lymphovascular invasion (LVI). 
 

 

6.3.2.6 Presence of tumour budding 
 

Tumour budding refers to clusters of cells at the invasive edge of cancers, representing a transition 

from the epithelium into the stroma, and has been postulated to better stratify CRC patients than 

TNM352. REIMS was not able to accurately predict the presence of tumour budding in CRCs, with 

marked cluster overlap on both an OPLS-DA plot and a cross validated OPLS-DA plot (figure 6.23). 

LOPO CV results are presented in figure 6.24, showing an overall accuracy of 58.2%, with a notably 

low NPV of 38.2%.  
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Figure 6.23 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.35 and Q2 of 0.354 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of REIMS 
to differentiate tumours with or without tumour budding. The tolerance ellipse in A represents 
the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
 

 

 
 
Figure 6.24 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours with and without tumour budding. 
 

 

6.3.2.7 Mucinous subtype 
 

The pools of mucin produced by mucinous tumours are largely composed of proteins and 

saccharides, and therefore it was anticipated that REIMS would not be sampling the mucin itself 

but rather the lipidomic changes of the tumour cells353. Having such a mucinous phenotype is 

associated with advanced stage at diagnosis and poor response to chemotherapy compared to 

non-mucinous adenocarcinoma354. An OPLS-DA model was built to assess the accuracy of REIMS in 

differentiating mucinous and non-mucinous CRC, with mucin-producing tumours categorised as 

mucinous for this purpose. The OPLS-DA plots in figure 6.25 are difficult to interpret due to the 

discrepancy in group sizes (156 vs 62 spectra), however the large intra-group compared to intra-
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group variance is evident. This is reflected on LOPO CV, where there is an accuracy of 49.7%, a 

sensitivity of 48.4%, specificity of 50.0%, PPV of 19.0% and NPV of 80.0% (figure 6.26). 

 

 
 

Figure 6.25 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.347 and Q2 of 0.368 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate tumours that produce mucin from those that do not. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
 

 

 
 

Figure 6.26 – a confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
tumours that produce mucin from those that do not.  
 

 

6.3.3 REIMS in risk stratification of colorectal adenomas 
 

The most clinically relevant question in the risk-stratification of colorectal adenomas is whether 

the dysplasia present is high-grade (HGD) or low-grade (LGD), with the former representing the 

last stage before invasive cancer and a diagnosis which requires a more aggressive management 

strategy12. The ability of REIMS to assess this was conducted in two ways. First, models were 
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created to predict the degree of dysplasia in the validation section of all included adenomas (as 

shown in figure 6.27), with any focus of HGD sufficient for this classification to be given. The OPLS-

DA plots for this are shown in figure 6.28, showing some degree of cluster separation between the 

groups and little movement when this plot is cross validated (figure 6.28.B). The relatively high Q2 

of 0.544 is reflected on LOPO CV, which demonstrates an overall accuracy of 89.9%, a sensitivity of 

58.1%, specificity of 94.4%, PPV of 60% and NPV of 94.0% for HGD (figure 6.29.A). A more clinically 

relevant question is whether there was HGD (or invasive cancer) anywhere in the polyp on formal 

histopathology, even if the piece sampled contained only LGD. This definition increased the 

number of spectra classified as HGD from 31 to 73 (which includes a T1 and a T2 polyp cancer for 

this model), with the OPLS-DA plots presented in figure 6.30. These demonstrate a high intra-

group variance particularly for the new HGD group, resulting in marked cluster overlaps when the 

plot is cross validated (figure 6.30.B). LOPO CV reflects this with a reduction in the predictive 

ability of REIMS, with an accuracy of 65.9%, 34.2% sensitivity, 79.2% specificity, 41.0% PPV and 

74.1% NPV for HGD (figure 6.29.B). 

 

 

 
 
Figure 6.27 – photos of validation polyp validation sections showing low-grade (A) and high-grade 
(B) dysplasia.  
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Figure 6.28 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.473 and Q2 of 0.544 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate adenomas with low-grade from high-grade dysplasia. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
 

 

 
Figure 6.29 – confusion matrices of REIMS on LOPO CV of an LDA model for the prediction of 
adenomas that have HGD present in the validation section (A) or anywhere in the polyp on formal 
histopathology (B).  
 

 
 

 
 
Figure 6.30 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.503 and Q2 of 0.333 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to predict the highest grade of dysplasia within a sampled adenoma. The tolerance ellipse 
in A represents the 95% boundary on the 2-dimensional scores plot as per Hotelling’s T2 
distribution.  
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A further approach to risk stratification of adenomas is determining the histological subtype, such 

as the degree of villous component. This is a continuum, where tubular adenomas have less than 

25% villous features, tubulovillous adenomas have 25-75% and villous adenomas show greater 

than 75%355. The potential subjectivity of this classification is such that REIMS was assessed in its 

ability to differentiate tubular (TA; 38 spectra) from villous adenomas (VA; 79 spectra), whilst 

excluding the middle tubulovillous (TVA) group. The OPLS-DA models are shown in figure 6.31, 

demonstrating a moderate level of clustering which is largely preserved when the plot is cross 

validated, with small clusters of spectra appearing to drive the misclassifications rather than large 

cluster overlaps. For example, the three TAs appearing in the VA group in figure 6.31.A all come 

from one patient sample, where the metadata was re-checked and found to be correct. LOPO CV 

presents an accuracy of 72.6%, 77.2% sensitivity, 63.2% specificity, 81.3% PPV and 57.1% NPV for 

VA (figure 6.32). 

 

Other features suggested by the British Society of Gastroenterology for the definition of an 

advanced colorectal polyp include adenomas greater than 10mm, the presence of serrated 

features with dysplasia or without dysplasia if greater than 10mm12. It was not possible to assess 

the ability of REIMS to predict these features due to imbalances in the composition of the polyps 

sampled for research. For example, only 6 (11%) of the sampled adenomas where less than 10mm 

and only 3 (6%) were serrated.   

 

 

 
 

Figure 6.31 – an OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 
0.529 and Q2 of 0.513 (A) and a cross validated OPLS-DA plot (B) demonstrating the ability of 
REIMS to differentiate villous and tubular adenomas. The tolerance ellipse in A represents the 95% 
boundary on the 2-dimensional scores plot as per Hotelling’s T2 distribution.  
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Figure 6.32 – confusion matrix of REIMS on LOPO CV of an LDA model for the differentiation of 
villous adenomas (VA) and tubular adenomas (TA). 
 

 

6.3.4 Identification of lipid metabolites which differentiate colorectal tissue types 

 

Univariate and multivariate methods were used to explore which metabolites were responsible for 

the differences in normal, adenoma and tumour colorectal tissues. This was approached by 

conducting three binary comparisons, with 84 bins of interest revealed by sampling VIP plots and 

through performing univariate ANOVA. The VIP plots (figure 6.33) revealed that a small proportion 

of the total bins appeared to be driving the differentiation apparent in the models, aiding selection 

of the m/z values.  
 

 
Figure 6.33 – VIP score plots from OPLS-DA models of tumour vs normal (A), tumour vs adenoma 
(B) and adenoma vs normal (C). The bins are ordered by descending score on the x axis, with those 
highlighted in red selected for MS/MS.  
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Identifying the metabolites within these 84 bins was attempted using MS/MS analysis in negative 

mode of 60 tissue samples from the same cohort of patients, most of which were also included in 

the primary modelling. This generated 410 spectra, with the structure of 61 metabolites identified 

to level 2 across 40 bins (table 6.5). This demonstrated a range of lipid metabolites across the 

glycerophospholipids (PE, PA, PG, PCh and PI), glycerolipids (DG) and sphingolipids (sphingomyelin, 

ceramide-1-phosphate and ceramide PE), with generally low errors when comparing the 

experimental and theoretical masses.  

 

The patterns of ionisation and fragmentation showed consistency by lipid species or structural 

component. Lipids with an ethanolamine group (PE and PE_Cer) were ionized by deprotonation, 

however, were mostly seen with the additional loss of ammonia (NH3) and the characteristic 

fragment at 123m/z representing ethanolamine phosphate – NH3 (figure 6.34 for PE_Cer and 6.35 

for PE). The [M-NH3-H]- ions of PE and PE_Cer can be distinguished in an MS/MS spectrum by 

detecting fragments representing deprotonated fatty acid ions as [CH3(CH2)nCOO]- (such as 16:0 at 

255.23m/z), which are not seen in sphingolipids due to the presence of amino alcohols and the 

nitrogen linkage of the fatty acyl to the sphingosine backbone. Minor fragments were seen from 

PE_Cer where the acyl chain fragmented as a ketene (figure 6.34). PEs were one of the most 

abundant lipid species in the analysis, commonly seen with multiple combinations of acyl chains 

within the same bin. Lipids with a phosphocholine headgroup (PCh and SM) were ionized by 

demethylation, revealing a characteristic fragment at 168m/z representing the phosphocholine – 

CH3 ion (figure 6.36). Similarly to PE_Cer, SMs are not capable of neutral loss of fatty acids, which 

can be used to distinguish them from PChs. The remaining GPLs were seen to ionize through 

deprotonation, with occasional examples of Cl- adducts (as seen in [PA(20:4/18:0)+Cl]- in the bin 

759.45). Lyso-lipids were commonly seen where a single fatty acyl chain had been fragmented off 

either neutrally or as a ketene. DGs were only seen to ionize through Cl- adducts and 

demonstrated characteristic fatty acid ion fragments (figure 6.37).  
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Bin Ion Identity Theoretical 
Mass (m/z) 

Observed 
Mass (m/z) 

Error 
(ppm) 

616.45 CerP(d18:1/16:0)-H 616.471 616.470 1.95 
642.45 PE_Cer(d18:1/16:0)-NH3-H 642.486 642.485 1.56 
645.45 PE(16:0/14:0)- NH3-H 645.450 645.450 0 
657.55 DG(18:1/18:0)+Cl 657.523 657.518 7.60 
659.45 SM(d18:0/14:1)-CH3 659.513 659.515 2.43 

671.45 PE(16:1/16:0)-NH3-H 671.465 671.465 0.30 
PE(18:1/14:0)-NH3-H 671.465 671.465 0.30 

673.45 PA(18:1/16:0)-H 673.48 673.481 2.08 
674.45 13C isotope of PA(18:1/16:0)-H 674.484 674.483 1.48 
678.45 PE_Cer(36:5,O3)-NH3-H 678.450 678.457 10.3 
690.55 PCh(16:0/14:0)-CH3 690.508 690.510 3.04 

695.45 PA(20:4/16:0)-H 695.466 695.465 1.01 
PA(18:2/18:2)-H 695.466 695.465 1.01 

696.45 13C isotope of PA(20:4/16:0)-H 696.469 696.468 0.72 

697.45 PA(18:2/18:1)-H 697.481 697.483 2.87 
PA(20:3/16:0)-H 697.481 697.483 2.87 

698.45 
13C isotope of PA(18:2/18:1)-H 698.484 698.487 4.30 
13C isotope of PA(20:3/16:0)-H 698.484 698.487 4.30 

699.45 PE(18:1/16:0)-NH3-H 699.496 699.497 1.43 
700.45 13C isotope of PE(18:1/16:0)-NH3-H 700.500 700.502 2.86 

701.55 
PA(18:1/18:0)-H 701.513 701.510 4.28 
PA(20:1/16:0)-H 701.513 701.510 4.28 

PE(18:0/16:0)-NH3-H 701.513 701.510 4.28 

703.55 
x2 13C isotope of PA(18:1/18:0)-H 703.519 703.515 5.69 
x2 13C isotope of PA(20:1/16:0)-H 703.519 703.515 5.69 

SM(34:1,O3)-CH3 703.535 703.530 6.54 

709.45 DG(20:3/18:2,O2)+Cl 709.481 709.480 1.41 
DG(20:4/18:1,O2)+Cl 709.481 709.480 1.41 

716.55 PE(18:1/16:0)-H 716.524 716.520 5.02 
PCh(16:1/16:0)-CH3 716.524 716.520 5.02 

721.45 PA(20:4/18:1)-H 721.481 721.480 1.39 
PE(18:2/18:2)-NH3-H 721.481 721.480 1.39 

723.45 
PA(20:4/18:0)-H 723.497 723.498 1.38 

PE(20:3/16:0)-NH3-H 723.497 723.498 1.38 
PE(18:2/18:1)-NH3-H 723.497 723.498 1.38 

725.55 PE(18:2/18:0)-NH3-H 725.513 725.512 1.38 
PE(18:1/18:1)-NH3-H 725.513 725.512 1.38 

726.55 
13C isotope of PE(18:2/18:0)-NH3-H 726.516 726.517 2.06 
13C isotope of PE(18:1/18:1)-NH3-H 726.516 726.517 2.06 

727.55 PE(20:1/16:0)-NH3-H 727.528 727.527 1.37 
PE(18:1/18:0)-NH3-H 727.528 727.527 1.37 

728.55 13C isotope of PE(18:1/18:0)-NH3-H 728.531 728.530 1.37 

742.55 PCh(18:2/16:0)-CH3 742.539 742.538 1.35 
PCh(18:1/16:1)-CH3 742.539 742.538 1.35 

743.55 
13C isotope of PCh(18:2/16:0)-CH3 743.542 743.538 5.38 
13C isotope of PCh(18:1/16:1)-CH3 743.542 743.538 5.38 

744.55 PCh(18:1/16:0)-CH3 744.555 744.553 2.55 
747.45 SM(34:3.O6)-CH3 747.493 747.496 4.01 
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747.55 PG(16:0/18:1)-H 747.518 747.512 8.29 

759.45 PE(18:2/18:1)-NH3+Cl 759.473 759.472 1.32 
PA(20:4/18:0)+Cl 759.473 759.472 1.32 

770.55 PCh(18:1/18:1)-CH3 770.571 770.570 0.65 
PCh(18:2/18:0)-CH3 770.571 770.570 0.65 

771.55 
13C isotope of PCh(18:1/18:1)-CH3 771.573 771.575 2.20 
13C isotope of PCh(18:2/18:0)-CH3 771.573 771.575 2.20 

772.55 PCh(18:1/18:0)-CH3 772.586 772.585 1.29 
773.55 PG(18:1/18:1)-H 773.534 773.534 0.26 
775.55 PG(18:1/18:0)-H 775.550 775.547 3.22 
797.65 SM(d16:0/26:2)-CH3 797.654 797.652 2.51 
798.65 13C isotope of SM(d16:0/26:2)-CH3 798.660 798.657 3.76 
887.55 PI(20:3/18:0)-H 887.566 887.570 4.51 

 
Table 6.5 – The structural identity of 61 metabolites across 40 m/z bins determined by analysis of 
fragments during MS/MS in negative ion mode.  
ppm – parts per million; CerP – ceramide-1-phospate; PE_Cer – ceramide phosphatidylethanolamine; PE – 
phosphatidylethanolamine; DG – diacylglycerol; SM – sphingomyelin; PA – phosphatidic acid; PCh – 
phosphatidylcholine; PG – phosphatidylglycerol; PI – phosphatidylinositol. 
 

 
 

 
 
Figure 6.34 – MS/MS spectrum of PE_Cer(d18:1/16:0)-NH3-H in bin 642.45m/z, with structural 
annotations of the fragments (A) and the parent ion (B).  
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Figure 6.35 – MS/MS spectrum of PE(18:1/18:1)-NH3-H and PE(18:0/18:2)-NH3-H in bin 725.55m/z, 
with structural annotations of the fragments (A) and the parent ion (B).  
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Figure 6.36 – MS/MS spectrum of PCh(18:1/16:0)-CH3 in bin 744.55m/z, with structural 
annotations of the fragments (A) and the parent ion (B).  
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Figure 6.37 – MS/MS spectrum of DG(20:3/18:2,O2)+Cl and DG(20:4/18:1,O2)+Cl in bin 
709.45m/z, with annotations of the fragments (A) and the parent ion structure presented(B).  
 

 
Table 6.6 shows the results of multivariate and univariate measures of importance for the 61 

metabolites identified by MS/MS in the differentiation of colorectal tissue types, with selected 

boxplots shown in figure 6.38. It is apparent that there is a general agreement between VIP scores 

and ANOVA in highlighting the metabolic differences between tissue types, however there are 

notable examples where this is not the case. [PA(18:2/18:1)-H]- and [PA(20:3/16:0)-H]- in the bin 

697.45m/z have a VIP score of 6.3 for differentiating tumour and normal tissue (where greater 

than one shows importance within an OPLS-DA model), however, there is no statistical difference 

in their relative intensities. Conversely, [PCh(16:0/14:0)-CH3]- in bin 690.55 has a modest VIP score 

of 1.6 whilst demonstrating a 30% lower relative abundance in normal tissue compared to tumour, 

with a high level of statistical significance (p = 2.9e-8). When comparing metabolites across the 

normal-adenoma-carcinoma sequence, it is apparent that there is an association between 

carcinogenesis and an increase in relative abundance of identified metabolites. When a difference 

is statistically significant, 94% of metabolites show a relative increase in tumour compared to 

normal tissue, with 79% increasing for adenoma compared to normal tissue. It is apparent that the 

mean signal of adenoma and tumour tissues across the 600-1000m/z range is significantly higher 
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than normal tissue (2.3e7, 5.4 e7 and 3.0e7 for normal, adenoma and tumour respectively; both 

with p < 0.001). This is also reflected in an increased signal-noise ratio for tumour and adenoma 

tissues (mean of 4652, 9516 and 8390 for normal, adenoma and tumour respectively), with many 

low intensity noise peaks in normal spectra contributing to a decrease in metabolite signal when 

included in the normalisation step. It not possible to determine from these data if the differences 

are intrinsic to the tissue type or to specific metabolic pathways which have become dysregulated. 
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Bin Metabolite Ion Identity 
Tumour vs Normal Tumour vs Adenoma Adenoma vs Normal 

VIP 
Score 

Change in 
Normal 

Fold 
Change 

p 
value* 

VIP 
Score 

Change in 
Adenoma 

Fold 
Change 

p 
value* 

VIP 
Score 

Change in 
Normal 

Fold 
Change 

p 
value* 

616.45 CerP(d18:1/16:0)-H 2.0 Decrease 0.76 2.5e-25 1.5 Increase 1.20 1.7e-8 2.7 Decrease 0.63 7.8e-55 
642.45 PE_Cer(d18:1/16:0)-NH3-H 8.9 Decrease 0.55 9.8e-37 4.6 Increase 1.12 NS 8.6 Decrease 0.49 4.6e-54 
645.45 PE(16:0/14:0)- NH3-H 5.4 Decrease 0.50 1.0 e-80 1.9 Decrease 0.87 NS 3.2 Decrease 0.57 7.2e-56 
657.55 DG(18:1/18:0)+Cl 3.8 Increase 1.18 NS 4.5 Increase 1.38 2.5 e-9 3.0 Decrease 0.85 NS 
659.45 SM(d18:0/14:1)-CH3 6.0 Decrease 0.44 6.6e-107 2.1 Decrease 0.85 2.4e-3 3.9 Decrease 0.52 3.1e-79 

671.45 
PE(16:1/16:0)-NH3-H 9.1 Decrease 0.49 7.7e-72 3.5 Decrease 0.98 NS 7.1 Decrease 0.50 1.7e-75 
PE(18:1/14:0)-NH3-H 9.1 Decrease 0.49 7.7e-72 3.5 Decrease 0.98 NS 7.1 Decrease 0.50 1.7e-75 

673.45 PA(18:1/16:0)-H 8.9 Decrease 0.59 1.0e-49 4.4 Increase 1.11 NS 8.9 Decrease 0.53 1.5e-65 
674.45 13C isotope of PA(18:1/16:0)-H 4.9 Decrease 0.58 2.5e-44 2.5 Increase 1.14 NS 5.1 Decrease 0.51 1.2e-69 
678.45 PE_Cer(36:5,O3) -NH3-H 2.8 Decrease 0.72 5.1e-3 6.3 Increase 2.38 7.6e-31 6.1 Decrease 0.30 3.4e-55 
690.55 PCh(16:0/14:0)-CH3 1.6 Decrease 0.70 2.9e-8 2.1 Decrease 0.53 7.7e-18 1.2 Increase 1.33 4.3e-3 

695.45 
PA(20:4/16:0)-H 1.8 Decrease 0.95 NS 4.5 Increase 1.76 7.7e-47 4.3 Decrease 0.54 6.5e-56 
PA(18:2/18:2)-H 1.8 Decrease 0.95 NS 4.5 Increase 1.76 7.7e-47 4.3 Decrease 0.54 6.5e-56 

696.45 13C isotope of PA(20:4/16:0)-H 1.0 Increase 1.03 NS 2.9 Increase 2.10 9.3e-49 2.6 Decrease 0.49 3.3e-47 

697.45 
PA(18:2/18:1)-H 6.3 Increase 1.00 NS 12.6 Increase 1.69 2.4e-31 11.5 Decrease 0.59 8.4e-31 
PA(20:3/16:0)-H 6.3 Increase 1.00 NS 12.6 Increase 1.69 2.4e-31 11.5 Decrease 0.59 8.4e-31 

698.45 
13C isotope of PA(18:2/18:1)-H 3.9 Increase 1.01 NS 8.0 Increase 1.73 6.2e-34 7.3 Decrease 0.58 2.4e-33 
13C isotope of PA(20:3/16:0)-H 3.9 Increase 1.01 NS 8.0 Increase 1.73 6.2e-34 7.3 Decrease 0.58 2.4e-33 

699.45 PE(18:1/16:0)-NH3-H 11.1 Decrease 0.72 4.0e-13 9.5 Increase 1.21 2.5e-3 13.1 Decrease 0.59 3.1e-34 

700.45 
13C isotope of PE(18:1/16:0)-NH3-

H 
8.3 Decrease 0.77 1.4e-8 4.5 Increase 1.19 6.0e-3 6.1 Decrease 0.65 5.6e-28 

701.55 
PA(18:1/18:0)-H 6.3 Decrease 0.77 9.7e-16 4.4 Increase 1.05 NS 6.5 Decrease 0.73 7.6e-21 
PA(20:1/16:0)-H 6.3 Decrease 0.77 9.7e-16 4.4 Increase 1.05 NS 6.5 Decrease 0.73 7.6e-21 

PE(18:0/16:0)-NH3-H 6.3 Decrease 0.77 9.7e-16 4.4 Increase 1.05 NS 6.5 Decrease 0.73 7.6e-21 

703.55 
x2 13C isotope of PA(18:1/18:0)-H 2.3 Decrease 0.73 3.9e-27 1.9 Decrease 0.77 5.6e-15 1.1 Decrease 0.95 NS 
x2 13C isotope of PA(20:1/16:0)-H 2.3 Decrease 0.73 3.9e-27 1.9 Decrease 0.77 5.6e-15 1.1 Decrease 0.95 NS 

SM(34:1,O3)-CH3 2.3 Decrease 0.73 3.9e-27 1.9 Decrease 0.77 5.6e-15 1.1 Decrease 0.95 NS 

709.45 
DG(20:3/18:2,O2)+Cl 2.2 Decrease 0.90 NS 5.1 Increase 1.58 6.6e-39 5.1 Decrease 0.57 3.3e-58 
DG(20:4/18:1,O2)+Cl 2.2 Decrease 0.90 NS 5.1 Increase 1.58 6.6e-39 5.1 Decrease 0.57 3.3e-58 

716.55 
PE(18:1/16:0)-H 7.5 Decrease 0.62 3.8e-43 7.1 Decrease 0.58 2.9e-34 3.0 Increase 1.06 NS 

PCh(16:1/16:0)-CH3 7.5 Decrease 0.62 3.8e-43 7.1 Decrease 0.58 2.9e-34 3.0 Increase 1.06 NS 

721.45 
PA(20:4/18:1)-H 3.3 Decrease 0.92 NS 5.3 Increase 1.58 4.4e-16 5.7 Decrease 0.58 4.2e-25 

PE(18:2/18:2)-NH3-H 3.3 Decrease 0.92 NS 5.3 Increase 1.58 4.4e-16 5.7 Decrease 0.58 4.2e-25 
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723.45 
PA(20:4/18:0)-H 3.5 Increase 1.04 NS 6.0 Increase 1.50 7.6e-24 5.5 Decrease 0.70 9.4e-18 

PE(20:3/16:0)-NH3-H 3.5 Increase 1.04 NS 6.0 Increase 1.50 7.6e-24 5.5 Decrease 0.70 9.4e-18 
 PE(18:2/18:1)-NH3-H 3.5 Increase 1.04 NS 6.0 Increase 1.50 7.6e-24 5.5 Decrease 0.70 9.4e-18 

725.55 
PE(18:2/18:0)-NH3-H 6.8 Decrease 0.81 1.0e-2 7.6 Increase 1.31 5.9e-7 8.6 Decrease 0.62 2.0e-22 
PE(18:1/18:1)-NH3-H 6.8 Decrease 0.81 1.0e-2 7.6 Increase 1.31 5.9e-7 8.6 Decrease 0.62 2.0e-22 

726.55 

13C isotope of PE(18:2/18:0)-NH3-
H 

4.4 Decrease 0.96 NS 4.2 Increase 1.07 NS 5.1 Decrease 0.90 NS 

13C isotope of PE(18:1/18:1)-NH3-
H 

4.4 Decrease 0.96 NS 4.2 Increase 1.07 NS 5.1 Decrease 0.90 NS 

727.55 
PE(20:1/16:0)-NH3-H 6.2 Decrease 0.75 1.0e-12 4.2 Increase 1.02 NS 5.6 Decrease 0.73 1.3e-12 
PE(18:1/18:0)-NH3-H 6.2 Decrease 0.75 1.0e-12 4.2 Increase 1.02 NS 5.6 Decrease 0.73 1.3e-12 

728.55 
13C isotope of PE(18:1/18:0)-NH3-

H 
3.5 Decrease 0.90 NS 3.8 Decrease 0.86 4.6e-2 3.5 Increase 1.04 NS 

742.55 
PCh(18:2/16:0)-CH3 5.8 Decrease 0.96 NS 6.4 Decrease 0.81 6.8e-6 6.9 Increase 1.18 2.0e-2 
PCh(18:1/16:1)-CH3 5.8 Decrease 0.96 NS 6.4 Decrease 0.81 6.8e-6 6.9 Increase 1.18 2.0e-2 

743.55 
13C isotope of PCh(18:2/16:0)-CH3 5.0 Decrease 0.92 NS 6.7 Decrease 0.73 4.0e-13 6.0 Increase 1.26 8.5e-7 
13C isotope of PCh(18:1/16:1)-CH3 5.0 Decrease 0.92 NS 6.7 Decrease 0.73 4.0e-13 6.0 Increase 1.26 8.5e-7 

744.55 PCh(18:1/16:0)-CH3 8.9 Decrease 0.83 4.7e-5 11.2 Decrease 0.68 1.5e-22 8.3 Increase 1.21 7.3e-5 
747.45 SM(34:3.O6)-CH3 1.8 Decrease 0.82 4.1e-4 1.6 Increase 1.49 NS 2.5 Decrease 0.72 6.3e-18 
747.55 PG(16:0/18:1)-H 4.4 Decrease 0.66 2.7e-27 2.5 Decrease 0.87 NS 3.5 Decrease 0.75 7.0e-12 

759.45 
PE(18:2/18:1)-NH3+Cl 3.4 Increase 1.41 4.4e-9 6.2 Increase 2.2 3.4e-54 4.2 Decrease 0.64 3.1e-21 

PA(20:4/18:0)+Cl 3.4 Increase 1.41 4.4e-9 6.2 Increase 2.2 3.4e-54 4.2 Decrease 0.64 3.1e-21 

770.55 
PCh(18:1/18:1)-CH3 4.3 Increase 1.01 NS 5.8 Decrease 0.77 2.8e-13 6.5 Increase 1.31 4.8e-11 
PCh(18:2/18:0)-CH3 4.3 Increase 1.01 NS 5.8 Decrease 0.77 2.8e-13 6.5 Increase 1.31 4.8e-11 

771.55 
13C isotope of PCh(18:1/18:1)-CH3 4.0 Decrease 0.85 7.9e-6 4.9 Decrease 0.76 1.0e-16 3.7 Increase 1.13 NS 
13C isotope of PCh(18:2/18:0)-CH3 4.0 Decrease 0.85 7.9e-6 4.9 Decrease 0.76 1.0e-16 3.7 Increase 1.13 NS 

772.55 PCh(18:1/18:0)-CH3 4.3 Decrease 0.76 8.1e-20 5.2 Decrease 0.67 9.8e-30 3.0 Increase 1.13 NS 
773.55 PG(18:1/18:1)-H 5.7 Decrease 0.59 4.9e-45 5.7 Decrease 0.55 1.8e-38 1.4 Increase 1.07 NS 
775.55 PG(18:1/18:0)-H 4.2 Decrease 0.48 6.6e-59 3.1 Decrease 0.61 3.0e-19 1.4 Decrease 0.78 1.4e-4 
797.65 SM(d16:0/26:2)-CH3 2.6 Increase 1.26 NS 2.8 Decrease 0.54 1.5e-19 2.4 Increase 2.35 2.1e-10 
798.65 13C isotope of SM(d16:0/26:2)-CH3 1.6 Increase 1.06 NS 2.6 Decrease 0.53 3.3e-34 1.8 Increase 2.0 2.6e-13 
887.55 PI(20:3/18:0)-H 4.1 Decrease 0.46 1.4e-43 0.9 Decrease 0.93 NS 2.8 Decrease 0.50 2.0e-62 

 

Table 6.6 – the VIP score, change in relative intensity, fold change and corrected p value of the 61 identified lipid metabolites when performing 
binary comparisons between colorectal tumour, adenoma and normal tissue.  
VIP – variable importance in projection; CerP – ceramide-1-phospate; PE_Cer – ceramide phosphatidylethanolamine; PE – phosphatidylethanolamine; DG – diacylglycerol; SM – 
sphingomyelin; PA – phosphatidic acid; PCh – phosphatidylcholine; PG – phosphatidylglycerol; PI – phosphatidylinositol; NS – not significant 
*p value calculated using ANOVA and then corrected using the Bonferroni procedure 
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Figure 6.38 – box and whisker plots of the relative abundance of 9 metabolites across colorectal 
normal, adenoma and tumour tissue; with the exact mass and identity from MS/MS shown. The 
box reflects the 25-75th percentiles with a median line and the whiskers are 1.5 x interquartile 
range without extending beyond a datapoint. A jitter plot of the raw data is presented (grey).  
CerP – ceramide-1-phospate; PE – phosphatidylethanolamine; SM – sphingomyelin; PA – phosphatidic acid; DG – 
diacylglycerol; PCh – phosphatidylcholine; PG – phosphatidylglycerol; PI – phosphatidylinositol. 
* reflects a statistically significant difference in adenoma compared to normal tissue.  
** reflects a statistically significant difference in tumour compared to adenoma tissue.  
*** reflects a statistically significant difference in tumour compared to normal tissue.  
 

 

The metabolites that were identified by MS/MS were categorised by lipid subclass and if three or 

more metabolites were included, the relative intensities across each spectrum were summed and 

then plotted by tissue type (figure 6.39). This revealed that the abundance of PGs appears to 
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progressively and statistically significantly increase throughout carcinogenesis, with a similar 

pattern seen with SMs (however the increase from normal to adenoma tissue was not statistically 

significant). A heat map with a dendrogram presenting unsupervised clustering demonstrates that 

the relative abundance of lipid classes appears to change independently of each other and that 

those with similar biosynthetic pathways (for example, ceramides and sphingomyelins) show little 

similarity in their changes (figure 6.40). It was then decided to assess if the acyl chain composition 

of GPLs was associated with colorectal tissue type. A heatmap comparing the relative abundance 

of GPLs containing at least one monounsaturated fatty acid (MUFA) and those with at least one 

polyunsaturated fatty acid (PUFA) can be seen in figure 6.41.A. Using this classification, the 

dendrogram clusters adenoma and tumour tissues together, which was not the case when lipid 

classes were used (where tumour was clustered with normal). GPLs containing MUFAs are seen to 

statistically significantly increase throughout the normal-adenoma-carcinoma sequence (figure 

6.41.C), which is not the case for PUFAs (where there is no change between normal and tumour 

tissue, figure 6.41.B).  
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Figure 6.39 – box and whisker plots of the total relative abundance of 7 lipid classes across normal, 
adenoma and tumour tissue. The box reflects the 25-75th percentiles with a median line and the 
whiskers are 1.5 x interquartile range without extending beyond a datapoint. A jitter plot of the 
raw data is presented (grey).  
* reflects a statistically significant difference in adenoma compared to normal tissue.  
** reflects a statistically significant difference in tumour compared to adenoma tissue.  
*** reflects a statistically significant difference in tumour compared to normal tissue.  
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Figure 6.40 – heatmap of how the relative abundance of different lipid subtypes is associated with 
colorectal tissue type, with unsupervised clustering represented with a dendrogram.  
 

 

 
 
Figure 6.41 – heatmap of how the relative abundance of PUFAs and MUFAs within 
glycerophospholipids is associated with colorectal tissue type (A) and visualised in a box as 
whiskers plot with jitter (B and C respectively).  
PUFA – polyunsaturated fatty acid; MUFA – monounsaturated fatty acid.  
* reflects a statistically significant difference in adenoma compared to normal tissue.  
** reflects a statistically significant difference in tumour compared to adenoma tissue.  
*** reflects a statistically significant difference in tumour compared to normal tissue.  
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A further analysis was conducted to explore the differential abundance of lipid classes between 

colorectal tissues when adenomas were distinguished based on their grade of dysplasia. Section 

6.3.1.2 revealed that adenomas with high grade dysplasia were commonly being misclassified as 

tumours when cross validating an LDA model, with the similarity in metabolite abundance 

between tumours and HGD adenomas also evident across multiple lipid classes (figure 6.42). As 

adenomas progress from LGD, through HGD and to tumour; PChs and PGs significantly increase in 

relative abundance. The metabolic similarities between HGD adenomas and tumour continue 

when studying the acyl chain composition (figure 6.43). PUFA chains in GPLs significantly reduce as 

an adenoma progresses from LGD to HGD and then remains unchanged for the transition to 

tumour, however it is noteworthy that the abundance in these high-risk subtypes is no different to 

in normal tissue (figure 6.43.B). When assessing the abundance of free PUFAs in the tissues (figure 

6.44.A), this pattern appears to reverse, where the abundance of the free metabolite increases in 

tumour tissue. Furthermore, whilst PUFA chains in GPLs are a clear distinguishing feature 

differentiating LGD and HGD adenomas, the free metabolite levels in the tissues are no different. 

There is a greater correlation between MUFAs that are free in the tissue and those within the acyl 

chains of GPLs, where they both demonstrate the highest relative abundance in tumour tissue, 

with a significant increase from HGD adenomas to tumour (figure 6.43.C and figure 6.44.B). The 

association of MUFAs and dysplasia grade is unclear given that the abundance in GPLs decreases 

from LGD to HGD, however their free abundance in the tissue is unchanged.  
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Figure 6.42 – box and whisker plots of the total relative abundance of seven lipid classes across 
normal, low-grade dysplastic adenomas, high-grade dysplastic adenomas and tumour tissue. 
LGD – low grade dysplasia; HGD – high grade dysplasia. 
* reflects a statistically significant difference between low- and high-grade dysplastic adenomas.  
** reflects a statistically significant difference between low grade dysplastic adenoma and tumour.  
*** reflects a statistically significant difference between high grade dysplastic adenoma and tumour.   
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Figure 6.43 – heatmap of how the relative abundance of PUFAs and MUFAs within 
glycerophospholipids is associated with colorectal tissue type with adenomas separated into those 
with high- and low-grade dysplasia (A) and visualised in a box as whiskers plot with jitter (B and C 
respectively).  
PUFA – polyunsaturated fatty acid; MUFA – monounsaturated fatty acid; HGD – high grade dysplasia; LGD dysplasia.  
* reflects a statistically significant difference between LGD adenoma and HGD adenoma.  
** reflects a statistically significant difference between LGD adenoma and tumour.  
*** reflects a statistically significant difference between HGD and tumour.  
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Figure 6.44 – boxplots of the relative abundance of free PUFAs (A) and MUFAs (B) across 
colorectal tissue types with adenomas separated into those with high- and low-grade dysplasia. 
PUFA – polyunsaturated fatty acid; MUFA – monounsaturated fatty acid; HGD – high grade dysplasia; LGD dysplasia.  
** reflects a statistically significant difference between LGD adenoma and tumour.  
*** reflects a statistically significant difference between HGD and tumour.  
 

 

6.4 Discussion 
 

This chapter has explored the ability of REIMS to differentiate colorectal tissue types ex vivo 

through the creation of a validated and clinically annotated spectral database, application of 

chemometric functions and extraction of unique lipidomic features. It has revealed that the 

composition of cellular lipid metabolites can be used to accurately differentiate colorectal tumour, 

adenoma and normal mucosa; in addition to the risk stratification of adenomas. The accurate 

differentiation of colorectal tissue types by REIMS has revealed unique lipidomic fingerprints for 

the stages of colorectal carcinogenesis, with clear associations presented between clinical 

phenotype and metabolic profile.  

 

 

6.4.1 Clinical impact of REIMS accuracy for tissue recognition and risk-stratification 
 

Accurate real-time tissue recognition has the potential to transform the delivery of healthcare for 

patients with colorectal disease, by coupling REIMS to surgical devices that are used during routine 
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clinical care. This can be applied for two principal purposes, first as a diagnostic system upon 

which to make management decisions and two, as a platform to improve the quality of a 

therapeutic intervention. The diagnostic potential of these findings is best considered with 

colonoscopy and the management of colorectal polyps. It is promising to see that REIMS appears 

to have a diagnostic accuracy that is superior to its competitor endoscopic technologies appraised 

in chapter 2 (whilst recognising the differences in the study designs and tissue types analysed), 

with REIMS at a much earlier phase of its development. Diagnosing the luminal portion of 

colorectal polyps that are encountered clinically using a snare tip will be able to support the use of 

the ‘diagnose and leave’ and ‘resect and discard’ strategies, resulting in a reduction in unnecessary 

polypectomies, procedure time and histology processing costs184,186. REIMS may also be able to 

support therapeutic interventions in the endoscopic setting. A feedback model can now be 

created to inform clinicians performing an EMR if there appears to be adenoma in the dissection 

plane, in which case a further resection could be performed to reduce recurrence risk. REIMS used 

for the detection of tumour-involved margins can also be applied to TAMIS, which is the subject of 

chapter 7. A significant amount of further testing and validation is required, for example, to 

confirm the initial data quality that was captured in pilot studies of endoscopic REIMS85 and to 

determine how the diagnostic accuracy can be applied in a prospective setting. The future 

pathway for REIMS tissue recognition and required steps in the development will be discussed 

later in the thesis. 

 

When considering the misclassifications made by REIMS, one of the greatest concerns with its 

clinical application is the prevalence and impact of false negative predictions of disease; as this has 

a great potential adverse clinical implication (hence why NPV is such a valuable metric when 

assessing these technologies). Whilst a minimum 90% NPV for adenoma has been suggested for 

endoscopic technologies assessing polyps, it is likely that such a threshold in any clinical scenario is 

still too low for widespread acceptance by patients and clinicians185,316. The 91.8% NPV for disease 

shown by REIMS is promising, however it is recommended that there is patient involvement in the 

development process for clinical machine learning technologies in order to determine 

acceptability thresholds356. The greatest source of misclassifications in tissue recognition was 

adenomas predicted to be tumours, where a metabolic similarity (particularly between HGD 

adenoma and tumour) is biologically plausible given similarities between them on a genomic, 

transcriptomic and proteomic level357-360. From a genomic perspective, the normal-adenoma-

carcinoma sequence is largely considered a progression of multiple steps361, however, the 
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diagnosis of cancer is a distinct and binary outcome. Dysplastic cells may have all the necessary 

dysregulation for invasion but have yet to extend through the muscularis mucosae to be defined 

as a cancer, making it very challenging to metabolically define the moment the lesion becomes 

neoplastic.  

 

This phenomenon may also be a driving factor behind why REIMS performs so poorly at risk-

stratifying CRCs and adenomas (with the exception of dysplasia grade in adenomas), where again, 

there are attempts to map complex metabolic shifts into somewhat arbitrary ordinal categories. 

The exact definition of the categories (for example, exactly what constitutes T1-T4; and the 

interpretation of which classes are ‘early’ or ‘advanced’ cancers) may be a source of error, where 

the relevant metabolic changes are not contemporaneous with the morphology described 

pathologically. An example of pathological definitions being incongruous with clinical findings is 

the vast array of oncological outcomes for patients with N2 disease (with 5 year DFS ranging from 

62% for T1-2, to 30% for T4), despite them being all being categorised together in the AJCC 

criteria362. Additionally, the TNM is generally is a poor predictor of DFS and does not feature in 

multifactorial risk models363.  

 

It may also be the case that it is not possible to use the abundance of complex lipid metabolites to 

risk stratify CRCs based on histological features of poor prognosis. Other unmeasured factors may 

be of greater importance (such as small metabolites, time since lesion inception or mucosal 

microbiome364), which would also explain the paucity of literature exploring tissue metabolomics 

with the histological features described here. A further possibility is an imbalance in the number of 

spectra in each risk strata, as shown by tumour stage, where there were 76 spectra from T1/2 and 

249 from T3/4. The relatively small number of patients constituting one of the groups may 

represent a lack of power (where the true lipidomic fingerprint of the phenotype cannot be 

distinguished from other sources of variation such as host genome), however even in groups 

which were relatively balanced, REIMS still had a poor accuracy in risk-stratification of CRCs. The 

limitations arising from the role of sampling location within the context of intra-tumour 

heterogeneity and subjectivity in histopathological assessment are addressed in section 6.4.3.4. 

Based on the data presented, REIMS is currently insufficiently accurate for the clinical risk-

stratification of CRCs. Its use to this end would be invaluable in specific clinical scenarios, such as 

the staging of early rectal cancers. In order to reduce local recurrence and ensure any mesorectal 

lymph node metastasis is excised, rectal cancers with features such as greater than SM2 invasion, 
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LVI, poor differentiation and tumour budding should undergo radical resection rather than local 

excision365. It is not possible to fully assess these features pre-operatively using imaging or 

biopsy366, with an unmet need for a staging technology such as REIMS to aid in the decision 

making process.  

 

 

6.4.2 Lipidomic features of colorectal carcinogenesis 
 

When exploring how the predictive models were able to differentiate colorectal tissue types, the 

primary finding of this work is that there does not appear to be a single metabolite which acts as a 

biomarker of carcinogenesis; the abundance of which can be used to make predictions of where a 

tissue is on the normal-adenoma-carcinoma sequence. Instead, the relative abundance of a large 

number of complex lipids varies in a way which can be closely associated with tissue phenotype; 

similar to findings from many other organs including breast367,368, lymphoma369, prostate370, 

lung371, colorectal57,85, liver137 and several more372. In fact, the relative changes may be even more 

subtle in colorectal tissues given the similarity in lipid composition between normal and tumour 

tissues, unlike breast where there is a predominance of TGs in normal tissue and GPLs in 

tumour167. This prompted the significant efforts in this chapter to identify the structure of a large 

quantity of these metabolites using MS/MS; with the results presented in section 6.3.4 

representing the most comprehensive level 2 metabolite identification of colorectal tissues using 

REIMS in the literature.  

 

The changes in metabolite relative abundance between colorectal tumour, adenoma and normal 

tissue did follow some patterns when assessed by lipid class and GPL acyl chain composition. PChs 

were found to significantly increase in relative abundance between LGD adenoma, HGD adenoma 

and tumour tissue; a finding that has been previously described in colorectal and other cancers. 

The increase in colorectal tissues has been attributed to an over-expression of choline kinase 

starting at the adenoma stage83,373, however, this dataset noted a fall in PCh abundance when 

normal tissue first becomes adenomatous. This is consistent with increased phospholipase D 

activity (which hydrolyses PCh into a PA and choline)374, with a PCh decrease and PA increase seen 

with adenoma formation. Overexpression of LPCAT has also been demonstrated in CRC87,375, which 

is responsible for re-acylating lyso-PCh into PCh. It appears that these PCh species are more than 

simply structural components, as reducing their abundance (such as with siRNA for LPCAT) 
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reduces cell growth and induces apoptosis in vitro87. PChs are intrinsically related to SMs, which 

are even more clearly increased in abundance throughout carcinogenesis and where their shared 

headgroup is transferred from a PCh to a ceramide by SM synthase375. Sphingosine kinase is 

overexpressed in CRC (driven by FASN), with its inhibition resulting in decreased cell proliferation 

and migration in vitro; likely due to its role as a signalling molecule within the plasma 

membrane376. SM hydrolysis and the formation of ceramide with SMase is considered to be anti-

tumourigenic, however, the activity of SMase is seen to fall in sporadic colorectal adenomas and 

cancers377. It therefore appears that REIMS is able to sample the complex and inter-twined 

dysregulation of PCh and SM metabolism during carcinogenesis, where the relative abundance of 

these lipids can be directly associated with cellular phenotype. However, determining and 

validating the exact metabolic processes responsible for these findings is beyond the scope of this 

thesis.  

 

PGs showed a significant increase in relative abundance as tissues progressed from normal, to LGD 

adenomas, HGD adenoma and finally, to tumour; with the three identified by MS/MS representing 

the most abundant in human colorectal tissues86. The reasoning behind this increase in relative 

abundance is unclear, as PGs constitute only 1-2mol% of cellular phospholipids and their functions 

are mostly described in relation to the mitochondria and endoplasmic reticulum378,379. PGs 

(particularly PG(18:1/18:1) and PG(18:1/16:0)) have been demonstrated to selectively activate 

nuclear protein kinase C bII during the G2 phase of the cell cycle, which is required for mitosis380; 

and is therefore a potential mechanism upon which they are tumourigenic. There is a potential 

role for PGs in mucinous CRCs, however that is also unclear. An increased abundance of PGs has 

also been associated given their role as surfactants381, however in this dataset the relative 

abundance of PGs actually fell with mucinous phenotype. Whilst the e subtype of protein kinase C 

is responsible for colonic mucin secretion382, there is no clear evidence that this subtype of protein 

kinase C can be activated by PGs.  

 

It was generally found that lipid class was associated with tissue type only in selected cases (as 

described above), however the acyl chain composition of GPLs has also been found to play a 

significant role. This work has identified that GPLs containing MUFAs significantly increase in 

relative abundance as carcinogenesis progresses. Previous research has largely focused on the 

study of free fatty acids in the serum of CRC or adenoma patients, or for free MUFAs in tissues; 

with both approaches showing similar findings to this work77,383-385. Shim et al. have described the 
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abundance of fatty acids within GPLs in CRC, adenoma and normal tissues in a total of 83 patients, 

demonstrating the same progressive increases for 16:1 and 18:1 FAs, however 20:1 abundance 

appears to decrease386. The analysis presented in this chapter was unable to consistently separate 

the abundances of GPLs based on the exact MUFAs present due to mixtures within bins (a 

consequence of a lack of chromatography) and therefore cannot address whether increasing 

MUFA length impacts the relationship with carcinogenesis. Despite this, the finding presented may 

give insight into which components of the biosynthetic pathway have been dysregulated in CRC. 

Palmitic acid (16:0) is the product of de novo fatty acid synthesis, which is then desaturated using 

Delta-9 desaturase (SCD-1) prior to or after elongation to C18387. Over-expression of SCD-1 during 

carcinogenesis would be consistent with the lipidomic findings here and this has been shown to be 

the case in colorectal and many other cancer types57. Furthermore, SCD-1 activity is correlated 

with proliferation of cancer cells, poorer outcomes from CRC and has been made a target of anti-

cancer therapies57,388-390. The relative abundance of MUFAs may therefore be used as a biomarker 

of disease response in anti-SCD treatments, with the potential to determine this in real-time using 

REIMS if desired. When distinguishing the MUFA abundance between the dysplasia grade of 

adenomas, an unexpected decrease was witnessed between LGD and HGD, before the increase to 

tumour. The cause for this is unclear and may represent a non-linear relationship between MUFA 

abundance and progressive carcinogenesis, or this may simply be an underpowered comparison 

due to the relatively low numbers of HGD adenomas.  

 

The PUFA content of mucosal GPLs appears to have a more significant role in the initial stages of 

carcinogenesis progression, where the relative abundance was found to be significantly increased 

only in LGD adenomas. To my knowledge, this is the first time this association has been described, 

with a previous group only demonstrating free tissue eicosapentaenoic acid (EPA; FA 20:5) 

increased in LGD compared to HGD and tumour385. There are conflicting views in the existing 

literature as to the general relationship between tissue PUFA abundance and the presence of 

colorectal tumour cells. Whilst it is not contested that tumour cells preferentially uptake free 

PUFAs to aid in their proliferation in vitro (compared to normal tissue)391 and that supra-

physiological supplementation of cancer cell line supernatant with EPA causes an increased 

incorporation of this into GPL acyl chains392; this association has not been replicated when 

analysing human samples. When clinical biopsies were assayed, the composition of PUFAs in GPLs 

varies markedly between tissues types by carbon chain length and saturation status385,386. EPA for 

example, appears to decrease in abundance both free in the tissue and as an acyl chain of a GPL, 
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which may be explained by an apparent preference for PUFA incorporation into TGs rather than 

polar lipids393. This could not be explored in detail in this thesis given that TGs were of low relative 

abundance and were not responsible for differentiating colorectal tissue types on the multivariate 

models. It may therefore be the case that PUFA-containing GPLs are best used by REIMS to 

differentiate low- from high-grade dysplasia in adenomatous lesions. Further insight could be 

sought if it was possible to distinguish how the abundance of each PUFA is impacted, however, 

mixtures of metabolites in bins limited the ability to achieve this.  

 

 

6.4.3 Limitations 
 

 

6.4.3.1 Exclusions due to insufficient spectral quality 
 

There are several limitations to this work that need to be explored, the first of which is that 554 

REIMS spectra (35.4% of the total collected) were deemed of insufficient quality for inclusion in 

the statistical modelling. If this high percentage was to continue as the technology was translated 

in vivo, it would be a significant threat to the feasibility of REIMS during clinical applications. 

However, when examining the causes of the poor quality, it is evident that a large proportion are 

unique to the research process (and would not apply in a clinical setting) or are where analytical 

processes have been adapted to mitigate against their recurrence. The most common cause of 

poor quality was the technical batch effect due to mass drift in 116 spectra collected on a specific 

instrument between March and June 2015, where appraisal of the instrument logs revealed a lack 

of calibration check prior to analysis (discussed in detail in section in 5.2.3.2). Following this, a 

process change was initiated where calibration with sodium formate (and a subsequent check for 

mass drift) must be conducted prior to every analytical session; resulting in no further instances of 

batch effects from mass drift in the remaining samples. It is therefore considered that this is of 

very low risk of occurring again in future analyses. 160 spectra were affected by the sampling of 

non-mucosal tissue, most commonly where there was excessing sampling of the submucosa 

(recognised by its high TG levels) or where no mucosa at all was found in the validation sections. 

This failure is a function of the process by which tissue is sampled and then analysed ex vivo with 

REIMS, where a piece is dissected from the surgical specimen, often cut into sufficiently small 

pieces, placed in an Eppendorf tube for storage and then analysed at a later date. This causes the 
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orientation of the tissue piece to be lost, which is often exacerbated by cutting research samples 

again prior to analysis; increasing the chance of insufficiently analysing the mucosa. This would not 

be a risk during trans-luminal application of REIMS for gastrointestinal disease, as the energy 

device being used would have to be applied to the mucosa by virtue of its position as the inner 

lining of the bowel wall. 20 spectra were excluded from the analysis because they were not 

conducted with cut monopolar diathermy (and instead largely with coagulation diathermy), which, 

as discussed in section 5.3.3.2, causes markedly different spectra from the same tissue piece. This 

limitation is most relevant when considering that in a clinical setting, the clinician will employ the 

energy device most suited to the task and therefore may wish not to use purely cut diathermy. 

Whether it is during a TAMIS where coagulation mode may be preferred, or during an EMR where 

a blended (combination coagulation and cut) are used; it is currently unclear how that change will 

impact the diagnostic accuracy when performing tissue recognition. This dataset could not address 

this question given 99.9% of spectra were collected with cut diathermy, however this will be 

discussed in chapter 7 during in vivo translation of the technology. 171 spectra (11% of the total) 

had an insufficient signal:noise ratio which resulted in their exclusion from modelling. As explored 

in section 5.2.4, noise in spectrometry can have many causes, including biological; which appears 

to be present here given the tissue-specific signal:noise ratios witnessed and its negative impact 

on tumour misclassifications. It has been beyond the scope of this section to define the causes of 

poor signal:noise ratio in any more depth and it is likely that it is a continued risk for REIMS 

spectra collected in the future. However, this risk is likely to be relatively limited. It is reassuring 

that 79.8% of the failures due to signal:noise ratio were in the first half of the analyses and it is 

likely they were impacted by differences in the analytical process such as instrument cleaning 

regime and IPA flow rate. Only 4.1% of spectra analysed since March 2017 have had a signal:noise 

ratio <1000, which is not likely to be a significant hurdle to translation of the technology in vivo. It 

has therefore been shown that despite an initial impression of a high rate of REIMS spectra being 

excluded from modelling due to quality concerns, in fact, it is apparent that these factors are 

much less significant with optimised analytical procedures and an understanding of how the 

technology is used in a clinical setting. It is anticipated that approximately 5% of REIMS spectra will 

have to be excluded in future analyses for not meeting the minimum quality standards, which 

when considering the speed of acquisition and ease of repeated analysis, is not expected to cause 

a significant obstacle to clinical use.  
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6.4.3.2 Using histopathology as a reference standard 
 

Using histopathological validation of tissue pieces analysed by REIMS for determining the tissue 

subtype presented challenges both from the perspective of the research process and when 

considering how the technology could be translated intraoperatively. A pathological section is a 

5µm snapshot of a piece of tissue, which is often small and with distorted architecture after 

analysis with REIMS. This meant that there was a possibility of the validation section not truly 

representing the overall composition of the tissue piece as it may only be presenting a portion of 

it. This is likely to have had a limited impact due to the progressive use of smaller tissue pieces to 

mitigate against this and there was a very high correlation between the raw spectra and validation 

section report (for example, a noisy spectrum would be seen when only muscle is present in the 

tissue sample). It was also not possible to say with high levels of accuracy the exact tissue subtype 

at the site of the diathermy burn when smaller tissue pieces were used and instead, the validation 

would have to be from the section as a whole. This may have contributed to false negatives, 

where REIMS analysed normal tissue immediately adjacent to tumour in the same tissue piece, 

however, without being able to identify every burn, it was not possible to mitigate against this. 

Furthermore, it is recognised that there is inter-observer variability between histopathologists 

when making diagnoses of colorectal tissues. van Putten et al. demonstrated that there was 

disagreement in 4% of polyp sections regarding the presence of adenoma or non-adenoma tissue, 

which increased to 17% when asked to differentiate advanced from non-advanced adenomas319. 

This is exacerbated by applying diathermy to the tissue, where the thermal energy causes 

morphological distortion and risks ‘up-staging’ the section (anecdotal report from collaborating 

histopathologist). These limitations in the validation process make it difficult to fairly assess the 

accuracy of REIMS and optimise it as close to 100% accuracy as possible, particularly with 

comparisons such as LGD vs HGD in adenomas. This can be mitigated by using two pathologists to 

review sections and blinded repeat reviews (which were employed for the majority of the samples 

here), however, the innate limitations of histopathology are still likely to impact the more subtle 

analyses.  
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6.4.3.3 Sampling selection bias 
 

The processes by which colorectal tissues were sampled for research presents a selection bias 

which is evident when observing the histological subtypes of tissues collected. A priority when 

sampling tissue from a resected specimen is not to compromise the clinical diagnosis, which 

means that certain regions of the lesion cannot be dissected for research. For cancers, this is most 

importantly the invasive margins, where formal assessment is required to determine factors such 

as invasion depth or distance to resection margin, however, this is mitigated by the fact that these 

are often large lesions and therefore can be sampled from elsewhere. The issue becomes much 

more significant for this thesis when considering colorectal polyps, as both the size and the shape 

of the lesions impacts the ability to sample tissue for research. It is vitally important in a polyp that 

the mucosa/submucosa border is preserved for clinical diagnosis, as this is the region where an 

invasive cancer is diagnosed. In small polyps (which make up the majority, given that 81% are less 

than 10mm in diameter394) it is very challenging to macroscopically sample polyp mucosa ex vivo 

whilst ensuring that the submucosal layer remains intact, a fact exacerbated by polyp tissue 

naturally contracting following excision. As such, histopathologists are very reluctant to sample 

such small polyps and this was reflected by the mean polyp size in this chapter of 33mm. This is 

worsened in flat sessile lesions, where the distance between the luminal aspect and submucosa 

can be millimetres and consequently very few were sampled in this dataset. Furthermore, a 

colorectal polyp is categorised as having high-grade dysplasia if a single focus is present anywhere 

in the lesion (as per the Vienna criteria191), meaning that histopathologists are keen to cut sections 

through a large majority of a polyp to assess for this. The lack of small polyps sampled for the ex 

vivo REIMS analysis has had a marked impact on the tissue subtypes collected in addition to how 

the findings can be contextualized to a clinical setting. No hyperplastic polyps were included in this 

dataset due to their tendency to be smaller than adenomas (67% are less than 5mm in diameter), 

which is concerning given their high prevalence at 27% of all polyps394. Therefore, it is unclear if 

hyperplastic polyps have a lipidomic signature unique from normal mucosa and whether REIMS 

would be capable of supporting clinical decision making based on tissue recognition from this 

dataset. Similarly, this chapter risk-stratified adenomas by the presence of HGD, however the 

British Society of Gastroenterology also risk-stratify them based on a combination of size and 

subtype; where an adenoma greater than 9mm in diameter is considered an advanced lesion, as is 

a serrated lesion with dysplasia over 9mm12. Due to the relative lack of small adenomas in the 
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sample set (for example, the smallest serrated lesion was 32mm diameter), it is unclear if the 

accuracy of REIMS in recognizing these tissues is preserved when analysing non-advanced lesions.  

 

The selection bias that is evident in this dataset from the sampling methodology is difficult to 

overcome considering the strict and appropriate requirements to protect the clinical diagnostics. It 

was not possible to use excess tissue after the formal histopathological diagnosis was made as by 

that point, it had been formalin-fixed, and xylene had been used to remove the paraffin (and the 

lipid metabolites with it). One could argue that synchronous diminutive polyps in patients who 

have undergone a surgical resection for a CRC could be sampled for research whole (considering 

their formal diagnosis would not impact patient management in the context of having a cancer), 

however the histopathology department collaborating with this work required formal diagnosis of 

all lesions. Another solution is training REIMS spectral databases on analyses of polyps in vivo or 

immediately ex vivo on the surgical specimen. This would not require any dissection of the lesion 

for research, however, histopathological validation of the burns may become difficult and it would 

require an operational instrument prepared at all times in case a specimen was retrieved clinically. 

Future work on REIMS analysis of polyps requires these obstacles to be overcome in order to 

develop a sample set most reflective of clinical practice and consequently, be able to answer the 

pertinent clinical questions to allow improved clinical decision making in real-time.  

 

A further issue with tissue selection in this dataset was that it was cross-sectional. The most 

valuable insights would be sought from longitudinally sampling a single patient as their tissue 

transforms from normal, through the grades of dysplastic adenoma to tumour. This would be able 

to reveal the lipidomic signatures associated with colorectal carcinogenesis whilst removing the 

variation between patients. Unfortunately, a longitudinal sampling methodology is not feasible for 

this work given the clinical requirements to remove lesions as soon as they are identified, and an 

animal model may be the only option.  

 

 

6.4.3.4 Intra-lesion heterogeneity 
 

When a lesion encountered clinically is analysed using REIMS, this analysis will occur at a specific 

location over a volume of 1-2mm3; however, the lipid composition of the cells in that region may 

not be representative of the lesion as a whole. Intra-tumour heterogeneity has been well 
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documented in CRC, referring to spatial variation in cancer cells due to factors such as clonal 

populations, microenvironmental influences and epigenetic plasticity395,396. This variation can have 

a dramatic influence on the clinical phenotype of cancer cells, impacting factors such as sensitivity 

to chemotherapy and rate of metastasis397. In fact, the cancer stem cell theory supports this by 

describing how a small proportion of the total cells with advantageous cellular functions are 

believed to be the cause of proliferation and metastasis398,399. As a consequence, using REIMS 

analysis of a limited tumour region to make predictions based on the lipidomic data relevant only 

to that exact location creates a source of inaccuracy. For example, there may be a single clonal 

population within a tumour which has a predisposition to metastasise to lymph nodes and this 

population may have a unique lipidomic signature that is associated with this. However, it is most 

likely that REIMS does not sample this exact clonal population (due to the large numbers that are 

present) and therefore, is unable to make the association between the unique lipidomic profile 

and the clinically relevant pathological status. The same phenomenon has been described using a 

genomic approach, where the mutational burden in a single biopsy of a tumour cannot be 

considered representative of the whole lesion and therefore tumour evolution cannot be fully 

understood based on this limited information400. MS imaging techniques such as DESI and MALDI 

have the potential to spatially resolve metabolites to explore intra-tumour heterogeneity381,401 

however, these are not suitable tools for intraoperative translation.  

 

A similar issue arises when exploring heterogeneity within polyps, where there can be single 

focusses of HGD or invasive cancer, but the LGD portion has been sampled. This appeared to be an 

issue in this dataset, where the diagnostic accuracy of REIMS dramatically fell when predicting the 

histological subtype for the whole polyp rather than simply at the exact location analysed. Field 

effects refer to biological changes that can extend beyond the physical borders of a lesion and into 

the adjacent ‘normal’ mucosa, having been described in colorectal cancer for genetic 

abnormalities (such as methylation status, copy number variation and loss of heterozygosity) and 

differential gene expression402-404. This phenomenon appears to impact the metabolome of these 

surrounding tissues, where the abundance of both lipid and non-lipid metabolites is impacted by 

field effects as measured using NMR spectroscopy and MALDI405,406. Given this, it may be that 

there is a lipidomic signature for tumour-adjacent normal, which is distinct to truly normal 

mucosa. Similarly, there may be a lipidomic signature for LGD mucosa immediately adjacent to 

HGD, which is distinct from when there is only LGD in the polyp. It is beyond the scope of this 

thesis to explore if this is the case due to the stringent sampling and analytical documentation that 
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would be required to reliably conduct this experiment, in addition to the fact that the immediate 

field of lesions was rarely sampled due to concerns that one may be dissecting the invasive edge.  

 
6.4.3.5 Minimum composition of tumour and adenoma for inclusion of REIMS spectra 
 

For inclusion in the modelling presented here, the validation section of tumour and adenoma 

spectra required at least a 15% composition of the index tissue. As revealed in section 5.2.3.1, this 

threshold increases the diagnostic accuracy of REIMS by reducing the misclassification of tumour 

as normal, however this would not be suitable for clinical use (given the oncological outcomes 

associated with this involved margin). REIMS is still in development and the use of this threshold 

has allowed the lipidomic features of colorectal tissue types to be identified ex vivo, the sensitivity 

of which would have been threatened if spectra were overwhelmingly of a different tissue type to 

that which it is annotated with. However, clinical use for margin detection would require 

reconsideration of this threshold in order to increase the likelihood of detecting involved margins. 

The potential impact of this on in vivo accuracy and how definitions of involved tumour margin are 

relevant to REIMS are explored later in chapter 7.  

 

 

6.4.3.6 Over-fitting of data 
 
The spectral dataset presented in this chapter contained 1013 observations (the spectra) of 4000 

variables (the bins within each spectrum), which therefore raises the possibility that the predictive 

models were over-fit and that they used data-specific information to make classifications160,407. It 

is challenging to evaluate the degree to which models are over-fit, as there is no single way to 

assess this, with LOPO CV, CV plots and Q2 metrics used here. LOPO CV was the principal method 

applied, which would show a drop in diagnostic accuracy if data is over-fit and reassuringly, this 

did not appear to be the case for the differentiation of tumour, adenoma and normal tissue. When 

OPLS-DA models were built and Q2 was calculated (such as in the risk-stratification of CRCs), a 

minimal number of components were used to build the models as a mitigation strategy (most 

commonly 1 orthogonal and 2 X-Y) and the CV scores plots were created. Using additional 

numbers of components would have increased R2 (and the immediate appearance of accuracy), 

however this would not necessarily be accompanied by an increase in Q2 (as shown with the EMVI 

classification, where an additional X-Y component decreased the Q2 from 0.285 to 0.281). I 
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therefore have cautious confidence that the results presented here are not over-fit and that the 

diagnostic accuracies are representative of the ability of REIMS.  

 

The most appropriate method for assessing true ability of REIMS in tissue recognition is to apply it 

to a completely independent dataset, where the predictive model can be fixed in advance and the 

diagnostic accuracy assessed prospectively408. This approach would also help assess the external 

validity of the results. The colorectal tissues included in this chapter were all collected from three 

London hospitals and from a patient cohort where the majority were Caucasian. Analysing an 

external validation dataset would help explore whether the findings presented here are specific or 

somehow associated with the selected population and whether they can be applied across 

geographical regions and ethnicities. It was beyond the scope of this thesis to perform this work; 

however, it is vitally important in the development of the technology.  

 

 

6.4.3.7 The impact of tissue storage and handling 
 

The metabolic processes in cells do not suddenly halt when tissues are resected from a patient 

and in fact, are likely to change due to the shift towards anaerobic metabolism and a reduction in 

ATP availability. As a consequence, the metabolic profile detected by REIMS may markedly change 

with an increased warm ischaemia time. A previous study revealed that the over the first two 

hours following resection, the abundance of a wide range of metabolite types significantly 

changes, however this was largely focused on metabolites with smaller masses (such as lactate, 

glycine, myoinositol and glutamine)409. The study did show that the abundance of PChs was 

unchanged after 90 minutes, implying that the complex (and particularly structural) lipids studied 

in these analyses may be better conserved during ischaemia. It was not possible to explore the 

impact of warm ischaemia time on REIMS spectra given the lack of documentation regarding this 

for the samples collected. It is also difficult to estimate the duration of time between first 

ischaemic insult and freezing, given that during segmental colonic resections, the vascular tree is 

ligated prior to plane dissection (which may require a further hour to be completed). Once the 

specimen has been resected, the journey to collect it, attend the pathology department, sample it 

and then transport the research specimens to the laboratory can often take in the region of 30 

minutes. In future REIMS research, it would be ideal to sample the surgical specimen immediately 

ex vivo and snap freeze it with liquid nitrogen, reducing this potential impact, however this 



 

 205 

requires the presence of a trained pathology technician. It is an important consideration that 

predictive models are being built on these pieces of tissue which have potentially undergone a 

prolonged ischaemic time, with an aim to translate the findings in vivo into living tissues. The 

impact of delayed freezing on complex lipid abundance in metabolomic studies needs to be 

addressed in future work.  

 

 

6.4.3.8 Incomplete coverage of relevant metabolites  
 

The experimental design of this chapter was such that compromises had to be made regarding the 

potential metabolites that were analysed and used for tissue recognition, in order to have a 

system which can be applied to real-time in vivo sampling. This work focusses on the complex 

lipids, where a large proportion are prone to deprotonation and are therefore readily seen in 

negative ion mode, however, this is not the case for lipids such as TGs. TGs show a much lower 

signal in negative ion mode due to their preponderance to form [M+NH4]+ ions410 and therefore 

lipids with these electrochemical properties are likely to be under-sampled. Given the need for 

continuous acquisition when sampling in vivo, one charge mode had to be selected and the 

negative ions were chosen as they generate a higher TIC. The 600-1000m/z threshold was used to 

improve tissue recognition, however it excludes many smaller lipid and non-lipid metabolites 

which are intrinsically related to cellular metabolism, carcinogenesis and signalling; including 

arachidonic acid, Kreb’s cycle products, amino acids and prostaglandins411,412. The ability to gather 

data using other ‘-omics’ approaches such as genomics, transcriptomics and proteomics would 

certainly assist when defining the features of colorectal carcinogenesis104,413-416, however, it is not 

possible to incorporate them into a real-time REIMS workflow. Whilst MS can be used for 

proteomics, the use of energy devices at the point of sampling causes thermal denaturing of 

proteins and therefore they cannot be sampled. It is not possible to estimate the impact of the 

lost biological data by sampling a relatively narrow portion of the spectrum, however many of 

these limitations were an unavoidable consequence of using a clinically translatable REIMS 

technology. Future work should focus on complementary analyses of these other biological 

components to integrate the findings with those of the complex lipids found by REIMS. This should 

also assess the drivers of the metabolic changes being demonstrated, as this thesis has been 

unable to explore how genomic, transcriptomic and proteomic factors are responsible for the 

differences in lipid metabolism.  
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With regards to the complex lipid metabolites in the 600-1000m/z range, it was not possible to 

identify the structure of all metabolites within bins found to differentiate tissue types. Due to the 

lack of a chromatography step, bins in REIMS spectra regularly contain many metabolites with a 

similar or exactly the same m/z, but very different chemical structures and electrochemical 

properties (such as polarity). These mixtures cannot always be determined using techniques such 

as identification of characteristic fragments due to some lipids lacking these (such as PAs) and the 

presence of structural isomers. The metabolites identified did account for 29% of the signal above 

background, which is a significant proportion considering attempts to identify lipids was focused 

only on those that differentiated the models. However, it is likely that there are additional 

patterns in the relationship between lipid metabolite and tissue phenotype that could not be 

described here due to a lack of complete identification. Future work may consider using a 

complementary technique such as LC-MS/MS to better identify the composition of mixtures.  

 

 

6.5 Chapter conclusion 
 

This chapter has generated, curated, analysed and explored a substantial high-quality dataset of 

REIMS analysis of colorectal tissues, constituting by far the largest example of its kind. It has 

demonstrated that there are unique lipid metabolic fingerprints that exist for colorectal tissues, 

which can be used by REIMS to accurately differentiate tumour, adenoma and normal mucosa; in 

addition to risk-stratifying adenomas. This has two principal benefits. First, it is a strength of the 

technique that it has been possible to start to interrogate the biological differences in the lipid 

metabolites between groups of interest, with novel descriptions of how lipid classes and 

saturation status of fatty acid chains in GPLs are associated with colorectal carcinogenesis.  

 

A further benefit is that the spectral reference database and multivariate models constructed as 

part of this chapter can be used as the basis for in vivo tissue characterisation in real-time. I am 

confident that the accomplishments demonstrated here and the stringent methodological 

processes that were used will give the best possible chances of success during the next phase of 

study. Whilst the diagnostic accuracy of REIMS has been demonstrated to be high in a laboratory 

setting, one of the main values of the technology is translating it into clinical practice where the 

logistics of its use and ‘real world’ accuracies can be assessed. Chapter 7 will explore the first-in-
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man use of MS-coupled TAMIS as an exemplar case of where real-time colorectal tissue 

recognition by REIMS has the potential to support clinical decision making during oncologic 

surgery.  
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Chapter 7 – WP3: In vivo application of REIMS during TAMIS 
 

 

7.1 Chapter Rationale, Aims and Objectives 
 

This chapter is the final instalment in a journey from understanding what quality is for REIMS 

spectra and how it can be impacted (chapter 5), how an ex vivo reference database of REIMS 

spectra can be created and appraised to assess factors such as colorectal tissue recognition 

accuracy (chapter 6) and now finally; to explore how the REIMS technology can be translated from 

the laboratory into a clinical space for real-time colorectal tissue recognition in vivo.  

 

In order to assess this clinical translation, an exemplar case study needed to be selected, where 

there was an unmet need for real-time tissue recognition during colorectal oncologic surgery. 

After discussion between the clinical members of the research group, TAMIS for advanced rectal 

polyps and early rectal cancers was selected. The rationale for this is that when local excision is 

technically feasible, oncologic outcome at TAMIS is directly related to resection of the lesion en 

bloc, with no cancer-involved margins417. However, neoplastic disease can be microscopic, such 

that the surgeon is unable to identify it through visual or haptic feedback, leading to a 16% 

positive margin rate418. It is therefore straightforward to appreciate how the ability to 

differentiate between normal, adenoma and tumour tissue in real-time during TAMIS has the 

potential to improve patient outcomes. Furthermore, TAMIS has a rate of intra-peritoneal 

perforation of up to 10%419, with no tools currently able to guide the surgeon in the correct and 

safe plane of dissection.  

 

The aim of this chapter is to determine the feasibility of coupling REIMS to TAMIS instruments in 

vivo during human colorectal surgery. This will be addressed through the following objectives:  

1. To optimise logistical, technical and analytical factors for MS-TAMIS in the operating 

theatre 

2. To appraise the spectra generated during MS-TAMIS 

3. To assess the accuracy of REIMS in differentiating colorectal tumour, adenoma and normal 

tissue during TAMIS dissection 

4. To assess the ability of REIMS in differentiating bowel wall layers 
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7.2 Methods 
 

This chapter is a feasibility study of the in vivo application of REIMS coupled to TAMIS. Full details 

of the methodologies used in this chapter regarding patient recruitment, MS analysis and 

statistical processes can be found in chapter 4; with specific features to this study stated below.  

 

 

7.2.1 Patient recruitment 
 

Between August 2018 and November 2020, all patients with advanced rectal polyps or early rectal 

cancer at St Mary’s or Charing Cross hospitals were reviewed in the multidisciplinary team 

meeting. If they were subsequently scheduled for a TAMIS, the patient was recruited for this 

project. 

 

 

7.2.2 MS analysis and specifications 
 

As described in detail in chapter 4, the specifications of the MS were designed to remain as 

unchanged as possible between the ex vivo components of the work and this in vivo translation. At 

the start of the case, the PTFE aspiration tubing was taped alongside the primary dissection 

instrument in a sterile fashion as shown in figure 7.1. Surgical aerosols were continually aspirated 

throughout the TAMIS, with spectral data collected whenever the monopolar diathermy was 

applied (most commonly at 20-25W and at the discretion of the surgeon). In addition to the usual 

application of diathermy for excision, the surgeon performed diagnostic analyses of the luminal 

component of the lesion for 1s if its diameter was over 20mm.  
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Figure 7.1 – PTFE tubing taped alongside the TAMIS dissection instrument to allow aerosol 
aspiration intraoperatively. 
 

 

7.2.3 Statistical analyses 
 

An LDA model was created using a subset of the reference spectral database in chapter 6 to 

include only tissues that were sampled from the rectum (considering this was the only tissue type 

which could be encountered during TAMIS). This model was uploaded to the AMX Recognition 

software in order to appraise the accuracy of REIMS for tissue recognition in vivo. Due to the 

accuracy not yet being fully assessed, no live tissue feedback data was given to the surgeon during 

the case.  

 

 

7.3 Results 
 

Seven patients were recruited for this study, with five suffering from an early rectal cancer and 

two from advanced adenomas. Six patients successfully underwent MS-TAMIS, representing the 

first-in-man use. The focus of each case evolved throughout the data collection period, with the 

initial phases largely concentrating on optimisation and then later, tissue recognition. The video 

recording for patient six (JLA 635) stopped prematurely due to the storage capacity of the Storz 

system reaching maximum capacity and therefore no tissue recognition analyses could be 

performed. Table 7.1 describes the patient demographics, lesion characteristics, analytical notes 

and focus of data analysis for the seven patients.  

 
 



 

 211 

 
 

Study 
ID Age/Gender Lesion 

Typea 
Lesion 

Size 
Lesion 

Locationb Case Outcome Focus of 
Case 

JLA 
572 63/M T2 N0 

cancer 3cm 10cm R0 resection with no 
recurrence at follow-up Optimisation 

JLA 
575 68/M T1 N0 

cancer 3cm 11cm 

R1 resection (<1mm 
deep margin, cancer at 

lateral margin). 
Subsequent anterior 
resection showed no 

cancer 

Optimisation 

JLA 
581 67/F 

Serrated 
adenoma 
with HGD 

5.1cm 3cm 

LGD portion included in 
lateral margin but no 
polyp recurrence at 1 

year 

Optimisation 

JLA 
594 64/M T2 N0 

cancer 1.2cm 5cm 

R1 resection (0.8mm 
deep margin) with 

subsequent biopsy and 
MRI negative 

Optimisation 

JLA 
623 68/M T2 N0 

cancer 1.5cm 5cm 

R1 resection (<1mm 
deep margin, cancer at 

distal margin). No 
recurrence following 

neoadjuvant 
chemoradiation 

Tissue 
recognition 

JLA 
635 65/F TVA with 

LGD 2.8cm 4cm 
Complete excision with 
no recurrence at follow-

up.  

Nil due to 
video 

recording 
failure 

JLA 
717 76/M T2 N0 

cancer 3.8cm Rectosigmoid 
junction 

TAMIS abandoned due 
to surgical challenges 
with lesion location 

Nil 

 
Table 7.1 – the demographics, lesion characteristics and case outcome for the seven recruited 
patients scheduled to undergo TAMIS.  
aas per TNM v7; bdistance from the anal verge 
 

 

7.3.1 LDA model for rectal tissue recognition 
 

A subset of the reference spectral database for rectal samples was used to power the in vivo tissue 

recognition software containing 345 spectra from 48 patients (114 tumour, 99 adenoma, 132 

normal). Considering that adenoma and tumour tissues are managed the same during TAMIS (they 

require excision), models were built to assess its ability to differentiate diseased (tumour or 

adenoma) from normal rectal mucosa (figure 7.2.A). An LDA model on LOPO-CV demonstrated an 

87.3% accuracy, 84.5% sensitivity, 91.7% specificity, 94.2% PPV and 78.6% NPV for disease (figure 
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7.2.B); lower than the 93.5% accuracy reported for all colorectal analyses in section 6.3.1.2. 

Despite this, this model was used for the in vivo rectal tissue recognition.  

 

 

 
 
Figure 7.2 – OPLS-DA plot with 1 orthogonal and 2 X-Y components, demonstrating an R2X of 0.424 
and Q2 of 0.538 differentiating spectra from rectal normal, adenoma and tumour tissues (A) and a 
confusion matrix of the diagnostic accuracy on LOPO CV from an LDA model (B).  
 

 

7.3.2 Optimising MS-TAMIS 
 

 

7.3.2.1 Signal enhancement 
 

There were many factors identified which had the potential to reduce the signal detected during 

MS-TAMIS, which was considered one of the greatest risks to the successful implementation of the 

technology. These included the need for a high extractor fan speed to increase aerosol transfer 

speeds, variable distance between the analysis site and end of the aspiration tube as the 

instrument may be moving during sampling, use of tubing connectors which reduce the internal 

diameter, short time of diathermy application and long total length of aspiration tube (as 

demonstrated in section 5.3.3.3). Representative spectra were plotted comparing the ex vivo 

analysis of normal mucosa (patient JLA 335 from chapter 6) and in vivo analysis during the second 

MS-TAMIS case (patient JLA 575), which is shown in figure 7.3. In addition, technical metrics for 

the spectra were calculated and presented in table 7.2.  In order to make these comparable, the in 

vivo spectra show the mean intensity from four burns over three scans each; all taken from the 

beginning of the case when the dissection margins are being marked and only normal mucosa is 

being analysed.  



 

 213 

 

 
 
Figure 7.3 – representative spectra over the 150-1000m/z range for the analysis of normal mucosa 
ex vivo (A), in vivo prior to the optimisation of the analytical system (B) and in vivo collection 
following optimisation (C). All spectra have the same y axis scale to allow comparison.  
 
 
 
 

 150-1000m/z 600-1000m/z 

Time Sampled Signal (x107) Signal:noise 
(x103) Signal (x107) Signal:noise 

(x103) 
ex vivo 8.0 33.9 3.6 28.4 

Early in vivo 2.2 6.7 0.79 7.6 
Late in vivo 41 55.7 23 52.2 

 

Table 7.2 – Technical factors for the representative spectra from analysis of normal mucosa ex 
vivo, the second MS-TAMIS case and the penultimate one.  
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It is evident that the initial MS-TAMIS analyses had poor signal compared to ex vivo analysis over 

the whole mass range (73% drop), with a simultaneous 80% fall in signal:noise ratio. Similar 

findings were evident when limiting the mass range to 600-1000m/z, over which the tissue 

recognition functions were due to be applied. Visually appraising the spectra presented (figure 

7.3), where the scales are fixed to aid comparison, there was almost no GPL or TG signal visible.  

 

Once the drop in signal during MS-TAMIS had been recognised, four interventions were made to 

attempt improve it. First, there appeared to be an optimum position for the aspiration tube taped 

onto the TAMIS dissector. Whilst the distal opening needed to be as close to the main electrode as 

possible, the first priority was that it would not obscure the view of the surgeon (as demonstrated 

in figure 7.4.B). However, that resulted in it often being positioned at the 5-6 O’clock location 

which is also where the lesion is placed (for technical reasons); resulting in a tendency for adjacent 

mucosa to occlude the tube’s opening (reducing aerosol sampling) and aspirating contamination 

such as blood (figure 7.4.A). Once this was identified, the tubing was firmly secured to the upper 

and lateral most part of the dissector for the remaining cases, which resolved these issues (figure 

7.4.C).  

 

 
 
Figure 7.4 – still photographs from MS-TAMIS cases showing the impact of tubing position on the 
dissector – with a tubing that is prone to aspirate blood from the dissection (A), obscuring the 
view of the surgeon (B) and optimally positioned (C).  
 

 

It was also identified that a potential source of aerosol limitation was both the length of the 

aspiration tubing and the types of connectors used between tubing segments. The resistance of a 

gas through a tube is inversely proportional to the 4th power of the diameter and proportional to 

the length. For the initial cases, the connectors used to adjoin segments of aspiration tubing were 

placed inside the tube and were dramatically reducing the internal diameter, from 3mm to 
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approximately 1.5mm (figure 7.5). This theoretically increased the aerosol resistance by a factor of 

16 over two short segments. The second intervention was to address this, where connectors were 

used which had an internal diameter of 2.5mm; which should have had a much-reduced impact on 

the aerosol transfer rate (however, this was not directly measured considering the in vivo setting). 

The third intervention was made to the length of the aspiration tubing. The tubing segments come 

in 1.5m length and given the positioning of the MS and patient in the operating theatre, a length 

of at least 3.5m tended to be required. For the first four MS-TAMIS cases, three tubing segments 

were used in their entirety even though this resulted in redundant tubing. Section 5.3.3.3 

demonstrates that whilst using a longer aspiration tube does not appear to impact signal:noise 

ratio, it can impact TIC. To address this, once the patient positioning had been completed in the 

final three MS-TAMIS cases, the minimum feasible tubing length was determined, and the tubing 

cut as a result (with an approximate reduction in length of 50-100cm).  

 

 
 
Figure 7.5 – The internal connector used to adjoin two lengths of PTFE tubing, reducing the 
internal diameter from 3mm to approximately 1.5mm 
 

 

The final intervention was in controlling the speed of the exhaust fan connected to the Venturi 

interface. The RapidVacTM system has five fan speeds and this was routinely placed on the highest 

setting to increase the transfer speed of the aerosol from the point of analysis to the MS. The 

consequence of this is that a smaller proportion of the aerosol enters the perpendicular inlet 

capillary. For the final three MS-TAMIS cases, the fan speed was reduced to medium (the 3rd 

setting) aiming to increase the aerosol volume reaching the MS, with no clear reduction in transfer 

time noted (this was not formally measured).  
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The impact of the four interventions to increase the signal intensity were evident when comparing 

the spectra from before and after the changes were made. Table 7.2 demonstrates that over the 

whole m/z range, the signal increased by a factor of 18.6 and was greater than that seen on 

average ex vivo, with concomitant increase in the signal:noise ratio to 56x103. Similar findings 

were also apparent when focusing only on the lipid region of 600-1000m/z, which is used by the 

chemometric functions for tissue recognition. These differences are reflected in the raw data as 

seen in figure 7.3, where a much greater biological richness appears to have been sampled in the 

post-optimisation spectra. These optimisation steps to increase the signal intensity as described 

over the first MS-TAMIS cases generated data that was deemed sufficient to allow exploratory 

statistical analyses to be conducted, as presented below.  

 

 

7.3.2.2 Avoiding contamination of aspiration tube 
 

The surgical field during TAMIS contains many different potential contaminants, including mucus, 

faecal matter, saline wash and the most prevalent, blood. Droplets of contamination were found 

to regularly enter the aspiration tubing alongside the instrument due to the constant negative 

pressure, which impacted the ability to transfer the surgical aerosol but also risked the integrity of 

the MS. Having droplets of contamination such as blood enter the REIMS source appeared to 

cause spikes in background which interfere with measurement of the biological ions present, 

cause contamination to the internal components such as the StepWave and over time, reduce the 

TOF vacuum.  

 

This issue was combatted using two techniques. First, if a droplet was identified in the tubing, that 

section was quickly replaced, however this did mean that intraoperative data could not be 

collected for those 5-10 seconds. A second approach was to manually kink the aspiration tube 

when the surgeon was not dissecting and there was contamination present, causing a loss of the 

negative pressure at the tube opening and therefore decreasing unwanted aspiration. This was an 

effective technique however did require constant attention from the MS operator and does not 

resolve the issue of contamination being aspirated whilst also collecting biologically relevant 

surgical aerosol. As such these two approaches were used in combination for the final three MS-

TAMIS cases.  
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7.3.3 Tissue recognition during MS-TAMIS 
 

For the 5th MS-TAMIS case, it was possible to co-register the raw mass spectra generated at each 

burn site with the histological diagnosis of the tissue being analysed. REIMS was able to detect the 

rectal wall layer being dissected based on the relative abundance of GPLs and TGs sampled, 

considering that these are of greatest abundance in the mucosa and submucosa respectively 

(figure 7.6). When diathermy was applied to the muscularis layer, there was an almost complete 

absence of the lipid signal in the 600-1000m/z range, with a marked increase in signal background. 

This was such that there was no characteristic spectrum for the muscularis and therefore a 

recognition system could not be created for this wall layer.  

 

 
 
Figure 7.6 – the raw spectra collected in vivo during MS-TAMIS from rectal mucosa, submucosa 
and a mixture of the two. The ratio between the glycerophospholipids (GPLs, blue box) and 
triglycerides (TG, orange box) can be used to differentiate the layers. Reused with permission from 
Mason et al.420  
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The ability of REIMS to differentiate disease (carcinoma or adenoma) from normal rectal mucosa 

was assessed across the 100 discrete burns in the 5th MS-TAMIS case (patient JLA623), using the 

LDA model generated in section 7.3.1. The confusion matrix can be seen in figure 7.7, 

demonstrating an 83.0% accuracy, 95.7% sensitivity, 79.2% specificity, 57.9% PPV and 98.4% NPV 

for disease. The first 3 applications of diathermy were to the luminal component of the lesion, 

with all three being recognised as disease. The low false negative rate was such that REIMS was 

able to detect both the deep and lateral cancer-involved margins, which were not visually 

perceptible to the surgeon. The main source of misclassifications were false positives, where 

normal mucosa was predicted to be disease. These misclassifications were focused on the 

proximal margin where a mixture of mucosa and submucosa were being analysed, with significant 

distance from the lesion.  Considering that these data were not fed back to the surgeon in real-

time, it is not possible to assess how the REIMS predictions would have impacted the surgical 

procedure or whether they could have reduced the R1 resection rate.  

 

 
 
Figure 7.7 – confusion matrix of ability of REIMS to differentiate rectal disease from normal 
mucosa during MS-TAMIS in patient JLA 623.  
 

 

 
7.4 Discussion 
 

This chapter explores the translation of the REIMS technology into the operating theatre, where it 

was coupled with monopolar diathermy for a case series describing first-in-man MS-TAMIS. The 

novel nature of this work was such a large focus was optimisation of the technique to improve 

critical factors such as signal intensity, however; it was also possible to collect data of sufficient 

quality for basic tissue recognition to be performed, showing early promise of REIMS for MS-

TAMIS.  
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7.4.1 Optimisation of REIMS for MS-TAMIS 
 

The optimisation phase of this work was conducted in the operating theatre during in vivo 

sampling, which has many advantages and disadvantages over a laboratory-based process. 

Following the first two cases, it was quickly realised that a significant challenge to the successful 

translation was the ability to collect data with sufficiently high signal and signal:noise ratio; with 

the ex vivo collection protocols requiring some adaptation for translation to the theatre. Achieving 

these spectral parameters is necessary to ensure the biological variation in the tissue is being 

sampled and analysed adequately, reducing the risk of misclassifications when using recognition 

software based on a high-quality spectral database collected ex vivo (as shown in chapter 5). 

Whilst the four interventions designed to increase the signal intensity and signal:noise ratio could 

be considered a success given their dramatic increases; it was not possible to determine the 

impact of each of these individually given the methodological process used. This could have been 

achieved in a laboratory setting, where standardised analyses could be conducted on an animal 

model of rectal disease, however, the scarcity of human TAMIS cases were such that an in vivo 

optimisation process was pragmatically chosen. It is likely that specific interventions had a much 

greater impact on the signal intensity and future laboratory analyses should be conducted to 

validate these findings and assess for negative impacts of these changes. For example, the 

reduction in extractor fan speed at the Venturi is likely to have slowed the aerosol flow rate; 

however, the exact impact on the timing cannot be defined here and it should be confirmed that 

this would not cause sufficient delays to impact the real-time nature of the sampling. Whilst the 

changes described here have been incorporated into the standard operating procedures for future 

analyses, the learning-curve for how to optimise the system during this novel application of the 

technology has not plateaued and is an ongoing process. Use of gas/liquid separators may be 

useful to remove droplets from the aspiration tubing prior to the Venturi interface and will be 

assessed in future cases. The PTFE aspiration tubing itself is prone to inadvertent kinking and can 

be compressed by staff members standing on it. A tubing material which is resistant to these 

would be optimal. I anticipate that there will continue to be refinement to the materials and 

analytical processes used as our understanding deepens.  
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7.4.2 Challenges translating REIMS technology in vivo 
 

It was apparent from the work in this chapter that there are many obstacles to overcome when 

translating a laboratory-grade piece of analytical equipment into the complex and ever-changing 

clinical setting. Some of these difficulties could be overcome with design changes to the MS itself, 

whereas others will be more challenging to address. Successful translation of a diagnostic 

technology requires clinical staff with little training to set-up and control it, which means that 

large portions of the calibration and operation would require automation in future systems 

(including a problem-solving process). Currently, skilled and attentive technicians are required to 

ensure the machine is functioning as expected throughout a clinical case, using delicate and 

cumbersome equipment at the interface such as syringe pumps. There were many occasions 

during this case series where active troubleshooting was required, such as to correct calibration 

failures by excluding low mass peaks, re-starting the electronics due to abnormal signal 

background or to resolve peak splitting by changing the attenuator. If clinical processes were 

transformed around the use of intraoperative REIMS, then a malfunctioning instrument would 

present a concern for the safe and effective delivery of patient care. Furthermore, the MS in its 

current form is large and its fan creates a significant amount of noise. This may be necessary given 

that this research is still in the discovery phase (with largely untargeted analyses), however in the 

future, it may be possible to manufacture small and unobtrusive MS instruments which are 

designed to target specific metabolic features without the need for high sensitivity or mass 

accuracy. This may not even use a TOF mass analyser, as many different MS designs have been 

presented for ‘fieldable’ instruments421. The design of future instruments will be integral to the 

acceptability by staff members, which has been an issue that was studied during the 

implementation of robotic-assisted surgery422. Barriers such as ‘perceived ease of use and 

complexity’ and ‘perceived usefulness’ were identified, which are also likely to apply to the 

translation of MS technologies; however, it was beyond the scope of this thesis to explore this.  

 

 

7.4.3 Clinical impact of MS-TAMIS 
 

A further consideration with the intraoperative translation of REIMS is how it can be used to 

augment clinical decision-making to improve patient outcome. Once data collection had been 

optimised, it was possible to preliminarily assess its ability for real-time tissue recognition, where 
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meaningful data can be generated for both the bowel wall layer and the histological tissue 

subtype. Considering TAMIS has an intraperitoneal perforation rate of up to 10%419 (which would 

most likely require repair with or without a diverting stoma), it would be ideal if a technology 

could give a perforation warning based on the layer of the bowel wall being dissected. This would 

allow the surgeon to inspect closely if perforation was a risk and prophylactically repair it if 

necessary. The muscularis layer would be the best candidate for this warning point as it has the 

most strength of the rectal wall and does not need to be dissected in adenomatous and the 

majority of T1 disease. Unfortunately, this muscle layer does not appear to have the lipid-rich 

phenotype of the mucosa and submucosa and therefore such a recognition system is not currently 

possible. The other clinical application is in margin detection, where adenomatous or cancerous 

tissue is being included in the dissection plane and therefore increases the risk of lesion 

recurrence423,424. MS-TAMIS showed an in vivo accuracy that was only slightly diminished in 

differentiating diseased and non-diseased rectal tissue compared to the ex vivo model and more 

promisingly, a NPV of 98%. The fact that two cancer involved margins were identified is an exciting 

finding because the surgeon was not able to recognise the margins macroscopically and real-time 

feedback at those points would have allowed additional tissue dissection to occur and potentially 

a reduced risk of an R1 resection. Such surgical precision does not exist with any other technique. 

This finding is complicated by the 16% false positive predictions of disease, where if implemented 

with the current accuracy characteristics; the recognition system may cause the surgeon to 

increase the dissection area unnecessarily on frequent occasions. It may be possible that the 

rectal-specific ex vivo spectral database underpinning the recognition software was underpowered 

and collecting more data would improve the in vivo accuracies. This is supported by assessing the 

impact of adding the most recent 10 patients to the model, which increased the accuracy by 5%. 

One of the benefits of using a machine learning approach is that this spectral dataset should only 

continue to improve in accuracy as it is exposed to more data. In addition, creating a margin-

detection device for TAMIS is a challenge when considering what it means to have an R1 resection. 

The broadly accepted definition of an R1 resection is having microscopic tumour within 1mm of 

the cut margin425,426, which means for REIMS to be able to identify this as a positive margin, it 

would need to be able to do this by detecting the tumour field (which is histologically normal). 

This is quite a challenge as the spectral database upon which the recognition software is built has 

not collected data from such specific tissue, as explained in section 6.4.3.4.  
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The accuracy of MS-TAMIS for margin detection will need to be assessed in a much larger patient 

cohort following this proof-of-principle work, with particular focus on how the R1 definition 

impacts accuracy. Ultimately, clinical implementation would require a specific research study to 

demonstrate clinical benefit. An example would be a multicentred randomised controlled trial, 

where in one arm the surgeon is given real-time tissue feedback during MS-TAMIS (at which point 

they can make any clinical decisions they wish) and in the other arm, care is delivered as normal. 

The primary outcome should be the R1 resection rate, with secondary outcomes assessing the 

logistics of MS-TAMIS (including set-up time), staff acceptability and a cost-effectiveness analysis. 

Such an implementation study would be able to account for variability between instruments, 

surgeons and patients. It would also stimulate important discussions regarding how best to deal 

with scenarios such as tissue recognition from a contaminated surface and how exactly to change 

the dissection plane when a positive margin has been potentially identified. Such a study is likely 

to require a large number of participants, with a power calculation suggesting 199 are needed in 

each arm if a = 0.05, b = 0.8 and the intervention is expected to reduce the incidence of R1 

resection from 20% to 10%.  

 

 

7.4.4 Limitations of histological validation 
 

In order to assess the accuracy of REIMS for tissue recognition during MS-TAMIS in vivo, it was 

necessary to co-register the raw spectra with the histological diagnosis of the tissue being 

analysed. This was done using high-definition videos however, the histological validation was only 

possible with reference to the formal report of the orientated specimen. Unfortunately, this could 

not give the granularity of an exact diagnosis at each analytical point. This meant that in the case 

of an involved deep margin, all burns at the margin were annotated as tumour, despite it being 

likely that some were in fact in normal tissue. It is unlikely that this had a marked impact on this 

dataset given the low rates of false negatives for disease, however this is a methodological 

challenge which will be present in subsequent analyses. Similarly, creating a model to differentiate 

adenoma from carcinoma in vivo will suffer from the same issue. One option is to take a distinct 

biopsy for validation whenever REIMS predicts an involved margin however this would interfere 

with the flow of a procedure, add time and the additional biopsies may cause bleeding.  
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7.5 Chapter conclusion 
 

This chapter explores the first-in-man experience of translating the REIMS technology 

intraoperatively for TAMIS of advanced rectal adenomas and early cancers. The focus has largely 

been the optimisation of the methodological processes for this novel technique, which were 

successful in generating high quality and clinically meaningful preliminary data. Despite this, there 

is still much development that is required to combat challenges with the technology, analytical 

processes and in understanding the clinical application. The potential ability of MS-TAMIS for in 

vivo real-time tissue recognition has now been realised, with this proof-of-principle work providing 

a basis upon which the REIMS technology can continue to be developed both within and beyond 

colorectal diseases.  
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Chapter 8 – Thesis conclusions and future work 
 

 

8.1 Conclusions 
 

The hypothesis of this thesis was that colorectal lipid metabolism and cellular lipid composition 

are associated with the phenotype of colorectal adenomas and carcinomas, and that this can be 

leveraged using REIMS for accurate real-time recognition of colorectal tissues. This was addressed 

across three primary data chapters with each laying a foundation of new knowledge upon which 

the subsequent ones were built.  

 

This journey started by developing a better understanding of colorectal REIMS data, by 

systematically defining seven minimum thresholds of spectral quality and exploring the impact of 

technical and environmental factors. This was to provide a framework for determining which 

spectral characteristics were necessary for robust statistical analyses and therefore, to reduce the 

risk of misclassifications. Next, this was used to build a powerful, high-quality, clinically annotated 

and histologically validated spectral reference database from the ex vivo analysis of colorectal 

carcinoma, adenoma and normal tissues. The relative abundance of complex lipid metabolites was 

interrogated using a variety of chemometric functions to explore how this relates to tissue 

phenotype, both in the form of tissue recognition and lesion risk-stratification. The ‘white box’ 

nature of the REIMS technology was such that the metabolic differences could be more deeply 

defined on a molecular level, by describing the structural composition of lipids whose abundance 

differed between groups. Finally, the REIMS technology was deployed into the operating theatre 

using the exemplar case of TAMIS and coupling it to the monopolar diathermy. This first-in-man 

case series focused on the challenges and optimisation that were required when translating such a 

technology into a complex clinical space, whilst exploring the clinical utility that would come from 

real-time tissue recognition.  

 

When considering the findings of the work, my first impression is amazement at the power of the 

metabolomic tissue profiling that can be achieved using REIMS. Unique lipid metabolic fingerprints 

could be defined in a matter of seconds, with a flexibility that allows deployment in any 

environment with a coupled energy device and with no sample preparation. It was certainly a 

challenge as a clinician with no chemistry background to develop an understanding of this 
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technique and in particular the raw data it generates and how this relates to the biochemistry on a 

molecular level. The work in chapter 5 exploring the characteristics of spectral data and how these 

can impact tissue recognition was vital for both my understanding of the topic but should also 

directly inform the future research of both ours and wider groups. My approach to systematically 

defining spectral quality has addressed the need for a method of post-sampling quality control for 

REIMS that is objective and can be automatically applied prospectively, increasing the likelihood of 

statistical analyses having the necessary power to elucidate biological differences of interest. No 

such pipeline has yet to be described in the literature.  

 

Chapter 6 builds a strong case that the hypothesis of this thesis can been confirmed to be true, 

with a large volume of evidence directly linking cellular lipid composition of colorectal tissues with 

clinically relevant phenotypes such as pathological tissue type or grade of dysplasia in adenomas. 

The inability to risk-stratify carcinomas does imply that changes in the relative abundance of lipid 

metabolites are insufficient to define all phenotypes that may be of interest; however, the key 

finding of high accuracy in differentiating colorectal cancer, adenoma and normal tissue will have 

marked impact. Not only is there the possible clinical utility that can come from a real-time tissue 

recognition device (as explored with promise in chapter 7), but this work gives insights into the 

metabolic transitions that accompany colorectal carcinogenesis. I hope that the findings described 

here are a small piece of the puzzle in the efforts to better understand cancer biology.  

 

The work in chapter 7 translating REIMS as a tissue recognition device for use in TAMIS, whilst 

successful as a proof-of-principle; presented a ream of obstacles related to both the REMIS 

technology itself and understanding how it can be effectively applied clinically. Despite this, MS-

TAMIS has shown early promise for in vivo tissue recognition and its role in margin detection, 

which would be a much-needed technological advancement to promote the use of local excision 

techniques for the management of advanced rectal adenomas and early rectal cancers. 

Technologies for precision-surgical local excision of rectal lesions, if successfully translated, would 

promote organ preservation, reduce patient morbidity, improve oncological outcomes, reduce 

long-term functional sequelae of radical surgery and reduce healthcare costs. 
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8.2 Future work 
 

This thesis has been able to address pressing research questions but as is expected in the research 

process, a variety of new questions have arisen that should be tackled in future work. I have 

approached these in the discussion sections of data chapters, however, will provide a summary 

here across four domains – validation of the current findings, identifying the biological drivers of 

metabolic dysregulation, need for technological development and better understanding the 

clinical applications of REIMS.  

 

 

8.2.1 Validation of ex vivo findings 
 

This thesis presents many analyses describing the lipidomic changes associated with colorectal 

carcinogenesis, including down to a molecular level; however, it must be considered that this is a 

single dataset. As such, identified or unidentified biases may have been unintentionally 

incorporated which could invalidate the findings when attempting to apply them more generally. 

An example is selection bias considering this dataset is generated from three academic London 

hospitals, where the geographical location of this patient cohort may render them intrinsically 

different from the wider population based on factors such as environmental exposures 

(particularly diet and lifestyle), gender, ethnicity, co-morbidities or age. A further bias can relate to 

the statistical techniques used to analyse the REIMS spectra, with many decisions required for 

how to pre-process the data and which chemometric functions were to be used in multivariate 

modelling (and with what parameters). Small changes in such decisions can potentially have a 

great impact on the findings of metabolomic datasets. This may have caused type I errors to 

emerge (particularly through over-fitting) or type II errors where true biological effects were not 

detected. Additionally, these decisions may have been subconsciously impacted by a confirmation 

bias, where I made choices based on the differences I expected or wished to see.  

 

These issues can be resolved by externally validating the findings of this thesis. This should most 

likely take the form of a truly independent cohort of colorectal tissue, which has been collected 

and stored in the same fashion as those used in this thesis. The data processing methodology and 

tissue recognition model should be set and then the accuracy of REIMS can be prospectively 

assessed. In advance, efforts should be taken to ensure this patient cohort is representative of the 
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wider population. Whilst research such as this is based in the UK and therefore has a largely 

Caucasian population, the impact of factors such as ethnicity needs to be considered in this 

validation cohort to understand how the technology could be applicable worldwide. It is not 

possible to perform a power calculation to determine how many tissue samples should constitute 

this dataset however if it is to be able to assess factors such as ethnicity, it is likely to be in excess 

of 200.  

 

 

8.2.2 Identifying biological drivers of metabolic dysregulation 
 

The relationship between the unique lipidomic fingerprints and tissue phenotypes described in 

this thesis can only be considered associative, as it is beyond the scope of this work to start to 

identify biological drivers and causative factors. For example, PGs appear to increase in relative 

abundance as colorectal carcinogenesis progresses, however, it is unknown if this required for the 

progression or is simply a consequence of it. Correlating the metabolic dysregulation seen with 

data from complementary -omics technologies (such as genomics, transcriptomics and 

proteomics) would give further insight into the biological changes during carcinogenesis. For 

example, the increased abundance of PGs may be due to chromosomal copy number duplication 

or increased transcription of the phosphatidylglycerophosphatase gene (assessed with DNA and 

RNA sequencing respectively427,428) or changes in enzyme activity through post-translational 

modifications (detected using techniques such as proteomic mass spectrometry and activity 

assays429,430). Quantitative MS techniques should also be used to measure the absolute abundance 

of precursors in the biosynthesis pathway, comparing products and substrates either side of key 

enzymatic steps. Being able to describe how alterations to metabolic processes lead to differences 

in metabolite abundance seen by REIMS is a further validation step, as it demonstrates that 

differences in abundance were not related to analytical errors or confounding factors. Targeted 

extraction of RNA and DNA has already been performed on 108 colorectal tissue samples included 

in this REIMS dataset.  

 

Complementary metabolomic techniques should also be used in these colorectal tissues, having 

the advantage of exploring other areas of cellular biology that were not analysed by REIMS. LC-MS 

for example, can be optimised for the sensitive detection of key molecules involved in cellular 

metabolism such as Krebs cycle components431, saacharides432, peptides433 and amino acids434. 
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The work in this thesis was biased by being semi-targeted to negatively charged metabolites in the 

600-1000m/z range (largely lipids), however analysis of these other components of cellular 

metabolism will reveal further insights. Techniques such as LC-MS/MS can also be used to help 

identify the molecular structure of the lipid metabolites where that was not possible using REIMS 

MS/MS. The microbiome appears to be intrinsically linked to colorectal carcinogenesis and is 

commonly described within a ‘driver passenger model’435. 16S rRNA gene sequencing should be 

performed on the mucosal microbiome of the tissue samples analysed here by REIMS, to correlate 

how the presence of pathobionts such as fusobacterium nucleatum impact the metabolic profile 

of tissues and how this relates to tissue phenotype. We have sequenced DNA from 300 colorectal 

tissue samples and are currently performing exploratory statistical analyses to this end.  

 

 

8.2.3 Technological development 
 

The REIMS source and TOF MS used in this thesis is an adaptation of a piece of laboratory 

analytical equipment for the purposes of in vivo sampling, with many challenges arising as a result 

of this (as described in detail previously). If the future trajectory of REIMS in powering a 

commercial clinical device is to be recognised, it will require a significant amount of technological 

and device design development. The first priority would be to make a device which can collect 

high-quality data more reliably and easily, without the need for extensive troubleshooting from 

experienced technicians. Clinical staff who would operate such an instrument would have no 

technical expertise and little training, such that an instrument would need to be operational 

shortly after being powered on without requiring any complex pattern of inputs from the 

operator. The calibration step would therefore need to be automated from an internally stored 

standard solution, with mass correction performed as necessary. The surgical instrument used 

would need integrated aerosol aspiration solutions which can be easily and reliably connected to 

the device. Overall, use of the instrument would require a low technical ‘failure’ rate to gain the 

confidence of the staff to integrate it into the routine clinical pathways. Cleaning of internal 

components would also need to be automated to avoid contaminants carrying over to future 

patients, as disassembling and reassembling an MS for cleaning would require dedicated training 

and equipment that would be an additional burden on clinical staff. 
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The next priority would be to develop an instrument which is less cumbersome to work with in a 

clinical environment. If the exact metabolic features which require detection could be defined, a 

targeted MS could be developed which is significantly smaller than the Xevo G2S, with a reduction 

in sensitivity and mass accuracy that is acceptable within a targeted analysis. The current system 

generates significant noise which (anecdotally) is tiresome for the theatre staff, with acceptability 

of a new system contingent on factors such as quiet operation. Medical devices are regularly 

moved in and out of the operating room as required and this process is most convenient if they 

are on wheels and can safely be moved and positioned by a single person. These design 

requirements appear somewhat limiting but future work needs to focus on such things if they are 

to be well tolerated by staff.  

 

The technological and design development that has been described above will require a 

multidisciplinary approach, likely to include an MS manufacturer, engineers, scientists and 

members of the clinical team.   

 

 
8.2.4 Clinical applications in colorectal disease 
 

The successful clinical application of REIMS technology requires a significant amount of work to 

identify exact clinical situations where there may be utility, but also how outputs from the 

technology should be presented and utilised. The MS-TAMIS presented in chapter 7 used REIMS 

for tissue recognition, however it does not approach subjects such as how best to inform the 

surgeon of tissue types being analysed; such as through audio or integrated visual cues. 

Furthermore, work needs to be done to understand how the surgeon should change their 

dissection based on REIMS predicting the presence of an involved margin, considering the 

possibility for false positives and whether simply taking a slightly wider dissection path is 

sufficient. Ultimately, for margin detection applications such as TAMIS, research will need to 

demonstrate an oncological advantage by using the technology (such as reduced R1 resection rate 

or local recurrence); with an example RCT study design proposed in section 7.4.3.  

 

As described in chapter 2, the unmet clinical need for real-time colorectal tissue recognition also 

extends to polyps seen endoscopically, where decision-making depends on the pathological 

subtype. As part of an NIHR invention for innovation grant, the group are building on the previous 
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proof-of-principle work demonstrating endoscopic REIMS (coined the iEndoscope)85. A clinical 

study is scheduled to start, where 72 polypectomies will be conducted using the iEndoscope, with 

a primary outcome of detecting the presence of dysplasia in colorectal polyps powered by the 

data collected in this thesis. If this can be determined accurately, it would allow the consideration 

of management strategies such as ‘resect and discard’ or ‘diagnose and leave’. Unfortunately, due 

to the COVID-19 pandemic and the loss of many non-emergency services, this study has been 

delayed but will commence in 2021.  
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Appendix  
 
Appendix 1 – TNM version 7 classification for colorectal cancers  
 
 

 Stage Description 

Primary Tumour 

Tx Primary tumour cannot be assessed 

Tis Tumour in-situ, where it is confined to the mucosa or the 
lamina propria 

T1 Tumour invading into submucosa 

T2 Tumour invading into muscularis propria 

T3 Tumour invades through muscular propria into peri-colorectal 
tissues 

T4a Tumour penetrates to the surface of the visceral peritoneum 

T4b Tumour invades or is adherent to a local structure 

Nodes 

Nx Regional lymph nodes cannot be assessed 

N0 No regional lymph node involvement 

N1a Metastasis in 1 regional lymph node 

N1b Metastasis in 2-3 regional lymph nodes 

N1c 
Tumour deposit in the subserosa, mesentery or non-

peritonealised peri-colorectal tissues without regional nodal 
metastasis 

N2a 4-6 regional lymph nodes containing metastasis 

N2b 7+ regional lymph nodes containing metastasis 

Metastasis 

M0 No evidence of distant metastasis 

M1a Distant metastasis present in one organ or site 

M1b Distant metastasis present in more than one organ or site or 
the peritoneum 

 
This summary table was adapted from the AJCC cancer staging manual v731.  
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Appendix 2 – AJCC and Duke’s staging for colorectal cancers 
 
 

AJCC Stage T N M Dukes Stage 

0 Tis 0 0 - 

I 1 
2 

0 
0 

0 
0 

A 
B 

IIa 3 0 0 B 

IIb 4a 0 0 B 

IIc 4b 0 0 B 

IIIa 1-2 
1 

1 
2a 

0 
0 

C 
C 

IIIb 
3-4a 
2-3 
1-2 

1 
2a 
2b 

0 
0 
0 

C 
C 
C 

IIIc 
4a 

3-4a 
4b 

2a 
2b 
1-2 

0 
0 
0 

C 
C 
C 

IVa Any Any 1a D 

IVb Any Any 1b D 

 
 
This summary table was adapted from AJCC cancer staging manual v7 and the modified Dukes 
criteria31-33. 
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Appendix 3 – search strategy for meta-analysis on real-time optical technologies for 
histological assessment of colorectal polyps 
 

1. Exp Intestine, Large/ 
2. C?ecum.ti,ab 
3. Colon*.ti,ab 
4. Rect*.ti,ab 
5. Colorectal.ti,ab 
6. OR/1-5 
7. Dysplas*.ti,ab 
8. Adenoma*.ti,ab 
9. Polyp*.ti,ab 
10. Adenomatous polyps/ 
11. Pseudopolyp*.ti,ab 
12. Neoplas*.ti,ab 
13. Lesion*.ti,ab 
14. OR/7-13 
15. 6 AND 14 
16. exp Colonic Neoplasms/ 
17. exp Colonic Polyps/ 
18. exp Rectal Neoplasms/ 
19. OR/15-18 
20. exp Colonoscopy/ 
21. Colonoscop*.ti,ab 
22. Endoscop*.ti,ab 
23. Sigmoidoscop*.ti,ab  
24. OR/20-23 
25. (Real adj time).ti,ab 
26. (In adj vivo).ti,ab 
27. Spectroscop*.ti,ab 
28. Endomicroscop*.ti,ab 
29. Chrom?endoscop*.ti,ab 
30. Fl?orosc*.ti,ab 
31. (Narrow adj band).ti,ab 
32. Optical.ti,ab 
33. (i adj scan).ti,ab 
34. (colo?r AND enhancement)/ti,ab 
35. FICE.ti,ab 
36. OR/25-35 
37. Diagnos*.ti,ab 
38. Detect*.ti,ab 
39. Classif*.ti,ab 
40. Histolog*.ti,ab 
41. Assessment.ti,ab 
42. Analysis.ti,ab 
43. Characteri*.ti,ab 
44. OR/37-43 
45. 19 AND 24 AND 36 AND 44 
46. limit 45 to human 
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Appendix 4 – QUADAS-2 scores for digital chromoendoscopy studies 
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Reason for Unclear or High 
Score 

 

Ashktorab 2016 
    

 
   

Unclear endoscopist experience with NBI 
technology prior to study 

Ashktorab 2016 
    

 
   

Unclear endoscopist experience with NBI 
technology prior to study 

Basford 2014 
    

 
   

- 

Belderbos 2017 
    

 
   

Unclear if consecutive patients were 
eligible, limited sampling of rectal 

hyperplastic polyps reduces adenoma 
prevalence 

Buchner 2010 
    

 
   

Unclear if consecutive patients were 
eligible, some lesions known to be 

adenomas prior to index test 

Buchner 2010 
    

 
   

Unclear if consecutive patients were 
eligible, some lesions known to be 

adenomas prior to index test 

Canales-Sevilla 
2010     

 
   

Unclear if consecutive patients were 
eligible for study. Unclear endoscopist 

experience with NBI technology prior to 
study 

Chan 2012 
    

 
   

- 

Chandran 2015 
    

 
   

- 

Dai 2013 
    

 
   

- 

dos Santos 2009 
    

 
   

Unclear if consecutive patients were 
eligible 

dos Santos 2010 
    

 
   

- 

dos Santos 2012 
    

 
   

- 

dos Santos 2017 
    

 
   

- 

dos Santos 2017 
    

 
   

- 

East 2008 
    

 
   

- 
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Hewett 2012 
    

 
   

Unclear if consecutive patients were 

eligible for study 

Hewett 2012 
    

 
   

Unclear if consecutive patients were 

eligible for study 

Hoffman 2010 
    

 
   

- 

Hoffman 2010 
    

 
   

- 

Hong 2012 
    

 
   

- 

Hong 2012 
    

 
   

- 

Ikematsu 2015 
    

 
   

- 

Iwatate 2015 
    

 
   

Unclear if all endoscopists had sufficient 

experience with NBI prior to study 

Iwatate 2015 
    

 
   

Unclear if all endoscopists had sufficient 

experience with NBI prior to study 

Kaltenbach 2015 
    

 
   

- 

Kaltenbach 2015 
    

 
   

- 

Kang 2015 
    

 
   

- 

Kang 2015 
    

 
   

- 

Kim 2011 
    

 
   

- 

Klare 2016 
    

 
   

- 

Kuiper 2011 
    

 
   

Lesions also assessed with AFI, likely 

biasing interpretation of the NBI 

Kuiper 2012 
    

 
   

- 

Kuruvilla 2015 
    

 
   

High incidence of SSAs (17%) 

unrepresentative of routine clinical 

practice 

Ladabaum 2013 
    

 
   

Unclear if consecutive patients were 

eligible for study 

Lee 2011 
    

 
   

- 

Lee 2011 
    

 
   

- 

Liu 2008 
    

 
   

Unclear how patients were selected and 

if consecutive patients were eligible for 

study 
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Longcroft-
Wheaton 2011     

 
   

- 

Longcroft-
Wheaton 2012         

- 

Longcroft-
Wheaton 2012         - 

Machida 2004 
    

 
   

Unclear how patients were selected and 
if consecutive patients were eligible for 

study 

Okamoto 2011 
        

Unclear how patients were selected and 
if consecutive patients were eligible for 

study. High incidence of adenomas (95%) 
not representative of practice 

Paggi 2012 
        

- 

Paggi 2015         - 

Pigo 2013 
        

Unclear if all endoscopists had sufficient 
experience with iSCAN prior to study 

Pohl 2009         
Endoscopists were often inexperienced 

with FICE prior to the study starting 

Pohl 2016         - 

Pohl 2016 
        

- 

Rastogi 2011         
- 

Rath 2015 
    

 
   

Unclear if endoscopists had sufficient 
experience with iSCAN prior to study 

Rees 2017 
        

- 

Ren 2012         
Unclear if endoscopists had sufficient 

experience with NBI prior to study 

Repici 2013 
    

 
   

- 

Rex 2009 
        

- 

Rogart 2008         - 

Rogart 2011 
    

 
   

- 

Rogart 2011 
        

- 

Rotondano 2012      
   

High incidence of adenomas (90%) not 
representative of clinical practice 
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Sakamoto 2012 
    

 
   

Half of the lesions had just been assessed 
by dye chromoendoscopy, likely biasing 
the interpretation of NBI. High incidence 
of adenomas (89%) not representative of 

practice 

Salazar Muente 
2012     

 
   

Unclear if consecutive patients were 
eligible for study 

Sano 2009 
    

 
   

- 

Sano 2015 
    

 
   

Unclear if consecutive patients were 
eligible for study. IC dye was used for 
detection and may have biased NBI 

Schachschal 
2014     

 
   

- 

Seref Koksal 
2014     

 
   

Endoscopists had no experience using 
NBI prior to the study starting 

Shahid 2012 
    

 
   

Unclear how patients selected and if 
consecutive patients were eligible for the 

study 

Singh 2011 
    

 
   

Unclear how patients were selected, 
likely not consecutive. Unlikely sufficient 

endoscopist experience with NBI 

Singh 2013 
    

 
   

Unlikely sufficient endoscopist 
experience with NBI 

Sola-Vera 2015 
        

- 

Szura 2016 
    

 
   

Unclear how patients were selected, 
likely not consecutive. Unlikely sufficient 

endoscopist experience with NBI 

Takeuchi 2014 
    

 
   

- 

Takeuchi 2015 
    

 
   

- 

Takeuchi 2015 
        

- 

Togashi 2009 
    

 
   

Unclear how patients were selected, 
likely not consecutive 

Van den Broek 
2009     

 
   

Unlikely sufficient endoscopist 
experience with NBI prior to study start. 
Some lesions previously assessed with 

AFI, likely biasing interpretation 

Wallace 2014 
        

- 

Wallace 2014 
    

 
   

- 

Yoo 2011 
     

   
Unclear how patients were selected. High 

incidence of adenomas (93%) not 
representative of clinical practice 
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Appendix 5 – QUADAS-2 scores for dye chromoendoscopy studies 

 

 Risk of Bias  Applicability  
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Reason for Unclear or High Score 
 

Apel 2006 
    

 
   

Unclear endoscopist experience with 
chromoendoscopy. Pathologists were not 

blinded to intra-operative prediction 

Averbach 2003 
    

 
   

- 

Axelrad 1996 
    

 
   

- 

Bianco 2006 
    

 
   

Unclear endoscopist experience with 
chromoendoscopy prior to study start 

de Palma 2006 
    

 
   

Unclear how patients were selected, likely not 
consecutive 

dos Santos 2009 
    

 
   

- 

dos Santos 2010 
    

 
   

- 

dos Santos 2012 
    

 
   

- 

Eisen 2002 
    

 
   

Some patients only had sigmoidoscopy, 
changing the prevalence of lesion histological 

subtypes. Unclear endoscopist experience with 
chromoendoscopy 

Fu 2004 
    

 
   

- 

Hurlstone 2004 
    

 
   

Unclear if consecutive patients eligible. Unclear 
if sufficient endoscopist experience with 

chromoendoscopy 

Ince 2007 
    

 
   

Unclear how patients were selected, likely not 
consecutive 

Kato 2006 
    

 
   

Unclear how patients were selected. High 
incidence of adenomas (88%) not 
representative of clinical practice 

Kiesslich 2001 
    

 
   

Unclear endoscopist experience with 
chromoendoscopy prior to study start 

Konishi 2003 
    

 
   

- 

Konishi 2003 
    

 
   

- 

Liu 2003 
    

 
   

Unclear indications for colonoscopy. Unclear 
endoscopist experience with chromoendoscopy 

prior to study start 

Liu 2008 
    

 
   

Unclear how patients were selected, likely not 
consecutive. Lesion chromoendoscopy 

interpretation was biased by just having 
performed FICE. Unclear endoscopist 

experience 

Ljubicic 2001 
    

 
   

Unclear if consecutive patients eligible. Unclear 
if sufficient endoscopist experience with 

chromoendoscopy 
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Appendix 6 – QUADAS-2 scores for fluorescence studies 
 

 
 
 
 
 
 
 

Longcroft-
Wheaton 2011         

Chromoendoscopy interpretation was biased 
by just performing FICE 

Longcroft-
Wheaton 2013         

- 

Longcroft-
Wheaton 2013         

- 

Machida 2004 
        

Unclear if consecutive patients eligible. 
Chromoendoscopy interpretation was biased 

by just performing NBI 

Pohl 2009         
Unclear endoscopist experience with 
chromoendoscopy prior to study start 

Sakamoto 2012         

Chromoendoscopy interpretation was biased 
by just having been analysed by NBI. High 

incidence of adenomas (89%) not 
representative of practice 

Togashi 1999         
Unclear endoscopist experience with 
chromoendoscopy prior to study start 

Togashi 2006         
Unclear endoscopist experience with 
chromoendoscopy prior to study start 

Togashi 2009 
        

Unclear if consecutive patients were eligible. 
Lesion chromoendoscopy interpretation was 

biased by just having performed FICE 

Tung 2001         
- 

Urban 2005         
- 
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Reason for Unclear or High Score 
 

Aihara 2013         
- 

Kuiper 2011         
Lesions also assessed with NBI, likely biasing 

interpretation of the AFI 

van den Broek 
2009         

Lesions also assessed with NBI, likely biasing 
interpretation of the AFI 
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Appendix 7 – QUADAS-2 scores for microscopic imaging studies 
 

 
 
 
 
Appendix 8 – QUADAS-2 scores for computer-aided recognition studies 
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Reason for Unclear or High Score 
 

Kiesslich 2004         
Unclear how patients were selected, likely not 

consecutive. Unlikely sufficient endoscopist 
experience with technology 

Sanduleanu 2010         - 

Shahid 2012         
Unclear how patients were selected, likely not 

consecutive. Unlikely sufficient endoscopist 
experience with technology 

Xie 2011         - 
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Reason for Unclear or High Score 
 

Kominami 2016         
Unclear if consecutive patients were eligible for 

inclusion 

Kuiper 2015         
Unclear endoscopist experience with the 

technology prior to the study start 

Rath 2016         - 
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