
Efficient Sensitivity Analysis of Chaotic
Systems and Applications to Control and

Data Assimilation

Karim Shawki

Department of Aeronautics, Imperial College London

September 2020

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Declaration

I, Karim Shawki, hereby declare that the work presented in this thesis is a result

of my research for the degree of Doctor of Philosophy at Imperial College London.

References to works from other sources have been fully acknowledged.

The copyright of this thesis rests with the author. Unless otherwise indicated, its

contents are licensed under a Creative Commons Attribution-Non Commercial 4.0

International Licence (CC BY-NC). Under this licence, you may copy and redis-

tribute the material in any medium or format. You may also create and distribute

modified versions of the work. This is on the condition that: you credit the author

and do not use it, or any derivative works, for a commercial purpose. When reusing

or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes. Please

seek permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.

Karim Shawki

3

4

Abstract

Sensitivity analysis is indispensable for aeronautical engineering applications that

require optimisation, such as flow control and aircraft design. The adjoint method

is the standard approach for sensitivity analysis, but it cannot be used for chaotic

systems. This is due to the high sensitivity of the system trajectory to input per-

turbations; a characteristic of many turbulent systems. Although the instantaneous

outputs are sensitive to input perturbations, the sensitivities of time-averaged out-

puts are well-defined for uniformly hyperbolic systems, but existing methods to

compute them cannot be used. Recently, a set of alternative approaches based on

the shadowing property of dynamical systems was proposed to compute sensitivities.

These approaches are computationally expensive, however. In this thesis, the Multi-

ple Shooting Shadowing (MSS) [1] approach is used, and the main aim is to develop

computational tools to allow for the implementation of MSS to large systems.

The major contributor to the cost of MSS is the solution of a linear matrix system.

The matrix has a large condition number, and this leads to very slow convergence

rates for existing iterative solvers. A preconditioner was derived to suppress the con-

dition number, thereby accelerating the convergence rate. It was demonstrated that

for the chaotic 1D Kuramoto Sivashinsky equation (KSE), the rate of convergence

was almost independent of the #DOF and the trajectory length. Most importantly,

the developed solution method relies only on matrix-vector products.

The adjoint version of the preconditioned MSS algorithm was then coupled with a

gradient descent method to compute a feedback control matrix for the KSE. The

adopted formulation allowed all matrix elements to be computed simultaneously.

Within a single iteration, a stabilising matrix was computed. Comparisons with

standard linear quadratic theory (LQR) showed remarkable similarities (but also

some differences) in the computed feedback control kernels.

A preconditioned data assimilation algorithm was then derived for state estimation

purposes. The preconditioner was again shown to accelerate the rate of convergence

significantly. Accurate state estimations were computed for the Lorenz system.

5

6

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. George Papadakis, for his contin-

uous support and guidance over the past four years. I have gained a lot of useful

knowledge and experience while working with him. Without his help, this work

would have been impossible to carry out.

I would like to extend my gratitude to Al Alfi Foundation, for providing me with

a PhD scholarship. I am very grateful to Mrs. Nermeen Abou Gazia and Mrs.

Neamat Salem, who always treated me like family.

A special thanks goes to my family and friends in London and Cairo, with whom

I’ve shared unforgettable moments.

Lastly but most importantly, I would like to thank my wonderful parents for their

never-ending love and support. They gave me the motivation, courage and support

to start and finish my PhD. I am forever grateful and in debt for everything they

have done for me.

7

8

Contents

Abstract 5

Acknowledgements 7

1 Introduction 22

1.1 Motivation for the Present Work . 22

1.2 Chaotic Systems . 24

1.3 Sensitivity Analysis of Dynamical Systems 31

1.4 Are Sensitivities Well-defined for Chaotic Systems? 33

1.5 Failure of the Adjoint Method for Chaotic Systems 34

1.6 Previous Research on Chaotic Sensitivity Analysis 36

1.6.1 The Ensemble Adjoint method 37

1.6.2 Computing bounded adjoint variables 37

1.7 Thesis Aims and Objectives . 40

1.8 Thesis Outline . 40

9

2 Shadowing of Dynamical Systems 41

2.1 The Shadowing Lemma . 41

2.2 Least Squares Shadowing . 43

2.2.1 Previous applications of LSS 46

2.3 Non-Intrusive Least Squares Shadowing 47

2.4 Multiple Shooting Shadowing . 49

2.4.1 Tangent MSS . 50

2.4.2 Adjoint MSS . 55

3 Convergence Acceleration of the MSS Algorithm 57

3.1 Introduction . 57

3.2 A Review of Preconditioners . 58

3.3 Preconditioning Based on Partial Singular Value Decomposition . . . 61

3.4 A Simplified Block Diagonal Preconditioner 64

3.5 Numerical Examples . 66

3.5.1 The Lorenz System . 66

3.5.2 The Kuramoto Sivashinsky Equation 71

3.6 Effect of the System Condition on the Accuracy of the Computed

Sensitivity . 76

3.7 Regularisation of the Preconditioned System 80

3.8 Computational Cost . 85

10

3.9 Summary . 88

4 Feedback Control of Chaotic Systems using Shadowing 90

4.1 Introduction . 90

4.2 Feedback Control of Nonlinear Systems 91

4.3 Formulation of the Control Problem 94

4.3.1 Control using Linear Quadratic Regulator (LQR) 94

4.3.2 Control using Adjoint Preconditioned Multiple Shooting Shad-

owing (PMSS) . 96

4.4 Control of the Kuramoto Sivashinsky Equation 99

4.4.1 Comparison of the PMSS and LQR control kernels 102

4.4.2 Response of the controlled system 109

4.5 Algorithm Performance . 112

4.6 Summary . 115

5 State Reconstruction of Chaotic Systems from Limited Measure-

ments 117

5.1 Introduction . 117

5.2 Problem Formulation . 119

5.3 Multiple Shooting Method to Solve the Two-point BVP (5.6) 122

5.3.1 Preconditioning the Schur complement 127

5.4 Application to the Lorenz System . 130

11

5.4.1 Analysis of the effect of preconditioning 132

5.4.2 Effect of varying the relaxation parameters a and ε 135

5.4.3 Estimation of two states . 138

5.5 Summary . 140

6 Conclusions and Future Work 142

6.1 Summary of the Main Contributions 142

6.2 Future Work . 144

Bibliography 146

Appendices 160

A Discretisation of the Kuramoto Sivashinsky Equation (KSE) . 160

B Computation of the matrix-vector product
(
γI + MBD

(q)
(l)S

)
z

and the vector Ag . 162

C Derivation of the optimality system (5.4) 163

D Computation of the matrix-vector product
(
γI + MBD

(q)
(l)S

)
z

and the vector
(
AG̃−1b

δλ
+ b

δu

)
. 165

12

List of Tables

3.1 A table showing dJ(T)/dρ for ρ = 40 (Lorenz system), using different

trajectory lengths. A regularisation value γ = 0.1 was used. 84

3.2 A table showing the cost (total number of Φi and ΦT
i applications per

segment) for the cases shown in Figure (3.17a). The preconditioner

was constructed using q = 2, l = 15 and γ = 0.09. The relative

residual ‖rm‖2/‖r0‖2 ≈ 1× 10−5 for all cases. 86

4.1 Some key PMSS control (Algorithm 3) performance measures. The

algorithm inputs used are T = 50, K(0) = 0 and ε = 1 × 10−2. K is

restricted to −2 ≤ ξ ≤ 2. 113

4.2 Adjoint PMSS solver (Algorithm 4) parameters. N+LE refers to the

number of positive exponents of the trajectory on Step 3 of Algorithm

(3). κ(S) and κ(H) = κ
(
γI + MBD

(q)
(l)S

)
are the condition numbers

of the unconditioned and preconditioned MSS matrices, respectively. . 114

5.1 Summary of the key performance indicators for different values of a.

It was necessary to reduce γ with decreasing a to ensure convergence

of the outer iterations. The GMRES solver used a relative tolerance

tol = 1 × 10−3 (except for a = 1 × 10−5, where tol = 1 × 10−4 was

used). The absolute error was computed on the final (outer) iteration. 137

13

List of Figures

1.1 Three trajectories of the Van der Pol Oscillator (ẏ(1) = y(2), ẏ(2) =

2(1− y(1)2)y(2)− y(1)) in phase space, with different initial conditions

u0 (shown in black dots). This is an example of a stable limit cycle

attractor, for which any u0 approaches the attractor and remains on

it for T →∞. 25

1.2 Stable fixed point attractor for the Lorenz system (with the parameter

values σ = 10, ρ = 8 and β = 8/3). 26

1.3 Time histories of the variable x(t) of the chaotic Lorenz System

(dx/dt = σ(y− x), dy/dt = x(ρ− z)− y, dz/dt = xy− βz), computed

with slightly different initial conditions (u0 and u0 + ε = u0 + 0.001).

The parameter values used are σ = 10, ρ = 28 and β = 8/3. 27

1.4 The strange attractor of the Lorenz system, computed using the stan-

dard parameters σ = 10, ρ = 28 and β = 8/3. 28

1.5 Failure of the adjoint equation (1.21) to compute dz(T)/dρ for the Lorenz

system. Note that r = ρ in the notation of [36]. Reprinted from [36],

with permission from Taylor & Francis. 35

14

1.6 Two different methods to compute the shadow trajectory u′(t). LSS

(Panel a) minimises the distance between u′(t) and uref (t) at all time

instants. Periodic Shadowing (Panel b) enforces u′(0) − uref (0) =

u′(T)− uref (T) (as shown by the red arrows). Panel (b) is reprinted

from [42], with permission from the Journal of Computational Physics. 39

2.1 A reference trajectory evaluated for the Lorenz system at s = ρ = 28

(in blue), and perturbed trajectories evaluated at s = ρ = 28.5 (in

red). The perturbed trajectory in Panel (a) diverges from the refer-

ence trajectory (the two trajectories have the same initial condition).

The shadow trajectory (with a slightly different initial condition) in

Panel (b) shadows the reference trajectory and is computed using the

method described in this chapter. 42

2.2 LSS varies the time steps dτ (Panel b), such that (u′(τ) − uref (t))

remains perpendicular to uref . The variable η(t) is called the ‘time

dilation’ term. 44

2.3 A sketch illustrating the time segmenting approach of MSS. The LSS

tangent (2.4a) and adjoint (2.4b), are propagated forward and back-

ward (respectfully) in time in the P segments, such that the continuity

across segments v(t+i) = v(t−i) is satisfied for i = 1, 2, ..., P − 1. 49

3.1 A distribution of σ(A), σ(Φi) = σ(Ptiφ
ti−1,ti) and σ(φti−1,ti), ordered

from the largest to the smallest values. Obtained for ρ = 80 with

T = 50 and ∆T = 0.5 (P = 100 segments). 68

3.2 A distribution of the largest P values of σ(A) and the largest σ(Φi)

of each segment. Obtained with T = 50. Blue: ρ = 40, red: ρ = 60,

black: ρ = 80. 68

15

3.3 Eigenvalues (ordered from smallest to largest) and convergence resid-

uals for the original system S (blue line) and the preconditioned sys-

tem M(l)S, for different l (number of singular modes). Obtained for

ρ = 80 with T = 50 and ∆T = 0.5 (P = 100 segments). The GMRES

solver used a relative tolerance of 1× 10−5. 69

3.4 Eigenvalues of the original and preconditioned systems for T = 50,

∆T = 2 (P = 25) and ρ = 80. 70

3.5 Convergence history for the original and preconditioned systems using

T = 50 and ∆T = 2 (P = 25). Blue: ρ = 40, red: ρ = 60, black:

ρ = 80. Squares: S, crosses: M(25)S, circles: MBD(1)S. The GMRES

solver used a relative tolerance of 1× 10−5. 71

3.6 Space-time plot of the solution u(x, t) for L = 128 using N = 255

nodes in the x-direction (left: c = 0, right: c = 0.8). The integration

time interval is [−1000, 200]. 72

3.7 Sensitivities of 〈ū〉 and 〈u2〉 to the parameter c. The dashed lines were

digitised from Figure (8) of [45], which were found by differentiating

curve fits for T → ∞. The black dots (d〈ū〉/dc) and the blue dots

(d〈u2〉/dc) were obtained for T = 100 trajectories with random u0,

using preconditioned MSS, for N = 127 and N = 255, respectively. . . 73

3.8 σ(A) (blue line) and the largest 15 σ(Φi) for all segments, ordered

from largest to smallest (red: exact, black: q = 1 iteration, green:

q = 2 iterations). Computed for N = 127, c = 0.8 and T = 100

(P = 10). 74

3.9 Eigenvalues of the original system (blue line), the exact BDP (MBD(15)),

and the inexact BDP (MBD
(1)
(15),MBD

(2)
(15)) using l = 15. 75

16

3.10 Eigenvalues and residuals of the original system S (blue line) and the

BDP system (MBD
(2)
(l)S), for N = 127, T = 100 and c = 0.8. The

preconditioners were constructed for different l, and their residuals

were found with a regularisation value γ = 0.01 (to be introduced in

Section 3.7). 75

3.11 Sensitivities (left vertical axis) computed using equation (3.20) for

different values of l (for the KSE: T = 100, N = 127 and P = 10

segments). The solid lines show σ(A) (right vertical axis). 78

3.12 Spectral coefficients for T = 100 (KSE). 78

3.13 Sensitivity dJ(T)/dρ against ρ for the Lorenz system. The sensitivities

shown in filled dots were computed using equation (3.20) for l = 500

and l = NP = 600 (i.e. using all the singular modes). The finite

difference (FD) data points (open squares) were digitised from Figure

(10) of [42]. 80

3.14 Eigenvalues and residuals of the original system S and the precondi-

tioned system γI + MBD(1)S for different γ. A Lorenz system trajec-

tory length T = 200 with ∆T = 1 was used for ρ = 40. 82

3.15 Sensitivities for the Lorenz system (T = 200, ∆T = 1 and ρ = 40)

for different γ. The value of dJ(∞)/dρ (black-dashed line) was digitised

from Figure (5d) of [22]. 83

3.16 Residuals for S (solid lines) and the BDP system γI + MBD(1)S

(dashed lines), with γ = 0.1. The segment size is ∆T = 1 and ρ = 40

(Lorenz system). Blue: T = 200, red: T = 300, black: T = 500,

green: T = 1000. 84

17

3.17 Residuals of the original system (solid lines), and of the system γI +

MBD
(q)
(l)S, with γ = 0.09, q = 2 and l = 15 (dashed lines). Blue:

T = 100, red: T = 200, black: T = 500. The GMRES solver used a

relative tolerance of 1× 10−5. 85

3.18 The cost (number of applications of Φi and ΦT
i per segment) for dif-

ferent preconditioning modes l. The trajectory was computed for

T = 200 and c = 0.8. The solver and preconditioner used γ = 0.09,

∆T = 10 and q = 1. The Lyapunov exponents (right axis) have been

digitised from Figure (9) of [45]. 88

4.1 Contour plot of a typical solution u(x, t) of (4.15). 100

4.2 Time average and RMS of u(x, t). ũ and ũRMS were obtained for

trajectories with length T = 2000 and averaged over 150 random

initial conditions in [0, 1]. 101

4.3 Colour maps of the absolute values of sensitivities
∣∣dJ(T)/dK

∣∣ in log-

scale for different time-averaging lengths T . They were obtained from

the attractor of the uncontrolled system (i.e. the first iteration of

Algorithm (3) with K(0) = 0). 103

4.4 Colour map of matrix K obtained using PMSS control with T = 800. 104

4.5 Distribution of the feedback matrix weights (Panel a) and kernels

(Panels b,c), obtained by averaging along the diagonals of K and

plotting against ξ = x− xc. 106

4.6 Two-point spatial correlations. 107

4.7 The spatially averaged two-point correlation 〈ρ(ξ)〉 superimposed on

〈diagK〉(ξ)/〈diagK〉(0). 108

18

4.8 Instantaneous kinetic energy J(t) of the actuated system using PMSS

and LQR. The uncontrolled case is shown in black colour and the LQR

in blue. For the PMSS control matrix K, only the elements that fall

inside the indicated range of ξ are used. Decreasing ξmax led to faster

stabilisation for the values considered. 110

4.9 Absolute values of the controlled solution |u(x, t)| in log-scale (with

ξmax = 2). 110

4.10 Time average and RMS of u(x, t). The controller K(1) used the full

matrix, i.e. with −127 ≤ ξ ≤ 127. The statistics were computed by

time-averaging between t = 500 and t = 800(= T). 111

4.11 Comparison of the time-averaged absolute values of the nonlinear

term |u∂u/∂x| using different actuations. 112

4.12 Eigenvalues of the controlled and uncontrolled matrices, Al−K(1) and

Al, respectively, plotted in the complex-plane (K(1) = −a(0)
dJ(T)/dK(0)

for T = 800 and a(0) = 6). Only values with Re(µ) > −4 are shown. 112

4.13 Space-time averaged objective J (T) obtained by running Algorithm

(3) for different T ; it drops with rate ∼ T−1. 114

4.14 GMRES Residuals ‖r(m)‖2 for Step 3 of the Adjoint PMSS solver

(Algorithm 4). The preconditioner parameters used are ∆T = 10, l =

15, q = 1 and γ = 0.1. The residual ‖r(m)‖2 drops by approximately

five orders of magnitude by the final iteration for all T values. 115

19

5.1 An illustration of the multiple shooting method used to update u(j)(t)

and λ(j)(t). The discrete-time updates δui and δλi (shown as dots)

are computed using equations (5.18) and (5.19), respectively. The

solutions δui and δλi are then used as initial conditions for the inte-

gration of (5.6) in ti ≤ t ≤ ti+1 to obtain δu(t) and δλ(t) over the ith

segment. 124

5.2 Time-averaged residual convergence for a trajectory T = 50. The

solver parameters used were ∆T = 0.2, γ = 1× 10−5 and l = 3, while

the relaxation parameters used were a = 1× 10−5 and ε = 1× 10−3. . 131

5.3 Absolute values of the initial and converged (iteration #2) residuals. . 131

5.4 A comparison of the estimated variable x with the true solution xtrue. 132

5.5 Singular values σ(ϕ), plotted for different values of a. There are

P = 250 segments and therefore a total of 250 × 3 = 750 singular

values. 133

5.6 Eigenvalue spectra of the Schur complement S and the preconditioned

Schur complement MBD(l)S. All spectra were obtained for T = 50,

∆T = 0.2, γ = 0 and ε = 1× 10−3. 134

5.7 Effect of varying γ on the GMRES convergence rate, whilst fixing

all other parameters: T = 50, ∆T = 0.2, l = 3, a = 1 × 10−5 and

ε = 1× 10−3. The residuals shown are for the first ‘outer iteration’. . 135

5.8 Effect of varying the relaxation parameter a on the residual conver-

gence for a T = 50 trajectory. The parameters ∆T = 0.2, l = 3, and

ε = 1 × 10−3 were used. The regularisation parameter γ was varied

according to the second column of Table (5.1). 136

20

5.9 Effect of varying a on the estimation absolute error |x − xtrue|. The

errors were computed on the final (converged) outer iteration. 137

5.10 Effect of varying ε on the estimation absolute error |x − xtrue|. The

errors were computed on the final (converged) outer iteration. The

parameters a = 1× 10−3 and γ = 1× 10−3 were used. 138

5.11 Time-averaged residual convergence when estimating the states y and

z over T = 50. The solver parameters used were ∆T = 0.2, γ = 1×

10−7 and l = 3, and the relaxation parameters used were a = 1×10−6

and ε = 1× 10−6. 139

5.12 Comparison of the estimated variables x and y, with the true solutions

xtrue and ytrue, respectively. 139

21

Chapter 1

Introduction

1.1 Motivation for the Present Work

Engineers are often interested in finding the sensitivity (derivative) of a system’s

output to changes in its inputs. For example, in the context of fluid mechanics,

and considering the flow around an airfoil, one may want to know how the lift or

drag varies with small changes in the coordinates of the airfoil geometry. This field

of study is called sensitivity analysis and has numerous useful applications. Some

examples are provided below.

It is possible to compute such sensitivities using finite differences. This approach

requires an integration of the system equations for each perturbed input variable,

and this is straightforward and suitable when the number of input variables is small.

If, however, the number of input variables is large, this approach becomes impractical

because it would require a separate integration for each perturbed variable. In such

cases, the adjoint method is a much more efficient approach. The sensitivities with

respect to multiple input variables can be computed simultaneously with a single

(forward-in-time) integration of the non-linear equations set, and a single (backward-

22

in-time) integration of the linear set of adjoint equations. The computational costs

of integrating the non-linear system and linear adjoint are similar [2, 3], making this

a very attractive approach.

Engineers rely on the adjoint method for design optimisation [2, 4], robust control

under design uncertainties [5, 6] and optimal control [7, 8, 9, 10, 11]. The computed

sensitivities are commonly used to find, iteratively, the set of design or control vari-

ables that minimise a prescribed objective. Other applications of the adjoint method

include data assimilation [12, 13, 14, 15], which is the process of fusing limited and

noisy experimental data with known models that contain some uncertainty (for ex-

ample, the inlet conditions and parameter values), to extract reliable estimations of

the true system behaviour. Some researchers have also used the adjoint method to

guide grid adaption for more efficient solutions to partial differential equations and

for the error correction of system objectives [16, 17]. This allows typically expensive

simulations to be run on coarser grids while using the adjoint to correct the error

in the objective (due to the coarse grid discretisation). This approach may result in

considerable computational cost savings when many simulations are required.

The efficiency of the adjoint method and its numerous applications have made it a

very popular approach. Nevertheless, it has been shown that the adjoint method fails

[18] for non-linear systems characterised as chaotic. In this context, failure refers

to the exponential growth of the adjoint variables during the backward-in-time in-

tegration, making them unsuitable for any application. The instantaneous outputs

of chaotic systems are known to be extremely sensitive to very small changes in

the inputs (either initial conditions or system parameters). However, under certain

conditions (to be discussed in Section 1.4), the sensitivities of time-averaged outputs

of chaotic systems are well-defined. In the context of fluid mechanics, most transi-

tional or turbulent flows are chaotic, for example, bypass transition on flat plates

[10], channel flows [19], flows around cylinders [20] and airfoil vortex shedding at

23

high Reynolds number [21].

Given the importance of the adjoint method, as well as the chaotic nature of tur-

bulent flow systems, finding useful adjoints for chaotic systems is an active field of

research. Least Squares Shadowing (LSS) [22] was recently proposed as an alter-

native to the standard adjoint method. It has been shown to compute accurate

sensitivities of long-time averaged objectives for many chaotic systems. It has also

started to be used for control [23] and error correction [24, 25]. Its computational

cost currently prevents its application to large chaotic systems with many positive

Lyapunov exponents (to be defined in the next section).

The main aim of this thesis is to develop efficient numerical tools to allow for the

large scale implementation of shadowing for computing sensitivities of time-averaged

objectives and to subsequently use the developed algorithm for optimal control and

data assimilation. Some necessary background information is covered in this chapter.

In Section (1.2), chaotic systems are introduced, and the standard adjoint method

for dynamical systems is derived in Section (1.3). The existence of well-defined

sensitivities and the failure of the adjoint method for chaotic systems are discussed

in Sections (1.4) and (1.5), respectively. A literature review of novel sensitivity

analysis methods for chaotic systems is provided in Section (1.6). The thesis aims

and objectives are detailed in Section (1.7) and the thesis outline in Section (1.8).

1.2 Chaotic Systems

In this section, some definitions and concepts for dynamical systems are reviewed,

followed by a description of chaotic systems. The exposition covers only the material

necessary to understand the present and the following chapters. More detailed and

rigorous presentations can be found in [26, 27].

24

Consider a dynamical system that has N states or degrees of freedom u(t) =[
u1(t) u2(t) . . . uN(t)

]T
. It is assumed that the time evolution of u(t) in the

interval [0, T] can be obtained by integrating a set of ordinary differential equations

(ODE)
du
dt

= f(u, s), u(0) = u0 (1.1)

The vector f(u, s) is non-linear, and may have been obtained by the discretisation

of a set of partial differential equations that describe the evolution of the system in

physical space or Fourier space, for example. The system parameter(s) are denoted

by s. Starting at t = 0, the values of u(t) trace a trajectory in phase space, as

shown for example in Figure (1.1) for a system with N = 2. When equation (1.1) is

Figure 1.1: Three trajectories of the Van der Pol Oscillator (ẏ(1) = y(2), ẏ(2) =
2(1− y(1)2)y(2) − y(1)) in phase space, with different initial conditions u0 (shown in
black dots). This is an example of a stable limit cycle attractor, for which any u0

approaches the attractor and remains on it for T →∞.

integrated long enough, for many systems u(t) eventually settles on an attractor ; a

bounded region in phase space. Trajectories settle on a particular attractor if u(0)

is located in the basin of attraction of that attractor. For stable linear systems,

this basin encompasses all possible u(0), whereas non-linear systems generally have

25

smaller basins. The time it takes for u(t) to reach the attractor is called the transient

phase. The simplest attractor is a fixed point ; in this case, the solution reaches a

steady-state, and the trajectory terminates to a point in phase space (see Figure

1.2). Fixed points may be either stable or unstable to perturbations (the point in

Figure 1.2 is stable). Another common attractor is the limit cycle; a closed orbit

corresponding to a periodic trajectory u(t) (see Figure 1.1). Limit cycles may also

be stable or unstable (nearby trajectories may spiral towards or away from them,

respectively).

Figure 1.2: Stable fixed point attractor for the Lorenz system (with the parameter
values σ = 10, ρ = 8 and β = 8/3).

Chaotic systems are known for their high sensitivity to small changes in u(0) and s.

A trajectory with u(0) = u0 + δu0 diverges exponentially from one with u(0) = u0,

even if δu0 is infinitesimally small. This is popularly known as the butterfly effect

(see Figure 1.3). This trajectory divergence can be expressed mathematically as

‖δu(t)‖ ∼ eλmaxt‖δu0‖ (1.2)

where λmax is known as the maximal Lyapunov exponent (λmax > 0 for chaotic

26

Figure 1.3: Time histories of the variable x(t) of the chaotic Lorenz System (dx/dt =
σ(y− x), dy/dt = x(ρ− z)− y, dz/dt = xy− βz), computed with slightly different
initial conditions (u0 and u0 + ε = u0 + 0.001). The parameter values used are
σ = 10, ρ = 28 and β = 8/3.

systems), and ‖ ∗ ‖ denotes a norm to quantify the distance in phase space. A

similar divergence also occurs if the parameter s is perturbed. This divergence is an

inherent feature of chaotic systems, i.e. trajectories always diverge regardless of the

accuracy of the numerical schemes used in integrating (1.1).

The Lyapunov time is defined as

Tlyap =
1

λmax
(1.3)

and is the time taken for an initial perturbation (or error in u(0)) to grow by a

factor of e. For chaotic systems, the instantaneous dynamics are only predictable

up to a time scale of O(Tlyap). It is important to note that a perturbed trajectory

diverges locally in phase space, while globally it follows a different path in the same

confined area (of the attractor). In other words, perturbed trajectories diverge and

approach one another repeatedly. These two properties are necessary for a system

to be characterised as chaotic. The type of attractor associated with chaotic systems

is called a strange attractor (Figure 1.4).

27

Figure 1.4: The strange attractor of the Lorenz system, computed using the standard
parameters σ = 10, ρ = 28 and β = 8/3.

Lyapunov vectors and exponents

A dynamical system with N degrees of freedom has N Lyapunov vectors Ξ =[
ξ1(t) ξ2(t) . . . ξN(t)

]
(also known as covariant Lyapunov vectors), with N cor-

responding Lyapunov exponents Λ =

[
λ1 λ2 . . . λN

]
, where λ1 > λ2 > · · · > λN .

Lyapunov vectors correspond to the directions of growth/decay of an initial pertur-

bation to the system at exponential rates corresponding to the Lyapunov exponents.

Suppose that the initial condition of (1.1) is perturbed by δu0. If at some time t,

ξi(t) is parallel to δu0, the perturbation would shrink exponentially if λi < 0, or

grow exponentially if λi > 0, in the direction of ξi(t).

Stable fixed point attractors have all λi < 0, and any perturbation to the system

decays exponentially towards the fixed point. Limit cycle attractors have λ1 = 0

and λ2, λ3, . . . , λN < 0. The vector corresponding to the zero (neutral) exponent

is tangent to the limit cycle trajectory. Any perturbation parallel to ξ1 is tangent

to the limit cycle, while perturbations parallel to other vectors decay exponentially.

28

Chaotic systems have at least one positive Lyapunov exponent. The number of

positive exponents is denoted by N+LE. Perturbations grow/shrink in directions

and rates corresponding to ξi(t) and λi, respectively, however, the growth rate is

eventually dominated by λ1 = λmax.

To quantify λi, consider the evolution equation for δu(t) = u′(t,u0 + δu0)−u(t,u0)

(the dash ′ refers to a trajectory with a slightly perturbed initial condition), which

can be found by linearising (1.1) around u(t,u0),

d(δu)

dt
= f(u′)− f(u) =

∂f
∂u

∣∣∣∣
u(t)

δu(t) + . . . (1.4)

where ∂f/∂u
∣∣
u(t)

is the Jacobian matrix evaluated along the trajectory with the initial

condition u0. The following equation,

d(δu)

dt
=

∂f
∂u

∣∣∣∣
u(t)

δu(t), δu(0) = δu0 (1.5)

is referred to as the homogeneous tangent equation. This is a linear equation describ-

ing the separation of two trajectories in time with initial perturbation δu(0) = δu0,

assuming that δu0 is small and that δu(t) is within the linear range. From (1.2),

λmax can be written as

λmax = max
δu0

lim
t→∞

1

t
ln
‖δu(t)‖2

‖δu0‖2

(1.6)

The solution to (1.5) is given analytically by,

δu(t) = φt0,tδu0 (1.7)

where φt0,t = φ0,t is the state transition matrix satisfying

dφt0,t

dt
=

(
∂f
∂u

∣∣∣∣
t

)
φt0,t, φt0,t0 = I (1.8)

29

The matrix φt0,t maps any initial condition δu0 at an initial time t0 to the final

time t when the product φt0,tδu0 is taken. Computing φt0,t is however unnecessary,

and time-steppers for (1.5) are used instead to compute the matrix-vector product

φt0,tδu0. By substituting (1.7) into (1.6), one arrives at

λmax = lim
t→∞

1

2t
ln
(
n̂TφTφn̂

)
(1.9)

where n̂ = δu0/‖δu0‖2. By rewriting φ in terms of its singular value decomposition

(SVD), it can be shown [28] that λmax is given by

λmax = lim
t→∞

1

t
ln(σmax(φ)) (1.10)

where σmax(φ) is the largest singular value of φ. The remaining exponents can be

computed similarly through [28]

λi = lim
t→∞

1

t
ln(σi(φ)) (1.11)

If the time limit (t → ∞) in (1.11) is not applied, one can compute the finite-time

exponents

λ
′

i(u0, t) =
1

t
ln(σi(φ)) (1.12)

describing the local growth/shrink rates along a trajectory, which depend on t and

u0. Lyapunov exponents can also be computed using QR decomposition, as shown

in [29]. In practice, algorithms based on SVD and QR decomposition require the

integration of (1.5) over short integration segments, and orthogonalisation of the

initial conditions for each integration segment.

30

1.3 Sensitivity Analysis of Dynamical Systems

In this section, the standard sensitivity analysis approach of dynamical systems is

reviewed. For simplicity, it is initially assumed that the dynamical system (1.1) has

a single parameter, s. Consider a system output (or objective function) denoted by

J(u(t, s), s). The objective function depends explicitly on u(t, s), while the depen-

dence on s can be implicit or explicit (or both). The long-time averaged objective

is written as

J (∞) = lim
T→∞

1

T

∫ T

0

J(u(t, s), s) dt (1.13)

The quantity J (∞) is referred to simply as the objective. When J(u(t, s)) is averaged

over finite T , i.e.,

J (T) =
1

T

∫ T

0

J(u(t, s), s) dt (1.14)

the notation J (T) is used. To find the sensitivity dJ(∞)/ds, the chain rule is applied

to (1.13):
dJ (∞)

ds
= lim

T→∞

1

T

∫ T

0

(
∂J(u, s)
∂u

T

v(t, s) +
∂J(u, s)
∂s

)
dt (1.15)

where the vector v(t, s) = du/ds is the state sensitivity, ∂J(u, s)/∂u is also a vector and

∂J(u, s)/∂s is a scalar. The vector v(t, s) is computed by linearising (1.1) around the

reference trajectory for an infinitesimal perturbation δs,

d(δu)

dt
= f(u + δu, s+ δs)− f(u, s) =

∂f
∂u

∣∣∣∣
u,s
δu(t) +

∂f
∂s

∣∣∣∣
u,s
δs+ . . . (1.16)

Dividing through by δs yields the inhomogeneous tangent equation

dv
dt

=
∂f
∂u

∣∣∣∣
u,s

v +
∂f
∂s

∣∣∣∣
u,s
, v(0) = 0 (1.17)

The initial condition v(0) = 0 indicates that u(0) remains the same for both trajec-

tories. Equation (1.17) is integrated in [0, T] then (1.15) is evaluated to give dJ(∞)/ds.

31

Equations (1.17) and (1.5) differ only in their initial conditions and forcing terms

(equation (1.17) has the forcing term ∂f/∂s, i.e. it is inhomogeneous, while equation

(1.5) is homogeneous).

If the sensitivity of J (∞) to multiple parameters is required, applying (1.17) would

become very expensive, since it would have to be integrated once for each parameter

(each integration with a different forcing term ∂f/∂s). To make the cost independent

of the number of parameters, the adjoint approach is used. For this approach,

equation (1.15) is augmented with (1.17) as constraints,

dJ (∞)

ds
= lim

T→∞

1

T

∫ T

0

(
∂J

∂u

T

v +
∂J

∂s
− λT

(
dv
dt
− ∂f
∂u

v− ∂f
∂s

))
dt (1.18)

where λ(t) is a vector of adjoint variables. Using integration by parts,

∫ T

0

λT v̇ dt = [λTv]T0 −
∫ T

0

λ̇
T
v dt (1.19)

Substituting the right-hand-side of (1.19) into (1.18), and grouping the terms with

v gives

dJ (∞)

ds
= lim

T→∞

1

T

∫ T

0

 ∂f
∂s

T

λ +
∂J

∂s
+ vT

(
dλ

dt
+
∂f
∂u

T

λ +
∂J

∂u

) dt− [vTλ]T0

(1.20)

The term vT (0)λ(0) vanishes, since v(0) = 0. If λ(t) satisfies

dλ

dt
= − ∂f

∂u

T

λ− ∂J

∂u
(1.21)

with terminal condition λ(T) = 0, then the sensitivity to any parameter can be

computed using
dJ (∞)

ds
= lim

T→∞

1

T

∫ T

0

(
∂f
∂s

T

λ +
∂J

∂s

)
dt (1.22)

The benefit of the adjoint approach now becomes clear; equation (1.21) must be

32

integrated only once, therefore the cost becomes independent of the number of the

parameters. Sensitivities computed using (1.15) and (1.22) are identical.

The above analysis is valid for non-chaotic systems, but fails to compute the correct

sensitivities for chaotic systems. It is important first to ask whether or not sensitiv-

ities are well-defined for chaotic systems. This will be the topic of the next section.

A discussion of the sensitivity analysis of chaotic systems will then follow in Section

(1.5).

1.4 Are Sensitivities Well-defined for Chaotic Sys-

tems?

The instantaneous values of the objective function J(u, t) for the two trajectories

u(s) and u(s + δs), evolve completely differently in time for chaotic systems. The

same occurs for two trajectories with slightly different initial conditions u0. This is a

direct result of the ‘butterfly effect’. However, long time-averaged objectives J(s)(∞)

of chaotic systems are often well-defined and vary smoothly with s for almost all u0.

If the system (1.1) is ergodic, then J(s)(∞) is independent of the initial condition

u0. Ergodicity is therefore a necessary condition for dJ(∞)/ds to be well-defined.

The quantity J(s)(∞) is known to be differentiable for uniformly hyperbolic systems

[30]. For such systems, J(s)(∞) varies smoothly with change in s. Uniformly hyper-

bolic systems are characterised by having a tangent space that can be decomposed

into stable and unstable manifolds at any given point on the attractor [31]. This

means that the dynamics at any point on the attractor is either exponentially con-

tracting or expanding. The manifolds always intersect, i.e. the angle between them

is always non-zero. Non-hyperbolic systems (such as the Rössler attractor) have non-

smoothly varying J(s)(∞) with s, meaning that sensitivities are not well-defined (as

33

shown in [32]). In conclusion, for the sensitivity of J(s)(∞) to be well-defined, the

system needs to be ergodic and uniformly hyperbolic. An important property of

hyperbolic systems called the ‘shadowing’ property has been used to derive a family

of methods to compute the sensitivity. More details will be given in Chapter (2).

Systems with hyperbolic attractors are very uncommon. However, Ruelle’s linear

response theorem [33] states that some properties of hyperbolic systems, such as the

differentiability property, may apply to non-hyperbolic attractors as well, such as

quasi-hyperbolic attractors. Quasi-hyperbolic attractors can have some homoclinic

tangencies, meaning that the Lyapunov vectors can become tangent at some points

along the attractor, which means that the system is not strictly hyperbolic. A

common example of a quasi-hyperbolic attractor is the Lorenz system (for a range

of parameter values).

Larger turbulent systems may behave more like hyperbolic systems according to

the chaotic hypothesis of Gallavotti and Cohen [34]. This means that well-defined

sensitivities may exist for many large turbulent systems. Only a few studies have

been carried out to date to confirm this, however. Recently, Ni [35] showed that

sensitivities exist and may be computed using the shadowing method (see Chapter

2) for a 3D flow around a rotating cylinder at Re = 525.

1.5 Failure of the Adjoint Method for Chaotic Sys-

tems

The failure of the standard adjoint method (Section 1.3) is discussed in this section.

Lea et al. [36] demonstrated this failure numerically. They used the adjoint equation

to compute dz(T)/dρ for the Lorenz system. They computed dz(T)/dρ for a range of ρ

values, as shown in Figure (1.5a). The reference values (computed by finite differ-

34

ences) are dz(T)/dρ ≈ 1. For ρ < 24, the correct sensitivities were computed, while

for ρ > 24, dz(T)/dρ was many orders of magnitude larger than expected. At ρ ≈ 24,

the Lorenz attractor transitions from having two stable fixed points (λmax < 0)

to a strange attractor (λmax > 0), explaining the sudden surge in dz(T)/dρ at that

parameter value. In Panel (b), ln
(
|dz(T)/dρ|

)
is shown against time for different ρ

value ranges. The gradients of the lines agreed with the corresponding λmax values,

demonstrating that |dz(T)/dρ| ∝ exp(λmaxt). Similar behaviour can be expected for

other chaotic systems.

(a) Sensitivity |dz(T)/dρ| vs. parameter ρ (b) Logarithm of |dz(T)/dρ| vs. time T

Figure 1.5: Failure of the adjoint equation (1.21) to compute dz(T)/dρ for the Lorenz
system. Note that r = ρ in the notation of [36]. Reprinted from [36], with permission
from Taylor & Francis.

The failure of the adjoint approach for chaotic systems can now be explained. Let’s

assume that dJ(∞)/ds is well-defined, i.e. that the system is ergodic and hyperbolic.

Computing dJ(∞)/ds for general dynamical systems was discussed in Section (1.3). By

linearising (1.1) due to perturbations in s, the sensitivity dJ(∞)/ds may be computed

for one parameter (by integrating the tangent equation (1.17) and evaluating (1.15))

or simultaneously for many parameters (by integrating the adjoint equation (1.21)

once and evaluating (1.22) for each parameter).

As previously mentioned, the above approaches are invalid for chaotic systems.

Equation (1.15) assumes that the two limiting operations (δs → 0 and T → ∞)

35

commute, but this is not valid for chaotic systems [22]. The following inequality

applies:

lim
δs→0

lim
T→∞

1

T

∫ T

0

J(s+ δs)− J(s)

δs
dt 6= lim

T→∞

1

T

∫ T

0

lim
δs→0

J(s+ δs)− J(s)

δs
dt (1.23)

where the right-hand-sides of (1.23) and (1.15) are identical. When T is sufficiently

large and N+LE ≥ 1, the tangent (1.17) variables grow exponentially forward in

time, i.e.,

v(t)− v(0) ∼ eλmaxt (1.24)

while the adjoint (1.21) variables grow exponentially backward in time, i.e.,

λ(t)− λ(T) ∼ eλmax(T−t) (1.25)

As a result, the sensitivities obtained by either evaluating (1.15) or (1.22), also grow

exponentially with T and quickly become meaningless.

1.6 Previous Research on Chaotic Sensitivity Anal-

ysis

This section reviews previous attempts to address the failure of standard sensitivity

analysis for chaotic systems. Unsurprisingly, most attempts have been made by

the ‘climate’ and ‘turbulence’ communities, for which information on sensitivities is

often required. The literature review is split into two parts. The first part reviews

the Ensemble Adjoint method, while the second part reviews methods designed to

replace the ill-conditioned adjoint (1.21) with well-conditioned alternatives.

36

1.6.1 The Ensemble Adjoint method

The backward-in-time exponential growth of λ(t) was discussed in Section (1.5).

The adjoint variables λ(t) grow backward in time at an exponential rate determined

by λmax (starting from some time t = τ). Lea et al. [36] suggested splitting the

trajectory into K segments of length ∆T each. If ∆T is small enough, λ(t) would

be bounded. Each segment is treated separately as a trajectory with an initial con-

dition and a corresponding adjoint equation (with a zero terminal condition). The

sensitivity dJ(∆T)
i/ds for each segment i is computed and averaged over all segments,

to provide an estimate of the long-time averaged sensitivity dJ(∞)/ds. This approach

is known as the Ensemble Adjoint method. It was first applied to the Lorenz system

in [36] and to an ocean circulation model in [18]. Eyink et al. [37] derived an equiva-

lent method which uses Ruelle’s linear response formula. Although ensemble adjoint

methods have been shown in some cases to produce results with ‘reasonable’ accu-

racy, the choice of ∆T is tricky, and cannot be easily estimated in advance. If ∆T is

too ‘small’, sensitivities may become biased (since the averaging time is too short).

If ∆T is too ‘large’, λ(t) may grow boundlessly. Furthermore, the convergence of

sensitivities has been shown in [38] to be extremely slow (K must be intractably

large for convergence). These reasons make the Ensemble Adjoint method difficult

to use in practice.

1.6.2 Computing bounded adjoint variables

Several methods proposed to replace or reformulate the ill-conditioned tangent (1.17)

and adjoint (1.21) equations are discussed below. The general idea is to formulate

well-conditioned tangents/adjoints that remain bounded in time, such that dJ(T)/ds

can be computed accurately.

Thuburn [38] expressed J(s)(∞) in terms of the probability density function (PDF),

37

which is governed by the Fokker-Plank equation. An adjoint equation was derived,

allowing simultaneous computation of sensitivities. However, the requirement to

discretise in phase space and the potential inaccuracy of the sensitivities (due to the

addition of an artificial diffusion term to smooth the solution), make this method

difficult to apply to large systems.

Lasagna [39] replaced the non-linear equation set (1.1) with a time-periodic bound-

ary value problem (BVP), which computes unstable periodic orbits (UPO) with

different periods. As a result, the corresponding tangent variables (obtained by lin-

earising around the UPO) and the adjoint variables, are also periodic and bounded

in time. Sensitivities were computed accurately for two chaotic systems and were

found to be mostly independent of the length of the UPO used. The application of

this method to turbulent systems is challenging, however. This is because comput-

ing UPOs becomes progressively more challenging with increasing Reynolds number

[40].

Another set of methods uses the shadowing property to compute sensitivities. In this

section, the main idea is briefly described. The method will be formally presented

and discussed in the next chapter. The idea is to find a perturbed shadow trajectory

u′(s + δs) that remains close in phase space to a reference trajectory uref (s), both

satisfying the non-linear equation set (1.1). The two trajectories have different initial

conditions, but for an ergodic system, this does not affect the computed objective (or

its sensitivity). Since u′ (the shadow trajectory) does not deviate from uref , it can be

used to compute useful sensitivities. The existence of u′ is guaranteed for hyperbolic

systems according to the shadowing Lemma [41] (to be discussed in Section 2.1) but

has been shown to exist in practice for quasi-hyperbolic systems as well [22]. One

method [22] computes u′(τ, s+ δs) by minimising the distance ‖u′(τ)− uref (t)‖ in

time. This is the Least Squares Shadowing (LSS) [22] approach. An adjoint has

been derived using LSS. Another approach, called Periodic Shadowing [42], derives

38

a time-periodic tangent by enforcing an equal distance between u′ and uref at the

endpoints of the attractor (i.e. u′(0)− uref (0) = u′(T)− uref (T)). The concepts of

LSS and Periodic Shadowing are shown in Figure (1.6).

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T')

dτ

dτ

dt

dt

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

(a) Least Squares Shadowing [22] (b) Periodic Shadowing [42]

Figure 1.6: Two different methods to compute the shadow trajectory u′(t). LSS
(Panel a) minimises the distance between u′(t) and uref (t) at all time instants.
Periodic Shadowing (Panel b) enforces u′(0)− uref (0) = u′(T)− uref (T) (as shown
by the red arrows). Panel (b) is reprinted from [42], with permission from the
Journal of Computational Physics.

Shadowing is arguably the most promising approach for computing the sensitivities

of large chaotic systems. It has already been shown to compute accurate sensitivities

for several turbulent systems (such as vortex shedding behind an airfoil [21] and 3D

flow around a cylinder [20]). This method is however expensive and requires signif-

icant cost reductions in order to make it applicable to large turbulent flow systems

with large N+LE. Both LSS and Periodic Shadowing are BVPs, requiring multiple

shooting type methods for large systems. Such methods for Periodic Shadowing can

be found in [42], and for LSS in [1, 43]. Multiple Shooting Shadowing (MSS) [1]

is memory efficient but requires the solution to a linear matrix system that has a

large condition number, and therefore suffers from slow convergence when iterative

methods are applied. Finding a way to accelerate the convergence of MSS and make

it independent of the trajectory length and the number of states N , could enable

the application of adjoint sensitivity analysis to very large turbulent systems.

39

1.7 Thesis Aims and Objectives

The overall aim of this thesis is to further develop shadowing, to accelerate the com-

putation of sensitivities dJ(∞)/ds for large chaotic systems and to use the developed

algorithm for optimal control and data assimilation. The main objectives are:

1. Design a preconditioner to accelerate the convergence rate of the Multiple

Shooting Shadowing method.

2. Design an optimal feedback controller based on preconditioned MSS and com-

pare the performance with linear quadratic regulator (LQR) control theory.

3. Apply the developed preconditioner to data assimilation for chaotic systems.

1.8 Thesis Outline

The rest of this thesis is structured as follows: Chapter (2) starts with a discussion

and derivation of LSS, followed by a presentation of MSS. The main issues impeding

the use of LSS and MSS for large systems are pointed out. Preconditioning of MSS is

examined in Chapter (3) and a detailed analysis of the convergence and cost savings

is presented for the Lorenz system and the Kuramoto Sivashinsky equation (KSE).

In Chapter (4), an optimal control algorithm based on the improved preconditioned

MSS is proposed. The algorithm is applied to compute a feedback controller for the

KSE, and the feedback kernel and performance is compared to that computed with

the standard linear quadratic regulator (LQR). In Chapter (5), a data assimilation

algorithm is derived and preconditioned similarly as MSS. The algorithm is used

for state reconstruction of the Lorenz system, and its performance and accuracy are

assessed. A summary of the main achievements and suggestions for future work are

presented in Chapter (6).

40

Chapter 2

Shadowing of Dynamical Systems

2.1 The Shadowing Lemma

The exponential divergence of two trajectories with slightly different parameter val-

ues s, as shown in Figure (2.1a), makes the standard sensitivity analysis approach

(Section 1.3) inapplicable. The shadowing lemma (described below) makes it possi-

ble to find a perturbed shadow trajectory u′(τ, s + δs) (see Figure 2.1b) satisfying

equation (1.1), which always stays close in phase space, i.e. shadows the reference

trajectory uref (t, s).

The shadowing lemma [41] guarantees the existence of the shadow trajectory u′

for hyperbolic systems. To understand the concept of shadowing, consider first the

discrete form solution of the non-linear ODE set, which can be written as

ui+1 = g(ui) (2.1)

where i denotes the time-step. For chaotic systems, errors for example in the

time-stepping of (2.1) due to finite machine precision or round-off errors accumu-

late at each time-step, and this leads to the divergence of the exact and com-

41

(a) Divergence of 2 trajectories (b) Shadow trajectory

Figure 2.1: A reference trajectory evaluated for the Lorenz system at s = ρ = 28 (in
blue), and perturbed trajectories evaluated at s = ρ = 28.5 (in red). The perturbed
trajectory in Panel (a) diverges from the reference trajectory (the two trajectories
have the same initial condition). The shadow trajectory (with a slightly different
initial condition) in Panel (b) shadows the reference trajectory and is computed
using the method described in this chapter.

puted trajectories that are initially close in phase space. The approximate tra-

jectory u0,u1, . . . ,uM obtained by time-stepping (2.1) satisfies |ui+1 − g(ui)| < δ

for i = 0, 1, . . . ,M − 1 and is called a δ-pseudotrajectory of the system. The

lemma states that there exists a true trajectory satisfying the equation exactly,

i.e. u′i+1 = g(u′i) for i = 0, 1, . . . ,M − 1 which ε-shadows the δ-pseudotrajectory.

The distance between the trajectories is |u′i − ui| < ε for i = 0, 1, . . . ,M .

While the shadowing lemma guarantees the existence of u′, it does not specify how u′

can be computed. In [31], the Lagrange multiplier method was used to compute u′i by

minimising the distance |u′i−ui| at all time-steps with the constraint u′i+1−g(u′i) = 0.

It must be mentioned that the real and the approximate trajectories do not have

the same initial conditions, neither the time step sizes between i and i+ 1 are equal

for the two trajectories.

The same idea can be employed for sensitivity analysis, i.e. the shadowing lemma

42

guarantees that a perturbed trajectory u′(τ, s + δs) exists that shadows uref (t, s).

This chapter reviews a recently proposed method based on this idea, from which a

well-conditioned tangent and adjoint can be derived, allowing simultaneous compu-

tation of dJ(∞)/ds for many parameters.

2.2 Least Squares Shadowing

Least Squares Shadowing (LSS) was proposed by Wang et al. [22] to compute

dJ(∞)/ds by finding the shadow trajectory u′. LSS makes two assumptions about the

non-linear system. The first is hyperbolicity, which guarantees the existence of u′

as discussed above. In practice, however, this requirement can be relaxed to include

quasi-hyperbolic attractors as well (such as the Lorenz system), as shown in [22].

The second assumption is ergodicity. LSS relaxes the initial condition to find a new

initial condition u′(0) such that u′ always remains close to uref . If the system is

ergodic, this change of initial condition will not affect J(s)(∞) and its sensitivity.

Non-linear LSS [22] formulates and solves the following least squares problem:

Minimise
u′,τ

1

T

∫ T

0

(
‖u′(τ(t), s+ δs)− uref (t, s)‖2

2 + α2

(
dτ

dt
− 1

)2
)
dt

subject to
du′

dτ
= f(u′, s+ δs)

(2.2)

where δs is finite. The first term in the integral represents the distance between

u′(τ, s + δs) and uref (t, s), and the latter is computed from (1.1) beforehand. The

second term is a ‘time-stretching factor’, which is required to keep the deviation

(u′(τ) − uref (t)) perpendicular to the reference trajectory (see Figure (2.2) for an

illustration). The constant α is chosen such that both quantities have similar mag-

nitude, and the optimum value is case dependent.

By taking δs→ 0 and linearising the constraint in (2.2) about uref , the optimisation

43

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T')

dτ

dτ

dt

dt

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

dτ=dt

(a) No time transformation (dτ/dt = 1)

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T)

uref(0)

uref(ti)

uref(T)

u'(0)

u'(τi)

u'(T')

dτ

dτ

dt

dt

shadow trajectory
u'(τ,s+𝛿s)

reference trajectory
uref(t,s)

(b) Time transformation (dτ/dt = 1 + η(t))

Figure 2.2: LSS varies the time steps dτ (Panel b), such that (u′(τ) − uref (t))
remains perpendicular to uref . The variable η(t) is called the ‘time dilation’ term.

problem (2.2) can be written as a linear problem

Minimise
v,η

1

T

∫ T

0

‖v‖2
2 + α2η2 dt

subject to
dv
dt

=
∂f
∂u

v +
∂f
∂s

+ ηf(uref , s)
(2.3)

where v(t) = d(u′ − uref)/ds is the ‘shadowing direction’ and η(t) = d
(
dτ/dt− 1

)
/ds is the

‘time dilation term’. By using calculus of variations, the solution to the minimisation

problem (2.3) must satisfy

dv
dt
− ∂f
∂u

v− ∂f
∂s
− ηf = 0 (2.4a)

dw
dt

+
∂f
∂u

T

w− v = 0 (2.4b)

w(0) = w(T) = 0 (2.4c)

α2η −wT f = 0 (2.4d)

where w(t) is a vector of adjoint variables. The system (2.4) is a two-point BVP.

44

Notice that the adjoint boundary conditions (2.4c) are now applied at both ends

of the time interval. This is because now both v(0) and v(T) are unknown. The

sensitivity is given by evaluating an integral similar to (1.15)

dJ (T)

ds
=

1

T

∫ T

0

(
∂J

∂u

T

v(t) +
∂J

∂s
+ η(t)(J(t)− J (T))

)
dt (2.5)

where the effect of the time dilation term η(t) must be taken into account. In

most LSS literature [22, 44, 45, 46, 21], the system (2.4) is discretised using finite

differences, leading to a Karush-Kuhn-Tucker (KKT) saddle point system

I GT

α2I F T

G F

v

η

w

 =

0

0

b

 (2.6)

where the vectors v =

[
vT0 vT1 . . . vTM

]T
, η =

[
η0 η1 . . . ηM

]T
and w =[

wT
0 wT

1 . . . wT
M

]T
represent the discrete forms of v(t), η(t) and w(t), at equally

spaced time steps m = 0, 1, . . . ,M . The matrix G is upper block bi-diagonal and F

is block diagonal. The Schur complement system of (2.6),

(
GGT +

1

α2
FF T

)
w = b (2.7)

is usually solved instead, because the system matrix is symmetric positive definite.

An adjoint version of (2.6) with the same matrix but different right-hand-side vector

was derived in [22] to compute sensitivities to many parameters simultaneously.

Solving (2.7) is very challenging with increasing N or T . The Schur complement

matrix is size MN ×MN . For large 3D turbulent systems, values of MN � 1010

are not uncommon. This means that reduced-order models (ROM) or matrix-free

methods are required to keep storage requirements acceptable. To keep computa-

45

tional times low, efficient iterative methods to solve (2.7) must be used. The next

section reviews previous attempts to compute sensitivities using LSS and to reduce

its computational costs.

2.2.1 Previous applications of LSS

Previous research on LSS has focused on assessing its ability to compute sensitivities

in rather small (chaotic) turbulent systems, as well as to find efficient ways to solve

the LSS system (2.7). The main findings are summarised below.

The first CFD application of LSS was in homogeneous isotropic turbulence, de-

scribed by the Navier-Stokes equations in wave-number space [44]. The domain

considered was a cube with Reλ = 33.06 (based on a Taylor micro-scale). The sen-

sitivity of the time-averaged cumulative energy spectrum to a given parameter was

found to agree well with finite-difference data.

In [21], LSS was applied to a flow around an airfoil experiencing chaotic vortex

shedding from the suction side. The sensitivity of the time-averaged drag coefficient

to the Mach number was computed. The sensitivities for different Mach numbers

were found to match to within 1% compared to slope data obtained from a curve

fit.

Sensitivities of the time-averaged energy of the Kuramoto Sivashinsky equation (a 4th

order chaotic PDE) to a system coefficient, were computed in [45]. LSS sensitivities

agreed reasonably well with the reference data in the ‘light turbulence regime’,

though a reproducible bias of 8% was reported in this regime. The origin of this

bias and an approach to eliminate it will be discussed in Chapter (3). Sensitivities

computed in the ‘convection dominated regime’ failed to match with the reference

data.

Some different iterative methods were used to solve the aforementioned linear LSS

46

Schur complement system (2.7). Generalised Minimal Residual (GMRES) was used

to solve (2.7) for the airfoil case [21]. For this small, turbulent problem (2,218

nodes and N = 11, 090), convergence and storage requirements were enormous.

For the chaotic simulations, up to 24 GB of storage data was required, and for

some simulations, more than 2 × 105 iterations were needed to reduce the residual

to machine zero. Since each GMRES iteration requires a product of the Schur

complement with a vector, the number of floating-point operations required make

this approach far too expensive.

The solution to (2.7) for the Lorenz system using multigrid-in-time was explored in

[46]. This approach involved restricting (2.7) to coarse grids in time, then reducing

the residual with some relaxation iterations, followed by prolongation of the solution

to finer grids. It was found that a typical ‘v’ cycle (with injection for restriction,

linear interpolation for prolongation and Gauss-Seidel for smoothing) suffered from

slow convergence (104 cycles). The use of higher-order averaging for prolongation

and restriction, as well as the use of Krylov subspace methods for smoothing, ac-

celerated the convergence. The use of cyclic reduction required a single cycle for

convergence, but the large floating point operation count would make it difficult to

scale to larger systems.

The use of LSS for the sensitivity analysis of large systems remains unlikely due to

the high computational costs. The next two sections describe two recently proposed

variants to reduce the computational costs.

2.3 Non-Intrusive Least Squares Shadowing

Non-intrusive Least Squares Shadowing (NILSS), developed by Ni and Wang [43],

reduces the cost of computing the shadowing direction v(t). It replaces (2.3) with

a similar least squares problem having significantly fewer unknowns. The authors

47

consider the following decomposition of the shadowing direction v(t):

v(t) = v∗(t) +W (t)α (2.8)

where v∗(t) satisfies the inhomogeneous tangent equation (1.17) andW (t) is a N×p

matrix. The p columns comprise of solutions w(t) to the homogeneous tangent (1.5)

with random initial conditions, and α is an unknown weighting vector.

Integrating the tangent equation (1.17) gives the time evolution of v∗ = du/ds, i.e. the

effect of perturbing (1.1) by δs under fixed u(0). This solution grows exponentially

at a rate of λmax. The homogeneous tangents w(t) = du/du0 described by equation

(1.5), quantify the time evolution of an initial perturbation to u(0) of (1.1) (under

fixed s) and also grow exponentially. The idea is to find the combination W (t)α

that cancels out the exponential growth of v∗(t), resulting in a bounded and useful

shadowing direction v(t). The following least squares problem finds the vector α

that cancels out the fastest growing p modes:

Minimise
α

1

2

∫ T

0

(
v∗⊥(t) +W⊥(t)α

)T (
v∗⊥(t) +W⊥(t)α

)
dt (2.9)

where ⊥ is an orthogonal projector used to extract the vector component normal

to the reference trajectory. It is necessary that p ≥ N+LE, such that all unstable

modes are cancelled out and a bounded shadowing direction v(t) is found. The

above problem requires partitioning the trajectory into P segments (with segment

length O(1/λmax)). The solution to (2.9) requires the inversion of a Schur complement

system with size Pp × Pp. This matrix is many orders of magnitude smaller than

(2.7) for large systems, because typically P � M and p � N . On the other

hand, the major contributor to the cost of NILSS is the computation of v∗(t) and

especially W (t) (i.e. 1 inhomogeneous tangent (1.17) and p homogeneous tangent

(1.5) equation integrations are needed, respectively).

48

The cost of NILSS scales with N+LE. A value N+LE = 17 was found for a Re = 525

flow around a 3D cylinder [20], while 150 < N+LE < 160 was computed for a channel

flow with Re = 3000 and Reτ = 140 (friction Reynolds number) [19]. Choosing p

is challenging, since one cannot easily guess N+LE beforehand for a given system.

It was suggested in [20] to use trial and error, i.e. to compute an initial number of

homogeneous tangents, and to augment W⊥ progressively with more columns until

all unstable modes have been included.

2.4 Multiple Shooting Shadowing

In another attempt to reduce the cost of LSS, Blonigan and Wang [1] proposed to

minimise v(t) at P + 1 discreet points in time, which define P segments, as shown

in Figure (2.3). The segment size ∆T is constant and is O(1/λmax). This method,

known as Multiple Shooting Shadowing (MSS), reduces the number of unknowns

to P × N � M × N . As will be shown, this method requires only matrix-vector

products to solve the Schur complement matrix system, i.e. no matrix storage is

required.

t0 = 0

v0 = v(t0)

w0 = 0

t1

v1 = v(t1)

w1 = w(t1)

t2

v2 = v(t2)

w2 = w(t2)

tP−1

vP−1 = v(tP−1)

wP−1 = w(tP−1)

tP = T

vP = v(tP)

wP = −vP

...

+-+-+-

1 2 P

Figure 2.3: A sketch illustrating the time segmenting approach of MSS. The LSS tan-
gent (2.4a) and adjoint (2.4b), are propagated forward and backward (respectfully)
in time in the P segments, such that the continuity across segments v(t+i) = v(t−i)
is satisfied for i = 1, 2, ..., P − 1.

49

2.4.1 Tangent MSS

The MSS minimisation problem can be formulated as

Minimise
v(t+i)

∆T

P

P∑
i=0

‖v(t+i)‖2
2 (2.10a)

subject to v(t+i) = v(t−i) (i = 1, 2, ..., P − 1) (2.10b)
dv
dt
− ∂f
∂u

v− ∂f
∂s
− ηf = 0 ti < t < ti+1 (i = 0, 1, ..., P − 1) (2.10c)

f(u(t), s)Tv(t) = 0 ti < t < ti+1 (i = 0, 1, ..., P − 1) (2.10d)

The above form is equivalent to the LSS minimisation problem (2.3) if P =∞ and

α = 0 (for the proof, see Appendix B of [1]). The segment spacing ∆T is assumed

constant. The constraint (2.10b) enforces the continuity of v(t) between the points

(t1, t2, ..., tP−1). The inner product (2.10d) ensures that v(t) remains normal to

f(u(t), s). This constraint arises as a direct result of solving the linear least squares

minimisation problem; this is shown in Appendix A of [44]. The derivation of the

solution to (2.10) is shown below (see [1] for the full details).

The analytical solution to (2.10c) in each segment can be written as

v(t) = φti,tv(ti) +

∫ t

ti

φτ,t
∂f
∂s

dτ +

(∫ t

ti

η(τ) dτ

)
f(u(t), s) ti ≤ t < ti+1 (2.11)

where φτ,t is the state transition matrix that satisfies

dφτ,t

dt
=

(
∂f
∂u

∣∣∣∣
t

)
φτ,t (2.12)

To proceed, the variable η(τ) is eliminated from (2.11). To do so, (2.11) is first

written as

v(t) = v′(t) +

(∫ t

ti

η(τ) dτ

)
f(u(t), s) ti ≤ t < ti+1 (2.13)

50

where

v′(t) = φti,tv(ti) +

∫ t

ti

φτ,t
∂f
∂s

dτ ti ≤ t < ti+1 (2.14)

which is the analytical solution of

dv′

dt
− ∂f
∂u

v′ − ∂f
∂s

= 0 (2.15)

Using (2.10d) and (2.13), an expression for η(τ) can be derived:

∫ t

ti

η(τ) dτ = −f(u(t), s)Tv′(t)
‖f(u(t), s)‖2

2

(2.16)

Therefore, from (2.13) and (2.14), v(t) can be written as

v(t) = Ptv′(t) = v′(t)− f(u(t), s)Tv′(t)
‖f(u(t), s)‖2

2

f(u(t), s) ti ≤ t < ti+1 (2.17)

where Pt is an N ×N projection operator defined by

Pt = I − f(t)f(t)T

f(t)T f(t)
(2.18)

Using the definition of v′(t) (2.14) and Pt (2.18), the solution to v(t) (2.17) is written

as

v(t) = Ptφ
ti,tv(ti) + Pt

∫ t

ti

φτ,t
∂f
∂s

dτ, ti ≤ t < ti+1 (2.19)

Finally, using (2.19), the MSS problem (2.10) is reformulated as follows:

Minimise
vi

1

2

P∑
i=0

‖vi‖2
2 (2.20a)

subject to vi+1 = Φi+1vi + bi+1 (2.20b)

where vi = v(t+i), Φi+1 = Pti+1
φti,ti+1 , and bi+1 = Pti+1

∫ ti+1

ti
(φτ,ti+1)∂f/∂s dτ . Equa-

tion (2.20b) satisfies the original constraints (2.10 b,c,d). The system (2.20) can be

51

written in matrix form as

Minimise
vi

1

2

P∑
i=0

‖vi‖2
2 (2.21a)

subject to Av = b (2.21b)

where

A =

−Φ1 I

−Φ2 I

.

−ΦP I

v =

v0

v1

...

vP

b =

b1

b2

...

bP

(2.22)

The matrix A is size NP ×N(P + 1), while v and b are vectors of length N(P + 1)

and NP , respectively. According to (2.21), a minimum Euclidean norm solution

(2.21a) satisfying (2.21b) is sought. This is a well known least squares problem for

under-determined systems in linear algebra [47]. The solution to (2.21) is found

by introducing a set of discrete adjoint variables w =

[
wT

1 wT
2 . . . wT

P

]T
and

deriving an optimality saddle point system

−I AT

A 0

v

w

 =

0

b

 (2.23)

The matrix in the above equation is symmetric and indefinite. The Schur comple-

ment system of (2.23) is,

Sw =

Φ1ΦT
1 + I −ΦT

2

−Φ2 Φ2ΦT
2 + I −ΦT

3

.

−ΦP ΦPΦT
P + I

w1

w2

...

wP

= b (2.24)

where S = AAT . The matrix S is block tri-diagonal, symmetric and positive definite,

52

with size NP × NP . All eigenvalues of S are real and positive. Once the solution

w is found, equation (2.23) is used to obtain v. Both approaches yield identical

results, however, the structure of S can be better exploited to introduce efficient

preconditioning (see Chapter 3), therefore the focus of this chapter and the next

will be on solving (2.24) rather than (2.23).

Equation (2.24) can be solved iteratively by supplying the matrix-vector (MATVEC)

products Sz(m) at each iterationm (z(m) is an arbitrary vector), to a Krylov subspace

solver, such as Conjugate Gradient (CG) or GMRES. The solver used throughout

this thesis was GMRES (without restart), since it offered the fastest convergence

with only moderate storage requirements. Other memory efficient solvers such as CG

or MINRES should be used if the storage requirements of GMRES become too large.

All MATVEC products can be computed by calling a time-stepper for the tangent

(or adjoint) equations, with the appropriate initial (or terminal) conditions. For

example, the product Φi with an arbitrary vector zi−1, requires forward integration

of the homogeneous form of (2.15),

dv′

dt
− ∂f
∂u

v′ = 0 (2.25)

with the initial condition v′(t+i−1) = zi−1 until t = ti. The projection operation

(2.18) is then applied, yielding Ptiv′(t
−
i) = Φizi−1. Similarly, the product of the

transpose matrix ΦT
i with an arbitrary zi requires integration of the homogeneous

adjoint equation,
dw
dt

+
∂f
∂u

T

w = 0 (2.26)

backward in time with the terminal condition w(t−i) = Ptizi until t = ti−1. The

product is then given by ΦT
i zi = w(t+i−1). The iterative solution to (2.24) dominates

the computational cost of the tangent MSS algorithm. Each iteration requires the

integration of (2.25) and (2.26) across all segments, which can be performed in

parallel.

53

The sensitivity dJ(T)/ds is obtained by integrating

dJ (T)

ds
=

1

T

P−1∑
i=0

∫ ti+1

ti

(
∂J

∂u

T

v′
)
dt+

1

T

P−1∑
i=0

(fi+1)Tv′(ti+1)

‖fi+1‖2
2

(J (T) − Ji+1)

+
∂J (T)

∂s

(2.27)

The full process to compute dJ(T)/ds is summarised in Algorithms (1) and (2).

Algorithm 1: Tangent MSS Solver
1. Integrate du/dt = f(u, s) in [0, T] to find u(t). Compute fi = f(ti).

2. Compute the projections Pti+1
(i = 0, 1, ..., P − 1) using (2.18).

3. Form the vector b (RHS of equation 2.24). This is done by integrating
(2.15) in all segments (1, 2, ..., P) with the initial conditions v′(t+i−1) = 0.

Then form b =
[(
Pt1v′(t

−
1)
)T (

Pt2v′(t
−
2)
)T

...
(
PtPv

′(t−P)
)T]T .

4. Solve the Schur complement system (2.24) using a suitable iterative solver
that accepts MATVEC products. Use Algorithm (2) (see below) to comp-
ute the MATVEC product at each iteration.

5. Compute v from (2.23), then integrate (2.15) in all segments to find v′(t).

6. Find dJ(T)/ds by evaluating (2.27).

Algorithm 2: Schur MATVEC
Compute the MATVEC product Sz = AATz for an arbitrary vector z:

i First compute v = ATz: Integrate (2.26) backward in time in all segments
(i = 1, 2, ..., P) with the terminal conditions w(t−i) = Ptizi. This gives
w(t+i−1) = ΦT

i zi. Form vi−1 = zi−1 −w(t+i−1) (for i = 2, 3, ..., P − 1).
Note that v0 = −w(t+0) and vP = zP .

ii Next compute Sz = Av: Integrate (2.25) forward in time in all segments
with the initial conditions v′(t+i−1) = vi−1 to obtain v′(t−i). Apply the
projection operators to find Ptiv′(t

−
i) = Φivi−1.

Form Sz =
[(
−Pt1v′(t−1) + v1

)T
. . .

(
−PtPv′(t−P) + vP

)T]T .

54

2.4.2 Adjoint MSS

The tangent MSS method (Algorithm 1) is not useful when the sensitivities to

many parameters are required. To derive the adjoint version of MSS that computes

sensitivities to many parameters simultaneously, (2.27) is combined with (2.23) as

follows [1]:

dJ (T)

ds
=

[gT 0

]v

w

+ h+
∂J (T)

∂s

+

[
v̂T ŵT

]
−I AT

A 0

v

w

−
0

b

(2.28)

where the terms in the curved brackets are identical to the right-hand-side of (2.27)

and the last term is the residual of (2.23), constrained with a new set of adjoint

variables, v̂ =

[
v̂T1 v̂T2 . . . v̂TP

]T
and ŵ =

[
ŵT

1 ŵT
2 . . . ŵT

P

]T
. The vector

gT =

[
gT1 gT2 . . . gTP 0

]T
, where

gTi =
1

T

∫ ti

ti−1

(
∂J

∂u

T

φt,ti

)
dt+

1

T
(J (T) − Ji)

fTi φti−1,ti

‖fi‖2
2

(2.29)

and h is a scalar. Equation (2.28) is rearranged (see Appendix D in [1] for the full

details) to arrive at the new adjoint system,

−I AT

A 0

 v̂

ŵ

 =

−g

0

 (2.30)

which has the Schur complement system,

Sŵ = −Ag (2.31)

where S = AAT is identical to the tangent MSS Schur complement matrix (2.24).

Within each time segment (i = 1, 2, . . . , P), the continuous time adjoint variables

55

ŵ(t) =

[
ŵ1(t) ŵ2(t) . . . ŵN(t)

]T
must satisfy

dŵ
dt

= − ∂f
∂u

T

ŵ− 1

T

∂J

∂u
ti−1 ≤ t < ti (2.32)

which is integrated backward in time in all segments with the terminal conditions,

ŵ(ti) = Ptiŵi +
1

T

J (T) − Ji
fTi fi

fi (2.33)

where ŵi is obtained from the solution to (2.31). Finally, using ŵ(t), the sensitivity

of J (T) to any parameter can be found by evaluating the integral

dJ (T)

ds
=

 P∑
i=1

∫ ti

ti−1

∂f
∂s

T

ŵ(t) dt

+
1

T

∫ T

0

∂J

∂s
dt (2.34)

Similar to the tangent MSS method, the solution to the adjoint Schur complement

system (2.31) dominates the computational cost of the adjoint method. The Schur

complement matrices S for both systems are identical; hence the cost of solving

(2.24) or (2.31) is similar. However, as will be shown in Chapter (3), solving (2.24)

is computationally expensive even for low dimensional turbulent systems. The aim

of next chapter is to significantly reduce the computational cost by introducing

efficient preconditioning.

56

Chapter 3

Convergence Acceleration of the

MSS Algorithm1

3.1 Introduction

The convergence rate of iterative Krylov subspace solvers for symmetric, positive

definite matrices like S (defined in equation 2.24) depends on the distribution of the

matrix eigenvalues [49]. For such systems, the eigenvalues are all positive and real.

If all of them are tightly clustered around a few points away from the origin, then

fast convergence would be expected. On the other hand, widely spread eigenvalues

without tight clustering can lead to slow convergence. The objective of a precondi-

tioner is to reduce the spread of the eigenvalues, i.e. to reduce the condition number,

κ(S) = µmax(S)/µmin(S), where µmax(S) and µmin(S) are the maximum and minimum

eigenvalues of S, respectively.

The matrix S has large κ, making convergence slow, even for low dimensional sys-

1Results from this chapter have appeared in [48]: K. Shawki and G. Papadakis. A precon-
ditioned Multiple Shooting Shadowing algorithm for the sensitivity analysis of chaotic systems.
Journal of Computational Physics, 398, 2019. https://doi.org/10.1016/j.jcp.2019.108861

57

tems. Small eigenvalues (0 < µ(S) � 1) are present, owing to the lack of strict

uniform hyperbolicity [31], while large eigenvalues µ(S) � 1 are due to the expo-

nential growth of v(t) within a segment. To allow MSS to be applied efficiently

to high dimensional systems, a preconditioner is proposed in this chapter that can

accelerate the convergence rate by many orders of magnitude. Since the tangent

and adjoint MSS systems (equations (2.24) and (2.31) respectively) have identical

matrices S, their convergence rates with linear solvers are very similar, and the same

preconditioner may be applied to either system. For the numerical demonstrations

that follow, the preconditioner derived in this chapter is applied to the tangent

system (2.24).

This chapter is structured as follows: Section (3.2) provides a literature review of

preconditioners relevant to the KKT and Schur complement matrices. In Section

(3.3), a preconditioner based on partial singular value decomposition is derived. A

simplified version is proposed in Section (3.4), and both preconditioners are applied

to the Lorenz system and the Kuramoto Sivashinsky equation in Section (3.5). In

Section (3.6), an important finding on the effect of the smallest eigenvalues of S

on the accuracy of the computed sensitivities is presented. Regularisation of the

preconditioned system is considered in Section (3.7), while the computational costs

of the iterative system solutions (with and without preconditioning) are compared

in Section (3.8).

3.2 A Review of Preconditioners

An extensive survey of preconditioners for saddle point problems, such as the tangent

or adjoint KKT systems (equations (2.23) and (2.30) respectively), is available in

[50]. Preconditioners can be applied to the 2 × 2 block systems (equation 2.23 or

2.30) or directly to the Schur complement systems (equation 2.24 or 2.31). It is

58

important to note that in either case, an easily invertible approximation of S is

required. For the present case, there is an additional restriction, namely that the

matrix S is not explicitly known, only its product with a vector can be computed.

The preconditioner should also be matrix-free and must be computed using matrix-

vector products (computing and storing S is out of the question for long trajectories

and large N).

Efficient approximations of S can be made if one takes into account the structure

of the problem. For example, in the finite element solution of the incompressible

Navier-Stokes equations, where pressure plays the role of the Lagrange multiplier

enforcing the incompressibility condition, the Schur complement can be interpreted

as a discretisation of a second-order diffusion operator. This is not surprising, be-

cause pressure is governed by a Poisson equation. For this operator, the action of

S−1 can be efficiently approximated by a multigrid iteration (more details can be

found in [51, 52]). For the present case, a second-order partial differential equation

for the adjoint variable w(t) was derived in [44] from the system (2.4). However,

this equation is too complex to solve, and it is not evident how it can be simplified

in order to aid the construction of a preconditioner.

Recently, McDonald et al. [53] proposed a block circulant preconditioner for the

‘all-at-once’ evolution of a linear system of ODEs with constant coefficients. Here

‘all-at-once’ means that the space/time problem is written as a monolithic linear

system. This problem is very similar to the present case. The authors exploit

the block Toeplitz structure of the system to develop an efficient preconditioner

that results in the number of Krylov subspace iterations being independent of the

number of time-steps. Unfortunately, this approach is also unsuitable for the current

problem. The reason is that the block Toeplitz structure of the matrix in [53] is a

direct consequence of the fact that the coefficients of the ODE are constant. For the

current problem, the blocks Φi of the matrix A in equation (2.22) depend on time

59

t, so this approach cannot be applied.

In the course of this work, several preconditioners which have been proposed in the

literature for the solution of general saddle point systems were investigated. The

preconditioners were applied using matrix-vector products only, but did not exploit

the properties of the underlying physical problem. For example, Cao et al. [54]

proposed a splitting of the block matrix (2.23) into two matrices, one of which is

used as a left preconditioner. The splitting contains an adjustable parameter, and

theoretical analysis shows that the largest eigenvalue of the preconditioned system

is one (independent of the value of the adjustable parameter), provided that the

preconditioner is applied exactly. In practice, however, this cannot be achieved, and

the preconditioner had to be applied approximately. Although the method relies on

matrix-vector products only, it did not reduce the overall cost. The preconditioner

of Golub et al. [55] guarantees that the eigenvalues remain bounded within two

intervals, [−1, (1−
√

5)/2] and [1, (1 +
√

5)/2] when applied exactly. This tight clustering

ensures fast convergence but also needs to be approximated. Unfortunately, this

approach did not reduce the overall cost as well. Standard preconditioners for general

matrices, such as incomplete LU decomposition [49], are also not suitable and they

additionally require storage of the matrix.

A new preconditioner that can be computed using matrix-vector products only, has

moderate storage requirements, and that exploits the properties of the matrix A

(equation 2.22), is therefore required. The central idea is to identify the fastest

growing (singular) modes of the matrix A and annihilate them. These modes are

partially responsible for the large condition number κ(S) (the other contributor to

the large κ is described in Section (3.7) and is dealt with differently), and must be

annihilated for fast convergence. In this way, it is expected that it would be easier to

minimise the norm (2.21a) while preserving the continuity of v(t) across segments.

This can be achieved using partial singular value decomposition.

60

3.3 Preconditioning Based on Partial Singular Value

Decomposition

Recall the Schur complement system (2.24), AATw = b. The singular value decom-

position (SVD) of A reads

A = UΣV T (3.1)

where U is a NP × NP unitary matrix, Σ is a NP × N(P + 1) quasi-diagonal

matrix, and V is a N(P + 1) × N(P + 1) also unitary matrix. The columns of U

contain the left singular vectors of A, while the right singular vectors of A make

up the columns of V . Σ contains the singular values of A, which are denoted by

σ(A), in the NP × NP diagonal sub-matrix (the last N columns consist of zeros,

which are ignored). The singular values are ordered from largest to smallest, i.e.

the diagonal elements are Σii = σi (i = 1, . . . , NP) and σ1 > σ2 > ... > σNP .

Note that σ(A) =
√
µ(S), where µ(S) are the eigenvalues of S. Using the fact that

V TV = I (since the columns of V are orthonormal), the matrix S can be written as

S = AAT = UΣΣTUT = UΣ2UT (3.2)

and since UTU = I, this can be easily inverted to give

S−1 = UΣ−2UT (3.3)

Equation (3.3) forms an exact preconditioner, which of course is not practical to

compute. However, an approximate preconditioner can be formed using the leading

l singular modes only, i.e. by performing a partial SVD. S can be written as

S =

[
U1 U2

]Σ2
1 0

0 Σ2
2

UT

1

UT
2

 = U1Σ2
1U

T
1 + U2Σ2

2U
T
2 (3.4)

61

where U is partitioned as U =

[
U1 U2

]
, with U1 =

[
u1 u2 ... ul

]
and

U2 =

[
ul+1 ul+2 ... uNP

]
. Matrix Σ2

1 = diag(σ2
1, σ

2
2, ..., σ

2
l) contains the singular

values corresponding to U1, and Σ2
2 = diag(σ2

l+1, σ
2
l+2, ..., σ

2
NP) contains the rest.

By replacing the diagonal submatrix Σ2
2 with the identity matrix I2 = I(NP−l), an

approximation Ŝ(l),

Ŝ(l) =

[
U1 U2

]Σ2
1 0

0 I2

UT

1

UT
2

 = U1Σ2
1U

T
1 + U2U

T
2 (3.5)

is obtained, which can be easily inverted to give

Ŝ−1
(l) = M(l) =

[
U1 U2

]Σ−2
1 0

0 I2

UT

1

UT
2

 = U1Σ−2
1 UT

1 + U2U
T
2 (3.6)

The product M(l)S now becomes

M(l)S =

[
U1 U2

]I 0

0 Σ2
2

UT

1

UT
2

 (3.7)

which indicates that M(l) has deflated the l largest singular values of matrix S to

1, while leaving the rest unaltered. To avoid computing the columns of U2 in (3.6),

the orthogonality relation U2U
T
2 = I − U1U

T
1 is invoked, leading to

M(l) = U1Σ−2
1 UT

1 + (I − U1U
T
1) (3.8)

Therefore in order to form M(l), only Σ1 and U1 are needed. M(l) is deployed as a

left preconditioner to convert (2.24) into a better conditioned system of the form

M(l)Sw = M(l)b (3.9)

62

which is solved for w.

Preconditioning based on partial singular value decomposition has been applied in

the past, for example in [56] to solve ill-conditioned least squares problems arising in

image de-blurring applications. A preconditioner based on the partial Krylov-Schur

decomposition of a matrix (see [57] for details) was also used in [58] to accelerate

the computation of limit cycles for thermoacoustic systems. The preconditioner had

a form very similar to (3.8), the difference being that instead of the diagonal matrix

Σ−2
1 in the first term on the right-hand side, the inverse of an upper triangular l× l

matrix was taken. The preconditioner reduced the condition number significantly,

speeded up the convergence of GMRES, but lead to modest overall cost savings

(mainly due to the cost of converging the eigenvalues used to form the precondi-

tioner). Sánchez and Net [59] also used a similar preconditioner for accelerating the

convergence of a multiple shooting algorithm for finding periodic orbits.

The Lanczos bidiagonalization algorithm [60] (implemented in the ‘svds’ command

of MATLAB) can be employed to form an approximation to M(l) using q iterations.

It is important to note that the algorithm requires matrix-vector products only,

making it suitable for the current problem. The approximation of M(l) after q

iterations of the algorithm is

M
(q)
(l) = U

(q)
1 Σ

−2(q)
1 U

T (q)
1 + (I − U (q)

1 U
T (q)
1) (3.10)

Computing the approximations U (q)
1 and Σ

(q)
1 using the function ‘svds’ of MAT-

LAB requires the evaluation of a large number of matrix-vector products Ax and

ATz, where x and z are algorithm-generated vectors of length N(P + 1) and NP ,

respectively. More specifically, each iteration requires at least l + 2 (the smallest

permissible Krylov subspace dimension) applications of A and AT . Even with one

or two iterations of the algorithm, the cost of computing M (q)
(l) would most likely

outweigh the cost savings due to solving the preconditioned system (3.9). A much

63

cheaper alternative is therefore proposed in the next section.

3.4 A Simplified Block Diagonal Preconditioner

A much cheaper preconditioner can be formed by considering the approximation Ã,

Ã =

−Φ1 0

−Φ2 0

.

−ΦP 0

(3.11)

which is obtained from A by neglecting the upper diagonal. The corresponding

Schur complement matrix S̃ = ÃÃT is a block diagonal matrix that takes the form

S̃ =

Φ1ΦT
1

Φ2ΦT
2

. . .

ΦPΦT
P

(3.12)

This form indicates that each segment is now decoupled from the neighbouring

segments on either side. A block diagonal preconditioner (BDP) MBD that approx-

imates the inverse S̃−1, can be constructed, i.e.,

MBD ≈ S̃−1 =

(Φ1ΦT
1)−1

(Φ2ΦT
2)−1

. . .

(ΦPΦT
P)−1

(3.13)

64

Each diagonal block in (3.13) can be approximated as before using partial singular

value decompositions, i.e.,

MBD
(q)
(l) = diag(M

(q)
(l),1,M

(q)
(l),2, ...,M

(q)
(l),P) (3.14a)

M
(q)
(l),i = U1,iΣ

−2
1,iU

T
1,i + (I − U1,iU

T
1,i) (3.14b)

where i is the segment number, q is the number of iterations and l is the number

of retained singular modes in each segment. The matrices Σ1,i and U1,i correspond

to the l leading singular values and the left singular vectors of Φi, respectively. The

superscript (q) and subscript (l) have been removed from Σ1,i and U1,i for clarity.

The preconditioner MBD
(q)
(l) has several advantages. Firstly, it is much cheaper to

construct than M
(q)
(l) ; in fact, it is O(P) times cheaper. To see why, recall that

computing M(Pl) using Lanczos bidiagonalisation requires at least Pl + 2 matrix-

vector products with A and AT . This deflates the leading Pl eigenvalues to one.

Preconditioning with MBD(l) is similar to preconditioning with M(Pl) in terms of the

eigenvalue deflation. However, computing MBD(l) only requires l + 2 matrix-vector

products with Φi and ΦT
i per segment (i.e. the equivalent of l+ 2 applications of A

and AT). Secondly, the computation of MBD
(q)
(l) is fully parallelisable in time. Each

processor can be assigned to one segment and computations can proceed indepen-

dently, because each segment is treated separately, i.e. there is no message passing

between processors. On the other hand, computing M(Pl) requires passing of all the

degrees of freedom of the computational domain from the processor operating at

segment i+ 1, to the processor operating at segment i (due to the off-diagonal iden-

tities of the matrix A). This can be overlapped with the computation at segment

i, but it is not clear a priori that message passing can be completed before the end

of the computation (this is probably case dependent). Thirdly, storage costs with

respect to M(Pl) are reduced by a factor of P (for MBD(l), there are Pl vectors which

need to be stored, each with length N , whereas M(Pl) requires the storage of Pl

65

vectors of length PN each).

Both S and MBD
(q)
(l) are symmetric, positive definite matrices, making the conjugate

gradient method applicable. MBD
(q)
(l) is used as a left preconditioner for the original

system, i.e. the system

MBD
(q)
(l)Sw = MBD

(q)
(l) b (3.15)

is solved for w. In the following section, the condition number of the matrix MBD
(q)
(l)S,

and the performance of the preconditioner for two standard problems (the Lorenz

system and the Kuramoto Sivashinsky equation) are investigated.

3.5 Numerical Examples

3.5.1 The Lorenz System

The well-known Lorenz system takes the form

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(3.16)

where σ, ρ and β are system parameters. The Lorenz system is a common test

case for chaotic sensitivity analysis methods. The parameters σ = 10 and β = 8/3

are kept constant, while ρ is varied. The attractor type varies with ρ as follows

[61]: for 1 < ρ < 24.74, there are two stable fixed points at x = y = ±
√
β(ρ− 1),

z = ρ− 1, quasi-hyperbolic attractors for 24.06 < ρ < 31, non-hyperbolic attractors

for 31 < ρ < 99.5 and periodic limit cycles for ρ > 99.5. The largest Lyapunov

exponent λmax increases from λmax ≈ 0.8 at ρ = 24 to λmax ≈ 1.7 at ρ = 96 [62]

(roughly a linear growth with ρ with frequent dips). The remaining exponents are

66

λ2 = 0 and λ3 < 0.

The objective considered is

J (T) =
1

T

∫ T

0

z dt (3.17)

Using σ = 10 and β = 8/3, sensitivities were sought with respect to the parameter

ρ, i.e. dJ(T)/dρ. MATLAB’s variable-step Runge-Kutta solver (ode45) was used to

compute the trajectory uref (t) and to perform all tangent and adjoint time-stepping.

Figure (3.1a) shows a comparison of the singular values of A, plotted together with

the union of the singular values of all Φi, ordered from largest to smallest. There are

in total 3P = 300 singular values for the case examined. Each segment is located at

a different place on the attractor, and has 3 local finite-time Lyapunov exponents

λ′ associated with it. It is well known that λ′ can fluctuate significantly around the

average values as the trajectory is traced [63]. It can be seen that σ(Φi) is close

to σ(A) for the largest P values, and thereafter the two curves start to deviate.

The last P values of σ(Φi) are very small, which is expected, since Φi = Ptiφ
ti−1,ti

is almost singular due to the projection Pti (equation 2.18). To remove the effect

of the singularity which distorts the comparison, Figure (3.1b) shows σ(A(φti−1,ti))

and σ(φti−1,ti), where A(φti−1,ti) is evaluated using φti−1,ti , i.e. without applying the

projection Pti to the state transition matrix. The matching for the first P singular

values is now much more clearly seen.

In [1], it was shown that µmax(S) = σ2
max(A) is related to the largest singular value

of Φi across all segments, max
i

(
σ

(1)
i

)
, as µmax(S) = 1 + max

i

(
σ

(1)
i

)2

, provided that

max
i

(
σ

(1)
i

)2

� 1, in which case µmax(S) ≈ max
i

(
σ

(1)
i

)2

. Figure (3.1) shows that

this approximation holds for many more eigenvalues. For the Lorenz system, it holds

for approximately P eigenvalues, each corresponding to the λ′max for each segment.

Figure (3.2) zooms in on the largest P singular values for two different ∆T . The

singular values σ(Φi) approximate σ(A) better for the larger ∆T value. This is

67

0 100 200 300
10−20

10−13

10−6

101

#

σ

σ(A)

σ(Φi)

(a) Projections Pti applied

0 100 200 300

10−4

10−2

100

102

#

σ

σ(A)

σ(φti−1,ti)

(b) No projections applied

Figure 3.1: A distribution of σ(A), σ(Φi) = σ(Ptiφ
ti−1,ti) and σ(φti−1,ti), ordered

from the largest to the smallest values. Obtained for ρ = 80 with T = 50 and
∆T = 0.5 (P = 100 segments).

because the diagonal blocks of the matrix A become more dominant for ∆T = 1,

and the off-diagonal identity matrices can be neglected (refer to equation 3.11),

without impairing much the accuracy of the large singular values.

0 20 40 60 80 100
10−1

100

101

102

#

σ

σ(A) σ(Φi)

σ(A) σ(Φi)

σ(A) σ(Φi)

(a) ∆T = 0.5 (P = 100 segments)

0 10 20 30 40 50

100

101

102

#

σ

(b) ∆T = 1 (P = 50 segments)

Figure 3.2: A distribution of the largest P values of σ(A) and the largest σ(Φi) of
each segment. Obtained with T = 50. Blue: ρ = 40, red: ρ = 60, black: ρ = 80.

Next, the spectrum of the preconditioned system is investigated, starting with the

exact preconditioner M(l) (3.8). The l largest singular values and vectors of S used

to form M(l) were obtained iteratively until convergence. Figure (3.3a) shows the

eigenvalues µ(S) and µ(M(l)S). For the case examined, the matrix S has approxi-

68

mately P = 100 eigenvalues µ(S) > 1 (blue line), corresponding to the local positive

Lyapunov exponent in each segment. Eigenvalues µ(S) = 1 correspond to the stable

exponent1, and eigenvalues µ(S) < 1 correspond to the neutrally stable exponent.

Different values of l were used to construct M(l) (the values are reported in Figure

3.3b). It is clear that M(l) effectively deflates the l largest eigenvalues of the pre-

conditioned system µ(M(l)S) to 1, while leaving the rest unaltered. As l increases,

more and more eigenvalues are clustered closer to 1, leading to increasingly faster

convergence (shown in Figure 3.3b). When l = P (= 100), µmax(M(l)S) = 1, and

convergence still takes about 50 iterations. For the limiting case of l = 3P (= 300),

all eigenvalues are equal to 1 (see Panel a) and convergence is achieved in just one

iteration, as expected. This indicates that for fast convergence, it is not sufficient

only to deflate the large eigenvalues (µ>1), but also to increase (regularise) the very

small (0 < µ� 1) eigenvalues. Such small eigenvalues make the system more singu-

lar, with implications to the accuracy of the computed sensitivity; this is explored

later in Section (3.6).

0 100 200 300

10−2

10−1

100

101

102

#

µ

(a) Eigenvalues

0 50 100 150
10−11

10−7

10−3

101

Iteration Number

R
es
id
u
al

No precond. l = 50
l = 1 l = 100
l = 5 l = 300

(b) Residuals

Figure 3.3: Eigenvalues (ordered from smallest to largest) and convergence residuals
for the original system S (blue line) and the preconditioned systemM(l)S, for differ-
ent l (number of singular modes). Obtained for ρ = 80 with T = 50 and ∆T = 0.5
(P = 100 segments). The GMRES solver used a relative tolerance of 1× 10−5.

1Consider a stable system with all negative exponents (i.e. all σ(Φi) ≈ 0). Then all µ(S) = 1
due to the identities on the main diagonal of S (equation 2.24).

69

The performance of the BDP (3.14) is now investigated. Figure (3.4) shows µ(S),

µ(M(25)S) and µ(MBD(1)S). The eigenvalues µ(S) > 1 vary significantly in value

because they are related to λ
′ (i)
max, i.e. to the largest local finite time Lyapunov

exponent which varies considerably across segments. The number of segments is P =

25, and only one singular value has been computed until convergence in each segment

(for the BDP). Both preconditioners are aiming to deflate the P largest eigenvalues.

It is clear that the matrix MBD(1)S has a very similar eigenvalue spectrum compared

to µ(M(25)S). It can be seen that µmax(M(25)S) = 1, while µmax(MBD(1)S) ≈ 2.

Most importantly, MBD(1)S has clustered the P largest eigenvalues in the narrow

interval [1, 2]. This indicates that the approximate BDP preconditioner encapsulates

reliable information for the fastest growing modes, which results in the suppression

of µmax(MBD(1)S) by four orders of magnitude. However, there is a slight reduction

in µmin(MBD(1)S) with respect to µmin(S) and µmin(M(25)S). This is likely because

MBD(1) is only an approximation to M(25). Note that µmin(M(25)S) = µmin(S), as

expected, according to equation (3.7).

0 20 40 60
10−1

100

101

102

103

104

#

µ

Exact precond.: µ(M(25)S)

BD precond.: µ(MBD(1)S)

No precond.: µ(S)

Figure 3.4: Eigenvalues of the original and preconditioned systems for T = 50,
∆T = 2 (P = 25) and ρ = 80.

Figure (3.5) shows the convergence rates for different values of ρ. As expected, using

the exact preconditioner M(l) provides considerably faster convergence compared to

70

5 10 15 20 25 30 35

10−5

10−3

10−1

101

Iteration Number

R
es
id
u
a
l

Figure 3.5: Convergence history for the original and preconditioned systems using
T = 50 and ∆T = 2 (P = 25). Blue: ρ = 40, red: ρ = 60, black: ρ = 80. Squares:
S, crosses: M(25)S, circles: MBD(1)S. The GMRES solver used a relative tolerance
of 1× 10−5.

the original system (2.24). Of course M(25) performs better than MBD(1) (since

the latter only assumes a block-diagonal structure of A), but the cheaper cost of

constructing and storing MBD(1) makes it a much more practical alternative. The

application of the BDP to the Kuramoto Sivashinsky equation is presented in the

next section.

3.5.2 The Kuramoto Sivashinsky Equation

In this section, the system with block diagonal preconditioning (3.15) is applied to

a slightly modified version [45] of the Kuramoto Sivashinsky equation (KSE),

∂u

∂t
= −(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

x ∈ [0, L]

u(0, t) = u(L, t) = 0

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0

(3.18)

71

where the length L = 128 to ensure chaotic solutions. The Dirichlet and Neumann

boundary conditions ensure ergodicity of the system [45]. The spatial derivatives

were discretised into N + 2 nodes (N interior nodes and two boundary nodes) using

second order finite difference approximations on a uniform grid (as in [45]). The

resulting system was then written in the general non-linear ODE form (1.1) (see

Appendix A for the derivation) and solved for u(t) =
[
u1 u2 . . . uN

]T . Only

two grid resolutions δx = 1 (N = 127) and δx = 0.5 (N = 255) were considered. The

MATLAB command ‘ode45’ was used for the time-stepping. Figure (3.6) shows the

solution for c = 0 and c = 0.8. In both cases, organised structures with a dominant

wavelength appear [64], corresponding to what is called the ‘light turbulence regime’.

1 42 84 127
0

50

100

150

200

x

t

1 42 84 127
0

50

100

150

200

x

−4

−3

−2

−1

0

1

2

3

Figure 3.6: Space-time plot of the solution u(x, t) for L = 128 using N = 255 nodes
in the x-direction (left: c = 0, right: c = 0.8). The integration time interval is
[−1000, 200].

72

Two objectives were considered,

〈ū〉 =
1

TL

∫ T

0

∫ L

0

u dx dt (3.19a)

〈u2〉 =
1

TL

∫ T

0

∫ L

0

u2 dx dt (3.19b)

and their sensitivities to the parameter c, d〈ū〉/dc and d〈u2〉/dc, were sought. The MSS

segment size for all cases studied was ∆T = 10 (based on λmax ≈ 0.1 for c = 0 and

c = 0.8 [45]), unless otherwise stated.

0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1

2

c

d〈ū〉∞
dc

d〈ū〉
dc

d〈ū2〉∞
dc

d〈ū2〉
dc

Figure 3.7: Sensitivities of 〈ū〉 and 〈u2〉 to the parameter c. The dashed lines were
digitised from Figure (8) of [45], which were found by differentiating curve fits for
T → ∞. The black dots (d〈ū〉/dc) and the blue dots (d〈u2〉/dc) were obtained for
T = 100 trajectories with random u0, using preconditioned MSS, for N = 127 and
N = 255, respectively.

Figure (3.7) shows d〈ū〉/dc and d〈u2〉/dc for 20 and 15 different initial conditions u0,

respectively. The values of the parameter c examined are between 0 and 1.2 and

correspond to the ‘light turbulence regime’. Each data point was computed for a

randomly generated initial condition vector 0 < u0 < 1. To obtain u(t), the discrete

form of (3.18) was integrated in the time interval [−1000, 100] and MSS was applied

to u(t) in the time interval [0, 100]. The reference data [45] is the derivative of

the curve fit of 〈ū〉 and 〈u2〉 vs. c, obtained for very long trajectories (T = 2000).

73

Figure (3.7) shows that MSS slightly under-predicts d〈ū〉/dc (similar to [45, 1]). This

difference will be discussed in detail in the next section.

The ideal use of the BDP (3.14) involves choosing the parameters q and l such that

the total number of applications of Φi and ΦT
i is minimised. Considering that there

are 15 positive Lyapunov exponents for c = 0.8 [45], it seems reasonable to choose

l = 15 in each segment to construct (3.14). The effect of using different values of l

is considered later.

Figure (3.8) shows σ(A) and the union of the 15 computed singular values σ(Φi)

for each segment i, ordered from largest to smallest. Both the converged values

and the values with q = 1 and q = 2 iterations are shown. It is clear that accu-

rate approximations to σ(A) can be obtained with just 1 ‘svds’ iteration (Lanczos

bidiagonalisation), when σ(Φi) is evaluated. The curves start to deviate when the

singular values approach unity.

0 20 40 60 80 100 120 140
100

100.5

101

101.5

#

σ

σ(A)

σ(Φi)

σ(1)(Φi)

σ(2)(Φi)

Figure 3.8: σ(A) (blue line) and the largest 15 σ(Φi) for all segments, ordered from
largest to smallest (red: exact, black: q = 1 iteration, green: q = 2 iterations).
Computed for N = 127, c = 0.8 and T = 100 (P = 10).

Figure (3.9) shows the eigenvalues of the preconditioned system. Using MBD
(q)
(l) has

reduced the maximum eigenvalue (and therefore the condition number κ) by more

74

than 2 orders of magnitude. The spectra of the inexact BDP systems MBD
(1)
(15)S and

MBD
(2)
(15)S are very similar to the spectrum of the exact BDP system MBD(15)S (with

µmax(MBD
(1)
(15)) ≈ 15, µmax(MBD

(2)
(15)S) ≈ 12 and µmax(MBD(15)S) ≈ 6).

0 200 400 600 800 1,000 1,200

10−3

10−1

101

103

#

µ

µ(S)

µ(MBD(15)S)

µ(MBD
(1)
(15)S)

µ(MBD
(2)
(15)S)

Figure 3.9: Eigenvalues of the original system (blue line), the exact BDP (MBD(15)),
and the inexact BDP (MBD

(1)
(15),MBD

(2)
(15)) using l = 15.

The effect of l on the eigenvalue spectrum of MBD
(q)
(l)S and on the convergence rate

0 200 400 600 800 1,0001,200
10−4

10−3

10−2

10−1

100

101

102

103

104

#

µ

S l = 15
l = 5 l = 25
l = 10 l = 30

(a) Eigenvalues

0 100 200 300 400

10−3

10−1

101

103

Iteration Number

R
es
id
u
al

(b) Residuals

Figure 3.10: Eigenvalues and residuals of the original system S (blue line) and the
BDP system (MBD

(2)
(l)S), for N = 127, T = 100 and c = 0.8. The preconditioners

were constructed for different l, and their residuals were found with a regularisation
value γ = 0.01 (to be introduced in Section 3.7).

75

is studied next. The value q = 2 was kept constant. Results for different l are shown

in Figure (3.10). Increasing l up to l = 15 improves the clustering of eigenvalues

and leads to faster convergence rates (Panel b). Interestingly, a further increase to

l = 25 or l = 30 increases the condition number and slows down the convergence

(Figure 3.10b). This indicates that after a certain value of l, adding more singular

modes starts to provide unreliable information to the preconditioner MBD
(q)
(l) . This is

because as l increases, the singular values approach unity and σ(Φi) starts to diverge

from σ(A). This was also observed clearly in Figure (3.1) for the Lorenz system.

3.6 Effect of the System Condition on the Accuracy

of the Computed Sensitivity

In Section (3.4), a block diagonal preconditioner was presented that can deflate

large singular values. While deflating is essential for accelerating the convergence,

as shown in Figures (3.5) and (3.10), very small eigenvalues (0 < µ(S) � 1) are

present for quasi-hyperbolic systems [1], and cause significant issues in the solution

accuracy and convergence. The presence of very small eigenvalues can be explained

by reference to the homoclinic tangencies that exist for quasi-hyperbolic systems

[31]. As a trajectory u(t) is traced in phase space, it passes through points with

homoclinic tangencies (as explained in Section 1.4). If a checkpoint i lies close

to a homoclinic tangency, some Lyapunov vectors become linearly dependent (i.e.

some Lyapunov vectors become almost parallel to one another). As a result, the

matrices Φi (and therefore the matrix S) become rank deficient, explaining the small

eigenvalues µ(S) present for quasi-hyperbolic systems. The longer the trajectory,

or the larger the number of segments, the more likely the trajectory is to pass

through points with homoclinic tangencies, and the smaller µmin(S) becomes. This

behaviour is typical of quasi-hyperbolic systems, whereas for hyperbolic systems,

76

µmin(S) remains bounded, as shown in [1] (because hyperbolic systems do not have

homoclinic tangencies).

Consider again the sensitivity d〈ū〉/dc shown in Figure (3.7) for the KSE. There is a

constant bias of approximately 8% for all simulations. This bias has been observed

previously for the KSE in [45, 1]. Helpful insight can be gained by considering the

analytical solution to the minimisation problem (2.21), expressed in terms of the

singular values and left and right singular vectors of the matrix A:

vl =
l∑

i=1

(
uTi b
σi

)
vi (3.20)

This expression indicates that the minimal norm solution is a linear combination

of the right singular vectors vi. The coefficients uTi b/σi are obtained by projecting

the right-hand-side b to the left singular vectors uTi and dividing by the singular

value σi. For l = NP , i.e. using all singular modes, (3.20) yields the same solution

obtained by solving (2.23) iteratively until convergence. However, terminating the

summation at a value of l < NP makes it possible to study the effect of a smaller

group of singular modes. Furthermore, it is also possible to use a single value of

index i to compute the contribution of an individual singular mode to the solution

v, and therefore to the sensitivity. These properties make the decomposition (3.20)

a very useful tool.

Figure (3.11) shows d〈ū〉/dc for the KSE, obtained when different values of l are used

to terminate the summation (3.20). On the same plot, the corresponding singular

values are superimposed (right vertical axis). A very interesting behaviour can be

noticed. Summing modes with σ ≥ 1 leads to an error in d〈ū〉/dc of less than 1%

of d〈ū〉∞/dc. When l is between 250 to 1000, with σ(A) ≈ 1, the sensitivity remains

almost constant. However, including in the summation terms with very small values

of σ(A) degrades the accuracy of the solution, as seen from the divergence of the

squares from the dashed line. The final value is equal to the one shown in Figure

77

0 200 400 600 800 1,000 1,200
−1

−0.8

−0.6

−0.4

−0.2

0

Number of singular values l

d
〈ū
〉

d
c

d〈ū〉
dc , c = 0

d〈ū〉
dc , c = 0.8

d〈ū〉(∞)

dc

σ(A), c = 0

σ(A), c = 0.8

10−2

10−1

100

101

102

σ
(A

)

Figure 3.11: Sensitivities (left vertical axis) computed using equation (3.20) for
different values of l (for the KSE: T = 100, N = 127 and P = 10 segments). The
solid lines show σ(A) (right vertical axis).

(3.7).

0 200 400 600 800 1,000 1,200

10−4

10−2

100

102

#

|uTi b|
|uT

i b|/σi

σi

(a) c = 0

0 200 400 600 800 1,000 1,200

10−4

10−2

100

102

#

|uTi b|
|uT

i b|/σi

σi

(b) c = 0.8

Figure 3.12: Spectral coefficients for T = 100 (KSE).

More insight can be gained by plotting the coefficients |uTi b|/σi, the projections |uTi b|

and σi together. This is known as a discrete Picard plot [65], and is shown in Figure

(3.12). In order to interpret this plot, recall that very small singular values indicate

an ill-conditioned system, i.e. that the solution is very sensitive to small changes in

the right-hand-side b. Next, b is decomposed into an unknown error-free part b̂

78

and a random error part e (for example due to the spatial discretisation and the

time-stepping scheme), i.e. b = b̂ + e, with ‖e‖2 � ‖b̂‖2. Substituting in (3.20)

with l = NP , the following equation is obtained:

v =
NP∑
i=1

(
uTi b̂
σi

)
vi +

(
uTi e
σi

)
vi = v̂ + ve (3.21)

This equation indicates that very small σi can amplify the error component of the

solution, ve =
∑NP

i=1

(
uTi e/σi

)
vi. In order to have a meaningful solution, the pro-

jection of the error component to the left singular vector, uTi e, should decay to 0

faster than σi. This is known as the Picard condition [66]. Inspection of Figure

(3.12a) shows that, although the values of uTi b are quite spread out, it is clear that

they decay by 3-4 orders of magnitude for i between 1− 600. The largest values, of

order O(102), correspond to small i, i.e. to the largest singular values. This indicates

that the largest contribution to b originates from the most rapidly growing modes.

For i > 600, the values of uTi b remain between 10−2 − 100, i.e. at least 2 orders

of magnitude smaller than the maximum. The small values of uTi b likely originate

from the random error e. As long as σi ≈ 1, their contribution is innocuous, but

when σi is reduced to 10−2, they are significantly amplified (as demonstrated from

the variation of uTi e/σi) and contaminate the solution. This explains the sensitivity

trend in Figure (3.7). The same mechanism is valid for c = 0.8 (Panel b).

The above exercise was repeated for the Lorenz system. The sensitivity dJ(T)/dρ was

computed for T = 100 and P = 200 using equation (3.20) and compared with finite

differences. The green dots in Figure (3.13) show the values of dJ(T)/dρ computed

using all singular modes (l = NP = 600). The black dots show dJ(T)/dρ, computed

using l = 500 (this value of l removes all σ(A) < 1). Each dot is the average of

10 sensitivities computed using trajectories with random initial conditions u0. For

l = NP = 600, there is a deviation with respect to the finite difference values (blue

79

26 28 30 32 34 36 38

0.98

0.99

1

1.01

1.02

0.99

1.01

ρ

d
J
d
ρ

l = 500
l = NP = 600

FD

Figure 3.13: Sensitivity dJ(T)/dρ against ρ for the Lorenz system. The sensitivities
shown in filled dots were computed using equation (3.20) for l = 500 and l = NP =
600 (i.e. using all the singular modes). The finite difference (FD) data points (open
squares) were digitised from Figure (10) of [42].

squares) of up to 3.75% (for ρ = 26). Note also the different trends for small values

of ρ. On the other hand, the sensitivities computed using l = 500 follow the same

trend as the finite difference data, and the errors are reduced to less than 1%.

The results presented above show, at least empirically, that the sensitivity bias

suffered by MSS is related to the singular modes of the matrix A with values σ(A) <

1. Truncation of these modes using the solution form (3.20) eliminates this bias

almost entirely. It is expected that this would be possible in general for quasi-

hyperbolic systems with well-defined sensitivities. Although computing the partial

SVD of the matrix A would be very expensive in practice, this was an important

finding worth reporting and investigating further.

3.7 Regularisation of the Preconditioned System

The block diagonal preconditioning approach (3.15) has suppressed the largest sin-

gular values, but has not affected the smallest ones. In order to further improve the

80

convergence rate, the system needs to be regularised, i.e. the very small eigenvalues

need to be filtered out. Tikhonov regularisation is one of the most widely used

regularisation techniques. The idea is to solve a regularised version of (2.24),

(γI + S)w = b (3.22)

where γ > 0 is an appropriately chosen parameter. Equation (3.22) is derived by

augmenting the minimisation statement in (2.21) as follows:

Minimise
vi

1

2

P∑
i=0

‖vi‖2
2 + γ‖wi‖2

2 (3.23)

This form of regularisation has been employed in [1] to improve the conditioning of S.

The physical interpretation is that the parameter γ relaxes the continuity constraint

(2.21b) and shifts all µ(S) to µ(S) + γ. A large γ value over-relaxes the constraint

(2.21b), leading to inaccurately computed sensitivities. If γ is chosen adequately, it

can improve the accuracy and accelerate the convergence simultaneously, both for

very little additional cost.

In this section, Tikhonov regularisation is applied to the preconditioned system

(3.15) to regularise small µ(S). There are two options: either to regularise the

original system and then apply preconditioning, i.e. to solve

MBD
(q)
(l) (γI + S) w = MBD

(q)
(l) b =⇒

(
γMBD

(q)
(l) + MBD

(q)
(l)S

)
w = MBD

(q)
(l) b (3.24)

or to apply preconditioning first and then regularise, i.e. to solve

(
γI + MBD

(q)
(l)S

)
w = MBD

(q)
(l) b (3.25)

When the exact preconditioner M(l) (3.8) is used, and γ � µmax
(
M(l)S

)
, the two

options are almost identical. For MBD
(q)
(l) , the second option guarantees the cluster-

81

ing of eigenvalues inside the tight range,
[
γ + µmin(MBD

(q)
(l)S), γ + µmax(MBD

(q)
(l)S)

]
.

Such tight clustering is conducive to rapid convergence of iterative subspace solvers.

The second option physically means that the rapidly growing modes within each

segment are deflated first and then the continuity constraint between segments is

slightly relaxed. This leads to a smaller number of iterations than solving (3.24).

The combined effect of regularization and preconditioning for the Lorenz system can

be seen in Figure (3.14a). Without regularization, the condition number κ(S) ≈

3×107 while κ(MBD(1)S) ≈ 5.6×103, i.e. a reduction of 4 orders of magnitude in κ.

When using γ = 1, κ(I+MBD(1)S) ≈ 4, and convergence is obtained in 12 iterations

only (Figure 3.14b).

0 200 400 600

10−2

100

102

104

#

µ

No preconditioning
γ = 0.001
γ = 0.01
γ = 0.1
γ = 1

(a) Eigenvalues

0 20 40 60 80 100 120

10−4

10−2

100

102

Iteration Number

R
es
id
u
a
l

(b) Residuals

Figure 3.14: Eigenvalues and residuals of the original system S and the precon-
ditioned system γI + MBD(1)S for different γ. A Lorenz system trajectory length
T = 200 with ∆T = 1 was used for ρ = 40.

The sensitivities dJ(T)/dρ computed for different γ are shown in Figure (3.15). For

reference, dJ(∞)/dρ and the solution for γ = 0 (which is affected by the ill-conditioning

of S) are shown. There is a range 0.001 ≤ γ ≤ 0.1 which provides an adequate

balance between filtering out the noisy singular values, while keeping ‖b − Av‖2

close to zero. In this range, the solution error is O(≤ 2%). Further increase to

γ = 1 relaxes the constraint Av = b significantly, and results in a solution error of

O(5%). A method to estimate the optimal value of γ based on the L-curve criterion

82

was proposed in [67, 68].

10−4 10−3 10−2 10−1 100

0.92

0.94

0.96

0.98

1

1.02

γ

d
J
d
ρ

dJ(∞)

dρ

MBD(1)Sw = MBD(1)b

(γI +MBD(1)S)w = MBD(1)b

Figure 3.15: Sensitivities for the Lorenz system (T = 200, ∆T = 1 and ρ = 40) for
different γ. The value of dJ(∞)/dρ (black-dashed line) was digitised from Figure (5d)
of [22].

Ideally, the convergence rate should be independent of T (and therefore the number

of segments P) and the number of degrees of freedom N . This would make MSS

applicable to large systems. Figure (3.16) shows that indeed, the convergence rate

is almost independent of T for the Lorenz system. Theoretical analysis shows that

for a linear system with a symmetric, positive definite matrix A , the A -norm of

the error at iteration m, ‖rm‖A , satisfies (refer to [50]):

‖rm‖A
‖r0‖A

≤ 2

(√
κ (A)− 1√
κ (A) + 1

)m

(3.26)

This error bound is independent of the number of unknowns, and provided that

κ (A) is suppressed by preconditioning and regularisation, the number of iterations

becomes independent of T and N . This is clearly demonstrated in Figure (3.16).

Tests showed that using equation (3.26) to predict the number of iterations that

will result in a pre-specified relative residual (set to 10−5), overestimated the actual

iterations needed in practise. This shows that (3.26) indeed provides a very conser-

83

vative upper bound. The bound becomes more realistic as κ (A) decreases. Table

(3.1) shows that for the chosen γ = 0.1, dJ(T)/dρ → 0.99 (the infinite time-averaged

sensitivity, dJ(∞)/dρ).

0 50 100 150 200

10−4

10−3

10−2

10−1

100

101

102

Iteration Number

R
es
id
u
al

Figure 3.16: Residuals for S (solid lines) and the BDP system γI+MBD(1)S (dashed
lines), with γ = 0.1. The segment size is ∆T = 1 and ρ = 40 (Lorenz system). Blue:
T = 200, red: T = 300, black: T = 500, green: T = 1000.

T = 200 T = 300 T = 500 T = 1000

dJ(T)

ds
1.01 0.97 0.97 0.99

Table 3.1: A table showing dJ(T)/dρ for ρ = 40 (Lorenz system), using different
trajectory lengths. A regularisation value γ = 0.1 was used.

Figure (3.17) shows the convergence rates for varying T (Panel a) and N (Panel b)

for the KSE. The figure demonstrates again that the combination of regularisation

and preconditioning (dashed lines) renders the convergence almost independent of

T (with N = 127) and N (with T = 100). The fast convergence is a direct result

of the clustering of eigenvalues in a tight range, and hence the suppression of the

condition number κ(S).

84

0 200 400 600 800 1,000

10−3

10−1

101

103

Iteration Number

R
es
id
u
a
l

(a) Varying T with N = 127

0 10 20 30 40

10−3

10−2

10−1

100

101

102

Iteration Number

R
es
id
u
al

N = 127
N = 255
N = 511

(b) Varying N with T = 100

Figure 3.17: Residuals of the original system (solid lines), and of the system γI +

MBD
(q)
(l)S, with γ = 0.09, q = 2 and l = 15 (dashed lines). Blue: T = 100, red:

T = 200, black: T = 500. The GMRES solver used a relative tolerance of 1× 10−5.

3.8 Computational Cost

In this section, the computational cost of preconditioned MSS is considered. Only

the costs of constructing the BDP (3.14) and of solving the Schur complement (3.25)

are considered, since these operations account for most of the wall time. The total

number of applications of Φi and ΦT
i (per segment), is used to quantify the cost. It

is assumed that these operations can be done in parallel using P processors (one

processor allocated to each segment). It is also assumed that message passing can

be overlapped with computation and that it is completed before the end of the

computation.

The cost (number of applications of Φi and ΦT
i) of constructing one block of the

preconditioner, M
(q)
(l),i, is 2q(l+2), where l+2 denotes the selected size of the subspace.

The factor 2 appears because the partial singular value decomposition of Φi requires

matrix-vector products with both Φi and ΦT
i . One iteration of

for the solution of (3.25) requires the application of A and AT once, i.e., the solution

to (3.25) requires m applications of Φi and ΦT
i per segment, where m is the number

85

of iterations to convergence. This cost is only approximate, as the time taken to

orthogonalise the subspace every time a new vector is added has been neglected.

Table (3.2) shows a cost comparison for different T (for the KSE), with and without

preconditioning (the values correspond to Figure 3.17a). The parameters q = 2 and

l = 15 were used, so the preconditioner cost per segment is 2q(l + 2) = 68 total Φi

and ΦT
i applications. It can be seen that the combination of preconditioning and

regularisation results in significant savings; the cost is reduced by a factor of 35 for

T = 500. Note that the condition number is reduced by between 5 to 7 orders of

magnitude (depending on T) and remains almost constant. The number of iterations

depends very weakly on T , and so does the total cost per segment.

T = 100 T = 200 T = 500
(P = 10) (P = 20) (P = 50)

Cost of solving
(
γI + MBD

(q)
(l) S

)
w = MBD

(q)
(l) b

µmax, µmin 11.87, 0.090 11.87, 0.090 13.37, 0.090
Condition number, κ 132 132 149

Number of iterations, m 38 42 46
Cost of iterations 76 84 92

Cost of constructing MBD
(q)
(l) 68 68 68

Total cost 144 152 160
Cost of solving Sw = b

µmax, µmin 3800, 1.90× 10−4 3800, 1.80× 10−5 4900, 4.90× 10−6

Condition number, κ 2.0× 107 2.1× 108 1.0× 109

Number of iterations, m 371 897 2,790
Total cost 742 1,794 5,580

Table 3.2: A table showing the cost (total number of Φi and ΦT
i applications per

segment) for the cases shown in Figure (3.17a). The preconditioner was constructed
using q = 2, l = 15 and γ = 0.09. The relative residual ‖rm‖2/‖r0‖2 ≈ 1× 10−5 for all
cases.

The minimum and maximum eigenvalues are also reported in Table (3.2), and this

information can be used to assess the individual effects of preconditioning and regu-

larisation. Preconditioning results in a reduction of µmax by two orders of magnitude

(and a corresponding reduction in κ). Regularisation raises µmin by three to five

orders of magnitude.

86

There is further scope for cost reduction. For example, for T = 500, a value γ =

0.09 was chosen, which produces a value for the sensitivity d〈ū〉∞/dc accurate to 1%.

Increasing to γ = 0.25 and using q = 1 still gives an acceptable sensitivity (the error

is 8%), but the number of iterations is reduced to 35, and the total cost is 116 Φi

and ΦT
i applications per segment (down from 160).

It is important to try to predict the cost of the preconditioned MSS algorithm

for higher dimensional turbulent systems. Tests showed that the optimal value of

preconditioning modes l that minimised the total approximate cost (the solution to

(3.25) and constructing the preconditioner (3.14)), was close to N+LE. Figure (3.18)

shows that the optimal value to use was l = 18 (N+LE = 15), while further increase

in l led to a rise in cost. It is expected (in general), that if l = N+LE and a suitable

value for γ is chosen, the eigenvalues would always remain clustered within a narrow

range, and the cost of solving (3.25) would be independent of T or N . However, the

cost of computing the preconditioner will increase linearly with N+LE, and would

likely dominate the total cost for larger systems, since all modes would need to be

computed to minimise the total cost.

It has been shown that N+LE varies with the mesh size [35, 69] and Reynolds number

[70]. Ni [35] showed that for a low Reynolds number flow around a cylinder, the

Lyapunov spectrum was similar for two mesh sizes, but the finer mesh had a smaller

N+LE. In [69], where the authors computed the Lyapunov spectrum for a separated

flow over an airfoil, N+LE was shown to increase with N+LE, contrary to the findings

in [35]. It is not surprising that N+LE will increase with the Reynolds number, as

shown for example in [70].

Based on the observations outlined above, applying preconditioned MSS to complex

turbulent systems with thousands of positive exponents may still be very difficult

due to the large expected cost of preconditioning with l = N+LE. However, this

needs further investigation.

87

Figure 3.18: The cost (number of applications of Φi and ΦT
i per segment) for different

preconditioning modes l. The trajectory was computed for T = 200 and c = 0.8.
The solver and preconditioner used γ = 0.09, ∆T = 10 and q = 1. The Lyapunov
exponents (right axis) have been digitised from Figure (9) of [45].

3.9 Summary

In this chapter, a block diagonal preconditioner was derived to accelerate the conver-

gence rate for the solution of the linear system (2.24) arising from the application

of the MSS algorithm. The preconditioner is based on the partial singular value

decomposition of the diagonal blocks (3.11) of the constraint matrix A (2.22). The

preconditioner was applied to the Lorenz system and the KSE.

The number of singular modes to retain in the partial SVD, l, is case dependent,

and a well-chosen value is required for fast convergence. If the number of positive

Lyapunov exponents is known, it can be used to inform the choice of l. Strictly

speaking, however, this is not necessary, and l can be chosen based on the number

of σ(Φi) > 1.

When the preconditioner was combined with a regularisation method, the condi-

88

tion number was significantly suppressed, and the convergence rate was found to

be weakly dependent on the number of degrees of freedom and the length of the

trajectory. The total number of operations was significantly reduced as a result.

This weak dependence on N and T paves the way to apply MSS to higher dimen-

sional turbulent systems for sensitivity analysis and optimal control applications.

Furthermore, it was shown that a large condition number can affect the accuracy of

the computed sensitivity, and can explain an 8% sensitivity bias for the KSE in the

light turbulence regime. It can also explain a smaller bias for the Lorenz system.

89

Chapter 4

Feedback Control of Chaotic Systems

using Shadowing1

4.1 Introduction

Computing feedback controllers for large chaotic systems is very challenging. Stan-

dard Linear Quadratic Regulator (LQR) theory is often inapplicable, or prohibitively

expensive because the computational cost scales as O(N3). In this chapter, an algo-

rithm based on shadowing is proposed for computing feedback controllers for chaotic

systems and is applied to the KSE. The algorithm relies on the sensitivities com-

puted by preconditioned MSS to find the optimum feedback control matrix elements

iteratively.

This chapter is structured as follows: in Section (4.2), the challenges of applying

Linear Quadratic Regulator (LQR) theory to nonlinear systems are discussed. LQR

theory is summarised, and the proposed control algorithm is introduced in Section

1Results from this chapter have appeared in [71]: K. Shawki and G. Papadakis.
Feedback control of chaotic systems using multiple shooting shadowing and application to
Kuramoto–Sivashinsky equation. Proceedings of the Royal Society A, 476(2240), 2020.
http://dx.doi.org/10.1098/rspa.2020.0322

90

(4.3). In Section (4.4), the feedback control kernels computed using both methods,

as well as the system response to both controllers are compared and discussed. The

algorithm performance is discussed in Section (4.5).

4.2 Feedback Control of Nonlinear Systems

Actuation of linear or nonlinear systems to meet a desired objective has many appli-

cations, including transition delay [72], control of separation [73] and drag reduction

[7]. For linear systems, optimal control theory (for example, LQR or LQG) is very

well developed. A quadratic objective function that includes the cost of actuation

is defined and minimised subject to the linear constraints. The optimal feedback

matrix K is obtained from the solution to an Algebraic Riccati Equation (ARE).

For nonlinear systems, a linearisation process around the target state is first carried

out, and then the linear optimal control theory can be applied. Once a controller

has been derived, it can be applied to the full nonlinear system. When all the sys-

tem states are available, and there are no uncertainties, the linear theory is known

as Linear Quadratic Regulator (LQR) theory [74]. This theory can be extended to

handle unknown system dynamics (modelled as white, Gaussian noise) and can be

coupled with an estimator (also based on a quadratic objective), that can extract

the state of the system from noisy measurements. This is known as the Linear

Quadratic Gaussian (or LQG) approach [74].

LQR and LQG are effective for turbulent systems with energy conserving non-

linearities, such as channel flows [75, 76, 77, 78, 79]. In such flows, the nonlinear

term, which is responsible for the transfer of energy from large to small scales, van-

ishes when integrated in the whole domain. Usually, the aim of LQR (or LQG)

is to minimise the kinetic energy of the fluctuations around a target state, given

a distribution of sensors and actuators mounted on the walls. LQG has also been

91

used for the suppression of 2D disturbances [80] and Tollmien Schlichting waves [72]

on flat plate geometries and for the control of separation in a square cavity [73].

Applying linear control theory assumes that the linearised Navier-Stokes equations

capture the important dynamical processes [81]. Linear models, however, cannot

account for the cascade of energy from large to small scales, which is of course a

nonlinear phenomenon.

An important issue associated with LQR and LQG is the computational cost. The

feedback matrix K and the Kalman gain L (associated with estimator of LQG)

both require a solution to an ARE which has computational complexity O(N3).

Its solution becomes intractable for N > 103 [81]. Reduced Order Models (ROM)

have been proposed to reduce the cost. The idea is to construct lower-order ap-

proximations to the plant’s input-output dynamics (see for example [73, 72, 76]).

Modes deemed unnecessary are truncated, thus reducing the system dimension. In

[82, 83, 84], feedback control of the KSE using a truncated Galerkin’s method for

spatial discretisation was used. Truncation was based on the number of unstable

modes, which were separated from the stable ones. The number of control actuators

was chosen based on the number of unstable modes. The issue with ROMs, however,

is that there is no guarantee that the truncated modes will not affect the objective

function [81]. Furthermore, ROMs only capture the dynamics of the uncontrolled

flow (open loop) and not that of the controlled flow (closed loop) [85], which may

be quite different.

A few attempts have been made to bypass the solution of the Riccati equation and

therefore the need for a ROM. These approaches compute directly the elements of

the feedback matrix K using iterative methods that rely on the integration of the

linearised governing and adjoint equations in a forward/backward loop. They scale

to large N and are therefore suitable for systems arising from the discretisation of

the Navier-Stokes equations in complex domains. In [86, 87], the authors proposed

92

a method that can compute the elements of the matrix row-by-row. It is based on

the iterative computation of the adjoint of a forward problem, the latter defined

for the direct-adjoint vector pair associated with the LQR problem. The method

was extended to the estimation problem in [85] and applied successfully to a 2D

boundary layer, while in [88], the method was extended to robust (H∞) control. In

[89], an adjoint method for simultaneously updating all the feedback matrix elements

was proposed. The cost function of the LQR problem was written in terms of K,

and the latter was computed iteratively using forward/backward marching of the

governing and adjoint equations.

All the above approaches have been applied to linear, time-invariant system con-

straints. In this chapter, the nonlinear governing equations (1.1) are used as con-

straints to compute K iteratively. The matrix is extracted from the system attractor

and no model reduction is applied (an area which is far less well developed for non-

linear systems compared to linear ones). The application of the iterative approach

to extract K is not straightforward for chaotic systems, however. The reason for this

is the backward-in-time exponential growth of the adjoint variables, as discussed in

Section (1.5).

In this chapter, the Preconditioned Multiple Shooting Shadowing (PMSS) method

is used to compute the adjoint variables and from them, in a single computation, all

the elements of the optimal feedback control matrix. The idea is applied to the KSE

with Dirichlet boundary conditions, that result in an ergodic system [45]. There

is also an important additional benefit. For this type of boundary conditions, the

non-linearity of the system is energy conserving, a property which makes standard

methods, like LQR, effective. Thus it is possible to compare the control kernels

produced by the shadowing and LQR approaches. It should be noted that very

few attempts have been made to solve an optimisation problem using LSS before

[23, 90], and none has considered the computation of a feedback matrix.

93

4.3 Formulation of the Control Problem

For control purposes, an actuation s(t) which will modify the behaviour of the system

(1.1) to meet a desired objective is sought. Assuming M actuators (in which case

s(t) becomes a vector of length M), the controlled system takes the form

du
dt

= f(u) +Bs(t) (4.1)

where B is the input matrix (size N ×M) that determines the spatial distribution

of the actuation. Moreover, it is assumed that the actuation s(t) takes the linear

feedback control form

s(t) = −K
(
u(t)− utarg

)
(4.2)

where K is an M ×N feedback matrix and utarg is the desired (target) state of the

system. The controlled system then becomes

du
dt

= f(u)−BK
(
u(t)− utarg

)
≡ h(u, K) (4.3)

where for future reference, h(u, K) = f(u)−BK
(
u(t)− utarg

)
. The objective is to

compare the matrix K obtained using standard linear optimal control theory (LQR)

with the one obtained from Preconditioned Multiple Shooting Shadowing (PMSS).

Both approaches are described below.

4.3.1 Control using Linear Quadratic Regulator (LQR)

Linear Quadratic Regulator (LQR) theory is developed for linear time-invariant

(LTI) systems. The governing ODE set (1.1) is first linearised around a stationary

target state, utarg, i.e. u = utarg + u′ is substituted into (1.1), and keeping only the

linear terms, one arrives at

94

du′

dt
= Alu′ (4.4)

where Al = ∂f/∂u|utarg is the Jacobian matrix evaluated at the target sate. Actuation

is then applied to the linearised system, i.e.,

du′

dt
= Alu′ +Bs(t) (4.5)

LQR finds the optimum actuation s(t) that minimises the following objective:

J (∞) =

∫ ∞
0

(
u′TQu′ + sTRs

)
dt (4.6)

subject to (4.5), where Q and R are weighting matrices (size N × N and M ×M ,

respectively). Both are symmetric and Q ≥ 0 and R > 0 (i.e. positive semi-definite

and definite respectively). The solution to the optimisation problem results in an

optimum actuation s(t) that is related to the state u(t) via equation (4.2). The

feedback matrix K is obtained from

K = R−1BTP (4.7)

where the matrix P (size N ×N) is the solution to the algebraic Riccati equation,

ATl P + PAl − PBR−1BTP +Q = 0 (4.8)

The cost of the solution of this equation scales as O(N3). In the present work, B = I

and the weighting matrices Q = I and R = cI, where c is a positive constant. The

optimal feedback controller is then given by

K =
1

c
P (4.9)

95

The derivation of equations (4.7) and (4.8) can be found in standard control text-

books [91, 74]. The optimum feedback controller (4.7) is then applied to the full

nonlinear system (4.3). For LTI systems, the linear relationship (4.2) between the

optimum actuation and state is exact, and is a direct outcome of the solution of the

optimisation problem. In the present work, the target state is set to utarg = 0, i.e.

the actuation aims to bring the system to rest.

4.3.2 Control using Adjoint Preconditioned Multiple Shoot-

ing Shadowing (PMSS)

In this section, a framework for finding the control matrixK that solves the nonlinear

control problem:

Minimise
K

J (∞)(u, K) = lim
T→∞

1

T

∫ T

0

J(u, K) dt (4.10a)

subject to
du
dt

= f(u)−BKu
(
= h(u, K)

)
(4.10b)

is introduced. In analogy with (4.6), J(u, K) is defined as

J(u, K) = uTQu + sTRs = uTQu + (Ku)T R (Ku) (4.11)

Note that in (4.11), the full state u appears, not the perturbation around the target

u′, as in (4.4). Since however utarg = 0 has been chosen, both control problems are

aiming to bring the system to rest.

The optimisation problem (4.10) can be solved iteratively using the sensitivities

dJ(∞)/dK and coupling with an updating method, for example gradient descent,

K(i+1) = K(i) − a(i)

(
dJ (∞)

dK

)(i)

(4.12)

96

where i is the iteration number and a(i) is a step size. The iterative algorithm is

summarised below.

Algorithm 3: PMSS Control
Inputs: T , u0, K(0), ε. Output: K (converged control matrix)

1. Set i = 0.

2. Integrate u̇− h(u, K(0)) = 0 with initial condition u(0) = u0 in the
interval [0, T] to obtain u(0)(t). Compute J (T)

(0)
.

3. Call Adjoint PMSS solver to obtain
(
dJ(T)/dK

)(i) for the trajectory
u(i)(t).

4. Compute a(i) using an appropriate algorithm (for example backtracking
or Brent’s method [92]).

5. Update the control parameters: K(i+1) = K(i) − a(i)
(
dJ(T)/dK

)(i).

6. Integrate u̇− h(u, K(i+1)) = 0 and store u(i+1)(t). Compute J (T)
(i+1)

(Note: This step is included within Step 4 if backtracking is employed).

7. If
∣∣∣∣J(T)

(i+1)
−J(T)

(i)

J(T)
(i)

∣∣∣∣ < ε break, and output K = K(i+1). If not, set i = i+ 1

and return to Step 3.

The sensitivity matrix dJ(∞)/dK is computed using adjoint MSS (see Section 2.4.2).

In this way, dJ(∞)/dK is found with a single adjoint solution. The block diagonal

preconditioner (3.14) is used to precondition the adjoint MSS Schur complement

(2.31) as follows: (
γI + MBD

(q)
(l)S

)
ŵ = −MBD

(q)
(l) (Ag) (4.13)

Only the right-hand-side of (4.13) differs from the preconditioned tangent Schur

complement (3.25). Appendix (B) shows how to compute the MATVEC product(
γI + MBD

(q)
(l)S

)
z for an arbitrary vector z. The steps required to compute dJ(∞)/dK

are summarised in Algorithm (4).

Step 4 of Algorithm (3) typically requires multiple evaluations of (4.10b) to compute

a(i). For this study, backtracking is used, which guarantees the monotonic reduction

97

Algorithm 4: Adjoint PMSS Solver

Inputs: T , P , l, q, γ. Output: dJ(T)

dK

1. Compute the vector Ag (Refer to Appendix (B) for the computation
details).

2. Use (3.14) to compute the preconditioner blocks M
(q)
(l),i.

3. Form the RHS of (4.13), −MBD
(q)
(l) (Ag).

4. Solve (4.13) for ŵ using GMRES.

5. Integrate (2.32) backwards in time (for all segments i = 1 : P) with the
terminal conditions in (2.33) to find ŵ(t).

6. Compute dJ(T)/dK by evaluating (2.34) NM times (i.e. once for each
element of K).

* Note that f(u) must be replaced by h(u, K) = f(u)−BKu in the
equations of Section (2.4.2) referred to above.

of J (T)
(i)
, and is considerably less expensive than other extrema finding methods

(such as Brent’s method [92]). Backtracking requires the computation of u(t) and

J (T), so these are obtained on Step 4 (and make Step 6 redundant).

The backtracking line search method only requires that

J (T)
(
K(i) − a(i)(dJ(T)/dK)(i)

)
≤ J (T)(K(i)) (4.14)

is satisfied on each iteration. It’s implementation is straightforward:

Algorithm 5: Backtracking
1. Set j = 0. Choose a value a(j=0) and c ∈ [0, 1].

2. Integrate u̇− h(u, K(i) − a(j)(dJ(T)/dK)(i)) = 0. If
J (T)(K(i) − a(j)(dJ(T)/dK)(i)) ≤ J (T)(K(i)) is satisfied, break and use the
step size a(i) = a(j). If the condition is not satisfied, set a(j+1) = ca(j).

3. Set j = j + 1 and return to Step 2.

The time-averaged quantity J (T) needs to be ergodic (i.e. independent of the initial

98

condition), as explained in Section (2.2). It must also be noted that the nonlinear

objective function J(u, K), and therefore J (T)(u, K), are generally non-convex with

respect to the elements of K [93]. Therefore in general, convergence to the global

minimum is not guaranteed.

Günther et al. [23] also proposed an optimisation algorithm for chaotic systems

which uses shadowing. They used a single-step one-shot approach which replaces

the nonlinear constraint of the minimisation statement with the solution to the well-

conditioned nonlinear shadowing (2.2) problem. They applied the algorithm to a

tracking control problem of an advection-dominated flow in one dimension. The

sensitivities were used to update a single control parameter governing the boundary

condition using a quasi-Newton approach (BFGS). In this chapter, however, all

elements of the feedback matrix; 2552 in total, are computed. The current approach

also bypasses the need to store and solve the large Schur complement system (2.7),

which makes the approach of Günther et al. [23] too difficult to apply to large

systems. Algorithm (4) only relies on preconditioned matrix-vector products to

solve (4.13), making the control Algorithm (3) more suitable for application to large

chaotic systems.

4.4 Control of the Kuramoto Sivashinsky Equation

In this section, the two control approaches outlined in Section (4.3) are applied to the

standard Kuramoto Sivashinsky equation (KSE), repeated below for convenience,

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
x ∈ [0, L]

u(0, t) = u(L, t) = 0

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0

(4.15)

99

The Dirichlet and Neumann boundary conditions ensure ergodicity of the system,

and for all simulations, L = 128. The spatial derivatives used the same finite differ-

ence discretisation shown in Appendix (A) and used previously in Section (3.5.2).

Two values of node spacing δx = L/(N + 1) were considered, 1 and 0.5. The variable

step Runge–Kutta method (ode45 in MATLAB) was used again for the integration

in time. The initial condition at t = 0 was obtained from a precursor integration in

−1000 ≤ t ≤ 0; this ensured that the trajectory had reached the chaotic attractor

at t = 0.

Figure (4.1) shows the typical streaky behaviour exhibited by the KSE in the x− t

plane. It is clear that there is a characteristic average streak spacing, lstr, with

wavenumber k = 2π/lstr. As will be shown later, lstr plays an important role in the

analysis of control kernels. If the boundary conditions are periodic, the spectral en-

ergy peaks at k. This characteristic value is close to the wavenumber that maximises

the eigenvalue of the linearised KSE around the rest state. For periodic boundary

conditions, this corresponds to a streak spacing that can be found analytically as

lperstr = 2π
√

2 [64], which is equal to lperstr = 8.9. As will be seen later for the system

(4.15), lstr ≈ 8.5, therefore the choice of the boundary conditions does not affect

much the streak spacing.

Figure 4.1: Contour plot of a typical solution u(x, t) of (4.15).

The time-average and root mean square (rms) of u as a function of x, ũ and ũRMS

100

respectively, are shown in Figure (4.2). The overbar . denotes time-averaging, while

.̃ represents averaging over multiple initial conditions u0. The Dirichlet boundary

conditions result in sharp gradients at both ends of the domain, especially for ũRMS.

In the middle of the domain, the variation of both the mean and rms is smooth.

0 16 32 48 64 80 96 112 128
−1.5

−1

−0.5

0

0.5

1

1.5

x

ũ

(a) Time average of u(x, t)

0 16 32 48 64 80 96 112 128
0

0.4

0.8

1.2

1.6

x

ũ
R
M

S

(b) Temporal RMS of u(x, t)

Figure 4.2: Time average and RMS of u(x, t). ũ and ũRMS were obtained for tra-
jectories with length T = 2000 and averaged over 150 random initial conditions in
[0, 1].

The discretised KSE equation is written as

du
dt

= f(u)−BKu (4.16)

where f(u) is the nonlinear vector arising from the finite difference discretisation of

the right-hand-side of (4.15) (as shown in Appendix A), u(t) =
[
u1 u2 . . . uN

]T
and K is the feedback matrix. For shadowing control, the optimal values of K that

minimise

J (∞) = lim
T→∞

1

TL

∫ T

0

(
uT δxu +

α

2
(Ku)T δx (Ku)

)
dt (4.17)

subject to the nonlinear constraint (4.16), are sought. The objective and constraint

have the same form as (4.10). The first term on the right-hand-side of (4.17) rep-

resents the space-time average kinetic energy of the system, while the second term

represents the cost of the control effort, which is regulated by the parameter α. It is

101

assumed that there are N equally spaced actuators (equivalent to setting B = I in

equation 4.16). The aim is to find the optimum values of the elements of K (which

is size N ×N) that drive u(t) to zero, i.e. that bring the system to rest.

In the following section, this matrix K is compared with the one obtained using

LQR. For the latter, the linear version of the KSE (4.15), i.e.

∂u

∂t
= −∂

2u

∂x2
− ∂4u

∂x4
x ∈ [0, L] (4.18)

with the same boundary conditions, is discretised to obtain the linearised matrix

Al, which is required to compute the LQR feedback matrix (4.9). Both matrices are

then applied to the full nonlinear discretised KSE (4.16).

4.4.1 Comparison of the PMSS and LQR control kernels

Since the input matrix B has been set to B = I, the actuation s(t) = −Ku(t) can

be written explicitly as si(t) = −∑N
j=1 Ki,juj(t), where the index i corresponds to

the control location, xc = i × δx. Written in this form, the physical meaning of

Ki,j becomes clear; it represents the weight of the j − th velocity to the actuation

at the i − th point. Summing all j contributions results in si(t). For more general

cases, the input matrix B provides an appropriate spatial weighting, and the control

signal is given by Bs, see equation (4.1). The total derivative of J (T) with respect

to element Ki,j is found using (2.34). For the objective function (4.17) considered

here, (2.34) translates into

dJ (T)

dKi,j

= −

 P∑
p=1

∫ tp

tp−1

(
uj(t)ŵi(t)

)
dt

+
αδx

TL

∫ T

0

uj(t) N∑
n=1

un(t)Ki,n

 dt (4.19)

where ŵi(t) are the adjoint variables obtained by integrating (2.32). Figure (4.3)

shows the absolute values of the elements of the sensitivity matrix
∣∣dJ(T)/dKi,j

∣∣ in
102

log-scale, for different trajectory lengths T . For T = 50 (Panel a), the matrix does

not seem to have a clear structure. For T = 200 (Panel b), the matrix is starting to

acquire a diagonally dominant structure. However, a significant number of elements

in the top right and bottom left quadrants are of the same order of magnitude

O(10−1) as the central diagonals (shown in yellow). The time horizons T = 50

and T = 200 are clearly not long enough for sensitivity convergence. However,

by increasing the trajectory length to T = 500 (Panel c) and T = 800 (Panel

d), the sensitivities are starting to converge and become independent of T . It is

now clear that the matrix
∣∣dJ(T)/dK

∣∣ has a diagonally dominant structure. Note

that convergence is first attained around the main diagonal, and slowly propagates

1 50 100 150 200 255

1

50

100

150

200

255

j

i

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(a) T = 50

1 50 100 150 200 255

1

50

100

150

200

255

j

i

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(b) T = 200

1 50 100 150 200 255

1

50

100

150

200

255

j

i

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(c) T = 500

1 50 100 150 200 255

1

50

100

150

200

255

j

i

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(d) T = 800

Figure 4.3: Colour maps of the absolute values of sensitivities
∣∣dJ(T)/dK

∣∣ in log-scale
for different time-averaging lengths T . They were obtained from the attractor of the
uncontrolled system (i.e. the first iteration of Algorithm (3) with K(0) = 0).

103

further away.

Using the computed sensitivities for T = 800 and a step size a(0) = 10, the matrix

K
(1)
i,j computed from (4.12) was plotted in a colour map in Figure (4.4). Large pos-

itive and negative values are found around the main diagonal, while further away,

i.e. when j � i, Ki,j decays to 0. This has a clear physical meaning; the value of

actuation at point i is determined mainly by nearby neighbours, while the contribu-

tion of points located further away becomes progressively smaller and smaller. The

control kernel therefore has compact support. This has been demonstrated for the

kernel obtained when LQR is applied to the linearised Navier-Stokes equations in

a channel flow (see Figure (6) of [94]). The present analysis shows that the same

property holds if K is computed directly from the nonlinear attractor, at least for

the case examined. More research is needed however, to determine if controllers with

compact support can be computed for general nonlinear systems using the current

algorithm.

1 50 100 150 200 255

1

50

100

150

200

255

j

i

−0.4

−0.2

0

0.2

0.4

Figure 4.4: Colour map of matrix K obtained using PMSS control with T = 800.

Averaging along the m-th diagonal of K (the main diagonal corresponds to m = 0),

〈diagK〉(ξ) is obtained, which depends only on ξ = mδx = x − xc. It is clear that

〈diagK〉(ξ) represents the average value of weights against the distance ξ from the

104

actuation point. The distribution of 〈diagK〉(ξ) is plotted for two grid spacings δx

in Figure (4.5a) with solid lines. The weights obtained from the LQR matrix with

c = 1 (refer to equation 4.9) are superimposed with dashed lines. Notice that the

weights obtained from LQR and PMSS have very similar distributions. As expected,

they are both localised around ξ = 0 and decay to 0 further away. They also both

depend on the discretisation.

In order to further analyse the results, the control kernel is computed, which is

independent of δx. To this end, the actuation at location xc is written as the

convolution integral

s(xc) = −
∫ L

0

K (x− xc;xc)u(x) dx (4.20)

where K (x− xc;xc) is the convolution (or control) kernel at xc. This can be

computed from the matrix elements K (x− xc;xc) = K (ξ;xc) = Ki,j/δx, where

xc = i × δx and x = j × δx. In Figure (4.5b), both diagonally-averaged kernels

are plotted, and in order to facilitate the comparison, the region ξ ∈ [−12, 12] is

zoomed into. The LQR kernels (dashed lines) collapse perfectly for the two discreti-

sations, as they should. The PMSS kernels however (solid lines), although close, do

not collapse to a single curve. Perhaps they should not be expected to collapse, as

they are found directly from the nonlinear attractor under the assumption of the

feedback control law (4.2). The shapes produced by the two control methods are

similar, but the LQR kernel decays to 0 faster than the PMSS kernel. The latter

has more pronounced peaks and oscillates around 0.

To eliminate the effect of the step size a(0) and the control cost parameter c that

affect the absolute values of K (ξ), the kernel distribution normalised with the value

at ξ = 0 is plotted in Figure (4.5c). This normalisation reveals a very interesting

feature; the two kernels are almost identical in the region −2.5 ≤ ξ ≤ 2.5, but

deviate elsewhere.

105

−128 −96 −64 −32 0 32 64 96 128

−0.5

0

0.5

ξ

〈d
ia
g
K
〉(
ξ)

δx = 1

δx = 1 (LQR)
δx = 0.5

δx = 0.5 (LQR)

(a) Full domain

−12 −8 −4 0 4 8 12

−0.5

0

0.5

ξ

〈d
ia

g
K

〉(
ξ
)

δ
x

(b) Mean convolution kernel in the region −12 ≤ ξ ≤ 12

−32−28−24−20−16−12 −8 −4 0 4 8 12 16 20 24 28 32

−0.5

0

0.5

1

ξ

〈d
ia

g
K

〉(
ξ
)

〈d
ia

g
K

〉(
0
)

δx = 0.5

δx = 0.5 (LQR)

(c) Mean convolution kernel normalised by 〈diagK〉(0)/δx

Figure 4.5: Distribution of the feedback matrix weights (Panel a) and kernels (Panels
b,c), obtained by averaging along the diagonals of K and plotting against ξ = x−xc.

What determines the shape of the kernels and why do they have this distribution?

In order to gain more insight, the two-point spatial correlation function at a given

106

location xc is considered:

ρ(ξ;xc) =
u′(xc, t)u′(xc + ξ, t)

u′(xc, t)2
(4.21)

where u′ = u − u is the fluctuation about the time-average u. A small correlation

ρ(ξ;xc) ≈ 0 indicates that a perturbation at xc + ξ (for example due to actuation),

would not be ‘seen’ at xc. It is therefore expected that this function will be related

to the control kernel.

The correlation ρ(ξ;xc) is plotted against ξ at different locations xc along the domain

in Figure (4.6a). The correlations collapse very well for ξ ∈ [−4, 4], but start to

deviate as ξ becomes larger. The fluctuations of ρ(ξ;xc) around zero that occur for

large |ξ| are due to finite time-averaging, and decay very slowly to zero at T →

∞. Note also the slight loss of symmetry around ξ = 0 for points xc close to the

boundaries of the domain. The correlation ρ(ξ;xc) is then averaged over xc in the

region 40 < xc < 90, and the distribution of the spatially averaged correlation 〈ρ(ξ)〉

is then plotted in Figure (4.6b). Symmetry around ξ = 0 has now been restored.

Distinct positive and negative peaks can be identified at ξ ≈ ±4,±8.5,±13.5 etc.

Moreover, 〈ρ(ξ)〉 decays to zero for ξ < −20 and ξ > 20.

−32 −24 −16 −8 0 8 16 24 32

−0.5

0

0.5

1

ξ

ρ
(ξ
;x

c
)

xc = 40
xc = 50
xc = 60
xc = 70
xc = 80
xc = 90

(a) Correlations ρ(ξ;xc) against ξ for differ-
ent xc

−32 −24 −16 −8 0 8 16 24 32

−0.5

0

0.5

1

ξ

〈ρ
(ξ
)〉

(b) Averaged correlation in the region xc ∈
[40, 90]

Figure 4.6: Two-point spatial correlations.

107

These results can be explained by reference to Figure (4.1). The peaks at ξ = ±4

indicate the average distance between positive and negative streaks that are located

next to each other. The fluctuations around the average u have opposite signs and

therefore 〈ρ(±4)〉 < 0. The lower peaks at ξ = ±8.5 indicate a weaker correlation

between two positive or two negative streaks. The even lower peaks at ξ = ±13.5

can be explained similarly. The results indicate that the correlation is strong over

approximately ξ = 8.5, i.e. over the average distance between streaks of the same

sign.

In Figure (4.7), the spatially averaged correlation 〈ρ(ξ)〉 is plotted together with the

normalised LQR and PMSS control kernels. Plotted in this way, all three distribu-

tions have remarkable similarities, but also some differences. The two control kernels

and the correlation overlap in the region −2.5 ≤ ξ ≤ 2.5. At ξ = ±4, the troughs

are more clearly pronounced for the PMSS kernel and are closer to 〈ρ(±4)〉. On the

other hand, the LQR kernel decays very quickly outside the ξ region [−4, 4]. The

narrow support of the LQR kernel indicates that the actuation acts to annihilate the

positive/negative streaky combinations. On the other hand, the PMSS kernel has

wider support and opposes larger positive/negative/positive streaky combinations.

−32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32

−0.5

0

0.5

1

ξ

〈diagK〉(ξ)/〈diagK〉(0)
〈ρ(ξ)〉 δx = 0.5

δx = 0.5 (LQR)

Figure 4.7: The spatially averaged two-point correlation 〈ρ(ξ)〉 superimposed on
〈diagK〉(ξ)/〈diagK〉(0).

108

4.4.2 Response of the controlled system

The response of the system (4.16) to PMSS and LQR actuation is now discussed.

The instantaneous, spatially-averaged kinetic energy,

J(t) =
1

L

(
u(K, t)T δxu(K, t)

)
(4.22)

is used to determine which controller stabilises the system fastest. For PMSS, control

with different kernel sizes are used, i.e. a value ξmax is chosen, and the actuation

is computed using only the elements of K in the region −ξmax ≤ ξ ≤ ξmax around

each control point xc. The step size a(0) = 6 is set on Step 5 of Algorithm (3). To

ensure a fair comparison, a value c = 1.1 in equation (4.9) was found (by trial and

error) so that the average of the main diagonal, 〈diag(K)〉(0), is the same for the

PMSS and LQR controllers.

The energy J(t) is plotted against time in Figure (4.8). For a(0) = 6, all controllers

bring the system to rest and so no additional iterations are required. It is remarkable

that only a single PMSS control iteration, which relies only on information of the

uncontrolled system, is so effective. When ξmax = 2, the normalised LQR and PMSS

matrix kernels are very similar (as shown in Figure 4.7) and hence J(t) drops at the

same rate for both controllers. A contour plot of the controlled solution is shown in

Figure (4.9), which shows how effective the actuation is. It can be clearly seen that

the streaks found in the uncontrolled case (Figure 4.1) are rapidly annihilated upon

application of the control, and |u(x, t)| is brought to 0 within 5− 10 time units.

Increasing ξmax to 20 reduces the rate at which the system is brought to rest. Using

the full matrix, i.e. setting ξmax = 127, still reduces the instantaneous energy by 4

orders of magnitude (from J(0) = 1.68 to J(T) = 4.8×10−4). However, the response

of the system is slow when J(t) falls below 10−2, i.e. this is a long-term effect.

Indeed, as can be seen from Figure (4.8), and especially from the inset that zooms-

109

Figure 4.8: Instantaneous kinetic energy J(t) of the actuated system using PMSS
and LQR. The uncontrolled case is shown in black colour and the LQR in blue. For
the PMSS control matrix K, only the elements that fall inside the indicated range
of ξ are used. Decreasing ξmax led to faster stabilisation for the values considered.

Figure 4.9: Absolute values of the controlled solution |u(x, t)| in log-scale (with
ξmax = 2).

in to small values of t, the rate of descent is initially the same for PMSS and

LQR. Most importantly, for the PMSS controller, this holds for all values of ξmax,

even the largest. The curves start to deviate for approximately t > 1. In Figure

(4.10), the spatial distribution of the time-average and rms of u(x, t) are plotted

with and without control (the results are with ξmax = 127). Note the effectiveness

110

in suppressing both variables and bringing them close to 0 across the whole domain.

0 16 32 48 64 80 96 112 128
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

Uncontrolled
Controlled

(a) Time average of u(x, t)

0 16 32 48 64 80 96 112 128
0

0.4

0.8

1.2

1.6

x
u
R
M

S

Uncontrolled
Controlled

(b) RMS of u(x, t)

Figure 4.10: Time average and RMS of u(x, t). The controller K(1) used the full
matrix, i.e. with −127 ≤ ξ ≤ 127. The statistics were computed by time-averaging
between t = 500 and t = 800(= T).

In order to shed more light onto the behaviour shown in Figure (4.8), the matrix

Al − K(1) is considered, where Al is the discrete form of the right-hand-side of

the linearised equation (4.18). It is expected that for the controlled systems, the

eigenvalue of Al−K(1) with the largest real part will determine how fast the system

is stabilised. The nonlinear term u∂u/∂x is suppressed with actuation, as shown in

Figure (4.11), therefore the eigenvalues µ
(
Al −K(1)

)
are sufficient to determine the

stability of the controlled systems.

Figure (4.12) shows the eigenvalues, µ, for two values of ξmax = 2, 127. Note that

for the uncontrolled case, all µ(Al) are real because the matrix Al is symmetric

(contains only second and fourth-order derivatives that are discretised with central

differences). However, some µ(Al−K(1)) have a small imaginary part due to the lack

of strict symmetry of K(1). This is likely due to the finite length of the trajectory T

and the slow convergence of the off-diagonal elements. Some eigenvalues of Al have

positive real parts, indicating linear instability. When the controller is introduced, all

eigenvalues move to the left-hand plane, i.e. the system becomes stable. However,

111

1 16 32 48 64 80 96 112 127
10−8

10−6

10−4

10−2

100

x

|u
∂
u

∂
x
|

Uncontrolled
LQR
−2 ≤ ξ ≤ 2
-127≤ξ≤127

Figure 4.11: Comparison of the time-averaged absolute values of the nonlinear term
|u∂u/∂x| using different actuations.

−4 −3 −2 −1 0 0.5
−0.1

−0.05

0

0.05

0.1

Re(µ)

I
m
(µ
)

µ(Al)

µ(Al −K(1))

(a) K(1): −2 ≤ ξ ≤ 2

−4 −3 −2 −1 0 0.5
−0.1

−0.05

0

0.05

0.1

Re(µ)

I
m
(µ
)

µ(Al)

µ(Al −K(1))

(b) K(1): −127 ≤ ξ ≤ 127

Figure 4.12: Eigenvalues of the controlled and uncontrolled matrices, Al−K(1) and
Al, respectively, plotted in the complex-plane (K(1) = −a(0)

dJ(T)/dK(0) for T = 800
and a(0) = 6). Only values with Re(µ) > −4 are shown.

for ξmax = 127, some eigenvalues are close to the imaginary axis, explaining the

slower rate of descent of J(t).

4.5 Algorithm Performance

The performance of Algorithm (3) is now discussed. The inputs T = 50, K(0) = 0,

and ε = 1×10−2 (stopping criteria) were set, while restricting K to the diagonals in

112

the region −2 ≤ ξ ≤ 2. A number of performance measures are given in Table (4.1).

It is clear that a single iteration is sufficient to drive the kinetic energy evaluated

at t = T , J(T), to zero. Since one iteration renders the controlled system linearly

stable, i.e. Re
(
µmax

(
Al −K(1)

))
< 0, a second iteration is unnecessary.

Iteration # J (T) J(T) ‖dJ(T)/dK(i)‖2 a(i)

i = 0 1.62 1.37 3.7× 10−1 10
i = 1 1.4× 10−2 ≈ 1× 10−10 1× 10−2 10
i = 2 1.4× 10−2 ≈ 1× 10−10 - -

Table 4.1: Some key PMSS control (Algorithm 3) performance measures. The
algorithm inputs used are T = 50, K(0) = 0 and ε = 1 × 10−2. K is restricted
to −2 ≤ ξ ≤ 2.

The time-average over [0, T], J (T), is reduced by 2 orders of magnitude between

the 0 − th iteration (uncontrolled flow) and the controlled flow after one iteration.

The actual value of J (T) depends on T and accounts for the transient shown in

Figure (4.8). The variation of J (T) against T (when the algorithm is run separately

for each T) is shown in Figure (4.13). J (T) drops with rate ∼ T−1, because the

transient period occupies a smaller and smaller fraction of T as T → ∞. The 2-

norm of the sensitivity matrix ‖dJ(T)/dK(i)‖2 = σmax
(
dJ(T)/dK(i)), where σmax denotes

the maximum singular value, drops by a factor of three from the 0 − th to the 1st

iteration. Again, this depends on T .

Table (4.2) shows the Adjoint PMSS solver (Algorithm 4) parameters and perfor-

mance (Algorithm 4 is called on Step 3 of Algorithm 3). Initially, the uncontrolled

trajectory (K(0) = 0) has 15 positive Lyapunov exponents (N+LE = 15). The pre-

conditioner therefore uses l = 15 on the first iteration (to annihilate these fastest

growing modes). The condition number κ is reduced by four orders of magnitude,

and the convergence of GMRES is achieved in 34 iterations. On the second it-

eration, all unstable modes have been annihilated (N+LE = 0), and therefore no

preconditioning is necessary (the condition number κ(S) = 5 is already very small).

113

102 103

10−3

10−2

10−1

100

T

J
(T

)

Uncontrolled
Controlled
1
T

Figure 4.13: Space-time averaged objective J (T) obtained by running Algorithm (3)
for different T ; it drops with rate ∼ T−1.

Iteration # N+LE ∆T l q γ κ(S) κ(H) # GMRES Iterations

i = 0 15 5 15 1 0.1 1.3× 105 24 34
i = 1 0 5 - - 0.1 5 - 2

Table 4.2: Adjoint PMSS solver (Algorithm 4) parameters. N+LE refers to the
number of positive exponents of the trajectory on Step 3 of Algorithm (3). κ(S)

and κ(H) = κ
(
γI + MBD

(q)
(l)S

)
are the condition numbers of the unconditioned and

preconditioned MSS matrices, respectively.

For Algorithm (3) to be applicable to large systems, it must be able to compute

accurate sensitivities as efficiently as possible. The solution to the linear system

(4.13) dominates the computational cost of the algorithm, making preconditioning

necessary for scalability. In Figure (4.14), the convergence rate, quantified in terms

of the GMRES residuals (‖r(m)‖2 = ‖q −Hŵ(m)‖2), is plotted against the GMRES

iteration number m, where q and H are, respectively, the right-hand-side vector and

matrix of (4.13). It is clear that the dependence of the convergence rate on T is

very weak (as previously shown for tangent MSS in Figure (3.17a) for the KSE). The

residuals drop by 5 orders of magnitude in between 25-37 iterations, even though T

varies by more than an order of magnitude, from T = 50 to T = 800, increasing the

number of unknowns ŵ by a factor of 16.

114

0 10 20 30 40
10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration Number (m)

G
M

R
ES

R
es

id
ua

l‖
r (

m
)
‖ 2

T = 50
T = 100
T = 200
T = 500
T = 800

Figure 4.14: GMRES Residuals ‖r(m)‖2 for Step 3 of the Adjoint PMSS solver
(Algorithm 4). The preconditioner parameters used are ∆T = 10, l = 15, q = 1 and
γ = 0.1. The residual ‖r(m)‖2 drops by approximately five orders of magnitude by
the final iteration for all T values.

4.6 Summary

An algorithm that couples shadowing adjoint sensitivity analysis with gradient de-

scent was proposed to simultaneously compute all the elements of the feedback

control matrix K for chaotic systems. The sensitivities were used as search direc-

tions to find the matrix elements that minimise an objective function, subject to

the full nonlinear system constraints. Most importantly, due to the adopted adjoint

formulation, the computational cost is independent of the number of the matrix

elements. Algorithm (3) was applied to control the KSE, and the actuated system

was successfully stabilised around the rest position, utarg = 0. It was shown that

for suitably chosen parameters, a single iteration of the algorithm was sufficient to

compute a stabilising feedback matrix K.

The control kernels obtained using Algorithm (3) were compared with the standard

LQR kernels. Similarities and differences were noted. Both kernels had compact

support and similar shape, which was related to the streaky structure of the solution

115

of the uncontrolled KSE. A very similar control kernel shape can be expected for

longer domain lengths L, since the streak spacing is independent of L. They were

almost identical for short separations from the actuation point, but the LQR kernel

decayed faster to 0. This difference is most likely due to the nonlinear terms that

are ignored in LQR. All kernels computed with Algorithm (3) were stabilising.

From a computational point of view, the cost of LQR scales with O(N3), which

poses severe restrictions for applications to large systems. On the other hand, the

PMSS algorithm uses only time steppers and a preconditioner to make the linear

solver convergence rate almost independent of N and T . However, as discussed in

Section (3.8), the cost of preconditioning increases with N+LE, so for the case of the

KSE, the preconditioning cost would likely increase with L. While the LQR showed

faster stabilisation of the instantaneous energy for the case examined (see Figure

4.8), the performance of the PMSS controller was almost identical for the restricted

kernel.

116

Chapter 5

State Reconstruction of Chaotic

Systems from Limited Measurements

5.1 Introduction

The acceleration approach proposed in Chapter (3) is applicable whenever a min-

imisation problem requiring the application of the multiple shooting method needs

to be solved. In the previous chapter, it was applied to compute the elements of a

feedback matrix. In this chapter, the state reconstruction of chaotic systems from

limited measurements is considered. As will be in the next section, this can be for-

mulated as an optimisation problem for which the acceleration approach of Chapter

(3) can be applied.

Measurements of real physical systems are usually taken at limited points in space

and time, which are usually corrupted by noise. Additionally, the mathematical

description of the physical system may be incomplete and subject to unknown dy-

namics and uncertainties, such as unknown initial conditions and parameter values.

It is therefore important to fuse the experimental data with uncertain dynamical

117

models in order to estimate the true system behaviour. This process is called data

assimilation. The aim is to reconstruct all the system states from limited mea-

surement data while minimising discrepancies between the measured data and the

predictions of the uncertain model. Data assimilation techniques can be broadly

categorised into variational and sequential methods. Sequential methods such as

Kalman filtering produce an improved estimate every time a new measurement is

available. On the other hand, variational methods operate over a broader time

window, i.e. consider a larger number of measurements in time. For variational

(VAR) methods, an objective function quantifying the mismatch between the avail-

able measurements and their estimation from the model over a given time window,

is minimised.

The common VAR approach [12, 13, 14, 15] requires integration of the non-linear

equations (1.1) and backward-in-time integration of the adjoint equations, to com-

pute the derivatives of the objective w.r.t the control parameters (usually uncertain

system parameters and/or the initial conditions). Using a descent algorithm (such

as steepest descent or conjugate gradient), the control values that minimise the

objective are found iteratively. The associated storage costs are usually low, and

parallel integration of the non-linear and adjoint equations can be used to reduce

the computing time [95].

This approach has a few drawbacks, however. Slow convergence can be expected

if real measurements are used [96]. Since each iteration requires an integration of

the non-linear and adjoint equations, it is crucial to minimise the iteration count.

Preconditioned Quasi-Newton updates are often used to accelerate the convergence

[96], but these require the computation and storage of an approximate Hessian

matrix. Finding the control values that minimise the objective is straightforward if

the objective is convex w.r.t the control values. Systems undergoing transition may

have two minima, and convergence to a local minimum may occur, depending on

118

the initial control values [12].

For chaotic systems, such an approach may only be useful for short time assimilation

windows T [97, 13], due to the exponential growth of initial value errors. Hence for

chaotic systems, it may be better to compute incremental updates for segmented

time windows [96, 98]. The idea is to use linear operators to compute updates of

the estimation (and controls) at discrete points in time. In [98], the discrete-time

updates were obtained by solving a preconditioned saddle point system.

There is much scope for improvement with regards to segmented VAR data assimila-

tion for chaotic systems. In order to accelerate the convergence, the preconditioning

of the saddle point system arising from the solution to the corresponding optimi-

sation problem is one area which requires particular attention. In this chapter, an

iterative VAR algorithm is derived, which uses the Newton-Raphson method to solve

an optimisation problem. At each outer iteration, a saddle point system similar to

that derived in [98] must be solved iteratively (inner iterations). The preconditioner

introduced in Chapter (3) is also used here (with slight modifications, as will be

shown in Section 5.3.1), to accelerate the convergence rate of the Schur complement

system solution. Results are presented for the Lorenz system to demonstrate the

efficacy and accuracy of the proposed method.

5.2 Problem Formulation

In practical applications, only some system states (or functions thereof) can be

measured. In this section, a method to reconstruct all the states of a chaotic system

from such limited measurements is presented. A similar KKT system to that derived

for MSS (equation 2.23) is also derived here, and it is shown that the preconditioner

proposed in Section (3.4) can be used with minor modifications. As will be shown

later, the preconditioner results in a significant acceleration of the solution of the

119

resulting linear system.

Suppose that a set of states um(t) (assumed continuous and possibly noisy) have

been obtained experimentally. The vector um(t) has length N , and unmeasured

states are replaced by zeros (i.e. um,i = 0 if the ith state is not measured). To

estimate all of the system states, a common approach is to form and solve the

following least-squares problem:

Minimise
u

J (T) =
1

2T

∫ T

0

(u− um)TQ(u− um) dt

subject to ru =
du
dt
− f(u, t) = 0

(5.1)

which minimises the mismatch between the estimated states u(t) and the measure-

ments um(t), subject to the non-linear ODE constraint. The matrix Q is N × N

diagonal with

Qi,i = 1 if the ith state measurement is available,

Qi,i = 0 if not available
(5.2)

The above minimisation statement (5.1) assumes that some states can be measured

directly. If instead a linear combination of states y(t) = Cu(t) is measured (where

C is the output matrix), the objective in (5.1) can be written as

J (T) =
1

2T

∫ T

0

(Cu(t)− ym)T (Cu(t)− ym) dt (5.3)

where ym is a vector of lengthM (number of measurements). It is shown in Appendix

(C) that the resulting optimisation problem has a similar structure to that of (5.1).

Data assimilation based on solving (5.1) or equivalent forms, has been carried out

previously in [97, 12], where the aim was to find the initial state estimation that

minimises the objective in (5.1) or (5.3). The current approach finds the full state

estimation (i.e. at all time steps) that minimises the objective. This is to avoid the

120

exponential error growth of guessing the initial condition.

It can be shown by using calculus of variations, that the optimal state estimation

u(t) must satisfy the following optimality system (refer to Appendix (C) for the

derivation):

du
dt
− f(u, t) = 0 (5.4a)

dλ

dt
+
∂f
∂u

∣∣∣∣T
u
λ +Q(u− um) = 0 (5.4b)

λ(0) = λ(T) = 0 (5.4c)

where λ(t) is the vector of adjoint variables. For chaotic systems, λ(t) should remain

bounded in time because (5.4b) is constrained at both ends of the time window by

the boundary conditions (5.4c). An iterative method to solve the system (5.4) must

be used, since (5.4a) is non-linear. The Newton-Raphson method is well suited for

this root-finding problem. More specifically, u(t) and λ(t) are updated as follows:

u(t)

λ(t)

(j+1)

=

u(t)

λ(t)

(j)

+

δu(t)

δλ(t)

(j)

(5.5)

between iterations j and j + 1. The update
[
δuT (t) δλT (t)

]T
(j)

is computed by

substituting (5.5) into (5.4), and linearising around
[
uT (t) λT (t)

]
(j)

to give the

two-point boundary value problem (BVP):

d(δu)

dt
=

∂f
∂u

∣∣∣∣
u(j)

δu(t)− ru(t) (5.6a)

d(δλ)

dt
= −Qδu(t)− ∂f

∂u

∣∣∣∣T
u(j)

δλ(t)− rλ(t) (5.6b)

δλ(0) = −λ(j)(0) (5.6c)

δλ(T) = −λ(j)(T) (5.6d)

121

The boundary conditions (5.6 c,d) derive from (5.4c), and ru(t) and rλ(t) are the

residuals,

ru(t) =
du
dt (j)

− f(u(j))

rλ(t) =
dλ

dt (j)
+
∂f
∂u

∣∣∣∣T
u(j)

λ(j) +Q(u(j) − um)

(5.7)

The procedure to compute u(t) is straightforward, and the algorithm is presented

below.

Algorithm 6: Data Assimilation
1. Set j = 0. Assume an initial distribution u(t)(0) = um(t) (i.e. the initial

estimate uses full information of the measured states, while the other sta-
tes are set to zero). Set λ(0) = 0.

2. Compute the residuals (5.7).

3. Call Newton-Raphson Solver1 to compute
[
δuT (t) δλT (t)

]T
by solv-

ing the two-point BVP (5.6).

4. Update the state and adjoint variables according to (5.5).

5. Set j = j + 1 and return to step 2, or break if ru(t) and rλ(t) drop below
a prescribed tolerance and output u(j)(t) as the optimal estimation.

5.3 Multiple Shooting Method to Solve the Two-

point BVP (5.6)

The multiple shooting method will be applied to solve the BVP (5.6). This method

keeps storage costs low and relies on matrix-vector products only. A shooting

method similar to that employed in Section (2.4) is derived below. Recall the tangent

1To be introduced in Section (5.3)

122

and adjoint state transition matrices that satisfy

dφτ,t
dt

=

(
∂f
∂u

∣∣∣∣
t

)
φτ,t

dφTτ,t
dτ

= −
(
∂f
∂u

∣∣∣∣
τ

)T

φτ,t (5.8)

The estimation time window is again split into P equal length segments. The ana-

lytical solutions to (5.6a) and (5.6b) within a given segment (ti ≤ t ≤ ti+1) are given

respectively by

δu(t) =
(
φti,t

)
δui −

∫ t

ti

(
φτ,t
)
ru(τ) dτ (5.9a)

δλ(t) =
(
φTti+1,t

)
δλi+1 −

∫ t

ti+1

(
φTτ,t

) (
Qδu(τ) + rλ(τ)

)
dτ (5.9b)

The first terms on the right-hand-side of (5.9 a,b) are the zero-input response terms,

while the second terms on the right-hand-side of (5.9 a,b) are the zero-state response

terms.

The aim is to use the analytical solution form (5.9) to derive a coupled system of

equations for δui and δλi. Once δui and δλi are computed, they are used as initial

conditions to integrate the coupled equations (5.6 a,b) in each segment to obtain

the continuous time updates δu(t) and δλ(t). This concept is illustrated in Figure

(5.1).

Equation (5.9a) is applied to all segments to find δui+1 (i = 0, 1, . . . , P − 1),

δui+1 = φi+1δui + bδu,i+1 (5.10)

where φi+1 = φti,ti+1
and bδu,i+1 = −

∫ ti+1

ti

(
φτ,ti+1

)
ru(τ) dτ . Equation (5.10) is a set

of P equations for P + 1 unknowns (δu0, δu1, . . . δuP). The adjoint equation (5.9b)

is slightly more complicated due to the coupling term −
∫ t
ti+1

(
φTτ,t

)
Qδu(τ) dτ . It is

assumed that if ∆T = ti+1− ti is sufficiently small, then the quantity
(
φTτ,t

)
Qδu(τ)

123

Optimal estimation
(at convergence)

δu(1)(t)

t=tPt=t0 t=t1 t=tP-1
...

δλ(1)(t)

u(1)(t)

λ(1)(t)

u(0)(t)
λ

(0)
(t)

λ(t)

u(t)

Figure 5.1: An illustration of the multiple shooting method used to update u(j)(t)
and λ(j)(t). The discrete-time updates δui and δλi (shown as dots) are computed
using equations (5.18) and (5.19), respectively. The solutions δui and δλi are then
used as initial conditions for the integration of (5.6) in ti ≤ t ≤ ti+1 to obtain δu(t)
and δλ(t) over the ith segment.

is constant in the window [ti+1, ti], and the following approximation can be made:

−
∫ ti

ti+1

(
φTτ,ti

)
Qδu(τ) dτ ≈ ∆T

(
φTti+1,ti

)
Qδui ≈ ∆TQδui (5.11)

Since φTt,t = I, then for small ∆T , φti+1,ti ≈ I. This is a crude approximation

that only holds if ∆T → 0, meaning that ∆T should be small for the iterations of

Algorithm (6) to converge. Proceeding in a similar fashion as in equation (5.10),

the following discrete adjoint equations are derived:

δλ0 ≈ φT1 δλ1 + ∆TQδu0 + bδλ,0 ≈ −λ(j)
0 (5.12a)

δλi ≈ φTi+1δλi+1 + ∆TQδui + bδλ,i (i = 1, 2, . . . , P − 1) (5.12b)

δλP = −λ(j)
P (5.12c)

124

where bδλ,i = −
∫ ti
ti+1

(
φTτ,ti

)
rλ(τ) dτ . The boundary conditions (5.6c) and (5.6d)

are imposed in (5.12a) and (5.12c), respectively.

Equations (5.10) and (5.12) define a coupled system of equations that can be solved

for the discrete estimate and adjoint updates δu =

[
δuT0 δuT1 . . . δuTP

]T
and

δλ =

[
δλT1 δλT2 . . . δλTP

]T
, respectively,

−G AT

A 0

δu
δλ

 =

bδλ

bδu

 (5.13)

where

A =

−φ1 I

−φ2 I

.

−φP I

, bδλ =

bδλ,0 + λ
(i)
0

bδλ,1
...

bδλ,P−1

−λ(i)
P

, bδu =

bδu,1

bδu,2
...

bδu,P

(5.14)

and

G = diag (∆TQ, . . . ,∆TQ, 0) (5.15)

The matrix in (5.13) is similar to that of the MSS KKT matrix (2.23). Both are

symmetric, indefinite, size N(2P + 1) square matrices with identical structure, but

different blocks. Note also that no projection operators (2.18) are necessary.

To solve (5.13) efficiently using the preconditioner introduced in Section (3.4), the

Schur complement needs to be formed, which requires inversion of the (1,1) block,

G. However, this matrix is a diagonal that contains zero elements (also recall that

Q (5.2) is not invertible). The review paper of Benzi et al. [50] highlights methods

applicable for solving saddle point matrices (like equation 5.13) with singular top-left

125

(1,1) blocks. One approach [99] transforms (5.13) into an identical system with an

invertible (1,1) block, for which a Schur complement may be formed. The resulting

Schur complement is however expensive to form and challenging to precondition.

In order to invert the (1,1) block and form the Schur complement, G is regularised

and replaced by

G̃ = diag
(
Q̌, . . . , Q̌, εI

)
(5.16)

where Q̌ = ∆TQ̃ and

Q̃i,i = 1 if the ith state measurement is available,

Q̃i,i = a if not available
(5.17)

The matrix Q̃ replaces the zero diagonal elements of Q (5.2) with a small positive

number 0 < a � 1, making G̃ invertible. The effect of replacing Qi,i = 0 with

Q̃i,i = a can be understood by inspecting the minimisation objective in (5.1). The

weighting Qi,i = 0 is required to ensure that unmeasured states are not minimised.

Replacing Qi,i = 0 with Q̃i,i = a means that very small weights are placed on the

unmeasured states at the discrete points (i = 0, 1, . . . , P − 1).

The parameter 0 < ε � 1 relaxes the boundary condition at t = T (5.6c), i.e. the

boundary condition becomes −εIδuP + δλP = −λ(i)
P . Clearly a and ε should be as

small as possible (0 < a � 1 and 0 < ε � 1). This is however challenging, as the

Schur complement becomes more ill-conditioned as a → 0 and ε → 0 (this will be

discussed in Section 5.4).

The approximate Schur complement of (5.13) is

(
AG̃−1AT

)
δλ = AG̃−1bδλ + bδu (5.18)

126

which is solved iteratively for δλ and then substituted into

δu = G̃−1
(
AT δλ− bδλ

)
(5.19)

Finally, (5.6) is integrated forward in time in all segments i = 1, 2, . . . , P with the

initial conditions δui−1 and δλi−1 to obtain δu(t) and δλ(t). The matrix of (5.18)

has similar spectral properties as the MSS matrix defined in (2.24). This also needs

to be preconditioned for fast convergence. This will be the topic of the next section.

5.3.1 Preconditioning the Schur complement

The preconditioning approach of the system (5.18) is considered in this section and is

implemented in the following section. The Schur complement matrix S = AG̃−1ATof

(5.18) is

S =

φ1Q̌
−1φT1 + Q̌−1 −Q̌−1φT2

−φ2Q̌
−1 φ2Q̌

−1φT2 + Q̌−1 −Q̌−1φT3
.

−φP Q̌−1 φP Q̌
−1φTP + (εI)−1

(5.20)

The matrix S is symmetric, block tri-diagonal and positive definite. The matrix

structure is identical to that of the MSS Schur complement matrix (2.24), however,

the matrix blocks are different. The block diagonal preconditioner (3.14) derived in

Section (3.4) can be used with minor changes. The preconditioner MBD used here

127

approximates the inverse of the diagonal of S, i.e.,

MBD ≈ S̃−1 =

(
ϕ1ϕ

T
1

)−1 (
ϕ2ϕ

T
2

)−1

. . . (
ϕPϕ

T
P

)−1

(5.21)

where for i = 1, 2, . . . , P − 1,

ϕiϕ
T
i =

[
φiQ̌

− 1
2 Q̌−

1
2

]Q̌− 1
2φTi

Q̌−
1
2

 = φiQ̌
−1φTi + Q̌−1 (5.22)

and for i = P ,

ϕPϕ
T
P =

[
φP Q̌

− 1
2 (εI)−

1
2

]Q̌− 1
2φTP

(εI)−
1
2

 = φP Q̌
−1φTP + (εI)−1 (5.23)

Note that (5.21) is identical in structure to (3.13). The matrix ϕi is N × 2N which

can be written as

ϕi = UiΣiV
T
i (5.24)

where U is a N ×N matrix containing the N left singular vectors, Σ is a N × 2N

quasi-diagonal matrix containing the N singular values σ(ϕ) and V is a 2N × 2N

matrix containing the 2N right singular vectors. The N singular values σ(ϕ) are

contained in the N × N diagonal sub-matrix (the last N columns consist of zeros,

which are ignored).

The preconditioner MBD (3.14) based on partial SVD is repeated here:

MBD
(q)
(l) = diag(M

(q)
(l),1,M

(q)
(l),2, ...,M

(q)
(l),P) (5.25a)

M
(q)
(l),i = U1,iΣ

−2
1,iU

T
1,i + (I − U1,iU

T
1,i) (5.25b)

128

Now Σ1,i is the diagonal matrix containing the l leading singular values σ(ϕ) with

corresponding left singular vectors U1,i. In summary, the same preconditioner is

used, but the singular values and vectors of the matrix ϕi replace those of the

matrix Φi.

MBD
(q)
(l) is used as a left preconditioner for the system (5.18) with regularisation

applied: (
γI + MBD

(q)
(l)S

)
δλ = MBD

(q)
(l)

(
AG̃−1bδλ + bδu

)
(5.26)

Appendix (D) shows how to to compute the MATVEC product
(
γI + MBD

(q)
(l)S

)
z

for an arbitrary vector z. The algorithm to compute the Newton-Raphson update

(5.6), i.e. step 3 of Algorithm (6), is summarised below.

Algorithm 7: Newton-Raphson Solver
Inputs: T , P , a, ε, l, q, γ. Outputs: δu(t), δλ(t)

1. Form the vector
(
AG̃−1bδλ + bδu

)
(refer to Appendix D for more details).

2. Compute the preconditioner MBD
(q)
(l) using (5.25).

3. Form the RHS of (5.26).

4. Solve (5.26) for δλ using GMRES.

5. Compute δu using (5.19).

6. Integrate (5.6) forward in time in segments i = 1, 2, . . . , P with initial
conditions δui−1 and δλi−1 to obtain δu(t) and δλ(t).

Algorithm (6) therefore has two iterative loops: the outer loop and the inner loop

(the iterative solution of (5.26), i.e. step 4 of Algorithm 7).

129

5.4 Application to the Lorenz System

Algorithm (6) was applied to obtain optimum state estimations u(t) =
[
x y z

]T
for the Lorenz system, which is repeated below for convenience,

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y dz

dt
= xy − βz (5.27)

The standard Lorenz parameters (σ = 10, β = 8/3 and ρ = 28) were used through-

out this chapter. The multiple shooting method introduced in the previous section

and summarised in Algorithm (7) was used to compute the Newton-Raphson up-

date (5.6). Initially, the two variables y(t) and z(t) were measured, while x(t) was

estimated. Therefore the matrix Q = diag(0, 1, 1), and Q̃ = diag(a, 1, 1). In Section

(5.4.3), a more challenging case where only one variable is measured and the other

two are estimated, is also considered.

Equation set (5.27) was integrated in [0, T] with an initial condition u0 on the

attractor, to obtain a trajectory utrue(t) =
[
xtrue ytrue ztrue

]T . The measurement

vector um(t) =
[
0 ytrue ztrue

]T was defined and the aim was to recover utrue(t)

from an initial state estimate u(0)(t) = [0 ytrue ztrue]
T and initial adjoint λ(0)(t) =

[0 0 0]T . The algorithm was set to terminate when all time-averaged absolute

residuals |ru(t)| and |rλ(t)| have dropped below 1 × 10−3. A general test case is

presented first, followed by a more detailed analysis of the effect of varying different

parameters.

Figure (5.2) shows the convergence of the three components of |ru(t)| and |rλ(t)|

for a trajectory T = 50. The relaxation parameters used were a = 1 × 10−5 and

ε = 1 × 10−3, while the solver (5.26) used ∆T = 0.2, γ = 1 × 10−5 and l = 3.

Also superimposed is J (T), to monitor the departure of u(j) from um. Both J (T)

and |rλ(t)| were initially zero (since u(0)(t) = um(t) and λ(0)(t) = 0). As clearly

shown, the outer iterations converge very fast and |ru(t)| drops by at least 3 orders

130

0 1 2

10−5

10−3

10−1

101

Iteration #

|ru(t)|
|rλ(t)|
J (T)

Figure 5.2: Time-averaged residual convergence for a trajectory T = 50. The solver
parameters used were ∆T = 0.2, γ = 1 × 10−5 and l = 3, while the relaxation
parameters used were a = 1× 10−5 and ε = 1× 10−3.

of magnitude by the first iteration. By the second iteration, all residuals are below

1 × 10−3 and J (T) ≈ 1 × 10−4. The convergence rate, although fast, stalls. This is

not typical of the Newton-Raphson method which guarantees quadratic convergence.

However, since an approximate equation (5.26) is used to compute the discrete-time

updates δλi and δui, convergence to machine zero cannot be achieved. The initial

and converged residuals as a function of t are shown in Figure (5.3). The initial

0 10 20 30 40 50

10−10

10−8

10−6

10−4

10−2

100

102

t

|r(
t)
|

|ru(t)| (initial)
|ru(t)| (converged)
|rλ(t)| (converged)

Figure 5.3: Absolute values of the initial and converged (iteration #2) residuals.

131

adjoint residual rλ(0)(t) = 0, so it is not shown. It is clear that ru(t) drops by

several orders of magnitude along the entire assimilation time window.

Figure (5.4) shows the estimated variable x, along with the true variable xtrue,

obtained by integrating (5.27). The estimation is indistinguishable from the true

trajectory, demonstrating the effectiveness and accuracy of Algorithm (6).

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

t

xtrue

x (estimated)

Figure 5.4: A comparison of the estimated variable x with the true solution xtrue.

5.4.1 Analysis of the effect of preconditioning

The effect of preconditioning on the eigenvalue spectrum and the convergence rate

is examined here. As will be shown in the following subsection, the parameter a was

found to have an important effect on the convergence rate of the outer iterations

and the estimation quality. It is therefore important to look at the properties of the

preconditioned matrix for a range of a values.

The singular values σ(ϕi) defined in (5.22) and (5.23), which are used to construct

the preconditioner, are studied first. In Figure (5.5), σ(ϕi) (i = 1, 2, . . . , P), ordered

from largest to smallest, are plotted for different values of a. The vertical dashed

lines separate σ(ϕi) into three groups: those corresponding to λ′1,i > 0 (left), λ′2,i = 0

132

(centre) and λ′3,i < 0 (right), where λ′i is the finite-time Lyapunov exponent in each

segment i. It can be seen that reducing a by an order of magnitude (for a ≤ 1×10−1),

increases most σ(ϕi) in the left and centre groups by a factor of ≈
√

10. The smallest

σ(ϕi) (right group) remain mostly unaffected by changes to a.

1 150 300 450 600 750

101

102

103

#

σ
(ϕ

)

a = 1× 100

a = 1× 10−1

a = 1× 10−2

a = 1× 10−3

a = 1× 10−4

a = 1× 10−5

Figure 5.5: Singular values σ(ϕ), plotted for different values of a. There are P = 250
segments and therefore a total of 250× 3 = 750 singular values.

Figure (5.6) shows the eigenvalues of S (Panel a) and of MBD(l)S (preconditioned

Schur complement) for l = 1, 2, 3 (Panels b-d), ordered from smallest to largest.

No Tikhonov regularisation was applied (γ = 0). Without preconditioning applied

(Panel a), the largest 250 eigenvalues (corresponding to the positive Lyapunov ex-

ponent) are widely spread, which leads to slow convergence of the GMRES solver for

the internal iterations. It can be seen that µmax(S) increases by an order of magni-

tude when a is reduced by the same order. Using l = 1 (Panel b), µmax(MBD(1)S) is

reduced by approximately two orders of magnitude, but the clustering of the largest

eigenvalues remains poor for the smaller values of a. Using l = 2 (Panel c) signif-

icantly improves the clustering of the largest eigenvalues, while using l = 3 (Panel

d) ensures that µmax(MBD(3)S) ≈ 2 for any value of a.

133

1 150 300 450 600 750
10−8

10−6

10−4

10−2

100

102

104

106

108

#

µ
(S

)

(a) No preconditioning

1 150 300 450 600 750
10−12

10−10

10−8

10−6

10−4

10−2

100
102
104
106

#

µ
(M

B
D

(l
)
S
)

(b) Preconditioning (l = 1)

1 150 300 450 600 750
10−12

10−10

10−8

10−6

10−4

10−2

100

102

#

µ
(M

B
D

(l
)
S
)

(c) Preconditioning (l = 2)

1 150 300 450 600 750
10−12

10−10

10−8

10−6

10−4

10−2

100

#

µ
(M

B
D

(l
)
S
)

a = 1× 100

a = 1× 10−1

a = 1× 10−2

a = 1× 10−3

a = 1× 10−4

a = 1× 10−5

(d) Preconditioning (l = 3)

Figure 5.6: Eigenvalue spectra of the Schur complement S and the preconditioned
Schur complement MBD(l)S. All spectra were obtained for T = 50, ∆T = 0.2, γ = 0
and ε = 1× 10−3.

While the preconditioner has been shown to effectively cluster the largest eigenval-

ues, it is clear that MBD(l)S becomes more singular as a is reduced (notice the drop

in the smallest 250 eigenvalues in Panels (b-d) with decreasing a). This is attributed

to the loss of the block diagonal dominance of MBD(l)S with decreasing a, therefore

making the approximation (5.21) less accurate.

It was found that the convergence of |ru(t)| and |rλ(t)| became increasingly sensitive

to γ with decreasing a. In other words, the smaller the value of a, the smaller γ was

required to ensure that |ru(t)| and |rλ(t)| have converged. Unfortunately, smaller γ

leads to slower convergence of GMRES (with or without preconditioning). This can

be clearly seen in Figure (5.7). Notice however that the initial convergence rate is

independent of γ. For the initial residual to drop by two orders of magnitude (for

134

any γ value), 32 iterations without preconditioning vs. 6 preconditioner iterations

were required. The fast initial preconditioned convergence rate can be exploited by

relaxing the GMRES solver tolerance. The next subsection considers in detail the

effect of varying a on the estimation error and the outer loop convergence rate.

0 200 400 600 800
10−4

10−3

10−2

10−1

100

101

102

Iteration #

G
M
R
E
S
R
es
id
u
al

γ = 1× 10−1

γ = 1× 10−2

γ = 1× 10−3

γ = 1× 10−4

γ = 1× 10−5

(a) No preconditioning

0 30 60 90 120 150 180
10−8

10−7

10−6

10−5

10−4

10−3

10−2

Iteration #

G
M
R
E
S
R
es
id
u
al

γ = 1× 10−1

γ = 1× 10−2

γ = 1× 10−3

γ = 1× 10−4

γ = 1× 10−5

(b) Preconditioning with l = 3

Figure 5.7: Effect of varying γ on the GMRES convergence rate, whilst fixing all
other parameters: T = 50, ∆T = 0.2, l = 3, a = 1 × 10−5 and ε = 1 × 10−3. The
residuals shown are for the first ‘outer iteration’.

5.4.2 Effect of varying the relaxation parameters a and ε

The previous subsection discussed the use of the preconditioner to accelerate the

GMRES convergence. In this subsection, the effect of the relaxation parameters a

and ε on the outer loop convergence rate and the estimation error is considered. The

effect of varying a is discussed first.

Figure (5.8) shows the convergence of |ru(t)| and |rλ(t)| for different values of a.

The same stopping criteria as before was used, i.e. to terminate when |ru(t)| and

|rλ(t)| drop below 1 × 10−3. Only γ was allowed to vary from one simulation to

the other (to avoid divergence at small values of a). As expected, the convergence

of the outer iterations |ru(t)| and |rλ(t)| is accelerated as a is reduced, because the

solution to the original system (5.13) is approximated best as a → 0. However,

135

saturation occurs at a = 1× 10−3 (convergence rate is very similar for a = 1× 10−3

and a = 1 × 10−5). The value of J (T) on the final iteration decreases with a, and

this reflects directly on the absolute error of the estimation |x − xtrue|, as shown

in Figure (5.9). Clearly, smaller values of a result in more accurate estimations. It

is also worth noting that the outer loop iterations diverged for values greater than

a ≈ 2.5× 10−1.

Table (5.1) summarises the results shown in Figures (5.8) and (5.9). The fourth

column is included to show the average number of GMRES iterations executed per

outer iteration and the combined number (over all outer iterations). A GMRES

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration #

(a) a = 1× 10−1

0 1 2 3 4
10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration #

(b) a = 1× 10−2

0 1 2
10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration #

(c) a = 1× 10−3

0 1 2
10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration #

|ru(t)|
|rλ(t)|
J (T)

(d) a = 1× 10−5

Figure 5.8: Effect of varying the relaxation parameter a on the residual convergence
for a T = 50 trajectory. The parameters ∆T = 0.2, l = 3, and ε = 1 × 10−3 were
used. The regularisation parameter γ was varied according to the second column of
Table (5.1).

136

0 10 20 30 40 50

10−8

10−6

10−4

10−2

100

t

|x
−
x
tr
u
e
|

a = 1× 10−1

a = 1× 10−2

a = 1× 10−3

a = 1× 10−4

a = 1× 10−5

Figure 5.9: Effect of varying a on the estimation absolute error |x − xtrue|. The
errors were computed on the final (converged) outer iteration.

relative tolerance tol = 1 × 10−3 was prescribed (tol = ‖rinitial‖2/‖rfinal‖2, where r is

the residual of equation 5.26) for all a (except for a = 1×10−5, where tol = 1×10−4

was used). It was found that smaller tolerances lead to diminishing returns on the

estimation error and the outer iteration convergence rate, justifying the aforemen-

tioned choice of tol, while keeping the GMRES convergence rate independent of γ

(recall that the convergence rate is initially independent on γ, as shown in Figure

5.7b). The number of iterations till convergence for a ≥ 1 × 10−4 is almost inde-

pendent of a (it is higher for a = 1 × 10−5 because a tighter tolerance was used).

The time-averaged absolute error |x− xtrue| drops sharply with a, but stagnates at

a = 1× 10−4.

a γ # outer iterations # GMRES (inner) iterations absolute error
per outer it. total |x− xtrue|

1× 10−1 1× 10−2 7 22 154 3.96× 10−1

1× 10−2 1× 10−2 4 20 80 7.66× 10−2

1× 10−3 1× 10−3 2 23 46 8.30× 10−3

1× 10−4 1× 10−4 2 23 46 3.50× 10−3

1× 10−5 1× 10−5 2 31 62 3.40× 10−3

Table 5.1: Summary of the key performance indicators for different values of a.
It was necessary to reduce γ with decreasing a to ensure convergence of the outer
iterations. The GMRES solver used a relative tolerance tol = 1 × 10−3 (except for
a = 1× 10−5, where tol = 1× 10−4 was used). The absolute error was computed on
the final (outer) iteration.

137

The effect of varying ε is now considered. Recall that ε relaxes the boundary

condition at t = T (5.6c). As shown in Figure (5.10), ε mostly affects the error

|x(t)− xtrue(t)| close to the end of the trajectory, while the effect is insignificant at

earlier t. It was found that ε had a negligible effect on the convergence rate of |ru(t)|

and |rλ(t)| (the outer iterations) for the values of ε shown in Figure (5.10).

Figure 5.10: Effect of varying ε on the estimation absolute error |x − xtrue|. The
errors were computed on the final (converged) outer iteration. The parameters
a = 1× 10−3 and γ = 1× 10−3 were used.

5.4.3 Estimation of two states

The results presented thus far assumed that a single state xtrue was estimated. It is

important to examine the response of Algorithm (6) when a smaller number of states

are measured. In this subsection, it was assumed that only xtrue was available, while

ytrue and ztrue must be estimated. The measurement vector is therefore um(t) =

[xtrue 0 0]T and the aim was to estimate utrue(t), given um. The matrix Q =

diag(1, 0, 0) and Q̃ = diag(1, a, a).

As shown in Figure (5.11), the convergence behaviour of |ru(t)| and |rλ(t)| (com-

138

puted for a = 1× 10−6) is similar to that for a single-state estimation (as shown in

Figure (5.2) for a = 1× 10−5). Only one additional iteration was required to satisfy

the same outer loop convergence tolerance (1× 10−3).

0 1 2 3
10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration #

|ru(t)|
|rλ(t)|
J (T)

Figure 5.11: Time-averaged residual convergence when estimating the states y and
z over T = 50. The solver parameters used were ∆T = 0.2, γ = 1× 10−7 and l = 3,
and the relaxation parameters used were a = 1× 10−6 and ε = 1× 10−6.

0 5 10 15 20 25 30 35 40 45 50
−40

−20

0

20

40

t

ytrue
y (estimated)
ztrue
z (estimated)

Figure 5.12: Comparison of the estimated variables x and y, with the true solutions
xtrue and ytrue, respectively.

Figure (5.12) shows the comparison of the estimated states and their true values.

The time-averaged absolute errors for this case were |y − ytrue| = 9.74 × 10−2 and

139

|z − ztrue|=1.34×10−1. Although these errors are larger than |x− xtrue|=3.10×10−3

(computed for a single-state estimation with the same parameters), it is still possible

to construct very accurate estimations from less measurement data, at least for the

Lorenz system.

5.5 Summary

In this chapter, a multiple shooting method for the state reconstruction of chaotic

systems was formulated. The method uses outer iterations to reduce the residuals

(5.7) and inner iterations to solve the linear Schur complement matrix system (5.26)

using GMRES. The preconditioner introduced in Section (3.4) was used (with minor

changes) to accelerate the convergence rate of the Schur complement system. Results

were presented for estimating Lorenz system states.

It was shown that the preconditioner deflated the maximum eigenvalue to µmax ≈ 2

for all values of a (with the correct choice of the number of singular modes l). The

preconditioner did, however, cause µmin to drop with decreasing a. While it was

still possible to keep the (inner loop) GMRES convergence rate independent of a

(by increasing the GMRES solver tolerance), further work on the development of

more accurate preconditioning is required.

Estimated states were computed with high accuracy. The outer loop convergence

rate and the estimation accuracy were influenced mostly by the relaxation parameter

a. The optimum value of a to use would likely be system dependent and also

dependent on the number of estimated states. For the Lorenz System, the smallest

estimation errors were obtained for a = 1 × 10−5 (one state estimation) and a =

1 × 10−6 (two-state estimation). Further reduction in a led to diminishing returns

on the estimation error and the outer loop convergence rate.

140

The preconditioning of saddle point systems (analagous to equation 5.13) arising

from the application of variational data assimilation to nonlinear systems, has only

recently caught attention [98, 100, 101]. The current approach differs by considering

the partial SVD of the state transition matrices (linear operators) to precondition

the Schur complement system. For this approach to be competitive, an alterna-

tive preconditioner structure that bounds the minimum eigenvalue µmin should be

devised for future work.

141

Chapter 6

Conclusions and Future Work

6.1 Summary of the Main Contributions

The successful application of shadowing algorithms for the sensitivity analysis of

chaotic systems has been demonstrated in the past. The LSS method is well condi-

tioned because it relaxes the initial condition and subsequently solves a least-squares

problem to find the trajectory for the perturbed parameter, which shadows the ref-

erence trajectory. The demanding memory requirements of LSS and the very long

computational time make it virtually impossible to apply to large systems. The

multiple shooting variant (MSS) has only moderate storage requirements, but still

suffers from slow convergence due to the very large condition number of the system

matrix. The main aim of this thesis was to reduce the computational cost of the

shadowing algorithm MSS and to apply the developed tools for the feedback control

and data assimilation of chaotic systems.

To accelerate the convergence rate of the MSS Schur complement system, a block

diagonal preconditioner based on partial singular value decomposition was proposed.

The preconditioner works by annihilating the fastest growing modes (corresponding

142

to the largest positive Lyapunov exponents), while Tikhonov regularisation is used

to regularise the smallest eigenvalues. This tight clustering of eigenvalues leads to

very fast convergence. With an appropriate choice of the parameters l and γ, the

convergence rate was found to be almost independent of the trajectory length and

the #DOF for the 1D KSE. Similar convergence behaviour can be expected for larger

systems if l and γ are chosen suitably. It was shown that the singular modes of the

MSS matrix A corresponding to very small singular values (0 < σ(A) � 1) were

responsible for a reproducible bias in the sensitivities of the KSE and the Lorenz

system (for certain parameter values). Very small σ(A) are present for non-uniformly

hyperbolic systems due to tangencies of the Lyapunov vectors at some points along

the attractor. By expressing the minimum norm solution of the MSS problem in

terms of a sum involving the singular modes of A, it was found that the sensitivity

bias can be almost eliminated with the removal of all modes with σ(A) < 1.

The adjoint version of preconditioned MSS was then coupled with a gradient descent

algorithm to compute a feedback control matrix for the KSE. The control algorithm

updates all elements of the feedback matrix with a single adjoint computation. To

the best of the author’s knowledge, this was the first attempt to use shadowing to

compute a feedback controller. A stabilising controller was found with just one iter-

ation of the algorithm, demonstrating its effectiveness. The response of the actuated

system to the feedback controllers computed using PMSS and standard LQR were

compared. The performance, measured in terms of how fast the actuated systems

were stabilised, was used to compare both controllers. The LQR controller led to

faster stabilisation of the actuated system compared to the PMSS controller. It is

thought however that LQR theory is ideal for systems with passive energy conserv-

ing non-linearities (such as the KSE with zero Dirichlet and Neumann boundary

conditions). The PMSS controller could outperform LQR for systems that are not

non-linearly energy conserving, i.e. passive (this of course needs to be confirmed).

Furthermore, the solution to the Riccati equation (whose cost scales with O(N3)) is

143

bypassed when applying PMSS control.

It was shown that the applicability of the preconditioner is not exclusive to MSS.

With minor modifications, the preconditioner was used to speed up the convergence

rate of the linear matrix system of a variational data assimilation algorithm. When

applied to the Lorenz system, accurate estimations of two states were computed

(assuming knowledge of only the third state). While the preconditioner effectively

deflated the largest eigenvalues µ of the system close to µ = 1, some eigenvalues

approached zero. Nonetheless, the preconditioner was again able to cut down sig-

nificantly on the number of iterations.

6.2 Future Work

• Further work is required to determine a suitable preconditioning parameter l.

Knowledge of the number of positive Lyapunov exponents would be sufficient,

but since this information is usually unavailable, the computed singular values

for each segment should be used to guide the choice of l. An adaptive algorithm

can be easily devised. The value of l can be made to vary between segments

and can be equal to the number of σ(Φi) > 1 within a given segment, i.e.

approximately equal to the number of unstable modes. This can be achieved by

either computing more modes than necessary and truncating the unnecessary

ones (i.e. truncating those with σ(Φi) ≤ 1), or by computing a small initial

number of modes and augmenting as necessary until all unstable modes (with

σ(Φi) > 1) have been computed.

• The parameter l is expected to increase as the number of positive Lyapunov

exponents increases, and the later would be the limiting factor for applying

MSS to turbulent flow systems at large Reynolds numbers. Methods that

reduce the dependence of the computational cost on the number of positive

144

Lyapunov exponents would be extremely valuable, and more research should

focus on this direction.

• The PMSS control algorithm should be applied to larger systems. For example,

turbulent flow in a channel at low Reynolds number would be a good starting

point. It would be useful to see how the attractor changes with the iteration

number and if an optimum solution can indeed be found. Potential challenges

include the loss of ergodicity with changes in the intermediate matrix values

K(i+1).

• In practical applications, only noisy measurements at some locations, say yj(t),

are available. This is known as output feedback control; in this case the actu-

ation must be expressed as s(t) = g(yj). Assuming g to be a linear function of

present and past values of the measurements (to account for memory effects),

one can write s(t) = K0yj(t) + K1yj(t − δt) + ... + Kmyj(t − mδt), where

the matrices K0, K1, .., Km can be obtained by applying the PMSS Control

algorithm presented in Chapter (4) (instead of neural networks as for example

in [102]). The value of m is problem dependent and can be estimated from

the time autocorrelation of the uncontrolled solution.

• More investigation is required to assess the performance of the proposed pre-

conditioned data assimilation method for more complex turbulent/atmospheric

systems. The proposed method should first be applied to a 1D problem such

as the Kuramoto Sivashinsky equation while assuming random errors in the

measurements. The accuracy and computational cost should be compared

with existing methods such as the standard Kalman filter.

• Regarding the preconditioning of the data assimilation Schur complement sys-

tem, it was found that the smallest eigenvalue of the preconditioned system

µmin → 0 for small relaxation parameter values a. This may be avoided

by modifying the preconditioner structure to improve the distribution of the

145

smallest eigenvalues. For example, an improved preconditioner can be de-

rived if a better approximation of the Schur complement matrix is formed.

At the moment, only the diagonal blocks are retained, each diagonal block

corresponding to a single segment. An idea would be to retain blocks that

correspond to two consecutive segments, instead of just one. In such a case,

the cost of applying the preconditioner would be higher, but if it results in a

much faster convergence rate, then this overhead would be justified. Several

tests need to be done to investigate the performance of such more advanced

algorithms.

146

Bibliography

[1] Patrick J. Blonigan and Qiqi Wang. Multiple shooting shadowing for sensitiv-

ity analysis of chaotic dynamical systems. Journal of Computational Physics,

354:447–475, 2018.

[2] Antony Jameson. Aerodynamic design via control theory. Journal of Scientific

Computing, 3(3):233–260, 9 1988.

[3] Paolo Luchini and Alessandro Bottaro. Adjoint Equations in Stability Analy-

sis. Annual Review of Fluid Mechanics, 46(1):493–517, 2014.

[4] Wei Liao and Her Mann Tsai. Aerodynamic shape optimization on overset

grids using the adjoint method. International Journal for Numerical Methods

in Fluids, 62(12):1332–1356, 2010.

[5] T Medjo and Louis Tebou. Adjoint-Based Iterative Method for Robust Control

Problems in Fluid Mechanics. SIAM J. Numerical Analysis, 42:302–325, 2004.

[6] Dinesh Kumar, Mehrdad Raisee, and Chris Lacor. Combination of Polynomial

Chaos with Adjoint Formulations for Optimization Under Uncertainties. In

Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 567–

582. 2019.

[7] Thomas R. Bewley, Parviz Moin, and Roger Temam. DNS-based predictive

control of turbulence: an optimal benchmark for feedback algorithms. Journal

of Fluid Mechanics, 447:179–225, 2001.

147

[8] Bartosz Protas, Thomas R. Bewley, and Greg Hagen. A computational frame-

work for the regularization of adjoint analysis in multiscale PDE systems.

Journal of Computational Physics, 195(1):49–89, 2004.

[9] Xuerui Mao and Emily Pearson. Drag reduction and thrust generation by tan-

gential surface motion in flow past a cylinder. Theoretical and Computational

Fluid Dynamics, 32(3):307–323, 2018.

[10] Dandan Xiao and George Papadakis. Nonlinear optimal control of bypass

transition in a boundary layer flow. Physics of Fluids, 29(5):054103, 2017.

[11] Dandan Xiao and George Papadakis. Nonlinear optimal control of transition

due to a pair of vortical perturbations using a receding horizon approach.

Journal of Fluid Mechanics, 861:524–555, 2019.

[12] Pierre Gauthier. Chaos and quadri-dimensional data assimilation: a study

based on the Lorenz model. Tellus A: Dynamic Meteorology and Oceanography,

44(1):2–17, 1992.

[13] Wanglung Chung, John M. Lewis, S. Lakshmivarahan, and S. K. Dhall. A com-

parison of variational data assimilation and nudging using a simple dynamical

system with chaotic behavior. In Proceedings of the 1996 ACM symposium on

Applied Computing - SAC ’96, volume Part F1287, pages 454–462, New York,

New York, USA, 1996. ACM Press.

[14] D. J. Mcgillicuddy, D. R. Lynch, A. M. Moore, W. C. Gentleman, C. S. Davis,

and C. J. Meise. An adjoint data assimilation approach to diagnosis of physical

and biological controls on Pseudocalanus spp. in the Gulf of Maine–Georges

Bank region. Fisheries Oceanography, 7(3/4):205–218, 1998.

[15] Minjie Xu, Kai Fu, and Xianqing Lv. Application of Adjoint Data Assimilation

Method to Atmospheric Aerosol Transport Problems. Advances in Mathemat-

ical Physics, pages 1–14, 2017.

148

[16] Niles A. Pierce and Michael B. Giles. Adjoint recovery of superconvergent

functionals from PDE approximations. SIAM Review, 42(2):247–264, 2000.

[17] David A. Venditti and David L. Darmofal. Grid adaptation for functional out-

puts: Application to two-dimensional inviscid flows. Journal of Computational

Physics, 176(1):40–69, 2001.

[18] Daniel J. Lea, Thomas W. N. Haine, Myles R. Allen, and James A. Hansen.

Sensitivity analysis of the climate of a chaotic ocean circulation model. Quar-

terly Journal of the Royal Meteorological Society, 128(586):2587–2605, 2002.

[19] Patrick J. Blonigan. Adjoint sensitivity analysis of chaotic dynamical systems

with non-intrusive least squares shadowing. Journal of Computational Physics,

348:803–826, 2017.

[20] Angxiu Ni, Qiqi Wang, Pablo Fernández, and Chaitanya Talnikar. Sensitivity

analysis on chaotic dynamical systems by Finite Difference Non-Intrusive Least

Squares Shadowing (FD-NILSS). Journal of Computational Physics, 394:615–

631, 2019.

[21] Patrick J Blonigan, Qiqi Wang, Eric J Nielsen, and Boris Diskin. Least Squares

Shadowing Sensitivity Analysis of Chaotic Flow around a Two-Dimensional

Airfoil. In 54th AIAA Aerospace Sciences Meeting, pages 1–28, Reston, Vir-

ginia, 2016. American Institute of Aeronautics and Astronautics.

[22] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least Squares Shadowing sensi-

tivity analysis of chaotic limit cycle oscillations. Journal of Computational

Physics, 267:210–224, 2014.

[23] Stefanie Günther, Nicolas R. Gauger, and Qiqi Wang. A framework for simul-

taneous aerodynamic design optimization in the presence of chaos. Journal of

Computational Physics, 328:387–398, 2017.

149

[24] Yukiko S. Shimizu and Krzysztof Fidkowski. Output Error Estimation for

Chaotic Flows. In 46th AIAA Fluid Dynamics Conference, Reston, Virginia,

2016. American Institute of Aeronautics and Astronautics.

[25] Yukiko S. Shimizu and Krzysztof Fidkowski. Output-Based Error Estimation

for Chaotic Flows Using Reduced-Order Modeling. In 2018 AIAA Aerospace

Sciences Meeting, Reston, Virginia, 2018. American Institute of Aeronautics

and Astronautics.

[26] J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.

Reviews of Modern Physics, 57(3):617–656, 1985.

[27] Steven H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 2nd

edition, 2015.

[28] K. Geist, U. Parlitz, and W. Lauterborn. Comparison of Different Methods for

Computing Lyapunov Exponents. Progress of Theoretical Physics, 83(5):875–

893, 1990.

[29] Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn.

Lyapunov Characteristic Exponents for smooth dynamical systems and for

hamiltonian systems; A method for computing all of them. Part 2: Numerical

application. Meccanica, 15(1):21–30, 3 1980.

[30] David Ruelle. A review of linear response theory for general differentiable

dynamical systems. Nonlinearity, 22(4):855–870, 2009.

[31] J. Doyne Farmer and John J. Sidorowich. Optimal shadowing and noise re-

duction. Physica D: Nonlinear Phenomena, 47(3):373–392, 1991.

[32] Patrick J. Blonigan and Qiqi Wang. Probability density adjoint for sensitivity

analysis of the Mean of Chaos. Journal of Computational Physics, 270:660–

686, 2014.

150

[33] David Ruelle. Differentiation of SRB states. Communications in Mathematical

Physics, 187(1):227–241, 1997.

[34] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in stationary states.

Journal of Statistical Physics, 80(5-6):931–970, 1995.

[35] Angxiu Ni. Hyperbolicity, shadowing directions and sensitivity analysis of a

turbulent three-dimensional flow. Journal of Fluid Mechanics, 863:644–669,

2019.

[36] Daniel J Lea, Myles R Allen, and Thomas W.N. Haine. Sensitivity analy-

sis of the climate of a chaotic system. Tellus A: Dynamic Meteorology and

Oceanography, 52(5):523–532, 2000.

[37] G. L. Eyink, T. W.N. Haine, and D. J. Lea. Ruelle’s linear response formula,

ensemble adjoint schemes and Lévy flights. Nonlinearity, 17(5):1867–1889,

2004.

[38] J. Thuburn. Climate sensitivities via a Fokker–Planck adjoint approach. Quar-

terly Journal of the Royal Meteorological Society, 131(605):73–92, 2005.

[39] Davide Lasagna. Sensitivity Analysis of Chaotic Systems Using Unstable Pe-

riodic Orbits. SIAM Journal on Applied Dynamical Systems, 17(1):547–580,

2018.

[40] Gary J Chandler and Rich R Kerswell. Invariant recurrent solutions embedded

in a turbulent two-dimensional Kolmogorov flow. Journal of Fluid Mechanics,

722:554–595, 2013.

[41] D.V Anosov. On a class of invariant sets of smooth dynamical systems. In Pro-

ceedings. 5th International Conference on Nonlinear Oscillations, Kiev (39-

45), 1970.

151

[42] Davide Lasagna, Ati Sharma, and Johan Meyers. Periodic shadowing sensitiv-

ity analysis of chaotic systems. Journal of Computational Physics, 391:119–

141, 2019.

[43] Angxiu Ni and Qiqi Wang. Sensitivity analysis on chaotic dynamical systems

by Non-Intrusive Least Squares Shadowing (NILSS). Journal of Computa-

tional Physics, 347:56–77, 2017.

[44] Patrick Blonigan, Steven Gomez, and Qiqi Wang. Least Squares Shadowing

for Sensitivity Analysis of Turbulent Fluid Flows. 52nd Aerospace Sciences

Meeting, pages 1–24, 2014.

[45] Patrick J. Blonigan and Qiqi Wang. Least squares shadowing sensitivity anal-

ysis of a modified Kuramoto-Sivashinsky equation. Chaos, Solitons and Frac-

tals, 64(1):16–25, 2014.

[46] Patrick Blonigan and Qiqi Wang. Multigrid-in-time for sensitivity analysis

of chaotic dynamical systems. Numerical Linear Algebra with Applications,

24(3):e1946, 2017.

[47] William H. Press, Saul A Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes. Cambridge University Press, New York, 3rd

edition, 2007.

[48] Karim Shawki and George Papadakis. A preconditioned Multiple Shooting

Shadowing algorithm for the sensitivity analysis of chaotic systems. Journal

of Computational Physics, 398, 2019.

[49] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Indus-

trial and Applied Mathematics, 2nd edition, 2003.

[50] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle

point problems. Acta Numerica, 14:1–137, 2005.

152

[51] Andy J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015.

[52] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and Fast

Iterative Solvers. Oxford University Press, 2nd edition, 2014.

[53] Eleanor McDonald, Jennifer Pestana, and Andy Wathen. Preconditioning and

Iterative Solution of All-at-Once Systems for Evolutionary Partial Differential

Equations. SIAM Journal on Scientific Computing, 40(2):A1012–A1033, 2018.

[54] Yang Cao, Mei-Qun Jiang, and Ying-Long Zheng. A splitting precondi-

tioner for saddle point problems. Numerical Linear Algebra with Applications,

18(5):875–895, 2011.

[55] Gene H. Golub, Chen Greif, and James M. Varah. An Algebraic Analysis of

a Block Diagonal Preconditioner for Saddle Point Systems. SIAM Journal on

Matrix Analysis and Applications, 27(3):779–792, 2005.

[56] Mansoor Rezghi and S. M. Hosseini. Lanczos based preconditioner for discrete

ill-posed problems. Computing, 88(1-2):79–96, 2010.

[57] G. W. Stewart. A Krylov–Schur Algorithm for Large Eigenproblems. SIAM

Journal on Matrix Analysis and Applications, 23(3):601–614, 2002.

[58] Iain Waugh, Simon Illingworth, and Matthew Juniper. Matrix-free continu-

ation of limit cycles for bifurcation analysis of large thermoacoustic systems.

Journal of Computational Physics, 240:225–247, 2013.

[59] Juan Sánchez and Marta Net. On the Multiple Shooting Continuation of Peri-

odic Orbits by Newton-Krylov Methods. International Journal of Bifurcation

and Chaos, 20(1):43–61, 2010.

[60] James Baglama and Lothar Reichel. Augmented Implicitly Restarted Lanczos

Bidiagonalization Methods. SIAM Journal on Scientific Computing, 27(1):19–

42, 2005.

153

[61] Colin Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange At-

tractors, volume 41 of Applied Mathematical Sciences. Springer New York,

New York, NY, 1982.

[62] Jan Frøyland and Knut H. Alfsen. Lyapunov-exponent spectra for the Lorenz

model. Physical Review A, 29(5):2928–2931, 1984.

[63] Christopher L. Wolfe and Roger M. Samelson. An efficient method for re-

covering Lyapunov vectors from singular vectors. Tellus, Series A: Dynamic

Meteorology and Oceanography, 59(3):355–366, 2007.

[64] Philip Holmes, John L. Lumley, Gahl Berkooz, and Clarence W. Rowley. Tur-

bulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge

University Press, Cambridge, 2nd edition, 2012.

[65] Shervan Erfani, Ali Tavakoli, and Davod Khojasteh Salkuyeh. An efficient

method to set up a Lanczos based preconditioner for discrete ill-posed prob-

lems. Applied Mathematical Modelling, 37(20-21):8742–8756, 2013.

[66] Per Christian Hansen. Regularization Tools: A Matlab package for analysis

and solution of discrete ill-posed problems. Numerical Algorithms, 6(1):1–35,

1994.

[67] D. Calvetti, G. H. Golub, and L. Reichel. Estimation of the L-Curve via

Lanczos Bidiagonalization. BIT Numerical Mathematics, 39(4):603–619, 1999.

[68] D. Calvetti, L. Reichel, and A. Shuibi. L-curve and curvature bounds for

Tikhonov regularization. Numerical Algorithms, 35(2-4):301–314, 2004.

[69] P. Fernandez and Q. Wang. Lyapunov spectrum of the separated flow around

the NACA 0012 airfoil and its dependence on numerical discretization. Journal

of Computational Physics, 350:453–469, 2017.

154

[70] Malik Hassanaly and Venkat Raman. Lyapunov spectrum of forced homoge-

neous isotropic turbulent flows. arXiv, 2019.

[71] Karim Shawki and George Papadakis. Feedback control of chaotic systems

using multiple shooting shadowing and application to Kuramoto–Sivashinsky

equation. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 476(2240), 2020.

[72] Onofrio Semeraro, Shervin Bagheri, Luca Brandt, and Dan S. Henningson.

Feedback control of three-dimensional optimal disturbances using reduced-

order models. Journal of Fluid Mechanics, 677:63–102, 2011.

[73] Alexandre Barbagallo, Denis Sipp, and Peter J. Schmid. Closed-loop control of

an open cavity flow using reduced-order models. Journal of Fluid Mechanics,

641:1–50, 2009.

[74] Arthur Bryson, Y.-C Ho, and George Siouris. Applied Optimal Control. Hemi-

sphere Pub. Corp, 1975.

[75] Thomas R. Bewley and Sharon Liu. Optimal and robust control and estimation

of linear paths to transition. Journal of Fluid Mechanics, 365:305–349, 1998.

[76] Keun H. Lee, Luca Cortelezzi, John Kim, and Jason Speyer. Application

of reduced-order controller to turbulent flows for drag reduction. Physics of

Fluids, 13(5):1321–1330, 2001.

[77] J. McKernan, J. F. Whidborne, and G. Papadakis. Linear quadratic control of

plane Poiseuille flow-the transient behaviour. International Journal of Control,

80(12):1912–1930, 2007.

[78] A. S. Sharma, J. F. Morrison, B. J. McKeon, D. J.N. Limebeer, W. H. Koberg,

and S. J. Sherwin. Relaminarisation of Reτ = 100 channel flow with globally

stabilising linear feedback control. Physics of Fluids, 23(12), 2011.

155

[79] Peter H. Heins, Bryn Ll Jones, and Ati S. Sharma. Passivity-based output-

feedback control of turbulent channel flow. Automatica, 69:348–355, 2016.

[80] Shervin Bagheri, Luca Brandt, and Dan S. Henningson. Input–output analysis,

model reduction and control of the flat-plate boundary layer. Journal of Fluid

Mechanics, 620:263, 2009.

[81] John Kim and Thomas R. Bewley. A Linear Systems Approach to Flow Con-

trol. Annual Review of Fluid Mechanics, 39(1):383–417, 2007.

[82] Panagiotis D. Christofides and Antonios Armaou. Global stabilization of the

Kuramoto-Sivashinsky equation via distributed output feedback control. Sys-

tems and Control Letters, 39(4):283–294, 2000.

[83] S. N. Gomes, M. Pradas, S. Kalliadasis, D. T. Papageorgiou, and G. a. Pavlio-

tis. Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear

systems. Physical Review E, 92(2):022912, 2015.

[84] Susana N. Gomes, Demetrios T. Papageorgiou, and Grigorios A. Pavliotis. Sta-

bilizing non-Trivial solutions of the generalized Kuramoto-Sivashinsky equa-

tion using feedback and optimal control. IMA Journal of Applied Mathematics

(Institute of Mathematics and Its Applications), 82(1):158–194, 2017.

[85] Onofrio Semeraro, Jan O. Pralits, Clarence W. Rowley, and Dan S. Henning-

son. Riccati-less approach for optimal control and estimation: An application

to two-dimensional boundary layers. Journal of Fluid Mechanics, 731:394–417,

2013.

[86] Jan Oscar Pralits and Paolo Luchini. Riccati-less optimal control of bluff-body

wakes. pages 325–330. 2010.

[87] Thomas Bewley, Paolo Luchini, and Jan Pralits. Methods for solution of large

156

optimal control problems that bypass open-loop model reduction. Meccanica,

51(12):2997–3014, 2016.

[88] Onofrio Semeraro and Jan O. Pralits. Full-order optimal compensators for

flow control: the multiple inputs case. Theoretical and Computational Fluid

Dynamics, 32(3):285–305, 2018.

[89] Karl Mårtensson. Gradient Methods for Large-Scale and Distributed Linear

Quadratic Control. PhD thesis, 2012.

[90] Luiz V.R. Cagliari, Sandipan Mishra, and Jason E. Hicken. Plant and con-

troller optimization in the context of chaotic dynamical systems. AIAA Scitech

2019 Forum, (January):1–21, 2019.

[91] Karl J. Astrom. Introduction to Stochastic Control Theory. Dover, New York,

2006.

[92] Richard P. Brent. Algorithms for Minimization without Derivatives. Prentice-

Hall, 1973.

[93] R.R. Kerswell. Nonlinear Nonmodal Stability Theory. Annual Review of Fluid

Mechanics, 50(1):319–345, 2018.

[94] Markus Hogberg, Thomas R. Bewley, and Dan S. Henningson. Linear feedback

control and estimation of transition in plane channel flow. Journal of Fluid

Mechanics, 481(481), 2003.

[95] Vishwas Rao and Adrian Sandu. A time-parallel approach to strong-constraint

four-dimensional variational data assimilation. Journal of Computational

Physics, 313:583–593, 2016.

[96] P. Courtier, J.-N. Thépaut, and A. Hollingsworth. A strategy for operational

implementation of 4D-Var, using an incremental approach. Quarterly Journal

of the Royal Meteorological Society, 120:1367–1387, 1994.

157

[97] F.-X. Le Dimet, H.-E. Ngodock, B. Luong, and J. Verron. Sensitivity Analysis

in Variational Data Assimilation. Journal of the Meteorological Society of

Japan. Ser. II, 75(1B):245–255, 1997.

[98] Michael Fisher and Selime Gürol. Parallelization in the time dimension of

four-dimensional variational data assimilation. Quarterly Journal of the Royal

Meteorological Society, 143(703):1136–1147, 2017.

[99] Gene H. Golub and Chen Greif. On Solving Block-Structured Indefinite Linear

Systems. SIAM Journal on Scientific Computing, 24(6):2076–2092, 2003.

[100] M. Fisher, S. Gratton, S. Gürol, Y. Trémolet, and X. Vasseur. Low rank

updates in preconditioning the saddle point systems arising from data assim-

ilation problems. Optimization Methods and Software, 33(1):45–69, 2018.

[101] Melina A. Freitag and Daniel L.H. Green. A low-rank approach to the so-

lution of weak constraint variational data assimilation problems. Journal of

Computational Physics, 357:263–281, 2018.

[102] Michele Alessandro Bucci, Onofrio Semeraro, Alexandre Allauzen, Guillaume

Wisniewski, Laurent Cordier, and Lionel Mathelin. Control of chaotic systems

by deep reinforcement learning. Proceedings of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences, 475(2231):20190351, 2019.

158

Appendices

159

A Discretisation of the Kuramoto Sivashinsky Equation (KSE)

Consider again the KSE,

∂u

∂t
= −(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
x ∈ [0, L] (A.1a)

u(0, t) = u(L, t) = 0 (A.1b)

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0 (A.1c)

The grid uses N+2 nodes (i = 0, 1, 2, . . . , N,N+1) with equal spacing δx = L/N + 1.

To enforce the Dirichlet boundary conditions (A.1b) at x = 0 and x = L, u0 = 0

and uN+1 = 0. The Neumann boundary conditions (A.1c) at x = 0 and x = L are

enforced by introducing ghost nodes, such that u−1 = u1 and uN+2 = uN .

The spatial derivatives are discretised using 2nd order approximations as follows:

∂u

∂x

∣∣∣∣
i

≈ ui+1 − ui−1

2δx
(i = 1, 2, . . . , N)

u
∂u

∂x

∣∣∣∣
i

≈ u2
i+1 − u2

i−1

4δx
(i = 1, 2, . . . , N)

∂2u

∂x2

∣∣∣∣
i

≈ ui+1 − 2ui + ui−1

δx2
(i = 1, 2, . . . , N)

∂4u

∂x4

∣∣∣∣
i

≈ ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

δx4
(i = 2, 3, . . . , N − 1)

(A.2)

For the 4th order derivative at i = 1 and i = N ,

∂4u

∂x4

∣∣∣∣
1

≈ 7u1 − 4u2 + u3

δx4

∂4u

∂x4

∣∣∣∣
N

≈ 7uN − 4uN−1 + uN−2

δx4

(A.3)

Using (A.2) and (A.3), the KSE (A.1) can be written in general ODE form

du
dt

= f(u), u(0) = u0 (A.4)

160

where u(t) =

[
u1 u2 . . . uN

]T
and f(u) is written as follows

f1 =

(
2

δx2
− 7

δx4

)
u1 +

(
−2c+ u2

4δx
− 1

δx2
+

4

δx4

)
u2 −

1

δx4
u3

f2 =

(
2c+ u1

4δx
− 1

δx2
+

4

δx4

)
u1 +

(
2

δx2
− 6

δx4

)
u2 +

(
−2c+ u3

4δx
− 1

δx2
+

4

δx4

)
u3

− 1

δx4
u4

fi = − 1

δx4
ui−2 +

(
2c+ ui−1

4δx
− 1

δx2
+

4

δx4

)
ui−1 +

(
2

δx2
− 6

δx4

)
ui

+

(
−2c+ ui+1

4δx
− 1

δx2
+

4

δx4

)
ui+1 −

1

δx4
ui+2 (i = 3, 4, . . . , N − 2)

fN−1 = − 1

δx4
uN−3 +

(
2c+ uN−2

4δx
− 1

δx2
+

4

δx4

)
uN−2 +

(
2

δx2
− 6

δx4

)
uN−1

+

(
−2c+ uN

4δx
− 1

δx2
+

4

δx4

)
uN

fN = − 1

δx4
uN−2 +

(
2c+ uN−1

4δx
− 1

δx2
+

4

δx4

)
uN−1 +

(
2

δx2
− 7

δx4

)
uN

(A.5)

161

B Computation of the matrix-vector product
(
γI + MBD

(q)
(l)S
)
z

and the vector Ag

To compute the MATVEC product
(
γI + MBD

(q)
(l)AA

T
)

z for an arbitrary vector z:

i Use Algorithm 2 (Chapter 2.4) to compute AATz = x.

ii For i = 1 : P , compute the products M
(q)
(l),ixi, then form MBD

(q)
(l)AA

Tz =[(
M

(q)
(l),1x1

)T (
M

(q)
(l),2x2

)T
. . .

(
M

(q)
(l),PxP

)T]T
.

iii Compute(
γI + MBD

(q)
(l)AA

T
)

z = γz+

[(
M

(q)
(l),1x1

)T (
M

(q)
(l),2x2

)T
. . .

(
M

(q)
(l),PxP

)T]T
.

To compute the vector Ag:

i Compute the vectors gi (2.29) for i = 1 : P by integrating

dŵ
dt

= − ∂f
∂u

T

ŵ− 1

T

∂J

∂u

backward in time with the terminal conditions ŵ(t−i) = 1
T

(J(T)−Ji)hi
‖hi‖22

to obtain

ŵ(t+i−1) = gi.

ii Form the vector Φigi by integrating

dv′

dt
− ∂f
∂u

v′ = 0

forward in time with the initial conditions v′(t+i−1) = gi to obtain v′(t−i). Then

Φigi = Ptiv′(t
−
i).

iii Form Ag = −
[
(Φ1g1 − g2)T . . .

(
ΦP−1gP−1 − gP

)T
(ΦPgP)T

]T

162

C Derivation of the optimality system (5.4)

The minimisation statement (5.1) is repeated again below:

Minimise
u

J (T) =
1

2T

∫ T

0

(u− um)TQ(u− um) dt

subject to ru =
du
dt
− f(u, t) = 0

(C.1)

The optimality conditions are derived by introducing the following Lagrangian func-

tion L (u,λ):

L (u,λ) =
1

2T

∫ T

0

(u− um)TQ(u− um) dt− 1

T

∫ T

0

λT
(
du
dt
− f(u, t)

)
dt (C.2)

The first order conditions ∂L/∂λ = ∂L/∂u = 0 must be satisfied to obtain the op-

timality system. Setting ∂L/∂λ = 0 simply recovers the constraint equation (5.4a).

The condition ∂L/∂u = 0 is equivalent to

lim
ε→0

(
L (u + εδu,λ)−L (u,λ)

ε

)
= 0 (C.3)

Applying (C.3) to the right hand side of (C.2),

∂L

∂u
=

1

T

∫ T

0

(u− um)TQδu dt− 1

T

∫ T

0

λT
(

˙δu−
(
f(u + εδu)− f(u)

))
dt = 0

Substituting f(u + εδu)− f(u) ≈ ∂f
∂u

∣∣
uεδu,

∂L

∂u
=

1

T

∫ T

0

(u− um)TQδu dt− 1

T

∫ T

0

λT

(
˙δu− ∂f

∂u

∣∣∣∣
u
δu

)
dt = 0 (C.4)

Applying integration by parts to 1
T

∫ T
0
λT ˙δu dt,

1

T

∫ T

0

λT ˙δu dt = λT (T)δu(T)− λT (0)δu(0)− 1

T

∫ T

0

λ̇
T
δu dt (C.5)

163

Since the variations δu(T) and δu(0) are arbitrary, the boundary conditions

λ(0) = λ(T) = 0

must be satisfied (equation 5.4c). Substituting (C.5) back into (C.4) gives

∂L

∂u
=

1

T

∫ T

0

(u− um)TQδu dt+
1

T

∫ T

0

λ̇
T
δu + λT

∂f
∂u

∣∣∣∣
u
δu dt = 0

The collected terms with δu must be equal to zero, i.e.,

dλ

dt
+
∂f
∂u

∣∣∣∣T
u
λ +Q(u− um) = 0 (C.6)

which is the adjoint equation (5.4b).

If the objective function of (C.1) is replaced by the more general form

〈J (T)〉 =
1

2T

∫ T

0

(Cu(t)− ym)T (Cu(t)− ym) dt

then by following the same steps as above, the following optimality system is derived:

du
dt
− f(u, t) = 0 (C.7a)

dλ

dt
+
∂f
∂u

∣∣∣∣T
u
λ + CT (Cu− ym) = 0 (C.7b)

λ(0) = λ(T) = 0 (C.7c)

The matrix C (output matrix) is sizeM×N and ym is a vector of lengthM (number

of available measurements). The terms Q(u − um) in (C.6) and CT (Cu − ym)

in (C.7b) are equivalent when recovering unmeasured states. The two optimality

systems (5.4) and (C.7) are therefore identical for this case.

164

D Computation of the matrix-vector product
(
γI + MBD

(q)
(l)S
)
z

and the vector
(
AG̃−1b

δλ
+ b

δu

)
To compute the MATVEC product

(
γI + MBD

(q)
(l)S

)
z =

(
γI + MBD

(q)
(l)AG̃

−1AT
)

z

for an arbitrary vector z:

1. Compute x = ATz: Integrate

dw
dt

+
∂f
∂u

T

w = 0

backward in time in all segments (i = 1, 2, ..., P) with the terminal conditions

w(t−i) = zi. This gives w(t+i−1) = φTi zi. Form xi−1 = zi−1 − w(t+i−1) (for

i = 2, 3, ..., P − 1).

Note that x0 = −w(t+0) and xP = zP .

2. Compute vi = Q̌−1xi (for i = 0, 1, . . . , P − 1) and vP = (ε−1I)xP .

3. Compute y = AG̃−1ATz = Av: Integrate

dv′

dt
− ∂f
∂u

v′ = 0

forwards in time in all segments with the initial conditions v′(t+i−1) = vi−1 to

obtain v′(t−i). Form y =

[(
−v′(t−1) + v1

)T
. . .

(
−v′(t−P) + vP

)T]T .
4. For i = 1 : P , compute the products M(q)

(l),iyi, then form MBD
(q)
(l)AG̃

−1ATz =[(
M

(q)
(l),1y1

)T (
M

(q)
(l),2y2

)T
. . .

(
M

(q)
(l),PyP

)T]T
5. Compute(

γI + MBD
(q)
(l)S

)
z = γz +

[(
M

(q)
(l),1y1

)T (
M

(q)
(l),2y2

)T
. . .

(
M

(q)
(l),PyP

)T]T

To compute the vector AG̃−1bδλ + bδu:

165

1. Compute bδu: Integrate
dv
dt
− ∂f
∂u

v + ru = 0

forward in time in all segments with the initial conditions v(t+i−1) = 0 to obtain

v(t−i). Form bδu =

[
vT (t−1) vT (t−1) . . . vT (t−P)

]T
.

2. Compute bδλ: Integrate

dw
dt

+
∂f
∂u

T

w + rλ = 0

backward in time in all segments with the terminal conditions w(t−i) = 0 to

obtain w(t+i−1).

Form bδλ =

[(
λ

(i)
0 −w(t+0)

)T
−
(
w(t+1)

)T
. . . −

(
w(t+P−1)

)T −
(
λ

(i)
P

)T]T
.

3. Compute y = G̃−1bδλ =[(
Q̌−1

(
λ
(i)
0 −w(t+0)

))T

−
(
Q̌−1w(t+1)

)T
. . . −

(
Q̌−1w(t+P−1)

)T
−
(
ε−1Iλ

(i)
P

)T]T
.

4. Compute Ay = AG̃−1bδλ: Integrate

dv′

dt
− ∂f
∂u

v′ = 0

forward in time in all segments with the initial conditions v′(t+i−1) = yi−1 to

obtain v′(t−i). Form Ay =
[(
−v′(t−1) + y1

)T
. . .

(
−v′(t−P) + yP

)T]T .
5. Form Ay + bδu = AG̃−1bδλ + bδu.

166

