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Abstract

When subjected to lateral excitations, a variety of structures, such as museum artefacts, his-

torical buildings, bridge piers and post-tensioned walled buildings, might uplift and set into

rocking motion. Although this mechanism can efficiently limit the internal forces at their

base, the possibility of overturning or experiencing increased lateral deformations and accel-

erations may severely affect the functionality of rocking structures. Nevertheless, suitable

seismic control strategies are presently limited and consist mostly in preventing rocking mo-

tion altogether, which may induce undesirable stress concentrations and lead to impractical

interventions. This thesis examines the alternative of using supplemental rotational inertia

devices to control the seismic response of rocking structures. The newly proposed strategy

employs inerters, which are mechanical devices that develop resisting forces proportional to

the relative acceleration between their terminals and can be combined with a clutch to ensure

they act only in opposition to the motion. The fundamental dynamic behaviour of the system

is firstly examined considering a free-standing rigid block model. By deriving the correspond-

ing equations of motion, it is demonstrated that the inclusion of the inerter effectively reduces

the frequency parameter of the block, resulting in lower seismic demands and enhanced sta-

bility due to the well-known size effects of the rocking behaviour. In subsequent chapters,

this simplified single-degree-of-freedom model is gradually extended in order to incorporate

the effects of post-tensioned tendons, structural flexibility and higher modes on the response.

Overall, the analyses conducted under coherent pulses and real ground motion records show

that inerter-equipped structures experience reduced seismic demands and lower probabilities

of exceeding limit states usually associated with structural and non-structural damage.

The fundamental knowledge acquired in the first part of this thesis is finally applied to

control the seismic response of rocking timber buildings. To this end, a set of three post-

tensioned rocking walled buildings, comprising 3, 6 and 9 storeys, is designed following direct-

displacement-based design guidelines. Additionally, a set of clutched and non-clutched ball-

screw and gear inerters is designed using a newly proposed pre-dimensioning procedure. The

performance of bare and protected structures with different levels of apparent mass ratios is

then compared in terms of peak inter-storey drifts and floor accelerations. Special attention

is paid to the resisting forces developed in the inerters and the mechanism to transfer them to

the structural diaphragm. Likewise, the ability of the inerters to control higher-mode effects is

viii



ABSTRACT

closely examined. Finally, a performance-based assessment with particular emphasis on non-

structural and contents damage is conducted considering a database of 202 pulse-like ground

motion records. Overall, the results of this assessments confirm the trends observed in the

analytical examinations of the earlier chapters.
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fy,pt = yielding stress of the post-tensioned tendons

fy,s = yielding stress of the external dissipaters

Fr = resisting force in the inerter
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g = acceleration of gravity equal to 9.81[m/s2]

G = shear modulus of the CLT panel
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Chapter 1

Preamble

1.1 Background

Traditional seismic design methodologies aim to prevent structural collapse by ensuring a

minimum level of strength and deformation capacity in the lateral-load-resisting system of a

building. Initially developed in the 50’s and 60’s [1], these strength and ductility considera-

tions remain today as the basis for current seismic design provisions. Although, in general, this

philosophy has succeeded in preventing structural collapse and protecting lives, recent earth-

quakes have revealed that in many cases the extent of damage can make repairs infeasible,

highlighting the mismatch between social expectations and the actual seismic performance

of civil structures. Over the last decades, the alternative approach of allowing structures to

uplift and rock has been gaining popularity as a strategy to control structural damage dur-

ing earthquakes. Although the survival of ancient Greek temples has been attributed to this

unintended response mechanism [2], it was not until 1963 that George Housner elucidated a

size-frequency scale effect that explained the counter-intuitive seismic stability of tall, slender

rocking structures [3]. Since then, his simplified analytical model has been used to analyse

the seismic response of a wide range of non-structural components, and has served as the

basis for the development of low-damage post-tensioned rocking buildings [4]. While experi-

mental studies have demonstrated that these systems can efficiently control structural damage,

modern performance-based methodologies have also highlighted the importance of assessing

non-structural and contents damage, which can significantly affect the total losses and down-

time costs after a seismic event.

Most seismic control strategies for rocking structures have been proposed in the context of

enhancing the stability of non-structural equipment and museum artefacts, adapting measures

previously developed for fixed-base structures. Thus, several researchers have examined the

potential advantages of using anchorages, base isolation and viscous dampers, among others,

for the seismic protection of free-standing bodies. An alternative strategy that has received
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increasing attention during the last decade is the use of supplemental rotational inertia. Based

on this concept, a device capable of generating a resisting force proportional to the relative

acceleration between its terminals was developed in the late 90s [5]. Under the name inerter,

this device was re-discovered in the west [6] and has subsequently been applied to the seismic

protection of fixed-base civil structures [7, 8], where the seismic-induced displacements are

governed primarily by the structural stiffness, damping, and strength [9]. In the case of rocking

structures, the dominant motion is rotational and the seismic stability originates mainly from

the difficulty of mobilizing their rotational inertia. In this context, the use of inerters appears

as an attractive alternative to improve the seismic performance of rocking structures.

1.2 Motivation and objectives

The previous section has highlighted the potential advantages of employing inerters to con-

trol the seismic response of rocking structures. A comprehensive evaluation of this strategy

requires, in the first place, the development of analytical models that can capture the fun-

damental dynamic behaviour of the system. Similarly, reliable numerical tools are needed to

assess its implementation in more complex structural configurations such as post-tensioned

rocking buildings. Importantly, the efficiency of the proposed strategy ought to be evaluated

within a performance-based framework, including limit states associated with both structural

and non-structural damage.

Motivated by the above-mentioned factors, this thesis aims to: provide a comprehensive ex-

amination of the dynamic response of rocking structures equipped with supplemental rotational

inertia devices, and explore the alternative of using inerters to improve the seismic perform-

ance of post-tensioned timber buildings.

In light of the above, a number of issues related to the seismic behaviour of rocking struc-

tures and post-tensioned timber systems are examined in this thesis. To this end, analytical

and numerical methods are formulated and applied as outlined in the following section.

1.3 Outline of the thesis

As stated above, this thesis aims to provide a comprehensive examination of the seismic per-

formance of inerter-equipped rocking structures. To this end, a simplified analytical model

of the system is presented in Chapter 3 and gradually extended throughout the thesis in or-

der to represent increasingly complex dynamic phenomena. Firstly, a revision of previous

work on the subject is presented in Chapter 2. The aim of this literature review is to identify

existing research gaps and to set the context for the contributions made in subsequent chapters.
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Chapter 3 examines the fundamental dynamic behaviour of rocking structures equipped

with inerters using a rigid block approximation. By deriving the equations of motion of the

system, it is demonstrated that the inclusion of the inerter effectively reduces the frequency

parameter of the block. Importantly, this reduction generally results in lower rotation seismic

demands and enhanced stability due to the well-known size effects of the rocking behaviour.

Additionally, the alternative of incorporating a clutch to ensure that the inerter only resists

the motion of the structure is also evaluated. The proposed model is then used to study the

effect of the inerter device on self-similarity, rocking demands and the overturning response of

free-standing blocks under a wide range of trigonometric pulse excitations and real pulse-like

ground motions.

In Chapter 4, the previously described model is adapted in order to analyse the response

of systems representative of rocking walled buildings. To this end, post-tensioned tendons and

a seismic mass independent from the weight exerting the restoring moment are introduced.

The effects of these features on the rocking response of the structure are assessed in terms

of maximum rotations and peak angular accelerations for a wide range of pulse excitations.

Subsequently, the inerter device is introduced and original equations that describe the rocking

motion of the post-tensioned wall-inerter system are derived. In addition to the reductions

in rotation and acceleration demands, the effects of the inerter on the base shear are also

evaluated.

Chapter 5 evaluates the effect of structural flexibility on the efficiency of the proposed

seismic control strategy. To this end, the analytical model used in previous chapters is modi-

fied to allow elastic deformations in the oscillator, while two different impact formulations are

implemented and compared. The results of analyses under coherent pulses demonstrate that,

although the inerter does not significantly reduce the elastic deformations in the structure, it

does control its base rotation response, resulting in considerably lower overall drift demands.

The response of flexible rocking structures under high frequency excitations is also considered,

while the possibility of using inerters to control the elastic deformation at uplifted resonance is

examined. The conclusions obtained under these coherent cycloidal pulses are then extended

to real ground motions by evaluating the response of rocking structures to a set of recorded

ground motions.

While Chapters 3 to 5 examine the rocking response of simplified rigid blocks and single-

mass oscillators, Chapter 6 considers multi-mass rocking structures connected to inerters at

the first-mass level. To this end, a previously proposed finite element model is implemented

in OpenSees [10] and extended to incorporate the effects of grounded supplemental rotational

inertia devices. The full structural model is subsequently validated against previous experi-

mental and analytical results, and used to examine the effect of the inerter on the rotation and

3
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elastic deformation demands of a set of 3, 6 and 9-storey structures. Additionally, the interac-

tion between impact forces and higher vibration modes is examined, while the effectiveness of

the inerter for controlling the associated acceleration demands and increased bending moments

is also evaluated. Like in previous chapters, the conclusions obtained for analytical pulses are

later extended to real earthquakes by evaluating the response of the structural systems to a

set of pulse-like ground motion records.

In Chapter 7, the fundamental knowledge acquired in previous chapters is applied to the

control of the seismic response of post-tensioned timber wall structural systems. Accordingly,

a representative set of three post-tensioned rocking walled buildings, comprising 3, 6 and 9

storeys, is designed following direct-displacement based design guidelines. Based on conclu-

sions drawn from the analytical models presented in Chapters 3 to 6, a simplified procedure

to pre-dimension the inerter device is proposed and used to design a set of ball-screw and gear

inerters, with and without clutches. In a first stage, the performance of bare and protected

structures with different levels of apparent mass ratios is assessed and compared considering a

set of 7 records consistent with the displacement design spectrum. Special attention is paid to

the resisting force developed in the inerter and the mechanism to transfer it to the structural

diaphragm. Likewise, the ability of the inerters to control higher-mode effects is closely ex-

amined. Finally, a performance-based assessment with particular emphasis on non-structural

and contents damage is conducted considering a database of 202 real pulse-like ground motion

records. Overall, the results of this assessment are in line with conclusions obtained in previ-

ous analyses, thus confirming the response improvements predicted by the simplified models

developed in the earlier chapters.

In the final chapter, a summary of the main conclusions is drawn alongside recommenda-

tions for future research on the topics addressed in this thesis.

1.4 Dissemination

The research work presented in this thesis has contributed to the following publications:

Peer-reviewed journals

• Thiers-Moggia R, Malaga Chuquitaype C, 2020, Seismic control of flexible rocking struc-

tures using inerters, Earthquake Engineering and Structural Dynamics, ISSN: 0098-8847
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• Thiers-Moggia R, Málaga-Chuquitaype C, 2020, Dynamic response of post-tensioned

rocking structures with inerters, International Journal of Mechanical Sciences, Vol: 187,

Pages: 1-15, ISSN: 0020-7403

• Thiers-Moggia R, Malaga Chuquitaype C, 2019, Seismic protection of rocking structures

with inerters, Earthquake Engineering and Structural Dynamics, Vol: 48, Pages: 528-547,

ISSN: 0098-8847

• Malaga Chuquitaype C, Menendez-Vicente C, Thiers-Moggia R, 2019, Experimental and

numerical assessment of the seismic response of steel structures with clutched inerters,

Soil Dynamics and Earthquake Engineering, Vol: 121, Pages: 200-211, ISSN: 0267-7261

• Thiers-Moggia R, Malaga Chuquitaype C, 2020, Effect of base-level inerters on higher

mode response of uplifting structures (under review)

• Thiers-Moggia R, Malaga Chuquitaype C, 2020, Seismic control of rocking Cross-Laminated

Timber buildings using inerters (under preparation)

Conference papers

• Thiers-Moggia R, Málaga-Chuquitaype C, 2020, Performance-based seismic assessment

of rocking Cross-Laminated Timber buildings protected with inerters, World Conference

on Timber Engineering (submitted)

• Thiers-Moggia R, Málaga-Chuquitaype C, 2020, Seismic protection of multi-storey rock-

ing structures with inerters, XI International Conference on Structural Dynamics (EuroDyn2020)

• Thiers-Moggia R, Malaga Chuquitaype C, 2019, Seismic control of post-tensioned rocking

walls with inerters, SECED 2019, Earthquake Risk and Engineering Towards a Resilient

World

• Thiers Moggia R, Malaga Chuquitaype C, 2018, Seismic protection of cross-laminated
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a brief summary of the most relevant studies that precede the work de-

scribed in this thesis. The main aim of this review is to set up the context for the contributions

made in subsequent chapters. Considering the scope of the research topic, it is natural to organ-

ize the literature review in two main categories: (i) rocking structures, and (ii) supplemental

rotational inertia devices. This approach intends to facilitate the recognition of research needs

in the field of uplifting structures and the potential advantages of employing inerter devices

to improve their dynamic response. In the following section, previous research on rocking

structures is reviewed and divided into three main sections: fundamental dynamics, seismic

control strategies, and applications to building structures. Subsequently, preceding studies

regarding supplemental rotational inertia devices are presented with particular emphasis on

inerter realizations and their application to vibration control in civil structures. The chapter

concludes with a summary of research needs.

2.2 Rocking structures

2.2.1 Fundamentals of rocking dynamics

The dynamic behaviour of a wide range of structural systems, including historical build-

ings [11, 12], post-tensioned structures [13, 14], bridges [15], walled structures [16], and un-

anchored equipment [17,18] can be characterized by the rocking response of a rigid block. After

noting the survival of several tall slender structures following severe ground shaking, Hous-

ner [3] examined the dynamic behaviour of rigid bodies and developed equations to describe

their rocking motion based on an elegant use of angular momentum conservation through im-

pact. Using this simplified analytical model, Housner demonstrated that the oscillation period

of a rocking structure depends on the amplitude of the base rotation. His study also unveiled
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an unexpected scale effect which makes the larger of two geometrically similar blocks more

stable than the smaller one. Moreover, Housner demonstrated that a free-standing block sub-

jected to earthquake motion is more stable than it would be inferred from constant lateral force

analyses. Several researchers have built on Housner’s classical model, extending the analysis

to rocking frames [19,20] and 3-dimensional rocking structures [21,22].

Housner’s analytical model assumes that the rocking base is perfectly rigid and that friction

at the contact surface is enough to prevent sliding. The implications of these assumptions on

the stability of rocking bodies has been studied in a series of subsequent papers. Ishiyima [23]

and Shenton and Jones [24] investigated the interaction between sliding and uplifting, while

the deformability of the ground was considered in Psycharis and Jennings [25], Koh et al. [26],

and Palmeri and Makris [27]. The results of these studies demonstrated the relevance of such

considerations, highlighting that they should not be omitted unless they can be minimized by

mechanical means.

Aside from the equations of motion, a complete description of the dynamic response of a

rocking structure entails an appropriate description of energy dissipation during impact. Most

of the studies concerning rigid blocks have considered a classical impact framework, where

impact forces are assumed to be instantaneous and concentrated at the pivot corners. Under

these assumptions, conservation of angular momentum about the post-impact pivot point res-

ults in a coefficient of restitution that depends only on the geometrical characteristics of the

structure [3]. Although this approach rightly identifies the slenderness of the block as the main

parameter affecting impact, several experimental studies have demonstrated the inaccuracy of

these assumptions [28,29]. An alternative impact model was proposed by Chopra and Yim [30]

in which the kinetic energy associated with the vertical component of the mass velocity is com-

pletely dissipated during impact. This approach has later been shown to adequately predict

the response of single-mass rocking oscillators [31,32]. Recognizing that immediate rocking is

only one of the possible post-impact states of a rocking structure, Giouvanidis and Dimitrako-

poulos [33] proposed a nonsmooth dynamic approach and studied the conditions under which

full contact, bouncing and flying phases can occur. Acikgoz and DeJong [34], on the other

hand, simulated the impact behaviour of flexible rocking structures exhibiting large rocking

angles with impulsive Dirac-delta forces, generalizing the approach originally introduced for

slender rigid rocking blocks by Prieto et al. [35].

Although a precise prediction of the full response history of a rocking oscillator under

a given ground motion may be impractical [32] due to the strong non-linearities involved

(e.g. negative stiffness [36]) and the uncertainties associated with modelling impact phe-

nomena [33, 37], Housner’s model has been shown capable of predicting the main statistics

of the seismic response of rocking structures [38]. In this regard, early studies recognized
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that rocking motion is highly sensitive to the velocity and acceleration characteristics of the

ground motion [23]. Dimitrakopoulos and DeJong [39] studied the deterministic response of

rocking structures to simplified pulse-type excitations and proposed a group of dimensionless-

orientationless parameters that define a unique response for slender blocks and a practically

self-similar response for nonslender structures. Several other researchers have proposed the use

of intensity measures based on the peak ground velocity (PGV) and peak ground acceleration

(PGA) [40], [41] while Giouvanidis and Dimitrakopoulos [42] found that an intensity measure

that efficiently correlates with the rocking demand is not necessarily efficient for predicting

overturning. More specifically, they showed that rocking amplification is sensitive to the dura-

tion of the ground motion exceeding the uplifting threshold, whereas the overturning response

depends strongly on the velocity and acceleration features of the ground excitation.

While some structural systems may be reasonably modelled as rigid bodies (i.e. Greek

temples, stocky electrical equipment), other practical applications (like buildings, wind tur-

bine support towers, etc.) will exhibit appreciable degrees of flexibility. Moreover, some of

the underlying assumptions of the analytical models used to study rigid bodies imply that

the structures are slender, and therefore more likely to deform during the rocking motion.

This problem was first studied by Chopra and Yim [30] who considered a flexible single-degree

of freedom system attached to a rigid base allowed to uplift. Assuming that the structural

dimensions and excitation are such that the resulting rotation and deformation responses are

small, they derived the equations that govern the motion of the system and demonstrated that

foundation-uplift can reduce the associated base shear and moment demands. Oliveto et al. [43]

extended Chopra and Yim’s model to large deformations, while Acikgoz and DeJong [44] fur-

ther developed Housner’s impact formulation and used it to examine the interaction between

rocking and elasticity. Their analyses showed that, in general, flexible structures are more

stable than their rigid counterparts, but also highlighted the possibility of significant deforma-

tions being generated in the oscillator due to uplifted resonance under high-frequency ground

motions. Accordingly, they concluded that stiffer configurations are more likely to fail due

to overturning, while more flexible structures are susceptible to suffer excessive deformations.

Further analytical and experimental studies reached similar conclusions [31,32].

Psycharis [45] and Yim and Chopra [46] first addressed the problem of multi-storey rock-

ing structures considering a shear frame supported by a viscoelastic two-spring foundation.

Assuming the presence of classical orthogonal vibration modes and small rotations during the

rocking motion, their studies concluded that a reasonable approximation of the maximum re-

sponse of multi-storey structures could be obtained by considering that rocking only influences

the response contribution of the first mode of vibration. Accordingly, higher vibration modes

were considered to be uncoupled from the rocking action. Acikgoz and DeJong [34] later ex-

tended this formulation to large rotations and introduced a Dirac-delta impact model able to
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describe the interaction of impact forces with structural vibrations. Their study also proposed

a modal decomposition method, demonstrating that the vibration characteristics of several

vibration modes are affected by the rocking action, and that these modes can be excited at

impact. Importantly, their experimental results [47] identified high acceleration spikes during

impact which have the potential of causing significant non-structural and contents damage.

2.2.2 Seismic protection of rocking structures

In comparison with studies concerning the estimation of rocking response, investigations on

control strategies suitable to rocking bodies have been more limited and have mainly con-

centrated on the protection of museum artefacts and nonstructural equipment [48, 49]. Early

strategies were based on simple measures, such as lowering the centre of mass or anchoring the

object to a fixed support [50, 51]. While the former approach is not very practical, the latter

prevents the rigid-body rocking motion and may therefore induce undesirable deformations

that can damage the object. Makris and Zhang [50] first analysed the stability of rigid blocks

tied down with brittle and ductile restrainers, concluding that anchorages can have an adverse

effect on the stability of the structure. Aiming to address this issue, Ceravolo et al. [49, 52]

proposed the use of semi-active anchorages with variable stiffness and compared different

strategies for their implementation. Their analyses showed that feedback control strategies

based on the block’s angular position and velocity significantly improved its dynamic response

and stability. Importantly, the controlled cases were generally more stable than both the free-

standing blocks and structures anchored with passive restraint systems such as elastic-brittle

plates and viscous dampers.

Although the previous proposals can reduce the overturning vulnerability of free-standing

bodies, they are generally not suitable for rocking building structures. Recognizing the advant-

ages associated with the reduction of shear and moment demands in rocking structures, more

recent studies have focused on controlling the rotation response instead of completely ham-

pering it. Vassiliou and Makris [53] built on Housner’s basic model and studied the dynamic

response of a vertically restrained solitary rocking column, concluding that post-tensioned ten-

dons can reduce rotation demands in smaller columns subjected to long-period excitations but

have little effect on taller structures. Dimitrakopoulos and DeJong [39] studied the response of

rigid blocks connected to linear viscous dampers and showed that supplemental damping can

efficiently improve the seismic stability of rocking structures. A similar approach was recently

applied by Makris and Aghagholizadeh [54] to the protection of free-standing bridge piers.

Alternative passive approaches have also been proposed by a number of researchers. De Leo et

al. [55] studied the use of a pendulum mass damper hinged at the top of a rigid block, showing

that the system is effective for a limited range of frequencies. Vassiliou and Makris [56], on

the other hand, examined the rocking response and stability of rigid bodies standing free on
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three different types of isolated bases concluding that seismic isolation is only beneficial for

small structures. More recently, Pan and Málaga-Chuquitaype [57] explored the alternative of

using external resonators as a means to control the peak seismic rotational demands of rocking

monumental structures. Their study highlighted the need to provide innovative nonintrusive

solutions to attenuate the rocking response of historical buildings and monuments.

2.2.3 Application of rocking to building structures

During the last decades, the advantages of rocking have been applied to the development of a

family of self-centring systems that can sustain large lateral deformations with no significant

damage. By allowing structural connections to open and rock, rotation demands can be con-

centrated in these pre-defined sections while the rest of the structural elements remain largely

elastic. Based on this concept, several low damage frame [4,58] and shear wall systems [59,60]

have been proposed and experimentally assessed. In such configurations, post-tensioned ten-

dons are usually incorporated in order to increase the lateral strength and re-centring capabil-

ities of the system. Likewise, additional energy dissipation can be provided through unbonded

mild steel reinforcement [61] or external devices such as buckling-restrained bars [62] or U-

shaped flexural plates (UFPs) [63, 64]. The combination of the self-centring effect provided

by the vertical loads (self-weight and post-tensioned tendons) and the energy dissipated by

the external devices results in the typical flag-shape hysteretic behaviour of rocking structural

systems.

The structural performance of post-tensioned rocking systems was systematically evaluated

in the PREcast Structural Seismic Systems (PRESSS) program [4,64]. This study extensively

assessed the response of post-tensioned concrete beam-to-column and wall-base rocking con-

nections, developing comprehensive design procedures [65] and showing, through a series of

experiments, that the proposed hybrid system had a stable cyclic response, good ductility and

minimal damage at large drifts [64, 66]. Later studies have also applied the advantages of

post-tensioned systems to the design of self-centring bridge piers [14, 67, 68]. As the concept

of hybrid rocking connections is not significantly affected by the mechanical properties of the

structural members, the system has later been extended to other construction materials. Steel

beam-to-column post-tensioned connections were developed by Garlock et al. [69] and Christo-

poulos et al. [58], while Eatherton et al. [70] conducted experiments on braced frames allowed

to rock about their base. Similarly, Sause et al. [71] conducted a series of large scale exper-

imental studies on post-tensioned base rocking concentrically braced frames and Pollino and

Bruneau [72] developed a controlled base rocking pier for steel truss bridges.

Recognizing the ductility limitations of traditional timber connectors [73, 74], Palermo et

al. [75,76] proposed the implementation of post-tensioned rocking connections as a solution for

10



2. LITERATURE REVIEW

multi-storey timber buildings in earthquake-prone regions. In this case, solid timber elements

were connected with unbonded post-tensioned tendons, while additional energy dissipation

was provided through internal epoxied rods or externally mounted replaceable devices. To

reduce the probability of timber crushing at the contact zone, Laminated Veneer Lumber

(LVL) elements were used for the structural members. Iqbal et al. [77] extended the hybrid

system proposed by Palermo et al. to double-wall sub-assemblies, and conducted several cyclic

quasi-static and pseudo-dynamic tests. The modified system consisted of two post-tensioned

LVL panels coupled with U-shaped Flexural Plates (UFPs). As with reinforced concrete, the

proposed timber rocking systems exhibited good energy dissipation and re-centring capabilit-

ies with minimal damage at large deformations. Importantly, the concept of post-tensioned

timber is not restricted to LVL, and has also been applied to Glulam [78] and Cross-Laminated

Timber (CLT) structures [79].

While the experimental studies mentioned above have provided useful information regard-

ing the behaviour of post-tensioned rocking connections, simplified analytical procedures are

required to estimate the response of the system for design purposes. Since Bernoulli’s hypo-

thesis of strain compatibility is no longer valid after decompression, an alternative approach

is needed for the analysis of rocking sections. The monolithic beam analogy, developed by

Pampanin et al. [80], provides a member compatibility condition that allows to relate the im-

posed rotation with the strain profile in the connected members. This methodology, originally

developed for concrete structures, has later been adapted and used in cross-sectional analysis

procedures for post-tensioned timber sections [61,81].

Performance-based design guidelines for post-tensioned rocking systems were first intro-

duced during the PRESSS program. Based on experimental observations, Kurama et al. [59,65]

identified a series of limit states for post-tensioned concrete walls and proposed a seismic

design approach based on pre-defined performance objectives. More recently, several seismic

design methodologies for post-tensioned rocking structures [82–84] have been proposed based

on the Direct-Displacement-Based Design (DDBD) procedure developed by Priestley et al. [85].

Within this framework, structures are designed to achieve, rather than to be bounded by, a

specific limit state under a given level of seismic intensity. Special considerations related to

the displacement profile, yield displacement and equivalent viscous damping in rocking timber

structures have been extensively discussed in [61,81,84,86].

Simplified finite element models for post-tensioned rocking systems have been developed

and validated against experimental results. Building on Priestley’s early model [64], Spi-

eth et al. [87] developed a multi-spring contact element capable of accurately capturing the

global behaviour of rocking frames, including local effects such as neutral axis shift and ten-

don elongation. In this formulation, the overall stiffness of the contact surface is weighted
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and distributed using a Lobatto Integration scheme. Although alternative integration meth-

ods can also be used, the adopted scheme has the natural advantage of placing springs on the

boundaries of the integration interval, thus providing contact points at the edges of the rocking

section. The study also investigated the influence of the number of integration points, con-

cluding that at least eight springs are required in order to adequately predict the response of a

rocking section. Aiming to incorporate energy dissipation during impact, Vassiliou et al. [88]

extended the multi-spring formulation including a dissipative model of the ground under the

base rocking surface. Multi-spring elements have subsequently been adapted for the analysis

of post-tensioned concrete and timber cantilever walls [61,81,83].

In terms of design approaches for rocking structures, capacity design is a seismic design

philosophy that aims to ensure a structure undergoes controlled ductile behaviour during an

earthquake. The methodology requires the assumption of a collapse mechanism where selec-

ted non-linear zones are designed to withstand large ductility demands while the rest of the

structure remains elastic. Considering the idealized case of non-positive post-uplift stiffness,

no further forces that increase the moment at the base of a cantilever wall can be applied after

the opening of the rocking section. The contribution of the first mode is therefore limited by

the formation of the mechanism. Nevertheless, higher modes can still be excited, increasing the

bending moments and shear forces throughout the structure [89]. Moreover, previous research

has suggested that rocking structures can be more susceptible to higher-mode effects than an

equivalent fixed-base structure [90]. Wiebe et al. examined the alternative of using multiple

rocking sections over the height of a base-rocking system in order to control the higher-mode

response [89]. Results of an experimental program [91,92] showed that the proposed strategy

significantly reduced peak storey shears, floor accelerations, and bending moments for ground

motions that had big amplitudes or considerable high-frequency content, although an average

increase of 18% was observed in the peak roof displacements.

Modern design frameworks generally quantify seismic risk in terms of overall performance,

looking at both the structural and non-structural components of a building [93]. Although

post-tensioned rocking systems have proven to be highly effective in controlling structural dam-

age, very limited attention has been dedicated to the associated floor acceleration demands.

A preliminary assessment conducted by Newcombe [81] revealed that significant inter-storey

drifts and floor accelerations can develop in post-tensioned timber buildings for the design

earthquake intensity. Similarly, Aragaw and Calvi [94] examined the non-linear response of a

set of base-rocking wall buildings and proposed two simplified methodologies to estimate floor

acceleration spectra in this type of structures. Their study highlighted the importance of an

adequate consideration of seismic accelerations in the design of non-structural elements and

pointed out the need for control strategies to limit these demands.
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2.3 Supplemental rotational inertia devices

2.3.1 The inerter

An efficient seismic control strategy that has been gaining popularity over the last years in-

volves the use of supplemental rotational inertia. Based on this concept, Arakaki et al. [5]

developed a damper formed of a cylindrical mass rotating inside a chamber filled with a vis-

cous fluid. This mechanical arrangement, known as inerter, develops a resisting force that

is proportional to the relative acceleration between its terminals. Accordingly, in a force-

current/velocity-voltage analogy, the inerter is the mechanical analogue of the capacitor and

its constant of proportionality is called inertance (with units of mass) [6].Typical inerter realiz-

ations employ rack-and-pynion [6,95] or ball-screw mechanisms [7,96] to transform the relative

displacement between the terminals into a rotation in a flywheel. Papageorgiou et al. [97, 98]

tested both of these configurations, showing that rotation-amplification mechanisms can sig-

nificantly increase the inertance of the device while keeping the associated gravitational mass

minimum. Upon its conceptual development and experimental validation, the inerter has been

used to improve the dynamic performance of vehicle suspension systems under the name of

J-damper [99,100].

Alternative inerter implementations have also been proposed by a number of researchers.

Exploiting the inertial effect of a fluid flowing in a helical channel, Swift et al. [101] developed

a hydraulic inerter capable of reducing the ratcheting, backlash and friction phenomena that

can significantly affect the performance of mechanical devices [102]. The proposed hydraulic

inerter also benefited from the inherent damping associated with the fluid’s viscosity and

density. Gonzalez-Buelga et al. [103], on the other hand, proposed an alternative inerter

realization using a linear motor whose mechanical rotation was transformed into a voltage

difference across the transducer coil. Their study highlighted the potential of electromagnetic

devices for the development of real time tunable vibration absorbers and energy harvesting.

2.3.2 Vibration control of civil structures using inerters

Recent studies have highlighted the potential advantages of employing inerters to control the

seismic response of civil structures. Hwang et al. [104] investigated the vibration control effect

of a rotational inertia damper combined with a toggle bracing on a fixed-base single degree-

of-freedom structure. A similar evaluation was conducted by Ikago et al. [7], who included a

flywheel to increase the inertial effects of the device. Makris and Kampas [95] studied the case

of an elastic frame connected to rack-pinion-flywheel system and demonstrated that inerters

are particularly effective in reducing peak displacements for long-period structures. Import-

antly, they noted that this happens at the expense of transferring considerable forces to the

support of the flywheels. Their study also explored the use of a clutch to ensure the inerter
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only resists the structural motion without inducing additional deformations, a strategy that

was further investigated experimentally and numerically by Málaga-Chuquitaype et al. [105].

The proposed arrangement was able to further reduce the structural displacements, whereas

mixed results were obtained for the transferred forces. Chen et al. [106], on the other hand,

studied the influence of supplemental rotational inertia on the natural frequencies of multi-

degree-of-freedom systems.

Several applications of the inerter have been proposed within the context of enhancing the

performance of tuned mass dampers. Ikago et al. [7, 107] proposed a Tuned Viscous Mass

Damper (TVMD) consisting of a viscous inerter connected in series to a linear spring and used

it to control the response of a simplified 10-storey structure. In this case, the TVMDs were

equally distributed along the height of the building, following the recommendations given by

Takewaki et al. [108]. Similarly, Lazar et al. [8] developed a Tuned Inerter Damper (TID) and

presented expressions to obtain the optimal parameters of the device based on H∞ optimiza-

tion criteria [109,110]. Their study also investigated the influence of the vertical distribution of

dampers, concluding that the optimal configuration for TIDs corresponds to a single grounded

device connected at the first level. A similar proposal was made by Giaralis and Taflan-

idis [111], who examined the performance of Tuned Mass Damper-Inerter systems (TMDI)

under stochastic excitations and proposed an optimum design framework for their implement-

ation. The main advantages of these configurations included an improved reduction of peak

deformations and a wider suppression band. The mass-amplification effect of the inerter has

also been harnessed to improve the performance of vibration barriers [57, 112] and to reduce

the displacement demands of base isolation systems [113, 114]. In a later study, Makris [115]

examined the basic frequency-response functions of simple inertoelastic and inertoviscous ele-

ments, consisting of a combination of inerters, springs and dashpots. Importantly, all these

previous studies have focused on the seismic control of fixed-based structures and the poten-

tial advantages of using inerters to control the seismic response of rocking structures are still

unexplored.

2.4 Summary

This chapter has presented a brief summary of previous work with the aim of identifying

research needs in the fields of rocking structures and supplemental rotational inertia devices.

The conclusions drawn from this review, which in turn have motivated the contributions

presented in subsequent chapters, are described below.

• Applications of the inerter to seismic control strategies have exclusively focused on the

protection of fixed-based systems, where the lateral deformations are controlled primarily

via stiffness, damping and strength. In the case of rocking structures, the dominant
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motion is rotational and the seismic stability originates mainly from the difficulty of

mobilizing their rotational inertia. In this context, the use of supplemental rotational

inertia devices appears as an attractive alternative to improve the seismic performance of

rocking structures. This is the main concept advanced in this thesis. The fundamental

dynamic behaviour of rocking blocks equipped with inerters is thoroughly studied in

Chapter 3, while Chapters 4 and 5 assess the effects of post-tensioning and compliance

on the efficiency of the proposed strategy.

• While extensive research has been conducted on the fundamental dynamics of the rock-

ing motion, investigations on control strategies suitable to rocking structures have been

more limited and have mainly concentrated on the protection of museum artefacts and

non-structural equipment. Some of these strategies have attempted to prevent the rock-

ing motion altogether, potentially inducing deformations that can damage the objects.

On the other hand, alternatives that aim to control the rotation response without ham-

pering it are usually only effective for a limited range of frequencies or structural di-

mensions. These observations highlight the need for more robust non-intrusive solutions

suitable for uplifting bodies such as museum artefacts and monuments. Chapters 3 and

5 address this issue offering a comprehensive assessment of the seismic demands and

overturning response of bare and inerter-equipped rigid and flexible rocking oscillators.

Likewise, strategies suitable for larger-scale structures, such as historical buildings and

post-tensioned systems, are also needed. In this regard, Chapters 4 and 6 examine the

efficiency of the proposed seismic control strategy for SDOF and MDOF rocking systems

representative of building structures.

• Despite the relevance of peak accelerations in performance-based assessments, the seismic

response of rocking structures has been examined mainly in terms of rotation demands

and overturning stability. Moreover, the effect of previously proposed seismic control

strategies on the acceleration response of rocking bodies has been mostly ignored. These

issues are addressed in Chapters 3 to 5, where an in-depth examination of the acceleration

demands of bare and inerter-equipped rocking structures is presented.

• The lack of numerical models for the inerter in finite element software has prevented

the evaluation of more complex structural systems. This issue is addressed in Chapter

6, where a numerical strategy to represent the inerter in finite element frameworks is

presented and implemented in OpenSees.

• Although strategies involving multiple rocking sections have been shown to effectively

control higher-mode effects in MDOF systems, numerical and experimental studies sug-

gest that they can also increase the associated roof displacements. In this context,

Chapters 6 and 7 explore the alternative of using inerters to control the higher-mode
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response of base-rocking MDOF systems, while also reducing the total lateral deforma-

tions.

• Post-tensioned rocking systems have proven to be highly effective in controlling structural

damage in building applications. Nevertheless, the associated drift and floor accelera-

tion demands, which can cause significant non-structural and contents damage, have

been mostly overlooked. Moreover, suitable strategies to control these seismic demands

have not been proposed. Chapter 7 addresses these issues presenting a comprehens-

ive performance-based assessment of post-tensioned timber buildings considering limit

states related to non-structural and contents damage. Additionally, the inerter-based

strategy studied in the previous chapters is applied to the protection of three case-study

structures in Chapter 7.
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Chapter 3

Rocking response of rigid blocks

equipped with inerters

3.1 Introduction

The literature review presented in the previous chapter has highlighted the potential advant-

ages of employing inerters for the seismic control of rocking structures. The main concept

behind this strategy entails increasing the rotational inertia of the free-standing body, thus

enhancing its dynamic and seismic stability. In this chapter, a comprehensive examination

of the rocking response of rigid blocks equipped with supplemental rotational inertia devices

is presented. Besides comparing the response of rocking oscillators equipped with an inerter

that can oppose and drive the motion against the response of uncontrolled rocking blocks,

the chapter also considers a pair of clutched inerters designed to only resist the motion of

the structure. The following section presents original equations that govern the motion of the

inerter-rocking system derived by considering a simple discontinuous acceleration-based func-

tion for the clutch. The proposed analytical model is subsequently used to assess the effects of

the inerter on the self-similar scaling of the response, as well as on associated rocking demands

and overturning potential of the blocks under a wide range of trigonometric pulse excitations.

Special attention is also dedicated to the effect of the inerter on the impact phenomenon.

Finally, a probabilistic assessment of the seismic performance of rocking blocks is conducted

using a set of 202 pulse-like ground motions obtained from the Pacific Earthquake Engineering

Research Center (PEER) database. The results of the assessment demonstrate that rocking

structures equipped with a single inerter experience smaller rotation and acceleration demands

than unprotected ones and that the incorporation of the clutch further reduces their rotation

demands as well as their probability of overturning.
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3.2 Rocking structures and the concept of supplemental

rotational inertia

3.2.1 Seismic response of rigid rocking blocks

When subjected to a horizontal ground excitation, üg, the rigid block shown in Figure 3.1

uplifts and starts rocking if the overturning moment exceeds the restoring moment due to its

self-weight; this condition can be expressed as follows:

|üg| ≥ g tanα (3.1)

where g is the acceleration of gravity and α is the slenderness of the block. Assuming that no

sliding or bouncing occurs during impact, the planar rocking motion of the structure can be

described by means of Housner’s model [3] as follows:

θ̈ = −p2
(

sin(α sgn(θ)− θ) +
üg
g

cos(α sgn(θ)− θ)
)

(3.2)

Although the free vibration frequency of a rocking block is not constant, its dynamic

properties can be characterized by the frequency parameter p, which represents the in-plane

pendulum frequency of the same block dangling from its pivot point [116]. For a rectangular

block p =
√

3g/4R.

Figure 3.1: Rigid block under a horizontal ground excitation.

When the angle of rotation θ reverses, the block impacts on the base and loses some of its

kinetic energy. Assuming that there is no bouncing, the block then continues rotating smoothly

about point O’. Energy losses due to impact are usually considered through a coefficient of

restitution that relates the pre-impact angular velocity, θ̇1, to the post-impact angular velocity,
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θ̇2.

r =

(
θ̇2

θ̇1

)2

(3.3)

By equating the moment of momentum before and after impact, Housner derived an ex-

pression for the coefficient of restitution that depends only on the geometry of the rectangular

block.

r =

(
1− 3

2
sin2 α

)2

(3.4)

3.2.2 Supplemental rotational inertia: the inerter

As previously mentioned, the inerter is a linear mechanical device that develops a resisting

force proportional to the relative acceleration between its terminals [6]. Although several

types of inerters have been proposed and patented, the general properties of the system can be

studied by considering the particular case of a rack-pinion-flywheel device, like the one shown

in Figure 3.2a. The system consists of two flywheels of radius Ri and mass mwi, free to rotate

about axis Oi and connected to a linear rack through a pinion-gear mechanism. Figure 3.2b

shows the free-body diagram of the rotating flywheels.

(a) Two-flywheel configuration. (b) Free-body diagram of the flywheels.

Figure 3.2: Rack-pynion-flywheel supplemental rotational inertia system.

When a positive relative displacement is imposed (u2 > u1), the first flywheel is subjected

to a clockwise rotation θ1, while the second flywheel rotates θ2 anticlockwise. If there is no

slippage between the rack, pinions, and gears, the rotations and relative displacement are

related through:

θ1 =
u2 − u1
ρ1

; θ2 =
(u2 − u1)R1

ρ1 ρ2
(3.5)

Evaluating the rotational equilibrium of the flywheels around pivot points O1 and O2 yields:

F1 ρ1 = Iw1 θ̈1 + F2R1 (3.6)
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F2 ρ2 = Iw2 θ̈2 (3.7)

where Iwi = 1
2 mwiR

2
i is the moment of inertia of the flywheel around point Oi. Replacing

Equation 3.5 into Equation 3.6 and combining it with 3.7 leads to:

F1 = mr (ü2 − ü1) (3.8)

with

mr =
1

2

mw1R
2
1

ρ21
+

1

2

mw2R
2
1R

2
2

ρ21 ρ
2
2

(3.9)

where mr is the inertance or apparent mass of the inerter. The inertance of the system can be

significantly amplified by installing multiple flywheels in series connected through a gearing

system. The previous derivation can be extended to a system with n rotating flywheels where

the apparent mass of the system is given by [6]:

mr =
1

2

mw1R
2
1

ρ21
+

1

2

mw2R
2
1R

2
2

ρ21 ρ
2
2

+ ...+
1

2

mwnR
2
1R

2
2 ... R

2
n

ρ21 ρ
2
2 ... ρ

2
n

(3.10)

Accordingly, regardless of how small the total mass of the inerter is, any value of inertance

can be obtained with the sufficient number and size of flywheels [95]. For instance, for a two-

flywheel system of radius ratio Ri/ρi = 10, only one ten thousandth of the structure’s mass,

m, would be required to obtain a mass ratio, mr/m, of 0.5.

Makris and Kampas [95] recognized that the rotating flywheels store energy that is then

transferred back to the primary structure. To overcome this issue, they proposed the use

of rotational inertia systems equipped with clutches to ensure that the inerters act only in

opposition to the motion without inducing additional deformations. Since one-way clutches can

only oppose one direction of motion, a pair of parallel inerters is required in this configuration.

While there are several types of one-way clutches available, the most commonly used fall within

one of three categories: i) ratchet and pawl, ii) roller and spring, and iii) sprag. Figure 3.3

presents a schematic comparison of their envelope sizes according to [117].

Figure 3.3: Schematic comparison of different clutch types. Adapted from [117].
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The ratchet type is obviously the most limited in capacity, and usually requires large di-

mensions in order to comply with maximum stresses on the ratchet and the tooth. Moreover,

ratchet-pawl clutches are also associated with non-negligible levels of rotation before engage-

ment. In contrast, sprag clutches offer a good load carrying capacity and are not significantly

affected by friction [118]. However, the complexity of their fabrication and assembly contribute

to higher costs of manufacture and maintenance. The roller clutch, on the other hand, needs

smaller envelopes than the ratchet-pawl type to transfer the same amount of torque, is reliable

and relatively inexpensive.

Considering that a one-way clutch like the ones described above is incorporated into the

system, the sequential engagement and disengagement of the two parallel inerters can be

expressed mathematically as [95]:

F1(t) =


mr ü,

[
ü
u̇

]
> 0

0,
[
ü
u̇

]
< 0

(3.11)

This formulation assumes that friction within the inerter is enough to decelerate the fly-

wheel once it disengages [105]. Alternatively, viscous fluids can be added to ensure sufficient

energy dissipation [5, 7, 95]. On the other hand, the influence of the clutch stiffness, gears

play, viscous damping and dry friction, on the non-linear dynamics of the system has been

comprehensively assessed in [105].

3.3 Rocking Block - Inerter systems

The overall rational behind the proposed strategy is that the vibration-absorbing capabilities

of supplemental rotational inertia devices can be applied to the seismic protection of rock-

ing structures. To this end, Figure 3.4 shows some possible configurations of the proposed

block-inerter system. In the case of single rocking structures (such as storage tanks and post-

tensioned columns and walls) a pair of vertical inerters can be attached near their base and

connected to a rigid foundation (Figure 3.4a). In this way, the inerters are sequentially ac-

tivated by the vertical acceleration at the connected nodes following rocking motion. This

configuration will be more effective for stocky blocks, since the vertical acceleration in slender

structures will be small. In the case of slender blocks, a horizontal inerter can be used as

presented in Figure 3.4b. In this arrangement, a horizontal support will be required to at-

tach the inerter to the structure. This can be useful when protecting electrical equipment or

non-structural elements that can be tied to a stiff wall or support. Alternatively, a variety

of pulley systems can be used to transfer and amplify the acceleration from any tying point

within the rocking structure while carrying the forces to a more practical inerter location (as

in Figure 3.4c). This is particularly attractive for the protection of rocking bodies as it opens
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the possibility of non-locally modifying the dynamic response of rocking structures without

altering their geometry.

(a) Vertical pair of inerters. (b) Horizontal inerter. (c) Pulley-inerter system.

Figure 3.4: Examples of rigid block-inerter configurations.

3.3.1 Equations of motion

The general dynamic characteristics of the systems depicted in Figure 3.4 can be studied with

reference to the rocking block shown in Figure 3.5, where a horizontal inerter of apparent mass,

mr, connected to the centre of mass is considered for clarity. The rigid block is characterized

by its mass, m, and the location of the centre of mass, C, defined by the slenderness α and the

size parameter R. The block is free to rotate about points O and O’, and it is assumed that

the coefficient of friction is large enough to prevent sliding between the block and the base.

The rotation of the block is measured by the angle θ.

Figure 3.5: Block-inerter system under a horizontal ground excitation.

Rocking motion initiates when the overturning moment due to the ground excitation ex-

ceeds the restoring moment exerted by the self-weight (Equation 3.1). Until this instant, the

resisting force in the inerter is zero, since there is no relative acceleration between its termin-
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als. Once the block uplifts, the tangential relative acceleration at point C is R θ̈. In slender

blocks, the centripetal acceleration is practically vertical and its horizontal component can be

neglected. Thus, the horizontal linear acceleration at the point of connection of the inerter

can be expressed as follows (Figure 3.5):

ü = R θ̈ cos(α sgn(θ)− θ) (3.12)

Therefore, the resisting force in the inerter is:

Fr = mr R θ̈ cos(α sgn(θ)− θ) (3.13)

Evaluating the rotational equilibrium about the rocking pivot point gives:

(
I0+mrR

2 cos2(α sgn(θ)−θ)
)
θ̈+mgR sin((α sgn(θ)−θ)) = −mügR cos(α sgn(θ)−θ) (3.14)

where I0 is the moment of inertia about the centres of rotation O and O’. For rectangular

blocks I0 = (4/3)mR2 and

(
4R

3
+ σR cos2(αsgn(θ)− θ)

)
θ̈ = −g sin((αsgn(θ)− θ))− üg cos(αsgn(θ)− θ) (3.15)

where σ = mr/m is the apparent mass ratio. Equation 3.15 can be rearranged to obtain an

expression similar to Equation 3.2:

θ̈ = −p2σ
(

sin((αsgn(θ)− θ)) +
üg
g

cos(αsgn(θ)− θ)
)

(3.16)

with

pσ =

√
3 g

R
(
4 + 3σ cos2(αsgn(θ)− θ)

) (3.17)

Equation 3.17 shows that the inclusion of the inerter has an effect equivalent to reducing the

frequency parameter, p, of the block. This effect depends on the magnitude of the rotation θ,

reaching a maximum when θ = α and becoming less significant for higher rotations. In general,

the reduction of the frequency parameter should result in lower seismic demands due to the

size effect of rocking behaviour [3]. This principle dictates that among two blocks of the same

slenderness α, the one with the lower frequency parameter, p (larger in size), is more stable

and therefore has lower levels of structural demands. It is important to note that for a given

rectangular block, the frequency parameter, p, depends only on the size, R, and therefore

cannot be modified without altering its geometry. Consequently, the use of supplemental

rotational inertia devices configures a practical alternative to modify the dynamic response

and reduce seismic demands in rocking structures.
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Equation 3.16 can be linearized if slender blocks are considered (small α− θ), such that:

θ̈ = −p2σ
(
αsgn(θ)− θ +

üg
g

)
(3.18)

with

pσ =

√
3 g

R
(
4 + 3σ

) (3.19)

Importantly, the clutched pair of inerters proposed by Makris and Kampas [95] can be easily

incorporated into the above mathematical formulation. To this end, in order to represent an

arrangement that can only resist the rocking motion, the effects of the apparent mass of the

inerter are reevaluated after each integration step according to Equation 3.11.

3.3.2 Transition upon impact

Housner’s restitution coefficient needs to be modified in order to account for the effect of the

inerter during impact. Figure 3.6 shows the rigid rocking block studied in the previous section

at the instant of impact.

Figure 3.6: Rigid rocking block connected to an inerter at the instant of impact.

Just before impact, the momentum of a mass element dm located at a distance l =
√
x2 + y2

from the pivot point O is:

dJm = l θ̇1dm (3.20)

and the momentum of the inerter’s apparent mass:

Jmr = mr θ̇1R cosα (3.21)
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where θ̇1 is the angular velocity before impact. The corresponding moment of momentum

about the opposite corner, O′, can be obtained as:

dΛm = dJδ = ρ l θ̇1δ dxdy (3.22)

and

Λmr = JmrR cosα = mrR
2 θ̇1 cos2 α (3.23)

where ρ is the constant density of the block, and δ = l− 2Bx/l is the lever arm of the element

momentum vector dJ about point O′. The total moment of momentum of the rocking structure

about point O′ is then given by:

Λ1 = ρ θ̇1

(∫
A

(x2 + y2)dxdy − 2B

∫
A
xdxdy

)
+mr θ̇1R

2 cos2 α (3.24)

where A is the total area of the block. Integration yields:

Λ1 = I0θ̇1 − 2mθ̇1R
2 sin2 α+mr θ̇1R

2 cos2 α (3.25)

On the other hand, the moment of momentum about point O′ after impact is:

Λ2 = I0θ̇2 +mrR
2 θ̇2 cos2 α (3.26)

Then, conservation of moment of momentum before and after impact gives:

I0θ̇1 − 2Mθ̇1R
2 sin2 α+mrR

2 θ̇1 cos2 α = I0θ̇2 +mrR
2 θ̇2 cos2 α (3.27)

On the other hand, the ratio of kinetic energy before and after impact is:

rσ =
θ̇22
θ̇21

< 1 (3.28)

Combination of Equations 3.27 and 3.28 yields:

rσ =

(
1− 3

2 sin2 α+ 3
4σ cos2 α

1 + 3
4σ cos2 α

)2

(3.29)

Equation 3.29 defines the coefficient of restitution of a rigid rocking block connected to an

inerter of apparent mass ratio σ. When σ = 0 (no inerter case), this expression becomes

identical to the one obtained by Housner (Equation 3.4). Figure 3.7 shows the effect of

increasing levels of inertance on the coefficient of restitution of blocks of different slenderness.

The plot shows that as the apparent mass of the inerter increases, the coefficient rσ becomes

larger, indicating a lower amount of energy dissipation during impact. Importantly, this effect

is much more significant for stocky structures.
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Figure 3.7: Effect of the inerter on the restitution coefficient.

The equations of motion presented in the previous section are solved using Matlab’s stand-

ard solver for ordinary differential equations ode45. This function implements a Runge-Kutta

method with a variable time step for efficient computation [119]. An event function is also

defined in order to stop the integration at the instant of impact (θ → 0). The angular ve-

locities are then redefined using the coefficient of restitution given in Equation 3.29, and the

integration is resumed using these new values as initial conditions.

Figure 3.8 compares the response of a rigid block of slenderness α = 10◦ equipped with

a single inerter (left) and a pair of clutched-inerters (right) of apparent mass ratio σ = 0.5,

subjected to a sine pulse ground acceleration of ag/gα = 1.5 and ωg/p = 4. Accordingly the

coefficients of restitution of the bare and inerter-equipped blocks are r = 0.955 and rσ = 0.967,

respectively. The sequential engagement and disengagement of the clutched-inerters during

the rocking motion can be clearly appreciated in the transferred force response.

The results plotted in Figure 3.8a show that the inclusion of the inerter significantly im-

proves the stability of the block, while at the same time it reduces the amount of energy

dissipated during each impact. This results in lower peak rotations, with similar amplitudes

in the later cycles of the rocking response. Figure 3.8b, on the other hand, shows a significant

increase in the energy dissipated by the clutched-inerter configuration, which is reflected in

a fastest decrease of the rocking amplitude. This observation may be explained by the as-

sumption underlying Equation 3.11 by which the energy stored in the idle rotating flywheel is

completely dissipated before it re-engages. A more detailed analysis of the rocking demands

for a wider range of pulse excitations is conducted in the following sections.
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(a) Single Inerter (b) Clutched pair of inerters

Figure 3.8: Response of a rigid block of α = 10◦, with and without inerters, to a sine pulse ground

acceleration of ag/gα = 1.5 and ωg/p = 4.

3.3.3 Impact and the acceleration response

The formulation presented in the previous section considered a classical impact framework,

where vertical forces are assumed to be instantaneous and concentrated at the pivot corners.

Although this model provides a good estimation of the amount of energy dissipated during

impact [38], Equation 3.28 predicts an instantaneous change of velocity and, therefore, an

unrealistic infinite acceleration at the transition instant. A more detailed assessment of the

acceleration response can be performed if Dirac-Delta functions are considered in order to

distribute the impact forces over time, as suggested by Prieto et al. [35] and Acikgoz and

DeJong [34]. In this formulation, a vertical force is considered to act on the impending pivot

point as the structure approaches θ = 0, applying a moment that counteracts the rocking

motion and decelerates the rotating structure. After the phase transition at θ = 0, the force is
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terminated as any forcing from the pivot point will no longer influence the moment equilibrium.

This process is schematically illustrated in Figure 3.9a.

(a) Varitation of impact force with θ. (b) Effect of n on the shape of the impact force.

Figure 3.9: Impact forces in the Dirac-Delta model.

The impact force, Fi, is approximated by a Gaussian function of the rocking angle, defined

by a zero mean and a standard deviation of n/
√

2, where n represents a width parameter that

influences the sharpness of the impact force. The effect of changing the value of n on the form

of the function is illustrated in Figure 3.9b. Regardless of the value of n, the energy dissipated

during a single impact cycle is given by:

Eloss = 2B

∫ 0

−∞

1

n
√
π
e−θ

2/n2
dθ = B (3.30)

Using this property, the Gaussian function can then be scaled to obtain any desired energy

loss, Eini(1− r):

Fi =
Eini(1− r)
B n
√
π

e−θ
2/n2

(3.31)

In order to ensure that the specified amount of energy is dissipated during impact, the

force-activation rotation is defined as θi = 2.576(n/
√

2), corresponding to the 99.5% confidence

interval of the Gaussian function [34]. On the other hand, n is assumed to be an independent

parameter of the system.

Figure 3.10 compares the response of the same rigid block analysed in the previous section,

considering a classical impact framework (Housner) and the Dirac-Delta model for different

values of n. The magnitude of the impact forces is defined based on Housner’s coefficient of

restitution, r, according to Equation 3.31. Accordingly, the three models compared in Figure

3.10 have equivalent energy dissipation ratios during impact.
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(a) Base rotation. (b) Angular acceleration.

Figure 3.10: Response of a rigid block of α = 10◦ and σ = 0, to a sine pulse ground acceleration of

ag/gα = 1.5 and ωg/p = 4 for different impact models.

Figure 3.9b showed that impact forces become sharper as n decreases, tending to instantan-

eous impact as n approaches zero. This is evident in Figure 3.10a, where the rotation responses

obtained with Housner’s formulation and the Dirac-Delta model converge when n = 0.0001.

Moreover, the acceleration spikes predicted by the classical formulation are clearly observed

in Figure 3.10b. As the impact forces become more distributed over time (n = 0.005), these

spikes disappear and the acceleration history approaches the in-between-impacts response ob-

tained with Housner’s model. Likewise, very similar rotation amplitudes are obtained with

the three models under consideration, even though changes in the duration of impact cause

shifts in the phase of the response.

The results presented in Figure 3.10 demonstrate that Housner’s model can be used to

assess the acceleration response of rocking blocks under the assumption that impact forces

are sufficiently distributed over time as to cause continuous velocity transitions, but sharp

enough not to appreciably affect the rotation response. Accordingly, the analyses presented

in the following sections consider the classical impact framework developed in Section 3.3.2,

ignoring the velocity discontinuity (i.e. infinite acceleration) when assessing peak acceleration

demands.

3.4 Self-Similar response of rocking block-inerter systems

The response of a rigid block to an analytical pulse ground motion of acceleration amplitude

ag and dominant frequency ωg is a function of four variables:

θmax = f

(
α , p ,

ag
g
, ωg

)
(3.32)
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Applying Vaschy-Buckingham’s Π-theorem [120, 121] the number of independent parameters

required to define a unique response can be reduced to three:

θmax = f

(
ωg
p
,
ag
g
, α

)
(3.33)

Considering the coefficient of restitution, r, as an independent parameter, Dimitrakopoulos

and DeJong [122] used a dimensionless and orientationless analysis to show that the response

of slender blocks can be described by three dimensionless and orientationless terms:

θmax g

ag
= φ

(
ωg
p
,
g tanα

ag
, r

)
(3.34)

When stocky blocks are considered, α cannot be incorporated entirely into the other parameters

and appears as an isolated argument, cos(α). However, for small rotation angles, the influence

of α is relatively small, and it is convenient to eliminate cos(α) as an independent group [122]

such that:

θmax g

ag cosα
' φ

(
ωg
p
,
g tanα

ag
, r

)
(3.35)

It can be appreciated from Equation 3.17 that the inclusion of the inerter only modifies the

frequency parameter, p, and as such it should not affect the validity of Equations 3.34 and

3.35. However, in the case of clutched systems, the inclusion of the inerter-clutch device adds

an additional source of non-linearity to the equation of motion, and therefore, its self-similar

response must be verified. To this end, Figure 3.11 compares the response of two blocks of

dimensionless-orientationless parameters gα/ag = 0.57 and r = 0.85, connected to a single

inerter and to a pair of clutched inerters, when subjected to a single sine pulse of frequency

wg/p = 4. The inerter device is described in terms of the mass ratio σ = mr/m, which is a

dimensionless-orientationless quantity and can be treated as an independent parameter such

that:

θmax g

ag
= φ

(
ωg
p
,
g tanα

ag
, r , σ

)
(3.36)
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(a) Slender block-inerter systems.

(b) Response of blocks 1 and 2 presented in terms of dimensionless-orientionless parameters [122].

Figure 3.11: Self-similar response of slender block-inerter systems.
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It is evident from Figure 3.11b that, when presented in terms of the proposed parameters,

the responses collapse into a single master curve, showing that the inclusion of inerters or

clutched inerters preserves the self-similarity in the response of slender blocks. In the case of

non-slender blocks, the effects of the inerter depend on the magnitude of the rotation θ (Equa-

tion 3.17). Therefore, it is expected that the practically self-similar formulation developed by

Dimitrakopoulos and DeJong (Equation 3.35) will not be directly applicable to stocky rocking

block-inerter systems. In order to examine this, Figure 3.12 compares the response of two

rocking blocks of equivalent dimensionless-orientationless parameters connected to (a) a single

inerter and (b) a pair of clutched inerters. The rocking response of these blocks is calculated

by solving the full nonlinear equation of motion (Equation 3.16).

(a) Non-slender block-inerter systems.

(b) Response of blocks 3 and 4 presented in terms of dimensionless-orientionless parameters [122].

Figure 3.12: Self-similar response of non-slender block-inerter systems.
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The left side of Figure 3.12b shows that the response of the single inerter case remains

practically self-similar, as the plots virtually collapse to a single curve. However, the incorpor-

ation of the clutch modifies this behaviour and the response becomes non or less self-similar

(Figure 3.12b, right). This is an important finding that affects more the later stage of the

response, as can be observed from Figure 3.12.

3.5 Overturning under single pulse excitations

The rocking response of a rigid block can result in one of two outcomes: (a) safe rocking,

where the block survives the ground motion and the energy is dissipated through successive

impacts at the base until the motion stops; and (b) overturning, where the equation of motion

(Equation 3.16) leads to an arbitrarily large rotation value (|θmax|/α → ∞) and the block

topples. Overturning is usually studied by means of overturning plots like the ones presented

in Figure 3.13. These plots show the regions in the frequency-amplitude acceleration space

that result in safe rocking or overturning of the block. The area above the upper curves

in the graphs of Figure 3.13a represent overturning without impact (Region 1), whereas the

areas enclosed by the lower curves correspond to overturning taking place after impact at the

base [123] (Region 2). The remaining regions of the plot are associated with safe rocking

(Region 3).

In this section, the effects of incorporating inerters on the overturning behaviour of rocking

blocks is examined by considering sinusoidal and cosinusoidal acceleration pulses. Figure 3.13

shows the overturning plots obtained for slender (α = 10◦) and non-slender blocks (α = 20◦)

equipped with a single inerter and a pair of clutched inerters. It can be appreciated that,

in general, the inclusion of the inerter reduces the areas of overturning (Regions 1 and 2)

and translates them to the lower frequency region. This frequency shift, which is otherwise

beneficial, is particularly relevant for the case of overturning after impact (Region 2), as certain

blocks that would rock safely without the inerter, may overturn when the protective device is

incorporated. Similar trends are observed for the non-slender block (Figure 3.13b). The effect

of the inerter system on the overturning response is considerably less significant for smaller

objects (ωg/p < 2). Therefore, the use of a higher mass ratio, σ, will be necessary to further

improve the stability of such blocks under single pulse excitations.

It is worth noting that overturning without impact can involve motion reversals, especially

when clutched inerters are employed, leading to the difference in Region 1 of the overturning

plots observed in Figure 3.13. This can be further examined with reference to Figure 3.14a,

where the response of a slender block with no, single, and a pair of clutched inerters is de-

picted. It can be seen from this figure that the response of the blocks equipped with a single

inerter and a pair of clutched inerters are identical until the condition for disengagement is

attained (Equation 3.11), leading to the avoidance of overturning by the twin clutched inerter

configuration.
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(a) Slender-block-inerter system (α = 10◦).

(b) Non-slender-block-inerter system (α = 20◦).

Figure 3.13: Overturning plots of rocking-block-inerter systems subjected to trigonometric pulses.

The incorporation of the clutch shows different results for cosine and sine acceleration

pulses. In the first case, a slight reduction in the areas of overturning is observed, with a

small further shift to the region of lower frequencies in comparison with the single inerter

configuration. This translation is also observed for the sinusoidal pulses. However, in the case

of sinusoidal pulses, the area of overturning after impact (Region 2) is significantly extended

for both slender and stocky blocks. This is an important finding and suggests that although

the inerter improves the general overturning resistance of the block, the incorporation of a

clutch may have a detrimental effect on the rocking response in some cases, especially in

relation to overturning after impact. To further examine these effects, Figure 3.14b compares

the rotations of slender blocks with no, single, and a pair of clutched inerters under a sine

pulse of ωg/p = 8 and ag/gα = 10. It can be appreciated from this figure that a shift in

the impact time is induced by the change in the frequency parameter brought about by the
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(a) ωg/p = 3, ag/gα = 5. (b) ωg/p = 8, ag/gα = 10.

Figure 3.14: Response history of slender blocks to sine pulses of different amplitude and frequency. The

shaded areas show clutch engagement.

inerter. In the case of the unprotected and single inerter structures, impact takes place close

to the end of the sinusoidal excitation meaning that the second half of the pulse, after reversal

of acceleration, can effectively help to restrain the motion of these blocks. The introduction

of the clutch, however, leads to impact occurring closer to the instant of acceleration reversal,

causing most of the second half of the ground motion to exacerbate the rotation after impact.

3.6 Rocking demands under single pulse excitations

Even if the block survives the ground motion (no overturning), high rotations and angular

accelerations associated with the rocking motion can cause significant damage to the structure

and its contents. The results of analyses under single pulse excitations (Figure 3.8) suggest that

the use of supplemental rotational inertia can help to reduce seismic demands and improve the

dynamic response of rocking structures. In this section, a more complete analysis considering

a wider range of trigonometric pulse excitations is offered. The response parameters are

presented in terms of rocking spectra, which consist of contour plots of the normalized response

variable in the frequency ratio (ωg/p) and acceleration amplitude (ag/g tanα) plane, for a

block of a given slenderness α. Accordingly, Figures 3.15 and 3.16 compare the rotation

and acceleration demands for a rigid block of slenderness α = 20◦ subjected to cosinusoidal

and sinusoidal pulses, respectively, of dominant frequency ωg and acceleration amplitude ag.
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Results are offered for three different configurations: (a) no inerter, (b) single inerter (σ = 0.5),

and (c) pair of clutched inerters (σ = 0.5).

(a) Single rigid block (no inerter).

(b) Rigid block connected to a single inerter (σ = 0.5).

(c) Rigid block connected to a pair of clutched inerters (σ = 0.5).

Figure 3.15: Rocking spectra for a non-slender block (α = 20◦) subjected to cosine pulse excitations.
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(a) Single rigid block (no inerter).

(b) Rigid block connected to a single inerter (σ = 0.5).

(c) Rigid block connected to a pair of clutched inerters (σ = 0.5).

Figure 3.16: Rocking spectra for a non-slender block (α = 20◦) subjected to sine pulse excitations.
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The rocking spectra presented in Figures 3.15 and 3.16 reveal a considerable reduction in

the rotation and acceleration demands for the single inerter case (Figures 3.15b and 3.16b).

Moreover, the reduction in angular accelerations is more significant for larger pulse acceleration

amplitudes. On the other hand, blocks connected to a pair of clutched inerters (Figures 3.15c

and 3.16c) exhibit a different behaviour depending on the type of excitation and the magnitude

of acceleration amplitude, ag.

The trends identified above can be better appreciated if a single acceleration amplitude

is considered, and the response variables are presented only in terms of the frequency ratio

ωg/p. To this end, Figure 3.17 compares the response of the same block (α = 20◦) subjected

to cosine and sine pulses of dominant frequency ωg and acceleration amplitudes ag/g tanα = 2

and ag/g tanα = 8 for the three configurations under study.

(a) Cosine pulse excitations.

(b) Sine pulse excitations.

Figure 3.17: Rotation and angular acceleration spectra for a non-slender block (α = 20◦) subjected to

trigonometric pulse excitations of ag/g tanα = 2 and ag/g tanα = 8.

It can be seen from Figure 3.17 that under cosine pulse ground motions of small accel-
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eration amplitudes (ag/g tanα 6 2), the incorporation of the clutch brings minor additional

benefits over rotation demands in comparison with the single inerter case. Instead, it in-

creases accelerations for frequency ratios higher than 2 (Figure 3.17a). For larger accelerations

(ag/g tanα > 8), the clutch is clearly detrimental, offsetting the reduction brought about by

the inerter on the rotations and practically cancelling it on angular accelerations. A similar

behaviour is observed in the rotation demands for the blocks subjected to sinusoidal pulse ex-

citations. A minor additional reduction can be observed for small amplitude pulses, whereas

higher rotation demands are obtained for larger acceleration excitations. The detrimental ef-

fects of the clutch on the overturning response are also evident in this region, as the proportion

of blocks (frequency ratios) that survive the ground motion is smaller than for the no inerter

case. In terms of angular accelerations, the blocks equipped with the pair of clutched inerters

show practically the same maximum response than the blocks connected to a single inerter

for small acceleration amplitudes (ag/g tanα 6 2). Moreover, when higher ground motion

accelerations are considered (ag/g tanα > 8), the addition of the clutch considerably increases

acceleration demands, even surpassing the no inerter case. The region where both cases (single

inerter and clutched inerters) overlap corresponds to the area of overturning without impact.

In these cases, there is no inversion of the direction of motion, and therefore, the clutch has

no effect on the response. Equivalent analyses were conducted for slender rocking blocks and

similar results were obtained (see Appendix A).

3.7 Pulse-like Ground Motion Analyses

Previous sections have examined the fundamental dynamic behaviour of rocking blocks equipped

with inerter devices subjecting them to single trigonometric pulse excitations. However, re-

corded near-field ground motions contain, besides coherent long-period pulses, some high-

frequency spikes and fluctuations that can increase the seismic demands on rocking structures.

In this section, the effectiveness of the inerter for the protection of rocking structures is assessed

employing a set of 202 real pulse-like ground motion records obtained from the Pacific Earth-

quake Engineering Research Center (PEER) database. Records from 21 earthquakes with

magnitudes Mw ranging from 5.4 to 7.9 are considered. Table 3.1 summarizes the catalogue

of earthquakes used in the analyses.

3.7.1 Dimentionless intensity measures

A critical task for the probabilistic assessment of rocking structures under real seismic ground

motions is the selection of adequate intensity measures (IMs) that correlate strongly with the

structural demands. Previous studies have shown that rocking response is particularly sensit-

ive to the velocity and acceleration characteristics of the ground motion and have proposed IMs

built upon the peak ground velocity PGV (e.g. pPGV/gtanα) and the peak ground accelera-
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Earthquake event Year Magnitude Mw Mechanism N◦ of Records

San Fernando 1971 6.61 Reverse 1

Tabas Iran 1978 7.35 Reverse 1

Coyote Lake 1979 5.74 Strike Slip 4

Imperial Valley-06 1979 6.53 Strike Slip 12

Irpinia Italy-01 1980 6.9 Normal 2

Westmorland 1981 5.9 Strike Slip 1

Morgan Hill 1984 6.19 Strike Slip 2

Kalamata Greece-02 1986 5.4 Normal 1

San Salvador 1986 5.8 Strike Slip 2

Superstition Hills-02 1987 6.54 Strike Slip 2

Loma Prieta 1989 6.93 Reverse Oblique 6

Cape Mendocino 1992 7.01 Reverse 1

Landers 1992 7.28 Strike Slip 3

Northridge-01 1994 6.69 Reverse 14

Kobe 1995 6.9 Strike Slip 4

Kocaeli 1999 7.51 Strike Slip 4

Chi-Chi Taiwan 1999 7.62 Reverse Oblique 36

Chi-Chi Taiwan-04 1999 6.2 Strike Slip 1

Chi-Chi Taiwan-06 1999 6.3 Reverse 2

Duzce Turkey 1999 7.14 Strike Slip 1

Denali Alaska 2002 7.9 Strike Slip 1

Total 202

Table 3.1: Ground motion database used in the analyses

tion PGA (e.g. PGA/gtanα) [23, 40]. Petrone et al. [124] showed that velocity-based IMs are

more effective for large rocking structures (R > 2[m]), whereas acceleration-based IMs show a

better correlation with smaller structures (R < 1[m]). Likewise, several researchers [3,42,125]

have stressed the importance of the duration and temporal signature of the ground motion

on rocking demands. For these reasons, in what follows, the dimensionless-orientationless IM,

p tuni (Figure 3.18), is employed when assessing rocking demands (maximum rotation and an-

gular acceleration of the safe rocking cases), whereas pPGV/g tanα is used when evaluating

overturning fragilities.

3.7.2 Seismic demand analysis

A cloud analysis considering the earthquakes database described in Table 3.1 was conducted

in order to assess the seismic demands of inerter-protected rocking structures. A stable slender
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Figure 3.18: Dimentionless-orientationless IM for the rocking demands assessment: Uniform duration

p tuni.

block (α = 10◦ and R = 3[m]) representative of a bridge pier or rocking column was selected

as a case of study in order to minimize the number of overturning events. Similarly to Section

3.6, the structural demands are described in terms of the dimensionless peak rotation, θmax/α,

and the dimensionless peak angular acceleration, θ̈max/p
2 α.

A common assumption in seismic demand models is to consider that the median estimated

demand, Dm, follows a power law IM distribution:

Dm = a IM b (3.37)

When plotted on a ln(Dm)− ln(IM) plane, Equation 3.37 becomes a straight line:

ln(Dm) = ln a+ b ln(IM) (3.38)

where a and b are the linear regression coefficients. Figure 3.19 shows the results of the cloud

analysis and the corresponding fitted seismic demand models for three cases: (a) no inerter,

(b) single inerter (σ = 1), and (c) pair of clutched inerters (σ = 1).

The results of the regression analyses of Figure 3.19 show a good correlation between

the selected intensity measure, p tuni, and the seismic demands, validating the estimation

model proposed in Equation 3.37. Importantly, 3.19a shows that the effect of the inerter on

the rotation demands is only beneficial for mid to high seismic intensities. This behaviour is

further examined in Figure 3.20, where the response of blocks subjected to ground motions with

large and small values of p tuni is compared. Figure 3.20a shows that the peak rotation of the

unprotected structure is governed by the main acceleration pulse highlighted at the beginning

of the record. Since the inclusion of the inerter increases the rotational inertia of the block, the

amplitude of this rocking oscillation is significantly reduced. The subsequent high frequency

spikes, however, cause further rocking cycles which are strongly influenced by the amount of
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(a) Linear regression for the dimensionless peak

rotation.

(b) Linear regression for the dimensionless peak

angular acc.

Figure 3.19: Seismic demand analysis of a slender rigid block (α = 10◦ and R = 3[m]) subjected to the

suite of records described in Table 3.1.

energy dissipated during impact. As the incorporation of the inerter increases the coefficient

of restitution of the block (see Figure 3.7), these oscillations grow to exceed the amplitude

of the initial rocking cycle, although they remain smaller than the maximum rotation of the

unprotected structure. Nevertheless, when lower seismic intensities are considered, the relative

importance of the main acceleration pulse diminishes, and the increasing oscillations associated

with larger coefficients of restitution can cause the inerter-equipped structure to experience

larger rotation demands than the unprotected block (Figure 3.20b). The introduction of the

clutch, on the other hand, significantly improves the performance of the blocks equipped with

inerters, causing important reductions in the rotation demands across the whole range on

intensities under consideration. Whereas peak rotations of up to 35% lower are observed in

the structures equipped with single inerters, reductions of around 65% are obtained when

the clutch is added. Moreover, the faster attenuation of the rocking response brought about

by the clutch (see Figure 3.8), also enhances the response of the system under lower seismic

intensities.

Important reductions are also observed in the maximum angular accelerations across the

whole range of intensities under consideration (Figure 3.19a). Nevertheless, a reversed trend

can be identified when the clutch is incorporated; 40% lower demands are observed for the

single inerter configuration; however, these values rise again when the clutch is introduced.

This behaviour is consistent with the results obtained from the single pulse analyses presented

in Section 3.6.
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(a) Response to the 1971 San Fernando - Pacoima Dam (upper left abut) record (p tuni = 6.01).

(b) Response to the 1989 Loma Prieta - Saratoga - Aloha Ave record (p tuni = 1.11).

Figure 3.20: Rotation response of a rigid block of α = 10◦ and R = 3[m] to ground motions of low and

high p tuni.

3.7.3 Probability of overturning

The probability of rocking overturning can be expressed as a categorical variable zj , where

z = 1 represents overturning, and z = 0 safe or no rocking motion. Although the categor-

ical nature of the response prevents the calculation of the statistical moments (mean µ and

standard deviation β) [126], the overturning probability can be estimated following the max-

imum likelihood estimation (MLE) [127] approach assuming a log-normal distribution [40].

The MLE calculates the fragility function parameters, µ̂ and β̂, that maximize the likelihood

of reproducing the observed data, such that:

{µ̂, β̂} = max
µ,β

n∏
j=1

Φ

(
lnxj − µ

β

)zj(
1− Φ

(
lnxj − µ

β

))1−zj
(3.39)

where Φ is the normal cumulative distribution function and xj the intensity measure values.

A small slender rigid block (α = 10◦ and R = 1[m]), which is comparatively more unstable

than the one considered above for assessing the seismic demands, was selected as a case study.

Cloud analyses were then performed by considering the same suite of pulse-like ground motion

records described in Table 3.1. Figure 3.21 plots the probability of overturning (Pro) functions
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obtained for the three block configurations under study (no inerter, single inerter, and pair of

clutched inerters) for apparent mass ratios of σ = 0.5 and 1.0. The graph also summarizes

the data obtained from the numerical analyses. The y-coordinate of each circle represents the

percentage of overturning observed for the corresponding IM strip, while the size scale of the

circle indicates the number of observations.

(a) σ = 0.5. (b) σ = 1.

Figure 3.21: Comparison of overturning probabilities for a slender rigid block of α = 10◦ and R = 1[m]

and different values of apparent mass ratio.

The fragility functions depicted in Figure 3.21 show a significant improvement in the over-

turning performance of the block equipped with inerters. The estimated mean IM for the

unprotected block is µ̂ = 0.93, whereas this parameter increases to µ̂ = 1 and µ̂ = 1.16 when

a single inerter and a pair of clutched inerters with σ = 0.5 are employed. The overturn-

ing probabilities are further reduced if higher inertances are employed (i.e. σ = 1 in Figure

3.21b) where reductions in mean probabilities of toppling of around 50% are experienced for

the clutched inerters configuration. These reduction levels are maintained for probabilities of

exceedance of 10% as appreciated from Figure 3.21. These results are in line with the demand

reductions observed in the previous section and allow to conclude that the use inerters is an

efficient mechanism to reduce maximum rotations and improve the overturning response of

rocking blocks under pulse-like ground motions.

3.8 Concluding remarks

This chapter has explored the potential advantages of using supplemental rotational inertia

to control the seismic response of rocking structures. The newly proposed system employs

inerters, a mechanical device that develops a resisting force proportional to the relative accel-

eration between its terminals. These devices can be combined with a clutch to ensure they

only oppose, and not lead, the rocking motion. The results presented here showed that the
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inclusion of the inerter reduces the frequency parameter of the block resulting in lower seismic

demands due to the well-known size effect of rocking behaviour. This finding is particularly

interesting as it opens the possibility of modifying the dynamic characteristics of a rigid rock-

ing block without altering its geometry.

The effect of the inerter on the rotation transition was evaluated using an extension of

Housner’s impact formulation. This analysis showed that, in general, the inclusion of the

inerter results in higher coefficients of restitution, indicating lower energy dissipation during

impact. Importantly, this effect was found not to be significant in slender blocks, although

it can affect the efficiency of the proposed strategy when high apparent mass ratios or non-

slender structures are considered.

Formal dimensional-orientational assessments of rocking block-inerter systems under single

pulse excitations demonstrated that the rocking response of slender blocks with inerters re-

mains perfectly self-similar if the apparent mass ratio, σ, is incorporated as an additional

dimensionless-orientationless parameter. On the other hand, the practical self-similarity in

the response of non-slender blocks connected to a single inerter is preserved if the block slen-

derness, α, is eliminated as in independent group but this formulation becomes less accurate

if a clutch is introduced, especially at later stages of the rocking response.

Examination of the overturning response of rocking structures under single pulse excita-

tions showed that the inclusion of the inerter reduces the overturning areas in the frequency-

amplitude acceleration space and shifts them towards lower frequency regions. This frequency

shift is particularly relevant for the cases of overturning after impact, as certain unprotec-

ted blocks that would survive the ground motion may overturn when an inerter is attached.

Besides, the added non-linearities brought about by the clutch result in inconsistent trends

in the rocking response to sinusoidal pulses. Rocking demands were also studied in terms of

maximum rotations and peak angular accelerations. Overall, blocks equipped with a single

inerter showed smaller rotations and accelerations than unprotected ones. The incorporation

of the clutch further reduced the rotation demands but at the expense of diminishing the

acceleration reduction effects.

Finally, a probabilistic assessment of the seismic performance of protected and unprotected

blocks was conducted using a set of 202 real pulse-like acceleration records. The results of this

assessment confirmed the behavioural trends observed under single pulse excitations. Firstly,

blocks connected to a single inerter presented lower maximum rotations and accelerations,

while blocks with a pair of clutched inerters experienced some detrimental effects on their ac-

celeration demands. A comparison of the overturning fragility curves revealed that the inerter

reduces the probability of overturning of the block, while the addition of the clutch further
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improves its resistance to overturning.

The analyses presented above considered a rigid block model which reasonably represents

the rocking response of free-standing bodies, such as non-structural equipment, museum arte-

facts or rigid monumental structures. In the next chapter, a modified model is introduced

in order to incorporate features commonly observed in rocking building structures, namely

post-tensioned tendons and independent levels of seismic mass and weight.
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Chapter 4

Fundamental dynamics of

post-tensioned rocking structures

4.1 Introduction

In the previous chapter, the response of rocking structures equipped with supplemental ro-

tational inertia devices was examined using a simplified rigid-block formulation. While this

model reasonably captures the behaviour of free-standing bodies, such as non-structural equip-

ment and museum artefacts, it does not generally represent the response of rocking building

structures. In particular, rocking walled systems usually mobilize a seismic mass that is higher

than the gravitational mass exerting the restoring moment. Moreover, post-tensioned tendons

are commonly incorporated in order to increase the lateral strength and improve the re-centring

capabilities of the system. In this chapter, these particular characteristics of rocking building

structures are incorporated into the model and subsequently used to analyse the response of

post-tensioned rigid walled systems. Firstly, the effect of the vertical tendons on the rocking

response of the structure is assessed in terms of maximum rotations and peak angular acceler-

ations for a wide range of pulse excitations. Subsequently, the inerter device is introduced and

original equations that describe the rocking motion of the post-tensioned wall-inerter system

are derived. In addition to the reductions in rotation and acceleration demands, the effects

of the inerter on the base shear are also evaluated. Finally, a probabilistic assessment of the

seismic performance of a typical building structure is conducted using the set of 202 pulse-like

ground motions introduced in the previous chapter. The results of the analyses demonstrate

that post-tensioned rocking structures equipped with inerters experience smaller rotation and

acceleration demands than unprotected ones and have lower probabilities of exceeding limit

states associated with non-structural damage.
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4.2 Fundamental dynamics of a free-standing rocking wall

The free-standing rigid block considered in Housner’s [3] early study corresponds to a particular

case in which the only mass mobilized by the horizontal and gravity accelerations is the mass

of the body itself. This assumption is reasonable for many rocking objects, such as museum

artefacts and non structural equipment, but is not usually valid for rocking building structures.

In these cases, additional masses attached to the structural elements change the inertial forces

and the use of gravity resistance systems (e.g. gravity frames) or in-plane lateral resistance

elements (e.g rectangular walls) can modify the ratio between the tributary seismic mass, msis,

and the gravity load, W , exerting the restoring moment (Figure 4.1).

(a) Vertical gravity elements (indicated in brown)

and their corresponding tributary areas.

(b) Seismic mass taken by each lateral resistant

element (red: X direction, blue: Y direction).

Figure 4.1: Gravity load and seismic mass in building structures.

The dynamic response of such structures can be better represented by the model depicted

in Figure 4.2, where the rigid free-standing wall is free to rotate about points O and O’, and

appropriate arrangements to prevent slipping (such as shear keys) have been considered. If a

diaphragm connection with rotational decoupling is assumed (e.g. large diameter pin [128]),

the seismic mass and gravity loads can be concentrated and considered to act at point C. The

geometry of the wall is characterized by the slenderness α and the size parameter R, while its

rotation is measured by the angle θ. In this formulation impact is treated following Housner’s

approach [3], considering the coefficient of restitution as an independent parameter and equal

to r = 0.85.

In most practical building applications the rotational inertia and weight of the rocking wall

are significantly smaller than the corresponding translational seismic mass, msis, and tributary

gravity load, W , and can be neglected. Then, under a horizontal ground excitation, üg, the

rigid wall uplifts and starts rocking if:

üg ≥
g

mratio
tanα (4.1)

where mratio = msis/mg is the ratio between the seismic mass and the gravitational mass
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Figure 4.2: Single-degree-of-freedom system representing a rocking wall.

associated to the gravity load transferred to the wall (i.e. mg = W/g). Evaluating the

rotational equilibrium around the rocking pivot point gives (Figure 4.2):

θ̈���
0

I0 +msisR
2 θ̈ +WR sin(α sgn(θ)− θ) = −msis üg R cos(α sgn(θ)− θ) (4.2)

The equation above can be rearranged and presented in a compact form:

θ̈ = −p2w
(

sin(α sgn(θ)− θ) +mratio
üg
g

cos(α sgn(θ)− θ)
)

(4.3)

where pw is the frequency parameter of the rigid rocking wall defined as

pw =

√
g

Rmratio
(4.4)

4.2.1 Response scaling and similarity

The dynamic response of the classic rocking block studied by Housner [3] is governed by four

independent dimensionless parameters [122].

θmax = f

(
ωg
p
,
ag
g
, α , r

)
(4.5)

Equations 4.3 and 4.4 show that the ratio between the seismic and gravitational masses

in a rocking building divide the gravity acceleration, g. Therefore, the response of a rocking

building wall is governed by:

θmax = f

(
ωg
pw

,
agmratio

g
, α , r

)
(4.6)

For most practical applications the wall slenderness, α, will be smaller than 20◦ (e.g. lw =

3[m] and H = 9[m] → α = 9.5◦), and the dimension-orientationless properties developed by
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Dimitrakopoulos and DeJong [122] for slender blocks can be applied:

θmax g

agmratio
= φ

(
ωg
pw

,
agmratio

g tanα
, r

)
(4.7)

Figure 4.3 compares the response of two different slender blocks of equivalent dimension-

orientationless parameters (agmratio/g tanα = 23.3 and η = 0.85), subjected to a pulse ex-

citation of frequency ratio ωg/pw = 8. It is evident from Figure 4.3 that, when presented in

terms of the proposed parameters, the responses collapse into a single master curve.

Figure 4.3: Response of two rocking walls of different shape and size but equivalent dimension-

orientionless parameters (Block 1: R1 = 5[m], α1 = 5◦ and mratio,1 = 10; Block 2: R2 = 10[m], α2 =

10◦ and mratio,2 = 5).

4.2.2 Rocking response under pulse excitations

The rocking response of free-standing blocks is usually studied by means of rocking spectra,

like the one presented in Figure 4.4a. This representation consist of contour plots of the

normalized response variable in the frequency ratio (ωg/pw) and acceleration amplitude plane

(agmratio/g tanα), for a block of a given slenderness α. In this part of the study, symmetric

Ricker wavelets [129,130] (Equation 4.8) are used as pulse excitations. This analytical wavelet

has been shown to satisfactorily approximate the coherent pulse of several pulse-like ground
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motions [131].

üg(t) = ag

(
1− 2π2t2

T 2
g

)
e
−π

2t2

T2
g (4.8)

where Tg = 2π/ωg is the period that maximizes the Fourier spectrum of the symmetric Ricker

wavelet, and ag is the acceleration amplitude.

As noted in the previous section, the mass ratio has two competing effects on the dynamic

response of the wall. On the one hand it reduces the frequency parameter, pw, improving the

global stability of the system (size effect of rocking behaviour [3]), while on the other hand it

amplifies the ground acceleration. These effects can be examined with reference to Figure 4.4.

Figure 4.4b shows the maximum rotation response of a given block (R = 5[m] and α = 10◦)

subjected to a symmetric Ricker pulse of acceleration amplitude ag = g tanα and frequency

ωg = 2.8[rad/s] for different values of mass ratio. The path followed by the block on the

frequency ratio-acceleration amplitude plane is indicated with a white dashed line in Figure

4.4a.

(a) Rocking spectrum for α = 10◦. (b) Effect of mratio for a given block.

Figure 4.4: Rocking spectra under symmetric Ricker pulse ground motions.

The low mass ratio area of the spectrum shown in Figure 4.4b (or low frequency ratio

according to Equation 4.4) shows that small increments in the seismic mass cause the response

to swiftly change from no-uplifting to overturning. As the mass ratio keeps increasing, the shift

in the frequency parameter, pw, takes the block outside of the overturning regions (indicated in

blue and red in Figure 4.4a) and into the safe rocking area. The maximum rotation response

then keeps decreasing until it starts surging again in the high mass ratio region (or high

frequency ratio), although without reaching the overturning condition. In real rocking building

structures, the mass ratio usually ranges from 1 (Housner’s rocking block) to well over 10 in

cases where the rocking element is only used as a lateral resistant system and the gravity loads

are supported by secondary elements.
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4.3 Dynamics of post-tensioned rocking walls

In post-tensioned rocking walls, the structural member is free to uplift and rock while post-

tensioned tendons are incorporated to increase the lateral resistance and re-centring capabilities

of the building. Additional energy dissipation can be introduced by adding unbonded steel

bars or external dissipation devices. This type of structures can be studied considering the

model presented in Figure 4.5, where the rocking wall analysed in the previous section has

been connected to the base through an elastic tendon passing through its middle. When the

system of Figure 4.5 rotates the weight, W , and the force in the vertical tendon, Fpt, exert a

restoring moment, Mr.

Figure 4.5: Post-tensioned rigid rocking wall under a horizontal ground excitation.

The post-uplifting stiffness of a free-standing wall (as the one studied in Section 4.2) is

negative, since the line of action of the weight approaches the pivot point as rotation increases,

reducing the lever arm of the restoring moment. By contrast, when elastic tendons are incor-

porated, the rotation of the wall increases the re-centring elastic force, providing a positive

stiffness that is added to the negative stiffness of the rocking block. The elongation of the

tendon, e, can be expressed as a function of the rotation θ (Figure 4.5):

e = R sinα
√

2
√

1− cos θ (4.9)

and the force in the post-tensioned tendon is:

Fpt =
EAe

R cosα
+ P0 = EA tanα

√
2
√

1− cos θ + P0 (4.10)

where EA/R cosα is the axial stiffness of the vertical tendon and P0 is the initial post-

tensioning force. For a positive rotation (θ > 0), the total restoring moment is given by:

Mr(θ) = WR sin(α− θ) + FptR sinα cos
θ

2
(4.11)
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Replacing Equation 4.10 into Equation 4.11 yields:

Mr(θ) = WR sin(α− θ) +R sinα

(
EA tanα sin θ + P0

√
1 + cos θ

2

)
(4.12)

which can be rearranged as:

Mr(θ)

WR
= sinα

(
cos θ +

P0

W

√
1 + cos θ

2
+ sin θ

(
EA

W
tanα− cotα

))
(4.13)

If small rotations are considered (small θ), Equation 4.13 can be linearized such that:

Mr(θ)

WR
= sinα

(
1 +

P0

W
+ θ

(
EA

W
tanα− cotα

))
(4.14)

The term multiplying θ in Equation 4.14 corresponds to the stiffness of the system after

uplifting. Therefore, the linearized condition to obtain a positive post-uplift stiffness is:

EA

W
>

1

tan2 α
(4.15)

This condition is equivalent to the expression obtained by Vassiliou and Makris [53] for

vertically restrained classic rocking blocks. Figure 4.6 compares the moment-rotation response

of post-tensioned rocking walls for different levels of normalized elastic force (EA/W ) and

initial post-tension force (P0/W ). As expected, the axial stiffness of the tendon only modifies

the slope of the response after uplifting. On the other hand, the initial post-tensioning force

increases the uplift threshold and therefore shifts the curves in Figure 4.6b vertically.

(a) No initial pre-stress (P0/W = 0). (b) Constant tendon stiffness: EA
W = 3

2
1

tan2 α .

Figure 4.6: Effect of a) the tendon stiffness, EA/W , and b) initial post-tensioning force, P0/W , on the

moment rotation relation of the rocking wall.
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4.3.1 Free vibrations response of post-tensioned rocking walls

With reference to Figure 4.5, the evaluation of the rotational equilibrium about the rocking

pivot point gives:

msisR
2 θ̈ + WR sin(α− θ) +R sinα

(
EA tanα sin θ + P0

√
1 + cos θ

2

)
= 0 (θ > 0)

(4.16)

Introducing the frequency parameter, pw =
√
g/Rmratio, and rearranging leads to:

θ̈ = −p2w

(
sin(α− θ) + sinα

(
EA

W
tanα sin θ +

P0

W

√
1 + cos θ

2

))
(4.17)

Equation 4.17 can be linearized if slender blocks are considered (α ≤ 20◦), such that:

θ̈ − p2w
(

1− EA

W
α2

)
θ = −p2wα

(
1 +

P0

W

)
(4.18)

If the post-uplift stiffness of the wall is null (EAα2/W = 1), the second term of the left-

hand side of Equation 4.18 becomes zero, as the restoring moment is independent from the

rotation amplitude. Therefore, for a wall released from rest (θ̇(0) = 0) with an initial rotation

θ0, the solution of Equation 4.18 is defined by parts as:

θ(t) =



α
(
1+

P0
W

)
1−EA

W
α2
−
(
α
(
1+

P0
W

)
1−EA

W
α2
− θ0

)
cosh

(
pw t

√
1− EA

W α2
)
,

(
EAα2/W 6= 1

)
−α2 p2w t

2
(
1+

P0
W

)
2 + θ0,

(
EAα2/W = 1

) (4.19)

Equation 4.19 describes the motion of the wall as it rotates back to the vertical position. If

there is no energy dissipation during impact, the block will then rotate in the negative direction

(−θ) reaching a maximum amplitude of −θ0, and fall back to reach its initial position. The

time required to complete this cycle of oscillation is the period of free vibration. Following

Housner’s [3] reasoning, the time needed to go from θ = θ0 to θ = 0 corresponds to T/4.

Therefore:

Tpw = φ

(
θ0
α
,
EAα2

W
,
P0

W

)
=



4√
1−EA

W
α2

cosh−1

 1

1−
θ0

(
1−EA

W
α2
)

α

(
1+

P0
W

)
 ,

(
EAα2/W 6= 1

)

4
√

2 θ0

α
(
1+

P0
W

) , (
EAα2/W = 1

)
(4.20)
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Equation 4.20 shows that for a post-tensioned block of a given mass ratio and geometry

(pw and α), the period of oscillation, T , depends on the initial rotation, θ0, the dimensionless

elastic force, EA/W , and the dimensionless post-tension force, P0/W . Figure 4.7 plots this

expression for fixed values of θ/α, P0/W and EAα2/W . As expected, Figure 4.7a shows that

the period of oscillation decreases for higher values of initial post-tension and elastic forces.

This effect is more significant closer to the origin (P0/W ≤ 2 and EAα2/W ≤ 1) and becomes

less important for higher values of vertical forces. On the other hand, Housner’s early study

already identified that the period of oscillation of a rocking body strongly depends on the initial

rotation amplitude [3]. The plots presented in Figure 4.7b and Figure 4.7c are consistent with

this finding, showing that higher values of θ0/α correspond to longer periods of oscillation.

Moreover, the influence of the post-tensioned tendon is more important for initial rotations

close to α, and becomes insignificant for small values of θ0/α.

(a) Initial rotation, θ0/α = 0.5. (b) Post-tensioning force P0/W = 2.

(c) Elastic force EAα2/W = 1.5 (positive stiff-

ness after uplifting).

Figure 4.7: Effect of the initial rotation (θ/α), elastic force (EA/W ), and initial post-tensioning force

(P0) on the period of oscillation of a post-tensioned rocking wall.
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4.3.2 Seismic response of post-tensioned structural walls

When subjected to a horizontal ground excitation, üg, the post-tensioned rigid wall shown in

Figure 4.5 uplifts and starts rocking when

üg ≥
(
P0

W
+ 1

)
g

mratio
tanα (4.21)

Evaluating the rotational equilibrium of the post-tensioned wall about the pivot points (pos-

itive and negative directions) gives:

msisR
2 θ̈ + WR sin(α sgn(θ)− θ) + sgn(θ)FptR sinα cos

θ

2
=

−msis ügR cos(α sgn(θ)− θ) (4.22)

Combining Equations 4.10 and 4.22, and introducing the frequency parameter,

pw =
√
g/Rmratio, yields:

θ̈ = −p2w

(
sin(α sgn(θ)− θ) +mratio

üg
g

cos(αsgn(θ)− θ)

+ sinα

(
EA

W
tanα sin θ + sgn(θ)

P0

W

√
1 + cos θ

2

))
(4.23)

which is equivalent to the expression derived by Vassiliou and Makris [53] for vertically re-

strained rigid blocks. Again, this equation of motion can be linearized if slender walls are

considered (α ≤ 20◦), such that:

θ̈ = −p2w

(
α sgn(θ)

(
1 +

P0

W

)
+ θ

(
EAα2

W
− 1

)
+mratio

üg
g

)
(4.24)

Figure 4.8 compares the seismic demands (peak rotation and angular acceleration) for

slender walls with different levels of elastic and initial post-tensioning force, subjected to sym-

metric Ricker pulses of acceleration amplitude ag = 2 g tanα/mratio. The analyses presented in

Figure 4.8 consider dimensionless elastic forces that result in post-uplifting stiffnesses varying

from negative to positive values, while the maximum post-tensioning force is limited by the

rocking-triggering condition (Equation 4.21). The response of a free-standing rocking block is

also included in Figure 4.8 for comparative purposes.

The results depicted in Figure 4.8 show that the elastic force improves the stability of the

wall when ωg/pw < 2 (small structures), but has very little effect on the maximum rotation

and acceleration response for larger structures. This behaviour is related to the increase in

the post-uplifting stiffness, which allows the block to withstand rotations greater than α and

still return to its vertical position. Nevertheless, higher rotational accelerations are observed

for some small to medium-sized walls (ωg/pw < 4) in comparison with free-rocking walls.
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(a) Rotation spectra, P0 = 0. (b) Acceleration spectra, P0 = 0.

(c) Rotation spectra, EAW = 3
2

1
tan2 α . (d) Acceleration spectra, EAW = 3

2
1

tan2 α .

Figure 4.8: Effect of the dimensionless elastic force, EA/W , and dimensionless initial post-tensioning

force, P0/W , on the rotation and angular acceleration demands for slender walls subjected to Ricker

pulses of acceleration amplitude ag = 2 g tanα/mratio.
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Moreover, the larger the elastic force the higher the relative acceleration at lower frequency

ratios (ωg/pw < 4).

On the other hand, the level of initial post-tensioning force has a more significant effect

on the maximum rotation response of both, small and large structures. While an improved

stability can be observed for ωp/pw < 4, reductions in the maximum rotations for greater

frequency ratios (larger walls) are also obtained. Importantly, the response enhancement

becomes more significant the higher the level of initial post-tensioning. However, these

improvements happen at the expense of inducing higher rotational accelerations over the full

range of frequency ratios studied.

The results presented in Section 4.2.1 show that regardless of the acceleration amplitude

of a ground motion, the intensity dimensionless parameter, agmratio/g tanα, can be signific-

antly amplified by the ratio between the seismic and gravitational masses. Consequently, high

effective acceleration amplitudes that are usually not relevant for the study of classic free-

standing blocks, need to be considered when dealing with post-tensioned rocking walls. Figure

4.9 compares the peak seismic demands (rotation and angular acceleration) for different post-

tensioned rocking walls subjected to acceleration pulses of amplitude ag = 20 g tanα/mratio.

The results of the analyses suggest that the use of post-tensioned tendons becomes less ad-

vantageous when pulses of higher acceleration amplitude are considered. Although the elastic

force slightly reduces the overturning cases, the initial post-tensioning force can increase the

rotation and acceleration demands in some cases. This behaviour is studied in more detail in

Figure 4.10, where the maximum response of a block with ωp/pw = 4 to symmetric Ricker

pulses of different acceleration amplitude is plotted as a function of the dimensionless initial

post-tensioning force.

It can be observed from Figure 4.10a that for low ground acceleration amplitudes, larger

initial post-tensioning forces are related to proportionally lower maximum rotations with the

potential to suppress the rocking response altogether (Equation 4.21). As previously observed

in Figure 4.8, this reduction is accompanied by an important increase in the maximum peak

accelerations. For the post-tensioned wall considered in the analysis (α ≤ 20◦, ωp/pw =

4) and with reference to the response of a free-standing block, a reduction of 50% in the

maximum rotation would be associated with a 25% increase in the peak angular acceleration.

This acceleration magnification becomes even more significant for higher levels of initial post-

tensioning force.

On the other hand, when ground motions of higher acceleration amplitudes are considered

(Figure 4.10b), a spectral region where the rotation and acceleration are simultaneously

amplified can be identified. For small values of dimensionless initial post-tensioning force

(P0/W < 6), rotation demands are significantly amplified, reaching a peak of more than twice

the maximum rotation of the benchmark free-standing block at around P0/W ≈ 4. A similar

trend is observed for rotational acceleration demands, although with a smaller amplification
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(a) Rotation spectra, P0 = 0. (b) Acceleration spectra, P0 = 0.

(c) Rotation spectra, EAW = 3
2

1
tan2 α . (d) Acceleration spectra, EAW = 3

2
1

tan2 α .

Figure 4.9: Effect of the dimensionless elastic force, EA/W , and dimensionless initial post-tensioning

force, P0/W , on the peak rotation and angular acceleration demands for slender walls subjected to

Ricker pulses of acceleration amplitude ag = 20 g tanα/mratio.
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(a) ag = 2 g tanα/mratio. (b) ag = 20 g tanα/mratio.

Figure 4.10: Effect of the dimensionless initial post-tensioning force, P0/W , on the rotation and angular

acceleration demands of a slender wall with EA
W = 3

2
1

tan2 α , subjected to a symmetric Ricker pulse of

frequency ratio ωp/pw = 4.

ratio. This observation is particularly relevant, as it happens at levels of initial post-tensioning

force ratios that are most commonly observed in practice. For higher magnitudes of initial

post-tensioning forces, the behaviour of the seismic demands resembles the trends observed

in Figure 4.10a for smaller ground acceleration amplitudes, with maximum rotations reducing

progressively and peak accelerations being amplified.

4.4 Seismic control of post-tensioned walls with inerters

Although post-tensioned systems have been shown to be effective in controlling structural dam-

age, high rotations and accelerations associated with the rocking motion can cause significant

non-structural and contents damage. The analyses conducted in the previous chapter have

shown that the use of supplemental rotational inertia can help to significantly reduce these

seismic demands. This control strategy can also be applied to post-tensioned walled buildings

by connecting the inerter directly to the rocking elements or rigid diaphragm of the structure,

as shown in Figure 4.11. For low-rise buildings, the wall element can be assumed to behave as

a rigid block, and the dynamic behaviour of the system can be studied simply incorporating

the contribution of the inerter to the models examined in previous sections. Herein, an inerter

connected to the top of the wall (Point C) is considered for simplicity.

Rocking motion initiates when the overturning moment due to the ground excitation ex-

ceeds the restoring moment exerted by the self-weight and the vertical tendon (Equation 4.21).

Until this instant, the resisting force in the inerter is zero, since there is no relative acceleration

between its terminals. Once the block uplifts, point C in Figure 4.11 follows a circular path.
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Figure 4.11: Single-degree-of-freedom system representing a post-tensioned rocking wall equipped with

an inerter.

Neglecting the contribution of the centripetal acceleration, the resisting force in the inerter is:

Fr = mr R θ̈ cos(αsgn(θ)− θ) (4.25)

where mr is the inertance or apparent mass of the inerter. Evaluating the rotational equilib-

rium around the rocking pivot point gives:

(
msisR

2 +mrR
2 cos2(α sgn(θ)− θ)

)
θ̈

+WR sin(α sgn(θ)− θ) + sgn(θ)FptR sinα cos
θ

2

= −msis ügR cos(α sgn(θ)− θ) (4.26)

Combining Equations 4.10 and 4.26, and rearranging:

θ̈ = −p2w,σ

(
sin(α sgn(θ)− θ) +mratio

üg
g

cos(αsgn(θ)− θ)

+ sinα

(
EA

W
tanα sin θ + sgn(θ)

P0

W

√
1 + cos θ

2

))
(4.27)

with

pw,σ =

√
g

mratioR
(
1 + σ cos2(α sgn(θ)− θ)

) (4.28)

where σ is the aparent mass ratio defined as: σ = mr/msis. Equations 4.27 and 4.28 are

analogous to the equation of motion obtained in Chapter 3 for free-rocking bodies equipped

with inerters. These expressions show that the inclusion of the inerter effectively reduces
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the frequency parameter, pw, of the post-tensioned rocking element. This reduction generally

results in enhanced stability and lower seismic demands due to the well-known size effect of the

rocking behaviour [3]. Importantly, the frequency parameter of a rocking wall depends only

on the size, R, and the mass ratio of the structure (Equation 4.4). Consequently, it cannot be

modified without altering the elevation (R) or the plan distribution of the building (mratio).

This highlights the significance of inerter-based control strategies as they open the door for

an expedient modification of the dynamic response of a rocking system without altering its

geometry.

As mentioned previously, in most practical cases the wall elements can be considered to be

slender (α < 20◦), and Equation 4.27 can be linearized such that:

θ̈ = −p2w,σ

(
α sgn(θ)

(
1 +

P0

W

)
+ θ

(
EAα2

W
− 1

)
+mratio

üg
g

)
(4.29)

with

pw,σ =

√
g

mratioR (1 + σ)
(4.30)

The analysis presented in Chapter 3 demonstrated that the effect of the inerter on impact

is very small when slender structures are considered (see Figure 3.7). Accordingly, in the

following sections the coefficient of restitution, rσ, is assumed to be a constant and independent

parameter of the structural system equal to rσ = 0.85.

4.4.1 Structural demands under single pulse excitations

In order to thoroughly assess the effectiveness of the proposed system, the response of a wide

range of post-tensioned rocking walls subjected to symmetric Ricker pulses was examined.

Walls of positive post-uplift stiffness (EA/W = 3/2 tan2 α) and initial post-tensioning force

equal to P0/W = 5 are selected as representative of typical design configurations. Additionally,

two apparent mass ratios, σ = 0.5 and σ = 1, are considered for the structures equipped

with inerters. It is important to note that, although the apparent mass ratios are relatively

high, the actual gravitational masses can be kept several orders of magnitude lower by using

amplifying mechanisms such as ball-screws [7] or geared wheels [6]. The results presented

below correspond to acceleration pulses with amplitude ag = 9 g tanα/mratio, representing to

1.5 times the amplitude required to trigger the rocking motion (Equation 4.21).

Figure 4.12 presents the results of the analyses in terms of rotation and acceleration spectra.

As noted above, the introduction of post-tensioning reduces the maximum rotation of the walls,

although in this case it has a negligible effect on the acceleration demands. The inerter on

the other hand, further reduces the peak rotations while at the same time it significantly

diminishes the angular accelerations. Moreover, while the reduction in rotations becomes less
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significant for higher frequency ratios, the decrease in accelerations is almost constant along

all frequency ratios, reaching reductions of around 50% for σ = 1.

(a) Rotation spectra, EA
W = 3

2
1

tan2 α . (b) Acceleration spectra, EAW = 3
2

1
tan2 α .

Figure 4.12: Peak rotation and acceleration demands of post-tensioned rocking walls with and without

inerters subjected to symmetric Ricker pulses of acceleration amplitude ag = 9 g tanα/mratio.

Another parameter of great interest for the seismic design of post-tensioned buildings is

the base shear, Vb. Considering that the slender wall element behaves approximately as a rigid

block, this can be obtained as:

Vb(θ) =
Mr(θ)

R
(4.31)

where Mr is the restoring moment exerted by the weight, W , and the post-tensioned tendon.

Figure 4.13a shows the base shear corresponding to the same structures analysed above. As

expected, for the case of negative stiffness (free-standing wall), the maximum shear force is

constant and determined by the uplifting condition. The introduction of the initial post-

tensioning force significantly increases this lower limit (Equation 4.21), amplifying also the

base shear of the post-tensioned structures. Since the positive stiffness of the rocking walls is

relatively low, the reduction in rotations brought about by the inerter does not translate in a

significant reduction of the restoring moment, and therefore the base shear is mainly controlled

by the uplift resistance.

Figure 4.13b shows the resisting force developed in the inerter for the protected structures

under consideration. Forces of around 58% and 85% of the weight supported by the wall,

W , were registered for σ = 0.5 and σ = 1 respectively. Although this values can seem high,

they are lower than the vertical post-tensioning load considered in the analyses, and therefore

should be accommodated by adequate detailing.
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(a) Normalized base shear. (b) Normalized force in the inerter.

Figure 4.13: Base shear and inerter force in post-tensioned rocking walls with and without inerters

subjected to symmetric Ricker pulses of acceleration amplitude ag = 10 tanα/mratio.

4.4.2 Seismic demands under real pulse-like ground motions

In the previous section, the dynamic behaviour of post-tensioned rocking walls equipped

with inerter devices was studied using single Ricker pulse excitations. In real seismic events,

structures are subjected to an acceleration history that can be represented as a series of

individual pulses with different frequencies. The early work of Housner [3] already identified

that the action of these successive pulses can increase the structural demands and overturn

free-standing blocks for smaller acceleration amplitudes than a single pulse excitation. In

this section, the effectiveness of the inerter for the control of the seismic response of rocking

structures is assessed considering the same set of 202 pulse-like ground motion records used

in Chapter 3 (Table 3.1). The ground motion database includes records from 21 earthquakes

with magnitudes Mw ranging from 5.4 to 7.9.

A 3-storey rigid-wall system (R = 9[m] and α = 10◦) with positive post-uplift stiffness

(EA/W = 3/2 tan2 α), mratio = 5 and P0/W = 5 was selected as a realistic case study, while

an inerter of apparent mass ratio σ = 1 was considered. Figure 4.14 compares the rotation and

acceleration response histories of the buildings subjected to the 90◦ component of the 1986

San Salvador earthquake. Three cases are assessed in this figure: i) a free-rocking building, ii)

a building with a post-tensioned wall and iii) the same post-tensioned building equipped with

an inerter of apparent mass σ = 1. The rotation is presented in radians whereas accelerations

are presented as the linear acceleration at Point C (Figure 4.11), obtained as the product of

the angular acceleration, θ̈, and the size parameter of the wall, R - in g.
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Figure 4.14: Rotation and acceleration response of post-tensioned rocking walls with and without

inerters subjected to real pulse-like ground motion.

The results plotted in Figure 4.14 are consistent with the observations made in previous

sections for single pulse excitations. The addition of the post-tensioned tendons reduced

the maximum rotation of the wall but increased the peak acceleration. Nevertheless, the

introduction of the inerter efficiently offsets this effect, further diminishing the rotation

response and significantly reducing accelerations to levels even lower than those of the

benchmark free-standing structure.

A cloud analysis considering the earthquake database described in Table 3.1 was conducted

in order to compare the seismic performance of the post-tensioned structures with and without

inerters. The uniform duration, tuni, which corresponds to the sum of the time intervals during

which the ground acceleration exceeds the limit to cause uplifting (Equation 4.21), was selected

as the intensity measure, as recommended by Dimitrakopoulos et al. [42]. As done in the

assessment performed in Chapter 3, a power law is assumed to relate the median estimated

demand Dm and the intensity measure IM [42, 132]

Dm = a IM b (4.32)
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When plotted on a ln(Dm)− ln(IM) plane, Equation 4.32 becomes a straight line

ln(Dm) = ln a+ b ln(IM) (4.33)

where a and b are regression coefficients. Figure 4.15 presents the results of the cloud analysis

and the corresponding fitted seismic demand models for the protected and unprotected struc-

tures. The results of the regression analyses show a strong correlation between the selected

intensity measure, tuni, and the seismic demands, validating the estimation model proposed

in Equation 4.32.

(a) Peak rotations. (b) Peak accelerations.

Figure 4.15: Peak rotation and acceleration demands of post-tensioned rocking walls with and without

inerters subjected to the earthquake database shown in Table 3.1.

In general, the structure equipped with inerter devices shows significantly smaller seismic

demands for the whole range of IMs considered. Mean reductions of around 50% are observed

in both peak rotations and peak accelerations (note the logarithmic scale). These conclusions

are consistent with observations made in Figure 4.14 and the results obtained in Section 4.4.1

for single pulse excitations.

As discussed previously, post-tensioned systems have proved to be highly effective in con-

trolling structural damage. Nevertheless, economic losses during seismic events are usually con-

trolled by damage to non-structural components, which is often triggered at response intensities

that are smaller than those required to produce structural damage [133]. Performance-based

assessment of non-structural building components requires the identification of drift and ac-

celeration sensitive elements and the definition of their corresponding limits [93]. Design codes

typically specify these limits as a function of the non-structural component typology. With the

aim of comparing the overall performance of post-tensioned walled structures with and without

ineters, the limit defined in Eurocode 8 [134] for buildings having ductile non-structural com-

ponents, θ ≤ 0.75%, is adopted in this study. Figure 4.16a shows the fragility functions

associated to this limit state obtained for the protected and unprotected structures considered
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in the previous analyses. The cloud-to-IDA procedure proposed by Miano et al. [135] was used

to minimize the number of analyses and amount of scaling.

(a) Rotation limit: θmax = 0.75%. (b) Acceleration limit: R θ̈max = 0.5[g].

Figure 4.16: Fragility functions for post-tensioned rocking walls with and without inerters.

On the other hand, the design of acceleration-sensitive non-structural components tradi-

tionally entails the computation of floor response spectra [136]. Nonetheless, the peak floor

acceleration can be used as a first proxy in order to assess the performance of the proposed seis-

mic control strategy. Figure 4.16b presents the fragility functions associated to an acceleration

limit of R θ̈ = 0.5[g].

The fragility functions depicted in Figure 4.16 demonstrate the significant improvement in

the performance of post-tensioned rocking structures brought about by the inerter. In terms of

rotations, the estimated median IM associated with the selected drift limit state is t̃uni = 0.5[s]

for the unprotected structure, whereas this parameter increases to t̃uni = 0.74[s] when the

inerter is introduced. Moreover, the response enhancement becomes more important for higher

probabilities of exceedance. Similar trends are observed in the case of peak floor accelerations,

with an even greater increase (nearly four-fold) in the median IM. On the other hand, smaller

variations were obtained on the logarithmic standard deviation, βlnX . The results presented in

Figure 4.16 are in line with the demand reductions observed in the previous sections and allow

to conclude that the use of of supplemental rotational inertia devices configures a practical

alternative to improve the dynamic response and boost the overall seismic performance of

rocking building structures.

4.5 Concluding remarks

This chapter has examined the basic dynamic behaviour of post-tensioned rocking structures

and assessed the feasibility of using supplemental rotational inertia to reduce their structural

demands and improve their overall seismic performance. Firstly, a modified rigid block

representative of rocking building structures was defined. Importantly, this model considers
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the possibility of having different seismic and gravitational masses through the introduction of

an mratio parameter. Based on a formal dimensional-orientational assessment of the system,

this mass ratio was incorporated into the existing Π-parameters without introducing a new

dimensionless group.

In a second stage, a vertical post-tensioned tendon was introduced to the model. After

deriving the equations of motion, the free-vibration response of the system was examined.

Additionally, the structural demands under Ricker pulse excitations were studied in terms

of maximum rotations and peak angular accelerations. The results of these analyses showed

that the elastic force can help to improve the stability of smaller rigid blocks, but has little

effect on larger structures. This behaviour is related to the increase in the post-uplift stiffness

which allows the block to survive rotations greater than its slenderness, α, and still return

to the vertical position. On the other hand, the initial post-tensioning force had a more

significant effect on the maximum rotations of both, smaller and larger structures. Moreover,

the improvement in the response becomes more important the higher the level of initial force.

Nevertheless, these rotation reductions are accompanied by a significant increase on the peak

angular accelerations at low frequency ratios for un-stressed rocking walls and over the full

spectral range in the case of structures with non-zero levels of initial post-tensioning.

The introduction of the mass ratio parameter, mratio, implies that regardless of the acceler-

ation amplitude of a ground motion, the intensity dimensionless parameter, agmratio/g tanα,

can assume significantly high values. Consequently, the consideration of high effective accel-

eration amplitudes, which are usually not relevant for classic free-standing blocks, becomes

important when studying post-tensioned rocking walls. The results obtained suggest that the

use of post-tensioned tendons becomes less advantageous when pulses of higher acceleration

amplitude are considered, as the initial post-tensioning force can significantly amplify rotation

and acceleration demands for initial force ratios that are common in practical applications

(P0/W ≤ 6).

Finally, the alternative of using supplemental rotational inertia for the seismic control

of post-tensioned rocking buildings was assessed. The equation of motion of the system

showed that the inclusion of the inerter effectively reduces the frequency parameter of the

wall resulting in lower seismic demands due to the well-known size effect of rocking behaviour.

This result was then reasserted by the rocking spectra obtained for structures with typical

post-uplift stiffness and initial post-tensioning force values subjected to Ricker acceleration

pulses. The analyses showed that the introduction of the inerter further lowers the rotation

response, while at the same time it significantly reduces the building accelerations levels.

Nevertheless, this response enhancement does not translate into a significant reduction of

the lateral forces, as the positive stiffness of the rocking walls is relatively low and the
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base shear is mainly controlled by the uplift resistance. Lastly, a probabilistic assessment

of the seismic performance of protected and unprotected structures was conducted using a

set of 202 real pulse-like acceleration records. The results of this assessment confirmed the

behavioural trends observed under single pulse excitations, allowing to conclude that the use

of supplemental rotational inertia devices configures a practical alternative for modifying the

dynamic response and reducing seismic demands in post-tensioned rocking building structures.

The first two chapters of this thesis have examined the response of rocking structures

equipped with inerters considering simplified models based on rigid blocks. It is recognized,

however, that in many cases the flexibility of the structural systems cannot be ignored and

must be considered in the assessment of the proposed seismic control strategy. This problem

is addressed in the following chapter, where the analysis of rocking structures equipped with

inerters is extended to single-mass flexible oscillators.
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Chapter 5

Effect of the oscillator flexibility on

the efficiency of the inerter

5.1 Introduction

In the previous chapters, the alternative of using inerters to improve the seismic response

of free-standing and post-tensioned rocking structures was assessed considering simplified

models of rigid blocks. However, in some practical applications, the degree of flexibility of

the rocking body cannot be neglected. Moreover, some of the underlying assumptions of

the analytical models used to study rigid bodies imply that the structures are slender, and

therefore more likely to deform during the rocking motion. These instances highlight the

need for a rigorous assessment of the dynamics of flexible uplifting structures equipped with

inerters and a detailed quantification of the effects of flexibility on the efficiency of the system.

In this chapter, an original analytical model is proposed based on the expressions developed

by Oliveto et al. [43] by considering the effects of grounded supplemental rotational inertia

devices. Additionally, two previously proposed impact formulations are implemented and

compared. The newly formulated model is then used to examine the structural demands and

overturning response of the system under coherent pulses. The response of flexible rocking

structures under high frequency excitations is also considered, while the possibility of using

inerters to control their elastic deformation at uplifted resonance is examined. Finally, the

conclusions obtained under coherent cycloidal pulses are extended to real ground motions by

evaluating the response of rocking structures to a set of recorded acceleration series.

5.2 Analytical Formulation

The concept of using a two-terminal supplemental inertia device to enhance the rocking per-

formance of uplifting elastic structures is illustrated in Figure 5.1. Figure 5.1a shows a hori-

70



5. FLEXIBLE SINGLE-MASS STRUCTURES

zontal inerter supported by a stiff chevron frame [95] and connected to the centre of mass of a

rocking structure, while two alternative vertical-inerter configurations are depicted in Figures

5.1b and 5.1c.

(a) Horizontal inerter. (b) Pair of vertical inerters. (c) Coupling inerter.

Figure 5.1: Examples of inerter configurations for the seismic protection of flexible rocking structures.

The fundamental dynamic behaviour of these structures can be studied with reference to

the system shown in Figure 5.2. This model consists of a lumped mass, m, supported by a

deformable column of flexural stiffness, k, and damping coefficient, c, attached to a rigid base

allowed to uplift freely about points O and O′. A horizontal grounded inerter of apparent mass,

mr, is connected to the structure at point C. The geometry of the structure is characterized by

its slenderness, α, and its diagonal, R0. It is assumed, for convenience of the formulation, that

the underlying soil is infinitely rigid and the coefficient of friction is large enough to prevent

sliding.

Figure 5.2: Idealized analytical model of a flexible rocking structure connected to an inerter.

At any given time, the position of the mass, m, is defined by the distance to the pivot point,

R, and the Lagrangian rotation, β. It should be noted that although these generalized coordin-

ates simplify the derivation of the equations of motion, they do not provide direct information

for the engineering assessment of the structure’s performance. Alternatively, the response of

the system can be described by the relative lateral deformation of the column, u, and the rigid

71



5. FLEXIBLE SINGLE-MASS STRUCTURES

body rotation of the base, θ. This latter set of parameters provides information that can be

easily visualized and interpreted by engineers, and therefore is used for the presentation of the

results. By considering small deformations in the oscillator and large rotations at the base,

the two set of parameters can be related according to:

θ = β ∓ sin−1(H/R)

u = ±B ∓
√
R2 −H2

(5.1)

On the other hand, the relative horizontal displacement of C is given by:

x = ±B ∓R cosβ (5.2)

5.2.1 Equations of motion

The dynamic response of the structure shown in Figure 5.2 can be divided into two phases: i)

a full contact phase, where there is no base rotation; and ii) a rocking phase, where the base

uplifts and the system rocks and oscillates simultaneously. An elastic structure whose motion

starts from rest will respond initially in the full contact phase until uplift ensues. After base

uplifting, the structure will transition into a rocking motion and experience both rotational

and translational deformations.

Full contact phase

The initial dynamic response of an inerter-equipped flexible rocking structure starting from

rest can be described by the equation of motion of an inerter-equipped fixed base single-degree-

of-freedom system [95]:

ü+
2 ξ ωn

(1 + σ)
u̇+

ω2
n

(1 + σ)
u = − üg

(1 + σ)
(5.3)

where ωn and ξ are the natural frequency and damping ratio of the fixed base oscillator, and

σ = mr/m is the apparent mass ratio of the inerter. When the overturning moment exceeds

the resisting moment due to gravitational forces, the base uplifts and the structure starts

rocking. This condition is represented by:

∓mH
(
ü (1 + σ) + üg

)
> mg

(
B ∓ u

)
(5.4)

where the -u condition corresponds to uplift about the right corner and the +u to uplift about

the left corner. Considering equations 5.3 and 5.4 , the critical displacement at which uplift

occurs can be obtained as [43]:

ucr = ± gB ∓ 2Hξωnu̇

ω2
nH + g

(5.5)
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For the rocking motion to begin, the system must reach the critical displacement with

non-zero velocity in the direction of uplift. In undamped systems, where u << B, Equation

5.5 can be further simplified to [56]:

ucr,0 = ± gB

ω2
nH

(5.6)

It is important to note that although the inerter does not directly affect the magnitude of

the critical displacement, it does alter the intensity of the ground motion required to reach

it. Makris and Kampas [95] studied the dynamic response of single-degree-of-freedom systems

with supplemental rotational inertia and showed that the inerter not only suppresses the level

of ground shaking, but also lengthens the period of the structure. In most cases, this results

in a reduced deformation response, but there may be instances where the shift in the period

takes the structure to a region of higher spectral ordinates and offsets the suppressive effect of

the inerter. In such scenario, uplift and the onset of the rocking motion would happen earlier

for inerter-protected structures such as those examined herein.

Rocking phase

The equations of motion are derived using Lagrange’s equations for the generalized coordinates

R and β. Accordingly, the kinetic energy of the flexible rocking structure is given by:

Tf =
1

2
m
(
Ṙ2 +R2β̇2

)
(5.7)

The effects of the inerter are analogous to those of an additional mass that opposes the motion

but does not react to the ground acceleration. Consequently, the kinetic energy of the inerter

can be expressed as:

Tr =
1

2
mr ẋ

2 =
1

2
mr

(
∓ Ṙ cosβ ±Rβ̇ sinβ

)2
(5.8)

or expanding it:

Tr =
1

2
mr

(
Ṙ2 cos2 β − 2RṘβ̇ cosβ sinβ +R2β̇2 sin2 β

)
(5.9)

Then, the total kinetic energy of the system is:

T =
1

2
m
(
Ṙ2 +R2β̇2

)
+

1

2
mr

(
Ṙ2 cos2 β − 2RṘβ̇ cosβ sinβ +R2β̇2 sin2 β

)
(5.10)

On the other hand, the potential energy is given by:

V = ±mgR sinβ +
1

2
k u2 = ±mgR sinβ +

1

2
k
(
±B ∓

√
R2 −H2

)2
(5.11)

73



5. FLEXIBLE SINGLE-MASS STRUCTURES

The Lagrange function is defined as:

L = T − V (5.12)

Replacing Equation 5.10 and Equation 5.11 into Equation 5.12 gives:

L =
1

2
m
(
Ṙ2 +R2β̇2

)
+

1

2
mr

(
Ṙ2 cos2 β − 2RṘβ̇ cosβ sinβ +R2β̇2 sin2 β

)
∓ mgR sinβ − 1

2
k
(
±B ∓

√
R2 −H2

)2
(5.13)

Since a viscous damping model is considered for the elastic oscillator, the associated dissipative

force can be included as a Rayleigh’s dissipation function:

D =
1

2
c u̇2 =

cR2Ṙ2

2(R2 −H2)
(5.14)

Finally, the non-conservative generalized forces are given by:

Qk =
∂W

∂qk
= −müg

∂x

∂qk
(5.15)

where qk represents the k-th generalized coordinate. During the rocking motion, the system

must satisfy Lagrange’s equation:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
+
∂D

∂q̇k
= Qk (5.16)

Starting with the generalized coordinate R:

∂L

∂R
= mRβ̇2 +mr

(
Rβ̇2 sin2 β − Ṙβ̇ cosβ sinβ

)
∓mg sinβ − kR

(
1− B√

R2 −H2

)
(5.17)

∂L

∂Ṙ
= mṘ+mr(Ṙ cos2 β −Rβ̇ cosβ sinβ) (5.18)

d

dt

(
∂L

∂Ṙ

)
= mR̈+mr

(
R̈ cos2 β − 2Ṙβ̇ cosβ sinβ − Ṙβ̇ cosβ sinβ

−Rβ̈ cosβ sinβ +Rβ̇2 sin2 β −Rβ̇2 cos2 β
)

(5.19)

∂D

∂Ṙ
=

cR2Ṙ

R2 −H2
(5.20)

and

QR = ±müg cosβ (5.21)
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Replacing Equations 5.17 to 5.21 into Equation 5.16 yields:

mR̈+mr

(
(R̈−Rβ̇2) cos2 β − (2Ṙβ̇ +Rβ̈) cosβ sinβ

)
= kR

(
B√

R2 −H2
− 1

)

− cR2Ṙ

R2 −H2
+mRβ̇2 ±müg cosβ ∓mg sinβ (5.22)

Introducing the apparent mass ratio, σ = mr/m, and rearranging:

R̈+ σ
(
(R̈−Rβ̇2) cos2 β − (2Ṙβ̇ +Rβ̈) cosβ sinβ

)
= ω2

nR

(
B√

R2 −H2
− 1

)

− 2 ξ ωnR
2Ṙ

R2 −H2
+Rβ̇2 ± üg cosβ ∓ g sinβ (5.23)

Repeating the same procedure for β:

∂L

∂β
= mr

(
− Ṙ2 cosβ sinβ −RṘβ̇(cos2 β − sin2 β) +R2β̇2 cosβ sinβ

)
∓mgR cosβ (5.24)

∂L

∂β̇
= mR2β̇ +mr

(
−RṘ cosβ sinβ +R2β̇ sin2 β

)
(5.25)

d

dt

(
∂L

∂β̇

)
= m

(
R2β̈ + 2RṘβ̇

)
+mr

(
− Ṙ2 cosβ sinβ −RR̈ cosβ sinβ −RṘβ̇ cos2 β

+RṘβ̇ sin2 β + 2RṘβ̇ sin2 β +R2β̈ sin2 β + 2R2β̇2 cosβ sinβ
)

(5.26)

∂D

∂β̇
= 0 (5.27)

and

Qβ = ∓mügR sinβ (5.28)

Replacing Equations 5.24 to 5.28 into Equation 5.16 yields:

m
(
R2β̈ + 2RṘβ̇

)
−mr

(
RR̈ cosβ sinβ − 2RṘβ̇ sin2 β −R2β̈ sin2 β −R2β̇2 cosβ sinβ

)
=

∓mgR cosβ ∓mügR sinβ (5.29)

Introducing the apparent mass ratio, σ = mr/m, and rearranging:

β̈ − σ

R

(
(R̈−Rβ̇2) cosβ sinβ − (2Ṙβ̇ +Rβ̈) sin2 β

)
= −2Ṙβ̇

R
∓ g

R
cosβ ∓ üg

R
sinβ (5.30)
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Therefore, the equations that describe the motion of the uplifted flexible rocking structure

shown in Figure 5.2 are:

R̈+ σ
(
(R̈−Rβ̇2) cos2 β − (2Ṙβ̇ +Rβ̈) cosβ sinβ

)
= ω2

nR

(
B√

R2 −H2
− 1

)

− 2 ξ ωnR
2Ṙ

R2 −H2
+Rβ̇2 ± üg cosβ ∓ g sinβ (5.31)

β̈ − σ

R

(
(R̈−Rβ̇2) cosβ sinβ − (2Ṙβ̇ +Rβ̈) sin2 β

)
= −2Ṙβ̇

R
∓ g

R
cosβ ∓ üg

R
sinβ (5.32)

5.2.2 Natural frequency and damping ratio of the uplifted system

Once the base uplifts, the structure becomes a mechanism and its dynamic parameters change.

Assuming that the amplitude of the displacement and rotation responses were small, Chopra

and Yim [30] developed analytical expressions for the uplifted fundamental frequency and

damping ratio of a rocking oscillator. Replicating this reasoning for the system presented in

Figure 5.2, the corresponding uplifted dynamic parameters can be obtained. Accordingly, the

lateral equilibrium condition under free oscillations gives:

(
m+mr

) (
ü+Hθ̈

)
+ cu̇+ ku = 0 (5.33)

Rearranging:

(
1 + σ

) (
ü+Hθ̈

)
+ 2ξωnu̇+ ω2

nu = 0 (5.34)

Likewise, rotational equilibrium yields:

(
m+mr

)
Hü+mR2

0θ̈ +mrH
2θ̈ = ∓mgB (5.35)

and rearranging:

(
1 + σ

)
ü+

(
Hθ̈
)(R2

0

H2
+ σ

)
= ∓g B

H
(5.36)

Eliminating (Hθ̈) from Equation 5.36:

(
1 + σ

)
ü−

(
R2

0

H2
+ σ

)(
ü+

2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓g B

H
(5.37)

and rearranging:

(
1− R2

0

H2

)
ü−

(
R2

0

H2
+ σ

)(
2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓g B

H
(5.38)
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Then, introducing R2
0 = B2 +H2

−B
2

H2
ü−

(
R2

0

H2
+ σ

)(
2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓g B

H
(5.39)

and multiplying by -H2/B2:

ü+

(
R2

0 +H2σ

B2(1 + σ)

)(
2ξωn u̇+ ω2

n u
)

= ±gH
B

(5.40)

Accordingly, the fundamental frequency and damping ratio of the uplifted system are given

by:

ωn,up =

√
R2

0 +H2σ

B2(1 + σ)
ωn (5.41)

ξup =

√
R2

0 +H2σ

B2(1 + σ)
ξ (5.42)

Equations 5.41 and 5.42 show that the inerter does not significantly alter the uplifted

frequency and damping ratio of slender oscillators. In a limit case, when R ≈ H, the amplifying

term accompanying the fixed base frequency and damping ratio tends to R/B, the same

factor obtained by Chopra and Yim for free-standing rocking oscillators [30]. Accordingly,

the increase in the uplifted frequency and damping ratio of inerter-equipped oscillators is also

controlled by the slenderness of the structure.

5.2.3 Energy dissipation in the deformable structure

The previous section demonstrated that the addition of viscous damping to rocking models

may lead to an overestimation of the energy dissipated in the uplifted state. In order to further

examine this, a variable damping coefficient is introduced to the model. Therefore, a prescribed

damping ratio, ξfc, is assigned to the oscillator during the full contact phase. Once the base

uplifts, the analysis is halted and the damping ratio is adjusted to ξup before continuing, in

such a way that the resultant uplifted damping agrees with experimental observations [32].

The effect of considering different levels of uplifted damping ratios, ξup, in single-mass rocking

oscillators is assessed in Figure 5.3. Three cases are considered; first, a constant damping ratio

of ξfc = ξup = 0.02 is adopted (black line). In the second case (red line), the uplifted damping

ratio is modified as outlined above so that the resultant damping corresponds to 2% of the

critical value of the damped oscillator. In the third case (blue line), no damping is considered

during the rocking phase (ξup = 0).

The results presented in Figure 5.3 confirm that the use of a constant damping ratio (black

line) results in higher dissipative forces which quickly attenuate the oscillations in the uplifted

state. This, in turn, leads to a smoother rotation response, as it can be observed in the

detailed view of Figure 5.3b. Nevertheless, the differences between the maximum rotation and
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(a) Rotation and deformation responses for different levels of damping ratio.

(b) Detailed view of the rotation and deformation responses during a rocking cycle.

Figure 5.3: Response of a single-mass rocking structure of ωn/p = 5, α = 0.1, σ = 0 and different

values of damping ratio, subjected to a single sine pulse of ωg/p = 5 and ag = g tanα.

the elastic deformation responses of the three cases under consideration are not significant.

Consequently, a conservative assumption of no damping during the rocking phase is adopted

in this study, unless otherwise stated.

5.2.4 Modelling of a pair of parallel clutched inerters

When the structure-inerter system is subjected to a ground excitation, part of the energy is

transferred to the inerter and accumulated in it as angular momentum. As the translating

mass of the structure slows down, the energy accumulated in the rotating flywheels might drive

the mass and induce undesirable deformations. To ensure that the inerter can only oppose

the motion of the structure, the clutch mechanism previously introduced in Chapter 3 is also

implemented in the current analytical model. The sequential engagement of the two parallel

inerters is again modelled mathematically through a redefinition of the inertance, mr, after

each time step according to:

Fr(t) =


mr ẍ

[
ẍ
ẋ

]
> 0

0,
[
ẍ
ẋ

]
< 0

(5.43)
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5.3 Transition upon impact

When the rocking base impacts the foundation, energy is dissipated mainly due to radiation

damping on the underlying media [137]. Housner [3] used conservation of angular momentum

to take into account this energy loss by assuming instantaneous impact with forces concentrated

at the pivoting corner, thereby obtaining a coefficient of restitution that suggests that the en-

ergy lost after each impact is a function of the block’s geometry alone, and independent of the

angular velocities or the mechanical properties of the contact surfaces. Although Housner’s ap-

proach rightly identifies the slenderness, α, as the main parameter affecting impact, several ex-

perimental studies have demonstrated the inaccuracy of his assumptions [28,29]. Consequently,

many researchers have considered the coefficient of restitution as an independent parameter

of the problem [122] or have set-out to develop different impact formulations [35,138].

Acikgoz and DeJong [44] extended Housner’s impact model to a flexible rocking structure

with a lumped mass on its top. Their formulation assumes that, upon impact, the system

either stays on the ground and starts a new full contact phase or immediately uplifts about the

opposite corner and continues the rocking motion. Accordingly, the two phases discussed above

were postulated and their initial conditions were obtained through conservation of angular

momentum. The current response phase was to be determined by considering the principle of

minimum energy. An alternative model was introduced by Vassiliou et al. [31] who extended

Chopra and Yim’s [30] Vertical Velocity Energy Loss assumption. In this formulation, impact

was idealized as a perfectly inelastic collision which completely dissipates the vertical velocity

of the structural mass. In the following sections both approaches, referred to as Adapted ADJ

and VVEL respectively, are compared incorporating the effects of supplemental rotational

inertia devices.

5.3.1 Adapted ADJ impact model

With reference to Figure 5.4, the pre-impact momentum of the translational mass can be

decomposed into Lagrangian coordinates as:

JR1 = mṘ1

Jβ1 = mR1β̇1
(5.44)

On the other hand, the linear momentum associated to the apparent mass of the inerter is

given by:

Jmr = mr

(
∓ Ṙ1 cosβ1 ±R1β̇1 sinβ1

)
(5.45)
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(a) Impact on left corner, O′.

(b) Impact on right corner, O.

Figure 5.4: Moment of momentum of the system about the impacting corner before and after impact

(subscript 1 and 2 respectively).

where the upper and lower signs indicate impact on the left and right corners respectively.

The moment of momentum about the impacting corner is then obtained as:

Λ1 = ± 2mṘ1B
H

R1
−mR1β̇1

(
R1 − 2B

(B ∓ u)

R1

)
−mrH

(
∓ Ṙ1

(B ∓ u)

R1
+Hβ̇1

)
(5.46)

5.3.1.1 Fictitious full contact phase

Assuming that, upon impact, the base does not uplift and the structural mass continues moving

on a purely translational motion, the moment of momentum of the system about the impacting
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corner is given by:

Λ2 = −(m+mr)Hu̇2 (5.47)

Conservation of moment of momentum before and after impact (Λ1 = Λ2) yields:

u̇2 = ∓ 2BṘ1

R1(1 + σ)
+

Hβ̇1
1 + σ

(
1− B2 − u2

H2

)
+

σ

1 + σ

(
∓ Ṙ1

(B ∓ u)

R1
+Hβ̇1

)
(5.48)

where the subscripts denote pre (1) and post impact (2) parameters. The deformation of the

oscillator, u, before and after impact is assumed to remain constant (u1 = u2). Since the

potential energy of the system does not vary during impact, the change of the total energy

can be described by the variation of the kinetic energy of the masses. Thus, the kinetic energy

of the fictitious full contact phase can be obtained as:

Efc =
1

2
(m+mr) u̇

2
2 (5.49)

5.3.1.2 Fictitious rocking phase

On the other hand, if the base uplifts about the opposite corner and continues rocking, the

moment of momentum of the system about the impacting corner is given by:

Λ2 = −mR2
2β̇2 −mrH

(
± Ṙ2

(B ± u)

R2
+Hβ̇2

)
(5.50)

and conservation of moment of momentum before and after impact (Λ1 = Λ2) yields:

β̇2 =
1

R2
2 + σH2

((
H2 −B2 + u2

)
β̇1 ∓

2HB

R1
Ṙ1+

σH
(
∓ Ṙ1

(B ∓ u)

R1
+Hβ̇1 ∓ Ṙ2

(B ± u)

R2

))
(5.51)

Acikgoz and DeJong’s approach assumes that the pre and post impact translational velocity

remains the same (u̇1 = u̇2). This gives the second equation for post-impact velocity Ṙ2:

Ṙ2 = −Ṙ1

(
R1

R2

)(
B ± u
B ∓ u

)
(5.52)

Then, the kinetic energy of the fictitious rocking phase is given by:

Er =
1

2
m
(
R2

2β̇
2
2 + Ṙ2

2

)
+

1

2
mr

(
∓ Ṙ2 cosβ2 ±R2β̇2 sinβ2

)2
(5.53)

The corresponding phase of motion after impact is determined comparing Equation 5.49 and

Equation 5.53. If Efc < Er, a full contact phase begins with initial conditions defined by

Equation 5.48. On the other hand, if Er < Efc, the structure continues rocking about the

opposite corner with post impact velocities defined by Equation 5.51 and Equation 5.52.
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As noted by Vassiliou et.al [53], in certain occasions, the proposed formulation may lead

to an increase in the total energy of the system after impact. In order to enforce energy

dissipation in these cases, Acikgoz and DeJong changed the Hounser-like angular momentum

conservation to a horizontal momentum conservation approach, leading to:

u̇2 = Hθ̇1 + u̇1 (5.54)

5.3.2 Vertical Velocity Energy Loss (VVEL) model

The kinetic energy associated with the horizontal component of the pre-impact velocity is

given by:

E1,h =
1

2

(
m+mr

)(
Hθ̇1 + u̇1

)2
(5.55)

As suggested by Meek [139], it is appropriate to idealize impact as a perfectly inelastic collision

that completely dissipates the kinetic energy associated with the vertical components of the

velocity, so that:

θ̇2 = 0 (5.56)

This condition implies that after every impact a full contact phase will always follow. There-

fore, the post-impact kinetic energy of the system is:

E2 =
1

2

(
m+mr

)
u̇22 (5.57)

And equating equation 5.55 and 5.57 yields:

u̇2 = Hθ̇1 + u̇1 (5.58)

The structure will continue in this full contact phase until the uplift condition (Equation 5.4)

is reached again. In cases where the initial velocity, u̇2, is high enough, this can happen

almost instantaneously after impact. An example of this situation can be observed in Fig-

ure 5.5, where the responses of both impact models are compared for two flexible rocking

structures subjected to sinusoidal pulses of frequency ωg/p = 5 and acceleration amplitude

ag = 1.5 g tanα. The response obtained with a numerical model implemented in OpenSees

(described later in Chapter 6) is also included in the plots.

Very good agreement is observed between the VVEL and Opensees models for both struc-

tures analysed. The small difference obtained mainly in the deformation response, u, arises

from the corrotational transformation used in the numerical model. On the other hand, the

adapted ADJ model dissipates a comparatively higher amount of energy in each impact. These

observations are consistent with the experimental results obtained by Truniger el al. [32], who

observed that Acikgoz and DeJong’s approach tended to overestimate the energy dissipated
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(a) Slender structure (α = 0.1)

(b) Non-slender structure (α = 0.2)

Figure 5.5: Comparison of impact models on a flexible rocking structure of ωn/p = 10 and ξ = ξrp =

0.005, equipped with an inerter of apparent mass ratio σ = 0.5, subjected to sinusoudal pulses of

frequency ωg/p = 5 and acceleration amplitude ag = 1.5 g tanα.

during impact. In light of the above, the VVEL model is used for the analyses presented in

the following sections.

5.4 Dynamic response under coherent pulses

5.4.1 Physically similar dimensionless response

Pulse-type records, which typically contain high ground velocities and low-frequency content,

have been shown to be particularly demanding for rocking structures [140, 141]. The fun-

damental impulsive characteristics of these ground motions can be adequately described by

trigonometric pulses [142]. When subjected to such excitations, the dynamic response of the

system shown in Figure 5.2 is a function of 10 parameters:

[
θ, u] = φ

(
R0 , α ,m , k , ξ ,mr , ωg , ag , g , t

)
(5.59)

where ωg and ag are the pulse’s frequency and acceleration amplitude, respectively, while
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the other parameters have been defined previously. Equation 5.59 involves 3 fundamental

dimensons and according to Vaschy-Buckingham’s Π-theorem [120, 121], the response of the

system can be described by 10− 3 = 7 dimensionless parameters:[
θ

α
,
u

ucr,0

]
= φ

(
ωn
p
,
ωg
p
, ξ , α ,

ag
g tanα

, σ , pt

)
(5.60)

where p =
√
g/R0 is the frequency parameter of the rocking structure. Figure 5.6 shows the

response of rocking structures of ωn/p = 10, α = 0.2 and ξ = 0.02, connected to inerters of

apparent mass ratio σ = 0.5, when subjected to a single sine pulse of frequency ωg/p = 8 and

acceleration amplitude ag = 1.5g tanα. The selected parameters have been chosen to represent

a range of structures such as museum artefacts (R0 = 2 [m] and fn = 3.5 [Hz]), bridge piers or

rocking buildings (R0 = 10 [m] and fn = 1.6 [Hz]). The responses of the corresponding bare

and fixed-base oscillators are also included in Figure 5.6 for comparison purposes.

(a) Elastic deformation. (b) Base rotation.

(c) Drift. (d) Absolute acceleration.

Figure 5.6: Response of fixed base and rocking flexible structures of ωn/p = 10, α = 0.2, ξ = 0.02, with

and without inerters, subjected to a sine pulse of ωg/p = 8 and ag = 1.5g tanα.

The total lateral drift of a rocking structure, x/H in Figure 5.6, is obtained as the sum

of the rotation and structural deformation contributions (Equation 5.2). It can be seen from

Figure 5.6 that although the rocking motion limits the deformation of the column to values

close to the critical displacement, the base rotation can significantly increase the lateral drift of

the structure. Figures 5.6a and 5.6c show an example of this situation. In this particular case,
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the maximum structural deformation is reduced to almost a third of the corresponding fixed-

base value, whereas the lateral drift is more than doubled. It is also known that under strong

ground-motions, SDOF oscillators allowed to uplift experience lower magnitudes of lateral

forces. Accordingly, Figure 5.6d shows a significant reduction of the horizontal accelerations

in the rocking structures in comparison with fixed-based ones. It should be noted that the

impact formulation employed ensures that the horizontal velocity response is smooth, so the

lateral acceleration history remains defined.

Figure 5.6a demonstrates that the inerter has a small effect on the elastic deformation of

the structural element, u. However, the base rotation, θ, is significantly reduced, which leads to

a considerably smaller total horizontal displacement, x. An important further reduction in the

peak horizontal acceleration is also observed in Figure 5.6d, with the clutched inerter system

experiencing the lower acceleration levels of the set. Importantly, the peak resisting force

developed in the inerter remains below 20% of the structure’s weight and can be accommodated

with adequate detailing. Moreover, similar levels of apparent mass ratios and inerter-forces

have been considered in analytical and experimental studies on fixed-base structures [8,95,96].

Overall, the results presented in Figure 5.6 suggest that the combination of rocking and inerters

can be an efficient mechanism to reduce deformation and stresses, while at the same time

controlling high drifts and accelerations, all of which are conductive to damage.

As noted above, the introduction of the clutch significantly improves the efficiency of the

inerter in reducing the base rotation response. The effect of the clutch can be further examined

by inspecting the total energy of the structure-inerter system, given by:

ET =
1

2
m
(
Ṙ2 +R2θ̇2

)
+mg(±R sinβ −H) +

1

2
ku2 +

1

2
mr ẋ

2 (5.61)

where ẋ is the horizontal velocity of point C (see Figure 5.2). Figure 5.7 shows the total

energy of the same set of structures analysed above. The total energy is normalized by

Eref = mgRcg(1− cosαcg), where Eref represents the difference in potential energy of a rigid

rocking structure between its unstable (θ = αcg) and stable (θ = 0)) equilibrium positions [31].

It is clear from Figure 5.7 that the inclusion of the inerter limits the total energy absorbed by

the system, while at the same time it reduces the amount of energy dissipated during each im-

pact. This results in the lower peak rotations observed in Figure 5.6b, with similar amplitudes

in the later cycles of the rocking response. Such increase in the coefficient of restitution was

also predicted by angular momentum equations in Chapter 3.
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Figure 5.7: Total Energy of the structure-inerter systems.

Part of the total energy absorbed by the system is stored in the inerter device, as shown in

the close-up view of Figure 5.8a. As the structure rocks and oscillates this energy is transferred

back and forth, and the single inerter (without clutch) alternates between opposing and driving

the motion. If a clutch is introduced, the inerter disengages from the structure when ẍ/ẋ < 0

(marked by the unshaded areas in Figure 5.8b) and the energy stored in it is not transferred

back to the oscillator. If the inerter is then able to dissipate this energy, every engagement-

disengagement cycle removes energy from the structural system, increasing the rate at which

the rotation and deformation responses are attenuated. Experimental analyses conducted by

Málaga-Chuquitaype et al. [105] suggest that friction within the inerter can effectively dissipate

part of the energy, while additional energy dissipation can be ensured by means of additional

viscous fluids [95,104].

(a) Single inerter without clutch. (b) Pair of clutched inerters.

Figure 5.8: Effect of the clutch on the energy transfer between the inerters and the structures.

5.4.2 Effect of flexibility on the efficiency of the inerter

The observations presented and discussed above refer to a particular value of the ωn/p ratio.

This section extends those findings to a family of flexible oscillators with a wide range of

frequency ratios (ωn/p). In particular, the effect of flexibility on the efficiency of the inerter
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is assessed. To this end, Figure 5.9 and 5.10 summarize the response of flexible rocking

structures subjected to trigonometric pulses of frequency ωg/p = 8 and acceleration amplitude

ag = 1.5g tanα.

(a) Elastic deformation. (b) Base rotation.

(c) Drift. (d) Absolute acceleration.

Figure 5.9: Effect of flexibility on the response of structures with α = 0.2, ξ = 0.02, with and without

inerters, subjected to sine pulses of ωg/p = 8 and ag = 1.5g tanα.

Equation 5.6 has evidenced that the critical displacement required to uplift the structure

and initiate the rocking motion increases rapidly as the natural frequency, ωn, decreases.

Consequently, very flexible oscillators tend to respond as fixed-base single-degree-of-freedom

structures. The effect of the inerter on the elastic deformation of the oscillator, u, is highly

influenced by the occurrence or not of the rocking motion. For very flexible oscillators (small

ωn/p) the uplift condition is not reached, and the response approximates that of fixed-base

inerter-equipped single-degree-of-freedom systems already studied by Makris and Kampas [95].

However, the onset of rocking, clearly identifiable as a crest in the elastic deformation response

of Figure 5.9a and 5.10a, significantly alters the behaviour of the system. Once rocking motion

is triggered, the effect of the inerter on the elastic deformation of the oscillator is very limited,

and no significant gains are observed as the clutch is introduced although the benefits of the

clutch become more relevant as the oscillator’s stiffness increases. Nevertheless, the overall

effect of the inerter on total drifts, ∆max, is still appreciable after uplift due to the important
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(a) Elastic deformation. (b) Base rotation.

(c) Drift. (d) Absolute acceleration.

Figure 5.10: Effect of flexibility on the response of structures with α = 0.2, ξ = 0.02, with and without

inerters, subjected to cosine pulses of ωg/p = 8 and ag = 1.5g tanα.

rotational reductions brought about by the supplemental inertia (Figures 5.9b and 5.9b). On

the other hand, the absolute horizontal acceleration exhibits different trends depending on

the spectral region of interest. For very flexible oscillators that do not uplift, the inerter

has a disadvantageous impact on the acceleration, an aspect that has already been identified

by Makris and Kampas [95]. In contrast, protected structures that undergo rocking motion

experience smaller levels of absolute accelerations, even though the introduction of the clutch

does not necessarily result in further reductions in the accelerations.

5.4.3 Effect of the inerter on the overturning response

The global stability of rocking structures is usually studied by means of overturning plots.

These graphs represent the areas in the frequency-acceleration amplitude space that result in

safe rocking or toppling of the oscillator. Figure 5.11 compares the overturning response of

flexible rocking structures of ωn/p = 10 with and without inerters when subjected to cycloidal

pulses. The area above the upper curves represent overturning without impact (Region 1),

whereas the areas enclosed by the lower curves correspond to overturning taking place after
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impact at the base (Region 2). The remaining regions of the plot are associated with safe

rocking (Region 3).

(a) Sine Pulses (b) Cosine Pulses

Figure 5.11: Overturning response of flexible rocking structures of ωn/p = 10, slenderness α = 0.2 and

ξ = 0.02 under trigonometric acceleration pulses.

The results presented in Figure 5.11 are consistent with the trends previously observed for

rigid rocking bodies. In both cases the inclusion of the inerter reduces the areas of overturning

(Regions 1 and 2) and translates them to the lower frequency region. This frequency shift,

which is otherwise beneficial, is particularly relevant for the case of overturning after impact

(Region 2), as certain structures that would rock safely without the inerter, may overturn

when the protective device is incorporated. The introduction of the clutch, on the other hand,

further shifts the overturning regions and expands the overturning after impact area (Region

2) to higher acceleration magnitudes, a potential drawback that was also identified for rigid

bodies in Chapter 3. Nevertheless, this adverse effect occurs in a frequency-acceleration region

of limited practical relevance.

Of particular interest in stability analyses are smaller structures (ωg/p < 4), which are

known to be more vulnerable to overturning during strong ground motions [3]. In these cases,

the effect of the inerter becomes less significant, and higher levels of inertances may be required

to considerably improve the stability of the oscillator. In this regard, the actual mass of the

inerter can be reduced in several orders of magnitude by using amplification mechanisms such

as ball-screws [7] or gear systems [6]. Alternatively, the incorporation of a clutch can also

enhance the performance of the inerter device in smaller unstable structures.

5.4.4 Response under high frequency excitations

High frequency excitations can cause oscillations in the rocking response that can excite the

uplifted structure at its resonance frequency. Since both responses are coupled, the increasing
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magnitude of the elastic deformations induces short pounding-like rocking cycles, which can

reach significant rotation amplitudes and even overturn the structure [44]. Figure 5.12 shows

an example of this behaviour, where a rocking oscillator of flexibility ωn/p = 5 is subjected

to a harmonic excitation of frequency equal to the structure’s uplifted frequency, ωg/p =

ωn/(p sinα), and acceleration amplitude ag = 13.7 g tanα. A comparatively more flexible

oscillator is chosen in this section, since the uplifted frequencies of stiff structures are usually

higher than the frequency content of practical excitations. The response of an inerter-protected

structure and the corresponding bare fixed-base and rigid rocking oscillators are also included

in the plots for comparison purposes.

(a) Elastic deformation. (b) Base rotation.

Figure 5.12: Response of fixed-base and flexible rocking structures of ωn/p = 5, slenderness α = 0.2

and ξ = 0.02, with and without inerters, subjected to a harmonic ground motion of frequency ωg =

ωn/ sinα = 25.1 p, and acceleration amplitude ag = 13.7 g tanα.

Figure 5.12a shows that the elastic deformation of the bare rocking structure exceeds the

deformation of the corresponding fixed-base oscillator. As previously discussed, this magnified

response induces short rocking cycles of high rotation amplitude which also exceed the demand

associated with the rigid rocking structure (Figure 5.12b). When the inerter is introduced, on

the other hand, the elastic deformation of the column falls considerably, leading to an ever

more significant reduction of the rotation response.

The effects of uplifted resonance on the response of a wider range of flexible rock-

ing structures can be better analysed if an additional dimensionless term is introduced:

ν = uf,max/ucr,0, where uf,max is the maximum displacement of a fixed-base oscillator of

the same dynamic properties under the same ground excitation. This term, proposed by

Psycharis [143], defines the minimum ground motion intensity required to generate a given

displacement in the fixed base structure. Figure 5.13 compares the deformation and rotation

response spectra of the flexible rocking structures studied in Figure 5.12 for a wide range

of excitation frequencies. The acceleration amplitude of each ground motion is obtained by

setting ν = 3.
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(a) Elastic deformation. (b) Base rotation.

Figure 5.13: Response of flexible rocking structures of ωn/p = 5, slenderness α = 0.2 and ξ = 0.02, with

and without inerters, subjected to a harmonic ground motion of variable frequency and acceleration

amplitude defined by ν = 3.

The results presented in Figures 5.12 and 5.13 show that the efficiency of the inerter in

reducing the elastic deformation of the structure is significantly higher for frequencies neigh-

bouring the uplifted resonance region. On the other hand, a more uniform reduction factor is

observed for the rotation response across the range of frequencies considered in the analysis. It

is worth noting that these beneficial effects are not a-priori obvious and not wholly caused by

the effective period elongation brought about by the inerter. This is demonstrated in Figure

5.13 where such improvements are evident for the full range of frequencies under considera-

tion. Importantly, the introduction of the clutch completely suppresses the uplifted-resonance

peak in both response parameters. In light of the above, it is possible to conclude that the

use of inerters constitutes an efficient strategy for controlling the response of flexible rocking

structures subjected to high frequency excitations.

5.5 Response under non-coherent pulse-like ground motions

Near-source seismic ground motions can contain long velocity pulses that may induce large ro-

tations in rocking structures. Besides the main pulse, they also contain non-coherent frequency

components that can amplify the peak ground acceleration [144]. Makris and Roussos [141]

examined the stability of free-standing rigid blocks subjected to pulse-like records and showed

that the rocking response of smaller structures is mainly governed by these short acceleration

pulses, whereas larger blocks are more sensitive to the incremental ground velocity. In this

context, it is reasonable to assume that most small rocking structures equipped with inerters

will behave as rigid blocks, a problem that has been studied by the authors in a previous pub-

lication [145]. Consequently, this section focuses on the response of larger structures, or those

where the effect of flexibility cannot be ignored. A rocking structure of p = 1[Hz], α = 0.15,

and ξ = 0.02, representative of a 2B = 3[m] by H = 10[m] wall building system, is selected as
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a typical case study for the analyses presented herein.

Figure 5.14a and 5.14b show the acceleration and velocity histories recorded at the North

Palm Springs station during the 1986 North Palm Springs Earthquake. A long-duration pulse

is evident in the velocity history, whereas significant high-frequency spikes are observed in

the acceleration series. These features have the potential of causing both large drifts and

acceleration demands. The main velocity pulse can be approximated by a sinusoidal pulse of

Tp = 1.4[s] and vp = 0.6[m/s], resulting in a cosinusoidal acceleration of amplitude ωgvp =

0.27[g] [141]. The elastic deformation and base rotation responses of bare and protected

rocking structures of ωn = 10[rad/s] and apparent mass ratio of σ = 0.5 to this earthquake

are presented in Figures 5.14c and 5.14d.

(a) Ground acceleration. (b) Ground velocity.

(c) Elastic deformation. (d) Base rotation.

Figure 5.14: Rocking response of a structure of p = 1[Hz], α = 0.15, ωn = 10[rad/s] and ξ = 0.02 to

the acceleration history of North Palm Springs, 1986.

The smooth rotation responses observed in Figure 5.14d indicate that rocking is mainly

governed by the coherent pulse, and is not significantly affected by the high frequency non-

coherent content. This lends credence to the wider applicability of the findings of the previous

sections related to the response improvements observed under cycloidal pulses. The beneficial

effects of the inerter are also evident in Figure 5.14. In order to generalize these conclusions

to a wider range of flexibilities and ground motions, the response of several bare and inerter-
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equipped structures to a set of 5 earthquake records is obtained and compared in the form of

rocking spectra. The ground motions, summarized in Table 5.1, are selected from the pulse-like

database previously described in Table 3.1 and include records with pulses ranging from 1.2[s]

to 5.1[s] and peak ground velocities of up to 1.67[m/s]. The listed records were selected in

light of their strong coherent and non-coherent components that are able to cause important

drift and acceleration demands in flexible uplifting structures of the type considered herein.

No. Event Year Station Tp [s] PGV [m/s] Mw

1 Landers 1992 Lucerne 5.1 1.4 7.3

2 Northridge-01 1994 Rinaldi 1.2 1.67 6.7

3 Imperial Valley-06 1979 El Centro Diff Array 5.9 0.6 6.5

4 Superstition Hills-02 1987 Parachute Test Site 2.3 1.07 6.5

5 N. Palm Springs 1986 N. Palm Springs 1.4 0.67 6.1

Table 5.1: Pulse-like ground motion records used in the analyses

Figure 5.15 summarizes the response of structures with the same geometry as above

(p = 1[Hz] and α = 0.15) but with different levels of flexibility (characterized by ωn), when

subjected to the ground motions described in Table 5.1. The figure shows the maximum rota-

tion, elastic deformation, drift and absolute acceleration of bare and protected elastic rocking

oscillators with single and clutched inerters. When the maximum rocking angle reaches an

arbitrarily large rotation (θ → ∞), the structure topples. A value of θ/α = 1 is assigned to

the ordinate of the rotation spectrum and the values of elastic deformation, drift and absolute

acceleration are not reported, as they are not deemed relevant when the structure overturns.

Figure 5.15a shows an important reduction in the number of overturning cases when the

inerter is incorporated. The addition of the clutch, on the other hand, leads to a safe low-

amplitude rocking response in all cases. Importantly, the rotation reduction factor is con-

siderably higher for the ground motions associated with larger demands like the Parachute

and Lucerne records. The peak elastic deformations, presented in 5.15a, show a much smaller

effect, in line with the findings presented in the previous sections. It is also worth noting the

significant reduction in the dispersion associated with clutched systems indicating a better

control of the dynamic response.

As previously discussed, the total peak lateral drift of uplifting structures is mainly con-

trolled by the base rotation. Accordingly, Figure 5.15c exhibits the same trends observed in

the base rotation response of Figure 5.15a. On the other hand, Figure 5.15d demonstrates

that the inerter also reduces the peak lateral accelerations, specially for the more demanding

ground motions. However, the introduction of the clutch does not significantly improve the

acceleration demands, with the Rinaldi record showing even higher acceleration magnitudes in

the case of clutched inerters in comparison with a single inerter implementation. This partic-
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(a) Base rotation.

(b) Elastic deformation.

(c) Drift.

(d) Absolute acceleration.

Figure 5.15: Rocking spectra for a structure of p = 1[Hz], α = 0.15, and ξ = 0.02 to the pulse-like

ground motion set described in Table 5.1.
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ular situation is studied in detail in Figures 5.16 and 5.17, where the rotation and acceleration

response of oscillators of ωn = 20 [rad/s] is examined. The Rinaldi record, shown in Figure

5.16, contains a distinctive smooth pulse with very few high frequency fluctuations and high

acceleration amplitude. Figure 5.17a shows that in the bare and single inerter cases, impact

takes place close to the end of the main pulse (t = 2.8[s]) meaning that the second half of the

excitation, after reversal of acceleration, can effectively help to restrain the motion of these

structures. The introduction of the clutch, however, leads to an earlier impact, causing most

of the second half of the pulse to exacerbate the rotation after uplift in the opposite direction.

This phenomenon was not observed in the other earthquake records because their high fre-

quency non-coherent content causes acceleration reversals within the main pulse (see Figure

5.14a). A similar effect was identified in Figures 5.9d and 5.10d, where cycloidal excitations

were considered. This is also evident in Figures 5.17c and 5.17d, which plots the rotation and

acceleration response of the same oscillators to a cosine pulse of Tp = 1 [s] and ag = 0.83 [g],

representative of the coherent pulse of the Rinaldi record.

(a) Ground acceleration. (b) Ground velocity.

Figure 5.16: Coherent pulses in the acceleration and velocity records obtained at Rinaldi station during

the 1994 Northridge earthquake.

5.6 Concluding remarks

The dynamic response of deformable rocking structures equipped with inerters was investig-

ated in this chapter. Firstly, analytical expressions that take into account the inerter’s effect

on the motion of flexible uplifting structures were presented. This model was subsequently

used to assess the response of practice-representative structures to coherent single-pulse excit-

ations. The results of the analyses showed that while the incorporation of inerters leads to a

pronounced reduction in peak lateral deformations in elastic structures where full base contact

is maintained, it has a small effect on the elastic deformation of uplifting oscillators. However,

significant reductions were observed in the maximum rotations, resulting in considerably

lower overall drift demands. Likewise, similar reductions in the peak lateral accelerations were
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(a) Base rotation (Rinaldi record). (b) Absolute acceleration (Rinaldi record).

(c) Base rotation (Cosine pulse). (d) Absolute acceleration (Cosine pulse).

Figure 5.17: Rotation and acceleration response of rocking oscillators of ωn = 20[rad/s], α = 0.2,

ξ = 0.02, with and without inerters, when subjected to the Rinaldi record and a cosinusoidal acceleration

pulse. Shaded areas indicate engagement of the clutched inerter.

obtained for mid to high stiffness ratios (ωn/p). These results suggest that combining rocking

with inerters can be an efficient strategy to control structural stresses and deformations in

flexible structures, while at the same time offsetting the increase in the lateral drifts brought

about by the base rotation. Importantly, the analyses reported herein also showed that

the efficiency of the inerter is not significantly affected by the level of flexibility of the oscillator.

Examination of the total energy of the system showed that the inerter alternately

opposes and drives the motion of the structure as the kinetic energy accumulated in it is

transferred back and forth during the rocking response. Assuming that the disconnected

clutched-inerter is then able to dissipate this energy, every engagement-disengagement cycle

removes energy from the structural system, increasing the rate at which the rotation and

deformation responses are attenuated. The introduction of the clutch, however, leads to

earlier impact, a phenomenon that can sometimes exacerbate the lateral acceleration demands.

The overall effect of the inerter on the overturning response of flexible structures is
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qualitatively similar to the behaviour observed for rigid rocking blocks. The inclusion of

the inerter reduced the areas of overturning and translated them to the lower frequencies

region. This translation is particularly important for the region of overturning after impact,

as certain unprotected structures that would have survived the ground motion, overturn when

the inerter is incorporated. The introduction of the clutch, on the other hand, was shown to

be particularly attractive for the protection of smaller vulnerable structures. Nevertheless,

an expansion of the overturning after impact region was also obtained, but this potential

drawback occurred in a frequency-acceleration region of limited practical relevance.

Additionally, the phenomenon of uplifted resonance was examined confirming that the

efficiency of the inerter in reducing the elastic deformation grows significantly in the region

around the uplifted frequency. Furthermore, consistent reductions on the maximum rotation

response were also obtained, while the incorporation of a clutch was shown to fully suppress

the uplifted resonance peaks in both elastic deformations and rotations.

Finally, the observations presented above were extended to real ground motions by

considering the response of a case of study structure to a set of real pulse-like records. Close

examination of the rotation history showed that the rocking drift is mainly governed by the

coherent velocity pulse. Accordingly, the response improvements previously observed under

analytical pulses were also verified for real pulse-like records. Importantly, the efficiency

of the inerter in controlling the structural demands was considerably higher for the more

demanding ground motions. Although, in general, inerter protected structures exhibited

lower acceleration demands than bare rocking oscillators, the introduction of the clutch did

not always result in lower peak accelerations. Overall, it is possible to conclude that the use

of inerters constitutes an effective strategy to control the dynamic response of flexible rocking

structures under a wide range of dynamic loadings.

All the structural systems considered so far involve inerters connected directly to the

lumped mass or centre of mass of the rocking element. Although this simplification has

allowed to examine the fundamental dynamics of rocking systems equipped with supplemental

rotational inertia, in many real applications this configuration would be impractical. In the

following chapter, the alternative of connecting the inerter at a lower level is investigated.

Importantly, this analysis will require the introduction of multi-mass rocking elements.
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Chapter 6

Seismic control of multi-mass

rocking structures with inerters

6.1 Introduction

In the previous chapters the seismic response of rocking structures equipped with inerters has

been examined using simplified models of rigid blocks and single-mass oscillators. In these

models, the inerter has been connected directly to the lumped mass or centre of mass of

the rocking bodies. Although this simplification has allowed the analysis of the fundamental

dynamics of inerter-rocking systems, many practical applications cannot be adequately repres-

ented by this configuration. Moreover, the analysis of more complex structural systems, such

as building or civil structures, requires the incorporation of multi-degree-of-freedom rocking

oscillators. In this chapter, a more practical configuration is presented by considering the

response of multi-mass rocking structures equipped with inerters connected at the first mass

level. To this end, the finite element model developed by Vassiliou et al. [88] is implemented

in OpenSees [10] and extended to incorporate the effects of grounded supplemental rotational

inertia devices. The full structural model is subsequently validated against previous experi-

mental and analytical results, and used to examine the effect of the inerter on the rotation

and elastic deformation demands of a set of 3, 6 and 9-storey structures. Additionally, the

interaction between impact forces and higher vibration modes is examined, while the effective-

ness of the inerter for controlling the associated acceleration demands and increased bending

moments is also evaluated. Finally, the conclusions obtained for analytical pulses are extended

to real earthquakes by evaluating the response of the structural systems to a set of pulse-like

ground motion records.
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6.2 Definition of the numerical models

6.2.1 Model parameters

The dynamic response of multi-mass rocking structures equipped with inerters can be stud-

ied considering the system illustrated in Figure 6.1a. In this model, the rocking body is

represented by n lumped masses, mi, connected by elastic beam-column elements of flexural

stiffness EIi, and supported by a rigid base allowed to uplift. Two degrees of freedom per

level are considered, namely, lateral displacement and rotation. The geometry of the structure

is characterized by the radial distance between the pivot points and the masses, Ri, and the

corresponding slenderness angle, αi. Accordingly, the frequency parameter of the multi-mass

structure can be defined as [34]:

pn =

√
1t[M ]H g

Jp
(6.1)

where [M ] corresponds to the mass matrix, H to the vector of mass heights and Jp is the

rotational inertia of the system defined as:

Jp = Rt [M ]R (6.2)

with R being the radial distances vector. Finally, a grounded inerter of inertance mr,1 is

connected to the horizontal degree of freedom of the first level mass. The apparent mass ratio

is defined as σ = mr/
∑nlevels

i=1 mi. For simplicity reasons, a uniform distribution of stiffness

and masses along the height of the oscillator is considered for all the structures examined in

this study.

6.2.2 Numerical model of the rocking structure

The modelling strategy adopted in this study is based on the finite element modelling approach

for flexible rocking structures proposed by Vassiliou et al. [88]. To this end, three components

are considered (Figure 6.1b): the deformable body, the rocking surface and the underlying soil.

Linear-elastic beam-column elements are used to represent the flexible structure, whereas a

zero-length fibre section is considered for the rocking surface. A linear-elastic non-dissipative

compression-only material is assigned to the rocking section, so the system is free to rotate

about the pivot points. It is assumed that appropriate arrangements to prevent slipping (such

as shear keys) have been considered, so the horizontal displacement of node b is constrained to

that of node a. Importantly, the inverted T section at the base of the rocking body is assumed

to be perfectly rigid. Alternatively, flexibility in the rocking interface is modelled through

the stiffness of the vertical zero-length fibres. Unless otherwise stated, the stiffness of these

fibres is set at very high values in order to represent a rigid surface. In these cases, 2 fibres
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Figure 6.1: Schematic diagram of the numerical model of the rocking structure-inerter system.

are sufficient to simulate the rocking motion [88]. The effects of base flexibility and inelastic

deformations in the rocking interface have been further investigated in [146].

As demonstrated in the previous chapter, the incorporation of viscous damping into rocking

models may lead to a significant overestimation of the energy dissipated in the uplifted state

[30, 32, 44]. In order to address this shortcoming, the variable damping ratio described in

Section 5.2.3 is also introduced in the numerical model. Inherent structural damping during

the full contact phase is modelled using Rayleigh’s classical damping, assigning a prescribed

damping ratio, ξfc, to the first and third vibration modes of the fixed base structure [9]

representing at least 90% of the modal mass in the full-contact case. Once the base uplifts,

the analysis is halted and the damping ratio is adjusted before continuing so that the resultant

uplifted motion agrees with experimental observations. Truniger et al. [32] conducted a series

of tests on single-mass oscillators and observed an uplifted damping ratio of the same order of

magnitude as the fixed-base value. Moreover, the analytical analyses presented in Section 5.2.3

showed that, for low damping levels, the uplifted damping ratio does not significantly affect

the peak rocking and deformation responses. In light of the above, a conservative assumption

of no damping during the rocking phase is adopted in this study (ξup = 0).

Energy loss during impact is incorporated by taking into account the energy radiated

into the underlying ground. Accordingly, the structure is assumed to rest on a rectangular

rigid foundation of length 2B and width e, while the soil underneath is represented by a set

of vertical, horizontal and rotational springs and dashpots whose mechanical properties are
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determined according to machine vibration theory [147]:

Kv =
4 ρ V 2

s R0

1− ν
Jv

(B
e

)
, Kh =

8 ρ V 2
s R0

2− ν
Jh

(B
e

)
, Kr =

8 ρ V 2
s R

3
0

3(1− ν)
Jr

(B
e

)
(6.3)

and

ξv =
0.425√
mv

, ξh =
0.29√
mh

, ξr = 0 (6.4)

with

mv =
mt(1− ν)

4ρR3
0

, mh =
mt(2− ν)

8ρR3
0

(6.5)

where mt is the effective mass of the system, R0 is the equivalent circular radius of the

foundation [147], J(B/e) is the shape correction factor given in [147–149], and ρ, ν and

Vs correspond to the density, Poisson’s ratio , and shear wave velocity of the supporting

soil, respectively. The damping coefficients are then obtained from the damping ratio as

C = 2ξ
√
Kmt, where K and ξ are defined in Equations 6.3 and 6.4. It should be noted

that while the damping ratio depends on the assumed effective mass of the system, mt, the

damping coefficients used to model the underlying ground depend only on the properties of

the soil. On the other hand, Vassiliou et al. [88] demonstrated that the adopted model is not

sensitive to the value of the damping coefficient, as long as the properties of the underlying

ground correspond to stiff soils or rock. Consequently, the mechanical properties of the soil

model are obtained considering Vs = 1000 [m/s], ρ = 2 [ton/m3] and ν = 0.3.

It is well known from machine vibration theory that the spring stiffness and damping

coefficients that represent the elastic halfspace under the foundation depend on the frequency

of the excitation. Moreover, it has been demonstrated that the dynamic modifications factors,

k and c, are a function of the dimensionless frequency factor α0 = 2πfB/Vs [147]. Crucially, if

stiff soils are considered, this parameter remains reasonably small for the range of frequencies

relevant for the impact phenomenon. For example, for a foundation of B = 1 [m] and a soil

of Vs = 1000 [m/s], α0 remains lower than 0.2 for frequencies of up to 30[Hz]. The results

for rectangular foundations presented in [147] show that the dynamic modification factors

kv ≈ kh ≈ kr ≈ 1 for this range of α0 values, thus justifying the adoption of the constant

static stiffness presented in Equation 6.3. Similarly, the damping factors remain reasonably

constant for the relevant excitation frequencies.
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6.2.2.1 Validation of the structural model

The structural model described in the previous section is implemented in the open-source

finite element framework OpenSees [10] and validated against experimental data published

in [32]. Newmark’s integration method was used considering a constant time step dt.

Convergence of the base rotation and elastic deformation response histories was assessed for

different time steps, concluding that a dt = 10−4[s] yields reasonable accuracy within practical

computation times. Four single-mass rocking oscillators of natural frequencies ranging from

1[Hz] to 4[Hz] are selected for the validation process. In order to accurately represent the

experimental specimens, a uniformly distributed mass was assigned to the column elements

of the model, whereas a lumped mass and rotational inertia were defined at the base node.

The properties of the structures are summarized in Table 6.1. For further details about the

specimens and the experimental program, the reader is referred to [32].

Specimen ffix ξ α p

[Hz] [%] [rad] [Hz]

1 Hz Short Base 1.00 0.16 0.081 3.24

2 Hz Long Base 2.07 0.28 0.160 3.23

3 Hz Short Base 3.12 0.35 0.081 3.25

4 Hz Long Base 3.84 1.32 0.081 3.24

Table 6.1: Description of the single-mass rocking specimens selected for the validation process (Truniger

et al. [32]).

Figure 6.2 presents the predicted base rotation responses and elastic deformations at the top

of the specimens obtained with the numerical model and compares them with the experimental

and analytical results obtained by Truniger et al. [32]. One of the main difficulties in the

prediction of rocking time history responses is related to the fact that small errors in the

rotation amplitude can lead to accumulative errors in the phase. This has been acknowledged

in [32] and can be clearly observed in the response of the 1[Hz], 3[Hz] and 4[Hz] specimens.

Nevertheless, very good agreement is observed in the amplitude of the base rotation for the

whole range of flexibilities under consideration. On the other hand, accurate predictions of

the maximum elastic deformation response are also obtained for the more flexible oscillators.

However, results show that both the numerical and analytical [32] models tend to overestimate

the elastic deformation as the structures become more rigid.
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(a) 1 [Hz] Short Base (Test 10)

(b) 2 [Hz] Long Base (Test 14)

(c) 3 [Hz] Short Base (Test 47)

(d) 4 [Hz] Long Base (Test 52)

Figure 6.2: Comparison of the OpenSees numerical model with experimental and analytical results

from Truniger et al.
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6.2.3 Numerical model of the inerter and clutch

The numerical model of the inerter is schematized in Figure 6.3 and consists of two nodes

connected through a rigid link, and an angular mass, J , assigned to the rotational degree

of freedom at Node 1. In this way, the relative lateral displacement between the nodes is

transformed into a rotation in Node 1.

Figure 6.3: Schematic diagram of the numerical model of the inerter

Since a linear geometric transformation is considered for the link element, the relative dis-

placement and rotation of the system are related according to:

dr = d2,1(t)− d1,1(t) = −ρθ (6.6)

The force couple required to impose this relative displacement, FR(t), can then be obtained

evaluating the rotational equilibrium about Node 1:

FR(t) =
J d̈r(t)

ρ2
= mr d̈r(t) (6.7)

Therefore the reactive force developed by the model is proportional to the horizontal relative

acceleration between Nodes 1 and 2. The parameters of the model, J and ρ, are then defined

in terms of the inertance, mr, according to Equation 6.7.

When the structure-inerter system is subjected to a ground excitation, part of the energy is

transferred to the inerter and accumulated as angular momentum. As the translating mass of

the structure slows down, the rotating flywheels might drive the mass and induce undesirable

deformations. As mentioned before, Makris et al. [95] proposed the use of a clutch mechanism

in order to ensure the system can only resist the motion of the structure. As conventional

clutches can only act in one direction of motion, a parallel pair of inerters is necessary for

this configuration. Additionally, a dissipative mechanism may be needed to decelerate the

flywheels once disengaged [95,104]. The sequential engagement of the two parallel inerters can
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be modelled mathematically through a redefinition of the inertance, mr, after each time step

according to:

FR(t) =


mr d̈r,

[
d̈r
ḋr

]
> 0

0,
[
d̈r
ḋr

]
< 0

(6.8)

This formulation can be easily implemented in a TCL script as shown in Listing 6.1.

Listing 6.1: TCL script for simulating the transmission in the clutch mechanism in OpenSees

for { set i 1} { $ i <= $Nsteps} { incr i } {
set ok [ ana lyze 1 $DtAnalysis ] ;

set Acc i [ expr [ nodeAccel $top node 1 ] ] ;

set V e l i [ expr [ nodeVel $top node 1 ] ] ;

set ver [ expr $Acc i / $ V e l i ] ;

i f {$ver>=0} {
set aux 1 . ;

} else {
set aux 0 . ;

}
mass $bottom node $Mass $Mass [ expr $J∗$aux ] ;

}

6.2.3.1 Validation of the inerter model

The proposed numerical model was implemented in OpenSees [10] and validated against the

analytical model developed by Makris et al [95]. The responses obtained with the numerical

model and the corresponding solution of the equation of motion for a fixed-base SDOF struc-

ture of period T = 1[s] and σ = 0.5, subjected to a single sinusoidal pulse, are presented in

Figure 6.4.

Excellent agreement between the two models is observed in all the plots shown in Figure

6.4. Moreover, the modelling strategy presented in this section has been subsequently validated

against experimental results by Málaga-Chuquitaype et al. [105].

105



6. MULTI-MASS ROCKING STRUCTURES

(a) Displacement response.

(b) Velocity response.

(c) Absolute acceleration response.

Figure 6.4: Comparison of the inerter numerical model and the solution of the equation of motion for

a SDOF structure equipped with inerters of σ = 0.5, subjected to a single sine pulse of T0/Tg = 2 and

acceleration amplitue ag = 0.5 [g].
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6.2.4 Validation of the rocking structure-inerter model

In light of the dearth of available experimental results on multi-mass rocking systems equipped

with grounded inerters, the numerical models described in the previous sections are combined

and compared with the analytical model for single-mass rocking structures with inerters de-

veloped in Chapter 5. This formulation considers large rotations for the base and small deform-

ations for the oscillator. The numerical model, on the other hand, considers a corrotational

transformation for the rocking body. In order to make both formulations comparable, the

natural frequency of the OpenSees model is obtained considering P-∆ effects in the lateral

stiffness of the system.

ωn,OS =

√
3EI/h3 −N/h

m
(6.9)

Figure 6.5 compares the responses obtained for three structures of different flexibility levels

and apparent mass ratios, subjected to single sine pulses of frequency ωg and acceleration

amplitude ag.

Excellent agreement between the two models is observed for the stiffer structures equipped

with both single and clutched inerters. However, some small differences emerge in the amp-

litude of the rotation and elastic deformation responses as the oscillators become more flex-

ible. These differences are partially explained by the variation of the axial load on the flexible

column, N , during the rocking motion which alters the lateral stiffness of the oscillator in the

numerical model, an effect that becomes more significant in more flexible structures.

6.3 Base rotation and elastic deformation demands

A first assessment of the potential benefits of employing inerters for the seismic control of

multi-mass rocking structures is presented in this section by considering the response of a set

of oscillators to a wide range of cycloidal pulses. These analytical excitations have been shown

to adequately describe the fundamental impulsive characteristics of realistic pulse-like ground

motions [142], which can be particularly demanding for rocking structures [140,141].

Figure 6.6 compares the response histories of structures representative of a 3-storey walled

rocking system, with and without inerters, when subjected to a single sine pulse of frequency

ωg/ωn1 = 0.6 and acceleration amplitude ag = 3g tanαcg, where ωn1 is the fundamental

frequency of the structures. The response of the buildings is examined in terms of the base

rotation, θ, and the elastic deformations at the different mass levels, ui. The geometry and

stiffness of the structures is characterized by their frequency parameter, pn = 1.17 [Hz], the

slenderness of the centre of gravity, αcg = 0.165, and the frequency of the first mode of

vibration, ωn1 = 40.95 [rad/s] (or Tn1 = 0.15 [s]). These values correspond to a rocking wall

of dimensions 2B = 2 [m] by H = 9 [m]. A damping ratio of ξfc = 0.01 is considered for

the full contact phase, while no viscous damping is assigned to the uplifted phase of the
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(a) ωn/p = 10, ωg/p = 5, ag = g tanα, α = 0.1, ξfc = 0.01, ξup = 0 and σ = 1 (single inerter).

(b) ωn/p = 5, ωg/p = 5, ag = g tanα, α = 0.1, ξfc = 0.01, ξup = 0 and σ = 0.5 (pair of clutched

inerters).

(c) ωn/p = 2, ωg/p = 3, ag = g tanα, α = 0.1, ξfc = 0.01, ξup = 0 and σ = 0.5 (single inerter).

Figure 6.5: Comparison of the numerical (OpenSees) and analytical models for rocking structures

equipped with inerters.
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response (ξup = 0) as discussed above. Finally, an apparent mass ratio of σ = 1 is used for

the inerter-equipped structures. The response of a fixed-base bare structure is also included

for comparison purposes.

(a) Base rotation. (b) Elastic deformation level 1.

(c) Elastic deformation level 2. (d) Elastic deformation level 3.

Figure 6.6: Response of 3-storey rocking structures of pn = 1.17 [Hz], Tn1 = 0.15 [s], αcg = 0.165

and ξfc = 0.01, with and without inerters, to a sine pulse of frequency ωg/ωn1 = 0.6 and acceleration

amplitude ag = 3g tanαcg.

Figure 6.6 shows that, although the inclusion of the single inerter reduces the maximum

base rotation, it can also cause slight increases in the amplitude of the elastic deformations of

higher storeys with respect to the non-inerter case (σ = 0). This detrimental outcome stems

from the backstay effect caused by the connection of the inerter in the first level, as it will

be seen later in Section 6.5. Nevertheless, in all three storeys the peak deformation remains

considerably smaller than in the fixed base case. The introduction of the clutch, on the other

hand, significantly improves the efficiency of the inerter in reducing the rotation response,

although it does not translate into a significant alteration of the amplitude of the structural

deformations.

The response spectra presented in Figures 6.7, 6.8 and 6.9 extend the previous analyses to

a wider range of pulse frequencies and rocking structures. Figure 6.7 summarizes the response

of the same 3-storey systems described above to single sine pulses of varying frequency and
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acceleration amplitude ag = 3g tanαcg, while Figure 6.8 presents the maximum response of

6-level structures of pn = 0.86 [Hz], αcg = 0.142, and ωn1 = 21.54 [rad/s] (or Tn1 = 0.3 [s]).

These parameters represent a 6-storey rocking wall of dimensions 2B = 3 [m] by H = 18 [m].

Finally, Figure 6.9 describes the maximum response of 9-level structures of pn = 0.72 [Hz],

αcg = 0.1, and ωn1 = 14.4 [rad/s] (or Tn1 = 0.45 [s]) subjected to the same acceleration pulses.

This last set of parameters correspond to a 9-storey rocking structure of dimensions 2B = 3 [m]

by H = 27 [m].

(a) Base rotation. (b) Elastic deformation. (c) Inter-storey drift.

Figure 6.7: Response spectra for 3-storey rocking structures of pn = 1.17 [Hz], Tn1 = 0.15 [s], αcg =

0.165 and ξfc = 0.01, with and without inerters, subjected to sine pulses of acceleration amplitude

ag = 3 tanαcg.

(a) Base rotation. (b) Elastic deformation. (c) Inter-storey drift.

Figure 6.8: Response spectra for 6-storey rocking structures of pn = 0.86 [Hz], Tn1 = 0.3 [s], αcg =

0.142 and ξfc = 0.01, with and without inerters, subjected to sine pulses of acceleration amplitude

ag = 3 tanαcg.
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(a) Base rotation. (b) Elastic deformation. (c) Inter-storey drift.

Figure 6.9: Response spectra for 9-storey rocking structures of pn = 0.72 [Hz], Tn1 = 0.45 [s], αcg = 0.1

and ξfc = 0.01, with and without inerters, subjected to sine pulses of acceleration amplitude ag =

3 tanαcg.

In all three cases, the addition of the inerter has very little effect on the rotation and

elastic deformation responses for high frequency excitations (ωn1/ωg < 1). As the duration of

the pulses increases, the rotation demands grow and the effect of the single inerter becomes

more significant, reaching reductions between 15% and 20% in the peak rotations of the three

structures for ωn1/ωg > 3. Although this improvement happens at the expense of inducing

slightly larger elastic deformations, this drawback does not translate into higher drifts, since

the total lateral deformation is mainly controlled by the base rotation. Likewise, the horizontal

motion of the point of connection of the inerter is governed by the rocking action. Consequently,

when the clutch is introduced, the disengagement condition defined in Equation 6.8 ensures

that the inerter only opposes the rocking motion of the system, hence reducing the rotation

amplitudes even further. However, these engagement-disengagement cycles can happen at

unfavourable times with respect to the elastic deformations, causing the inerter to arbitrarily

oppose and drive the deformation response. This results in the increased elastic deformations

observed for the structures equipped with a pair of clutched inerters. It is also important to

note that, as the structures become taller, higher levels of inertances are required to obtain

similar levels of response suppression. However, the actual mass of the inerter can be reduced

thousands of times using amplification mechanisms such as ball-screws [7] or gear systems [6].

6.4 Impact and acceleration demands

In the numerical model presented above, impact is modelled as a vertical contact force which

quickly changes the rotational and linear velocities of the system, θ̇ and u̇, thus dissipating

energy and inducing large accelerations in the oscillator. In this case, variations in the mag-

nitude of the vertical force at the pivot point, F0, ensure conservation of angular momentum

during impact. A simplified representation of this formulation is shown in Figure 6.10, where
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a rectangular pulse function is used to represent the impulsive nature of impact on a rocking

SDOF oscillator connected to a grounded inerter.

Figure 6.10: Impact force in a SDOF oscillator.

At t = ti, a short duration high amplitude force acts on the impacting corner of the

base. Assuming that the amplitudes of the displacement and rotation responses are small, the

equations that describe the motion of the system for ti ≤ t ≤ ti + ∆t are:

(
m+mr

) (
ü+ hθ̈

)
+ cu̇+ ku = 0(

m+mr

)
hü+mR2θ̈ +mrh

2θ̈ = ∓mgB ± 2FiB

Introducing the apparent mass ratio σ = mr/m and rearranging:

(
1 + σ

) (
ü+ hθ̈

)
+ 2ξωnu̇+ ω2

nu = 0 (6.10)

(
1 + σ

)
ü+

(
hθ̈
)(R2

h2
+ σ

)
= ∓gB

h
± 2FiB

mh
(6.11)

where the upper and lower signs represent impact about the left and right corners, respectively.

Eliminating (hθ̈) algebraically from Equation 6.11:

(
1 + σ

)
ü−

(
R2

h2
+ σ

)(
ü+

2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓gB

h
± 2FiB

mh

and rearranging:

(
1− R2

h2

)
ü−

(
R2

h2
+ σ

)(
2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓gB

h
± 2FiB

mh

Introducing R2 = B2 + h2

−B
2

h2
ü−

(
R2

h2
+ σ

)(
2ξωn
1 + σ

u̇+
ω2
n

1 + σ
u

)
= ∓gB

h
± 2FiB

mh
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Multiplying by -h2/B2:

ü+

(
R2 + h2σ

B2(1 + σ)

)(
2ξωn u̇+ ω2

n u
)

= ±g h
B
∓ 2Fih

mB

Similarly, combining Equations 6.10 and 6.11 to eliminate ü:

−
(
1 + σ

)
hθ̈ − 2ξωn u̇− ω2

n u+ hθ̈

(
R2

h2
+ σ

)
= ∓gB

h
± 2FiB

mh

then:

B2

h2
hθ̈ − 2ξωn u̇− ω2

n u = ∓gB
h
± 2FiB

mh

Multiplying by h2/B2:

hθ̈ = 2
h2

B2
ξωn u̇+

h2

B2
ω2
n u∓ g

h

B
± 2Fih

mB
(6.12)

It is reasonable to assume that the duration of impact, ∆t, is very small so no significant

deformations occur during this time lapse. Then, conservation of momentum immediately

before and after impact yields:

∆ü = ∓2Fih

mB
(6.13)

∆θ̈ = ± 2Fi
mB

(6.14)

Equations 6.13 and 6.14 show that significant acceleration spikes can develop in the deforma-

tion and rotational coordinates. Morever, the inerter does not affect the magnitudes of these

demands. On the other hand, the total horizontal acceleration during impact is given by:

∆ẍ = ∆ü+ h∆θ̈ = 0 (6.15)

Equation 6.15 implies that there is no change in the total horizontal velocity of a SDOF

rocking oscillator during impact, a result that stems from the vertical impulse assumption

underlying the model. It is important to note that the same assumptions underline the Vertical

Velocity Energy Loss (VVEL) model adopted in several related studies [30, 31, 150]. This

is illustrated in Figure 6.11, where the numerically obtained base rotation and horizontal

acceleration responses of a single-mass rocking structure of p = 1[Hz], ωn = 15[rad/s], α = 0.2,

ξ = 0.01 and σ = 0, subjected to a sine pulse of ωg/p = 15 and ag = 2g tanα are plotted.

Additionally, the temporal evolution of the energy of the system, defined by Equation 6.16, is

also presented in Figure 6.11c.

ET =
1

2

nlevels∑
i=1

m(ẋi
2 + ẏi

2) +

nlevels∑
i=1

mg(yi − hi) +

∫ H

0

M(y)2

2EI
dy +

1

2
mr ẋi

2 +
1

2
krs y

2
rs (6.16)
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where ẋi and ẏi are the horizontal and vertical velocities of the mass at the ith-level, M(y)

corresponds to the bending moment at a height equal to y, and krs and yrs are the stiffness

and vertical deformation of the fibres used to model the rocking surface.

(a) Base rotation. (b) Horizontal abs. acceleration. (c) Energy.

Figure 6.11: Energy dissipation and acceleration response during impact of a single-mass rocking

structure of p = 1[Hz], ωn = 15[rad/s], α = 0.2, ξ = 0.01 and σ = 0, subjected to a sine pulse

of ωg/p = 15 and ag = 2g tanα.

Figure 6.11c clearly shows that the vertical component of the kinetic energy, Ky, is quickly

dissipated at impact, whereas no significant change is observed in the horizontal component,

Kx. Accordingly, a smooth horizontal acceleration response is observed in Figure 6.11b, even

though sharp changes in the rocking response indicate high rotational acceleration spikes

during impact. It is important to note that this is not imposed, but a result of the numerical

model adopted in the analysis.

When multi-mass structures are considered, conservation of horizontal kinetic energy dur-

ing impact does not necessarily ensure a smooth acceleration response, as sudden and opposite

changes in the velocity of the masses can generate significant acceleration spikes while keeping

the associated energy constant. An example of this is presented in Figure 6.12, where the

response of the bare 3-storey structure considered in the previous section to a sine pulse of

ωg/ωn1 = 0.3 and ag = 1.5g tanαcg is presented.

Figure 6.12d confirms that the vertical component of the kinetic energy, Ky, is entirely dis-

sipated during impact. Moreover, even though the total horizontal kinetic energy, Kx, remains

constant, the individual energies of each mass, Kx,i, do vary during this time lapse, resulting

in the sharp increases in accelerations observed in Figure 6.12c. Interestingly, however, the

peak horizontal accelerations happen after impact has ended. The latter observation indicates

that the maximum accelerations are not caused by direct action of the impact force, but by the

high frequency vibrations induced by it. This interaction between impact and higher modes of

the response was also analytically and experimentally identified by Acikgoz and DeJong [34].
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(a) Base rotation. (b) Horizontal absolute acceleration.

(c) Close-up of the horizontal absolute acceleration. (d) Energy.

Figure 6.12: Energy dissipation and acceleration response during impact of a 3-storey rocking structure

of pn = 1.17 [Hz], Tn1 = 0.15 [s], αcg = 0.165, ξfc = 0.01 and σ = 0, subjected to a sine pulse of

ωg/ωn1 = 0.3 and ag = 1.5g tanα.

6.5 Effect of the inerter on the higher-mode response

6.5.1 Floor acceleration demands

The previous section demonstrated that, even when subjected to low frequency pulses, im-

pact forces can excite higher vibration modes of the uplifted system and generate significant

acceleration demands. Figure 6.13 shows the first-level acceleration response of the 3-storey

structure examined in Figure 6.12. In this case, structures equipped with a single inerter and

a pair of clutched inerters have also been included in the plots. Simple inspection of Figure

6.13a reveals that the inerter-equipped structures experience significantly lower acceleration

demands. A more detailed view of the response history before and after the second impact

(indicated with a vertical dashed line) is presented in Figure 6.13b. It is clear from this plot

that the inclusion of the single inerter efficiently controls the amplitude of the high frequency

oscillations generated by the impact forces. The implementation of the clutch, on the other

hand, undermines the ability of the inerter to control the acceleration demands. According

to Equation 6.8, the inerter disengages when the mass at the first floor begins the decelerate
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(ẍ1/ẋ1 < 0). The sudden disconnection of the inerter (represented as unshaded areas in Figure

6.13b) increases the magnitude of this deceleration, quickly reducing the velocity of the mass

and improving the rotation response as a consequence. Nevertheless, the peak acceleration

response remains considerably lower than the bare rocking case.

(a) Absolute horizontal acceleration of the first

level.

(b) Close-up of the horizontal absolute accelera-

tion.

Figure 6.13: Effect of the inerter on the acceleration demands on the first level of a 3-storey rocking

structure of pn = 1.17 [Hz], Tn1 = 0.15 [s], αcg = 0.165, ξfc = 0.01 and σ = 0, subjected to a sine pulse

of ωg/ωn1 = 0.3 and ag = 1.5g tanα.

The effect of the inerter on the acceleration demands of the 3, 6 and 9-storey structures

described in the previous sections is examined in Figures 6.14, 6.15 and 6.16. The influence of

the stiffness of the rocking surface on the peak accelerations and the efficiency of the inerter

in controlling them is also assessed in the graphs. Since the foundation is assumed to be rigid,

the deformations on the rocking interface are governed by the flexibility of the rocking element

material. In order to represent typical construction materials, different elasticity moduli are

used in the analysis: Steel (200[GPa]), Concrete (25[GPa]) and Timber (10[GPa]). On the

other hand, when a flexible contact zone is considered, uplift occurs gradually, and a higher

number of fibres is required to capture the migration of the neutral axis. Accordingly, the

number of fibres used to model the contact section in these cases was increased to 2048 [88].

Figures 6.14, 6.15 and 6.16 confirm that structures that undergo rocking motion can exper-

ience higher lateral accelerations than their fixed-base counterparts and that those increments

are larger for stiffer rocking systems or longer pulses. As shown before, these increased de-

mands are related to high frequency vibrations induced by the impact forces. Moreover, the

results summarized in the response spectra show that stockier structures and more rigid rocking

surfaces are associated with larger floor accelerations. The inclusion of the inerter consistently

reduces these demands, although the introduction of the clutch can offset these improvements

to some extent. In very limited cases, however, protected structures subjected to high fre-

quency excitations (or very flexible oscillators) may experience peak accelerations of slightly

higher magnitude than the unprotected ones. On the other hand, the relative efficiency of the
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(a) Single inerter. (b) Pair of clutched inerters.

Figure 6.14: Effect of the rocking surface stiffness on the peak floor accelerations in a 3-storey building

of pn = 1.17 [Hz], Tn1 = 0.15 [s], αcg = 0.165, ξfc = 0.01 and ag = 3g tanαcg with and without inerters

(dashed and continue lines, respectively).

(a) Single inerter. (b) Pair of clutched inerters.

Figure 6.15: Effect of the rocking surface stiffness on the peak floor accelerations in a 6-storey building

of pn = 0.86 [Hz], Tn1 = 0.3 [s], αcg = 0.142, ξfc = 0.01 and ag = 3g tanαcg with and without inerters

(dashed and continue lines, respectively).

(a) Single inerter. (b) Pair of clutched inerters.

Figure 6.16: Effect of the rocking surface stiffness on the peak floor accelerations in a 9-storey building

of pn = 0.72 [Hz], Tn1 = 0.45 [s], αcg = 0.1, ξfc = 0.01 and ag = 3g tanαcg with and without inerters

(dashed and continue lines, respectively).
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inerter in reducing peak floor accelerations is not significantly affected by the flexibility of the

rocking surface.

6.5.2 Bending moments distribution

When subjected to lateral excitations, the moment that can develop at the base of a rocking

system is limited by the uplift threshold. It is well known, however, that bending moments

above the base and shears throughout the structure can increase significantly after base uplift

due to the response of higher modes [89,151]. This is further examined with reference to Figure

6.17 which shows the peak responses along the height of the 9-storey structures studied in the

previous sections, when subjected to sinusoidal pulses of different frequencies and acceleration

amplitude ag = 10 tanαcg. Firstly, a pulse matching the frequency of the first mode of vibration

of the fixed base oscillator, ωg = ωn1, is considered in Figure 6.17a. In this case, the total lateral

drift is strongly governed by the base rotation, with the elastic deformation contributing only a

small percentage of the total horizontal displacement. Examination of the vertical distribution

of bending moments reveals that the increase in the structural deformation, u, identified in

Section 6.3 is related to the backstay effect caused by the connection of the inerter. The

increase in the bending moment at the first floor is also associated with higher shear forces,

specially in the clutched inerter case. This is evidenced by the steep slopes of the moment

diagram between the base and the first storey in these cases. Importantly, however, these

demands remain significantly lower than in the fixed-base structure.

The influence of other modes higher than the first on the response of the bare rocking

structure is evident in the envelope of the bending moment diagram, as the highest demands are

obtained around the third and fourth levels. Similarly, the approximately uniform distribution

of accelerations along the height of the rocking structures indicate that these demands are

related to high frequency vibrations associated with impact. The introduction of inerters, on

the other hand, helps to control the high frequency response, causing an appreciable reduction

of the horizontal acceleration demands and an approximately linear vertical decrease of the

bending moments from the critical section at the first level. Once again, the addition of the

clutch significantly improves the lateral drift response, although at the expense of reducing

the inerter’s efficiency to control higher-mode effects.

Figure 6.17b summarizes the response of the same set of structures subjected to high

frequency acceleration pulses of ωg = 4ωn1. Under this excitation, the rocking structures

experience significantly lower rotation demands, while their elastic deformations reach levels

comparable to the fixed-base oscillator. The influence of higher modes in the response of

the bare structures is clearly evidenced in the bending moments distribution, where values

higher than the base moment are observed up to the seventh storey. Similarly, high floor

accelerations are obtained along the whole height of the bare rocking building. The inerter-

equipped structures, on the other hand, exhibit a linearly decreasing bending moment diagram
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(a) ωg = ωn1.

(b) ωg = 4ωn1.

Figure 6.17: Effect of higher modes on the response of 9-storey rocking structures of pn = 0.72 [Hz],

Tn1 = 0.45 [s], αcg = 0.1 and ξfc = 0.01, with and without inerters, when subjected to sinusoidal pulses

of ag = 10 tan /αcg

and significantly lower floor acceleration magnification ratios, indicating an effective control

of the higher-mode response.

6.6 Response under real pulse-like ground motions

In order to extend the conclusions obtained in the preceding sections to a wider range of ground

motions, the response of bare and inerter-equipped rocking structures to a set of 5 earthquake

records is compared and contrasted in Figure 6.18. The structural systems correspond to

the same 9-storey rocking structures considered in the previous sections. The same ground

motions used in Chapter 5, summarized in Table 5.1, are selected for the analysis. This sub-set

contains records with pulses ranging from 1.2[s] to 5.1[s] and peak ground velocities of up to

1.67[m/s]. The listed records were selected in light of their strong coherent and non-coherent

components that are able to cause important drift as well as acceleration demands in flexible

119



6. MULTI-MASS ROCKING STRUCTURES

uplifting structures.

(a) No Inerter.

(b) Single Inerter.

(c) Pair of clutched inerters.

Figure 6.18: Seismic response of 9-storey rocking structures of pn = 0.72 [Hz], Tn1 = 0.45 [s], αcg = 0.1

and ξfc = 0.01, with and without inerters, to the pulse-like ground motion set described in Table 5.1.

The approximately uniform vertical distribution of lateral drifts indicates that the response

of the systems is strongly governed by the base rotation. While smaller but appreciable

improvements are observed when the single inerter is added, the introduction of the clutch

significantly reduces the drift demands. Notably, both the bare and single inerter-equipped
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structures topple under the Lucerne 1992 record, whereas the clutched inerter case rocks safely

reaching a peak lateral drift of approximately 4%. On the other hand, the effect of higher modes

on the response of the bare rocking structure can be clearly identified in the bending moments

distribution and the large floor acceleration amplitudes. Although the connection of the single

inerter increases the maximum moment at the first level, it also consistently controls higher-

mode effects, ensuring that the bending diagrams decrease almost linearly from the critical

section. Nevertheless, special attention must be paid to the shear forces that can develop in the

first structural level due to the backstay effect caused by the inerter. The effective control of

the higher-mode response is also reflected in the significantly lower floor acceleration demands

along the whole height of the structure. As it was recognized in previous analyses under

cycloidal pulses, the addition of the clutch offsets part of the benefits of the inerter for the

control of bending moments and peak floor accelerations. In general, these observations are in

agreement with the results presented above for ideal cycloidal pulses and lend confidence to

our findings.

6.7 Concluding remarks

The dynamic response of multi-storey rocking structures equipped with inerters at the ground

level was investigated in this chapter. Firstly, the finite element model for rocking structures

developed by Vassiliou et al. [88] was adapted in order to account for experimental evidence re-

lated to the energy dissipated by the rocking oscillator during the uplifted phase. Additionally,

this study proposed and validated a new numerical strategy to represent the inerter in finite

element frameworks. Both formulations were combined and implemented in OpenSees and the

full structure-inerter model was then validated against an analytical model of a single-mass

rocking oscillator. Both analytical and numerical formulations showed very good agreement

for different levels of flexibility and excitation frequencies. Subsequently, the response of

practice-representative multi-mass structures connected to a grounded inerter at the first

storey under coherent single-pulse excitations was assessed. It was shown that the incorpora-

tion of inerters leads to an appreciable reduction in the base rotation demands, although they

can also induce slightly higher elastic deformations due to the backstay effect generated by

the connection of the device at the first level. Nevertheless, this potential drawback does not

translate into higher drifts as the lateral deformation response is strongly controlled by the

base rotations. Similarly, the horizontal motion of the point of connection of the inerter is

governed by the rocking action. Thus, if a clutch is introduced, the disengagement condition

defined in Equation 6.8 ensures that the inerter can only oppose the rocking motion of the

system, hence significantly reducing further the rotation amplitudes. However, with respect to

the elastic deformations, the engagement-disengagement cycles happen at inconvenient times,

with the inerter arbitrarily opposing and driving the deformation response. As a consequence,

the introduction of a clutch can result in increased elastic deformation demands. The results
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of the analyses also showed that increasing levels of apparent mass, mr, are required as the

structures become taller. However, the actual mass of the inerter can be reduced by several

orders of magnitude by means of amplification mechanisms such as ball-screws or gear systems.

Examination of the equations of motion of a single-mass rocking system during impact,

and the numerical results obtained for multi-storey structures provided additional supporting

evidence for the Vertical Velocity Energy Loss (VVEL) impact model. Although conservation

of horizontal kinetic energy ensures a smooth horizontal acceleration response in single-mass

oscillators, sudden and opposite changes in the velocity of the masses can generate significant

acceleration spikes in multi-storey structures while keeping the associated energy constant.

Close inspection of the temporal evolution of the kinetic energy and acceleration response

of multi-mass rocking structures confirmed this observation, although the peak acceleration

amplitudes occurred after impact had ended. This indicates that the maximum accelerations

are not caused by direct action of the the impact forces, but by the high frequency oscillations

induced by them. This interaction between impact and higher modes was also experimentally

and analytically identified by Acikgoz and DeJong [47].

The alternative of using inerters to control higher-mode effects on rocking structures was

also assessed in this study. Analyses under single pulse excitations showed that the inerter can

consistently control the high frequency vibrations generated at impact, significantly reducing

the horizontal acceleration demands. Moreover, the efficiency of the inerter was not affected

by practical variations of the stiffness of the rocking surface. Likewise, the proposed strategy

successfully controlled bending moments along the height of the structures. Although the

connection of the inerter increased the moment at the first level, it also ensured an almost

linear vertical decrease from the critical section. These results were also observed under high

frequency pulse excitations. The introduction of the clutch, however, reduced the ability of

the inerter to control the higher-mode response.

Finally, the observations presented above were extended to real ground motions by con-

sidering the response of a case of study structure to a set of real pulse-like records. Overall,

these observations allow to conclude that single inerters can efficiently control higher-mode

effects on flexible rocking structures. The addition of a clutch, on the other hand, significantly

improves the drift response of the system, although at the expense of reducing the inerter’s

ability to control the higher-mode response.

The analyses presented in the previous chapters have considered generalizable models of

rocking structures in order to examine the fundamental dynamic behaviour of uplifting struc-

tures equipped with inerters. In the following chapter, the conclusions drawn from these

analyses are applied to control the seismic response of post-tensioned timber structures.
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Chapter 7

Application to post-tensioned

rocking timber buildings

7.1 Introduction

As mentioned before in Chapter 2, traditional seismic design methodologies aim to ensure

life safety during a design-level earthquake, typically associated with a 10% probability of

exceedance in 50 years. Within such frameworks, specific zones are designed to yield and

concentrate the majority of the lateral deformations, thus limiting the forces that the structure

can experience during an earthquake. As a consequence, structural damage is permitted,

and indeed expected, in these critical sections. In the case of timber structures, ductility is

usually provided via steel connectors, while timber members are capacity designed in order

to ensure that they respond in the elastic range. Although, in general, this design philosophy

has succeeded in preventing structural collapse and protecting lives, recent earthquakes have

revealed that in many cases the extent of damage can make repairs infeasible, highlighting the

mismatch between social expectations and the observed seismic performance of civil structures

[152,153].

Over the last years, performance-based design objectives have shifted towards damage con-

trol and continuity of operation after a design-level earthquake. In this context, the advantages

of rocking have been applied to the development of a family of self-centring systems that can

sustain large lateral deformations with no significant damage. In the case of walled structures,

overturning moments are resisted by gravity loads and the vertical post-tensioning usually

provided to ensure that the system has a positive post-uplift stiffness. Once the decompres-

sion moment is exceeded, a gap begins to open at the base, concentrating most of the rotation

demand. Although uplift and the triggering of the rocking motion limit the moment that can

develop at the base, it is well known that bending moments and shear forces throughout the

structure can increase significantly due to the effects of higher modes, potentially damaging the
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structure [89,151]. Moreover, modern performance-based methodologies also comprise the as-

sessment of non-structural and contents damage, which can represent a significant proportion

of the total losses after a seismic event [154]. Damage Measures (DM), such as timber crushing,

partition wall cracks and dropped suspended ceiling tiles, are commonly related to Engineering

Demand Parameters (EDP) such as inter-storey drifts and floor accelerations. In this chapter,

the ability of the inerter to control the rotation amplitude and suppress higher-mode effects

in rocking structures is applied to the seismic protection of post-tensioned timber buildings.

To this end, a representative set of three post-tensioned rocking walled structures, comprising

3, 6 and 9 storeys, are designed following direct-displacement based design guidelines. Based

on the conclusions obtained in previous chapters, a simplified procedure to pre-dimension the

inerter device is proposed and used to design a set of ball-screw and gear inerters, with and

without clutches. In a first stage, the performance of bare and protected structures with dif-

ferent levels of apparent mass ratios is assessed and compared considering a set of 7 records

consistent with the displacement design spectrum. Special attention is paid to the resisting

force developed in the inerter and the mechanism to transfer it to the structural diaphragm.

Finally, a performance-based assessment is conducted considering a database of 202 pulse-like

ground motion records.

7.2 Description of the structural systems

Three different buildings are considered in order to assess the seismic performance of low to

mid-rise post-tensioned timber wall systems. The 3, 6 and 9-storey prototype buildings are

formed of rectangular modules of 12x10 meters in plan, and have an inter-storey height of 3

meters. The structural plan consists of a frame in the transverse direction supporting gravity

loads, and four post-tensioned CLT walls providing lateral load resistance in each direction.

External steel dissipaters are added at the base of each wall to increase the energy dissipation

capabilities of the system. The length and width of each wall panel are considered as design

parameters. Figure 7.1 shows the typical plan and elevation views of the structural system.

The structures correspond to residential buildings - category A, according to EN 1991 Table

6.1. A permanent load of 3 [kPa], representing the self-weight of the structural elements and

non-structural components attached to them, is assigned to each floor. On the other hand,

a uniformly distributed variable load of 2 [kN/m2] is considered for the typical storey (EN

1991/Table 6.2). This value is reduced to 0.4 [kN/m2] for the roof level, in accordance with

EN 1991 Table 6.10.

The seismic masses are determined according to EN 1998-1/3.4.2, considering the full

weight of the structure and a fraction of the variable loads defined by the reduction factor

ψEi = φψ2i. For residential buildings, ψ2i = 0.3 (EN 1990/Table A.1.1), whereas φ is 1.0

for the roof level and 0.5 for the remaining storeys (EN 1998-1/4.2.4). The resulting seismic

weights, presented in Table 7.1, are computed considering a tributary area of 30 [m2] per wall
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Figure 7.1: Typical plan and elevation views of the case study structures.

system in each direction. On the other hand, the corresponding gravity load is obtained based

on simple area relations as one sixteenth of the total weight of the floor.

Floor

Permanent

load

Gk[kPa]

Variable

load

Qk[kPa]

Seismic

Gk +ψEiQk

[kPa]

Seismic

weight per

wall [kN ]

Gravity

load per

wall [kN ]

Typical 3 2 3.3 99 24.75

Roof 3 0.4 3.12 93.6 23.4

Table 7.1: Seismic weight and gravity load per wall system.

7.3 Displacement-based design of the wall systems

Direct Displacement-Based Design (DDBD) [85] is a performance-based methodology where

the structural system is designed to achieve, rather than to be bounded by, a specific limit state

under a given seismic hazard level. In this method, the nonlinear structure is characterized by

a linear single-degree-of-freedom (SDOF) system with an equivalent viscous damping (EVD),

whose maximum displacement is approximately equal to the maximum displacement of the

original structure [85]. The design process is summarized in Figure 7.2.

The characteristic design displacement of the substitute single-degree-of-freedom (SDOF)

system depends on the selected limit state displacement or drift and the deformation profile

of the original multi-degree-of-freedom (MDOF) structure:

∆d =

n∑
i=1

mi ∆2
i

n∑
i=1

mi ∆i

(7.1)
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(a) Equivalent SDOF idealization. (b) Secant stiffness approximation.

(c) Damping-ductility relationship. (d) Effective period at maximum response.

Figure 7.2: Direct displacement-based design [85]

where mi and ∆i are the mass and displacement of the i-th storey, respectively. On the other

hand, consideration of the mass participating in the first inelastic mode of vibration gives the

effective mass for the substitute structure:

me =

n∑
i=1

mi ∆i

∆d
(7.2)

and the effective height:

He =

n∑
i=1

mi ∆iHi

n∑
i=1

mi ∆i

(7.3)

Having determined the design displacement and the corresponding equivalent damping of

the substitute structure (see Section 7.3.3), the effective period at maximum response, Te, can

be read from the reduced design spectrum. The effective stiffness, Ke, is then obtained as:

Ke =
4π2me

T 2
e

(7.4)

and the base shear can be estimated:

Vb = Ke ∆d (7.5)
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Finally, the base shear is distributed to each floor based on the inelastic mode shape and mass

distribution:

Fi =
Vbmi ∆i
n∑
i=1

mi ∆i

(7.6)

As noted by Newcombe et al. [81], some special considerations are required for the

displacement-based design of post-tensioned timber walls, the most important of which are

summarized in the following sections.

7.3.1 Displacement profile

The displacement profile defines the effective mass, height and design displacement of the

equivalent SDOF system (Figure 7.2a)). In rocking structures, the shape of the displacement

profile is defined by the relative importance of the base rotation and the flexural and shear

deformations. Although a linear displacement profile can be assumed for the design of post-

tensioned concrete walls, this is usually inaccurate for timber members, as shear and flexural

deformations can be significant. Based on the results of several numerical analyses, Sarti [61]

proposed the following expression for the displacement profile that accounts for the cantilever

behaviour of the wall panels:

δi = (1− kel)
hi
hn

+ kel

[
3

2

(
hi
hn

)2(
1− hi

3hn

)]
(7.7)

with:

kel = 0.1 +
0.6

µ
(7.8)

It is important to note that, as the elastic deformation contribution factor, kel, depends on

the ductility of the system, µ, the procedure to determine the displacement profile is iterative.

7.3.2 Yield displacement

In order to compute the displacement profile and the equivalent viscous damping of the sub-

stitute SDOF system, the ductility demand of the structure must be determined first. Since

the target displacement is set at the beginning of the design procedure, the yield displacement

defines the ductility demand of the system (Figure 7.2b). In post-tensioned walls equipped with

external steel dissipaters, the yield displacement depends on the base rotation and the elastic

deformation of the wall element at the instant of activation of the dissipation devices [81]:

∆y,e = θyHe + ∆w,e (7.9)

where ∆y,e = total yield deformation at the effective height, θy = base rotation at the instant

of first yield in the external dissipaters and ∆w,e = elastic deformation of the wall at the
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effective height. The base rotation at first yield is determined using the cross sectional analysis

described later in Section 7.3.4. Newcombe [81] also proposed an expression to conservatively

estimate the elastic deformation in the wall member, ∆w,e, accounting for both the shear and

flexural contributions.

∆w,e ≈ γLS
(
Vb

(1− βs)H2
e

6EIw
+

V̄s
2GAs

)
(7.10)

where γLS = 1.0 and 1.25 for serviceability and ultimate limit state design, respectively, Vb

= base shear, GAs = shear stiffness of the wall element, EIw = flexural stiffness of the wall

element, βs = ratio between moment provided by the external dissipaters and the total OTM,

and V̄s = average inter-storey shear (≈0.85 Vb).

The yield displacement of the post-tensioned timber wall systems considered in this study is

obtained analytically using the previous expressions and subsequently verified with a pushover

analysis. It must be noted that, unlike monolithic reinforced concrete walls, the yield displace-

ment of post-tensioned timber walls depends on the strength of the system, as the decompres-

sion moment is governed by the axial load in the wall.

7.3.3 Equivalent viscous damping

The equivalent viscous damping, ξeq, is given by the sum of the elastic damping ratio, ξel,

and the hysteretic viscous damping of the structural system, ξhyst. Based on experimental

observations, Marriott [86] suggested the use of a 2% elastic damping ratio for post-tensioned

timber walls. On the other hand, the hysteretic damping ratio can be approximated using the

area-based equivalent viscous damping defined by Jacobsen [155]:

ξhyst =
Ah

2πFu∆d
(7.11)

where Ah = area enclosed by the hysteresis within one complete cycle, Fu = force at the

peak displacement, and ∆d = peak displacement. The hysteretic damping of each structural

system is then computed integrating the area within one cycle of stabilized force-displacement

response from a push-pull analysis. Priestley et al. [85] suggest that values obtained from

area-based expressions should be corrected to make them consistent with results from inelastic

response history analyses, as shown in Figure 7.3.

In a later study, Dwairi et al. [156] developed equivalent damping expressions for post-

tensioned rocking systems based on the results of inelastic response-history analyses for a

specific set of re-centring ratio and post-uplift stiffness. Since the values used in their analysis

do not match the parameters of the case study structures, the original approach suggested

by Priestley el al. is considered in this study. Accordingly, the correction factors presented

in Figure 7.3 are applied to the area-based hysteric dampings obtained from the push-pull

analyses. It is important to note that, since the area of the hysteretic loop depends on the

design parameters, the procedure is iterative.
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Figure 7.3: Correction factors to be applied to area-based equivalent viscous damping ratio (FS = Flag

Shape, TT = Takeda ”thin”, TF = Takeda ”fat”, BI = Bi-linear, RO = Ramberg-Osgood, EPP =

Elasto-plastic) [85].

The 5% of critical damping elastic displacement spectrum, usually taken directly from

seismic codes, is then scaled by Rξ [134] in order to account for the effect of hysteretic damping:

Rξ =

(
0.07

0.02 + ξeq

)0.5

(7.12)

7.3.4 Cross-sectional analysis

The Direct-Displacement-Based Design procedure described in the previous sections is used

to determine the lateral forces acting on the structural system. In order to achieve the target

displacement set at the beginning of the process, the base rocking section must be designed

to satisfy the moment demand for the imposed base rotation, θimp. Figure 7.4 shows the

forces acting on the rocking section in the deformed configuration. These forces are used for

the design of the ductile sections, whereas the rest of the structural elements will be capacity

designed.

7.3.4.1 Timber stresses

Since Bernoulli’s hypothesis (strain compatibility) is no longer valid after decompression, a

different approach is needed to analytically describe the moment-rotation response of rocking

connections. The Monolithic Beam Analogy developed by Pampanin [80] has been shown to be

appropriate for precast concrete [86] and steel [58], however, it might be inaccurate for softer

timber connections [81]. Based on experimental evidence and finite element analyses, New-

combe proposed the following expression to relate the imposed rotation and the compression
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Figure 7.4: Forces acting on the rocking section.

strain at the extreme fiber, εc, in post-tensioned timber wall-base connections [81]:

εc =
θimp c

Le
(7.13)

Le ≈ 65

(
lw
c
− 1

)
[mm] (7.14)

where θimp = imposed rotation in the connection, c = neutral axis depth, and Le = effective

length of an equivalent Winkler spring. According to experimental observations, the strain

profile can be assumed to remain approximately linear in both the elastic and inelastic ranges.

Additionally, a bilinear or elasto-perfectly-plastic (EPP) stress-strain law can be considered to

account for plastic deformations in the timber panel [81]. Integration of the stress distribution

along the neutral axis depth gives the resultant compressive force in the timber:

Ct = bb

∫ c

0
ft(y)dy (7.15)

where bb = wall panel depth and ft(y) = compressive stress in the timber panel. On the other

hand, the compression centroid is given by:

cc =

bb
c∫
0

ft(y)ydy

Ct
(7.16)

During the design process, the compressive strain is limited to twice the yield value in order

to avoid excessive crushing in the timber.

εc ≤ 2 εy,t (7.17)
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7.3.4.2 Post-tensioned tendons

The elongation of the post-tensioned tendons is given by:

∆pt,i = θimp
(
ypt,i − c

)
(7.18)

where ypt,i = distance from the extreme compression fibre to the i-th tendon. Then, the

variation in the tendon strain caused by the base rotation is:

δεpt,i =
∆pt,i

lub
(7.19)

where lub = unbonded length of the tendons. Accordingly, the total post-tensioning force in

each tendon is:

Tpt,i = Ept
(
εpt0,i + δεpt,i

)
Apt,i (7.20)

where Ept = elastic modulus of the tendons, εpt0,i = initial strain in the i-th tendon, and Apt,i

= transverse area of the i-th tendon. To ensure the tendons remain elastic, the maximum stress

is limited to 90% of the yield value. Additionally, the tendon force should not generate a stress

higher than 40% of the compressive strength of the timber under service conditions [157].

7.3.4.3 Mild steel external dissipaters

External fuse-type dissipaters consist of a ductile steel core designed to yield in both tension

and compression. To prevent global buckling, the core rod is placed inside a steel case filled

with epoxy or grout. Figure 7.5 shows a schematic diagram of one of such devices.

Figure 7.5: Schematic diagram of a mild steel external dissipater.

The elongation of a layer of reinforcement, ∆s,i, can be determined geometrically:

∆s,i = θimp
(
ys,i − c

)
(7.21)

where ys,i = distance from the extreme compression fibre to the i-th layer of reinforcement.

Then, the strain in the external reinforcement is given by:

εs,i =
∆s,i − 2∆a

l′ub
(7.22)
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where ∆a = deformation of the dissipater anchorages, and l′ub = unbonded (or fuse) length

of the dissipaters. Based on experimental observations from [81], a conservative estimate of 1

[mm] deformation per anchorage is assumed for design. In order to avoid steel fracture due to

low cycle fatigue, strain in the dissipaters is limited to 5%. This can be achieved by moving

the external dissipaters towards the centreline of the wall or increasing the fuse length of the

steel bars. In all cases, adequate compression buckling restraint must be provided [86].

Finally, a perfectly-plastic stress-strain relationship is assumed for design:

Fs,i =

εs,iEsAs,i |εs,i| < εy,s

sign(εs,i)EsAs,i |εs,i| ≥ εy,s
(7.23)

where Es = elastic modulus of the external dissipaters, and As,i = transverse area of the i-th

external dissipater. It is important to note, however, that significant levels of strain hardening

are expected in the steel dissipaters. Accordingly, the consequent increase in the connection

moment needs to be considered when capacity designing the remaining structural elements.

7.3.4.4 Evaluation of sectional equilibrium

As the compression strain in the timber and the forces in the post-tensioned tendons and

external dissipaters depend on the neutral axis, iteration is required to determine the neutral

axis depth that satisfies vertical equilibrium. Figure 7.6 illustrates the iterative procedure

required for the cross-sectional analysis [81].

Assume neutral axis depth

Calculate timber strain and

PT and EDs elongation

Determine forces

Force equilibrium

Evaluate connection moment

εc =
θimp c

Le

∆pt,i = θimp
(
ypt,i − c

)
∆s,i = θimp

(
ys,i − c

)
Ct = bb

∫ c
0
ft(y)dy Timber

Fs =
∑n
i=1 Fs,i (Eq.7.23) External dissipaters

Tpt =
∑n
i=1 Tpt,i+Ept

∑n
i=1 δεpt,iApt,i Post-tensioning

Ct = Fs + Tpt +Nd

Mn =
∑n
i=1 Fs,i (ys,i − cc)+

∑n
i=1 Tpt,i (ypt,i − cc)+Nd(

lw
2

− cc)

No

Yes

Figure 7.6: Iterative procedure for cross-sectional analysis (adapted from [81]).
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7.3.5 Design results

The timber rocking walled buildings were designed as described in the previous sections, con-

sidering a top storey drift of 1.2% as target displacement. The properties of the equivalent

SDOF structures for the 3, 6 and 9-storey wall systems are shown in Table 7.2.

∆d [m] me [Ton] He [m] Te [s] ξeq

3-Storey 0.083 25 7.11 0.82 0.13

6-Storey 0.154 47 13.26 1.4 0.11

9-Storey 0.224 69 19.38 2.05 0.11

Table 7.2: Properties of the equivalent SDOF systems

The design spectrum was taken from Eurocode 8 [134], considering high seismic hazard

(Type 1), a stiff soil (type B) and a peak ground acceleration of ag = 0.4[g]. As previously

discussed, the 5% damping displacement spectrum is reduced to account for the hysteretic

damping of the non linear structure. Since the equivalent viscous damping depends on the

final design of the walls, the design procedure is iterative. Figure 7.7 shows the final reduced

displacement spectra and the effective period of the equivalent SDOF systems. In the case of

the 9-storey building, the design displacement determined according to Equation 7.1 exceeds

the maximum displacement demand, ∆D. Although this effectively limits the first mode dis-

placement demands, a minimum level of lateral strength is still required in order to control the

length of the structural periods and ensure some mitigation of higher mode effects. Accord-

ingly, the effective period of the 9-storey building was obtained using the approach proposed

by Sullivan et al. [158]:

Te =
∆d

∆D,ξ
TD (7.24)

where TD is the spectral displacement corner period, and ∆D,ξ is the spectral displacement

demand at this period for the anticipated level of equivalent viscous damping. Based on the

effective period, effective mass and design displacement, the effective stiffness and base shear of

each SDOF oscillator is obtained. The lateral forces are then vertically distributed according

to the assumed displacement profile (Section 7.3.1).

The cross-sectional analysis procedure described in Section 7.3.4 is used for the design of the

CLT rocking sections. The proportion of the nominal moment provided by the post-tensioning

and the external dissipaters is defined by the re-centring ratio:

λ =
Mpt +Mw

Ms
(7.25)

where Mpt = moment provided by the post-tensioning, Mw = moment provided by gravity

loads, and Ms = moment provided by the external dissipaters. A re-centring ratio of λ = 1.5
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Figure 7.7: Design spectra considered in the DDBD procedure.

is specified in order to ensure full-re-centring of the base connection [81,159]. Accordingly, the

moment demands are obtained as:

Ms =
Md

1 + λ
(7.26)

Mpt = λMs −Mw (7.27)

where Md = moment demand from the DDBD procedure. The design forces for the base

rocking sections are summarized in Table 7.3.

Vb

[kN-m]

Md

[kN-m]
λ

Mpt+Mw

[kN-m]

Ms

[kN-m]

3-Storey 122 874 1.5 524 349

6-Storey 145 1945 1.5 1167 778

9-Storey 148 2903 1.5 1742 1161

Table 7.3: Design forces for the base rocking sections

The mechanical properties of the materials considered in the design are listed in Table 7.4.

CLT Panel PT Tendons Ext. Dissipaters

Epar [MPa] G [MPa] fy,t [MPa] EPT [MPa] fy,pt [MPa] Es [MPa] fy,s [MPa]

11000 660 30 190000 1560 200000 320

Table 7.4: Material properties

Finally, Table 7.5 and Table 7.6 summarize the design results for the three structures under

consideration. The post-tensioned cables are placed symmetrically around the centreline of
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the wall, whereas the external dissipaters are connected at a distance ys,i and y′s,i from the

edges of the CLT panel (see Figure 7.4).

lw

[m]

bb

[m]

N◦

cables

Apt,i

[cm2]

Apt

[cm2]

Tpt,0

[kN]

3-Storey 2.5 0.2 2 1.4 2.8 317

6-Storey 3 0.25 5 1.4 7 606

9-Storey 3.5 0.3 5 1.4 7 776

Table 7.5: Post-tensioned walls design results.

N◦

of dissip.

φs

[mm]

As

[cm2]

A′s

[cm2]

l′ub

[m]

ys,i = y′s,i

[m]

3-Storey 2+2 18 5.1 5.1 0.3 0.5

6-Storey 2+2 24 9 9 0.36 0.6

9-Storey 2+2 26 10.6 10.6 0.39 0.6

Table 7.6: External dissipaters design results.

Figure 7.8 shows the base moment-top storey drift response of the wall systems obtained

from push-pull analyses conducted with the numerical model presented in Section 7.4. The

design points are also indicated on the curves. It can be observed that the sectional design

methodology and the numerical model are consistent with the DDBD procedure.

Figure 7.8: Base moment - top storey drift response.
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7.4 Numerical model

Finite element models for post-tensioned timber walls have been developed and validated

against experimental results [61, 79, 81]. In such models, the elastic deformation of the struc-

tural members was captured by means of elastic beam-column elements, while compression-

only multi-spring or fibre sections were used to account for rigid-body rotations and moment-

axial load interaction in the rocking connections. Axial springs or truss elements were also

used to model the post-tensioned tendons and external dissipation devices. The numerical

model used in this study builds upon these past investigations. Figure 7.9 shows a schematic

diagram of such a model. The soil-foundation formulation previously described in Chapter 6

is also adopted in order to better represent energy dissipation and the forces generated during

impact.

Figure 7.9: Schematic diagram of the numerical model of the post-tensioned timber walls.

The structural model shown in Figure 7.9 is implemented in the open-source finite ele-

ment framework OpenSees [10]. The CLT wall panels are modelled with a series of Elastic-

Timoshenko-Beam elements, which include axial, flexure, and shear deformations. A zero-

length fibre section is used to model the CLT-foundation contact zone, consisting of a stack of

32 constant stiffness fibres distributed and weighted through a Lobatto integration method [87].

The overall axial stiffness of the fibre section, Kt, is determined by dividing the axial stiffness
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of the timber panels by an effective length, Le (Equation 7.14).

Kt =
Epar Aw
Le

(7.28)

where Epar = parallel-to-grain elastic modulus of the timber panel, Aw = cross-sectional

area of the wall, and Le = effective length of an equivalent Winkler spring (Equation 7.14).

As mentioned earlier, Newcombe [81] conducted several finite elements analyses in order to

determine an expression for the effective length, Le, in timber walls. The analyses showed that

the effective length is not constant and varies mainly with the ratio between the wall length and

the neutral axis depth (Equation 7.14). The variable nature of the effective length implies that

the axial stiffness of the rocking connection changes as the neutral axis shifts, and therefore

its moment-rotation response cannot be accurately described using constant stiffness springs.

However, in most of the cases analysed in [81] the neutral axis depth reached an asymptote at

10% to 20% of the wall length. Newcombe showed that the axial stiffness of the multi-spring

model can be reasonably estimated based on the effective length along this asymptote. This

assumption slightly under-estimates the connection moment at small rotations (less than 1%)

due to the inability to account for the increase in stiffness when the neutral axis depth is large.

A compression-only elastic perfectly-plastic material (ElasticPPGap material) is assigned

to the timber fibres. The yield strength of each fibre is determined applying the corresponding

Lobatto weightings [87] to the overall CLT panel axial strength, Fy,t.

Fy,t = fy,t Aw (7.29)

where fy,t = parallel-to-grain yield strength of the timber panel. Vertical zero-length fibres

with an elastic perfectly-plastic material are used to model the mild steel external dissipaters.

The yield deformation is determined according to Equation 7.22, taking into account the

unbonded length, l′ub, and the achorages deformation, ∆a. Finally, the post-tensioned tendons

are modelled using a corotational truss element connected to the fixed base node and the

top floor node. A tension only bi-linear material model (ElasticPPGap) is used for the post-

tensioning steel. An initial strain is applied to the material model such that the post-tensioned

tendon strain is at the target value after accounting for losses due to the axial deformations

in the timber wall.

The variable damping ratio introduced in previous chapters is also incorporated in the nu-

merical model of the post-tensioned timber walls. Inherent structural damping during the full

contact phase is modelled using Rayleigh’s classical damping, assigning a prescribed damping

ratio of ξel = 2% to the first and third vibration modes of the fixed base structure [9] rep-

resenting at least 90% of the modal mass in the full-contact case. Once the base uplifts, the

analysis is halted and the conservative assumption of no damping during the rocking phase

is enforced. On the other hand, the effects of diaphragm flexibility and wall-to-diaphragm

interaction are beyond the scope of the study and are not considered in the models.
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7.5 Seismic design validation

Each wall model was subjected to a set of 7 different earthquake records selected from the

ground motion database described in Table 3.1. The records are chosen so the mean spectral

displacement demand is consistent with the 2%-damped displacement design spectrum within

the period range from 0.1[s] to 2.5[s]. This range of periods was chosen to include at least

the first three elastic modes of vibration of the 9-storey building and the effective periods of

all the substitute SDOF structures. The mean squared error between the displacement design

spectrum and the records mean was used as selection criterion, defining a tolerance of 1% within

the range of periods of interest. Figure 7.10 shows the acceleration and displacement spectra

of the ground motions sub-set and the spectrum considered during the design procedure.

Figure 7.10: Spectra of the suite of 7 records and spectrum used for design.

Figures 7.11 to 7.14 summarize the response of the 3, 6 and 9-storey structures to the

set of 7 ground motion records described above. The floor displacement profile, inter-storey

shears and inter-storey moments from the response-history analyses are compared with the

predicted values from the displacement-based design. The results of the analyses show that

the DDBD procedure adequately estimates the mean lateral displacements of the buildings,

with differences ranging from 4% to 10%. These small deviations are likely related to a

misestimation of the hysteretic damping obtained with the area-based approach. The shape of

the displacement profile, on the other hand, is reasonably described by the design assumption.

The moment at the base of the walls is limited by the strength of the rocking section and,

therefore, is very similar to the design value. The very small deviations observed in the graphs

arise from variations in the imposed base rotation. On the other hand, bending moments

above the base and shears throughout the structures are significantly underestimated by the

DDBD design procedure. This shear and moment amplification is caused by the response of

higher modes of vibration, which were not directly accounted for in the displacement-based

design procedure. Although methodologies to incorporate higher mode effects in the design

of fixed-base reinforced concrete walls and bridges have been proposed [85, 160, 161], they are
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not directly applicable to the design of post-tensioned rocking timber systems. Alternatively,

higher-mode effects are considered at the end of the design process, amplifying the design

forces along the height of the structure and verifying that they do not substantially reduce the

structural performance [61,81]. Importantly, active measures to diminish higher-mode effects,

like multiple rocking sections [89], are rarely implemented. The influence of higher modes

in the response of the structures is also evident in the peak floor accelerations, where floor

acceleration magnification ratios (FAM = PFA/PGA) of up to 4 are obtained.

Figure 7.11: Design validation: displacement profiles of the case study structures.

Figure 7.12: Design validation: Maximum shear forces in the wall element.

139



7. POST-TENSIONED TIMBER BUILDINGS

Figure 7.13: Design validation: Maximum bending moments in the wall element.

Figure 7.14: Design validation: Floor acceleration magnification factors.

7.6 Design of the inerters

As shown in Chapter 6, supplemental rotational inertia devices can be used to control the

rotation amplitude and higher-mode effects in flexible rocking structures. In this section, a

set of ball-screw and gear inerters is designed and applied to the seismic protection of the case

study structures described above.

7.6.1 Pre-dimensioning procedure

Firstly, a simplified procedure to pre-dimension the inerter device is proposed based on the

equal displacement rule [162] and the conclusions obtained from previous chapters. The design

concept is illustrated in 7.15, where the response of a bare and an inerter-equipped rocking

block is compared in terms of the rigid body rotation, θ, and the top displacement, ∆. The

rocking block is characterized by its semidiagonal, R1, and slenderness α. An inerter of aparent

mass mr is connected to the structure in Figure 7.15b.

It was shown in Chapter 3 that the inclusion of the inerter has an effect equivalent to

increasing the size of a rigid rocking block while keeping the associated slenderness constant.
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(a) No Inerter. (b) Single Inerter.

Figure 7.15: Simplified pre-dimension procedure for the inerter device.

Moreover, the analytical model of Chapter 4 demonstrated that the effects of post-tensioning

can be isolated as two independent dimensionless parameters that do not affect the frequency

parameter of the structure. Accordingly, the rotation response of the inerter-equipped struc-

ture can be represented by the larger block of Figure 7.15b, whose size parameter, R2, can be

obtained by equating the frequency parameter of both systems, pr1 = pr2. Considering the

more general expression for multi-mass rocking structures (see Section 6.2.1):

pri =

√
1t[W ]Hi

Jpi
(7.30)

where:

Jp1 = R1
t [M ]R1 +mrh

2
1 (7.31)

is the rotational inertia of a rocking structure with an inerter of apparent mass mr connected

at the first floor, and

Jp2 = R2
t [M ]R2 (7.32)

is the rotational inertia of the larger equivalent block.

On the other hand, Reggiani and Vassiliou [162] demonstrated that two blocks of different

size but identical slenderness under a given ground motion experience the same top displace-

ment, provided that they are not close to overturn. This implies that the unprotected rocking

block (Figure 7.15a) and the inerter-equivalent larger block (Figure 7.15b) experience the same

top displacement ∆1 for the same ground motion demand. The rotation of the larger block

can then be obtained as:

θ2 =
∆1

2R2 cosα
(7.33)
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Then the rotation reduction factor is given by:

φ =
θ2
θ1

=
R1

R2
(7.34)

In this way, a first estimation of the response reduction associated with any given apparent

mass, mr, can be obtained for rigid rocking structures.

In the case of flexible structures, the total lateral displacement depends on the base rotation

and elastic deformation contributions. According to the results obtained in Chapters 5 and 6,

it is reasonable to assume that the inerter does not significantly affect the elastic deformation

response of the structures. Thus, if the reduction factor, φ, is only applied to the rotation

component, the top displacement of an inerter-equipped flexible structure can be obtained as:

∆r =
(
φ (1− kel) + kel

)
∆1 (7.35)

where kel is the elastic deformation contribution factor defined in Equation 7.8. Then, the

displacement reduction factor for flexible rocking structures equipped with inerters is given

by:

φel =
∆r

∆1
= φ (1− kel) + kel (7.36)

As in Chapter 6, inerters connected to the first floor diaphragm are employed for practical

considerations. In a first stage, the efficiency of the proposed strategy is assessed for three

different levels of inertance. For each structural system, apparent mass ratios ranging from

σ = 0.5 to 4 are selected resulting in displacement reduction factors between φel = 0.78 and

0.98. In the context of displacement-based design, this reductions would translate into smaller

wall sections for any target displacement. Importantly, the predicted efficiency of the inerter

diminishes as the structures become taller, resulting in very modest displacement reductions in

the case of the 9-storey building equipped with inerters of σ = 1. The results of the preliminary

design are summarized in Table 7.7.

7.6.2 Design of the ball-screw and gear inerters

Over the last years, several types of inerters have been proposed employing rack-and-pynion

mechanisms [6], ball screws [5], electromagnetic devices [103] and hydraulic components [101].

The realisation considered in this study, depicted in Figure 7.16, is based on the ball-screw an

gear inerter proposed by Nakamura et al. [96]. In this configuration, a ball screw mechanism

is used to transform the linear motion of a rod into a rotation in a flywheel. A gear system is

also included to further amplify the rotational motion, while a clutch can be incorporated to

ensure the inerter only opposes the motion of the structure.
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σ φ kel φel

0.5 0.91 0.24 0.93

3-Storey 1 0.83 0.24 0.87

2 0.71 0.24 0.78

1 0.94 0.26 0.95

6-Storey 2 0.89 0.26 0.92

4 0.8 0.26 0.85

1 0.97 0.26 0.98

9-Storey 2 0.94 0.26 0.96

4 0.89 0.26 0.92

Table 7.7: Preliminary design of the inerters.

Figure 7.16: Ball-screw and gear inerter.

The rotational angle of the screw, θs, can be obtained as a function of the linear displacement:

θs =
2π

Ls
x (7.37)

where Ls denotes the ball screw lead, which is the linear distance a ball nut travels in one

revolution of the ball screw. The rotation of the screw is then amplified by the gear system,

so the rotation of the flywheel is given by:

θf = αg
2π

Ls
x (7.38)

where αg denotes the gear amplification ratio. By employing a system of gears in series,

Nakamura et al. [96] obtained rotation amplification ratios of αg = 5, while values of up to 10

were used in [98]. On the other hand, the inertial moment exerted by the flywheel is:

Mf = If θ̈f = If αg
2π

Ls
ẍ (7.39)
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where If is the rotational inertia of a flywheel of radius Rf and mass mf :

If =
1

2
mfR

2
f (7.40)

The axial force in the screw corresponding to this torque is [7]:

Fr =
2π

ηLs
Mf (7.41)

where η indicates the rotary efficiency of the ball-screw mechanism. A representative value

of η = 0.95 is used for the design procedure [96]. Replacing Equations 7.39 and 7.40 into

Equation 7.41 the resisting force of the inerter is obtained:

Fr = ẍ
mfR

2
f

2η

(
αg

2π

Ls

)2

(7.42)

Accordingly, the apparent mass of the ball-screw and gear inerter is given by:

mr = 2mf R
2
f

α2
g π

2

η L2
s

(7.43)

A set of 9 ball-screw and gear inerters is designed considering the apparent mass ratios

defined in the previous section (see Table 7.7). A pair of parallel inerters is considered in each

case in order to reduce the internal forces in the mechanical components of the devices and to

facilitate the implementation of the clutch when required. The thickness of the flywheels, ef ,

is determined considering a steel density of ρs = 8 [Ton/m3]. The results of the design process

are summarized in Table 7.8.

σ

(2 inerters)

Ls

[mm]
αg

Rf

[m]

ef

[m]

mf

[Kg]

If

[m4]

mr

[Ton]

0.5 12 3 0.05 0.037 2.33 0.003 8

3-Storey 1 12 3 0.06 0.036 3.24 0.006 15

2 12 3 0.06 0.072 6.48 0.012 30

1 12 4 0.06 0.04 3.64 0.007 30

6-Storey 2 12 5 0.06 0.052 4.66 0.008 61

4 12 5 0.065 0.075 7.95 0.017 121

1 12 4 0.06 0.06 5.46 0.01 45

9-Storey 2 12 5 0.06 0.077 6.99 0.013 91

4 12 5 0.07 0.083 10.28 0.025 182

Table 7.8: Design of the ball-screw and gear inerters.
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7.7 Preliminary assessment of the inerter-equipped structures

A first assessment of the effect of the inerters on the response of the case study structures

is conducted considering the set of 7 records described in Section 7.5. The inerter devices

connected to the first floor diaphragm are modelled using the same numerical formulation

presented in Chapter 6.

7.7.1 Structures equipped with non-clutched inerters

Figure 7.17 to 7.20 compare the mean peak displacement, floor acceleration, inter-storey shear

and bending moment demands of the unprotected buildings (σ = 0) with those of the inerter-

equipped ones. The displacement profiles predicted with the simplified pre-dimensioning pro-

cedure of Section 7.6.1 are also indicated with a dotted line. Although the use of a rigid block

for the representation of a flexible structure inherently introduces a degree of inaccuracy to

the methodology, the results of the analyses suggest that the proposed procedure can produce

reasonable estimations of displacement response improvements for preliminary design stages.

While reductions between 2% and 22% were predicted in Table 7.7, total lateral displacements

up to 28% lower are observed in the case of the 3-storey structure. In particular, very good

estimations are obtained for the 6 and 9-storey buildings.

Figure 7.17: Mean peak displacements of the case study buildings equipped with non-clutched inerters

subjected to a set of 7 spectrum-compatible accelerograms.
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Figure 7.18: Mean peak shear forces of the case study buildings equipped with non-clutched inerters

subjected to a set of 7 spectrum-compatible accelerograms.

Figure 7.19: Mean peak moments of the case study buildings equipped with non-clutched inerters

subjected to a set of 7 spectrum-compatible accelerograms.

Figure 7.20: Mean peak floor accelerations of the case study buildings equipped with non-clutched

inerters subjected to a set of 7 spectrum-compatible accelerograms.
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As previously observed in Chapter 6, the introduction of inerters efficiently controls higher-

mode effects in flexible rocking structures. This is reflected in significantly lower peak floor

accelerations and reduced bending moments above the critical section for the three structural

systems under consideration. Although the control of the higher-mode response also reduces

inter-storey shears in higher stories, the connection of the inerter to the first storey diaphragm

significantly amplifies the shear force in the ground level. This phenomenon is further examined

in the following section. Moreover, while increasing levels of apparent mass ratios did not

necessarily result in further response improvements, they generally amplified the shear force

in the first storey. This points to the existence of optimal inertance values beyond which the

device becomes detrimental. It is also important to note that, while the effect of the inerter

on the displacement response decreases as the structures become taller, its ability to control

higher-mode effects it is not significantly affected by the height of the wall systems.

7.7.2 Structures equipped with clutched inerters

As depicted in Figure 7.16, a clutch can be incorporated into the system to ensure that the

inerter can only resist and not drive the motion of the structure. Since a clutched inerter can

only oppose one direction of motion, the total apparent mass ratio of the inerters designed

in Table 7.8 is divided between the two parallel devices when the clutch is incorporated.

Accordingly, the response of structures equipped with clutched inerters is compared with that

of the buildings connected to non-clutched inerters of twice the apparent mass ratio. Figures

7.21 to 7.24 present such comparison for the intermediate values of apparent mass ratios

considered in the design (i.e. σ = 1, σ = 2 and σ = 2 for the 3, 6 and 9-storey buildings,

respectively). The mean response of the unprotected structures (σ = 0) is also plotted for

comparison purposes.

Figure 7.21: Mean peak displacements of the case study buildings equipped with non-clutched and

clutched inerters.
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Figure 7.22: Mean peak shear forces of the case study buildings equipped with non-clutched and

clutched inerters.

Figure 7.23: Mean peak bending moments of the case study buildings equipped with non-clutched and

clutched inerters.

Figure 7.24: Mean peak floor accelerations of the case study buildings equipped with non-clutched and

clutched inerters.

148



7. POST-TENSIONED TIMBER BUILDINGS

Although the introduction of a clutch reduces the total apparent mass ratio of a given

pair of parallel inerters, the ability of the system to control the displacement response of

rocking structures is not significantly affected. Furthermore, the 3-storey structure equipped

with clutched inerters experienced considerably lower mean lateral deformations, while no

significant differences are observed in the case of the 6 and 9-storey buildings protected with

non-clutched and clutched inerters. A similar trend is observed in the floor accelerations

and bending moment distributions of the 3 and 6-storey structures, where peak values of

comparable magnitude are obtained along the height of the wall systems for both inerter

configurations. The benefits of the clutch become more evident in the 9-storey building,

as significant reductions in the maximum floor accelerations and inter-storey moments are

obtained. Crucially, a marked reduction in the shear force at the ground level is observed

for all of the structures equipped with clutched-inerters, reaching magnitudes even lower than

in the unprotected case. This observation suggests that the shear amplification observed in

the non-clutched inerter cases is related to a surge in the resisting force as the device drives

the structural motion. A closer examination of this phenomenon is presented in Figures 7.25

and 7.26, where the response of the 9-storey structures at the instants of maximum top-storey

displacement and maximum base shear is plotted for a single ground motion from the set. The

velocity response along the height of the buildings is also included to illustrate the direction

of the motion, while the magnitude and direction of the inerter resisting force is indicated in

the shear diagram.

Figure 7.25: Response of the 9-storey buildings with and without inerters to the 1989 Loma Prieta -

Gilroy Array #2 record. Instant of maximum top-storey displacement.

Figure 7.25 shows that both inerter configurations oppose the motion of the wall at the

instant of maximum roof displacement, increasing the shear forces in the ground floor level.

Importantly, the introduction of the clutch considerably reduces the magnitude of the resist-

ing force without compromising the control of the response. Nevertheless, Figure 7.26 demon-

strates that the maximum shear at the ground level takes place at smaller lateral deformations,

and is highly influenced by the response of higher modes. In the case of the structure equipped
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Figure 7.26: Response of the 9-storey buildings with and without inerters to the 1989 Loma Prieta -

Gilroy Array #2 record. Instant of maximum shear in the ground level.

with non-clutched inerters, high horizontal accelerations at the first floor generate large inertial

forces (Fr = 790[kN ]) which pull the structure and significantly increase the shear demand.

When the clutch is introduced, however, the inerter is not able to drive the motion of the

structure and no force is transferred to the wall element. As a result, the peak shear in the

structure equipped with clutched inerters is drastically reduced, while no significant increases

in the floor accelerations along the height of the buildings is observed (see Figure 7.24).

7.7.3 Resisting force in the inerters

As shown in the previous section, large inertial forces can develop in the inerters during a

seismic event. The mechanical components of the devices, as well as the connection to the

floor diaphragm, must be designed to resist these demands, potentially limiting the practicality

of the proposed strategy. A quantification of the magnitude of such forces is presented in Figure

7.27, where the mean peak total force in the pair of parallel inerters is plotted for the structural

systems analysed above.

Figure 7.27: Mean total force in the inerter systems (2 parallel devices).
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It is important to note that the inertance, mr, required to achieve any given apparent mass

ratio, σ, is directly proportional to the total weight of the structure. This observation explains

the pronounced rise in the inerter resisting force as the buildings become taller. Figure 7.27

also shows the trends observed in the previous section, where significantly lower inertial forces

were observed when the clutch was introduced. The results summarized in the figure show

reductions of up to 60% in the case of the 9-storey building equipped with clutched inerters.

Importantly, the observed reduction of the inertial forces does not affect the ability of the

inerter to control the seismic response of the structural systems. The relevance of these results

is highlighted in the following section, where mechanisms to limit and transfer the force in the

inerter to the floor diaphragm are proposed.

7.8 Design of the inerter-diaphragm connection

The resisting force developed in the inerter devices must be transferred to the ground and to

the floor diaphragm. Makris and Kampas [95] first proposed the use of a rigid chevron frame

for the implementation of a pinion-rack-flywheel inerter in SDOF fixed-base structures. The

same concept is applied in Figure 7.28, where the inerter devices designed in the previous

sections are supported by a rigid frame and connected to the floor diaphragm through a

screwed or bolted steel plate. Replaceable fuse elements are incorporated in order to limit the

resisting force that can develop in the inerter and protect its mechanical components and the

steel-timber connection. Two alternatives are proposed: (i) Buckling-restrained bars designed

to yield in tension and compression at a pre-defined axial load [61,86], and (ii) flexural plates,

such as TADAS devices [163], designed to bend and yield thus limiting the force than can be

transferred between the inerter and the floor diaphragm.

(a) Buckling-restrained bars. (b) TADAS device.

Figure 7.28: Proposed alternatives for the implementation of grounded inerters at the first level.

Based on the response improvements observed in the preliminary assessment of Section 7.7

and practical considerations regarding the magnitude of the associated inertial forces, a single

apparent mass ratio is selected for each case study building and inerter configuration (see

Table 7.9). The corresponding mean resisting forces presented in Figure 7.27 are considered as
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the characteristic seismic demand, Ek. Accordingly, the design demand for the fuse elements

is obtained as Ed = γIEk, where γI = 1.0 for residential buildings (EN1998-1:2004 4.2.5).

Buckling-restrained bars are selected as fuse elements considering the same material properties

described in Table 7.4. The results of the design procedure are summarized in Table 7.9.

Buckling-restrained bars

Inerter type σ Ed [kN ] φs[mm] As[cm
2] l′ub[m]

Non-clutched 1 185 3 φ 16 6 0.15
3-Storey

Clutched 0.5 126 2 φ 16 4 0.15

Non-clutched 2 460 3 φ 25 14.7 0.15
6-Storey

Clutched 1 280 3 φ 20 9.4 0.15

Non-clutched 2 853 6 φ 24 27.1 0.15
9-Storey

Clutched 1 383 4 φ 20 12.6 0.15

Table 7.9: Design of the fuse elements for the inerter connection.

Finally, the timber-steel plate connection is capacity designed considering an over-strength

factor for the fuse elements of γov = 1.25. A cross-laminated timber floor of thickness

eclt = 0.2[m] and characteristic density ρk = 380[Kg/m3] is assumed for design, while coach

screws KOP16200 (Rotho Blaas catalogue [164]) are selected as connector elements. Addition-

ally, a steel plate with a thickness equal to the external diameter of the screws, es = d1, is

used to distribute and transfer the resisting force from the inerter. The mechanical properties

and distancing specifications of the screws are described in Table 7.10.

Nominal diameter d1 [mm] 16

Shank diameter ds [mm] 16

Effective diameter deff [mm] 16

Length L [mm] 200

Effective length leff [mm] 120

Characteristic yield moment My,k [Nmm] 138000

Characteristic withdrawal-resistance parameter fax,k [N/mm2] 10

Associated density ρa [kg/m3] 360

Minimum distance parallel to grain (pre-drilling holes) a1 [mm] 64

Minimum distance perpendicular to grain (pre-drilling holes) a2 [mm] 64

Table 7.10: Mechanical properties and distancing specifications for coach screws KOP16200 [164].

The characteristic strength of the connections is calculated according to Eurocode 5. The

penetration depth, t1, is obtained based on the dimensions of the screws and the thickness of
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the steel plate. Thus:

t1 = L− es = 184[mm] (7.44)

The embedding strength for the screws is calculated using:

fh,1,k = 0.082 (1− 0.01 deff ) ρk = 26.2 [N/mm2] (7.45)

and the characteristic withdrawal capacity:

Rax,k =
fax,k deff leff

1.2

(
ρk
ρa

)0.8

= 17 [kN ] (7.46)

Then, the load-carrying capacity per connector is obtained according to Eurocode 5 8.2.3,

considering the expressions for thick steel plates in single shear (modes c, d and e):

Rk = min


fh,1,k t1 deff

fh,1,k t1 deff

(√
2 +

4My,k

fh,1,k t
2
1 deff

− 1
)

+
Rax,k

4

2.3
√
My,k fh,1,k deff +

Rax,k
4

= 21.66[kN ] (7.47)

The design strength per connector is then obtained considering kmod = 1.1 (instantaneous

action) and γm = 1 (accidental combinations):

Rd =
kmodRd
γm

= 23.83 [kN ] (7.48)

On the other hand, the effective number of screws for one row of n connectors is obtained as:

neff = min


n

n0.9 4

√
a1

13 deff

(7.49)

A distance between connectors of a1 = a2 = 64 [mm] is assumed according to the manufac-

turer specifications. The required effective number of screws is then obtained dividing the

over-strength design shear, Vd,γ , by the characteristic strength of each connector. The final

design of the timber-steel connections is described in Figure 7.29 and Table 7.11.
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Figure 7.29: Timber floor to inerter connection.

Inerter type σ
Vd

[kN ]

Vd,γ

[kN ]
nrow ncol

bs

[mm]

hs

[mm]

Non-clutched 1 185 241 3 6 448 256
3-Storey

Clutched 0.5 126 161 3 4 320 256

Non-clutched 2 460 589 4 11 768 320
6-Storey

Clutched 1 280 377 3 9 640 256

Non-clutched 2 853 1086 5 17 1152 384
9-Storey

Clutched 1 383 503 4 9 640 320

Table 7.11: Design of the timber-steel plate connections.

The design results show that increasingly large connections are required as the buildings

become taller, an aspect that can potentially limit the applicability of the proposed strategy

in high-rise buildings. Nevertheless, the introduction of clutches significantly reduces the

magnitude of the shear design force, resulting in considerably smaller and more practical

connections.

7.9 Performance-based assessment

Given the uncertainties involved, the evaluation of the performance of inerter-equipped struc-

tures ought to be carried out within an explicit probabilistic framework. In this context, the

mean annual frequency of exceeding a predefined Engineering Demand Parameter EDP (such

as peak inter-storey drift, peak floor acceleration, etc.) can be obtained as:

λ(EDP > edp) =

∫
P (EDP > edp | IM = im) |dλ(im)| (7.50)

154



7. POST-TENSIONED TIMBER BUILDINGS

where IM denotes the ground motion intensity measure (e.g. spectral elastic acceleration at

the first-mode period of vibration) and λIM represents the seismic hazard at the site, measured

in terms of mean annual frequency of exceeding a level of intensity im. The first term of

Equation 7.50, commonly referred to as the fragility of the structure, expresses the conditional

probability of exceeding an specific edp given that the ground motion intensity measure is

equal to im. Information regarding the fragility of the structure is generally obtained from

non-linear dynamic analyses performed for a specific structure subjected to a set of ground

motions scaled to various levels of seismic intensity.

In this section, the performance of the 3, 6 and 9-storey timber buildings described above

is assessed and compared within this probabilistic framework, considering the mass ratios

for each inerter configuration as defined in Table 7.11. The performance of the structures is

compared in terms of maximum inter-storey drifts and floor accelerations, Engineering Demand

Parameters (EDPs) that are usually indicative of structural and non-structural damage.

7.9.1 Numerical models and ground motion database

The same set of 202 pulse-like ground motion records used in previous chapters is employed in

the assessment. The earthquake catalogue, presented in Table 3.1, contains all the pulse-like

records available in the PEER database and covers a range of magnitudes between 5.4 and 7.9,

and closest distance-to-ruptured area (Rrup) up to 56 [km], as illustrated in the scatter diagram

in Figure 7.30a. Figure 7.30b, on the other hand, shows the corresponding 5%-damped elastic

acceleration spectra and the associated mean, 16th and 84th percentiles.

(a) Magnitude-Rrup scatter diagram. (b) Elastic response spectra, ξ = 5%.

Figure 7.30: Magnitude-Rrup scatter diagram and 5% damped elastic spectra of the record set used for

the performance based assessment.

The buildings are modelled using the numerical formulation described in Section 7.4, incor-

porating a zero-length element with a perfectly-plastic material to represent the fuse elements.
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The steel-timber connection, on the other hand, is assumed to remain fully elastic, as it is

capacity designed.

7.9.2 Cloud Analysis

The bare and inerter-equipped case study structures are subjected to the suite of 202 ground

motion records described in the previous section. The resulting Cloud data contains pairs

of ground motion intensity measures (IM) and their corresponding structural performance

variable (EDP ). As done in previous chapters, a linear regression in the natural logarithmic

scale is applied in order to estimate the statistical properties of the Cloud data. Accordingly,

the conditional median demand ÊDP for a given IM can be predicted as:

ln ÊDP (IM) = ln a+ b ln(IM) (7.51)

where ln a and b are parameters of the linear regression. This equation is equivalent to fitting

a power-law in the original arithmetic scale. The (constant) conditional logarithmic standard

deviation of EDP given IM can be estimated as [135]:

βEDP |IM =

√√√√ N∑
n=1

(
lnEDPi − ln

(
a IMi

b
) )2

/(N − 2) (7.52)

where EDPi and IMi are the corresponding Cloud data for the i− th record in the set and N

is the number of records. Based on the results obtained by Giouvanidis et al. [42] and obser-

vations from Chapters 3 and 4, four different intensity measures are assessed and compared:

uniform time duration (tuni), peak ground velocity (PGV ), peak ground acceleration (PGA),

and the 5% damped spectral acceleration at the first fixed-base structural period, Sa(T1). As

defined in Chapter 3, the computation of tuni entails the identification of the minimum ground

acceleration required to trigger the rocking motion. Although it is recognized that elastic de-

formations prevent the definition of a unique uplift ground acceleration, the analyses presented

in Chapter 4 demonstrated that this value can be reasonable approximated by:

üg,crit =

(
P0

W
+ 1

)
g

mratio
tanαcg (7.53)

where P0 corresponds to the initial post-tensioning force, W is the gravity load in the wall,

mratio is the mass ratio defined in Section 4.2 and equal to 4 for buildings at hand, and αcg is

the slenderness of the centre of mass of the wall. Table 7.12 and 7.13 describe the goodness of

fit of the regression models for the four IMs under consideration.
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tuni PGV PGA Sa(T1)

N◦ Storeys σ R2 β R2 β R2 β R2 β

0 0.57 0.61 0.34 0.77 0.65 0.56 0.58 0.61

3 1 0.56 0.59 0.35 0.73 0.63 0.56 0.55 0.61

0.5+clutch 0.56 0.68 0.31 0.87 0.76 0.51 0.67 0.6

0 0.47 0.54 0.54 0.51 0.52 0.52 0.57 0.49

6 2 0.48 0.55 0.55 0.51 0.49 0.55 0.54 0.52

1+clutch 0.47 0.59 0.54 0.55 0.59 0.52 0.64 0.48

0 0.4 0.51 0.67 0.38 0.39 0.52 0.59 0.42

9 2 0.4 0.52 0.66 0.39 0.38 0.52 0.59 0.43

1+clutch 0.39 0.54 0.65 0.4 0.42 0.53 0.65 0.41

Table 7.12: Correlation coefficient, R2, and standard deviation, β, of the regression models for the

maximum inter-storey drift.

tuni PGV PGA Sa(T1)

N◦ Storeys σ R2 β R2 β R2 β R2 β

0 0.35 0.38 0.09 0.47 0.28 0.42 0.3 0.41

3 1 0.37 0.28 0.12 0.34 0.23 0.32 0.21 0.32

0.5+clutch 0.59 0.26 0.18 0.39 0.65 0.26 0.64 0.26

0 0.44 0.32 0.2 0.38 0.35 0.34 0.38 0.33

6 2 0.47 0.26 0.2 0.32 0.37 0.28 0.35 0.29

1+clutch 0.49 0.28 0.3 0.33 0.66 0.23 0.69 0.22

0 0.45 0.31 0.24 0.36 0.39 0.33 0.34 0.34

9 2 0.42 0.31 0.2 0.37 0.46 0.3 0.37 0.33

1+clutch 0.37 0.35 0.31 0.36 0.71 0.24 0.61 0.27

Table 7.13: Correlation coefficient, R2, and standard deviation, β, of the regression models for the peak

floor acceleration.

Table 7.12 shows that Sa(T1) is consistently the most efficient IM for the prediction of

the maximum inter-storey drift, with correlation coefficients close to R2 ≈ 0.6 in most cases,

even though PGA and PGV show a stronger correlation for the 3 and 9-storey buildings,

respectively. On the other hand, none of the proposed intensity measures shows a strong

correlation with the peak floor acceleration (PFA) response, presenting R2 values below

0.5 in all cases. This can be partially explained by the behaviour observed in Chapter 6,

where forces developed during impact were shown to excite higher modes of the response,

increasing the lateral accelerations regardless of the characteristics of the ground motion.

While it is recognized that further research is required for the definition of intensity measures
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that can efficiently predict PFAs, the most efficient IM from the set, tuni, is adopted for the

seismic demand analysis presented in this section. Figures 7.31 to 7.33 compare the peak

inter-storey drift and floor acceleration demands obtained for the bare and inerter-protected

structures, considering the regression models described above. The remaining regression plots

are presented in Appendix C.

Figure 7.31: Cloud analysis results and seismic demand prediction models for the 3-Storey structures.

Figure 7.32: Cloud analysis results and seismic demand prediction models for the 6-Storey structures.
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Figure 7.33: Cloud analysis results and seismic demand prediction models for the 9-Storey structures.

The main advantage of the inerter devices is clearly evidenced in the floor acceleration

plots, where considerably lower demands are observed across the whole range of intensity

levels under consideration. As discussed in Chapter 6, the inclusion of inerters attenuates the

high frequency vibrations induced during impact and elongates the vibration periods of the

structures, thus shifting them towards lower spectral ordinates (see Appendix B). Moreover,

the inclusion of clutches further improves the floor acceleration response. On the other hand,

the results of the analyses show that the structures equipped with non-clutched inerters ex-

perience slightly smaller drift demands than the unprotected ones. The addition of the clutch,

however, further improves the drift response for low to mid IMs, but becomes less effective

under higher seismic intensity levels. This behaviour is further examined in Figure 7.34, where

the base rotation response and the resisting force in the inerters of the 9-storey structure are

compared for ground motions with Sa(T1) = 0.08g (low intensity) and Sa(T1) = 0.15g (high

intensity). The response histories presented in these plots show that, as the seismic intensity

grows, the force in the inerter reaches the capacity of the fuse elements, thus capping the force

that can be transmitted to the structure and limiting the effect of the inerter on the response.

7.9.3 Fragility assessment based on Cloud Analysis

The Cloud to IDA procedure proposed by Miano et al. [135] is used for the estimation of

the structural fragilities. This methodology employs the critical demand to capacity ratio

(DCR) as the performance variable, thus facilitating the identification of intensity values at

the onset of a desired limit state. In this way, IDA curves can be obtained for a selected

group of ground motion records with a minimum amount of scaling, which is known to be

particularly problematic when pulse-like records are considered [165, 166]. In this context,

DCRLS is defined as the demand to capacity ratio for a given limit state LS:

DCRLS =
Djl

Cjl(LS)
(7.54)
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(a) Response to the 1976 Coyote Lake - Gilroy Array #6 record (Sa(T1) = 0.08g).

(b) Response to the 1978 Tabas, Iran record (Sa(T1) = 0.15g).

Figure 7.34: Base rotation response and resisting force in the inerters of the 9-storey buildings subjected

to ground motion records of low and high Sa(T1).

where Djl is the demand evaluated for the jth component of the lth mechanism, and Cjl(LS)

is the limit state capacity for the jth component of the lth mechanism. Accordingly, DCRLS

is always equal to unity at the onset of a given limit state LS. In this work, the critical

DCR is evaluated for limit states associated with extensive non-structural and contents dam-

age, defined in accordance with current guidelines for seismic performance-based assessment

of buildings. The inter-storey drift limit defined in Eurocode 8 [134] for buildings having

ductile non-structural components, ∆ = 0.75%, is adopted for displacement-sensitive ele-

ments, whereas a floor acceleration limit of PFA = 1 g is defined for acceleration-sensitive

non-structural components [167,168].

The procedure to derive the IDA-based fragility curves from the Cloud data is illustrated in

Figure 7.35 for the drift limit state of the bare 3-storey structure. Firstly, the predicted mean

intensity that brings the building to the onset of the considered limit state, SDCR=1
a,CLoud, is obtained

from the regression models presented in the previous section. With this information, the data

points can be screened to identify the records with Sa(T1) close to SDCR=1
a,CLoud and DCRLS not

too distant from unity. This selection procedure is formalized by defining two confidence

bands centred around SDCR=1
a,CLoud and DCRLS = 1. The logarithmic standard deviation for
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DCRLS at SDCR=1
a,CLoud, estimated by the standard error of regression βDCRLS |Sa (Equation 7.52),

is used to define the confidence interval around DCRLS = 1. Similarly, the logarithmic

standard deviation for Sa(T1) at DCRLS = 1, estimated as βDCRLS |Sa/b, is used to define

the confidence bands around SDCR=1
a,CLoud. Figure 7.35a shows the box-shape area created by the

intersection of plus/minus one quarter of the standard deviation from SDCR=1
a,CLoud and plus/minus

half the standard deviation from DCRLS = 1. Importantly, the choice of the width of the

confidence bands is qualitative, aiming to encompass at least 20 ground motion records that

will be potentially scaled up/down by a factor lower than 1.5.

(a) Cloud data selection. (b) IDA curve segments.

(c) SDCR=1
a estimation. (d) Fragility curve.

Figure 7.35: Cloud to IDA procedure for the drift limit state of the 3-storey structure.
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In the next step, the selected ground motions are scaled by a factor equal to 1.0/DCRLS,i,

and the corresponding performance variables obtained from the response history analyses. At

this point, a first approximation of the IDA segments is obtained by connecting the two data

points for each selected record (Figure 7.35b). The corresponding SDCR=1
a are subsequently

interpolated (or projected), and the analyses run once again with the records scaled to this new

intensity value. The final SDCR=1
a estimations are ultimately interpolated from this refined

IDA segments (Figure 7.35c), and the associated fragilities calculated assuming a log-normal

distribution for SDCR=1
a [40] (Figure 7.35d).

Figure 7.36 compares the fragility curves obtained for the different case study structures

and limit states under consideration. Additionally, Tables 7.14 and 7.15 summarize the

mean and standard deviations of the fitted log-normal distributions in order to facilitate

the comparison of trends. Although the previous section showed that the uniform duration,

tuni, was the most efficient IM for the prediction of peak floor accelerations, it is recognized

that scaling the time scale or frequency content of pulse-like records can bias the expected

non-linear response [169, 170]. Alternatively, the peak ground acceleration (PGA), which

showed similar levels of correlation, is adopted for the derivation of the PFA fragilities

presented below.

The plots show that, in general, the inerter equipped structures have lower probabilities

of reaching the defined limit states for any given IM value. In particular, the mean Sa(T1)

required to exceed the assumed drift limit grows considerably when the inerters are incorpor-

ated, although this effect becomes less significant as the structures become taller. Moreover,

the incorporation of inerters tends to increase the variability of the lateral deformation re-

sponse. The combination of these effects explain the behaviour observed in the drift fragility

plots, where a better response control is obtained for larger probabilities of exceedence, and

small differences are observed under lower seismic intensities. Notably, the 9-storey building

equipped with non-clutched inerters exhibits slightly higher probabilities of exceeding the as-

sumed drift limit than the unprotected structure under low seismic intensities. On the other

hand, the incorporation of clutches improved the drift response in all cases, an observation

that is line with the results obtained in the previous section.

Much more significant improvements are observed in the peak floor acceleration response.

Estimated mean PGA values of up to 3 times larger are obtained for the buildings equipped

with inerters for a limit state of extensive damage. Nevertheless, as the structures become

taller, the effect of the inerter on the frequency parameter (Equation 7.31) and the vibration

periods of the system (see Appendix B) becomes less significant, thus reducing the efficiency

of the protective measure. The introduction of clutches, however, significantly improves the

acceleration response of the three structures under consideration. Importantly, the inerters

also reduced the variability of the floor acceleration response, indicating an efficient control of

higher-mode effects. The conclusions presented above are consistent with results obtained in
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preceding chapters, and allow to conclude that the use of inerters constitutes a viable altern-

ative to control seismic demands and higher mode-effects in rocking structural applications.

(a) 3-Storey structures.

(b) 6-Storey structures.

(c) 9-Storey structures.

Figure 7.36: Structural fragilities for the defined limit states of ∆ = 0.75% and PFA = 1 g.
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3-Storey 6-Storey 9-Storey

σ 0 1 0.5+clutch 0 2 1+clutch 0 1 1+clutch

µ 0.68 0.73 0.9 0.48 0.55 0.63 0.34 0.34 0.38

βln |IM 0.22 0.2 0.2 0.19 0.21 0.27 0.19 0.31 0.28

Table 7.14: Parameters of the fitted log-normal distributions for the maximum inter-storey drift.

3-Storey 6-Storey 9-Storey

σ 0 1 0.5+clutch 0 2 1+clutch 0 1 1+clutch

µ 0.18 0.44 0.47 0.13 0.24 0.39 0.14 0.19 0.36

βln |IM 0.27 0.16 0.17 0.26 0.14 0.11 0.27 0.21 0.14

Table 7.15: Parameters of the fitted log-normal distributions for the peak floor accelerations.

7.10 Concluding remarks

This chapter has examined the possibility of employing inerters to improve the seismic

performance of post-tensioned timber buildings. In a first stage, a set of three case study

structures, comprising 3, 6 and 9 storeys, was designed following Direct-Displacement-Based

Design guidelines. The response of the bare structures to a sub-set of 7 ground motion records

consistent with the design spectrum was evaluated and compared with the design predictions.

While good estimations of peak displacements were obtained, the analyses showed that

bending moments and shears throughout the structures can be strongly underestimated due

to the influence of higher modes on the response. Moreover, large floor accelerations were

also observed, specially in the taller buildings. The results of these analyses were later used

as a benchmark for a preliminary assessment of the effect of the inerter devices on the seismic

response of the structures.

Based on results and conclusions from previous chapters, a simplified procedure to

pre-dimension the inerter devices was put forward in this chapter. The proposed methodology

hinges on the observation that the response of an inerter-equipped rigid block is equivalent

to that of a larger bare block of the same slenderness. Then, by equating their frequency

parameters, the equivalent size of the larger block can be obtained. On the other hand,

Reggiani and Vassiliou [162] demonstrated that two blocks of different size but identical

slenderness experience the same top displacement, provided that they are not close to

overturn. This equal displacement rule facilitates the definition of a relation between the

base rotation of the blocks based on their size ratio. In this way, a rotation reduction factor

can be defined for any given apparent mass ratio. Moreover, Chapter 6 demonstrated that

the inerter has little effect on the elastic deformation response of a flexible rocking structure.

Thus, the top displacement reduction factor was obtained by applying the inerter factor only
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to the rotation component of the total deformation. The proposed methodology was used

to pre-dimension inerters with apparent mass ratios ranging from σ = 0.5 to 4, resulting in

displacement reduction factors between φel = 0.78 and 0.98. The inerters devices were then

designed implementing a ball-screw and gear configuration. Although the use of a rigid block

for the representation of flexible structures inherently introduces some degree of inaccuracy

to the preliminary design methodology, results from non-linear response history analyses

showed that the proposed procedure can produce reasonable estimations of peak displacement

reductions.

A first assessment of the effect of the inerters on the response of the case study structures

was conducted considering the sub-set of 7 ground motion records used for design. The results

of the analyses showed displacement reductions in line with the analytical predictions of the

pre-dimension methodology. Additionally, the introduction of inerters efficiently controlled

higher-mode effects in the structures. This was reflected in significantly lower peak floor

accelerations and reduced bending moments above the critical section. Although the control

of the higher-mode response also reduced inter-storey shears in higher floors, the connection

of non-clutched inerters to the first level diaphragm significantly amplified the shear force in

the ground storey. Closer examination of this phenomenon revealed that the peak shear at

this level occurs at lateral deformations smaller than the maximum, with the inerter device

driving the motion of the structure. Accordingly, the introduction of a clutch drastically

reduced the shear amplification, as it prevents the inerter from pulling the structure. This

behaviour also resulted in significantly lower peak resisting forces in the inerter, an aspect

that can improve the applicability of the proposed strategy. Importantly, the clutch also

further reduced the peak lateral displacements without affecting the ability of the inerter to

control the higher-mode response.

For the final design, a single apparent mass ratio was selected for each case study

structure and inerter configuration. The corresponding inertances were defined based on the

results of the preliminary assessment and practical aspects regarding the magnitude of the

associated inertial forces. The ground-inerter-diaphragm load path was designed considering

the mean peak force in the inerters from the response history analyses as the seismic demand.

Replaceable fuse elements were also incorporated in order to limit the force that can develop

in the inerter, thus protecting its mechanical components and the steel-timber connection.

The results of the connection design highlighted the advantages of incorporating a clutch into

the device, as significantly smaller steel plates were required to transfer the resisting forces of

clutched inerters.

Finally, the performance of the bare and protected case study structures was assessed

and compared within a probabilistic framework. To this end, the three archetype structures
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were subjected to a set of 202 pulse-like ground motion records obtained from 21 different

earthquakes. The resulting Cloud data was subsequently used to estimate the median seismic

demands and compare the performance of the case study buildings in terms of inter-storey

drifts and peak floor accelerations. The results of the analyses showed that the structures

equipped with non-clutched inerters experienced slightly smaller drift demands, whereas the

addition of a clutch further improved their displacement response. The main advantage of the

inerter devices was evidenced in the peak floor acceleration response, where significantly lower

demands were obtained across the whole range of intensity levels under consideration. Finally,

the results of the Cloud analyses were used to estimate the probability of exceeding drift

and acceleration limits typically associated with non-structural and contents damage. The

Cloud to IDA procedure developed by Miano et al. [135] was implemented in order to estimate

the fragility functions associated with the defined limit states. The result of the analysis

confirmed that inerter-equipped structures have lower probabilities of exceeding the assumed

drift and acceleration limits. Although appreciable increases in the mean IMs were obtained

for the drift limit state, much more significant improvements were observed in the peak floor

acceleration response. Moreover, unlike the lateral deformation demands, the ability of the

inerters to control the lateral accelerations was not significantly affected by the height of the

structures. This observation indicates an efficient control of the higher modes response. The

results of the design and assessment procedures presented in this chapter have demonstrated

the potential applicability of the proposed strategy for the seismic control of rocking building

structures.
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Chapter 8

Conclusions

8.1 Summary of main findings

As stated in Section 1.2, the main aims of this thesis were to provide a comprehensive and

rigorous examination of the dynamic response of rocking structures equipped with supple-

mental rotational inertia devices, and to explore the alternative of using inerters to improve

the seismic performance of post-tensioned buildings. To this end, a series of analytical and

numerical methods were employed to conduct a thorough assessment of the proposed seismic

control strategy. In the following sections, the main findings of the work are summarized and

organized according to these two main objectives.

8.1.1 Dynamics of rocking structures equipped with inerters

• Fundamental dynamics: The analytical model developed in Chapter 3 demonstrated that

the inclusion of inerters reduces the frequency parameter of a rocking block, thus reducing

its seismic demands due to the well-known size effect of rocking behaviour. This finding

is particularly interesting as it opens the possibility of modifying the dynamic character-

istics of a rigid rocking block without altering its geometry. Importantly, the extended

model presented in Chapter 4 showed that the incorporation of vertical post-tensioning

or different seismic mass to weight ratios (mratio), features typically observed in rocking

building structures, does not affect the ability of the inerter to control the rocking re-

sponse. Likewise, the analyses presented in Chapter 5 demonstrated that, although the

inerter does not significantly reduce the elastic deformations of flexible rocking bodies,

it does control the base rotation response, resulting in considerably lower overall drift

demands. However, when taller multi-mass uplifting structures are considered, the effect

of an inerter connected at the first-mass level becomes less significant, as its influence on

the frequency parameter diminishes (see Equation 7.31). Accordingly, larger apparent

mass ratios are required in order to obtain appreciable response improvements in multi-
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mass rocking structures. Nevertheless, the actual mass of the inerter can be reduced by

several orders of magnitude by means of amplification mechanisms such as ball-screws

or gear systems.

• Implications on the impact transition: The effect of the inerter on the rotation transition

was first evaluated using an extension of Housner’s impact formulation. This analysis

showed that, in general, the inclusion of the inerter results in higher coefficients of resti-

tution, indicating lower energy dissipation during impact. Importantly, this effect was

found not to be significant in slender blocks, although it can affect the efficiency of

the proposed strategy when high apparent mass ratios or non-slender structures are

considered (Figure 3.7). In particular, the results of a cloud analysis showed that this in-

crease in the coefficient of restitution can cause inerter-equipped structures to experience

larger rotation demands under low seismic intensities, as successive acceleration spikes

induce rocking cycles of increasing amplitude which can exceed the rotation demand

generated by the main pulse (Figure 3.20). When subjected to ground motions of higher

intensity, however, the peak rotation response is governed by the velocity pulse and the

inclusion of inerters results in consistently lower seismic demands. These observations

were later confirmed using alternative impact formulations, such as the Vertical Velocity

Energy Loss model (VVEL) and a numerical representation of the energy radiated in

the underlying soil.

• Acceleration response of single-mass oscillators: The lateral acceleration response of rigid

blocks equipped with inerters was first examined considering an extension of Housner’s

simplified model. Within this classical framework, impact forces are assumed to be in-

stantaneous and concentrated at the pivot corners. Although this model has been shown

to provide a good estimation of the amount of energy dissipated during impact, the previ-

ous assumptions imply an instantaneous change of velocity and, therefore, an unrealistic

infinite acceleration at the transition instant. Using an alternative formulation based on

Dirac-Delta forces, it was demonstrated that the infinite acceleration spikes predicted by

Housner’s model can be ignored under the assumption that impact forces are sufficiently

distributed over time as to cause continuous velocity transitions, but sharp enough not

to appreciably affect the rotation response. On the other hand, when considering flexible

rocking oscillators, experimental studies have shown that Housner’s approach tends to

overestimate the energy dissipated during impact. Alternatively, the Vertical Velocity

Energy Loss (VVEL) was adopted for the study of deformable structures. Since this

approach assumes that only the vertical component of the kinetic energy is dissipated

during impact, the horizontal acceleration response remains smooth and defined at all

times. The above mentioned models were used to examine the response of single-mass

rocking systems under coherent pulses and real pulse-like ground motions, demonstrating

that structures equipped with inerters experience significantly lower peak accelerations.
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The introduction of the clutch, however, leads to earlier impact, a phenomenon that can

sometimes exacerbate the lateral acceleration demands.

• Effects of the clutch: When subjected to a ground motion, part of the total energy

absorbed by the rocking-inerter system is stored in the inerter device. As the structure

rocks and oscillates this energy is transferred back and forth, and the single inerter

(without clutch) alternates between opposing and driving the motion. If a clutch is

introduced, the inerter disengages from the structure and the energy stored in it is not

transferred back to the oscillator. If the inerter is then able to dissipate this energy, every

engagement-disengagement cycle removes energy from the structural system, increasing

the rate at which the rotation and deformation responses are attenuated. Importantly,

the addition of the clutch was shown to significantly enhance the rotation response

of inerter-equipped structures, although it can also have a detrimental effect on the

acceleration demands of rigid and single-mass oscillators.

• Effects on the overturning response: As expected, the use of supplemental rotational

inertia devices improved the global stability of both rigid and flexible free-standing bod-

ies. Examination of their overturning plots showed that the inerter reduces the areas of

overturning in the frequency-acceleration amplitude plane (ωg/p - ag/g tanα), and trans-

lates them to lower frequency ratios. This frequency shift, which is otherwise beneficial,

is particularly relevant for the case of overturning after impact, as certain structures

that would rock safely without the inerter, may overturn when the protective device

is incorporated. The introduction of the clutch, on the other hand, further shifts the

overturning regions and expands the overturning after impact area to higher acceler-

ation magnitudes, a potential drawback that has limited practical implications as it

occurs in a frequency-acceleration region of limited practical relevance. Of particular

interest in stability analyses are smaller structures, which are known to be more vul-

nerable to overturning during strong ground motions. In this regard, the results from

probabilistic assessments considering a set of 202 pulse-like ground motion showed that

small structures equipped with inerters experience reduced probabilities of overturning

in comparison with uncontrolled bodies, while the addition of a clutch further improves

their seismic stability.

• Effects on the drift response: The lateral drift of a rocking structure, is obtained as the

sum of the rotation and structural deformation contributions. Although uplift and the

triggering of the rocking motion effectively limits the deformation of a SDOF oscillator

to values close to the critical displacement, the base rotation can considerably increase

the total lateral displacements (Figures 5.6). While the inerter device has only a small

effect on the elastic deformation of the column, it significantly reduces the base rotation,

leading to considerably smaller drifts. In the case of multi-mass rocking structures,
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the backstay effect caused by the connection of the inerter at the first-mass level can

slightly increase the deformations in the structural elements. Nevertheless, this potential

drawback does not translate into higher drifts as the lateral deformation response is

strongly controlled by the base rotation. Similarly, the horizontal motion of the point of

connection of the inerter is governed by the rocking action. Thus, if a clutch is introduced,

the disengagement condition ensures that the inerter can only oppose the rocking motion

of the system, hence significantly reducing further the rotation amplitudes. However,

with respect to the elastic deformations, the engagement-disengagement cycles happen

at inconvenient times, with the inerter arbitrarily opposing and driving the deformation

response. As a consequence, the introduction of a clutch can result in increased elastic

deformation demands.

• Control of higher-mode effects: Although conservation of horizontal kinetic energy

(VVEL model) ensures a smooth horizontal acceleration response in single-mass oscillat-

ors, sudden and opposite changes in the velocity of the masses can generate significant

acceleration spikes in multi-storey structures while keeping the associated energy con-

stant. Close inspection of the temporal evolution of the kinetic energy and acceleration

response of multi-mass rocking structures confirmed this observation, although the peak

acceleration amplitudes occurred after impact had ended. This indicates that the max-

imum accelerations are not caused by direct action of the the impact forces, but by the

high frequency oscillations induced by them. Accordingly, higher modes of the response

can be excited during impact, even if the ground motion does not contain significant

high frequency components.

Analyses under single pulse excitations showed that the inerter can consistently control

the high frequency vibrations generated at impact, significantly reducing the horizontal

acceleration demands. Additionally, the inclusion of the inerter elongates the vibration

periods of the structure, pushing them towards lower spectral ordinates. Likewise, the

proposed strategy successfully controlled bending moments along the height of the struc-

tures. Although the control of the higher-mode response also reduced inter-storey shears

in higher floors, the connection of non-clutched inerters to the first level diaphragm

significantly amplified the shear force in the ground storey. Closer examination of this

phenomenon revealed that the peak shear at this level occurs at lateral deformations

smaller than the maximum, with the inerter device driving the motion of the structure.

Accordingly, the introduction of a clutch drastically reduced the shear amplification,

as it prevents the inerter from pulling the structure. This behaviour also resulted in

significantly lower peak resisting forces in the inerter, an aspect that can improve the

applicability of the proposed strategy. Importantly, the introduction of the clutch did

not significantly affect the ability of the inerter to control the higher-mode response.

• Numerical modelling of the inerter: A numerical strategy to represent the inerter device
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in finite element frameworks was developed and implemented in OpenSees. Addition-

ally, a simplified procedure to model the effect of the clutch was also introduced. The

numerical model was successfully validated against analytical models of fixed-base and

rocking singe-degree-of-freedom oscillators equipped with inerters.

8.1.2 Application to post-tensioned timber buildings

• Design of post-tensioned timber walled buildings: A set of three case study structures,

comprising 3, 6 and 9 storeys, was designed following Direct-Displacement-Based Design

guidelines and subjected to a sub-set of 7 ground motion records consistent with the

design spectrum. While good estimations of peak displacements were obtained, the

analyses showed that bending moments and shears throughout the structures can be

strongly underestimated due to the influence of higher modes on the response. Moreover,

large floor accelerations were also observed, specially in the taller buildings. The results

of these analyses were later used as a benchmark for a preliminary assessment of the

effect of the inerter devices on the seismic response of the structures.

• Selection of the apparent mass ratio: Based on the conclusions obtained from analyt-

ical models, a simplified procedure to pre-dimension the inerter devices was developed.

The proposed methodology combines the equal displacement rule [162] with the equival-

ent size-scaling effect of the inerter in order to obtain a base rotation reduction factor.

Moreover, recognizing that the inerter has little effect on the elastic deformation re-

sponse of a flexible rocking structure, a top displacement reduction factor was obtained

applying the inerter factor only to the rotation component of the total deformation. The

methodology was later validated against results from non-linear response history ana-

lyses, showing that the proposed procedure can produce reasonable estimations of peak

displacement reductions.

• Force in the inerter: The results from response history analyses showed that large inertial

forces can develop in the inerters during a seismic event. Moreover, since the inertance

required to achieve any given apparent mass ratio is directly proportional to the total

weight of the structure, the resisting force in the inerter increases significantly as the

building becomes taller. Crucially, the mechanical components of the devices, as well as

the connection to the floor diaphragm, must be designed to resist these demands, poten-

tially limiting the practicality of the proposed strategy. In order to limit the force that

can develop in the inerter and prevent brittle failures within the device, replaceable fuse

elements were implemented in the connection. Yielding in these components, however,

affected the efficiency of the inerter under higher seismic intensities. The introduction

of the clutch, on the other hand, considerably reduced the inertial forces. Importantly,

these improvements did not affect the ability of the inerter to control the seismic re-
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sponse of the structural systems. The results of the connection design highlighted the

advantages of incorporating a clutch into the device, as significantly smaller steel plates

were required to transfer the resisting forces of clutched inerters.

• Performance-based seismic assessment: Modern design frameworks generally quantify

seismic risk in terms of overall performance, looking at both the structural and non-

structural components of a building. Although post-tensioned rocking systems have

proved to be highly effective in controlling structural damage, excessive inter-storey

drifts or floor accelerations associated with the rocking motion can significantly reduce

the overall performance of the structure. In this context, and motivated by the observa-

tions drawn from the analytical models, the possibility of employing inerters to control

these engineering demand parameters was evaluated within a probabilistic framework.

To this end, a Cloud Analysis considering a set of 202 pulse-like ground motion records

obtained from 21 different earthquakes was performed. The estimated median demands

showed that structures equipped with non-clutched inerters experienced slightly smaller

drift demands in comparison with the uncontrolled buildings. The addition of the clutch,

however, further improved the drift response for low to mid IMs, but became less effective

under higher seismic intensity levels due to yielding in the fuse elements. On the other

hand, the main advantage of the inerter devices was evidenced in the peak floor acceler-

ation response, where an efficient control of higher-mode effects resulted in significantly

lower demands across the whole range of intensity levels under consideration. Finally, the

results of the Cloud analyses were used to estimate the probability of exceeding drift and

acceleration limits typically associated with non-structural and contents damage. The

resulting fragilities confirmed that inerter-equipped structures have lower probabilities

of exceeding the assumed drift and acceleration limits. Although appreciable increases

in the mean IMs were obtained for the drift limit state, much more significant improve-

ments were observed in the peak floor acceleration response. Moreover, unlike the lateral

deformation demands, the ability of the inerters to control the lateral accelerations was

not significantly affected by the height of the structures. Overall, the results of the

performance-based assessment demonstrated the potential applicability of the proposed

strategy for the seismic control of rocking building structures.
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8.2 Limitations and future work

The alternative of employing inerters to improve the seismic performance of rocking structures

has been thoroughly examined in this thesis. The studies conducted as part of this work have

also highlighted the need for further research in the following areas:

• All the analyses presented in this thesis have treated rocking as a 2-dimensional in-

plane motion. Although this simplification allows to study the fundamental dynamics

of the problem, it is recognized that planar analysis can only qualitatively describe the

behaviour of 3-dimensional rocking structures. Moreover, the analytical models employed

in the analyses assume that no bouncing or slippage occurs during impact. Accordingly,

further research is required in order to investigate the effects of these assumptions on

the efficiency of the inerter.

• The analytical model developed in Chapter 3 predicts an increase in the frequency para-

meter of rocking blocks equipped with inerters and a reduction of the energy dissipated

during impact. Although the basic formulation on which this model is based has been

shown to adequately predict the main statistics of the seismic response of rocking blocks,

the additional effect of the inerter needs to be experimentally validated.

• Throughout this thesis, the clutch has been modelled as an ideal device that engages

and disengages instantaneously. Moreover, it is assumed that the energy stored in the

inerter device is completely dissipated before re-engagement. A detailed experimental

assessment is required in order to examine the suitability of these assumptions. In

particular, the effects of backlash, flywheel damping, clutch stiffness and dry friction

need to be explicitly considered. On the other hand, further research is required to

investigate the ratcheting effect observed in clutched devices when re-engagement occurs

at large driving-mass velocities.

• Although a strong correlation was observed between the uniform time duration, tuni,

and the seismic demands in rigid rocking structures, better intensity measures are re-

quired to adequately estimate the seismic response of post-tensioned timber buildings.

In particular, further work is required to describe the floor acceleration demands, which

were shown to be affected by both the ground motion and the forces developed during

impact.

• The results from Chapters 6 and 7 demonstrated that higher modes can significantly

amplify the seismic forces along the height of rocking structures. Although methodologies

to incorporate these effects in the design of fixed-based reinforced concrete systems have

been proposed, they are generally not extendible to post-tensioned timber buildings, as

uplift and the subsequent rocking motion alter the dynamic parameters of the system.
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Moreover, the analyses presented in this thesis showed that impact forces can excite

higher modes of the uplifted system even if the ground motion does not contain significant

high frequency components. Accordingly, further work is required in order to incorporate

these phenomena in the DDBD procedure for rocking timber structures.
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Rocking spectra of slender rigid

blocks

The response of slender rigid blocks to trigonometric pulses is presented in Figures A.1 and

A.2 in terms of rocking spectra. This representation consist of contour plots of the normalized

response variable in the frequency ratio (ωg/p) and acceleration amplitude (ag/g tanα) plane,

for a block of a given slenderness α. Accordingly, Figures A.1 and A.2 compare the rotation

and acceleration demands for a rigid block of slenderness α = 10◦ subjected to cosinusoidal

and sinusoidal pulses, respectively, of dominant frequency ωg and acceleration amplitude ag.

Results are offered for three different configurations: (a) no inerter, (b) single inerter (σ = 0.5),

and (c) pair of clutched inerters (σ = 0.5). Overall, the results presented in Figures A.1 and

A.2 are in line with the conclusions obtained in Chapter 3 for non-slender rocking structures,

showing considerable reductions in the rotation and acceleration demands when the inerter is

incorporated.
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(a) Single rigid block (no inerter).

(b) Rigid block connected to a single inerter (σ = 0.5).

(c) Rigid block connected to a pair of clutched inerters (σ = 0.5).

Figure A.1: Rocking spectra for a non-slender block (α = 10◦) subjected to cosine pulse excitations.
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(a) Single rigid block (no inerter).

(b) Rigid block connected to a single inerter (σ = 0.5).

(c) Rigid block connected to a pair of clutched inerters (σ = 0.5).

Figure A.2: Rocking spectra for a non-slender block (α = 10◦) subjected to sine pulse excitations.
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Fixed-base MDOF structures

equipped with inerters

Figure B.1 shows a fixed-base multi-degree-of-freedom structure connected to a grounded in-

erter at the first mass level. The structural system consists of n lumped masses, mi, connected

by elastic beam-column elements of stiffness ki.

Figure B.1: Fixed-base MDOF structure connected to an inerter at the first-mass level.

Under free vibrations, the equations of motion of the system are:

[M ]ẍ+ [K]x = 0 (B.1)

with

[M ] =


m1 +mr 0 · · · 0

0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

 (B.2)
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and

[K] =


k1 + k2 −k2

−k2 k2 + k3
. . .

. . .
. . . −kn
−kn kn

 (B.3)

On the other hand, it is well known that the free vibration response of the MDOF system can

be described by the following eigenvalue problem:

([K]− λj [M ])φj = 0 (B.4)

where j = 1, ..., n, ωnj =
√
λj are the natural frequencies of the system, and φj is the jth mode

shape corresponding to natural frequency ωnj , normalized such that φTj [M ]φj = 1. Repeating

Chen’s et al. reasoning [106], the influence of the inerter on the jth frequency can be studied

by obtaining the derivative with respect to mr:(
∂[K]

∂mr
− ∂λj
∂mr

[M ]− λj
∂[M ]

∂mr

)
φj + ([K]− λj [M ])

∂φj
∂mr

= 0 (B.5)

Pre-multiplying both sides by φTj and considering that ∂[K]/∂mr = 0, φTj ([K]− λj [M ]) = 0,

and φTj [M ]φj = 1 yields:

∂λj
∂mr

= −λjφTj
∂[M ]

∂mr
φj (B.6)

where:

∂[M ]

∂mr
=


1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 (B.7)

Then:

∂λj
∂mr

= −λj
(
φ
(n)
j

)2
(B.8)

Equation B.8 demonstrates that the inclusion of the inerter shortens the vibration frequencies

of the system or, equivalently, elongates its natural periods. Generally, this results in a reduced

higher-mode response, as the natural frequencies of the system are shifted towards smaller

spectral acceleration ordinates. Moreover, for any given mode shape, φj , Equation B.8 shows

that the effect of the inerter becomes less significant as λj decreases. Accordingly, higher levels

of inertance are required to obtain similar frequency shifts as the structures become taller or

more flexible.
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Seismic demand prediction models

for post-tensioned rocking timber

buildings

Figures C.1 to C.12 present the Cloud data and the seismic demand prediction models ex-

amined in Chapter 7. Four different intensity measures are considered as the predictive vari-

able: uniform time duration (tuni), peak ground velocity (PGV ), peak ground acceleration

(PGA), and the 5% damped spectral acceleration at the first fixed-base structural period,

Sa(T1).

Figure C.1: Seismic demand prediction models for the 3-Storey structures based on tuni.
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Figure C.2: Seismic demand prediction models for the 6-Storey structures based on tuni.

Figure C.3: Seismic demand prediction models for the 9-Storey structures based on tuni.

Figure C.4: Seismic demand prediction models for the 3-Storey structures based on PGV .
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Figure C.5: Seismic demand prediction models for the 6-Storey structures based on PGV .

Figure C.6: Seismic demand prediction models for the 9-Storey structures based on PGV .

Figure C.7: Seismic demand prediction models for the 3-Storey structures based on PGA.
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Figure C.8: Seismic demand prediction models for the 6-Storey structures based on PGA.

Figure C.9: Seismic demand prediction models for the 9-Storey structures based on PGA.

Figure C.10: Seismic demand prediction models for the 3-Storey structures based on Sa(T1).
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Figure C.11: Seismic demand prediction models for the 6-Storey structures based on Sa(T1).

Figure C.12: Seismic demand prediction models for the 9-Storey structures based on Sa(T1).
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