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Abstract

Mass spectrometry coupled to liquid chromatography (LC-MS) is routinely used
for metabolomics studies. While steps in data acquisition are fairly standardised
and automated, structural metabolite identification still depends on manual cura-
tion and expert knowledge, forming a major bottleneck in LC-MS based pipelines.
The work presented in this thesis represents a novel data processing strategy, which
aids metabolite identification through deliberate us of the the correlation structure
that exists between spectral features, as well as chromatographic profile and data
acquisition order. This strategy aligns features originating from the same chemi-
cal entity across all samples as a group, ensuring that chemically-related features
are accurately aligned despite fluctuations in the chromatographic and mass spec-
trometric measurements occurring during the experimental run time. Spectral fea-
tures aligned in this way are consequently matched to in-house chemical standards
databases more efficiently and accurately, on account of the retained and chemically-
relevant spectral information. This pipeline has been developed and is presented as
an open-source R package - massFlowR. This thesis demonstrates the utility of mass-
FlowR with simulated data, as well as an open-source urine metabolomics study
DEVSET, and a large-scale cohort study AIRWAVE, where the performance of mass-
FlowR is compared with the widely-used package XCMS.
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Chapter 1

Introduction

1.1 Introduction

Over the last two decades, biological and biomedical sciences have become increas-
ingly driven by high-throughput technologies, which generate enormous amount of
information at different scales of organism organisation - from individual cells, to tis-
sues and whole organ systems [1]. The development of high-throughput technolo-
gies has given rise to omics fields - principally genomics, transcriptomics, proteomics
and metabolomics. The emergence of omics platforms has caused a paradigm shift
from traditionally descriptive and reductionist approach [2], which was prevalent
since the 19th century when experimental biological disciplines first emerged, to a
more quantitative and holistic research framework. This new scientific approach to
biological questions catalysed the formation of a discipline known as systems biol-
ogy [3]. The central task of systems biology is to (1) gather comprehensive informa-
tion from each distinct level of an individual biological system, and to (2) integrate
these data to generate predictive mathematical models of the system [3]. Examples
of such mathematical models include cell signalling pathways built using gene ex-
pression data [4, 5], pharmacokinetics-pharmacodynamics models for drug discov-
ery and development [6], as well as models of of the perturbations to cell’s metabolic
pathways [7].

The two distinct systems biology methods - the bottom-up and the top-down ap-
proaches - have their own potential and limitations. Bottom-up systems biology
typically emphasises the construction of mathematical models, which are heavily
based on theory and hypotheses and only later validated experimentally [8] (Figure
1.1). Whereas top-down systems biology is heavily driven by experimental data,
which is used to discover or to refine pre-existing models that would accurately de-
scribe the acquired data. Top-down systems biology studies are based on the use of
large omics datasets, which provide a birds eye view of the behaviour of the system.

All omics platforms perform measurements of a large number of biological variables
in parallel, however, each one of them focuses on a specific class of molecules. Ge-
nomics, for example, studies the genomes of organisms, i.e. the genomic information
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FIGURE 1.1: Schematic representation of the top-down and bottom-up approach to systems
biology. Top-down systems biology provides insights into the functioning of living organ-
isms by examining large and potentially complete experimental datasets (e.g. metabolomics
datasets). The bottom-up systems biology is based on the modelling of the molecular prop-
erties of individual components of a system, which is derived using molecular methods (e.g.
enzyme kinetic assays). Scheme is adapted from Bruggeman and Westerhoff, 2007[8].

encoded in the DNA. Transcriptomics, on the other hand, analyses the transcriptome,
the set of all RNA molecules produced within a cell, tissue or an organism and thus
provides insights into gene expression dynamics and regulation [9]. Together with
proteomics, which focuses on the proteome - the entire set of proteins, their struc-
ture, expression and interactions networks [10], and metabolomics, which studies
the metabolome - the set of all metabolites within, or secreted by an organism, or a
cell/tissue, [11], these three omics platforms provide the quantitative measurement
of the most dynamic aspects of a living system [12, 13].

The metabolome comprises of metabolites, which are low molecular weight
molecules, produced as intermediates and end-products of all metabolic processes.
Low molecular weight is generally understood as less than 1,500 Da, however, the
molecular weight range for metabolites is very broad, averaging to 665 Da in hu-
mans (mean molecular weight for the Human Metabolome Database entries), while
molecules of up to 1,200 Da are not uncommon in plants [14]. The estimations of
the number of metabolites range from 7,800 [15] to 114,100 in humans (as reported
for the Human Metabolome Database in 2018 [16]), and up to 200,000 [17] or even
500,000 [18] in plants. Metabolites are present in varying abundances, have diverse
physico-chemical properties and are involved in numerous biochemical processes,
including but not limited to:

• Catabolic reactions breaks down food nutrients, such as polysacharides, proteins
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and fats, into metabolites - carbohydrates, amino acids, nucleic acids, lipids
and fatty acids, and releases energy to run cellular processes.

• Anabolic reactions builds new and more complex compounds and require en-
ergy. For example, amino acids are implicated in the synthesis of new proteins
and phenylpropanoids - a diverse group of phenolic plant compounds [19],
while various forms of lipids are the building blocks of cell membranes [20].

• Signalling in response to stress in plants can be mediated by phenylpropanoid
compounds, such as flavonoids, lignin and coumarins [21]. A number of
metabolites secreted by human gut microbiota, such as short chain fatty acids
and bile acids, have been shown to mediate signalling implicated in host cel-
lular activity [22].

• Regulation, for example, through methylation (addition of methyl-groups,
which can be delivered from dietary methyl donors, such as metabolites me-
thionine, folate, betaine, and choline [23]) of DNA that is implicated in gene
regulation and in turn can regulate metabolism itself [24].

The complex biological network in which metabolites are involved is influenced
both by the genotype of the organism and its interactions with the surrounding en-
vironment and gut microflora. The dynamics of the metabolome, undermined by
metabolic reactions operating at the timescale of seconds, is the second characteris-
tic of the metabolome that makes it the most predictive measure of the phenotype
[15, 17]. Consequently, the study of the metabolome through metabolomics, partic-
ularly when integrated with the other omics fields, provides exciting prospects in
biological and biomedical research, leading to discovery of new drug targets and
disease diganostics [12, 25].

Metabolomics uses modern techniques to analyse biological samples that are com-
plex natural mixtures with unknown chemical composition. Depending on the ob-
jectives of the study, one of the two distinct analytical strategies can be followed: un-
targeted or targeted metabolomics (Table 1.1). The first approach, also known as un-
targeted metabolic profiling, aims to maximise the number of detected metabolites
at the cost of quantification accuracy [26]. It is usually applied for hypothesis genera-
tion and discovery as it offers the possibility of detecting a wide range of metabolites
with high sensitivity. The acquired spectral data is then subjected to statistical anal-
ysis to identify potential biomarkers, which then must be identified using authentic
chemical standards and targeted approaches [27]. Targeted metabolomics assays fo-
cus on a set (tens to hundreds) of pre-defined metabolites. If samples are analysed
and compared to authentic chemical standards over a broad dynamic concentration
range using selective fragmentation methods, absolute quantification values can be
obtained. Nevertheless, targeted approaches provides limited information about a
given sample and therefore serves as a validation step in the study [28].



Chapter 1. Introduction 4

TABLE 1.1: Untargeted versus targeted metabolomics studies. Untargeted metabolomics is
a discovery-based approach as it performs relative quantitation of globally detected metabo-
lites. In contrast, targeted metabolomics is used for hypothesis validation since it quantifies
sets of pre-defined metabolites of known identity.Table adapted from Schrimpe-Rutledge et
al. 2016 [26].

Metabolomics
Untargeted Targeted
Discovery Validation
Hypothesis generating Hypothesis driven
Global analysis Subset analysis
Qualitative identification Known identification
Relative quantification Absolute quantification

Among the few platforms that perform with sufficient specificity and sensitivity, the
two that are employed most frequently are nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry (MS) [29]. In general, both NMR and MS-based
analytical platforms have distinct advantages and each are subject to a number of
limitations. 1H NMR spectroscopy is characterised by excellent analytical repro-
ducibility and robustness [30]. Furthermore, NMR-based platforms can provide ac-
curate quantification over a wide dynamic range [31], nevertheless, they are less
sensitive than MS-based platforms [2]. When coupled to a liquid chromatography
(LC) system, MS is a particularly attractive platform for biomarker discovery and
untargeted metabolic profiling due to enhanced sensitivity, separation power and
broader metabolite coverage [32, 33].

The application of untargeted LC-MS metabolic profiling to biomedical studies is a
very active area of research. Since LC-MS-based methods allow analysis of urine
samples without any pre-treatment other than removal of particulates [34], the early
developments were undertaken primarily in the field of toxicology, such as screen-
ing of drug exposure [35, 36], heavy metal toxicity [37] and nephrotoxicity induced
by aristolochic acid [38]. Characterising metabolic alterations in urine samples has
also helped to improve clinical diagnosis of liver cancer [39]. Blood samples also
require only minimal sample pre-treatment, such as removal of proteins, and have
been successfully analysed to characterise the deregulation of fatty acids pathways
in patients with chronic liver diseases [40], the nephrotoxicity induced by traditional
medicine [41], as well as to discriminate animals with type II diabetes (the Zucker
(fa/fa) obese strain) from the normal wild type individuals [42]. While tissue analy-
sis require thorough sample extraction prior to analysis by LC-MS [43], the metabolic
characterisation of human prostate tumour [44], pancreas tumour [45], as well as
breast cancer [46] tissue extracts has been successfully performed.

The early LC-MS applications, including the examples listed above, were primar-
ily case-control studies. Nevertheless, in order to determine the potential associa-
tions between common, low-level exposures, or biomarkers that exhibit high within-
individual variability, such as blood metabolites levels, and risk of disease, large



Chapter 1. Introduction 5

study size is required [47]. Such large-scale metabolic profiling studies with thou-
sands of samples have already successfully identified metabolic biomarkers of bio-
logical ageing [48], physical activity [49], diet [50], as well as metabolic predictors of
the future development of diabetes [51] and coronary heart disease [52].

Nevertheless, extracting useful information from the large datasets produced
through LC-MS analysis of complex samples, such as blood or urine, is highly chal-
lenging. Some of the LC-MS data characteristics, which are shared between epi-
demiological and smaller case-control studies, convolute the standard epidemiolog-
ical data analysis procedures. These characteristics include high dimensionality and
strong collinearity between variables, as well as data non-normality and a substan-
tial degree of missing data [47, 53]. In addition, the number and the identity of most
metabolites are unknown due to the untargeted mode of operation, which compli-
cate statistical power calculations [47, 54]. Above all, the acquired LC-MS spectra
first must be processed to identify metabolic features [55]. Spectral processing is
challenged by numerous technical issues that take place during data acquisition. For
example, peaks that correspond to the same analyte drift between sample runs due
to physical changes to the chromatographic column and sample build-up in the sys-
tem, as well as variation in the experimental conditions, e.g. temperature [56]. The
acquired LC-MS spectra are misaligned and additional pre-processing steps are re-
quired to identify features corresponding to the same analyte across all samples [57].
The larger the sample size, the more profound the effect of such technical issues is
on the accuracy of spectral processing. While feature annotation and subsequent
metabolite identification can be aided by complex computational methods, inaccu-
rately processed datasets are very hard to annotate, which represents the ultimate
challenge in large-scale metabolic profiling studies.

This work will examine the computational tools that are used to process and anno-
tate LC-MS spectra, assess their potential and limitations associated with the analy-
sis of large-scale metabolic profiling studies, as well as suggest alternative strategies.

1.2 The fundamentals of LC-MS metabolic profiling

1.2.1 Analyte separation by liquid chromatography

Liquid chromatography (LC) is one of the most commonly applied chemical sepa-
ration techniques, which has evolved from its early predecessors - paper and thin
layer chromatography. LC operates on the principle that the mixture of interest is
dissolved in a liquid mobile phase (eluent), which is passed through a solid station-
ary phase (chromatographic column) (Figure 1.2). During the process, the adsorbent
material of the column interacts with the dissolved analytes differently depending
on their physico-chemical properties. As a result, analytes elute from the column
with different retention times, leading to the separation of the mixture into con-
stituent components.
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FIGURE 1.2: Liquid chromatography separation of a sample mixture. The sample is injected
into the LC system through which mobile phase is flowing. The sample separates into its
components that interact with the column differently. The eluted components are detected
and a chromatogram is recorded.

A wide range of chromatographic columns can be used in the analysis of complex
biological samples. The chemistry of the solid particles of which the column is made
off determines by which property the analytes are separated. Therefore, the choice of
the column largely depends on the question of interest that a given study is designed
to investigate. In the field of metabolomics, two LC types are most often employed:
reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC). RP
chromatography was first successfully developed by Howards and Martin in 1950
[58]. In contrast to earlier LC systems, in RP-LC the eluent is more polar than the
stationary phase (i.e. phases are reversed in comparison to the earlier developed
normal-phase chromatography). In RP-LC the chromatographic column is usually
packed with porous silica particles that have straight octadecyl carbon chains (C18)
covalently bound to them (Figure 1.3). The hydrophobic interactions between the
alkyl chains and the non-polar moiety of the dissolved analyte determine for how
long the analyte retains in the column (i.e. chromatographic retention time (RT)),
with hydrophilic molecules eluting from the column first [59]. By increasing the per-
centage of non-polar solvent, such as acetonitrile, in the mobile phase, which is usu-
ally water, elution of less polar molecules is achieved. Such gradient elution allows
clear separation of multiple chemical classes in one run. While RP chromatography
is capable of measuring a wide range of chemical classes and has been successfully
optimised for the analysis of urine [60–62] and blood [52, 63] samples, highly po-
lar analytes are not retained well and elute with the solvent front [64]. Therefore,
in order to achieve a comprehensive analytical coverage of the metabolites present
in complex biological samples, multiple chromatography types are frequently used
[62].

The second chromatography type frequently used in metabolic profiling studies is
HILIC. HILIC, as first suggested by Alpert in 1990 [65], is based on the use of a polar
stationary phase with a mobile phase similar to those employed in the RP-LC sepa-
ration (Figure 1.3) [66]. A range of materials can be used for the HILIC columns, such
as bare silica or silica gels modified with polar functional groups. The early HILIC
columns were silica gels modified with diol or amide functional groups [66]. Mod-
ern HILIC columns provide increased stability over a broad range of pH and tem-
peratures due to hybrid organic/inorganic packing materials, for example, bridged
ethylsiloxane/silica hybrid (BEH) particles [67]. It is believed that the separation of
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FIGURE 1.3: RP-LC and HILIC-LC are the two most frequently used chromatography types
in metabolic profiling studies. In RP-LC, the mobile phase is more polar then the stationary
phase, which is usually made of porous silica particles that have straight octadecyl carbon
chains (C18) covalently bound to them. In HILIC-LC, polar chromatographic surfaces are
used, such as silica gel bounded with dihydroxypropyl (diol) functional groups. Gradient
elution is achieved by changing the mobile phase composition by mixing the polar and non-
polar solvents in different proportions during the chromatographic separation.

analytes is achieved by the balance of multiple factors:

• Partitioning the analyte between two mobile phase layers of different polarity.
When a mobile phase is composed of primarily acetonitrile and a minimum of
23% of water, an acetonitrile-rich and a water-enriched layer adsorbed onto the
hydrophilic stationary phase develop [65]. Consequently, polar hydrophilic
molecules are preferentially solubilized into the water layer, and thus, strongly
retained (Figure 1.4).

• Weak electrostatic interactions between charged analytes and the ionized
groups of the stationary phase [68].

• Hydrogen bonds, or direct interactions between the analyte and the stationary
phase, have also been suggested to play a role in analyte retention in addition
to the partitioning into the water layer [69].

The separation of analytes is achieved by decreasing the difference in polarity be-
tween the bulk and the adsorbed layer, i.e. by increasing the water content in the
mobile phase (Figures 1.3 and 1.4) [69]. Due to the ability to separate polar analytes,
HILIC has been applied to the analysis of polar metabolites, such as amino acids,
organic acids and sugars, which elute closely together under RP conditions. Never-
theless, HILIC tends to produce broad and asymmetrical peaks, which complicate
automatic peak detection and analysis, and suffers from irreproducible retention
time and analytical drift when multiple samples are analysed [70].
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FIGURE 1.4: The HILIC partitioning of a polar analyte into the water layer of the mobile
phase adsorbed on the surface of the hydrophilic phase. Scheme adapted from Greco and
Letzel, 2013 [69].

The efficiency of a mixtures separation is improved when high performance liquid
chromatography (HPLC) systems are employed in place of traditional chromatogra-
phy. HPLC relies on pumps to pass mobile phase and the sample of interest through
the column at high pressure (50 - 350 bar). While HPLC provides good separation,
by decreasing the size of the column particles to 1.7µm, a significantly increased
peak separation can be achieved. In such chromatography systems, known as ul-
tra performance liquid chromatography (UPLC), the pressure is raised even further
to 800 bar to account for the increased particle resistance and achieve much shorter
run times [71]. The efficiency of chromatographic separation is characterised by the
plate count (N), which is a concept adapted for liquid chromatography from early
work with distillation columns [72]. Plate count is a ratio of column length (L) to the
theoretical plate height (H), as in:

N =
L
H

(1)

where H is also defined as height equivalent to a theoretical plate (HETP). HETP
relates to various flow and kinetic parameters leading to peak broadening, the rela-
tionship of which is captured in the van Deemter equation [73], as follows:

HETP = A +
B
u
+ (Cs + Cm)× u (2)

where, A is eddy diffusion parameter (the dispersion of individual molecules in the
column that relates to the particle bed of the stationary phase and therefore is charac-
teristic of a given column); B is diffusion coefficient (the spread of eluting particles
in the longitudinal direction, dependent on the column diameter and diffusion of
the mobile phase); C is resistance to mass transfer coefficient of the analyte between
mobile (m) and stationary phase (s), and u is the linear velocity of the mobile phase.
Low HETP values lead to higher separation resolution, as in Equation 1, as well as
increased analysis speed. In UPLC, as illustrated in Figure 1.5, low HETP values
are achieved by using columns packed with smaller, uniformly-sized particles and
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FIGURE 1.5: Van Deemter equation describes that chromatographic separation efficiency
varies with the mobile phase velocity and particle size. The curves of theoretical plate height
(HETP) values achieved with increasing mobile phase velocities (u) for thee particles of dif-
ferent sizes are demonstrated.

by increasing the flow rates of the mobile phase. However, as the particle size de-
creases, and/or the mobile phase velocity increases, higher force is required to move
the mobile phase through the system, which represents one of practical limits on the
performance of UPLC systems. Nevertheless, in the field of metabolomics, HPLC
have been largely superseded by UPLC analyses, which will also be utilised in this
work.

1.2.2 Analyte detection by mass spectrometry

While LC is capable of separating a sample mixture into its components - differ-
ent compounds - according to their physicochemical properties, in order to identify
and/or quantify the analytes eluting from the chromatography column, a detector
system is required. Such a role can be performed by mass spectrometry (MS), which
is an analytical technique based on the use of a mass spectrometer. MS analyses gas-
phase ions by separating them according to their mass-to-charge ratio (m/z), which
is the mass of an ion on the atomic scale divided by the number of charges the ion
carries [74]. The intensities of the separated ions are recorded as a mass spectrum,
which represents the distribution of m/z values in a given sample.

A typical mass spectrometer consists of three essential components - an ion source,
a mass analyser and a detector. The first and the most critical step in MS-based anal-
ysis is ionisation since the ability to detect and quantify an analyte is determined by
the degree of its ionisation. Early hyphenated LC-MS systems relied on the use of at-
mospheric pressure chemical ionisation (APCI) as the ion source. APCI is one of the
few ionisation techniques that are suitable for coupling LC to MS which requires not
only analyte ionisation, but also solvent desolvation, i.e. solvent vaporisation. Even
though APCI provides a high dynamic range, is easy to operate, stable and tolerant
to high buffer concentrations, in metabolite profiling it has been largely superseded
by electrospray ionization (ESI) [75]. While the exact mechanism by which ions in
solution are converted to ions in the gas phase is still debated, ESI generally works
by forcing the solution of an analyte through a small capillary, to which a voltage
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FIGURE 1.6: Scheme of the mechanisms of ion formation in electrospray ionisation. Diagram
adapted from Gaskell 1997 [78].

is applied [76]. Dispersion of the solution through charged capillary results in pro-
duction of charged droplets at the capillary tip. These solvent droplets move down
an electric field imposed between the capillary tip and a metal plate, which pre-
vents them from freezing and promotes solvent evaporation (Figure 1.6). As solvent
evaporates, the droplet radius decreases, resulting in charge density build-up at the
surface. Such droplets become unstable and eventually undergo so called coulomb
fission, emitting analytes as ions. ESI ionisation efficiency is highly dependent on
solvent (e.g. through mobile phase additives, such as ammonium salts), polarity
mode and applied voltage, all of which contribute to droplet formation [77]. Simi-
larly to APCI, ESI principally produce ions of the intact analyte molecule, usually in
the form of the protonated molecule, for example, [M + H]+, where M is the molec-
ular mass of the analyte. However, due to adduct formation, different species can be
formed through clustering with the solvent molecules, for example, potassiated and
sodiated analyte ions [M + K]+ and [M + Na]+ [74]. In ESI, little fragmentation of
the analyte can also occur.

Ions produced at the ion source are next separated according to their m/z by the
the mass analyser. Multiple methods for ion separation have been developed, each
of which has different accuracy and resolution performance. The term resolution
relates to the separation of ions of two different m/z values and pertains to mass
spectrometry data. Whereas resolving power is a function of a mass spectrometer and
is defined as the difference in m/z values (∆M) of ions that can be separated from
one another by a given mass spectrometer, divided into a specific m/z value (M), as
in the IUPAC definition:

R =
M

∆M
(3)

Given the definition, R will be different at every m/z value. Therefore, both exact
M and also the method for defining the peak width necessary for separation at this
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TABLE 1.2: Typical analytical parameters of most commonly used mass analysers. The broad
ranges of parameters indicate that the specifications are often instrument and brand-specific.
For example, Agilent 6230B TOF-MS is capable of providing 22k FWHM resolution, whereas
Waters LCT-Premier TOF-MS instrument can achieve >10k FWHM resolution.

Mass spectrometer
Resolving power
(50% FWHM)

Mass accuracy
(ppm)

Scan speed
(scan/sec)

Mass range
(m/z)

FT-ICR 100k - 10,000k 0.1 - 1 1 100 - 2k
Orbitrap 15k - 500k 0.5 - 1 <12 50 - 6k
Q-TOF 10k - 50k 1 - 5 20 - 50 50 - 30k
TOF 1k - 22k 1 - 5 50 - 500 25 - 20k

mass, ∆M, such as full width at half maximum (FWHM), must be given. High reso-
lution mass spectrometry (HRMS) generally refers to mass analysers, which have a
mass resolving power M/∆M50% of > 10k [79]. Typical values for most commonly
encountered mass analysers as summarised in Table 1.2. Since high mass resolution
is required to deconvolute complex mixtures, such as human biofluids and whole-
cell lysates, it is the key property when choosing a mass spectrometer for metabolic
profiling studies[80].

The other essential criteria for a mass analyser is high m/z values measurement accu-
racy. The higher the accuracy of the measured mass, the fewer potential molecular
formula can be assigned to it, which aids compound identification process. The ac-
curacy of a mass measurement indicates the deviation of the instrument response
from the calculated monoisotopic mass [81]. Accuracy is is often reported via the
statistical error in parts per million (ppm), as in:

ppm =
(measured − theoretical)

(theoretical)
× 106 (4)

Finally, the other important criteria to consider when selecting a mass analyser for
metabolic profiling studies are the ability for rapid data acquisition (scan rate) and
detection of a wide range of m/z values (mass range) (Table 1.2).

Among the numerous mass analysers that have been developed up to date, the most
common in the field of metabolomics are Orbitrap and time-of-flight (TOF) mass
analysers. Orbitrap, invented by Makarov in 2000 [82], operates on a similar prin-
ciple as other ion trap mass analysers, such as fourier transform ion cyclotron reso-
nance (FT-ICR), invented by Comisarow and Marshall in 1974 [83]. In both FT-ICR
instruments and Orbitrap, ions are trapped in a vacuum initiating harmonic axial
oscillations. As the frequency of the oscillations are proportional to the mass of the
ions, detected and Fourier-transformed oscillations are eventually converted into a
mass spectrum [84]. Whereas in FT-ICR instruments ions are trapped in a strong
magnetic field combined with a weak electric field, in Orbitrap ion motion is de-
termined only by the electrostatic field [84]. The consequence of this difference is
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FIGURE 1.7: Schematic representation of a time-of-flight (TOF) mass spectrometer. All ions
receive the same kinetic energy during acceleration by an electric field of known strength.
However, ions have different m/z values and thus different velocities. Smaller masses (i.e.
m/z) will have larger velocities and will reach the detector sooner. For simplicity of illustra-
tion, the scheme depicts a linear TOF mass spectrometer that does not have an ion mirror.
Adapted from Watson and Sparkman, 2007 [74].

that Orbitrap has a significantly slower decrease of resolving power with increas-
ing m/z. Nevertheless, both mass analysers are characterised by very high resolving
power (Table 1.2). The main disadvantage of ion trap mass analysers with regards
to metabolic profiling is low data acquisition rate since during the trapping phase
data recording is off.

TOF mass analysers have been playing an increasing role in metabolic profiling since
the first demonstration of the possibility of coupling ESI ion source to a TOF instru-
ment in 1994 [85]. The basic operating principle of TOF mass analysers is to measure
the time required for an ion to travel from the ion source to the detector (Figure 1.7).
All ions at the electron gun are accelerated by an electric field of known strength. As
a result, all ions have the same kinetic energy, therefore their velocities in the vac-
uum depends only on their m/z values, with heaver ions taking more time to reach
the detector. A single mass spectrum is obtained by the acceleration and detection
of a set of ions from the ion source to the detector. A complete spectrum can be
obtained every few microseconds, with multiple transient spectra usually averaged
into a single spectrum [86]. Such pulsed mode of operation is sufficient to detect
metabolites with high sensitivity and virtually unlimited mass range at rapid data
acquisition rate [87]. To improve the resolving power of a TOF mass spectrometer,
an ion mirror, also known as the reflectron, can be employed (Figure 1.8). Such an
ion mirror, operating in the form of an electric field, effectively doubles the flight
distance in the same space and reflects ions of the same m/z that have different ve-
locities [74]. Reflectron, can increase the resolving power from 1k FWHM to as much
as 22k FWHM. Therefore, modern TOF mass analysers are ideally suited to profiling
LC eluent.

A hybrid quadrupole-time-of-flight (Q-TOF) system has been increasing used in
place of TOF-based analyses. The first element in such a mass analyser, the
quadrupole, is traditionally used on its own in tandem mass spectrometry (MS/MS)
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FIGURE 1.8: A simplified scheme of LC-Q-TOF mass spectrometer. Diagram adapted from
Watson and Sparkman, 2007 [74].

to acquire a mass spectrum of a mass spectrum as part of a technique known as tan-
dem mass spectrometry (MS/MS) [74]. The most common MS/MS spectrometer is
triple quadrupole mass spectrometer (TQMS), which comprises of two quadrupole
mass analysers and a collision cell (a quadrupole operating in radio frequency only)
in between them. The first quadrupole in the tandem arrangement is used for selec-
tion of precursor ions derived from the ion source. The precursor ion is directed to
the collision cell, in which it collides with the neutral atoms of the collision gas (usu-
ally nitrogen) to convert its kinetic energy to internal energy. This process drives
precursor ion decomposition/fragmentation into the product ions, which are subse-
quently analysed by the third quadrupole. The resulting MS/MS spectrum contains
new structural information that aids subsequent metabolite identification process.

In Q-TOF hybrid mass spectrometer, product ions generated in a collision cell are
captured by a TOF mass analyser. Waters brand (Waters Corp., Milford MA, USA)
Q-TOF-MS instrument Xevo G2-S also contains a module with ion transfer optics for
increased ion transfer efficiency from ion source to the quadrupole analysers (Figure
1.8). Product ions leaving the quadrupole then enter an additional ion guide module
that utilizes non-uniform, moving electric fields and/or voltage devices to separate
ions on the basis of size, shape and charge. Ions leaving the ion guide are then trans-
mitted to the pusher and are accelerated orthogonally by the pusher voltage. In the
TOF flight tube, ions separate according to m/z and are focused by the reflectron
grid voltage, while their arrival time at the detector is accurately measured. Such
instrumental setup results in high mass accuracy and improved resolving power,
significantly enhancing sample definition. Since precursor ion selection and frag-
mentation can be disabled, Q-TOF instruments can also be used to acquire MS rather
than MS/MS spectrum. Therefore, Q-TOF mass spectrometer has been regarded as
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TABLE 1.3: LC-MS-based analytical platforms suffer from unwanted analytical variantion,
which falls into three broad categories. The examples of the most common sources of ana-
lytical variation are provided.

Random Run order dependent Compound-specific
Measurements m/z, RT m/z, RT, intensity RT, intensity

Causes
column contamination & ageing,
experimental conditions
(e.g. pressure)

ion suppression,
ionisation efficiency

one of the superior tools for global metabolic profiling of complex biological sam-
ples, particularly when coupled to electrospray ionisation sources [80]. This work
will focus on data acquired with an ESI-Q-TOF mass spectrometer.

1.2.3 Analytical variation in LC-MS experiments

The complexity of the LC-MS-based analytical techniques that are applied to
metabolomics studies often lead to uncontrolled variance, which is not related to the
desired biological variation resulting from the conducted experimental design [88].
Such variation is known as technical, or analytical, variation, which may distort or
obscure subsequent data analysis. The most common sources of analytical varia-
tion are summarised in Table 1.3 [89–95]. While some of the observed variation is
random, the most challenging is the run-order-dependent and analyte-specific vari-
ation, which cannot be modelled using monotonic functions. The phenomenon of
the run order effect relates to the combined changes in the LC-MS system, such as
the chromatographic column, ion source and MS detector, the performance of all of
which deviates during continuous sample analysis. Furthermore, a vast proportion
of the unwanted variation in LC-MS data is specific to a given analyte, or a class
of related analytes. Such variation is particularly challenging in large-scale studies,
where the combined run order-dependent and analyte-specific effects lead to con-
voluted spectra processing, producing inaccurate datasets. Such analytical variation
patterns are investigated in detail in Chapter 2.

1.2.4 LC-MS spectra processing

The use of LC-MS systems to simultaneously separate and detect analytes generates
complex data, which comprises of a large number of consecutively acquired mass
spectra, or scans. The index of a scan is representative of retention time. The col-
lection of scans for a single LC-MS experiment can be viewed a three-dimensional
landscape of peaks, described by their m/z, RT and intensity (Figure 1.9). Such com-
plex LC-MS data can be visualised in multiple ways. The chromatographic domain
of the data can be evaluated by summing the intensities of all mass spectral peaks in
a given MS scan and creating a total ion chromatogram (TIC). As TIC includes both
analyte-derived signals and noise, peaks corresponding to analytes can be concealed
in such data representation. Therefore, base peak intensity chromatograms (BPI),
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FIGURE 1.9: LC-MS analysis generates complex data that comprises of a large number of
consecutively acquired mass spectra, or scans. The collection of scans obtained from a single
LC-MS experiment can be interpreted as a three-dimensional landscape of peaks, described
by m/z, RT and intensity.

representing the intensity of the most intense peak at every scan, are sometimes
used instead. To visualise the chromatogram of one or more analytes of interest, the
intensity of the signal arising from the corresponding m/z values are extracted from
every scan and represented as an extracted ion chromatogram (EIC).

To quantify the analytes in a given metabolomics sample based on the information
in the acquired LC-MS data, the signals corresponding to different ion species must
be extracted. Such data pre-processing leads to significant data reduction and yields
a list of features, each corresponding to a single species, characterized by m/z, RT
and abundance (i.e. intensity). Features intensity measurements, correlating to rela-
tive concentration in the samples, can be subjected to statistical analyses in order to
derive biological insights.

A wide range of pre-processing tools have been developed for LC-MS data. Among
the most popular ones are open-source tools: XCMS [96], MZMine and MZmine2
[97, 98], OpenMS [99], MetAlign [100], as well as workflow-based systems, such as
XCMS Online [101], MAVEN [102], Galaxy [103] and Workflow4Metabolomics [104].
While the sequence of pre-processing steps, as well as the exact algorithms applied at
each stage, vary from one software to another, the generally accepted pre-processing
pipeline comprises of the following steps:

• Peak detection identifies signals in the three-dimensional LC-MS data space
(RT, m/z, intensity). Implemented algorithms are often based on continuous
wavelet transformation to fit the shape of the chromatographic peak and inte-
grate its area [105–107]. However, all of the highly cited algorithms are known
to report false peaks [108]. In the case of the current gold standard, the cent-
Wave algorithm, false positive peaks are reported because of local noise under-
estimation [109].
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• Feature alignment/correspondence finds corresponding peaks across all samples
and joins them into features. Alignment is particularly sensitive to RT devia-
tions [57, 95] and represents an unsolved issue in the field of metabolic profil-
ing.

• Retention time correction aims to correct for RT drifts between samples, which
improves feature alignment accuracy. Due to limited knowledge of how differ-
ent chemical classes behave under different LC conditions, this pre-processing
step is least standardised.

• Missed peak filling integrates raw data of a sample for a peak that was not de-
tected by the first step in the pipeline. Peak filling sometimes is omitted since
it relies on correct signal-to-noise estimation [96] and therefore can potentially
integrate noise rather than a true signal. Furthermore, if false positive peaks
are being subjected to peak filling, notoriously noisy datasets are produced.

The advantages and limitations of different pre-processing tools are discussed in
detail in Chapter 3.

1.2.5 LC-MS spectra annotation and metabolite identification

Annotation and identification are two terms that are being used interchangeably,
however, they represent very different concepts. Spectral feature annotation is its as-
signment to a potential chemical entity given its measured properties, while metabo-
lite identification requires a comparison of experimental data to data acquired for
authentic chemical standards [110].

Spectral features annotation and identification represents one of the most time-
consuming steps in metabolomics studies. Nevertheless, without accurate metabo-
lite identification, biological data interpretation is very convoluted. Several types
of data are applied for metabolite annotation and identification: (1) accurate mass
(AM); (2) chromatographic retention time (RT), (3) information about the sample
and (4) fragmentation pattern (MS/MS) [111].

Routinely applied identification workflow for untargeted LC-MS data usually starts
with matching the accurately measured m/z to molecular formulas in databases
[112]. Even if prior knowledge, such as the chemical classes that are likely to elute
under given LC conditions (i.e. at the particular RT) or be present in certain bio-
logical samples, can be applied to constrain the large search space composed of all
potential molecular formulas, m/z matching alone can only yield putative annota-
tions. The likely candidates are usually further investigated by recording MS/MS
spectrum. The detected MS/MS fragments originating from the same molecule are
used to elucidate the chemical formula and structure of the unknown metabolite
[74].
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FIGURE 1.10: A hybrid Q-TOF mass spectrometer allows to acquire a MS/MS spectrum
using multiple methods: (1) data-dependent acquisition (DDA); (2) sequential window ac-
quisition of all theoretical fragment-ion spectra (SWATH) and (3) MSE techniques.Figure
adapted from Zhu et al. 2014 [113].

Hybrid Q-TOF-MS systems allow to acquire MS/MS fragmentation data in three
ways. While high-resolution MS spectra is collected by disabling the precursor ion
selection and fragmentation (Figure 1.8), MS/MS data can be acquired by enabling
the precursor ion selection at quadrupole Q1 with either narrow, medium or wide
pass mode, followed by fragmentation under high collision energy (Figure 1.10)
[113]. During data-dependent acquisition (DDA), only ions meeting pre-defined cri-
teria are selected and fragmented. DDA is normally operated to select ions within a
narrow m/z window, typically 1 - 3 Da wide, or the most intense ions in a spectrum.
DDA is usually performed as part of a standard untargeted metabolomics workflow
during which acquisition of a full MS spectrum is followed by DDA. The method si-
multaneously obtains both quantitative and structural information for a given sam-
ple and therefore can aid both sample characterisation and metabolite identification
[114]. Nevertheless, when precursor ion selection is based solely on the intensity in
a given spectrum, the presence of any abundant contaminant is likely shift the re-
sults away from the unknown metabolite of interest. By contrast, data-independent
(DIA) methods can acquire MS/MS fragmentation data for all precursor ions at the
same time, significantly increasing the coverage of observed metabolites [115]. DIA
methods include a technique known as SWATH (sequential window acquisition of
all theoretical fragment-ion spectra), which operates under a medium pass mode.
With SWATH, precursor ion selection occurs in cycles, during which ions within a
medium m/z window, such as 20 Da wide, are selected and fragmented [113]. These
selection windows cover the whole m/z range of interest and thus provide struc-
tural information on many more metabolites than DDA alone. The least selective
MS/MS data acquisition mode is called MSE, which records all product ions for all
precursor ions and therefore produces highly complex MS/MS spectra that often
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requires additional data deconvolution step in order to extract the original spec-
tra for a given metabolite [115]. MS/MS spectra acquired for study samples aids
compound identification process by providing information on metabolite chemical
structure and functional groups, which is facilitated by a growing number of spec-
tral databases and tools. Nevertheless, all likely candidates must be validated with
authentic chemical standards [111].

Multiple computational strategies for can be taken to accelerate identification pro-
cess, which include the analysis of naturally occurring isotopes, MS spectra adducts
and fragments, as well as various correlation techniques. These are evaluated and
discussed in detail in Chapter 4.

1.2.6 Thesis aims and structure

The overall aim of the work comprising this thesis is to deliver an improved
pipeline for LC-MS spectral pre-processing and annotation capable of supporting
the metabolic profiling of large-scale epidemiological studies.

The specific objectives of this thesis are (Figure 1.11):

• To characterise the analytical variation observed in a large-scale metabolic pro-
filing study (Chapter 2).

• To develop and implement a pre-processing pipeline that accommodates the
observed analytical variance in large sample set profiling (Chapter 3).

• To demonstrate the utility of the suggested pre-processing approach for auto-
mated metabolite identification (Chapter 4).
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FIGURE 1.11: The development of LC-MS spectra processing and annotation pipeline can
be divided into a number of conceptual steps. The results of each step are presented as a
separate results chapter in this thesis.
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Chapter 2

Characterisation of analytical
variation in a large-scale metabolic
profiling dataset

2.1 Introduction

In metabolic profiling studies, a snapshot of the metabolome is obtained, which can
be used to derive observations on the effects of the experimental conditions on the
biological system studied. However, extracting relevant biological information from
metabolic profiling data represents a major challenge.

Data acquired with untargeted LC-MS assays is firstly processed to detect chromato-
graphic peaks in each sample, which then must be aligned/grouped between all
samples into so called "features", each representing a unique ion. The relative con-
centrations of these ions can be analysed mathematically to model alterations in
metabolism in response to the experimental conditions studied, ultimately identi-
fying the metabolites inflicted in the changes. However, the process of detecting and
grouping chromatographic peaks, as well as identifying the corresponding metabo-
lites is highly complex. Besides the desired biological variation resulting from the
conducted experimental design, metabolomics data also contain other types of vari-
ation. While removal of unknown biological variation, such as varying biofluid sam-
ple concentration [116] or differing cell sizes [117], is commonly attempted through
various scaling/normalisation methods [118], a huge proportion of unwanted vari-
ation originates from errors associated with sample handing (e.g. during sample
preparation) and data acquisition [119]. Multiple sources of analytical variation oc-
curring during data acquisition are known: (1) changes in the LC column perfor-
mance over time, for example, due to stationary phase contamination by the injected
samples [120]; (2) changes in the MS system, such as decreasing MS detection sen-
sitivity or ion suppression from co-eluting compounds [88]; (3) alterations in exper-
imental conditions, such as temperature, pressure, mobile phase composition [121].
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Analytical variation is often systematic and therefore different statistical methods
are required to remove it in order to preserve the meaningful biological information.

To reduce the levels of unwanted variation and ensure high data quality, a number
of quality assurance (QA) and quality control (QC) processes must be followed. QA
processes focus on providing confidence that quality requirements will be fulfilled
during data acquisition and therefore mostly relate to procedures applied in prepa-
ration for the study, such as staff training, laboratory and instruments maintenance
and calibration, methods validation and documentation [122]. QC processes, on the
other hand, concentrate on fulfilling quality requirements and thus relate to steps
taken during and after data acquisition, including, but not limited to, analysis of
measurement standards, spiked samples, blank samples and QC samples [123].

Clear quality guidelines have been established for targeted assays, which are utilised
in drug development projects and therefore are tightly regulated by various national
and international regulatory bodies, such as the Food and Drug Administration
(FDA) in the United States [124]. However, the objective of untargeted assays is
to measure as many metabolites as possible, including unknowns. The lack of com-
munity agreed-upon QA/QC guidelines for untargeted assays is reflected in the
responses to the Metabolomics Society questionnaire undertaken in 2015 [125]. Fol-
lowing the recommendations outlined by the questionnaire respondents, a two-day
Think Tank on QA and QC for untargeted metabolomic studies was held and the
metabolomics QA and QC consortium was established in 2017 [126].

While community-level guidelines for untargeted metabolomics QA are not avail-
able at the moment, numerous efforts have been made recently to promote good
practices that are already being applied in the field (for example, [62, 64, 92]). The
common strategies include the use of a pooled QC sample, which is often created by
taking a small aliquot of each biological sample in the study [124]. Such a pooled QC
sample should represent the aggregate metabolite composition of all of the samples
in a study. Its primary role is therefore to enable the estimation of the variability in
the measurements of each metabolite in the study. Multiple applications of a pooled
QC sample have been suggested. Firstly, pooled QC samples are frequently used
to "condition" the analytical system prior to analysing the study samples [63, 127].
Usually, the QC sample is injected 5 to 10 times at the beginning of the run to sta-
bilise the retention time and detector response. Furthermore, QC sample is analysed
periodically throughout the analytical batch, usually at least every 10th sample. Re-
peated measures enable to obtain quality metrics, such as measurement precision,
for metabolites that are present in the QC samples, as well as to detect and correct for
systematic intensity variation associated with injection order. Multiple mathematical
models have been proposed for the correction of run order effect using QC samples,
such as linear regression [93], locally estimated scatterplot smoothing (LOESS) [92]
and cubic spline function [119]. Even though the use of pooled QC sample is be-
ing increasingly advised, alternative QC strategies have been suggested as well. For
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example, within-batch drift correction was performed through Bayesian clustering
of features in [128], whereas feature quality assessment based on the missing rate
pattern along the injection order was performed in [129].

Other standard QC procedures for untargeted assays include the use of internal
standards, which are added to every sample before and after metabolite extrac-
tion so as to be present at the same concentration. Internal standards are used to
model unwanted variation and subsequently normalise acquired data by, for ex-
ample, subtracting the log abundance of a single standard from the log metabolite
abundances in each sample [117]. Such approach is based on the assumption that
every metabolite experiences the same amount of unwanted variation, however,
compound-specific variation has been observed [130]. Therefore, the use of mul-
tiple internal standards is strongly advised to cover a range of retention time and
m/z values, as well as different physico-chemical properties [118, 131]. The choice of
the internal standards ultimately depends on the chromatographic assay of choice,
the metabolome of the samples studied, availability and cost [124]. Additionally,
endogenous metabolites can also be used as internal standards [117].

Besides the pooled QC samples and dilution series, each analytical batch in an untar-
geted LC-MS experiment also contains blank samples. Two types of blank samples
are typically utilised in metabolomics studies. At the start of each analysis, LC-MS
system suitability is inspected by injecting saline blank samples [92]. These samples,
usually comprised of authentic chemical standards solution, can reveal any instru-
ment performance problems arising due to system contamination [124]. Similarly,
such blank samples can be injected after a series of study samples, or at the end
of an analytical batch, to inspect whether any carryover metabolites or standards
take place between samples. The second type of blank samples commonly used in
metabolomics experiments are known as process, or extraction blanks, as they are
prepared using the same sample preparation and analysis procedures as the study
samples, however, are comprised of only the solvent mixture and/or water, as well
as any internal standards [124]. Extraction blank samples represent the signals that
arise from chemicals and contaminants in the mobile phase solvents and sample pro-
cessing materials. These samples are therefore utilised to adjust data for unwanted
technical variation since metabolite features present in the extraction blanks may be
removed [43, 117, 119]. The use of blank samples therefore greatly improves the
quality of the data, which in turn helps to distinguish real biological variation in the
data.

A single unified QA/QC procedure is unlikely to suit all laboratories and analytical
assays. Following good practices most suitable in a particular situation decreases
the levels of unwanted variation. Nevertheless, analytical variation cannot be com-
pletely avoided. Therefore post-acquisition data quality control and normalisation
procedures must be followed as well.
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2.1.1 Aims and objectives

The purpose of this chapter was to explore open source pre-processing and quality
control tools for untargeted metabolic profiling studies. More specifically, this aims
of this chapter were three-fold:

• To pre-process a large-scale untargeted LC-MS study using open-source tools.

• To evaluate the observed analytical variation using post-acquisition QC proce-
dures.

• To assess the suitability of the applied tools for the analysis of the study of
interest.

2.2 Methods

2.2.1 Analytical data acquisition

A large-scale cohort study, the Airwave Health Monitoring Study (AIRWAVE), was
used as the source of extensive metabolic profiling data [132]. The AIRWAVE study
is an observational cohort study of the British police forces undertaken to evaluate
the link between the use of terrestrial trunked radio (TETRA) and a wide range of
health outcomes. AIRWAVE now has more than 36,000 participants with extensive
data on lifestyle and clinical measurements, and a wide range of biological samples.
It has been adopted as a Tissue Biobank within the Imperial College Human Tissue
Biobank.

The cohort provides two random samples of specimens known as AIRWAVE1 and
AIRWAVE2 (Table 2.1). AIRWAVE1 comprises of a random sample of 3,000 urine
and 3,000 serum specimens, which were analysed by UPLC-MS and 1H NMR us-
ing standardised protocols [133, 134] at the MRC-NIHR National Phenome Centre
(NPC) prior to the start of this project. AIRWAVE2 subset comprises of additional
2,250 plasma samples, which were analysed by commercial data provider Metabolon
using proprietary methods [135]; 1,000 of those were also analysed by the NPC.

TABLE 2.1: Datasets available within the AIRWAVE cohort.

AIRWAVE1 AIRWAVE2

n=3,000* n=1,000* n=2,250†

Serum Urine Plasma Plasma

HILIC-POS-MS HILIC-POS-MS HILIC-POS-MS RP1-POS-MS
LRP-NEG-MS RP-NEG-MS LRP-NEG-MS RP2-POS-MS
LRP-POS-MS RP-POS-MS LRP-POS-MS RP-NEG-MS
1H NMR 1H NMR 1H NMR HILIC-NEG-MS

* samples were analysed at the National Phenome Centre.
† samples were analysed at Metabolon.
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Three AIRWAVE1 serum LC-MS datasets - reversed-phase chromatography for
lipid analysis (LRP) (positive ionisation mode (POS) and negative ionisation mode
(NEG)) and HILIC-POS - were subjected to pre-processing and quality analyses.
In this thesis, the analytical details and pre-processing results are provided for the
HILIC-POS-MS dataset only. Since observations and conclusions were similar for
all three assays, it was decided to focus on the most challenging dataset, which is
characterised by more significant RT drifts, as well as lipid elution interference at
around four to five minutes, which challenge metabolite annotation.

Upon sample delivery, sorting and overnight thawing at 4°C, 39 sets of 80 samples
were formatted in 96-deep-well plates with two columns left empty for addition
of pooled QC and external reference samples. The order of the samples was ran-
domised using an in-house laboratory information management system. Each plate
here is referred to as sample batch. On the day of the LC-MS analysis, a single batch
of samples was prepared according to the standard NPC operating procedure with
minor modifications [136]. In brief, samples were thawed at 4°C for 2h. Subse-
quently, samples were spiked with HILIC internal standards (e.g. adenine-2-d1, vi-
sualised in Figure 2.6). To aid protein precipitation, acetonitrile was added to spiked
sample. The plate was centrifuged to separate the homogenous supernatant from
the precipitated protein. The resulting supernatant was dispensed into a 96-well
plate and centrifuged for 5 min prior to UPLC-MS analysis.

A HILIC UP-LC protocol optimised for large-scale metabolic profiling was used to
analyse the AIRWAVE cohort samples, as reported in Lewis et al. [62]. The chro-
matographic separation of analytes was achieved using a 2.1 Œ 150 mm Acquity
BEH HILIC column (Waters Corp., Milford, MA, USA) on an ACQUITY UPLC (Wa-
ters Corp., Milford, MA, USA) chromatography system. The solvent mixtures used
for the mobile phase were: (A) 20mM ammonium formate in water with 0.1% formic
acid; (B) acetonitrile with 0.1% formic acid. The initial flow rate of 0.6 mL/min was
used during sample loading and gradient elution, which was swiftly increased to 1.0
mL/min at 7.8 min in order to accelerate chromatography system equilibration. The
extended equilibration step, which takes almost half of the total run time, was opti-
mised for HILIC in particular, which is known to benefit from longer equilibration
stage in comparison to other chromatography methods. The initial isocratic sepa-
ration, during which the composition of the mobile phase remained constant (95%
solvent B), for the first 0.1 min was followed by a two-stage gradient: (1) a shallow
gradient between 95% and 80% of solvent B; (2) rapid gradient from 80% to 50% of
solvent B. Such a two-stage chromatographic protocol was shown to achieve approx-
imately uniform peak shape for both early and late eluting polar analytes and help
avoid broad peaks [62]. The detailed gradient conditions are provided in Table 2.2.
The chromatography system was connected to Xevo G2-S Q-ToF mass spectrometer
(Waters Corp., Manchester, UK) with Zspray electrospray ionization (ESI) source.
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TABLE 2.2: Chromatographic gradient of the HILIC method showing the duration and mo-
bile phase composition of each step. Solvents were as follows: A - 20mM ammonium for-
mate in water + 0.1% formic acid; B - acetonitrile + 0.1% formic acid.

Time (min) Flow rate (mL/min) A(%) B(%)

Initial 0.6 5 95
0.1 0.6 5 95
4.6 0.6 20 80
5.5 0.6 50 50
7 0.6 50 50
7.1 0.605 5 95
7.2 0.61 5 95
7.3 0.62 5 95
7.4 0.65 5 95
7.5 0.7 5 95
7.6 0.8 5 95
7.7 0.9 5 95
7.8 1 5 95
12.5 1 5 95
12.65 0.6 5 95

HILIC-POS-MS data was acquired in analytical batches of 1,000 samples, each of
which was made of study samples, external reference samples, study pool sam-
ples and two dilution series (Table 2.3). External reference samples came from a
large pool of serum that is maintained and used as an independent sample reference
throughout all studies within the NPC. To create the pool, 10L of bulk serum were
purchased from Seralab, homogenised, and aliquoted for long term storage [136]. A
pooled QC sample was prepared for the whole study by thawing each study sample
and combining their contents. The dilution series of the study pool samples was pre-
pared for each UPLC assay separately at 1%, 10%, 20%, 40%, 60%, 80% and 100% of
the original concentration. A single column was used for the duration of the whole
experiment and ionisation source was cleaned in between batches.

TABLE 2.3: Summary of samples acquired in each analytical batch of HILIC-POS-MS dataset
of the AIRWAVE1 serum cohort.

Batch 1 Batch 2 Batch 3

Dilution series 92 92 92
External reference 104 100 96
Study sample 1,027 995 953
Quality control 103 99 96

All 1,326 1,286 1,237
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2.2.2 Raw data conversion

Acquired proprietary Waters files were converted to open-source file format mzML
with ProteoWizard software (version 3.0.18302) using msConvert command line tool
with the following arguments:

msconvert –zlib –filter "scanEvent 1" –filter "threshold absolute 100 most-intense"

where argument –zlib refers to zlib compression for improved data storage effi-
ciency; –filter "scanEvent 1" refers to the Waters MS function to be extracted from
Waters .RAW format files; –filter "threshold absolute 100 most-intense" specifies the re-
moval of data points with less than 100 absolute intensity.

The same msConvert parameters were applied to all of the datasets analysed within
this thesis.

2.2.3 Endogenous metabolites detection and integration

A set of endogenous and xenobiotic metabolites known to be commonly present and
detectable in human serum were identified in the AIRWAVE samples. Metabolite
identification was performed by Dr Goncalo Correia and Mr Benjamin Cooper at the
NPC. In total, 46 metabolites and their main adducts and in-source fragments were
identified in the LC-MS spectra of all AIRWAVE samples using m/z and RT regions
established in previous annotation projects at NPC. The m/z and RT integrations
regions for each spectral feature were optimised for every AITRWAVE sample using
R package peakPantheR that is available on the public GitHub repository: https:
//github.com/phenomecentre/peakPantheR.

The broad integration regions for the validated metabolites are available in Ap-
pendix A. Exemplar annotation plots obtained by G. Correia and B. Cooper are pro-
vided in Appendix A.

2.2.4 Pre-processing and data quality assessment

Chromatographic peak detection, grouping and subsequent features filling was per-
formed using XCMS (version 3.0.0) [96, 107] running on R version 3.4.0. The param-
eters for centWave detection were attempted for optimisation using R package IPO
(version 1.4.0) [137]. The final set of parameters are listed in Table 2.7.

XCMS-generated datasets were subjected to post-processing data quality assessment
and correction according to standardised QC procedures for metabolic profiling [62,
92]. QC procedures were performed using Python library nPYc-toolbox [138], which
is available on GitHub at https://github.com/phenomecentre/nPYc-Toolbox.

The recommended dataset quality assessment is based on: (1) intensity correlation
to the matrix concentration in serial dilution samples, (2) relative standard devia-
tion (RSD) and (3) retention time. The correlation to dilution value for feature i is

https://github.com/phenomecentre/peakPantheR
https://github.com/phenomecentre/peakPantheR
https://github.com/phenomecentre/nPYc-Toolbox
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the Pearson correlation coefficient between the features measured concentration and
the expected concentration of the serial dilution sample [139]. Correlation to dilu-
tion, ranging between -1 and 1, therefore accurately reflects feature’s measurements
quality. As only features that respond to dilution linearly provide meaningful infor-
mation, features with low correlation values are removed.

The relative standard deviation (RSD) for each feature i is calculated from repeated
measurements, the pooled QC samples, and is defined as the ratio of the standard
deviation and the mean:

rsd(i) =
σi

µi
× 100 (1)

Feature filtering was performed according to the standard procedures at the NPC
[62]. A given feature must meet the following quality control criteria to be retained
in the dataset:

• Pearson correlation to dilution > 0.7

• RSD in study pool samples < 30

• RSD in study samples * 1.1 > RSD in study pool samples

• Elution after 0.6 min (analytes eluting as a single peak in the solvent front are
subjected to ion suppression effects)

• Elution before 10.5 min (few analytes elute near the end of the chromato-
graphic gradient)

Unsupervised multivariate analyses were employed to evaluate run order effect. Fil-
tered datasets were unit-variance scaled [140] and subjected to principal components
analysis (PCA). The optimal number of principal components was estimated using
7-fold cross-validation. K-fold cross-validation is one of the most common strategies
for the assessment of the quality of a model [141]. A K number of test sets are made
from non-overlapping subsets of the original dataset with 1

K of the samples. For each
of the K-folds, a model is trained using all of the samples that are not part of a given
test set. The model is then evaluated with the test set and the evaluation scores are
retained. K is set to 7 by default within the Python library nPYc-toolbox that was
used for data quality assessment [138].

Potential associations between the latent structures in the data and analytical and
biological sources of variation were evaluated by either correlating (for continuous
variables) or applying a Kruskal-Wallis test (for categorical variables) to each ana-
lytical parameter and PCA scores of every principal component. The investigated
sources of analytical variation are explained in Table 2.4.
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TABLE 2.4: Analytical variation sources were investigated for potential association with the
latent structures in the AIRWAVE data. Definitions for short variable names are provided.

Continuous Categorical
TOF MS chamber vacuum pressure Plate 96-well plate number
Run order Sample injection order Well Position on a 96-well plate
Detector MS detector voltage Sample batch Sample preparation batch
Collision MS collision energy Sample position Position in sample preparation batch
Backing MS vacuum backing pump flow

Run-order/batch correction method was based on the locally estimated scatter-plot
smoothing (LOESS) approach, defined in [92]. LOESS function, applied to each fea-
ture independently, is fitted to QC samples, taking a subset of samples at a time and
fitting the correction curve locally, rather than to the whole data. Intensity values
in each sample are corrected by dividing original value by the interpolated value of
the correction curve at sample’s position. The LOESS estimator smoothing param-
eter was set to 11, which is the number of QC samples to be used for local curve
fitting.

All scripts used within this and other chapters are available on the public GitHub
repository: https://github.com/lauzikaite/PhD_thesis_code.

2.3 Results

2.3.1 Analytical batches characterisation

Three AIRWAVE1 serum LC-MS datasets - HILIC-POS, lipid RP-NEG and lipid RP-
POS - were subjected to pre-processing and quality analyses. In this thesis, however,
the analytical details and pre-processing results are provided for the HILIC-POS-MS
dataset only. Since observations and conclusions were similar for all three assays,
it was decided to focus on the most challenging dataset, which is characterised by
more significant RT drifts, as well as lipid elution interference at around four to five
minutes, which challenge metabolite annotation.

The quality of the acquired HILIC-POS-MS data was examined prior to XCMS pro-
cessing. The potential drifts in intensity and retention time were investigated using
pooled QC samples. Only the QC samples that were analysed in between the study
samples were used for this task, as the first QC samples in the experiment are used
to condition the system and therefore would not accurately reflect the technical vari-
ation to which the study samples are subjected. 10 QC samples were selected from
each analytical batch to cover the full experimental run of the whole batch equally.
Therefore, in the following figures these samples are named according to their rela-
tive order in such a subset of QC samples of a single batch.

https://github.com/lauzikaite/PhD_thesis_code
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FIGURE 2.1: The distribution of total ion current signal from all detected ions in each mass
spectrometer scan versus sample acquisition time. Total ion current is plotted for 30 QC sam-
ples in three analytical batch of the AIRWAVE serum HILIC-POS-MS dataset. QC samples
were selected to cover the full experimental run of each batch equally.

A substantial signal intensity drift occurred in each analytical batch of the serum
HILIC-POS-MS experiment. This is visualised by the distribution of total ion cur-
rents (i.e. the summed intensity of all ions per single mass spectrum) in the QC
samples (Figure 2.1). The drop in the total ion current between the first and the last
QC samples in each analytical batch was clearly observed. The presence of intensity
drift represents an important issue since its effects can be large enough to mask the
subtle biological variation, particularly for low abundance metabolites, which could
fall below the limit of detection in the samples analysed later in the run. The effect
of the intensity drop on the quality of the final processed data is discussed in the
later sections of this chapter, particularly in Figure 2.10. A similar observation is
provided by the base peak intensity (BPI) chromatograms (Figure 2.2), in which a
drop in intensity over experimental run is noticeable. The most intense peak in each
spectrum tends to drop with each sample in the run.

It is important to note that intensity drift followed a similar pattern in each ana-
lytical batch - ion intensities fell in the beginning of the run and reached a plateau
in the middle of the analytical batch (Figure 2.1). This pattern can be attributed to
loss of instrument sensitivity due to initial contamination of the ion source with the
sample materials, as well as conditioning of the MS detector. Nevertheless, this does
not suggest that larger analytical batches could be easily acquired, as other types of
technical variation are introduced during extended sample analysis, mainly chro-
matographic RT deviation, which is discussed in the next section and in Figures 2.5,
2.3, 2.4 and Appendix A. LC-MS system is restored between the batches through
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thorough cleaning of the ion source components, re-calibration, conditioning and
even column replacement, if needed [43, 63, 123]. Nevertheless, BPI chromatograms
(Figure 2.2) indicate that the third analytical batch differs from the first two even
though column was not replaced during the acquisition of the HILIC-POS-MS data.
Unfortunately, such variation between batches is commonly observed [128] and is
the reason why data pre-processing is usually applied batch-wise.

FIGURE 2.2: Base-peak intensity (BPI) chromatograms of 30 QC samples in the three analyt-
ical batches of the serum HILIC-POS-MS dataset.

To evaluate the retention time drift that could have occurred during data ac-
quisition, a set of 46 endogenous and xenobiotic metabolites were identified in
raw LC-MS spectra. EIC chromatograms for ions corresponding to their main
adducts and in-source fragments were obtained for all samples analysed with
HILIC-POS-MS. The extraction of features corresponding to carnitine (Figure 2.3)
and a-glycerophosphocholine ions (Figure 2.4) indicate that chromatographic peaks
shifted between samples and in between batches significantly. Summary plots for
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other validated metabolites are provided in Appendix A. The m/z and RT integra-
tions regions for 46 ions corresponding to validated metabolites’ adducts and in-
source fragments are available in Appendix A, Table A.1.

FIGURE 2.3: Detection and integration of carnitine main adduct ion in all AIRWAVE serum
HILIC-POS-MS samples. Different colours indicate sample type: red - QC dilution series,
green - QC sample, orange - external reference sample, blue - study sample.
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FIGURE 2.4: Detection and integration of a-glycerophosphocholine main adduct ion in all
AIRWAVE serum HILIC-POS-MS samples. Different colours indicate sample type: red - QC
dilution series, green - QC sample, orange - external reference sample, blue - study sample.
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FIGURE 2.5: AIRWAVE serum HILIC QC samples retention time (RT) deviation (in seconds)
from the analytical batch median is plotted for 46 validated metabolites. Each line represents
a single QC sample that is coloured according to its acquisition order in the analytical batch.
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The extracted RT values for all validated metabolites were used to model the RT
drift observed during experimental run time. For each metabolite, the observed
RT in a given sample was compared to the median RT for that metabolite in the
analytical batch. The obtained RT deviations for every QC sample are plotted against
the average metabolite RT. Figure 2.5 illustrates that RT drift varies largely between
metabolites eluting at different times. The scale of the deviation also changes during
sample acquisition and there is gradual RT deviation from the beginning to the end
of the batch.

2.3.2 XCMS parameters optimisation

It was attempted to optimise centWave peak-picking parameters with an open-source
package IPO [137]. The IPO parameter optimisation approach is based on design of
experiments (DoE). A designed experiment comprises of a number of tests, in each
of which specific alterations are maded to the input variables. In the context of the
IPO package, DoE optimises centWave parameters by evaluating the quality of peaks
detected in each experiment. Peak picking quality in each experiment is quantified
by peak picking score (PPS), which is defined as the ratio between the number of
reliable peaks and the number of non-reliable peaks. Reliable peaks here are defined
as the peaks corresponding to stable 13C isotopic peaks, whereas non-reliable peaks
are those that do not belong to the 13C isotope cluster. Once PPS are obtained for
each experiment of the DoE, response surface models are estimated and applied to
identify the combinations of parameters resulting in the highest PPS score.

Parameter optimisation for AIRWAVE datasets was performed with a varying num-
ber of QC samples to evaluate parameters robustness. QC samples were selected
to evenly cover the full experimental run of a single batch. To reduce the computa-
tional time, starting values were set close to the expected values. Lower and upper
starting values for parameters that were optimised for HILIC-POS-MS QC samples
are listed within parentheses in Table 2.5. Parameters which were not optimised by
IPO are listed as a single starting value.
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TABLE 2.5: centWave peak-picking parameter optimisation was performed using IPO pack-
age. Optimisation was repeated using varying number of HILIC-POS-MS QC samples to
evaluate optimisation robustness. Parameters that were subjected to optimisation are listed
within parentheses, which contain lower and upper starting values. Parameters that were
provided for the IPO experiments but were not subject to optimisation are listed as a single
value.

Starting values Optimised values

Parameter All tests 5 QC 10 QC 20 QC 30 QC

peakwidth, min c(1.5, 3) 3 3 3 3
peakwidth, max c(5, 20) 26.75 26 26 26.75
prefilter, k c(4, 10) 3.4 3.1 3.4 3.1
prefilter, I c(500, 10000) 1 1 1 1
noise c(200, 1000) 1 1 1 1
snthresh c(3, 5) 4.7 4.6 4.7 4.7
fitgauss FALSE FALSE FALSE FALSE FALSE
integrate 2 2 2 2 2
mzCenterFun wMean wMean wMean wMean wMean
mzdiff 0.01 0.01 0.01 0.01 0.01
ppm 25 25 25 25 25
verboseColumns FALSE FALSE FALSE FALSE FALSE

While IPO optimisation experiments returned similar parameter values with vary-
ing numbers of QC samples, suggesting a certain level of optimisation robustness
and stability, the returned values do not satisfy our expectations. First of all, sug-
gested peakwidth of 3 to approximately 26 seconds does not reflect the peaks ob-
served in the raw spectra. A few examples of much narrower chromatographic
peaks are demonstrated by the extracted ion chromatograms for known and un-
known metabolites (Figures 2.6 and 2.7). IPO tendency for much broader peaks can
be appreciated given that a minimum of eight to ten data points across a chromato-
graphic peak are required to be able to define its shape. The high-throughput Waters
LC-MS system that was used to analyse the AIRWAVE cohort acquires 0.084 scan per
second (0.07 second scan time + 0.014 second interscan time). At such speed, a peak
with 1.5 seconds peakwidth width would have approximately 17 data points. Typ-
ically, 10 to 15 data points are sufficient to achieve high quantitative reproducibility
and to distinguish the shapes of co-eluting peaks [142]. Therefore, given the ob-
served narrow peaks and high data acquisition rate, a peakwidth of minimum 1.5
seconds would reflect the data more accurately that the value returned by IPO. Sec-
ondly, the maximum peakwidth value of 26 seconds optimised by IPO experiments
pose a danger of merging multiple peaks together. The in-house HILIC protocol
typically produces peaks of up to 10 seconds in peakwidth. The widest peak at 230
- 270 seconds, as seen in the BPC chromatogram in the earlier Figure 2.2, is actually
comprised of multiple overlapping peaks, each of which is around 10 seconds in
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peakwidth (Figure 2.8). Therefore, IPO returned value of 26 seconds is unlikely to
facilitate accurate peak-picking.

FIGURE 2.6: Extracted ion chromatogram (EIC) of spiked-in internal standard adenine-2-d1
from 30 QC samples in three analytical batches of the serum HILIC-POS-MS dataset. The
average peakwidth for this analyte was 2.5 seconds.
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FIGURE 2.7: Extracted ion chromatogram (EIC) of unidentified metabolite from 30 QC sam-
ples in three analytical batches of the serum HILIC-POS-MS dataset. The average peakwidth
for this analyte was 1.5 seconds.
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FIGURE 2.8: Extracted ion chromatogram (EIC) of unidentified metabolite from 30 QC sam-
ples in three analytical batches of the serum HILIC-POS-MS dataset. The average peakwidth
for this analyte was 1.5 seconds.

Another argument against the use of IPO optimisation for this particular dataset is
that the returned noise and prefilter parameter values are unreasonably low and in-
consistent with the raw data. The noise parameter value was optimised to 1, whereas
prefilter k and prefilter I values were set to approximately 3.1 and 1 respectively (Ta-
ble 2.5). The filtering step in the centWave algorithm allows to remove noise-level
features by retaining only the peaks that contain at least k consecutive values with
intensity of > I [107]. The IPO parameters-driven filtering step would effectively re-
tain all regions of interest in the m/z domain since peaks which appear in 3.1 scans
with intensity of > 1 would not be discarded. Visualisation of the mass spectrum at
8 minutes, which was shown to be the least intense chromatographic region in the
earlier BPC chromatogram (Figure 2.2), suggests substantially high baseline levels
(Figure 2.9). The red segments indicate m/z signals with intensity of < 500, whereas
the black segments are m/z signals with intensity of > 500. A dense floor of ion
signals suggest a noise level that is clearly higher than 1, as suggested by the IPO
experiments. Therefore, higher noise and prefilter values are required in order to
achieve high quality data.
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FIGURE 2.9: Mass spectrum of a representative QC sample at 8 min visualises high baseline
noise level even at the least intense chromatographic region. Segments in red indicate m/z
signals with intensity of < 500. Segments in black are signals with intensity of > 500.

To test the validity of IPO optimisation, centWave peak-picking was performed us-
ing the parameters returned by the IPO experiments. The number of features de-
tected per sample are summarised in Table 2.6. As suspected given the low noise
and prefilter parameter values, a large number of peaks were detected per each
sample, ranging from 16k to almost 30k. Such large number of peaks is unusual
for serum samples analysed by HILIC-POS-MS in-house. More importantly, such
large peak tables would significantly increase the computational time taken by sub-
sequent XCMS steps, which are already computationally expensive and a cluster
computing environment was required to process such a large study. Similar and
other disadvantages of using IPO for automatic parameter selection was discussed
in Alboniga et al. [143] where it was concluded that IPO might lead to unrealistic
parameters when challenging datasets are investigated.
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TABLE 2.6: centWave peak-picking was performed using the parameters optimised by IPO.
The number of detected peaks per single HILIC QC sample are listed for each each experi-
ment, which was run with varying number of QC samples.

Number of detected peaks

QC sample 5 QC samples 10 QC samples 20 QC samples 30 QC samples

1 24678 24933 24650 24678
2 16912 20684 19977 19927
3 21975 17072 20429 26295
4 20527 21323 21765 20469
5 23332 22202 16883 21762
6 - 21125 20844 19451
7 - 20719 21091 16912
8 - 16774 22591 21074
9 - 23555 21997 29000
10 - 29367 28175 21098
11 - - 20902 15628
12 - - 22842 22876
13 - - 20530 21975
14 - - 19683 24687
15 - - 16595 20222
16 - - 21486 20921
17 - - 23315 24634
18 - - 21976 15978
19 - - 29020 20527
20 - - 20787 16962
21 - - - 18733
22 - - - 16608
23 - - - 19932
24 - - - 21152
25 - - - 23332
26 - - - 22239
27 - - - 19995
28 - - - 29044
29 - - - 21462
30 - - - 21187

Min 16912 16774 16595 15628
Max 24678 29367 29020 29044



Chapter 2. Characterisation of analytical variation in a large-scale metabolic
profiling dataset

41

2.3.3 XCMS pre-processing

Following unsatisfactory IPO optimisation, it was decided to select XCMS parame-
ters by manually investigating raw LC-MS spectra. Final XCMS parameter values
are listed in Table 2.7. Retention time adjustment using the OBI-warp method would
be a preferred strategy [144]. However, the corresponding retcor.obiwarp method in
XCMS version 3.0.0, which was available at the time of analysis, could not han-
dle that many samples at once, all of which have slightly varying number of scans.
While this bug had been fixed in the new XCMS 3 interface and the underlying
methods, the peak-picking method that was required for the version 3 interface,
findChromPeaks, took enormous amount of memory: 2 - 3 TB of RAM for a single an-
alytical batch of 1,300 samples. Therefore, it was decided to use the original XCMS
interface with retcor.peakgroups method for retention time adjustment (Table 2.7).
Given that XCMS feature alignment methods do not distinguish within-batch and
between-batch variation [96] and the observed batch effect in intensity and retention
time drift, XCMS was applied to each batch separately using the same parameters.

XCMS pre-processing was applied to each of the analytical batches separately due
to significant intensity drift and detectable chromatographic retention time drift be-
tween the batches, as discussed in the earlier section. First, centWave peak-picking
method was applied. The number of detected peaks varies between the batches
(Figure 2.10). The third analytical batch stands out from the first two since all types
of samples have fewer centWave-detected peaks per sample. Such clear differences
are mostly explained by the intensity drift, as illustrated in Figures 2.1 and 2.2. The
batch-wise differences are also visible in the total ion chromatogram (TIC) of XCMS
reported features (Figure 2.11).

centWave-detected peaks were grouped into features using the XCMS density
method, which is a kernel density estimation algorithm applied to slices of m/z to
group the peaks close in retention time. To correct for RT deviations between sam-
ples, RT adjustment was performed using XCMS retcor.peakgroups method, which is
based on a local regression model that uses so called "well-behaved" peak goups as
anchors. In these groups, fewer than 10 samples have no peaks assigned and fewer
than 10 samples have more than one peak assigned to the group (parameters miss-
ing and extra respectively). The well-behaved groups that were identified after the
initial round of grouping are demonstrated in the ions maps in Figure 2.12. A small
number of peak groups pass the selection criteria: 42, 28 and 25 in the three ana-
lytical batches respectively. These automatically selected and unevenly distributed
features were used to align the RT of all features across all samples.

The results of the RT correction are visualised in Figure 2.13. In comparison to the
observed RT drift for the annotated metabolites (Figure 2.5), XCMS-mediated RT
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correction in a given sample was applied much more evenly across the chromato-
graphic domain. Furthermore, no RT regions were corrected for more than 3 sec-
onds, whereas the observed RT drift in some cases was more than 10 seconds.

TABLE 2.7: XCMS methods and their parameters used in the pre-processing of AIRWAVE1
serum HILIC-POS-MS datasets. Note that original XCMS interface was employed in the
pre-processing. Corresponding methods have different names in the newest XCMS version
3 interface. Methods are listed in the order of use.

XCMS

Method Parameter Value

xcmsSet peakwidth c(1.5, 14)
prefilter c(10, 3000)
noise 500
snthresh 5
fitgauss FALSE
integrate 2
mzCenterFun wMean
mzdiff 0.01
ppm 25

group method density
minfrac 0
minsamp 0
bw 2
mzwid 0.01

retcor.peakgroups plottype none
smooth loess
missing 10
extra 10
span 10

group method density
minfrac 0
minsamp 0
bw 2
mzwid 0.01

fillPeaks method chrom
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FIGURE 2.10: Number of centWave-detected peaks differs between different types of samples
in three AIRWAVE HILIC-POS-MS analytical batches.

FIGURE 2.11: Total ion chromatograms of XCMS reported features for all analysed AIR-
WAVE samples.
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FIGURE 2.12: Ions maps of centWave-detected and density-grouped features for three AIR-
WAVE analytical batches. The dark triangles represent the well-behaved features that were
selected by the XCMS algorithm to act as anchors for kernel density based RT correction.
These well-behaved features are few and clustered together, leaving a large proportion of
the ion maps uncovered during RT correction.
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FIGURE 2.13: XCMS retcor retention time correction method was applied during AIRWAVE
serum HILIC pre-processing. The deviation between the raw and the XCMS-corrected RT
values in all QC samples in three analytical batches is plotted against the corresponding
mass spectrometer scan (here presented as retention time in seconds). Each line represents a
single QC sample that is coloured according to its acquisition order in the analytical batch.



Chapter 2. Characterisation of analytical variation in a large-scale metabolic
profiling dataset

46

2.3.4 Processed data quality assessment

To evaluate the quality of the XCMS-processed AIRWAVE data, a standard quality
control procedure was applied using Python library nPYc [138]. First, the analytical
precision of the obtained features was examined. The distribution of relative stan-
dard deviation (RSD) values estimated for all features across pooled QC samples is
concentrated around 19% and is similar for all three batches (Figure 2.14). The dis-
tribution of correlation to dilution coefficients varies slightly between the batches,
with the first one having a higher proportion of features with Pearson coefficients
around 0.

Removal of low quality features according to the QC standards described in Section
2.2.4 produced datasets of relativity similar sizes even though the initial number of
XCMS features varies largely between the three analytical batches, as summarised
in Table 2.8. Overall, up to 63% of XCMS features are removed due to low analytical
precision and low correlation to dilution.

TABLE 2.8: Number of total XCMS-reported AIRWAVE features and features that meet the
quality control assessment criteria.

Analytical batch Total features Filtered features

1 24,771 11,178
2 30,155 10,881
3 19,745 10,015

FIGURE 2.15: The number of XCMS features in the three AIRWAVE HILIC-POS-MS analyt-
ical batches after QC feature filtering. Generous m/z and retention time windows of 0.001
and 10 seconds were used to find matching features between the three batches.

Common features between the three analytical batches were identified using gener-
ous m/z and retention time matching windows of 0.001 and 10 seconds. Figure 2.15
shows Venn diagrams with sections representing the number of features unique in
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[H]

FIGURE 2.14: The analytical precision (expressed as relative standard deviation, RSD) and
linearity of response (correlation to dilution) of XCMS-detected features are visualised for
the three AIRWAVE serum HILIC batches. All three batches have a large number of features
with poor linearity of response.
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individual batches, with the overlapping regions corresponding to features common
between batches. These results demonstrate that batches 2 and 3 are more similar to
each other than batch 1, which does not share any of its XCMS features. These ob-
servations indicate that either batch 1 suffered from stronger technical variation than
batches 2 and 3, or the other way around. However, given the distribution of RSD
and correlation to dilution coefficients (Figure 2.14), it is more likely that stronger
analytical biases are present in the data for batch 1, which has a higher proportion
of features poorly correlated to dilution. The high number of common features af-
ter the QC feature filtering between batches 2 and 3 is a strong indication that the
applied QC pipeline is capable of removing such analytical biases to an extent. How-
ever, it is important to note that features matched using a 2-dimensional window of
m/z and retention time errors do not necessary correspond to ions arising from the
chemical compounds. A more in-depth analysis and validation with chemical stan-
dards would be needed to confirm the identities of such features. Nevertheless, such
matching approach has been used in previous studies to evaluate the performance
of peak-pickers [109, 145]. Here it serves as an additional exercise that brings us to
the earlier observation that if peak detection and alignment algorithms are applied
to samples subjected to analytical biases, the reported features will be different for
each analytical batch of the same LC-MS experiment.

To further assess the quality of the dataset and to identify potential sources of ana-
lytical variation, multivariate analyses were performed. The scores of the calculated
principal components (PC) were tested for association with analytical variables and
clinical information (Figure 2.16, definitions of variable names are provided in Table
2.4). The strength of association between the first two PC and categorical variables
- well and sample position on 96-well plate, sample batch, plate number, as well as
subject’s gender and BMI category, was evaluated using Kruskal-Wallis test. Tests
with p-value of < 0.001 were denoted as significant. The strength of correlation be-
tween the first two PC and continuous variables - MS parameters, such as cham-
ber vacuum pressure, detector voltage, collision energy and backing pump flow, as
well as sample run order and subject’s age - was tested using Pearson correlation.
Variable pairs with correlation coefficient > 0.5 or < -0.5 were denoted as significant
(marked with an asterisk in Figure 2.16). PCA analysis and PC association with
technical and biological variables were performed with both raw features, gener-
ated by the XCMS pipeline, and batch-corrected features obtained using the earlier
described feature removal and LOESS smoothing procedures.

Significant associations were identified between some of the analytical variation
sources and the first two PCs in the raw XCMS features. First of all, Figure 2.16 in-
dicates that the important sources of analytical variation in batch 1 and 3 are mainly
MS detector voltage, sample preparation batch, as well as sample plate number and
run order. These were explained by the second PC, which accounts for 4% and 5%
of total variance respectively. That suggests that up to 5% of total variance in these
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raw XCMS datasets arose from run order effect (MS voltage, sample run order and
plate number) and sample preparation bias (sample preparation batch). Neverthe-
less, a different pattern is observed in batch 2, where a strong association between
both PCs and most of the analytical variables, including well and sample position on
the well, plate number and sample preparation batch, as well as MS detector voltage
and sample run order, was detected. In contrast to batch 1 and 3, analytical variance
in batch 2 is explained by both PCs, with the first PC accounting for 68% of total
variance, suggesting stronger analytical bias in this batch.

FIGURE 2.16: Principal components (PC) scores association with analytical (A) and biolog-
ical (B) sources of variation in AIRWAVE data generated by XCMS pre-processing pipeline.
Potential associations between the scores of every PC and sample metadata was determined
by either Kruskal-Wallis test (categorical data, upper panel for each batch) or Pearson corre-
lation (continuous data, lower panel for each batch). Asterisks indicate strong associations
(Kruskal-Wallis p-value < 0.001, correlation > 0.5 or < -0.5). Variable names are provided in
Table 2.4. The number of principal components was estimated using 7-fold cross-validation.
The variance explained by each PC is listed in the right bottom panel of the figure.
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Correction of the run order effect using LOESS smoothing removed association be-
tween some of the analytical variables and the PC scores, but correction was not
equally successful for all batches, nor for all sources of variance. Among the suc-
cessfully eliminated sources of variance that were significant before the batch cor-
rection are the continuous variables - sample run order and MS (Figure 2.16). Batch
correction was not highly effective with regards to the categorical type of analytical
variation sources - well and plate number, sample position on the plate and sample
preparation batch. Given the observed results, several conclusions can be drawn.
First of all, it is important to note the differences between the two tests used to anal-
yse the strength of association. Kruskal-Wallis test is a non-parametric test based on
the use of ranks of values, whereas Pearson correlation is a parametric test, which as-
sumes data normality. Therefore, the discrepancies in batch correction performance
success for variables analysed with the different tests may stem from the underlying
differences between the two statistical methods. Nevertheless, a clear conclusion can
be made that each batch suffers from different analytical biases, some of which can
be corrected for using batch correction techniques and feature filtering. Neverthe-
less, a universal QC and batch correction pipeline cannot account for the differences
between the batches. This represents a significant issue in large-scale multi-batch
metabolic profiling studies, when datasets obtained for individual batches are not
directly comparable.

2.4 Conclusions

Within this chapter, the analytical variation observed in a large-scale, multi-batch,
untargeted LC-MS metabolic profiling study, the AIRWAVE, was investigated. The
results indicate that despite of carefully implemented experimental design and stan-
dardised protocols for sample preparation and analysis, analytical variation was ob-
served in the acquired data. The unwanted variation in the chromatographic reten-
tion time of the endogenous metabolites and spiked internal standards was identi-
fied in the pooled QC samples. Furthermore, clear run-order effect was observed in
the detected ion intensity patterns.

Next, a set of open source pre-processing and quality control tools was assessed
for their ability to extract information from the study data. The widely-used open
source tool XCMS was applied to pre-process data acquired for each of the analytical
batch. Investigating the individual steps in the XCMS pipeline, including the IPO-
driven parameters optimisation, suggested that these methods were not designed
to process data of such scale and complexity. The underlying XCMS algorithms do
not take into account the complex retention time drift patterns, which take place
during an analytical batch of a thousand samples. The variation in RT between sam-
ples is not only compound-specific, but also strongly associated with the injection
order. Therefore, RT drifts are difficult, if not impossible, to model and correct for
using a small set of peak-groups, which is a method implemented within the XCMS



Chapter 2. Characterisation of analytical variation in a large-scale metabolic
profiling dataset

51

pipeline. Un-adjusted RT drifts affect peak grouping and potentially introduce a
new layer of unwanted variation. Furthermore, applying XCMS pipeline to such
a large study is computationally expensive. Some of the analytical variation was
successfully removed using post-processing QC measures, such as run-order effect
correction based on pooled QC samples, followed by low-quality feature removal.
Nevertheless, the analysis of the final datasets indicate that analytical variation is
still one of the major sources of differences between samples and further data nor-
malization would be required prior to statistical data modelling.
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Chapter 3

Development of a novel LC-MS
spectral pre-processing tool

3.1 Introduction

Untargeted LC-MS employed in metabolic profiling of biological samples produces
complex data that requires significant pre-processing before samples can be anal-
ysed statistically. To enable relative metabolite concentration comparison, distinct
two-dimensional features, defined by their m/z and retention time (RT), are first
identified in each LC-MS spectra of the study. These features then must be matched
across all samples in the study. The process of finding corresponding features is
sometimes called correspondence, while here it will be referred to as feature alignment,
since features in one sample are aligned to features detected in the next, which si-
multaneously corrects for RT deviation between the two samples for a given set of
features.

A vast number of LC-MS peak alignment methods relying on very different under-
lying assumptions are available today. In the most up-to-date review focusing on
feature alignment, 50 algorithms available as implemented software were described
[95]. These can be broadly divided into two main categories: (1) warping and (2)
direct matching algorithms. Warping algorithms aim to fit a RT correction function
between samples before finding corresponding features, while direct matching algo-
rithms skip RT correction and focus on computing feature similarity instead.

Among the most commonly used LC-MS pre-processing tools, as reported in the
Metabolomics Society community survey [146], are XCMS (70% of respondents),
mzMine and mzMine2 (26% of respondents together). All three tools use warping-
based algorithms for feature alignment. In XCMS, a kernel estimation procedure
is used to cluster features with similar m/z values and RTs [96]. First, features are
divided into overlapping m/z bins. Groups of features with similar RTs within the
same m/z bin are resolved by dynamically estimating the boundaries of RT regions
to which corresponding features fall. While mzMine implements a simple align-
ment method, which assigns each feature to the closest match in the master list [147],
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mzMine 2 uses an altogether different algorithm referred to as RANSAC [98]. RAN-
dom SAmple Consensus (RANSAC) algorithm, together with locally-weighted scat-
terplot smoothing (LOESS) regression, estimate the optimal alignment window for
feature matching non-deterministically.

Direct matching algorithms are fewer, but as much varied as warping algorithms.
Early solutions, such as RTAlign [148], were simplistic methods that merge features
from all samples and aligns those that are within user-defined RT tolerance window.
These were followed by more sophisticated solutions that employ feature cluster-
ing. DeSouza et al. [149] proposed a two-step hierarchical clustering of features
based on RT. First, features are clustered in sets of samples of different experimen-
tal groups, obtained clusters are then pooled across all sample groups and clustered
again. Similarly to DeSouza et al., MassUntangler performs nearest-distance match-
ing of features using m/z and RT dimensions [150]. In contrast to earlier described
direct matching algorithms, MassUntangler, performs alignment in a pairwise fash-
ion and also checks for the same charge state.

Even the most controlled LC-MS experiments will experience fluctuations in the
chromatographic and mass spectrometric measurements during extended periods
of continuous analysis, as described in details in Chapter 2. Some of the LC-MS
variation sources generate shifts in m/z, RT and instrument sensitivity at the system-
level and therefore can be modelled using monotonic functions [95]. For example,
column ageing effect is applicable to the whole run and was modelled in numerous
studies [91–94]. However, a vast proportion of the unwanted variance in LC-MS
data is specific to a given analyte, or a class of related analytes. Such variance com-
plicates features alignment due to ambiguous matching scenarios. Three basic cases
of ambiguous feature matching are known (Figure 3.1):

• Peak A in sample 1 can be aligned with either of the two peaks in sample 2.
Final alignment will depend on the RT shift model of choice.

• Two peaks in sample 1 can be aligned with two peaks in sample 2 if RT for both
peaks is shifted equally. However, peak B in sample 1 can be aligned with peak
A in sample 2 with no RT shift as well.

Currently employed feature alignment methods are not capable of resolving ambi-
guity. Warping-based tools, including the most popular tools, such as XCMS and
mzMine 2, cannot correct for analyte-specific shifts since warping functions are fit-
ted to the whole LC-MS spectra.

Most importantly, most alignment methods completely neglect the structural rela-
tionship between co-eluting features. In ESI-LC-MS, multiple ions are produced for a
given metabolite [74]. These include isotopes, adducts and fragments ions, which co-
elute with the main metabolite ion and have similar chromatographic shapes [151].
One of the two tools that do take into account the structural relationship between
features is MET-COFEA [152]. In MET-COFEA, features with similar peak shapes,
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FIGURE 3.1: Three scenarios of ambiguous assignments. (A) A peak in the first sample can
match to either of the two peaks in the second sample. (B) Either one or two peaks from the
first sample can match to peaks in the second sample.

which is estimated by calculating the dot product of two peak pairs, are grouped
together and then annotated using pre-defined adduct formation rules. Annotated
groups of features are then aligned between samples by comparing their RT and
annotated mass. Similarly, Wandy et al. aligns groups of features by estimating a
pair-wise peak similarity score that takes use of their m/z and RT values [153]. Both
of these tools dismiss spectral intensity information. However, one of the key LC-MS
principles is that intensity ratios between the mass fragments from the same metabo-
lite are relatively constant [154]. Features intensities therefore represent invaluable
information that should be incorporated into alignment algorithm in order to cap-
ture individual metabolites behaviour - m/z and RT shifts - in an LC-MS experiment.

Furthermore, none of the currently employed tools, including XCMS, emphasise the
importance of feature alignment according to sample injection order. As discussed
earlier, clear batch effects arising from analytical variation are known to introduce
systematic correlations into the noise. Experimental study design and data acquisi-
tion order therefore should be taken into account during data pre-processing.

We must note that any feature alignment algorithm is inherently dependent on the
accuracy of the initial peak detection step. As discussed in Chapter 1, even the highly
cited pre-processing tools, including XCMS, are prone to reporting false peaks or
missing peaks in some of the samples. The issue has been widely discussed in the
field [108, 109, 155], however, it is beyond the scope of this thesis, which focuses on
the methods for accurate feature alignment that accommodate the analytical varia-
tion typically observed in large-scale metabolic profiling studies. Nevertheless, to
address the issue of missing peaks, a method for raw data re-integration that is ro-
bust to run order effects is investigated within this Chapter.
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3.1.1 Most commonly used terms

• Structurally related features refer to centWave detected features with highly corre-
lated peak shapes. The underlying assumption is that the ions corresponding
to such features originate from the same chemical compound at the electro-
spray ionisation source and thus co-elute with highly similar peak shapes.

• Pseudo chemical spectra refers to a group of structurally related features origi-
nating from the same chemical compound. A single pseudo chemical spectra
is essentially a list of features, which can be represented in a two-dimensional
space using their retention time, m/z and/or intensity (Figure 3.2).

FIGURE 3.2: massFlowR functionality is based on the use of pseudo chemical spectra.
Pseudo chemical spectra (PCS) is comprised of (a) co-eluting chromatographic peaks with
highly correlated peak shapes. (b) Each PCS can be visualised in a two-dimensional space
using the retention time and m/z of the corresponding centWave detected features. (c) A fin-
gerprint for each PCS is made by taking the m/z and intensity values for the corresponding
centWave features.

3.1.2 Hypothesis

The key hypothesis of this chapter is that groups of structurally related co-eluting
features are preserved across samples. Information on how features are related in
an individual LC-MS sample therefore will help to correctly align features across
samples.

The second hypothesis is that incorporation of sample acquisition order information
together with feature grouping information will help to capture metabolite-specific
shifts in RT and m/z.

3.1.3 Aims and objectives

To address the hypotheses presented above, the purpose of this chapter was to de-
velop and implement an LC-MS data pre-processing pipeline that:

• Groups structurally-related features in each LC-MS sample.
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• Aligns features across samples in their acquisition order incorporating features
grouping information.

• Re-integrates raw data for features not picked by the peak-picker by adjusting
integration regions for each sample.

The aim of the second part of this chapter was to:

• Evaluate the accuracy of the developed feature alignment algorithm in com-
parison to the gold standard open source tool.

• Demonstrate the application of the pipeline to an open source dataset.

3.2 Methods

3.2.1 Pre-processing pipeline

Overview

A three-stage LC-MS pre-processing pipeline was developed and implemented as
an R package massFlowR, source code for which is available on GitHub repository:
https://github.com/lauzikaite/massFlowR. A high-level overview of the func-
tionality of the pipeline is provided in Figure 3.3.

Pseudo chemical spectra generation

In the first stage of the massFlowR pipeline, each individual raw LC-MS file in the
study is processed independently. Chromatographic peaks detected by the centWave
algorithm are grouped together with structurally related features that originate from
the same chemical compound: adducts and isotopes. Feature grouping is based on
the expectation that features resulting from in-source transformations of the same
molecule exhibit an identical chromatographic retention pattern. Therefore, to iden-
tify related features, peak shape similarity analysis is employed (Figure 3.2a).

The selected similarity function here is Pearson correlation between the extracted ion
chromatogram (EIC) of two co-eluting features. Pearson correlation was selected for
the task as it is a measure of the strength of a linear association between two vari-
ables. As it has been demonstrated that adducts and fragment ions of the same
chemical compound have the same intensity ratio in each scan of the LC-MS experi-
ment [156], the underlying Pearson correlation assumption of normal distribution is
met. Figure 3.4 illustrates that intensities of extracted ion chromatograms, generated
for centWave detected features, follows a normal distribution.

https://github.com/lauzikaite/massFlowR
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FIGURE 3.3: The massFlowR pipeline comprises of four main functions that are applied at
three stages: (1) Chromatographic feature detection and EIC correlation to generate pseudo
chemical spectra in each LC-MS sample. (2) Feature alignment across samples is performed
in original data acquisition order. (3) Aligned features intensity correlation is applied across
all samples to identify features that truly belong to the same PCS. (4) Missing data points
integration using raw LC-MS files.

FIGURE 3.4: The distribution of the intensities of extracted ion chromatograms, generated
for all centWave detected features in a representative DEVSET QC sample.
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The obtained Pearson correlation coefficients are then used to construct a weighted
undirected network in which nodes correspond to co-eluting features and weights
of the edges to the pair-wise EIC correlation coefficients. The resulting network is
not fully connected as only the edges with weights above a user-selected threshold
are retained. The default threshold value was set to 0.95 through optimisation with
experimentally validated metabolite annotations in quality control samples.

To identify groups of features with a similar peak shape, constructed networks are
subjected to label propagation algorithm using the IGRAPH package [157]. The al-
gorithm implemented within the IGRAPH assigns a unique label to each node in a
given network. At every subsequent iteration, each node adopts a label that a max-
imum number of its neighbours have. In such a manner, labels propagate through
the network and densely connected groups of nodes, called communities, with the
same label are formed. Detected communities comprised of more than one feature
in massFlowR are denoted as pseudo chemical spectra (PCS). Such PCS, which are
essentially lists of structurally related features, are generated for each LC-MS sam-
ple. A schematic representation of a single PCS is provided in Figure 3.2.

The complexity of generated PCS is demonstrated in Figure 3.5, where the number
of centWave detected features grouped into the same PCS according to this procedure
is plotted across all DEVSET samples.

Pseudo spectra generation step for a given sample is summarised in Figure 3.6.

FIGURE 3.5: The number of centWave detected features per pseudo checmial spectra (PCS)
across all DEVSET samples. Distribution of PCS size is visualised over four sub-figures tp
account for very different y-axis scales.
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FIGURE 3.6: In the first stage of the pipeline, each individual raw LC-MS sample is processed independently in three steps: (a) chromatographic peak detection
facilitated by the centWave algorithm is followed by (b) EIC correlation estimation between all co-eluting chromatographic peaks, eluting at +/- 1 scan as the
feature-of-interest. Correlation coefficients are then used to build networks of co-eluting features, identifying groups of features that are correlated to the
feature-of-interest above the user-defined threshold. Such EIC correlation-based network analysis is performed for each feature. (c) Only groups comprising
more than one feature are retained for further pre-processsing steps.
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Feature alignment across samples

During the second stage of the massFlowR pipeline, corresponding features are
matched across samples of the study using pseudo chemical spectra built for each
sample independently. Matches for features of a PCS in the sample-of-interest are
found in the template (list of features from all earlier samples) through m/z and RT
search (Figure 3.8a). The quality of the match between the target PCS and all match-
ing PCS in the template is evaluated using dot product function (Figure 3.7). Dot
product, also know as cosine correlation, is a measure of correlation between two
sequences of intensities and is widely used in spectral library search [158] and data
alignment [159] algorithms. Dot product function is defined as:

cosθ =
t × m

∥t∥ · ∥m∥ (1)

where t × m = ∑n
i simi and ∥t∥ =

√
∑n

i t2
i . t and m are spectral vectors for target and

match PCS respectively.

PCS is a list of features which can be written as { f1, f2, ...}, where m/z(fi) and inten-
sity(fi) are the m/z and intensity values for feature fi. Spectral vectors are obtained by
placing scaled intensity values into equally-spaced m/z bins and normalising these
bins intensities to total magnitude of the vector [160].

Dot product is the measure of agreement between two spectral vectors t, PCS com-
prised of target features in the sample-of-interest, and m, PCS containing matching
features in the template. Target-match pair with the highest dot product value is
considered the most similar and their features are merged. Features that are not
matched directly by m/z and RT are added to the template as part of the same PCS.
Templates m/z and RT for the matching features are updated to the average between
the current sample and the template. This assures that template stores the moving
averages of m/z and RT values.

FIGURE 3.7: Vector representation of a hypothetical three-peak pseudo chemical spectrum
(target) and two potential matches in the three-dimensional space corresponding to the tar-
get’s m/z peaks. Dot product function between the target and each of the matches distin-
guishes best-matching pseudo chemical spectra in the template.
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FIGURE 3.8: During the second stage of the massFlowR pipeline, features are aligned across all samples of the study in data acquisition order. (a) Features of
a given pseudo chemical spectra in sample no2 are matched against all features in previous samples (in this case template comprises of features from sample
no1 only) using m/z and RT window. (b) The level of agreement between a given PCS in sample no2 and matching PCS in sample no1 is estimated using dot
product function, which is a measure of spectral similarity. PCS from sample no2 is then aligned with the most similar PCS from sample no1.
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Feature alignment validation

Once features are aligned across all samples, the obtained PCS are validated. Inten-
sity values for each feature in a group are correlated across all samples. Obtained
correlation estimates are used to build a similarity network for each PCS (Figure 3.9).
Similarly to the feature grouping method described in 3.2.1, label propagation algo-
rithm identifies groups, or, communities, of features that exhibit similar intensity
pattern across a study. These communities represent the validated PSC.

Filling in missing data

The final step in the pipeline is to re-integrate raw LC-MS files to fill in intensity val-
ues for each of the missing features in validated PCS. In contrast to XCMS, m/z and
RT values for integration are estimated for each sample separately (Figure 3.10). m/z
and RT values for each feature are modelled and interpolated using cubic smooth-
ing spline. While local regression smoothing can also be applied for non-linear data
modelling, cubic smoothing was found to be less sensitive to parameter fluctuation
in LC-MS data modelling in [128].
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FIGURE 3.9: In the last stage of the pipeline, aligned features are validated. (a) Intensity values of features aligned to the same PCS (as indicated by different
colors) are correlated pair-wise using values from samples in which features were detected. (b) Obtained correlation values are used to build a similarity
network, where each node represents a feature and edges are Pearson correlation coefficients. Only edges with coefficients above a user-defined threshold
are retained. Label propagation algorithm is applied to identify feature assignment to communities. (c) Only communities with more than one feature are
retained.
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FIGURE 3.10: In the last step of the pipeline, raw LC-MS spectra are re-integrated for features which were missed in samples during initial peak picking. (a)
RT and (b) m/z values for spectral integration are estimated for each sample separately using cubic smoothing spline intrapolation. Purple dots indicate RT
and m/z values in samples in which feature was detected; Blue dots indicate values modelled by the spline function; Green line represents the median across
samples in which feature was detected (this value would be used for spectral integration in XCMS).
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3.2.2 Analytical data acquisition

An open source metabolic phenotyping study DEVSET was chosen for method de-
velopment and validation. The study comprises of three unique samples of human
urine, which were mixed in known proportions according to {3,2} simplex lattice ex-
perimental design [161] such that six unique samples of pooled urine were prepared:

• DevSet1

• DevSet2

• DevSet3

• DevSet1v2 (50:50 mix of DevSet1 and DevSet2)

• DevSet1v3 (50:50 mix of DevSet1 and DevSet3)

• DevSet2v3 (50:50 mix of DevSet2 and DevSet3)

These samples were then split into 13 equivalent aliquots. Together with the pooled
quality control(QC) samples and independent external long-term reference samples
(which is a QC sample composed of urine specimens that are completely indepen-
dent of the study and are routinely used across multiple studies at the NPC), the
study comprised of 201 samples in total.

Samples were previously prepared and analysed by the ESI-LC-MS according to the
standartised National Phenome Centre (NPC) protocols [62, 133]. Briefly, the AC-
QUITY UPLC (Waters Corp., Milford, MA, USA) chromatography system was con-
nected to Xevo G2-S Q-TOF mass spectrometer (Waters Corp., Manchester, UK) with
Zspray electrospray ionization (ESI) source. The mobile phases employed were: (A)
water, (B) acetonitrile, each supplemented with 0.1% formic acid. The gradient can
be summarised as follows: 0 min - 0.1 min isocratic separation at initial conditions
(99% A); 0.1 min - 10.0 min a linear gradient elution (99% A to 45% A); 10.0 min -
10.7 min a rapid gradient elution (45% A to 0% A); followed by fast column washing
with 99% A until 15.0 min.

Raw LC-MS data is available for download on the MetaboLights server (study iden-
tifier MTBLS694). Here, Waters .RAW files were converted to open-source format
mzML using ProteoWizard software as specified in the section 2.2.2 in Chapter 2.

3.2.3 Synthetic data generation

To benchmark and evaluate algorithm performance, its output must be compared
against expected results. Such comparison to the known true answer enables quan-
tification of algorithm performance, and thus, direct comparison with other algo-
rithms [57].

To assess the performance of the developed feature alignment algorithm, synthetic
datasets were generated by systematically introducing noise into the LC-MS features

https://www.ebi.ac.uk/metabolights/MTBLS694
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table obtained for a real sample. The original features table was obtained by peak-
picking a representative quality control sample from the DEVSET study using cent-
Wave algorithm. Features were assigned into pseudo chemical spectra (PCS) using
method described in Section 3.2.1. The resulting PCS table was then used to gener-
ate features tables, representing different types of variance commonly observed in
LC-MS experiments.

Intensity values were drawn from a multivariate normal distribution such that (A)
features in the same PCS are highly correlated across all generated tables, and (B)
log-transformed values are normally distributed. The arithmetic means were set to
the values in the original feature table. The covariance matrix was simulated such
that features in the same PCS have a correlation value of > 0.8. Correlation matrix
obtained with simulated intensity values of five randomly selected PCS is visualised
in Figure B.16. High correlation is observed only between features that belong to the
same PCS.

Three experiments were designed to simulate different types of noise in the m/z and
RT domains (Table 3.1). Every further experiment includes the noise introduced
previously and adds a new type of variance. In each experiment, 100 data tables
were simulated. Each experiment was replicated three times. Overview of generated
noise is visualised for all of the features of a single PCS in Figure 3.11.

In Experiment A, random noise was introduced into both the m/z and RT values
(normal distribution with a standard deviation of 0.001 and 2 seconds respectively).

In Experiment B, systematic RT drift was applied to all features. Run-order depen-
dent RT drift was first modelled on real-word QC samples using 15 endogenous
compounds by fitting a cubic smoothing spline (Figure 3.12). Obtained model pa-
rameters were then applied to generate a non-linear drift to all features in the syn-
thetic data by allocating a particular spline model to all features of a single PSC at
random.

In Experiment C, the effect of missing values on the performance of the alignment
tools was evaluated. As discussed in Di Guida et al., missingness can arise from
either: a non-random biological response, or from variation in the observed vari-
ables, or finally, can be completely random [162]. While the first cause represents
the purely biological differences between samples and therefore can provide mean-
ingful information in biological data interpretation, the latter two causes of missing
values are undesired and can hide the subtle yet real differences between samples.
Such undesired value missingness can arise because of various reasons, including
but not limited to (1) metabolite concentration falling below the instrument’s limit
of detection; (2) sample matrix effects, such as ion suppression; (3) run-order de-
pendent changes in the LC-MS system; and (4) pre-processing software failure to
detect and align spectral peaks [163]. To simulate a typical metabolomics dataset
where a combination of different sources of technical variation are present, features
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FIGURE 3.11: Simulated datasets representing different types of noise were used in feature
alignment performance assessment. Introduced m/z, RT and intensity variance is visualised
for all features (as indicated by different colours) of a single PCS. In experiment A, only
random noise was added to m/z and RT values. In experiment B, RT follows a non-linear
drift across the 100 synthetic samples. In experiment C, features are removed from samples
using a probabilistic model. Intensity values were simulated such that features of a single
PCS are highly correlated across all samples in a single experiment.
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TABLE 3.1: Three experiments, representing commonly observed LC-MS experimental
noise, were performed to evaluate feature alignment algorithm performance.

Introduced noise
Target missingness,
%

Total missingness,
% (average)

Experiment A Random m/z and rt - -
Experiment B Systematic rt drift - -
Experiment C Missing features 5, 10, 20, 30, 40 9, 18, 34, 49, 61

Random m/z variance (Gaussian noise with a standard deviation of 0.001 m/z) was generated for
every feature using original m/z values.
Random rt variance (Gaussian noise with a standard deviation of 2 seconds) was generated for

every feature, using either original rt values (experiment A), or systematically altered rt values
(experiments B, C).
Systematic rt drift was generated using non-linear splines obtained on reference compounds in

quality control samples.
Features were removed at random, where the probability of its missingness inversely depends on

its intensity value. If the most intense feature of the PSC, or one of the two features of the PSC was
removed, the remaining features of the PSC were removed from the sample as well.

were removed from samples at random with a probability of missingness inversely
dependent on intensity. Such correlation is based on the assumption that missing
values occur due to metabolite concentrations falling below the limit of detection.
The probabilistic model for missingness was based on logistic function formulated
by Do et al. [163] and represented as P(ximissing) = logistic(β0 + β1 × xi) with lo-
gistic function logistic(a) = exp(a)

1+exp(a) . Coefficient β1 was set to -10 and intercept β0

was found by numerically solving the following equation:

1
n

n

∑
i=1

P(ximissing) = miss (2)

where miss is the desired proportion of missing features in the table, n is the number
of features in the table. If the most intense feature or one of the two-features PSC
was selected to be removed, the remaining features of the PSC were omitted from
the sample as well, as summarised in Figure 3.13.

3.2.4 Feature alignment algorithm comparison

Before describing the experimental design that was used for algorithm performance
assessment, some of the definitions that are used throughout this section must be
introduced. As before, feature is a two-dimensional LC-MS signal. For each feature, a
given alignment algorithm finds a suitable match in each sample (if any) and groups
them together. These groups here are referred to as consensus features since each
individual feature in it should correspond to the same ion of the same chemical
entity. All consensus features together are referred to as consensus map, which stores
the alignment information of all detected features in all LC-MS feature maps.

In theory, each feature should be allocated to one consensus feature and each con-
sensus feature should include one feature per map. Such optimal consensus map is
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FIGURE 3.12: Cubic smoothing splines fitted to the retention time of the features correspond-
ing to 15 endogenous chemical compounds in urine quality control samples in DEVSET
study. The obtained splines were used to model RT drift in synthetic data.
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FIGURE 3.13: The proportion of missing features in the 100 synthetic datasets of the three
replicates of experiment C. 100 datasets were generated with a varying proportion of feature
missingness. Probabilistic removal mechanism selected features at random at desired target
proportion (5 % to 40%). If the most intense feature or one of the two-features PSC was
selected, the remaining features of the PSC were removed from the sample as well. Thus,
feature removal resulted in higher total missingness ( 9% to 61%).
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called ground truth. In practice, however, fluctuations in the chromatographic and
mass spectrometric measurements occurring during the experimental run time will,
as well as biological sample-to-sample variation lead to consensus features that do
not appear in all LC-MS maps. As a result, alignment tool splits related features
across multiple groups and/or assigns unrelated features to the same consensus fea-
ture.

Alignment algorithm performance here is evaluated by calculating precision and re-
call, which are defined as TP

TP+FP and TP
TP+FN respectively. Precision and recall adap-

tation for the assessment of feature alignment algorithms was provided by Lange et
al. [57]. The mathematical representation is as follows:

Precision =
1
N

N

∑
i=1

|gi ∩ ti|
|ti|

(3)

Recall =
1
N

N

∑
i=1

|gi ∩ ti|
|Mi| × |gi|

(4)

where g is consensus features in the ground truth of length N, t is consensus features
obtained by the alignment tool of length M. For each consensus feature in the ground
truth, gi, a set of corresponding consensus features from the tool is denoted as ti. The
set of consensus features from the tool that contain at least two features and intersect
with ground truth feature gi is denoted as Mi. The length of Mi corresponds to
the number of sub-groups into which a consensus feature was assigned by the tool.
Thus, the more times it was split, the lower the recall value is.

Generated synthetic datasets were subjected to the developed feature alignment al-
gorithm, as well as the "density" method from XCMS package. Applied XCMS and
massFlowR parameters are summarised in Table 3.2.

3.2.5 Quality control assessment

DEVSET datasets obtained by massFlowR and XCMS pre-processing - detected,
aligned and filled features - were subjected to further post-processing steps accord-
ing to standardised quality control (QC) procedures for metabolic profiling, de-
scribed in details in Chapter 2, Section 2.2.4.

All scripts used within this and other chapters are available on the public GitHub
repository: https://github.com/lauzikaite/PhD_thesis_code. The source code
for the developed massFlowR package is available on another GithHub repository:
https://github.com/lauzikaite/massFlowR.

https://github.com/lauzikaite/PhD_thesis_code
https://github.com/lauzikaite/massFlowR


Chapter 3. Development of a novel LC-MS spectral pre-processing tool 72

TABLE 3.2: XCMS and massFlowR parameters used in the pre-
processing of DEVSET study and synthetic data.

XCMS
Parameter Value

centWave
peakwidth c(1, 5)

prefilter c(10, 5000)
noise 200

snthresh 5
ppm 25

density
minfrac 0

minsamp 0
bw 2

mzwid 0.01

massFlowR
Parameter Value

groupPEAKS
peakwidth c(1, 5)

prefilter c(10, 5000)
noise 200

snthresh 5
ppm 25

alignPEAKS
rt_err 10

mz_err 0.01
cutoff 0.3

validPEAKS
cor_thr 0.7

Unlisted parameters were set to defaults.

3.3 Results and discussion

3.3.1 Pipeline development

Pseudo chemical spectra generation

The proposed pre-processing strategy builds on and combines previously developed
methods and ideas in MS analysis. Pseudo chemical spectra (PCS) generation is
based on chromatographic peak shape similarity analysis, which is used in metabo-
lite identification [164–166] and mass spectrometry data reduction algorithms [151].
The assumption of peak shape similarity analysis is that adduct and fragment ions
originating from the same compound will have the same intensity ratio in every LC-
MS scan [156]. In theory, their EICs are linearly dependent, and as a result, their
correlation can be used as an indicator of peaks origin.

To evaluate how well EIC correlation distinguishes similar peaks among co-eluting
peaks, a simulation was first performed with peaks of identical shape. A characteris-
tic chromatographic peak, missing a few scans and fitting a Gaussian curve well, was
identified in the raw data of a representative urine sample (Figure 3.14A). Its self-EIC
correlation was observed as the apexes moved further apart scan by scan. Correla-
tion between two identical chromatographic peaks quickly dropped from 0.934 for
peaks within one scan distance to 0.755 for peaks within two scans distance (Fig-
ure 3.14B). These results indicate that peak shape similarity analysis is inherently
sensitive to peak alignment and thus co-elution. In light of the results of this simula-
tion, a conclusion was drawn that EIC correlation analysis should only be applied to
chromatographic peaks eluting at one scan distance at most. Such restriction greatly
reduces search space and thus computational time.
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FIGURE 3.14: EIC correlation of a representative chromatographic peak with itself was ob-
served. (A) peak with five missing scans and a Gaussian-like shape was selected. Gaussian
fitting (grey line) was performed using median and standard deviation values derived from
the centWave output. (B) Self-correlation decreases as apexes of two identical peaks move
further away.

To evaluate how successfully EIC correlation identifies similar peaks in a com-
plex spectrum, an experiment with DEVSET dataset was performed. Endoge-
nous metabolites that are detectable in urine samples using standard LC-MS as-
says were investigated. 15 metabolites and their main adducts and in-source frag-
ments were identified in the LC-MS spectra of all DEVSET samples using m/z and
RT regions kindly provided by the NPC team. Detection of metabolites in spectra
was performed using R package peakPantheR, available at https://github.com/
phenomecentre/peakPantheR. Detection regions of the validated ions, as well as
summary plots are available in Appendix B.

EIC correlation between the features corresponding to the main ion and all of its
daughter ions (adducts and in-source fragments) of each of the 15 metabolites was
performed in every DEVSET sample. EIC correlation distribution indicates that
structurally related chromatographic peaks exhibit high peak shape similarity (Fig-
ure 3.15). Therefore, EIC correlation coefficient cut-off of 0.95 is used during pseudo
chemical spectra generation in the massFlowR pipeline (Figure 3.6). Only features
with EIC correlation of > 0.95 are considered as part of the same pseudo chemical
spectra.

https://github.com/phenomecentre/peakPantheR
https://github.com/phenomecentre/peakPantheR


Chapter 3. Development of a novel LC-MS spectral pre-processing tool 74

FIGURE 3.15: EIC correlation was performed between features corresponding to the main
adduct and its adducts/in-source fragments of 15 validated metabolites. Distribution of
correlation coefficients obtained in all DEVSET samples is shown for each metabolite. Most
of the adduct pairs exhibit correlation above 0.95, which was therefore selected as the default
threshold value pseudo chemical spectra generation in massFlowR.
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Feature alignment across samples

Pseudo chemical spectra is employed in the alignment of features across samples.
For each feature in the sample-of-interest, matches are found in the next sample
through m/z and RT search. All PCS with matching features are compared with the
PCS comprising the target feature in the sample-of-interest. PCS with the highest
spectral similarity is the most appropriate match for the target feature. PCS spec-
tral similarity comparison is based on widely used MS/MS library search methods.
First, target and match PCS spectra are pre-processed: (1) raw intensity values for
each ion are scaled, (2) scaled intensities are placed into 0.001 m/z wide bins to gen-
erate a spectral vector, (3) vector values are normalised. Next, dot product function
is applied to the target and match spectral vectors. PCS with the highest dot product
value is considered the most similar to the target PCS.

As MS/MS fragmentation pattern plays a crucial role in metabolite identification,
methods for accurate spectra matching to MS/MS libraries have been investigated
in a multifold of studies. While each MS/MS database employs a slightly differ-
ent method to evaluate the quality of the spectral match between experimental and
database fragments [111], certain aspects of spectral matching algorithms are widely
accepted. For example, heavier ions are considered to be more important and infor-
mative in MS/MS spectra. Thus, spectra is often scaled by giving more weight to
heavier ions [158, 167], as in:

W = intom
i × m/zn

i (5)

where W is the weighted-intensity vector, m and n represent the weight factors of
peak intensity and m/z value, 0.6 and 3 respectively, as optimised by [158].

It is important to emphasise that pseudo chemical spectra is composed of ESI-LC-MS
features and therefore exhibit different properties from MS/MS spectra. In contrast
to MS/MS experiments, ESI-LC-MS principally produce adduct ions of intact an-
alyte molecule with little in-source fragmentation. While ion pattern is inherently
dependent on the LC assay protocol and solvents composition, a metabolite is likely
to produce the same ions in all samples analysed in one LC-MS experiment. The
emphasis therefore should be placed on the most intense ions in the spectra, which
represent the most consistently produced form of ion for the particular metabolite.

To evaluate which spectra pre-processing is most suitable for PCS spectral similar-
ity analysis, an experiment was performed using DEVSET study. Earlier described
15 metabolites - their adducts and in-source fragments - were identified among fea-
tures detected in DEVSET samples. Spectral similarity between PCS that comprise
of corresponding features was analysed using three intensity scaling strategies: (A)
no scaling, (B) square-root intensity scaling, as in [160], (C) weight-based intensity
scaling, as in Equation 5. Scaled spectra was normalised to the total magnitude of
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FIGURE 3.16: Features corresponding to imidazolelactate adducts were grouped into PCS in
all DEVSET samples. Spectral similarity between the reference PCS and all of the PCS with
the imidazolelactate adducts was evaluated using three intensity scaling strategies: left plot
- no scaling, middle plot - square-root scaling, right plot - weight-based scaling.

the spectral vector. A simple spectral dot product function (Equation 1) was then ap-
plied to determine spectral similarity between the PCS in the first DEVSET sample
in which adducts of metabolite-of-interest were detected and all following samples.

Results obtained with metabolite imidazolelactate are decribed in details below,
while results for other 14 metabolites are available in Appendix C. Two validated
ions of imidazolelactate - protonated molecule at m/z 157.0608 and in-source frag-
ment at m/z 111.0546 - were grouped into PCS with varying number of other fea-
tures. The largest PCS containing these two adducts was made of 12 features in
total. Spectral similarity between the PCS comprising features corresponding to im-
idazolelactate is summarised in Figure 3.16. An example of discrepancy between
different scaling methods is visualised in Figure 3.17. Weight-scaling undoubtedly
performed worse than the other two tested methods with all metabolites since it
generated most variation in the spectral similarity values. However, cosine values
dropped for larger, i.e. more complex, PCS independently of the scaling method.
The differences between no-scaling and square-root scaling are harder to conclude
since their performance varied more between different metabolites (Appendix C).
For imidazolelactate, it could be argued that no scaling retained cosine values closer
to 1 for more of the PCS. Nevertheless, spectral similarity for unscaled imidazolelac-
tate PCS was more varied, particularly for larger PCS with more than 5 features. In
the light of these simulations, it could be concluded that no scaling or square-root
could be performed. Square-root scaling was selected for further method develop-
ment and testing both because of its more stable behaviour with 6 of the 14 tested
metabolites and previously reported success with a spectral searching tool [160, 168].
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FIGURE 3.17: Spectral similarity score between PCS containing two imidazole ions (adducts
at m/z 157.0607 and m/z 111.0546) largely depends on spectra scaling method.The top panel
in each plot represents the spectra of the target PCS, whereas the bottom panel is the spectra
of the same matching PCS, scaled using a different method in each plot.
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Feature alignment validation

One of the major assumptions behind massFlowR pipeline design is that intensities
of peaks from the same metabolites are correlated across all samples in the dataset.
Intensity correlation is implemented in multiple metabolite annotation workflows,
such as CAMERA [156, 164], PUTMEDID-LCMS [169] and RAMClustR [170]. Here
correlation analysis is used to denoise aligned pseudo chemical spectra, which tend
to grow in size as features from similar PCS are added from each sample. PCS fea-
tures are correlated to each other, the resulting correlation matrix is clustered using
network analysis via IGRAPH package [157]. Identified communities of features are
considered to be ions of the same metabolite and are marked as part of the same
PCS.

TABLE 3.3: Intensity correlation between the main ions and corresponding adducts/in-
source fragments of 15 metabolites across DEVSET samples was analysed. Obtained Pearson
correlation coefficients between all ion pairs is listed.

Metabolite RT
Main ion
m/z

Adduct/fragment
m/z

Intensity
correlation

Urocanate 57.54 139.0502 121.0395 0.986

Theobromine 145.14 181.0720
163.0618 0.971
138.0665 0.997

Pseudouridine 56.94 245.0768

209.0560 0.978
191.0447 0.971
179.0446 0.979
155.0440 0.979

Pantothenate 141.06 220.1179
202.1090 0.993
184.0980 0.982

1-Methyladenosine 75.3 282.1197 150.0780 0.994

N-a-Acetyl-L-arginine 54.96 217.1295 200.1040 0.963

N2,N2-Dimethylguanosine 143.22 312.1302 180.0890 0.998

2-Furoylglycine 141.66 170.0448
124.0390 0.995
95.0130 0.998

Creatine 36.48 132.0768 90.0550 0.773

Caffeine 208.92 195.0877 138.0668 0.997

7-Methylguanine 75.66 166.0723
149.0455 1.000
124.0500 0.985

Pyroglutamate 76.38 130.0499 84.0450 0.996

Paraxanthine 166.26 181.0720 124.0515 0.997

Theophylline 168.6 181.0720 124.0515 0.997

Imidazolelactate 36.6 157.0608 111.0546 0.981
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To illustrate the validity of intensity correlation for feature alignment validation, 15
metabolites were identified in DEVSET study, as described earlier in section 3.3.1.
The main ion of each metabolite was correlated with all its validated adducts/in-
source fragments. Obtained Pearson correlation coefficients (Table 3.3) indicate high
correlation between all structurally related ions. While correlation coefficients for
adduct/fragment pairs of all metabolites but one were > 0.97, the single exception
- creatine with correlation of 0.773 - suggested that a correlation threshold must be
drawn with great care.

In order to assess how robust Pearson correlation is in different studies, a large-scale
metabolic profiling study AIRWAVE was investigated using validated metabolites.
Metabolite detection and integration procedure is described in detail in Chapter 2,
Section 2.2.3 and Appendix A. As with the DEVSET study, Pearson correlation coef-
ficients were obtained between the adducts and in-source fragment pairs for the 35
validated metabolites (Table 3.4). These results demonstrate that correlation between
structurally related ions vary widely depending on the study. As discussed in Chap-
ter 2, AIRWAVE1 serum HILIC-POS-MS experiment experienced a great deal of ana-
lytical variation. As intensity correlation was investigated using raw LC-MS spectra
rather than processed and corrected features, the introduced biases greatly affected
correlation coefficients. In AIRWAVE, obtained correlation coefficients range from
as low as -0.13 to 0.995 with a slight variation between analytical batches (Figure
3.18). In the light of these results, it was concluded that intensity correlation thresh-
old for validation of pseudo chemical spectra should be selected for each dataset
independently.

Given the single outlier in the correlation results for the DEVSET study, a cut-off
of 0.75 was selected for feature alignment validation step for pre-processing of this
study. A cut-off of 0.75 was also selected as the default parameter for feature align-
ment validation step in the massFlowR pipeline (Figure 3.9). Nevertheless, it can be
adjusted by the user when calling the corresponding massFlowR function.

TABLE 3.4: Intensity correlation between the main ions and corresponding adducts/in-
source fragments of 35 metabolites across AIRWAVE1 serum HILIC samples was analysed.
Obtained Pearson correlation coefficients between all ion pairs are listed for each analytical
batch separately.

Metabolite RT
Main ion
m/z

Adduct/Fragment
m/z

Pearson correlation
Batch 1 Batch 2 Batch 3

Adenosine 104.41 268.1040 136.0620 -0.060 0.097 0.003

Carnitine 320.26 162.1125
184.0950 0.979 0.990 0.985
103.0386 0.911 0.893 0.799

Laurylcarnitine (C12:0) 234.37 344.2795
366.2620 0.243 0.572 0.449
285.2080 0.208 0.071 -0.008

Histidine 369.04 156.0768
178.0580 0.842 0.778 0.277
110.0711 0.931 0.925 0.742

N6,N6,N6-Trimethyllysine 369.77 189.1598
130.0852 0.730 0.707 0.395
84.0800 0.072 0.384 0.157
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TABLE 3.4: Intensity correlation between the main ions and corresponding adducts/in-
source fragments of 35 metabolites across AIRWAVE1 serum HILIC samples was analysed.
Obtained Pearson correlation coefficients between all ion pairs are listed for each analytical
batch separately.

Metabolite RT
Main ion
m/z

Adduct/Fragment
m/z

Pearson correlation
Batch 1 Batch 2 Batch 3

Trigonelline 291.00 138.0550 94.0650 0.125 0.711 0.469
Betaine 286.97 118.0863 140.0682 0.931 0.984 0.918
Warfarin 40.37 251.0703 163.0398 0.271 0.508 0.319
Caffeine 50.98 195.0877 138.0680 0.508 0.582 0.736
Creatinine 150.41 136.0481 227.1250 0.945 0.959 0.919
1,1-Dimethylbiguanide 205.41 130.1087 113.0810 0.071 0.324 0.199
Tryptophan 229.34 205.0972 188.0710 0.745 0.242 0.420
Phenylalanine 226.78 166.0863 103.0550 0.850 0.726 0.754

Methionine 246.74 150.0583
194.0220 0.829 0.793 0.499
133.0310 0.848 0.846 0.309

Trimethylamine N-oxide 250.72 76.0757 151.1441 0.827 0.841 0.408

Proline 267.45 116.0706
160.0350 0.988 0.992 0.984
365.0670 0.958 0.968 0.953

Alanine 273.94 134.0188
313.0355 0.955 0.950 0.901
356.0780 0.802 0.753 0.036

Creatine 303.58 132.0768
154.0587 0.937 0.990 0.651
176.0415 0.928 0.984 0.668

Glutamine 303.32 147.0764
191.0403 0.726 0.907 0.812
130.0510 0.701 0.911 0.763

Citrulline 344.21 176.1030
198.0850 0.796 0.694 0.265
159.0770 0.784 0.733 0.126

Arginine 355.10 175.1190
219.0860 0.944 0.956 0.899
158.0920 0.798 0.690 0.368

a-glycerophosphocholine 361.04 258.1101
280.0920 0.940 0.984 0.853
184.0720 0.653 0.661 0.060
104.1070 0.970 0.982 0.906

3-methylhistidine 365.50 170.0924 126.1020 0.122 0.258 0.212

Hypoxanthine 95.52 159.0277
119.0360 0.848 0.948 0.857
110.0350 0.795 0.927 0.761

Pantothenate 67.97 220.1179
242.0990 0.442 0.497 0.267
202.1070 0.078 0.318 0.088

Urocanate 78.23 139.0502 95.0600 0.157 0.101 0.129
5’-Methylthioadenosine 78.07 298.0968 136.0630 0.074 0.373 0.141
Pipecolate 268.72 130.0863 174.0500 0.931 0.952 0.812
Thiamine 329.55 265.1123 122.0710 0.441 0.761 0.320

4-Guanidinobutanoate 230.41 146.0930
168.0740 -0.044 0.174 -0.009
86.0600 0.078 -0.056 -0.130

N,N-Dimethylglycine 278.32 104.0712 148.0330 0.696 0.666 0.248
Inosine 97.31 291.0700 313.0520 0.990 0.995 0.977

Cortisol 44.46 363.2166
345.2040 0.303 0.706 0.526
327.1970 0.264 0.779 0.284

1-Methylnicotinamide 249.34 137.0713 94.0660 0.682 0.687 0.431
Sucrose 138.21 365.1053 381.0790 0.587 0.839 0.446
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FIGURE 3.18: Intensity correlation between the main ions and corresponding adducts/in-
source fragments of 35 validated metabolites across AIRWAVE1 serum HILIC samples was
analysed. The distribution of the obtained Pearson correlation coefficients between all ion
pairs are visualised for each analytical batch separately.

3.3.2 Comparison to other tools

To assess the performance of the developed feature alignment algorithm, synthetic
datasets were generated by systematically introducing noise into the LC-MS fea-
tures table obtained for a real sample. Such a testing approach provides numerous
advantages over the use of experimentally derived or purely synthetic data. First of
all, the absolute ground truth can be established. Secondly, introducing noise into
a real sample, rather than creating entirely artificial ones, ensures that assessment
is performed in as much realistic settings as possible. Finally, incremental introduc-
tion of noise allows to test the effect of different types of noise on the accuracy of
algorithms.
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FIGURE 3.19: Precision and recall values obtained with massFlowR and XCMS on synthetic
data, generated with three different types of experimental noise in experiments A, B and C.
Summaries of results obtained with three replicates in each experiment are shown.

To benchmark and compare the performance of the developed feature alignment
algorithm with the most commonly used tool, "density" method within XCMS, sim-
ulation experiments were performed. The obtained precision and recall values are
reported in Figure 3.19 and Table 3.5. While both methods performed with generally
high scores, higher alignment precision was achieved with massFlowR in all three
experiments. Introduction of systematic RT noise in experiment B did not affect the
precision and recall values for massFlowR. In contrast, XCMS suffered from a drop
in both precision and recall in response to systematic RT drift. However, the perfor-
mance of XCMS alignment did not deteriorate with incremental removal of features
in further experiment C. On the contrary, massFlowR was less robust to feature miss-
ingness introduced in experiment C. While its performance precision dropped only
slightly from 0.997 in experiment B to 0.921 in the final experiment C, the recall val-
ues dropped from 0.996 to 0.893.

These results indicate that XCMS performance is relatively optimised. Its sensitivity
to non-linear RT drift and robustness to feature missingness is not surprising given
the underlying algorithm. The "density" method within XCMS finds matching fea-
tures across samples by calculating the overall distribution of peaks’ RT in a given
m/z bin [96]. The employed kernel density estimator is not meant to be applied to
a dataset where features do not deviate around a "central" RT, but rather drift from
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TABLE 3.5: Precision and recall values obtained with massFlowR and XCMS on synthetic
data in three experiments. Values correspond to the mean of the scores obtained with three
replicate datasets in each experiment.

Experiment A B C
Target missingness, % - - 5 10 20 30 40
Total missingness, % - - 9 18 34 49 61
Precision massFlowR 0.996 0.997 0.977 0.961 0.943 0.931 0.921

xcms 0.923 0.904 0.898 0.899 0.899 0.899 0.899
Recall massFlowR 0.995 0.996 0.965 0.937 0.893 0.863 0.849

xcms 0.989 0.972 0.976 0.98 0.984 0.984 0.985

sample to sample in a non-linear manner, as in experiments B and C. The removal
of random features in experiment C do not affect the success of feature matching as
all similar RTs within one m/z bin are drawn together from all samples and the order
of samples is lost in the process. Consequently, XCMS feature alignment performed
relatively stably with the simulated datasets which comprised of 100 samples each,
with its performance dropping slightly in experiment B but not C. In contrast, the
performance of the newly developed massFlowR algorithm was more varied, with
much higher precision than XCMS in experiments A and B, and lower recall values
in experiment C. These results are likely a symptom of the unsupervised approach
employed within massFlowR feature alignment algorithm. The current algorithm
ensures that only the most similar PCS are grouped together, whereas PCS with
more deviated features are added as new, initiating a new chain of features. This
attribute contributed to the drop in recall values in experiment C, during which fea-
tures were grouped correctly but into multiple separate PCS. Nevertheless, a more
considerable drop in recall value to 0.893 occurred only when 34% of all features
were removed from datasets. Such ratio of missingness is higher than the typically
observed 20 - 30% missing values in untargeted LC-MS data [163]. It is important
to note that the developed algorithm compares samples in their original acquisition
order, which contributed to its robustness to non-linear RT drift introduced in ex-
periment B. Therefore, it could be concluded that XCMS and massFlowR alignment
algorithms operate in a fundamentally opposite manner and each has its own weak-
nesses and strengths.

3.3.3 Proof-of-concept

To demonstrate that massFlowR pipeline aligns complex samples with high preci-
sion, the DEVSET study was utilised. The simplex lattice experimental design ap-
plied in DEVSET study provides an opportunity to evaluate how well a given data
pre-processing method preserves expected biological variation. Theoretically, in a
mixture design study the observed response of a metabolite follows the mixture de-
sign [171]. In DEVSET study, three unique urine samples were mixed in all possible
combinations, producing six unique samples in total. Thus, each sample is a com-
bination of the three unique samples at three possible concentrations (0, 1/3, 2/3,
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TABLE 3.6: Number of features in the massFlowR and XCMS datasets for DEVSET study
before and after features removal based on RSD and correlation to dilution assessment. Two
version of filtered datasets were produced: using raw intensity values and using batch-
corrected intensity values.

Before filtering After filtering
Raw features Raw features Batch-corrected features

massFlowR 6,849 3,771 (44.9% removed) 4,175 (39 % removed)
XCMS 13,088 7,006 (46.5 % removed) 7,723 (41 % removed)

1). DEVSET samples are therefore expected to diverge in the sample compositional
space accordingly to their mixture design.

To evaluate how well massFlowR pipeline preserves the expected sample com-
position, raw DEVSET data was subjected to massFlowR, as well as XCMS pre-
processing using parameters specified in Table 3.2. The quality of the obtained
datasets was investigated using a number of metrics.

First, the analytical precision of the obtained features was examined. The distri-
bution of relative standard deviation (RSD) values estimated for all features across
pooled QC samples is relatively similar in massFlowR and XCMS datasets (Fig-
ure 3.20). Nevertheless, the peak of the distribution is shifted more to the right in
the XCMS dataset with a median of 19.7%, in contrast to 14.6% in the massFlowR
dataset. The distribution of correlation to dilution coefficients is also comparable
between massFlowR and XCMS features, however, XCMS reported more negatively
correlated features, as indicated by the second peak around 0.0 to -0.2.

Removal of low quality features according to the QC standards described in Section
2.2.4 produced datasets of different sizes, as summarised in Table 3.6. While mass-
FlowR reported visibly smaller number of features than XCMS, fewer of the raw
massFlowR features were removed by the QC feature filtering pipeline (44.9%, in
contrast to 46.5% of XCMS raw features). These results are in line with the expecta-
tions given the distribution of RSD values and correlation to dilution coefficients in
Figure 3.20. This suggest that XCMS reports more noisy features that do not meet
the QC criteria and are removed in the post-processing. Nevertheless, as XCMS pro-
duced more batch corrected features than massFlowR (7723 and 4175 respectively),
it indicates that massFlowR removed some of these reproducible features reported
by XCMS in its pre-processing.

To assess filtered datasets quality and determine any potential analytical associa-
tions with the main sources of variance, multivariate analyses were employed, as
described in Section 2.2.4. The scores of the calculated principal components were
correlated with analytical parameters. Raw massFlowR features (Figure 3.21) were
indeed highly correlated with run order and MS detector voltage, both of which
are highly interlinked analytical parameters. On the other hand, such analytical
variance association with principal components was not observed in XCMS dataset.
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FIGURE 3.20: The analytical precision (expressed as relative standard deviation, RSD) and
linearity of response (correlation to dilution) of features detected and reported in the DE-
VSET samples by (a) massFlowR and (b) XCMS pre-processing pipelines. The RSD values
for XCMS-reported features are generally higher than for the massFlowR features. Similarly,
the distribution of correlation coefficients of the XCMS-reported features has a peak around
0.0 to -0.5, indicating a higher proportion of noisy features in the dataset.
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These results are highly positive, since they indicate that massFlowR feature align-
ment preserves the first expected variance in the data - the variance arising from
sample acquisition order. Biases dependent on the run order, such as changes in re-
tention time, peak shape, sensitivity or MS accuracy, cannot be fully eliminated even
by the strictest control over the experimental conditions [172]. Among these biases
arising due to e.g. column ageing or ion source contamination, time-dependent in-
tensity drift is the main source of unwanted variation in LC-MS data [88, 91–94].
Intensity drift was also observed in the DEVSET study, illustrated by the decreasing
total ion current for each acquired sample (Figure 3.22).

FIGURE 3.21: Principal components scores correlation with analytical and biological vari-
ance in DEVSET data produced by massFlowR and XCMS pre-processing pipelines. The
number of principal components to be subjected to correlation analyses was estimated us-
ing 7-fold cross-validation.
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FIGURE 3.22: Total ion current for each sample in the DEVSET study depicts that detected
ion intensity dropped with each acquired sample.

To account for the observed intensity drift, batch correction was applied to DEVSET
datasets. The LOESS-based intensity smoothing [92] was followed by QC feature
filtering. These final datasets were subjected to PCA analysis. Principal components
correlation with analytical parameters indicated that batch-correction removed the
unwanted analytical variance (Figure 3.23). Association with the sample origin - the
three original urine samples (DevSet1, DevSet2 and DevSet3) of which each sample
in the study was made off - was very strong in both massFlowR and XCMS datasets.
Each of the three urine samples was clearly associated with one of the calculated
principal components. Samples also clustered according to their origin in the PCA
scores plots (Figure 3.24). The PCA scores plots show that both tools produced sim-
ilar results for a biological dataset even though XCMS reported more features.
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FIGURE 3.23: PCA scores correlation with analytical and biological sources of variation
in the DEVSET study datasets generated by either massFlowR or XCMS pre-processing
pipelines. The colors and numbers indicate Pearson correlation coefficient for each principal
component and source of variation combination. Batch-corrected and QC-filtered datasets
were analysed.



Chapter 3. Development of a novel LC-MS spectral pre-processing tool 89

FIGURE 3.24: DEVSET samples segregation into neat clusters according to their sample class
was achieved by both (a) massFlowR and (b) XCMS pre-processing.
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3.4 Conclusions

In this chapter, a novel feature alignment method massFlowR that incorporates in-
formation on features grouping was proposed. The method builds pseudo chemical
spectra comprised of structurally related co-eluting features in a an individual LC-
MS sample and finds the best match for each of the features in the next acquired
sample by evaluating the overall spectral similarity of matching pseudo chemical
spectra.

The method fits into the category of direct matching algorithms as RT is not corrected
prior features alignment. Results with synthetic and real metabolomics datasets
demonstrate the potential of this approach. While recall values were lower for mass-
FlowR than for XCMS with synthetic datasets with > 18% of all features removed,
precision values were higher for massFlowR in all experiments. Furthermore, appli-
cation to a real metabolomics dataset indicates that massFlowR accurately captures
the underlying sources of variance, such as the expected time-dependent intensity
drift, as well as biological sample origin. Most of all, information on how features
are related to one another is available in the final massFlowR output, which will be
discussed in details in Chapter 4.
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Chapter 4

Strategies for automatic LC-MS
features annotation

4.1 Introduction

Mass spectrometry coupled to liquid chromatography (LC-MS) is being increasingly
utilised for molecular profiling of biological samples. Advances in instrumentation,
particularly development of UPLC [71] coupled to high resolution mass spectrom-
etry (HRMS) [79], which provided substantial enhancement in detection sensitivity,
secured LC-MS the central role in the field of metabolomics [128, 173]. The range
of untargeted LC-MS applications [92] was further expanded by the standardisa-
tion of experimental protocols for large-scale population studies with thousands of
samples [52, 62, 174]. However, the key aspect of metabolomics is spectral feature
annotation to the corresponding metabolite. Despite of depth of metabolic informa-
tion acquired for each sample, structural metabolite identification still represents a
major challenge in LC-MS based profiling [79]. Traditionally, only a subset of all
detected features that were found to be statistically significant are annotated using
laborious methods [175], which heavily depend on manual data analysis [27] and
often yield multiple putative identifications [112].

To reach a consensus about reporting standards, four levels of confidence in metabo-
lite identification were proposed by the Metabolomics Standards Initiative (MSI) of
the Metabolomics Society [176]. A new ’Level 0’ was proposed at the 2017 annual
meeting of the Metabolomics Society (Brisbane, Australia) (Table 4.1) [177], which re-
quires confirmation of the 3D structure and stereochemistry of isolated pure metabo-
lite.

4.1.1 Challenges and current standards

Several analytical parameters can be used for LC-MS metabolite annotation: ac-
curate mass (AM), chromatographic retention time (RT), fragmentation pattern
(MS/MS) and information about the sample, such as abundance in certain biological
groups [111].
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TABLE 4.1: Summary of levels of confidence in metabolite identification, as proposed at the
2017 annual meeting of the Metabolomics Society (Brisbane, Australia).

Confidence Definition Minimum data requirements
Level 0 "Unambiguous 3D structure" As level 1, and,

Full stereochemistry of isolated pure metabolite.
Level 1 "Confident 2D structure " As level 2, and,

Two orthogonal analytical techniques applied to the analysis of
both the metabolite and the chemical standard:
accurate mass and RT, MS/MS, isotopic pattern, 2D NMR spectra,...

Level 2 "Putatively annotated structure" As level 3, and,
Spectral (LC-MS and/or NMR) similarity with libraries
and/or literature data.

Level 3 "Putatively characterised
structure and/or class"

As level 4, and,
Spectral (NMR) and/or chromatographic (LC-MS) features consistent
with the characterised class.

Level 4 "Unknown" A reproducible and quantifiable signal in a sample.

While high mass accuracy is achieved with modern time-of-flight (TOF) mass spec-
trometers (four decimal places, < 5 parts per million), on its own it is not enough to
determine unambiguous elemental composition of a compound given its accurate
mass [178]. Formula determination is especially complex for molecules containing
common elements C, H, N, S, O and P, which are particularly common in the field
of metabolomics. For example, glutamine’s formula of C5H10N2O3 can have over
one million theoretical structures [111]. An added challenge in metabolite identi-
fication is the presence of structural isomers, which are very common among or-
ganic analytes. Structural isomers are compounds with the same molecular formula
but different physical and chemical properties. For example, glucose-6-phosphate,
fructose-6-phosphate and glucose-1-phosphate all have identical parent ion mass
and even similar MS/MS fragmentation pattern [179]. Nevertheless, they play very
different roles in glucose metabolism and therefore should be interpreted separately
during statistical data analyses. In lipidomics chemical space is expanded ever more
by the presence of multiple fatty acid chains, which also frequently contain unsatu-
rated bonds [180]. To detect and quantify each of the structural isomers separately,
they must be resolved prior to MS analysis. Multiple methods have been suggested,
including ion mobility-MS, since it separates ions based on their mass, charge and
cross section, which is linked to ion size and shape. But the most explored option
is coupling MS to different LC systems [181], which separates isomers in the chro-
matographic space.

Chromatographic separation provides additional information essential for resolving
ambiguous metabolite annotations made through AM alone. Chromatographic RT
is a chemical structure-specific property, therefore, matching unknown analyte’s RT
with candidate’s standard RT provides a high level of annotation confidence (Table
4.1). Nevertheless, in addition to the need of procuring authentic standards, which
can be economically infeasible for large-scale annotation efforts, RT matching driven
annotation is also challenged by RT shifts. As described in details in Chapter 2, RT
varies not only between different LC-MS instruments operated following the same
protocol, but also during a single LC-MS experimental run. Even minor differences
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in chromatographic conditions, such as pH or sample-induced matrix effects, can
lead to RT shifts. As a consequence, using AM and RT alone does not always lead to
unambiguous compound annotation.

In order to discriminate closely eluting compounds, as well identify compounds for
which RT is not known, tandem mass spectrometry (LC-MS/MS) can be performed.
Acquired MS/MS spectra provide increased confidence in metabolite annotations
through spectral comparison to authentic chemical standards or to in silico fragmen-
tation patterns. To assist the structural annotation of a metabolite, MS/MS spectra
are matched against a reference spectral library. Open-source databases, such as
METLIN [182], HMDB [183] and LIPID MAPS [184], are widely used due to their
accessibility and high data quality. To achieve a broad metabolite coverage, a com-
bination of multiple databases is often required, for example, HMDB does not con-
tain lipids and therefore LIPID MAPS should be included in the analysis of human
biofluids [169]. Furthermore, spectra for specific classes of chemicals sometimes
have to be obtained from commercial alternatives, such as the National Institute
of Standards and Technology (NIST) library.

Experimental MS/MS data can be matched against reference spectra using various
spectral comparison methods. One of the most popular methods is the dot prod-
uct, which computes the cosine of the angle between the unknown and the reference
spectra vector representations (Figure 3.7). Originally proposed in 1978 by Sokolow
et al. [185], dot product has been proven to be the most reliable method for library
search and spectral comparison [158, 186]. Dot product based algorithm is imple-
mented in the MS/MS Spectrum Match Search tool in METLIN [182] and the NIST
mass spectral library [167]. Other commonly applied similarity measures include
Tanimoto coefficient, also known as Jaccard index, which measures the similarity be-
tween finite sample sets. It is defined as the number of elements in common between
the two sets divided by the total number of elements. The Tanimoto coefficient is a
particularly intuitive similarity measure, which in the field of mass spectrometry ac-
counts for the number of ions (i.e. spectral fingerprints) that might be in common
relative to the number of ions that are common [187]. Tanimoto similarity index is
included in the MetFrag workflow, which identifies small molecules using in silico
fragmentation [187].

Even with such a broad selection of open source and commercial reference libraries,
an annotated MS/MS spectrum is not always available for the compound of interest.
While MS/MS spectrum prediction algorithms have been developed for such cases
[187–189], fragmentation rules are not fully understood yet and prediction success is
still erroneous for many chemical classes [190]. Furthermore, acquisition of MS/MS
spectra for each unknown metabolite in a large-scale profiling study is often infeasi-
ble due to limited time and resources. Therefore, a solution for automatic metabolite
annotation based on LC-MS spectra alone is desirable.
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4.1.2 Automatic LC-MS spectra annotation

Soft ionization techniques, such as electrospray-ionization (ESI) which is explored
in this thesis, principally produce ions of the intact analyte molecule, most often in
the form of the protonated molecule, e.g. [M + H]+, where M is the molecular mass
of the analyte. In ESI, ions are formed in solution, as a result, multiply charged ions
are produced with little or even no fragmentation of the analyte [74]. In addition, in
ESI analytes can form adduct ions through solvent-analyte clustering, for example,
potassiated and sodiated analyte ions [M +K]+ and [M + Na]+. Analytes can some-
times also form protonated multimers, such as [2M + H]+. While the exact mech-
anism of adduct formation is not fully understood, high abundances of the most
commonly encountered adducts, mainly [M + K]+, [M + Na]+ and [M + NH4]

+

in positive ionisation mode, are widely reported [191]. Therefore, ESI produces a
highly complex spectra, the highest m/z value in which is usually not the protonated
analyte molecule, but an analyte-mobile phase cluster ion, or an analyte multimer
ion.

Algorithms for automated untargeted LC-MS data annotation have been previously
developed. Most of them are based on clustering features corresponding to ions
originating from the same compound into a spectra.

A range of computational tools for LC-MS annotations are based on pairwise inten-
sity correlation analysis across multiple samples. One of the earlier tools is MSClust,
which operates on two main assumptions: (1) the chromatographic peaks of struc-
turally related ions have similar RT span; (2) the intensity patterns across samples
are similar for ions originating from a single metabolite [192]. Similarly to MSClust,
the RAMClust feature clustering algorithm assumes that two features derived from
the same compound will exhibit similar retention time and quantitative trend across
samples [170]. While features can be correlated at the level of either: (i) MS vs MS,
(ii) MS vs indiscriminate high-collision MS/MS (idMS/MS), or (iii) idMS/MS vs
idMS/MS; algorithm is based on XCMS-detected and aligned features and does not
make use of raw data. Other examples include AStream [193], MS-FLO [194], xM-
Sannotator [195] and PUTMEDID-LCMS workflow [169]. All these tools rely on
already aligned features and therefore are intrinsically sensitive to pre-processing
errors that take place due to experimental noise, as described in Chapter 2.

An alternative school of thought suggests that features clustering should be based
not only on intensity patterns across samples, but on chromatographic peak shape
correlation as well [156]. The approach was implemented as a data-reduction tool
[151], as well as an annotation tool CAMERA [164]. CAMERA is the most widely
used annotation tool, as reported in the recent Metabolomics Society survey [173].
CAMERA performs clustering by selecting the most intense feature not yet assigned
to a compound and adding all features within a RT window around its centroid into
a new compound spectrum [164]. This spectrum is later refined by correlating the
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extracted ion chromatograms (EIC) from the sample in which the feature-of-interest
is the most intense. As a result, CAMERA is biased toward the most abundant fea-
tures [170]. Furthermore, CAMERA was benchmarked with 48 LC-MS spectra and
therefore may not be suitable for large-scale profiling studies.

A third parameter that is often used to deconvolute and annotate complex LC-MS
spectra is the analysis of m/z differences between co-eluting features [112]. As cer-
tain forms of adducts are more likely to be produced in a given LC-MS experiment,
rules on specific m/z differences can be applied in order to identify the structurally
related features among the co-eluting features. For example, the m/z difference be-
tween the protonated [M + H]+ and potassiated [M + Na]+ analyte molecules is
21.9820. Such design was implemented in a number of tools, among which is the
earlier described CAMERA [164], as well as lipid identification software LipiDex
[196], LC-MS data processing and analysis platform MET-COFEA [152] and work-
flow PUTMEDID-LCMS [169]. Most of the platforms allow the user to specify the
list of expected adducts, which accounts for the differences in the adduct formation
processes among the varied LC-MS systems and protocols. Nevertheless, such ap-
proach is inherently targeted and will miss the previously uncharacterised adducts
and fragments.

The newest edition to the features clustering and annotation toolbox is CliqueMS
[166]. CliqueMS clusters XCMS features with similar chromatographic peak shapes,
as denoted by their cosine similarity, together. Isotopes, adducts and in-source-
fragments (ISF) are identified among the clustered features. Despite of improved
annotation efficiency in comparison to CAMERA, CliqueMS only produces annota-
tions for individual samples, preventing large-scale annotation efforts.

4.1.3 Hypothesis

Complex spectra generated by ESI provides an advantage in metabolite identifica-
tion process. We hypothesise that annotating LC-ESI-MS adducts and ISF ions orig-
inating from the same metabolite as an MS/MS spectra through direct LC-ESI-MS
spectra matching to a reference database will help make accurate putative annota-
tions.

4.1.4 Aims and objectives

The purpose of this chapter was to annotate the AIRWAVE cohort LC-MS data and
to explore multiple automatic data annotation strategies. This chapter is therefore
organised in three main sections:

• Application and validation of the most popular open-source annotation tool
CAMERA.
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• Development and validation of a feature-to-spectra matching algorithm to an-
notate XCMS generated data to a reference database.

• Application and validation of massFlowR-driven pseudo chemical spectra
matching to a reference database.

4.2 Methods

4.2.1 Data acquisition and pre-processing

Serum samples collected as part of the AIRWAVE cohort were analysed by HILIC-
POS-MS at the National Phenome Centre (NPC), as described in details in Chapter
2, Section 2.2.1. A single batch of 1,326 samples, which includes pooled quality con-
trol, dilution series and external long-term reference samples, as well as 1,027 study
samples (Table 2.3) were subjected to both XCMS and massFlowR pre-processing.

XCMS pre-processing methods are described in details in Chapter 2, Table 2.7. Pa-
rameters for massFlowR pre-processing and annotation are summarised in Table 4.2.

TABLE 4.2: CAMERA and massFlowR parameters used in the automatic annotation of AIRWAVE serum
HILIC-POS-MS dataset. Functions are listed in the order of use.

CAMERA

Function Parameter Value
groupFWHM perfwhm 0.6

findIsotopes mzabs 0.01

groupCorr cor_eic_th 0.75

findAdducts polarity "positive"

massFlowR

Function Parameter Value

groupPEAKS

peakwidth c(1, 5)
prefilter c(10, 5000)
noise 200
snthresh 5
ppm 25

alignPEAKS
rt_err 10
mz_err 0.01
cutoff 0

validPEAKS
cor_thr 0.5
min_samples_prop 0.1

fillPEAKS fill_value "into"

annotateDS
rt_err 15
mz_err 0.01

Unlisted parameters were set to defaults.

4.2.2 Standard annotation workflow

First, the most widely used open-source automatic annotation software, CAMERA,
was applied to AIRWAVE data processed with XCMS. CAMERA workflow consists
of three steps (corresponding functions are written in brackets):

• Features grouping into pseudo chemical spectra using RT (groupFWHM).
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• Grouping validation using chromatographic peak shape similarity analysis
(groupCorr).

• Detection of natural isotopes and adducts (findIsotopes and findAdducts respec-
tively).

Applied CAMERA parameters are listed in Table 4.2.

4.2.3 Annotation to in-house database

Feature-to-spectra matching algorithm

In order to annotate data processed with standard peak detection software, e.g.
XCMS, to an in-house chemical standards database, a feature-to-spectra matching
algorithm was developed (Figure 4.1). First, dataset-of-interest features correspond-
ing to a database compound are selected, as depicted in Figure 4.1.f. The match be-
tween selected dataset features and database compound is evaluated using a scoring
method as follows:

score =
∑n

i int(DSj)

∑k
j int(DBi)

× k
n

(1)

where n and k are the number of database compound features and matching fea-
tures in the dataset of interest respectively. int(DBi) is the intensity of database
compound’s feature i; int(DSj) is the intensity of database compound’s feature j
that have a match in the dataset of interest. The ratio of sum of intensities of features
with a match to the sum of intensities of all database features is proportional to how
many of the the most intense features in the spectrum are matched. Similarly, ratio
of the number of matching features to the total number of features in the compound
spectrum is indicative of overall spectral similarity. Thus, proposed scoring method
provides a value between 0 and 1, with 1 being a perfect match.
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FIGURE 4.1: Feature-to-spectra matching enables dataset annotation using a chemical standards database. First, (a) raw LC-MS spectra is acquired for every
chemical standard in the database. (b) Raw spectra is processed to extract features specific to this compound. (c),(d) Features matching to compound’s m/z and
RT values are identified in the dataset using m/z and RT windows. (e) Density estimate indicates the central RT value among the matching dataset features
(dashed line). (f) Matches within two standard deviations of this central value (green area) are retained, only the closest match for each database feature is
selected.
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Spectra-to-spectra matching algorithm

In order to annotate data processed with massFlowR pipeline, which is discussed
in details in Chapter 3, a spectra-to-spectra matching algorithm was developed.
The algorithm is based on the massFlowR PCS alignment method. However, in-
stead of aligning a sample-of-interest to the template, the final massFlowR output
containing aligned, validated and filled PCS are aligned to the database. Since
database standards LC-MS spectra were processed to group structurally related and
standard-specific features together, they are equivalent to PCS generated by mass-
FlowR. Therefore, the dataset-of-interest is matched to the database PCS using spec-
tral similarity comparison method, as in PCS alignment in massFlowR pipeline. Ob-
tained matches are ordered by the similarity score and the highest scoring chemical
standard is suggested as the top annotation.

4.2.4 Database generation

An in-house chemical reference database, acquired at the National Phenome Cen-
tre (NPC) prior to the start of this project, was used to annotate both XCMS and
massFlowR generated datasets. An empirical and non-deterministic approach was
implemented when preparing chemical standards for analysis: an small amount of
standard was dissolved in water and a 1:10 dilution series was created to achieve
a wide range of four orders of magnitude. Every concentration was analysed and
the sample with the highest concentration that produced an un-saturated standard-
specific signal was retained.

Standards were analysed with the ACQUITY UPLC (Waters Corp., Milford, MA,
USA) chromatography system was connected to Xevo G2-S Q-ToF mass spectrome-
ter (Waters Corp., Manchester, UK) with Zspray electrospray ionization (ESI) source.
Three complementary chromatographic assays (HILIC, RP and lipid RP) were used
according to the standard NPC protocols. MS data was recorded as three indepen-
dent functions, both low-collision (LC) and high-collision (HC) energy acquisitions
were performed.

Every chemical standard (i.e target sample) acquisition was preceded and followed
by a blank sample. Raw spectral files were de-noised and centroided using pro-
prietary Waters software. All nine MS functions (i.e. three per sample) were peak-
picked using XCMS centWave function, detected features were aligned using XCMS
density grouping function. Features that were present in at least two of the three MS
functions of the target sample, as well as were at least 10-fold more intense than cor-
responding features in the blanks, were marked as the "seed" features. These "seed"
features were then EIC-correlated to every other feature in the target sample spectra.
Highly correlated features were grouped together, these groups here are referred to
as pseudo chemical spectra to account for the similarly with the massFlowR imple-
mentation and terminology discussed in depth in Chapter 3.
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Obtained groups of features were recorded as a separate data file for each standard.
Database generation was performed by Dr M.R.Lewis at the NPC.

4.2.5 Annotation validation

46 metabolites and their main adducts and in-source fragments were identified in
the LC-MS spectra of all AIRWAVE samples using m/z and RT regions kindly pro-
vided by the NPC team. Detection of metabolites in spectra was performed using R
package peakPantheR. Detection regions of the validated ions are available in Ap-
pendix A.

All scripts used within this and other chapters are available on the public GitHub
repository: https://github.com/lauzikaite/PhD_thesis_code.

4.3 Results

4.3.1 XCMS features annotation

The AIRWAVE serum HILIC dataset was pre-processed with XCMS. The details on
the pre-processing and downstream quality control filtering results are available in
Chapter 2, which discusses the XCMS-based workflow in greater detail.

The obtained XCMS features were subjected to the CAMERA automated annota-
tion workflow, which assigns features originating from the same metabolite, such
as adducts, natural isotopes and in-source fragment ions, into groups called pseu-
dogroups [164]. CAMERA annotation results are visualised in Figure 4.2. Features
that were annotated to an adduct or an isotope (yellow dots) are distributed among
the un-annotated features (purple dots) in the m/z and retention time space of the
assay relatively equally. While CAMERA workflow ensures that every feature is as-
signed to a pseudogroup, the number of features grouped to a single pseudogroup
varies (Figure 4.3). Majority of the generated pseudogroups contain just a single
feature and therefore do not provide meaningful information for metabolite identi-
fication validation. One of potential explanations for the observed results lies in the
design of the CAMERA annotation algorithm, which: (1) clusters XCMS features to
compound spectra using just their RT values, (2) detects isotopes within each com-
pound spectrum by checking the intensity ratios for features with m/z difference of
1.0033; (3) refines compound spectrum by performing chromatographic peak shape
similarity analysis in a set of selected samples and pairwise Pearson correlation of
intensities across all samples ; (4) assigns features to molecular formulas using a
user-provided list of m/z differences for adducts [164]. As CAMERA pipeline largely
depends on RT values to form the initial features clusters, incorrectly pre-processed
and aligned features are unlikely to be accurately annotated using this approach.
Given the significant RT deviation observed in this study (Chapter 2, Section 2.3.1),

https://github.com/phenomecentre/peakPantheR
https://github.com/lauzikaite/PhD_thesis_code
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XCMS features with similar RT values may not be truly co-eluting in individual sam-
ples. Such initial clusters would therefore not exhibit a typical isotopic pattern, high
EIC correlation in a single sample or intensity correlation across all samples. Inaccu-
rately formed initial clusters may therefore result in pseudogroups comprised of just
a single feature, as observed in Figure 4.3. Nevertheless, pseudogroups comprised
of two to ten features are highly abundant in the CAMERA output and further anal-
yses will focus on them, as they represent the most informative pseudogroups for
the purpose of metabolite annotation.

FIGURE 4.2: The ion map of features detected by XCMS in AIRWAVE serum HILIC POS
assay dataset. The color of a feature indicates whether it was annotated to an adduct or a
natural isotope by the CAMERA workflow.
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FIGURE 4.3: The number of XCMS features per pseudogroups, obtained by CAMERA work-
flow applied to AIRWAVE serum HILIC POS dataset. Distribution of pseudogroups size is
visualised over four sub-figures to account for very different scales.

Ten most commonly detected and reported CAMERA adduct types are listed in Ta-
ble 4.3 ( Mr Stephane Camuzeaux, personal communication, August 2019). Among
those are ions, such as [M + Na]+, [M + K]+ and [M + H]+, that are commonly de-
tected in NPC HILIC assay. However, this list also includes rarely encountered ions,
such as [M + H + NH3]+ and [M + H − H20]+. These results indicate that run-
ning CAMERA in an untargeted mode (i.e. without a pre-defined adduct list) can be
potentially dangerous and lead to misleading annotations.
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TABLE 4.3: AIRWAVE dataset was annotated using XCMS and CAMERA. The 10 most com-
monly detected and reported adducts are listed. The frequency corresponds to the number
of times a given adduct was reported by CAMERA annotation workflow. Top four most
frequently reported adducts are also commonly observed in NPC assays (Mr Stephane Ca-
muzeaux, personal communication, August 2019).

Ion Frequency Common in NPC assays
[M+K]+ 1363 Yes
[M+Na]+ 1091 Yes
[M+H]+ 841 Yes
[M+Na+NaCOOH]+ 238 Yes
[M+Na+HCOOH]+ 144
[M+H+NH3]+ 140
[M+H+HCOOH]+ 135
[M+Na+NH3]+ 135
[M+K+NaCOOH]+ 131
[M+H-H20]+ 116

Annotation validation

Here a set of 46 validated endogenous metabolites, which are commonly detected in
serum samples, were used to visualise the accuracy of CAMERA annotation work-
flow. The m/z and RT values for the adducts and in-source fragments corresponding
to the validated metabolites are provided in Appendix A. Each metabolite is charac-
terised by one to three adducts and/or in-source fragments.

Features corresponding to the ions of 40 target metabolites were identified in the
XCMS output. A summary for CAMERA results is illustrated in Figure 4.4, full de-
tails are provided in Table 4.4. While the selected endogenous metabolites had up
to three unique ions, XCMS reported duplicated features for some of these ions, as
indicated by the number of features per metabolite in Figure 4.4A. For example, two
betaine adducts ([M + H]+ and [M + Na]+) were each detected and reported three
times (Table 4.4). This and other metabolites with duplicated features represents an
example of the ambiguity created by a pre-processing pipeline that treats features as
independent entities. It cannot be single-handedly concluded which of these XCMS
features correspond to the ions of interest as the raw spectral information is lost
during the pre-processing. Next, the number of pseudogroups per metabolite was
investigated (Figure 4.4B). 24 out of the 40 detected metabolites had their features
assigned to the same pseudogroup, while the other 16 metabolites were grouped
either across multiple pseudogroups (e.g. carnitine) or with other metabolites (e.g.
urocanate and 5-methylthioadenosine adducts were grouped into the same pseu-
dogroup). These results are particularly worrying as it suggests that the EIC of
the adducts/in-source fragments for these metabolites were not found to be cor-
related in individuals samples, nor were their intensities across all samples. As it
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was shown in details in Chapter 3, such correlation structures are highly expected in
LC-MS data. A further inconsistency that was noticed in the CAMERA output is the
highly varied RT values for features originating from the same metabolite (Figure
4.4C). Nevertheless, this mostly accounts for the multiple pseudogroups into which
features of the same metabolite were assigned to (Figure 4.4D). Given that the ini-
tial input for the CAMERA algorithm are the RT values reported by XCMS, these
results are not surprising. The duplicated XCMS features with varying RT values
lead to multiple pseudogroups generation. This resulted in ambiguous annotation
and multiple neutral masses for a single metabolite were suggested for many of the
investigated metabolites (Table 4.4).

Among the investigated 46 metabolites, six were annotated correctly since their
adduct ions were assigned to the correct molecular formulas. For example, features
corresponding to creatinine [M + Na]+ and [2M + H]+ ions were both assigned to
the correct neutral mass of 113.059. The number of correctly assigned features to the
total number of features are provided for these six metabolites below:

• Creatinine (2/2);

• L-Proline (2/3);

• 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (1/1);

• Hypoxanthine (3/3);

• Pipecolate (2/2);

• Inosine (2/2).
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FIGURE 4.4: XCMS features annotation using CAMERA workflow was validated using 46
endogenous metabolites. CAMERA output was summarised to visualise: (A) the number
of features per metabolite; (B) the number of pseudogroups into which a given metabolite
was grouped; (C) RT difference between the features of a single metabolite; (D) RT difference
between the features of a single metabolite grouped to the same pseudogroup.
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TABLE 4.4: AIRWAVE dataset was annotated using XCMS and CAMERA. Validated metabolites: their adducts and in-source fragments (ISF) were identified
among the reported features. CAMERA output - identified pseudogroups, isotopes and adducts - are provided for each of the feature.

Chemical standard CAMERA output
Metabolite cpdID Ion m/z RT Pseudogroup Isotopes Adduct
Choline HPOS-007.1 M 104.1067 239.69 4

Carnitine
HPOS-008.1 M+H 162.1118 328.16 11 [40][M]+
HPOS-008.2 M+Na 184.0937 328.12 1047 [47][M]+
HPOS-008.3 ISF 103.0390 330.71 11 [M+H]+ 102.032

Laurylcarnitine
(C12:0)

HPOS-013.1 M+H 344.2788 239.14 4 [157][M+2]+
HPOS-013.2 M+Na 366.2631 239.25 4

Histidine
HPOS-014.1 M+H 156.0762 377.20 209
HPOS-014.2 M+Na 178.0582 379.53 8415
HPOS-014.3 ISF 110.0710 379.88 8414

N6,N6,N6-
Trimethyllysine

HPOS-016.1 M+H 189.1591 371.83 5496
HPOS-016.2 ISF 130.0862 360.17 829

Taurine HPOS-023.1 M+H 126.0215 160.86 113 [M+3Na-H]2+ 184.09
Paraxanthine HPOS-024.1 M+H 181.0717 58.51 62 [46][M]+
Trigonelline HPOS-025.1 M+H 138.0542 295.58 649 [17][M]+

Betaine

HPOS-027.1 M+H 118.0857 291.39 2089 [6][M]+
HPOS-027.1 M+H 118.0856 280.41 89
HPOS-027.1 M+H 118.0856 273.72 93 [M+H-C6H10O5]+ 279.144
HPOS-027.2 M+Na 140.0675 282.58 7151
HPOS-027.2 M+Na 140.0674 273.01 141
HPOS-027.2 M+Na 140.0675 291.73 33

Warfarin
HPOS-031.2 ISF 251.0678 41.65 1483
HPOS-031.3 ISF 163.0389 38.52 1730

Caffeine HPOS-033.1 M+H 195.0875 52.42 38 [50][M]+
Niacinamide HPOS-034.1 M+H 123.0546 65.65 115 [7][M]+

Creatinine
HPOS-036.1 M+Na 136.0476 154.51 59 [14][M]+ [M+Na]+ 113.059
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TABLE 4.4: AIRWAVE dataset was annotated using XCMS and CAMERA. Validated metabolites: their adducts and in-source fragments (ISF) were identified
among the reported features. CAMERA output - identified pseudogroups, isotopes and adducts - are provided for each of the feature.

Chemical standard CAMERA output
Metabolite cpdID Ion m/z RT Pseudogroup Isotopes Adduct

HPOS-036.2 2M+H 227.1249 154.49 59 [2M+H]+ 113.059

1,1-Dimethylbiguanide
HPOS-038.1 M+H 130.1080 210.01 43
HPOS-038.2 ISF 113.0815 210.12 2780

Tryptophan
HPOS-039.1 M+H 205.0968 231.58 37 [M+2H-CO]2+ 436.167
HPOS-039.2 ISF 188.0705 235.46 10

Phenylalanine HPOS-040.1 M+H 166.0854 232.65 2326

Methionine

HPOS-041.1 M+H 150.0582 256.65 14 [M+Na+K]2+ 238.167
HPOS-041.1 M+H 150.0581 249.95 97
HPOS-041.2 M+2Na-H 194.0224 249.94 5412
HPOS-041.2 M+2Na-H 194.0221 256.89 1254

Trimethylamine N-oxide
HPOS-042.1 M+H 76.0757 255.97 1251
HPOS-042.2 2M+H 151.1431 257.03 1252

L-Proline
HPOS-043.1 M+H 116.0699 272.65 141 [M+H]+ 115.063 [M+H-C4H8]+ 171.127
HPOS-043.2 M+2Na-H 160.0338 272.84 141 [M+2Na-H]+ 115.063
HPOS-043.3 2M+H+2HCOONa 365.0667 273.57 93 [M+K]+ 326.102

L-Alanine
HPOS-044.1 M+2Na-H 134.0185 283.18 147 [M+2H-HCOOH]2+ 312.028
HPOS-044.2 2M+H+2HCOONa 313.0355 282.57 147 [142][M]+ [M+H]+ 312.028
HPOS-044.3 3M+Na+2HCOONa 356.0775 285.49 42

Creatine
HPOS-045.1 M+H 132.0760 308.44 25 [13][M]+
HPOS-045.2 M+Na 154.0583 309.92 25 [M+2H]2+ 306.104
HPOS-045.3 M+2Na-H 176.0403 310.32 25 [M+2Na]2+ 306.104

L-Glutamine
HPOS-046.1 M+H 147.0760 314.96 152
HPOS-046.2 M+2Na-H 191.0399 314.18 152 [M+2Na]2+ 336.101 [M+H-C6H10O4]+ 336.101
HPOS-046.3 ISF 130.0494 314.80 152

L-Citrulline HPOS-047.2 M+Na 198.0850 341.87 1165
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TABLE 4.4: AIRWAVE dataset was annotated using XCMS and CAMERA. Validated metabolites: their adducts and in-source fragments (ISF) were identified
among the reported features. CAMERA output - identified pseudogroups, isotopes and adducts - are provided for each of the feature.

Chemical standard CAMERA output
Metabolite cpdID Ion m/z RT Pseudogroup Isotopes Adduct

Arginine
HPOS-048.1 M+H 175.1185 357.18 8
HPOS-048.2 M+2Na-H 219.0877 358.17 840

Lysine HPOS-049.1 M+H 147.1128 360.08 8 [M+H]+ 146.107

a-glycerophosphocholine
HPOS-050.1 M+H 258.1100 362.26 8 [101][M+2]2+
HPOS-050.2 M+Na 280.0921 362.29 856 [117][M]+
HPOS-050.4 ISF 104.1065 361.83 8

3-methylhistidine HPOS-051.1 M+H 170.0921 370.06 5497
N-Acetyl-
D-mannosamine

HPOS-053.1 M+Na 244.0814 106.47 26 [M+Na+NH3]+ 204.062
HPOS-053.1 M+Na 244.0794 111.74 129

1,2-Dimyristoyl-
sn-glycero-
3-phosphocholine

HPOS-054.1 M+H 678.5070 250.10 157 [813][M]+ [M+H]+ 677.501

Hypoxanthine
HPOS-055.2 M+Na 159.0273 98.29 71 [38][M]+ [M+Na]+ 136.039
HPOS-055.3 ISF 119.0347 98.40 71 [M+H-H20]+ 136.039
HPOS-055.4 ISF 110.0349 98.53 71 [M+2Na+K-H]2+ 136.132 [M+H-C2H4]+ 137.067

Urocanate HPOS-057.1 M+H 139.0499 81.03 247
5’-Methylthioadenosine HPOS-058.1 M+H 298.0954 80.81 247

Pipecolate
HPOS-061.1 M+H 130.0855 273.65 93 [9][M]+ [M+H]+ 129.078
HPOS-061.2 M+2Na-H 174.0498 275.45 93 [M+2Na-H]+ 129.078 [M+H]+ 173.043

Thiamine HPOS-072.1 M+ 265.1116 332.88 5859
4-Guanidinobutanoate HPOS-073.1 M+H 146.0910 235.96 601

N,N-Dimethylglycine
HPOS-074.1 M+H 104.0697 282.21 147 [M+2H-C2H4]2+ 234.159
HPOS-074.2 M+2Na-H 148.0334 282.04 7152

Inosine
HPOS-079.1 M+Na 291.0699 99.93 32 [126][M]+ [M+Na]+ 268.081
HPOS-079.2 M+2Na-H 313.0516 99.87 32 [143][M]+ [M+2Na-H]+ 268.081
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TABLE 4.4: AIRWAVE dataset was annotated using XCMS and CAMERA. Validated metabolites: their adducts and in-source fragments (ISF) were identified
among the reported features. CAMERA output - identified pseudogroups, isotopes and adducts - are provided for each of the feature.

Chemical standard CAMERA output
Metabolite cpdID Ion m/z RT Pseudogroup Isotopes Adduct
Cortisol HPOS-086.1 M+H 363.2166 44.90 15 [M+K]+ 324.252 [2M+Na+2K]3+ 494.363

1-Methylnicotinamide
HPOS-089.1 M+ 137.0702 253.25 44 [16][M]+ [M+Na]+ 114.082
HPOS-089.2 ISF 94.0650 254.07 2808

Sucrose HPOS-091.1 M+Na 365.1052 142.30 197
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XCMS features annotation using feature-to-spectra approach

To enable data annotation to an in-house chemical reference database, a feature-to-
spectra matching algorithm was developed (Figure 4.1). The algorithm evaluates the
confidence of a match between a feature and a database compound by estimating:
(1) the complexity of the compound’s spectra; (2) how many features in the dataset
correspond to compound’s spectra. When combined, these two measures provide
a score ranging from zero to one, where one indicates a perfect match (within the
limits of the suggested method), as illustrated in Equation 1.

XCMS features obtained for the AIRWAVE HILIC dataset were subjected to feature-
to-spectra matching algorithm using a previously built in-house chemical standards
database. The database contains 1,782 unique entries across multiple chemical
classes, the most common of which are organic acids and derivatives, organohete-
rocyclic compounds and benzenoids (Figure 4.5 summarises HMDB super-classes
distribution for entries with HMDB accession number only). The most abundant
class - organic acids - comprises mostly of amino acids, peptides, dicarboxylic acids,
short-chain keto acids and their derivative compounds.

FIGURE 4.5: Distribution of HMDB super-classes for in-house chemical standards database
entries with HMDB accession number.
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Due to the untargeted approach implemented when acquiring the database, some
chemical compounds have multiple entries since more than one different chemical
standard was analysed (Figure 4.6). For example, hypoxanthine has four database
entries (Figure 4.7) which correspond to four standards acquired from different sup-
pliers.

Feature-to-spectra matching algorithm automatically annotated 6% of all features to
a database compound. 45% of annotated features match only a single chemical com-
pound (Figure 4.8), whereas 93% of features match 10 or less different compounds.
The relatively low number of annotated compounds per feature suggests that this
method provides reasonably unambiguous identifications.

FIGURE 4.6: Some chemical compounds in the in-house reference database have multiple
entries since more than one different chemical standard was analysed.
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FIGURE 4.7: Four chemical standards of hypoxanthine were acquired with the HILIC LC-
MS for the in-house chemical standards database. There is some variation in the retention
time and the intensities of the features detected in standards spectra. Purple dots indicate
features that were removed from the spectra during database built due to intensity lower
than the user-selected threshold, which here is 5 % of the base peak to which every feature
is normalised to.

FIGURE 4.8: XCMS features obtained for a HILIC dataset were automatically annotated to
an in-house chemical reference database using a feature-to-spectra matching algorithm. The
distribution of the number of database compounds per feature illustrates that most features
are annotated to a few compounds.
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Annotation validation

Similarly as before, the accuracy of the feature-to-spectra matching algorithm was
evaluated using 40 endogenous metabolites, identified among the XCMS features,
as described in Appendix A. The results of of the feature-to-spectra matching of
XCMS features to the standards database are provided in Table 4.5. Annotations for
each feature were ranked according to the obtained matching score. If the highest-
scoring database compound (i.e. top annotation’s rank equals to 1) corresponds to
the correct metabolite, then the automatic annotation for the feature was considered
correct. 40 validation metabolites were categorised according to how many of their
adducts and/or in-source fragment ions were correctly annotated (Table 4.6). 34
metabolites were annotated to the correct chemical standard for all of their features.
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TABLE 4.5: AIRWAVE dataset was annotated using XCMS and in-house chemical reference database (DB). XCMS features were matched to the DB chemicals
using a novel feature-spectra matching algorithm. Annotation results were validated using validated metabolites - their adducts and in-source fragments (ISF)
were identified among XCMS features. Feature-wise annotations were ranked according to the obtained matching score. If the top annotation (i.e. rank = 1)
corresponds to the correct metabolite, then algorithm automatically assigned feature to the correct chemical compound.

Chemical standard Feature-to-spectra matching output

Metabolite cpdID Ion m/z RT
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
top annotation

Choline HPOS-007.1 M 104.1067 239.69 1 0.656

Carnitine
HPOS-008.1 M+H 162.1118 328.16 3 0.806 Tripolyphosphate
HPOS-008.2 M+Na 184.0937 328.12 1 0.806
HPOS-008.3 ISF 103.0390 330.71 - - *

Laurylcarnitine
HPOS-013.1 M+H 344.2788 239.14 1 0.425
HPOS-013.2 M+Na 366.2631 239.25 1 0.425

Histidine
HPOS-014.1 M+H 156.0762 377.20 1 0.389
HPOS-014.2 M+Na 178.0582 379.53 1 0.389
HPOS-014.3 ISF 110.0710 379.88 1 0.389

N6,N6,N6-
Trimethyllysine

HPOS-016.1 M+H 189.1591 371.83 1 1
HPOS-016.2 ISF 130.0862 360.17 - - D-Lysine*

Taurine HPOS-023.1 M+H 126.0215 160.86 1 0.913

Paraxanthine HPOS-024.1 M+H 181.0717 58.51 1 1

Trigonelline HPOS-025.1 M+H 138.0542 295.58 1 0.319

Betaine
HPOS-027.1 M+H 118.0857 291.39 1 1
HPOS-027.2 M+Na 140.0675 282.58 1 1
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TABLE 4.5: AIRWAVE dataset was annotated using XCMS and in-house chemical reference database (DB). XCMS features were matched to the DB chemicals
using a novel feature-spectra matching algorithm. Annotation results were validated using validated metabolites - their adducts and in-source fragments (ISF)
were identified among XCMS features. Feature-wise annotations were ranked according to the obtained matching score. If the top annotation (i.e. rank = 1)
corresponds to the correct metabolite, then algorithm automatically assigned feature to the correct chemical compound.

Chemical standard Feature-to-spectra matching output

Metabolite cpdID Ion m/z RT
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
top annotation

Warfarin
HPOS-031.2 ISF 251.0678 41.65 - -
HPOS-031.3 ISF 163.0389 38.52 1 0.614

Caffeine HPOS-033.1 M+H 195.0875 52.42 1 1

Niacinamide HPOS-034.1 M+H 123.0546 65.65 1 1

Creatinine
HPOS-036.1 M+Na 136.0476 154.51 1 1
HPOS-036.2 2M+H 227.1249 154.49 1 1

Metformin
HPOS-038.1 M+H 130.1080 210.01 1 1
HPOS-038.2 ISF 113.0815 210.12 1 1

Tryptophan
HPOS-039.1 M+H 205.0968 231.58 1 0.227
HPOS-039.2 ISF 188.0705 235.46 1 0.386

Phenylalanine HPOS-040.1 M+H 166.0854 232.65 1 0.844

Methionine
HPOS-041.1 M+H 150.0582 256.65 1 0.201
HPOS-041.2 M+2Na-H 194.0224 249.94 1 0.201

Trimethylamine-
N-oxide

HPOS-042.1 M+H 76.0757 255.97 1 1
HPOS-042.2 2M+H 151.1431 257.03 1 1

Proline
HPOS-043.1 M+H 116.0699 272.65 1 0.936
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TABLE 4.5: AIRWAVE dataset was annotated using XCMS and in-house chemical reference database (DB). XCMS features were matched to the DB chemicals
using a novel feature-spectra matching algorithm. Annotation results were validated using validated metabolites - their adducts and in-source fragments (ISF)
were identified among XCMS features. Feature-wise annotations were ranked according to the obtained matching score. If the top annotation (i.e. rank = 1)
corresponds to the correct metabolite, then algorithm automatically assigned feature to the correct chemical compound.

Chemical standard Feature-to-spectra matching output

Metabolite cpdID Ion m/z RT
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
top annotation

HPOS-043.2 M+2Na-H 160.0338 272.84 1 0.936
HPOS-043.3 2M+H+2HCOONa 365.0667 273.57 1 0.936

Alanine
HPOS-044.1 M+2Na-H 134.0185 283.18 1 1
HPOS-044.2 2M+H+2HCOONa 313.0355 282.57 1 1
HPOS-044.3 3M+Na+2HCOONa 356.0775 285.49 1 1

Creatine
HPOS-045.1 M+H 132.0760 308.44 2 0.631 Phosphocreatine
HPOS-045.2 M+Na 154.0583 309.92 2 0.631 Phosphocreatine
HPOS-045.3 M+2Na-H 176.0403 310.32 2 0.631 Phosphocreatine

Glutamine
HPOS-046.1 M+H 147.0760 314.96 1 1
HPOS-046.2 M+2Na-H 191.0399 314.18 1 1
HPOS-046.3 ISF 130.0494 314.80 1 1

Citrulline HPOS-047.2 M+Na 198.0850 341.87 1 0.19

Arginine
HPOS-048.1 M+H 175.1185 357.18 1 1
HPOS-048.2 M+2Na-H 219.0877 358.17 1 1

Lysine HPOS-049.1 M+H 147.1128 360.08 1 0.774

a-glycerophosphocholine
HPOS-050.1 M+H 258.1100 362.26 2 0.518

1-Oleoyl-sn-glycero-
3-phosphocholine
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TABLE 4.5: AIRWAVE dataset was annotated using XCMS and in-house chemical reference database (DB). XCMS features were matched to the DB chemicals
using a novel feature-spectra matching algorithm. Annotation results were validated using validated metabolites - their adducts and in-source fragments (ISF)
were identified among XCMS features. Feature-wise annotations were ranked according to the obtained matching score. If the top annotation (i.e. rank = 1)
corresponds to the correct metabolite, then algorithm automatically assigned feature to the correct chemical compound.

Chemical standard Feature-to-spectra matching output

Metabolite cpdID Ion m/z RT
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
top annotation

HPOS-050.2 M+Na 280.0921 362.29 2 0.518
1-Oleoyl-sn-glycero-
3-phosphocholine

HPOS-050.4 ISF 104.1065 361.83 2 0.518
1-Oleoyl-sn-glycero-
3-phosphocholine

3-methylhistidine HPOS-051.1 M+H 170.0921 370.06 1 0.202

N-Acetyl-D-mannosamine
HPOS-053.1 M+Na 244.0814 106.47 2 0.365 N-Acetyl-DGalactosamine
HPOS-053.1 M+Na 244.0794 111.74 3 0.134 N-Acetyl D-Glucosamine

1,2-Dimyristoyl-
sn-glycero-
3-phosphocholine

HPOS-054.1 M+H 678.5070 250.10 1 0.584

Hypoxanthine
HPOS-055.2 M+Na 159.0273 98.29 1 1
HPOS-055.3 ISF 119.0347 98.40 - - *
HPOS-055.4 ISF 110.0349 98.53 - - *

Urocanate HPOS-057.1 M+H 139.0499 81.03 1 0.394

5’-Methylthioadenosine HPOS-058.1 M+H 298.0954 80.81 1 0.599

Pipecolate | N-methyl proline
HPOS-061.1 M+H 130.0855 273.65 1 0.196
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TABLE 4.5: AIRWAVE dataset was annotated using XCMS and in-house chemical reference database (DB). XCMS features were matched to the DB chemicals
using a novel feature-spectra matching algorithm. Annotation results were validated using validated metabolites - their adducts and in-source fragments (ISF)
were identified among XCMS features. Feature-wise annotations were ranked according to the obtained matching score. If the top annotation (i.e. rank = 1)
corresponds to the correct metabolite, then algorithm automatically assigned feature to the correct chemical compound.

Chemical standard Feature-to-spectra matching output

Metabolite cpdID Ion m/z RT
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
top annotation

HPOS-061.2 M+2Na-H 174.0498 275.45 1 0.196

Thiamine HPOS-072.1 M+ 265.1116 332.88 2 0.206 Thiamine pyrophosphate

4-Guanidinobutanoate HPOS-073.1 M+H 146.0910 235.96 1 1

N,N-Dimethylglycine
HPOS-074.1 M+H 104.0697 282.21 1 0.028
HPOS-074.2 M+2Na-H 148.0334 282.04 2 0.028 3- Aminoisobutanoate

Inosine
HPOS-079.1 M+Na 291.0699 99.93 1 0.765
HPOS-079.2 M+2Na-H 313.0516 99.87 1 0.765

Cortisol HPOS-086.1 M+H 363.2166 44.90 1 0.243

1-Methylnicotinamide
HPOS-089.1 M+ 137.0702 253.25 1 0.489
HPOS-089.2 ISF 94.0650 254.07 - - *

Sucrose HPOS-091.1 M+Na 365.1052 142.30 1 0.608

* Corresponding DB feature was removed from DB due to user-selected intensity threshold
+ Corresponding DB feature was omitted from match because its RT distance to the central RT was more than 2 standard deviations



Chapter 4. Strategies for automatic LC-MS features annotation 119

TABLE 4.6: XCMS features obtained for the AIRWAVE dataset were annotated to the in-
house chemical reference database. Features corresponding to the adduct and/or in-source
fragment ions of 40 validated metabolites were identified in the automatic annotation out-
put. These metabolites were categorised according to how many of their features were cor-
rectly annotated. The number of metabolites that have either all of its features, at least one
of its features or none of its features correctly annotated are shown.

All >1 None
Metabolites 34 2 4

4.3.2 Pseudo chemical spectra annotation

AIRWAVE processing with massFlowR

AIRWAVE serum HILIC data was processed with massFlowR using parameters
listed in Table 4.2. The size of the obtained PCS is visualised in Figure 4.9. The design
of massFlowR algorithm only reports features which are grouped into PCS with at
least one more feature and therefore the smallest PCS is comprised of two features.
Most of the generated PCS are comprised of two to ten features, similarly as with
CAMERA (Figure 4.3). In contrast to CAMERA, which produced pseudogroups
comprised of up to 600 features for this dataset, the largest massFlowR PCS contains
42 features. This represents an important difference between CAMERA and mass-
FlowR outputs, as pseudogroups with hundreds of features are unlikely to be useful
for annotation purposes.

The obtained pseudo chemical spectra table was further investigated before pro-
ceeding to annotation. First, the analytical precision of the obtained features was
examined. The median of the relative standard deviation (RSD) values estimated
for all features across pooled QC samples is 25.2% (Figure 4.10). The distribution
of correlation to dilution coefficients indicates that most of the features respond to
dilution well (with a median value of 0.68).

To further assess the quality of the dataset and determine any potential analytical as-
sociations with the main sources of variance, multivariate analyses were performed.
The scores of the calculated principal components were tested for association with
analytical parameters and basic clinical information, such as age, gender and BMI
category (Figure 4.11). Raw massFlowR features were indeed highly correlated with
run order and MS detector voltage, but this association was removed by the batch
correction procedure. On the other hand, significantly strong PCA scores association
with sample batch and plate number was not completely removed by the batch cor-
rection. Nevertheless, the underlying biological variance, particularly gender and
BMI category, was clearly detectable in both batch-corrected and raw datasets. This
is also illustrated by the sample clusters the PCA scores plot (Figure 4.12).
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FIGURE 4.9: The number of features per pseudo chemical spectra (PCS), obtained by mass-
FlowR pre-processing applied to AIRWAVE serum HILIC POS dataset. Distribution of PCS
size is visualised over two sub-figures to account for very different scales.

FIGURE 4.10: Analytical precision (relative standard deviation, RSD) and linearity of re-
sponse (correlation to dilution) of AIRWAVE features reported by massFlowR.
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FIGURE 4.11: Principal components scores association with analytical and biological vari-
ance in AIRWAVE data generated by massFlowR pre-processing pipeline. Potential asso-
ciations between the scores of every principal component (PC) and sample metadata was
determined by (A) Pearson correlation (continuous data) or (B) Kruskal-Wallis test (categor-
ical data) before and after batch-correction of intensity values. Asterisks denote pairs with
correlation coefficient > 0.3 or < -0.3.
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FIGURE 4.12: AIRWAVE samples cluster according to their type in the multivariate space,
here illustrated by the scores of the first two principal components. massFlowR generated
dataset is visualised.

Annotation validation

Aligned and filled pseudo chemical spectra were subjected to automatic annotations
to the in-house standards database, which is described in Section 4.3.1. Ions corre-
sponding to 10 of the 40 endogenous metabolites were identified among the mass-
FlowR generated PCS, as described in Appendix A. The annotation results for these
metabolites are provided in Table 4.7.

Some of the metabolite ions were reported by massFlowR more than once, contribut-
ing to several PCS. For example, inosine [M+ Na] and [M+ 2Na− H] ions comprise
two independent PCS, both of which were correctly annotated. In nine out of ten
cases, all of the duplicated PCS were annotated to the correct chemical standard.
While carnitine ions were annotated as cinnamic acid, the correct chemical standard
was second among the suggested annotations. Most importantly, none of the PCS
comprise ions from different compounds.
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TABLE 4.7: AIRWAVE dataset was annotated using massFlowR and in-house chemical standards database. Features corresponding to known metabolites’
ions were identified among reported features. massFlowR results for each feature were analysed: are ions of the same metabolite assigned to the same pseudo
chemical group (PCS) and does top annotation (i.e. rank = 1) correspond to the correct metabolite.

Chemical standard massFlowR output

Metabolite cpdID Ion m/z RT PCS
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
annotation

Carnitine

HPOS-008.1 M+H 162.1122 327.55 13 5 0.87 Cinnamic Acid
HPOS-008.2 M+Na 184.0942 327.72 13 2 0.87 Cinnamic Acid
HPOS-008.1 M+H 162.1118 328.05 173 5 0.89 Cinnamic Acid
HPOS-008.2 M+Na 184.0937 328.05 173 2 0.89 Cinnamic Acid

Paraxanthine
HPOS-024.1 M+H 181.0718 58.79 273 1 0.96
HPOS-024.1 M+H 181.0717 58.79 502 1 0.96

Betaine
HPOS-027.1 M+H 118.0856 291.25 373 1 0.92
HPOS-027.2 M+Na 140.0674 291.25 373 1 0.92
HPOS-027.1 M+H 118.0859 291.42 374 1 0.86

Caffeine
HPOS-033.1 M+H 195.0878 52.39 103 1 0.94
HPOS-033.1 M+H 195.0874 52.39 525 1 0.94

Creatinine

HPOS-036.1 M+Na 136.0475 154.47 108 1 0.87
HPOS-036.2 2M+H 227.1249 154.47 108 1 0.87
HPOS-036.1 M+Na 136.0475 154.47 356 1 0.98
HPOS-036.2 2M+H 227.1248 154.47 356 1 0.98
HPOS-036.2 2M+H 227.1251 154.64 48 1 0.84

Proline
HPOS-043.1 M+H 116.0700 272.72 179 1 0.83
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TABLE 4.7: AIRWAVE dataset was annotated using massFlowR and in-house chemical standards database. Features corresponding to known metabolites’
ions were identified among reported features. massFlowR results for each feature were analysed: are ions of the same metabolite assigned to the same pseudo
chemical group (PCS) and does top annotation (i.e. rank = 1) correspond to the correct metabolite.

Chemical standard massFlowR output

Metabolite cpdID Ion m/z RT PCS
Correct
annotation,
rank

Correct
annotation,
score

Incorrect
annotation

HPOS-043.2 M+2Na-H 160.0338 272.72 179 1 0.83

1,2-Dimyristoyl-
sn-glycero-
3-phosphocholine

HPOS-054.1 M+H 678.5072 250.15 233 1 0.64

Hypoxanthine

HPOS-055.2 M+Na 159.0273 98.29 61 1 0.96
HPOS-055.2 M+Na 159.0273 98.29 285 1 0.98
HPOS-055.2 M+Na 159.0271 98.13 304 1 0.97
HPOS-055.2 M+Na 159.0273 98.29 507 1 0.96

Inosine

HPOS-079.1 M+Na 291.0699 99.98 231 1 0.90
HPOS-079.2 M+2Na-H 313.0516 99.98 231 1 0.90
HPOS-079.1 M+Na 291.0697 99.98 641 1 0.90
HPOS-079.2 M+2Na-H 313.0515 99.98 641 1 0.90
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TABLE 4.8: AIRWAVE dataset was annotated using multiple strategies: (1) XCMS followed
by CAMERA; (2) XCMS features matching to an in-house database; (3) massFlowR pseudo
chemical spectra annotation to an in-house database. Validation of the annotations was per-
formed using 46 chemical standards. PCS here stands both for CAMERA pseudogroups and
pseudo chemical spectra generated by massFlowR.

Tool Number of metabolites

Uses database Groups into PCS
Total
annotated

Correctly
annotated

Ions in
same PCS

PCS contain
other metabolites

CAMERA No Yes 40 - 21, 52.5% 4, 10%
Feature-to-spectra
matching

Yes No 40 34, 85% - -

massFlowR Yes Yes 10 9, 90% 10, 100% 0

4.4 Conclusions

Automatic metabolite annotations of the AIRWAVE dataset were performed using
three approaches: (1) CAMERA annotation of XCMS features; (2) feature-to-spectra
matching to a chemical standards database; and (3) massflowR annotation of pseudo
chemical spectra to a chemical standards database. In order to validate these differ-
ent strategies, features corresponding to 46 endogenous metabolites adducts and in-
source fragment ions were identified in the processed and annotated datasets. The
number of endogenous metabolites which were detected and annotated using these
tools are summarised in Table 4.8. The three applied annotation strategies are differ-
ent in nature. Hoverer, some of the 46 target metabolites could be identified in the
datasets generated by all three approaches (40 both for CAMERA and the developed
feature-to-spectra matching algorithm, 10 for massFlowR) and thus could be used to
compare the tools. Nevertheless, each tool should be evaluated on its own too given
its unique attributes.

CAMERA annotation workflow differs from the other two approaches by not relying
on any database. Instead, it groups features into pseudo chemical spectra through
EIC correlation in individual sample(s). Grouped features are then annotated by
identifying potential adducts based on pre-defined rules for mass differences and
recognising putative isotopes using KEGG database statistics. Due to the absence of
direct database matching, the annotations obtained for the AIRWAVE dataset could
not be truly validated. However, most LC-MS researchers do not have access to
internally acquired databases and cannot annotate data through direct chromato-
graphic retention time matching. Therefore, other aspects of CAMERA annotation
should be considered in more depth instead. 47.5% of the annotated metabolites had
their features assigned to multiple pseudogroups and 10% of the metabolites were
grouped into pseudogroups with features of other metabolites. Such high assign-
ment ambiguity and duplication may lead to misleading putative annotations and
further prolong identification efforts. This is clearly illustrated by the multiple neu-
tral masses suggested for each metabolite (Table 4.4). For example, pipecolate with
a molecular weight of 129.157 is assigned to a pseudogroup for which two neutral
masses are suggested: 129.078 and 173.043.
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In contrast to CAMERA, the other two applied tools were developed to enable data
annotation to an existing in-house database. It is important to note that adducts ob-
tained for a given compound through the analysis of a biological sample and a pure
authentic standard may be different due to matrix effects. It is widely known that
mass spectrometric response for an analyte is different in a biological matrix from its
response in a standard solution [197]. Matrix effects result from ion suppression or
ion enhancement caused by co-eluting compounds present in a biological sample, as
well as impurities associated with sample preparation and mobile phase additives
[198]. As the linearity of ESI response can be lost, this phenomena mostly causes er-
rors in the accuracy and precision of bioanalytical methods. Nevertheless, it can also
produce different adducts for a given compound, which challenges metabolite an-
notation procedures, including the spectral matching algorithms developed as part
of this thesis. As PCS generated for a metabolite in a biological sample may be com-
prised of different adducts and/or demonstrate different adduct intensity ratios, it
becomes hard to directly compare it with a PCS obtained with a pure standard. Nev-
ertheless, matrix effects are highly varied and unpredictable, therefore, analyses in
this thesis were based on a simplified assumption that the PCS from a biological
sample and a pure standard should be comparable. A more in-depth investigation
on how different these PCS are would be required to further validate the developed
automatic annotation procedures.

A feature-to-spectra matching algorithm comparing XCMS features directly to spec-
tra obtained for chemical standards in a database was developed and evaluated.
Since it relies on XCMS for feature detection, alignment and filling, the number of
total annotated metabolites is the same as in the CAMERA output (Table 4.8). Out of
the 40 annotated metabolites, 34 (85%) were annotated to the correct chemical stan-
dard (Table 4.6). Only 4 metabolites (10%) had none of their ions correctly annotated.

The final applied approach was massFlowR-generated PCS annotation to an in-
house database. Due to the different pre-processing and annotation strategy, mass-
FlowR output differs from XCMS/CAMERA output in many ways. Firstly, fewer
validation metabolites are in the final output (Table 4.8). However, out of the 10 an-
notated metabolites, 9 (90%) were assigned to the correct chemical standards. Fur-
thermore, all of the metabolites had their ions assigned to a single PCS, which also
did not include any other metabolites. Nevertheless, some of the metabolites fea-
tures were reported more than once, contributing to several PCS. Therefore, while
massFlowR provides a more accurate annotation method, it is prone to missing fea-
tures that were not consistently detected and thus were not aligned across sam-
ples. In contrast to massFlowR, CAMERA-driven XCMS features annotation de-
tected more metabolites, but is inherently limited by its post-hoc nature and reliance
on XCMS reported RT values, which contributes to higher level of annotation ambi-
guity.
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Chapter 5

General discussion

This thesis reflects the growing importance of metabolic profiling in the field of bio-
logical and biomedical research. While LC-MS based metabolic profiling is applied
to studies of various scale and experimental design, the statistically-powerful stud-
ies that are capable of discovering subtle changes between conditions comprise of
thousands [49, 51, 52, 199], sometimes even tens of thousands [132] of samples. This
thesis is concerned with the analytical and informatics challenges represented by
such studies.

5.1 The importance of sensible data processing

The acquisition of large-scale untargeted metabolic profiling data inevitably intro-
duces various types of unwanted analytical variation, as demonstrated in details in
Chapter 2 of this thesis. Such variation contributes to a latent noise structure that
can conceal subtle, yet meaningful, biological variation. Nevertheless, most com-
mon sources of analytical variation, such as chromatographic column ageing or ion
source contamination, introduce systematic, rather than random correlations into
the noise. For example, samples that are close together will have more similar re-
tention time deviations than those that are acquired further apart. Nevertheless,
most of the LC-MS data processing tools available today treat such data correlation
structures as random. One of such examples investigated in details throughout this
thesis is XCMS feature alignment method "density", which aims to find the corre-
sponding peaks by pooling them from all samples at once. XCMS algorithms have
mostly been developed and tested having simpler high performance (HP), rather
than ultra-high performance (UP) LC systems in mind. The latter, particularly when
combined with high resolution mass spectrometry (HRMS), provides improved sen-
sitivity, generating much more complex spectra with higher information content per
sample. Additionally, the computational resources required by the XCMS meth-
ods are proportional to study size and quickly outgrow the capabilities of a stan-
dard desktop computer. Therefore, while XCMS methods may be well-designed
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for small-scale HPLC-MS experiments in which the effect of analytical drift is neg-
ligible, they are inherently incapable of processing next generation metabolomics
studies that are of interest in this thesis.

We have hypothesised that incorporating the knowledge of a typical noise structure
and underlying structural relationships between ions into LC-MS pre-processing al-
gorithms will improve the quality of the generated datasets. In Chapter 3 I intro-
duced an LC-MS pre-processing pipeline that takes into account such data correla-
tion structures through the following four steps (Figure in 3.3):

1. groupPEAKS - chromatographic feature grouping into pseudo chemical spectra
(PCS) in each LC-MS sample.

2. alignPEAKS - feature alignment across samples in original data acquisition or-
der.

3. validPEAKS - intensity correlation across samples to identify features that be-
long to the same PCS.

4. fillPEAKS - Missing data points integration using raw LC-MS files.

This pipeline builds on previously developed methods:

• Chromatographic peak shape correlation is employed to identify structurally-
related chromatographic peaks. This method is implemented in several other
annotation tools, such as CAMERA [164] and CliqueMS [166] for the same task.

• Pearson intensity correlation here is used to denoise aligned PCS. Pairwise in-
tensity correlation in a generally accepted method to identify features derived
from the same compound [169, 170, 192].

Other steps in the developed pipeline are incremental improvements to established
practices:

• Dot product function here is applied to evaluate the similarity of PCS during
sample alignment. Even though dot product similarity score is extensively
used in MS/MS spectral matching tools and MS/MS databases [160, 168, 196],
such approach has not been used before to compare pseudo-spectra comprised
of MS adducts and in-source fragments.

• Missing data points re-integration here is performed using sample-specific m/z
and RT values. The widely accepted pre-processing pipelines, including the
gold standard XCMS, fill the intensity values for missing features using m/z
and RT values averaged across all samples as the integration regions.

Most importantly, the focus on feature groups, in the form of PCS, rather than in-
dividual features, is a generally novel approach to LC-MS data processing. Such
pipeline represents a paradigm shift from reductionism to a systematic understand-
ing of LC-MS operating principles.
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The potential and the limitations of the proposed pipeline were investigated in
Chapter 3 using both synthetic and real-world data. Highly promising results were
produced in both cases. Firstly, it is worth noting that the developed pipeline is more
computationally efficient than XCMS due to multiple facts: (a) each LC-MS spectra
is reduced to only its meaningful components, i.e. the PCS, early in the process, with
information stored in a simple text file format; (b) PCS alignment does not require
all data in the study to be acquired/processed in order to be initiated and can be
applied to one sample at a time, as well as re-started at any time. This is a rather
unique design that would enable real-time deployment as data is being generated.

The developed pipeline outperformed XCMS when applied to synthetic datasets
that had up to 18% of features missing (Figure 3.19). When features were removed
at higher rates, the performance recall scores started to drop indicating that the cur-
rent algorithm tends to sacrifice recall over precision. Only the most similar PCS
are grouped together, whereas PCS with deviated features are added to the tem-
plate as new PCS. This represents a limitation that is unlikely to be solved using the
currently employed untargeted approach. Originally an unrestricted feature align-
ment method that would detect and report as many metabolites as possible was de-
sired. Nevertheless, alignment precision was higher for the developed massFlowR
pipeline than XCMS in all tested datasets. Furthermore, massFlowR application to
multiple metabolomics datasets indicated that massFlowR accurately captures the
underlying sources of variance, such as the expected time-dependent intensity drift,
as well as biological sample origin (Figures 3.24, 4.12).

5.2 The utility of annotatable data

Metabolite identification represents one of the greatest hurdles in the field of
metabolomics. Due to the vast chemical space covered by molecules involved in
metabolic reactions, every unknown LC-MS spectral feature can be matched to hun-
dreds, if not thousands, of potential chemical formulas given just the measured m/z
value. While multiple strategies can be taken to reduce the search space, for exam-
ple, by acquiring MS/MS fragmentation data, which reveals more information about
the chemical structure of the unknown metabolite, we have suggested to make bet-
ter use of the MS data instead. By shifting the focus from individual spectral features
to spectra components (i.e. PCS comprised of structurally related chromatographic
peaks), we aimed to make data directly annotatable.

The utility of LC-MS data processed in such a novel manner was investigated in
Chapter 4. The obtained results indicate that high annotation accuracy can be
achieved when suggested processing pipeline is used together with an in-house
chemical standards database. Furthermore, even if such a database is not available,
the processed datasets contain the chemical information that was originally embed-
ded in the raw LC-MS spectra. By contrast to standard processing software, such



Chapter 5. General discussion 130

as XCMS, the proposed pipeline relies on the underlying chemical relationships be-
tween adducts and in-source fragment ions. The knowledge of such ion-to-ion cor-
relations, preserved during processing, makes the final dataset directly annotatable
since critically important structural information is provided for each feature.

It is important to acknowledge, however, that the success of the automatic annota-
tions enabled by the pipeline depends on the alignment step. While it was demon-
strated that current alignment algorithm is highly precise, it tends to produce lower
recall values for datasets with a high proportion of missing values, which was also
the case for the cohort study investigated in Chapter 4. Nevertheless, even in such
cases, the generated datasets provide more information on each feature than XCMS
as every one of them is grouped into PCS with structurally-related ions. Since the
m/z differences between features in a given PCS can be examined, a list of potential
molecular formulas can be determined by an experienced analyst as part of a manual
metabolite annotation and identification pipeline, accelerating the overall process.

5.3 Wider scope

There are several directions which could be followed to continue the work presented
in this thesis.

In order to improve the performance of the developed pipeline, a few changes could
be implemented and evaluated. First of all, alternative spectral scaling of PCS could
be employed. The evaluation of three scaling methods in Chapter 3, Section 3.3.1,
indicated that performance of two of them - no-scaling and square-root scaling -
varied a lot between different metabolites. While it was decided to continue with
square-root scaling, which is a more widely accepted method for spectral searching
tools, it would be beneficial to further investigate whether no-scaling method could
improve the performance of the PCS alignment algorithm. Next, the feasibility of
restricting the growth of the template during the alignment of a metabolic profil-
ing study could be evaluated. Currently employed algorithm allows user to select
a threshold for the cosine similarity score for aligning matching PCS (cutoff ). While
in this thesis, a generally low cutoff value was selected, such as 0.3 for the synthetic
datasets and DEVSET study and 0 for the AIRWAVE study, a further sensitivity anal-
ysis on this parameter would be beneficial. To begin with, simulated datasets could
be aligned using a range of cutoff values to identify whether precision and recall
values change.

In order to encourage the use of massFlowR within a broader metabolomics com-
munity, several steps could be taken. While it already is an attractive alternative
to XCMS due to its low computational resources requirements, its ability to anno-
tate the generated PCS relies on the use of in-house chemical standards databases.
With a growing understanding of the importance of data FAIRness (findability, ac-
cessibility, interoperability and reusability) [200], more and more datasets are being
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released to open-source databases as part of the standard publication process, such
as on MetaboLights [201]. Publishing not just the study data, but also the data that
was used for metabolite annotation would be the next step in terms of improving
the FAIRness of metabolomics data. Therefore, it is highly likely that the in-house
databases generated at the NPC and used for the work presented in this thesis will
be published in the future, making massFlowR a more attractive pre-processing tool
than XCMS due to its automated annotation functionality.

Another route for further development includes a move towards a more targeted
pre-processing strategy. The developed pipeline could potentially be altered to align
features in a study sample using the preceding pooled quality control (QC) sample
as the template. Such alignment procedure would remove metabolites not present
in the preceding QC sample. Such a change in the algorithm design may improve
the alignment performance as fewer PCS would be compared in each round of align-
ment. This alternative approach would remove metabolites unique to a given sam-
ple, nevertheless, a similar filtering effect is already achieved by using the standard-
ised post-processing QC procedures, discussed in Chapter 2. The most commonly
applied QC procedures remove features that do not meet the quality criteria esti-
mated using the measurements in the pooled QC samples. A more targeted PCS
alignment design may generate datasets that require less post-processing filtering
and correction and thus is likely to be accepted within the field.

Finally, massFlowR ability to process samples during sample acquisition can be ex-
tended even further to perform real-time QC monitoring. Usually QC procedures
are applied once all of the data is acquired - samples are pre-processed together and
generated datasets are subjected to analyses, such as PCA decomposition, in order
to detect any underlying trends in the data. If the analytical system experienced
issues that would require to re-run some of the study samples, it would only be de-
termined long after the data was actually acquired. Such samples then would be
re-analysed as part of a separate LC-MS experiment, which could potentially lead to
batch effects, as discussed in Chapter 2. An alternative approach would be to moni-
tor changes in the signal intensity and chromatographic RT in real-time by observing
the deviation between adjacent QC samples. Real-time tracking of generated PCS
and how well they match between subsequent samples could help identify if chro-
matographic drift or signal intensity drift have gone beyond the acceptable range.
Such information would help to decide whether a sample has to be re-analysed while
the given LC-MS experiment is still running. Real-time deployment thus represents
a very important aspect for further development that is also likely to raise the stan-
dards of data quality in the field.
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5.4 Concluding remarks

To conclude, within this thesis I have developed a novel untargeted LC-MS data
processing pipeline, which aids metabolite identification through deliberate use of
spectral features correlation structure, chromatographic profile and data acquisition
order. Since the focus has been set towards real-world applicability, in order to test
and validate the suggested approach, I applied it to synthetic data, as well as an
open-source dataset and a large-scale cohort study. These real-world studies anal-
ysed different biological samples - urine and blood plasma, each of which represents
different analytical and informatics challenges.

Overall, the findings of this thesis imply that the proposed approach holds potential
for applications in the field of metabolomics. The approach could be further devel-
oped towards a more targeted metabolic profiling strategy, for example, by retaining
only the PCS that are detected in pooled QC samples or in external reference sam-
ples. Such samples could be extensively characterised and annotated, allowing to
not only automatically annotate the untargeted data obtained for study samples, but
also to integrate data produced for different studies. Nevertheless, metabolomics
studies have historically focused on untargeted measurements in order to capture
the full set of metabolites present within an organism/tissue/cell at a given time.
As we still need to improve the coverage of metabolism, untargeted approaches will
play an important role in the field. In order to achieve this, current strategies for un-
targeted data pre-processing and annotation must be improved. This thesis demon-
strates the potential of a spectral-knowledge driven pre-processing pipeline. By en-
hancing the quality of each of the generated datasets and making them more directly
annotatable, we improve our knowledge about each of the sample in a study. Conse-
quently, important conclusions about relationships between metabolic changes and
health and disease can be drawn.
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Appendix A

TABLE A.1: Detection of validated metabolites (adducts/in-source fragments (ISF) ions) was
performed in AIRWAVE samples using specified m/z and RT regions kindly provided by the
National Phenome Centre team.

Metabolite cpdID Ion rtMin rtMax mzMin mzMax

Adenosine
HPOS-005.1 M+H 89.41 119.41 268.1000 268.1081
HPOS-005.2 ISF 89.41 119.41 136.0600 136.0640

Choline HPOS-007.1 M 221.36 251.36 104.1060 104.1091

Carnitine
HPOS-008.1 M+H 305.26 335.26 162.1100 162.1149
HPOS-008.2 M+Na 305.26 335.26 184.0922 184.0978
HPOS-008.3 ISF 305.26 335.26 103.0371 103.0401

Laurylcarnitine (C12:0)
HPOS-013.1 M+H 219.37 249.37 344.2744 344.2847
HPOS-013.2 M+Na 219.37 249.37 366.2565 366.2675
HPOS-013.3 ISF 219.37 249.37 285.2037 285.2123

Histidine
HPOS-014.1 M+H 354.04 384.04 156.0744 156.0791
HPOS-014.2 M+Na 354.04 384.04 178.0553 178.0607
HPOS-014.3 ISF 354.04 384.04 110.0694 110.0728

N6,N6,N6-Trimethyllysine
HPOS-016.1 M+H 354.77 384.77 189.1569 189.1626
HPOS-016.2 ISF 354.77 384.77 130.0832 130.0872
HPOS-016.3 ISF 354.77 384.77 84.0787 84.0813

Taurine HPOS-023.1 M+H 141.54 171.54 126.0200 126.0238
Paraxanthine HPOS-024.1 M+H 41.88 71.88 181.0693 181.0747

Trigonelline
HPOS-025.1 M+H 276.00 306.00 138.0529 138.0570
HPOS-025.2 ISF 276.00 306.00 94.0636 94.0664

Betaine
HPOS-027.1 M+H 271.97 301.97 118.0845 118.0880
HPOS-027.2 M+Na 271.97 301.97 140.0661 140.0703

Warfarin
HPOS-031.2 ISF 25.37 55.37 251.0665 251.0741
HPOS-031.3 ISF 25.37 55.37 163.0374 163.0422

Caffeine
HPOS-033.1 M+H 35.98 65.98 195.0847 195.0906
HPOS-033.2 ISF 35.98 65.98 138.0659 138.0701

Niacinamide HPOS-034.1 M+H 49.05 79.05 123.0534 123.0571

Creatinine
HPOS-036.1 M+Na 135.41 165.41 136.0461 136.0502
HPOS-036.2 2M+H 135.41 165.41 227.1216 227.1284

1,1-Dimethylbiguanide
HPOS-038.1 M+H 190.41 220.41 130.1068 130.1107
HPOS-038.2 ISF 190.41 220.41 113.0793 113.0827

Tryptophan
HPOS-039.1 M+H 214.34 244.34 205.0941 205.1002
HPOS-039.2 ISF 214.34 244.34 188.0682 188.0738

Phenylalanine
HPOS-040.1 M+H 211.78 241.78 166.0838 166.0887
HPOS-040.3 ISF 211.78 241.78 103.0535 103.0565

Methionine
HPOS-041.1 M+H 231.74 261.74 150.0561 150.0606
HPOS-041.2 M+2Na-H 231.74 261.74 194.0191 194.0249
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TABLE A.1: Detection of validated metabolites (adducts/in-source fragments (ISF) ions) was
performed in AIRWAVE samples using specified m/z and RT regions kindly provided by the
National Phenome Centre team.

Metabolite cpdID Ion rtMin rtMax mzMin mzMax
HPOS-041.3 ISF 231.74 261.74 133.0290 133.0330

Trimethylamine N-oxide
HPOS-042.1 M+H 235.72 265.72 76.0745 76.0768
HPOS-042.2 2M+H 235.72 265.72 151.1418 151.1464

Proline
HPOS-043.1 M+H 252.45 282.45 116.0689 116.0723
HPOS-043.2 M+2Na-H 252.45 282.45 160.0326 160.0374
HPOS-043.3 2M+H+2HCOONa 252.45 282.45 365.0615 365.0725

Alanine
HPOS-044.1 M+2Na-H 258.94 288.94 134.0168 134.0209
HPOS-044.2 2M+H+2HCOONa 258.94 288.94 313.0308 313.0402
HPOS-044.3 3M+Na+2HCOONa 258.94 288.94 356.0727 356.0833

Creatine
HPOS-045.1 M+H 288.58 318.58 132.0748 132.0787
HPOS-045.2 M+Na 288.58 318.58 154.0564 154.0610
HPOS-045.3 M+2Na-H 288.58 318.58 176.0389 176.0441

Glutamine
HPOS-046.1 M+H 288.32 318.32 147.0742 147.0786
HPOS-046.2 M+2Na-H 288.32 318.32 191.0374 191.0432
HPOS-046.3 ISF 288.32 318.32 130.0490 130.0530

Citrulline
HPOS-047.1 M+H 329.21 359.21 176.1003 176.1056
HPOS-047.2 M+Na 329.21 359.21 198.0820 198.0880
HPOS-047.3 ISF 329.21 359.21 159.0746 159.0794

Arginine
HPOS-048.1 M+H 340.10 370.10 175.1163 175.1216
HPOS-048.2 M+2Na-H 340.10 370.10 219.0827 219.0893
HPOS-048.3 ISF 340.10 370.10 158.0896 158.0944

Lysine HPOS-049.1 M+H 343.81 373.81 147.1106 147.1150

a-glycerophosphocholine

HPOS-050.1 M+H 346.04 376.04 258.1062 258.1140
HPOS-050.2 M+Na 346.04 376.04 280.0878 280.0962
HPOS-050.3 ISF 346.04 376.04 184.0692 184.0748
HPOS-050.4 ISF 346.04 376.04 104.1054 104.1086

3-methylhistidine
HPOS-051.1 M+H 350.50 380.50 170.0899 170.0950
HPOS-051.2 ISF 350.50 380.50 126.1001 126.1039
HPOS-052.1 M+H 366.01 396.01 170.0899 170.0950

N-Acetyl-D-mannosamine HPOS-053.1 M+Na 93.48 123.48 244.0755 244.0828
1,2-Dimyristoyl-
sn-glycero-
3-phosphocholine

HPOS-054.1 M+H 235.75 265.75 678.4967 678.5170

Hypoxanthine
HPOS-055.2 M+Na 80.52 110.52 159.0253 159.0301
HPOS-055.3 ISF 80.52 110.52 119.0342 119.0378
HPOS-055.4 ISF 80.52 110.52 110.0333 110.0367

Pantothenate
HPOS-056.1 M+H 52.97 82.97 220.1146 220.1213
HPOS-056.2 M+Na 52.97 82.97 242.0954 242.1026
HPOS-056.3 ISF 52.97 82.97 202.1040 202.1100

Urocanate
HPOS-057.1 M+H 63.23 93.23 139.0481 139.0523
HPOS-057.4 ISF 63.23 93.23 95.0586 95.0614

5’-Methylthioadenosine
HPOS-058.1 M+H 63.07 93.07 298.0924 298.1013
HPOS-058.2 ISF 63.07 93.07 136.0610 136.0650

Cytosine HPOS-059.1 M+H 128.53 158.53 112.0489 112.0522

Pipecolate
HPOS-061.1 M+H 253.72 283.72 130.0843 130.0882
HPOS-061.2 M+2Na-H 253.72 283.72 174.0474 174.0526

Thiamine
HPOS-072.1 M+ 314.55 344.55 265.1083 265.1163
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TABLE A.1: Detection of validated metabolites (adducts/in-source fragments (ISF) ions) was
performed in AIRWAVE samples using specified m/z and RT regions kindly provided by the
National Phenome Centre team.

Metabolite cpdID Ion rtMin rtMax mzMin mzMax
HPOS-072.2 ISF 314.55 344.55 122.0692 122.0728

4-Guanidinobutanoate
HPOS-073.1 M+H 215.41 245.41 146.0908 146.0951
HPOS-073.2 M+Na 215.41 245.41 168.0715 168.0765
HPOS-073.4 ISF 215.41 245.41 86.0587 86.0613

N,N-Dimethylglycine
HPOS-074.1 M+H 263.32 293.32 104.0696 104.0727
HPOS-074.2 M+2Na-H 263.32 293.32 148.0308 148.0352

L-prolyl-L-proline HPOS-076.1 M+H 311.06 341.06 213.1202 213.1266
N6-Acetyl-L-lysine HPOS-077.1 M+H 308.98 338.98 189.1205 189.1262

Inosine
HPOS-079.1 M+Na 82.31 112.31 291.0656 291.0744
HPOS-079.2 M+2Na-H 82.31 112.31 313.0473 313.0567

Cortisol
HPOS-086.1 M+H 29.46 59.46 363.2112 363.2220
HPOS-086.2 ISF 29.46 59.46 345.1988 345.2092
HPOS-086.3 ISF 29.46 59.46 327.1921 327.2019

1-Methylnicotinamide
HPOS-089.1 M+ 234.34 264.34 137.0693 137.0734
HPOS-089.2 ISF 234.34 264.34 94.0646 94.0674

Sucrose
HPOS-091.1 M+Na 123.21 153.21 365.0998 365.1107
HPOS-091.2 M+K 123.21 153.21 381.0733 381.0847
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FIGURE A.1: Detection and integration of laurylcarnitine (C12:0) main adduct ion in all
AIRWAVE serum HILIC-POS-MS samples. Different colours indicate sample type: red - QC
dilution series, green - QC sample, orange - external reference sample, blue - study sample.
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FIGURE A.2: Detection and integration of N6,N6,N6-Trimethyllysine main adduct ion in all
AIRWAVE serum HILIC-POS-MS samples. Different colours indicate sample type: red - QC
dilution series, green - QC sample, orange - external reference sample, blue - study sample.
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FIGURE A.3: Detection and integration of creatinine main adduct ion in all AIRWAVE serum
HILIC-POS-MS samples. Different colours indicate sample type: red - QC dilution series,
green - QC sample, orange - external reference sample, blue - study sample.
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FIGURE A.4: Detection and integration of arginine main adduct ion in all AIRWAVE serum
HILIC-POS-MS samples. Different colours indicate sample type: red - QC dilution series,
green - QC sample, orange - external reference sample, blue - study sample.
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Appendix B

Endogenous metabolites detection in DEVSET samples



Appendix B. 158

TABLE B.1: Detection of validated metabolites and their adducts/in-source fragments (ISF)
was performed in DEVSET samples using specified m/z and RT regions kindly provided by
the IPC team.

Metabolite cpdID Ion rtMin rtMax mzMin mzMax

Urocanate
RPOS-002.1 M+H 54.11 59.92 139.0484 139.0515
RPOS-002.2 ISF 54.01 59.92 121.0377 121.0411

Theobromine
RPOS-005.1 M+H 142.78 148.74 181.0706 181.0730
RPOS-005.2 ISF 142.69 148.88 163.0594 163.0642
RPOS-005.3 ISF 142.89 148.70 138.0645 138.0685

Pseudouridine

RPOS-008.1 M+H 53.00 58.78 245.0739 245.0795
RPOS-008.2 ISF 53.11 58.72 209.0536 209.0565
RPOS-008.3 ISF 53.06 58.74 191.0419 191.0474
RPOS-008.4 ISF 53.08 58.75 179.0420 179.0464
RPOS-008.5 ISF 53.07 58.75 155.0422 155.0459

Pantothenate
RPOS-015.1 M+H 136.82 142.77 220.1153 220.1203
RPOS-015.2 ISF 136.81 142.79 202.1060 202.1109
RPOS-015.3 ISF 136.60 142.93 184.0953 184.1008

1-Methyladenosine
RPOS-018.1 M+H 71.66 77.86 282.1162 282.1211
RPOS-018.2 ISF 71.71 77.79 150.0760 150.0786

N-a-Acetyl-L-arginine
RPOS-025.1 M+H 51.26 57.11 217.1264 217.1324
RPOS-025.2 ISF 51.26 57.31 200.1010 200.1069

N2,N2-Dimethylguanosine
RPOS-026.1 M+H 140.49 146.15 312.1269 312.1313
RPOS-026.2 ISF 140.49 146.13 180.0863 180.0896

2-Furoylglycine
RPOS-027.1 M+H 136.52 143.36 170.0432 170.0471
RPOS-027.2 ISF 136.49 143.46 124.0372 124.0408
RPOS-027.3 ISF 136.56 143.37 95.0117 95.0137

Creatine
RPOS-041.1 M+H 33.91 39.22 132.0754 132.0775
RPOS-041.2 ISF 33.84 39.23 90.0537 90.0563

Caffeine
RPOS-044.1 M+H 206.79 213.03 195.0868 195.0890
RPOS-044.2 ISF 206.79 213.20 138.0647 138.0688

7-Methylguanine
RPOS-051.1 M+H 72.89 78.88 166.0716 166.0735
RPOS-051.2 ISF 72.98 78.92 149.0434 149.0475
RPOS-051.3 ISF 73.01 78.82 124.0482 124.0518

Pyroglutamate
RPOS-052.1 M+H 71.07 78.29 130.0482 130.0509
RPOS-052.2 ISF 71.00 78.37 84.0437 84.0462

Paraxanthine
RPOS-061.1 M+H 163.39 169.61 181.0704 181.0735
RPOS-061.2 ISF 163.48 169.52 124.0497 124.0532

Theophylline
RPOS-074.1 M+H 163.39 169.61 181.0704 181.0735
RPOS-074.2 ISF 163.48 169.52 124.0497 124.0532

Imidazolelactate
RPOS-086.1 M+H 34.25 39.35 157.0591 157.0631
RPOS-086.2 ISF 34.28 39.49 111.0531 111.0561
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FIGURE B.1: Detection and integration of Urocanate main ion and its in-source fragment.
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FIGURE B.2: Detection and integration of theobromine main ion and its in-source fragment.
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FIGURE B.3: Detection and integration of pseudouridine main ion and its its in-source frag-
ment.
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FIGURE B.4: Detection and integration of pantothenate main ion and its its in-source frag-
ment.
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FIGURE B.5: Detection and integration of 2-Methyladenosine main ion and its its in-source
fragment.
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FIGURE B.6: Detection and integration of N-a-Acetyl-L-arginine main ion and its its in-
source fragment.
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FIGURE B.7: Detection and integration of N2,N2-Dimethylguanosine main ion and its its
in-source fragment.
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FIGURE B.8: Detection and integration of 2-Furoylglycine main ion and its its in-source frag-
ment.



Appendix B. 167

FIGURE B.9: Detection and integration of creatine main ion and its its in-source fragment.
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FIGURE B.10: Detection and integration of caffeine main ion and its its in-source fragment.
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FIGURE B.11: Detection and integration of 7-Methylguanine main ion and its its in-source
fragment.
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FIGURE B.12: Detection and integration of pyroglutamate main ion and its its in-source
fragment.
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FIGURE B.13: Detection and integration of paraxanthine main ion and its its in-source frag-
ment.
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FIGURE B.14: Detection and integration of theophylline main ion and its its in-source frag-
ment.
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FIGURE B.15: Detection and integration of imidazolelactate main ion and its its in-source
fragment.
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FIGURE B.16: Synthetic datasets were used to assess the performance of the developed fea-
ture alignment algorithm. Intensity correlation coefficients obtained between features of five
randomly selected pseudo chemical spectra (PCS) in one of the synthetic datasets are visu-
alised as a correlation matrix, with colours corresponding to Pearson correlation coefficients.
Lines underneath and on the left-hand side of the matrix indicate feature grouping into the
five PSC.
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Appendix C

Spectral similarity sensitivity to scaling
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FIGURE C.1: Spectral similarity variation for pseudo chemical spectra containing different
metabolite adducts.
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FIGURE C.2: Spectral similarity variation for pseudo chemical spectra containing different
metabolite adducts.
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FIGURE C.3: Spectral similarity variation for pseudo chemical spectra containing different
metabolite adducts.
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FIGURE C.4: Spectral similarity variation for pseudo chemical spectra containing different
metabolite adducts.
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FIGURE C.5: Spectral similarity variation for pseudo chemical spectra containing different
metabolite adducts.
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FIGURE C.6: Spectral similarity score between PCS containing two Urocanate ions varies
depending on spectra scaling method.
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FIGURE C.7: Spectral similarity score between PCS containing two theobromine ions varies
depending on spectra scaling method.
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FIGURE C.8: Spectral similarity score between PCS containing two pseudouridine ions
varies depending on spectra scaling method.
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FIGURE C.9: Spectral similarity score between PCS containing two pantothenate ions varies
depending on spectra scaling method.
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FIGURE C.10: Spectral similarity score between PCS containing two 1-Methyladenosine ions
varies depending on spectra scaling method.
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FIGURE C.11: Spectral similarity score between PCS containing two N-a-Acetyl-L-arginine
ions varies depending on spectra scaling method.
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FIGURE C.12: Spectral similarity score between PCS containing two N2,N2-
Dimethylguanosine ions varies depending on spectra scaling method.
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FIGURE C.13: Spectral similarity score between PCS containing two 2-Furoylglycine ions
varies depending on spectra scaling method.
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FIGURE C.14: Spectral similarity score between PCS containing two Creatine ions varies
depending on spectra scaling method.
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FIGURE C.15: Spectral similarity score between PCS containing two Caffeine ions varies
depending on spectra scaling method.
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FIGURE C.16: Spectral similarity score between PCS containing two Pyroglutamate ions
varies depending on spectra scaling method.
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FIGURE C.17: Spectral similarity score between PCS containing two Paraxanthine ions
varies depending on spectra scaling method.
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FIGURE C.18: Spectral similarity score between PCS containing twoTheophylline ions varies
depending on spectra scaling method.
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Appendix D

User guides to massFlowR

For more details, please refer to the GitHub repository https://github.com/
lauzikaite/massFlowR.

https://github.com/lauzikaite/massFlowR
https://github.com/lauzikaite/massFlowR
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Introduction

This documents provides an overview of the LC-MS data pre-processing with massFlowR  using dataset faahKO.

Data import

LC-MS data in mzML/NetCDF format import is supported. Data import is implemented via mzR (http://bioconductor.org/packages/mzR)
package.

In this document, functionality of the package will be demonstrated using data from faahKO (http://bioconductor.org/packages/faahKO)
package. Raw LC-MS data files (in NetCDF format) are provided for spinal cords samples taken from six knock-out (KO) and six wild-type
(WT) mice. Each datafile contains centroided data acquired in positive ionization mode, with data recorded at 200-600 m/z and 2500-4500
seconds.

Load the package and locate the raw CDF files within the faahKO  package:

library(massFlowR) 

## Get the full path to the CDF files 

faahKO_files <- dir(system.file("cdf/WT", package = "faahKO"), full.names = TRUE)

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt15.CDF

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt16.CDF

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt18.CDF

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt19.CDF

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt21.CDF

/Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt22.CDF

Individual samples processing

The first stage in the pipeline is chromatographic peak detection and grouping via function groupPEAKS .

Chromatographic peak detection

Peaks are detected using the centWave algorithm from xcms (http://bioconductor.org/packages/xcms) package (see (Tautenhahn,
Bottcher, and Neumann 2008)). Appropriate parameters for the LC-MS experiment must be selected. For advise on this, please see the
official xcms  manual (https://bioconductor.org/packages/release/bioc/vignettes/xcms/doc/xcms.html#3_initial_data_inspection). Selected
parameters must be built into a CentWaveParam class object:

## xcms parameters for peak-picking 

cwt_param <- xcms::CentWaveParam(ppm = 25, 

                                snthresh = 10, 

                                noise = 1000, 

                                prefilter =  c(3, 100), 

                                peakwidth = c(30, 80), 

                                mzdiff = 0)

Chromatographic peak grouping

Detected peaks are put into groups, which comprise peaks originating from the same chemical compound: adducts and isotopes. For each
peak in a sample, function groupPEAKS :

Finds co-eluting chromatographic peaks;
Performs extracted ion chromatogram (EIC) correlation between all co-eluting peaks;
Builds a network of peaks with high EIC correlation;
Detects communities of peak within the correlation network (implemented by igraph  package algorithm, see (Raghavan, Albert,
and Kumara 2007)).

1 Introduction



3.3

4

4.1

Peaks that group into a community form a pseudo chemical spectra. Only communities with more than one peak are retained for further
processing.

Implementation

Function groupPEAKS  processes every LC-MS datafile independently and thus can be implemented in parallel, or during sample
acquisition on the machine linked to the LC-MS. A list of paths to LC-MS datafiles (in mzML/NetCDF format) is feeded to groupPEAKS ,
together with the CentWaveParam class object, path to output directory and parameters for parallelisation.

groupPEAKS  writes a csv with detected and grouped peaks in the selected directory for each LC-MS sample separately. The filenames of
the generated csv files will be needed for the next stage in the pipeline. The filename starts with the original raw LC-MS filename and ends
with “peakgrs.csv”.

massFlowR  pipeline requires a metadata table with the following columns for each sample:

filename  specifies the basename of the raw LC-MS file.
run_order  specifies the acquisition order for the corresponding LC-MS sample.
raw_filepath  specifies the absolute path to the raw LC-MS file (netCDF/mzML).

## define where processed datafiles should be written

# out_directory <- "absolute_path_to_output_directory" 

## create metadata table with required columns 'filename', 'is_sr', 'run_order' and 'raw_filepath' 

metadata <- 

 data.frame( 

 filename = gsub(".CDF", "", basename(faahKO_files)), 

 is_sr = rep(TRUE, length(faahKO_files)), # here we will assume that every file is SR 

 run_order = seq(length(faahKO_files)), 

 raw_filepath = faahKO_files, 

 stringsAsFactors = FALSE 

 ) 

write.csv(metadata, file = file.path(out_directory, "metadata.csv"), row.names = FALSE)

filename is_sr run_order raw_filepath

wt15 TRUE 1 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt15.CDF

wt16 TRUE 2 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt16.CDF

wt18 TRUE 3 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt18.CDF

wt19 TRUE 4 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt19.CDF

wt21 TRUE 5 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt21.CDF

wt22 TRUE 6 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt22.CDF

Peak alignment

To align structurally-related peaks as a group across samples in LC-MS experiment, an alignment algorithm, which preserves the structural
spectral information, is implemented.

Peaks are aligned by taking samples in the order of raw sample acquisition and matching them against a template. Template is list of all
previously aligned peaks, which is updated with each sample by:

adding new peaks
averaging the m/z and rt values of matching peaks between the sample and the template.

Therefore, template stores the moving averages of m/z and rt values.

For each peak in a sample, alignment algorithm:

1. Finds all template peaks within a m/z and rt window.
2. Identifies the true match by comparing the spectral similarity between the peak-group of the peak-of-interest and all matching

template’s peak-groups.
3. Merges the selected template’s peak-group with the peak-group of the peak-of-interest. It updates template’s m/z and rt values for

the matching peaks across the template and the sample.

Spectral similarity is measured by obtaining the cosine of the angle between two 2D vectors, representing each PCSs m/z and intensity
values.

Implementation

To enable peak alignment, previous metadata table has to contain additional column:

proc_filepath  specifies the absolute path to the csv files generated by the groupPEAKS  function.

##  update previous metadata table and add paths to generated csv files 

processed_files <- list.files(out_directory, "peakgrs.csv", full.names = TRUE) 

metadata$proc_filepath <- processed_files 

write.csv(metadata, file.path(out_directory, "metadata_grouped.csv"), row.names = FALSE)

filename is_sr run_order raw_filepath proc_filepath

wt15 TRUE 1 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt15.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt15_peakg

wt16 TRUE 2 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt16.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt16_peakg

wt18 TRUE 3 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt18.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt18_peakg

## run peak detection and grouping for the listed faahKO files with two workers 

groupPEAKS(file = file.path(out_directory, "metadata.csv"), out_dir = out_directory, cwt = cwt_param, ncores = 2) 

#> 2 out of 6 files were processed.

#> 4 out of 6 files were processed.

#> 6 out of 6 files were processed.

#> Peak-groups for all files were succesfully generated.



filename is_sr run_order raw_filepath proc_filepath

wt19 TRUE 4 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt19.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt19_peakg

wt21 TRUE 5 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt21.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt21_peakg

wt22 TRUE 6 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt22.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt22_peakg

To initiate peak alignment, use function buildTMP , which constructs a massFlowTemplate class object. massFlowTemplate  object
stores sample alignment and annotation data and is updated with every sample. Define the desired error window for m/z and rt (seconds)
values, which will be used for the whole experiment. mz_err = 0.01  and rt_err = 2  are recommended for high-resolution UPLC-MS
data. mz_err = 0.01  and rt_err = 10  are suitable for the faahKO package data.

To review the samples that are in the experiment, use slot @samples .

## review samples in the experiment using slot "samples" 

template@samples

filename is_sr run_order raw_filepath proc_filepath

wt15 TRUE 1 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt15.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt15_peakg

wt16 TRUE 2 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt16.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt16_peakg

wt18 TRUE 3 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt18.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt18_peakg

wt19 TRUE 4 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt19.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt19_peakg

wt21 TRUE 5 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt21.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt21_peakg

wt22 TRUE 6 /Users/el1514/anaconda3/envs/r/lib/R/library/faahKO/cdf/WT/wt22.CDF /Users/el1514/Documents/Scripts/massFlowR/vignettes/wt22_peakg

massFlowTemplate  object stores the most up-to-date template in the @tmp  slot. Function buildTMP  creates a template using the first
sample in the experiment.

## review gnerated template using slot "tmp" 

head(template@tmp, 20)

peakid mz rt into peakgr

1 508.2 3515.468 53910493 1

2 496.2 3384.012 38200390 2

3 343.0 2678.218 26239739 3

4 524.2 3662.573 26223613 4

5 526.1 3168.048 25760336 5

6 522.2 3344.888 23482538 6

7 502.1 3157.093 20113369 7

8 522.2 3409.051 19327938 8

9 365.0 2679.783 15389162 3

10 509.2 3517.033 15123847 1

11 496.2 3316.719 13639593 9

12 497.2 3384.012 10219380 2

13 360.0 2684.478 10062820 10

14 464.2 3454.435 9807117 11

15 577.4 4122.670 9073006 12

16 482.2 3585.891 9047697 13

17 525.2 3662.573 7829455 4

18 527.1 3168.048 7615135 5

19 531.2 3344.888 7268278 6

20 523.2 3344.888 6909134 6

To align peaks across all samples in the study, apply method alignPEAKS . alignPEAKS  updates the massFlowTemplate  object:

1. Selects next sample to be aligned and checks whether it was already peak-picked and grouped (waits until the corresponding csv file
is written).

2. Matches every peak in the sample against the template.
3. Selects best matches using spectral similarity comparison.
4. Updates template with sample’s peaks: adds new and averages matching peaks.

## initiate template 

template <- buildTMP(file = file.path(out_directory, "metadata_grouped.csv"), out_dir = out_directory, mz_err = 0.

#> Building template using sample: wt15  ...
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Parameter ncores  allows a quicker implementation using the parallel backend that is available on the user’s machine (i.e. multicore on
Unix/Mac and snow on Windows). Select the desired number of parallel workers.

## align peaks across all remaining samples 

template <- alignPEAKS(template, out_dir = out_directory, ncores = 2) 

#> 5 out of 6 samples left to align.

#> Aligning to sample: wt16 ...

#> 4 out of 6 samples left to align.

#> Aligning to sample: wt18 ...

#> 3 out of 6 samples left to align.

#> Aligning to sample: wt19 ...

#> 2 out of 6 samples left to align.

#> Aligning to sample: wt21 ...

#> 1 out of 6 samples left to align.

#> Aligning to sample: wt22 ...

#> Peaks were aligned across all samples.

Aligned sample’s peak tables are stored within the @data  slot, which lists tables for each sample separately.

## review alignment results for an individual sample, e.g. the second, using slot "data" 

head(template@data[[2]])

peakid mz mzmin mzmax rt rtmin rtmax into intb maxo sn egauss mu sigma h f dppm scale s

1 508.2 508.2 508.2 3532.682 3498.253 3571.806 56426907 55783902 1336832 189 NA NA NA NA 3887 0 10

2 496.2 496.2 496.2 3407.486 3374.622 3443.480 34418258 33952491 1064960 190 NA NA NA NA 3009 0 10

3 524.2 524.2 524.2 3693.872 3659.443 3734.561 32311995 31172950 821056 40 NA NA NA NA 3674 0 10

4 526.1 526.1 526.1 3180.567 3146.138 3216.561 27029850 25682671 769536 29 NA NA NA NA 1862 0 10

5 530.2 530.2 530.2 3357.407 3326.108 3396.531 26175357 25052715 831104 50 NA NA NA NA 2340 0 10

6 522.2 522.2 522.2 3365.232 3324.543 3401.226 24818362 24519586 809088 153 NA NA NA NA 3014 0 14

Alignment validation

Once peaks are aligned across all samples, the obtained peak-groups are validated. Intensity values for each peak in a group are
correlated across all samples. Correlation estimates are then used to build networks of peaks, that behave similarly across all samples.
Peaks exhibiting a different pattern in their intensities are put into a new peak-group.

Each peak-group is a pseudo chemical spectra (PCS), which comprised peaks exhibiting consistent behaviour across samples.

To enable alignment validation, a metadata table and final template file that both were written by the alignPEAKS  function in the selected
directory, must be used. A massFlowTemplate class object is first created.

## get the absolute paths to the updated metadata file and the final template writen by "alignPEAKS"  

m_file <- file.path(out_directory, "aligned.csv") 

tmp_file <- file.path(out_directory, "template.csv") 

## initiate validation by first loading aligned samples into a massFlowTemplate object 

template <- loadALIGNED(file = m_file, template = tmp_file, rt_err = 10) 

#> A 'massFlowTemplate' object was succesfully built with aligned samples.

Peak-group validation is enabled by applying the method validPEAKS  on the massFlowTemplate class object. Validation can be
implemented in parallel using ncores  parameter.

validPEAKS  will return a massFlowTemplate class object with validated pseudo chemical spectra, as well as write peak tables for the
obtained PCS:

intensity_data.csv (intensity values for every peak in PCS in every sample)
peaks_data.csv
sample_data.csv

## Start validation using a massFlowTemplate object 

template <- validPEAKS(template, out_dir = out_directory, ncores = 2, cor_thr = 0.5) 

#> value for 'min_samples_prop' not provided. Setting the minimum number of samples to 3!

#> All peak-groups were succesfully validated.

Peak filling

Final step in the pipeline is to re-integrate intensity values for peaks that were not detected by the centWave using raw LC-MS files. In
contrast to xcms  package, m/z and rt values for intensity integration are estimated for each sample separetely. m/z and rt values are
modelled using a cubic smoothing spline.
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## Fill peaks using validated massFlowTemplate object 

template <- fillPEAKS(template, out_dir = out_directory, ncores = 2) 

#> 6 samples left to fill.

#> Filling next 2 samples: 

#> wt15

#> wt16

#>  ...

#> 4 samples left to fill.

#> Filling next 2 samples: 

#> wt18

#> wt19

#>  ...

#> 2 samples left to fill.

#> Filling next 2 samples: 

#> wt21

#> wt22

#>  ...

#> All peak-groups were succesfully filled

Final output

fillPEAKS  writes file ‘filled_intensity_data.csv’, which contains features metadata (including pseudo chemical spectra number) and
intensity values for each sample in the experiment.

Peak annotation

If in-house chemical reference database is available, PCS are annotated. For more details how to build a database file, see annotation
using database (https://htmlpreview.github.io/?https://github.com/lauzikaite/massFlowR/blob/master/doc/annotation.html)).

See also

massFlowR overview (https://htmlpreview.github.io/?https://github.com/lauzikaite/massFlowR/blob/master/doc/massFlowR.html)
Automatic annotation (https://htmlpreview.github.io/?https://github.com/lauzikaite/massFlowR/blob/master/doc/annotation.html)
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massFlowR  performs automatic annotation of final feature table if LC-MS files for chemical
reference compounds are available. Database table can be obtained from raw LC-MS files in
two steps:

Build pseudo chemical spectra (PCS) for each compound using the raw LC-MS file (in
mzML/NetCDF format);
Build database table.

Building database

Raw LC-MS files acquired for each chemical standards were processed by the National
Phenome Centre. Each chemical standard was written as an rda file. Code for corresponding
functionality will be added to massFlowR  package for those that have acquired LC-MS data
independently.

Building database table

Function buildDB  can be used to build a database table from rda files. The generated table
will have the following columns:

peakid  (unique peak number)
mz  (peak m/z)
rt  (peak retention time, sec)
into  (peak intensity)
peakgr  (unique peak-group number)
chemid  (unique database chemical number)
dbid  (compound identifier)
dbname  (compound chemical name)

# rda_dir <- "path to rda files"

# out_directory <- "path to output directory" 

buildDB(rda_dir = rda_dir, out_dir = out_directory) 

db_table <- read.csv(file.path(out_directory, "database.csv"))

peakid mz rt into chemid dbid dbname

1 664.1180 74.913 303022.40 1 IROA_P01W01 NAD

2 332.5625 74.913 196370.35 1 IROA_P01W01 NAD

3 542.0694 74.913 84401.63 1 IROA_P01W01 NAD

1 Building database



peakid mz rt into chemid dbid dbname

4 665.1209 74.913 75311.62 1 IROA_P01W01 NAD

5 333.0638 74.913 51325.25 1 IROA_P01W01 NAD

6 686.0997 74.913 49965.38 1 IROA_P01W01 NAD

7 123.0552 74.913 47608.35 1 IROA_P01W01 NAD

8 524.0586 74.913 43952.75 1 IROA_P01W01 NAD

9 564.0509 74.913 33665.41 1 IROA_P01W01 NAD

10 580.0154 74.913 28148.40 1 IROA_P01W01 NAD

11 428.0368 74.913 27833.21 1 IROA_P01W01 NAD

12 666.1227 74.913 16549.82 1 IROA_P01W01 NAD

13 626.0221 74.913 16058.00 1 IROA_P01W01 NAD

14 543.0715 74.913 14569.47 1 IROA_P01W01 NAD

15 135.0664 31.095 202712.16 2 IROA_P01W02 L-
GLUTAMINE

16 130.0495 31.095 101983.22 2 IROA_P01W02 L-
GLUTAMINE

17 152.0924 31.095 61172.92 2 IROA_P01W02 L-
GLUTAMINE

18 147.0759 31.095 40568.49 2 IROA_P01W02 L-
GLUTAMINE

19 174.0744 31.095 22007.72 2 IROA_P01W02 L-
GLUTAMINE

20 169.0575 31.095 17936.97 2 IROA_P01W02 L-
GLUTAMINE

21 349.0541 60.951 168396.59 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

22 371.0361 60.951 118149.89 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

23 137.0455 60.951 113153.09 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

24 697.1015 60.951 77696.85 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

25 735.0478 60.951 21372.32 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

26 350.0562 60.951 20850.84 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

27 393.0174 60.951 15408.79 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

28 387.0024 60.951 15040.19 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE
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peakid mz rt into chemid dbid dbname

29 433.0062 60.951 13116.59 3 IROA_P01W04 INOSINE 5’-
PHOSPHATE

Automatic annotation

To annotate a features table, you will need:

path to the metadata file with columns ‘filename’ and ‘run_order’.
path to the intensity table generated by fillPEAKS  function. Sample names in this table
must correspond to ‘filename’ column in metadata.

First, massFlowAnno  class object is created by buildANNO  function.

massFlowAnno  class object can be annotated with different databases tables using function
annotateDS .

See also

Introduction to massFlowR (https://htmlpreview.github.io/?
https://github.com/lauzikaite/massFlowR/blob/master/doc/massFlowR.html)
Data processing with massFlowR (https://htmlpreview.github.io/?
https://github.com/lauzikaite/massFlowR/blob/master/doc/processing.html)

# meta_file <- "path to metadata csv file"

# ds_file <-  "path to filled intensity data csv file"

# out_directory <- "path to output directory" 

anno <- buildANNO(ds_file = ds_file, meta_file = meta_file, out_dir = out_direc

#> A 'massFlowAnno' object was succesfully built with 6 samples.

anno <- annotateDS(object = anno, db_file = db_file, out_dir = out_directory, m

#> Annotating dataset...

#> Dataset was annotated succesfully.
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