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Abstract……. 
 

Cancer-associated fibroblasts (CAFs) and the associated extracellular matrix 

(ECM) constitute a significant part of the tumour microenvironment (TME), playing 

an important role in the invasive potential of the tumour. The alignment of CAFs 

and the corresponding ECM which they produce and organise is linked with 

increased cancer invasion. Additionally, massive variation in the physical 

architecture of the ECM is observed in both normal and pathological tissues for 

example swirling, diffuse or porous patterns. How these mesoscale patterns arise 

remains largely unexplored. 

 

An agent-based flocking model was developed to investigate CAF properties and 

their involvement in emergent alignment. The model established that aligning cells 

had a requirement of highly persistent migration coupled with an active cell-cell 

collision guidance mechanism. The model predicted that alignment was a fragile 

state which could be easily destroyed in a heterogeneous population. These 

findings were confirmed experimentally.  

 

The model was then extended to include a second underlying layer of ECM fibres 

that the CAFs could produce, degrade and rearrange but were also instructed to 

follow, constituting a CAF-ECM feedback loop. This mechanism was capable of 

generating diverse matrix patterns, reminiscent of those seen in vivo. The model 

was challenged to unpick the process of interconversion between matrix patterns 

as seen in cancer, wound healing and ageing, which it elucidated with considerable 

success. 

 

Finally, clinical samples of ECM were quantified to establish if certain metrics of 

ECM architecture could be useful clinical prognostic factors. Early results suggest 

this to be true. Matrix patterns were quantified by a carefully constructed software 

pipeline suitable for use by other researchers on versatile data samples. 
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This thesis examines the causes and consequences of different ECM architectures. 

It is hoped that these findings will pave the way for further research into 

manipulating tumours towards patterns favourable for inhibiting cancer invasion. 
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Chapter 1. Introduction 

Examples of collective behaviour are ubiquitous in biology (Battersby, 2015). From 

the response of a shoal of thousands of fish to a predator, to the beautiful 

murmuration of starlings, the collective response is so much greater than the sum 

of its parts. In our bodies made up more than one trillion cells, a single cell has an 

almost negligible effect. And yet the remarkable synergy of collective cell behaviour 

can heal our wounds or cause us to develop perfectly formed fingers and toes. 

Collective cell responses also underpin unwanted phenomena, such as cancer 

invasion. It is therefore of crucial importance to understand how cells coordinate 

their behaviour. Mathematical modelling is an indispensable tool for understanding 

how interactions between cell neighbours give rise to emergent behaviour over 

huge distances and millions of cells (Lukeman, Li and Edelstein-Keshet, 2010). 

 

1.1 Cancer evolution 

The daunting challenge of curing and preventing cancer lies in the enormous 

diversity and adaptability of the disease. This diversity occurs on three levels: from 

patient-to-patient, the spatial location in the body and through intra-tumoural 

heterogeneity. Cancer cells evolve with the potential to acquire an infinite 

combination of somatic mutations. Much like Darwin’s theory of evolution and the 

range of animals seen today, this process leads to “survival of the fittest” and a 

huge spectrum of surviving families of cells, each with unique characteristics and 

mutations. 

 

Much work is being done to identify and treat frequent driver mutations such as 

BRAF mutations (Jamal-Hanjani et al., 2017). This is an exciting area of research 

in which many important discoveries are being made due to enormous advances in 

computational power (McGranahan and Swanton, 2017). These improvements in 

understanding of tumour evolution are likely to be of deep importance in the 

improvement of cancer treatment. 
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However, the staggeringly high degree of heterogeneity in the tumour presents a 

significant problem to the precision medicine approach that has been promoted in 

recent years (McGranahan and Swanton, 2015). Within a tumour there are millions 

of heterogeneous cells (Quaranta et al., 2009). Multiple tumour biopsies are only 

able to offer a snapshot of certain parts of a tumour in a state of constant, rapid 

spatial and temporal change. It is therefore a formidable task to try and treat all 

potential subpopulations. Given this immense tumour heterogeneity, are there any 

unifying elements common to all cancers, to circumvent these problems? 

 

Every single tumour exists as a unique society consisting not only of cancer cells 

but of many other cell and structure types (Jiao and Torquato, 2011; Augsten, 

2014; Heindl, Nawaz and Yuan, 2015). These other parts of the tumour micro-

environment, which are not the cancer cells are known as the tumour stroma 

(Figure 1). These stromal cells, whilst under the influence of cancer cells, are not 

themselves cancerous and so are not evolving and acquiring somatic mutations 

like the cancer cells. Typically, cancer cannot progress without a stroma, a 

supporting environment with which it can develop and co-evolve. Some cancers 

consist of more stroma than cancer cells. In fact, stromal cells (in particular, 

fibroblasts) may make up around 90% of tumour cells in pancreatic cancers 

(Karagiannis et al., 2012) rendering the tumour stroma a prime target for cancer 

research.  
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Figure 1: A schematic of the tumour microenvironment.  
Schematic of the tumour microenvironment containing many cell types and other 
material. Fibroblasts may be quiescent or activated in either a reversible or 
irreversible state. Signalling in wound healing causes fibroblasts to become 
activated. Upon cessation of the signalling, the fibroblasts revert to their inactive 
state (reversible). In pathologies such as cancer fibroblasts can become irreversibly 
activated. Irreversible fibroblast activation is associated with enhanced 𝛼SMA 
expression and are then known as cancer-associated fibroblasts (CAFs). 
Fibroblasts constitute a large volume of the tumour and are heterogeneous. 
EMT=Epithelial-to-mesenchymal transition, VBM=vascular basement membrane. 
Image reproduced with permission from (Kalluri, 2016). 
 

Currently, research on the tumour microenvironment can be broadly classified into 

two areas. The first is immunotherapy, using the body’s immune system to 

orchestrate an attack on the cancer cells (Gotwals et al., 2017). This profound idea 

of harnessing the power of the immune cells to identify and attack cancer cells can 

potentially circumvent the problem of cancer cell heterogeneity. Immunotherapy 

has already produced some astounding results (Feig et al., 2013; Joyce and 

Fearon, 2015; Jin et al., 2016; Gotwals et al., 2017) and is likely to continue to 

improve cancer treatment in the future. 
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The second is through manipulating the stroma directly. By understanding spatial 

and temporal development of the stroma, explaining collective behaviour (Trepat et 

al., 2009; Mayor and Etienne-Manneville, 2016) and identifying how the stroma is 

helping the cancer, the tumour and metastasis can be inhibited (Shimoda, Mellody 

and Orimo, 2010). It is this area which constitutes the focus of this work, with an 

emphasis on cancer-associated fibroblasts (CAFs), one of the most abundant 

stromal cell-types (Augsten, 2014). CAFs can constitute a large part of the stroma 

and have a complex relationship with the cancer cells (Kalluri and Zeisberg, 2006; 

Augsten, 2014; Kalluri, 2016). In some instances, CAFs can aid metastasis and in 

others, inhibit it (Özdemir et al., 2014). Certain CAF populations can produce 

remarkable collective patterns in vivo such as alignment. These high-order patterns 

have potential implications for metastasis (Provenzano et al., 2006; Riching et al., 

2015). This leads to the first of three principle research questions for this thesis:  

 

Research Question 1: What properties of CAFs cause different collective 

behaviours? 

 

1.2 Evolution of a tumour from start to finish  

The human body contains trillions of cells and every day billions of cells are made 

and die. Our DNA could stretch to the sun and back around 250 times. Given the 

spectacular complexity of cells, it is remarkable that so many cells manage to 

divide without acquiring significant genetic faults. This is largely due to molecular 

repair mechanisms, which identify and fix molecular damage that has occurred in 

the cells (Lindahl, 1974). Other faulty cells induce apoptosis. Mutated cells which 

do not die as quickly as they divide form the origins of cancer. These cells can 

acquire more mutations, constantly dividing and forming the basis of a tumour. The 

excessive division of cancer cells results in competition for resources, leading to 

hypoxia (lack of oxygen) resulting from inadequate blood supply (Bearer et al., 

2009; Madsen et al., 2015; Carmona-Fontaine et al., 2017). This lack of resources 

can cause necrosis in the tumour centre (Gatenby and Gawlinski, 2003; Valastyan 

and Weinberg, 2011). Given the heterogeneity of mutated cancer cells, some 

subpopulations may acquire the ability to survive in these harsher environments. 
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Further, treatment with chemotherapy and radiotherapy can also cause further 

selective pressures on cancer cells (Hirata and Sahai, 2017). 

 
Simultaneously, the cancer cells begin recruiting stromal cells to establish the 

tumour microenvironment (TME). Through chemical signalling such as PDGF, 

VEGF and TGFβ, other cells such as fibroblasts, T-cells and blood cells are 

recruited to the tumour (Lynch et al., 1987; Karagiannis et al., 2012; Augsten, 

2014). These stromal cells interact and evolve with the cancer cells, inextricably 

linking the cancer cells with the TME and inducing a complex network of feedback 

loops in the tumour. Fibroblasts recruited to the tumour are largely responsible for 

the production and maintenance of extracellular matrix (ECM) (Kalluri and 

Zeisberg, 2006; Kalluri, 2016). 

 
The ECM is a network of fibres composed primarily of collagen and fibronectin, 

which helps give structure to the body and is essential in wound-healing. The ECM 

functions both chemically and physically (Pizzo et al., 2005; Vedula et al., 2012). At 

the chemical level, the ECM released cytokines that alter cell behaviours. At the 

physical level, the ECM fibres act as a physical barrier inducing changes in the 

cells. One such example is in the feed forward loop of YAP transcription factor 

activation (Calvo et al., 2013). YAP is required for CAFs to promote ECM stiffening. 

At the same time, matrix stiffening enhances YAP activation in cells. Another 

example is the physical constraint of moving through the ECM causing cells to 

change their shape, phenotype and mode of migration between amoeboid and 

actin-driven protrusions. (Tozluoğlu et al., 2013a). Cells are able to use the ECM 

fibres to migrate along and cells often migrate up a stiffness gradient (durotaxis) or 

a chemical concentration gradient (chemotaxis) (Schlüter, Ramis-Conde and 

Chaplain, 2012; Ahmadzadeh et al., 2017; van Helvert, Storm and Friedl, 2018). 

This conversion of physical signals to an intrinsic chemical change in cells is known 

as mechanotransduction (Paluch et al., 2015). These interactions between 

fibroblasts and the ECM they produce is of key interest in understanding emergent 

patterning in the stroma. 

 

Research Question 2: What is the effect of the mechanistic interplay between CAFs 

and ECM? 
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VEGF signalling by CAFs induces the growth of new blood vessels (angiogenesis) 

towards and eventually into the tumour, supplying the tumour with the resources it 

needs to thrive and also as a means for metastasis (Bentley, Gerhardt and Bates, 

2008; Bentley et al., 2014). For cancer to successfully metastasize, first cancer 

cells need to be able to break away from the main tumour into the blood stream. 

They then need to travel through the blood stream, leave the blood stream and 

colonise a new location. It seems almost impossible for a cell to be able to 

accomplish this journey without dying and yet it is metastasis, and not the primary 

tumour, which kills the vast majority of cancer patients. This troubling and 

fascinating problem needs to be far better explored and may be an area in which 

probabilistic mathematical modelling could be hugely insightful. In all stages of 

tumour development, the stroma plays an essential role, helping the cancer cells 

get nutrients, migrate and ultimately metastasise (Valastyan and Weinberg, 2011). 

 

1.3 Fibroblasts and cancer-associated fibroblasts 

Fibroblasts are an abundant cell-type throughout the body, typically found 

individually in interstitial space in a quiescent state (Kalluri, 2016). Fibroblasts 

become activated commonly through PDGF signalling during wound healing (Lynch 

et al., 1987). They become more motile, travelling to the wound site, proliferate 

more and produce and organise the ECM at the wound, which becomes the scar 

tissue (McDougall et al., 2006). After the wound is healed, the fibroblasts typically 

apoptose or return to their inactive state (Basan et al., 2013). In cancer, fibroblasts 

remain activated and so cancer has often been described as “a wound that does 

not heal” (Karagiannis et al., 2012). These activated fibroblasts have properties 

which lend themselves to ECM generation and organisation such as increased 

contractility, proliferation and proteolytic capabilities. Activated fibroblasts also gain 

expression of a-smooth muscle actin (aSMA), which is often used as a biological 

marker for CAFs. 

 

CAFs are recruited and reprogrammed by cytokine signalling by the tumour  and 

metastatic sites (LeBleu and Kalluri, 2018) and are often found at the tumour 
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periphery (Egeblad et al., 2008). CAFs can derive from a number of origins such as 

resident fibroblasts, bone marrow or resident pericytes (Augsten et al., 2014; 

Karagiannis et al., 2014; LeBleu and Kalluri, 2018). CAFs are highly heterogeneous 

due to their source and location in the TME. Environmental conditions such as 

spatial confinement or lack of nutrients can lead to CAFs modifying their 

phenotype. This plasticity of CAFs makes them often hard to characterise.  

In their activated state, CAFs share many properties of activated fibroblasts in 

wound healing, producing high levels of matrix metalloproteinases (MMPs) for ECM 

reorganisation and secreting other signals crucial for tumour development (Feig et 

al., 2013; Kalluri, 2016). Whilst there has been some indication that certain 

components of the CAF secretome might be tumour inhibitory (Özdemir et al., 

2014), the vast majority of literature indicates that CAFs promote tumour 

progression (LeBleu and Kalluri, 2018). This is done through the remodelling of the 

ECM to facilitate tumour invasion and the secretion of various signalling molecules 

such as VEGF (promoting angiogenesis), TGFb and PDGF (promoting cell division 

and the recruitment of more CAFs to the tumour). In these ways, CAFs and 

consequently the ECM, play a crucial role in tumour progression and response to 

therapies. 

 

Different spatial patterns of ECM have previously been observed in culture 

(Elsdale, 1968) and in vivo (Figure 2). Fibroblasts derived from human and mouse 

tumours display different emerging patterns in vitro as cells move from low density 

to confluence. Certain CAF populations can organise their cell bodies so that they 

align in terms of orientation and direction of movement. Other CAF populations 

remain largely non-aligned. Importantly, the collective behaviour of alignment 

through organisation of cell bodies corresponds to the organisation of underlying 

ECM. Aligned ECM is associated with disease progression and it has been shown 

that cancer cells have increased migratory capabilities when moving on aligned, 

isotropic matrices (Provenzano et al., 2006; Goetz et al., 2011; Drifka et al., 

2016a). This is illustrated schematically in Figure 3.  

 

Additionally, work by the groups of Keely and Eliceiri (Provenzano et al., 2006, 

2008; Drifka et al., 2016b) has shown that aligned collagen leads to cancer 
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progression. They define three Tumour-Associated Collagen Signatures (TACS) for 

characterising collagen organisation: 

 

• TACS1 – increase collagen density around tumours as compared to normal 
tissue 

• TACS2 – straightened collagen fibres running tangential to the tumour. 
• TACS3 – straightened collagen fibres oriented radially to the tumour mass. 

 

All of these signatures are associated with increased cancer invasion and tumours 

typically progress from TACS1 through to TACS3, although this conversion process 

is currently not understood. Crucially, it is the aligned organisation and increased 

density of collagen which have been shown to promote cancer invasion. Both of 

these properties are associated with CAFs.  

 

In order to reduce the invasive potential of a tumour, it is paramount to understand 

the mechanisms causing CAF alignment. Differences in cell motility mechanisms 

are likely to underlie this variability collective cell behaviour and by implication, 

ECM organisation.  

 

 
Figure 2: ECM patterns  
(A) In vivo diversity of collagen organisation in healthy tissue in mice by second 
harmonic imaging, a microscopy technique suitable for imaging collagen fibres 
(scale bar 20μm). (B) In vitro images of matrix produced by normal fibroblasts 
(NF2, left) and different CAF populations. 
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Figure 3: Schematic of CAF spatial organisation in TME 
Two different CAF populations (orange) adjacent to the cancer cells (green) 
produce different ECM patterning (blue). Aligned ECM (right population) has been 
shown to facilitate cancer invasion by acting as tracks along which the cancer cells 
can more easily migrate. 
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1.4 Rules governing cell motility mechanisms and behaviour 

1.4.1 Cell motility 

In order for a cell to successfully migrate, a sequence of steps needs to be 

followed: firstly, actin-rich protrusions are generated at the edge of the cell. These 

protrusions cause the cells to have an asymmetric morphology with a leading edge 

and trailing edge. Next, adhesion of these protrusions to the substrate occur at the 

front of the cell coupled with contraction of the cell body at the trailing edge. Finally, 

the cell is pulled forward by contractile forces generated largely by the actomyosin 

network (Ananthakrishnan and Ehrlicher, 2007; Petrie, Doyle and Yamada, 2009). 

Cells can preferentially form protrusions in response to directional external cues, 

for example in response to a chemical gradient (chemotaxis), ECM adhesion 

gradient (haptotaxis) or ECM stiffness gradient (durotaxis). In the absence of an 

external gradient, where there is either a uniform external cue or none at all, cells 

migrate according to their intrinsic directionality. The ability of a cell to form stable 

protrusions at a leading edge will determine how effectively the cell can migrate. 

The formation of protrusions and the contraction of the trailing edge are 

underpinned by the distribution and concentration of the Rho GTPases within the 

cell: RhoA, Rac1 and Cdc42 (Mayor and Carmona-Fontaine, 2010; Marée, 

Grieneisen and Edelstein-Keshet, 2012). Cells with distinct and stable distributions 

of these GTPases are highly polarised which manifests as the cell having a clear 

leading edge with cell protrusions, a trailing edge, and migrational persistence 

(Petrie, Doyle and Yamada, 2009). In this way cell polarity and migrational 

persistence are coupled. In this work migrational persistence is used as a measure 

of CAF polarity.  

 

The polarity mechanisms by which cells are able to respond to intrinsic and 

extrinsic cues are nuanced. A cell must be highly sensitive to small asymmetries in 

external cues and remain so even once large protrusions have been formed, thus 

allowing a cell to repolarise in a different direction. Meinhardt (Meinhardt, 1999) 

describes an elegant minimal model which can account for such behaviour by 

means of an oscillating inhibitor, periodically preventing sensitivity to an extrinsic 

cue. By varying the range and period of the inhibitor, a range of observable polarity 
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behaviours are observed such as multiple protrusions, large protrusions and the 

formation of protrusions through intrinsic cues alone. 

 

1.4.2 Cell-cell interactions 

CAFs, like many other cells, can transfer information locally between neighbours. 

This transfer of information could be via N-cadherin mediated signalling (Paluch et 

al., 2015), force transmission through cell-cell adhesions similar to the 

phenomenon of plithotaxis observed in epithelial sheets (Trepat and Fredberg, 

2011; Zaritsky et al., 2015), mechanotaxis, cell-cell signalling or via communication 

between CAFs and the ECM which they create and maintain (Shiga et al., 2015; Li 

et al., 2017). Competing with these local cooperative mechanisms is the inability for 

two cells to occupy the same space and the frequently observed repolarisation of 

migration upon contact, termed contact inhibition of locomotion (CIL) (Maiuri et al., 

2015; Roycroft and Mayor, 2015; Mayor and Etienne-Manneville, 2016; Stramer 

and Mayor, 2016; Zimmermann et al., 2016). It has been shown that CIL response 

is largely dependent on collision geometry (Desai et al., 2013). Any exploration of 

collective cell behaviour will have to carefully consider these complex dynamics. 

 

1.5 Spatial organisation of the tumour 

The commonality of the stroma to all cancers makes it an attractive area to try to 

understand better as a means of inhibiting cancer progression. In particular, there 

is currently a lot of research being done to better understand the spatial structure of 

the stroma in conjunction with the temporal dynamics of the tumour (Egeblad et al., 

2008; Heindl, Nawaz and Yuan, 2015; Leung, Rice and Barton, 2015).  

 

Studying the architecture of the stroma has two obvious potential consequences: 

classification and prediction. It seems likely that in the near future it will be possible 

to derive the stromal structure of large areas of the tumour in patients (Heindl, 

Nawaz and Yuan, 2015). This would allow for patient stratification, for instance, a 

patient with a large proportion of CAFs may have a poorer prognosis than a patient 

with a large proportion of T-cells, leading to different therapies. 
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Further, building a spatial map of the TME could allow for identification of high-risk 

metastatic points within the tumour and the potential to manipulate these areas. For 

example, it has been shown that the altered metabolism of cancer cells can create 

gradients of ECM metabolites which orchestrate phenotypic diversity in the TME 

and the differentiation of cells into distinct subpopulations (Carmona-Fontaine et 

al., 2017). Another example, is that areas of aligned ECM could be indicative of 

where invasion is likely to occur (Provenzano et al., 2006). Understanding the TME 

architecture may even enable the prediction of cancer cell invasion. As previously 

documented (Friedl et al., 2012), cancer cells are able to invade surrounding tissue 

as single cells, in multicellular streams or as part of coordinated collectives 

involving many cells. The mode of invasion is thought to be dependent on cell-cell 

adhesions, cell contractility and cell-matrix adhesions. It is likely that stromal 

organisation will also be an important determinant. These are just a few examples 

of potential benefits of understanding the spatial organisation of the TME. 

 

Research Question 3: Can spatial organisation of matrix predict patient outcome? 

 

The importance and variation of spatial structure in tumours leads to natural 

parallels with ecology (Maley et al., 2017). Indeed, in ecology the most effective 

way to eliminate a species is by destroying its niche environment (Yuan, 2016). In 

the same way, therapies which target the specific TME can be an effective means 

to treat cancer. In some instances, organisation of the TME is thought to be a 

possible cause of drug resistance. One example of the importance of spatial 

organisation in tumours can be found in the diversity of vasculature; from well 

organised to more tortuous vessels (Manning et al., 2013) associated with hypoxia 

and metastasis, together with radiation responses (Scott et al., 2016). A recent 

study has found that hypoxia causes an increase in collagen I and LOX production 

in ovarian cancer and that inhibiting LOX (and thereby reducing crosslinking) 

reduces tumour burden in mice (Natarajan et al., 2019). Directly manipulating the 

ECM therefore has potential therapeutic benefits. Another example is using the 

location of immune cells in the TME as a prognostic factor in colorectal cancer 

(Nawaz et al., 2015; Yuan, 2016). 
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The Bates group has a long history of agent-based modelling at the 

cellular/subcellular level including unravelling how angiogenic sprout formation 

occurs. Prior work has investigated different modes of cancer cell migration through 

different ECM geometries with a finite element model (Tozluoğlu et al., 2013a). A 

cell has an actomyosin cortex and an outer cell membrane, both modelled by a set 

of agents. The model combines actin-polymerisation, contractility, blebbing and 

cell-ECM adhesion and is able to established requirements for effective migration 

in different ECM geometries. The model is robustly able to predict experimental 

drug perturbations and is a good example of how agent-based modelling can be a 

powerful tool for teasing apart complexity in biological systems. 

 

Thinking of tumours in broad spatial terms has recently attracted renewed focus. 

Much work has been done to understand the temporal evolution of tumours 

however, in practice it is difficult to get temporal information, particularly in patients. 

Spatial information is much more readily available through imaging of multiple 

biopsy sites, therefore using “space as a surrogate” for time (Yuan, 2016). 

 

The TME is an ecosystem in which different entities such as cancer cells, CAFs, 

immune cells and ECM coexist and influence one another. Metrics such as 

colocalisation between “species”, clustering, roughness of the interface between 

species and alignment can provide important information as to how a tumour is 

likely to evolve both spatially and temporally. 

 

Spatial metrics have been shown in some instances to be more effective prognostic 

markers than traditional histopathology methods alone (tumour size, tumour grade 

etc.). It is certain that with the availability of tumour images and the advancements 

in machine learning techniques allowing for processing of these images, spatial 

organisation of the tumour will become increasingly important as a prognostic tool.  

 

Methods for studying the spatial organisation of tumours are developing rapidly. 

Machine learning is one such method, principally focussed on identifying patterns, 

and thus is of crucial importance in the study of TME architecture. In particular, a 

Convolutional Neural Network (CNN) is a class of neural network optimal for 

analysing patterns in visual data. CNNs fit into the sub-family of machine learning 
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called deep learning (Lecun, Bengio and Hinton, 2015), which uses multiple layers 

of analysis to extract increasingly abstract patterns. There is currently huge 

excitement surrounding deep learning, and important advances have been made 

taking advantage of the huge amount of data now available. Some examples of this 

are in text mining, language interpretation and driverless cars. CNNs are 

particularly useful in analysing images because they can recognise spatial patterns. 

 

Weaknesses of CNNs (and neural networks in general) are that the computational 

cost is high and a large amount of training data is typically required to generate 

meaningful results. However, these obstacles are not insurmountable, with GPUs 

becoming more widely used, vastly increasing computational efficiency. It is also 

clear that when enough training data can be obtained from “expert opinion”, CNNs 

can produce impressive results. Applications of CNNs to the field of tumour 

architecture have included using H&E stained samples and expert opinion to train a 

classifier for different cell types (Bulten et al., 2019). The main gap in deep learning 

is in the “black box” effect, whereby it is often hard to understand why the neural 

network has chosen to classify images according to various abstract properties. 

Whilst CNNS can effectively identify patterns it is often unclear how exactly they 

form and operate. This can lead to a lack in understanding of how phenomena 

arise. 

 

As discussed in (Baker et al., 2018), it is important to consider how these emerging 

machine learning techniques and traditional mathematical modelling fit together. 

Broadly, mathematical modelling can be used to study cause, whilst machine 

learning can be used to study effect and patterns. Individual cells and matrix fibres 

are endowed with certain properties that enable them to interact and cause 

different collective behaviours and heterogeneous spatial patterning. This resulting 

architecture is the effect of those properties. Machine learning has the capability to 

identify patterns across huge datasets (outputs), which is clearly of great use in the 

age of big data and data abundance. Simultaneously, mathematical modelling 

remains indispensable for understanding the fundamental principles governing the 

relationship between inputs (cell properties and rules) and outputs (matrix patterns) 

(Baker et al., 2018). Therefore, in the context of understanding TME architecture, 

mathematical modelling and machine learning can be used in synergy to increase 
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understanding. In this vein, whilst the focus of this work is on mathematical 

modelling, complementary machine learning approaches are explored in each 

chapter. 

 

1.6 Modelling approach 

For many decades now, mathematical modelling has been viewed as an essential 

tool for understanding biological phenomena. Models can provide mechanistic 

understanding of how complex behaviour arises from a set framework, extrapolate 

and make predictions about how systems will evolve and provide an essential 

perspective in tackling biological problems. Modelling is often at its most powerful 

when combined in synergy with experimentation. A feedback loop between 

computational and experimental scientists enables more meaningful insights. By 

incrementally building and improving models, with assumptions that are confirmed 

with experimentation, predictions can be made which can in turn direct the course 

of experiments. Mathematical models are fundamental in reducing complex 

problems down to their key components and developing a core understanding of 

how such systems function (Mogilner, Allard and Wollman, 2012).  

 

Many types of models have been used to study cell behaviour, from single cell 

models, to continuum modelling of entire organs. An overview of different collective 

cell modelling approaches is given here. Whilst this summary of models is by no 

means exhaustive, it aims to give a snapshot into common model choices and 

endeavours to justify why the framework used in the rest of this thesis is an 

appropriate choice. 

 

1.6.1 Which dimension to work in?  

The majority of models looking at collective cell behaviour are in 2D. This is 

because the majority of experimental work in this area takes place in vitro in a 2D 

environment and because of computational limitations. However, cells can move in 

a very different way in 3D with basal and apical constraints (and therefore in vivo) 

and so this is an important future direction to consider moving into (Petrie, Doyle 
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and Yamada, 2009; P.-H. Wu et al., 2014; Steinwachs et al., 2015; Wang et al., 

2016). 

 

In 2D, cell migration is largely achieved by actin polymerisation at the front of the 

cell, producing stable filopodia. These filopodia adhere to the substrate, whilst the 

rear of the cell de-adheres from the substrate (Ananthakrishnan and Ehrlicher, 

2007). Through the generation of contractile forces, the cell is then able to crawl 

forwards. This process of cell motility can be modelled as a persistent random walk 

(PRW) (P.-H. Wu et al., 2014). In 3D (and 1D) however, cells can have apical and 

lateral confinement in addition to the basal confinement experienced in 2D (Pizzo 

et al., 2005; Sandersius and Newman, 2008). These additional constraints cause 

the cell to migrate in a more bleb-like manner, producing exploratory pseudopodia 

and a more spindle-like shape as the cell tries to navigate through a complex 3D 

environment. It has been shown that cell movement in 3D does not follow a 

persistent random walk, exerts forces in different ways and that the cells have 

different phenotypes due to their different shapes. 

 

1.7 Collective cell models 

1.7.1 Continuum models 

Continuum models have been able to offer profound insights into the tumour 

population as a whole, in particular applying populations dynamics and game 

theory methods (Swanson et al., 2003; Matzavinos, 2004; Bearer et al., 2009; A. 

Wu et al., 2014; Notbohm et al., 2016; Sartakhti et al., 2016). The limitations of 

such models lie in the difficulty of assessing collective behaviour and individual cell 

interactions.  

 

Work by Anderson et al. (Anderson et al., 2007) considers a system of partial 

differential equations across three variables: tumour cell density, ECM density and 

matrix degrading enzymes, to study tumour invasion. The authors solve these 

PDEs in one and two dimensions to establish an analytical understanding of the 

interactions between the three variables during invasion. They then use these 

findings as a basis for developing a discrete model. 



Chapter 1. Introduction 

 

 34 

 

Another continuous model presented in (Escaff et al., 2018) is specifically designed 

to consider flocking behaviours. Self-propelled particles move with a continuous-

time persistent random walk in one-dimension, and particles are able to influence 

the motility of each other. The model has two main parameters: interaction range 

and interaction strength. By varying these two parameters the authors map a phase 

diagram showing transitions between disordered, ordered homogeneous and 

ordered clustering behaviours. This is an elegant model which can be solved 

analytically, but becomes complicated even when limited to the one-dimensional 

case. 

 

Continuum models enable the exploration of analytical solutions but can lack detail. 

On the other hand, discrete models are more adaptable but harder to analyse, 

depending on the level of detail. The complexity and multi-scale nature of cell 

interactions, involving feedback at the protein, cellular and tissue levels lead to a 

trade-off between complexity and scale (Lecaudey and Gilmour, 2006; Ellery et al., 

2016; Camley and Rappel, 2017).  

 

1.7.2 Sub-Cellular Element model 

The Sub-Cellular Element Model (SEM) (Newman, 2005; Sandersius, Weijer and 

Newman, 2011) is a creative model ideally used for studying cell rheology but with 

extensions to multicellular systems. Elements of the cell are initialised and move 

with respect to each other according to predefined Morse potentials. By defining 

different intra and inter-cellular potentials, it is possible to generate sophisticated 

cell shapes and interactions between groups of cells. This framework is also highly 

suitable for three-dimensional analysis. By using a Voxel-like approach, only 

interactions between elements that are sufficiently close to each other are 

computed, saving on computational cost. However, the SEM does not lend itself to 

studying the collective motion of cells, particularly at the scale of hundreds or 

thousands of cells. Further, how to define appropriate Morse potentials between 

elements is often ambiguous. 
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1.7.3 Cellular Potts model 

One of the most important models for studying collective cell motions is the Cellular 

Potts Model (CPM). To list just a few examples, the CPM has been used to 

investigate swirling of cells (Chang et al., 2013), cell morphology during gliding 

(Albert and Schwarz, 2016) and polarity (Marée, Grieneisen and Edelstein-Keshet, 

2012). Originally introduced in a seminal paper in 1992 by Graner and Glazier to 

describe cell sorting, this lattice-based model allocates lattice sites to particular 

cells based on the minimisation of an energy function. Specifically, cell 1 occupies 

the region where lattice sites have “spin” equal to 1. Lattice sites not allocated to 

any spin are considered to be surrounding media. A system’s energy is defined by 

the Hamiltonian 

 

 𝐻 = * 𝐽,-(1 − 𝛿(𝜎,, 𝜎-)
neighbouring
sites	,,-

) + 𝜆*@𝐴B − 𝐴B,CD
E

cells
B

 (1) 

 

 

Where 𝐽,- is the energy between neighbouring sites 𝑎	and	𝑏. The 𝛿 term is a Dirac 

function such that if two neighbouring sites have the same spin (value) then there is 

no energy cost. The second term describes a penalty (𝜆) on cells of area 𝐴B for 

deviating away from their target area (𝐴B,C). The model evolves by attempting to 

minimise the Hamiltonian through Monte Carlo steps. 

 

The model is easily extendable by adding terms to the Hamiltonian. The CPM is 

computationally inexpensive and easily repurposed to study new phenomenon, 

making it widely used in modelling single and collective cell motility (Scianna and 

Preziosi, 2013; Tozluoğlu et al., 2013a; Osborne et al., 2017).  

 

One minor criticism of the CPM is that cell motility is inextricably linked with 

changes in the cell boundary (Camley and Rappel, 2017) which may not be 

realistic. However, in the context of answering the key questions posed in this 

thesis, the primary problem of the CPM is in modelling cells and ECM fibres 

simultaneously. This has been attempted (Scianna and Preziosi, 2013), but it is 

difficult with the CPM to model explicit fibres that behave in a physiologically 
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reasonably way and to implement rules for interaction specifically between the cells 

and individual fibres without making the system far more complicated. 

 

1.7.4 Vertex/Voronoi models 

Two other well-established models of collective cell behaviour are the closely 

related Vertex and Voronoi models (Sánchez-Gutiérrez et al., 2015; Camley and 

Rappel, 2017), whereby cells are defined with respect to their boundaries. These 

systems evolve once again by an energy minimisation task, but the Hamiltonian 

refers specifically to cell area and perimeter. Thus, the Hamiltonian is described as 

 

 

 𝐻 =*[𝐾,MN,(𝐴B − 𝐴C)E + 𝐾ONMBP(𝑃B − 𝑃C)E]
cells
B

 (2) 

 

 

The Voronoi model varies from the Vertex model in that equations are solved for 

the centre of mass on each cell as opposed to solving the energy equation for each 

of the specified vertices. Vertices are not specifically defined, rather the region of 

the cell is allocated by Voronoi tessellation. This feature gives the Voronoi model 

the advantage of being able to handle cell rearrangements more easily than the 

Vertex model, but it can also be challenging to define the free boundary problem 

(Camley and Rappel, 2017). Both models are ideally suited to studying confluent 

layers of cells, but do not comfortably adapt sub-confluent systems. An interesting 

study applying a Vertex model, Voronoi model and CPM to the same biological 

problems elucidates the differences between the models (Osborne et al., 2017). 

Their findings point to reasonable qualitative agreement between the models for a 

variety of problems, but that one model is often more suitable than the others for a 

specific problem.  
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1.7.5 Force-based models 

There have been a number of insightful force-based models investigating 

chemoattraction and CIL in recent years (Woods et al., 2014; Camley et al., 2016; 

Szabó and Mayor, 2016). Based on simple principles of CIL and co-attraction, cells 

can migrate collectively. However, it is often challenging to model the complexity of 

cellular forces and measure them accurately. Trepat et al. (Trepat et al., 2009) 

have shown that cells engage in a global “tug of war”, pulling in many different 

directions simultaneously. Several alignment mechanisms in collective motion have 

been proposed in the literature (Camley and Rappel, 2017), which circumvent the 

challenges of measuring forces: velocity alignment where a cell’s polarity aligns to 

its velocity (Basan et al., 2013; Camley et al., 2014) and neighbour alignment 

(Szabó et al., 2006; Chaté et al., 2008; Sepúlveda et al., 2013). So far, these 

models have shown good agreement with experimental work and the justification 

for these mechanisms is being explored through force measurements. For 

instance, the phenomenon of plithotaxis has been observed in epithelia where 

there is a tendency for cells to align their direction of migration with the axis of 

maximal principal stress (Trepat and Fredberg, 2011; Zaritsky et al., 2015). A major 

class of model using neighbour alignment is the Vicsek model, which is detailed in 

Section 1.7.7. 

 

1.7.6 A hybrid model 

An alternative to choosing between continuum and discrete models of collective 

behaviour is the hybrid agent-based model developed by the Maini group (Dallon, 

Sherratt and Maini, 1999; McDougall et al., 2006), in which cells are modelled as 

discrete agents and the underlying ECM is modelled as a continuum. A brief 

description of the model is given here. The path of cell 𝑖 denoted by 𝒇B(𝑡) and the 

ECM at position 𝒙 = (𝑥, 𝑦) is denoted 𝑐(𝒙, 𝑡). Cells receive directional cues from the 

matrix and move in the direction of the weighted average of their persistence and 

the matrix guidance. Fibroblasts deposit ECM in the same orientation as their 

direction of movement. Further, fibre deposition and degradation rates are 

assumed to be equal so collagen density is constant. Matrix orientation changes as 

a weighted average of the orientations of nearby fibroblasts. The authors use their 
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model to investigate ECM pattern formation in particular within the context of 

wound healing and matrix remodelling. They find that for all but low values of cell 

migrational persistence, cells will deviate from a straight path, producing a more 

swirl-like ECM. Additionally, Dallon et al. find that seeding a strip of aligned fibres 

that is sufficiently thick causes the rest of the matrix to align similarly. The work 

also explores modelling fibrin and collagen explicitly in wound healing. This model 

is of great interest, but does not include any modelling of cell-cell interactions. 

Further, modelling the ECM as a continuum prevents direct interaction between 

specific fibres and the fibroblasts. 

 

1.7.7 Vicsek model 

As documented above, there are many useful and well-established models for 

collective behaviour. These models, as well as plethora of others have been 

adapted to address many different problems in different systems. However, this 

can often lead to over-parameterised models. The seminal work by Vicsek et al. 

(Vicsek et al., 1995) in 1995 aimed to strip back these models to identify the 

simplest model that could generate collective flocking behaviour in diverse systems 

(Battersby, 2015). The Vicsek model is generalisable, tractable and displays 

remarkable emergent behaviour given its simplicity. 

 

The framework of the Vicsek model is as follows: At initialisation particles are 

seeded with random orientation in a two-dimensional box with side length 𝐿 and 

periodic boundaries. Particles have no area and all particles move at the same 

fixed speed 𝑠. At every time step particle orientations and then particle positions 

are simultaneously updated. The position of particle 𝑖 at time 𝑡 + Δ𝑡 is given by 

 𝑥B(𝑡 + Δ𝑡) = 𝑥B(𝑡) + 𝑣B(𝑡 + Δ𝑡)Δ𝑡 (3) 

 

where  

 

 𝑣B(𝑡 + Δ𝑡) = 𝑠 ^
cos	(𝜃B(𝑡 + Δ𝑡)
sin	(𝜃B(𝑡 + Δ𝑡)

` 
(4) 

 

With 𝑠 representing the fixed cell speed of all particles and  
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 𝜃B(𝑡 + Δ𝑡) = 〈𝜃b(𝑡)〉∣efgeh∣iM + 𝜂B(𝑡), (5) 

 

where 〈𝜃b(𝑡)〉∣efgeh∣iM is computed as  

 

 
〈𝜃b(𝑡)〉∣efgeh∣iM = tangk l

〈sin m𝜃b(𝑡)n〉∣efgeh∣iM	
〈cos m𝜃b(𝑡)n〉∣efgeh∣iM

o. 
(6) 

 

The 𝜂B(𝑡) term represents the intrinsic noise of the particle, and is chosen at each 

time step from the distribution 𝜂~𝑈 s− t
E
, t
E
u.  

 

The model parameters are neighbourhood size (𝑟), and intrinsic noise (𝜂) and 

particle density mw
x
n, where 𝐿 denotes the side-lengths of the square in which 

simulations take place and 𝑁 denotes the number of particles. Particles with large 

neighbourhoods are well able to coordinate themselves with their neighbours. 

However, if particle density is too low, particles cannot coordinate. The noise term 

can be thought of as the “free will” of each particle or its adversity to cooperation. 

By varying these three parameters, discontinuous phase transitions are observed 

between order and disorder. Thus, the behaviour of a particle within the Vicsek 

model is determined by three components: an awareness of one’s neighbours, a 

willingness to cooperate and enough neighbours to cooperate with. These 

fundamental ingredients are common to all collective systems. Importantly, diverse 

collective behaviour can be obtained without the requirement for population 

heterogeneity or leader/follower cells (Grégoire, Chaté and Tu, 2003). 

 

The cell speed 𝑠 has been described in the literature as a “thermalisation 

parameter” (Baglietto, Albano and Candia, 2012) in Vicsek model, relating to how 

long two particles will remain with a distance 𝑟 from each other and be considered 

neighbours. Baglietto et al. found that in instances of low thermalisation, where 

particles move very quickly, the system will be more disordered. However, in 

instances of medium and high thermalisation when particles move slower, changes 

in 𝑠 has a minimal effect on the system and does not affect phase transitions. 

Similarly, maintaining particle speed but taking a very large time step will cause 
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particles to spend less time as neighbours, altering the emergent behaviour. 

However, reasonable choices of time step and particle speed have been shown to 

have little impact on the model outcome (Dallon, Sherratt and Maini, 1999; 

Baglietto, Albano and Candia, 2012). 

 

Extensions to the Vicsek model include considering nematic particles (Ginelli et al., 

2010) and a surrounding fluid (Chaté et al., 2008) and into three dimensions with 

zones of attraction and repulsion (Couzin et al., 2002; Grégoire, Chaté and Tu, 

2003). An extension of the Vicsek model described by Schumacher et al. 

(Schumacher, Maini and Baker, 2017) describes a term for flocking corresponding 

to averaging of neighbour orientations, a noise component and an additional term 

for attraction-repulsion forces between cells in three dimensions, as described in 

(Grégoire, Chaté and Tu, 2003). They use this model to show that seemingly 

heterogeneous behaviour can arise from the collective behaviour of homogeneous 

cells. The minimality and generalisability of the Vicsek model make it an attractive 

framework to study collective behaviour, which can be simply and naturally adapted 

to specific systems. 

 

1.7.8 Modelling the effects of cell biochemistry on collective behaviours 

One of the main challenges in mathematical modelling of collective cell behaviour 

is decoupling the mechanical and chemical properties of the system. Unlike 

inactive matter such as liquid crystals (Marchetti et al., 2013), cells undergo 

orchestrated chemical responses to chemoattractants; therefore, cell-cell contacts 

and have intrinsically heterogeneous biochemical properties (Davis et al., 2015). 

 

Chemoattractants are common in biological systems such as wound healing, where 

a chemical signalling gradient originating at the site of the wound causes cells to 

preferentially migrate in the direction of the wound. A chemoattractant alters cell 

motility and therefore impacts upon collective cell behaviour. A significant body of 

work has explored modelling of chemoattractants, including work by De Palo et. al 

(De Palo, Yi and Endres, 2017), which combines a variant of the Vicsek model with 

a chemoattractant. The authors study how collective behaviour of Dictyostelium 
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arises as a result of cAMP signalling (a chemoattractant). In their model, the 

concentration of cAMP that a cell senses is given by the sum of cAMP secretion of 

all neighbouring cells. 

 

Heterogeneity amongst cells can change the resulting emergent behaviour. It is 

well documented that CAFs are highly heterogeneous (Augsten, 2014). Systems 

incorporating the coexistence of several cell types can produce interesting chase 

and run behaviour (Osborne et al., 2017). Heterogeneity at the single cell level can 

cause cells to become “leaders”, with the other cells designated as “followers”. 

However, there is still some debate as to how clearly these leader/follower roles 

are defined (Grégoire, Chaté and Tu, 2003; Schumacher, Maini and Baker, 2017). 

 

The additional biochemical properties of cells can vastly increase the complexity of 

the system. It is therefore important to consider not only how such properties might 

affect the emergent behaviour, but also to recognise the trade-off between 

biological realism and mathematical tractability as offered by the Vicsek model. 

 

1.8 Choosing an appropriate model 

As demonstrated in this overview, there are many diverse and creative models for 

studying collective behaviour. The choice of model depends largely on the 

scientist’s aims. In choosing a suitable model, some important factors must be 

taken into consideration: 

• Scale of system 

• Mathematical tractability 

• Computational cost 

• Natural fit 

 

Further, there are some models that lend themselves to particular problems, for 

example Potts modelling for cell sorting (Graner and Glazier, 1992) and Vicsek 

modelling for collective motion (Vicsek et al., 1995). This is what is meant here by a 

natural fit of a model to a specific problem. 
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Earlier in this chapter, three research questions were introduced: 

 

Q1 What properties of CAFs cause different collective behaviours? 

Q2 What is the effect of the mechanistic interplay between CAFs and ECM? 

Q3 Can spatial organisation of matrix predict patient outcome? 

 

In order to begin to answer these questions, a mathematical model to explore such 

questions must satisfy certain criteria: 

 

C1 Capability to model thousands of cells (scale) 

C2 Capability to understand the origins of emergent behaviour (tractability) 

C3 Capability to model many parameter perturbations (cost) 

C4 A clear way to model ECM and interactions with cells (natural fit). 

 

Given the aims and requirements of the model in this work, the Vicsek model 

framework was chosen. Table 1 gives a summary of all the models introduced and 

how they satisfy the modelling criteria C1-C4, to justify why the Vicsek model was 

chosen. 

 
It is worth considering the extent to which the number of spatial dimensions of the 

model impacts the criteria. It is clear that modelling in one dimension is able to 

capture a very restricted set of cellular interactions and does not recapitulate the in 

vitro experiments of alignment (failing C4: natural fit). Whilst modelling in three 

dimensions is becoming more prevalent with increased computational power, there 

is still a considerable computational cost (failing C1 and C3 for now) and a lack of 

experimental data to inform how a rule-based system of cells interacting in three 

dimensions should be defined (failing C2). A two-dimensional model is able to 

satisfy the criteria, with the caveat that the two-dimensional behaviour is not the full 

story and there is much work to do in the three dimensional domain. 
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1.9 A note on experimental work 

It is important to note that, unless otherwise indicated, all experimental work and 

resulting in vitro and in vivo images shown throughout this thesis were performed 

or obtained by Danielle Park from the Tumour Cell Biology Laboratory at the 

Francis Crick Institute. Experimental methods are given in Appendix for interest but 

were written by Danielle Park and not by the author.
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Chapter 2.  Modelling fibroblast interactions 

2.1 Introduction 

In addition to diverse ECM organisation observed in vivo (Provenzano et al., 2008; 

Conklin et al., 2011; Mayorca-Guiliani et al., 2017; Park et al., 2019), different 

spatial patterns have previously been observed in fibroblasts in culture. It is of 

paramount importance to understand how such higher-order organisation arises. A 

whole library of in vitro ECM was generated from different CAF and normal 

fibroblast populations, ranging from isotropic to highly anisotropic patterns (Park et 

al., 2019). Two example CAF populations from either end of this alignment 

spectrum are studied here in order to explore the key differences leading to such 

divergent patterning behaviour. CAFs were derived from vulval and mammary 

carcinomas and observed transitioning from low to high confluence through 

timelapse imaging over seven days (Figure 4). Over time, one CAF population, 

called VCAF8, began to align in terms of orientation and direction of movement, 

whilst the other CAF population, called CAF1, did not. The fact that different ECM 

patterns are observed in vitro indicates that there are differences at the cellular 

level between CAF populations that facilitate higher-order patterning. 

Understanding what these mechanistic differences are, and how this affects 

emergent behaviour is, the subject of this chapter. 

 

2.2 Motivated by experiments 

2.2.1 Experimental observations 

To determine whether these collective fibroblast behaviours were predictive of 

global ECM organisation, immunofluorescence staining of both aligning and non-

aligning populations was undertaken. Indeed, fibronectin deposition corresponded 

with cell body orientation, indicated by F-actin. VCAF8 cells produced an aligned 

ECM, whilst CAF1 cells produced a disorganised meshwork (Figure 5). These two 
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CAF lines are for the remainder of this chapter referred to as “Aligning” and “Non-

Aligning” respectively. 

 

 
Figure 4: Timelapse phase contrast imaging of CAFs moving from sub-
confluence to confluence over 7 days. 
Certain fibroblast lines align from sub-confluence to confluence. Vulval carcinoma 
fibroblasts align cell bodies at confluence (upper panels) whilst breast carcinoma 
fibroblasts do not (bottom panels). Scale bar represents 50𝜇𝑚. 
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Figure 5: Immunofluorescence of aligning and non-aligning CAFs at confluence.  
From left to right: Image shows staining of the cell nuclei, cytoskeleton (F-actin) 
and underlying ECM (Fibronectin). Cell body organisation corresponds to ECM 
arrangement as shown in the right-most composite images. Scale bar represents 
100𝜇𝑚. 
 
An important feature of the aligning CAFs is their nematicism. When CAFs align, 

they do not all move in the same direction, but rather some cells stream in the 

complete opposition direction forming antiparallel streams. When two CAFs align 

they do not appear to sense the polarity of each other, generating this nematic 

phenomenon (Marchetti et al., 2013). 

 

One key observation is that aligning CAFs exhibit alignment in sub-confluent 

conditions. Cells were nuclear labelled and tracked using the software Metamorph. 

These tracks for different days of the assay show cells aligning at early time points 

in the absence of spatial confinement. The lack of a requirement for high 

confluence and spatial confinement suggests that properties inherent to individual 

cells contribute to alignment. 
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Figure 6: Tracking cell migration paths 
 Time-lapse microscopy of aligned (VCAF8) fibroblasts over seven days, showing 
bright field phase imaging (top panel) and nuclear tracking (bottom panel). The 
migration paths shown are of the previous 25 hrs. Cell body anisotropy occurs early 
at low confluence (25hrs) and is predictive of the final global organisation (150 hrs). 
 

 

This gradual alignment over time was demonstrated quantitatively. A metric of 

alignment was developed that was able to quantify changes over time and space. 

Quantifying cell body alignment over multiple neighbourhood sizes captures 

alignment patterns at both local and global scales. At a specified time point 𝑡, for a 

cell 𝑖, for a given neighbourhood 𝑟 between 𝑟PB~ and 𝑟P,e, let the set 𝐽 denote all 

cells 𝑗 which have a distance in the range [𝑟PB~, 𝑟P,e] from 𝑖. In the experiments, 

distance is given in microns unless otherwise stated. The orientation of cell 𝑖 

denoted 𝜃B(𝑡) is defined as the orientation of the line of best fit through the 

positional coordinates of cell 𝑖 recorded at times [𝑡 − 3Δ𝑡, 𝑡 − 2Δ𝑡, 𝑡 − Δ𝑡, 𝑡]. The 

vector 𝛥𝛩B is then defined as the antiparallel difference in angle between the 

orientation of cell 𝑖 and the cells in 𝐽. The un-normalised angle of alignment of cell 𝑖 

at time 𝑡 over a given distance 𝑟 = [𝑟PB~, 𝑟P,e] can be defined as 

 𝑢M,B(𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝛥𝛩B). (7) 

 

The value 𝑢M,B(𝑡) returns a value of 𝑁𝐴 if the set 𝐽 has fewer than five elements ie if 

cell 𝑖 has fewer than five neighbours in the neighbourhood 𝑟. In the case where 

𝑟PB~ = 0, the set 𝐽 contains the cell 𝑖 itself. The average un-normalised angle of 

alignment across all cells is given as 
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𝑢M(𝑡) =

1
𝑁*𝑢M,B(𝑡).

x

B�k

 
(8) 

 

This can 

be 

normalised 

to give 

values 

between 0 

and 1 as 

𝑎M(𝑡) = max�0,1 −
𝑢M(𝑡)
�
�

�. 

 

(9) 

 

A schematic showing the derivation of this metric is given in Figure 7.  

 

 

 



Chapter 2. Modelling fibroblast interactions 

 50 

 
Figure 7: Schematic of quantifying alignment 
Schematic demonstrating how alignment of cell i is computed. In the first instance 
(equations shown on the left-hand side below the image) 𝑟PB~ = 0, 𝑟P,e = 1 and cell 
i has too few neighbours. In the second instance (equations shown on the right-
hand side below the image) 𝑟PB~ = 0, 𝑟P,e = 2 and cell i has five neighbours 
(including itself). The orientations of these neighbours are listed in a vector below. 
Then the nematic angles between cell i and these neighbour orientations are listed 
below. Finally, the median of these angles is given, which here is 30∘. This means 
that the alignment of cell i in the neighbourhood [0,2] is 30∘.  
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For each cell, the median angle of deviation is used as opposed to the mean in 

order to be less sensitive to outliers. Measurements for each cell are only 

considered valid if the neighbourhood contains at least five neighbours (including 

itself) i.e. higher-order alignment in very low confluence, is not meaningful. A 

schematic demonstrating alignment over different neighbourhoods is given in 

Figure 8. 

 

The metric demonstrates how the aligning CAFs self-organise over time, and that 

short-range alignment (0-50µm) is stronger than long-range alignment (150-

200µm) (Figure 9). Towards the end of the assay, the alignment process begins to 

slow down. This could indicate that the system becomes crowded at very high 

confluence where cells must act in an increasingly cooperative and therefore 

slower manner (Sadati et al., 2013). Further, the non-aligning CAFs fluctuate 

moderately in their organisation but never reach alignment. These fluctuations hint 

at the instability of the non-aligning CAFs and their potential to align under certain 

conditions. 

 

These experiments raise a number of fundamental questions. Firstly, what are the 

inherent differences between aligning and non-aligning CAFs that enable them to 

produce such different emerging behaviour? Secondly, could either alignment or 

disorder be considered the “default” emergent pattern, and if so, why? Finally, with 

this information, how easy would it then be to modify cellular properties to change 

the emergent behaviour? In order to answer these questions, computational 

modelling was employed, informed by simpler experiments. Starting by considering 

single cell behaviour, the model could then be built up, moving on to understanding 

interactions between two cells and finally returning to the complexity of the original 

assay, involving many cells proliferating to confluence. In this way, the complexity 

of the system could be broken down into comprehensible components. 
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Figure 8: Schematic of alignment 
Schematic of example matrix patterns demonstrating different configurations of 
high and low long-range alignment (LRA, blue) and short-range alignment (SRA, 
yellow). 
 
 
 
 
 

 
Figure 9: Quantifying alignment of CAFs 
Quantification of alignment in time-lapse imaging of aligning (red) and non-aligning 
(blue) CAFs over 175 hours, at different neighbourhood radii. Aligning CAFs 
become gradually more aligned from sub-confluence to confluence and alignment 
is greater over a shorter range (dotted line, 𝑟PB~ = 0𝜇𝑚, 𝑟P,e = 100𝜇𝑚) than over a 
longer range (solid line, 𝑟PB~ = 150𝜇𝑚, 𝑟P,e = 200𝜇𝑚).  
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2.3 Individual cell behaviour 

2.3.1 Negative results 

Experiments were conducted at low confluence and for short time periods (less 

than 24 hours) in order to observe cells when proliferation or cell-cell contact 

events were extremely rare. CAFs were fluorescently labelled with nuclear GFP, 

imaged and tracked over 24 hours. No statistically clear difference was seen in cell 

area, aspect ratio or proliferation rate when comparing aligning to non-aligning 

CAFs (Figure 10, Table 2).  

 
Table 2: Comparing single cell parameters 

 Aligning 

CAF 

(VCAF8) 

Non-

aligning 

CAF 

(CAF1) 

Area 10496𝜇𝑚E 3310𝜇𝑚E 

Aspect ratio 1:3.5 1:2.7 

Speed mean (𝜇𝑚/ℎ) 54 136 

Speed standard deviation (𝜇𝑚/ℎ) 58 89 

Doubling rate (ℎ) 30 20 

 

2.3.2 Migratory persistence 

To avoid bias in computing cell persistence due to cell collisions, cells were tracked 

at low levels of confluence. The program Metamorph was used for cell tracking. A 

number of time windows 𝑊 were chosen over which persistence should be 

computed, where 𝑊 is a multiple of Δ𝑡. The persistence over a given window 𝑊 

was taken to be the mean directionality ratio of all cells and is described below: 

The persistence of a cell 𝒊 at time 𝒕 over a window 𝑾 is defined as 
 

𝑃B,�(𝑊) =
�𝑥B(𝑡) − 𝑥B(𝑡 − 𝑊)�

∑ �𝑥B(𝑡 − (𝑛 − 1)Δ𝑡) − 𝑥B(𝑡 − 𝑛Δ𝑡)�x
~�k

 
(10) 
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where, 𝑁 = �
��

.Then the persistence of cell 𝑖 across the entire assay finishing at 

time 𝑡P,e	and is calculated as	
 

 
𝑃B(𝑊) =

1
𝑡P,e −𝑊

* 𝑃B,�(𝑊)
����

������

 
(11) 

Finally, the persistence of all cells through the whole assay is taken as the average 

across cells: 

 
𝑃(𝑊) =

1
𝑁*𝑃B(𝑊)

x

B�k

 
(12) 

 

In this work, assays typically ran for 7.5 days (180 hours), from which 720 frames 

were taken at fifteen minute intervals, therefore 𝑡P,e = 720. Windows of 0.5, 1, 2 

and 4 hours were employed corresponding in frames to 𝑊 = (2,4,8,16). 
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Figure 10: Negative results from comparing aligning and non-aligning CAFs 
Analysis of (from top to bottom) cell area, aspect ratio and doubling time in a 
number of fibroblast lines. The fibroblast lines are classified according to whether 
they align or not. There is no statistically clear relationship between any of these 
three cell properties and alignment. This data was collected by Danielle Park. 
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Aligning CAFs were found to be more persistent than the non-aligning CAFs in sub-

confluent conditions over increasing distances (p=1.276e-07, p=4.145e-06, 

p=0.001126 and p=0.009838 for average distance covered by aligning CAFs in 1, 

2, 4 and 8 hours respectively) (Figure 12).  

 

It should be noted that directionality ratio, whilst the most frequently used metric of 

persistence, can display bias due to differences in cell speed. The non-aligning 

CAFs move approximately twice as fast as the aligning CAFs. To account for this, 

measurements were normalized between the two cell types. The positional points 

of the non-aligning CAF1 cells over a time window were compared with the 

positions of the cells over a time window of twice as long to account for 

approximately the same distance covered. The persistence of the aligning cells 

was then computed on “thinned” positional points of, removing every other point in 

order to have the same effective distance sampling rate between the two CAFs. 

This is demonstrated schematically in Figure 11. With this normalisation, aligning 

CAFs have statistically clearly higher persistence even when normalised for cell 

speed. In Figure 12, this normalisation is considered. In the course of this work a 

“biologist-friendly” R script for computing persistence was developed and is now 

widely used by the Tumour Cell Biology Laboratory for different projects. 

 

 
Figure 11: Schematic of persistence normalisation 
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Non-aligning cells move twice as fast as the aligning cells, so the distance covered 
by the aligning cells in six time steps (red) is approximately equal to the distance 
covered by the non-aligning cells in three time steps (orange). The data for the 
aligning CAFs is thinned by removing every other cell position (highlighted in grey 
boxes) to create a thinned trajectory (blue) which is compared to the non-aligning 
trajectory over the same distance (orange). 
 

2.4 Cell-cell interactions 

2.4.1 Experiments observing cell-cell collisions 

Having studied the key mechanistic differences between aligning and non-aligning 

CAFs at the level of the single cell, the next step was to consider how differences in 

cell-cell interactions could alter emergent cell patterns. As shown in Error! 
Reference source not found., emergence of alignment can be seen at early time 

points. To explore if collision behaviour could play a role in early emergent 

behaviour, fibroblast collisions were recorded in sub-confluent conditions. Some of 

the collisions were recorded by Danielle Park and Samantha George, a summer 

student in the Tumour Cell Biology laboratory.  
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Figure 12: Quantifying persistence of CAFs 
Aligning CAFs (red) have enhanced migratory persistence as compared to non-
aligning CAFs (blue). Plots show the average persistence of CAFs in sub-confluent 
conditions over normalized windows for distances travelled by aligning CAFs in 0.5, 
1, 2 and 4 hours. 
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2.4.2 Rules of collision tracking and analysis 

For a collision to be valid, no more than two cells could come into contact for the 

duration of the collision, and neither could undergo mitosis. 

 

Cell orientation was manually recorded using ImageJ. Unfortunately in these 

experiments, cells were not nuclear labelled, rendering automatic tracking difficult. 

Instead, cell orientation was manually recorded. The frame rate of these 

experiments was five minutes. In the three frames (fifteen minutes) before the 

collision, the directional migration of the cell was observed. In this short time 

interval even the non-aligning cells moved in an approximately straight line (ie the 

persistence length was generally greater than fifteen minutes). A line was drawn 

from the tail of the cell to the head of the cell in the direction of the cell’s migration. 

In this way, the orientation of the cell before the collision was recorded. Similarly 

the orientation of the cell after collision was recorded by manually observing the 

cell for three frames after the cell-cell contact was broken. Very often in collisions, 

one cell is more motile over the time-scale of the collision. In the case where both 

cells were active in the collision, two collisions were recorded with each cell being 

the cell of interest respectively. 

 

The method used for measuring cell orientation before and after collision could be 

improved in future work. There is evidence that the orientation of cell protrusions 

correlates poorly with the cell’s direction of migration (Yolland et al., 2019). It would 

be beneficial to run similar experiments with nuclear labelling, to establish the cell’s 

migrational orientation automatically as described in 2.2.1. 

 

Considering first just the repolarisation of the cells of interest after collision shows a 

statistically significant decrease in repolarisation of the aligning CAFs as compared 

to the non-aligning CAFs (Figure 13). Analysis shows suppressed CIL response in 

aligning fibroblasts (n=90 collisions in total from three independent experiments. 

p=5x10-5, one-sided t-test). 
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Whilst this result indicates a difference in response of cells upon collision, inherent 

to alignment is the requirement for two cells to coordinate their behaviour. A 

dampened repolarisation response as shown in the aligning CAFs (Figure 14A) is 

not necessarily indicative of alignment. The system only moves closer to alignment 

if the two cells have more similar orientations to each other after the collision has 

taken place (see Figure 14A). To reflect this, a more in-depth analysis was carried 

out considering the angle of a cell before and after a collision relative to the 

orientation of the cell it collided into. 
	  



Chapter 2. Modelling fibroblast interactions 

 61 

 
 
Figure 13: Roseplots showing CAF CIL response 
Analysis of CIL response in aligned (VCAF8, VCAF2B) and non-aligned (CAF1, 
NF2.1, CAF2) fibroblasts. Change in cell trajectory upon collision relative to the 
pre-collision path (blue arrow). These collisions were recorded by the author, 
Danielle Park and Samantha George. 
 

Collision guidance events were defined as collisions in which the cell of interest re-

orientated to be closer to the cell it collided with; if the angle of approach minus the 

angle of departure (relative to the reference cell) gave a value in the range of 10-90 

degrees. Figure 14B encapsulate this analysis: with the angle of approach and 

departure relative to the neighbouring cell plotted on the x and y axes, respectively 

and the size of the circle indicating extent of cell repolarisation. A large number of 

collisions of the aligning CAFs fall into the region of collision guidance, where the 

angle of departure is less than the angle of approach and the repolarisation is less 

than 90°. This is visible in Figure 14B as small circles below the line representing 

equivalent approach and departure angles (inside blue triangle). The proportion of 

collisions falling within the collision guidance category is statistically clearly higher 

for the aligning CAFs than the non-aligning CAFs (p-value = 0.006, z-test, see 

Appendix). 

 

Traditionally, CIL has been measured solely in terms of a single cell (Desai et al., 

2013; Davis et al., 2015), however it is clear that this this does not elucidate the 

role of cell-cell interactions in the context of higher-order behaviour. The approach 

to collision analysis developed here, considering CIL of a cell with respect to its 
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neighbour demonstrates how collision guidance events underpin the emergence of 

anisotropy. 

 
 
Figure 14: Measuring cell-cell collision guidance 
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Two cells need to coordinate their behaviour for alignment to occur. (A) In both the top and 
bottom panels, the blue cell undergoes the same change in orientation, but can lead to 
improved alignment (collision guidance) as shown in the top panel, or a worsening of alignment 
(contact inhibition of locomotion) as shown in the bottom panel. (B) Analysis of collisions, 
plotting the angle of approach (x axis) and departure (y axis) relative to the cell it collides with. 
Collisions in which angle of departure - angle of approach is in the range [𝟏𝟎∘,𝟗𝟎∘] (inside blue 
triangle) reflect collision guidance events. Size of circle indicates the cell’s change in orientation 
as shown in Figure 13. Aligning CAFs have significantly more collision guidance events 
(p=0.006, z-test, n=124 collisions). 
 
 
Importantly, more detailed analysis of these collisions revealed that in the majority 

of collisions, the faster moving cell (called the “Altering cell”) changed direction by a 

greater amount than the slower moving cell (called the “Dominant cell”) (Figure 15, 

n=20 pairs of cells, p<0.0001, two-tailed t-test). This is the opposite of what would 

be expected in a collision between two inert objects of approximately equal mass 

and suggests fibroblasts are not undergoing inelastic collisions, but rather undergo 

an orchestrated response to biological signalling informing the collision behaviour. 

 

 
Figure 15: Speed of cells before collision 

Cell speed prior to collision in both the altering cells (cell undergoing collision 
guidance) and dominant cells (n=20 pairs of cells, p<0.0001 two-tailed t-test, bars 
indicate mean and SD). 
 

2.5 Model construction 

To explore how CAFs are able to coordinate their behaviour to generate alignment 

over several orders of magnitude, a mathematical model was established, adapted 

from the Vicsek flocking model (Vicsek et al., 1995; Chaté et al., 2008). The 
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change in the orientation of a cell is computed as a weighted function of two terms: 

individual migratory noise and cell-cell collision guidance. A fibroblast's individual 

migratory noise reflects its persistent migration as a result of cell polarisation 

(Gorelik and Gautreau, 2014) and the cell-cell guidance mechanism determines the 

extent of “flocking” behaviour.  

2.5.1 Model overview  

It is perhaps useful to begin by considering a schematic version of the model, 

which whilst not mathematically rigorous, aims to help the reader to conceptualise 

the different components of the flocking model. In its schematic form, the model 

describing the orientation of a cell 𝑖 at time 𝑡 + Δ𝑡 can be written as 

 𝜃B(𝑡 + Δ𝑡) = 𝑤O[𝜃B(𝑡) + 𝜂B(Δ𝑡)] + 𝑤¨𝑓@𝜃¨Nªª«B D,		 (13) 

 

𝑤O = 1 −𝑤¨, 0 ≤ 𝑤¨ ≤ 1. 

 

The first term indicates the individual migration of the cell in the absence of external 

influences. The 𝜂B(𝑡) denotes the noise of cell 𝑖 at time 𝑡 in its persistent migration. 

The function 𝑓@𝜃¨Nªª«B D is a function describing how cell 𝑖 will flock with its 

neighbouring cells. The weight 𝑤¨ describes how much the orientation of the cell 

will be influence by cell-cell flocking. Since 𝑤O = 1 − 𝑤¨, the two free parameters in 

the model are 𝜂B and 𝑤¨. The smaller the value of 𝑤¨, the larger the value of 𝑤O (the 

weight controlling persistence), meaning a cell’s orientation will be determinined to 

a greater extent by its individual migratory persistence than flocking with its cell 

contacts. 

 

Unlike the original Vicsek model, cells are able to coordinate their behaviour 

nematically (Ginelli et al., 2010; Marchetti et al., 2013) and the extent of 

coordination could be explicitly controlled by the cell-cell guidance term. The rest of 

the model description describes this model more completely, expanding the 

definition of the flocking function 𝑓 and reducing the orientation of a cell into its 𝑋 

and 𝑌 components, which act as update formulae to account for issue that arise 

with resolving the trigonometric quadrant. 
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2.5.2 The model  

 At time zero, cells were placed at random and each cell assigned a random 

orientation. Fibroblasts are modelled as a node representing the head of the cell, 

followed by two nodes of twice the diameter representing the cell body, followed by 

another smaller node for the tail. This diamond-like shape has aspect ratio 1:3 and 

reflects one of the typical cell morphologies. For a cell 𝑖	at time 𝑡, 𝜃B(𝑡) denotes its 

orientation, 𝑠B denotes its speed and @𝑥B(𝑡), 𝑦B(𝑡)D denotes its position. 

 

Cell speed 

At initialisation, a cell i is given a constant speed s¯ drawn from a Gaussian 

distribution S~N(32µm,4µm) fitted to the experimental data. Each cell was given a 

fixed speed, similar to the Vicsek model but unlike the Vicsek model, the speeds 

between cells could be different, reflecting the normal distribution of cell speeds 

observed in the data. Additionally, whilst the mean and standard deviation of the 

speed distribution meant that negative values were extremely unlikely to be drawn, 

in such an event, the absolute value of s¯ was taken so that cells would always be 

assigned a non-negative speed. 

 

Individual migratory noise 

Cells move along their long axis at a constant speed and the individual migratory 

noise of a cell is modelled as a persistent random walk θ¯(t) + η¯(Δt), where η¯(Δt) 

is Gaussian distributed with mean zero. Specifically, noise is dependent on time 

step Δt such that	

η¯(Δt)~N@0, η√ΔtD 

Here Δt	is used to describe the frame rate and in this work the default frame rate for 

experiments is fifteen minutes. The positional X and Y-components of this term for 

cell i	at	time	t can be defined as  

 X¯,·(t) = cos@θ¯(t) + η¯(Δt)D, 

Ȳ ,·(t) = sin@θ¯(t) + η¯(Δt)D. 

(14) 

 

Cell-cell collision guidance 
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If a cell 𝑖	is in direct contact with 𝑁 cells, 𝑁 > 0, then the X and Y-components of 

the effect of cell guidance on 𝑖	at	time	𝑡 are defined as  

 
X¯,º(t) =

1
N*cos mθ»¼(t)n ,

½

¼�k

 

Ȳ ,º(t) =
1
N*sin mθ»¼(t)n ,

½

¼�k

 

 

(15) 

 

where 

 
θ»¼(t) = ¾

𝜃b(𝑡)										if ∣ 𝜃b(𝑡) − 𝜃B(𝑡) ∣ (mod	𝜋) <
𝜋
2 ,

𝜃b(𝑡) +
𝜋
2 																																										otherwise.

 
(16) 

 

  

This adaptation constitutes the ability of fibroblasts to align in a nematic manner. 

For greater tractability, an assumption of the model is that 𝑤¨ remains fixed for any 

non-zero value of 𝑁, so that, provided a cell is in contact with at least one other 

cell, the degree of flocking will be fixed. This means cell-cell guidance is 

independent of 𝑁 for 𝑁 > 0. The angle of cell-cell flocking is an average of all 𝑁 of 

a cell's contacts. However, the confluence levels both in silico and in vivo mean 

that 𝑁 is kept small in practice. Example outcomes of collisions depending on the 

parameter values of individual migratory noise and cell-cell collision guidance are 

shown in Figure 16. 
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Figure 16: Example collision outcomes 
The panel on the left shows the positions of two cells before they collide. The 
middle column shows the positions of the same cells after a collision, for different 
indicate values of individual migratory noise (𝜂) and cell-cell collision guidance (𝑤¨). 
The right-most column shows the cell trajectories for the duration of the collision. 
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Computing cell orientation 

 

Having computed the individual migratory noise and cell-cell collision guidance, the 

X and Y-components of cell 𝑖	at	time	𝑡 are then written as a weighted function of the 

two terms: 

 𝑋B(𝑡) =
1

𝑤O + 𝑤¨
@𝑤O𝑋B,O(𝑡) + 𝑤¨𝑋B,¨(𝑡)D, 

𝑌B(𝑡) =
1

𝑤O + 𝑤¨
@𝑤O𝑌B,O(𝑡) + 𝑤¨𝑌B,¨(𝑡)D, 

(17) 

 

 

where 𝑤O = 1 − 𝑤¨, 0 ≤ 𝑤O, 𝑤¨ ≤ 1. If a cell is not in contact with any other cell, then 

𝑤¨ is set to zero. Typically, in Vicsek-like models (Vicsek et al., 1995; Ginelli et al., 

2010), averaging between neighbours is instantaneous. However, this is not 

reflective of true cell behaviour, where alignment is more gradual. The advantage 

of having a weighted function is that the collision guidance mechanism can be 

varied to reflect this. 

 

The orientation of cell 𝑖 at time 𝑡 + Δ𝑡 is then computed as 

 𝜃B(𝑡 + Δ𝑡) = tangk ^
𝑌B
𝑋B
` (18) 

 

which must then be adjusted for quadrant of the arctan function so that 

 
𝜃B(𝑡 + Δ𝑡) = Ã

𝜃B(𝑡 + Δ𝑡)	if	𝑋B ≥ 0, 𝑌B ≥ 0,
𝜃B(𝑡 + Δ𝑡) + 𝜋	if	𝑋B < 0,

𝜃B(𝑡 + Δ𝑡) + 2𝜋	if	𝑋B ≥ 0, 𝑌B < 0.
 

(19) 

 

Finally, cell position is updated so that 

 
Å𝑥B(𝑡 + Δ𝑡)𝑦B(𝑡 + Δ𝑡)

Æ = Ç
𝑥B(𝑡) + 𝑠BΔ𝑡 cos@𝜃B(𝑡 + Δ𝑡)D 𝑣N
𝑦B(𝑡) + 𝑠BΔ𝑡 sin@𝜃B(𝑡 + Δ𝑡)D 𝑣N

È 
(20) 

 

where 𝑣N is a proxy for volume exclusion defined by 

𝑣N = É0.25	if	the	head	node	of	a	cell	is	overlapping	with	any	other	node	of	another	cell,	
1																																																																																																																																		otherwise
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The distance between cells at which this pseudo-volume exclusion is activated is 

set by the user (Figure 17). This is to allow for a small amount of overlap between 

cells, which is observed as cells deform their shapes to slide past another cell. The 

“hard” inner region can be thought of the cell’s nucleus which is less deformable. 

The two free parameters of this volume exclusion mechanism are the size of the 

hard inner region and then value of 𝑣N when volume exclusion is triggered. Unless 

otherwise indicated, in all simulations, the inner region was defined as 75% of a 

cell’s area and the value of 𝑣N was set to 0.25. A high value for vÌ could lead to the 

system becoming jammed (Sadati et al., 2013), however for the chosen values in 

this work, the mechanism serves only to reduce cells overlapping or going through 

each other and has parameter values that do not lead to jammed behaviour. A 

schematic of the model, showing the mechanisms of individual migratory 

persistence and cell-cell collision guidance is given in Figure 18. 

 
Figure 17: Implementing volume exclusion term 
Schematic showing the pseudo-volume exclusion mechanism in the model. A cell’s 
volume exclusion is activated if its head overlaps with an inner region (indicated in 
grey) of another cell (indicated with a red star). The size of the inner region is 
defined by the user but in all simulations presented in this work is set to 75% of the 
size of the body nodes (indicated). When volume exclusion is activated the cell will 
travel 25% of the normal distance covered in a single time step. 
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Figure 18: Model schematic I 
Model schematic showing how the orientation of a cell changes as a function of 
individual migratory noise and cell-cell collision guidance. Here only the change in 
orientation of the cell on the right of the collision is shown for clarity. 

2.5.3 Additional model features 

Cell position 

The positional coordinates of a cell 𝑖 at time 𝑡 are denoted (𝑥B(𝑡), 𝑦B(𝑡)) and 

represent the centre of the cell’s head node. When a cell’s orientation changes, the 

cell turns about its centre of mass, which is determined based on the cell’s aspect 

ratio. 

 

Periodic boundary conditions 

Periodic boundary conditions are used throughout the simulations. Topologically, 

this can be thought of as mapping the two-dimensional simulation space onto a 

torus (Grossman, Aranson and Ben Jacob, 2008). This meant that the Euclidean 

distance between two cells 𝑖 and 𝑗	in a simulation with dimensions of length 𝑙 

(specified by the user) would be defined as 

 𝑑(𝑖, 𝑗)

= Î(min@�𝑥B − 𝑥b�, 𝑙 − �𝑥B − 𝑥b�D
E + (min@�𝑦B − 𝑦b�, 𝑙 − �𝑦B − 𝑦b�D

E . 

(21) 

 

 

Voxel grid 

A non-physical voxel grid was implemented in the model to implement cell 

proliferation and increase computation speed (described below). The simulation 
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space was divided up into grid squares of equal size. The number of grid squares 

was defined as: 

 Ï
simulationWindowSize

2 ∗ cellAspectRatio ∗ radiusCellNodesÖ,	 
(22) 

 

	meaning that the size of each grid square was just larger than the length of a cell. 

At each time step, the voxel grid square in which the centre of each cell’s head 

node fell into was recorded. 

 

Proliferation 

Cell proliferation is implemented using the Voxel grid. Cell density at time 𝑡 can be 

defined to as: 

 𝜌(𝑡) = 𝜌(0) × 2
Ù
Ú (23) 

 

where 𝜌(0)	denotes the initial cell density at time 0 and 𝑑	is the average time it 

takes for cell population density to double. At each time step, if the number of cells 

in the simulation is less than 𝜌(𝑡), then a cell 𝑖 is selected at random to be the 

“mother” cell. If one or more of the neighbouring voxel grid squares to this cell are 

empty, a new daughter cell 𝑗 will be initialised in a one of these empty grid squares, 

selected at random. The orientation of the new daughter cell will be opposite to that 

of its mother so that 

 𝜃b(𝑡) = 𝜃B(𝑡) + 𝜋. (24) 

 

If there is no empty neighbouring voxel grid square, a new candidate mother cell is 

chosen and so on until there is no space remaining within the entire simulation 

area. This method simulates the phenomenon known as contact inhibition of 

proliferation (Puliafito et al., 2011). 

 

In the vast majority of the simulations, cell density was kept constant, and so we 

did not investigate the effects of the proliferation mechanism in detail. Other models 

have considered this in more detail, with cell’s dividing according to an internal 

clock or with more detailed dynamics of division and it would be interesting to 

investigate this further in the future. However, simulations were run with very high 
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proliferation rates to see if this could jam the system and it was found that typically 

aligning cells would still align, suggesting that proliferation is not a primary 

parameter in the model. The doubling rate d was fitted to the experimental data 

(now indicated in the text), so that over numerous time points, it was known what 

the cell density ought to be. For this reason, if a mother cell was not able to divide, 

a new candidate mother was chosen at random instead of aborting. The initial 

orientation of the daughter cell was set to be the opposite direction to the 

orientation of the mother cell. This was done to simulate spindle division and the 

observed movement of daughter cells away from each other in experiments. 

 

A complete list of free parameters of the model is given in  

Table 3. Unless otherwise simulations take parameters with the default values 

given in the “Typical values” column. The primary parameters that will be varied are 

individual migratory noise (𝜂) and cell-cell collision guidance (𝑤¨). 
 
Table 3: List of parameters I 

Parameter Meaning Typical value 

𝜌 Number of cells in simulation 800 (corresponding to 

~40% confluence) 

𝑑 Number of time steps required for 

population to double 
∞ (ie there is no 

proliferation) 

𝜇 Mean of Gaussian distribution for cell 

speed 
32𝜇𝑚/ℎ 

𝜎 Standard deviation of Gaussian 

distribution for cell speed 

4𝜇𝑚/ℎ 

𝑎 Number of body nodes (excluding the 

head and tail nodes), determining 

aspect ratio 

2 

𝑟 Radius of cell body nodes (cell area is 

then 𝑎𝑟E + MÜ

E
) 

13.5𝜇𝑚 (cell area is 

then 1410𝜇𝑚E 

𝜂 Individual migratory noise. At each 

time step 𝜂B(𝑡)~𝑁(0, 𝜂) 

varied 
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𝑤¨ Weighting of flocking mechanism 

(collision guidance) 

varied 

 

 

2.5.4 Code structure 

Having described the features of the model, it is worth noting the structure of the 

code used to implement the model (Figure 19). The development and streamlining 

of the code constituted a large component of this work and provides a 

comprehensible and tractable framework which can be used by other researchers 

in the future. 

 

The code is written in C++, known for its object-oriented programming features. 

The ability to make hierarchical object classes in C++ makes it ideally suited for 

modelling the tumour microenvironment (TME), where there are multiple cell types 

(fibroblasts, cancer cells, T-cells etc.), elements that make up individual cells (here 

called “nodes”, representing the cell head, tail etc.) and the ECM (discussed in the 

next chapter).  

 

Code was built and verified incrementally through unit testing. Simple simulations 

were run with one and two cells with designated positions and orientations to check 

cell behaviour was in line with expectation of the model. 
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Figure 19: Code and model structure I 
(A) Map showing code structure as written in object-oriented programming 
language C++. Major classes are shown in green, with members of each class 
shown in dark yellow. Light yellow boxes indicate coding techniques to improve 
code efficiency. (B) Flow diagram showing the order of events in the update 
function. Once the new angle of the cell has been determined and set, the 
proposed new position of the cell is evaluated, first considering the effects of 
periodic boundary conditions and secondly if the cell’s head overlaps with the hard 
inner area of another cell, in which case the pseudo-volume exclusion term 𝑣N is 
set to a value of 0.25, and the distance moved by the cell in that time step will be 
0.25 of the distance otherwise. This is what is meant by resolving volume 
exclusion. Once these factors have been considered the cell positions are updated. 
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As an input, the user provides the model parameters including simulation window 

size. The simulation is then initialised with all the required cells. Time is modelled 

discretely such that each time step represents one frame in the experiments 

initialised and periodic boundary conditions are employed. Properties of each class 

are indicated in Figure 19.  

 

At each time step, a function “Update fibroblasts” is called. The new angle of each 

fibroblast is computed, volume exclusion criteria are next resolved and then 

fibroblast position is updated.  This is shown in detail in a flow diagram (Figure 

19B). Two coding techniques were implemented to significantly speed up 

simulation time. Firstly, the “Update fibroblasts” function was parallelised using the 

application programming interface (API) OpenMP. This allowed individual cell 

orientations to be computed simultaneously. Secondly, the voxel grid (2.5.3) was 

defined and cells assigned to a particular grid square at each time point. Instead of 

computing a distance map between all cells, which can be computationally 

expensive, the distance between two cells was only computed if they belonged to 

neighbouring voxel grid squares. 

 

The simulations generate an output file giving cell trajectories. For each time step, 

cell ID, position and orientation are given. A further C++ script was written, 

employing OpenGL to then visualise these cell trajectories as videos or individual 

frames. 

 

2.5.5 Simulation setup 

The simulation window size is 1720 × 1720𝜇𝑚 and periodic boundary conditions 

are employed. Time is modelled discretely such that each time step (Δ𝑡) represents 

one frame in the experiments, which corresponds to 15 minutes and the model 

typically simulates 7-day assays with 800 cells, corresponding to 40% confluence. 

At time 𝑡 = 0, cells are seeded randomly with random orientation. 

 

As described in section 1.7.7 with the Vicsek model, the choice of time step or cell 

speed can have an impact on the emergent behaviour. If cell speed is higher or 
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similarly if the time step is bigger, then a cell will move further between samplings 

(Dallon, Sherratt and Maini, 1999), resulting in less alignment caused by fewer cell 

interactions. Likewise, with a smaller time step or slower cells, the cell will interact 

with the same neighbours many times. However, for relevant and reasonable 

choices of time step and speed, these factors have only minor effects on the 

system and do not alter phase transitions (Dallon, Sherratt and Maini, 1999; 

Baglietto, Albano and Candia, 2012). 

 

CAFs are represented as two large circles with two smaller circles of half the radius 

at either end. For most simulations, the total cell area is 1410𝜇𝑚E, corresponding to 

a large circle radius of 13.5𝜇𝑚 and the length of the cell is therefore 80𝜇𝑚. 

 

2.6 Parameter fitting 

2.6.1 Fitting noise 

Cell migration is modelled through the allocation of a cell speed and orientation at 

any given time step [1, 2]. A cell i’s orientation, θ¯(t), at time t, is determined by: 

θ¯
(t) =θ¯

(t − Δt) +η¯(Δt), with randomness introduced via the Gaussian 

random variable η¯(Δt)~N@0, η√ΔtD	 as described in section 2.5.2, where a single 

time step is taken to be a unit of fifteen minutes.To quantify 𝜂 from persistence 

data, the following procedure was developed:  

 

Step 1: Compute persistence of smoothed cell trajectories 

 

Cells tracked for at least one hour were recorded and a spline tracing the cell’s 

trajectory was produced using the loess package in R (𝛼 = 0.5). This was in order 

to smooth the intra-cellular movement, which resulted in many small fluctuations in 

the trajectories (Figure 20). For each cell, the median persistence was computed 

as described in section 2.3.2  for an interval of one hour. 
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Figure 20: Fitting noise parameter to experimental data  
Smoothing cell trajectories. Exact cell locations are shown by dots. A smoothing 
curve is laid over the trajectories showing a cell’s smoothed trajectory through time. 
 
 

 
Figure 21: Simulation trajectories with fitted noise 
Example cell trajectories with fitted levels of noise for aligning CAFs (left, 𝜂 = 0.1) 
and non-aligning CAFs (right, 𝜂 = 0.18). Simulations have periodic boundary 
conditions, as illustrated in some of the examples. 
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Step 2: Compute cell speed 

 

In the model, each cell has a fixed speed, determined at its initialisation, which is 

drawn from a Gaussian distribution. Interestingly, cell tracking revealed that the 

distance travelled by a cell in one individual time step tended to follow an 

exponential distribution, often not moving at all in a single time step. In hindsight, 

the assumption that cells move at constant speed may overlook a key feature of 

cell motility. In future work it may be of interest to refine the cell speed parameter to 

account for heterogeneity in single cells using a Bayesian method of inference 

(Metzner et al., 2015). However, taking the mean speed of each cell across the 

whole time-course revealed that the distribution of average speed for each cell 

closely resembled a normal distribution. In simulating each experiment, it was 

these normal distributions that were used. 

 

Step 3: Run simulations with this cell speed and varying noise 

 

Simulations with fifty cells of radius 0 were run with incrementally increasing levels 

of noise. This means the cells would completely ignore each other and is 

equivalent to running fifty independent single cell simulations. Crucially, the cells 

had the same speed as the experiments. The persistence of these simulated cells 

over a window of one hour was then computed. 

 

Step 4: Match up simulations and experiments to determine likely level of noise 

 

The experimental results were then matched with simulations to select the most 

likely value of 𝑉𝑎𝑟(𝜂) given a cell’s persistence. The most likely values of noise for 

the aligning and non-aligning cells were 𝑉𝑎𝑟(𝜂) = 0.1,		and	𝑉𝑎𝑟(𝜂) = 0.18 

respectively. Example in silico trajectories of cells are given in Figure 21.  
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2.6.2 Fitting level of collision guidance 

Simulations were run with noise 𝜂~𝑁(0, 0.1), describing the persistence of aligning 

CAFs for incremental values of collision guidance (𝑤¨) between 0 and 1. The short-

range and long-range alignment of these simulations over time was computed and  

through a least squares approach, compared with the alignment of the experiments 

to choose the most likely value of collision guidance that would match the 

simulations to the experiments. This value of collision guidance is 𝑤¨ = 0.04. 

 

2.6.3 Challenges of fitting parameters and making model predictions 

There were several challenges in fitting the parameters of the model to the 

experimental assays. Firstly, in assuming that cells move according to a persistent 

random walk, the model neglects to consider random cell repolarisations (Metzner 

et al., 2015).  In future work, it would be of interest to quantify the frequency of 

these repolarisations and possibly include these in the model of single cell motility 

with a Poissonian distribution. Secondly, the value of predicted noise is variable 

depending on the window over which persistence is measured. As with cell speed, 

it may be useful to employ a Bayesian inference method to approximate these 

parameters in future work (Rosser et al., 2013; Metzner et al., 2015). The higher 

the persistence window used, the higher the value of noise predicted. This is in part 

due to the cell’s random repolarisations, which are not explicitly considered and 

would be interpreted as a jump with very high noise. Typically, a short time window 

of one hour was used in order to negate the effect of random cell repolarisations. 

 

In addition to difficulties in fitting parameters, the model predictions are currently 

dependent on time step Δt. This can be seen in Figure @ and Table @ where 

simulations are run for different time steps: Δt = 5 minutes, 15 minutes and 30 

minutes. These analyses suggest that the individual migratory noise is largely 

independent, but that the collision guidance term (wº) is dependent on time step. 

At each time step a certain amount of flocking is implemented. Larger time steps 

result in fewer time steps, which leads to less flocking and therefore predictions of 

lower alignment.  It will be important in future work to explore how model 

predictions change as the time step is varied.  
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Figure 22: Heatmaps varying time step 
Heatmaps of different timesteps whilst varying noise and collision guidance. N=3 
simulations per point in parameter space, 700 cells are used in each simuation. 
Noise is scaled by Δ𝑡. Green arrows indicate simulations that have the same level 
of collision guidance when normalised linearly for the change in time step. 
 
Table 4: Parameter values for testing different time steps 

 Δ𝑡 = 5	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 Δ𝑡 = 15	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 Δ𝑡 = 30	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

Number 

timesteps 

𝑡P,e = 2100 𝑡P,e = 700 𝑡P,e = 350 

𝜂B(Δ𝑡) ~𝑁(0,
𝜂
√3
) ~𝑁(0, 𝜂) ~𝑁(0, 𝜂√2) 

 

Overall however, fitting the parameters according to the above methods is suitable 

to describe the overall macroscopic behaviour when looking at the emerging 

patterns coordinated by hundreds or thousands of cells. By fitting noise and contact 

guidance of the VCAF8 aligning CAFs, the model is well able to recapitulate the 

emergent alignment (Figure 23). Further, this method of fitting noise can be used 

as a comparison between different experimental perturbations, identifying changes 

in noise between assays and different CAFs. 
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Figure 23: Model simulation versus in vitro experiments 
Comparison of experimental alignment against model simulation with experimental 
persistence of VCAF8 (𝜂 = 0.1,𝑤¨ = 0.04, 𝑑 = 120, all other parameters can be 
found in Table 3). Upper panel: bright field time-lapse microscopy of aligning 
VCAF8. Lower panel: model simulation of cell body organisation. 
 

2.7 Results from the model 

2.7.1 Persistence alone is insufficient to generate alignment 

The persistence of the aligning and non-aligning CAFs was fitted to the noise 

parameter in the simulations (𝑉𝑎𝑟(𝜂) = 0.1, 𝑉𝑎𝑟(𝜂) = 0.18 respectively). Even cells 

that are entirely persistent (𝑉𝑎𝑟(𝜂) = 0) do not align without contact guidance (𝑤¨ =

0) (Figure 24). This suggests that variation in persistence alone is insufficient to 

drive alignment; additional mechanisms are necessarily required. 
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Figure 24: Cell trajectories of simulations 
Mathematical model of fibroblasts (top panel) and cell trajectories (bottom panel) 
organisation varying cell individual migratory noise with 𝑤¨ = 0, 𝜌 = 800, 𝑑 = 0. 
Panels show persistence fitted to experimental data (𝜂 = 0.1, aligned VCAF8, 𝜂 =
0.18, non-aligned CAF1) as well as absolute persistence (𝜂 = 0).  
 

2.7.2 Contact inhibition of locomotion alone is insufficient to generate 
alignment 

To test if the introduction of contact inhibition of locomotion (CIL) could generate 

alignment, the model was modified so that upon collision a cell would reorient away 

from its neighbour by a fixed angle. The collision guidance term was set to zero 

(𝑤¨ = 0). Mathematically, the  𝑋O	and	𝑌O of the model could be redefined here as: 

𝑋O = cos(𝜃B(𝑡) + 𝜂B(𝑡) ± 𝐶𝐼𝐿), 

𝑌O = sin(𝜃B(𝑡) + 𝜂B(𝑡) ± 𝐶𝐼𝐿), 

where 𝐶𝐼𝐿 was a fixed value and added or subtracted so that the cell would rotate 

clockwise or anticlockwise depending on which direction would reduce the impact 

of collision (Figure 25). In this way collision guidance and CIL are considered as 

separate mechanisms: collision guidance causes a continual flocking behaviour, 

where two cells will keep becoming more aligned at each time step so long as 
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contact as maintained, whereas CIL is a one-time only event that causes a cell to 

alter its orientation instantaneously upon contact with another cell.  

 

Figure 26 shows that only a low level of alignment could be generated in highly 

contrived and unrealistic scenarios in which CIL was narrowly restricted between 

10-20° and noise completely removed from the system (𝑉𝑎𝑟(𝜂) = 0). Crucially for 

the level of persistence displayed by aligning cells experimentally (𝑉𝑎𝑟(𝜂)=0.1), CIL 

alone was insufficient to generate anistropic patterns.  

 

 
 
Figure 25: Schematic of cell collision response 
Schematic showing how a cell repolarises upon collision to avoid becoming the 
cells become more overlapped. In the green circle (middle), after collision the blue 
cell rotates clockwise so that its direction of motion is less overlapped with the 
direction of motion of the red cell. In the red circle on the right, the blue cell has 
rotated anticlockwise so that its direction of motion will cause it to be more 
overlapping with the red cell.  
 

2.7.3 The basis for a collision guidance mechanism 

Coupling together these conclusions from the model together with collision 

guidance data from experiments (Figure 13 and Figure 14), several observations 

can be made. Firstly, CAFs can aptly be described as self-propelled particles 

(Grégoire, Chaté and Tu, 2003; Grossman, Aranson and Ben Jacob, 2008) that are 

not only active in generating their migration but also active in their responses to 

collisions. Secondly, cells involved in collisions do not bounce off each other like 

tennis balls nor do they align as matches shaken together in a box but rather they 

generate an orchestrated repolarisation that can often lead to alignment, which we 

define collision guidance.  
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Work by Grossman et al. (Grossman, Aranson and Ben Jacob, 2008) established 

what the minimal conditions for alignment are through inelastic collisions between 

self-propelled particles. They find that alignment can be generated through this 

passive mechanism, provided a system is in high density and particles have very 

high persistence. By contrast, the model presented here has much lower 

dependency on cell density and can encapsulate more realistic cell persistence and 

collision behaviours. Similarly, the work of Peruani et al. (Peruani, Deutsch and 

Bär, 2006) presents a force-based model of particles with inelastic collisions to 

study alignment. However, work from the Tumour Cell Biology group (Park et al., 

2019) has shown there is no correlation between cell intrinsic actomyosin activity, 

which is strongly linked to cell stiffness, and aligning behaviour, further suggesting 

that cell-cell collision responses are active. This is additionally supported by the 

results shown in Figure 15, whereby the faster cell involved in a collision typically 

undergoes more reorientation that the slower cell. This evidence serves as 

justification for the flocking mechanism of the model and the collision guidance 

weighting (𝑤¨). 

 

 

 
Figure 26: Exploring the effect of CIL 
Model exploration of long-range alignment (𝑟PB~ = 0𝜇𝑚, 𝑟P,e = 400𝜇𝑚) as CIL 
response and noise (persistence) are co-varied with zero collision guidance (𝑤¨ =
0). All other parameters were set to default (Table 3). At noise values fitted to 
experimental data for aligning (VCAF8: 𝜂 = 0.1) and non-aligning (CAF1: 𝜂 = 0.18) 
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fibroblasts, there is no alignment. Alignment can only be generated when CIL is 
narrowly restricted between 10-20° and noise is completely removed from the 
system. CIL restriction is insufficient to induce any order for the range of 
persistence displayed by cells experimentally. Each square is the average of 10 
independent simulations. 
 

2.7.4 Exploring parameter space  

Figure 27 examines how persistence (𝜂) and collision guidance (𝑤¨) affect global 

and local alignment over time, when population density is constant.  It was possible 

to explore parameter space at a fine-grained level, since collision guidance was 

bound between zero and one and simulations were quick to run in parallel. 

Therefore, the parameters could be increased by small increments. Alignment is 

shown at both local (radius=0-50𝜇𝑚) and global neighbourhoods (radius=150-

200𝜇𝑚) and highlights how alignment is stronger at a local level. The system can 

vary from complete disorder to high alignment just by varying cell  

 

 
Figure 27: Model exploration of long-range and short-range alignment as noise 
and collision guidance are co-varied.  
Heatmaps indicating levels of long-range alignment (left) and short-range alignment 
(right) for simulations with different parameter values for noise (𝜂) and cell-cell 
collision guidance (𝑤¨). Text above heatmaps indicates noise values fitted to 
experimental data for aligning (VCAF8,𝜂 = 0.1) and non-aligning (CAF1,𝜂 = 0.18) 
fibroblasts. For the persistence demonstrated by VCAF8 experimentally, alignment 
increases with increasing collision guidance. The fitted level of noise and collision 
guidance of the aligning VCAF8 fibroblasts is indicated on both heatmaps by a 
black square. Each square is the average of 10 independent simulations. 
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persistence. This is consistent with the variation of noise in the Vicsek model 

(Vicsek et al., 1995), in which a phase transition occurs between order and 

disorder.  These results indicate that both parameters are important in generating 

alignment, but if the cells have low enough persistence, then long range order 

cannot be achieved no matter the strength of collision guidance and therefore that 

persistence is the dominant mechanism in enabling alignment. For cells with mid-

range persistence, collision guidance can determine whether the CAFs will align.  

 

The model suggests that experimentally, the aligning CAFs with their level of 

persistence fall into this latter category and that the non-aligning CAFs have a level 

persistence beyond the threshold at which alignment can occur, regardless of the 

level of collision guidance. Importantly, this suggests that the lower migratory 

persistence of non-aligning CAFs is by itself a sufficient difference to prevent 

alignment. The aligning CAFs fall into the region of parameter space where contact 

guidance needs to be sufficiently high for alignment to occur (𝑐 ≥ 0.003) (indicated 

by black square in Figure 27). It is the enhanced persistence of the aligning CAFs 

which facilitates the possibility of alignment however contact guidance must also be 

sufficiently high in these cells.  

 

The model predicts that persistence is an influential mechanism in enabling 

alignment. Cells which are less polarised and therefore less persistent can override 

any long-term patterns of alignment that would otherwise have emerged as a result 

of cell-cell interactions. If there is insufficient persistence, over short periods of 

time, cell orientation is largely randomised. Therefore, perturbing migratory 

persistence in aligning fibroblasts should be sufficient to disrupt order. This was 

then tested experimentally. Platelet-derived growth factor (PDGF) is a potent 

fibroblast chemotactic that induces migratory persistence under a gradient (Seppa 

et al., 1982). By applying an inhibitor of the receptor on fibroblasts (PDGFR) there 

was a statistically clear drop in persistence (Error! Reference source not found.), 
corresponding with a disruption in cell body alignment. This data, together with the 

model highlights the essential role of fibroblast persistence in alignment. 
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When noise is equal to zero, varying contact guidance can speed up or slow down 

alignment, but even for low values (e.g. c = 0.001), alignment will eventually occur 

(Figure 27). Over a mid-range of cell persistence levels, cell contact guidance 

becomes the determining factor in determining alignment. As described above, 

cells with low persistence cannot align even with strong contact guidance. 

 

The model suggests that alignment can be achieved with sufficiently low individual 

migratory noise, sufficiently high cell-cell collision guidance and a sufficiently high 

level of cell confluence. In particular, these results indicate that alignment can 

occur without any specific interactions between fibroblasts and the matrix fibres 

they produce and that cell-cell interactions alone are sufficient to induce order. In 

order to test experimentally if matrix feedback was dispensable for alignment, as 

the model predicted, fibroblasts that generate an aligned matrix were treated with 

the engineered peptide `functional upstream domain' (FUD) of Streptococcus 

pyogenes. FUD prevents effective matrix assembly from soluble fibronectin into 

insoluble fibrils (Baneyx and Vogel, 1999). Cell migration is instructed by this fibril 

form and not the soluble form. In this way treatment with FUD precludes the cells 

from being guided by the matrix and we are able to eliminate matrix feedback 

(Figure 28A). The addition of FUD to fibroblast cultures efficiently prevented matrix 

fibre bundling but did not alter the migratory persistence of fibroblasts (Figure 28B) 

or prevent the progressive alignment of fibroblasts over time (Figure 28C). Cells 

are still able to align even if fibronectin deposition is blocked, confirming the model 

prediction that matrix feedback is not a necessary requirement for emergent matrix 

alignment. On the other hand  
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Figure 28: Cells align without matrix 
Immunofluorescence of fibronectin deposited by aligning fibroblasts in the 
presence or absence of a Fibronectin blocking peptide (FUD). FUD blocks ECM 
formation. Scale bars indicate 500𝜇𝑚. (E) Migratory persistence of aligning cells in 
the presence or absence of FUD (taken over 16-hour intervals). (F) Long-range 
alignment over time of fibroblasts in the presence or absence of FUD. Inhibition of 
ECM formation by FUD treatment did not change rate of alignment. 
 
Together, these results highlight an important interplay between the single cell (via 

persistence) and collective (via contact guidance) behaviours. Even though 

persistence is a key determinant of alignment, it must be accompanied by some 

degree of collision guidance. For a range of moderate cell persistence, collision 

guidance becomes the deciding factor.  

 

2.7.5 Alignment requires a critical threshold cell density 

The model was used to explore how alignment varies as a function of cell 

population size and shows that for widespread alignment to occur, a critical 

threshold cell density is required. Simulations were run with doubling rate of the 

aligning CAFs (20 hours), low noise (𝜂 = 0.04) and with high collision guidance 

(𝑤¨ = 0.009). It was found that alignment begins to occur at approximately 17% 

confluence. Below this level of confluence, cells do not interact enough to produce 

strong collective behaviour. This implies that slowing down cell population doubling 
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rate will perturb the rate of cellular alignment. This result is supported by data from 

experiments which shows that alignment only occurs locally and transiently in low 

confluence and further, in other flocking models (Chaté et al., 2008), where particle 

density has to be above a certain level for alignment to occur. Cell density is 

therefore an important consideration when ascertaining alignment in the tumour. 

Lower cell density will lead to fewer cell-cell contacts and therefore collision 

guidance will occur less frequently. 

 

2.7.6 The model accurately recapitulates alignment in confined spaces 

So far the model has been used to explore the collective behaviour of cells in 

unconfined spaces, with periodic boundary conditions. However, it was of interest 

to test if the model could recapitulate known behaviour in confined environments. 

Work from the Silberzan group (Duclos et al., 2014) has investigated the 

emergence of fibroblast alignment within confined regions in vivo. They found that 

cells confined within a strip spontaneously aligned with the confining walls. This 

alignment propagates through the system, away from the walls. For strips of width 

less than the orientation correlation length, near perfect alignment was achieved 

through the strip, whereas this alignment decreased towards the middle of wider 

strips (see Figure 29c, reproduced from (Duclos et al., 2014)). 

 

To see if the model could predict similar behaviour to the in vitro experiments in this 

new scenario, the system was adapted to include two walls a specified distance 

apart to create a strip. The number of cells in each strip was adjusted so that a 

constant high confluence would be the same in each strip. Periodic boundary 

conditions were still employed at the two non-confined ends of the simulation. In 

order to replicate the in vivo experiments, the volume exclusion term in the model 

was set to be stricter, to prevent cells going through the walls. Upon overlap with 

an object, cell speed was reduced to 1% of its original fixed speed until the cells 

were no longer overlapping. Whereas in section 2.5.2 the updating of cell positions 

was described by: 

 
Å𝑥B(𝑡 + Δ𝑡)𝑦B(𝑡 + Δ𝑡)

Æ = Ç
𝑥B(𝑡) + 𝑠BΔ𝑡 cos@𝜃B(𝑡 + Δ𝑡)D 𝑣N
𝑦B(𝑡) + 𝑠BΔ𝑡 sin@𝜃B(𝑡 + Δ𝑡)D 𝑣N

È 
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where 𝑣N is a proxy for volume exclusion defined by 

𝑣N = É0.25	if	the	head	node	of	a	cell	is	overlapping	with	any	other	node	of	another	cell,	
1																																																																																																																																		otherwise

 

instead 𝑣N was defined as:  

𝑣N = É0.01	if	the	head	node	of	a	cell	is	overlapping	with	any	other	node	of	another	cell,	
1																																																																																																																																		otherwise

 

 

Finally, Duclos et al. observed that a fibroblast near the wall will align with the wall 

even at low confluence. To account for this in the model, collision guidance was 

activated in the fibroblasts upon contact with the walls. 

 

Simulations were run at high confluence with strip widths of 

200𝜇𝑚, 600𝜇𝑚,1000𝜇𝑚 and two different levels of 𝜂 = {0, 0.1}. The results from the 

model do indeed agree with those of Duclos et al (Figure 29).  For a narrow strip of 

200𝜇𝑚, nearly total alignment is achieved as the alignment with the walls is able to 

propagate through the whole system. For a strip width of 600𝜇𝑚, alignment 

towards the centre of the strip decreases. Interestingly, this effect is much stronger 

in cells with high noise, since the propagation of alignment to the wall is lost much 

more quickly through the system. Finally, for a large strip width of 1000𝜇𝑚, overall 

alignment is low as the majority of cells are not close enough to the walls to align 

with them. Overall, it is promising that the model can recapitulate these 

experimental results and could therefore be used to answer more precise questions 

about this experiment eg critical strip width for alignment and dominant effects of 

more complex confining regions. 
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Figure 29: Emergent behaviour in confined spaces 
The model was challenged to reproduce the width-dependence findings by Duclos 
et al. (A) Stills from simulations at high confluence with width between walls of 
200𝜇𝑚, 600𝜇𝑚,1000𝜇𝑚 respectively and 𝜌 = (200,600,1000) respectively, noise 
(𝜂)=0.1 for high collision guidance (𝑤¨ = 0.05) and low collision guidance (𝑤¨ =
0.01). (B) Graph showing alignment of simulations run varying width between walls, 
for low noise (𝜂 = 0,	orange) and high noise (𝜂 = 0.1,	blue ), and for for low 
collision guidance (𝑤¨ = 0.01,	solid line) and high collision guidance (𝑤¨ =
0.05,	dashed line ). Simulations were run at high confluence, simulating emergent 
behaviour after seven days. N=5 simulations per point in parameter space. (C) 
Image reproduced from (Duclos et al., 2014) shows agreement between model and 
experimentation. 
 

2.7.7 Predicting emergent behaviour in heterogeneous populations 

Heterogeneity not only exists within the tumour, but also within the stromal CAF 

population. Indeed multiple sub-populations of CAFs have been identified with 

different functional roles (Augsten, 2014; Kalluri, 2016; Öhlund et al., 2017). It is 

important to understand how heterogeneity in CAFs might affect alignment, and 

whether suppressing or enhancing heterogeneity could have potential therapeutic 

applications. The model was used to explore the effects of increasing heterogeneity 

and to predict the circumstances under which alignment might be disrupted. 
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A first level of heterogeneity was simulated – in which there is heterogeneity of 

persistence in a single population. Indeed, experimental data shows a small 

subpopulation within the aligning category with persistence values close to the 

mean of non-aligning CAFs (Figure 30A). We explored whether this level of 

heterogeneity might compromise alignment. Simulations were run where each cell 𝑖 

had its own unique persistence 𝑉𝑎𝑟(𝜂B) drawn from the experimental distribution, 

varying only collision guidance. With this level of heterogeneity cells were still able 

to align with moderate collision guidance.  

 

Next, simulations were run with the level of noise and collision guidance to match 

the aligning CAFs experimentally but with a user-defined probability that upon 

collision, a cell would reorient with a completely random uniformly distributed 

orientation. This mimicked the CIL response largely seen in the non-aligning CAFs. 

The model predicts that alignment is quickly disrupted by adding in as few as 10% 

non-aligning CAFs (Figure 30B and C) and therefore that aligning populations of 

cells must necessarily dominate for alignment to occur. 

 

This prediction was then tested experimentally. Aligning and non-aligning cells 

were labelled with membrane localized fluorophores and seeded at different 

starting proportions. Co-cultures were imaged every second day so as to measure 

cell body organisation over time (Figure 31). With the addition of as little as 20% 

non-aligning CAFs, alignment was almost entirely destroyed, confirming the model 

predictions.  

 

Taking the computational and experimental results together strongly points to the 

fragility of alignment and its sensitivity to heterogeneity. This raises an interesting 

question as to whether non-aligning cells all exhibit non-aligning characteristics or 

whether they possess a subgroup of cells with aligning characteristics that are 

simply unable to over-ride the dominant non-aligning phenotype. Most importantly, 

these results draw attention to the efficacy of altering the balance in a 

heterogeneous mixture of CAFs as a means of destroying alignment and the 

potential power of using this therapeutically. This offers a mechanistic view on how 

limited alignment in a highly heterogeneous tumour micro-environment can be 

achieved. Given the fragility of emergent alignment, for an area of alignment to 
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occur, the population would need to be largely dominated by CAFs displaying an 

aligning phenotype. It can be conjectured that this sensitivity of alignment applies in 

vivo and therefore only small phenotypic perturbations might be required to 

dissolve harmful microstates of alignment. 
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Figure 30: Exploring alignment in heterogeneous environments.  
(A) Histogram of the persistence distribution in aligning (red) and non-aligning 
(blue) populations for distances travelled over 0.5h. The dotted line indicates the 
mean of both populations. (B) Model simulation of cell organisation with increasing 
probability of CIL upon collision, starting from a system that aligns (𝜂 = 0.1,𝑤¨ =
0.06). CIL angle is drawn from the experimental data of non-aligning cells in Figure 
13. Increasing CIL response is sufficient to disrupt alignment. Each value is the 
mean and SEM of 10 independent simulations. (C) Representative simulation of 
migration paths (upper panel) and cell body organisation (lower panel) with an 
increasing probability of CIL on collision. CIL events are shown in pink. 
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Figure 31: Co-culture experiments in vitro 

Experimental exploration of alignment with increasing heterogeneity. Aligning (red) 
and non-aligning (cyan) fibroblasts were mixed at the proportions indicated and 
imaged every second day. 
 

2.8 Chapter highlights 

A summary of the main findings of this chapter is given as follows: 

 

• Aligning fibroblasts have enhanced individual migratory persistence 

• High persistence alone is insufficient to generate alignment 

• Fibroblasts align through an active collision guidance mechanism 

• Alignment is a fragile state that can be destroyed by heterogeneity 

 

The model predicts that cell-cell collision guidance is a requirement for alignment to 

emerge. As a direct consequence of this finding, Danielle Park in the Tumour Cell 

Biology laboratory was able to identify a transcription factor TFAP2C, upstream of 

RhoE, thereby influencing actomyosin contractility, that was elevated in aligning 

fibroblasts (Park et al., 2019). Upon collision, aligning fibroblasts displayed 

actomyosin contractility at the point of contact, causing cells to reorient to each 

other and consequently align, as predicted by the collision guidance mechanism in 
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the model. In this way, a combination of computation and experimental 

investigation has helped to elucidate emergent cell patterning and how harmful 

aligning patterns might be disrupted therapeutically. 

 



Chapter 3. Modelling fibroblast-matrix interactions 

 

 97 

Chapter 3.  Modelling fibroblast-matrix interactions 

In the previous chapter, it was shown how different mechanistic properties relating 

to the motility of fibroblasts were responsible for producing different collective 

behaviours: isotropy and anisotropy (Figure 2). This in turn produced a similarly 

patterned extracellular matrix. Fibroblasts displayed key differences in their 

migrational persistence and in their interactions with each other upon contact, 

which could manifest as collision guidance or contact inhibition of locomotion. 

However, a third piece of this puzzle has remained unaddressed: namely, what is 

the role of the extracellular matrix upon the emergent behaviour of fibroblasts and 

hence on the matrix itself? Fibroblasts are largely responsible for the deposition, 

rearrangement and degradation of ECM fibres, but could these fibres conversely 

and simultaneously exert a role on fibroblast behaviour? If so, what would the 

emergent consequences of such a feedback loop between fibroblasts and ECM 

be? 

 

3.1 Motivated by experiments 

3.1.1 Diverse matrix patterns are found in vivo and can be quantified 

The ECM plays a crucial role in tissue function. A large part of this is due to the 

topology and physical organisation of the matrix for example, highly aligned linear 

bundles of ECM are found in the tendon, enabling the extension and contraction of 

limbs. To see this diversity of organisation in non-pathological tissues, second 

harmonic imaging of collagen fibres in vivo was carried out using murine organs 

(Figure 32A). The position of fibroblasts was established using mice with transgenic 

expression of the fluorescent nuclear marker, H2B-GFP in fibroblasts. The long 

axis of the fibroblast nuclei indicates the orientation of the cell body and is 

correlated with the fibres they deposit and confirms this assumption in the model 

(Figure 5 from previous chapter). The dermis ECM is largely made up of curved 

bundles of fibres, giving the skin its structural integrity. The porous structure of the 

liver could possibly facilitate transportation of materials in and out. 
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In order to formally describe the matrix patterns quantitatively it was necessary to 

introduce several metrics. Five metrics were derived: long-range alignment (LRA), 

short-range alignment (SRA), percentage of high-density matrix (HDM), curvature 

(Curv) and fractal dimension (Frac). These metrics together could characterise 

different matrix properties. For example, a ‘swirl-like’ matrix pattern maintains high 

short-range alignment as neighbouring fibres follow largely similar directions but 

low long-range alignment (dermis, Figure 32A). Such a matrix would also have high 

curvature.  

 

 
Figure 32: Diversity of mouse tissues 
Second harmonic imaging of collagen (orange) in various tissues from a PDGFR 
nuclear labelled mouse. PDGFR positive nuclei (cyan) indicates fibroblast density. 
(B) Each matrix is characterised on a starplot below the image according to long-
range alignment (LRA), short-range alignment (SRA), percentage of high-density 
matrix (HDM), curvature (Curv) and fractal dimension (Frac). Scale bars represent 
100𝜇𝑚. 
 

3.1.2 Metrics describing the matrix 

Long and short-range alignment (LRA, SRA) 

 

The method of measuring fibre alignment is the same as for measuring cell bodies 

as described in section 2.2. Fibre position and orientation of the in vivo images was 
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established using CT-Fire (Bredfeldt et al., 2014) by Robert Jenkins from the 

Tumour Cell Biology Laboratory. 

 

CT-Fire was used to extract individual fibres from 512x512 greyscale images. These 

were then fed into a MATLAB script, which computed the orientation of each fibre 

assuming that it was straight between its start and end point. These angles were 

then input into a 512x512 mathematical matrix. Interpolation was applied to fill in 

empty matrix values and followed by a smoothing mean filter. The median difference 

in angle was then computed for increasing radii. In this work, values at distances of 

100𝜇𝑚 and 200𝜇𝑚 are used. The final output for a given radius was the sine of the 

median angle difference. At all steps, care was taken to respect the periodicity 

between angles, for example, two fibres orientated at 175∘ and 5∘ respectively have 

an angle difference of 10∘, not 170∘ (Park et al., 2019). Figure 8 shows a schematic 

of how alignment is computed. 

 

Percentage of high-density matrix (HDM) 

 

The percentage of high-density matrix indicates the spatial heterogeneity of the 

distribution of fibres. If cells are channelled to cover specific regions, this corralling 

behaviour would lead to some of areas of high-density matrix, and also to areas of 

very low-density matrix where there has been very little cell coverage (liver, Figure 

32). A schematic of this is given in Figure 33. Limitations of this method lie in the 

subjectivity of thresholding value beyond which an area is considered to have high-

density matrix. Other methods which circumvent this problem include Ripley’s K 

function and Moran’s I for spatial autocorrelation (Nawaz et al., 2015; Yuan, 2016).  

 

 
Figure 33: Schematic of High-density matrix (HDM) 
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High-density matrix (HDM) is a measure of the proportion of pixels in image above 
a user-specified threshold intensity. 
 
Curvature (Curv) 

 

For quantification of matrix curvature, images were split into RGB channels. The 

mask of the image was generated using the “Ridge detection” plug-in in ImageJ 

(Steger, 1998). Given a user-specified curvature window, the plug-in Anamorf 

(Barry, Williams and Chan, 2015) computed the mean curvature of the mask, 

measured as the change in angle moving incrementally along the mask lines 

(Figure 34). The curvature window must be chosen with care to encapsulate the 

rate at which lines curve. If the curvature window is too small, even tight curls 

seems straight and if it is too big then changes in curvature could be missed. 

 
Figure 34: Schematic of curvature (Curv) 
For a user-specified window, curvature of a curve is measured as the change in 
angle as the curve is traversed in increments of the specified window, as indicated 
here by 𝜃. In an image with many curves, the curvature is an average of the 
curvature of all curves. 
 

Fractal dimension (Frac) 

 

Fractal dimension is an indicator of the self-similarity of the matrix and is bound 

between in the range [1,2]. A fractal dimension of 1 would represent a straight line 

and a fractal dimension of 2 would represent a curve covering every point in two-

dimensional space, for example the limit of the Hilbert Curve (Figure 35A). 

Specifically, the metric used by the ImageJ plugin Anamorf(Barry, Williams and 

Chan, 2015) is the box-counting dimension. A grid with squares of side length 𝜖 is 
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overlaid on a mask image of a matrix pattern. The number of squares which are 

occupied by part of the mask N is recorded. Fractal dimension is then given as the 

limit of the number of grid squares required to cover the mask for increasingly 

smaller squares as 𝜖 decreases.  

 

 

Other metrics that could have been included such as Getis-Ord hotspot analysis 

(Heindl, Nawaz and Yuan, 2015; Nawaz et al., 2015; Yuan, 2016) and lacunarity. 

However, the chosen five metrics with user-defined length scales for long-range 

alignment, short-range alignment, curvature and the threshold for high-density 

matrix sufficiently captured key differences between matrix patterns and enabled 

direct comparison. Furthermore, these metrics could then be easily visualised in 

the form of starplots with five axes (Figure 32B). 
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Figure 35: Examples of fractal dimension (Frac) 
Fractal dimension (Frac) is a measure of how a one-dimensional curve fills two-
dimensional space and can be thought of as the self-similarity of the curve. (A) The 
construction of the Hilbert curve, which at its limit has Frac=2. (B) The Koch curve, 
often known as the snowflake fractal, is the limiting shape of the sequence shown 
and has Frac=1.26. (C) The Vicsek fractal has Frac = 1.46. (D) Further examples of 
masks with different values for Frac. These masks come directly from matrix 
patterns generated with the model. Hilbert curve in (A) comes from 
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https://en.wikipedia.org/wiki/Space-filling_curve. Koch curve in (B) comes from 
https://en.wikipedia.org/wiki/Koch_snowflake. Vicsek fractal in (C) comes from 
https://en.wikipedia.org/wiki/Vicsek_fractal 
 
 

3.1.3 Establishing the role of feedback between fibroblasts and ECM 

In Chapter 2, it was shown that it is cell-cell interactions together with individual 

migratory persistence that are sufficient to generate higher-order alignment in vitro 

in the absence of matrix (Figure 28). It therefore remains to establish whether or 

not matrix topology impacts on cell behaviour and under what circumstances this 

could occur.  

 

To investigate this directly, fibroblasts were plated on thick matrices with differing 

degrees of alignment, grown over seven-day assays to full confluence. It was found 

that these plated fibroblasts moving on a thick aligned matrix had increased 

persistence as compared with the same fibroblasts moving on an isotropic matrix 

(Figure 36: Experimental confirmation of matrix feedback, p=0.0064, two-tailed t-

test). This suggests that matrix topology exerts a change in fibroblast behaviour, 

thereby ultimately reinforcing the matrix organisation.  

 

It is difficult to see the real-time coevolution of fibroblasts and matrix fibres 

experimentally. Computational modelling can therefore be of great use in unpicking 

the “chicken and egg” problem of how fibroblasts and matrix interact and influence 

each other to generate higher-order organisation. 
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Figure 36: Experimental confirmation of matrix feedback 
Migratory persistence of aligning or non-aligning fibroblasts seeded on a thick 
aligned matrix (over 8-hour windows). On an aligned matrix, fibroblasts migrate 
with higher persistence (p =0.0064, using a two-tailed t-test). 
 

3.2 Model construction II 

To understand what the consequences of matrix feedback might be in the 

emergent patterning of fibroblasts and ECM, the Vicsek-inspired model described 

in the previous chapter was extended to incorporate fibroblast-matrix interactions. 

The model was modified to include a second layer representing the ECM. This 

brought the model into a pseudo-three-dimensional environment with a top layer 

consisting of fibroblasts and the bottom layer consisting of matrix. This ECM layer 

was arranged as a grid and each grid point was associated to matrix fibres that 

could be oriented in eight possible bins, in increments of �
å
 within the range [0, 𝜋], 

reflecting the nematic interactions of fibroblasts with fibres. In this model, 

fibroblasts could generate, delete or assign a different directionality to matrix fibres, 

representing the deposition, proteolytic degradation and rearrangement of the 

matrix, respectively. Additionally, fibroblasts could alter their orientation to follow 

matrix fibres, creating a two-way feedback between fibroblasts and the matrix fibres 

they produce. The main innovation of the model away from the traditional Vicsek 

model is in adding the ability of cells to be guided by the matrix fibres below it whilst 

simultaneously producing and reorganising these fibres (Figure 37: Schematic two-



Chapter 3. Modelling fibroblast-matrix interactions 

 

 105 

layer model). The original set-up and cell shape in the model remain unchanged 

from 2.5. 

 

 
Figure 37: Schematic two-layer model 
Schematic showing the two layers of the model and the interplay between them. 
Fibroblasts flock with each other on the top layer. Simultaneously, fibroblasts 
deposit matrix fibres (red) onto an underlying grid points, representing the layer of 
ECM. These fibres are then able to influence the orientation of the fibroblasts 
above through matrix feedback.   
 
The model has several similarities with an existing model presented by Dallon et al. 

(Dallon, Sherratt and Maini, 1999), who model fibroblasts as discrete elements and 

the ECM as continuous to investigate the interplay between fibroblasts and matrix 

in the context of wound healing. This is an interesting and highly relevant model 

and would have been a reasonable choice for exploring the thesis research 

questions. However, the model presented here is perhaps more suitable due to the 

incorporation of clear rule-defined cell-cell interactions and cell persistence, which 

are lacking in Dallon et al. In addition, the grid point structure of the ECM acts as a 

hybrid, where fibres can be modelled in more detail than in the continuum (Dallon, 

Sherratt and Maini, 1999) whilst remaining computationally inexpensive. This 

means cells can interact iwht individual groups of fibres, enabling more insight into 

the feedback mechanism between CAFs and matrix fibres. 

 
The fineness of the grid could be determined by the user, however by default, the 

number of gridpoint was determined as follows: 

 𝑛𝑢𝑚𝑏𝑒𝑟𝐺𝑟𝑖𝑑𝑃𝑜𝑖𝑛𝑡𝑠 = è
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒

𝑟 ë (25) 



Chapter 3. Modelling fibroblast-matrix interactions 

 

 106 

 
where 𝑟 is the radius of the body nodes of the cells (Table 3). This means that the 

distance between grid points is slightly smaller than the small head node of a cell. 

This grid is distinct from the voxel grid described in section 2.5.3. The cell speed is 

set so that a cell will move approximately half the side length of an ECM grid 

square. This means that trails of ECM produced by a cell will be deposited in a 

spatially continuous manner ie that fibres will lie in adjacent grid boxes without 

gaps. If time step were significantly increased, cell speed significantly increased or 

ECM grid made much finer, this could lead to gaps in the ECM (Dallon, Sherratt 

and Maini, 1999) causing the cell not interacting with fibres it otherwise would have. 

 

 
Figure 38: Schematic of ECM grid and voxel grid 
The default ECM grid (pink) has squares of size slightly smaller than the cell head. 
The cell is associated with the ECM grid point closest to the centre of its head 
(indicated by a black dot). The voxel grid (blue) used for establishing cell 
neighbours for computational speed and cell proliferation has squares of side 
length slightly larger than the length of a cell. In a single time step, the cell moves 
approximately the distance indicated by a red line, which is slightly smaller than the 
length of an ECM grid square. 
 
When establishing the model, it was of importance to investigate in detail how 

fibronectin is deposited by a moving fibroblast. To this end, fibroblasts were plated, 

then allowed to spread and commence migration. They were then fixed and stained 

for F-actin to reveal their dominant protrusion and hence direction of migration, 

paxillin to reveal points of substrate attachment, and fibronectin (Figure 39). This 

indicated that the formation of fibronectin puncta and fibrils at the basal surface of 

fibroblasts was clearly apparent ahead of the cell nucleus, most notably in the zone 

behind the paxillin-rich adhesions and less obviously in the leading protrusion. The 

formation of fibronectin into large fibrils was more prominent towards the cell rear. 
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These data indicate that fibronectin deposition begins in a zone well ahead of the 

nucleus and near cell matrix adhesions, and suggest that fibronectin becomes 

progressively organised into fibres toward the cell rear. Based on these findings, it 

seems most appropriate to have fibre deposition at one of the front two beads of 

the cell. This experiment was carried out by Erik Sahai and Steven Hooper from the 

Tumour Cell Biology laboratory.  

 

 
Figure 39: How fibroblasts deposit fibres 
Two examples exploring where fibroblasts produce fibronectin. Fibroblasts were 
plated, and then began to spread and commence migration. They were then fixed 
and stained for F-actin (bottom left panels) to reveal their dominant protrusion and 
hence direction of migration, fibronectin (top left panels) and paxillin to reveal 
points of substrate attachment (top right panels). A composite image is shown in 
the bottom right panels. Scale bar represents 10𝜇𝑚. Experiment and data 
collection carried out by Erik Sahai and Steven Hooper. 
 

3.2.1 Model overview 

As described in section 3.2.1, the ECM consists of a fine grid, with the distance 

between grid points being at least as small as a cell’s head. At time 𝑡, a cell 𝑖 with 

orientation 𝜃B(𝑡) is associated with and will interact with whichever grid point 𝑘 is 

closest to the centre of its head (Figure 38). In this way, a cell is always associated 

with exactly one grid point. 
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The organisational and matrix guidance components of the model are implemented 

algorithmically and are described here. The grid point 𝑘 consists of eight possible 

bins in increments of �
å
 within the range [0, 𝜋]. Three new organisational parameters 

are introduced: 𝑜íNO(Δ𝑡):= number of fibres deposited by a fibroblast per time step, 

𝑜íNî(Δ𝑡):=  number of fibres degraded from each bin by a fibroblast per time step, 

𝑜MN(Δ𝑡):=  number of fibres rearranged from neighbouring bins by a fibroblast per 

time step.  

 

The fibre organisational terms 𝑜íNO(Δ𝑡), 𝑜íNî(Δ𝑡)		and	𝑜MN(Δ𝑡) are assumed to be 

linearly dependent on the time step Δ𝑡, eg the number of fibres deposited over two 

time points ought to be equal to the number fibres deposited in a single time point 

of twice the length. There are many unanswered questions regarding the way in 

which fibres are deposited by fibroblasts together with quantification of the 

organisation of the fibres. Therefore, the model is used in an exploratory manner, 

assuming linear deposition of fibres and where time 𝑡 is measured in units of 15 

minutes and Δt is varied with respect to a frame rate of one unit. In the rest of this 

work, the assumption is made that Δ𝑡 = 1 unit ie fifteen minutes. In an abuse of 

notation 𝑜íNO is used in place of  𝑜íNO(Δ𝑡), similarly for 𝑜íNî and 𝑜MN. It will be of 

interest in future work to investigate if the assumption of linearity is correct and how 

predictions vary depending on the time step. Fibroblasts deposit fibres in a discrete 

manner at each time step, rather than continuously. Therefore, as time step 

becomes large, or indeed if cell speed becomes large, eventually fibres will be 

deposited by a cell in non-adjacent ECM grid points, creating a dashed trail of ECM 

fibres. The current time step is small enough such that the cell moves less than the 

length of an ECM grid square (Figure 38). Therefore, whilst fibres are deposited 

discretely, they are deposited in adjacent ECM boxes, reminiscent of the 

continuous path of fibres observed experimentally.  

 

The implementation of these parameters is best illustrated through an example: 

 

At time 𝑡	suppose the information about fibres at grid point 𝑘 can be written  

𝑘 = [1,8,3,3,0,0,0,2] 
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ie there is 1 fibre in the bin with orientation 0, 8 fibres in the bin with orientation �
å
, 3 

fibres in the bin with orientation E�
å

 etc. The number of fibres in each bin can never 

hold a negative number of fibres. Suppose cell 𝑖 has orientation 𝜃B(𝑡) =
�

kCCC
 and is 

associated with grid point 𝑘. 

 

Choosing fibre for matrix guidance 

Cell 𝑖 will be guided by fibres in a single bin in box 𝑘. This bin is called the 

dominant orientation and is denoted 𝜙ð(𝑡). This is chosen through a Gillespie 

algorithm where bins are weighted according to the number of fibres in them so 

that cells probabilistically choose to be guided by a bin with more fibres in. In the 

example, the total number of fibres in grid point 𝑘 is 1 + 8 + 3 + 3 + 0 + 0 + 0 + 2 =

17. Then the dominant orientation for the cell to follow is defined by: 

𝜙ð(𝑡) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 0,	with	probability

1
17

𝜋
8 ,	with	probability

8
17

2𝜋
8 ,	with	probability

3
17

3𝜋
8 ,	with	probability

3
17

4𝜋
8 ,	with	probability

0
17

5𝜋
8 ,	with	probability

0
17

6𝜋
8 ,	with	probability

0
17

7𝜋
8 ,	with	probability

2
17

 

Suppose in this instance that the value chose is 𝜙ð(𝑡) =
�
å
. The way in which cell 𝑖 

is guided by this bin is described in section 3.2.4. 

 

The cell will then reorganise the matrix fibres in grid point 𝑘. First fibres will be 

degraded, then rearranged, and then finally the fibroblast will deposit new fibres as 

described below: 

 

Fibre degradation 

All bins in grid point 𝑘 are depleted at each time step by 𝑜íNî so that, in the example  
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𝑘�NPOk = (max@0,1 − 𝑜íNîD ,max@0,8 − 𝑜íNîD ,max@0,3 − 𝑜íNîD ,max@0,3 − 𝑜íNîD, 

max@0,0 − 𝑜íNîD ,max@0,0 − 𝑜íNîD ,max@0,0 − 𝑜íNîD ,max	(0,2 − 𝑜íNî)) 

In the example where 𝑜íNî = 1, after degradation 

𝑘�NPOk = (0,7,2,2,0,0,0,1) 

 

Fibre rearrangement  

Fibres from the two neighbouring bins will be moved to the bin closest to 𝜃B(𝑡). The 

bins wrap around in a modular fashion, so that in the example, 𝜃B(𝑡) falls in bin 1, 

rearrangement will happen with its two neighbouring bins: bin 2 and bin 8. 

𝑘�NPOE = (0 + 2𝑜MN,max	(0,7 − 𝑜MN),2,2,0,0,0,max	(0,1 − 𝑜MN)) 

In the example where 𝑜MN = 1, after rearrangement 

𝑘�NPOE = (2,6,2,2,0,0,0,0) 

 

Fibre deposition 

Finally,it was shown in Figure 5 that matrix fibre orientation is highly correlated with 

the fibroblasts depositing the fibres. Therefore, a fibroblast will deposit fibres in the 

bin 𝑘 which is closest to 𝜃B(𝑡) if 0 ≤ 𝜃 < 𝜋, or 𝜃B(𝑡) − 𝜋 if  𝜋 ≤ 𝜃 < 2𝜋, since fibres 

are apolar. In the example, 𝜃B(𝑡) =
�

kCCC
 is closest to bin 1 which has orientation 0. 

Therefore, after fibre deposition with 𝑜íNO = 1 

𝑘 = (3,6,2,2,0,0,0,0) 

These modifications all occur within a single time step. 

 

3.2.2 Relating cells to matrix 

As described in section 3.2.1, the ECM consists of a fine grid, with the distance 

between grid points being at least as small as a cell’s head. At time 𝑡, a cell 𝑖 with 

orientation 𝜃B(𝑡) is associated with and will interact with whichever grid point 𝑘 is 

closest to the centre of its head (Figure 38). In this way, a cell is always associated 

with exactly one grid point. 

 

The organisational and matrix guidance components of the model are implemented 

algorithmically and best illustrated through an example. 
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3.2.3 Matrix organising fibroblasts 

In this adaptation of the model, a cell’s orientation will be calculated as a weighted 

function of not only individual migratory noise and influence of local neighbours but 

also of the matrix fibres. The initialisation of the model remains the same as in the 

previous chapter, together with computation of individual migratory noise and cell-

cell guidance. Matrix feedback is implemented as follows: 

 

If the head of a cell 𝑖 is above a fibre 𝑘 with orientation 𝜙ð, then the X and Y-

components of the effect of matrix guidance of 𝑘 on 𝑖	at	time	𝑡 are 

 𝑋B,P(𝑡) = cos m𝜙»ð(𝑡)n, 

𝑌B,P(𝑡) = sin m𝜙»ð(𝑡)n, 

(26) 

 

where 

 
𝜙»ð(𝑡) = ¾

𝜙ð(𝑡),												if ∣ 𝜙ð(𝑡) − 𝜃B(𝑡) ∣ (mod	π)<
𝜋
2 ,

𝜙ð(𝑡) +
𝜋
2 ,																																													otherwise,

 
(27) 

 

representing the ability of fibroblasts to move along fibres in a nematic manner. 

 

The X and Y-components of cell 𝑖	at	time	𝑡 as originally described in 2.5.2 in the 

previous chapter are then redefined to include the influence of matrix feedback so 

that 

 𝑋B(𝑡) =
1

𝑤O + 𝑤¨ + 𝑤P
@𝑤O𝑋B,O(𝑡) + 𝑤¨𝑋B,¨(𝑡) + 𝑤P𝑋B,P(𝑡)D, 

𝑌B(𝑡) =
1

𝑤O + 𝑤¨ + 𝑤P
@𝑤O𝑌B,O(𝑡) + 𝑤¨𝑌B,¨(𝑡) + 𝑤P𝑌B,P(𝑡)D, 

(28) 

 

is then computed as 

 𝜃B(𝑡 + Δ𝑡) = tangk ^
𝑌B
𝑋B
` (29) 

 

which must then be adjusted for quadrant of the arctan function so that 
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𝜃B(𝑡 + Δ𝑡) = Ã

𝜃B(𝑡 + Δ𝑡)											if	𝑋B ≥ 0, 𝑌B ≥ 0,
𝜃B(𝑡 + Δ𝑡) + 𝜋																	if	𝑋B < 0,
𝜃B(𝑡 + Δ𝑡) + 2𝜋	if	𝑋B ≥ 0, 𝑌B < 0.

 
(30) 

 

Finally, cell position is updated so that 

 
Å𝑥B(𝑡 + Δ𝑡)𝑦B(𝑡 + Δ𝑡)

Æ = Ç
𝑥B(𝑡) + 𝑠BΔ𝑡 cos@𝜃B(𝑡 + Δ𝑡)D 𝑣N
𝑦B(𝑡) + 𝑠BΔ𝑡 sin@𝜃B(𝑡 + Δ𝑡)D 𝑣N

È 
(31) 

 

where 𝑣N is a proxy for volume exclusion defined by 

𝑣N = É0.25	if	the	head	node	of	a	cell	is	overlapping	with	any	other	node	of	another	cell,	
1																																																																																																																																		otherwise

 

The distance between cells, which is considered as an overlap is set by the user, 

but for the rest of this work was set as the inner 75% of a cell’s area. 

 

The order of events in the simulations at each time step is given as: 

1. Compute new cell orientations 
2. Compute and update changes to matrix grid points 
3. Compute and update new cell positions. 

 

A schematic indicating the main model components is given in Figure 40: Full two-

layer model schematic.  
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Figure 40: Full two-layer model schematic 
Cells flock with other cells they come into contact with and the fibres in the matrix 
grid point underneath the head of the cell. At every time step, for each cell in turn 
the model computes its change in orientation due to flocking with other cells, its 
change in orientation due to flocking with the matrix below and its reorganisation of 
the matrix in the grid point below via degradation, rearrangement and deposition of 
fibres. In this schematic, there are four bins per grid point for fibres to be deposited 
in. 
 
A complete list of free parameters of the two-layer model is given in Table 5. 

Unless otherwise simulations take parameters with the default values given in the 

“Typical values” column. The primary parameters that will be varied are individual 

migratory noise (𝜂), cell-cell collision guidance 𝑤¨ and cell-matrix guidance 𝑤P.  
 
Table 5: List of parameters II 

Parameter Meaning Typical value 

𝜌 Number of cells in simulation 800 (corresponding to 

~40% confluence) 

𝑑 Number of time steps required for 

population to double 

∞ (ie there is no 

proliferation) 

𝜇 Mean of Gaussian distribution for cell 

speed 

32𝜇𝑚/ℎ 
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𝜎 Standard deviation of Gaussian 

distribution for cell speed 

4𝜇𝑚/ℎ 

𝑎 Number of body nodes (excluding the 

head and tail nodes), determining 

aspect ratio 

2 

𝑟 Radius of cell body nodes (cell area is 

then 𝑎𝑟E + MÜ

E
) 

13.5𝜇𝑚 (cell area is 

then 1410𝜇𝑚E 

𝜂 Individual migratory noise. At each 

time step 𝜂B(𝑡)~𝑁(0, 𝜂) 

varied 

𝑤¨ Weighting of flocking mechanism 

(collision guidance) 

0.03 

𝑤P Weighting of matrix guidance Varied 

𝑜íNO Number of fibres deposited by a 

fibroblast in a single time step 

1 

𝑜íNî Number of fibres removed from each 

bin in the grid point corresponding to a 

fibroblast in a single time step 

0 

𝑜MN Number of fibres moved from a 

neighbouring bin in the grid point 

corresponding to a fibroblast in a 

single time step 

0 

 

3.2.4 Model implementation 

The C++ code describing the model of Chapter 2 was augmented to incorporate 

ECM as described above. Figure 41 shows the structure of this extended code. 

Additional parameters are included for fibre deposition, rearrangement and 

degradation rates, matrix grid point size and bins per matrix grid point. A new class 

called Matrix grid point was included in the model, and each grid point was 

endowed with positional coordinates, bins with an attached fibre density and the 

dominant density and orientation of the grid point. All of this information could then 

be generated as an output in the matrix grid map file. 
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Figure 41: Code structure II 
Diagram shows the hierarchical structure of the C++ code for the two-layered 
model. Modules shown in red are additions to the code described in Chapter 2. 
 
 
The main update function of the model was subsequently changed from “Update 

fibroblasts” to “Update TME” to account for updating both fibroblasts and matrix. 

Algorithmically, it was important for cells and matrix to influence each other. For 

example, if cells altered all matrix fibres to their orientation and then were guided 

by those fibres then the influence of matrix on cells would be null. Therefore, the 

new fibroblast orientation was computed first and then the fibres would be 

rearranged (Figure 42). A more sophisticated algorithm could have taken a leap-

frog method, splitting each time step in two so that the first half time step could be 

based on the cell’s previous orientation and the second half time step could use the 

cell’s new orientation. Ultimately, the effect of these choices is minimal provided the 

time step used is small so that only small changes in cell and ECM orientation 

occur at each time step. 
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Figure 42: Flow diagram model II 
Flow diagram shows sequence of functions carried out by the code at each time 
step in order to work out the orientation of the fibroblasts and the configuration of 
the ECM.  
 

Using the output matrix grid map file, it was possible to visually represent the matrix 

in OpenGL. For each grid point, a straight line indicating the orientation of the grid 

point’s dominant bin was drawn, with the darkness of the line representing the 

density of fibres in that dominant bin up to a cut off of 25 fibres, represented by a 

black line.  

 

In the simulation set up, the grid points describing the matrix are initialized at the 

beginning of the simulation. The coarseness of the overall matrix grid is determined 

by the number of grid points from which it is constructed. By default, the number of 

grid points is computed as 

 
#𝑔𝑟𝑖𝑑	𝑝𝑜𝑖𝑛𝑡𝑠 = ^

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑏𝑜𝑥	𝑙𝑒𝑛𝑔𝑡ℎ
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟	𝑜𝑓	𝑐𝑒𝑙𝑙	ℎ𝑒𝑎𝑑`

E

 
(32) 

 

which equates to a total of  mkCE�
å
n
E
= 16384 squares. 

 

The matrix images produced in silico show the density of the most recently chosen 

bin at each grid point. 

 



Chapter 3. Modelling fibroblast-matrix interactions 

 

 117 

3.2.5 Adapting metrics to in silico matrix 

 

Given the way in which in silico matrix was recorded and visualized showing each 

grid point’s dominant bin it was necessary to adapt the matrix alignment metrics 

used for the in vivo images to deal with the alternative in silico representation.  

 

Typically, simulations were run with 128 × 128 = 16384 grid points. The positions 

and dominant orientations of the 800 densest grid points was recorded. The 

alignment of these points was then computed using the same method as was used 

for cell bodies as described in 2.2.1. This represented considering the alignment of 

the densest 5% of fibres. This value was chosen to avoid the confounding effects of 

considering grid points with very few fibres in them. Alternatively, an algorithm 

where each grid point was weighted according to its density could have been 

employed, but with much higher computational costs. 

 

The metrics of high-density matrix (HDM), curvature (Curv) and fractal dimension 

(Frac) were all measured via the same methods as used for the in vivo images as 

described in the previous chapter. 

 

3.3 Parameter fitting and robustness 

3.3.1 Fitting matrix feedback 

Matrix feedback (𝑤P) was fitted in a similar way to cell-cell collision guidance as 

described in 3.1.3. In the experiment described in Figure 36, control fibroblasts 

were seeded in sub-confluent conditions on glass. A second set of fibroblasts at the 

same level of confluence were seeded on pre-existing thick aligned matrix. These 

fibroblasts displayed increased migrational persistence, confirming the effect of 

matrix feedback on cell migration. In order to quantify the effect of matrix feedback, 

the persistence of these two groups of fibroblasts was computed for windows of 

one and two hours. Cells tracked for at least one hour were recorded and a spline 

tracing the cell’s trajectory was produced using the loess package in R (𝛼 = 0.5) as 

described in section 2.6.1. This was in order to smooth the intracellular movement, 
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which resulted in many small fluctuations in the trajectories. For each cell, the 

median persistence for each cell was computed as described above. Simulations of 

single cells with varying values of individual migratory noise (𝜂) were run and the 

persistence computed for one and two-hour windows. The experimental results 

were then matched with simulations using a least squares approach to select the 

most likely value of 𝜂	given a cell's persistence. The distribution of noise in the 

simulations that matched the cells moving on glass was 𝜂 = 0.13. Simulations were 

then run for the same level of noise and incremental values of 𝑤P	between 0 and 1. 

The persistence of these simulations was then compared with the persistence of 

the cells moving on thick aligned matrix. Using a least squares approach, the most 

likely value of matrix feedback on a thick matrix is approximately 𝑤P = 0.27. 

3.3.2 Parameter robustness 

The key parameters of interest in the model are individual migratory noise, cell-cell 

collision guidance and matrix feedback. However, there are many other parameters 

in the model and it is useful to consider to what extent the model is sensitive to 

these other parameters of secondary interest.  

 

3.3.3 Cell shape 

In the simulations, cells are endowed with a fixed diamond shape consisting of a 

smaller bead, two larger beads, followed by a final smaller bead. As shown in other 

works, cell shape is in fact variable and dynamic over time (Keren et al., 2008; 

Tweedy et al., 2013; Yin et al., 2013). As described in Yin et al., cell shape could 

be characterised as belonging to one of five discrete categories: rounded, 

elongated, large cells with smooth edges, teardrop-shaped cells and very large flat 

cells with ruffled edges. Further, Figure 39 appears to show fibroblasts that have a 

more teardrop like morphology. Therefore, to probe the effect of cell shape on 

emergent matrix pattern, simulations were run with three of these cell shapes: 

rounded, teardrop and elongated. These cell shapes were constructed by 

assembling different sized beads and all cells were scaled to be approximately the 

same size across shapes. The smoothness of cell edges was not considered to be 
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of importance at the mesoscale of the model, thus merging three of the categories 

identified in Yin et al. into a single “rounded” category. 

 

With these three cell shapes simulations were run, exploring how long-range 

alignment (LRA) changes through parameter space, varying individual migratory 

noise (𝜂), cell-cell guidance (𝑤¨) and matrix feedback (𝑤P). Results are shown in  

Figure 43. In each heatmap, one of the three parameters is fixed at zero and the 

other two parameters are adjusted incrementally. Comparing the heatmaps row-

wise shows that there are only minor differences in alignment depending on cell 

shape. The rounded cells produce slightly more aligned patterns, which could be 

explained by the increased surface area of the head bead (which in this case is the 

entire cell), corresponding to a wider neighbourhood in the traditional Vicsek model. 

However, for these simulations, cell speed was the same and it is in fact well 

documented that there is a direct coupling between cell speed and cell persistence 

(Maiuri et al. 2015, Cell 161, 374–386). Simulations were run with rounded CAFs 

which move very slowly and have high migratory persistence (Figure 44). If cells 

move too slowly or are too small, they do not come into contact frequently enough 

to generate alignment. Therefore, whilst the rounded cells in the simulations are 

marginally better at producing alignment, it is unlikely in biological systems that 

cells with this morphology could move quickly or with persistent migration. 

 

The analyses in Figure 43 confirm that matrix patterning is largely robust to 

different cell shapes at the mesoscale. For this reason, the chosen diamond cell 

shape in the model is a reasonable biological assumption, describing a cell with 

elongated morphology with aspect ratio 1:3, which is the average aspect ratio taken 

from experimental data (Figure 10). In addition, simulations varying aspect ratio 

were performed and confirm that altering aspect ratio does not greatly alter 

emergent patterning (Figure 45). Only a modest decrease in HDM and small 

increase in fractal dimension are observed for the extreme case of fibroblasts being 

entirely rounded (aspect ratio = 1). 
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 Figure 43: Exploring the effect of cell shape 
(A) Heatmaps showing long-range alignment (LRA, 0 − 400𝜇𝑚) for simulations with 
CAFs with an elongated, teardrop and rounded morphology (top, middle and 
bottom rows respectively). Schematics of these cell shapes are shown on the left. 
In the first column of heatmaps, matrix feedback is fixed at zero (𝑤P = 0) whilst 
noise (𝜂) and cell-cell guidance (𝑤¨) are varied incrementally. In the second 
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column, (𝑤¨ = 0) whilst 𝜂 and 𝑤P are varied and in the third column, 𝜂 = 0 whilst 𝑤¨ 
and 𝑤P	are varied. Comparing the heatmaps row-wise shows that a different cell 
shape causes little difference in LRA. N=5 simulations per point in parameter 
space. Simulations are of 500 cells. For all simulations, matrix organisation 
parameters are set to the typical values given in Table 5: 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 0. 
Parallel analysis is done for short-range alignment (SRA), high-density matrix 
(HDM), curvature (Curv) and fractal dimension (Frac) in figures B, C, D and E 
respectively. 
 
 

 
Figure 44: Varying cell speed and size 
Heatmap showing long-range alignment (LRA, 0 − 400𝜇𝑚)  for simulations for 
varying mean cell speed and cell radius. Cell shape is rounded, as shown 
schematically on the left. N=5 simulations per point in parameter space. 
Parameters are fixed as follows: 𝜂 = 0.02,𝑤¨ = 0.05,𝑤P = 0. All other parameters 
taken the default values given in Table 5. 
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Figure 45: Varying aspect ratio 
The effect of increasing cell aspect ratio on matrix organisation for cells with low 
individual migratory noise (𝜂 = 0, orange) and high individual migratory noise (𝜂 =
0.14, blue). Parameters follow typical values indicated in Table 5 and 𝑤¨ =
0.03,𝑤P = 0. N=5 simulations per point in parameter space. Error bars show 95% 
confidence intervals. Simulations run with 800 cells. 
 

3.3.4 Cell speed 

One assumption of the model is that each cell moves at a fixed speed, determined 

at its initiation from a Gaussian distribution with mean and standard deviation 

derived from experimental data. The parameter of cell speed can be directly 

measured from experimentation and translated to the mathematical model. 

However, it is likely that cells move at a different speed in vivo. Altering cell speed 

can cause variations in matrix pattern. If cell speed is very high, then fibroblasts will 

jump across multiple matrix grid points in a single time step, creating a dashed line 

of fibres. Conversely, if cell speed is very slow, then a cell may deposit fibres in the 

same grid point over several time points, leading to thicker matrix. In the case of 
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cells that rearrange matrix fibres, if the cells are much slower moving then they are 

likely to rearrange more of the fibres that they pass over. An interesting discussion 

of the effect of particle speed on emergent behaviour can be found in previous 

literature (Dallon, Sherratt and Maini, 1999). 

 

3.3.5 Matrix grid layer parameters 

In the simulations, the matrix grid layer comprises of a user-defined number of grid 

points. The number of bins within each grid point is also determined by the user. 

For simulations shown in Figure 51 there were 128x128 grid points, so that each 

grid point is approximately the area of the cell head bead. Increasing the number of 

grid points increases the precision of the matrix organisation and deposition (Figure 

46). This comes at a cost of increased computational time. Further, as the number 

of grid points is increased, average fibre density per grid point will decrease and 

time step will have to be reduced to avoid cells jumping over many grid points in 

one time step.  

 

 
Figure 46: Varying matrix grid parameters 
Example stills varying number of matrix grid point and the number of bins per grid 
point with corresponding starplots below. Scale bar represents 100𝜇𝑚. 𝜂 = 0,𝑤¨ =
0,𝑤P = 0.1.  
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Table 6: Metric values corresponding to Figure 46  

 
Analysis indicated that there was no discernible difference between simulations 

with 8 or 40 bins per grid point (Figure 46). As with the number of grid points, as 

the number of bins increases, average fibre density per bin will decrease. At an 

extreme, if there were only two bins per grid point, the matrix would be limited to a 

basket-weave pattern as fibres would only be oriented north-south or east-west. 

 

Importantly, the possibility that curvature was caused by the number of grid points 

comprising the matrix or the number of bins at each grid point was excluded, by 

running a subset of simulations with finer grid points and more bins. It would 

however be of interest to take this research forward in conjunction with 

experimentation studying long-range contractility, in order to try to ascertain what a 

reasonable grid point coarseness would be. If cells are capable of rearranging 

fibres over long distances, a coarser matrix grid would be appropriate.  

 

3.3.6 A general discussion on parameter sensitivity 

Even with the relatively tractable model introduced in this work, it is very easy to 

introduce many parameters. In addition to the three parameters of interest 

(individual migratory noise, cell-cell collision guidance and matrix feedback), there 

are many other secondary parameters (cell speed, size, aspect ratio, matrix grid 

size, number of bins etc.). The effect of secondary parameters must be considered. 

Where possible experimental values have been directly used in simulations. 

Exploratory simulations have shown that the parameters for which it was not 

possible to derive experimental data have little effect on matrix pattern, for example 

matrix grid size. In any case, care has been taken to try to choose feasible 

parameter values. 

 

 LRA SRA HDM Curv Frac 
noBins = 8, grid points = 128 0.23 0.82 0.36 26 1.307 
noBins = 8, grid points = 256 0.36 0.88 0.23 25 1.253 

noBins = 40, grid points = 128 0.34 0.82 0.12 25 1.258 
noBins = 40, grid points = 256 0.3 0.85 0.07 19 1.176 
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3.4 In silico generation of diverse matrix patterns 

3.4.1 Individual migratory noise and collision guidance insufficient to 
generate diverse patterns 

Initially the model was used to generate matrix patterns by varying cells’ individual 

migratory noise (𝜂) and collision guidance (𝑤¨) as done in Chapter 2, looking at 

organisation of the fibroblasts themselves. The fibroblasts deposited matrix fibres 

onto the second layer of the model but matrix feedback (𝑤P) was set to zero, 

indicated the cells moving entirely independently of the matrix fibres. 

Unsurprisingly, the matrix patterns that can be produced by these competing 

effects range from isotropic to highly aligned. The top row of Figure 47A indicates 

that only isotropic matrix is generated in the absence of collision guidance, no 

matter the level of individual migratory noise of cells. Introducing of collision 

guidance can lead to the generation of aligned matrix with spatially uniform 

distribution of the ECM as shown in Figure 47A. Crucially however, the patterns 

generated by individual migratory noise and collision guidance alone do not include 

many of the diverse patterns observed in vivo. The range of patterning is limited to 

alignment and disorder. In particular, “swirl-like” patterns across a mesoscale, as 

seen in the dermis and liver, with high curvature and short-range alignment could 

not be recapitulated by the model. Having established that fibroblasts were indeed 

guided by ECM (Figure 36) it was hypothesized that this could have a significant 

effect on emergent matrix patterns. 
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Figure 47: Matrix feedback increases diversity 
Comparison of emergent in silico matrix patterns from cell-cell interactions with cell-
matrix interactions. (A) Matrix patterns produced from cell-cell interactions alone 
with varying noise and cell-cell guidance. From left to right noise 𝜂 =
	(0, 0.07, 0.14, 0.21), from top to bottom 𝑤¨ =	 (0, 0.03,0.06, 0.1). The pink row, 
showing cell-cell guidance 𝑤E = 0.03, is repeated in part (B). Scale bar represents 
100𝜇𝑚. (B) Matrix patterns produced from varying noise and cell-matrix feedback, 
cell-cell guidance fixed at 𝑤¨ = 0.03. Simulations are of 800 cells over a time-
course of seven days. From left to right noise 𝜂 = 	 (0, 0.07,0.14, 0.21), from top to 
bottom 𝑤P = 	 (0, 0.04,0.12, 0.2). (C) Corresponding starplots showing metrics 
characterising distinct matrix patterns.  
 

3.4.2 Matrix feedback generates diverse matrix patterns 

To test this hypothesis, first matrix organisation was kept constant whilst the 

strength of the term describing how the matrix topology influences the cell 

orientation (𝑤P) was varied. Cells would deposit a single fibre per time step with no 

degradation or rearrangement of fibres. Given the restricted selection of patterns 

that can be generated by cell-cell guidance alone, this parameter was fixed at 𝑤¨ =

0.03, reflecting a physiologically plausible level of coordination between cells such 

that cells with zero or low individual migratory noise will align but cells with high 

individual migratory noise will not, thus producing an isotropic matrix. This value of 

collision guidance is similar to the value derived from experiments of the aligning 

CAFs. Fixing these parameters enabled for a simpler exploration of the effect of 

matrix feedback on resulting ECM patterns. Matrix feedback in the model (𝑤P) was 

varied incrementally. Figure 47B shows that varying matrix feedback greatly 

increased the diversity of matrix patterning. 

 

In the extreme cases of varying individual migratory noise and matrix feedback 

between being very low or very high demonstrates the diversity of patterns that can 

be achieved. In the case in which cells have low individual migratory noise and 

zero matrix feedback, the resulting emergent matrix is aligned characterised by 

high LRA, high SRA and low Curv (Figure 47B and C red box). Cells with similarly 

low levels of individual migrator noise but high matrix feedback produce matric with 

high SRA but low LRA, medium curvature and a high HDM (Figure 47B and C, 

yellow box).  
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As documented previously, cells with high individual migratory noise and zero 

matrix feedback produce a diffuse isotropic matrix with high Frac and Curv and low 

LRA and SRA (Figure 47B and C, blue box). Cells with similarly high level of 

individual migratory noise but high matrix feedback generated matrix with low LRA, 

quite high SRA and a mid-range percentage of HDM and Curv (Figure 47B and C, 

green box).  

 

 LRA SRA HDM Curv Frac 

Figure 47A, red  0.67 0.86 0.19 18 1.345 

Figure 47A, blue  0 0.22 0 31 1.437 

Figure 47A, yellow  0.08 0.69 0.27 29 1.246 

Figure 47A, green  0.13 0.68 0.21 30 1.28 

 

Figure 48 shows stills from example simulations demonstrating the coevolution of 

pattern of the fibroblasts and matrix. The correlation between cell body organisation 

and underlying ECM can clearly be observed. 
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Figure 48: Simulation stills of emergent patterns 
Matrix patterns emerging over time. Images from simulations showing fibroblasts 
(top) and corresponding matrix (bottom) over six days. (A) Isotropic matrix 
generated with parameters 𝜂 = 0,𝑤¨ = 0, 𝑤P = 0. (B) Aligned matrix generated with 
parameters 𝜂 = 0,𝑤¨ = 0.03,𝑤P = 0.  (C)  Swirly matrix generated with parameters 
are set at 𝜂 = 0,𝑤¨ = 0.03,𝑤P = 0.2. (D) Diffuse swirly matrix generated by 𝜂 =
0.14,𝑤¨ = 0,𝑤P = 0. For all simulations deposition rate=1, degradation rate=0, 
rearrangement rate=0. Scale bar represents 100𝜇𝑚.  
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To investigate further the effect of matrix feedback simulations were run varying 

individual migratory noise, cell-cell guidance and matrix feedback together. 

Pairwise analysis of the metrics revealed that the addition of matrix feedback could 

produce patterns in new areas of metric-space (Figure 49). In particular, matrix 

could now be produced with low long-range alignment but high short-range 

alignment, high percentage of high-density matrix (~30%) and a wide range of 

curvatures. This describes the spectrum of “swirl-like” patterns created by matrix 

feedback.  

 
Figure 49: Pairwise analysis of metric space 
Pair-wise analysis comparing metric-space covered by cells without matrix 
feedback (red) and with matrix feedback (black) showing the differences between 
patterns. N=10 simulations per point in parameter space. X and Y-axes for each 
metric shown. Matrix patterns produced from varying noise, cell-cell collision 
guidance and cell-matrix feedback (𝜂 = (0,0.05,0.1,0.14),𝑤¨ =
(0,0.03,0.06,0.1),𝑤P = (0,0.04,0.12,0.2)).  Simulations are of 800 cells over a time-
course of seven days. 
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These new patterns that are produced with the addition of matrix feedback arise 

due to the increased corralling of the cells as matrix guidance causes them to 

follow and reinforce tracks of matrix fibres that were laid down at early time points. 

Visually, the result is pronounced swirl-like patterning. This corralling of cells 

causes cells with low individual migratory noise to produce matrix patterns with 

higher curvature. Corralling also causes a decrease in fractal dimension of matrix 

patterns produced by cells with any level of individual migratory noise. The matrix 

acts as a memory component to the flocking model, causing cells to be influenced 

by matrix that had been deposited early on. This can cause swirl-like patterns later 

on as fibroblasts reinforce existing matrix. 

 

Consequently, for cells with low individual migratory noise, matrix feedback actually 

antagonises the matrix alignment that would result from the collision guidance term 

alone (Figure 50A and B) as cells are influenced by non-aligned matrix deposited 

early on. Interestingly, matrix feedback could act as a secondary mechanism for 

generating short-range alignment of cells with high individual migratory noise 

(Figure 50, blue line). Further, Figure 50 shows that starting with two cell 

phenotypes (with high (blue line) and low (yellow line) individual migratory 

persistence respectively), as matrix feedback increases, the patterning of the two 

cell-types converges. This suggests that matrix feedback can play a dominant role 

in determining emergent matrix patterning. 
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Figure 50: Line graphs showing effect of matrix feedback 
The effect of increasing matrix feedback for cells with low individual migratory noise 
(𝜂=0, orange) and high individual migratory noise (𝜂=0.14, blue). Error bars show 
95% confidence intervals. Simulations run with 800 cells and N=20 simulations per 
point in parameter space. 
 

3.4.3 Dimensionality reduction 

Pairwise analysis as described above helps to pinpoint exactly the ways in which 

matrix feedback affects the structure of ECM. However, in order to gain further 

depth of understanding as to exactly how matrix feedback alters patterning, a 

dimensionality-reduction analysis method was required. 

 

PCA with a covariance matrix was carried out to reduce the dimensionality of the 

five ECM metrics using the pcaMethods package in R (Stacklies et al., 2007), with 

the nipals method to account for missing data entries (Figure 51). Missing data 

arose from faint matrix patterns for example, when the matrix was very diffuse and 

therefore had no mask with which a measurement of curvature could be obtained. 
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Reducing the data into two principal components could explain 85% of the 

variance. The loadings plot shows that the first principal component is related to an 

increase in short-range alignment, high-density matrix and a decrease in fractal 

dimension, largely describing the effects of increasing matrix feedback. The second 

principal component related to an increase in long-range alignment with a small 

reduction in curvature and high-density matrix, resembling the effects of increasing 

cell-cell guidance. Importantly, the addition of the matrix feedback term expanded 

the diversity of matrix outputs visible on the PCA plot (note the expanded region 

covered by the black dots in Figure 51).  

 

 
Figure 51: Principal component analysis of metric space 
PCA of simulations exploring parameter space, reducing metric-space down into 
two principal components explains 85% of variance and shows the areas in metric-
space that can be reached with matrix feedback. Matrix patterns produced from 
varying noise, cell-cell collision guidance and cell-matrix feedback (𝜂 =
(0,0.05,0.1,0.14),𝑤¨ = (0,0.03,0.06,0.1),𝑤P = (0,0.04,0.12,0.2)).   
 
 
Similarly, analysis was run in sub-confluent conditions. In the previous analysis, 

simulations were run with 800 cells, corresponding to approximately 40% 

confluence. Sub-confluent simulations were run with 100 cells, corresponding to 

approximately 5% confluence. Again, matrix feedback enhanced diversity of 

patterns (Figure 52). This level of confluence is perhaps closer to some of the in 

vivo systems in which diverse matrix patterns are observed. As demonstrated in 

2.7.5, alignment through cell-cell guidance alone, with zero matrix feedback has a 

requirement for a threshold confluence. Crucially whilst these sub-confluent 
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conditions lie below this threshold for alignment, corralling of cells by matrix 

feedback occurs even at this low confluence, causing emergent patterning differing 

from complete disorder. Simulations run at sub-confluence have even more 

pronounced differences in the PCA analysis between matrix patterns produced with 

matrix feedback as compared to without matrix feedback. 
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Figure 52: Principal component analysis in sub-confluent conditions 
(A) PCA of sub-confluent simulations into two components explains 82% of the 
variance. (B) Pairwise analysis comparing cells in sub-confluent conditions without 
matrix feedback (red) against cells with matrix feedback (black) whilst varying cell-
cell collision guidance and noise. Simulations are of 50 cells over a time-course of 
seven days. 
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3.4.4 Alternative statistical procedures for metric space analysis 

PCA with correlation matrix 

 

PCA is typically performed using the covariance matrix of variables. However, 

results can be misleading if variables have very different scales. The correlation 

matrix is the standardized version of the covariance matrix. Using the correlation 

matrix instead accounts for differences in scale, although loses some structure as 

correlation coefficients are insensitive to variations in data dispersion. PCA using 

the correlation matrix together with corresponding loadings is shown in Figure 53A.  

The first principal component relates to an increase in percentage of high-density 

matrix (HDM) and short-range alignment (SRA), with a simultaneous decrease in 

fractal dimension (Frac). This change can largely be described by corralling as an 

effect of matrix feedback, which produces structures swirl-like matrix from cells that 

would typically form diffuse isotropic matrices without matrix feedback. The second 

principal component indicates represents an increase in curvature (Curv). In this 

PCA plot, it is still clear that the addition of matrix feedback enables patterns to 

reach new areas of metric space with high SRA, HDM and Curv and low Frac. 

 
Convolutional neural network (CNN) 

 

One issue with the analysis methods presented so far is their reliance on user-

defined metrics. A degree of subjectivity is introduced when defining the distances 

over which long and short-range alignment and curvature window are defined. In 

addition, the metrics in some instances may not be sufficient to describe 

differences between patterns, as observed in Figure 32, where the starplots 

characterising the dermis and spleen look similar, despite the in vivo images being 

distinct. Deep learning by contrast provides a metric-free approach to analysing the 

matrix patterns. Using TensorFlow to create a convolutional neural network (CNN) 

the algorithm could be trained to classify matrix patterns by whether or not they had 

been generated with nonzero matrix feedback. Training was carried out with 

images split into two categories: “With feedback” and “Without feedback”. Based on 

training with 700 images in each category and 500 training steps the model 
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achieved 85.2% accuracy in distinguishing between patterns produced with and 

without matrix feedback.  

 

The different analyses presented here are intended to demonstrate that matrix 

feedback can generate new patterns that cannot otherwise be obtained through 

varying just individual migratory noise and cell-cell collision guidance. It also 

suggests that no single analysis method provides a “silver bullet” for understanding 

high-dimensional data and that each algorithm may be viewed as providing a new 

perspective on the data. 
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Figure 53: Alternative dimensionality reduction methods 
PCA into two principal components using the correlation matrix explains 91% of the 
variance.  
 

3.5 Exploring fibre organisation 

3.5.1 Modelling matrix feedback as a function of fibre density 

Figure 28 suggests that for the duration of the four-day FUD experiment (where 

there is zero matrix guidance) as compared to the control experiment, there was no 

difference in the persistence or the emergence of alignment. To reflect the idea that 

matrix feedback has a minimal role at early time-points when little ECM has been 

deposited, the model was modified to consider matrix feedback as a function of 

fibre density. Experimental data was used to devise a heuristic argument as to 

what that function 𝑓 might be. Then it was possible to redefine the X and Y-

components determining fibroblast orientation as written in 2.5.2 as  

 
𝑋B =

1
𝑤O + 𝑤¨ + 𝑓(𝑑)𝑤P

(𝑤O𝑋O + 𝑤¨𝑋¨ + 𝑓(𝑑)𝑤P𝑋P), 

𝑌B =
1

𝑤O + 𝑤¨ + 𝑓(𝑑)𝑤P
(𝑤O𝑌O + 𝑤¨𝑌 + 𝑓(𝑑)𝑤P𝑌P), 

(33) 
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In the FUD experiment (Figure 28), there was no difference in the persistence or 

the emergence of alignment of the FUD knockout cells as compared with the 

control fibroblasts. Therefore, the assumption is made that the control fibroblasts 

undergo little to no matrix guidance with matrix fibres produced for these first four 

days. This is defined mathematically such that for days 1-4, 𝑤P𝑓(𝑑) = 0, where 𝑑 is 

fibre density.  

 

On the other hand, as described in section 3.3.1, matrix feedback is estimated to 

be 𝑤P = 0.27 for an aligned matrix produced over seven days. This can be defined 

mathematically by saying that at the end of day 7, 𝑤P𝑓(𝑑) = 0.27, where 𝑑 is fibre 

density. Using these two way-points at day 4 and day 7, simulations were run 

computing average fibre density across the entire matrix at different times. Fibre 

density 𝑑 was taken to be the number of fibres in the bin selected for matrix 

guidance in each matrix grid point. Simulations showed that the average fibre 

densities could be defined as 

 𝑑̅ = ú 5,	at	day	4,10,	at	day	7. 
(34) 

 

These two way-points were then used to define a linear function with conditions 

𝑓(5) = 0 and 𝑓(10) = 1, where 𝑤P would then be a user-defined maximal level of 

matrix feedback. This function can therefore be written as: 

 

𝑓(𝑑) = ¾

0,																								if	𝑑 ≤ 5,
𝑑 − 5
5 ,					if	5 ≤ 𝑑 ≤ 10,

1,																						if	𝑑 ≥ 10.

 

(35) 

 

 

3.5.2 Motivation for modelling fibre organisation 

In the previous simulations in section 3.4, cells had simply deposited a single fibre 

to the underlying matrix fibres at each time step, oriented in the direction of cell 

migration. Fibres were not reoriented by fibroblasts and deposition parameter (𝑜íNO) 

had been fixed whilst the weighting of matrix feedback had been varied in order 

explore the effect of matrix feedback. Instead now in simulations matrix fibres could 
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be organised in three different ways: cells could increase the number of fibre 

elements, cells could realign existing fibre elements, and cells could degrade 

existing filament elements. This manipulation of the second layer of the model was 

employed to see how dynamic remodelling of the ECM might affect matrix patterns 

by mapping new points in metric space onto the original PCA given in Figure 51. 

The original points from Figure 51 are shown faintly on Figure 54 - Figure 57.  

 

3.5.3 Altering the number of fibres deposited by fibroblasts 

First, the effect of altering the number of fibres deposited by a fibroblast in a single 

time step (𝑜íNO) was explored by fixing the rearrangement parameter (𝑜MN) to zero, 

degradation parameter 𝑜íNO = 1, and matrix feedback to 𝑤P = 0.04. Four different 

conditions were considered: Cells with low migratory noise and low fibre deposition 

(𝑜íNO = 2), (Figure 54A, light orange circle); low migratory noise and high fibre 

deposition (𝑜íNO = 10) (Figure 54A, dark orange circle); high migratory noise and 

low fibre deposition (𝑜íNO = 2) (Figure 54A, light blue circle); high migratory noise 

and high fibre deposition (𝑜íNO = 10) (Figure 54A, dark blue circle). Example 

matrices produced under these four conditions is shown in Figure 54B with 

starplots characterising the different matrix patterns. These four conditions 

represent extremes in parameter space. An increase in deposition results in higher 

HDM and higher curvature. Further, higher values of 𝑜íNO causes lower LRA as the 

matrix becomes so dense that there is a loss of order. The same analysis done 

with high matrix feedback (𝑤P = 0.2) showing very similar  results (Figure 55). 
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Figure 54: Changing deposition parameter (𝒐𝒅𝒆𝒑) with low matrix feedback 

Analysing the effects of varying deposition parameter (𝒐𝒅𝒆𝒑) and noise when matrix 
feedback is low (𝑤P = 0.04,𝑤¨ = 0.03). (A) PCA for aligning cells with low 
deposition (light orange circle, 𝜂 = 0, 𝑜íNO = 2, 𝑜íNî = 1, 𝑜MN = 0), aligning cells with 
high deposition (dark orange circle, 𝜂 = 0, 𝑜íNO = 10, 𝑜íNî = 1, 𝑜MN = 0), non-
aligning cells with low deposition (light blue circle, 𝜂 = 0.14, 𝑜íNO = 2, 𝑜íNî = 1, 𝑜MN =
0) and non-aligning cells with high deposition (dark blue circle, 𝜂 = 0.14, 𝑜íNO =
10, 𝑜íNî = 1, 𝑜MN = 0). Blue arrow indicates change in deposition parameter (𝒐𝒅𝒆𝒑) 
for non-aligning cells, yellow indicates change in deposition parameter (𝒐𝒅𝒆𝒑) for 
aligning cells. Background points and loadings are from Figure 51. (B) 
Corresponding example stills of the matrix produced by different conditions and 
their starplots. N=10 simulations per point in parameter space. 
 

 
Figure 55: Changing deposition parameter (𝒐𝒅𝒆𝒑) with high matrix feedback 
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Analysing the effects of varying fibre deposition parameter (𝒐𝒅𝒆𝒑) when matrix 
feedback is high (𝑤P = 0.2,𝑤¨ = 0.03). (A) PCA for aligning cells with low 
deposition (light orange circle, 𝜂 = 0, 𝑜íNO = 2, 𝑜íNî = 1, 𝑜MN = 0), aligning cells with 
high deposition (dark orange circle, 𝜂 = 0, 𝑜íNO = 10, 𝑜íNî = 1, 𝑜MN = 0), non-
aligning cells with low deposition (light blue circle, 𝜂 = 0.14, 𝑜íNO = 2, 𝑜íNî = 1, 𝑜MN =
0) and non-aligning cells with high deposition (dark blue circle, 𝜂 = 0.14, 𝑜íNO =
10, 𝑜íNî = 1, 𝑜MN = 0). Blue arrow indicates change in (𝒐𝒅𝒆𝒑) for non-aligning cells, 
yellow indicates change in (𝒐𝒅𝒆𝒑) for aligning cells. Background points and loadings 
are from Figure 51. (B) Corresponding example stills of the matrix produced by 
different conditions and their starplots. N=10 simulations per point in parameter 
space. 
 

3.5.4 Altering the number of fibres rearranged by fibroblasts 

Next, the number of fibres which fibroblasts could reorganise in a single time step 

(𝑜MN) was varied. The deposition and degradation parameters were fixed to 𝑜íNO =

1, 𝑜íNî = 0, and matrix feedback at 𝑤P = 0.04. Again four different conditions were 

considered, each representing extremes in parameter space: Cells with low 

migratory noise and low fibre rearrangement (𝑜MN = 0) (Figure 56A, light orange 

circle); low migratory noise and high fibre rearrangement (𝑜MN = 10)  (Figure 56A, 

dark orange circle); high migratory noise and low fibre rearrangement (𝑜MN = 0)  

(Figure 56, light blue circle); high migratory noise and high fibre rearrangement 

(𝑜MN = 10)  (Figure 56, dark blue circle). Example matrices produced under these 

four conditions is shown in Figure 56B with starplots characterising the different 

matrix patterns.  

 

Interestingly, a higher rearrangement value for 𝑜MN leads to fibres being organised 

into thicker bundles, leading to higher HDM especially for cells with high migratory 

noise. The matrix images produced in silico show the density of the most recently 

chosen bin at each grid point. The effects of matrix reorganisation remain largely 

constant regardless of the level of matrix feedback. This suggests that the effect of 

matrix homeostasis on cell organisation is subtler than the absolute level of matrix 

feedback. These results highlight the capacity for the model to evaluate the effects 

of matrix organisation on pattern generation and highlight how the introduction of 

dynamic remodelling increases matrix diversity by increasing fibre bundling. The 
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same analysis run with a high matrix feedback level of 𝑤P = 0.2 shows very similar 

results (Figure 57). 

 

 
Figure 56: Changing rearrangement parameter with low matrix feedback 
Analysing the effects of varying fibre rearrangement when matrix feedback is low 
(𝑤P = 0.04). (A) PCA for aligning cells with low rearrangement (light orange circle, 
𝜂 = 0, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 0), aligning cells with high rearrangement (dark 
orange circle, 𝜂 = 0, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 10), non-aligning cells with low 
rearrangement (light blue circle, 𝜂 = 0.14, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 0) and non-
aligning cells with high rearrangement (dark blue circle, 𝜂 = 0.14,	𝑜íNO = 1, 𝑜íNî =
0, 𝑜MN = 10). Blue arrow indicates change in rearrangement (𝑜MN) for non-aligning 
cells, yellow indicates change in rearrangement (𝑜MN) for aligning cells. Background 
points and loadings are from Figure 51. (B) Corresponding example stills of the 
matrix produced by different conditions and their starplots. N=10 simulations per 
point in parameter space. 
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Figure 57: Changing rearrangement parameter with high matrix feedback 
Analysing the effects of varying fibre rearrangement when matrix feedback is low 
(𝑤P = 0.2). (A) PCA for aligning cells with low rearrangement (light orange circle, 
𝜂 = 0, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 0), aligning cells with high rearrangement (dark 
orange circle, 𝜂 = 0, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 10), non-aligning cells with low 
rearrangement (light blue circle, 𝜂 = 0.14, 𝑜íNO = 1, 𝑜íNî = 0, 𝑜MN = 0) and non-
aligning cells with high rearrangement (dark blue circle, 𝜂 = 0.14,	𝑜íNO = 1, 𝑜íNî =
0, 𝑜MN = 10). Blue arrow indicates change in rearrangement (𝑜MN) for non-aligning 
cells, yellow indicates change in rearrangement (𝑜MN) for aligning cells. Background 
points and loadings are from Figure 51. (B) Corresponding example stills of the 
matrix produced by different conditions and their starplots. N=10 simulations per 
point in parameter space. 
 
A limitation of the model rests in the output depiction of matrix fibres. In Figure 56, 

cells with low migratory noise produce thicker bundles of fibres deposited in the 

same bin, despite having the same overall fibre value for 𝑜íNO as cells with high 

migratory noise (Figure 56, yellow and light blue boxes). This is because the output 

visual matrix shows the density of the matrix in the dominant bin. For example, 

consider a matrix grid point which has ten fibres deposited across its eight bins. If 

all fibres have been deposited in bin 1, then the visual output matrix at this point 

has the orientation of bin 1 and intensity 10. If on the other hand the fibres are 

deposited with more dispersion by fibroblasts with very high migratory noise then 

bin 1 could have three fibres and all the other bins could have a single fibre in 

them. In this case the visual output matrix at this point has the orientation of bin 1 

but with intensity 3. Clearly this is not optimal and needs further development, but 

is still sufficient to see overall patterning. 

 

 
Table 7: Metric values for simulations with differing fibre organisation 

 LRA SRA HDM Curv Frac 
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Figure 54 (yellow) 0.55 0.9 0.21 13 1.165 

Figure 54 (orange) 0.46 0.89 0.91 30 1.111 

Figure 54 (light blue) 0 0.24 0 NA NA 

Figure 54 (dark blue) 0.27 0.62 0.99 32 1.216 

      

Figure 55 (yellow) 0.32 0.87 0.27 14 1.203 

Figure 55 (orange) 0.13 0.72 0.82 33 1.132 

Figure 55 (light blue) 0.02 0.24 0 NA NA 

Figure 55 (dark blue) 0.17 0.73 0.95 30 1.066 

      

Figure 56 (yellow) 0.48 0.87 0.2 18 1.259 

Figure 56 (orange) 0.48 0.82 0.39 20 1.242 

Figure 56 (light blue) 0.04 0.26 0 35 1.181 

Figure 56 (dark blue) 0.11 0.38 0.4 35 1.179 

      

Figure 57 (yellow) 0.26 0.82 0.24 19 1.212 

Figure 57 (orange) 0.24 0.8 0.41 23 1.183 

Figure 57 (light blue) 0.25 0.63 0.01 25 1.28 

Figure 57 (dark blue) 0.27 0.79 0.5 30 1.196 

 
 

3.5.5 Exploring the effects of long-range contractility 

Whilst the model does not explicitly incorporate contractile forces, it is well 

documented that fibroblasts are indeed able to pull on and hence rearrange fibres 

over a distance greater than the immediate area containing the cell (Kaur et al., 

2019). It is therefore important to understand the impact of long-range contractility 

in matrix patterning in particular, to establish whether there exists an optimal level 

of contractility for ECM alignment. The model was extended to include a parameter 

for rearrangement length (𝑜ªN~î�ÿ), indicating the distance over which fibres could 

be reoriented. Simulations were run with fixed noise, cell-cell guidance and zero 

matrix feedback (𝜂 = 0,𝑤¨ = 0.03,𝑤P = 0) varying rearrangement length and 
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rearrangement rate. Cells were able to reorient fibres within the region that 

coincided with the cell’s long axis (Figure 58). These two terms were then varied in 

simulations with cells with either low individual migratory noise (favouring 

alignment) or high migratory noise (favouring no alignment). The low migratory 

noise simulations are shown in the upper panels and the high migratory noise in 

the lower panels. LRA over a seven-day time-course is shown to give an 

impression of the rate of emergent alignment. Very high values of 𝑜MN and 

intermediate values of 𝑜ªN~î�ÿ were able to boost the rate of alignment for low noise 

fibroblasts (highlighted with green box), and led to a small gain in alignment for the 

higher noise fibroblasts (highlighted with grey box). These data indicate that 

remodelling of ECM at a distance can influence alignment, but the magnitude of the 

effect is small. (Figure 59). 

 
Figure 58: Schematic of long-range fibre organisation 
The cell is associated with a grid point (shown with a black dot), which is the grid 
point closest to the centre of the cell's head. In the event that 𝑤P ≠ 0, the cell will 
be guided by the fibres in that grid point. The cell will also reorganise fibres in that 
grid point. When long-range rearrangement of fibres is implemented (𝑜ªN~î�ÿ ≠ 0), 
the cell can also rearrange fibres in adjacent boxes along the direction of the cell’s 
long axis (white dots). In this schematic 𝑜ªN~î�ÿ = 5.  
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Figure 59: Long-range contractility 
Simulations varying length over which matrix fibres can be rearranged by 
fibroblasts (𝑜ªN~î�ÿ) and the number of fibres rearranged by fibroblasts in a single 
time step (𝑜MN). Red indicates a high alignment score and blue a low alignment 
score.  (A) Heatmaps showing how long-range alignment (LRA, 0 − 400𝜇𝑚)  
changes over time for simulations of cells with low migratory noise. (B) Heatmaps 
showing how long-range alignment (LRA) changes over time for simulations of cells 
with high migratory noise 
 

3.5.6 Model construction as a tool for challenging biological assumptions 

In the construction of the model, it is necessary to make certain assumptions, 

which are made based on a compromise between mathematical tractability and 
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biological justification. The topic of fibre rearrangement is a prime example of how 

model development can answer existing questions as well as generating new 

questions.   

 

Constructing rules for long-range contractility has led us to ask the following 

questions: 

 

1. Would fibres perpendicular to the cell be rearranged? Or would only fibres in 

neighbouring bins be rearranged? 

2. What is the timescale for fibre rearrangement to happen? Would fibres more 

closely aligned be rearranged more quickly?  

3. If two different fibroblasts pull on the same fibre, what is the effect? Does 

the effect of the nearest fibroblast dominate? What is the net average 

effect?  

4. What is the effect of altering the neighbourhood of long-range contractility? 

Is overall patterning affected if cells can alter fibres not only coinciding with 

their long axis of orientation? 

 

These are exciting areas of future research, and lend themselves to being 

understood by switching iteratively between experimental and computational work. 

These challenging questions certainly cannot be answered without mathematical 

modelling. It is clear that these questions lead to a more force-based paradigm 

than the rule-based system of the current model and other models more equipped 

to dealing with forces may be more appropriate to answer these questions of how 

exactly fibroblasts pull on fibres, which recently begun to be elucidated 

experimentally (Steinwachs et al., 2015). Incorporated data on cell-matrix forces 

such as traction force microscopy will provide more thorough understanding on the 

effects of fibre rearrangement on emergent matrix patterning (3.5.4), but may not 

easily translate to a rule-based system such as the one presented here. However, 

with the current lack of information on how these forces work on the mesoscale, 

agent-based modelling provides a good theoretical framework for exploring the 

interactions between cells and fibres. In the building of such models, one is forced 

to consider what biological assumptions are appropriate, and in doing so, is led to 

propose new questions from a unique perspective. 
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3.6 Mimicking in vivo tissues 

The model has so far demonstrated that a wide range of matrix patterns can be 

generated by varying a small number of parameters. As shown in Figure 2, diverse 

patterning is observed in both normal and pathological tissues in vivo. It is currently 

unknown how patterns such as these arise in vivo across a mesoscale of up to 

several millimetres however, the fibroblasts producing such patterns will most likely 

have different functional properties and lineages (Driskell et al., 2013). It is of 

interest therefore to establish if the model can mimic such in vivo patterns and with 

what parameters this might be possible ie what fibroblast/matrix properties can 

produce such patterns. Understanding which parameters could produce these in 

vivo patterns would shed insight into how these patterns arise through cell and 

matrix interactions across many orders of magnitude. 

 

The model was challenged to mimic the in vivo tissues of the dermis, liver, spleen 

and stomach. To do this, several alterations were made to the simulations. Firstly, 

the matrix grid was made more fine-grained, consisting now of 256x256 grid points 

as opposed to 128x128, which was used to previous simulations. This allowed for 

higher precision of fibre deposition, at the cost of computational speed. Secondly, 

by counting nuclei in the in vivo images from Figure 32, it was deduced that N=200 

cells was an appropriate level of confluence. Thirdly, simulations were run for three 

times longer than normal simulations, reflecting the gradual development of these 

tissues over long time periods. 



Chapter 3. Modelling fibroblast-matrix interactions 

 

 150 

 
Figure 60: Mimicking in vivo tissues in silico 
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(A) Second harmonic imaging of collagen (orange) in various tissues from a 
PDGFR nuclear labelled mouse (left column). PDGFR positive nuclei (cyan) 
indicates fibroblast density. In silico matrix that mimics the in vivo patterns are 
shown in the right column. (B) Each matrix from part (A) is characterised on a 
starplot in a corresponding colour, to long-range alignment (LRA), short-range 
alignment (SRA), percentage of high-density matrix (HDM), curvature (Curv) and 
fractal dimension (Frac). Differences in parameters for generating such matrix 
patterns are given in Table 8. Scale bars represent 100𝜇𝑚. 
 

With these modifications, simulations were run stepping incrementally through 

parameter space. In section 2.7.1, it was established that in vitro, non-aligning 

fibroblasts moving on glass in sub-confluence have noise attuned to 𝜂 = 0.18, 

corresponding to very high individual migratory noise. From this it was deduced 

that searching in the range 𝜂 ∈ 	 [0, 0.2] would be an appropriately wide range of 

values. In section 2.6.2, the fitted value of cell-cell collision guidance for the 

aligning fibroblasts was ascertained experimentally with a given value of 𝑤¨ ≈ 0.05. 

Therefore, the range 𝑤¨ ∈ [0,0.2] was also chosen as a reasonably wide range of 

values to search. In section 3.3.1 it was established that matrix feedback in vitro 

took an approximate value of 𝑤P ≈ 0.27. This level of matrix feedback is in two 

dimensions, whereas in three dimensions in vivo matrix feedback is likely to be 

higher given the apical and basal constraints that matrix fibres can provide to cells. 

Therefore, the range for 𝑤P and kept to a range of 𝑤P ∈ 	 [0,1]. Noise and cell-cell 

guidance were varied by increments of 0.01 for their specified ranges. Matrix 

feedback was varied by increments of 0.01 in the range [0,0.1] and by increments 

of 0.1 in the range [0.1,1]. Simulations were run for all combinations of values 

within these ranges. In this way, simulations were run through all of parameter 

space. 

 

The three principal parameters of individual migratory noise, cell-cell collision 

guidance and matrix feedback, together with cell speed and fibre deposition per 

time step (𝑜íNO) were varied to try to recapitulate the in vivo tissues. In order to 

choose the most suitable areas in parameter space to generate patterns similar to 

the in vivo tissues, a number of heuristic arguments were made: 
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The stomach is highly aligned. From stepping through parameter space, the model 

shows that the area of parameter space corresponding to high LRA and SRA is 

where noise and matrix feedback are low, and cell-cell guidance is non-zero.  

 

The in vivo liver is highly corralled which the model shows to occur in the region of 

parameter space where matrix feedback is high.  

 

The spleen matrix appears to be made up of long straight fibres, suggesting low 

individual migratory noise, which are uncoordinated, suggesting low cell-cell 

guidance and independent, suggesting low matrix feedback. 

 

The dermis matrix is swirl-like, diffuse and reinforced, which as established in 3.4.2 

corresponds to the region of parameter space where matrix feedback and noise are 

high.  

 

Through this line of argument, parameters were chosen to generate the in silico 

patterns shown in Figure 60 and Table 8. Qualitatively they agree well with the in 

vivo images.  

 
Table 8: Parameter values corresponding with Figure 60 

 Dermis Liver Spleen Stomach 

Noise (𝜂) 0.1 0.1 0.01 0.0 

Cell-cell guidance (𝑤¨) 0.03 0.03 0 0.03 

Matrix feedback (𝑤P) 0.4 0.8 0.01 0 

Deposition rate 2 1 2 2 

Mean speed (𝜇/ℎ) 0.7 0.7 1.8 3.5 

Speed standard deviation (𝜇/ℎ) 0.1 0.1 0.3 0.5 

Number of matrix grid points 256E 256E 256E 256E 

 

3.6.1 Comparing in vivo and in silico metrics 

To compare how well the in silico matrix patterns agreed with the in vivo patterns, 

the five metrics of LRA, SRA, HDM, Frac and Curv were derived. In both the in vivo 

and in silico patterns, the long-range alignment was now computed at a distance of 
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200𝜇𝑚 − 800𝜇𝑚 and short-range alignment was computed at 0𝜇𝑚 − 200𝜇𝑚 to 

account for different size and resolution of the matrix images. The raw values for 

the metrics are given below in Table 9: 

 
Table 9: Metric values corresponding to Figure 60 

 
An important challenge arises from these values: there are discrepancies between 

the in vivo and in silico metrics. The stomach matrix in vivo looks highly aligned, 

and yet has LRA=0.38 and SRA=0.68. An in silico matrix that looks similarly 

aligned would have much higher LRA and SRA, closer to 1. This is because in 

silico, the output fibre orientations are recorded exactly, whereas in vivo the images 

are noisier with variation in fibre intensity. Whilst the theoretical upper limit for both 

LRA and SRA is 1, the upper limit in vivo is probably closer to 0.38 and 0.68 

respectively. Similarly, the mean value of HDM in silico through all parameter 

space is 0.3, and very few simulations have HDM higher than 0.5 whilst Frac in 

silico is also consistently lower than the four in vivo images. This is most likely due 

to differences in fibre intensity as picked up by the microscope, fibre thickness and 

duration over which the matrix patterns develop in vivo. Whilst the matrix patterns 

in silico qualitatively look very similar to in vivo patterns, there is a gap between the 

in vivo and in silico values due to the nature of how the matrix patterns are 

captured. Therefore, it is difficult to ascertain an appropriate function for “inter”-

translation from in silico to in vivo values. 

 LRA SRA HDM Curv Frac 
IN VIVO      
Dermis 0 0.14 1 40 1.549 

Liver 0 0.12 0.54 47 1.554 
Spleen 0 0.13 0.98 44 1.571 
Stomach 0.38 0.68 0.91 23 1.42 

      
IN SILICO      
Dermis 0 0.11 0.32 37 1.434 

Liver 0 0.16 0.02 37 1.411 
Spleen 0.15 0.19 0.27 34 1.458 
Stomach 0.99 0.99 0.25 14 1.412 
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Encouragingly, whilst the raw measurements for the five metrics are different from 

the in vivo values for the reasons described above, the “intra”-comparison between 

the four patterns is consistent with the in vivo “intra”-comparisons. For example, the 

HDM of the liver both in vivo and in silico is the lowest of the four, the Frac and 

Curv of the stomach is the lowest of the four and the Frac of the spleen is the 

highest. This suggests that the areas in parameter space which produce the similar 

patterns relative to the system (in silico vs in vivo) have been correctly identified. 

Further evidence of this is given by normalising the in vivo and in silico values with 

the following functions shown in Table 10: 

 
Table 10: Normalisation functions corresponding to Figure 60 

Metric Normalisation function in vivo Normalisation function in silico 

LRA 𝑥 max(0, 𝑥 − 0.6) 

SRA 𝑥 max(0, 𝑥 − 0.3) 

HDM 𝑥 − 0.5
0.5  

𝑥
0.35 

Curv 𝑥 − 20
40  

𝑥 − 12
30  

Frac 𝑥 − 1.2
0.4  

𝑥 − 1.36
0.1  

 

These normalised values are then plotted onto starplot shown in Figure 60. Again, 

these show strong agreement between the in vivo patterns and the in silico 

patterns mimicking the in vivo case. It is exciting to note how it possible to 

recapitulate in vivo matrix patterns through a model with few parameters and 

simple rules. This offers a possible explanation for how such complex tissues arise 

in nature. 

 

3.7 Interconversion between matrix types 

So far, the model has been used to understand how patterns arise de novo. In 

other words, starting with nothing, how can patterns emerge? However, in many 

instances this is an oversimplified view and in fact new matrix patterns emerge 
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from existing matrix. The organisation of the ECM can change over time, either as 

the result of ageing, wound healing or more malign processes such as 

tumourigenesis.  

 

3.7.1 Matrix transitions in cancer 

As discussed in the Introduction, matrix organisation becomes dysregulated in 

cancer. In the tumour microenvironment, there are typically more fibroblasts than in 

normal tissue, many of which are CAFs, which display a highly activated 

phenotype. This leads to more matrix fibre proteolysis, degradation and 

rearrangement. Matrix interconversion in cancer was explored experimentally. 

Gomori trichome staining of collagen in a normal region and in a melanoma region 

of the dermis highlights the conversion process (Figure 61). Matrix in the normal 

region is characterised by curved matrix fibres. In contrast, the adjacent region of 

the dermis containing melanoma displays altered matrix organisation with more 

aligned fibres near to the melanoma. Additionally, changes in the matrix are 

observed in cancerous regions over time. Consistent with a previous report that 

targeted BRAF inhibition in melanoma activates stromal fibroblasts (Hirata et al., 

2015), a comparison of ECM organisation in the same patient prior to therapy and 

post-therapy indicated that when the treatment is failing, matrix alignment 

increases and curvature and fractal dimension decrease (Figure 62). 
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Figure 61: ECM organisation changes near the melanoma border 
(A) Gomori Trichrome staining of normal skin (left) and the melanoma border 
(right). Epidermis is denoted with an “e”, dermis with a “d” and melanoma with an 
“m”. (B) Staining showing the collagen alone. (C) Corresponding starplot 
characterising normal dermis (green line) and melanoma (pink line). Scale bars 
represent 100𝜇𝑚.  
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Figure 62: ECM organisation changes in therapy resistance 
Gomori Trichrome staining showing from a sample from a melanoma patient pre-
therapy and post-therapy when resistance has occurred. Matrix is shown in blue. 
Matrix alone is shown in orange below with corresponding starplots on the bottom 
row. Scale bars represent 100𝜇𝑚 
 

Analysis from Figure 50 suggests that high matrix feedback may preclude the 

ability for fibroblasts to remodel the matrix, as they would be forced to follow 

existing matrix. The model was employed to understand under what conditions 

such matrix interconversion might be observed, in particular what levels of matrix 

feedback would enable matrix remodelling. First preliminary simulations were run to 

generate “dermal”-like matrices, produced with high individual migratory noise and 

high matrix feedback to generate the normal pre-cancerous tissue. Fibroblasts with 

individual migratory noise reduced to zero were then reseeded at random on this 

dermal matrix. As expected, the model predicts that high levels of matrix feedback 

will lead to fibroblast migration being channelled into following existing matrix, 
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thereby preventing matrix remodelling (Figure 63B, blue line). However, lowering 

matrix feedback to 0 permitted a gradual transition from `dermal' matrix to a more 

aligned matrix (grey line). The emergent matrix showed hybrid features with 

retention of the original “dermal” matrix (Figure 63).  

 

 
Figure 63: Mimicking the matrix transition in melanoma 
Long-range alignment (LRA) over time beginning with in silico dermis for varying 
levels of matrix feedback: 𝑤P = 0 (grey lines), 𝑤P = 0.2	(orange lines), 𝑤P = 0.4 
(blue lines). 𝑜íNO = 10. Solid lines show simulations with degradation and 
rearrangement rates set to zero, whilst dotted lines show simulations with𝑜MN =
5, 𝑜íNî = 5. At day 10, when matrix feedback 𝑤P = 0.2, simulations with fibre 
degradation and rearrangement are more aligned (p=9e-04). N=25 simulations per 
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point in parameter space. (D) Corresponding in silico matrix showing before and 
after conversion. Colour brightness has been normalized across images. Scale 
bars correspond to 100𝜇𝑚. 
 

In order to reduce the artefact of the original matrix, similar simulations were next 

run with nonzero levels of matrix degradation and fibre rearrangement. The results 

indeed confirmed that at a middle level of matrix feedback (𝑤P = 0.2, Figure 63 

orange line), enabling fibroblasts to rearrange and degrade fibres, produces a more 

aligned matrix (p=9e-04, two tailed t-test), suggesting that the ability of fibroblasts 

to degrade and rearrange fibres was key to the interconversion process.  

 

To address the question of whether such a transition could occur experimentally, 

aligning fibroblasts were seeded on a thick non-aligned matrix and non-aligning 

fibroblasts on an aligned matrix, and observed over four days how the cells 

behaved on the matrix, and the patterning of the new matrix they produced (Figure 

64). The original matrix is shown in yellow, with the emergent organisation of the 

fibroblasts at different times shown in phase-contrast below. The new matrix 

produced by these fibroblasts is shown in blue. In both cases the fibroblasts display 

an initial tendency to follow the original matrix (day 1), but then revert to their 

preferred phenotype (day 3-4), being able to ignore the original matrix and produce 

a new matrix on top. For completeness aligning fibroblasts were also seeded on 

aligned matrix and non-aligned fibroblasts were seeded on non-aligned matrix in 

separate experiments Figure 65. Together, the adapted two-layer nematic Vicsek 

model and supporting experimental analyses demonstrate that matrix feedback 

enables diverse emergent patterns of ECM, including curved matrix structure, but 

that the strength of matrix feedback, is not sufficient to lock the system indefinitely, 

therefore enabling transitions to occur over a timescale of days. Additionally, these 

results confirm how matrix feedback enables fibroblasts to take instruction from 

surrounding matrix (Dallon, Sherratt and Maini, 1999; McDougall et al., 2006). 

Experimental methods are described in the Appendix 6.2. 
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Figure 64: Seeding fibroblasts on opposite pre-existing matrix 
Modelling conversion between matrix patterning in vitro (A) Non-aligning fibroblasts 
were seeded onto a pre-existing anisotropic matrix. The pre-existing matrix is 
shown in yellow, new matrix produced over the duration of the assay is shown in 
blue and the composite image after four days is shown on the right. Corresponding 
zoomed-in phase imaging of cell-body organisation below. For the first two days 
cells follow the matrix and align, but this order breaks down by day 3. (C) Aligning 
fibroblasts were seeded onto a pre-existing isotropic matrix. Corresponding 
zoomed-in phase imagine of cell-body organisation below. On day 1 cell body 
orientation is disorganised and follows the isotropic matrix. By day 3 fibroblasts 
start to ignore the matrix and align. Scale bars represent 100𝜇𝑚. 
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Figure 65: Seeding fibroblasts on matching pre-existing matrix 
Complement experiments to those described in Figure 64. (A) Aligning fibroblasts 
were seeded onto a pre-existing anisotropic matrix. The pre-existing matrix is 
shown in yellow, new matrix produced over the duration of the assay is shown in 
blue and the composite image after four days is shown on the right. Corresponding 
zoomed-in phase imaging of cell-body organisation below. Fibroblasts quickly 
organise themselves to follow the existing ECM. (B) Non-aligning fibroblasts were 
seeded onto a pre-existing isotropic matrix. Corresponding zoomed-in phase image 
of cell-body organisation below. Scale bars represent 100𝜇𝑚. 
 

3.7.2 Matrix transitions in wound healing 

Similar principles were then applied to explore regeneration of matrix after 

wounding (Figure 66). To simulate a wound, the model first generated matrix, then 

all cells were removed from the entire simulation space and all matrix from the 

wound area. Then fibroblasts were re-added at random in the region of ECM 
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outside the wound which would deposit fibres only within the wound area (𝑜íNO =

1). For cell-types that generated aligned or swirly matrix, adding the same type of 

fibroblasts that created the original matrix proved ineffective at repairing the wound, 

leaving gaps and with the new matrix often not matching the old matrix (Figure 66, 

green box). An aligning fibroblast was designated “Phenotype A” (𝜂 = 0,𝑤¨ =

0.03,𝑤P = 0). Based on analysis in Figure 48 revealing that cells with high 

individual migratory noise and zero matrix feedback generate ECM that 

homogeneously covers the simulation space and is not porous, the ‘wound repair’ 

performance of these cells was tested. Figure 66 shows that this phenotype B (𝜂 =

0.14, 𝑤¨ = 0.03,𝑤P = 0) could not produce similar matrix to before the wound 

(yellow box). Analysis of how well cells with varying levels of individual migratory 

noise and matrix feedback re-filled the space revealed that a higher level of 

individual migratory noise was essential for efficient restoration of matrix (Figure 

66B). At day 2, phenotype A has filled 82% of the wound compared with 94% by 

phenotype B (two-sided t-test, p-value<2e-16, N=20). There was also a trend 

towards low levels of matrix feedback being beneficial. Mechanistically, high levels 

of matrix feedback made the movement of cells from areas of high ECM into low 

matrix unfavourable as it resulted in cells being channelled into following existing 

matrix.  
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Figure 66: Simulating wound healing 
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(A) Wound healing simulation adding cells with high individual migratory noise and 
zero matrix feedback (top row Phenotype A, 𝜂 = 0,𝑤$ = 0.2) and cells with low 
individual migratory noise and high matrix feedback (bottom row Phenotype B, 𝜂 =
0.14,𝑤$ = 0). Outline of initial wound indicated by dotted line. (B) Graph indicating 
how wound is filled in by cells with low noise (solid line) and high noise (dotted line) 
when matrix feedback is set at 𝑤$ = 0.2. For all simulations, number of cells = 800. 
N=20 simulations per point in parameter space. Red stars indicate p-value<0.001, 
two-sided t-test. (C) Wound healing simulation adding non-aligning cells with zero 
matrix feedback, which after two days revert to being like the original cell type, with 
low noise and high matrix feedback (days 0-2: Phenotype B, 𝜂 = 0.14,𝑤$ = 0, days 
3-7: Phenotype A, 𝜂 = 0.0,𝑤$ = 0.2). (D) Starplots characterising each wound-
repair option. Two-step procedure matches original matrix before the wound more 
closely (one-sided Mann-Whitney U test, two-step vs phenotype A, p=0.01, two-
step vs phenotype B, p<2e-16. Wounding on five different matrices with N=20 
simulations for each procedure type) Stars indicate p-values showing statistically 
clear relationships for each metric as compared to the pre-wound matrix. One star: 
p-value<0.05, two stars: p-value<0.01, three stars: p-value<0.001. Scale bars 
represent 100𝜇𝑚. 
 

To explore the implications of the above findings, it was next considered if wound 

repair to re-generate the same matrix that was initially present might require 

multiple stages of fibroblast phenotype activity. Specifically, if fibroblasts with one 

set of mechanistic properties was optimal for initially filling the space (Phenotype B) 

then a transition to a new set of mechanistic properties may enable remodelling of 

the matrix to re-generate the original pattern (Phenotype A). Figure 66C shows an 

example wound-healing scenario where fibroblasts display high individual migratory 

noise and zero matrix feedback for the first two days of healing (Phenotype A). 

After two days, they then revert back to having the same characteristics as the 

fibroblasts which produced the original matrix, with low individual migratory noise 

and high matrix feedback (Phenotype B). Comparing the example one-step wound 

healing process with the two-step process (blue box) shows that the two-step 

wound-healing process is more effective at filling in the wound and creating new 

matrix similar to before the wound. Interestingly, the model also shows a tendency 

for matrix feedback to induce the new matrix to be ‘connected’ to the existing 

matrix, resulting in the old matrix at the periphery of the wound being ‘stitched 

together’ (Figure 66C, zoomed-in blue box, example stitching indicated with red 

arrows. This suggests that it may be beneficial to induce matrix feedback to be 

stronger later on in wound repair, which could then facilitate more effective matrix 

repair by joining fibres together. The two-step procedure was ranked against 

phenotype A and phenotype B alone for each metric and found that it improved the 



Chapter 3. Modelling fibroblast-matrix interactions 

 

 165 

match between the new matrix and the original matrix before the wound (Figure 

Figure 66D, one-sided Mann-Whitney U test, phenotype A (green box) vs two-step 

(blue box) p=0.01, phenotype B (yellow box) vs two-step (blue box) p<2e-16). 

 

3.7.3 Matrix transitions in ageing 

Finally, the model was used to confirm how matrix of the dermis changes during 

the ageing process, in particular how the matrix is degraded with ageing Figure 

67A. Matrix structure changes over time, comprising a decrease in fine diffuse 

fibres and an increase in more concentrated fibre bundles. This increase in 

discernible fibre bundles causes an increase in fractal dimension. The young 

dermis is characterised by a diffuse swirly matrix, with high HDM. The model 

predicts that a similar matrix can be produced de novo from cells with high noise 

and high matrix feedback. Such a matrix was generated with the model (Figure 

67B, red box). The old dermis has lower HDM and has lost its diffusivity and the 

fibre bundles are more clearly defined (Figure 1c). The model predicts that such a 

matrix could be produced de novo from cells with low noise and high matrix 

feedback. In Figure 67, such swirly patterns typically have higher HDM than in the 

diffuse swirls, however the matrix of the old mouse has lower HDM than the young 

dermis. It was of interest to model the transition between the young and old dermis, 

specifically by reducing HDM, reinforcing thick fibre bundles, and degrading thinner 

fibres. It can be conjectured from the analysis in 3.4 that for the reduction in HDM, 

there would need to be matrix degradation. Additionally, to reinforce certain thick 

fibre bundles matrix feedback would need to be quite high and that deposition 

would need to be as high as degradation in these areas. Simulations were run 

varying matrix feedback and deposition parameter 𝑜íNO	and fixing 𝑜íNî = 1. The 

best agreement of HDM between the old matrix in vivo and in silico occurred when 

matrix feedback is set to 𝑤P = 0.12 and	𝑜íNO = 1. The final matrix in silico agrees 

qualitatively with that of the old mouse dermis (Figure 67, yellow box). Interestingly, 

matrix produced de novo with these parameters, but with the 𝑜íNî = 0 to allow 

matrix accumulation, did not generate the pattern observed in the aged dermis 

(shown in Figure 67, green box). These analyses demonstrate how when 

transitioning between two different matrix types, cells can take instruction from the 
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original matrix and produce a hybrid matrix that can have different patterning to de 

novo matrix generation and that this remodelling of matrix could be seen 

experimentally. 

 

 
Figure 67: Simulating matrix transitions in ageing 
(A) Second harmonic imaging of collagen (orange) in young and old mouse dermis 
with corresponding starplots to the right. (B) Starting with young matrix, the 
simulation is run with 𝑤$ = 0.12, 𝜂 = 0.05, 𝑑𝑒𝑝𝑅𝑎𝑡𝑒 = 1, 𝑑𝑒𝑔𝑅𝑎𝑡𝑒 = 1, 𝑟𝑒𝑅𝑎𝑡𝑒 = 0 
(middle). The same parameters with the addition of degRate=0 are used to 
generate a de novo matrix (right). Corresponding starplots show how the matrices 
vary in metric space. Scale bar represents 100𝜇𝑚. 
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3.8 Chapter highlights 

A summary of the main findings of this chapter is given as follows: 

 

• Development of novel, discrete, two-layer Vicsek model to study interplay 

between fibroblasts and ECM (Wershof et al., 2019) 

• A feedback mechanism between fibroblasts and ECM generates diverse 

patterns reminiscent of in vivo tissues. 

• Model elucidates how matrix patterns can interconvert over time in cancer, 
wound healing and ageing. 
 

The relationship between fibroblasts and ECM is a complex one. Fibroblasts are 

responsible for producing, rearranging and degrading matrix fibres. These fibres 

provide physical and chemical cues to the environment, thus creating a feedback 

loop of influence between the fibroblasts and ECM. The model has helped to tease 

apart the mechanical aspect of this interplay. Future work will need to be carried 

out addressing the chemical relationship between fibroblasts and ECM. 

Additionally, it would be useful to incorporate spatial information of cells together 

with ECM spatial metrics to validate if the cells are behaving similarly to predictions 

through comparing metrics such as cellular hotspots and colocalization with the 

matrix. This would build on section 3.6, where the model was challenged to 

produce matrix patterns that resembled those seen in vivo through comparison of 

matrix metrics alone.  The field of matrix conversion is likely to gather interest in the 

near future, as it has such wide-reaching applications in tissue engineering (Daley, 

Peters and Larsen, 2008a).  
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Chapter 4.  Quantifying and comparing matrix 

patterns in patients 

4.1 Introduction 

In the previous two chapters, the generation of diverse collective fibroblast and 

matrix patterns was studied. Having explored how matrix patterns are generated, it 

is interesting to consider what the consequences of such patterning might be. The 

agent-based model demonstrated the variety of matrix patterns that could be 

obtained from just small perturbations to the rules of the system, suggesting that 

this same diverse spectrum of patterns may be observable in cancer. Whilst it has 

been well documented that aligned matrix is a promoter of cancer cell invasion and 

can be a negative prognostic marker for survival (Provenzano et al., 2008; Conklin 

et al., 2011; Drifka et al., 2016b), it is unclear whether other topological matrix 

properties could be informative. Further, could this paradigm be extended to 

explore the importance of matrix patterning in other fields, such as developmental 

biology or fibrotic diseases? 

 

4.2 Data 

To answer these questions, a clinical dataset of 105 breast cancer samples was 

acquired with corresponding clinical data from researchers in Nottingham (Abd El-

Rehim et al., 2005; Roxanis et al., 2018). These samples were cut and stained with 

the following stains, shown in Figure 68: 

• Hematoxylin and eosin (H&E) – staining of entire core 

• Picosirius red (PSR) – staining of collagen 

• Pan cytokeratin (PCK) – staining of cancer cells 
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Figure 68: Different staining of breast cancer samples 
Top left: H&E staining shows nuclei in blue and cytoplasm/ECM in pink, giving a 
general indication as to the structure of the sample. Top right: PSR staining in red 
shows collagen in the sample. Bottom left: PCK staining shows nuclei of cancer 
cells in blue. Bottom right: composite image of the PCK, PSR with the addition of 
fibronectin (shown in brown) manually overlaid.  
 

4.3 Metrics for matrix quantification 

The metrics introduced in the previous chapter for characterising matrix patterns 

were extended to consider additional properties of the matrix. Additional metrics 

were derived from the corresponding derived mask image of the samples (Figure 

69). The new metrics included the number of branch points of the matrix and 

number of end points of the matrix (Figure 70). Number of branch points indicates 

the number of intersections in the curves of the masks of ECM. Number of 

endpoints is an intuitive count of the number of ends of the curves in the image. 

Such metrics are common in analysing spatial information, such as road patterns in 

urban planning (Reis, Silva and Pinho, 2016). The metrics of branch points and end 

points were normalised by the total length of the mask curves in order to account 

for differences in amount of collagen across biopsies. Normalised branchpoints are 

denoted as 𝑁𝐵𝑃, and normalised endpoints is denoted 𝑁𝐸𝑃. These extra metrics 

helped to account for differences in amount of collagen in the samples. Whereas in 
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silico and in vitro ECM is laid across the whole sample window, some tumour 

biopsies are largely made up of adipose or non-matrix tissues. This variability could 

compromise the robustness of fractal dimension as a metric for complexity. 

Furthermore, long-range alignment and short-range alignment from the previous 

chapters were replaced by instead computing the curvature over different curvature 

windows. Schematics of these metrics, together with examples from the breast 

cancer dataset are giving in Figure 70. 

 

 
Figure 69: Deriving masks from collagen staining 
Masks are derived from tumour cores stained with picosirius red for collagen.  
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Figure 70: Examples of matrix metrics 
Schematics (left) of matrix metrics together with example tumour biopsies (right) 
showing low and high values of the specified metric. Samples come from the breast 
cancer dataset described in 4.2. For all metrics, apart from HDM, low and high 
examples of that metric are shown on samples with comparable levels of HDM. 
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4.4 Methods 

Tumour cores were cut, stained and imaged as described in 6.2.7. Images were 

then processed in Fiji by converting them to 8-bit images and adjusting the 

brightness and contrast of the image to optimise clarity of fibres. The plugin Ridge 

Detection (Steger, 1998) was then used to derive a mask of the ECM. Matrix 

metrics were then derived using the QuantBlackSpace and Anamorf (Barry, 

Williams and Chan, 2015) plugins written by David Barry in the Light Microscopy 

platform at the Francis Crick Institute. Finally, these metrics were combined with 

the clinical data and Cox survival analysis was performed. A workflow diagram 

showing this process is given in Figure 71. 

 

 
 
Figure 71: Workflow diagram of quantification of matrix patterns 
End-to-end pipeline from obtaining the samples through matrix quantification to 
survival analysis based on this ECM metrology. A list of metrics is given in the 
right-most box. 
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4.5 Results 

This methodology was followed to investigate if matrix metrics could be prognostic 

indicators in the breast cancer dataset from Nottingham. Patients presenting from 

1986-1998 with primary operable invasive breast carcinoma were entered into the 

Nottingham Tenovus Primary Breast Carcinoma Series (Abd El-Rehim et al., 2005; 

Roxanis et al., 2018). A total of 196 patients were followed until their death or the 

end of the study, whichever came first. The event (𝐸)	of interest is specifically 

death from breast cancer. The mean age of the patients at age of diagnosis was 

53.5 years, with an average tumour size of 2.02mm. A summary of key clinical 

statistics is given in Table 11. Of these patients, 26 were removed from the 

analysis due to samples that were damaged or contained too little ECM. These 

decisions were made in collaboration with Antonio Rullan, a medical oncologist 

from the Tumour Cell Biology Laboratory at The Francis Crick Institute. A further 65 

patients were also not included in the survival analysis due to missing or 

incomplete clinical data on survival times. This left a total of 𝑁 = 105 patients with 

complete clinical data and a tumour biopsy with sufficiently high levels of ECM. 

 
Table 11: Summary of breast cancer dataset 

 
A Cox proportional hazards regression model was then used to relate matrix 

metrics to the event of death from breast cancer (𝐸). In addition, tumour size (𝑇𝑆) 

and tumour grade (𝑇𝐺) were included as model parameters for comparison, as 

they are well established indicators of survival currently used by clinicians. The 

analysis was carried out using the “survival” and “survminer” packages in R. The 

model can then be written as 

 

𝐸~𝐿𝑅𝐴+ 𝐻𝐷𝑀 + 𝐶𝑢𝑟𝑣 + 𝐹𝑟𝑎𝑐 + 𝑁𝐵𝑃 +𝑁𝐸𝑃 + 𝑇𝑆 + 𝑇𝐺 

 

Age at diagnosis mean (53.5) lower 95% CI (52.2) upper 95% CI (54.8) 
 

Tumour size mean (2.02) lower 95% CI (1.89) upper 95% CI (2.16) 
 

Lymph node status positive (37) negative (72) NA (70) 
 

Histology subtype Lobular (26) Ductal (147) MixedNST (5) 
 

Biological subtype HER2 (17) ER (72)  triple negative (21) NA (69) 

Nottingham Grade 1 (30) 2 (58) 3 (88) NA (3) 
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All reasonable combinations of these variables were tried by incrementally 

removing variables from the model. Only statistically clear results are reported here 

(with a p-value<0.05). 

 

Unsurprisingly, tumour grade and size are indicators of 𝐸. The model is given as: 

Model	1: 𝐸~𝑇𝑆 + 𝑇𝐺 

 

This model has a coefficient of 0.349 for tumour size and 0.408 for tumour grade 

with a p-value of 0.003 according to a likelihood ratio test. 

 

Of the matrix metrics, normalised branchpoints (𝑁𝐵𝑃) was able to act as a 

univariate predictor of 𝐸. The model is given as: 

Model	2: 𝐸~𝑁𝐵𝑃 

 

This model has a coefficient of 0.000779 for NBP with a p-value of 0.01 according 

to a likelihood ratio test. 

 

The hazard ratio of this model was then computed. The exponential coefficient for 

NBP was exp(0.000779) = 1.00078, ie for every additional NBP, there is an 

increased risk of 0.078% of 𝐸. To put this into context by scaling, patients had a 

mean number of 914 NBP with a standard deviation of 422, meaning that the 

expected increase in hazard relative to an increase of 100 NBP is approximately 

8%. To understand this visually, a Kaplan-Meier curve showing the lowest and 

highest quartiles of the patients according to NBP was plotted (Figure 72, 

comparing upper and lower quartiles: p-value=0.011). 
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Figure 72: Survival analysis based on matrix metrics. 
A Kaplan-Meier curve showing the lowest and highest quartiles of 105 breast 
cancer patients sorted by number of ECM branch points in their biopsies. (Right) 
Example slices from biopsies from patients stained for collagen with low (top) and 
high (bottom) branch points and their respective masks. Time scale is in months. 
Scale bars represent 𝟏𝟎𝟎𝝁𝒎. 
 

This information was then combined with the traditional prognostic parameters. The 

model is given as: 

Model	3: 𝐸~𝑇𝑆 + 𝑇𝐺 + 𝑁𝐵𝑃 

 

This model has a coefficient of 0.333 for tumour size, 0.437 for tumour grade and 

0.000756 for NBP, with a p-value of 0.0005 according to a likelihood ratio test. 

 

Further, models 1 and 3 were compared against each other to see if the additional 

information of NBP in model 3 produced an improved predictor of E. Indeed, 

performing ANOVA using the Chi-square test to compare the results showed that 

model 3 is a statistically significantly better model than just knowing tumour size 

and grade (anova, p=0.014). 

 

These analyses represent an exciting proof of principle as to the importance of 

matrix quantification in cancer patient diagnosis. Namely, these results suggest that 

in breast cancer, the number of branch points in the ECM of tumours is a 

statistically clear marker of survival. In addition, using this information in 

conjunction with tumour size and grade provides a better predictor of the event that 

just tumour size or grade alone. 
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4.6 Identifying the wider importance of matrix quantification 

Whilst these results are promising, the sample size of the breast cancer dataset is 

rather small. Ideally, other members of the scientific community would be able to 

conduct similar analysis on their own data sets and validate the power of matrix 

quantification. 

 

The first challenge of transferring these methods to other datasets is that many 

tumour samples are stained only with H&E, for example the TCGA dataset. To 

address this, stromal cells from H&E cores in the breast cancer dataset were cross-

correlated with ECM organisation. Khalid Jabbar and Shan Raza from Yinyin 

Yuan’s group at the Institute for Cancer Research performed machine learning 

analysis on the H&E stained biopsies to identify the position and orientation of 

fibroblasts. These data were then plotted as vector fields and showed excellent 

qualitative agreement with the orientation of collagen (Figure 73). In addition, the 

global alignment of the fibroblasts was computed, together with the global 

alignment of the collagen mask, by taking the orientation of the tangent at 

incremental points along the curves of the mask. These alignment scores of the 

fibroblasts and the collagen were then cross-correlated and show strong 

agreement (Figure 73, Pearson’s product moment correlation, degrees of 

freedom=220, p-value=3e-13). This suggests that in instances where the matrix is 

not specifically stained for collagen in biopsies, the position and orientation of 

stromal cells obtained from H&E images may be sufficient to build a 

comprehensive picture of matrix organisation. 
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Figure 73: Orientation of fibroblasts correlates with collagen in tumour biopsies 
(A) Three example tumour biopsies showing the position and orientation of 
fibroblasts (left) and collagen staining (right). Qualitatively these are correlated. (B) 
Comparing global alignment of fibroblasts and collagen fibre orientation shows 
strong agreement (Pearson’s test, p-value<0.0001, gradient=0.46). 
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The second challenge in applying matrix metrology analysis to other datasets is in 

the portability and usability of the pipeline by other users to data with different 

structures and properties. Bioinformatic analysis pipelines often become problem-

specific and software-specific, limiting their ability to be repurposed for use on other 

problems or in different environments (Ewels et al., 2019). To this end, a pipeline is 

being developed, which will enable robust analysis across datasets. The short-term 

aim is to generate plugins that can be tested by other members of the ECM 

community. Longer-term, the pipeline will be refined so that it can be used by the 

wider community, ranging from experimentalists interested in cell migration and 

remodelling of 3D matrices, to clinicians researching conditions such as cancer and 

fibrosis. The generation of quantitative metrics could allow the comparison of 

results between researchers and the correlation of matrix features with other 

biological parameters, including transcriptomes and proteomes. Ultimately, the goal 

is to validate clinical ECM metrics as useful diagnostic or prognostic indicators with 

a role in clinical decision making. This work is still ongoing, but the progress so far, 

together with future challenges is reported here.  

 

4.7 Outline of pipeline for deriving matrix metrics (Twombli) 

The package developed so far has the working title of Twombli (The Workflow Of 

Matrix BioLogy), after the American artist whose works are full of diverse marks. 

Twombli currently consists of a number of ImageJ macros, together with user 

documentation and a walkthrough example. Twombli consists of three stages: 

1) Prechecks – filtering out unsuitable images and appropriately thresholding 
images  

2) Deriving matrix metrics to quantify the matrix patterns 
3) Survival analysis on the matrix metrics [optional] 

 

A summary of all the ImageJ macros are given in Table 12. 
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Table 12: Twombli ImageJ macros 

Program/ file name Function 
preChecks.ijm Interactive user checklist for appropriate file 

organisation and parameters for thresholding images 

(Figure 76). 

ridgeDetection.ijm Takes raw collagen images and produces a mask 

(Figure 77) 

runAnamorf.ijm Derives specified spatial metrics from masks 

computeHDM.ijm Distinguishes foreground (collagen) from background 

on thresholded images 

directionality.ijm Computes directionality of masks 

vectorField.ijm Takes masks and produces vector field of fibre 

orientation (optional) 

deriveMetrics.ijm Combines ridgeDetection.ijm, runAnamorf.ijm, 

computeHDM.ijm, and directionality.ijm macros 

SurvivalAnalysis.R User walkthrough with example survival analysis 

 

4.8 Twombli set up 

A user will set up the Twombli master folder, download the macros in a subfolder 

and arrange their files according to the set up shown in Figure 74. In addition to the 

macros folder, there are additional empty subfolders for the output masks, output 

images thresholded for the HDM metric, and a results folder. There is additionally a 

subfolder in which the user puts the original files. Some of these original files are 

copied into the TestSet folder. After running the preChecks.ijm macro, these 

original image files are split into eligible and ineligible images. The rest of Twombli 

is then run on the eligible images only. 
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Figure 74: Twombli file organisation 
Documentation explains to the user how to arrange files. This includes a folder of 
Test set images. Images are then subdivided into Eligible and Ineligible folders. 
The output of the pipeline creates masks of the original images and copies of the 
images that have been thresholded for HDM.  
 

The aims of the preChecks stage are two-fold. Firstly, ineligible images need to be 

excluded from the analysis. Images could be unsuitable if the sample has been 

damaged, if there is too much adipose tissue (and therefore not enough ECM), or if 

the image resolution is too poor (Figure 75). This division into eligible and ineligible 

files is currently done manually by the user, with an example in the Twombli 

walkthrough section. Secondly, eligible images must be suitably adjusted and 

thresholded in order to optimise the quality of the corresponding image mask. This 

includes choosing a threshold value for HDM, adjusting the image brightness and 

contrast and choosing the line width for the ridge detection algorithm. This 

thresholding is done in the preChecks.im macro where a simple step-by-step user 

interface helps users choose appropriate values for the images in the testSet folder 

(Figure 76). 
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Figure 75: Removing ineligible samples 
User walkthrough showing examples images that are ineligible for being poor 
quality or low resolution. 
 

 
Figure 76: Choosing threshold values for image processing 
User walkthrough showing examples of how to threshold images. 



Chapter 4. Quantifying and comparing matrix patterns in patients 

 

 182 

4.9 Deriving matrix metrics and survival analysis with Twombli 

Having completed the preChecks stage of the process, deriving the spatial metrics 

is reasonably straightforward. The deriveMetrics.ijm macro takes the outputs from 

the preChecks thresholding as inputs and applies them to the eligible images 

folder. The macro runs algorithms to compute a mask image for each eligible 

image and then derives the quantification of the mask. The output of this process 

are masks in the Mask subfolder (Figure 77).  

 

Finally, the user walkthrough gives an example of how these matrix metrics can be 

combined with clinical data to perform survival analysis, potentially identifying 

relationships between matrix metrology and patient outcome. This stage is however 

optional, as the aim is that Twombli can be used for a broader scope of pattern 

recognition in many different normal and pathological tissues than just identifying 

prognostic markers. 

 

4.10  Development of the pipeline 

Features are being added incrementally to Twombli. At each stage the pipeline is 

beta-tested to identify bugs and difficulties in use. Further, the code is being 

checked and improved by David Barry in the Light Microscopy Team and Robert 

Jenkins in the Tumour Cell Biology laboratory at the Francis Crick Institute. A 

currently private Github repository is being used to develop and check the code as 

new features are added. 

4.11  Challenges for Twombli 

The primary challenges in making Twombli a feasible tool for other scientists is in 

making the results robust. Currently, the user manually decides which images are 

eligible and ineligible for matrix quantification. Ideally, Twombli will be extended to 

automate this process, producing an image quality score for eligibility. Similarly, the 

thresholding values chosen in the preChecks.ijm macro are also user-defined. 

Analysis needs to be carried out as to how robust results are to differences in user-

chosen threshold values, or ideally thresholding could be automated taking away 
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all manual components of the pipeline. This represents a significant problem which 

will be tackled in the future (Ewels et al., 2019). 
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Figure 77: Twombli user interface 
(A) Example input image with the output mask from the ridgeDetection.ijm macro. 
(B) Example of Twombli interface with different macros. 
 

Additionally, once these issues have been addressed and Twombli has been beta-

tested by other scientists, the long-term aim will be to adapt Twombli to a user 
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interface that could be used by clinicians and pathologists. This will most likely 

require sophisticated software development, but represents a promising future 

direction of work with the potential to have meaningful impact in the clinical 

environment. 

 

4.12  Future application of pipeline 

In conjunction with the future developments to Twombli as described above, the 

importance of matrix metrics needs to be tested on a larger dataset. Additionally, it 

is of interest to see how different matrix patterns could be indicative of different 

tumour properties in different kinds of cancers. To this end, similar analysis will be 

carried out on a dataset of 2000 prostate cancer patients from The Royal Marsden 

Hospital (A. Wilkins et al., 2018). To date, this biobank has been used entirely to 

explore tumour gland biology (A. C. Wilkins et al., 2018). No work has yet been 

carried out looking at the tumour stroma. 

 

The novelty of Twombli lies in both its versatility and universality. Twombli can be 

applied to diverse structures collected via many different methods, for example 

mycelium (Obert, Pfeifer and Sernetz, 1990; Barry, Williams and Chan, 2015) or 

extracellular matrix images collected from freeze drying microscopy (Figure 78). 

Other work in the field of matrix quantification has looked principally at alignment 

(Rezakhaniha et al., 2012; Park et al., 2019) and often require heavy manual 

intervention. Twombli not only unifies many different matrix metrics for the first 

time, but also largely automates an end-to-end pipeline whilst providing guidelines 

on how to appropriately parameterise and filter images for robust results.  
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Figure 78: Twombli works on versatile images. 
ECM patterns obtained in vitro through freeze drying microscopy methods. Twombli 
captures underlying structure of ECM. 
 

4.13  Chapter highlights 

A summary of the main findings of this chapter is given as follows: 

• Matrix patterns with a high number of branch points are predictive of poor 

survival outcomes in 105 breast cancer patients. 

• An end-to-end pipeline called Twombli has been developed for 

quantification of matrix patterns. 

• A plan has been developed to extend Twombli to account for robustness of 

results, automate image thresholding and improve user-interface for 

potential use in clinical decision-making. 

 

In conclusion, it is clear that quantification of the ECM represents a promising and 

as yet largely unexplored route for predicting tumour spatial evolution. Whilst work 

has established that alignment of collagen is a prognostic marker for survival 

(Conklin et al., 2011; Drifka et al., 2016a; Best et al., 2019), the results presented 

here suggest that matrix organization can be far more nuanced. The complex 

architecture of the ECM may provide clues as to how tumours are likely to develop, 

and this work will be continued in the near future.
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Chapter 5.  Discussion 

5.1 Summary of results 

In the introduction, three research questions were posed. Below are answers to 

these questions based on the work presented in this thesis: 

 

Q1 What properties of CAFs cause different collective behaviours?  

 

In Chapter 2, it was shown that cell persistence level is a key contributing factor 

that determines overall alignment. If cells have poor persistence, no reasonable 

level of collision guidance is able to cause global alignment. The results suggest 

that the non-aligning CAFs fall into this category. However, high persistence alone 

is not sufficient for generating alignment and requires an active mechanism of cell-

cell collision guidance. Cell-cell collision guidance can change the speed at which 

alignment occurs and for moderate levels of cell persistence, becomes critical in 

determining the emergent pattern. Experimentally, the aligning CAFs display a mid-

range persistence and therefore the model suggests a moderate level of collision 

guidance must necessarily be at play in order to facilitate alignment. The model 

indicates that for long-range alignment to occur, a set of multi-scale conditions 

must be satisfied: At the level of the individual cell, cells must migrate with 

sufficiently high persistence. At the collective level, cells must influence the 

orientation of each other and be of a sufficiently high density. 

 

An understanding of the contribution of these parameters allows for exploration of 

alignment in heterogeneous populations. The model predicted the emergent 

alignment behaviour in a heterogeneous CAF population and illustrated how the 

cell motility properties of each population determines the proportions of each 

required to disrupt alignment. Analyses indicate that there are certain instances 

where a low proportion of non-aligning CAF would be sufficient to disrupt 

alignment. This offers a mechanistic view on how limited alignment in a highly 

heterogeneous tumour micro-environment should be relative easy to obtain. Given 

the fragility of emergent alignment, for an area of alignment to occur, the population 

would need to be largely dominated by CAFs displaying an aligning phenotype. If 
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this sensitivity of alignment applies in vivo, only small phenotypic perturbations 

would be required to dissolve harmful microstates of alignment. Whilst much 

literature has focussed on analysing cancer cell heterogeneity (McGranahan and 

Swanton, 2017), there has been a lack of both experimental and computational 

work examining fibroblast heterogeneity and their collective behaviour. The model 

demonstrates this to be a promising future area of research.   

 

Q2 What is the effect of the mechanistic interplay between CAFs and ECM? 

 

Fibroblasts and ECM have a fundamental dependence on each other (Levental et 

al., 2009; Frantz, Stewart and Weaver, 2010; van Helvert, Storm and Friedl, 2018). 

Whilst the effects of ECM geometry on a single cell have been documented 

(Tozluoğlu et al., 2013b; Kim et al., 2015), the consequences of these interactions 

at the mesoscale have been largely unexplored. The model from Chapter 2 was 

extended to include a second layer, consisting of a grid of matrix fibres. Therefore, 

the model comprised two layers: a top layer of fibroblasts, and an underlying layer 

of extracellular matrix. The main innovation to the original Vicsek model was in 

adding the ability of cells to be guided by the matrix fibres below it whilst 

simultaneously producing and reorganise these fibres. This feedback causes the 

matrix fibres to become more oriented like the fibroblasts and the fibroblasts to 

become more oriented to the matrix fibres causing a “flocking-like” behaviour 

between fibroblasts and matrix. Whilst the matrix fibres do not have a forward 

motility, the averaging that takes place between the fibroblasts and the matrix 

reminded us of flocking behaviour. 

 

Such a model was able to shed light on the co-evolution of fibroblasts and ECM. 

Notably, the introduction of this feedback mechanism was responsible for 

generating far more diverse patterns of ECM, some of which were reminiscent of in 

vivo tissues. In particular, matrix feedback gave rise to patterns with a wide range 

of curvatures. It is currently unclear how many ECM patterns in vivo arise and the 

model suggests that matrix feedback is a mechanism that could possibly facilitate 

this emergent patterning. Additionally, the model was used to explore how matrix 

patterns could transition over time as a consequence of cancer, ageing or wound 

healing. There is far more work to be done in this area, with experiments 
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specifically looking at fibre reorganisation in order to choose better model 

parameters. However, the model is ideally suited to exploring these matrix 

conversion questions in more detail and agent-based modelling in general is well 

placed to observe spatial and temporal dynamics together (Dallon, Sherratt and 

Maini, 1999), which remains a big challenge experimentally. 

 

Q3 Can spatial organisation of matrix predict patient outcome? 

 

Whilst the first two questions dealt with how emergent matrix patterns are 

generated, it was of great interest to understand the clinical consequences of such 

patterns. To this end, collagen-stained tumour biopsies from breast cancer patients 

were analysed. Quantification of matrix metrics revealed that the number of matrix 

branch points was a predictor of survival above and beyond knowing just tumour 

grade and size. Spurred on by this finding, an end-to-end pipeline called Twombli 

was established and is still in development. The goal is to use Twombli to analyse 

other data sets of matrix patterns, for further evidence of the value of matrix 

quantification and ultimately, to enable clinicians to use the software in clinical 

decision-making. A clear caveat to this approach is in how the algorithm will deal 

with other tumour components. However, with the increasing ease of tumour 

imaging it is likely that matrix and tumour architecture will become more important 

as a prognostic tool in the near future (Nawaz et al., 2015; Yuan, 2016).  

 

These three questions all relate to aspects of TME geography. Understanding how 

patterns in tumours form and are likely to develop remains a key target for cancer 

therapy (Hirata and Sahai, 2017). A complementarity between mathematical 

modelling and experimentation has helped to elucidate this evolution. Furthermore, 

the model has helped to ask important questions, some of which remain 

unanswered: 

• Could cell-cell collision geometry have an impact on cellular response i.e. 

head-head collision vs head-body collisions (Desai et al., 2013)? 

• Are fibroblasts more inclined to follow newer/fresher fibres? 

• How far-reaching are MMPs secreted from fibroblasts i.e. long-range 

degradation? 
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5.2 If time travel existed… 

5.2.1 Going back in time 

With the benefit of hindsight, there are some aspects of the project that ought to 

have been done differently. The most substantial difficulty was in accurately 

parameterising the model. Experiments were often carried out under slightly 

different conditions, with a microscope set at a different scale and frame rate 

across experiments, making parameter fitting prone to errors. Additionally, a 

parameter might be fitted according to one experiment, and then be different in 

another experiment where another parameter was being measured. This made 

acquiring parameters tricky. Ultimately, this did not have a profound effect on the 

model, which was used to explore the entirety of parameter space, but was 

problematic in exactly fitting the simulations to experiments. Given the chance to do 

it again, it would have been wise to discuss and plan for these difficulties before the 

experiments had been carried out. In addition, when evaluating the individual 

migratory noise of cells, it is clear that sometimes the cells undergo occasional 

random repolarisation (as seen by comparing Figure 20 with Figure 21), something 

which is not considered in the model. This phenomenon has been previously 

documented (Desai et al., 2013) and it would be useful to gauge the effect of this 

repolarisation on the collective behaviour of the system.  

 

It would also have been insightful to have both computationally and experimentally 

explored additional matrix properties such as crosslinking and matrix stiffness 

(Paluch et al., 2015; van Helvert, Storm and Friedl, 2018). The model could have 

been used to explore what the effect of different matrix stiffness values would be on 

emergent patterning. Multiple matrix components, such as different collagens and 

fibronectin could also have been incorporated for their different properties. 

Considering just one type of matrix is likely an oversimplification of the problem, 

particularly within the context of wound healing where fibronectin plays a crucial 

role (Dallon, Sherratt and Maini, 1999; Cox and Erler, 2011). 

 

Finally, the project would have benefitted from looking at clinical data earlier on. 

However, as described by Uri Alon (Alon, 2009), research nearly always throws 
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unexpected results. Whilst starting at point A and trying to get to point B, one will 

almost invariably end up instead at point C via a highly nonlinear route. This 

unpredictability though is what makes science so exciting. 

5.2.2 Going forward in time 

One area of research that has not been looked at in this thesis is the phase 

transition space between disorder, spatially homogeneous order and spatially 

heterogeneous order of the model. It has been shown in (Escaff et al., 2018) that 

varying interaction range and interaction strength between particles of a similar 

continuous system can generate all three behaviours. Work by (Chaté et al., 2008; 

Duclos et al., 2014) has studied more general properties of flocking systems such 

as giant-number fluctuations and correlation length of emerging order. It would be 

of great interest to apply similar levels of physical analysis to the model presented 

in this work, in particular to see the effects of matrix feedback on the emergence of 

order and phase transitions between different states.   

 

Similarly, the model could be used to explore the effects of matrix feedback on 

jamming (Sadati et al., 2013). With stronger and more carefully constructed volume 

exclusion rules to circumvent the constant speed of cells in a traditional Vicsek 

model (Vicsek et al., 1995), the model would be better able to model high-

confluence systems in which jamming can occur. Traditionally Voronoi/Vertex 

models are employed for such systems (Camley and Rappel, 2017), however, the 

model correctly adapted could be highly informative in what is a largely unintuitive 

problem: does matrix feedback help or hinder jamming/unjamming? 

 
In the agent-based model presented here, long-range chemical signalling between 

fibroblasts is not considered. This is an avenue of future research that should be 

addressed. Vicsek-like models have explored zones of repulsion, alignment and 

long-range attractions for general particles (Vicsek and Zafiris, 2010) and in the 

collective migration of ducks (Lukeman, Li and Edelstein-Keshet, 2010). By 

tracking the movement of individual ducks in the flock, Lukeman et al. are able to 

infer that ducks move with zones of repulsion, alignment and attraction with their 

neighbours, with an additional attraction/repulsion interaction with a single 
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neighbour in front due to easier visual awareness of that neighbour. There is no 

evidence of leaders and followers in such a group. It remains to be seen if a similar 

preference for particular neighbours could be observed in cell flocking behaviour. 

Such analysis would require more detailed cell collision analysis, perhaps through 

constructing matrix micropatterns that cells would be induced to follow, allowing for 

the observation of specific and planned collisions. Additionally, the model could be 

extended to three dimensions (Schumacher, Maini and Baker, 2017), coupled with 

carefully constructed three-dimensional experiments facilitating cell-cell collisions. 
 
An essential consideration in understanding the spatial architecture of the tumour is 

the nature of heterotypic interactions between different cell types (Valastyan and 

Weinberg, 2011). Recent work has shown that it is heterotypic E-cadherin/N-

cadherin junctions between CAFs and cancer cells which allow CAFs to exert a 

pulling force on the cancer cells, thereby promoting invasion (Labernadie et al., 

2017). Furthermore, it has been shown in several cancers that cancer cells lose 

heterotypic CIL response whilst maintaining homotypic CIL, leading to cancer cell 

invasion of other tissues (Mayor and Carmona-Fontaine, 2010; Roycroft and 

Mayor, 2015; Stramer and Mayor, 2016). It would of interest to couple an 

understanding of heterotypic interactions with the spatial map of the tumour margin 

in order to predict points of metastasis. This would also link back to the idea of 

Tumour Associated Collagen Signatures (TACS), which consider collagen 

arrangement with respect to the tumour mass (Provenzano et al., 2006).  

 

Following on from this, it would be exciting to extend Twombli to incorporate the 

generation of a TACS score. In order to facilitate this, tissue samples of ECM at the 

tumour boundary would need to be analysed. Obtaining such samples would be a 

significant challenge. Furthermore, Twombli could also incorporate information on 

topological defects (Hirst and Charras, 2014; Saw et al., 2017). Whilst topological 

defects have not been considered in this work, they are an emerging area of 

interest in cancer invasion (Saw et al., 2017) and it would be useful to include this 

additional spatial information in matrix pattern quantification. 

 

Complementary to this, deep learning methods could be hugely useful in identifying 

more abstract patterns in patient biopsies. The model thus far has been used to 
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understand how different cellular mechanisms give rise to different collective 

alignment behaviours. Starting with given initial conditions, the model can predict 

what the emergent cell patterning will be at the end. However, in a clinical setting it 

is rarely the case that the information presented starts at the beginning. Rather, 

emergent patterns have already formed. Could the model instead be used to work 

backwards? It would be of great help if, given a matrix pattern (and by extension, 

pattern of fibroblast trajectories), one could infer the properties of the cells that 

generated such an ECM. This would be useful for two reasons: firstly, knowing the 

cellular makeup of a tumour could inform therapeutic decision-making. Secondly, 

knowing the mechanistic properties of cells in a tumour would give an indication as 

to how the tumour structure was likely to evolve both spatially and temporally. Such 

a reverse-engineering challenge would required the complementary use of the 

agent-based model and machine learning (Baker et al., 2018)  This work is ongoing 

and is being carried out in collaboration with Xiao Fu, a postdoc in the Biomolecular 

Modelling Laboratory, who is developing a CNN trained on synthetic data 

generated by the agent-based model. Deep learning is a rapidly advancing field 

and it is clear that its coupling with traditional mathematical modelling techniques 

will massively further our understanding of tumour evolution. 

 

Finally, it is important to consider the implications of this work on cancer therapies. 

The tumour microenvironment plays a key role in cancer progression and much 

effort is being put into treatments that target the TME in conjunction with, or as an 

alternative to, traditional treatments targeting cancer cells (Hirata and Sahai, 2017). 

So far, the results of these approaches have not met expectations. One such 

example is in targeting CAFs directly. The disappointing results are possibly due to 

CAFs having both pro-tumour and anti-tumour effects (Özdemir et al., 2014; LeBleu 

and Kalluri, 2018). Another example is of therapies to reduce the tumour 

vasculature. However, a side effect of this approach is a hypoxic environment, 

favouring cancer cells with activated HIF1a, which has been associated with 

increased tumour invasion (El-Naggar et al., 2015; Hirata and Sahai, 2017). 

 

This thesis elucidates the diversity of spatial patterning of CAFs and ECM. 

Therapies focused on altering CAF/ECM patterning have been largely unexplored. 

Introducing a small population of non-aligning fibroblasts could help remodel 
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aligned matrices thereby hindering invasion (2.7.7) (Drifka et al., 2016b). 

Alternatively, increasing CAF-ECM feedback could result in the generation of 

dense swirl-like matrices that are difficult for cancer cells to penetrate, whilst still 

being porous enough to allow immune cell infiltration. Lastly, therapies directly 

targeting the ECM have the potential to dramatically alter the architecture of a 

tumour towards an invasion-inhibiting structure and are beginning to be developed 

with promising results in mice (Natarajan et al., 2019). Twombli could possibly aid 

in identifying exactly what such invasion-inhibiting structure might look like. 

5.3 Final thoughts 

Coupling cell-cell and cell-matrix interactions together, the model has elucidated 

how a minimal set of rules can produce diverse tissue patterns. The multi-layered 

flocking model offers a potential hypothesis for how many of the complex patterns 

seen in vivo could arise at the mesoscale level. Unifying cell and matrix behaviours 

has helped to provide new mechanistic understanding of the consequences of 

matrix feedback, including its importance in the generation of curved matrix 

patterns. In the field of matrix remodelling, predictions from the model indicate that 

high levels of feedback hamper the interconversion between matrix patterns. These 

findings are likely to be of use in the emerging field of tissue engineering (Daley, 

Peters and Larsen, 2008b). 

 

It is clear that in the TME there are multiple promising lines of attack to disrupt CAF 

alignment and other harmful patterns. The flocking model developed here provides 

a simple set of rules to describe mechanisms involved in generating higher-order 

patterning. As tumour mapping technology becomes more widespread (Heindl, 

Nawaz and Yuan, 2015; Leung, Rice and Barton, 2015), with concomitant 

increases in levels of high quality image data, and in conjunction with mathematical 

modelling and machine learning, it will become possible to predict where certain 

patterns will occur and their consequences for tumour invasion.
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Chapter 6. Appendix 

6.1 Statistical test for collision guidance success 

The statistical test used is a z-test using a pooled estimate of variance. We want to 

test if two binomial distributions are significantly different from each other. This can 

be constructed as the following hypothesis test: 

𝐻C: 𝑝k = 𝑝E,										𝐻k:𝑝k > 𝑝E 

where 𝑝B is the probability of success in the binomial distribution 𝑋~𝐵𝑖𝑛(𝑛B, 𝑝B). We 

calculate the test statistic as 

𝑧 =
	𝑝̂k − 𝑝̂E

𝑝̂(1 − 𝑝̂)( k
~1
+ k

~Ü
)
 

where 𝑝̂ = ~1O21�~ÜO2Ü
~1�~Ü

, and compare this statistic against the critical region value of 

𝑧¨ = 1.645 defining a one-tailed test with significance if p<0.05. We reject 𝐻C if 𝑧 >

𝑧¨. 

 

For all other hypothesis testing, we used one or two-tailed t-tests. One-tailed t-tests 

were used when the hypotheses were: 

𝐻C: 𝑝k = 𝑝E,										𝐻k:𝑝k > 𝑝E 

and two-tailed t-tests were used when 

𝐻C: 𝑝k = 𝑝E,										𝐻k:𝑝k ≠ 𝑝E 
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6.2 Experimental methods  

Experimental methods are given for interest but were written by Danielle Park and 

not by the author.  

 

6.2.1 Cell lines and reagents 

Aligning VCAF8 fibroblasts were isolated from a human vulval carcinoma and 

immortalised with lentiviral HTERT. Cells were selected using 400 μg mL-1 

hygromycin. Non-Aligning CAF1 were isolated from transgenic FVB/n mice 

expressing the Polyoma Middle T antigen oncogene under the Mouse Mammary 

Tumour Virus promoter (MMTV-PyMT) as described in (Calvo et al., 2013). Cells 

were immortalised with HPV-E6 retrovirus and selected using 2.5 μg mL-1 

puromycin. Cells were maintained in DMEM (Invitrogen), 10% FCS (PAA Labs), 

1% ITS (insulin–transferrin–selenium; #41400-045; Invitrogen) supplement. For 

persistence analysis cells were infected with the retroviral nuclear tag AcGFP-NLS 

(pLNCX2) and selected using 500 μg mL-1 geneticin. To inhibit persistence cells 

were treated with 0.5µM PDGF tyrosine kinase inhibitor IV (Merck, 521233) and 

tracked for 16h. For co-culture experiments VCAF8 and CAF1 were infected with 

the lentiviral membrane tag GFP-CAAX and mcherry-CAAX respectively (pCSII-

IRES2).  

 

Human fibroblasts were isolated from patient tissues of vulval (VCAF8) and 

immortalised with lentiviral HTERT as described in Gaggioli, C., et al. All patient 

samples were collected under ethical approval 10/H0304/14 and 15/EE/0151. Cells 

were selected using 400 μg mL-1 hygromycin and maintained in DMEM 

(Invitrogen), 10% FCS (PAA Labs), 1% ITS (insulin–transferrin–selenium; #41400-

045; Invitrogen) supplement. 

 

Mouse fibroblasts (CAF1) were isolated from transgenic FVB/n mice expressing the 

Polyoma Middle T antigen oncogene under the Mouse Mammary Tumour Virus 

promoter (MMTV-PyMT) as described in Calvo, F., et al. Cells were immortalised 
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with HPV-E6 retrovirus, selected using 2.5 μg mL-1 puromycin and maintained in 

DMEM, 10% FCS and 1% ITS as above.  

 

For cell tracking experiments fibroblasts were infected with the retroviral nuclear 

tag AcGFP-NLS (pLNCX2) and selected using 500 μg mL-1 geneticin. The 

functional upstream domain (FUD) of adhesin F1 of Streptococcus pyogene was 

used to disrupt fibronectin assembly and was kindly provided by C. Albiges-Rizo 

(IAB, Grenoble, France). 

 

  

6.2.2 Immunofluorescence  

1 x 105 cells were seeded on a gelatin coated glass bottom 24 well MatTek dish in 

DMEM 10% FBS, 1% ITS, 50 ug/ml ascorbic acid ((+)-Sodium L-ascorbate, A4034, 

Sigma) and allowed to grow to confluence over 7 days as described in (Franco-

Barraza et al., 2016). Media was replaced every second day with fresh ascorbic 

acid. Cells were fixed in 4% paraformaldehyde for 20 min, washed once with PBS 

and blocked for 60 min at room temperature (RT) in blocking solution: 4% BSA 

PBS 0.05% Tween20. Cells were then incubated with a rabbit anti-fibronectin 

antibody (Sigma, F3648) in blocking solution overnight at 4 °C. After 3 washes of 

15 min in PBS, the secondary donkey anti-rabbit antibody Alexa Fluor 555 

(Invitrogen, A31572) was added in blocking solution. After 3 washes of 15 min in 

PBS, cells were permeabilised by incubation with PBS 0.2% Triton 100 (Sigma) at 

RT for 20 min, followed by incubation with Phalloidin 633 (Invitrogen, 68825) and 

DAPI to visualise F-actin and nuclei respectively. Cells were imaged and analysed 

using an inverted Zeiss LSM880 confocal microscope. 

 

6.2.3 Phase contrast time-lapse imaging 

1 x 104 CAFs were seeded onto a 24 well glass bottom MatTek dish and imaged 8 

hrs later. Bright-field and epifluorescence time-lapse imaging was performed at 37 

°C and 5% CO2 with an inverted microscope (Nikon ECLIPSE TE2000-E). Bright-

field and epifluorescence images were taken every 5 min through a ×10 PlanFluor, 
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NA 0.3 Ph1, Nikon objective. The imaging system includes a Xenon PE300BF 

lamp, an Andor iXonEM+ DU-888 back-illuminated EMCCD scientific camera, and 

System Control Software MetaMorph Version 7.7.3.0 (Molecular Devices).  

 

For analysis of cell body alignment over time, images were acquired over 7 days as 

cells moved to confluence. For persistence analysis, images were acquired over 24 

hrs to ensure cells were maintained at sub-confluence. Cell tracking was performed 

by tracking the GFP-positive nuclei using MetaMorph software.  

 

6.2.4 Fibroblast derived matrix assay  

The fibroblast derived matrix assay was performed as described in Franco-Barraza, 

J., et al. Briefly, 24 well glass bottom MatTek dishes (P35-1.5-14-C, MatTek Co., 

Ashland, MA, USA) were pre-prepared with 0.2% gelatin solution for 1 hr at 37 °C, 

followed by 1% glutaraldehyde for 30 min at room temperature. The plate was 

washed twice with PBS then incubated with 1M ethanolamine for 30 min at room 

temperature. The plate was washed twice with PBS before seeding 7 x 104 cells in 

media supplemented with 100μg/ml ascorbic acid ((+)-Sodium L-ascorbate, A4034, 

Sigma). The cells were maintained for 6 days and the media changed every two 

days. Cells were removed using the extraction buffer described and washed 

several times with PBS before undertaking immunofluorescence for ECM 

components. The ECM was stained with the anti-fibronectin antibody (1:1000 

dilution, Sigma, F3648) or anti-fibronectin-FITC (1:50 dilution: Abcam, ab72686). 

Where indicated 7 x 103 fibroblasts (sub-confluent) or 7 x 104 cells (confluent) were 

plated on top of pre-existing matrices for time-lapse imaging.  

 

6.2.5 Time-lapse microscopy for persistence analysis 

Nuclear labelled fibroblasts were seeded at approx. 7 x 103 cells per well in 24 well 

glass bottom MatTek dish and imaged approximately 8 hrs later. Bright-field and 

epifluorescence time-lapse imaging was performed at 37 °C and 5% CO2 with an 

inverted microscope (Nikon Ti2 inverted microscope fitted with a Okolab 

environmental chamber and CO2 mixer). Bright-field and epifluorescence images 
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were taken every 10 min through a ×10 PlanFluor, NA 0.3 Ph1, Nikon objective. 

The imaging system includes a SpectraX LED light engine (Lumencor) fitted with 

standard filters and Photometrics Prime scientific CMOS camera. The microscope 

was managed using Micro-Manager v2.0 software. 

 

Where indicated cells were pre-treated with 500nM FUD and the media changed 

every 24 hrs. Cells tracked using the ImageJ Trackmate plug in. Persistence was 

calculated as the ratio of shortest linear distance between two points of migration 

(displacement) to the total distance traversed by the cell (distance) over 16 hr 

intervals.  

 

6.2.6 Immunohistochemistry of breast cancer microarray 

Human invasive ductal and lobular breast carcinoma microarray was stained for 

picrosirus red.  

 

6.2.7 In vivo imaging of collagen 

The organs of platelet derived growth factor receptor, alpha polypeptide; targeted 

mutation 11 (MGI:2663656) with nuclear labelled EGFP were imaged using second 

harmonic confocal microscopy. Supplementary Fig 8a shows a subsection of 

stomach dermis together with an in silico representation of a similar system. 

Imaging of this kind shows how matrix can change over time, for instance in ageing 

(Supplementary Fig 8b and 8c). Supplementary Fig 8d shows the complementary 

Gomori Trichome imaging of Fig 4d. 

 

6.2.8 Fibroblast derived matrix assay 

The fibroblast derived matrix assay was performed as described in Franco-Barraza, J., et al. 

Briefly, 24 well glass bottom MatTek dishes (P35-1.5-14-C, MatTek Co., Ashland, MA, USA) 

were pre-prepared with 0.2% gelatin solution for 1 hr at 37 °C, followed by 1% 

glutaraldehyde for 30 min at room temperature. The plate was washed twice with PBS 

then incubated with 1M ethanolamine for 30 min at room temperature. The plate was 
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washed twice with PBS before seeding 7 x 104 cells in media supplemented with 100μg/ml 

ascorbic acid ((+)-Sodium L-ascorbate, A4034, Sigma). The cells were maintained for 6 days 

and the media changed every two days. Cells were removed using the extraction buffer 

described and washed several times with PBS before undertaking immunofluorescence for 

ECM components. The ECM was stained with the anti-fibronectin antibody (1:1000 

dilution, Sigma, F3648) or anti-fibronectin-FITC (1:50 dilution: Abcam, ab72686). Where 

indicated 7 x 103 fibroblasts (sub-confluent) or 7 x 104 cells (confluent) were plated on top 

of pre-existing matrices for time-lapse imaging 

 

 


