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Abstract

MARIE TOLKIEHN: Information-theoretic investigation of multi-unit activity
properties under different stimulus conditions in mouse primary visual cortex
(Under the direction of Dr. Claudia Clopath and Dr. Simon Schultz)

Primary visual cortex (V1) is the first cortical processing level receiving topograph-
ically mapped inputs from the retina, relayed through thalamus. Electrophysiological
studies discovered its important role in early sensory processing particularly in edge
detection in single cells. To this end, little is investigated how these activities relate on
a population level. Orientation tuning in mouse V1 has long been reported as salt-and-
pepper organised, lacking apparent structure as was found in e.g. cat or primates.

This is a novel synthesis of specially designed in-vivo electrophysiological experiments
aiming to make certain information-theoretic data analysis approaches viable. Sophist-
icated state-of-the-art data analysis techniques are applied to answer questions about
stimulus information in mouse V1. Multi-unit electrophysiological experiments were
devised, performed and evaluated in the anaesthetised and in left hemisphere V1 of the
awake behaving, head-fixed mouse. A detailed laboratory and computational analysis
is presented validating the use of Multi-Unit-Activity (MUA) and information-theoretic
measures. Our results indicate left forward drifting gratings (moving from the temporal
to nasal visual field) elicit consistently highest neuronal responses across cortical layers
and columns, challenging the common understanding of random organisation. These
directional biasses of MUA were also observable on the population level.

In addition to individual multi-unit analyses, population responses in terms of binary
word distributions appear more similar between spontaneous activity and responses to
natural movies than either/both to moving gratings, suggesting that mouse V1 processes
natural scenes differently from sinusoidal drifting gratings. Response pattern distribu-
tions for different gratings emerge to be spatially but not orientationally clustered.
Further computational analysis suggests population firing rates can partially account
for these differences. Electrophysiological experiments in the awake behaving mouse
indicate V1 to contain information about behavioural outcome in a GO/NOGO task.
This, along with other statistical measures is examined with statistical models such as
the population tracking model, which suggest that population interactions are required
to explain these observations.
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until the end of the stimulus presentation, 2s after onset. No reward or pun-
ishment was given and the trial ended after the Inter-Trial-Interval (ITI) .

False Alarm False Positive. The mouse incorrectly licked before the stimulus was
turned off. The lick triggered a short air puff and a change of stimulus to
a black screen. The combination of the air puff and the 5 s long full-field visual
stimulus served as negative reinforcement. After this, the trial ended after the
ITI .

HIT True Positive. The mouse licked when the positive stimulus was presented.
A water reward was triggered by the lick, and was available during a 1.75 s
window. During this time the animal was free to drink without restrictions
while the stimulus was presented continuously. After this, the trial ended with
the ITI .

MISS False Negative. The mouse incorrectly withheld the lick until the end of the
stimulus presentation, 2s after onset. No additional stimulus was given for
positive or negative reinforcement and the trial ended after the ITI .

pattern Discretised, binned and binarised spike events of N channels or neurons. Here,
a single spatial pattern consists of N × 1 bin (binary firing vector), also often
referred to as word. A spatiotemporal pattern of t bins will have a N×t pattern,
which is not investigated in this study..

sensitivity Sensitivity describes the True Positive Rate, or Hit Rate (TPR) and de-
scribes the probability of detection. TPR = True Positive (TP)/(TP +
False Negative (FN)).

specificity Specificity is the True Negative Rate (TNR), and describes the fraction cor-
rectly classified as negatives. It is calculated as TNR = True Negative (TN)/(TN+
False Positive (FP)) .

support all occurring symbols or words in the state space with non-zero possibility .
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1
Introduction

This work addresses sensory processing questions at individual unit and population
level of Primary Visual Cortex (V1) both in anaesthetised and awake behaving mice.
The following sections outline an overview of the background and literature required to
follow the overall course of this work. Each chapter provides an individual introduction
and brief summary of relevant work tailored to the methods and questions posed therein.

1.1 Overview

The brain is a peculiar processing system capable of handling and integrating vast
amounts of multisensory inputs in form of electrical activities from both localised and
diverse populations. In contrast to the function and engineering of most organs such
as kidney or heart, which are understood in great detail, deciphering how the brain
processes information is still the aim of modern neuroscience. Vision is one of the
sensory systems most crucial for survival for many animals, e.g. when fleeing from
a predator. But vision is also heavily involved in other fields such as navigation (and
spatial memory) or object identification. Thus, vision has been a major field of research
in neuroscience, under healthy conditions and in interventional research.

Sensory processing controls our perception: how we feel, hear, think and see. Repro-
ducing and understanding how the multisensory integration and cortical microcircuits
function is a main research goal in neural engineering. Neural Coding — the attempt at
describing the relationship between stimulus and neuronal response, has created a wide
range of coding techniques to map electrical and chemical responses to a stimulus, e.g.
rate codes (the number of spikes in a time window) or temporal codes (the specific tim-
ing of spikes). Efficient coding (H. B. Barlow 2012) and characterising high-dimensional
neural recordings of different domains at the same time has been the topic of many stud-
ies (K. Zhang et al. 1998; Panzeri and S. R. Schultz 2001), in both exploratory analyses
and computational modelling.
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Mouse V1, with its similar cell types and functional characteristics to other mammals
(Niell and Stryker 2008), has become one of the main models to study visual informa-
tion processing, given the wide range of molecular and genetic manipulations available
(Huberman and Niell 2011) — despite the mouse not being a paragon of animal vis-
ion (Prusky and R. M. Douglas 2004). V1, located at the most posterior part of the
occipital lobe is the entry point to cortex on the visual processing path. It is retino-
topically mapped, where adjacent inputs on the retina are located in adjacent areas in
cortex. Neural inputs arriving here are solely relayed through Lateral Geniculate Nuc-
leus (LGN), rendering it a prominent model for probing low-level sensory processing.
Electrophysiological studies in cat V1 already discovered half a century ago orientation-
selective neurons (Hubel and Wiesel 1962; Hubel and Wiesel 1959), their organisation
in orientation columns, and ocular dominance columns (Hubel and Wiesel 1974). Pre-
ferred orientations were not only found to be organised in columns of the same preferred
orientations, but also spatially arranged in pin-wheel like structures (Bonhoeffer and
Grinvald 1991), progressing in small systematic increments forming a map across the
entire orientation field (Espinosa and Stryker 2012). However, this organisation of pre-
ferred orientations or orientation maps was not reproduced in mice or rats. Instead,
random connectivity and orientation preferences in salt-and-pepper organisations were
described (Ohki et al. 2005; Tan, B. D. Brown et al. 2011; Carrillo-Reid et al. 2015;
Chklovskii and Koulakov 2004; Kaschube 2014). Yet, a reason why mice lacked this
organisation has so far not been presented. This, along with other aspects of multi-unit
tuning properties, is explored in Chapter 2, where a novel in-vivo electrophysiological
dataset was acquired to address these questions.

While there has been considerable success in improving recording techniques yielding
increasing numbers of simultaneously recorded neurons (Stevenson and Körding 2011),
the neural code has not been deciphered yet. It is not clear if there is a single set of
codes that can be used by several processing units at different cortical stages. Lar-
ger numbers of simultaneously recorded neurons require efficient, sophisticated data
analysis techniques. Information theory can be used to quantitatively test theories
about how the brain encodes stimulus-relevant information under different functional
or sensory conditions, which can be useful to probe how ensemble responses differ from
individual responses. A key metric in information theory is Shannon entropy (Shan-
non 1948), which quantifies how deterministic a system is: if there are many varying
activity states (flat activity probability distribution) entropy is high, and if only a sub-
set of all possible states dominate (peaked probability distribution), entropy is low.
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Information-theoretic approaches allow enquiring into how population rates may con-
tain similar amounts of information as individual units, or if the precise temporal and
spatial arrangement of a neural response is relevant or necessary for a successful in-
formation transmission. Population responses (and thus processing) of natural scenes
may differ from those driven by artificial stimuli. This is further explored in Chapter
3, which investigates groups of binary firing vector distributions evoked under different
stimulus conditions.

Such differences in spatio-temporal population responses may also play an important
role in the successful execution of a visual discrimination task, which is addressed
in Chapter 4, where neural correlates of task outcomes are examined in V1 of the
awake behaving mouse. Electrophysiological data is recorded and analysed from mice
that are trained to perform a dichotomous choice upon presentation of one of two
drifting gratings at orthogonal directions. This also permits examination of visual
signal processing in the awake state.

Finally, with increasing population sizes to record from, interactions between indi-
vidual units gain importance too. By developing computational models that mimic
specific aspects of the experimental data, it is possible to incrementally approximate
the neural response while explaining and investigating the structure that gave rise to
the data. When a simplistic model fails to explain a certain statistical feature, more
complex models are required to recreate the observed structures. Alternatively, such
models can be used to verify findings of small data sample sizes, to test if the results were
indeed attributable to insufficient sample sizes or could otherwise be easily explained
by low-level (statistical) features. A short investigation of computational models based
on the dataset of Chapter 4 is assessed in Chapter 5.

1.2 The mouse visual system

Processing of visual inputs in the mouse begins when photons arrive on the retina,
where the photo signal is transduced into an electrical signal in a process called pho-
totransduction. Rods, cones and photosensitive retinal ganglion cells are the involved
cells. Both rods and cones transduce photons into electrical signals in what is called
the photocascade. Upon arrival of a photon, transduction is initiated by a protein, an
opsin, called rhodopsin, that undergoes a conformation change from 11-cis retinal to all-
trans retinal. The conformation change activates a G-protein (in cones, transducin in
rods), which in turn activates a molecule called cyclic Guanosine 3’-5’ monophosphate
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(cGMP) phosphodiesterase, breaking down the cGMP to 5’-GMP thereby reducing the
concentration of cGMP within the cell. This causes cGMP-gated Na-channels to close,
reducing the inward current and hyperpolarizing the photoreceptor membrane. The
signal of several adjacent photoreceptors is then integrated by horizontal cells. Bipolar
cells relay the graded membrane potential to amacrine cells or directly to retinal gan-
glion cells, whose axons form the optical nerve. Retinal ganglion cells then transmit the
signal in form of spikes to the superior colliculus, which is involved in eye movements,
the pretectum (playing a role in papillary reflex), and the LGN. On the way to the LGN,
parts of the optic nerve cross at the optic chiasm, after which the optic nerve is called
optic tract, which synapses onto the contralateral thalamus (LGN). This decussation
entails that visual input from the right hemifield reaches the left hemisphere and vice
versa. LGN projects in optic radiations to V1.

V1, also known as the striate cortex, is a 6-layered cortical structure located at
the most posterior part of the brain’s occipital lobe, receiving input through LGN in
layer 4 on spiny stellate cells. It is the first cortical level of visual processing, having
only passed through thalamus (LGN). In mammals such as carnivores or primates, V1
exhibits topographical mapping, or more specifically, retinotopic mapping, where nearby
portions of visual space are represented at adjacent anatomical locations in V1. Rodent
V1 also manifests this retinotopic organisation, which could be successfully mapped
using optical approaches (Schuett, Bonhoeffer and Hübener 2002).

In addition to retinotopic mapping, V1 can also be characterised by exhibiting ori-
entation selectivity as has been first described and discovered in cats and monkeys
by (Hubel and Wiesel 1959; Hubel and Wiesel 1962; Hubel, Wiesel and LeVay 1976).
Hubel and Wiesel discovered then that differently orientated bars presented as visual
stimulation elicited responses differing in spiking frequency during electrophysiological
recordings from V1. Some orientations generated strong spiking responses, whereas
others would consistently elicit weaker spike activity. A common way of quantifying
and visualising these differences in neural responses to orientated bars or gratings are
tuning functions, which capture each neuron’s mean spiking activity as a function of
orientation or direction. Often, neurons have one preferred orientation eliciting the
maximum response, after which other directions are generally best described to follow
e.g. cosine or mixtures of von Mises functions.

This discovery led to widespread research into orientated bars and the assumption of
V1 fulfilling low-level visual processing (such as edge detection), which will lead to more
complicated object recognition in higher visual areas. V1 became a well-researched area,
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both experimentally, and in the realm of computational models (Olshausen and Field
2005; Köster and Olshausen 2013; Niell 2013; Olshausen 2013; Sadeh and Rotter 2015).

In higher-level mammals such as cats or monkeys, these orientation-selective neur-
ons are organised in orientation columns ("hypercolumns", (Hubel and Wiesel 1974)),
stretching across cortical layers, where neighbouring cells exhibit similar orientation
preferences (Espinosa and Stryker 2012). These "orientation columns" progress in small
systematic increments covering the whole orientation field, forming an arrangement re-
sembling pin wheels of a 30 - 100 µm (Bonhoeffer and Grinvald 1991), parallel to the
surface of the cortex. While these orientation columns are commonly found in cats and
monkeys, these are not observed in rodents such as rats and mice, whose V1 neurons
responsive to orientations seem to be randomly organised throughout (Ohki et al. 2005;
Tan, B. D. Brown et al. 2011). This is often described as salt-and-pepper organisation
(Carrillo-Reid et al. 2015; Chklovskii and Koulakov 2004), with one cell’s preferred
orientation not bearing information about the one below or beside it, due to the lack
of the functional architecture found in other carnivore and primates. Both orientation
selectivity arrangements are presented in Fig. 1.1. Hansel and van Vreeswijk argue
that achieving orientation selectivity in V1 of species, which lack clear topographic
orientation organisation (i.e. rodents), it is sufficient to display random connectivity
(Hansel and van Vreeswijk 2012). This means, selectivity may emerge through random
connections, challenging the belief that orientation selectivity requires a functional or-
ganisation of neuronal response properties (Corey and Scholl 2012). Little has been
suggested as to why rodents appear to lack the orientation maps apparent in carni-
vores.

In addition to orientation columns, the neurons in V1 also exhibit ocular dominance
columns where the visual field is covered by both eyes (binocular area). They can be
characterised as columns of neurons that are predominantly monocularly driven, and
typically alternate between left and right eye. While these areas are large in humans and
primates, the binocular field of vision is fairly small in rodents, and does not normally
exist in fish and frogs.

Experimental investigations in mouse visual processing often involve receptive field
mapping and characterising single and complex cell properties or contrast sensitivity
measures (Ringach 2004; Histed, Carvalho and Maunsell 2012; Hansel and van Vreeswijk
2012). Important findings showed the dependency of stimulus exposure in the crit-
ical period on the development of preferred orientations and the effects of monocular
deprivation (Espinosa and Stryker 2012).
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Moving bars   Spike responses 

Figure 1.1: Orientation selectivity in V1. (A) Spike responses to moving bars at
varying orientations in one neuron differ in strength, indicating orientation selectivity.
(B) Different neighbouring neurons with differing preferred orientations (similar shades
correspond to similar preferred orientations) in mouse V1 display salt-and-pepper organ-
isation. (C) Neighbouring neurons in cat V1 show a clear organisation of orientation
preference. Both insets show zoomed-in versions. Figure (A) taken with permission
from (Hubel and Wiesel 1968), Figure (B) and (C) taken with permission from (Harris
and Mrsic-Flogel 2013).

This apparent lack of systematic organisation in rodents may pose a problem when
using Multi-Unit-Activity (MUA) from different depths of a cortical column to recover
orientation selectivity, as this is not preserved across layers. Pooling over a number
of neurons that are arranged in orientation columns will strengthen a neuronal signal
derived extracellularly due to the positive support of similar preferred orientations.
However, pooling over a number of neurons of different preferred orientations as would
be the case in salt-and-pepper organisations will deteriorate signal since opposing pre-
ferred directions may cancel each other out.

Recent studies proposed that neurons of mouse V1 are more correlated in their pre-
ferred orientation that was previously thought. Neurons of similar preferences were
clustered both horizontal and vertical scales (Kondo, Yoshida and Ohki 2016; Ringach
et al. 2016). This work challenges the current understanding of mouse V1 as being ran-
domly or salt-and-pepper organised, by investigating direction selectivity via in vivo
extracellular electrophysiology across cortical layers (with a linear probe spanning all
layers) and columns (by using several shanks).
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1.3 Learning and sensory processing in primary visual cortex

In order to learn to respond to a stimulus in a certain way, a whole cascade of sensory
processing needs to be executed. Even more so if a stimulus is behaviourally relevant
to the individual. Evoked responses to first-time exposures may be biassed by previous
similar experience (a prior), or innate preferences (such as experience-independent de-
velopment factors (Espinosa and Stryker 2012)), but a meaningful association of this
particular stimulus is still lacking. Learning to respond to a stimulus in a beneficial
way modulates and alters the initial, neutral-valued connectivity pattern induced by
the response (Goltstein et al. 2013). These modulations can differ in strength, direction
or sign of the connections. Thus, if a stimulus becomes associated with a certain value,
such as a positive reward or the avoidance or removal of a noxious stimulus, this may
alter the evoked activity. Formerly unresponsive neurons may change or enhance their
response behaviour (Hager and Dringenberg 2010), e.g. through gain modulation to
occupy a stimulus-selective state (J. Zhang and L. Abbott 2000)

Before being able to predict a certain pattern of activity, the cortical columnar ac-
tivation is mainly achieved by sensory stimulation of Layer 4 (L4) receiving input from
thalamus or primary sensory cortex (Constantinople and Bruno 2013). After learn-
ing, Barlow stated that the cortical column may also be driven by other sources not
primarily concerned with vision (H. B. Barlow 1997) or under the influence of later
(visual) areas (Tse and Cavanagh 2000). In other words, initially, activity is mainly
driven by a bottom-up approach (Rauss and Pourtois 2013), and later, after learning,
top-down regulations may affect the sensory response (Makino and Komiyama 2015;
Moldakarimov, Bazhenov and Sejnowski 2014; A. Fiser et al. 2016).

The laminar structure and columnar organisation of the neocortex is arguably part
of a small processing unit (Mountcastle 1997; Horton and Adams 2005). New circuits
for sensory processing are still being discovered (Hirsch and Martinez 2006; Jiang et al.
2013; R. J. Douglas and K. A. C. Martin 2004), and cortical processing and modulation
of functional connectivity in the visual cortical column is not entirely understood yet.
A recent study by Olsen et al. (2012) revealed that strong projections from L6 target
L4 interneurons. This was shown by an optogenetic stimulation of L6 in vivo, which
led to a translaminar inhibition in both L4 and L2/3, while sensory stimulation of L2/3
had only little effect on L4 (Adesnik and Scanziani 2010; Petersen and Crochet 2013).
Different types of inhibitory cells in L4 were also shown to be involved in mechanisms
of gain control (Hirsch, Martinez et al. 2003), which plays a pivotal role in sensory
representation (Salinas and Thier 2000): A changing amplitude of neuronal responses
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can be induced by a downstream neuron, allowing to switch from being unresponsive to
a stimulus to responsive (J. Zhang and L. Abbott 2000), potentially indicating a learnt
pattern (Makino and Komiyama 2015).
In the superficial cortex, it was reported that activity patterns are organised into a

small number of attractor-like neuronal assemblies (Bathellier, Ushakova and Rumpel
2012; Harris 2012). A very small number of firing patterns was induced by stimuli,
leading to discrete response modes whose neurons belonging to the same mode exhib-
ited similar tuning, although receptive fields in L4 and L2/3 were not the same. Thus,
the responses of cells in superficial layers differed from those in L4 (Hirsch and Mar-
tinez 2006; Martinez et al. 2005; Niell and Stryker 2008; Cossell et al. 2015). Differing
responses were also observed in neighbouring neurons, which can have strongly correl-
ated activity but the probability of observing these high correlations falls rapidly with
distance between neurons (Rothschild, Nelken and Mizrahi 2010; Sakata and Harris
2009).
Another example of how visual experience may alter the response properties of a

stimulus-selective subpopulation of V1 was presented by (Goltstein et al. 2013): In
2-photon imaging experiments, they repeatedly exposed the mouse with a directional
visual stimulus linked to a reward and observed how this reward association affected tun-
ing properties. The result revealed a broadened orientation tuning and sharpened dir-
ection tuning for an assembly of V1 neurons selective for that stimulus. This translated
also to population responses in L2/3 in experiments done by (Poort et al. 2015), where it
was shown that task performance correlated with increasingly distinct population-level
representations.
Another target of learning was shown by Jeanne, Sharpee and Gentner (2013), who

demonstrated in songbirds how forming a behaviourally relevant association with a spe-
cific stimulus modified the correlational patterns between neurons. Thus, the response
properties for noise and signal correlations were altered, illustrating how correlation can
act as a measure of recognition weights and be the target of learning.
Stimulus-selective Response Potentiation (SRP) discussed in Frenkel et al. (2006) and

Cooke and Bear (2010), demonstrates how experience-dependent plasticity in a per-
ceptual learning task is achieved by inserting AMPA receptors (α-Amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors) into the membrane. Further, they showed
that the early visual system was able to recognise and predict a learnt sequence of visual
stimuli (Gavornik and Bear 2014).
These aforementioned phenomena illustrate the history-dependence of synapses, in
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that a repeated stimulus exposure can increase the response (Zucker and Regehr 2002) -
unlike the phenomenon of adaptation, where a repeated or prolonged stimulus present-
ation (Patterson, Wissig and Kohn 2013), quite contrarily, can reduce the amplitude
of the evoked response (Kohn and Movshon 2003; Kohn 2007). Taken together, these
changes may also lead to a shift or remapping of the preferred direction of the receptive
field (Jeyabalaratnam et al. 2013; Jin et al. 2005), typically sharpening it up (Chadder-
ton et al. 2014), which can be compensated for using low stimulus repetition rates and
presentation durations.

1.4 Decision-making

Behaviour is a directly observable result of a (sensory) perception that was processed,
evaluated and integrated in a decision process, which then evoked a (motor) response
or the omission of it (e.g. fleeing or freezing responses). Thus, decisions are a fun-
damental part of behaviour. Forming a decision requires integrating prior knowledge
(what happened last time, what is the value of the current decision?), current internal
and external states (e.g. motivational state, hunger, danger) and other factors (is im-
mediate action required or can the decision be deferred?). To this date, little is known
about how decisions are made on a neural basis (Gold and Shadlen 2007). Intertwined
in decision-making is the consideration of potential outcomes, and thus, the benefits and
costs of choosing one decision over another. Hence, the ability to predict the outcome
and reward associated with it are tightly linked. Unfortunately, this means decision-
making is unlikely to be directly observable in one brain area alone, but to be the result
of a multiregional integrative process.

When this question is investigated in a laboratory environment, external factors that
may exacerbate interpretation are attempted to be minimised. One way of probing
decision-making is to create new (reward) associations with novel or neutral stimuli,
avoiding confounding effects from prior experience. These associations are often formed
using reinforcement learning techniques to condition animals to produce a desired be-
haviour (Huberman and Niell 2011; Guo et al. 2014). A common behavioural paradigm
to do this is the two-category GO/NOGO task, where the GO stimulus is paired with
a reward and requires a behavioural action, while the NOGO cue expects no action
and may be punished. Thus, the animal needs to make a perceptually-driven decision
based on its prediction of reward or punishment. With a given behavioural task, the
next question is in which brain structure to probe decision-making.
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Anterior Cingulate Cortex (ACC) and medial Prefrontal Cortex (mPFC) are regions
known to be involved in decision-making processes (Euston, Gruber and McNaughton
2012). Damage to mPFC or ACC often results in difficulties making choices and im-
paired abilities in learning or predicting the consequences of a choice (Kennerley and
Walton 2011). Areas that have long been known to be involved in reward-dependent
learning, and which directly showed neural substrates of reward predictions are the
midbrain structures ventral tegmental area (VTA) and substantia nigra (W. Schultz,
Dayan and Montague 1997). After reward association, these structures increase their
firing already on cue onset, and decrease markedly if the reward is omitted, indicating
that expected reward timing is also encoded (Hollerman and W. Schultz 1998). All
these areas have been reported to be involved in value assignment, reward-directed and
Pavlovian learning (Balleine 2007; Gold and Shadlen 2007; Carandini and Churchland
2013).

However, the decision-making process starts with the sensory percept, which is why
investigations in sensory areas have become more common in decision-making research
(Huberman and Niell 2011; Carandini and Churchland 2013; Stüttgen, Schwarz and
Jäkel 2011). Here, electrophysiological recordings are performed in primary sensory
cortices after animals were conditioned to a stimulus, often paired with an operant
conditioning component that requires a certain action, e.g. licking or pressing a lever
as conditioned behaviour (Skinner 1938). Different variables have since been shown to
be linked to decision-making. Pupil diameter has been reported to be an observable
parameter in decision-making (C. R. Lee and Margolis 2016) as well as in arousal (Vinck
et al. 2015). In a GO/NOGO tactile discrimination task, C. R. Lee and Margolis (2016)
was able to use pupil diameter as a predictor for lick response, where learning increased
the dilation magnitude and latency between pupil dynamics and lick response. Further,
recently several studies pointed at the role of V1 in decision-making: Namboodiri et al.
(2015) suggested V1 to play a role in decision-learning in questions involving visually
cued actions, and St. John-Saaltink et al. (2016) reported decision-making not only to
be subject to the stimulus itself, but also the preceding stimulus sequence.

The recently formed International Brain Laboratory is trying to address the problem
of multiple brain regions being involved in decision-making. Their aim is to perform
the same behavioural experiment in different labs, while recording in different regions
with different recording techniques to create a comprehensive data set to be analysed
by computational partners (L. F. Abbott et al. 2017). Hopefully, this will help unravel
how decisions are formed, from the sensory percept to a motor response.
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1.5 Multi-Unit-Activity as a methodological choice

Single Unit Activity (SUA) describes the activity of a single neuron. Their electrical
potentials can be measured extracellularly using microelectrodes or glass micropipettes
placed closely to the cell membrane. Common methods in extracellular recordings
involve microwires small enough to pick up signals from only the closest neuron, inserted
as bundles into the brain (J. C. Williams, Rennaker and Kipke 1999; Kralik et al. 2001),
having only little control over the actual positioning of each electrode site in the brain
since individual wires may diverge from the bundle in unforeseeable ways. Alternatively,
silicon microelectrode arrays have the advantage of providing better mechanical stiffness
and the control over multiple recording sites in defined geometric organisation on a single
or on multiple shanks (Kipke et al. 2003). The increased mechanical stiffness and the
option to define the recording sites (i.e. the size and positioning) enables study over a
larger neural tissue volume at defined locations. These larger recording sites increase
the yield (Obien et al. 2015), which may also lead to picking up neural signals from more
than one neuron in the vicinity. This is called MUA and describes the aggregate spiking
of a local population of cells. MUA recordings require a few processing steps to obtain
the neural signal. Firstly, it requires high-pass filtering the neurophysiological signal.
Secondly, thresholding it on each channel of the multi-electrode recording array results
inMUA. Here, it is also possible to simultaneously collect low frequency electrical signals
from each channel, the Local Field Potential (LFP) (believed to represent the aggregate
input into a particular region), which is low-pass filtered with a cut-off frequency of 250
Hz. Both MUA and LFP show improved robustness in comparison with SUA over long
recording sessions (Land et al. 2013; Nelson 2012).
Unfortunately, the standard technique for observing neural activity, i.e. neuro-

physiological recording of SUA, is not particularly well suited for long recordings over
multiple behavioural sessions. This is because individual units are lost, often due to
drift or damage if recording probes are left in situ (Kozai, Li et al. 2014; Biran, D. C.
Martin and Tresco 2005; Kozai, Catt et al. 2014), despite some reported success with
long-term recordings with immovable probes (Okun, Lak et al. 2016). This technical
reality often means the researcher is better served investigating MUA, when making
recordings in behaving animals and over long behavioural sessions.
Summing over multiple neurons to increase information and robustness is not a new

idea, but has, for example, already been used in decoders such as population vector
(Georgopoulos, Schwartz and Kettner 1986; Stark and Abeles 2007). This has led to
their use in Brain Machine Interfaces (BMI) applications (Flint et al. 2013; Stark and
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Abeles 2007), and suggests that their use may be advantageous in probing the neural
substrates of learning or behaviour mechanisms in the cortical circuit. Thus, using
MUA instead of SUA targets different questions, mainly those concerning populations
of neurons with the aim of transferability to being utilised in long term studies (Flint
et al. 2013). Luckily, studies that included both MUA and SUA generally found that
MUA on a given site/shank behave similarly to the rest of the local population. This can
be beneficial, particularly in areas such as auditory cortex with its tonotopic mapping.
Here, local populations are generally homogeneous, where integrating over a local area
may lead to signal amplification. Yet, summing signals may be detrimental for signal
quality in heterogeneous regions such as mouse visual cortex, which, unlike cats and
primates, does not show orientation columnar organisation. It instead exhibits a salt-
and-pepper organisation (Ohki et al. 2005), whilst still displaying a high orientation
selectivity (E. Gao, DeAngelis and Burkhalter 2010; Niell and Stryker 2008; Espinosa
and Stryker 2012). Because of this fine-scale random organisation, it might be expected
that MUA and LFP in mouse visual cortex contain little information about the spatial
structure of a stimulus beyond retinotopy. However, it was recently shown that the
median similarity in tuning preference is significantly higher between neurons in close
proximity (100 µm) than further (200 µm) separated ones (Ringach et al. 2016). Thus,
we conjecture that a residual bias in the orientation or SF tuning sampled by the
MUA on a single channel may leave a substantial amount of information, and that
although orientation preference may be randomly scattered, their occurrence may not
be uniformly distributed. Indeed, it has recently been shown in rat hippocampus (which
also manifests random organisation) that LFP alone can be accurately used to decode
spatial position of a rat (Agarwal et al. 2014).

If required, MUA can also be transformed into SUA with a time-consuming process
called spike-sorting (Harris, Quian Quiroga et al. 2016), which requires clustering the
waveforms of each spike incident and assigning them to different neurons with spe-
cialised software such as Klustakwik (Rossant et al. 2016; Kadir, Goodman and Har-
ris 2014). Although clustering techniques exist that may correctly find clusters, the
manual cluster merging step is still time-devouring and the experimenter may suffer
from decision fatigue that a consistent accurate classification cannot automatically be
warranted, particularly over long recordings in which spike waveforms or activity levels
change or deteriorate (Flint et al. 2013; Harris, Quian Quiroga et al. 2016; Rossant
et al. 2016; Buzsáki 2004). In this study, spike-sorting was performed but not further
analysed, because the questions posed did not rely on whether the signal was generated
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by one, or two or perhaps three distinct neurons. Instead, the existence of a source
in close proximity to the recording site is acknowledged, as we are investigating the
population response, i.e. the local activity. Thus, the devised and applied techniques
would allow examination of neural signals in real-time, which will be particularly use-
ful for cases that cannot rely on offline spike-sorting such as in neuroprosthetic BMI
applications or in repeated or long recordings.

While studies involving SUA mainly targeted individual cell properties, two-photon
imaging based methods are able to record from multiple individual cells simultaneously,
albeit all from the same or similar superficial cortical depths. Both methods lack
the power to record from all layers and different cortical columns at the same time,
while summing over as much cortical volume as attainable whilst retaining the spatial
resolution that is possible with MUA.

1.6 Information-theoretic concepts

Information theory describes the systematic study of information transfer, retrieval
and storage. It focusses on the coding of sequences of symbols and how these can be
transmitted through communication channels. Claude Shannon lay the cornerstone to
information theory in his work searching for limits on signal processing and data com-
pression (Shannon 1948). Already in 1952, his principles were applied to neuroscience
in describing the transmission capacity of neurons (MacKay and McCulloch 1952), and
has since been found a plethora of applications from the study of consciousness to
analytic approaches designed to decipher the neural code (Dimitrov, Lazar and Victor
2011). One of the key measures in Information theory is Shannon entropy, which is
a quantity typically measured in bits that determines the amount of uncertainty in a
random variable or process.

1.6.1 Shannon entropy

Shannon entropy (Shannon 1948) is a measure to quantify the amount of potential
information contained in a signal. It is calculated as a weighted average of log 1

p(x) ,
in which p(x) represents the amount of surprise in an event x. If the occurrence of
event x is very unlikely (low probability), a large amount of information is conveyed
by knowing x happened. Likewise, if all events occurred at equal probability, knowing
that any event happened does not explain anything about any other, thus maximising
the surprise and uncertainty.
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Entropy is a measure that is maximal when the underlying probability distribution is
uniform, which means observing a particular state bears no information about observing
any other particular state, and each state has equal probability. Shannon entropy then
also depends on the number of possible observable states, which means if in a particular
system each state occurs with equal probability, the (theoretical limit of the) entropy
depends on the size of the state space. Without correlations between sites, and given a
uniform probability distribution, in infinite time each unique pattern is traversed, and no
pattern would provide information about observing another, thus, reaching maximum
entropy. However, given that neural data contain signal and noise correlations, as well
as the problem of finite sample sizes, often only a (small) subset of all possible patterns
are observed. This leads us to the finite sampling problem.

(Spatial) spike patterns can also be characterised by their (Shannon) entropy, which is
part and parcel of ongoing research in Information Theory (Strong et al. 1998; Averbeck,
Latham and Pouget 2006; Ince, Panzeri and S. R. Schultz 2015) since it is surprisingly
difficult to get an accurate estimate of the Shannon Entropy from a finite number of
observations (Panzeri, Senatore et al. 2007; Tkačik and Bialek 2014; Victor 2002). It
is very common to lack adequate amounts of observations (samples) compared with
the numbers of possible states (or possible symbols). This is particularly obvious when
considering the case of all possible binary patterns with 32 channels, which give us 232 ≈
4.3 · 109 possible states. With a minimum bin size of 1 ms (considering that neurons
have a refractory period of 1-2 ms), observing each pattern only once would require ≈49
days of data. Thus, severe problems can occur in the so-called undersampled regime,
where not all events with non-zero probability are observed, or certain states end up
being misrepresented.

The first entropy estimator described here is the plug-in estimator (Panzeri, Senatore
et al. 2007; Archer, Park and Pillow 2012; Ince, Mazzoni et al. 2012; Nemenman, Bialek
and de Ruyter van Steveninck 2004). It is calculated as H(X) = −∑x∈X p(x) log2 p(x),
and suffers from a severe negative bias for low sample sizes. There are many techniques
focussing on how to estimate and correct this bias, e.g. (Treves and Panzeri 1995; Ince,
Mazzoni et al. 2012; Panzeri, Senatore et al. 2007; Paninski 2003), sometimes at the
cost of increased variability (Strong et al. 1998). When choosing an entropy estimator
for discrete data, the following questions need to be considered: (i) Is knowledge about
the shape of the distribution available? (ii) Are the samples binary vectors? (iii) Is
the support of our observations known? (iv) Is the support known and finite? (v) Is
following a Bayesian approach an option? (vi) If the range is unknown or infinite, is
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anything about the tail of the distribution known? E.g. exponential or power-law tail?
(Park 2014).

Unfortunately, there are no unbiassed entropy estimators (Paninski 2003). However,
luckily, there are many estimators with low bias and/or low variance (Park et al. 2013;
Paninski 2003; Panzeri, Senatore et al. 2007). Using a reliable entropy estimator is
pivotal when calculating Mutual Information (MI) or other metrics that derive from a
good entropy estimator. Often, the joint probability distribution or the cross-entropy
required to calculate MI cannot readily be estimated, while the marginal distributions
are known or can be inferred. One particularly effective technique follows a Bayesian ap-
proach, using a suitable prior on the probability distributions, which has been shown to
be effective in approximating entropy particularly in the undersampled regime (Archer,
Park and Pillow 2013a; Archer, Park and Pillow 2013b; Archer, Park and Pillow 2014;
Nemenman 2011; Nemenman, Shafee and Bialek 2002; Tkačik and Bialek 2014).

Notably, the Centred-Dirichlet-Mixture (CDM) estimator developed by (Archer, Park
and Pillow 2013b) deals with the problem of low samples sizes and unknown support
with an appropriate prior, and is particularly suitable for binary spike train data. In
short, the CDM is a novel Bayesian estimator with a prior designed specifically for binary
data, reflecting observations that are either close to independent or to the synchrony
distribution (i.e. the sum of simultaneously active neurons, or population spike count).
An extension of the CDM-entropy estimator for countable, discrete distributions such
as population FRs is the Pitman-Yor-Mixture (PYM) entropy estimator, also developed
by (Archer, Park and Pillow 2014), which includes a nice feature by being able to deal
with unknown support.

Another entropy estimator often used in the literature is Nemenman-Shafee-Bialek
(NSB), which uses a mixture of Dirichlets to create an approximately flat prior (un-
informative) on entropy, thereby also reducing the bias in the undersampled regime
(Nemenman, Shafee and Bialek 2002; Nemenman, Bialek and de Ruyter van Steven-
inck 2004; Nemenman 2011).

This study applies the CDM and PYM, since these Bayesian estimators, albeit having
explicit probabilistic assumptions, perform well in the undersampled regime and their
assumptions do not need to be valid for them to produce good entropy estimates. More
information can be found in e.g. (Park 2014) and (Archer, Park and Pillow 2014). The
implementations can be accessed on https://github.com/pillowlab/CDMentropy and
https://github.com/pillowlab/PYMentropy.
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1.6.2 Mutual Information

MI is a measure quantifying how much one random variable explains about another.
It is a symmetric, non-negative quantity, explaining in units of bits the reduction of
uncertainty about one variable given information about another (Tkačik and Bialek
2014; Cover and Thomas 1991; Brunel and Nadal 1998; Pola et al. 2003). If the
two random variables are independent, MI is zero, and (provided a bijective map-
ping) I(S,R) = H(X) = H(Y ) if there is a deterministic relationship, where H(X)
is the entropy of X and H(Y ) the entropy of Y . MI is defined as: I(S,R) =∑
s∈S

∑
r∈R p(s, r) log2

(
p(s,r)
p(s)p(r)

)
where p(s, r) denotes the joint probability distribu-

tion function of discrete variables S and R (e.g. stimulus and response), and p(s) and
p(r) are the marginal probability distribution functions. This, however, is a math-
ematical depiction of MI and unless the estimate for our probability distributions is
good, which cannot be guaranteed at low sample sizes, similar problems as with the
plug-in estimator may be encountered. Another way of calculating MI is via entrop-
ies: I(S,R) = H(R) − H(R|S) = H(S) − H(S|R), where H(R|S) is the (sample-size
weighted) sum of entropies conditioned on each stimulus. H(R|S) is called conditional
entropy, and can be interpreted as the mean uncertainty about R after observing a
second random variable S.
In practice and when working with probability distributions of very unequal sample

sizes encountered in experimental work, MI estimates can result in (small) negative
values. This may be exacerbated by poor entropy estimates when calculating MI. For
example, there may be classes with sufficiently large sample sizes resulting in a reliable
entropy estimate, and another class being heavily undersampled. Even by weighing
the inputs adequately to account for differences in sample sizes the entropy estimate
of the undersampled class may be so poor (and therefore possibly negatively biassed)
that the sum results in a negative MI estimate. This emphasises the need for a good
entropy estimator and sufficiently large sample sizes. The true MI cannot be negative,
as stipulated by Jensen’s inequality (Cover and Thomas 1991). This can be easily
proved, and a proof can be found e.g. in the notes of (Vu 2012).
Since the plug-in entropy estimator suffers from substantial negative bias, MI based

on the plug-in estimator suffers from substantial positive bias. To minimise these effects,
binary data applied the CDM entropy estimator, and discrete data such as population
FR, employed the PYM entropy estimator, which reduce the negative bias (Archer, Park
and Pillow 2014; Archer, Park and Pillow 2013b).
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2
Multi-Unit Activity contains information
about stimulus structure in mouse V1

2.1 Introduction

Cortical microcircuits govern our perception: how we see, hear and think. Reverse-
engineering the functionality of these circuits is a major project of modern neuroscience,
and of the emerging field of neural engineering. Mouse Primary Visual Cortex (V1) is
a prime candidate for studying the principles of information processing in a cortical
circuit, as it possesses a similar range of cell types and receptive field classes to that of
other mammals (Niell and Stryker 2008), while allowing numerous recently developed
molecular and optogenetic tools to be applied (Huberman and Niell 2011). Moreover, its
position at the earliest cortical stage receiving topographically mapped inputs from the
retina, solely relayed through thalamus makes it a suitable candidate for investigating
early sensory processing. Electrophysiological studies demonstrated its importance in
low-level sensory processing, particularly in edge detection in single cells (Niell 2013).

Already in the 1950s it was discovered that moving bars at different orientations
elicited responses of varying strength. This led to the discovery of orientation-selective
neurons (Hubel and Wiesel 1962; Hubel and Wiesel 1959), and their apparent organisa-
tion in orientation columns (Hubel and Wiesel 1974), consisting of neurons of the same
or similar preferred orientation spanning multiple cortical layers. Beside this functional
arrangement orthogonal to the cortical surface, orientation-selectivity was found to be
organised in pin wheel structures (Bonhoeffer and Grinvald 1991), in which preferred
orientation progressed in small increments, lateral to the cortical surface, covering the
entire orientation field (Espinosa and Stryker 2012). These orientation maps can mainly
be found in higher-level mammals such as cats, ferrets, or monkeys (Koulakov and Chk-
lovskii 2002), but are missing in rodents such as rats and mice. Yet, rat and mouse V1 do
display orientation selectivity, appearing to be randomly organised (Tan, B. D. Brown
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et al. 2011) in what has been termed "salt-and-pepper" organisation (Carrillo-Reid et al.
2015; Chklovskii and Koulakov 2004; Kaschube 2014). Thus, mice are said to lack both
the columnar structure of orientation preference, and the pinwheel organisation. It is
not clear why rodents lack an orientation map found in cats. Hansel and van Vreeswijk
(2012) argued random connectivity would be enough to create orientation selectivity in
animals lacking topographic organisation, in contrast to the belief that the generation
of orientation selectivity required a functional organisation (Corey and Scholl 2012).
Only recently, studies began to revisit preferred orientation in mouse V1 and detected
more structure than was thought, as preferred orientations were found to cluster both
on cross-columnar and laminar scales (Kondo, Yoshida and Ohki 2016; Ringach et al.
2016).
This study challenges the widespread understanding of orientation tuning and se-

lectivity in mouse V1 by in-vivo electrophysiology across different layers and cor-
tical columns. It is demonstrated that individual Multi-Units (MU) contain signific-
ant amount of information about the direction and Spatial Frequency (SF) of drifting
gratings. To do this, an anaesthetised in-vivo electrophysiology experiment is devised
in which novel electrophysiological MU data from the left hemisphere of mouse V1
is acquired. In addition, MU analysis reveals that low SF gratings moving from the
temporal to nasal visual field reliably evoke highest neural responses across layers and
columns indicating a strong bias in direction selectivity. Further, a high signal cor-
relation between directions, and between SF tuning functions from different cortical
locations is presented, questioning salt-and-pepper organisation in mouse V1.
It is shown that it is possible to decode direction and SF from the pattern of Multi-

Unit-Activity (MUA) across channels with a high degree of confidence, emphasising that
Single Unit Activity (SUA)might not be required for decoding tasks. This may provide an
extremely useful tool for probing changes in cortical circuit information representation
during behavioural learning paradigms.

The following sections contain material taken from and expanded upon ©2015 IEEE,
reprinted, with permission, from (Tolkiehn and S. R. Schultz 2015).

2.2 Methodology - surgeries and animal preparation

4x8-shank translaminar linear Neuronexus silicon microelectrodes were used to record
neural activity in left hemisphere mouse primary visual cortex. Four shanks enabled
recordings to be made from neurons in different layers and columns, maximising the
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area and population recorded from.
All experiments were designed, implemented and performed by Marie Tolkiehn in

accordance with the Animals (scientific procedures) Act 1986 (UK) and the Home
Office (UK) under protocol 19b2 of PPL 70/7355 and personal licences. Mice were kept
in a reversed 12h dark/light cycle and recordings were performed during the early dark
phase.

2.2.1 Anaesthetics and drugs

The acute experiments were performed with n=12 female young adult wild-type
C57BL/6 mice with mean age 2.2 months. The animals were sedated intraperiton-
eally with chlorprothixene (0.5 mg/kg, Sigma-Aldrich, UK) and anaesthetised with
Isoflurane (2% for induction, 1 - 2% for surgery, 1% for electrophysiology in 1.2% O2,
Harvard Apparatus, UK). Isoflurane concentration was controlled via vaporizer, and
superfluous anaesthetic retrieved using a scavenger. Further, to maintain clear airways
and avoid tracheal secretions, 0.3 mg/kg (injected 0.01 ml dilution, Animalcare, UK)
atropine sulphate was injected subcutaneously; and 2 mg/kg dexamethasone (injected
volume 0.01 ml, Organon, UK) was also administered subcutaneously to prevent oed-
ema. Depth of anaesthesia was controlled continually by checking the pedal-withdrawal
reflex.

2.2.2 Surgical procedures

The anaesthetised animal was moved onto a feedback-regulated heating pad and body
temperature was measured with a rectal thermometer, and maintained at 37.1 ±0.5◦C.
To prevent corneal dehydration whilst maintaining clear optical transmission, the eye
to be recorded from was kept moist throughout the procedure by eye ointment (silicone
oil, Sigma-Aldrich), applied continually, and covered from the microscope light with a
stripe of black tape when in use. The head was initially kept in position using ear bars,
a custom-built nose cone and an incisor adaptor. Vaseline was applied over the head to
glue together the hair, easing the hair removal with scissors and to avoid stray hairs in
the surgical area from the surrounding areas. An incision was made over the skull and
the skin removed to expose the skull between Bregma and Lambda, approximately an
area of 1 cm2. A sterile cotton bud and sticky tape helped clearing the skull surface
of connective tissue (gelatinous periosteum) and stray hair. With a sterile cotton bud,
the muscle at the back of the head was gently pushed away in a rotating movement,
making space for a ground screw site over the contralateral cerebellum.
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2 Multi-Unit Activity contains information about stimulus structure in mouse V1

The distance between Bregma and Lambda was measured by inserting a recycled
electrode into the head stage of the electrode mount. Operated through a Scientifica®

PatchStar micromanipulator and controlled with LinLab® software, the target location
for the acute recording was the monocular region of the primary visual cortex (V1m)
at -3.55 mm posterior Bregma and 2.5 mm lateral from the midline. With the meas-
ured distance Bregma-Lambda, the corrected target area was calculated with xLOC =
-3.55 mm* z[mm]/4.2 mm and yLOC = 2.5*z[mm]/4.2 mm, with z the individual dis-
tance between Bregma and Lambda and 4.2 mm being the average distance between
them. The corrected target area at xLOC and yLOC was marked with a permanent
marker and the location for the ground screw over contralateral cerebellum, on the in-
terparietal bone near the lambdoid suture was identified with Phosphate Buffered Saline
(PBS) application to check for superficial blood vessels. One small craniotomy (1 mm
diameter) was drilled for the ground screw with a hand-held dental drill (Osada Suc-
cess 40, 0.5 mm drill bit), and the ground screw-socket complex (Precision Technology
Supplies, M1.0x2.0 Slot Cheese Machine Screw DIN84 A2 St/St and socket connector,
MILL MAX, 851-43-050-10-001000 connector, sip socket), which had been prepared
and connected before the procedure, was gently inserted into the craniotomy with a
precision screwdriver after having removed the dura with a small needle (27G).

An elastic ring, cut from a syringe tip or a PVC tube was placed onto the target
area and glued with super glue (Henkel Loctite). The height of the well was dependent
on the use of internal electrode reference vs. external (which required an extra wire).
Using the internal reference entailed a higher well allowing for a larger amount of PBS
filled in the well, keeping the brain moist and the internal reference site connected, since
the distance between electrode sites and reference was fixed, and given our superficial
cortical recordings would lie outside of the brain tissue with the reference site located
1000 µm from the top site. For the external reference, which was connected to the
ground screw, a smaller rubber ring sufficed. Once the superglue was cured, the ground
screw and well were secured in place with dental cement (Kemdent Simplex Rapid®,
cold cure acrylic). Dental cement was then also used to cover the exposed skull and
to form a head plate, joining the skull with a horizontal metal bar, which was screwed
onto the frame. When the dental cement was set, ear bars were removed, the mouth
piece (nose cone) unscrewed and brought forward along with the mouse to place it in
the recording position, thereby removing the stereotaxic frame from the field-of-view,
and readjusting the nose cone in the forward position.

Subsequently, a craniotomy of approximately 3 mm in diameter was performed in the
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region of interest inside the rubber well (with a 0.5 mm drill bit). In doing so, the skull
was thinned at the outer part of the ROI (the stereotaxic frame may be rotated for
better visual control), and when it was thin enough to form cracks along the thinned
bone, PBS was applied to soak the skull and thereby ease the bone fragment removal.
Soaking the skull in PBS facilitates the separation of skull and dura, minimizing poten-
tial damage due to skull-dura adhesion. With a bent needle used as a hook, the skull
fragment could be lifted slightly off the brain. Fine forceps 5 (Dumont #5) then lift
the skull fragment gently off the brain. Similarly, to remove the dura, a small incision
was made into the dura, lateral to the recording site, and retract it with fine forceps
#5. The mouse was then moved into recording position and DiI (fluorescent lipophilic
cationic indocarbocyanine dye, DM282, Molecular Probes®, Life Technologies) solution
(20 mg DiI in 300 µl DMSO) was prepared (vortexed), for histological identification of
the electrode trace. The recording electrode was manually dipped into the DiI. Altern-
atively, the DiI Eppendorf tube was placed into a boss head and a magnetic rod fixed
onto the optical table, and the electrode was inserted into the DiI through a microma-
nipulator. The coated electrode was then inserted into the brain at the desired location.
This has to happen in quick succession with the coating, as the DiI may evaporate or
dry, rendering it ineffective.

The silicon microelectrode was lowered slowly into the brain to a depth between 800
µm and 1050 µm, at a speed of a few 10 µm/s. In these experiments, the probe was
equipped with four shanks, 200 µm apart, with 8 linearly arranged recording sites of
size 177 µm2, each separated by 100 µm. Once the required depth was reached, the
electrode was left to settle for 20-30 minutes.

2.2.3 Electrophysiology rig

The electrophysiology rig was modified from the set-up designed and used by Tang
(2015). It was built on an air-pressure stabilised optical table with aluminium plates
on four sides to form a Faraday cage, minimizing electromagnetic noise artefacts and
scattered light. For the recordings, all lights were switched off in the room to avoid
stray light that could interfere with the recording. To cover the front/operating part
of the rig, a conductive fabric curtain (Wavetame, UK) was drawn during recording,
thus, further keeping light and noise, e.g. from observing computer screens, away from
the recording sites ensuring the display presenting stimuli being the only light source
to the animal.

The stimulus monitor was a Samsung SyncMaster 2233Z, 22" LCD monitor, 60 Hz
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refresh rate, which was reported as particularly suitable because of its temporal reliab-
ility for visual research (Wang and Nikolić 2011). The stimuli on the gamma-corrected
monitor were displayed on 255 grey scale with mean screen luminance at 46.93 cd/m2.

2.2.4 Stimuli and data acquisition

The stimuli comprised a set of 5 different individual subsequently presented conditions:
1. 5 minutes of spontaneous activity (not used in this study)
2. 400 repetitions of 600 ms flashes (black, white, maximum and minimum lumin-

ance), full-field to detect transient and sustained responses (not used for analysis).
3. A set of pseudorandomly presented sinusoidal drifting gratings, full contrast, 20

repetitions each, of 6 different SFs at 8 directions (1 s stimulus-ON time, with
1 s pre-stimulus time) at a constant 1.6 Hz temporal frequency, interleaved with
1 minute spontaneous activity after each full set at medium luminance (grey
screen), which is common practice to use to estimate ongoing activity (Kenet et
al. 2003; Niell and Stryker 2008; Jurjut et al. 2017). Throughout this manuscript,
this stimulus type is termed moving Gratings (mG), and its associated interleaved
Spontaneous Activity 1 (S1).

4. 4 repetitions of 10 different temporal frequencies at a SF of 0.03 cycles per degree
(cpd) (stimulus-ON time 14 s, pre- and post-stimulus time 1 s each). The stimulus
type is referred to Temporal Frequency (TF) and the Spontaneous Activity 3 (S3).

5. 15 repetitions of a 60 s grey-scale natural movie consisting of 2 continuous present-
ations of the same 30 s natural movie showing natural scenes such as grass and
trees. Each 60 s of movie presentation is followed by 1 minute break from stim-
ulation (grey screen, as a proxy for Spontaneous Activity (SA)). Movie stimuli are
referred to as natural movie (nat) and its SA as Spontaneous Activity 2 (S2).

The order of stimulus type presentations was kept the same to improve comparab-
ility across mice at similar anaesthesia lengths. Fig. 2.1 outlines the stimulus type
presentation structure described above.
The mouse was placed 25 cm away from the monitor (Samsung SyncMaster 2233Z,

22" LCD monitor, 60 Hz refresh rate), covering approximately 60◦x75◦ of the visual
field of the right eye. The left eye was treated with eye ointment (Allergan Lacrilube)
and covered with black tape to avoid confounding effects attributable to the binocular
zone of vision or inputs from the contralateral eye.
Stimuli were generated with FlyMouse, a software based on FlyFly, a Matlab Psy-

chophysics Toolbox-based interface developed by the Motion Vision Group at Uppsala
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Figure 2.1: Stimulus presentation (black) structure with interleaved spon-
taneous activity (grey). (A) Moving gratings are presented with 1 s on and 1 s off
time, interleaved with 60 s grey screen, S1. (B) Natural movies are 2 concatenated
presentations of the same 30 s segments, followed by 60 s grey screen. (C) TF are
presented for 14 s, followed by 2 s OFF screen periods.

University (http://www.flyfly.se/about.html) and customized by Silvia Ardila Jimenéz
and Marie Tolkiehn. Examples of the Direction (DIR) and SF stimulus battery are de-
picted in Fig. 2.2. SFs were [0.01, 0.02, 0.04, 0.08, 0.16, 0.32] cpd and directions [0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 325◦]. Temporal frequencies were [0.2, 0.4, 0.6, 1.2,
1.6, 2.4, 3.2, 4.8, 6.4, 9.6] Hz.
Drifting gratings were presented at a constant temporal frequency (1.6 Hz), implying

that the perceived stimulus speed decreases at higher SF.
Signals were acquired by Ripple Grapevine (Scout Processor), amplified with a single-

reference amplifier with on-board filtering and digitization at 16 bit resolution and
0.2 µ V/bit (Grapevine Nano front end), and software Trellis, which was equipped
with a live display of the channels during the recording. This set-up was best used
with an Intel GIGABIT CT DESKTOP RJ45 PCIE B networks card to ensure a safe
signal transmission. The Grapevine Nano front end enables the user to switch between
different references, selecting between reference floating, R2 ignored, R2 as reference, or
a tied reference bus. In these recordings, the built-in electrode reference located 1 mm
from the top electrode site was used, as it provided a much clearer signal. Broad-band
signals sampled at 30 kHz were recorded, filtered between 0.3 Hz and 7.5 kHz (3rd order
Butterworth filter) and Local Field Potential (LFP) signals sampled at 1 kHz, low-pass
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t

A B C

Figure 2.2: Grating stimuli with increasing SF. (A,B) Moving gratings and nat-
ural movies are presented on a monitor covering approximately 60◦x75◦ of the visual
field of the right eye, while the contralateral eye is covered to avoid confounding effects
from inputs from the contralateral eye; and in-vivo electrophysiological recordings were
made from left hemisphere V1. Mouse sketch by Susanna Mitolo. (C) From left to right
increasing spatial frequencies from 0.01 to 0.32 cpd, and from top to bottom increasing
orientations at 45 degree steps, from 0/180 to 135/325.

(250 Hz) 4th order Butterworth filter, from each of the channels.
The screen output signal and stimulus presentation triggers were synchronised with

a custom-built photo-diode circuit board and photo-sensor (LCM555CN), which was
attached to the bottom left corner of the monitor, where stimulus presentation differed
from the rest of the monitor. Here, on stimulus onset and offset, a small rectangle
flashed, which was detected by the photo-diode, relayed to the data acquisition system
and used as a sync pulse.

2.3 Analysis methods

2.3.1 MUA analysis and processing

For the MUA analysis, the electrophysiological data was high-pass filtered, and threshol-
ded at 4 standard deviations, in a spike detection algorithm developed by Aman
Saleem (unpublished), providing the time stamps of spiking events used (albeit binned)
throughout the analysis as our binarised spiking data. As mentioned in the introduc-
tion, we refrained from spike-sorting the data.
To investigate the quality of the signals, first the visual responsiveness of each elec-

trode site was evaluated. A Mann-Whitney-U test (MWU) test identified those electrode
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sites that showed a significant change in average Firing Rate (FR) between the pre-
stimulus time (1 s) and during stimulus presentation (1 s). This resulted in 92% of the
channels (354 of 384 electrode sites) exhibiting a significant difference in firing.

2.3.2 Multi-Unit tuning properties

Direction tuning of the MU was evaluated with the sum of two modified von Mises func-
tions similar to those described in (E. Gao, DeAngelis and Burkhalter 2010; Swindale
1998; Gatto and Jammalamadaka 2007). SF tuning curves were fit with a Difference of
Gaussian (DoG) function (Grubb and Thompson 2003; So and Shapley 1981; Rodieck
1965). In both cases, these fits were used to estimate peak response (preferred direction
or preferred SF) and cut-off frequency.

The DoG function was of the form y = b+ (kc − b)(e−(πrc(v−vp))2 − kse−(πrs(v−vp))2),
with b baseline response, kc area under RF centre’s Gaussian function, rc radius of centre
Gaussian function, ks relative area under RF surround’s Gaussian function, rs radius
of surround Gaussian function and v spatial frequency, and vp preferred SF (Grubb
and Thompson 2003). The advantage of fitting the SF with a DoG over a log-Gaussian
allows the possibility to model the centre and surround mechanisms as symmetrical
antagonistic Gaussian functions. Moreover, the nature of the fit allows us to accurately
calculate the cell’s peak and cut-off frequency.
The goodness of the function fits was estimated with an R2 estimate, which is also

called the coefficient of determination, where R2 = 1 − sse/sstotal, with sse denoting
the sum of squared errors, and sstotal = (n−1)var(x) the total variation. It is the ratio
of the sum of squared deviations and the "total" sum of squares around the mean. When
R2 <= 0.9 in a MU for both SF and directional fit, the MU is discarded from further
tuning analysis. For example, if the R2 of an individual unit was too low (indicating
a poor fit), it was not included in calculating full population tuning functions in this
study.
For population tuning curve calculations, the FRs were normalised across directions

(or SF) to fall between 0 and 1 for each repetition, enabling us to compare across
channels while accounting for slow temporal changes in excitability and different FR of
the channels. Normalisation ensured the minimum value of each dimension (e.g. each
SF in one trial) and for all data points to be 0 and the maximum value respectively 1.
In the following, this is referred to as [0,1]-normalisation.
Tuning curves were estimated by fitting the trial-averaged FR of each direction (or

SF) to the basis functions. Preferred direction was determined at the maximum of the
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fitted function. In addition, determining solely which direction elicited the maximum
and minimum mean firing response (without the fitting), allows the investigation if this
is consistent over animals or channels. We then compared the fitted tuning functions
across sites by calculating the pairwise Pearson correlation coefficient between chan-
nels (rsignal), as well as the noise correlation, estimated as the Pearson correlation of
deviations of each trial from the mean at each direction.

Orientation and direction selectivity were calculated with the Orientation Selectivity
Index (OSI) and Direction Selectivity Index (DSI), which were defined as:

OSI = Rpref +Rnull − (Rortho+ +Rortho−)
Rpref +Rnull

(2.1)

with Rpref as the preferred direction, Rnull the opposite direction, and Rortho± denoting
the orthogonal directions (Hansel and van Vreeswijk 2012). DSI was defined as:

DSI = Rpref −Rnull
Rpref

(2.2)

An OSI of 1 represents high selectivity, an OSI of 0 means each stimulus produces an
equal numbers of spikes.

One known problem using OSI or DSI is the positive bias in selectivity. These indices
only make use of subsets of the tuning information and thus may artificially increase
their selectivity. This is discussed at length in (Mazurek, Kager and Van Hooser 2014),
where instead an approach using circular variance is pursued. Thus, this more conser-
vative estimate of the direction and orientation selectivity was additionally estimated
with LOSI and LDSI .

LOSI =
∣∣∣∣∣
∑
k R(φk)e2jφk∑

k R(φk)

∣∣∣∣∣ (2.3)

where R(φk) is the mean response to the kth direction. Hence, having computed both
estimates, the real selectivity is assumed to lie between the two. Before calculating the
mean, the responses were [0,1]-normalised (i.e. normalised such that all responses fall
into the interval [0,1]), and the average is then taken across repetitions. Analogously,
the DSI is calculated in Eq. 2.4.

LDSI =
∣∣∣∣∣
∑
k R(φk)ejφk∑
k R(φk)

∣∣∣∣∣ (2.4)

In addition to the aforementioned methods, the average vector over FRs was calcu-
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2.3 Analysis methods

lated as a method encompassing spiking magnitudes of all directions at the same time.
It was computed by first [0,1]-normalising the data over each repetition and averaging
them. Normalisation allowed us to compare vectors of different FRs and animals. It may
also adjust for FR changes during a recording, when the general activity level increased
or dropped. This ensured that during each repetition relative maximum and minimum
responses were emphasised. Subsequently, the vectors were broken into their x and
y components via trigonometric transformations and summed to get their vector sum
(Rx = ∑

k Rkcos(k)). The preferred angle was then the atan2 of the component sums
φpref = atan2(Ry,Rx), and its magnitude the square root of its squared components.
These components were then used in rose diagrams (polar histogram graphs) or polar
diagrams to compare across sites and animals.

2.3.3 Decoding, feature detection and performance measures

In order to investigate how stimulus information is encoded in the neural signal, in
particular, which features tell us more about certain aspects of the stimuli, three neural
features were evaluated: a) binned, binarised spikes (Spatio-temporal Multi-Unit Activ-
ity (STMUA)), b) Spike Count (SC) and c) population rate, all at bin width 5 ms.
For the multinomial classification of the grating stimuli, decoding performance was
evaluated using four classifiers: Linear Discriminant Analysis (LDA), Naive Bayes (NB),
classification-Tree and k-nearest neighbour. These features and classifiers were chosen
over a more complicated feature extraction at this stage as a proof of concept that MU
signals can be used to significantly decode different stimuli from these types of neural
responses. In order to use the spatiotemporal information more effectively, the MUA
matrix was vectorised. The binned, binarised MUA allowed us to use all the spatiotem-
poral features in the data. Summing over the time course results in the SC, thus greatly
reducing the feature space to the number of channels or neurons. Summing over all
neurons then gives us the population rate, which retains the temporal information, yet
loses information about neuron-specific contributions. An example of how to extract
each feature is given in Fig. 2.3.
A short summary of the classifiers is given here. For more information, please see

e.g. (Bishop 2006). The LDA classifier works by seeking a projection vector w∗ such
that the separability of the scalars is maximised: w∗ = arg maxw wTSBw

wTS∆w
, where SB

is the between-class scatter matrix and S∆ the intra-class scatter matrix. It is also
known as Fisher’s Linear Discriminant (1936) and assumes that class covariances are
identical and have full rank. To do this, it tries to find a discriminant function of linear
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2 Multi-Unit Activity contains information about stimulus structure in mouse V1

combinations of independent variables which best explain the data by focussing on the
differences between the classes of data. The LDA classifier was trained and tested using
MATLAB’s fitcdiscr, with discriminant type pseudolinear (all classes have the same
covariance matrix), and predict functions.
The NB is a classifier using Bayes’ theorem with naive assumptions between features

(i.e. they are assumed to be conditionally independent given the target value). Bayes’
theorem is defined as P (c|x) = P (x|c)P (c)

P (x) , where P (c|x) is the posterior probability,
P (x|c) the likelihood, P (c) the prior, and P (x) the normalisation constant, c the para-
meters and x the observations. Once the posterior probability is known, classification is
achieved by choosing the hypothesis with the highest probability Maximum A Posteriori
(MAP). MATLAB’s fitcnb function with a multinomial distribution input parameter
was used in this task.
The classification tree is a subtype of a decision tree where the leaves represent class

labels and branches the path or jointly occurring features that lead to the class label.
This study employed a method similar to the one described in (Breiman et al. 1984),
using MATLAB’s ClassificationTree function.
Finally, the k-nearest neighbour (knn) is a non-parametric classification method. It

classifies an input by comparing it to the k nearest training samples in feature space.
This is normally achieved by calculating the e.g. Euclidean distances between test and
training samples. Dependent on the class label of the k nearest neighbours, it then
assigns an output label accordingly. The knn classifier was trained and tested with
MATLAB’s ClassificationKNN and predict function.
The decoding task comprised two parts for each feature type: A) Decoding the

Spatial Frequency (1 of 6 SFs), and B) Decoding the direction from the responses (1
of 8 directions). Training and testing data consisted of random uniformly sampled
partitions of 50% training and 50% for testing, using MATLAB’s datasample function
without replacement. For the SF decoding task, all training and testing data was taken
at the same direction, 180◦. For direction decoding, training and testing data was taken
at 0.02 cpd. This was to ensure the stimuli were in a detectable range.
Classification accuracy was evaluated against chance level, validated with a 2-fold

cross-validation and averaged over 100 repetitions with random permutations of the
partitions, and averaged across all mice. To do this, the same random repetition indices
were chosen over all sample stimuli, to ensure training and testing samples were taken
in close temporal coherence. This ensures being able to avoid training on e.g. [SF1,
trial1], [SF2 trial14], but instead had SF1:6 all at trial1 etc.

28



2.3 Analysis methods

All stimuli occurred with equal probability. This means that chance level was defined
at 16.67% for SF and 12.5% for the directions. Consistent classification above chance
level suggests the decoder’s successful use of inherent structures about SF or direction
in the MUA.
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Figure 2.3: Decoding features are spatiotemporal MUA, spike count and
population rate. Example fake trial to visualise feature extraction. (A) Binned,
binarised MUA of 32 sites are used in the spatiotemporal feature based decoding, which
is summed over all bins to get the spike count (B) feature, or summed across neurons
to get the population rate (C). The population rate retains the temporal structure,
whilst the spike count keeps the MUA-specific firing at the expense of losing temporal
information. (D) Conceptual confusion matrix illustrating where True Negative (TN),
True Positive (TP), False Negative (FN), False Positive (FP) are attributed for the example
of platypus classification.

Performance accuracy was estimated with a confusion matrix and the fraction of
correctly classified samples, cross-validated over 100 repetitions. A confusion matrix
is a table that displays predicted classes on the y-axis over actual, real classes on the
x-axis. With this display, it is possible to detect which classes are commonly misclas-
sified as another, as well as the overall misclassification. Fig. 2.3 (D) illustrates a toy
example of the structure of a confusion matrix in a beaver/duck/platypus classification
task. Highlighted is the classification success of platypuses. Summing over the rows
of the table gives us the number of actual samples in each class, whilst summing over
the columns yields the number of predicted class elements. The diagonal contains all
correctly classified samples in each class, and its sum corresponds to True Positive (TP).
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2 Multi-Unit Activity contains information about stimulus structure in mouse V1

Focussing on each class individually, it is then possible to look at False Positive (FP),
False Negative (FN) and True Negative (TN). The confusion matrix is thus a versatile
visualisation of a classification task. In the example of Fig. 2.3 (D), out of 11 platypuses
(sum over rows), only 3 were correctly identified (TP). 5 were mistaken for beaver, and
3 misclassified as ducks, making a total of 8 FN. Instead, 2 beavers and 2 ducks were
wrongly allocated to the platypus class amounting to 4 FP. The remaining 4 fields are
TN from the view of platypus classification. With the knowledge of TP, TN, FN, and
FP, it is possible to estimate properties such as sensitivity and specificity of the classifier.
The sensitivity of detection (i.e. the probability of detecting), also called True Positive
Rate, or Hit Rate (TPR), is computed by TPR = TP/(TP + FN). Specificity is the True
Negative Rate (TNR), and describes the fraction correctly classified as negatives. It is
calculated as TNR = TN/(TN + FP)

2.4 Results

In-vivo extracellular electrophysiological data was acquired from left hemisphere V1
of the Isoflurane-anaesthetised mouse. Each recording followed the same stimulation
protocol. Using 4-shank linear translaminar silicon microelectrodes, MUA was recor-
ded from different cortical layers and columns under visual stimulation of monocular
full-field drifting gratings. MUA properties such as directional or spatial tunings are
characterised and compared among different MU.

2.4.1 Visual responses to both gratings and natural movies were observed
using MUA recordings

Fig. 2.4 highlights the visual responsiveness to 48 moving gratings at 6 SFs and 8
directions, grouped by SF and repetitions, for 32 channels on in one mouse. The red
line at the top indicates stimulus presentation. Higher grating indices correspond to
higher SFs and appear to induce weaker visual responses at larger variability. Subpanel
(B) visualises the same stimuli in the same animal as a probability- Peri-Stimulus Time
Histogram (PSTH) summed over 32 channels. It is visible from the figure that the
temporal structure differs between gratings, which can be linked to stimulus differences.
From the raster plot and the PSTH we can observe that most channels were consistently
visually responsive and that their activity was highly modulated by the stimuli.
Having a closer look at a subset of these stimuli, Fig. 2.5 (A) visualises example

responses on 32 channels to 20 repetitions of 6 directions (0-225◦ in 45◦ steps) at a

30
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Figure 2.4: Visually evoked responses vary in their intensity for different
moving gratings. (A) Example raster plot of all 48 moving gratings, grouped by SF
with 20 repetitions per stimulus and all 32 channels indicates visual responsiveness of
most channels to most gratings, with a decreasing intensity for gratings of higher indices.
(B) The PSTH of the same stimuli emphasises the difference in temporal structure of
the moving gratings.

static SF of 0.01 cpd, and (B) 15 repetitions of the natural movie on 32 channels in the
same animal. (C) and (D) reveal the normalised probability PSTH for the same data.
As can be observed from the figure, a high fraction of channels demonstrate strongly
driven responses to visual stimuli, with different response shapes evoked by varying
stimulus conditions. Moving gratings appear to evoke strong, reliable responses during
stimulus presentation (indicated by a red line atop of the figure), whereas natural movies
seem to induce spiking at a higher trial-to-trial variability, but high population activity.
The most reliable population response in the excerpt of the 30 s movie appears to be
the onset response at t=0 s.

2.4.2 Tuning to moving gratings of different directions and spatial
frequencies in V1

A large number of MU proved to be significantly modulated by moving gratings. An
example of three strongly tuned MU in different animals is presented in Fig. 2.6.
Direction tuning fits of a combination of von-Mises functions on the baseline-subtracted
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2 Multi-Unit Activity contains information about stimulus structure in mouse V1

Figure 2.5: Response patterns vary between moving gratings and natural
movies, and a high fraction of channels is stimulus-responsive. (A, B) Example
raster plots on 32 grouped channels to moving gratings at 6 directions (0-225◦ in 45◦
steps) at the same SF (0.01 cpd) for 20 repetitions (A), and to 15 repetitions of the
first 4 seconds of the natural movie (B) illustrate visual responsiveness and spiking
reliability across repetitions. Each line highlights a spike incident. (C-D) show the
PSTH for the same data, (C) shows the PSTH over the population response to each
grating, averaged over 20 repetitions, and (D) shows the population response for natural
movies, repetition by repetition. (A-D) are taken from the same mouse. Red line
indicates stimulus presentation period.

MU of the mean response over the first two SFs indicated a weak to strong modulation
across channels and shanks. Mean FRs peaked for directions around 180◦, with a median
preferred direction of 171.8◦. (A-C) show the tuning fit for a mixture of two von-Mises
functions on the MUA of three channels in three mice. Although FRs differ, the shape
of the tuning functions is highly similar with troughs at 90◦ and peaks around 180◦.
Example tuning functions in Fig. 2.6 appear qualitatively similar in tuning preference

in mouse V1. The majority of sites across animals exhibited tuning functions similar in
shape to those presented in the figure. This modulation appears to be a feature present
at different average FRs. In particular, the tuning functions of the examples reveal a
global minimum at 90◦, and a maximum at 180◦. It is also evident that the direction
180◦ appears to drive the activity slightly more than its collinear direction at 0◦.

2.4.3 Spatial frequency tuning in V1 shows bandpass and low-pass
properties

Similar to directional tuning, all visually responsiveMU indicated substantial SF tuning.
With SFs exceeding 0.04 cpd, activity decreased drastically, as can be observed in Fig.
2.6 (D-F), where sites (D-F) are the same as in (A-C). These DoG fits are estimated
using the average of all 8 directions and stimulus repetitions, thus decreasing the SEM
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Figure 2.6: Baseline FR-subtracted MU show strong FR modulations over
differently orientated drifting gratings. Direction and SF tuning curves appear
stereotyped across mice. (A-C) show von-Mises function fits on baseline-subtracted
data with directional peaks around 180◦ (horizontally moving grating) for MUA of 3
example sites from 3 different mice. Mean responses for directions were averaged across
the two lowest SFs. (D-F) present the SF tuning on the same electrode sites as in (A-
C), illustrating bandpass and low-pass properties, respectively. Note logarithmic scale
of x-axis in (D-F). Mean FR of SFs were averaged across all 8 directions. Error bars
denote Standard Error of the Mean (SEM). Note different y-axes scales.

relative to the ones in directional tuning. The most commonly observed tuning shapes
appear with bandpass (D, F) or low-pass (E) properties, where low-pass properties are
defined by a monotone decreasing shape, and bandpass behaviour by a rise-fall shape in
the amplitude-frequency plot. In particular, the three lowest SFs elicit high responses,
whereas the three highest SFs induce lower activity levels. Fig. 2.7 summarises (A) the
distribution of peak SF for n = 353 sites. The distribution of peak frequencies appears
bimodal, with a sharp peak at zero, which has been truncated in the plot to the lowest
SF, 0.01 cpd. (B) presents the distribution of 3-dB cut-off frequencies, whose median
lies at 0.12 cpd.

The corresponding SF tuning functions, fitted with a DoG function, show low-pass
and bandpass properties, with a mean preferred SF of 0.017 cpd, which is in line with
previously reported results. Ignoring the cases where preferred SF is 0 (140 out of 384
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Figure 2.7: SF peak and 3-dB cut-off distributions summarise their low-pass
and band-pass properties. (A) Peak SF appears bimodal with a large peak at the
lowest SF, and a secondary peak at 0.028 cpd. Axis is truncated to 0.01 cpd given the
log-scale. (B) Distribution of -3 dB cut-off frequencies across all mice with a mode at
0.13 cpd.

cases), the mean preferred SF is 0.029 cpd, median 0.027 cpd, which is also visible in
the secondary peak of Fig. 2.7 (A).
The overall median preferred SF was 0.022 cpd. About half of the MU (207) revealed

bandpass properties indicated by a drop in response at the lowest SF, 0.01 cpd, which
is illustrated by the example of panel (D) of Fig. 2.6. Our analysis showed a median
cut-off SF of 0.12 cpd (as determined by the -3 dB cut-off from the preferred SF).
Most MU revealed a preferred SF of around 0.02-0.03 cpd. Variation was low and only
occasionally a peak SF response exceeding 0.04 cpd was observed, as given in Fig. 2.7.

2.4.4 Direction tuning in left V1 is biassed towards leftward moving
gratings

The tuning functions in Fig. 2.6 indicated similarity between tuning functions in the
three example sites of three different mice. Summarising these findings by estimating
the maximum responses for all sites in all animals lets us compare which direction elicits
the highest responses across animals. If there was no underlying directional preference
or an even representation, the directions evoking maximum FR should average out
over many samples and approximate a uniform distribution on the circle. Similarly,
comparing the frequencies that evoke minimum responses may support this finding.
The tuning curves in Fig. 2.6 indicate a bias in directional preference for leftward

moving gratings (corresponding to a movement from temporal to nasal visual field).
This corresponds to the direction that elicited the highest FR, as shown in Fig. 2.8
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Figure 2.8: Preferred direction is not uniformly distributed. Polar histograms
of average maximum FR and the direction which elicited the average minimum FR are
shown in (A) and (B) in frequency (% of MU), respectively, which evidently illustrate
the directional bias, calculated at SFs 0.01 and 0.02 cpd together. Leftward moving
gratings evoke maximal responses in the majority of n = 353 sites, and upward moving
gratings (90◦) typically minimal responses. (C) illustrates the [0,1]-normalised average
vectors of 353 sites in all 12 mice, where vector direction and length result from the
vector sum of the normalised firing responses to all directions. In (D-F), each dot
represents properties of one electrode site of a total n=353 sites from 12 animals. (D)
Polar plot of preferred direction (taken from peak tuning fit) against DSI. (E) Preferred
direction against OSI. (F) Preferred direction against preferred SF.
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(A), 180◦. Polar histograms of the average maximum FR and those directions evoking
the average minimum FRs are presented in Fig. 2.8 (A) and (B). It is striking that
the distribution of directions evoking maximum and minimum is not at all uniformly
distributed (both p<0.001, Rayleigh test for non-uniformity of circular data), but shows
a high preference of 180◦ for maximal firing, and 90◦ for minimum average FRs. Over
68% of the 353 visually responsive sites show mean maximum firing at 180◦ (Fig. 2.8
(A)). Another striking feature is the consistency of which direction elicited minimal
responses across all sites, at 90◦ (B).

Computing the average vectors over [0,1]-normalised FR responses for each site em-
phasises the directional bias towards left and downward moving gratings further (C),
which corresponds to the largest two fractions of directions generating maximum firing
in (A).
Using knowledge inferred via von-Mises function fits, a better estimate of the preferred

directions may be obtained by taking the peak of the fit as the preferred direction. Fig.
2.8 (D-F) reveal polar scatter plots with DSI, OSI and preferred SF on the radial axes,
and preferred direction on the angular coordinates. Each dot represents one site in one
of 12 mice, with n=353 total sites included, having rejected sites whose tuning fits are
worse than R2 >= 0.9. The majority of direction- and orientation-selective cells show
preferences in areas of leftward moving gratings.
The polar plots in Fig. 2.8 indicate that certain directions are overrepresented across

the visual field. Here, the graph of preferred SF against preferred direction of 353 MU
for 12 mice revealed a majority of SF/direction pairs appearing clustered around 0.02-
0.03 cpd and 180◦. The polar plot in (D) of Fig. 2.8 showing DSI against preferred
direction further illustrates this bias towards horizontal leftward moving gratings, and
it appears to manifest in sites that range from low to high direction and orientation
selectivity.

2.4.5 Tuning in V1 is highly correlated between sites

Directional tuning in primary visual cortex appears to be distinctly correlated across
sites, both longitudinally and laterally.
The assumption of salt-and-pepper organised orientation maps may require the tuning

functions to roughly tile the whole direction space. Yet, normalising the FRs over
directions for each repetition, and averaging across repetitions reveals a different picture,
as presented in Fig. 2.9, which also shows the dependency of tuning on SF. The tuning
functions of 32 sites in all mice seem to align approximately with the example curves
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Figure 2.9: Direction tuning depends on underlying SF and is highly correl-
ated between sites, even across shanks. Bottom to top: tuning function estimated
over increasing SF. (A-L) show [0,1]-normalised tuning functions of all sites (grey, thin
lines) in one mouse per panel. Thick black line indicates tuning fit of the mean across
all ([0,1]-normalised) sites.
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from Fig. 2.6 for the lowest SF, with differing tuning function shapes for higher SFs.
Fitting the mean over all sites and repetitions gives us the overall tuning function of
the population. Comparably, the SF tuning is highly similar across channels.
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Figure 2.10: Pairwise signal correlation coefficients between directional tun-
ing functions of all sites in each mouse are high for low SF, with few negat-
ive correlations indicating opposing tuning curves. Noise correlation is generally
lower for directions. (A-L) indicate different mice. Black is signal correlation, grey noise
correlations. Statistics MWU, where * indicates p<0.05, ** p<0.01 and *** p<0.001.

Extending this over n=12 mice, signal correlation between individual (within-mouse)
tuning curves is high, with few highly negative correlations indicating opposing tuning
curves, which may speak for an optimal code. This is illustrated in Fig. 2.10 in violin
plots over all (within-mouse) pairwise correlations for all mice. Comparison of Figs. 2.10
and 2.9 shows that tuning function reliability and signal correlation correspond well in
describing the relationship. For example, in Fig. 2.9 (F), no strong overall tuning is
observed on any of the SFs. In accordance with this, signal correlation indicates a large
spread over many values for all SFs, while noise correlation centres around zero with
a fairly low spread. Similarly, Fig. 2.9 (H) reveals a very strong population tuning
for the lowest SF, which is also reflected in Fig. 2.10 (H) indicating a very high signal
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correlation tightly located around 1, with substantially lower noise correlations visible.
These findings are consonant with averaged population tuning functions for SF tuning

calculated by pooling over all directions, demonstrating a high reliability over sites and
shanks, visualising the similarity even across mice, as is depicted in Fig. 2.11. Individual
averaged site responses as well as the averaged population responses mainly show low-
pass or band-pass properties, which was illustrated in Fig. 2.7.
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Figure 2.11: SF tuning function fits of [0,1]-normalised responses reveal high
similarities across sites and shanks. (A-L) show [0,1]-normalised tuning functions
of all sites (grey, thin lines) in one mouse each. Thick black line indicates tuning fit of
the mean across all ([0,1]-normalised) sites. Generally, function fits indicate low-pass
or band-pass properties.

As expected, correlation coefficients for SF tunings are all high, significantly different
from zero, as is revealed in Fig. 2.12 (A) (p<0.001, 1-sample sign test). Particularly SF
signal correlation is tightly located near a correlation coefficient of 1. In contrast, noise
correlation is much lower, with a mean approximately centred around zero, but signi-
ficantly different from zero (p<0.001, 1-sample sign test). Further, signal correlations
are significantly higher (p<0.001, MWU) than noise correlations, as is evident from the
distributions in Fig. 2.12 (A), demonstrating this is not noise but driven activity.

DSI and OSI distribution values lie mainly between 0.2 and 0.6, with DSI occupying
lower indices than OSI, as is expected. This demonstrates a pronounced direction and
orientation selectivity of the MU. However, the selectivity was subject to the choice of
SF. Estimating selectivity indices over all SFs resulted in a median OSI of 0.28, and a
median DSI of 0.20. The much more conservative selectivity measures Losi and Ldir,
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Figure 2.12: SF indicate high signal correlations, and much lower noise cor-
relations. (A) Signal correlations for SF tuning fits are high with a centre of mass near
a correlation coefficient of 1, with only few strongly opposing negative values. Noise
correlations appear generally centred around zero. Correlations were estimated over
all 6 SFs. (B) DSI and OSI distributions demonstrate pronounced stimulus selectivity,
which is also reflected in the more conservative stimulus selectivity estimates Losi and
Ldir, which have much lower values. All selectivity indices were estimated over all SFs
and directions.

which were defined and discussed in Eq. 2.3 and Eq. 2.4, occupy a much smaller
range between 0 and 0.2, with direction selectivity centred around yet smaller values,
concordant OSI and DSI. Estimated across all SFs, the median Losi and Ldir are 0.06
and 0.04, respectively. Estimating the selectivity indices for 0.01 cpd only, resulted in
much higher values, at OSI 0.49, DSI 0.36, Losi 0.20 and Ldir 0.10.

2.4.6 Direction tuning depends on spatial frequencies

Preferred directions appear mainly clustered around 180◦, fairly consistently across
mice. Yet, computing the preferred and maximum FRs may be a property related
to the SF used. That is why the mean FR and tuning fits for all [0,1]- normalised
channels were computed at different SF. Since FR decrease rapidly at high SFs, instead
of investigating these metrics for each SF individually, results were compared by varying
the number of SFs included in the averages (visualised in Fig. 2.13).

Each panel in Fig. 2.13 corresponds to one mouse, and each group of lines stands
for one tuning fit group of SF used. From top to bottom, SF were [0.01, 0.01:0.02,
0.01:0.04, 0.01:0.08, 0.01:0.16 and 0.01:0.32] cpd frequencies to pool over. In agreement
with the decrease in FR observed in SF tuning functions from Fig. 2.6, tuning curve
modulation decreases when including higher SFs to almost straight lines. Strong tuning
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2.4 Results

Figure 2.13: Direction tuning depends on the mixture of SFs used. Top
to bottom: tuning functions pool over increasing numbers of SF. (A-L) show [0,1]-
normalised tuning functions of all sites for each mouse.
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2 Multi-Unit Activity contains information about stimulus structure in mouse V1

modulations are manifest for low SFs, mainly using 1, and 1:2 SFs, particularly for the
mice depicted in (E, G H, I J, K and L). At decreased level, the dip at 90◦ is still
apparent at groups including higher SFs. These results show that while the tuning
preference is strongest at low SF it does seldom change for higher SFs. In contrast,
when calculating directional tuning functions at each SF differently, a different picture
emerges as could be seen in Fig. 2.9. Directional tuning may depend on the SF and is
not necessarily a property that is unrelated to the SF at which it is displayed.
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Figure 2.14: Frequency of maximum and minimum FR of each MU is affected
by the underlying SF. (A-F) show the polar histograms of the average maximum FR
for each SF, with SFs at increasing order, left to right. (G-L) corresponding for minimum
FR.

Mean FR maxima and minima are affected by SF. Fig. 2.14 illustrates the differences
in mean maximum and minimum FR for each SF used in this study. At low SF the
maximum evoked FR appears to be 180◦ with a large majority of cells across animals.
This drops off at higher SF and is washed out. (A-F) show average maximum FR at
each presented SF, (G-L) present the mean minimum FR for the same SF, left to right
increasing SF.
Apart from the different FR, it can be seen that polarity in responses decreases at

higher SFs, with the effect of more uniform and less uniquely peaking polar histograms.
Whilst for low SF at (A, B) and (G, H) histogram counts reach levels of 40-60% similar
directions, higher SFs appear more evenly distributed with several directions accumu-
lating levels around 20%.

A summary of the modes of each polar histogram of Fig. 2.14 is presented in Fig.
2.15. (A) depicts the directions that most frequently elicited the maximum FR responses
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for each SF. The relationship between SF and directions that elicited the minimum FRs
is given in (B). It is evident from the depiction that the relationship for the minimum
FRs is not as smooth as for the modes of maximum FRs, which was also apparent in
Fig. 2.8 (G-L).
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Figure 2.15: Mode of maximum and minimum FR at each SF indicate a clear
progression of preferred directions. (A) illustrates the mode direction eliciting
maximumFR at each SF. (B) Visualisation of the modes of the minimum FR distributions
at each SF.

2.4.7 High performance in spatial frequency and direction decoding from
MUA

Using either spatiotemporal MUA, SC or population rate (compare with Fig. 2.3),
high classification accuracies of around 50% for SF decoding were achieved, against a
chance level of 16.6% in the SF-decoding task. Decoding was done per individual mouse
and then averaged. In the direction decoding task, there was a significant difference
(p<0.001, MWU, and p<0.01 MWU) in performance for using MUA over the summed
features, where STMUA reached a median classification performance of 70% (against
a chance level of 12.5%), and SC and population rate attained approximately 40%.
Decoding performance was determined with a confusion matrix and percentage correctly
decoded samples.
Fig. 2.16 (A) shows the average confusion matrix for decoding SF from spike re-

sponses for the best decoder (Naive Bayes in both decoding tasks), where circle size
and colour corresponds to %-correct classification. Decoding performance varied across
experiments and animals, Fig. 2.16 (C-D) demonstrate 2-fold cross-validated decod-
ing performances, averaged over 100 repetitions over all mice for all feature types and
decoding targets (SF, direction). The dotted grey lines indicate chance level, which
amounted to 12.5% and 16.6% for direction and SF, respectively. It is apparent that
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Figure 2.16: Good predictions for SFs and high performance on all direc-
tion predictions. Confusion matrices for (A) SF and (B) direction decoding, where
circle radius and colour correspond to correctly classified parameters, on 5 ms binned
data, 4 shanks. (A) shows the averaged confusion matrix of the Naive Bayes classifier
on SF decoding, indicating a high prediction success for low SFs, and a tendency to
underestimate higher SFs, indicated by misclassifications under the identity line. (B)
same as in (A) on direction decoding, demonstrating a consistently high correspondence
between predictions (x-axis) and actual directions (y-axis). (C) depicts correct classi-
fication rates for SF-decoding of 2-fold cross-validation averaged over 100 repetitions,
for binned spike responses STMUA, vector of spike counts of all channels SC and pop-
ulation rate (Pop). (D) same as in (C) but for direction decoding. Dashed line (grey)
denotes chance levels. MWU, where ** indicates p<0.01 and *** p<0.001

particularly low SFs scored high decoding accuracy.
Panel (B) of Fig. 2.16 reveals the average confusion matrix for directional decoding

achieving an evenly high classification performance for all directions, albeit reaching
slightly lower average performance levels than with peak SF decoding. Median per-
formance for SF decoding with the Naive Bayes classifier as depicted in panel (C) of
Fig. 2.16 was 50.2% (chance level 16.67%) with SC, whereas the median direction de-
coding performance (D) achieved 69.1% with STMUA features (chance level 12.5%). In
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the boxplots, the central mark represents the median, the bottom and top edges the
25th and 75th percentiles. The top and bottom whiskers indicate the extreme data
points which are not considered outliers, while the outliers are indicated individually in
red crosses. The different features excelled with varying degrees of success, in particular
in (C), SC marginally outperformed STMUA (p>0.05, MWU), but both STMUA and
SC outperformed the population rate (p<0.01, MWU). However, for direction decod-
ing, STMUA features perform significantly better than SC (p<0.001, MWU test) and
population rate (p<0.01, MWU test).
In the direction decoding task, 80 samples (10 samples for 8 directions) were classified

at 0.02 cpd, for which an error rate of <70% against chance level of 12.5% corresponds
to a significant classification performance at p<10−4, which resulted in p<0.001, 1-
sample sign test against chance level. The SF decoding task involved 60 samples (10
samples at 6 SF), as SF decoding was only estimated at peak direction of 180◦.
The different decoders achieved comparable results in decoding SF and direction. For

SF decoding, STMUA median decoding performance varied between 45.5% for Naive
Bayes and 34.7% for the classification tree. The SC features achieved medians between
51.2% knn and 42.6% (classification tree), and population rate features between 34.5%
(knn) and 30.0% (NB) . Direction decoding attained medians between 33.8% (classific-
ation tree) and 69.1% (NB), SC features 27.7% (classification tree) and 40.1 % (LDA),
whereas population FR revealed medians between 23.3% (LDA) and 31.1% (NB). All
results showed statistically significant classification performance (p<0.001, 1-sample
sign test against chance level).

A comparison of decoders and their dependency on numbers of shank and bin width
is presented in Appendix 2.

2.5 Discussion and conclusions

In-vivo extracellular MU electrophysiological experiments were developed, performed
and evaluated in primary visual cortex of the anaesthetised mouse, to address questions
about stimulus information at the earliest cortical processing stage. Analysis of the in-
vivo electrophysiology experiments in left hemisphere V1 of the Isoflurane-anaesthetised
mouse presented here revealed that left forward drifting gratings consistently evoked the
highest neuronal responses. This is a result at odds with the widespread understanding
of random organisation of orientation selectivity in rodents. Spatial and directional
tuning properties of MUA appeared very similar among animals, with a high signal
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correlations of the tuning functions, and a lower noise correlation. Further, direction
selectivity, in particular the preferred direction, may be dependent on the SF, and
change with the SF. Finally, different MUA features reached high classification rates in
spatial and directional decoding tasks. In direction decoding STMUA features attained
much higher classification rates than population rate or SC features, whereas SC reached
better results than the other features in decoding SF, suggesting that different stimulus
parameters are encoded differently, and confirming that MUA contains spatial stimulus
information.

Strongest responses to gratings moving into the visual field

As already described by Ringach et al. (2016) who found that the direction tuning
similarity decreased with cortical distance, this study confirms a high similarity between
MUA tuning (both SF and direction) across different locations. In particular, we found
an overrepresentation of preferred responses to leftward moving gratings (equivalent to
an object moving from right temporal to nasal visual field) in left V1.
This overrepresentation does not necessarily contradict the current understanding of

rodent visual cortex being randomly organised, as it could be seen as a salt-and-pepper
organisation with particularly large "pepper" grains representing, in this case, leftward
moving gratings. It has been known that cardinal directions exhibit stronger or more
stereotyped responses, yet, it is notable to see that visual movements in the opposite
direction of the optical flow during running evoke highest responses. Rightward moving
objects, e.g. during forward movement (roughly corresponding to 0◦), might thus be
the more commonly observed visual stimulus, but maybe not the behaviourally most
relevant.
Rodents are prey animals and close to the ground, and their eye position is more

lateral and superior than e.g. cats, which enables them to identify and flee when
pursued by a predator, which may come from the back, and most certainly from above.
Looming stimuli and overhead sweeping discs were indeed shown to induce flight or
freeze responses in mice (Yilmaz and Meister 2013; De Franceschi et al. 2016) and thus
their detection is very behaviourally relevant. The inward drifting gratings at a large
SF resembling an object moving into the field of view are perhaps the most resemblant
to such looming stimuli, and as such similar to the "attacking" direction from behind.
The average vector in Fig. 2.8 (C) points mainly both in leftward and downward
direction, which may represent the movement of an attacking predator, which is thus
in line with the overrepresentation observed in this study. The dip in 90◦ might be
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less behaviourally relevant, as an object or the world moving upwards are cases not
frequently observed or simply do not pose a threat to the animal. This may play an
important role in the detection of predators (i.e. it would be easier to detect a target
stimulus that approaches from behind rather than one the mouse approaches).

Spatially-selective tuning in MUA

MUA recorded from mouse primary visual cortex were selective to SFs and exhibited
either bandpass or low-pass properties. The MU studies could confirm the median
preferred spatial frequency to lie around 0.02 cpd, consistent with data reported for
single units elsewhere (Niell and Stryker 2008; E. Gao, DeAngelis and Burkhalter 2010;
Prusky, Alam et al. 2004; Umino, Solessio and R. B. Barlow 2008; Vreysen et al. 2012).
Peak SFs revealed a bimodal distribution, with one peak at the lowest SF, and the
secondary peak at 0.028 cpd. This is in accordance with the observed bandpass (peak
unequal to zero) and low-pass (monotone decreasing) properties. The median -3 dB
cut-off frequency lay at 0.12 cpd, which is exactly the SF limit used in the literature
to generate noise movies that drive a maximum number of neurons, e.g. by (Niell and
Stryker 2008).

Direction-selective tuning in MUA

Analysis of MUA of multi-shank laminar electrophysiological data from left mouse V1
indicates a directional preference of moving gratings around 180◦ (leftward moving) at
varying modulation depths. This was particularly prominent at low SF of 0.01 cpd and
deteriorated at higher SFs (Fig. 2.9), suggesting that direction tuning may depend on
the SF, in agreement with other recent reports (Ayzenshtat, Jackson and Yuste 2016).

Strong and reliable directional tuning was observed at low SFs of 0.01 - 0.02 cpd
of similar shape between sites and mice (Fig. 2.11). Directional tuning functions
resembled each other across cortical depths and between mice as was evident from the
Pearson signal correlations between tuning functions (Fig. 2.10 and Fig. 2.12). The
same tuning functions were less correlated for tuning functions calculated for fits at high
SF. This high correlation of tuning functions contradicts the widespread understanding
of random connectivity in mouse V1, however recent studies, e.g. (Kondo, Yoshida and
Ohki 2016; Ringach et al. 2016), also support that there may be more structure in V1
than was previously reported.
Directional tuning functions on the normalised responses also visually showed a high

similarity for some of the mice, as was shown in Fig. 2.9, particularly at low SFs. This
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tuning rapidly decreased at high spatial frequencies, flattening out the tuning functions.
Tuning peak sometimes shifted towards different preferred directions at higher SF, which
was also observed by (Ayzenshtat, Jackson and Yuste 2016). The modes of directions
that elicited maximum FR appeared to smoothly transition from 180 to 360◦. This
suggests that if direction selectivity varies with SF, it could be possible to encode both
size and direction information in the same population, given a sparse code.
Pooling over a larger number of SF to increase the amount of trials when calculating

normalised tuning functions emphasised the strong influence of responses at the lowest
SF on the tuning functions (Fig. 2.13), as the higher average FR of the low SF strongly
influence the average used to compute the tuning function fit.
Maximum FRs indicated that specific directions were preferentially distributed

around 180◦ (leftward moving grating, Fig. 2.8 (A)) - a result at odds with previ-
ous studies (E. Gao, DeAngelis and Burkhalter 2010; Prusky, Alam et al. 2004; Niell
and Stryker 2008). In contrast to what has been suggested in the literature (E. Gao,
DeAngelis and Burkhalter 2010), these polar plots indicated that certain directions
were overrepresented across the visual field (Fig. 2.8). Preferred directions, and anti-
preferred directions (distribution of minimum FR) were not uniformly distributed (both
p<0.001, Rayleigh test for non-uniformity of circular data).
Orientation and direction selectivity was subject to the underlying SF used, a result

which has recently been shown by (Ayzenshtat, Jackson and Yuste 2016) in Ca2+-
Imaging study of Layer 2/3 neurons. Calculating the selectivity indices over all SF res-
ulted in a median OSI of 0.28, and a median DSI of 0.20 further illustrate the selectivity
of MU data. Yet, one may argue that the measure of DSI and OSI may overestimate
the true underlying selectivity (Mazurek, Kager and Van Hooser 2014), which is why
the more conservative measures Losi and Ldir were also included. These provide lower
and concordant values to DSI and OSI at much lower values. Losi and Ldir are 0.06
and 0.04, respectively. All measures reveal significant non-zero selectivity (p<0.001,
1-sample sign test).
Selectivity indices estimated at 0.01 cpd only resulted in much higher values, at OSI

0.49, DSI 0.36, Losi 0.20 and Ldir 0.10, suggesting a dependency on SF involved.

Decoding performance well above chance indicates substantial information
in MUA

The use of MUA to classify multiple visual stimuli was demonstrated. Solely using
MUA features for decoding directions or SF of drifting gratings, performances well above
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chance level were achieved. This suggests MUA can be used to efficiently decode dif-
ferent visual stimuli, with a directional decoding performance of 69.9%, indicating MU
contain substantial information about spatial stimulus structure in mouse V1. In par-
ticular, comparing different stimulus features such as spatiotemporal patterns STMUA,
SC and temporal population responses illustrated how different stimulus features are
encoded differently. With a NB decoder that keeps assumptions about the data min-
imal (naive implying a strong independence assumption), direction decoding achieved
highest performance with STMUA features, at great superiority over the other SC based
features. For SF decoding, however, SC and STMUA features achieved similar predic-
tions with SCs attaining slightly higher correct classifications than STMUA. This implies
that SF may be more strongly represented as a SC feature, whereas directions follow
a spatiotemporal pattern, or are encoded in a more population-wide response, where
spatial or temporal information is required to decode the stimulus.
Further, while performances well above chance level were achieved, classification rates

were highest for low SFs and introduced more false predictions at higher SFs, as was
visible from the confusion matrix where performance dropped in a similar fashion as in
the SF tuning functions. One factor that may play a role in this is that if SF were indeed
encoded mostly via SC, higher SF do not evoke strong responses, and particularly at
higher SF similarly low mean FRs in the SF tuning functions emerged. This was not
the case for direction decoding, which attained equally high performances throughout
the decoded directions.
Together, the findings propose MUA contains substantial information about stimulus

structure in V1 and that MUA can be used to efficiently decode direction and SF,
potentially a useful tool for investigating changes in cortical circuit representation in
behavioural learning paradigms. In addition, mouse cortex may in fact be more similar
in their processing strategies to monkey and cat than previously postulated (Juavinett
and Callaway 2015). This an important step in extracting information inherent in
neural signals for applications, which cannot rely on SUA stability, or which do not
have the capacity for time consuming spike-sorting.
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3
Distinct stimuli sample from different

binary pattern distributions

In Chapter 2, examination of mean Firing Rate (FR)s revealed differences in direction se-
lectivity, which was reliable across Multi-Units (MU) at different locations. This chapter
aims to dig deeper by investigating the statistics of binary firing vectors, exploring the
neural code on a finer time scale and in spatial relation to each other. Thus, this chapter
goes beyond single-channel analysis of Chapter 2, and based on the datasets described
in Section 2.2, extends the neural coding question to the population responses to the
different stimuli, and stimulus types.

3.1 Introduction

Neural coding in the brain can be explored at different levels: at a microscopic level,
where the composition and interactions of different proteins may be studied, over indi-
vidual neurons and their dendritic trees, or at a macroscopic scale, examining neural
ensembles and the signalling strategies between different groups of neurons. Progress in
experimental recording techniques allowed researchers to increase the number of simul-
taneously recorded neurons (Stevenson and Körding 2011). However, to analyse large
amounts of neurons and their interactions requires sophisticated analysis techniques
that differ from individual cell analyses since population responses may act differently
from isolated neurons.

Population activity studies showed that different ensembles can be linked to certain
stimuli and prefer to fire together (Agetsuma et al. 2017; Womelsdorf, Bosman and
Fries 2013; Rikhye and Sur 2015), that they can be inherently linked (Miller et al.
2014), that the population activity is in fact coupled to the overall excitability (up or
down states) (Saleem, Chadderton et al. 2010), and less influenced by visual stimulation
itself (Harris, Csicsvari et al. 2003; Schneidman 2016; Harris and Shepherd 2015), or
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related to the strength of the stimulation (Reig et al. 2015). Ensemble responses are
often characterised in terms of population FR (i.e. the summed activity of all simul-
taneously active cells in the population, i.e. their synchrony distribution), spatial or
temporal correlations, or the distinct spike trains evoked by a certain stimulus, which
are compared to the spike train profiles under varying conditions (Montijn, Vinck and
Pennartz 2014).

One measure that lends itself to compare neural data under different conditions is the
simultaneous firing configuration (Luczak, McNaughton and Harris 2015) of discretised
and binarised individual spike times of each channel or neuron. In the following, the
simultaneous firing of discretised (binned), binarised Multi-Unit-Activity (MUA) of spa-
tially distinct channels is defined as patterns. Information-theoretic approaches are a
method of particular interest for investigating these patterns as they allow quantifica-
tion and characterisation of the information content and their transmission features of
these high-dimensional neural signals.

These patterns may have different probabilities of occurring depending on what pro-
cess or context generated them. For example, a pattern reliably evoked under visual
stimulation of e.g. a drifting grating may be unlikely to be observed under grey screen
(representing lack of stimulation) or a different type of stimulus (Miller et al. 2014).
It has been shown that activity of populations, discriminability and spiking reliability
are contingent on both sensory inputs and internal states (Gutnisky et al. 2016; Rikhye
and Sur 2015). Spontaneous Activity (SA), neural events present during quiescent wake-
fulness and passive attention, has been hypothesised to play a role in memory recall
and consolidation, and in gating of sensory inputs (Luczak, Barthó and Harris 2013;
Romano et al. 2015). SA may be similar in shape and appearance (e.g. synchronous
events, correlated activities) to sensory responses (Luczak, Barthó and Harris 2009;
Han, Caporale and Dan 2008; Berkes et al. 2011; Carrillo-Reid et al. 2015). This im-
plies that the same networks underlie cell activity in both SA and driven contexts, or:
There should be no difference between intrinsic probability of observing a particular
pattern and under visual stimulation. Yet, other effects such as locomotion have been
shown to enhance stimulus encoding and thus influence pattern probability (Dadarlat
and Stryker 2017). With these differences in pattern occurrence, comparing pattern dis-
tributions under varying stimulus conditions is non-trivial particularly for large state
spaces.

Different mechanisms or stimulus components can be responsible for pattern genera-
tion (Montijn, Vinck and Pennartz 2014; Miller et al. 2014), which may lead to distinct
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subsets of the state space being activated under certain stimulus conditions. For ex-
ample, Carrillo-Reid et al. (2015) showed that neurons were part of ensembles that fire in
precise spatiotemporal sequences both under stimulation and absence of sensory inputs.
They further showed it was possible to use these intrinsic activities to predict future
temporal sequences under stimulation. While this may be an extreme case, variations
of overlapping subsets (Sadovsky and MacLean 2014) or sampling biasses disguising the
origin of differing populations may exacerbate the quantification process. Comparing
individual pattern probabilities quickly becomes infeasible given limited sample sizes
and many unobserved states (Pillow and Latham 2007; Kass, Ventura and E. N. Brown
2005; O’Donnell et al. 2017).

That is why it is important to identify statistical derivatives and to pursue more
holistic approaches, particularly those that can handle such problems (Park et al. 2013).
Information theory describes the mathematical study of coding of information, and is,
thus, a suitable field to quantitatively examine theories how the brain encodes and
processes stimulus information. Shannon entropy (Shannon 1948; Ré and Azad 2014;
Cover and Thomas 1991) is an information-theoretic measure quantifying the amount
of uncertainty in a signal. It is minimal in deterministic systems and maximal if each
possible state is equiprobable. It may vary under different stimulus conditions informing
about pattern diversity. It is an often used metric in decoding (Quian Quiroga and
Panzeri 2009; Borst and Theunissen 1999) and was used in quantifying information in
retinal ganglion cells (Palmer et al. 2015). Similarly, comparing information content
in terms of Mutual Information (MI) can cast light on how a neural population carries
information about different types of stimuli or other properties (Kraskov, Stögbauer
and Grassberger 2004).

This chapter applies state-of-the-art data analysis techniques with particular focus
on information-theoretic approaches such as Shannon entropy and MI on MUA pattern
responses. It seeks to address questions about how different stimulus conditions and
ongoing activity affect population level responses in Primary Visual Cortex (V1) in an-
aesthetised mice. Information content is quantified for spatial patterns and contrasted
with that contained in the population rate (i.e. summed activity across the neurons or
channels, thus, discarding spatial information). With the help of Shannon entropies,
Jensen-Shannon-Divergence (JSD) divergences between pattern distributions are com-
puted and used to examine how similar the distributions are during varying stimulus
conditions, probing if the traversed pattern spaces are stereotyped for certain stimuli or
stable under all stimulus and quiescent conditions. This is an important step in trying
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to unveil how the brain encodes and transmits stimulus-dependent information.

3.2 Methodology and concepts

All data analysis in this chapter focusses on the same data sets in anaesthetised mouse
V1 described in Chapter 2, Section 2.2. In this chapter, stimulus type or stimulus
condition refer to the sets of electrophysiological recordings involving moving Gratings
(mG), Spontaneous Activity 1 (S1), natural movie (nat), Spontaneous Activity 2 (S2),
Temporal Frequency (TF) and Spontaneous Activity 3 (S3). Shannon entropy and MI are
detailed in the Introduction, Chapter 1 Section 1.6.1.

3.2.1 Spatial patterns

Analysis is based on spatial patterns of varying sizes 8x1, 16x1 and 32x1 corresponding
to 1, 2 and 4 shanks, and not taking into account temporal correlations (i.e. bins are
assumed temporally independent). 16x1 and 32x1 pattern are created by concatenating
adjacent 8x1 shanks (given the probe geometry) of each mouse. For 16x1 patterns,
this results in 24 non-overlapping experimental sets (i.e. 2 for each of n=12 mice). A
subset of the channels is used, because for entropy estimates of 232 possible pattern
states to be reliable would require many more samples. A spatial pattern, thus, denotes
the binary firing vector (word) at one time bin. Entropy is estimated on 16x1 binary
patterns, unless otherwise declared. In addition to patterns, population FR, i.e. the
spatial sum across channels (illustrated in Fig. 2.3 of Chapter 2), are investigated to
probe population activity without its spatial component.

3.2.2 Kullback-Leibler Divergence (KLD)

When dealing with ensemble patterns, a comparison of the empirical pattern distribu-
tions under varying conditions or among different populations may be of interest as
well. Differences in these distributions may indicate that varying neural ensembles
may be involved in generating them, or that the underlying statistics differed (e.g.
cortical state changes), implying different encoding strategies. One way of measuring
the distance between probability distributions is the Kullback-Leibler Divergence (KLD)
(Kullback and Leibler 1951), a measure closely related to MI (Shlens 2007; Ré and
Azad 2014; Nielsen 2010). KLD is often used in variational learning and approaches
that seek to minimize the distance between a model and a data distribution. That
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means the KLD describes the amount of information required to explain the data dis-
tribution P , when it is approximated by model distribution Q. It can be calculated
as DKL(P ||Q) = ∑

x P (x) log P (x)
Q(x) , where P is the true data distribution and Q is of-

ten called the model or approximating distribution, and DKL(P ||Q) is pronounced the
Kullback-Leibler divergence from Q to P. The KLD can also be calculated via entropy
terms, DKL(P ||Q) = H(P,Q) − H(P ), with H(P,Q) denoting the cross-entropy, and
H(P ) the entropy of P .

It denotes the information gain, or how many bits are required to decode samples
from P using model distribution Q, or equivalently, the amount of information lost when
Q is used to approximate P (Boyd and Vandenberghe 2004; Sohl-Dickstein, Battaglino
and DeWeese 2009; Roudi, Aurell and Hertz 2009). For the case P (x) = 0, the measure
is interpreted as 0, since lim

x→0
x log(x) = 0, and Q(x) = 0 requires P (x) = 0. It strictly

requires P and Q to have the same support. Support here refers to the set of possible
values of a random variable with that distribution, so the support of a function is the
set of points where the function is not zero valued.
It is a non-negative, non − symmetric measure that does not obey the triangle

inequality and is zero only if P (x) = Q(x) (Cover and Thomas 1991; Shlens 2007).
Thus, it is not a real distance, and DKL(P ||Q) 6= DKL(Q||P ).

3.2.3 Jensen-Shannon Divergence (JSD)

The JSD is based on the KLD with the difference in that it is a real metric: It is
symmetric and obeys the triangle inequality, and thus, unlike the KLD it measures
an actual distance (Lin 1991). This makes it a preferable alternative to the KLD,
suitable for comparing probability distributions letting us measure the similarity or
distance between probability distributions (Ré and Azad 2014; Nielsen 2010; Cover
and Thomas 2012; Tkačik, Marre, Amodei et al. 2014). It can be calculated as the
average KLD between a mixture distribution M , and X and Y, respectively (JSD =
1
2DKL(P ||M) + 1

2DKL(Q||M), where M = P+Q
2 ). Alternatively, it can be calculated as

the entropy of the mixture distribution minus the mixture of the entropies:

JSD = H

(
P +Q

2

)
− H(P ) +H(Q)

2 (3.1)

For two probability distributions, and provided using the base-2 logarithm in the en-
tropy estimators, the JSD is bounded between 0 and 1: 0 ≤ JSD ≤ 1.

Although the KLD is often used in the literature, the JSD has its advantages in com-
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3 Distinct stimuli sample from different binary pattern distributions

paring distributions since it is a real metric. Yet, when instead of a model distribution
and the true distribution, two true distributions are sought to be compared, the JSD is
the favourable metric in this case.
One problem in comparing probability distributions that were created under different

conditions is that they might not have the same support, i.e. one probability distribution
may (only) contain distinct symbols from the other (Archer, Park and Pillow 2014).
This is often dealt with by using a Dirichlet prior with α and β parameters of 1, which is
equivalent to adding a pseudocount of 1 to the probability distributions (Granot-Atedgi
et al. 2013; Archer, Park and Pillow 2013b). For probability distributions of small size
(e.g. an 8-bit pattern space of 28=256 possible states), this may be a straightforward
solution. However, for distributions of higher order, where most of the non-zero prob-
ability states are not or never observed, this can introduce a substantial bias. Instead,
in this case, it is possible to only add pseudocounts to the union of observed states in
both distributions, giving them full support over observed patterns. This in conjunction
with a suitable approximation method, e.g. an appropriate prior that can deal with un-
known finite support, such as Centred-Dirichlet-Mixture (CDM), will lead to more reliable
results.
Similar to finite sampling problems observed in MI and entropies, empirical estimates

may result in negative JSD, particularly for very similar distributions (Raj and Wiggins
2008). This can e.g. happen when the distributions compared are based on very unequal
numbers of samples, which can partially be accounted for by weighing the mixture
distribution accordingly.

3.2.4 Multidimensional Scaling

Multi-Dimensional Scaling (MDS) is a data dimensionality reduction technique whose
main use lies in visualising distance information in a dataset. Points that are close in
a (high-dimensional) input space appear close after applying MDS. It takes as input a
distance (or similarity) matrix, and tries to preserve edges (distances) between nodes
(features) in input space (T. F. Cox and M. A. A. Cox 2000; Wickelmaier 2003). A
distance (or similarity) matrix is a symmetric matrix consisting of pairwise distances
(using a real distance metric such as Euclidean distance) between features or nodes.
For example, let nodes represent London, Paris and New York, and edges denoting the
distances between them, the similarity matrix will contain distances London-New York,
London-Paris, and Paris-New York (all to all). MDS will try to retain the edges and
cluster London with Paris while New York will be positioned further away.

56
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Using the JSD as our distance matrix, it is possible to visualise similarities among
probability distributions in a principled manner. This study uses the non-metric MDS
technique employing Kruskal’s normalised stress criterion, where stress is normalised by
the sum of squares of the inter-point distances. This was implemented as the mdscale
function in Matlab (2017a) with default parameters.

3.3 Results

This chapter extends the study of the anaesthetised electrophysiological experiments of
left hemisphere V1 under the visual stimulation of monocular full-field drifting gratings,
natural scene movies and SA (grey screen mean luminance) described in the previous
chapter. In particular, the binary firing vectors or (word/pattern distributions) and
population FR are investigated. Information-theoretic approaches such as Shannon
entropy are used to evaluate the similarities of SA and evoked responses. Analysis was
based on simultaneous firing activities on recording sites of varying numbers of adjacent
shanks (one, two and four), permitting information-theoretic analyses at different state
spaces sizes, to examine low-level visual processing and neural encoding.

3.3.1 Stimulus types influence activity levels and numbers of uniquely
evoked patterns

The first metric to compare neural activities (here patterns, binary firing vectors of
one time bin) under different stimulus conditions is the number of unique patterns
occurring during each stimulus type as an indicator for stimulus modulation. Fig. 3.1
(A) visualises the distributions of number of unique patterns in box-and-whisker plots
over all 32x1 patterns for the different stimulus conditions for all mice. Of 232 = 4.3 · 109

possible patterns, during spontaneous activity (S1, S2 and S3) only approximately half
the patterns of those realised during stimulus presentation are generated. The median
number of patterns during mG amounts to almost twice those of its associated SA, with
similar yet less pronounced differences for natmovies and its associated SA, S2. Another
decrease in total number of patterns is visible for TF and S3, which is attributable to
reduced recording length (only 80 s for S3, as it was only 2 s per presentation in
contrast to 14 s stimulus duration per trial in the TF set, in contrast to approximately
1200 s in S1 and 900 s in S2). A Friedman test yielded p<0.001, suggesting that
stimulus type affects the number of patterns. Concentrating on the differences between
each distribution, some yield particularly significant differences in median (p<0.001,
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Wilcoxon signed ranks, Bonferroni corrected).
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Figure 3.1: Number of unique 32-bit patterns per sample differs under dif-
ferent stimulus conditions. (A) Spontaneous activity generally traverses a smaller
subset of unique patterns than evoked activities. (B) Accounting for recording lengths
changes the impression of (A) in the number of unique patterns per sample. Values are
averages of subsampling each category 30 times at the lowest number of samples (16
000). (C) Mean population FR/channel vary with different stimulus conditions, but the
differences are not as severe as the difference in number of unique patterns, resembling
the number of patterns per sample. ** indicates ** p<0.01 and *** p<0.001, Wilcoxon
signed ranks, Bonferroni corrected.

Attempting to account for differences in recording lengths, we subsampled from all
categories 30 times and calculated the average number of patterns and divided it by
sample length (16 000 samples for all stimulus conditions). Fig. 3.1 (B) provides
the number of patterns per sample. Subsampling and thus reducing the influence of
recording length is changing the impression despite still indicating a highly significant
influence of stimulus type on the number of uniquely evoked patterns/sample (p<0.001,
Friedman test).
For example, SA recorded interleaved with nat movies attains higher pattern numbers

per sample than S1 (p<0.01, Wilcoxon signed ranks, Bonferroni corrected), while mG
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is significantly different from all stimulus types (all p<0.001 apart from TF at p<0.01,
Wilcoxon signed ranks, Bonferroni corrected). According to Fig. 3.1 (B), the median
number of unique patterns per sample lies approximately around 0.25 for most of the
stimulus types, and is significantly higher during mG with a median over 0.5 patterns /
sample, and a decreased value at S1 with a median just under 0.2 patterns per sample.
Stimuli generally increase the number of patterns per sample to 0.3. Moreover, it is
apparent that the number of patterns per sample during S3 is approximately the same
as the number of patterns per sample during stimulus presentation TF, which was not
apparent in (A). Performing multiple comparisons among medians of the distributions
reveals significant differences among some of the medians (all p<0.01, Wilcoxon signed
ranks, Bonferroni corrected). Particularly differences among S1 and all other conditions
(S2 p<0.01, remainder p<0.001) are striking (all Wilcoxon signed ranks, Bonferroni
corrected).

Evoking sensory responses by visual stimulation modulates the FR, which may play a
pivotal role in the numbers of patterns realised under different stimulus conditions. To
see how FRs differ among the stimulus types, Fig. 3.1 (C) illustrates mean population
FR per channel for each stimulus type. This is expressed as mean population FR per
channel to obtain the same numbers of data points as in (A) and (B). Undoubtedly, the
two measures form concordant pairs wrt. stimulus types. SA appears generally lowest,
mG arises with highest median FR, and nat and TF exceed their respective SA. However,
the differences among FR distributions do not seem as pronounced as for the numbers
of patterns, particularly for S2, nat, S3 and TF. One interesting observation is that
while in (B), S1 and S2 differed significantly in patterns per sample (p<0.01, Wilcoxon
signed ranks), there is no significant difference found in their FR in (C). Although FR
differences are still significant for some stimulus types, the differences among stimulus
types are more pronounced in the deviation of total number of patterns under each
condition. The difference in FRs between evoked and spontaneous cases appears more
pronounced than for the numbers of patterns per sample, particularly for TF and S3.
In accordance with results of (A) and (B), stimulus type significantly influences mean
population FR, µpopFR (p<0.001, Friedman test). Multiple comparisons of the medians
pinpoints the highly significant difference in medians among mG and all other stimulus
types (all p<0.001 Wilcoxon signed ranks, Bonferroni corrected).

The concordance of medians in Fig. 3.1 insinuated a relationship between number of
patterns and µpopFR. This is further explored in Fig. 3.2, which depicts the number of
patterns (np) per number of samples (ns) against the mean population FR, for stimulus
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Figure 3.2: Number of patterns per sample correlates with mean popula-
tion FR. The number of patterns per sample and µpopFR are strongly positively and
significantly correlated (p<0.0001, correlation coefficient rPearson > 0.96 for each con-
dition). (A) The linear fit of number of patterns per sample and mean population FR
appears similar for S1 and mG. (B) S2 and nat have slightly (insignificantly) different
slopes (p=0.055, Analysis of covariance (ANCOVA)), which is also the case for S3 and
TF (C), in addition to different y-intercepts. Axes in (A-C) are the same, with number
of patterns (np) per number of samples (ns) on the y-axes, and µpopFR in Hz/ch on the
x-axes.

conditionsmG, nat and TF and their SA for 32-bit patterns at 5 ms bin sizes. The number
of patterns per sample is highly positively correlated with the µpopFR for all stimulus
types and SAs (p<0.0001, Pearson correlation coefficient >0.96 for each condition, mean
correlation coefficient 0.98 ± 0.005 standard error of the mean (sem)). Each group was
fitted with a linear function of the type y = mx + b and obtained a minimum R2 of
0.88 (mean R2 = 0.94 ± 0.02 sem). Function fits are all very similar across stimulus
conditions, and the function parameters are presented in Tab. 3.1. Y-intercept is
slightly negative throughout, and the slopes range between 0.01 and 0.02 (a.u.), with
all of the SA slopes exceeding the evoked ones. Evaluating regression results across all 6
stimulus conditions together, the six slopes indicated no significant difference (p=0.06,
F-statistic 2.29, ANCOVA).

Pooling each stimulus with their concurrent SA is an option allowing the comparison
of slopes between stimulus types. ANCOVA found a significant difference of slopes at
p=0.004 (F-statistic 6.04). Similarly, the difference of slopes between grouped SAs and
pooled stimuli resulted to be highly significant at p<10−6 (F-statistic 29.87, ANCOVA).
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intercept b (a.u.) slope x (1/Hz)
S1 -0.0352 0.0181
mG -0.0093 0.0144
S2 -0.0429 0.0190
nat -0.0451 0.0168
S3 -0.0086 0.0206
TF -0.0415 0.0182

Grouped SA -0.0457 0.0211
Grouped evoked -0.0022 0.0147

Table 3.1: Parameter values for linear fits depicted in Fig. 3.2. Fitting functions are of
the type y = mx+b. Individual slopes are not significantly different (p=0.06, F-statistic
2.29 ANCOVA), but slopes between grouped SA and grouped evoked conditions differ
highly significantly (p<10−6, F-statistic 29.87 ANCOVA).

3.3.2 Neural ensemble spatial pattern entropy weakly resembles MUA
tuning functions

The tuning analysis of Chapter 2 focussing on MUA of individual sites is now expanded
to spatial 16x1 binary word Shannon entropies. Pattern statistics are estimated over 16
sites unless otherwise declared, bins are assumed temporally independent. Comparison
of the entropy properties for each stimulus case shows that neural ensemble pattern
entropies resemble MUA tuning properties from the previous chapter (see Chapter 1
Section 1.6.1 for more details on entropy estimation).

Fig. 3.3 visualises pattern entropies (A-B) for different stimulus groups and types,
where (A) groups directions, and (B) Spatial Frequency (SF)s. The mean population
FRs across the same set is shown in (C-D). Grating pattern entropies in (A) are es-
timated on the probability distributions over all directions at the lowest four SF, in
order to condense information about directions, as was presented in Chapter 2 that
MUA at higher SFs evoked responses were less distinguishable (cf. Figs. 2.9 and 2.16
(A)). Pooling across all SF might thus even out or conceal directional differences. To
complement this, in (B), entropies are estimated over the pattern distributions over all
directions for each SF separately.

In Fig. 3.3, each line represents entropies of one of 24 experimental sets. In (A)
and (C) the x-axis is ordered as follows: S1, moving gratings (0-325◦ in 45◦ steps, or
0.01-0.32 cycles per degree (cpd)), S2 and nat, S3 and TF. In (B) and (D) instead of
directions, steps are 0.01-0.32 cpd.
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3 Distinct stimuli sample from different binary pattern distributions

This grouping also allows enquiry into where the other stimulus types, S2, nat, S3 and
TF approximately lie in relation to the tuning functions of Chapter 2. As illustrated in
Fig. 3.3 (A), S1 and S2 manifest the lowest entropies apart from TF, with nat displaying
an entropy not much higher. Inspection of Fig. 3.3 (A-D) suggests that pattern entropies
resemble mean population FRs across all stimuli and also seem to weakly approximate
the tuning curves (cf. Fig. 2.9 and Fig. 2.11), with peaks around 180◦ and troughs
around 90◦ across mice for the directions. Correspondingly, entropy over SFs roughly
resemble the Difference of Gaussian (DoG) tuning fits observed for MUA in Fig. 2.11,
with higher values at low SFs and lower values at high SFs.
In accordance with this, in (C, D) mean population FRs (µpopFR in Hz/channel)

estimated over the same samples of (A, B) exhibit the same qualitative shapes across
stimuli. µpopFR is low for spontaneous activities, shows a dip around 90◦, a peak at
180◦. Similar to the entropies, µpopFR increases slightly again for nat movies.

Panels (A-D) insinuate a relationship between entropy and average population FR,
which is further explored and illustrated in Fig. 3.3 (E). A positive sublinear rela-
tionship is apparent between entropy and average population FR. This is not only true
for pattern entropies, but also entropies estimated using population FRs alone (entrop-
ies calculated with the Pitman-Yor-Mixture (PYM) estimator on the population FR).
Population FR entropy is much lower than pattern entropy (17 vs 216 possible states
for patterns, p<0.001, Wilcoxon signed ranks test), but both increase sublinearly with
mean population FR. They are fitted with a cubic of the form ax3 + bx2 + cx + d at
high R2 values of 0.98 and 0.99, respectively. Each symbol corresponds to one of 62 (48
gratings, 10 TF, 1 nat, three SA) stimulus cases in 24 independent experiment sets.

3.3.3 Mutual Information between neural activity and stimuli

Quantifying the information content of the spatial patterns and stimulus (total 62 stim-
uli) in terms of MI reveals that the spatial patterns contain 0.26 bits of information
(median, cf. Fig. 3.3, (F)) for 5 ms bins. MI is maximal for empirical spatial patterns,
in contrast to estimating MI in terms of population FR (sum over the sites), where
the median lies at 0.09 bits (at 5 ms bins). Increasing bin widths greatly increase MI
estimates. Yet, larger bin sizes may positively bias the estimate since the number of
samples decreases (thus negatively biassing entropy).
Fig. 3.3 (G) is a reminder of how patterns are defined. Neural ensemble firing patterns

are binarised, binned spike events. Time is discretised into bins of size ∆t. A single
spike pattern is a 16x1 binary vector whose entries are 1 or 0 corresponding to whether
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the neuron spiked or not. Frequencies of occurring patterns are computed to estimate
the empirical pattern probabilities.

MI is highest when estimated using spatial patterns. Fig. 3.3 (H) illustrates MI
computed for patterns and population FR at 5 ms bins, and how the estimates are
affected by randomly shuffling stimulus identities (labels) for each sample, or randomly
shuffling spatial patterns site-by-site for each bin. Spatial pattern shuffling does not
affect population FR, since the sum across sites remains unchanged.

Shuffling stimulus labels greatly reduces MI over the unshuffled results, as is evident
from Fig. 3.3 (H). This is particularly striking for MI calculated via population FR,
where MI is reduced to nearly zero (small positive fluctuations) for shuffled labels (shL,
p<0.001, 2-sample sign test). MI estimated via pattern entropies is greatly reduced for
shuffled labels (p<0.001, 2-sample sign test), but indicates residual information possibly
attributable to negative entropy biasses. In addition, randomly shuffling bins within a
sample (spatial shuffling, shBin) reduces the MI estimates greatly for patterns (p<0.001,
2-sample sign test), without affecting MI computed with population FR, as expected.
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Figure 3.3 (previous page): Pattern entropies resemble µpopFR across all stimuli and
also seem to weakly (qualitatively) approximate the tuning curves (cf. Fig. 2.9 and
Fig. 2.11). As in MUA tuning curves, peaks emerge around 180◦ and troughs at 90◦ for
the directions. SFs roughly follow the DoG tuning fits observed for MUA in Fig. 2.11.
Each line represents entropies computed over 16x1 binary patterns at 5 ms bins for each
stimulus type. X-axis shows S1, moving gratings (0-325◦ in 45◦ steps, or 0.01-0.32 cpd),
S2 and nat movies, S3 and TF. (A) Pattern entropy across all directions, pooled over
the four lowest SFs. (B) SF entropies, pooled over all eight directions. (C-D) same as in
(A-B) but for mean population FR in Hz/channel computed over the same samples. (E)
Entropy increases with average population FR. Entropies of patterns and population FR
alone (lower trace) increase sublinearly with µpopFR. Each symbol corresponds to one
of 62 stimulus cases (48 gratings, 10 TF, 1 nat, three SA) in 24 independent experiment
sets. (F) MI between spatial 16x1 patterns and 62 stimuli emphasises the superiority of
patterns over population FR, particularly with increasing bin size. (G) Neural ensemble
firing patterns are binarised, binned spike events. Time is discretised into bins of size
∆t. A single spike pattern is a 16x1 binary vector whose entries are 1 or 0 corresponding
to whether the neuron spiked or not. Frequencies of occurring patterns are computed
to estimate the empirical pattern probabilities. (H) MI between pattern and stimuli at
5 ms bins for patterns (grey) and population FR and shuffled labels (shL) and shuffled
bins (shBin). *** indicates p<0.001, 2-sample sign test.

3.3.4 Pattern probabilities evoked by natural movies and spontaneous
activity resemble each other more than either moving gratings

Fig. 3.3 depicted that population FRs and entropies differed under mG, SA and nat
movies. Comparing the probability of occurrence of each observed pattern under all
stimulus conditions allows enquiry into whether the pattern statistics vary with stimulus
types, or if distinct neural ensembles may be involved. This could be visible as differing
probabilities.
Fig. 3.4 (A-I) displays scatter plots of pattern probabilities under different stimulus

conditions in three example mice, for 16-bit patterns on log-log axes. Colour map
corresponds to number of simultaneously active channels (0-16, blue to red), with a
black diamond indicating the zero-pattern, which is the most frequent one in all sets and
animals. In all cases, patterns with a small number of simultaneously active channels
exhibit high probabilities, and patterns with a large number of co-active sites have
generally lower probabilities, accumulated in the lower left corners. As can be seen in
Fig. 3.4 (A), the zero-pattern, visualised as a black diamond, occurs at a slightly higher
probability in S1 than during mG evoked activity. Analogously, a vast subset of patterns
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Figure 3.4: Empirical pattern probabilities vary under different stimulus con-
ditions for 16-bit spatial patterns. (A-I) show the empirical 16-bit pattern prob-
abilities between evoked and their associated SA for three mice. Panel (A) shows the
pattern probabilities during mG against those of S1. The diagonal line indicates iden-
tity. Each dot represents one unique pattern (probability). Shades indicate number
of simultaneously active channels (0-16). Diamond shape represents zero-pattern. (B)
same as (A) for nat and S2. (C) same for S3 and TF. (D-F) and (G-I) follow the same
structure for two more example mice. (J-L) show the (subsampled and averaged) cu-
mulative probability as a function of the number of patterns for each stimulus type in
32-bit patterns for three example mice. Stimuli are shown in dashed lines, SA in full.
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occurring during SA arises under mG-evoked activity with much higher probability,
shifting away upwards from the identity line. This is particularly obvious for higher
spike count patterns, which cluster more above the identity line at low probability
values. This is reflected well by the fairly large JSD between the two distributions,
which amounts to 0.59 bits. Panel (B) reflects the probability scatter between nat
and its associated SA, S2. No activity, i.e. the zero-pattern, appears to be almost
equally frequent between the two conditions, as suggested by the black diamond on the
identity line. In addition, most pattern probabilities distribute axisymmetrical around
the identity line for both low and high spike-count patterns, with increasing spread at
low probabilities. The JSD is substantially lower than during gratings and their SA at
0.27 bits. Finally, (C) compares TF and S3, which appear in shape similar to (B), with
a tight spread shifted away from the identity line towards TF, with considerably higher
pattern probabilities for the evoked case. The zero-pattern is again displaced from the
identity line, and JSD amounts to 0.39 bits.

These findings are qualitatively similar across mice, as is illustrated by two more
mice in (D-F) and (G-I). Generally, the JSD is highest between S1 and mG, and lowest
between nat and S2.

Fig. 3.4 (J-L) illustrate the cumulative probabilities of 32-bit patterns as a function
of number of patterns for three example mice. Probabilities were repeatedly subsampled
and averaged to account for different recording lengths. The y-intercept corresponds
to the zero-pattern, which is visibly lower under stimulus presentation (dashed lines).
Especially mG indicate many more activity patterns to account for the same probability
mass as e.g. S1, which is particularly evident in (K).

It is difficult to disentangle influences by differences in FR from the disparity in pattern
probability distribution induced by the different stimuli themselves. To investigate this
further, Fig. 3.5 depicts the distributions of JSD and the distributions of the difference
in mean population FR among stimulus conditions. There appears to be a relationship
between JSD and the difference in µpopFR across stimulus conditions, ∆µpopFR. Fig.
3.5 (A) summarises the JSD of all stimulus presentation types, again illustrating the
large divergences between e.g. mG and its associated SA, S1. The box plots indicate,
as before the median as the central mark, the bottom and top edges the 25 and 75th
percentile. Whiskers point to the most extreme data points, and outliers are illustrated
as red crosses. Data points are classified as outliers if they exceed q3 + w × (q3 – q1)
or less than q1 – w × (q3 – q1), where w stands for maximum whisker length, and q1
and q3 are the 25th and 75th percentiles. To compare the qualitative progress of JSD
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Figure 3.5: 16-bit pattern JSD and ∆µpopFR between all pairwise combinations
of stimulus types are correlated. (A) Pairwise JSD distributions over stimulus
presentation types show e.g. large divergences between S1 andmG and small divergences
between e.g. S1 and S2. (B) ∆µpopFR between the same conditions as in (A) in
Hz/channel appear in concordance with divergences from (A). This is further illustrated
in (C), which shows one ’x’ per stimulus condition for all mice indicating a strong
positive correlation between difference in FRs and JSD (r=0.85, p<0.0001, Pearson).

values to the differences in FR, Fig. 3.5 (B) discloses ∆µpopFR for the same presentation
types, in Hz/channel. Contrasting (A) and (B), a concordance in value progression is
evident, which is further highlighted in (C) illustrating all JSD - FR pairs of all mice
and stimulus conditions with an ’x’. Fig. 3.5 (C) suggests a positive correlation between
divergences and difference in ∆µpopFR, despite displaying a large variance particularly
at low values (r=0.85, p<0.0001, Pearson, n=24x15).
Using pairwise JSD versus stimulus presentation types, it is possible to compare

pattern distributions beyond number of patterns and quantify how dissimilar the dis-
tributions are. This may indicate that certain stimulus types traverse similar patterns
with similar probabilities or that some patterns in fact belong to a different distribution,
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if they do not or rarely occur in other stimulus types. MDS is a technique that takes
in a distance matrix and transforms it into a lower dimensional space whilst seeking
to preserve distances (between distributions in our case). Using pairwise JSD as the
input distance matrix, it is possible to visualise the pattern similarities in a simple graph
illustrating how distributed the stimulus types are in relation to each other. This is
delineated in Fig. 3.6, indicating where the pattern distributions lie with respect to
each other in an artificial space.

A B C

D E
S1
mG
S2
nat
S3
TF

S1

mG

S2

nat

S3

TF

F

Figure 3.6: Stimulus types probability distributions reside in different pattern
subspaces. Each symbol represents one stimulus type, colour indicates spontaneous
activity (black) or stimulation (red). (A-E) illustrate five example sets of the low
dimensional mapping using the JSD matrix as input to MDS. (F) shows the graph
calculated on the average JSD over all mice.

Fig. 3.6 visualises the lower dimensional mapping (a.u.) for 5 example data sets
(estimated on 16-bit patterns of 5 mice). (A-E) each represent one mouse. Each symbol
stands for one stimulus type, colour code indicates visual stimulation (red) and spon-
taneous activity (black). Scrutiny of (A) evinces a close relation between nat and S2
in the centre of the graph (diamond shapes), while the remaining evoked types (mG
and TF) appear in the vicinity and the spontaneous cases are located further away. (B)
offers a different graph in that SA and evoked types are much more distinctly clustered,
with all SA in a tight neighbourhood, and evoked activities displaced, where TF is on a
trajectory between SA towards mG, and nat appears in a different regime. The mouse
in (C) also highlights a clear distinction between SA and visual stimulation, yet again
indicating neighbouring regimes for nat and S2. Here, mG appears furthest from the
centroid, yet gratings (TF and mG plus their interleaved SA) could be interpreted as
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3 Distinct stimuli sample from different binary pattern distributions

forming a cluster of its own, given the distance to nat and S2. The instance in (D)
maps SA of S1 and S2 in the same spot, with the nearest evoked distribution again
being nat. Fig. 3.6 (E) displays a symmetric graph with the symmetry line at roughly
45◦ marking the difference between evoked and spontaneous distributions. The edges
between nat and S2 is the shortest, with mG and S1 aligned to it on either side, and
TF and S3 further removed, forming a trapezoidal shape.
Graph (F) is the low-dimensional MDS mapping on the mouse-averaged JSD matrix.

The mean JSD over all mice results in a short edge length between nat and SA in
contrast to drifting gratings (both mG and TF), which are located further away.

3.3.5 Spatial frequencies are clustered in pattern space

The JSD technique was next elaborated to build the JSD distance matrix across all
stimuli (S1, 48 mG, S2 and nat, S3 and ten TFs, creating a 63x63 matrix). This
allows visualisation of the combinations of SF and directions in pattern space. In this
case, divergences are estimated over unequal numbers of samples. Sample sizes for
spontaneous activities and nat movies are unchanged from before, but grating sample
sizes are now reduced to 20 repetitions of 200 5 ms bins (i.e. 20 000 samples each).
Fig. 3.7 (A) highlights the map resulting from MDS over the mouse-averaged JSD

distance matrix. Each circular symbol represents one grating type (of defined SF-
direction specification), and colour of circular symbols corresponds to their SF. Black
symbols depict spontaneous activity, diamonds the set of nat movie, the star S3 and
plus signs TF. It is evident from the figure that the arrangement is not random, but
that gratings, in particular spatial frequencies form clusters in the transformed space.
Again, it is apparent that nat movie patterns seem to be displaced from gratings at the
top right corner (red diamond). However, SA recorded interleaved with mG appears to
be in close proximity to mid-frequency gratings (green, 0.04 cpd), and almost central
in the graph. The circular symbols appear not only clustered but also to be following
a path at increasing SF, from blue to red, whilst decreasing inter-symbol-distance or
scatter as well. All TF are far removed from the remaining stimulus types in the lower
right corner, also following an apparent order of increasing TF (black to pale grey).

Fig. 3.7 (B) illustrates the same mapping with a different colour code, where each
colour represents one direction on a circular colour map. The appearance is much
more scattered, with some local clusters of directions, but no apparent overall structure
in it. Local structures emerged e.g. for 45/225◦ (green) in the centre of the graph,
corresponding to the lowest three SF in (A). Direct comparison between (A) and (B)
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Figure 3.7: Pattern distributions conditioned on all stimuli appear clustered
for spatial frequencies, and less structured for directions. (A) MDS on the
mouse-averaged JSD distance matrices of the pattern probability distributions unveils a
map clustering in SFs, whereas Direction (DIR) seem less globally structured in (B) with
a circular colour map. In all subpanels, natural movie sets, both S2 (black diamond)
and evoked (red diamond), are consistently at a distance from mG. Colours represent
same SF or direction, respectively. Square indicates S1, diamonds S2 (black) and nat
(red), plus signs TF (grey scale) and S3 (black star). (C) Intra-class symbol distances
decrease for SFs, but not for directions. NB: different x-axes. (D) Pooled directions
at each SF cluster into high and low spatial frequencies. (E) DIRs pooled across SFs
appear very similar to each other in contrast to S1, S2, S3 and nat and TF. Colour code
represents same orientations, for clarity.
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3 Distinct stimuli sample from different binary pattern distributions

suggests that orientations at the same SF tend to appear in close proximity to each
other (e.g. two circular symbols at 0.02 cpd in (A), moss green, appear in brown
90/270◦ in (B)). Fig. 3.7 (C) shows the average within-class distances between symbols
to quantify their scatter. Individual symbol distance was calculated as the Euclidean
distance between symbols. Intra-class distance forSF decreases at higher SFs. Intra-
class distances are generally higher for directions and do not appear to follow a clear
structure. Inter-class distances were high for SF (not shown), given their localised
clusters. Average distance between directions was small, given the large overlap among
groups.
This observation is reinforced when grouping the data for SF alone (pooling trials

over all directions for each SF), which is portrayed in Fig. 3.7 (D). Here, each circular
symbol represents one of six SF, and JSD is calculated over all directions at the same
SF. Again, the figure suggests a difference between nat movies, mG and spontaneous
activities. S1 appears in the general SA area, further away from mG, or, the mGs form a
cluster distant from the remaining presentation types. Between mGs, we can identify a
sub-clustering of SFs in lower (blue) and higher (turquoise) SFs, with lower SFs further
away from the centre of the graph, and thus further away from SA of the right side.
The other visual stimulations, nat and TF emerge at the top right corner forming a
distinct contrast to the SF clusters.

Similarly, Fig. 3.7 (E) pools all SFs with the same direction and calculating the
pairwise JSD between the remaining 8+2+3 stimulus types reveals directionally distinct
clusters: nat movies, TF, S1, S2 and S3 appear far away from the directions in similar
locations as in the previous panel. In this representation, some of the directions emerge
close to their collinear direction.

3.4 Discussion and conclusions

This chapter applied information-theoretic approaches such as Shannon entropy and
MI to binary MUA pattern responses, to investigate how neural population activity is
affected by stimulus types in V1 of anaesthetised mice. The brain is an epitome of
an information processing device. Here, we examined how neurons encode and process
stimulus-dependent information and how and if it differed in the absence of stimulation.
This study revealed that results found on single channel level (in Chapter 2) were

also reflected at a population level. Shannon entropy of pattern probability distributions
evoked by mGs roughly resembled directional and spatial tuning functions of Fig. 2.6,
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and formed a distinct relationship with µpopFR. MI was highest when estimated with
patterns, i.e. including spatial knowledge, in contrast to population rates that only
utilise the total population spike count (cf. Fig. 3.3). In addition, the number of
unique patterns in each experimental condition depended on the stimulus type, which
was tightly linked to mean population firing rate, µpopFR.
Individual pattern distributions differed distinctly in direct comparison across stimu-

lus types, which was quantified with the JSD. With the JSD, it was possible to visualise
pattern probability distributions as graphs where edge length reflected the distance
between distributions, and nodes representing stimulus types. This representation re-
vealed that nat movies evoked pattern probability distributions most similar to those
evoked during SA.

Spontaneous activity evokes more unique patterns than stimulus-driven
activity when accounting for firing rates

As detailed in Fig. 3.1, the number of unique 16-bit patterns varied over stimulus
presentation cases. The absolute number of unique patterns was highest for mG for all
mice, and lowest for S3. One problem with this representation was that it did not con-
sider recording lengths, thus, longer recordings naturally provided a larger number of
unique patterns (assuming non-zero FRs and variation in timing, jitter etc.). This prob-
lem was addressed by normalising each stimulus type by the total number of samples,
resulting in the total of unique patterns evoked per sample. With this normalisation,
variability over stimulus types did not appear as pronounced any more. However, mG
still emerged as significantly evoking a larger amount of unique patterns per sample than
all other stimulus cases (p<0.001, Wilcoxon signed ranks, Bonferroni corrected). S3 was
notable in its homogeneity of response patterns (p<0.001, Wilcoxon signed ranks, Bon-
ferroni corrected), demonstrating natural movies (which preceded the S3 period) evoked
periods of stereotyped activity after cessation. Yet, through normalisation by recording
length S3 surfaced in the same ballpark as TF, thus reducing its impact. One drawback
of normalising by sample size (duration) is that the short presentation time of S3 may
bias the results as it could artificially increase the ratio of patterns / sample if there was
an actual minimum number of total patterns in that regime. Balanced recording lengths
would have eliminated this concern. The results in Fig. 3.1 (C) finally detailed the ef-
fects of stimulus cases on µpopFR. In line with increased unique patterns per sample, the
µpopFR was highest during mG. While S1 and S2 differed significantly in their patterns
per sample (p<0.01), their FR were not found to differ significantly, suggesting a higher
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3 Distinct stimuli sample from different binary pattern distributions

pattern yield in S2 that cannot be explained by FR alone. It was shown that stimulus
types had a highly significant influence on the number of patterns/sample (p<0.001,
Friedman test), as well as on the µpopFR (p<0.001, Friedman test).

The behaviour between number of unique patterns per sample and µpopFR suggested a
relationship, which was then further explored in Fig. 3.2. It highlighted a strong positive
correlation (rPearson > 0.96, p<0.0001), which was linearly fitted with a minimum R2

of 0.88. All stimulus types revealed strong positive relationships between numbers of
patterns per sample and µpopFR. Grouping SA and evoked responses resulted in highly
significant differences between slopes (p<10−6, F-statistic 29.87 ANCOVA). In addition,
the slope computed over the aggregated SA exceeded that of grouped evoked slope by
approximately 40%. This implies that the pattern variety during SA is larger than in
evoked activities, when accounting for the smaller population FR. Also, patterns during
evoked activity appear more reliable or stereotyped as has been reported elsewhere
(Sakata and Harris 2009; Buzsáki and Mizuseki 2014), even to the degree that stimuli
reduce the dimensionality of activity in line with findings by Mazzucato, Fontanini and
La Camera (2016).

Entropies resemble MUA spatial and directional tuning profiles

A comparison of Fig. 2.6 and Fig. 3.3 revealed a distinct similarity betweenMUA spatial
and directional tuning fits and entropies. With entropies and µpopFR being modalities
computed across spatial locations, it was possible to emulate earlier observations from
population tuning fits seen in Fig. 2.6. There, it had already been shown that tuning
functions of individual sites resembled each other. Taken together, it is evident that
tuning properties are visible at both single-site and population level. Entropy properties
appear to be fairly stable across locations and mice (apart from scaling differences).
Fig. 3.3 (E) disclosed a strong positive relationship between entropy and µpopFR

for both entropies estimated via spatial patterns and population FR. Entropies against
µpopFR were fitted with a cubic polynomial and achieved an R2 of 0.98 (patterns) and
0.99 (population FR). The fitted function indicated a plateau at about 4 bits (theoretical
maximum is log2(17) = 4.0875 bits) for population FR-entropies, while entropy estim-
ated via patterns attained higher values tending to its theoretical maximum of 16 bits.
A sublinear relationship between entropy and µpopFR may reflect the sparsity of neural
data. At low population FR, only few sites are active, and thus, only few patterns are
observed, resulting in low entropy. At higher population FRs, more patterns can be tra-
versed, resulting in higher entropy under the assumption of each site firing with equal
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probability. Equally, at higher population FR, the number of simultaneously active
channels is increased. This must reach a plateau once a certain FR is passed, and then
decrease again. The conditional entropy of a response R given the number n of simul-
taneously active channels H(R|n) is Bernoulli distributed for independent channels. A
toy example proves for a 216 pattern, that

(16
1
)

= 16 and
(16

8
)

= 12870, representing the
number of possible combinations of patterns with one and eight simultaneously active
sites. Picking the maximum µpopFR of approximately 100 Hz/ch (from Fig. 3.3 (C)), we
can estimate how many channels were active on average, per bin. Given 100 Hz/ch was
estimated over bins of size ∆t = 5ms. This means 200 bins of size 5 ms contained 0.5
spikes per bin and channel. FR were averaged across 16 channels, leading to averagely
8 sites being active simultaneously. Having 8 channels simultaneously active results in(16

8
)

= 12870 possible states, amounting to H(R|8) = 13.65 bits, which is roughly given
in (E). This relationship must decrease at high µpopFR. For example, at 200 Hz/ch,
each channel requires to be active simultaneously (the all-ones pattern), and entropy of
only one state is zero.

In conjunction with this, MI between stimulus and response estimated via popula-
tion FR obtained values around 0.1 bits, whereas MI computed using patterns attained
values more than twice as high, largely increasing at higher bin widths, emphasising
the importance of their spatial representation. MI between spatial 16x1 patterns (for
2 shanks) and the 62 stimuli indicates a superiority in information content of spatial
patterns over population FR, particularly with increasing bin size. However, larger bin
widths may positively bias the estimate since the numbers of samples decrease (c.f.
negative bias from entropy), which may affect the pattern-derived entropies more than
the population FR one. Shuffling labels reduced this information to zero for population
FR (p<0.001, 2-sample sign test), and resulted in a small positive bias for MI calculated
via patterns, as was evident from Fig. 3.3 (H). Spatially shuffling bins in the patterns
significantly (p<0.001, 2-sample sign test) reduced the MI estimate, again supporting
the importance of spatial spiking configuration.

Natural movies may be processed differently from moving gratings

Pattern probabilities during SA (grey screen) and nat movies appeared to be fairly
similar, both visually (Fig. 3.4) and in terms of the JSD, whilst mG seem to modulate
pattern probabilities differently. The experimental design allowed for comparing SA
recorded at different times during the experiment, which enabled us to account for
different brain states or network excitability levels (Saleem, Chadderton et al. 2010;
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Harris and Shepherd 2015; Gutnisky et al. 2016). Particularly nat movies and S2
recorded in close temporal coherence (interleaved between stimulus repetitions) revealed
a low divergence of pattern distributions with values comparable to divergences between
SA recorded at early and late experimental phases. Fig. 3.6 illustrated a graph whose
edge lengths corresponded to the JSD between stimuli types. It was evident that nat
and S2 were consistently placed within each other’s neighbourhoods. It was argued by
Luczak, Barthó and Harris (2009) that responses during SA may delineate the set of
cortical responses, and the influence of SA on sensory processing (Schölvinck, Friston
and Rees 2012; Luczak, Barthó and Harris 2013). The fact that TF and S3 appeared
furthest away in e.g. Fig. 3.7 may be linked to the timing in the experiment plus
the difference in recording lengths, which may influence minimum possible probability.
This may reflect different brain states, a change in excitability or gain, or that these
stimuli are processed differently, with nat movies being closer to the default firing states.
Natural movies with their high SFs and large amount of spatial detail drive the neurons
at a highly fluctuating pace, whereas mG can evoke responses that are more sustained
during the presentation period because of their high contrast and generally large spatial
edges. Yet, non-optimal gratings, which have similar average FRs as nat movie-evoked
responses still elicit very different spatial patterns, as was evident from Fig. 3.7 (A).

Berkes presented similar findings in ferrets (Berkes et al. 2011), which have structured
orientation maps like cats, where particularly in adult ferrets mGs were most dissimilar
to SA and nat movies. They postulated that a statistical model that is optimally
adapted to a stimulus ensemble must have had prior experience to match the occurrence
frequency and investigated the difference in pattern distributions (with a symmetrised
version of the KLD) over the developmental period. (Miller et al. 2014) also argued
for patterns observed during spontaneous activity to be linked to ensembles activated
and formed during prior stimulus exposure. The current study ties in nicely here and
confirms Berkes’s observation for adult anaesthetised mice.

Okun, Yger, Marguet et al. (2012) argued that word distributions differed between
cortical states, where brain state was estimated as the coefficient of variation as derived
in Renart et al. (2010). In their paper (on rats and cats primary visual and auditory
cortex), brain state was the main factor for pattern similarity, more so than the presented
stimulus (or lack thereof) and all correlations were subject to population rate dynamics.
Unfortunately, their model was a poor fit if strong correlations between subgroups of
neurons existed that could not be explained by population FR dynamics. This sparked
lively discussions between the groups (Okun, Yger and Harris 2013; J. Fiser et al. 2013).
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In a similar investigation in behaving monkeys (Tan, Chen et al. 2014) observed that
visual stimulation shifts cortical state to the asynchronous state.

However, the present study confirms that the pattern distribution during SA is, also
in mice, more similar to nat movies than to gratings, as was shown in ferrets (Berkes
et al. 2011), rats and cats (Okun, Yger, Marguet et al. 2012). Further, our findings do
not contradict Okun’s, that population rate dynamics may play an important role, as
we recorded nat movies interleaved with SA in an attempt of matching or accounting
for brain states throughout the recording. This should, thus, be encompassed in our
estimates.

Spatial frequencies cluster in pattern space

Investigation of patterns induced by a battery of mGs revealed via JSD and MDS that
SFs appear clustered in theMDS-transformed pattern space. SA and natmovies emerged
at the periphery of pattern space, whereas SFs tiled the majority of it. Low SFs were
clustered while retaining a high spread, and traversed in an orderly fashion to more
densely packed patterns of higher SFs. The increase in pattern similarity at high SFs
may reflect the detectability of the grating. High SFs may be more difficult for the mouse
to detect, and thus evoked patterns may be represented similarly, and therefore, cluster.
The large spread for low SFs on the other hand may correspond to the differences in
directions. Tuning curves from Chapter 2 observed for both population and MUs were
most dominant at low SF, where large differential responses were present at different
directions. This directional difference may be washed out at higher SFs, resulting in
less diverse pattern distributions. This may suggest that SF were the main driver for
pattern space in the subcategory of mGs, and that this clustering can be subdivided at
low SF to achieve a secondary tiling corresponding to directions of a grating.

Mean firing rates may account for some of the pattern distribution
divergences

Dissimilarities in pattern distributions between stimuli may be attributable to different
FRs induced by the choice of stimuli (optimal gratings evoke high FRs whereas nat
movies may induce on average lower FRs with instantaneously high peaks). Spontaneous
and natmovie evoked activity displayed a lower JSD than both/each to artificial gratings
(Fig. 3.6). If neurons are more driven by (optimal) artificial stimuli, one might argue
that this could automatically change the pattern distribution. However, non-optimal
gratings with FRs similar to nat movies still appeared to elicit different responses. One
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weakness in the current analysis may be that by grouping all of the nat movie frames
together rather than looking at it frame by frame or e.g. in 1 s chunks (to get the same
dimensionality as the gratings), we might lose information. Also, by splitting the movie
in chunks, we may be able to investigate different FRs during the movie, or condition
on certain frames.
One way to check individual FR influences could be to create surrogate data (e.g. ho-

mogeneous independent Poisson that match the individual site firing statistics, which
is the maximum entropy solution given FR constraints (Schneidman et al. 2006)). This
would use the mean FR for each stimulus, but will not reflect population FRs. Altern-
atively, surrogate data that match only the µpopFR for each condition could be used to
check if this dissimilarity is indeed dependent on population FRs induced by the stimuli.

In addition, it has been suggested (Okun, Yger, Marguet et al. 2012; Okun, Yger and
Harris 2013) that instead of pairwise correlations between spike trains, population FR
fluctuations may be responsible for the different pattern distributions and that consid-
ering population rate dynamics over simply mean FR was required to account for FR
statistics (Tkačik, Marre, Mora et al. 2013) and that fluctuations in ongoing activity
play an important role in population FR (Gutnisky et al. 2016). There has been consid-
erable research into this with different models (Okun, Steinmetz et al. 2015; O’Donnell
et al. 2017; Tkačik, Marre, Mora et al. 2013; Okun, Yger, Marguet et al. 2012; Gutnisky
et al. 2016), and will be further addressed in Chapter 5.
Population dynamics, and population FR differences between the various stimulus

regimes could be implicated in the observed divergences. Fig. 3.5 depicted a strong
positive relationship between JSD and ∆µpopFR with rPearson = 0.85 (p<0.0001). Okun,
Steinmetz et al. (2015) investigated the relationship between one neuron and the popu-
lation. They coined the terms choristers and soloists for neurons that showed a tendency
to be highly linked to population FR and independent thereof, respectively. Choristers
appeared to be affected by sensory stimulation, while soloists are much less influenced
by the ensemble or network activity. They further suggested that the coupling of neur-
ons to the population FR explained pairwise correlations. Both soloists and choristers
are reflected in ∆µpopFR, and thus, the choristers’ robustness in sensory stimulation
(Okun, Steinmetz et al. 2015) could partially explain the consistency in our results.
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4
Mouse V1 contains information about

behavioural outcome in a visual
discrimination task

Neural activity differs between anaesthetised, sleeping and awake states (Greenberg,
Houweling and Kerr 2008; Aasebø et al. 2017). Chapters 2 and 3 concentrated on neural
processing of varying stimulus conditions in the anaesthetised state. The following
chapter is an ethological study elaborating on information contained in binary patterns
in V1 of the awake mouse during a GO/NOGO visual discrimination task, based on two
datasets, acquired by Aleksandra Berditchevskaia (AB) and Marie Tolkiehn (MT). AB’s
dataset has been focus of two independent studies, one on behaviour and motivation
(Berditchevskaia 2014), and one involving Local Field Potential (LFP) analysis (Ardila
Jimenéz 2016).

4.1 Introduction

Ethology, the study of animal behaviour from a biological point of view, attempts to
classify, define and predict the determinants and components of interacting animals.
Behaviour denotes an animal’s response to a particular stimulus or situation. How a
neural signal results in behaviour and cognition, and how particular neural activities
induce certain behavioural actions is one of the key question in neuroscience. A funda-
mental challenge of this question is the large number of processing steps that lie between
stimulus presentation and the observed behavioural response, rendering it difficult to
confidentially match a detected neural response to the stimulus, particularly in higher
cortical processing levels where sensory inputs may have been integrated with signals
from other areas. Neural correlates of behaviour have often been successfully found
in areas such as medial prefrontal cortex, which receives input from all other cortical
regions, and is implemented in various cognitive and decision tasks (Kolb et al. 2012;
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Euston, Gruber and McNaughton 2012). Yet, it does not receive direct projections
from sensory cortices hindering to infer a mapping between stimulus and behavioural
outcome.

A prominent model to examine cortical processing is mouse V1, conveniently located
at an early cortical processing stage, with retinotopic mapping allowing to relate neural
activity to visual stimuli more concretely. Simultaneous extracellular in-vivo electro-
physiology in populations of neurons is a common technique to probe neural activity.
In order to understand how cortical circuits function during a task involving decision
making and the activation of memory processes, it is essential to analyse its operation
during behaviour. In particular, recording how activity in different elements of the
circuit bears information about the behavioural states may elucidate how and if neural
correlates of behavioural outcome can already be found at such an early processing
stage, or if V1 purely acts as a cortical input stage. Indeed, neural activity in V1 has
been shown to be modulated by locomotion and running speed (Saleem, Ayaz et al.
2013; Polack, Friedman and Golshani 2013; Niell and Stryker 2010), attentional state
(S. Zhang et al. 2014), or potentially even motor intention (Zagha et al. 2013), pro-
posing that V1 activity may be more involved in behavioural outputs than previously
understood.

While it has been known that individual neurons can adapt their tuning functions to
behaviourally relevant properties (e.g. sharpening tuning in perceptual learning tasks
(Goltstein et al. 2013)), this study did not expect to observe a differential response
at the population level, since V1 is not thought to be directly involved in decision-
making or learning processes. V1 was reported to show signs of plasticity in perceptual
learning tasks, e.g. in experiments near the perception thresholds e.g. with Vernier
lines (Saarinen and Levi 1995), however the SFs used in this study are sufficiently large
to be easily detectable by the mouse. Behavioural paradigms often require repeated
presentation of a stimuli to train the animal to react in a particular way to learn the
desired behaviour. Repeated stimulus presentation may have other effects than are
behaviourally apparent. For instance, Stimulus-selective Response Potentiation (SRP)
is a form of cortical plasticity, which typically shows an increase in visually evoked
potentials upon repeated exposure to e.g. sinusoidal gratings (Frenkel et al. 2006).
It is a type of perceptual learning, which is NMDA receptor (N-methyl-D-aspartate
receptor) activation dependent and occurs already at processing stages as early as V1
(Furmanski, Schluppeck and Engel 2004). In line with this, it was shown that learning
and habituation (Cooke and Bear 2010) can strengthen sensory representations in V1
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(Poort et al. 2015).
However, how and if these representations are affected by behaviour and reward

association has not been fully understood yet, despite some indication of behavioural
state being implicated in cortical gain control (Fu et al. 2014). A recent study in
humans suggested a serial dependence of stimulus-induced activity patterns proposing
previously observed stimuli may make subsequent stimuli appear more similar to the
prior perceived ones than they may otherwise be (St. John-Saaltink et al. 2016), another
indicator for top-down regulations that reach V1.

Thus, the aim of this chapter is to investigate how the activity of simultaneously
recorded populations of neurons in mouse V1 relates to task state and if the behavi-
oural action has an impact on the neural representation. A novel behavioural training
protocol for head-fixed mice is designed and successfully implemented. The behavioural
aspect comprises a GO/NOGO visual discrimination task involving operant condition-
ing, in which the mouse is required to initiate or withhold a response (licking) upon
visual presentation of a drifting grating. Water-restricted, head-fixed C57BL/6 wild
type young adult female mice are trained to respond differentially to vertical and hori-
zontal moving gratings. One grating is associated with a positive reinforcement (water
supplement), and one with a punishment (compressed air puff to the flank). Upon sat-
isfactory learning of the task, multi-shank multi-laminar MUA is recorded in-vivo in left
hemisphere V1 of the awake behaving mouse. MUA is then analysed with information-
theoretic techniques probing if evoked population responses in V1 contain information
about behavioural task outcome, and the similarity of evoked binary firing pattern dis-
tributions under varying behavioural outcomes is assessed.

4.2 Materials, procedures and methods

All experiments were performed in accordance with the Animals (scientific procedures)
Act 1986 (UK) and the Home Office (UK) under protocol 19b3 of PPL 70/7355 and
personal licences, in female C57BL/6 wild type mice. Mice were kept in a reversed 12h
dark/light cycle. Surgeries, behavioural training and recordings were performed during
the dark phase.

4.2.1 Behavioural visual discrimination task and set-up

The behavioural paradigm involved a GO/NOGO task in water-restricted head-fixed
mice, in which mice have to make a dichotomous decision to either stimulus by per-
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forming a motor task (lick) to the GO stimulus (S+), or withhold a response (no lick)
to the aversive stimulus (NOGO, S-).

Lick  No Lick

Stimulus
2s

Lick?

Lick?

Punishment

ITI

Reward

Start Trial

GO

NOGO

Yes

No

Yes

No

A B

Figure 4.1: Behavioural task description. (A) Top: The mouse was placed in a
small plastic tube in the centre of a dome and head-fixed, with its paws reaching over
the ledge. Monocular stimuli (moving gratings) were projected onto a convex mirror
reflecting into the dome. Bottom: A downward moving horizontal grating was the
aversive stimulus, which negatively reinforced with an air puff to the flank. A leftward
moving vertical grating was the GO stimulus, rewarded with a small water release in
the lick port. In both cases, withholding a lick bore no consequences. (B) Flow-chart of
the trial structure. A trial started with a stimulus presentation of 2 s. Stimulus choice
was pseudo-randomised (maximum consecutive presentation of the same stimulus was
limited to 5 repetitions) by sampling from a Bernoulli distribution with probability
0.5. If a lick occurred for the GO stimulus after a grace period of 500 ms but before
presentation was over, the mouse was rewarded with a small water release. If a lick
occurred during the NOGO stimulus, a short air puff to the flank (300 ms) was used as
a punishment. If no lick occurred during the stimulus presentation, and after reward
or punishment, the trial went into a Inter-Trial-Interval of variable duration, which was
sampled from a Poisson distribution with mean 4 s. Fig. (A) top taken with permission
from (Berditchevskaia 2014).

Animals were trained to respond differently to two discriminant moving grating stim-
uli at orthogonal orientations, visualised in Fig. 4.2. Early training sessions showed
that it was easier for mice to discriminate when SFs differed slightly. One stimulus,
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S+, a vertical grating moving forward, was rewarded with a water release upon correct
behavioural response (licking within a window of 1.5 s during stimulus presentation).
The aversive stimulus, S-, a horizontal downward moving grating, resulted in punish-
ment by an air puff to the left flank. This was a conditioning task that involved aspects
of classical and operant conditioning (Rescorla and Wagner 1972; Busse et al. 2011).
Initially, the animal was conditioned to associate water (unconditioned stimulus) and
licking (unconditioned response) with the lick port/screen (conditioned stimulus). Once
this association was made, the animal would start licking the lick port to quench its
thirst, even if there was no water present (conditioned response). This was the classical
conditioning part. Then, in the discriminative part, the animal needed to learn through
operant conditioning how to adapt its response to the different gratings.

Figure 4.2: Grating stimuli. The left stimulus was the positively reinforced, water-
rewarded stimulus, moving in leftward direction. The right horizontal grating illustrates
the punished, unrewarded grating, at a slightly higher spatial frequency than the pos-
itive one.

The trial structure is illustrated in Fig. 4.1 (B). A trial began by pseudo-randomised
stimulus initiation. Consecutive presentation of the same stimulus was restricted to 5
repetitions of the same stimulus by sampling from a Bernoulli distribution with equal
probability. In early training phases, this probability was modifiable from the control
panel to ease the early conditioning task. Both stimuli were presented for 2 s. The
first 500 ms served as a grace period, in which a lick bore no consequences. If a lick
occurred in the 1.5 s after the grace period during a GO trial, the mouse was rewarded
with a small water release (1-4 µl). Contrarily, if a lick occurred during presentation
of the aversive stimulus, the mouse was punished with a short air puff to the flank
(300 ms) and the stimulus remained on screen for an extra second. Passive behaviour
was not punished. If no lick occurred during stimulus presentation, and after reward
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or punishment, the trial entered an Inter-Trial-Interval (ITI) of variable length, in which
the screen was grey (mean luminance), as a proxy for inferring spontaneous activity
(Kenet et al. 2003; Niell and Stryker 2010). ITI duration was sampled from a Poisson
distribution with mean 4 s and limited to a maximum of 13 s. The choice to sample
from a Poisson distribution was to avoid effects from the mouse "anticipating" a trial
start. Licks during the ITI period were also neither punished nor rewarded.

4.2.2 Surgical and electrophysiological procedures

Head-plate surgeries

Preparation started a few days before surgery by habituating the mice to being handled
by the experimenter. Habituation involved different kinds of interactions such as hold-
ing, weighing, or feeding them Hartley’s® raspberry jelly.
The head plate surgery was performed under general Isoflurane anaesthesia, Carpro-

fen and Buprenorphine analgesia, following aseptic technique, in order to implant a
custom-built metal head plate and ground screw under protocol 19b3 of PPL 70/7355.
Anaesthesia was induced with 4-5% Isoflurane in an induction chamber and main-

tained through a nose cone at 1.5-2% throughout the procedure, with a carrier gas
of 1.2% O2. Isoflurane was the choice of anaesthetic as it allowed a quick induction,
variable depth of anaesthesia throughout the procedure and a fast recovery time. After
inducing anaesthesia in the induction chamber, the animal was placed on a feedback-
controlled heat pad (FHC) on a KOPF® small animal stereotaxic frame. Body temper-
ature was monitored throughout the procedure with a rectal thermometer, and main-
tained at 37.1 ±0.5◦C. Depth of anaesthesia was controlled continually by checking the
pedal-withdrawal reflex and breathing.

Immediately after moving the mouse onto the stereotaxic frame, 0.2 ml of NSAID
(non-steroidal anti-inflammatory drug) analgesic Carprofen (of a 0.5 mg/ml diluted
solution, dose 5 mg/kg, Rimadyl®), and 0.06 ml of the opioid analgesic Bupren-
orphine (0.03 mg/ml diluted solution, dose 0.1 mg/kg, Vetergesic®) were injected sub-
cutaneously to reduce post-operative pain and help recovery time. The Buprenorphine
dose gave 6-12 hours of analgesia (as advised by in-house vet Francisco Diaz), and Car-
profen approximately 24 hours. In addition, sterile saline was injected subcutaneously
to account for the volume of fluid the mouse would normally intake over the duration
of the surgery. Per hour of surgery, the prescribed dose was 10 ml/kg, which amounts
to 0.15 ml/h for a 15 g mouse. For this study, a reference sheet for calculating the
correct dilutions was devised and can be found in the Appendix, 3. Calculations were
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confirmed by Georgina Wilkinson, BSc BVetMed MRCVS, Deputy Named Veterinary
Surgeon at the time.

Once the mouse was mounted to the nose cone, Lacrilube® was applied onto the
mouse’s eyes to keep them hydrated. Lacrilube, being more viscous than eye oil, is
more suitable for surgeries as it does not need to be applied as often as e.g. silicone
eye oil. The head was gently fixed in position using ear bars (whose tips were coated
in EMLA® cream, which contains local anaesthetics lidocaine/prilocaine, to improve
comfort), while making sure not to puncture the tympanic membrane. Lidocaine, a local
anaesthetic with rapid onset and duration of 1-2 hours, was injected subcutaneously
across a few equally spaced points around the head. Scalp hair was carefully shaved
with an electric trimmer. The remaining hair on the sides of the skull was covered in
Vaseline to avoid stray hairs in the surgical site when exposing the skull.

To further reduce recovery time, analgesic (Buprenorphine) jelly (Hartley’s®, rasp-
berry flavour) for recovery post-surgery was added into the home cage. Ideally, jelly
without analgesic should be introduced into the cage of surgery candidates at least a
couple of days prior to surgery for the mice to habituate to. Introducing the analgesic
jelly after the surgery, without prior exposure, the mice would likely be suspicious of it
and not eat it (and thus miss out on the pain relief).

Before an incision was made to expose the skull, Povidone-Iodine was applied with
sterile cotton swabs to reduce infection risk, particularly around the incision sites. An
incision was made to expose the skull; hair and skin were removed or retracted. The
connective tissue was thoroughly and carefully removed with sterile cotton swabs, small
scissors, and an Austin chisel. A drop of 5% H2O2 (hydrogen peroxide, 1.5 ml of 30%
H2O2 in 7.5 ml distilled water) was used to carefully clean the skull surface, removing
the gelatinous periosteum. Particular focus was laid to the muscle at the back of the
head. It was carefully scraped away with an Austin chisel, specifically on the left side
(target side). It was very important to clean the skull as meticulously as possible, since
any remaining tissue might regrow and jeopardise a secure adhesion of the head plate.
Another step in augmenting the adhesion of the head plate to the skull was to scrape
incisions at different orientations into the skull, either with a scalpel blade, or with a
slow turning dental drill. These incisions increased the surface area of the glue, and
thus, improved adhesion.

The target area, the monocular area of V1 in the left hemisphere, was identified with
a ruler or micromanipulator device and marked with a permanent surgical marker at
2.5-3.2 mm lateral to lambda (S.-H. Lee et al. 2012; Glickfeld, Histed and Maunsell
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2013).

The custom-made design metal head plates (design by AB) were moulded to the skull
with pliers to fit the shape of the skull as accurately as possible, leaving as little gaps as
achievable. For the later behavioural training, it was important that the tongue of the
head plate remained horizontal as otherwise the mouse’s performance might have been
affected by an uncomfortable head position attributable to a tilted head in the fixture.
Once the head plate fit was acceptable, it was attached to the skull with Histoacryl®, a
liquid topical skin adhesive, which polymerized in seconds upon being exposed to water
or water-containing substances such as tissue (TissueSeal LLC, TS1050071FP). This
step involved firm and cautious pressure for a few seconds to ensure a tight adhesion.
Optionally, the craniotomy area and possible minor gaps between skull and head plate
could be covered in a thin layer of cyanoacrylate (super glue, Henkel Loctite), sealing
the skull and minimising regrowth. Introducing an extra layer of super glue noticeably
minimised head plate detachment or tissue regrowth under the head plate.

A small craniotomy of � 1 mm was performed over the contralateral hemisphere
over the cerebellum for a ground screw. After a careful durotomy, the ground screw
(Precision Technology Supplies, M1.0x2.0 SLOT CHEESE MACHINE SCREW DIN 84
A2 ST/ST) was inserted into the craniotomy site with a precision screwdriver without
perforating the brain, and subsequently secured in place with dental cement (Kemdent).
The ground screws were prepared prior to the surgery. They contained a connector
(MILL MAX, 851-43-050-10-001000 connector, sip socket), which was placed into the
slot of the screw and bent upwards to enable an easy connection to the ground cable
during electrophysiological recordings.

Dental cement was used to fill any gaps between the head plate and skull. It was
applied through a pipette tip and syringe, superficially around the edges of the head
plate. It helped reinforce the connection between skull and head plate and to seal the
exposed skull from the environment. Once the dental cement had cured, the retracted
skin around the surgical site was attached to the dental cement and head plate (if
applicable) with Histoacryl®. Finally, the future craniotomy site was covered with Kwik-
Cast® (World Precision Instruments), a two component silicone elastomer, and a layer
of nail varnish to secure the craniotomy site even more, particularly for group-caged
mice. An alternative to Kwik-Cast® was Smooth-on Body Double ®, a two component
platinum-cure silicone rubber. The cured Kwik-Cast® was covered with a thin layer
of nail varnish, and the head plate was marked with a unique symbol identifying the
mouse. While the nail varnish was curing, the Isoflurane was turned off to minimise
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anaesthesia time. The mouse was released from the ear bars and, once it showed signs
of recovery, put into the recovery chamber.

During recovery period the mouse was under observation in a heat box for approxim-
ately 60 minutes with access to water and softened food. Once it appeared to have fully
recovered, it was returned to its home cage where it was group-housed with its litter.
Group-housing ensured mice would not suffer from social isolation, which may render
behavioural tests inconclusive or influence their outcome in any other way (Võikar et al.
2005).

Craniotomy and preparation for extracellular recording

On the day of the electrophysiological recording, the mouse was taken to the aseptic
procedure room and anaesthetised in the induction chamber with 4− 5% Isoflurane in
1.2% O2 and moved onto the KOPF stereotaxic frame. Anaesthesia was maintained
through a nose cone at 1.5− 2% Isoflurane and excess Isoflurane was retracted with a
scavenger. All procedures followed aseptic technique.

The mouse was placed on a feedback-regulated heat pad, and its body temperature
was kept at 37.1± 0.5◦C. The eyes were covered in eye ointment Lacrilube (Allergan).
Analgesia was ensured by subcutaneously injecting NSAID Carprofen (0.5 mg / ml
diluted solution at a dose of 5 mg/kg, Rimadyl) and Buprenorphine (0.03 mg/ml diluted
solution, dose 0.1 mg/kg, Vetergesic). Sterile saline was injected subcutaneously to
make up for the volume of fluid lost during the surgery. The head was gently fixed
in position using EMLA cream covered ear bars (to improve comfort). Next, the nail
varnish seal was removed using acetone-based solution on a sterile cotton bud. With
the help of forceps (Dumont #7, Fine Science Tools), the silicon elastomer Kwik-Cast®

sealing the marked craniotomy site was removed.
With a dental drill (Osada Success 40, 0.5 mm drill bit), a small circular craniotomy

of 1-3 mm diameter was made, with particular caution not to damage the cortex. To
achieve the craniotomy, the skull was thinned evenly over the craniotomy site. As the
location of V1 was very close to the parietal suture, bone thickness varied, requiring to
adapt the drilling to the thickness of the skull. When the skull was sufficiently thinned,
the final separation could be achieved by pressing gently onto the centre of the piece
of skull that was to be removed, thereby cracking and separating the bone plate from
the skull. Adding Phosphate Buffered Saline (PBS) onto the cracked skull fragment
and waiting a short moment eased removal, as it helped disconnect the dura from the
skull, minimizing potential damage attributable to skull-dura adhesion. Then, the plate
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could be easily removed using a bent needle and fine forceps (Dumont #5, Fine Science
Tools).
For the durotomy, a sharp needle tip (27G) perforated the dura mater, lifted it

slightly, with great care not to puncture the brain tissue. The dura flap was retracted
carefully with fine forceps (Dumont #5, Fine Science Tools). The cortex was kept moist
by applying a drop of PBS, and 1.2% agarose (Sigma, in 1xPBS (Life Technologies))
which was heated up and applied through a pasteur pipette once the temperature was
low enough and the agarose still fluid. Once the agar solidified, a layer of Kwik-Cast
was applied to seal the craniotomy site further and to protect the cortex from other
hazards.
To reduce surgical time, the Isoflurane was turned off, ear bars and thermometer

withdrawn whilst the Kwik-Cast® was still curing, and the mouse was placed in a heat
box for recovery with free access to water and softened food. The mouse remained under
observation for approximately 60 minutes or until it appeared to have fully recovered.
The mouse was then returned to its cage, in single housing, to recover further, before the
first electrophysiological recording could begin approximately 6 hours later to ensure
the mouse had recovered sufficiently from the surgery and readjusted to its normal cage
behaviour.

In-vivo extracellular electrophysiology in the awake behaving mouse

With the mouse prepared as described in 4.2.2, the procedure for the in-vivo electro-
physiology was the following.
Trying to match the time for the recording as closely as possible to the times behavi-

oural training takes place, the mouse should be habituated to the extra steps required
by the electrophysiology by mimicking them as closely as possible the days before the
recording. This would include steps such as extra waiting periods, inserting the ground
cable, lowering a sham probe with the micromanipulator or application of PBS and
potential small spillages. On the recording day, the mouse was head-fixed as usual, and
the ground cable was connected to the ground screw. Our electrode type allowed to
use its built-in reference site, which was located on one of the shanks, approximately 1
mm from the most superior site, which with our superficial target depth happened to
lie just outside the brain, but still within PBS.

Nail varnish, silicone elastomer and agarose were removed by blunt forceps and fine
forceps (Dumont #5, Fine Science Tools). The craniotomy site was inspected for dam-
age or infection through the microscope and kept hydrated with PBS. Mouse, lick port,
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apparatus and micromanipulator (Scientifica® PatchStar) were positioned with a sham
probe to warrant correct alignment. All recordings were performed with Neuronexus
A4x8 linear probes (A4x8: 5mm-100-200-177, 100 µm linear site spacing, 200 µm shank
spacing, 177 µm2 site area).

Signals were acquired by a Ripple Grapevine (Scout Processor), amplified with a
single-reference amplifier with on-board filtering and digitization (Grapevine Nano front
end, 16 bit resolution and 0.2 µV/bit), and software Trellis, which enabled for a live
display of the channels. This set-up required an Intel GIGABIT CT DESKTOP RJ45
PCIE B networks card to ensure a safe signal transmission without dropping frames.
Each of the 32 channels provided a broad-band signal, filtered between 0.3 Hz - 7.5 kHz
(3rd order Butterworth) sampled at 30 kHz, as well as an LFP signal (< 250 Hz, 4th
order Butterworth filter) sampled at 1 kHz.

The probe was attached to the head stage, and dipped manually into a small vial of
fluorescent lipophilic cationic indocarbocanine dye (DiI) to help histological identific-
ation of electrode position in the cortex. Before the DiI coating evaporated or dried,
the probe was positioned on the brain surface with the micromanipulator, tared to zero
before advancing into the brain at a speed of a few 10 µm/s and 90◦ angle. The sil-
icon microelectrode was lowered slowly into the brain to a depth between 800 µm and
1050 µm.

Once the target depth was reached and a signal found, agarose was applied via pasteur
pipette to stabilise the probe and to prevent the brain from drying. The electrode was
left to settle for 15 minutes. Through habituation and training, mice would generally
be quiet and patient during this preparatory period.

The recording commenced with 5 minutes of SA in the absence of visual stimulation
(black screen, dark room). The Trellis software enabled us to scrutinise signal quality on
all 32 channels simultaneously, in both high-passed and low-passed filtered signal (MUA
and LFP). Once the 5 minutes of SA finished, the behavioural task started as usual. At
the beginning of each trial, a synchronisation pulse (a Boolean signal) was sent to the
NI-DAQ card (National Instruments ®) to help synchronise timestamps between data
acquisition and visual stimulation. This synchronisation pulse indicated the start of
the trial (and thus the visual stimulation), and was also visible in the Trellis software
for an immediate comparison of visual evoked responses. In this study, eye movements
were not monitored, although it was discussed and shown that correlates of motivation
could be inferred from by pupil diameter (Reimer et al. 2014; C. R. Lee and Margolis
2016). In addition, however, previous studies in rodents suggested eye movements to be
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generally low, with little effect on neural activity (Andermann, Kerlin and Reid 2010;
Keller, Bonhoeffer and Hübener 2012), particularly in head-fixed animals (Wallace et al.
2013).
The session was concluded with another 5 minutes of SA (black screen, dark room)

when the mouse stopped participating. The probe was slowly withdrawn and submerged
in electrode cleaning solution. Agarose was removed and the state of the craniotomy
site was assessed. If the state of the brain was acceptable, with no apparent bruising,
contusion or any other damage, the animal was prepared for another recording the
following day. For this, PBS was applied and 1.2% agarose was used to cover the
craniotomy site. Kwik-Cast® was administered and set to cure before securing it in
place with small drop of nail varnish. The mouse was released from the head-fix and
its well-being was evaluated. If the session did not result in sufficient trials to cover the
daily water rate, supplementary water was fed through a syringe before the mouse was
returned to its single-housed home cage until the next recording.
If upon inspection, either at the beginning or at the end of the recording day, the

brain deems too damaged, shows signs of an inflammatory response, dryness or other-
wise affected tissue, the animal was sacrificed by either intraperitoneal injection (180
mg/kg) Pentobarbital (Euthatal; Merial Animal Health, Harlow, UK), and transcardi-
ally perfusion with PBS (Life Technologies, UK) and fixed with 4% Paraformaldehyde
(PFA) (Sigma-Aldrich, UK) solution; or anaesthetised in an induction chamber (4-5%
Isoflurane) followed by cervical dislocation. In both cases, the brain was dissected out
and post-fixed over 4 days in 4% PFA at 4◦C, before being transferred to PBS solution
at 4◦C for histological processing.

4.2.3 Hardware and software specifications

The experimental set-up was adjusted from AB’s efforts (Berditchevskaia 2014) to create
an immersive virtual visual environment.
The dome depicted in Fig. 4.1 (A) consisted of an 800 mm spherical polystyrene

(Ecclestone& Hart Ltd), covered in papier mâché and projection paint (Goo Systems,
SKU6375 Max Contrast). This permitted to use a spherical projection field as opposed
to linear ones with a screen, which closely resembled the visual field of rodents (Chalupa
and R. W. Williams 2008; Sterratt et al. 2013). Visual stimuli and trial structure was
based on code provided by (Berditchevskaia 2014), modified and extended for this study.
The software used to control visual stimulation and trial progression was developed
in LabVIEW connected to a National Instruments Data Acquisition Board (NI-DAQ).

90



4.2 Materials, procedures and methods

Visual stimuli were coded as textures in an OpenGL framework using the GLFW library
written in C, enabling us to map the grating textures to the interior surface of the dome
(via a coordinate transformation) allowing for an undistorted presentation on a spherical
surface. Dome coordinates for the transformation procedure were obtained manually
(by Tomaso Muzzu) by measuring equiangular points of a polygon inside the dome.

Once the textures were bound, the signals were sent to the dome via a digital projector
(ViewSonic PJD 6533w, 120 Hz refresh rate, output brightness 3500 Lumens), installed
vertically behind the Faraday cage, pointing at a rectangular mirror mounted at 35◦,
which reflected onto a 180◦ spherical mirror (Viso MS180 Indoor Dome Mirror) inside
the dome projecting onto the surface of the dome, (c.f. Fig. 4.1 (A)).

Apart from stimulus generation, the experimental set-up required further hardware
and software components to control lick detector, water release valve and air puffs.
These components were also controlled by the LabVIEW environment.

The lick port comprised a blunted 19G needle attached to a 0.5 mm (inner dia-
meter) silicone tube (RS Components, Stock No. 667-8438), leading to a single-channel
peristaltic pump (Campden Instruments, Product No. 80204-0.5) operating at a flow
rate 0.025 ml/s, picking up tap water from a small water reservoir in a glass vial,
controlled by a TTL pulse coming from LabVIEW. Licks were optically detected via
photo-microsensor at 8 mm aperture (Omron Electronics, EE-SX4070) sampled every
20 ms, which was well over the typical rhythmic lick rate in rodents at 5-8 Hz (Welzl
and Bureš 1977). Every beam interruption was interpreted as a lick.

Air puffs were regulated by a miniature 2/2 way solenoid valve (Shako Company,
PU220AR-01, 1/8 inch) and linked to a controllable in-house compressed air system
allowing for adjustment of puff strength (0.7 -1 bar). The room’s compressed air con-
trol outlet connected to the solenoid via high pressure resistant silicone tubing. The
solenoid’s output consisted of a 1 mm copper pipe allowing for manual adjustment in
targeting the air puffs to the mouse’s left hind flank, contralaterally to the monocular
stimulus presentation.

Given the space constraints in the dome, the Scientifica Patch Star micromanipulator
for probe insertion was placed in the left field of view, and the microscope attached to
a separate aluminium construct on wheels.

Stimulus generation and data acquisition (including micromanipulator control soft-
ware, LinLab®) were assigned to different computers to ensure stable signal transmis-
sion without risking running out of memory on either computer. The stimulus PC was
running 64-bit Windows 7 OS with an Intel Core i7 CPU.
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The LabVIEW-based controlling software incorporated a Graphical User Interface
(GUI) allowing the user to interfere manually (air puff or water release), change train-
ing parameters (stimulus probability, field of view starting point, grating temporal fre-
quency, air puff duration), scrutinise behaviour (lick raster plots), and analyse ongoing
performance via Signal Detection Theory (SDT) measures such as sliding d’ or accur-
acy. This dynamic interface enabled the user to intervene and tailor the behavioural
program to the animal’s individual performance and needs.

4.2.4 Behavioural training protocol and habituation

This is a novel and efficient behavioural training protocol devised in particular for head-
fixed mice to learn a GO/NO-GO task involving visual stimulation in the monocular
field of vision. The protocol includes a habituation phase and initiation of water re-
striction. Normally, this protocol can be started within 2 days after surgery. During
the entire protocol, mice have ad libitum access to food. An example of a mouse in the
behavioural set-up is presented in Fig. 4.3.

Figure 4.3: Head-fixed mouse ready for behavioural training. The mouse’s
body is located in a narrow tube on a custom-built Plexiglas head-fix mount, whose
surface is topped with a mesh for more grip. Visible on the skull is dental cement (light
rose), nail varnish (pink), and Kwik-Cast® (green). NB: Lights are on and the lick port
was moved out of view for the photo.

This behavioural training protocol is based on but differs widely from the approach
used in (Berditchevskaia 2014) by reducing the number of training stages thereby ac-
celerating leaning progression. Where the previous protocol required training the mice
on a full-field stimulus first, which is then replaced by a half-field and then monocular
field stimulus, this approach instigates the monocular field from the start. This change
is brought about in an attempt to circumvent the drawbacks from the previously im-
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plemented training protocol, where mice appeared to have to learn the monocular task
anew, as their performance had dropped substantially transitioning from full-field to
monocular stimulation.

Unless explicitly noted, all lights in the behavioural training room were off apart from
the stimulus projector, minimising distraction from other visual inputs.

Throughout the training phases and while one mouse is trained, the remaining mice
of the batch were placed in a cage with enriched environment (including a running
wheel, cardboard tubes and pieces).

Day 1

The mouse is acclimatised and habituated to the experimenter’s hand. Starting a few
days before the water restriction or head plate implant, the mouse is placed in the
experimenter’s hand and let free to explore. Further, the mouse is weighed and put
back into the experimenter’s hand. In addition, the hand is placed into the cage,
letting the mouse explore it freely. This also helps the mouse to get accustomed with
the experimenter’s scent and presence. The head fix apparatus and tube are placed
into the cage over night for the mouse to get used to. In the experimenter’s hand, the
mouse is head fixed a few times for <15 s by holding the head plate firmly with the
other hand.

Day 2

The mouse is weighed, and taken to the experiment room to get used to the transport
box and the daily transfers between mouse holding facility and behavioural training
room. There, the mouse is briefly head-fixed (< 15 s) in the experimenter’s hand and
fed with water through a syringe (up to the daily supplement of 0.2 ml). This aims at
building a positive connection between head-fix, interaction and being restrained. If the
mouse does not struggle too much, the mouse can be put into the head-fix device tube
and head-fixed for approximately 5 minutes, with water rewards starting immediately
through the syringe and at increasing time intervals to build the association of water
reward while being head-fixed whilst building patience in the restraint.

Day 3

Day 3 is similar to day 2, but the mouse is head-fixed in the apparatus for 15-20 minutes,
with water rewards through a syringe every few minutes, until the daily allowance of
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0.2 ml water is reached.

Day 4

Day 3’s procedure is repeated, but the time in head-fix is extended to 30 minutes,
depending on how well each candidate copes. If the mouse does not struggle too much,
introduction to the lick port can be initiated (set-up habituation phase), building the
association between lick port and water reward with a specially designed habituation
program that simply delivers a droplet of water upon licking (i.e. interrupting an optical
beam). Initially, the water delivery can be manually launched to indicate the mouse the
function of the port. In classic operant conditioning terms, this stage may be referred
to as shaping (Skinner 1938). In this training phase, any lick in the lick port will be
rewarded. Next, we want the animal to learn to lick only when a particular stimulus
is present (S+), so the transition from this stage to the next should be rapid to avoid
building wrong or impartial associations.

Day 5

If the mouse showed participation on Day 4 in the habituation and shaping phase, the
task training can begin. Before visual stimulation begins, the session begins with head-
fixing and making the animal wait. This patience task is crucial to emulate the time
required in the electrophysiological recording from removing the craniotomy seal, over
inserting the probe to waiting to let the probe settle. Waiting time varies depending on
how much the animal struggles, and can be built up from a few minutes to approximately
15 minutes. The positive stimulus (S+) is presented in the right half of the dome and
automatically rewarded with water after 500 ms of stimulus presentation. Stimulus
presentation is interleaved with periods of grey screen, ITI, of varying duration. ITI
duration is randomly sampled from a Poisson distribution with mean 4 s and cut-off at
13 s. Stimulus probabilities are regulated depending on animal performance. Initially,
S+ is assigned 100% of occurrence probability, to strengthen the lick association. Every
day, this probability decreases with a simultaneous increase of S- until they reach 50%.
Air puffs to the left flank are used to stop the mouse from licking to the negative
stimulus.
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Final stage

Behavioural training is in its final structure. Weight is logged before each session in the
animal holding room. Reward and punishment is no longer automated but subject to
the mouse licking at the specific times (between 500 ms and 2 s). At the start of each
session, the mouse generally readily runs into the tube to be head-fixed and remains
calm throughout. Stimulus probability is at 50% and generally, the mouse performs
200-300 trials. Stimulus presentation is fully moved to the monocular area of vision by
reducing the stimulus presentation field to the rightmost area in the dome.

Each session starts with approximately 20 minutes of patience where no stimulus
is shown, which mimic the preparation time for the electrophysiological recording. In
early parts of the final stage, the animal may show impatience and struggle here, but it
is crucial to mimic the recording as closely as possible to maintain performance. In the
final few sessions before the in-vivo recording, mimicking similar movements, sounds,
and interferences with the animal are advisable. This may involve tinkering with the
head plate (i.e. a gentle tap with forceps to imitate Kwik-Cast® removal), releasing a
drop of PBS, having the microscope light pointed at the head to emulate probe insertion,
inserting the ground cable to the ground screw, or moving the micromanipulator with
a sham probe up and down. Similarly, patience needs to be built to mimic probe re-
moval, and the application of agar, Kwik-Cast® and nail varnish seal after each training
session. Again, in the final sessions before the recording, introducing the right smells
and interactions may be beneficial.
Behavioural performance and participation is automatically logged every day and

compared in lick scatter plots.

Weights

Mouse weight was monitored throughout and it was ensured to never fall below 80% of
the starting weight. Since very young mice (4 weeks old) were used, mice were expected
to gain weight through growth, and they normally gained weight of about 15% above
the starting weight.

4.2.5 Performance markers and signal detection theory

Behavioural outcomes can be classified according to binary classification tasks as de-
scribed in SDT. The possible outcomes for a GO/NO-GO tasks were (I) HITS (true
positives) (II) MISS (false negatives) (III) Correct Rejection, true negative, Glossary : CR
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(CR), (true negatives) (IV) False Alarm, (false positives)
Performance was then monitored using the following methods commonly used in SDT,

illustrated in Fig. 4.4:

d' = 1

A

d' = 3

B

0 0.5 1
FPR

0
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TP
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d' = 1
d' = 2

d' = 3
C

Figure 4.4: The meaning of d’ in SDT and Receiver Operating Characteristic
(ROC) space. (A) Noise and signal distribution have the same standard deviation
and their means are separated by d’=1. Criterion C lies on the mean of the noise
distribution. (B) Criterion remains in the same position, but the two distributions are
separated by d’=3, increasing their discriminability. Here, the amount of false negatives
(MISS) is massively reduced in comparison with (A). (B) Different curves in ROC space
illustrate the meaning of d’. A d’ of 0 corresponds to equal False Positive Rate, or False
Alarm Rate (FPR) and True Positive Rate, or Hit Rate (TPR), with a discriminability of
0.

1. d’ (d-prime), also referred to as sensitivity or discriminability index, describes the
distance between means of signal and noise distribution. These were calculated via
TPR and FPR. TPR is the proportion of HITS, p(yes|signal), FPR the proportion
of False Alarm, false positive, Glossary : False Alarm (FA), p(yes|noise). Noise and
signal distribution have the same standard deviation, but differ in their means.
An often used approximation of d’ is to use difference between the z-scored hit
rate and z-scored false-alarm rate. d′ = Z(TPR)− Z(FPR). Z-score here refers
to taking the inverse of the normal Cumulative Distribution Function (CDF). A d’
of 0 means that noise and signal distributions overlap (identical); in ROC space,
a d’ of 0 corresponds to the main diagonal. A larger d’ indicates that the two
signals were more easily separable; in ROC space this would mean a curve tending
towards the upper left corner, increasing the area under the curve.

2. Response bias (criterion), C = −Z(TPR)+Z(FPR)
2 , which stipulates the tendency of
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an agent’s behavioural strategy. It describes the propensity to act and is related
to the risk-taking or risk-aversive strategies. For a risk-averse or conservative
approach, the agent favours reduction in false alarms, resulting in a high criterion.
A more risk-taking or liberal strategy (low criterion) accepts the cost of false
alarms in fear of missing out. This means, criterion reflects the general tendency
to act with "yes" (Stanislaw and Todorov 1999). Fig. 4.4 (A) and (B) demonstrate
a criterion value on the mean of the noise distribution. In (A), the proportion
of false negatives is large, with 50% false positives. In (B), the amount of false
negatives is minimal, whilst the number of false positives remained the same.
An unbiassed agent would optimally choose the intersection of signal and noise
distribution.

3. ROC, a common visualisation method of binary classification tasks in which the
x-axis shows TPR, and y-axis FPR. The larger the area under the ROC curve, the
better the performance.

4. Accuracy, computed according to Eq. ??, denotes the proportion of correct results
(both true positives and true negatives) over the total number of trials examined.
Accuracy may be referred to as validity in psychology literature and is calculated
as acc = CR+HITS

FA+HITS + CR+MISS

4.3 Results

In-vivo extracellular electrophysiology data from the awake mouse during a visual dis-
crimination task was recorded by AB and MT. Both experimenters followed the same
electrophysiological recording protocol, using 4-shank linear translaminar silicon mi-
croelectrodes, but pursued different training protocols leading up to the recordings.
Ensuing from a broken shank, some of the experiments by AB used only three shanks
of eight sites each. This limited the number of state spaces investigated to a maximum
of three shanks (24 sites) in this chapter, where applicable. Number of shanks used is
clearly marked throughout. On account of different training protocols, results of the
two datasets were juxtaposed. Information-theoretic techniques inspected information
content and state spaces between behavioural outcomes to investigate the influence of
a dichotomous choice (to lick or not to lick) on firing patterns, and how this affected
stimulus encoding.
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4.3.1 Training protocol affects learning speed

Mice attain d’ of 1 after 10 sessions

Training progression and success was evaluated using behavioural markers from SDT
such as d’, ROC and response bias (criterion) C, as described in Sec. 4.2.5.
Fig. 4.5 illustrates progress in behavioural performance by means of d’, response bias,

ROC, and smoothed lick profiles. Data in (A) suggests that it takes approximately 10
sessions to reach a d’ of 1, which quickly progresses to a d’ of around 2 after 20 training
days. Progress seems to reach a plateau lasting around 30-40 sessions, after which
some animals progress even further to a second plateau around d’ of 3 (not shown).
It is evident from (A) that the steepest learning occurs during the first 20 days as
illustrated by the increase in d’. The dip in d’ after 20 sessions observable in all four
mice may be attributable to a one-off delay in behavioural training time from its usual
schedule. Each line in (A) is smoothed via convolution with a normalised Hanning
window of size 5.
In comparison, response bias in Fig. 4.5 (B) appears to start around zero and plum-

mets down at the 10 session mark, before it fluctuates around -0.5. It appears to
oscillate at low slightly negative values. Criterion does not reflect performance gain but
indicates the animal’s propensity to react (lick), and it is generally negative, resulting
in generally high response rates or task participation. A negative criterion involves
that Z(TPR) and Z(FPR) both increased. The high variance in response bias may
reflect differences in internal strategies (increased thirst, motivation) between sessions.
One animal in particular appears to oscillate around zero, which suggests it is least
biassed, whereas the other mice adopt a lower, negative criterion, indicating to be more
responsive.
Progression in ROC space calculated over full training sessions visualises the learning.

Fig. 4.5 (C-F) depict ROC progress during the first 20 days for the four mice of (A, B).
Colour indicates training day, with blue shades corresponding to early days and red to
later sessions. Most of the shown animals begin in the middle or upper right quadrant of
ROC space, displaying participation but not particular good performance with high FPR
and TPR. Then, the FAs are reduced whilst HITs remain stable, indicating a transition
from an over-motivated to the optimal regime in the top left corner.
The animal presented in (E) follows a trajectory starting at the midline, with a higher

FPR than TPR, transitions towards the over-motivated area in the top right corner at
high FPRs and TPR, before reaching the optimal area by reducing FAs while maintaining
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Figure 4.5: Behavioural progress over training days, indicates ten days are
required to learn the task, experimenter MT. (A) Sensitivity measure d’ over
sessions (training days) increases rapidly during the first 20 days before reaching a
plateau. Grey lines indicate individual mice in one batch (4 mice), black line mean
across mice. Each line is convolved with a normalised Hanning window of size 5. (B)
Criterion starts around zero, drops during the first 10 days towards -1 before levelling
off at around -0.5 at high variability over training days. Only one animal appears
to oscillate around an unbiassed criterion (zero). Colours and mice as in (A). (C-F)
ROC values for the first 20 training days in the 4 mice of (A, B). Colour indicates
training day, with blue shades corresponding to early, and red shades to later stages.
(E) illustrates a mouse following a trajectory starting from the middle, reaching into the
over-motivated top right area at high FPR and TPR before reaching high discriminability
in the optimal regime (top left), at high TPR and lower FPR. (F) The ROC training
progression follows a different path from (E), starting at medium/low values for TPR
and FPR and mainly improving on TPR without apparent reduction in FPR. (G) and
(F) illustrate the corresponding Hanning-smoothed lick Peri-Stimulus Time Histogram
(PSTH)s for GO (G) and NOGO (H) stimulus for the animal shown in (F), colour code
as in (C-F). Initial lick profiles appear flat (blue) before evolving to a steep lick onset
after the grace period for later training days. Both GO and NOGO stimuli show a low
but positive initial response during 500 ms grace period. Horizontal black line (top)
indicates stimulus presentation, vertical dashed line end of the grace period. Colour
code same as in (C-F).
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high TPR. Although other mice follow different trajectories, they all appear to reach
the optimal regime after 20 sessions. In particular, the mouse from (F) appears to
maintain a certain FPR whilst improving its TPR visibly. Focussing on the smoothed
PSTH lick profiles in (G) and (H), (smoothing via Hanning window with 5 bins of length
50 ms), the lick profiles between (G) GO and (H) NOGO appear very dissimilar. A
clear transition from almost flat lick profiles (G), blue shades, to a rapid onset after the
500 ms grace period emerges for the GO stimulus (G), whereas in (H) licks are generally
suppressed in the NOGO stimulus (S-), particularly after the grace period. The onset
response in the lick profiles during the 500 ms grace period for either stimulus illustrates
classical conditioning and the animal’s tendency to react to the visual stimulation.

Under a different training protocol, mice do not attain a d’ of 1

The alternative protocol, described in Berditchevskaia (2014) involved multiple,
staggered training stages, moving from binocular full-field, to half-field to monocu-
lar stimulus presentation. In contrast to the previous section, where mice attained a
d’ value of 1 after 10 sessions, Fig. 4.6 illustrates behavioural training progress of ex-
perimenter AB, where mice failed to maintain this discrimination level. Criterion, in
(B), oscillates heavily around zero with a slightly positive mean across all sessions and
mice, which is different from the mostly negative criteria (and thus suggesting higher
lick propensity) from Fig. 4.5 (B). ROC in (C-F) do not show as clear a trend as was
visible in Fig. 4.5 (C-F). Mice still showed signs of learning by decreasing the lick fre-
quency for S-, which is particularly evident from Fig. 4.6 (H). However, the smoothed
lick profiles also differ between experimenters. Whilst under MT, licks peaked after the
grace period for S+, and were evidently reduced under S- particularly around the end
of the grace period, mice under the protocol deployed by AB appear to differentiate
less between the stimuli, by indicating high classical stimulus conditioning as apparent
by high lick responses immediately following stimulus onset. Air puffs administered for
licks after the grace period reduce lick frequency, but mice seem to fail to anticipate the
punishment in AB’s protocol. In accordance with this, lick frequency is only slightly
increased for the positive stimulus, as is evident from the relatively flat lick profile fol-
lowing the grace period. This stands in contrast to the increased lick frequency of Fig.
4.5 (G), which indicates a strong peak particularly after the grace period during later
sessions.
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Figure 4.6: Behavioural progress is weak following protocol AB. (A) The sens-
itivity measure d’ over sessions (training days) does not increase greatly over 50 days.
Grey lines indicate individual mice in this batch (10 mice), black line mean across mice.
(B) Criterion values oscillate around zero throughout sessions. (C-F) ROC values for
the first 20 training days in 4 example mice used in later electrophysiology. Colour
indicates training day, with blue shades corresponding to early, and red to later ses-
sions. (G) and (F) illustrate the corresponding Hanning-smoothed lick PSTHs for (G)
GO and (H) NOGO stimulus for the animal shown in (F). Initial lick profiles arise very
similarly for both stimuli. Horizontal black line (top) indicates stimulus presentation,
vertical dashed line end of the grace period. Colour code same as in (C-F).
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4.3.2 Behaviour summaries of electrophysiological recordings

All data analysis unless otherwise stated is based on in-vivo electrophysiology data
recorded by both MT and AB. It is clearly stated when which sets are used. Table 4.1
summarises all behaviour aspects during the electrophysiological recordings used in this
study, and presents the number of trials for each behavioural outcome (FA, CR, MISS,
HITS), and the performance attained during each recording (d’ and accuracy (acc)).
The first 9 experiments were conducted by MT, and the remainder by AB.

ID FA CR MISS HIT d’ accuracy
G-13 1 100 60 35 1.9940 0.6888
G-14 15 119 64 71 1.2813 0.7063
G-15 8 108 46 64 1.6901 0.7611
G-16 6 111 43 42 1.6178 0.7574
H-10 47 85 23 115 1.3364 0.7407
H-11 23 125 50 87 1.3587 0.7439
H-12 20 115 65 62 1.0148 0.6756
J-20 41 95 9 111 1.9597 0.8047
J-21 17 107 34 87 1.6734 0.7918
mouse1_1a 5 64 61 7 0.1927 0.5182
mouse1_1b 6 59 61 1 -0.8145 0.4724
mouse1_1c 5 72 53 12 0.6167 0.5915
mouse1_2 12 198 188 34 0.5562 0.5370
mouse2_1 50 159 129 69 0.3387 0.5658
mouse2_2 39 106 76 71 0.5733 0.6062
mouse4_1 14 94 73 17 0.2461 0.5606
mouse4_2 27 123 78 71 0.8565 0.6488
mouse8_1 67 72 59 75 0.1953 0.5385
mouse8_2a 40 31 25 52 0.2951 0.5608
mouse8_2b 4 69 70 4 -0.0067 0.4966
mouse9_1a 32 42 50 28 -0.1910 0.4605
mouse9_1b 97 105 115 80 -0.1772 0.4660
mouse9_2 3 105 101 20 0.9416 0.5459
mouse9_3 8 67 52 20 0.6550 0.5918
raisa 15 81 78 23 0.2636 0.5279
renata_1a 76 83 81 82 0.0629 0.5124
renata_1b 1 38 35 2 0.3424 0.5263
sveta 7 83 77 8 0.1044 0.5200

Table 4.1: Trial outcomes of the behavioural experiments during electrophysiology,
and the performances during the entire recording for all mice.
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4.3.3 Mean firing rates differ between gratings, outcomes and
experimenters

Fig. ?? illustrates box and whisker plots of the mean FR under varying behavioural
conditions. As before, the central mark indicates the median, bottom and top edges
the 25th and 75th percentiles. Whiskers extend to the extreme points which are not
regarded outliers. Outliers are identified and marked as red crosses if they exceed q3 +
w × (q3 – q1) or less than q1 – w × (q3 – q1), where w is maximum whisker length,
and q1 and q3 refer to the 25th and 75th percentiles. Mean FR differ significantly
(all p<0.001, Kruskal-Wallis) between stimulus conditions S+ (rewarded stimulus), S-
(negative stimulus), ITI, and SA recorded before (pre) and after (post) the behavioural
session for both experimenters, regardless if FR are [0,1]-normalised or not. SA in
pre and post was recorded in darkness (black screen, dark room). Scrutiny of the
differences in mean FRs during stimulus presentation (S+, S-) reveals a significant
difference (p<0.001, 2-sample sign test, Bonferroni corrected) for experimenterMT (Fig.
4.7, (A)), whereas significance in the difference cannot be reported for experimenter
AB (Fig. 4.7 (C), p>0.0167, 2-sample sign test, Bonferroni corrected), although both
stimuli differed significantly from ITI (for both experimenters p<0.001, 2-sample sign
test, Bonferroni corrected).
Dividing S- and S+ in their behavioural outcomes FA, CR, MISS and HITS, the mean

FR appear even more significantly different within the same stimulus types (illustrated
in Fig. 4.8). Fig. 4.8 (A) presents that although the same stimulus is presented,
S−, mean FR differ significantly at p<0.001 (2-sample sign test, Bonferroni corrected)
between FA and CR. This is also the case for S+, where MISS and HITS significantly
differ at p<0.001 (2-sample sign test, Bonferroni corrected). The responses in passive
behaviour, as indicated by withholding a lick in CR andMISS, also differs significantly at
p<0.001 (2-sample sign test, Bonferroni corrected). The distributions of CR and MISS
both differ significantly from FA and HITS (each to MISS and CR p<0.001, 2-sample
sign test, Bonferroni corrected). CRs do not differ significantly from ITI, or SA pre or
post, whereas MISS does in all cases at p<0.001. Mean FR of HITS are significantly
different from all but FA, as are FA (all p<0.001).
Fig. 4.8 (B) visualises the [0,1]-normalised mean FR, making it easier to follow the

qualitative shapes of (A). Fig. 4.8 (C) conveys the same as (A) for experimenter AB,
in 520 MU. Qualitatively, the results are as in (A), with the exception of FA and HITS
to significantly differ at p<0.001 (2-sample sign test, Bonferroni corrected), but MISS
and post, and ITI and post do not in (C).
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Figure 4.7: Mean FR differs between stimulus conditions and experimenters.
(A) mean FRs of allMU and all experiments byMT show a significant difference between
S+ and S- (*** indicates p<0.001, 2-sample sign test, Bonferroni corrected). (B) [0,1]-
normalised FR enhances this even further. (C, D) same as in (A) for experimenter AB.
Medians were only compared for S-, S+ and ITI.

Behavioural outcome and performance may affect PSTH shape

The PSTH for each outcome (FA, CR, MISS, HITS, ITI) reveals useful information about
how stimuli are (temporally) processed. Pooling all mice and all MUA, results in the
mouse-channel-averaged PSTH in Fig. 4.9. Before averaging across mice, the PSTH was
calculated over 5 ms bins, smoothed via convolution with a normalised Hanning window
over 50 ms. It is evident from Fig. 4.9 (A) that the onset response is followed by a
secondary peak around 250 ms. Comparing (A-D), the increased activity particularly
for FA after 500 ms is striking. In (B, C), NoLick outcomes (CR and MISS), the
PSTH responses look very similar, with high primary peaks around 50 ms followed by
secondary peaks at 250 ms. This is succeeded by a low response until the end of stimulus
presentation at 2 s. HITS appear with a strong onset response followed by a weaker
secondary peak turning into sustained activity throughout stimulus presentation. All
outcomes exceed average ITI activity as indicated by the grey line. Only CR in (B)
appears to reach levels comparably low as during ITI in the latter part of stimulus
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Figure 4.8: Mean FR differ among outcome conditions and experimenters.
(A) mean FRs of all n=288 MU of experiments by MT across behavioural outcomes and
stimulus conditions indicate significant differences within and across stimulus types
(S+, S-) (*** indicates p<0.001, 2-sample sign test, Bonferroni corrected for multiple
comparisons). (B) [0,1]-normalised FR enhances the qualitative shapes of (A). (C, D)
same as in (A) for experimenter AB for 520 MU.

presentation.
Disentangling the PSTH using knowledge about animals’ performances, dividing the

mice into groups of high (acc > 0.65) and low accuracy (<= 0.65) reveals a vastly
different picture as presented in Fig. 4.10. The group sizes are 37% for high and
63% for low-performing mice. This group allocation happens to coincide with different
experimenters. AB’s animals belong to the group at accuracy < 0.65, and MT’s the
high-performing.

Fig. 4.10 (A) indicates a strong difference in PSTH shapes at high and low perform-
ances for FA outcomes (or MT and AB). The low-performance group (red) displays a
high average response throughout stimulus presentation (whole window), with a higher
average FR in general. The onset response can be characterised with a peak followed
by a secondary, weaker peak around 250 ms. Following this, a strong increase in FR
was apparent for the remainder of the window from about 500 ms. This sustained high
response reaches and exceeds levels of the onset peak. This may be ascribed to the
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Figure 4.9: Average PSTH reveals differences in FR time course. Mouse-, trial
and channel- averaged PSTH over 5 ms bins, smoothed with a Hanning filter over 50 ms
for all outcomes with more than 9 trials. All outcomes reveal a strong onset response
followed by a weaker secondary peak and differing stationary activities. (A) FA reveal
weakest onset response and highest sustained activity during stimulus presentation.
(B) PSTH as in (A) for CR outcomes show a double peak response with a strong onset
and very low following activity. (C) PSTH for MISS is similar to CR responses with
double peak and lower tail. (D) PSTH for HITS excels with a higher sustained responses
after primary and secondary peak. All graphs show average ITI as a faint grey line to
compare.
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Figure 4.10: PSTH at high accuracy differs vastly from low. Description same
as in Fig. 4.9. (A-D) FA, CR, MISS, HITS. Mice are split into high-performing (accuracy
> 0.65) and low-performing (accuracy <= 0.65) groups. The double peaks seem to be
prominent only in lAB’s group. Sustained responses in FA and HITS also appear pre-
dominantly for AB’s set. Average ITI is higher in low-performers than high-performers
(faint red vs. faint grey line, respectively).
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punishment (air puff) following a lick during S- presentation. Air puffs are immediately
triggered upon a lick after 500 ms, which may blur out a clear temporal correlation
between response and puff since licks may occur at any time. Unfortunately, in early
recordings of AB, air puffs sometimes created artefacts, which may be the source of the
visible increase after 500 ms. Luckily, these were not observed in MT’s animals.
The high-performing group (dark grey) presents a PSTH demonstrating an onset

peak starting at the average ITI line (faint grey) reaching a peak just below the low-
performing animals, coinciding in time with them. After this initial peak, the remaining
PSTH levels off slightly above the ITI line.
PSTHs for CR in Fig. 4.10 (B) also differ between groups. The low group (red)

exhibits a strong onset response that plummets momentarily to ITI level (faint red)
around 200 ms, before increasing to a secondary peak at approximately 80% of the
primary peak around 250-300 ms. After this secondary peak there is a hint of a third
one at 500 ms before finally levelling off for the remaining stimulation to values even
slightly below ITI. The high-performance group, in dark grey, displays a strong primary
peak with a small step on the falling flank. After this initial disruption, the PSTH levels
off at a sustained plateau slightly above ITI throughout stimulus presentation.
AB’s MISS trials, presented in Fig. 4.10 (C) appear with great similarity to CR trials

in (B), with a strong onset response, momentarily dip at 200 ms and a secondary peak
around 300 ms and a hint of a tertiary peak at 500 ms before tailing off afterwards for
in the low-performing group. MISS trials in MT’s group appear similar in shape to CR
PSTH, only that the step on the downward flank is slightly more pronounced than in
(B) and the general plateau in activity is slightly above CR outcomes.
Finally, AB’s HIT trials, detailed in Fig. 4.10 (D) occur with the double peak previ-

ously described and remain at a noisy elevated activity level in low-performing group.
High-performing HITS appear with an onset response similar to CR and MISS outcomes,
again with a small step on the downward flank, but this time falling slightly below those
values observed in MISS and CR, before marginally increasing and reaching a plateau
until the end of the window.
These results suggest a difference in the datasets acquired by MT and AB, which is

another reason why all following analysis is presented separately for the different sets.

4.3.4 Mutual Information indicates behavioural correlate in V1

MI between behavioural outcomes (HITS, CR, FA, MISS, ITI) and neural response sug-
gests a substantial amount of information in the neural data about behavioural outcome
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(p<0.001, 2-sample sign test between data and shuffled labels), with a mean at 0.02
bits, and peak values at 0.25 bits. As expected, MI between MUA patterns and behavi-
oural outcomes is higher than that contained in population FR (p<0.001, 2-sample sign
test), as is evident from Fig. 4.11.

Fig. 4.11 (A) provides the MI between MUA and behavioural outcome estimated via
entropies of 8-bit patterns at 5 ms bin widths, for shuffled labels (shL) and shuffled bins
(shBin). Shuffling the outcome labels reduces the MI to zero (with some fluctuations
attributable to entropy estimation, which is markedly higher for 16-bit or 24-bit calcu-
lations (not shown)), and spatially shuffling the bins significantly reduces MI (p<0.001,
2-sample sign test), suggesting spatial arrangement adding information about behavi-
oural outcome. In (B), MI is estimated using the population FR, i.e. the spatial sum
over the same patterns as in (A). Using population FR, MI is generally lower than es-
timated via patterns (p<0.001, 2-sample sign test). Shuffling labels reduces entropy to
zero without any apparent fluctuations. As expected, taking the population FR on the
shuffled bins (shBin) amounts to the same results as the unshuffled data, since spa-
tially shuffling bins does not affect the bin sum. Further, MI estimated on patterns that
were spatially shuffled bins, and that of population FR differ significantly at p<10−4

(Wilcoxon signed ranks).
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Figure 4.11: MI between behavioural outcomes including ITI, and neural
response is non-zero. (A) MI between MUA and behavioural outcome is significantly
greater than zero (p<0.001, 1-sample sign test) for 8-bit patterns at 5 ms bins (one
shank). Shuffling labels decreases MI to zero, and spatially shuffled bins significantly
reduce MI over unshuffled patterns (all p<0.001, 2-sample sign test, Bonferroni correc-
ted). Different symbols correspond to experimenters. (B) Same as (A) but for popFR.
*** indicates p<0.001, 2-sample sign test.
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Figure 4.12: Median MI increases with bin width and number of shanks. (A)
Median MI across mice is highest at 20 ms binned MUA using 3 shanks, where circle
radius corresponds to MI normalised to the maximum occurring value. (B) Same as in
(A) for population FR estimates. (C, E) Same as (A) for shuffled labels and shuffled
bins, respectively. (D, F) same as (C, E) on population FR. Given the nature of the
shuffle, (B) and (F) are exactly the same. (D) is zero for all points.

Fig. 4.12 highlights how MI is affected by bin width and number of shanks used, as
indicated by the medians over experimental sets on data and shuffled data as in Fig.
4.11. For illustration and scaling purposes, MI values were normalised by the maximum
occurring value (0.42 bits at ∆t= 20 ms and 3 shanks for unshuffled data).
Panels (A, C, E) reveal MI estimated on MUA patterns, and (B, D, F) its estimation

on population FR. It is evident from (A) that MI increases slowly with bin width, and
more visibly with the number of shanks included, leading to MI appearing highest at
20 ms bins for 3 shanks. Shuffled labels in (C) indicate zero values for 8-bit patterns (1
shank, first row), which increase slightly for 16-bit patterns, and peak at 20 ms for 3
shanks (0.3 bits). As was pinpointed in Fig. 4.11 for 8-bit patterns already, the shuffled
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labels set does display residual information despite shuffling, which is even more visible
for higher bit patterns (e.g. 3 shanks at 24-bit patterns at 20 ms bins). This should not
be the case in a sufficiently sampled distribution and is indicative of a negative bias in
entropy estimation. Overall, MI is reduced in comparison with (A). Spatially shuffling
bins in (E) reveals reduced MI for each combination in relation to (A).

In contrast to MUA patterns, panels (B, D, F) provide the results for MI estimated
via population FR. MI is smaller than (A) for all combinations. Qualitatively, MI still
increases in a similar fashion when increasing bin width and number of shanks, while
the differences between MI are marginal, yet leading to the largest MI at 0.04 bits, for
3-shanks (25 possible states) at 20 ms. For this type of data, distribution space appears
sufficiently sampled, which is also evident from panel (D) revealing MI of shuffled labels
being zero for all combinations, as would be expected. (F) then reports the same results
as in (A) since shuffling bins does not affect population FR.

4.3.5 JSD between outcomes differs between experimenters

JSD lowest for non-licking behaviour for 8-bit patterns

Comparing patterns and their frequencies under the different behavioural outcomes lets
us potentially investigate how distinct ensembles are more or less involved in exper-
imental conditions. The PSTH from Fig. 4.10 reported that there was a significant
difference between experimenters and/or performance level of animal training. Thus,
also here, Fig. 4.14 juxtaposes the results in two subpanels for each experimenter. To
provide a different reference for the conceptual meaning of the divergences between
behavioural outcome types, Tab. 4.2 summarises response types. Divergences between
groups FA and CR belong to stimulus S- (NOGO). Divergences between FA and MISS
represent the wrong choice (incorrect lick and incorrect withholding of a lick) etc.

FACR FAMISS FAHITS CRMISS CRHITS MISSHITS
Response Type S- Wrong Lick No Lick Correct S+

Table 4.2: Combinations of behavioural response types. FACR corresponds to the
case where S- was presented, comprised of FA and CR. FAMISS represents the wrong
behavioural decision, etc.

Fig. 4.13 contrasts the JSD for each response type and evaluates whether the JSD
differs significantly between categories. Subpanel (A), for all experiments by AB, depicts
significant differences between all response types and NoLick (p<0.001, Mann-Whitney-
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U test (MWU), Bonferroni corrected for multiple comparisons), which emerged with a
very low JSD at a median of 0.02 bits and low variation. JSD distributions also differ
significantly (p<0.001, MWU, Bonferroni corrected) between S+ and S−. Divergences
of Correct decisions emerge with a lower median than those during Wrong outcomes
(p<0.001, MWU). Evaluating the distributions, divergences involving S+ are generally
lower than S− (p<0.001, MWU). Correct and S− also differ significantly at p<0.001,
as do Wrong and S+ (all MWU). Part (B) discloses the results for experimenter MT,
which surface at overall lower values and spread than in (A). Like in (A), the lowest
divergence is observed for NoLick, which is highly significantly different from all but
one (Correct) other response category at p<0.001 (MWU, Bonferroni corrected). As
in (A), Correct and Wrong divergence distributions differ significantly at p<0.001
(MWU), with Wrong types manifesting a higher median. In contrast to (A), S+ and
S− do not show a significant difference in their medians. In accordance with (A),
both Correct and S−, and Wrong and S+ differ significantly at p<0.01 and p<0.001,
respectively (MWU, Bonferroni corrected).
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Figure 4.13: Substantial difference in JSD between outcome pairs at 8-bit
patterns. (A) JSD of all patterns observed between pairs of behavioural outcomes
for experimenter AB indicates significant differences between NoLick and all other
outcomes at p<0.001 (MWU, Bonferroni corrected). (B) The dataset by MT displays
significant differences between some of the JSD distributions (** indicates p<0.01 and
*** p<0.001,MWU, Bonferroni corrected for multiple comparisons). JSD was calculated
for 8-bit patterns at 5 ms bin widths.
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Figure 4.14: Substantial difference in JSD for one experimenter at 16-bit
patterns. (A) JSD of all patterns observed between pairs of behavioural outcomes
indicates no significant difference for pairwise outcome JSD distributions for experi-
menter AB (MWU, Bonferroni corrected). (B) The dataset by MT indicates significant
differences between some of the divergence distributions (** indicates p<0.01 and ***
p<0.001, MWU, Bonferroni corrected for multiple comparisons), most notably Lick and
NoLick, or Correct and Wrong. JSD was calculated for 16-bit patterns at 5 ms bin
widths.

JSD at 16-bit patterns varies between experimenters

Examination of 16-bit patterns provides a slightly different perspective from 8-bit pat-
terns. Fig. 4.14 (A) contains the JSD for all pairwise behavioural outcome divergence
distributions estimated on 16-bit patterns at 5 ms for recordings by AB. No JSD of any
behavioural outcome combination appears to be deviating significantly for experimenter
AB (p>0.05, Kruskal-Wallis). The median lies around 0.2 bits for all categories.

In (B) significant differences between several response types for recordings done by
MT emerge (** indicates p<0.01 and *** p<0.001, MWU, Bonferroni corrected for
multiple comparisons). The qualitative shape of distributions, with e.g. the median of
Wrong exceeding Correct andNoLick appears similar to the one observed for 8-bit pat-
terns in Fig. 4.13. The spread is generally smaller than in (A) whose JSD reached values
as high as 0.9 bits, in contrast to (B)’s maximum of 0.4 bits. Inspection of (B) sug-
gests the JSD between Wrong and NoLick (non-active behaviour) differs significantly
at p<0.001 (MWU, Bonferroni corrected). Overall, non-active behaviour, NoLick, dis-
plays lowest JSD with also the lowest variance, whilst Wrong display the highest JSD.
Wrong and Correct indicate a significant difference in JSD (p<0.01, MWU, Bonferroni
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corrected), which is interesting from a behavioural perspective as both combinations in-
clude non-active and active (licking) behaviour. In contrast, S− and S+ do not appear
significantly different (MWU). Divergences of Lick and NoLick also differ significantly
at p<0.001 (MWU, Bonferroni corrected). All significant differences observed here also
differed significantly in 8-bit patterns.

4.3.6 High Mutual Information between shanks indicates cross-columnar
co-activation
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Figure 4.15: MI between pattern response and shanks is high and similar in
all outcomes (5 ms bin width). MI (A) In MT’s dataset animals reach MIs of around
0.1 bits, which does not differ significantly (p>0.003, Wilcoxon rank sum, Bonferroni
corrected). "All" denotes computing MI over the entire recordings. (B) Same as in (A)
but for population FR. (C, D) same as in (A, B) but for AB.

The MI between each shank is one indicator of how correlated the shanks are in terms
of cross-columnar co-activation. This is another important approach in understanding
visual processing in V1. In this examination, MI(R;shanks) is estimated as the inform-
ation between neural signals (patterns or population FR) on one shank and the other
shanks, at bin widths of 5 ms. To investigate whether the information conveyed by one
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shank is affected by outcome type, Fig. 4.15 delineates the results separately for each
behavioural state, and as well as across the whole recording (denoted "All").

Fig. 4.15 illustrates the results for MI(R;shanks) estimated on MUA patterns (A, C)
and population FR (B, D), also separated for the experimenters (A, B) from MT, and
(C, D) from AB. The experimental sets were divided for experimenters, but statistical
analysis indicated MI(R;shanks) was not significantly different (p>0.05, MWU test)
between experimenters.

Assessing MI(R;shanks) under differing conditions with Friedman tests resulted in
significant differences for MI(R;shanks) in (A) and (C) at p<0.001, and p<0.05 for pop-
ulation FR in (B), indicating that MI(R;shanks) was significantly modulated by behavi-
oural outcome. Yet, sign tests with multiple comparisons across outcomes (Bonferroni-
corrected) were not significant.

The median MI between activity and shanks amounts to 0.08 bits for patterns (overall,
across both experimenters) and 0.02 bits for population FR (estimated over "All" and
both experimenters).

4.4 Discussion and conclusions

This chapter investigated how and if behavioural task outcome was reflected in the
activity of simultaneously recorded populations of neurons. A new, efficient behavi-
oural training protocol for head-fixed, water-restricted mice was developed, successfully
evaluated and contrasted with a preceding protocol. Under the new protocol, mice
learnt to differentiate between two gratings faster, reaching a discriminability index
d’ of 1 already after ten days, which was hardly reached under the previous protocol.
Water-restricted, head-fixed C57BL/6 wild type young adult female mice were trained
in an operant conditioning GO/NO-GO visual discrimination task to initiate or with-
hold a response (licking) upon visual presentation of one of two drifting gratings. Novel
multi-shank, multi-laminar MUA data in in-vivo electrophysiology in V1 in the awake-
behaving mouse was produced, quantitatively and qualitatively analysed and juxta-
posed with data recorded by AB under the preceding protocol. MI of responses and
behavioural outcome was determined, and JSD between pairwise groups of behavioural
outcome classes examined.
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Behaviour in a GO/NOGO task in head-fixed mice

In this study, an efficient behavioural protocol for head-fixed mice in a visual
GO/NOGO task was devised. It improved over previous protocols (e.g. Berditchevskaia
(2014)) as was indicated by the large deviation between success rates and discriminab-
ility during only 10 training sessions.
Fig. 4.5 suggested that mice were able to correctly discriminate between the gratings

after roughly 10-15 sessions, when they reached a d’ of 2. After this, the d’ value reached
a fluctuating plateau around 2 until the end of the training. Criterion fluctuated in a
similar fashion for the first 10-20 sessions, whilst showing generally a slightly negative
response bias. Other protocols involving whisker-stimulation in tactile behaviours (Guo
et al. 2014) followed similar approaches as pursued in this study, reaching comparable
values in discriminability after only ten sessions. Andermann, Kerlin and Reid (2010)
achieved analogous results in head-fixed mice performing a GO/NOGO task, in chronic
Ca2+-imaging. Despite mice being nocturnal and having visual capacities inferior to
carnivores or other higher mammals, e.g. (Prusky and R. M. Douglas 2004), mice were
shown to be able to discriminate between stimulus features (Mangini and Pearlman
1980; Niell and Stryker 2008), and prove to be a suitable candidate for basic visual
processing questions (Huberman and Niell 2011; Glickfeld, Reid and Andermann 2014).
It has been shown that visual responses are modulated by locomotion, another factor

which could speed up the learning time (Andermann, Kerlin and Reid 2010; Dadarlat
and Stryker 2017; Niell and Stryker 2010).
Although animals showed great progression during the training stage, performance

sometimes decreased slightly during electrophysiological recordings. This may be at-
tributable to increased stress or sub-optimal recovery after the general anaesthesia for
the craniotomy. Alternatively, the current surgical protocol required an injection of 0.2
ml of sterile saline per hour of surgery. This fluid uptake, in connection with Bupren-
orphine jelly, may impede behavioural performance because the animal may no longer
be sufficiently water deprived.

Significant difference in firing rates between rewarded and unrewarded
stimulus

It was suggested that learning not only enhanced sensory responses in mouse V1, but
that it also affected behaviour (Poort et al. 2015; Jurjut et al. 2017). Thus, train-
ing mice to respond differentially to distinct stimuli should be visible in behavioural
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markers (such as task performance, accuracy or d’) and as a correlate in the sensory
representation.

Fig. 4.7 highlighted the significant difference in mean FR between S+ and S-
(p<0.001, 2-sample sign test) for high-performing (accuracy > 0.65), animals from
experimenter MT. Normalised FR even amplified this finding. Considering that the
FR before behavioural training is unknown, inference on what this difference signifies
behaviourally is difficult. In conjunction with findings from Chapter 2, which indicated
that leftward moving gratings evoked strongest responses in anaesthetised mice, it was
now also observed in awake mice that the median FR for the leftward moving grating
(S+) exceeded that of downward drifting grating.

In addition to an innate affinity of leftward moving gratings, repeated exposure to
sinusoidal gratings can lead to SRP, which may have played a role in creating the
difference in FRs as well. SRP is an example of experience-dependent plasticity in V1
without the involvement of acuity processing for low threshold visual stimuli (Duncan
and Boynton 2003; Hager and Dringenberg 2010). Frenkel et al. (2006) investigated this
perceptual learning and implicit memory in chronic Visually Evoked Potentials (VEP)
recordings in L4 of V1 in mice passively viewing sinusoidal gratings. This stimulus-
specific increase in amplitude is thought to originate from the local plasticity in V1. It
is typical for early processing stages (Fahle 2004), and does not transfer across stimuli
or between eyes. From a computational biology point of view, SRP can be thought
of as a form of Hebbian plasticity realised as NMDA receptor-dependent Long-Term
Potentiation (LTP) (Cooke and Bear 2014).

Related to this, Gavornik and Bear (2014) enquired into sequence recognition and
prediction in V1, as SRP is highly specific to orientation presentation order and timing.
They showed that V1 could recover the full sequence of stimuli even when single stimulus
elements were excluded. The authors explained further that sequence learning did not
transfer between trained and untrained eye, in line with the results of SRP, indicating
that these changes in local plasticity appear at a stage where information processing
from the eyes can still be separated. However, this sequence learning does not require
NMDA receptor activation, and is thus based on a mechanism different from SRP
(Gavornik and Bear 2014). Instead, sequence learning may involve a mechanism that
makes use of input from the cholinergic system of the basal forebrain, as has been shown
to be the case for several types of experience-dependent plasticity in V1 (Chubykin et al.
2013; Bear and Singer 1986). Given that in the present study stimuli were presented
pseudorandomly, sampled from a Bernoulli distribution with variable length Poisson-
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sampled ITI, sequence recognition should not be an issue in this study.
One possible way to test the involvement of SRP in the awake behaving task may be

through injection of antagonists. Frenkel et al. (2006) showed that the induction of SRP
required the activation of NMDARs, which they could abolish by applying an NMDA
receptor antagonist CPP, leading to a blockage of AMPA insertion in V1 (with GluR1-
CT). Thus, no LTP could evolve. However, this, and a similar study involving visual
recognition memory (Cooke, Komorowski et al. 2015), was only shown in passively
viewing, anaesthetised mice. It is still unknown if SRP was required for reward learning
in the early visual system. Thus, an interesting extension would be to examine the
effects of an abolished SRP and task performance of the mice.
Unfortunately, the dataset obtained by AB revealed findings dissimilar to MT indic-

ating no apparent significance in the medians of the stimuli. In addition, mice were
trained to different discriminability levels, with those achieved in the MT batch greatly
exceeding AB’s. Thus, it is not evident if the lack of reproducibility in median FR of
the stimuli ensued from the different experimenters or the different performance levels
of the mice.
Regrettably, we lack data of other sinusoidal gratings in this task, or data acquired

before reward association took place, which could have been a valuable extension to
describe these findings.

Behavioural response significantly influences stimulus-evoked firing rate

The two moving gratings evoked different FRs in V1. Through behavioural training,
each stimulus was associated with either a reward or punishment. This entailed that
the stimuli bore different meanings and required opposing responses from the mouse.
Thus, beside changes attributable to habituation or SRP, mean FR for these associations
could be affected by arousal or behavioural state (Vinck et al. 2015). One shortcoming
of this study, however, is that pupil diameter was not recorded, a parameter that has
been implicated in motivation (C. R. Lee and Margolis 2016).
Indeed, Fig. 4.8 indicated significant differences between FR distributions among

behavioural task states (FA, CR, MISS, HITS, ITI, pre, post). This was an observation
consistent across experimenters, and thus observable at different performance or dis-
crimination levels. For example, FR during FA exceeded those recorded in CR, both
states of the same visual stimulation. In conjunction with this, HIT FR exceeded those
of MISS (p<0.001, 2-sample sign test). These increases in FR during active licking be-
haviour (FA and HITS) may argue for an implication of top-down regulations (S. Zhang
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et al. 2014; Moldakarimov, Bazhenov and Sejnowski 2014), enhancing the responses
when a behavioural action is implemented. In addition to elevated FR of the stimuli
themselves that may be ascribed to a form of SRP and inherent bias towards specific
gratings as discussed in Chapter 2, motivational state and locomotion were shown to
positively bias FR in V1 (Vinck et al. 2015; Poort et al. 2015; Jurjut et al. 2017; C. R.
Lee and Margolis 2016; Dadarlat and Stryker 2017; Polack, Friedman and Golshani
2013), e.g. by shifting the gain of the neuron (Mineault et al. 2016).

Average PSTH shape varies between experimenters

The mouse and channel-averaged PSTH of Fig. 4.10 displayed a secondary peak for
experiments executed by AB, which was not reproduced in MT. The peak frequency
corresponded to roughly 5 Hz, which was different from the temporal frequencies asso-
ciated with the visual stimuli, failing to explain it. Examination of individual PSTH
traces (not shown) revealed these peaks to only occur in a subset of mice. Differences
in average PSTH shape aligned with high- and low-performing mice, but also with dif-
ferent experimenters hinders interpretation. While it was shown that sensory responses
may be enhanced by learning (Poort et al. 2015; Jurjut et al. 2017), which could be
expressed by the shape of the PSTH, the current study lacks the within-group compar-
ison at different performance levels. The effects of different experimenters cannot be
disentangled from the observations at high and low performance with clear conscience.

MI between outcome and neural responses suggests V1 containing
task-relevant information

Fig. 4.11 highlighted MI between session states (HITS, CR, FA, MISS, ITI) and neural re-
sponses, indicating substantial information (p<0.001, 2-sample sign test against shuffled
labels) of a median 0.02 bits for MI computed using 8-bit patterns with the CDM es-
timator for binary discrete data at 5 ms bins. Shuffling labels reduced this information
to zero, and shuffling patterns spatially significantly reduced the information (p<0.001,
2-sample sign test). MI computed over population FR via discrete entropies calcu-
lated with the PYM estimator presented substantial information at a median 0.02 bits
(p<0.001, 2-sample sign test against shuffled data), that label-shuffling reduced to zero,
and was unaffected by spatially shuffling the bins.

Median MI of shuffled bins in (A) and data in (B) was approximately the same at 0.02
bits, and the distributions were not significantly different when treated as independent
samples (p>0.05, MWU). This would suggest that shuffling bins spatially reduced the
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MI until it reached the limit of solely using population FR, since spatial information is
discarded there as well. However, given that both MI estimates were computed on the
same underlying data, the groups were dependent, and testing for a significant difference
in MI medians resulted in p<0.001 (2-sample sign test), thus rejecting the hypothesis
that the median of the differences between the groups was zero. MI determined on
shuffled bins consistently obtained higher values than with population FR (p<0.001,
2-sample, one-sided sign test).
The inclusion of shanks greatly increased MI between task states and neural responses

for entropies estimated on patterns, and at a lower rate for MI based on the population
FR. Adding shanks, and thus increasing the state space induced partially large residual
MI in the shuffled labels set in Fig. 4.12 (C), revealing high values at 2 or 3 shanks
for higher bin widths, which may indicate a sample size problem, as they decreased at
higher bin widths, thus artificially increasing MI by e.g. a negative entropy estimation
bias. This bias may also be present in (A), which may have artificially inflated MI
for the larger bin widths and 3-shank set. The real MI may thus be smaller, but still
significant.
To conclude, the results indicate a substantial amount of information on task state

in mouse V1.

JSD modulated by response types

Estimating the JSD for the pairwise outcome types (FA, CR, MISS, HITS), and com-
paring the distributions of JSD across resulting response types (S−, Wrong, Lick,
NoLick, Correct, S+) revealed significant differences (all p<0.001, MWU, Bonferroni
corrected) between response type NoLick and all other response categories for both
8-bit patterns spare Correct in MT’s dataset. In 16-bit patterns, the divergence distri-
butions did not differ significantly in AB’s dataset, and showed significant differences
in MT’s set for NoLick and Lick, Correct and Wrong, and NoLick and Wrong. If
the animal refrained from licking, this could be interpreted as a case of passive viewing,
non-alertness, no or low motivation, no or decreased attention (S. Zhang et al. 2014;
Moldakarimov, Bazhenov and Sejnowski 2014), or no initiated motor activity - all para-
meters that were shown to be implicated in sensory processing (Andermann, Kerlin and
Reid 2010; Dadarlat and Stryker 2017). Particularly locomotion was shown to posit-
ively influence FR in V1 (Niell and Stryker 2010; Saleem, Ayaz et al. 2013; Polack,
Friedman and Golshani 2013). Although licking might not qualify as locomotion to the
same extent as running on the tread ball as in the experiments by e.g. Dadarlat and
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Stryker (2017), the motor signals sent to initiate a lick may (Zagha et al. 2013), which
is particularly supported by the significant differences between Lick and NoLick diver-
gence distributions. The divergences between response types may also be influenced by
state changes during the sessions, e.g. from quiescent, aroused and focussed, which was
discussed to play a role in sensory processing (Vinck et al. 2015; Reimer et al. 2014).
These differences in divergence distributions arose in both groups that achieved high
and low discriminability indices during training, and may thus not necessarily be a res-
ult of learning (Poort et al. 2015), although studies proposed an increase of processing
already before a behavioural improvement could be detected (Jurjut et al. 2017).

Task-relevant information in V1 may be linked to decision-making

JSD, FR and MI among behavioural outcome types suggested neural correlates of task
outcome in V1. This implies that V1 contains information beyond primarily visual
input. In particular, FR of lick behaviour exceeded that of non-lick behaviour, as was
also visible in differences in JSD between those response types. This information could
be relayed top-down and affect the sensory response (Makino and Komiyama 2015;
Moldakarimov, Bazhenov and Sejnowski 2014), which is supported by projections from
Anterior Cingulate Cortex (ACC) to V1 described in A. Fiser et al. (2016) and S. Zhang et
al. (2014). Such top-down inputs to V1 have been shown to contain stimulus-predictive
signals that develop with experience (A. Fiser et al. 2016).

However, as the distributions were compared across the entire stimulus presentation
periods, the differences in distributions may also be attributable to the motor actions.
One way to test this could be to compare pattern distributions across all outcomes be-
fore any lick occurred to assess if this observation still holds. If the difference pertains
and precedes the lick, this may argue for an involvement in the decision process. Oth-
erwise, the differences in distributions of lick and non-lick behaviour may be ascribed
to efference copies.
Another obstacle in analysing decision-making here lies in the experimental design

of the GO/NOGO task and its inherent bias. A two-alternative forced choice design
would circumvent this by forcing the animal to choose between two stimuli on each trial
(Carandini and Churchland 2013).
It remains to be seen how sensory areas contribute to decision-making, and how

separate brain regions integrate the different aspects leading to a decision (L. F. Abbott
et al. 2017).
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High MI between shanks indicates co-activation of cortical columns

MI(R;shank) denoting how much the neural responses on one shank contain about the
neural responses on another shank can be indicative of how correlated the shanks are,
or if cross-columnar co-activation may be happening, which may particularly be the
case for stimulus-driven activity.
Results were partitioned for experimenters, but did not demonstrate a significant

difference (p>0.1, MWU) between experimental sets. MI(R;shank) was consistently
high across session states and amounted to a median of 0.08 bits for estimates based
on patterns with peaks of over 0.4 bits, and median 0.02 bits based on population FR.
In AB’s recordings variance in HITs and FA appeared higher than CR and MISS, but it

was not significantly different (p>0.003). However, results of Fig. 4.10 indicated large
increases in the mouse and site-averaged PSTH particularly of FA. Air puff artefacts
could not be excluded as the source of the artefacts, which occurred in a subset of the
recordings of AB. Air puff artefacts could induce correlated noise affecting all shanks,
thus momentarily synchronising them, which could explain the increase in MI between
shanks during FA. Neither the increase in PSTH nor in MI(R;shanks) was visible in
experiments by MT, potentially rendering this observation an outlier or artefact.

Shortcomings

Unfortunately, the datasets collected by different experimenters and under differing
training protocols ensued in discrepancies in their results. In addition, performance
levels in one dataset was high (accuracy over 65%), while the other was low, which may
have had an effect on the results as well, rendering interpretation difficult.

Conclusions

Despite the shortcomings, it is possible to conclude that pattern probability distributions
appear modulated by behavioural task state. Divergences between pattern distributions
are lowest for non − licking behaviour, and MI between shanks was not significantly
affected by different task states. MI of MUA and behavioural state was non-zero, which
was significantly reduced to zero when task labels were shuffled, which was evident in
pattern and population rate estimates. This implies V1 to contain information beyond
visual input.
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Population interactions are required to

emulate observations of GO/NOGO data

Inference on incomplete data is a crucial aspect in the quest of deciphering the neural
code. Varying stimulus conditions were shown to affect observed pattern distributions
(cf. Chapter 2 and 3) – and an animal’s response was demonstrated to influence pattern
distributions in the awake animal (Chapter 4).

In this chapter, the results of Chapter 4 are revisited with computational models that
try to match some of the statistics of the data. It is enquired if differences in mean
FR alone are able to account for the behavioural information in the neural signals, or if
population interactions need to be included in the computations. In addition, statistical
models are applied to recreate the pattern distributions to approximate the underlying
processes that generated them; and the role of pairwise interactions and population
coupling is investigated.

5.1 Introduction

Data analysis of experimental data is an important part of research. Recent advances in
experimental techniques in Ca2+ imaging, methods in molecular biological interventions
such as CRISPR, optogenetic perturbations or other imaging techniques created a large
array of neuroscience data to be analysed (Yuste 2015), while experiments and theory
require to be rejoined (Boomsma, Ferkinghoff-Borg and Lindorff-Larsen 2014). Some-
times, standard analysis techniques such as computing average FR across repetitions
or experimental conditions are insufficient to provide a substantiated interpretation of
the results. One reason may be that experimentalists may not be sufficiently trained
in quantitative methods (Goldman and Fee 2017). Often, analysis focusses solely on
rate-based examinations of single units instead of exploring the role of each neuron in its
population, which is profoundly striking given the number of neurons and connections
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in the brain (Stevenson and Körding 2011). An approach that goes beyond off-the-shelf
analysis lies in developing computational models emulating features of empirical data,
whilst accounting for different constraints that may influence the validity of the models.

Probabilistic and statistical approaches such as Bayesian or maximum entropy models
have been subject matter in research investigations for many years (E. N. Brown et al.
1998; Pillow 2007; Tkačik, Marre, Mora et al. 2013; Boomsma, Ferkinghoff-Borg and
Lindorff-Larsen 2014). One of the biggest challenges then is the biophysical interpretab-
ility of the models. The advent of neural networks, where deep learning techniques are
of particular interest, often excel at reproducing empirical data, albeit lacking adequate
means of being biologically feasible or interpretable (Ching et al. 2017).

Energy-Based-Model (EBM)s are a popular statistical technique of describing net-
work states and transitions. They ascribe an energy proportional to its probability
of occurring to each possible state of a network, where in line with thermodynamics,
favourable states are assigned low energies (Spicher 2014; LeCun et al. 2006). Many
models that are capable of describing small systems well do not necessarily perform
well on higher order. This is often true for those models relying on a normalising
constant requiring to count all possible states, which very quickly becomes a compu-
tationally intractable problem. Whilst such models used to be generally computation-
ally expensive, recent advances in parameter estimation such as Minimum Probability
Flow (MPF) (Sohl-Dickstein, Battaglino and DeWeese 2011) or maximum entropy flow
models (Loaiza-Ganem, Y. Gao and Cunningham 2017) were able to create innovative
approximations for intractable problems. One of the advantages in maximum entropy
models is that they span from rudimentary models, such as the Independent model (IND)
(which assumes each site to fire independently, with the only constraint being the mean
FR) to very elaborate models featuring more and more complicated sets of constraints,
approximating prior data more and more accurately. For example, pairwise correlations
between neurons play a component part in their FR, and thus, their propensity to fire
together, which is already elucidating how linked two potentially or seemingly (locally)
disparate groups of neurons may be. Including correlation and population interactions
is required particularly for larger neuronal populations as their effects on the spiking
activity cannot be neglected (Schneidman 2016).

Although there is still a debate whether the true interactions in a network can be
recovered from observational data or if interventional experiments are required (Pearl
2014), fitting an Ising model (Ising 1924) is one way to estimate a network with pairwise
interactions for reproducing the functional connectivities seen in the data (Schneidman
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et al. 2006; Hertz, Roudi and Tyrcha 2011). Ising models may not actually reveal the
true interactions between the neurons as there are typically many physical interaction
schemes that can reproduce the same functional connectivity patterns in a network
(Hertz, Roudi and Tyrcha 2011). Hamilton, Sohl-Dickstein, Huth et al. (2013) suc-
cessfully showed how Ising and maximum entropy models (Seiler et al. 2009) improved
the presentation of laminar connectivity relationships over plain network correlation
analysis. Yet, pairwise models may fail to explain higher-order interactions, whereas
Restricted Boltzmann Machine (RBM) are capable of describing higher-order interactions
shown to dominate the functional connectivity in microcolumns (Köster, Sohl-Dickstein
et al. 2014). Alternatives to pairwise and higher-order modelling attempts may focus
on the effects of population activity on each neuron and the dynamics observed for pop-
ulation rates (Y. Gao et al. 2016; Zhao and Park 2016). Complex couplings between
an individual neuron and a population were shown to capture variability observed in
neural recordings (Gardella, Marre and Mora 2016; Okun, Yger, Marguet et al. 2012;
Schölvinck, Saleem et al. 2015; Huang 2016). Recently, it was suggested that low-
level dynamics were able to explain large-scale phenomena as "by-products" of their
population dynamics (Elsayed and Cunningham 2017; Pillow and Aoi 2017).

Given the scarcity in experimental research to account for pairwise or higher-order
interactions in their analyses, this chapter attempts to approximate the empirical pat-
tern probability distributions observed and described in the previous chapter in an ef-
fort to bring experiments and theory closer together (Boomsma, Ferkinghoff-Borg and
Lindorff-Larsen 2014). The main focus lies on comparing generative models that ap-
proximate the same statistical properties as the true distributions to investigate which
characteristics of the data may have given rise to our observations. One of the key
questions to examine is: Can FR alone account for the pattern divergences observed in
the previous chapter, or do pairwise or higher-order interactions need to be included to
emulate the results found in the empirical data - and if so, is this the case for all stimulus
conditions? Solving the problem of finding a suitable generative model is not trivial, as
major challenges such as small sample sizes, incomplete observations and combinatorial
problems need to be faced – on top of lacking sufficient information about what type
of system generated the distributions. Thus, in the following, the information-theoretic
techniques used to describe the data of the previous chapters are scrutinised for their
validity, and tested on homogeneous Poisson process surrogate spiking data as a proxy
for the IND where appropriate. Then, IND, Ising model, semi-Restricted Boltzmann Ma-
chine (sRBM)s and population tracking (O’Donnell et al. 2017), a statistical approach
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that incorporates knowledge about the population rate, are fitted and tested against
empirical data.

5.2 Methods - computational models

5.2.1 Independent model

The simplest model, often used as a baseline, is the IND. It is a first order maximum
entropy model without (temporal) stimulus dependence. It assumes independence
between cells, such that cells spike independently. It can be characterised by mean
FR alone as shown in: pind(x) = ∏

i
(rixi + (1 − ri)(1 − xi)), where ri defines the FR of

neuron i (Köster, Sohl-Dickstein et al. 2014; Granot-Atedgi et al. 2013).

5.2.2 Energy-Based-Models

EBM are models that describe a system by assigning each state (configuration) an
artificial energy (LeCun et al. 2006; Bengio 2009). They are inspired by statistical
mechanics, where each state the system can be in has a certain energy. This is based on
the notion of physical systems at thermal equilibrium, best described by the Boltzmann
distribution. They have the maximum possible entropy given the mean energy of the
system. Here, the main challenge is to find an energy function that accurately describes
the system.
Often, instead of modelling the structure of the data, it is desired to learn how to

generate the data. This involves learning the probability of the data, p(x), instead of
e.g. p(label|x). Following the idea of thermal equilibrium, desirable data are required
to have low energy (Bengio 2009). Decreasing the energy state of the model means
making that particular state configuration of a system more likely to happen (since
energy is inversely proportional to the probability of the state) (LeCun et al. 2006).
These energies are thus directly related to the probability of each state. The probab-

ility is proportional to the exponential of the negative energy: p(x) = e−E(x)

Z , where x
is the state, and Z is the partition function or scaling factor (Z stands for the German
word for partition function, Zustandssumme), that ensures it adds up to 1. The idea
behind EBMs is that it may be difficult to define a model that directly describes the
probabilities of each state. Using E(x) instead lets us describe probabilities indirectly,
with the exponential guaranteeing for positive probabilities.
Ising models and RBM are the EBMs covered in this work. Because of their depend-
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ence on the partition function, estimating their parameters is difficult as these models
cannot be normalised in closed form. Exact solutions would require summing over the
exponential number of states of the system. Summing over an exponential number of
states quickly becomes infeasible, which is why approximate estimations are required.

Minimum Probability Flow Learning

MPF learning is a parameter estimation technique based on training your weights with
detailed balance, developed by Sohl-Dickstein, Battaglino and DeWeese (2011) and
applied e.g. in Schaub and S. R. Schultz (2012). This technique does neither require
sampling from the equilibrium distribution, nor calculating a potentially intractable
partition function. The idea behind MPF is to introduce deterministic dynamics, which
interpolate between the empirical and the model distribution (Movellan 2008). To
achieve this, stochastic transformations are applied to the data samples such that they
appear to have come from the model distribution. Then, the aim is to minimise the
KLD between data and the distribution that results from moving slightly away from
the data distribution, towards the model distribution (i.e. evolving the deterministic
dynamics for a very short time). The flow of probability out of data states into non-data
states (model distribution) is then minimised when model and empirical distribution
are equal, thus the KLD will be uniquely zero where the model distribution is identical
to the data distribution.
With the KLD, MPF provides a convex objective function k(θ), for which it finds a

solution via Taylor approximation that does not rely on a partition function. For any
given initial energy, approximating a probability distribution (empirical true distribu-
tion) p0 is achieved by moving on the tangent space (via Taylor approximation) and
updating on the θ. This allows to fit networks with many nodes. It is an Markov-Chain-
Monte-Carlo (MCMC)-inspired method whose biological interpretation is that of struc-
tural plasticity such as LTP, or Long-Term Depression (LTD) (Hager and Dringenberg
2010; Bliss and Lømo 1973; Lynch, Dunwiddie and Gribkoff 1977) and homoeostatic
plasticity.

Ising model

The Ising model (Ising 1924), a Markov Random Field, is a second order maximum
entropy model over binary variables subject to first two statistics (mean and covariance
matrix) (Köster, Sohl-Dickstein et al. 2014; Granot-Atedgi et al. 2013; Hertz, Roudi
and Tyrcha 2011). It extends the independent model taking into account the mean and
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variance to pairwise correlations < xixj >= 1
T

T∑
t=1

xi(t)xj(t) between cells i and j. In
its basic form, this model does not take temporal order into account, thus, implicitly
assumes stationarity. The maximum entropy distribution for the pairwise Ising model

is the Gibbs equilibrium distribution: p(x) = 1
Z e

N∑
i=1

hixi+ 1
2
∑
i6=j

Jijxixj

. The Lagrange
multipliers Jij and hi are chosen s.t. constraints are satisfied, where hi stands for the
bias of neuron i, and Jij is the symmetric coupling strength between neuron i and
j. Synaptic coupling is generally not symmetric, rendering interpretation of coupling
matrix Jij sometimes difficult. Fig. 5.1 (A) illustrates the lateral pairwise connections
between visible nodes of an Ising model.
Parameter estimation in Ising models and their application has been a key research

field in neuroscience (Tkačik, Schneidman and Berry II 2006; Broderick et al. 2007;
Castellana and Bialek 2014; Hertz, Roudi and Tyrcha 2011; Gardella, Marre and Mora
2016; Schaub and S. R. Schultz 2012). In this study, Ising coupling parameters are
estimated with MPF.

visible layer

hidden layer

A B C

Figure 5.1: Connection schematic . (A) The Ising model has only pairwise connec-
tions and only visible nodes. (B) RBMs are a bipartite graph, with one layer of hidden
and one layer of visible nodes. (C) sRBM are a combination of Ising and RBMs, i.e.
with pairwise lateral connections in the visible layer.

Restricted Boltzmann Machines

Boltzmann machines are EBMs with an artificial neural network of undirected graphical
structure and all-to-all connection, whose states are defined in terms of energies of joint
configurations of visible and hidden units (LeCun et al. 2006; Bengio 2009). Like in
all EBMs, the state’s probability is proportional to the energy in p(v, h) = 1

Z e
−E(v,h).

This means that the energy of any configuration is a linear function of the state. It is a
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generative stochastic network capable of inferring a probability distribution over a set
of input nodes (Salakhutdinov and Murray 2008).

RBMs have a simplified, or restricted architecture in which no lateral connections
occur between (the one layer of) hidden units, easing finding equilibrium distribution
of hidden units given the visible units (Salakhutdinov, Mnih and Hinton 2007). This
makes the model bipartite, symmetric, with weighted connections of binary, stochastic
nodes. Fig. 5.1 (B) shows a schematic of nodes in hidden and visible layer and their
undirected edges. The probability to activate the hidden unit is a logistic function of
the input to the visible unit, and due to lack of lateral connections independent of the
other units. Their energy function is E(v,h) = −b′v− c′h− h′Wv, where v and h are
binary, and b, c, W are real number valued (b and c biasses to visible and hidden units,
and weight matrix W describing the connections between hidden and visible units), and
v, h denote visible and hidden units (Hinton 2010).
A subset of RBMs are sRBMs, or semi-restricted Boltzmann machines (Köster, Sohl-

Dickstein et al. 2014; Salakhutdinov and Murray 2008). They combine Ising and RBM
models by including pairwise connections (or lateral connections) between the visible
nodes (not the hidden ones), as is illustrated in Fig. 5.1 (C).

5.2.3 Population tracking model

The population tracking model (henceforth termed popTrack), developed by O’Donnell
et al. (2017), is, in contrast to the preceding EBM models a statistical model that es-
timates the synchrony distribution and the probability of any neuron firing conditioned
on the population rate. Thus, it includes a term of how coupled each neuron is to
the population. As with the aforementioned EBM models, stationarity is assumed, and
thus, each bin is assumed independent from the previous. For N neurons, the model
fits two sets of parameters: a) N parameters for the population synchrony distribution
(implicitly containing knowledge about the network dynamics and summed higher-order
correlation effects) and b) N2 −N parameters describing the conditional probabilities
of each neuron firing, given the population rate (N + 1 possible values of k, and N

neurons, bar the silent and all-on states whose probabilities are trivial).
Pattern probability estimation comprises three parts: 1) Synchrony distribution p(k),

describing the probability of k neurons being simultaneously active. 2) Renormalisation
factor ak, that consists of the sum over the probabilities of all

(N
k

)
conditionally inde-

pendent models at each k. 3) The conditional independent models of p(xi|k), denoting
the probability of neuron i being active, given the synchrony of k neurons. These are
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of the same form as the IND of 5.2.1, except ri is replaced by p(xi|k), and there is one
model for each k. Essentially, state estimation is broken down into k parts by con-
structing k conditional probability distributions, that mutually exclusively contain all
possible patterns,∑

k

(N
k

)
= 2N . Then, for any given k, the conditional probability distri-

bution determines the probability of each neuron i being active (Bernoulli distributed).

Together p(x) can be described as p(x) = p(k)
ak

(
N∏
i=1

[p(xi|k)xi + (1− p(xi|k))(1− xi)]
)
.

Parameter estimation for p(k) follows common histogram techniques with a fixed
Dirichlet prior as regularisation, with α = 0.01. Conditional probabilities use a Beta
prior (with β = 0.5) over each p(xi|k), the conjugate to the Bernoulli distribution.
This model was used to generate surrogate data, to examine how much of the empir-

ical results can be reproduced and explained by the structures. A conceptually similar
idea based on population dynamics and their relation to individual FRs was proposed
by Okun, Yger, Marguet et al. (2012) and Okun, Steinmetz et al. (2015).

5.2.4 Homogeneous Poisson surrogate data

Independent homogeneous Poisson process spiking surrogate data based on the mean
FRs of each outcome type was generated to investigate if the results could be explained
by FR effects alone. 200 trials were generated for each outcome type, and 400 for ITI.
In probabilistic modelling approaches, independent homogeneous Poisson corresponds
to the IND. The accuracy of the surrogate data was confirmed by comparing their mean
FRs with those of the data, as well as confirming the Fano factor ( var

mean) being equal to
1, a prerequisite for Poisson-distributed data (Eden and Kramer 2010). Theoretically,
independent homogeneous Poisson results in maximum entropy, but given a fixed sample
size matching the amount of recorded data, the modelled entropy might actually be
lower (finite sampling bias). Moreover, the FR were not actually stationary over the
recording. Thus, suitable alternatives for surrogate data to offset these effects may
be the inhomogeneous Poisson process, that allows for temporally changing FR, or to
include pairwise correlations as in the dichotomised Gaussian (Macke et al. 2009).

5.2.5 Modelling parameter details and model evaluation measures

Code implementations

In this work, Ising models, RBMs and sRBMs were trained using MPF (Sohl-
Dickstein, Battaglino and DeWeese 2011). MPF learning is achieved with code adapted
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from Jascha Sohl-Dickstein available at https://github.com/Sohl-Dickstein/Minimum-
Probability-Flow-Learning in conjunction with optimisation code by Schmidt (2005).

Ising model implementations are based on code provided in the repositories on
https://github.com/libertyh/ising-model (Hamilton, Sohl-Dickstein, Huth et al. 2013)
and by Urs Köster https://github.com/ursk/srbm described in (Köster, Sohl-Dickstein
et al. 2014). RBM and sRBM are computed with code based on https://github.com/ursk/srbm
described in (Köster, Sohl-Dickstein et al. 2014). To allow comparison between mod-
els, the partition functions of the models were calculated using Annealed Importance
Sampling (AIS) (Neal 2001; Salakhutdinov and Murray 2008) unless direct computation
was possible.

Population tracking, fitting and model parameters were based on code available on
https://github.com/cianodonnell/PopulationTracking (O’Donnell et al. 2017).

Modelling parameters and details

In order to infer pattern probabilities, the previously described models were fitted to
subsets of empirical data, for each dataset. To avoid overfitting of Ising and RBM
models, L2 regularisation (L2(w) = 1

2
∑
i
w2
i ) was implemented with sparseness para-

meter λ of 0.005, which was found through 2-fold cross-validation (validated to yield
the highest loglikelihood for most datasets). L2 regularisation was chosen based on its
superior performance over L1 regularisation in creating a higher log-likelihood. The
regularisation parameter was added to the objective function. Normalised likelihoods
were computed using AIS (Neal 2001) with an AIS convergence wrapper implemented
by Jascha Sohl-Dickstein and Urs Köster, if more than 2 shanks were compared. For
patterns smaller than that the partition function could be computed directly by sum-
ming over all states. For three shanks (24 units), the partition function of each model
was estimated by sampling 500 times at increasing annealing steps until 20 000 steps
were reached. RBM and sRBM were fitted with 15 hidden and 15 visible units.

Loglikelihood gain

Loglikelihood gain is a measure to evaluate a model’s success against a baseline model.
It calculates in bits how much is gained choosing a particular model over a reference
model, here IND. The larger the gain, the better the model over the alternative. Ana-
logously, a negative loglikelihood gain means that the model is worse than the reference
model. As described in Köster, Sohl-Dickstein et al. (2014), it was computed as the
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sample expectation L = 1
n

n∑
x=1

(log2 pm(x)− log2 pi(x)), where pm is the model probabil-
ity and pi the probability from the reference model. This value is normalised by µpopFR
per time bin to obtain a normalisation per spike, as was done in (Köster, Sohl-Dickstein
et al. 2014), helping comparison across data sets of different activity.

Root mean square error

The other measure implemented to estimate model success is a variation of the Root
Mean Square Error (RMSE). Since all estimates are probabilities, governed in logarithmic
space, deviations are calculated on the logarithm of the probabilities. Refraining from
this transformation would disregard information in low probabilities. For instance,
if the model estimate is minute, while the empirical probability is high, the general
RMSE would be low. However, with a logarithmic transformation, all values obtain
equal weights. Eq. 5.1 provides the equation used to calculate this metric, across all n
patterns.

RMSElog =

√√√√ 1
n

n∑
i=1

(log10(pemp,i)− log10(pmodel,i))2 (5.1)

5.3 Results

Computational modelling was based on in-vivo extracellular electrophysiology data from
the awake mouse during a visual discrimination task reported in Chapter 4. Two types
of surrogate data was generated: (I) homogeneous Poisson process data based on the
mean FR, (II) population tracking model, taking into account individual FRs and their
coupling to the population statistics (O’Donnell et al. 2017). With these, analyses
presented in Chapter 4 were repeated to investigate if independent FRs alone were
enough to account for the observed results, or if including population statistics served a
better model. It was assessed how well surrogate models matched empirical statistics.
Further, these homogeneous Poisson data was used to assess entropy estimators for
finite sample bias to ensure validity of entropy estimates. Finally, different models were
surveyed and evaluated in their abilities to recover data pattern distributions under
varying conditions.
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5.3.1 Evaluation of entropy estimators with surrogate homogeneous
Poisson spiking data

Homogeneous Poisson spiking data facilitated evaluation of entropy estimators used in
this work. The entropy estimators used in this study were CDM and PYM for binary
and discrete data, and as a comparison, the plug-in estimator as well as a Dirichlet prior
(emulating pseudocounts) with α = 1 are presented. Fig. 5.2 displays the fractional
bias of the entropy estimators as a function of sample size, for one, two and three shanks
at 5 ms bins. Fractional bias is calculated as entropy estimate divided by the estimate
at the highest number of samples (asymptotic value). 1000 trials of two seconds each
were generated with homogeneous Poisson spiking data using the mean FR of each site.
Entropies were calculated at 10 logarithmically spaced locations between 3 and 1000
trials. 3 trials amounted to 600 samples, 1000 trials corresponded to 4 × 105 samples
at 5 ms.

Fig. 5.2 (A-E) delineates the fractional biasses evaluated for one shank, 8-bit patterns,
(F-J) for two shanks, and (K-O) for three shanks. (A) displays the plug-in estimator,
which suffers substantial negative bias for poorly sampled distributions, which is evid-
ent from the figure. Horizontal pink dash-dotted lines represent ±5% of the asymptotic
value. Vertical dash-dotted lines indicate 103 to 104 samples, equivalent to 10 to 100
trials, which is most commonly found in the empirical data for each outcome. Ideally,
convergence is required within that box to ensure a reliable estimate on the empirical
data. (B) shows the results for the CDM estimator, whose bias is diminished substan-
tially over the plug-in results, converging much faster. (C) shows an estimator that uses
a Dirichlet prior of alpha = 1 not improving much over the plug-in estimator. PYM
in (D) is an estimator made for discrete data, and thus not suitable for binary input
data. (E) is again the PYM estimator but this time on the population FR, and thus
non-binary discrete data, showing a fast convergence.

16-bit and 32-bit patterns in (F-J) and (K-O) converge much more slowly, or not at all
as apparent for the plug-in and Dirichlet estimators. The CDM estimator achieves the
best and fastest convergence for binary data, and it demonstrates that approximately
100 trials are required to obtain a reliable estimate (16-bit patterns). Using between 10
and 100 trials puts us in 95% of its asymptotic value. For all shanks, PYM converges
fast for population FR (E, J, O). For three shanks, PYM contained singular matrices
and pathological cases of only one symbol, which might explain the peculiar results in
(N).
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Figure 5.2: Fractional bias as a function of sample size. (A) Fractional bias for
plug-in estimator as a function of sample size for one shank for 8-bit binary patterns
approximately converges at 104 samples. Pink horizontal dash-dotted lines indicate
±5% of the asymptotic value, or the value at 1000 trials,Hend. Vertical lines indicate 103

and 104 samples, which were most commonly found in the empirical data, corresponding
to 10 to 100 trials. (B) same as (A) for CDM estimator, (C) Dirichlet estimator with
α = 1, (D) PYM, and (E) PYM on population FR. (F-J) same as (A-E) for two shanks.
(K-O) same as (A-E) for three shanks.

5.3.2 Homogeneous Poisson data fails to match features observed in
empirical data

Entropy of homogeneous Poisson surrogate data overshoots empirical entropies

Entropies of Poisson surrogate data slightly but significantly exceed those of real data
(p<0.001, 2-sample sign test, Bonferroni corrected) in each behavioural task condition,
as is evident from Fig. 5.3 (A-B). The violin graphs in Fig. 5.3 (A) show for each beha-
vioural state that entropies (via CDM, 16-bit patterns) based on surrogate data steadily
and significantly exceed data estimates (p<0.001, 2-sample sign test, Bonferroni cor-
rected), which is further illustrated in (B). The same is not true for popTrack estimates
in (C), which approximately match experimental data (no significant difference apart
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from FA condition, at p<0.01, 2-sample sign test).
Inspection of entropies and µpopFR in (B) and (D) illustrate the FR dependence of

entropy estimates on population rate. In (B), Poisson surrogate pattern entropies are
significantly higher than data entropies (p<0.001, 2-sample sign test, upper traces), and
population rate entropies significantly fall short of data estimates (p<0.001, 2-sample
sign test, lower traces). (D) reveals a close match between popTrack entropies and data
estimates, differing marginally significantly at p<0.05 (2-sample sign test) for pattern
estimates (top traces), indicating no significant difference for population rate estimates
(p>0.05, 2-sample sign test). In both (B) and (D), R2 values are provided for the
function fits with the models and a cubic. (F) and (H) demonstrate the population rate
entropy distributions. Direct comparison between surrogate pattern and data pattern
entropies emphasises the consistency at which Poisson surrogates reach higher values,
with no surrogate estimates crossing the identity line (G), whereas popTrack’s in (I)
are tightly distributed around the identity line.

MI of surrogate neural responses and behavioural outcome exceeds empirical
results

MI between neural responses and behavioural outcome types including ITI resulted
in independent homogeneous Poisson data (200 trials of two seconds length for each
outcome type) significantly exceeding that of empirical data (visualised in Fig. 5.4).
This is also true for popTrack surrogates (E-H). In both surrogate data, the number of
trials was balanced, with 200 behavioural trials in each outcome, and 400 repetitions
of ITI. Fig. 5.4 (A-D) provides the distributions of MI estimated on 8-bit patterns for
Poisson surrogate data (black) and empirical data (grey, cf. Fig. 4.11), and (E-H) the
same for popTrack. In all cases, shuffling the labels significantly reduced information
(p<0.001, 2-sample sign test), as did spatially shuffling the bins in pattern estimates.
Overestimated MI was much larger in Poisson surrogates than in popTrack.

Surrogate data achieves higher MI(R;shanks) of neural responses and shanks

Re-examination of Fig. 4.15 with the inclusion of surrogate data reveals that
MI(R;shanks) of neural responses, R, and shanks computed on homogeneous Poisson
surrogate data in some cases exceeds empirical data, which is presented in Fig. 5.5.
One-tailed Wilcoxon signed ranks tests between surrogate and empirical datasets sug-
gest significant differences at p<0.01 for all but FA in popTrack on MT’s data. For
Poisson surrogates, only MI based on all data exceeds experimental estimates. In (B),
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Figure 5.3: Entropy of homogeneous Poisson 16-bit patterns exceeds that of
empirical data. (A) Violin graphs of entropies of surrogate (black, left) and data (grey,
right) for each behavioural state indicate consistently higher entropy values for surrogate
estimates. (B) Entropies against µpopFR, top trace patterns, bottom population FR.
(C, D) same as in (A, B) but for popTrack, showing a better match. (F) same as
(A) but for population rate entropy estimates. (G) Direct comparison of entropies
based on surrogate (y-axis) vs. data entropies (x-axis). (H, I) same as (F, G) for
popTrack. **, *** indicate p<0.01, and p<0.001, respectively, 2-sample sign test,
Bonferroni corrected.

MI(R;shanks) based on population FR indicate significant differences at p<0.01 only
for Poisson surrogates, and only for MISS, HIT and All (p<0.01, one-tailed Wilcoxon
signed ranks, Bonferroni corrected).
In AB’s dataset, depicted in Fig. 5.5 (C-D), none of the pattern-based MI(R;shanks)

estimates differ significantly between Poisson surrogate and empirical (p>0.008, left-
tailed Wilcoxon signed ranks, Bonferroni corrected). The same applies to values based
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Figure 5.4: MI between behavioural outcomes including ITI, and neural re-
sponse is significantly larger for surrogate than empirical data. (A)MI between
MUA and behavioural outcome (including ITI) is significantly greater estimated on sur-
rogate than on empirical data based on 8-bit patterns at 5 ms bins (one shank). Shuffling
labels (shL) decreases the MI to zero, indicating no difference between surrogate and
empirical set. Spatially shuffled bins significantly reduce MI over unshuffled patterns
(all p<0.001, 2-sample sign test, Bonferroni corrected), with surrogate yet again ex-
ceeding empirical data. (B) Same as (A) but for popFR. (C, D) same as (A, B) but for
experimenter AB. (E-H) same as (A-D) but for data and popTrack (red). *** indicates
p<0.001, 2-sample sign test.

on population FR, portrayed in (D) . Yet, popTrack estimates significantly exceed data
values in all cases in (C), at (p<0.001, one-tailed Wilcoxon signed ranks, Bonferroni
corrected), yet also do not differ for population rate estimate in (D).

JSD is significantly smaller in surrogate data than in corresponding empirical data

JSD distributions of behavioural outcome states differ not only between experimenters
and number of pattern sizes, but also among empirical, homogeneous Poisson and
popTrack surrogate data, as detailed in Fig. 5.6. The distributions across all mice
are significantly larger for empirical data than their matched homogeneous Poisson sur-
rogate (p<0.01 to p<0.001, 2-sample one-tailed sign test, Bonferroni corrected). Fig.
5.6 (A-D) show divergences for 8-bit patterns, and (E-H) for two shanks, 16-bit pat-
terns. Across experimenters and shanks, JSD based on surrogate data underestimates
the true empirical divergences. Divergences are larger at 16-bit patterns for surrogate
and empirical data, but still differ significantly at p<0.001 (2-sample sign test) for all
but one (S−, in AB’s set) condition.
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Figure 5.5: Poisson surrogate MI(R;shanks) between shanks matches data
MI. (A) shows MI between MUA responses and shanks for each behavioural outcome
for homogeneous Poisson surrogate data (black), empirical sets (grey) and popTrack
(red) at 5 ms for 8-bit patterns in MT’s dataset. Indicated are mean and error bars
(sem). PopTrack MI estimates sometimes significantly exceed empirical data (**, ***
indicate p<0.01 and p<0.001, respectively, 2-sample sign test, Bonferroni corrected for
multiple comparisons.) (B) same as (A) but for population FR data. (C, D) as (A, B)
for AB dataset.

5.3.3 Loglikelihood gain and RMSE imply pairwise interactions are crucial

In the following section, models were trained on 2
3 random partitions of binary patterns,

and tested against the remaining hold-out 1
3 data during stimulus presentation (S+ and

S-).
Model success was estimated with gain in loglikelihood over the IND and is presen-

ted in Fig. 5.7 (A). The IND is often used as a baseline model for comparisons.
Median popTrack loglikelihood gain was 0.28 bits/spike, Ising model 0.19 bits/spike,
RBM 0.27 bits/spike, and sRBM 0.32 bits/spike. From these models, the Ising model
performs most poorly, with the lowest gain in loglikelihood. The remaining models
each obtain similar medians. Loglikelihood gains of sRBM exceed all other models at
p<0.001 (2-sample sign test, Bonferroni corrected). All models’ loglikelihood gains ex-
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Figure 5.6: JSD of data exceeds surrogate data. Distributions of JSD between
behavioural outcome states are significantly larger for empirical data than their matched
homogeneous Poisson surrogate (2-sample right-tailed sign test). (A) JSD distributions
for surrogate (black, left side) and empirical (grey, right side) dataset by AB for 8-bit
patterns. (B) same as (A) but for MT dataset. (C, D) same as (A, B) but for popTrack.
(E) JSD distributions for 16-bit patterns for AB indicating larger discrepancies between
surrogate and empirical divergence distributions. (F) same as (E) but for MT. (G,
H) same as (E, F) but for popTrack comparisons. Matched significant divergences are
indicated by ** (p<0.01) and *** (p<0.001), 2-sample, one-tailed sign test. (E-H) same
as (A-D) but for two shanks.

ceed Ising models (p<0.001, one-sided 2-sample sign test). The distributions of RBMs
and popTrack differ significantly at p<0.01.
The insets of (A) present the scatter plots of the matched loglikelihood gain distribu-

tions to visualise their differences. Arrows indicate the side of the identity line where
the majority of points lie. In the top inset, for sRBMs and Ising, the majority of points
lies above the bisector line, only three points falling below it. The second inset shows
popTrack and RBM, which differ less significantly. The third inset indicates that sRBMs
consistently obtain larger loglikelihood gains compared with popTrack. The final inset
shows popTrack obtains higher values than the Ising model.
Fig. 5.7 (B) delineates the RMSE between empirical probability and model probab-

ility estimates. Each dot represents one experimental set, for 16-bit patterns (n=73
sets), and grey dashed line connects the medians of each model. Inspection of the fig-
ure suggests that the RMSE achieved in sRBM models is consistently and significantly
lowest (p<0.001 against all other models but Ising, Wilcoxon signed ranks, Bonferroni
corrected) at 0.24 (a.u.). Next is Ising with a median of 0.25, followed by popTrack at
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Figure 5.7: Loglikelihood gains and RMSE. (A) Loglikelihood gain over the IND
for 16-bit patterns. Differences between model successes are significant at p<0.001 (2-
sample sign test, Bonferroni corrected) for popTrack and Ising, Ising and RBM, Ising and
sRBM and sRBM and RBM. Loglikelihood gain of popTrack is significantly smaller than
sRBM at p=0.002 (2-sample sign test). Insets show scatter plots of loglikelihood gains
between three distributions that had achieved similar medians, with arrows indicating
on which side of the identity line the majority of points lies. (B) RMSE between em-
pirical probability distribution and model estimates for n=73 experimental sets. Grey
dashed line indicates median of each distribution. Insets show scatters between sets of
RMSE.

0.29, then RBM at 0.32. Median RMSE for IND amounts to 0.78, which is significantly
larger than all other RMSE. Insets show pairwise RMSEs.
For two-shank patterns, popTrack obtained lowest RMSE in 10% of the cases, Ising

models in 51 %, RBM in 1%, and sRBMs in 38%.

Model success depends on choice of training and test datasets

The figures presented were based on random subsets of training and test data from the
same stimulus presentation type. However, the models’ performances are contingent
on training and testing data. Chapter 3 elaborated on differences in pattern spaces
between SA and gratings, which may be visible in the models as well. To investigate
this further, training and testing was done on the following subsets listed in Table 5.1,
for one, two and three shanks separately. Models that performed well when trained and
tested on evoked activities (S+ S-) do not necessarily perform well when tested on ITI,
as is depicted in Fig. 5.8.
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Descriptor name Training Testing
StimOnly 66% S + S− 33% S + S−
StimITI 100% S + S− 100% ITI
ITIstim 100% ITI 100% S + S−
All 66% S + S− ITI 33% S + S− ITI

Table 5.1: Training and testing on different subsets of data. When training and testing
is done on the same or mixed set, training uses a random subset of 66% and testing the
remaining 33%. If the sets are separate, 100% each are used.

As detailed in Fig. 5.8 (A-C), black line, IND consistently reaches the highest RMSE,
for 8, 16 and 24-bit patterns and all training variations. Furthermore, all RMSE increase
with the number of shanks used (A-C). Compared with the IND, all models perform
equally well with regard to their RMSE. Because of their large overlap, (D-F) depict
the ranked results to magnify the qualitative differences between the models. In doing
this, the models are ranked in each experimental subset, and the mean and sem are
presented. From (D-F) it is apparent that the sRBM consistently manifests lowest
RMSE, across all shank variations. The ranks following sRBMs depend on the number
of shanks and training/testing conditions particularly for the Ising model. The Ising
model reveals a great variability depending on choice of training and testing data. At
8-bit patterns, Ising models are approximately at the median of all models if trained and
tested on evoked activities only. For Ising models, then, the ranked RMSE deteriorates
if trained on stimuli and tested on ITI, and attains highest ranks if trained on ITI and
tested on evoked activities, before obtaining RMSEs in the lower half if trained and
tested on subsets of both evoked and ITI data. This observation is similar for 16 and
24-bit patterns in (E) and (F). All other models remain roughly in the same relative
constellation towards each other, where ITIstim consistently reveals the highest RMSE
within each model apart from the Ising, at all shanks.
Focussing on the loglikelihood gain in (G-I) and their ranked versions of (J-L), a

progression reminiscent of the RMSE of e.g. (C) emerges across all models and shanks.
At StimOnly, the loglikelihood gain decreases at StimITI, after which it increases at
ITIstim before it decreases again at All. The absolute values of the loglikelihood gain
are roughly the same across all shanks at approximately 0.4 bits/spike, with the dis-
tributions at three shanks a bit higher and one shank a bit lower. Ranked loglike-
lihood gains in (J-L) enhance the differences between the models further, displaying
that sRBMs attain the highest loglikelihood gains throughout training/test conditions
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Figure 5.8: Model success depends on training and test subsets. (A-C) show
mean RMSE for all models and training conditions for one, two and three shanks,
respectively. (D-F) as in (A-C) but for each set ranked highest to lowest to emphasise
differences. (G-I) same as (A-C) but for loglikelihood gain. (J-L) same as in (G-I) but
ranked. Error bars show mean ± sem.

and at all shanks, followed by popTrack, RBM and then Ising models. As was noted
in RMSE, the Ising model emerges as deviant to the group appearance with achieving
lowest loglikelihood gains in all but ITIstim training/test conditions, where it achieves
values on par with popTrack, as depicted in e.g. (K).

Thus, if Ising models are trained on ITI and tested on evoked activities, their achieved
RMSE is superior to all the other models while attaining loglikelihood gains similar to
popTrack, rendering it an interesting model to investigate. Overall, the sRBM appears
to perform best in both RMSE and loglikelihood gain, across training conditions and
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regardless of pattern size.

5.3.4 Models successfully approximate empirical pattern probabilities

Ising model, popTrack, RBM and sRBM were fitted on patterns evoked by a subset of
S+/S- and validated on a separate subset of the same kind (described in Tab. 5.1 as
StimOnly). Fig. 5.9 demonstrates examples of scatters between modelled and empirical
pattern probabilities, with their marginal distributions along the y and x-axes. Each
symbol represents one unique pattern. The closer the symbol to the identity line, the
better the prediction. Panel (A) shows the results for the IND model, with a high frac-
tion of symbols assigned to low probabilities. The popTrack model in (B) reveals a much
better match between pattern probabilities, particularly for more frequent patterns.
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Figure 5.9: Pattern probability scatter between all models and pemp. Each
scatter is complemented by their marginal distributions along the y and x-axis. (A) IND
introduces a large tail with low probabilities. (B) Symbols are much more centred along
the identity line for the popTrack model. (C) The Ising model improves even more in
RMSE. (D) RBMs allocating low probabilities to some particular patterns, increasing
the RMSE. (E) sRBM reveals a much better fit than RBMs.

Fig. 5.10 illustrates pattern probability scatter plots of three example sets for the
models IND, sRBM and popTrack. Each symbol represents one unique pattern. The
x-axis indicates the empirical pattern probabilities, pemp, while the y-axis indicates
pmodel, the probabilities estimated for each pattern by the different models. Marginal
distributions for the models are shown along the y and marginal empirical distribution
along the x-axis. Models assign probabilities much lower than those observed in the
data, as evident from the y-axis.
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Figure 5.10: Pattern probability scatter between models and pemp. Pattern
probability scatter plots of IND, Ising model and popTrack for three example mice
indicate varying success in matching empirical pattern probabilities for 16-bit patterns.
Each symbol represents one pattern. Marginal distributions are presented along the y
and x axis. Insets show predicted probabilities of popTrack against Ising. (B, C) same
as (A) for different mice.

The IND model is black, Ising green, and popTrack in red markers. The closer the
symbol to the identity line, the better the match between empirical and estimated
probability. Since there are many possible patterns and thus many symbols obstructing
or potentially skewing the presentation, the marginal distributions help interpret the
scatter. The insets in each panel show scatters of the two models, popTrack and Ising,
to illustrate how similar the pattern predictions of the two models are. In each of the
examples, the IND model occupies the largest space, as apparent from the large subset
of symbols afar from the identity line, with a long tail at very low estimates of down to
10−15. For all models the predictions are best for frequent, or high-probability patterns.

Fig. 5.10 (B) serves as another example where the Ising model achieved the best fit
between pemp and model probabilities, as also evident from the low RMSE of 0.178. (C)
is an example for an empirical probability distribution that occupies many patterns with
large probabilities, such that the zero pattern is, albeit still being the most frequent one,
not apparent as a single peak. Here, many popTrack symbols are obscured by the Ising
estimates, indicating similar predictions, which can also be inferred from the inset of
the two models tightly dispersed around the identity line.
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5.3.5 Ising coupling matrices indicate consistent laminar connections

Although the Ising model performed poorest in terms of loglikelihood gains in compar-
ison with the remaining models of this investigation, one of the Ising model’s strengths
is that its learnt parameters, the coupling matrix Jij , can be visualised and interpreted
as couplings between sites. In addition, it excelled at producing the lowest RMSE in
50% of the cases (StimOnly). Fig. 5.11 illustrates six examples of learnt Ising coupling
matrices trained on 66% of the stimulation part S + S− of awake behaving data. All
cases presented show strong laminar dependencies as indicated by the diagonal lines
parallel to the main diagonal. Each shank is equipped with 8 sites, such that site 1
and 9, 2 and 10 etc. follow similar negative coupling terms as neighbouring sites on the
same shank. The main diagonal illustrates the bias terms of the Ising model, or their
propensity to spike and is positive for all sites shown. Each example mouse reveals
negative couplings on the diagonals parallel to the major diagonal. In addition, (C)
and (E) contain patterns reminiscent of a checker board. After 4 sites, the coupling
terms change from negative to positive, and vice versa, and again when crossing to a
different shank. This, again is a reminder of the probe architecture. The top four sites
of each shank are located in the same or similar cortical depth, again pointing at the
laminar structure.

5.4 Discussion and conclusions

In this chapter, two types of surrogate data were generated to evaluate the findings of
Chapter 4: One was the homogeneous Poisson model (based on the mean FR of each
behavioural state). The other was a novel probabilistic model: the population tracking
model (popTrack) developed by O’Donnell et al. (2017), which tries to match each FR
and the probability that each individual neuron fires conditioned on the population
response. Homogeneous Poisson addressed if the results were attributable to mean FR
alone, and popTrack also modelled population activities. Key results of Chapter 4 were
contrasted with generated data. Homogeneous Poisson failed to match the observations
in the data, proposing the observed features cannot be explained by FR differences alone,
and while popTrack did not perfectly match results from data, it significantly improved
upon the Poisson model, suggesting to reflect crucial elements inherent in the data.
To investigate connectivity structures further, different generative models were con-

sulted: Starting with the IND, which stipulates cells fire independently, different EBMs
(which allocate a probability to each observed spatial firing pattern) were investigated,
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Figure 5.11: Ising coupling matrices for six example mice on 3 shanks each.
Symmetric coupling matrices Jij for six example datasets, illustrating laminar depend-
encies across shanks as suggested by the negative coupling terms parallel to the main
diagonal bias terms. In addition, some sites indicate columnar structures as indicated
by the squares around the diagonal (e.g. (E)). Sites on shanks are linearly arranged
from top to bottom.

from the Ising model, assuming only pairwise couplings, over Restricted and semi-RBM,
which also include higher-order interactions (Köster, Sohl-Dickstein et al. 2014), to the
aforementioned popTrack model.

Population rates or higher-order dependencies are needed to explain the
data

Entropies of Poisson surrogate data exceeded the real data’s (p<0.001, 2-sample sign
test), whereas popTrack’s entropies matched empirical data in all but one case (FA,
p<0.01, 2-sample sign test). Given that homogeneous Poisson reflects the maximum
entropy solution for constraints on the first moment, it is not surprising, as was also
discussed in O’Donnell et al. (2017). The popTrack model matched empirical entropies
very well indicating its ability to capture structures beyond mean FR and the role of
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population couplings on entropy. Both models underestimated the JSD between out-
come states significantly (p<0.001, 2-sample sign test), and overestimated MI between
neural responses and behavioural outcomes for both population FR and pattern estim-
ates. One reason why MI was higher in the surrogate data may be that the surrogate
data had both higher and balanced numbers of trials, estimated on the statistics of the
(unevenly) distributed outcomes of the empirical data. MI(R;shanks) was mainly overes-
timated by popTrack, whereas Poisson did mostly not differ significantly. MI(R;shanks)
focusses on 8-bit patterns across shanks, thus, popTrack’s poor performance here may
be ascribed to its weakness in modelling small populations (O’Donnell et al. 2017). A
Poisson process has no temporal coherence, but FR in experimental data are expected
to fluctuate temporally both within a trial (which was evident from the PSTH Fig. 4.10
in Chapter 4), and as trial-to-trial variability. This can be linked to pairwise and/or
population dependencies, and thus by increased stereotypical or synchronised firing pat-
terns (Mineault et al. 2016) reduce entropy. Individual FRs alone may thus be unfit to
capture the generative structure of the population.
An interesting extension of this analysis would be to choose a type of surrogate data

that includes only pairwise correlations.
Perhaps the closest comparison of the results with literature regarding divergences

is what Okun, Yger, Marguet et al. (2012), Okun, Yger and Harris (2013) and J. Fiser
et al. (2013) presented. In their studies, the KLD between data and IND (there termed
mean firing rate, MFR, model) vastly exceeded the KLD between two different subsets of
the data. Similarly, Berkes et al. (2011) created a INDs, which were compared via KLD
to the data distribution. Two major drawbacks with this comparison are that a) they
used the KLD, and b) instead of comparing divergences that match the conditions (i.e.
estimating the divergence within model data for matching conditions), they compared
the data to the model distribution. However, in all cases divergences involving IND
exceeded real data. An interesting investigation would be to test within-condition JSD
on both Okun’s and Berkes’s datasets.

Models’ performances are linked to choice of training and test data

The structure of Ising model coupling matrices revealed laminar couplings (Fig. 5.11),
along with some columnar dependencies consistent with those described in Hamilton,
Sohl-Dickstein and Huth (2013). Sites positioned more superficially were weakly negat-
ively coupled, which was visible across shanks. This changed around site 5 or 6 to weak
positive couplings with sites on other shanks around that site number, indicating that
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deeper layers are positively and superficial ones negatively coupled. Including coup-
lings among sites increased the likelihood of the data over the IND model by around
0.3 bit/spike (median at StimOnly), while improving the RMSE between empirical and
model distribution. The improvement of Ising models over the IND was consistent
across experiments and state spaces (numbers of shanks). The Ising model achieved
RMSEs that could compete with more elaborate models such as popTrack and sRBM,
emphasising the importance of pairwise interactions. Already in the seminal paper by
Schneidman et al. (2006), weak, pairwise correlations were shown to play an important
role, which was further explored in mouse V1 by Denman and Contreras (2014). In ad-
dition, Elsayed and Cunningham (2017) recently discussed how low-level features were
often capable of accounting for large-scale effects. The high entropy estimates of the
surrogate data and the fact that the inclusion of pairwise and higher-order dependencies
or population features improved predicted pattern probabilities may confirm that only
a subset of possible patterns are normally traversed (Sadovsky and MacLean 2014), and
that the stimuli presented only stretch across a regime of stereotyped patterns.
The average loglikelihood gain in bits/s amounted to values comparable with the two

experiments of similar state space as in Köster, Sohl-Dickstein et al. (2014), in which
popTrack nicely fits in as well. In their study, the comparison between Single Unit
Activity (SUA) and MUA was made, where MUA attained slightly higher loglikelihood
gains than SUA.
Synchrony, or the population rate may change as a function of motivation or cor-

tical state as was shown in Okun, Yger, Marguet et al. (2012) although in Urethane
anaesthesia. Thus, each neuron’s firing may be linked to the current cortical state.
Yet, coupling parameters or strength may differ between synchronised desynchronised
state - although it has been argued that coupling was unaffected by stimulus conditions
(Okun, Steinmetz et al. 2015). Training on evoked activities and testing on SA resul-
ted in poorest predictions of the different training/testing sets, which may argue for a
reduction in dimensionality during stimulation (Mazzucato, Fontanini and La Camera
2016). Indeed, the Ising model trained on SA and tested on evoked activities performed
best, arguing for stimulus independence, and supporting the idea that SA and stimuli
govern similar activity spaces (Carrillo-Reid et al. 2015).

Shortcomings and future works

During visual stimulation, correlated inputs induce stimulus-dependent correlations,
as well as temporal correlations (Renart et al. 2010). Including time-dependency was
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shown to improve the models substantially elsewhere (Köster, Sohl-Dickstein et al. 2014;
Granot-Atedgi et al. 2013) and would be feasible for some of the models, such as the
sRBM.

An interesting extension of the popTrack model could be to fit the model to multiple
population rates belonging to different cell assemblies, as inspired by approaches used
in Gardella, Marre and Mora (2016). Assemblies could be discovered e.g. by a graph
partitioning algorithm (Billeh et al. 2014). Then, a model with n FR parameters for each
assembly could be built with one parameter to describe the interactions between cells
in each assembly, and one describing the interaction between assemblies, while keeping
the rest as random as possible according to maximum entropy principle. Including a
pairwise assembly-population frequency interaction term could describe the correlations
between population rates of the two (or n) assemblies.
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Conclusions and outlook

This thesis investigated stimulus representation and signal processing factors via ex-
tracellular electrophysiology in mouse primary visual cortex under varying stimulus
conditions in both the anaesthetised and awake mouse. Tuning characteristics of MUA
were determined and state-of-the-art information-theoretic tools were used to explore
spatial binary pattern statistics.

6.1 Summary

Neural processing in mouse V1 is part and parcel of modern neuroscience. For over half
a century, orientation tuning in mouse V1 was reported as salt-and-pepper organised
(Hubel and Wiesel 1962; Kaschube 2014; Jeyabalaratnam et al. 2013; Ringach et al.
2016; Hansel and van Vreeswijk 2012), lacking apparent structure as was found in
e.g. cat or primates (Hirsch and Martinez 2006; Sun et al. 2015; Swisher et al. 2010).
The majority of research focussed on characterising single cell properties, whilst the
role of population activity on processing has only recently been moving into the focus
of investigations (Montijn, Vinck and Pennartz 2014; Gutnisky et al. 2016; Gardella,
Marre and Mora 2016; O’Donnell et al. 2017; Okun, Yger, Marguet et al. 2012).
This work comprises novel in-vivo electrophysiological experiments under differ-

ent stimulus conditions in the Isoflurane-anaesthetised and head-fixed awake-behaving
mouse and their information-theoretic analyses. The following briefly summarises the
main findings of this study.
Chapter 2 and 3 focussed on the acquisition and analysis of neural responses to mon-

ocular full-field drifting gratings, natural scene movies and grey screens (as a proxy
for ongoing activity), which were presented to anaesthetised mice. MUA was recorded
from left hemisphere V1 and computationally evaluated on individual site and popu-
lation level. FR analysis revealed that at the lowest SF used (0.01 cpd), left forward
drifting gratings evoked highest responses across cortical layers and columns, whereas
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upward moving gratings consistently elicited the lowest FRs, thus disagreeing with the
established opinion of random organisation, in agreement with recent studies (Ringach
et al. 2016; Kondo, Yoshida and Ohki 2016). However, higher SFs did not indicate
similar levels of preferred directions, implying direction tuning to depend on the SF, in
line with findings by Ayzenshtat, Jackson and Yuste (2016). Preferred directions varied
with SF, with the mode moving from 180◦ over 270◦ to 360◦, indicating the possibility
to encode size and direction information efficiently in the same population.

Chapter 3 then extended the study of the anaesthetised experiments to their bin-
ary firing vectors (or word/pattern distributions) and population FR. With the aid of
information-theoretic approaches the similarity of SA and evoked responses to nat-
ural movies was demonstrated, confirming results found in ferrets (Berkes et al. 2011),
and their dissimilarities to sets of drifting gratings was presented. This analysis also
conveyed that pattern probability distributions appear spatially but not directionally
clustered, and that Shannon entropy and mean population FR follow a distinct rela-
tionship. MI of spatial patterns and stimulus could be shown to significantly decrease
when spatial locations of the firing vectors were shuffled, pointing out the importance
of spatial arrangement.

In Chapter 4, a novel, efficient training protocol for head-fixed, water-restricted mice
was developed and evaluated against an alternative protocol by a different researcher.
Under both protocols, mice were trained in a GO/NOGO visual discrimination task in-
volving horizontal forward and downward drifting gratings. Subsequent in-vivo electro-
physiology during the behavioural task unveiled V1 to contain substantial information
about task outcome. Since protocols differed, results were contrasted and compared
between experimenter and task performances. Information-theoretic methods were ap-
plied to examine the influence of the dichotomous choice (to lick or not to lick) on neural
activities, which showed for both experimenters that JSD between outcome states was
affected by behaviour.

Finally, in Chapter 5 a number of model computations on surrogate data was per-
formed and results were compared with the findings of Chapter 4. Two types of sur-
rogate data were used: 1) homogeneous Poisson process surrogate data based on the
mean FR of each of the behavioural task states, to test if FR alone could account for the
results. 2) popTrack surrogate data based on mean FR and a population activity inter-
action link (O’Donnell et al. 2017). Poisson data significantly overestimated entropy,
whereas popTrack’s greatly matched empirical estimates. Both surrogates significantly
overestimate MI, and fail to meet JSD values present in the behavioural data. In addi-
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tion, different models such as Ising models and sRBMs, were evaluated against the IND.
Comparisons suggest that including pairwise interactions reduced discrepancies between
empirical and model distributions significantly. Including higher-order interactions or
population responses improved the predicted pattern distributions even more, as was
shown using sRBM and popTrack models, suggesting the significant role of population
dynamics particularly for larger ensemble sizes.

6.2 Shortcomings

In all experiments, stationarity was assumed, which is a strong assumption that is not
necessarily well-founded (Tyrcha et al. 2013). Further, recording lengths or numbers of
trials differed, which was partially accounted for by weighing the numbers, whenever
possible. In anaesthetised recordings, anaesthesia length puts a limit on experimental
duration. It is, therefore, important to find an optimum between stimulus duration,
repetitions, and variety of stimuli presented to maximise, while balancing lengths. This
problem is even more difficult in behaviour experiments, where a good performance
(and thus few false responses) is desired, which entails low numbers of samples in FA
and MISS.
It has been shown that activity patterns during the anaesthetised state differ from the

awake state (Greenberg, Houweling and Kerr 2008; Aasebø et al. 2017), which is what
a lot of computational models base their choice of parameters upon. That is why this
study tried to examine model probabilities on datasets based on awake experiments, at
the cost of lower sample sizes.

6.3 Future work

Inhibitory neurons in early visual processing seem to play an important role in visual
perception (Hirsch, Martinez et al. 2003). Thus, an interesting variation of the exper-
iments could be an optogenetic activation of e.g. PV+ interneurons in V1 to sharpen
the neuronal feature selectivity, as this is assumed to improve the perceptual discrim-
ination (S.-H. Lee et al. 2012) and decorrelate excitatory cells (King, Zylberberg and
DeWeese 2013). An optogenetic approach targeting the Calcium-binding interneurons
may help understand their role in visual discrimination processing (Pinto et al. 2013).
This leads to a modulation of activated neurons in primary sensory cortices, mediated
by populations that control the responsiveness of cortical outputs, here the PV+ in-
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terneurons, which modify sensory responses in mouse visual cortex (Salinas and Thier
2000; J. Zhang and L. Abbott 2000).
An extension of the behavioural GO/NOGO may address the question how exper-

ience of a reward association alters brain circuitry in higher cognitive areas such as
medial Prefrontal Cortex (mPFC) or ACC. Analysis of simultaneous electrophysiological
recordings in e.g. mPFC and V1 could aim to relate the neural activities between the
two not directly linked areas to behaviour and describe possible interactions between
early visual system and higher areas. Simultaneous recordings across and along cortical
layers over an extended time period (early vs. late learning stages) will enable elucidat-
ing the change in strength and direction of neural interactions in these two areas. This
may help describe the decision-making and information flow across the primary sensory
cortex and towards mPFC.

An interesting pharmacological investigation to probe the information content about
task outcome in V1 during behaviour, could be to inject the NMDA receptor antagonist
CPP, as mentioned in 4.4 to investigate if SRP was required in reward learning. Other-
wise, when Gavornik et al. showed that sequence learning in V1 was not reliant on SRP
(and thus NMDAR induction or AMPA insertion) but instead it was dependent on the
cholinergic system as found through injection of scopolamine (acetylcholine antagonist),
which suppressed sequence learning in V1 (Gavornik and Bear 2014).

The popTrack model showed great potential in analysing and emulating binary pat-
terns. An interesting investigation could be to fit it to the anaesthetised datasets to
examine population statistics under varying visual stimuli. Population couplings may
differ between SA and evoked activities, and conditional probabilities could be con-
trasted across stimulus conditions. This could elucidate on how an individual site’s
propensity to fire given the population activity changes when population activity is
driven by varying stimuli, e.g. if it is possible for a "chorister" under visual stimulation
to change to a "soloist" under SA (Okun, Steinmetz et al. 2015).
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Appendices

1 Statistical Tests

All statistical tests were evaluated at α = 0.05, which was Bonferroni-corrected if
multiple comparisons were performed.

• MWU was used for comparing two independent variables of non-normal, unsym-
metric, independent groups.

• 1-sample median test or 1-sample sign test was used to test the hypothesis of one
non-normally distributed population having zero median.

• Kolmogorov-Smirnov test and normal quantile-quantile-plots were used to test for
normality.

• Symmetry about the median was assessed with the skewness of the difference
between the two distributions and graphically via boxplots of the differences.

• Kruskal-Wallis was used to compare 2 or more non-normally distributed inde-
pendent groups, where otherwise for normally distributed populations one-way
Analysis of Variance (ANOVA) was used.

• Wilcoxon signed ranks was used for independent variables with 2 matched, de-
pendent or paired groups, when the distributions are symmetric under the as-
sumption that distributions are equal.

• 2-sample sign test was used for independent variables with 2 matched, dependent
or paired groups, when the distributions were non-symmetric, only under the
assumption that the median of differences is zero, without assuming the shapes
of the distributions.

• ANCOVA was used to compare regression results, with MATLAB’s function
aoctool.m.

• Friedman test was used to test when Wilcoxon signed ranks would have been used
for 2 pairs, only for more than 2 groups (dependent, matched, paired groups) the
null hypothesis that the column effects are all the same against the alternative
that they are not all the same.

• Rayleigh test was used to test for non-uniformity in circular variables, implemen-
ted by Philipp Berens for MATLAB’s Circular Statistics Toolbox (Directional
Statistics), (Berens 2009).
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2 Supplementary figures of 2

2.1 Direction decoding performances of different decoders as a function of
bin size and number of shanks

The different decoders varied in their performance for the direction and SF decoding
tasks.
Inspecting Fig. 1 - Fig. 4, suggests the Naive Bayes (NB) decoder to be most successful

in decoding stimulus direction. Most decoders (apart from Linear Discriminant Analysis
(LDA) for the population FR features in Fig. 4) improved their classification rate when
incorporating a larger number of shanks. This is particularly pronounced in Fig. 1 (A)
and (G) for the Spatio-temporal Multi-Unit Activity (STMUA) feature, where four shanks
achieve classification rates over 60%, while two shanks reach only around 40%.
Fig. 1 further reveals that Spike Count (SC) features offer the lowest correct prediction

rates, which is similar across all decoders.
With the NB decoder, bin size does not appear to play an important role in decoding

performance as is evident from the similar values across bin widths, for all feature types.
This cannot be observed in the k-nearest neighbour (knn) classifier in Fig. 2, which
reveals a weak tendency to perform better with increasing bin widths, particularly for
STMUA features (A, D, G). The other features, SC and population FR, however, attain
similar values across bin widths.
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Figure 1: Direction decoding performance, NB classifier for varying numbers of shanks.
(A, D, G) shows averaged classification rate for STMUA features, (B, E, H) for SC
features, and (C, F, I) for population FR. (A, B, C) use one shank, (D, E, F) two
shanks, and (G, H, I) four shanks. Chance level is indicated with a dashed line at
12.5%.
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Figure 2: Direction decoding, knn classifier, description as in Fig. 1.
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Figure 3: Direction decoding, classification tree classifier, description as in Fig. 1.

0.2

0.4

0.6

0.2

0.4

0.6

2 5 10 20

0.2
0.4
0.6

2 5 10 20 2 5 10 20

Chance

1s
h

A B C

2s
h

D E F

t (ms) STMUA

%
-C

or
re

ct
4s

h

G

t (ms) SC

H

t (ms) Pop

I

Figure 4: Direction decoding, LDA classifier, description as in Fig. 1.
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2.2 Spatial frequency decoding performances of different decoders as a
function of bin size and number of shanks

In overall terms, for SF decoding the NB also appears to be the most successful decoder
as can be seen comparing Fig. 5 - 8. Having investigated Fig. 1 - Fig. 4, where we saw
that SC features offered the lowest correct prediction rates, we can now appreciate the
superiority of SC predictions over the other features, particularly for a high number of
shanks, where classification rates exceed those of STMUA features (e.g. in Fig. 5 for
NB classifier). The SC feature appears most unaffected by bin width with steadily high
performances across decoders and bin widths.

The LDA decoder provides us with an interesting result, where STMUA features
indicate an increase in classification rates with bin widths, whereas population FR
features reveal the opposite effect, decreasing performance over bin widths, while SC
features appear impervious to bin width changes.
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Figure 5: SF decoding performance, NB classifier for varying numbers of shanks. (A,
D, G) shows averaged classification rates for STMUA features, (B, E, H) for SC features,
and (C, F, I) for population FR. (A, B, C) use one shank, (D, E, F) two shanks, and
(G, H, I) four shanks. Chance level is indicated with a dashed line at 16.6%.
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Figure 6: SF decoding, knn classifier, description as in Fig. 5.
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Figure 7: SF decoding, classification tree classifier, description as in Fig. 5.
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Figure 8: SF decoding, LDA classifier, description as in Fig. 5.
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3 Supplementary figures of Chapter 3
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Figure 9: All MDS graphs of Chapter 3
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