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Abstract. This work proposes tractable bisimulations for the higher-order π-
calculus with session primitives (HOπ) and offers a complete study of the ex-
pressivity of its most significant subcalculi. First we develop three typed bisim-
ulations, which are shown to coincide with contextual equivalence. These char-
acterisations demonstrate that observing as inputs only a specific finite set of
higher-order values (which inhabit session types) suffices to reason about HOπ
processes. Next, we identify HO, a minimal, second-order subcalculus of HOπ
in which higher-order applications/abstractions, name-passing, and recursion are
absent. We show that HO can encode HOπ extended with higher-order applica-
tions and abstractions and that a first-order session π-calculus can encode HOπ.
Both encodings are fully abstract. We also prove that the session π-calculus with
passing of shared names cannot be encoded into HOπ without shared names. We
show that HOπ, HO, and π are equally expressive; the expressivity of HO enables
effective reasoning about typed equivalences for higher-order processes.
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1 Introduction

By combining features from the λ-calculus and the π-calculus, in higher-order process
calculi exchanged values may contain processes. In this paper, we consider higher-order
calculi with session primitives, thus enabling the specification of reciprocal exchanges
(protocols) for higher-order mobile processes, which can be verified via type-checking
using session types [19]. The study of higher-order concurrency has received significant
attention, from untyped and typed perspectives (see, e.g., [53,48,47,22,35,29,28,24,55]).
Although models of session-typed communication with features of higher-order concur-
rency exist [33,14], their tractable behavioural equivalences and relative expressiveness
remain little understood. Clarifying their status is not only useful for, e.g., justifying
non-trivial mobile protocol optimisations, but also for transferring key reasoning tech-
niques between (higher-order) session calculi. Our discovery is that linearity of session
types plays a vital role to offer new equalities and fully abstract encodability, which to
our best knowledge have not been proposed before.

The main higher-order language in our work, denoted HOπ, extends the higher-
order π-calculus [48] with session primitives: it contains constructs for synchronisation
on shared names, recursion, name abstractions (i.e., functions from name identifiers to
processes, denoted λx.P) and applications (denoted (λx.P)a); and session communi-
cation (value passing and labelled choice using linear names). We study two signifi-
cant subcalculi of HOπ, which distil higher- and first-order mobility: the HO-calculus,
which is HOπ without recursion and name passing, and the session π-calculus (here
denoted π), which is HOπ without abstractions and applications. While π is, in essence,
the calculus in [19], this paper shows that HO is a new core calculus for higher-order
session concurrency.

In the first part of the paper, we address tractable behavioural equivalences for HOπ.
A well-studied behavioural equivalence in the higher-order setting is context bisimilar-
ity [46], a labelled characterisation of reduction-closed, barbed congruence, which of-
fers an appropriate discriminative power at the price of heavy universal quantifications
in output clauses. Obtaining alternative characterisations is thus a recurring issue in the
study of higher-order calculi. Our approach shows that protocol specifications given
by session types are essential to limit the behaviour of higher-order session processes.
Exploiting elementary processes inhabiting session types, this limitation is formally
enforced by a refined (typed) labelled transition system (LTS) that narrows down the
spectrum of allowed process behaviours, thus enabling tractable reasoning techniques.
Two tractable characterisations of bisimilarity are then introduced. Remarkably, using
session types we prove that these bisimilarities coincide with context bisimilarity, with-
out using operators for name-matching.

We then move on to assess the expressivity of HOπ, HO, and π as delineated by
typing. We establish strong correspondences between these calculi via type-preserving,
fully abstract encodings up to behavioural equalities. While encoding HOπ into the π-
calculus preserving session types (extending known results for untyped processes) is
significant, our main contribution is an encoding of HOπ into HO, where name-passing
is absent.

We illustrate the essence of encoding name passing into HO: to encode name output,
we “pack” the name to be passed around into a suitable abstraction; upon reception, the
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Fig. 1 Encodability in Higher-Order Session Calculi. Precise encodings are defined in
Definition 5.5.

HOπ

π HO

HOπ+ HO~π

HO~π+

Identity encoding

Precise encoding

Derivable encoding

receiver must “unpack” this object following a precise protocol. More precisely, our
encoding of name passing in HO is given as:

[[a!〈b〉.P]] = a!〈λz. z?(x).(xb)〉.[[P]]
[[a?(x).Q]] = a?(y).(ν s)(y s | s!〈λx. [[Q]]〉.0)

where a,b are names; s and s are linear names (called session endpoints); a!〈V〉.P and
a?(x).P denote an output and input at a; and (ν s)(P) is hiding. A (deterministic) reduc-
tion between endpoints s and s guarantees name b is properly unpacked. Encoding a
recursive process µX.P is also challenging, for the linearity of endpoints in P must be
preserved. We encode recursion with non-tail recursive session types; for this we apply
recent advances on the theory of session duality [5,6].

We further extend our encodability results to i) HOπ with higher-order abstractions
(denoted HOπ+) and to ii) HOπ with polyadic name passing and abstraction (HO~π);
and to their super-calculus (HO~π+) (equivalent to the calculus in [33]). A further re-
sult shows that shared names strictly add expressive power to session calculi. Figure 1
summarises these results.

Outline / Contributions. This paper is structured as follows:

• Section 2 presents the higher-order session calculus HOπ and its subcalculi HO and π.
• Section 3 gives the type system and states type soundness for HOπ and its variants.
• Section 4 develops higher-order and characteristic bisimilarities, our two tractable

characterisations of contextual equivalence which alleviate the issues of context bisim-
ilarity [46]. These relations are shown to coincide in HOπ (Theorem 4.1).

• Section 5 defines precise (typed) encodings by extending encodability criteria studied
for untyped processes (e.g. [16,28]).

• Section 6 and Section 7 gives encodings of HOπ into HO and of HOπ into π. These
encodings are shown to be precise (Proposition 6.6 and Proposition 6.10). Mutual en-
codings between π and HO are derivable; all these calculi are thus equally expressive.
Exploiting determinacy and typed equivalences, we also prove the non-encodability
of shared names into linear names (Theorem 7.1).

• Section 8 studies extensions of HOπ. We show that both HOπ+ (the extension with
higher-order applications) and HO~π (the extension with polyadicity) are encodable
in HOπ (Proposition 8.4 and Proposition 8.8). This connects our work to the existing
higher-order session calculus in [33] (here denoted HO~π+).
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• Section 9 reviews related works. The appendix collects proofs of the main results.

2 The Higher-Order Session π-Calculus (HOπ)

We introduce the Higher-Order Session π-Calculus (HOπ). HOπ includes both name-
and abstraction-passing operators as well as recursion; it corresponds to a subcalcu-
lus of the language studied by Mostrous and Yoshida in [33,35]. Following the litera-
ture [22], for simplicity of the presentation we concentrate on the second-order call-by-
value HOπ. (In Section 8 we consider the extension of HOπ with general higher-order
abstractions and polyadicity in name-passing/abstractions.) We also introduce two sub-
calculi of HOπ. In particular, we define the core higher-order session calculus (HO),
which includes constructs for shared name synchronisation and constructs for session
establishment/communication and (monadic) name-abstraction, but lacks name-passing
and recursion.

Although minimal, in Section 5 the abstraction-passing capabilities of HOπ will
prove expressive enough to capture key features of session communication, such as
delegation and recursion.

2.1 Syntax

The syntax for HOπ processes is given in Figure 2.

Identifiers. We use a,b,c, . . . to range over shared names, and s, s, . . . to range over
session names whereas m,n, t, . . . range over shared or session names. We define dual
session endpoints s, with the dual operator defined as s = s and a = a. Intuitively, names
s and s are dual endpoints. Name and abstraction variables are uniformly denoted with
x,y,z, . . . ; we reserve k for name variables and we sometimes write x for abstraction
variables. Recursive variables are denoted with X,Y . . . . An abstraction λx.P is a process
P with bound variable x. Symbols u,v, . . . range over names or variables. Furthermore
we use V,W, . . . to denote transmittable values; either channels u,v or abstractions.

Terms. The name-passing constructs of HOπ include the π-calculus prefixes for send-
ing and receiving values V . Process u!〈V〉.P denotes the output of value V over channel
u, with continuation P; process u?(x).P denotes the input prefix on channel u of a value
that it is going to be substituted on variable x in continuation P. Recursion is expressed
by the primitive recursor µX.P, which binds the recursive variable X in process P. Pro-
cess V u is the application process; it binds channel u on the abstraction V . Prefix u / l.P
selects label l on channel u and then behaves as P. Given i ∈ I process u . {li : Pi}i∈I
offers a choice on labels li with continuation Pi. The calculus also includes standard
constructs for the inactive process 0, parallel composition P1 | P2, and name restriction
(ν n)P. Session name restriction (ν s)P simultaneously binds endpoints s and s in P.
We use fv(P) and fn(P) to denote a set of free variables and names, respectively; and
assume V in u!〈V〉.P does not include free recursive variables X. Furthremore, a well-
formed process relies on assumptions for guarded recursive processes. If fv(P) = ∅, we
call P closed. We write P for the set of all well-formed processes.
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Fig. 2 Syntax for HOπ (The definition of HO lacks the constructs in grey )

(Processes) P,Q ::= u!〈V〉.P | u?(x).P | V u
| u / l.P | u . {li : Pi}i∈I | 0
| P | Q | (ν n)P | X | µX.P

(Names) n,m, t ::= a,b | s, s
(Identifiers) u,v ::= n | x,y,z,k
(Values) V,Q ::= u | λx.P

2.2 Sub-calculi

We identify two main sub-calculi of HOπ that will form the basis of our study:

Definition 2.1 (Sub-calculi of HOπ). We let C ∈ {HOπ,HO,π} with:

- Core higher-order session calculus (HO): The sub-calculus HO uses only abstraction
passing, i.e., values in Figure 2 are defined as in the non-gray syntax; V ::= λx.P
and does not use the primitive recursion constructs, X and µX.P.

- Session π-calculus (π): The sub-calculus π uses only name-passing constructs, i.e., val-
ues in Figure 2 are defined as V ::= u, and does not use applications xu.

We write C−sh to denote a sub-calculus without shared names, i.e., identifiers in Figure 2
are defined as u,v ::= s, s.

Thus, while π is essentially the standard session π-calculus as defined in the litera-
ture [19,13], HO can be related to a subcalculus of higher-order process calculi as stud-
ied in the untyped [48,50,22] and typed settings [33,34,35]. In Section 6 we show that
HOπ, HO, and π have the same expressivity.

2.3 Operational Semantics

The operational semantics for HOπ is standardly given as a reduction relation, sup-
ported by a structural congruence relation, denoted ≡. Structural congruence is the least
congruence that satisfies the commutative monoid (P, | ,0):

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

satisfies α-conversion:
P1 ≡α P2 implies P1 ≡ P2

and furthermore, satisfies the rules:

n < fn(P1) implies P1 | (ν n)P2 ≡ (ν n)(P1 | P2)

(ν n)0 ≡ 0 (ν n)(ν m)P ≡ (ν m)(ν n)P µX.P ≡ P{µX.P/X}

The first rule is describes scope opening for names. Restricting of a name in an inactive
process has no effect. Furthermore, we can permute name restrictions. Recursion is
defined in structural congruence terms; a recursive term µX.P is structurally equivalent
to its unfolding.
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Fig. 3 Reduction semantics for HOπ.

(λx.P)u −→ P{u/x} [App]

n!〈V〉.P | n?(x).Q −→ P | Q{V/x} [Pass]

n / l j.Q | n . {li : Pi}i∈I −→ Q | P j ( j ∈ I) [Sel]

P −→ P′

(ν n)P −→ (ν n)P′
[Sess]

P −→ P′

P | Q −→ P′ | Q
[Par]

P ≡−→≡ P′

P −→ P′
[Cong]

Structural congruence is extended to support values, i.e., is the least congruence
over processes and values that satisfies � for processes and, furthermore:

λx.P1 ≡α λy.P2 implies λx.P1 ≡ λy.P2 P1 ≡ P2 implies λx.P1 ≡ λx.P2

This way, abstraction values are congruent up-to α-conversion. Furthermore, two con-
gruent processes can construct congruent abstractions.

Figure 3 defines the operational semantics for the HOπ. [App] is a name application.
Rule [Pass] defines value passing where value V is being send on channel n to its dual
endpoint n (for shared interactions n = n). As a result of the value passing reduction
the continuation of the receiving process substitutes the receiving variable x with V .
Rule [Sel] is the standard rule for labelled choice/selection; given an index set I, a
process selects label l j, j ∈ I on channel n over a set of labels {li}i∈I that are offered by a
parallel process on the dual session endpoint n. Remaining rules define congruence with
respect to parallel composition (rule [Par]) and name restriction (rule [Ses]). Rule [Cong]
defines closure under structural congruence. We write −→∗ for a multi-step reduction.

3 Session Types for HOπ

In this section we define a session typing system for HOπ and establish its main proper-
ties. We use as a reference the type system for higher-order session processes developed
by Mostrous and Yoshida [33,34,35]. Our system is simpler than that in [33], in order
to distil the key features of higher-order communication in a session-typed setting.

3.1 Syntax

We define the syntax of session types for HOπ.

Definition 3.1 (Syntax of Types). The syntax of types is defined on the types for ses-
sions S , and the types for values U:

(value) U ::= C | L
(name) C ::= S | 〈S 〉 | 〈L〉
(abstr) L ::= C→� | C(�
(session) S ,T ::= !〈U〉;S | ?(U);S | ⊕ {li : S i}i∈I | &{li : S i}i∈I

| µt.S | t | end
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Types for Values. Types for values range over symbol U which includes first-order
types C and higher-order types L. First-order types C are used to type names; session
types S type session names and shared types 〈S 〉 or 〈L〉 type shared names that carry
session values and higher-order values, respectively. Higher-order types L are used to
type abstraction values; C→� and C(� denote shared and linear abstraction types,
respectively.

Session Types. The syntax of session types S follows the usual (binary) session types
with recursion [19,13]. An output type !〈U〉;S is assigned to a name that first sends
a value of type U and then follows the type described by S . Dually, the input type
?(U);S is assigned to a name that first receives a value of type U and then continues
as S . Session types for labelled choice and selection, written &{li : S i}i∈I and ⊕{li :
S i}i∈I , respectively, require a set of types {S i}i∈I that correspond to a set of labels {i ∈
I}i∈I . Recursive session types are defined using the primitive recursor. We require type
variables to be guarded; this means, e.g., that type µt.t is not allowed. Type end is the
termination type. We let T to be the set of all well-formed types and ST to be the set of
all well-formed session types.

Types of HO exclude C from value types of HOπ; the types of π exclude L. From
each C ∈ {HOπ,HO,π}, C−sh excludes shared name types (〈S 〉 and 〈L〉), from name
type C.

Remark 3.1 (Restriction on Types for Values). The syntax for value types is restricted
to disallow types of the form:

• 〈〈U〉〉: shared names cannot carry shared names; and
• U→�: abstractions do not bind higher-order variables.

The difference between the syntax of process in HOπ with the syntax of processes
in [33,35] is also reflected on the two corresponding type syntax; the type structure
in [33,35], supports the arrow types of the form U → T and U ( T , where T denotes
an arbitrary type of a term (i.e. a value or a process).

3.2 Duality

Duality is defined following the co-inductive approach, as in [13,5]. We first require the
notion of type equivalence.

Definition 3.2 (Type Equivalence). Define function F(<) : T −→ T:

F(<) = {(end,end)}
∪ {(〈S 〉, 〈T 〉) | S < T }∪ {(〈L1〉, 〈L2〉) | L1 < L2}

∪ {(C1→�,C2→�), (C1(�,C2(�) | C1 < C2}

∪ {(!〈U1〉;S , !〈U2〉;T ) , (?(U1);S ,?(U1);T ) | U1 < U2,S < T }
∪ {(⊕{li : S i}i∈I , ⊕{li : Ti}i∈I) | S i < Ti}

∪ {(&{li : S i}i∈I , &{li : Ti}i∈I) | S i < Ti}

∪ {(S , T ) | S {µt.S/t} < T )}
∪ {(S , T ) | S < T {µt.T/t})}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists.
Let type equivalence be defined as iso = νX.F(X).
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In essence, type equivalence is a co-inductive definition that equates types up-to recur-
sive unfolding. We may now define the duality relation in terms of type equivalence.

Definition 3.3 (Duality). Define function F(<) : ST −→ ST:

F(<) = {(end,end)}
∪ {(!〈U1〉;S ,?(U2);T ) , (?(U);S , !〈U〉;T ) | U1 iso U2,S < T }
∪ {(⊕{li : S i}i∈I , &{li : Ti}i∈I) | S i < Ti}

∪ {(&{li : S i}i∈I , ⊕{li : Ti}i∈I) | S i < Ti}

∪ {(S , T ) | S {µt.S/t} < T )}
∪ {(S , T ) | S < T {µt.T/t})}

Standard arguments ensure that F is monotone, thus the greatest fixed point of F exists.
Let duality be defined as dual = νX.F(X).

Duality is applied co-inductively to session types up-to recursive unfolding. Dual ses-
sion types are prefixed on dual session type constructors that carry equivalent types (!
is dual to ? and ⊕ is dual to &).

3.3 Type Environments and Judgements

Following [33,35], we define the typing environments.

Definition 3.4 (Typing environment). We define the shared type environment Γ, the
linear type environment Λ, and the session type environment ∆ as:

(Shared) Γ ::= ∅ | Γ · x : C→� | Γ ·u : 〈S 〉 | Γ ·u : 〈L〉 | Γ ·X : ∆
(Linear) Λ ::= ∅ | Λ · x : C(�
(Session) ∆ ::= ∅ | ∆ ·u : S

We further require:

i. Domains of Γ,Λ,∆ are pairwise distinct.
ii. Weakening, contraction and exchange apply to shared environment Γ.

iii. Exchange applies to linear environments Λ and ∆.

We define typing judgements for values V and processes P:

Γ;Λ;∆ ` V .U Γ;Λ;∆ ` P .�

The first judgement asserts that under environment Γ;Λ;∆ values V have type U, whereas
the second judgement asserts that under environment Γ;Λ;∆ process P has the typed
process type �.
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Fig. 4 Typing Rules for HOπ.

[Sess] Γ;∅; {u : S } ` u .S [Sh] Γ ·u : U;∅;∅ ` u .U [LVar] Γ; {x : C(�};∅ ` x .C(�

[Prom]
Γ;∅;∅ ` V .C(�
Γ;∅;∅ ` V .C→�

[EProm]
Γ;Λ · x : C(�;∆ ` P .�
Γ · x : C→�;Λ;∆ ` P .�

[Abs]
Γ;Λ;∆1 ` P .� Γ;∅;∆2 ` x .C
Γ;Λ;∆1\∆2 ` λx.P .C(�

[App]
U = C(�∨C→� Γ;Λ;∆1 ` V .U Γ;∅;∆2 ` u .C

Γ;Λ;∆1 ·∆2 ` V u .�

[Send]
Γ;Λ1;∆1 ` P .� Γ;Λ2;∆2 ` V .U u : S ∈ ∆1 ·∆2

Γ;Λ1 ·Λ2; ((∆1 ·∆2)\{u : S }) ·u :!〈U〉;S ` u!〈V〉.P .�

[Rcv]
Γ;Λ1;∆1 ·u : S ` P .� Γ;Λ2;∆2 ` x .C
Γ\x;Λ1\Λ2;∆1\∆2 ·u :?(C);S ` u?(x).P .�

[Req]

Γ;∅;∅ ` u .U1 Γ;Λ;∆1 ` P .� Γ;∅;∆2 ` V .U2
(U1 = 〈S 〉 ⇔ U2 = S )∨ (U1 = 〈L〉 ⇔ U2 = L)

Γ;Λ;∆1 ·∆2 ` u!〈V〉.P .�

[Acc]

Γ;∅;∅ ` u .U1 Γ;Λ1;∆1 ` P .� Γ;Λ2;∆2 ` x .U2
(U1 = 〈S 〉 ⇔ U2 = S )∨ (U1 = 〈L〉 ⇔ U2 = L)

Γ;Λ1\Λ2;∆1\∆2 ` u?(x).P .�

[Bra]
∀i ∈ I Γ;Λ;∆ ·u : S i ` Pi .�

Γ;Λ;∆ ·u : &{li : S i}i∈I ` u . {li : Pi}i∈I .�
[Sel]

Γ;Λ;∆ ·u : S j ` P .� j ∈ I
Γ;Λ;∆ ·u : ⊕{li : S i}i∈I ` u / l j.P .�

[Res]
Γ ·a : 〈S 〉;Λ;∆ ` P .�
Γ;Λ;∆ ` (ν a)P .�

[ResS]
Γ;Λ;∆ · s : S 1 · s : S 2 ` P .� S 1 dual S 2

Γ;Λ;∆ ` (ν s)P .�

[Par]
Γ;Λ1;∆1 ` P1 .� Γ;Λ2;∆2 ` P2 .�

Γ;Λ1 ·Λ2;∆1 ·∆2 ` P1 | P2 .�
[End]

Γ;Λ;∆ ` P .T u < dom(Γ,Λ,∆)
Γ;Λ;∆ ·u : end ` P .�

[Nil] Γ;∅;∅ ` 0 .� [RVar] Γ ·X : ∆;∅;∆ ` X .� [Rec]
Γ ·X : ∆;∅;∆ ` P .�
Γ;∅;∆ ` µX.P .�

3.4 Typing Rules

The type relation is defined in Figure 4. Rule [Session] requires the minimal session
environment ∆ to type session u with type S . Rule [LVar] requires the minimal linear
environment Λ to type higher-order variable x with type C→�. Rule [Shared] assigns the
value type U to shared names or shared variables u if the map u : U exists in environ-
ment Γ. Rule [Shared] also requires that the linear environment is empty. The type C→�
for shared higher-order values V is derived using rule [Prom], where we require a value
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with linear type to be typed without a linear environment present in order to be used as
a shared type. Rule [EProm] allows to freely use a linear type variable as shared type
variable. Abstraction values are typed with rule [Abs]. The key type for an abstraction
is the type for the bound variables of the abstraction, i.e., for bound variable with type
C the abstraction has type C(�. The dual of abstraction typing is application typing
governed by rule [App], where we expect the type C of an application name u to match
the type C(� or C→� of the application variable x.

A process prefixed with a session send operator u!〈V〉.P is typed using rule [Send].
The type U of a send value V should appear as a prefix on the session type !〈U〉;S
of s. Rule [Rcv] defines the typing for the reception of values u?(V).P. The type U of a
receive value should appear as a prefix on the session type ?(U);S of u. We use a similar
approach with session prefixes to type interaction between shared channels as defined in
rules [Req] and [Acc], where the type of the sent/received object (S and L, respectively)
should match the type of the sent/received subject (〈S 〉 and 〈L〉, respectively). Select
and branch prefixes are typed using the rules [Sel] and [Bra] respectively. Both rules
prefix the session type with the selection type ⊕{li : S i}i∈I and &{li : S i}i∈I .

The creation of a shared name a requires to add its type in environment Γ as defined
in rule [Res]. Creation of a session name s creates two endpoints with dual types and
adds them to the session environment ∆ as defined in rule [ResS]. Rule [Par] concatenates
the linear environment of the parallel components of a parallel operator to create a
type for the composed process. The disjointness of environments Λ and ∆ is implied.
Rule [End] allows a form of weakening for the session environment ∆, provided that the
name added in ∆ has the inactive type end. The inactive process 0 has an empty linear
environment. The recursive variable is typed directly from the shared environment Γ
as in rule [RVar]. The recursive operator requires that the body of a recursive process
matches the type of the recursive variable as in rule [Rec].

3.5 Type Soundness

Type safety result are instances of more general statements already proved by Mostrous
and Yoshida [33,35] in the asynchronous case.

Lemma 3.1 (Substitution Lemma - Lemma C.10 in [35]).

1. Γ;Λ;∆ · x : S ` P .� and u < dom(Γ,Λ,∆) implies Γ;Λ;∆ ·u : S ` P{u/x} .�.
2. Γ · x : 〈U〉;Λ;∆ ` P .� and a < dom(Γ,Λ,∆) implies Γ ·a : 〈U〉;Λ;∆ ` P{a/x} .�.
3. If Γ;Λ1 · x : C(�;∆1 ` P .� and Γ;Λ2;∆2 ` V .C(� with Λ1 ·Λ2 and ∆1 ·∆2 defined,

then Γ;Λ1 ·Λ2;∆1 ·∆2 ` P{V/x} .�.
4. Γ · x : C→�;Λ;∆ ` P .� and Γ;∅;∅ ` V .C→� implies Γ;Λ;∆ ` P{V/x} .�.

Proof. By induction on the typing for P, with a case analysis on the last used rule. ut

We are interested in session environments which are balanced:

Definition 3.5 (Balanced Session Environment). We say that session environment ∆
is balanced if s : S 1, s : S 2 ∈ ∆ implies S 1 dual S 2.

The type soundness relies on the following auxiliary definition:
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Definition 3.6 (Session Environment Reduction). The reduction relation −→ on ses-
sion environments is defined as:

∆ · s :!〈U〉;S 1 · s :?(U);S 2 −→ ∆ · s : S 1 · s : S 2
∆ · s : ⊕{li : S i}i∈I · s : &{li : S ′i }i∈I −→ ∆ · s : S k · s : S ′k, k ∈ I

We write −→∗ for the multistep environment reduction.

We now state the main soundness result as an instance of type soundness from the
system in [33]. It is worth noticing that in [33] has a slightly richer definition of struc-
tural congruence. Also, their statement for subject reduction relies on an ordering on
typing associated to queues and other runtime elements. Since we are dealing with syn-
chronous semantics we can omit such an ordering. The type soundness result implies
soundness for the sub-calculi HO, π, and C−sh

Theorem 3.1 (Type Soundness - Theorem 7.3 in [35]).

1. (Subject Congruence) Γ;∅;∆ ` P .� and P ≡ P′ implies Γ;∅;∆ ` P′ .�.
2. (Subject Reduction) Γ;∅;∆ ` P . � with balanced ∆ and P −→ P′ implies Γ;∅;∆′ `

P′ .� and either (i) ∆ = ∆′ or (ii) ∆ −→ ∆′ with ∆′ balanced.

Proof. See Appendix A (Page 53). ut

4 Behavioural Semantics for HOπ

We develop a theory for observational equivalence over session typed HOπ processes.
The theory follows the principles laid by the previous work of the authors [27,26,25].
We introduce three different bisimilarities and prove that all of them coincide with
typed, reduction-closed, barbed congruence.

4.1 Labelled Transition Semantics

Labels. We define an (early) typed labelled transition system P1
`
−→ P2 (LTS for short)

over untyped processes. Later on, using the environmental transition semantics, we can
define a typed transition relation to formalise how a process interacts with a process in
its environment. The interaction is defined on action `:

` ::= τ | (ν m̃)n!〈V〉 | n?〈V〉 | n⊕ l | n&l

The internal action is defined by label τ. Output action (ν m̃)n!〈V〉 denotes the output
of value V over name n with a possibly empty set of names m̃ being restricted (we may
write n!〈V〉 when m̃ is empty). Dually, the action for the value input is n?〈V〉. We also
define actions for selecting a label l, n⊕ l and branching on a label n, s&l. fn(`) and
bn(`) denote sets of free/bound names in `, resp.

The dual action relation is the symmetric relation � that satisfies the rules:

n⊕ l � n&l (ν m̃′)n!〈V〉 � n?〈V〉

Dual actions occur on subjects that are dual between them and carry the same object.
Thus, output actions are dual to input actions and select actions is dual to branch actions.
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Fig. 5 The Untyped (Early) Labelled Transition System.

(λx.P)u
τ
−→ P{u/x} 〈App〉 n!〈V〉.P

n!〈V〉
−→ P 〈Out〉 n?(x).P

n?〈V〉
−→ P{V/x} 〈In〉

s / l.P
s⊕l
−→ P 〈Sel〉

j ∈ I

s . {li : Pi}i∈I
s&l j
−→ P j

〈Bra〉

P
`
−→ P′ n < fn(`)

(ν n)P
`
−→ (ν n)P′

〈Res〉
P ≡α P′′ P′′

`
−→ P′

P
`
−→ P′

〈Alpha〉
P{µX.P/X}

`
−→ P′

µX.P
`
−→ P′

〈Rec〉

P
(ν m̃)n!〈V〉
−→ P′ m ∈ fn(V)

(ν m)P
(ν m·m̃)n!〈V〉
−→ P′

〈Scope〉
P

`1
−→ P′ Q

`2
−→ Q′ `1 � `2

P | Q
τ
−→ (ν bn(`1)∪bn(`2))(P′ | Q′)

〈Tau〉

P
`
−→ P′ bn(`)∩fn(Q) = ∅

P | Q
`
−→ P′ | Q

〈LPar〉
Q

`
−→ Q′ bn(`)∩fn(P) = ∅

P | Q
`
−→ P | Q′

〈RPar〉

LTS over Untyped Processes. The labelled transition system (LTS) over untyped pro-

cesses is defined in Figure 5. We write P1
`
−→ P2 with the usual meaning. The rules

are standard [27,26]. An application requires a silent step τ to substitute the application
name over the application abstraction as defined in rule 〈App〉. A process with a send
prefix can interact with the environment with a send action that carries a value V as
in rule 〈Out〉. Dually, in rule 〈In〉 an input prefixed process can observe a receive action
of a value V . Select and branch prefixed processes observe the select and branch ac-
tions in rules 〈Sel〉 and 〈Bra〉, respectively, and proceed according to the labels observed.
Rule 〈Res〉 closes the LTS under the name creation operator provided that the restricted
name does not occur free in the observable action. If a restricted name occurs free in
an output action then the name is added as in the bound name list of the action and the
continuation process performs scope opening as described in rule 〈Scope〉. Rules 〈LPar〉
and 〈RPar〉 close the LTS under the parallel operator provided that the observable action
does not shared any bound names with the parallel processes. Rule 〈Tau〉 states that if
two parallel processes can perform dual actions then the two actions can synchronise to
observe an internal transition. Finally, rule 〈Alpha〉 closes the LTS under alpha-renaming
and rule 〈Rec〉 handles recursion unfolding.

4.2 Environmental Labelled Transition System

Figure 6 defines a labelled transition relation between a triple of environments, denoted

(Γ1,Λ1,∆1)
`
−→ (Γ2,Λ2,∆2). It extends the transition systems in [27,26] to higher-order

sessions.

Input Actions are defined by [SRv] and [ShRv] (n session or shared name respectively
n?〈V〉). We require the value V has the same type as name s and a, respectively. Fur-
thermore we expect the resulting type tuple to contain the values that consist with value
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Fig. 6 Labelled Transition Semantics for Typed Environments.

[SRv]
s < dom(∆) Γ;Λ′;∆′ ` V .U

(Γ;Λ;∆ · s :?(U);S )
s?〈V〉
−→ (Γ;Λ ·Λ′;∆ ·∆′ · s : S )

[ShRv]
Γ;∅;∅ ` a . 〈U〉 Γ;Λ′;∆′ ` V .U

(Γ;Λ;∆)
a?〈V〉
−→ (Γ;Λ ·Λ′;∆ ·∆′)

[SSnd]

s < dom(∆) Γ ·Γ′;Λ′;∆′ ` V .U m̃ = m1 . . .mn
Γ′;∅;∆i ` mi .Ui Γ′;∅;∆′i ` mi .U′i Λ′ ⊆ Λ (∆1\

⋃
i∆i) ⊆ (∆ · s : S )

(Γ;Λ;∆ · s :!〈U〉;S )
(ν m̃)s!〈V〉
−→ (Γ ·Γ′;Λ\Λ′; (∆ · s : S ·

⋃
i∆
′
i )\∆

′)

[ShSnd]

Γ ·Γ′ ·a : 〈U〉;Λ′;∆′ ` V .U m̃ = m1 . . .mn
Γ′;∅;∆i ` mi .Ui Γ′;∅;∆′i ` mi .Ui Λ′ ⊆ Λ (∆1\

⋃
i∆i) ⊆ ∆

(Γ ·a : 〈U〉;Λ;∆)
(ν m̃)a!〈V〉
−→ (Γ ·Γ′ ·a : 〈U〉;Λ\Λ′; (∆ ·

⋃
i∆
′
i )\∆

′)

[Sel]
s < dom(∆) j ∈ I

(Γ;Λ;∆ · s : ⊕{li : S i}i∈I)
s⊕l j
−→ (Γ;Λ;∆ · s : S j)

[Bra]
s < dom(∆) j ∈ I

(Γ;Λ;∆ · s : &{li : Ti}i∈I)
s&l j
−→ (Γ;Λ;∆ · s : S j)

[Tau]
∆1 −→ ∆2∨∆1 = ∆2

(Γ;Λ;∆1)
τ
−→ (Γ;Λ;∆2)

V . The condition s < dom(∆) in [SRv] ensures that the dual name s should not be present
in the session environment, since if it were present the only communication that could
take place is the interaction between the two endpoints (using [Tau] below).

Output Actions are defined by [SSnd] and [ShSnd]. Rule [SSnd] states the conditions for
observing action (ν m̃)s!〈V〉 on a type tuple (Γ,Λ,∆ · s : S ). The session environment ∆
with s : S should include the session environment of sent value V , excluding the session
environments of the name n j in m̃ which restrict the scope of value V . Similarly the
linear variable environment Λ′ of V should be included in Λ. Scope extrusion of session
names in m̃ requires that the dual endpoints of m̃ appear in the resulting session environ-
ment. Similarly for shared names in m̃ that are extruded. All free values used for typing
V are subtracted from the resulting type tuple. The prefix of session s is consumed by
the action. Similarly, an output on a shared name is described by rule [ShSnd] where we
require that the name is typed with 〈U〉. Conditions for the output V are identical to
those for rule [SSnd]. We sometimes annotate the output action (ν m̃)n!〈V〉 with the type
of V as (ν m̃)n!〈V : U〉.
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Other Actions Rules [Sel] and [Bra] describe actions for select and branch. The only
requirements for both rules is that the dual endpoint is not present in the session en-
vironment and the action labels are present in the type. Hidden transitions defined by
rule [Tau] do not change the session environment or they follow the reduction on session
environments (Definition 3.6).

Proposition 4.1 (Environment Transition Weakening). Consider the LTS for typing

environments in Figure 6. If (Γ1;Λ1;∆1)
`
7−→ (Γ2;Λ2;∆2) then (Γ2;Λ1;∆1)

`
7−→ (Γ2;Λ2;∆2).

Proof. The proof is by case analysis on the definition of
`
7−→, exploiting the structural

properties (in particular, weakening) of shared environment Γ (cf. Definition 3.4). ut

As a direct consequence of Proposition 4.1 we can always make an observation on
a type environment without observing a change in the shared environment.

Typed Transition System We define a typed labelled transition system over typed pro-
cesses, as a combination of the untyped LTS and the LTS for typed environments (cf.
Figure 5 and 6):

Definition 4.1 (Typed Transition System). We write Γ;∆1 ` P1
`
−→ ∆2 ` P2 whenever

P1
`
−→ P2, (Γ,∅,∆1)

`
−→ (Γ,∅,∆2) and Γ;∅;∆2 ` P2 .�.

We extend to =⇒ and
ˆ̀

=⇒ where we write =⇒ for the reflexive and transitive closure

of −→,
`

=⇒ for the transitions =⇒
`
−→=⇒ and

ˆ̀
=⇒ for

`
=⇒ if ` , τ otherwise =⇒.

4.3 Reduction-Closed, Barbed Congruence

Equivalent processes require a notion of session type confluence, defined over session
environments ∆, following Definition 3.6:

Definition 4.2 (Session Environment Confluence). We denote ∆1
 ∆2 whenever ∃∆
such that ∆1 −→

∗ ∆ and ∆2 −→
∗ ∆.

We define the notion of typed relation over typed processes; it includes properties
common to all the equivalence relations that we are going to define:

Definition 4.3 (Typed Relation). We say that Γ;∅;∆1 ` P1 . � < Γ;∅;∆2 ` P2 . � is a
typed relation whenever:

i) P1 and P2 are closed processes;
ii) ∆1 and ∆2 are balanced; and

iii) ∆1
 ∆2.

We write Γ;∆1 ` P1 < ∆2 ` P2 for Γ;∅;∆1 ` P1 .� < Γ;∅;∆2 ` P2 .�.

Type relations relate only closed processes (i.e., processes with no free variables)
with balanced session environments and the two session environments are confluent.

We define the notions of barb [32] and typed barb:
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Definition 4.4 (Barbs). Let P be a closed process.

1. We write P ↓n if P ≡ (ν m̃)(n!〈V〉.P2 | P3),n < m̃. We write P ⇓n if P −→∗↓n.
2. We write Γ;∅;∆ ` P ↓n if Γ;∅;∆ ` P .� with P ↓n and n < ∆. We write Γ;∅;∆ ` P ⇓n

if P −→∗ P′ and Γ;∅;∆′ ` P′ ↓n.

A barb ↓n is an observable on an output prefix with subject n. Similarly a weak barb ⇓n
is a barb after a number of reduction steps. Typed barbs ↓n (resp. ⇓n) occur on typed
processes Γ;∅;∆ ` P . � where we require that whenever n is a session name, then the
corresponding dual endpoint n is not present in the session type ∆.

To define a congruence relation we define the notion of the context C:

Definition 4.5 (Context). A context C is defined on the grammar:

C ::= − | u!〈V〉.C | u!〈λx.C〉.P | u?(x).C | µX.C | (λx.C)u
| (ν n)C | C | P | P | C | u / l.C | k . {l1 : P1, · · · , li : C, · · · , ln : Pn}

Notation C[P] replaces every hole − in C with P.

A context is a function that takes a process and returns a new process according to the
above syntax.

The first behavioural relation we define is reduction-closed, barbed congruence:

Definition 4.6 (Reduction-closed, Barbed Congruence). Typed relation Γ;∆1 ` P1< ∆2 `

P2 is a barbed congruence whenever:

1. - If P1 −→ P′1 then there exist P′2,∆
′
2 such that P2 −→

∗ P′2 and Γ;∆′1 ` P′1< ∆′2 ` P′2
- If P2 −→ P′2 then there exist P′1,∆

′
1 such that P1 −→

∗ P′1 and Γ;∆′1 ` P′1< ∆′2 ` P′2
2. - If Γ;∅;∆1 ` P1 ↓s then Γ;∅;∆2 ` P2 ⇓s.

- If Γ;∅;∆2 ` P2 ↓s then Γ;∅;∆1 ` P1 ⇓s.
3. ∀C, then there exist ∆′′1 ,∆

′′
2 such that Γ;∆′′1 ` C[P1]< ∆′′2 ` C[P2]

The largest such congruence is denoted with �.

Reduction-closed, barbed congruence is closed under reduction semantics and pre-
serves barbs under any context, i.e., no barb observer can distinguish between two
related processes.

4.4 Context Bisimulation

The second behavioural relation we define is the labelled characterisation of reduction-
closed, barbed congruence, called context bisimulation [46]:

Definition 4.7 (Context Bisimulation). Typed relation < is a context bisimulation if
for all Γ;∆1 ` P1 < ∆2 ` P2,

1. Whenever Γ;∆1 ` P1
(ν m̃1)n!〈V1〉
−→ ∆′1 ` P2 there exist Q2, V2, and ∆′2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2〉

=⇒ ∆′2 ` Q2

and ∀R with {x} = fv(R), then

Γ;∆′′1 ` (ν m̃1)(P2 | R{V1/x})< ∆′′2 ` (ν m̃2)(Q2 | R{V2/x}).
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2. For all Γ;∆1 ` P1
`
−→ ∆′1 ` P2 such that ` , (ν m̃)n!〈V〉, there exist Q2 and ∆′2 such

that

Γ;∆2 ` Q1
ˆ̀

=⇒ ∆′2 ` Q2

and Γ;∆′1 ` P2 < ∆′2 ` Q2.
3. The symmetric cases of 1 and 2.

The Knaster-Tarski theorem ensures that the largest context bisimulation exists, it is
called context bisimilarity and is denoted by ≈.

4.5 Higher-Order Bisimulation and Characteristic Bisimulation (≈H / ≈C)

In the general case, contextual bisimulation is a hard relation to compute due to:

i) the universal quantifier over contexts in the output case (Clause 1 in Definition 4.7);
and

ii) a higher order input prefix can observe infinitely many different input actions, since
infinitely many different processes can match the session type of an input prefix.

To reduce the burden of the contextual bisimulation we take the following two steps:

(a) we replace Clause 1 in Definition 4.7 with a clause involving a more tractable pro-
cess closure; and

(b) we refine the transition rule for input in the LTS so to define a bisimulation relation
without observing infinitely many actions on the same input prefix.

Trigger Processes with Session Communication. Concerning (a), we exploit session
types. First observe that closure R{V/x} in Clause 1 in Definition 4.7 is context bisimilar
to the process:

P = (ν s)((λz.z?(x).R) s | s!〈V〉.0) (1)

In fact, we do have P ≈ R{V/x}, since application and session transitions are determin-
istic. Now let us consider process TV below, where t is a fresh name:

TV = t?(x).(ν s)(x s | s!〈V〉.0) (2)

Process TV can input the class of abstractions λz.z?(x).R and can simulate the closure
of (1):

TV
t?〈λz.z?(x).R〉
−→ P ≈ R{V/x} (3)

Processes such as TV input a value at a fresh name; we will use this class of trigger
processes to define a refined bisimilarity without the demanding output Clause 1 in
Definition 4.7. Given a fresh name t, we write:

t⇐ V = t?(x).(ν s)(x s | s!〈V〉.0)

We note that in contrast to previous approaches [50,22] our trigger processes do not use
recursion or replication. This is crucial to preserve linearity of session names.
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Characteristic Processes and Values. Concerning point (b), we limit the possible input
abstractions λx.P by exploiting session types. We introduce the key concept of charac-
teristic process/value, which is the simplest process/value that can inhabit a type. As an
example, consider S =?(S 1→�); !〈S 2〉;end. Type S is a session type that first inputs an
abstraction (from type S 1 to a process), then outputs a value of type S 2, and terminates.
Then, the following process:

Q = u?(x).(u!〈s2〉.0 | x s1)

is a characteristic process for S along name u. In fact, it is easy to see that Q is well-
typed by session type S . The following definition formalizes this intuition.

Definition 4.8 (Characteristic Process). Let name u and type U. Then we define the
characteristic process: [(U)]u and the characteristic value [(U)]c as:

[(?(U);S )]u def= u?(x).([(S )]u | [(U)]x)

[(!〈U〉;S )]u def= u!〈[(U)]c〉.[(S )]u

[(⊕{l : S })]u def= u / l.[(S )]u

[(&{li : S i}i∈I)]u def= u . {li : [(S i)]u}i∈I

[(t)]u def= Xt

[(µt.S )]u def= µXt.[(S )]u

[(end)]u def= 0

[(〈S 〉)]u def= u!〈[(S )]c〉.0
[(〈L〉)]u def= u!〈[(L)]c〉.0

[(C→�)]x def= [(C(�)]x def= x [(C)]c

[(S )]c
def
= s s fresh

[(〈S 〉)]c
def
= [(〈L〉)]c

def
= a a fresh

[(C→�)]c
def
= [(C(�)]c

def
= λx. [(C)]x

Proposition 4.2. Characteristic processes and values are inhabitants of their associ-
ated type:

• Γ;∅;∆ ·u : S ` [(S )]u .�
• U = 〈S 〉 or U = 〈L〉 implies Γ ·u : U;∅;∆ ` [(U)]u .�
• Γ;∅;∆ ` [(U)]c .U

Proof. By induction on the definition of [(S )]u and [(U)]u. ut

Corollary 4.1. If Γ;∅;∆ ` [(C)]u .� then Γ;∅;∆ ` u .C.

We use the characteristic value [(U)]c to limit input transitions. Following the same
reasoning as (1)–(3), we can define an alternative trigger process, called characteristic
trigger process with type U to replace Clause 1 in Definition 4.7.

t⇐ V : U def
= t?(x).(ν s)([(?(U);end)]s | s!〈V〉.0) (4)

Thus, in contrast to the trigger process in (2), the characteristic trigger process in (4)
does not involve a higher-order communication on t.

To refine the input transition system, we need to observe an additional value:

λx. t?(y).(y x)

called the trigger value. This is necessary, because it turns out that a characteristic value
alone as the observable input is not enough to define a sound bisimulation. Roughly
speaking, the trigger value is used to observe/simulate application processes.

The intuition for usage of the trigger is demonstrated in the next example.
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Example 4.1. First we demonstrate that observing a characteristic value input alone is
not sufficient to define a sound bisimulation closure. Consider typed processes P1,P2:

P1 = s?(x).(x s1 | x s2) P2 = s?(x).(x s1 | s2?(y).0) (5)

with
Γ;∅;∆ · s :?((?(C);end)→�);end ` Pi .� (i ∈ {1,2}).

If the above processes input and substitute over x the characteristic value

[((?(C);end)→�)]c = λx. x?(y).0

then both processes evolve into:

Γ;∅;∆ ` s1?(y).0 | s2?(y).0 .�

therefore becoming context bisimilar. However, the processes in (5) are clearly not con-
text bisimilar: there exist many input actions which may be used to distinguish them.
For example, if P1 and P2 input

λx. (ν s3)(a!〈s3〉.x?(y).0)

with Γ;∅;∆ ` s .end, then their derivatives are not bisimilar.
Observing only the characteristic value results in an over-discriminating bisimula-

tion. However, if a trigger value, λx. t?(y).(y x) is received on s, then we can distinguish
processes in (5):

Γ;∆ ` P1
s?〈λx. t?(y).(y x)〉

=⇒ ∆′ ` t?(x).(x s1) | t?(x).(x s2)

Γ;∆ ` P2
s?〈λx. t?(y).(y x)〉

=⇒ ∆′′ ` t?(x).(x s1) | s2?(y).0

One question that arises here is whether the trigger value is enough to distinguish
two processes, hence no need of characteristic values as the input. This is not the case
since the trigger value alone also results in an over-discriminating bisimulation relation.
In fact the trigger value can be observed on any input prefix of any type. For example,
consider the following processes:

Γ;∅;∆ ` (ν s)(n?(x).(x s) | s!〈λx.P〉.0) .� (6)
Γ;∅;∆ ` (ν s)(n?(x).(x s) | s!〈λx.Q〉.0) .� (7)

if processes in (6)/(7) input the trigger value, we obtain processes:

Γ;∅;∆′ ` (ν s)(t?(x).(x s) | s!〈λx.P〉.0) .�
Γ;∅;∆′ ` (ν s)(t?(x).(x s) | s!〈λx.Q〉.0) .�

thus we can easily derive a bisimulation closure if we assume a bisimulation definition
that allows only trigger value input.

But if processes in (6)/(7) input the characteristic value λz.z?(x).(xm), then they
would become:

Γ;∅;∆ ` (ν s)(s?(x).(xm) | s!〈λx.P〉.0) ≈ ∆ ` P{m/x}

Γ;∅;∆ ` (ν s)(s?(x).(xm) | s!〈λx.Q〉.0) ≈ ∆ ` Q{m/x}

which are not bisimilar if P{m/x} 6≈H Q{m/x}.
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We now define the refined typed LTS. The new LTS is defined by considering a tran-
sition rule for input in which admitted values are trigger or characteristic values: We
formalise the restricted input action with the definition of a new environment transition
relation:

(Γ,Λ1,∆1)
`
7−→ (Γ,Λ2,∆2)

The new rule is defined on top of the rules in Figure 6:

Definition 4.9 (Refined Input Environment LTS).

[RRv]
(Γ1;Λ1;∆1)

n?〈V〉
−→ (Γ2;Λ2;∆2)

(V ≡ λz. t?(x).(xz)∧ t fresh)
∨ (V ≡ [(U)]c)∨V = m

(Γ1;Λ1;∆1)
n?〈V〉
7−→ (Γ2;Λ1;∆2)

Rule [RRv] refines the input action to carry only a characteristic value (fresh name or
abstraction) or a trigger value on a fresh name t. This rule is defined on top of rules [SRv]

and [ShRv] in Figure 6. The new environment transition system
`
7−→ uses rule [RRv]

as input rule. All other defining cases of environment LTS
`
7−→ remain the same as

in Figure 6.

The new typed relation derived from the
`
7−→ environment LTS is defined as:

Definition 4.10 (Restricted Typed Transition). We write Γ;∆1 ` P1
`
7−→ ∆2 ` P2 when-

ever P1
`
−→ P2, (Γ,∅,∆1)

`
7−→ (Γ,∅,∆2) and Γ;∅;∆2 ` P2 .�.

We extend to �=⇒ and
ˆ̀

�=⇒ in the standard way.

Lemma 4.1 (Invariant). If Γ;∆1 ` P1
`
7−→ ∆2 ` P2 then Γ;∆1 ` P1

`
−→ ∆2 ` P2.

Proof. The proof is straightforward from the definition of rule [RRv].

The next definition formalises the notion of a trigger process.

Definition 4.11 (Trigger Process). Let t, V, and U be a name, a value, and a type,
respectively. We have:

Trigger Process t⇐ V def
= t?(x).(ν s)(x s | s!〈V〉.0)

Characteristic Trigger Process t⇐ V : U def
= t?(x).(ν s)([(?(U);end)]s | s!〈V〉.0)

The Two Bisimulations. We now define higher-order bisimulation, a more tractable
bisimulation for HO and HOπ. The two bisimulations differ on the fact that they use the
different trigger processes: t⇐ V and t⇐ V : U.

Definition 4.12 (Higher-Order Bisimulation). Typed relation < is a higher-Order
bisimulation if for all Γ;∆1 ` P1 < ∆2 ` Q1,
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1. Whenever Γ;∆1 ` P1
(ν m̃1)n!〈V1〉
7−→ ∆′1 ` P2 there exist Q2, V2, ∆′2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2〉
�=⇒ ∆′2 ` Q2

and, for a fresh t,

Γ;∆′′1 ` (ν m̃1)(P2 | t⇐ V1)< ∆′′2 ` (ν m̃2)(Q2 | t⇐ V2).

2. For all Γ;∆1 ` P1
`
7−→ ∆′1 ` P2 such that ` , (ν m̃)n!〈V〉, there exist ∃Q2 and ∆′2 such

that

Γ;∆1 ` Q1
ˆ̀

�=⇒ ∆′2 ` Q2

and Γ;∆′1 ` P2 < ∆′2 ` Q2.
3. The symmetric cases of 1 and 2.

The Knaster-Tarski theorem ensures that the largest higher-order bisimulation exists; it
is called higher-order bisimilarity and is denoted by ≈H .

The higher-order bisimulation definition uses higher order input guarded triggers, thus
it cannot be used as an equivalence relation for the π sub-calculus. An alternative defini-
tion of the bisimulation—based on characteristic output triggers—solves this problem.

Definition 4.13 (Characteristic Bisimulation). Typed relation < is a characteristic
bisimulation if whenever Γ;∆1 ` P1 < ∆2 ` Q1 implies:

1. Whenever Γ;∆1 ` P1
(ν m̃1)n!〈V1:U〉
7−→ ∆′1 ` P2 there exist Q2, V2, and ∆′2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2:U〉

�=⇒ ∆′2 ` Q2

and, for a fresh t,

Γ;∆′′1 ` (ν m̃1)(P2 | t⇐ V1 : U)< ∆′′2 ` (ν m̃2)(Q2 | t⇐ V2 : U).

2. For all Γ;∆1 ` P1
`
7−→ ∆′1 ` P2 such that ` , (ν m̃)n!〈V〉, there exist ∃Q2 and ∆′2 such

that

Γ;∆1 ` Q1
ˆ̀
�=⇒∆′2 ` Q2

and Γ;∆′1 ` P2 < ∆′2 ` Q2.
3. The symmetric cases of 1 and 2.

The Knaster-Tarski theorem ensures that the largest bisimulation exists; it is called
characteristic bisimilarity and is denoted by ≈C .

The next result clarifies our choice of restricting higher-order input actions with
input triggers and characteristic processes: if two processes P and Q are bisimilar under
the substitution of the characteristic abstraction and the trigger input, then P and Q are
bisimilar under any abstraction substitution.
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Lemma 4.2 (Process Substitution). If

1. Γ;∆′1 ` P{λz. t?(y).(yz)/x} ≈H ∆′2 ` Q{λz. t?(y).(yz)/x}, for some fresh t.
2. Γ;∆′′1 ` P{[(U)]c/x} ≈H ∆′′2 ` Q{[(U)]c/x}, for some U.

then ∀R such that fv(R) = z

Γ;∆1 ` P{λz.R/x} ≈H ∆2 ` Q{λz.R/x}

Proof. The details of the proof can be found in Lemma B.3 (Page 58). ut

We now state our main theorem: typed bisimilarities collapse. The following the-
orem justifies our choices for the bisimulation relations, since they coincide between
them and they also coincide with reduction closed, barbed congruence.

Theorem 4.1 (Coincidence). Relations ≈,≈C ,≈H and � coincide.

Proof. The full details of the proof are in Appendix B.1. There, the proof is split into a
series of lemmas:

− Lemma B.1 establishes ≈H = ≈C .
− Lemma B.4 exploits the process substitution result (Lemma 4.2) to prove that ≈H⊆≈.
− Lemma B.5 shows that ≈ is a congruence which implies ≈⊆�.
− Lemma B.8 shows that �⊆≈H , using the technique developed in [18].

The formulation of input triggers in the bisimulation relation allows us to prove the
latter result without using a matching operator. ut

We now define internal deterministic transitions as those associated to session syn-
chronizations or to β-reductions:

Definition 4.14 (Deterministic Transition). Let Γ;∅;∆ ` P.� be a balanced HOπ pro-
cess. Transition Γ;∆ ` P

τ
7−→ ∆′ ` P′ is called:

− Session transition whenever the untyped transition P
τ
−→ P′ is derived using rule 〈Tau〉

(where subj(`1) and subj(`2) in the premise are dual endpoints), possibly followed
by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.

− β−transition whenever the untyped transition P
τ
−→ P′ is derived using rule 〈App〉,

possibly followed by uses of 〈Alpha〉, 〈Res〉, 〈Rec〉, or 〈ParL〉/〈ParR〉.

We write Γ;∆ ` P
τs
7−→∆′ ` P′ and Γ;∆ ` P

τβ
7−→∆′ ` P′ to denote session and β-transitions,

resp. Also, Γ;∆ ` P
τd
7−→ ∆′ ` P′ denotes either a session transition or a β−transition.

Deterministic transitions imply the τ-inertness property, which is a property that
ensures behavioural invariance on deterministic transitions.

Proposition 4.3 (τ-inertness). Let Γ;∅;∆ ` P .� be a balanced HOπ process. Then

– Γ;∆ ` P
τd
7−→ ∆′ ` P′ implies Γ;∆ ` P ≈H ∆′ ` P′.
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– Γ;∆ ` P
τd
�=⇒ ∆′ ` P′ implies Γ;∆ ` P ≈H ∆′ ` P′.

Proof. The proof for Part 1 relies on the fact that processes of the
form Γ;∅;∆ ` s!〈V〉.P1 | s?(x).P2 cannot have any typed transition observables (for both
s and s are defined in ∆) and the fact that bisimulation is a congruence. See details in
Appendix B.2 (Page 70). The proof for Part 2 is straightforward from Part 1. ut

Processes that do not use shared names are inherently deterministic, and so they
enjoy τ-inertness (in the sense of [17]).

Corollary 4.2 (C−sh τ-inertness). Let Γ;∅;∆ ` P .� be an C−sh process.

– Γ;∆ ` P
τ
7−→ ∆′ ` P′ if and only if Γ;∆ ` P

τd
7−→ ∆′ ` P′.

– Γ;∆ ` P
τd
7−→ ∆′ ` P′ implies Γ;∆ ` P ≈H ∆′ ` P′.

Lemma 4.3 (Up-to Deterministic Transition). Let Γ;∆1 ` P1 < ∆2 ` Q1 such that if
whenever:

1. ∀(ν m̃1)n!〈V1〉 such that Γ;∆1 ` P1
(ν m̃1)n!〈V1〉
7−→ ∆3 ` P3 implies that ∃Q2,V2 such that

Γ;∆2 ` Q1
(ν m̃2)n!〈V2〉
�=⇒ ∆′2 ` Q2

and
Γ;∆3 ` P3

τd
�=⇒ ∆′1 ` P2

and for fresh t:

Γ;∆′′1 ` (ν m̃1)(P2 | t⇐ V1)< ∆′′2 ` (ν m̃2)(Q2 | t⇐ V2)

2. ∀` , (ν m̃)n!〈V〉 such that Γ;∆1 ` P1
`
7−→ ∆3 ` P3 implies that ∃Q2 such that

Γ;∆1 ` Q1
ˆ̀
�=⇒∆′2 ` Q2

and
Γ;∆3 ` P3

τd
�=⇒ ∆′1 ` P2

and Γ;∆′1 ` P2 < ∆′2 ` Q2
3. The symmetric cases of 1 and 2.

Then< ⊆ ≈H .

Proof. The proof is easy by considering the closure

<

τd
�=⇒ = {Γ;∆′1 ` P2,∆

′
2 ` Q1 | Γ;∆1 ` P1 < ∆′2 ` Q1,Γ;∆1 ` P1

τd
�=⇒ ∆′1 ` P2}

We verify that<
τd
�=⇒ is a bisimulation with the use of Proposition 4.3. ut
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5 Typed Encodings

This section defines the formal notion of encoding, extending to a typed setting existing
criteria for untyped processes (as in, e.g. [36,37,38,16,28,54]). We first define a typed
calculus parameterised by a syntax, operational semantics, and typing.

Definition 5.1 (Typed Calculus). A typed calculus L is a tuple:

〈C,T ,
`
7−→,≈,`〉

where C and T are sets of processes and types, respectively; and
`
7−→, ≈, and ` denote

a transition system, a typed equivalence, and a typing system for C, respectively.

Our notion of encoding considers a mapping on processes, types, and transition labels.

Definition 5.2 (Typed Encoding). Let Li = 〈Ci,Ti,
`
7−→i,≈i,`i〉 (i = 1,2) be typed cal-

culi, and letAi be the set of labels used in relation
`
7−→i. Given mappings [[·]] : C1→C2,

(〈·〉) : T1→T2, and {{·}} :A1→A2, we write
〈
[[·]], (〈·〉), {{·}}

〉
:L1→L2 to denote the typed

encoding of L1 into L2.

We will often assume that (〈·〉) extends to typing environments as expected. This way,
e.g., (〈∆ ·u : S 〉) = (〈∆〉) ·u : (〈S 〉).

We introduce two classes of typed encodings, which serve different purposes. Both
consist of syntactic and semantic criteria proposed for untyped processes [37,16,28],
here extended to account for (higher-order) session types. First, for stating stronger
positive encodability results, we define the notion of precise encodings. Then, with the
aim of proving strong non-encodability results, precise encodings are relaxed into the
weaker minimal encodings.

We first state the syntactic criteria. Let σ denote a substitution of names for names
(a renaming, in the usual sense). Given environments ∆ and Γ, we write σ(∆) and σ(Γ)
to denote the effect of applying σ on the domains of ∆ and Γ (clearly, σ(Γ) concerns
only shared names in Γ: process and recursion variables in Γ are not affected by σ).

Definition 5.3 (Syntax Preserving Encoding). We say that the typed encoding
〈
[[·]], (〈·〉), {{·}}

〉
:

L1→L2 is syntax preserving if it is:

1. Homomorphic wrt parallel, if (〈Γ〉);∅; (〈∆1 ·∆2〉) `1 [[P1 | P2]] .� then
(〈Γ〉);∅; (〈∆1〉) · (〈∆2〉) `2 [[P1]] | [[P2]] .�.

2. Compositional wrt restriction, if (〈Γ〉);∅; (〈∆〉) `1 [[(ν n)P]] .� then
(〈Γ〉);∅; (〈∆〉) `2 (ν n)[[P]] .�.

3. Name invariant, if (〈σ(Γ)〉);∅; (〈σ(∆)〉) `1 [[σ(P)]] .� then
σ((〈Γ〉));∅;σ((〈∆〉)) `2 σ([[P]]) .�, for any injective renaming of names σ.

Homomorphism wrt parallel composition (used in, e.g., [37,38]) expresses that encod-
ings should preserve the distributed topology of source processes. This criteria is ap-
propriate for both encodability and non encodability results; in our setting, it admits an
elegant formulation, also induced by rules for typed composition. Compositionality wrt
restriction is also naturally supported by typing and turns out to be useful in our encod-
ability results (see the following section). Our name invariance criteria follows the one
given in [16,28]. Next we define semantic criteria for typed encodings.
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Definition 5.4 (Semantic Preserving Encoding). Let Li = 〈Ci,Ti,
`
7−→,≈i,`i〉 (i = 1,2)

be typed calculi. We say that
〈
[[·]], (〈·〉), {{·}}

〉
:L1→L2 is a semantic preserving encoding

if it satisfies the properties below. Given a label ` , τ, we write subj(`) to denote the
subject of the action.

1. Type Preservation: if Γ;∅;∆ `1 P .� then (〈Γ〉);∅; (〈∆〉) `2 [[P]] .�, for any P in C1.
2. Subject preserving: if subj(`) = u then sub({{`}}) = u.
3. Operational Correspondence: If Γ;∅;∆ `1 P .� then

(a) Completeness: If Γ;∆ `1 P
`1
7−→1 ∆

′ `1 P′ then ∃`2,Q,∆′′ s.t.

(i) (〈Γ〉); (〈∆〉) `2 [[P]]
`2
�=⇒2 (〈∆′′〉) `2 Q, (ii) `2 = {{`1}}, and

(iii) (〈Γ〉); (〈∆′′〉) `2 Q≈2(〈∆′〉) `2 [[P′]].

(b) Soundness: If (〈Γ〉); (〈∆〉) `2 [[P]]
`2
�=⇒2 (〈∆′′〉) `2 Q then ∃`1,P′,∆′ s.t.

(i) Γ;∆ `1 P
`1
7−→1 ∆

′ `1 P′, (ii) `2 = {{`1}}, and (iii) (〈Γ〉); (〈∆′〉) `2 [[P′]]≈2(〈∆′′〉) `2 Q.
4. Full Abstraction:

Γ;∆1 `1 P ≈1 ∆2 `1 Q if and only if (〈Γ〉); (〈∆1〉) `2 [[P]] ≈2 (〈∆2〉) `2 [[Q]].

Type preservation is a distinguishing criteria in our notion of encoding: it enables us
to focus on encodings which retain the communication structures denoted by (session)
types. The other semantic criteria build upon analogous definitions in the untyped set-
ting, as we explain now. Operational correspondence, standardly divided into complete-
ness and soundness criteria, is based in the formulation given in [16,28]. Soundness
ensures that the source process is mimicked by its associated encoding; completeness
concerns the opposite direction. Rather than reductions, completeness and soundness
rely on the typed LTS of Definition 4.10; labels are considered up to mapping {{·}},
which offers flexibility when comparing different subcalculi of HOπ. We require that {{·}}
preserves communication subjects, in accordance with the criteria in [28]. It is worth
stressing that the operational correspondence statements given in the next section for
our encodings are tailored to the specifics of each encoding, and so they are actually
stronger than the criteria given above. Finally, following [48,38,57], we consider full
abstraction as an encodability criteria: this results into stronger encodability results.
From the criteria in Definition 5.3 and Definition 5.4 we have the following derived
criteria:

Proposition 5.1 (Derived Criteria). Let
〈
[[·]], (〈·〉), {{·}}

〉
: L1→L2 be a typed encoding.

Suppose the encoding is both operational complete (cf. Definition 5.4-3(a)) and sub-
ject preserving (cf. Definition 5.4-2). Then, it is also barb preserving, i.e., Γ;∆ `1 P ↓n
implies (〈Γ〉); (〈∆〉) `2 [[P]] ⇓n.

Proof. The proof follows from the definition of barbs, operational completeness, and
subject preservation. ut

We may now define precise and minimal typed criteria:

Definition 5.5 (Typed Encodings: Precise and Minimal). We say that the typed en-
coding

〈
[[·]], (〈·〉), {{·}}

〉
:L1→L2 is
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(i) precise, if it is both syntax and semantic preserving (cf. Definition 5.3 and Defini-
tion 5.4).

(ii) minimal, if it is syntax preserving (cf. Definition 5.3), and operational complete
(cf. Definition 5.4-3(a)).

Precise encodings offer more detailed criteria and used for positive encodability
results (Section 6). In contrast, minimal encodings contains only some of the criteria of
precise encodings: this reduced notion will be used for the negative result in Section 7.

Further we have:

Proposition 5.2 (Composability of Precise Encodings). Let
〈
[[·]]1, (〈·〉)1, {{·}}1

〉
: L1 →

L2 and
〈
[[·]]2, (〈·〉)2, {{·}}2

〉
: L2→L3 be two precise typed encodings. Then their compo-

sition, denoted
〈
[[·]]2 ◦ [[·]]1, (〈·〉)2 ◦ (〈·〉)1, {{·}}2 ◦ {{·}}1

〉
:L1→L3 is also a precise encoding.

Proof. Straightforward application of the definition of each property, with the left-to-
right direction of full abstraction being crucial. ut

In Section 6 we consider the following concrete instances of typed calculi (cf. Def-
inition 5.1):

Definition 5.6 (Concrete Typed Calculi). We define the following typed calculi:

LHOπ = 〈HOπ,T1,
`
7−→,≈H ,`〉

LHO = 〈HO,T2,
`
7−→,≈H ,`〉

Lπ = 〈π,T3,
`
7−→,≈C ,`〉

where: T1, T2, and T3 are sets of types of HOπ, HO, and π, respectively; the typing `
is defined in Figure 4; LTSs are as in Definition 4.10; ≈H is as in Definition 4.12; ≈C is
as in Definition 4.13.

6 Positive Expressiveness Results

In this section we present a study of the expressiveness of HOπ and its subcalculi. We
present two encodability results:

1. The higher-order name passing communications with recursions (HOπ) into the
higher-order communication without name-passing nor recursions (HO) (Section 6.1).

2. HOπ into the first-order name-passing communication with recursions (π) (Sec-
tion 6.2).

In each case we show that the encoding is precise.
We often omit H and C from ≈H and ≈C for simplicity of the notations.

Remark 6.1 (Polyadic HOπ). We can assume a semantic preserving encoding from the
polyadic HOπ to the monadic HOπ. Polyadic HOπ assumes a polyadic extension of the
HOπ semantics that defines values as V ::= ũ | λx̃.P and input prefix as n?(x̃).P. See
Section 8.2 for the full definition of polyadic HOπ.
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6.1 Encoding HOπ into HO

We show that the subcalculus HO is expressive enough to represent the the full HOπ
calculus.

The main challenge is to encode (1) name passing and (2) recursions. Name passing
involves packing a name value as an abstraction send it and it and then substitute on
the receiving using a name appication. The encoding on the recursion semantics are
more complex; A process is encoded as an abstraction with no free names (i.e a shared
abstraction). We then use higher-order passing to pass the process and duplicate the
process. One copy of the process is used to reconstitute the original process and the
other is used to enable another duplicator procedure. We handle the transformation of
a process into a linear abstraction with the definition of an auxiliary mapping from
processes with free names to processes without free names (but with free variables)
(Definition 6.2). We first require an auxiliary definition:

Definition 6.1. Let (|| · ||) : 2N −→Vω be a map of sequences lexicographically ordered
names to sequences of variables, defined inductively as:

(||ε||) = ε (||n · m̃||) = xn · (||m̃||)

Given a process P, we write ofn(P) to denote the sequence of free names of P,
lexicographically ordered.

The following auxiliary mapping transforms processes with free names into abstrac-
tions and it is used in Definition 6.3.

Definition 6.2. Let σ be a set of session names. Define
⌊⌊
·
⌋⌋
σ : HOπ → HOπ as in

Figure 7.

Given a process P with fn(P) = m1, · · · ,mn, we are interested in its associated
(polyadic) abstraction, which is defined as λx1, · · · , xn.

⌊⌊
P
⌋⌋
∅, where (||m j||) = x j, for all

j ∈ {1, . . . ,n}. This transformation from processes into abstractions can be reverted by
using abstraction and application with an appropriate sequence of session names:

Proposition 6.1. Let P be a HOπ process with ñ = ofn(P). Also, suppose x̃ = (||ñ||). Then
P ≡ x ñ{λx̃.

⌊⌊
P
⌋⌋
∅/x}.

Proof. The proof is an easy induction on the map
⌊⌊

P
⌋⌋
∅. We show a case since other

cases are similar.
- Case:

⌊⌊
n!〈m〉.P

⌋⌋
∅ = xn!〈xm〉.

⌊⌊
P
⌋⌋
∅

We rewrite substitution as: x ñ{λx̃. xn!〈ym〉.
⌊⌊

P
⌋⌋
∅/x} ≡ (xn!〈ym〉.P){x̃/ñ}

If consider that xn,ym ∈ (||ñ||) then from the definition of (|| · ||) we get that n,m ∈ ñ. Fur-
thermore by the fact that ñ and (||ñ||) are ordered, substitution becomes: n!〈m〉.

⌊⌊
P
⌋⌋
∅{

x̃/ñ}.
The rest of the cases are similar. ut

We are now ready to define the encoding of HOπ into strict process-passing. Note
that we assume polyadicity in abstraction and application. Given a session environment
∆= {n1 : S 1, . . . ,nm : S m}, in the following definition we write S̃ ∆ to stand for S 1, . . . ,S m.
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Fig. 7 The auxiliary map (cf. Definition 6.2) used in the encoding of HOπ into HO (Def-
inition 6.3). ⌊⌊

(ν n)P
⌋⌋
σ ::= (ν n)

⌊⌊
P
⌋⌋
σ·n⌊⌊

n!〈λx.Q〉.P
⌋⌋
σ ::=

{
xn!〈λx.

⌊⌊
Q
⌋⌋
σ〉.

⌊⌊
P
⌋⌋
σ n < σ

n!〈λx.
⌊⌊

Q
⌋⌋
σ〉.

⌊⌊
P
⌋⌋
σ n ∈ σ⌊⌊

n?(X).P
⌋⌋
σ ::=

{
xn?(X).

⌊⌊
P
⌋⌋
σ n < σ

n?(X).
⌊⌊

P
⌋⌋
σ n ∈ σ⌊⌊

n / l.P
⌋⌋
σ ::=

{
xn / l.

⌊⌊
P
⌋⌋
σ n < σ

n / l.
⌊⌊

P
⌋⌋
σ n ∈ σ⌊⌊

n . {li : Pi}i∈I
⌋⌋
σ ::=

{
xn . {li :

⌊⌊
Pi

⌋⌋
σ}i∈I n < σ

n . {li :
⌊⌊

Pi
⌋⌋
σ}i∈I n ∈ σ⌊⌊

xn
⌋⌋
σ ::=

{
x xn n < σ
xn n ∈ σ⌊⌊

(λx.P)n
⌋⌋
σ ::=

{
(λx.

⌊⌊
P
⌋⌋
σ) xn n < σ

(λx.
⌊⌊

P
⌋⌋
σ)n n ∈ σ⌊⌊

0
⌋⌋
σ ::= 0⌊⌊

P | Q
⌋⌋
σ ::=

⌊⌊
P
⌋⌋
σ |

⌊⌊
Q
⌋⌋
σ

Definition 6.3 (Encoding HOπ into HO). Let f be a function from recursion variables
to sequences of name variables. Define the typed encoding

〈
[[·]]1

f , (〈·〉)
1, {{·}}1

〉
: LHOπ →

LHO, where mappings [[·]]1, (〈·〉)1, {{·}}1 are as in Figure 8. We assume that the mapping
(〈·〉)1 on types is extended to session environments ∆ and shared environments Γ as fol-
lows:

(〈∆ · s : S 〉)1 = (〈∆〉)1 · s : (〈S 〉)1

(〈Γ ·u : 〈S 〉〉)1 = (〈Γ〉)1 ·u : 〈(〈S 〉)1〉

(〈Γ ·u : 〈L〉〉)1 = (〈Γ〉)1 ·u : 〈(〈L〉)1〉

(〈Γ ·X : ∆〉)1 = (〈Γ〉)1 · x : (S̃ ∆ , S ∗)→� (where S ∗ = µt.?((S̃ ∆ , t)→�);end)

Note that ∆ in X : ∆ is mapped to a non-tail recursive session type. Non-tail recursive
session types have been studied in [6,5]; to our knowledge, this is the first application
in the context of higher-order session types. For a simplicity of the presentation, we
use the polyadic name abstraction and passing. Polyadic semantics will be formally
encoded into HO in Section 8.2.
We explain the mapping in Figure 6.3, focusing on name passing ([[u!〈w〉.P]]1

f and
[[u?(x).P]]1

f ), and recursion ([[µX.P]]1
f and [[X]]1

f ).

Name passing A name w is being passed as an input guarded abstraction; the ab-
straction receives a higher-order value and continues with the application of w over the
received higher-order value. On the receiver side u?(x).P the encoding realises a mech-
anism that i) receives the input guarded abstraction, then ii) applies it on a fresh session
endpoint s, and iii) uses the dual endpoint s to send the continuation P as the abstraction
λx.P. Then name substitution is achieved via name application.
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Fig. 8 Typed encoding of HOπ into HO (cf. Defintion 6.3).

Terms
[[u!〈v〉.P]]1

f
def
= u!〈λz. z?(x).(xv)〉.[[P]]1

f [[u?(k).Q]]1
f
def
= u?(x).(ν s)(x s | s!〈λx. [[Q]]1

f 〉.0)

[[u!〈λx.Q〉.P]]1
f
def
= u!〈λx. [[Q]]1

f 〉.[[P]]1
f [[u?(x).P]]1

f
def
= u?(x).[[P]]1

f

[[µX.P]]1
f
def
= (ν s)(s?(x).[[P]]1

f ,{X→ñ} | s!〈λ((||ñ||),y). y?(zX).
⌊⌊

[[P]]1
f ,{X→ñ}

⌋⌋
∅〉.0) ñ = ofn(P)

[[X]]1
f
def
= (ν s)(zX (ñ, s) | s!

〈
λ((||ñ||),y). zX ((||ñ||),y)

〉
.0) ñ = f (X)

[[s / l.P]]1
f
def
= s / l.[[P]]1

f [[s . {li : Pi}i∈I]]1
f
def
= s . {li : [[Pi]]1

f }i∈I

[[xu]]1
f
def
= xu [[(λx.P)u]]1

f
def
= (λx. [[P]]1

f )u

[[P | Q]]1
f
def
= [[P]]1

f | [[Q]]1
f [[(ν n)P]]1

f
def
= (ν n)[[P]]1

f

[[0]]1
f
def
= 0

Types

(〈C〉)1
v
def
=

{
(?((〈C〉)1(�);end)(� if C = S
(?((〈C〉)1→�);end)(� otherwise

(〈C(�〉)1
v
def
= (〈C〉)1(� (〈C→�〉)1

v
def
= (〈C〉)1→�

(〈〈S 〉〉)1 def= 〈(〈S 〉)1〉 (〈〈L〉〉)1 def= 〈(〈L〉)1
v〉

(〈!〈U〉;S 〉)1 def= !〈(〈U〉)v〉; (〈S 〉)1 (〈?(U);S 〉)1 def= ?((〈U〉)v); (〈S 〉)1

(〈⊕{li : S i}i∈I〉)1 def= ⊕{li : (〈S i〉)1}i∈I (〈&{li : S i}i∈I〉)1 def= &{li : (〈S i〉)1}i∈I

(〈t〉)1 def= t (〈µt.S 〉)1 def= µt.(〈S 〉)1

(〈end〉)1 def= end

Labels
{{(ν m̃1)n!〈m〉}}1 def= (ν m̃1)n!〈λz. z?(x).xm〉 {{n?〈m〉}}1 def= n?〈λz. z?(x).xm〉

{{(ν m̃)n!〈λx.P〉}}1 def= (ν m̃)n!〈λx. [[P]]1
∅
〉 {{n?〈λx.P〉}}1 def= n?〈λx. [[P]]1

∅
〉

{{n⊕ l}}1 def= n⊕ l {{n&l}}1 def= n&l

{{τ}}1
def
= τ

Recursion The encoding of a recursive process µX.P is delicate, for it must preserve
the linearity of session endpoints. To this end, we: i) record a mapping from recursive
variable X to process variables zX; ii) encode the recursion body P as a name abstraction
in which free names of P are converted into name variables; iii) this higher-order value
is embedded in an input-guarded “duplicator” process; and iv) make the encoding of
process variable x to simulate recursion unfolding by invoking the duplicator in a by-
need fashion, i.e., upon reception, abstraction

⌊⌊
P
⌋⌋
σ is duplicated with one copy used to

reconstitute the encoded recursion body P through the application of fn(P) and another
copy used to re-invoke the duplicator when needed.

Proposition 6.2 (Type Preservation, HOπ into HO). Let P be a HOπ process. If Γ;∅;∆ `
P .� then (〈Γ〉)1;∅; (〈∆〉)1 ` [[P]]1

f .�.

Proof. By induction on the inference Γ;∅;∆ ` P.�. Details in Proposition C.1 (Page 71).
ut
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The following proposition formalizes our strategy for encoding recursive definitions
as passing of polyadic abstractions:

Proposition 6.3 (Operational Correspondence for Recursive Processes). Let P and
P1 be HOπ processes s.t. P = µX.P′ and P1 = P′{µX.P′/X} ≡ P.

If Γ;∆ ` P
`
7−→ Γ;∆′ ` P′ then, there exist processes R1, R2, R3, action `′, and mappings

f , f1, such that:

(i) (〈Γ〉)1; (〈∆〉)1 ` P
τ
7−→ (〈Γ〉)1; (〈∆〉)1 ` [[P′]]1{R3/X} = R1;

(ii) (〈Γ〉)1; (〈∆〉)1 ` R1
`′

�=⇒ (〈Γ〉)1; (〈∆〉)1 ` R2, with `′ = {{`}}1;
(iii) R3 = λm̃.z?(x).

⌊⌊
[[P′]]1

f1

⌋⌋
σ, with m̃ = ofn(P′),z) and f1 = f , {X→ ofn(P′)}.

Proof (Sketch). Part (1) follow directly from the definition of typed encoding for pro-
cesses [[·]]1

f (Definition 6.3), observing that the reduction occurs along a restricted name,
and so the session environment remains unchanged. Part (2) relies on Proposition 6.4.
Part (3) is immediate from Definition 6.3. ut

The following proposition formalises completeness and soundness results for the
encoding of HOπ into HO. Recall that deterministic transitions τs and τβ have been
defined in Definition 4.14.

Proposition 6.4 (Operational Correspondence, HOπ into HO). Let P be a HOπ pro-
cess. If Γ;∅;∆ ` P .� then:

1. Suppose Γ;∆ ` P
`1
7−→ ∆′ ` P′. Then we have:

a) If `1 ∈ {(ν m̃)n!〈m〉, (ν m̃)n!〈λx.Q〉, s⊕ l, s&l} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P′]]1

f and `2 = {{`1}}
1.

b) If `1 = n?〈λy.Q〉 and P′ = P0{λy.Q/x} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P0]]1

f {
λy. [[Q]]1

∅/x} and `2 = {{`1}}
1.

c) If `1 = n?〈m〉 and P′ = P0{m/x} then ∃`2, R s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` R, with `2 = {{`1}}

1,

and (〈Γ〉)1; (〈∆′〉)1 ` R
τβ
7−→

τs
7−→

τβ
7−→ (〈∆′〉)1 ` [[P0]]1

f {
m/x}.

d) If `1 = τ and P′ ≡ (ν m̃)(P1 | P2{m/x}) then ∃R s.t.
(〈Γ〉)1; (〈∆〉)1 ` [[P]]1

f
τ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | R), and

(〈Γ〉)1; (〈∆〉)1 ` (ν m̃)([[P1]]1
f | R)

τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {

m/x}).
e) If `1 = τ and P′ ≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆1〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {
λy. [[Q]]1

∅/x}).
f) If `1 = τ and P′ 6≡ (ν m̃)(P1 | P2{m/x})∧P′ 6≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆′1〉)

1 ` [[P′]]1
f .

2. Suppose (〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` Q. Then we have:

a) If `2 ∈ {(ν m̃)n!〈λz. z?(x).(xm)〉, (ν m̃)n!〈λx.R〉, s⊕ l, s&l} then ∃`1,P′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′, `1 = {{`2}}

1, and Q = [[P′]]1
f .
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b) If `2 = n?〈λy.R〉 then either:
(i) ∃`1, x,P′,P′′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′{λy.P′′/x}, `1 = {{`2}}

1, [[P′′]]1
∅

= R, and Q = [[P′]]1
f .

(ii) R ≡ y?(x).(xm) and ∃`1,z,P′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′{m/z}, `1 = {{`2}}

1, and

(〈Γ〉)1; (〈∆′〉)1 ` Q
τβ
7−→

τs
7−→

τβ
7−→ (〈∆′′〉)1 ` [[P′{m/z}]]1

f

c) If `2 = τ then ∆′ = ∆ and either

(i) ∃P′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` P′, and Q = [[P′]]1

f .

(ii) ∃P1,P2, x,m,Q′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` (ν m̃)(P1 | P2{m/x}), and

(〈Γ〉)1; (〈∆〉)1 ` Q
τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` [[P1]]1

f | [[P2{m/x}]]1
f

Proof. The proof is a mechanical induction on the labelled Transition System. Parts (1)
and (2) are proved separetely. The most demanding cases for the proof can be found
in Proposition C.2 (page 74). ut

Proposition 6.5 (Full Abstraction, HOπ into HO). Let P1,Q1 be HOπ processes.
Γ;∆1 ` P1 ≈

H ∆2 ` Q1 if and only if (〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f ≈

H (〈∆2〉)1 ` [[Q1]]1
f .

Proof. The proof for the soundness direction considers closure that can be shown to be a
bisimulation following the soundness direction of Operational Correspondence (Propo-
sition 6.4). Whenever needed the proof makes use of the τ-inertness result (Proposi-
tion 4.3).

The proof for the completness direction also considers a closure shown to be a
bisimulation up-to deterministic transition (Proposition 4.3) following the completeness
direction of Operational Correspondence (Proposition 6.4).

Details of the proof can be found in Proposition C.3 (page 76). ut

Proposition 6.6 (Precise encoding of HOπ into HO). The encoding fromLHOπ toLHO
is precise.

Proof. Syntactic requirements are easily derivable from the definition of the mappings
in Figure 8. Semantic requirements are a consequence of Proposition 6.2, Proposi-
tion 6.4, and Proposition 6.5. ut

Example 6.1 (Encode µX.a!〈m〉.X into HO).
Mapping: Term mapping of HOπ process µX.a!〈m〉.X into a HO process. We note
initially f = ∅. The first application of the mapping will give:

[[µX.a!〈m〉.X]]1 = (ν s1)(s1?(x).[[a!〈m〉.x]]1
x→xa xm |

s1!〈λ(xa, xm,z).z?(x).
⌊⌊

[[a!〈m〉.x]]1
x→xa xm

⌋⌋
∅〉.0)

with
[[a!〈m〉.x]]1

x→xa xm = a!〈λz.z?(x).(xm)〉.[[x]]1
x→xa xm

= a!〈λz.z?(x).(xm)〉.(ν s2)(x (a,m, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)
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Furthermore:⌊⌊
[[a!〈m〉.x]]1

x→xa xm

⌋⌋
∅

=
⌊⌊

a!〈λz.z?(x).(xm)〉.(ν s2)(x (a,m, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)
⌋⌋
∅

= xa!〈λz.z?(x).(x xm)〉.
⌊⌊

(ν s2)(x (a,m, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)
⌋⌋
∅

= xa!〈λz.z?(x).(x xm)〉.(ν s2)(x (xa, xm, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)

The whole encoding would be:

V = λ(xa, xm,z).z?(x).xa!〈λz.z?(x).(x xm)〉.(ν s2)(x (xa, xm, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)
[[µX.a!〈m〉.X]]1 ≡

(ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2))

Transition Semantics: We can observe [[µX.a!〈m〉.X]]1 as:

[[µX.a!〈m〉.X]]1

≡

(ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2))
τ
−→

a!〈λz.z?(x).(xm)〉.
(ν s2)(s2!〈V〉.0 | s2?(x).a!〈λz.z?(x).(xm)〉.(ν s3)(s3!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s3))
≡α

a!〈λz.z?(x).(xm)〉.
(ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2))
≡

a!〈λz.z?(x).(xm)〉.[[µX.a!〈m〉.X]]1

a!〈λz.z?(x).(xm)〉
−→

[[µX.a!〈m〉.X]]1

Typing Semantics: We further show that [[µX.a!〈m〉.X]]1 is typable:

Γ;∅;∅ ` a .U1 = 〈?(U2(�);end(�〉
Γ;∅;∅ ` m .U2
Γ;∅; s2 :` s2 :?(L);end ` s2.?(L);end
Γ;∅;∅ ` x . (U1,U2,?(L);end)→�
Γ;∅; s2 :?(L);end ` x (a,m, s2) .�

(8)

Γ · xa : U1 · xm : U2;∅;∅ ` xa .U1 = 〈?(U2(�);end(�〉
Γ · xa : U1 · xm : U2;∅;∅ ` xm .U2
Γ;∅;z :?(L);end ` z.?(L);end
Γ;∅;∅ ` x . (U1,U2,?(L);end)→�
Γ · xa : U1 · xm : U2;∅;z :?(L);end ` x (xa, xm,z) .�

Γ;∅;∅ ` λ(xa, xm,z). x (xa, xm,z) . (U1,U2,?(L);end)→�
(9)

Result (9)
Γ;∅; s2 :!〈(U1,U2,?(L);end)→�〉;end ` s2.!〈(U1,U2,?(L);end)→�〉;end
Γ;∅; s2 :!〈(U1,U2,?(L);end)→�〉;end ` s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0 .�

(10)
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Result (8) Result (10) ∆ = s2 :?(L);end · s2 :!〈(U1,U2,?(L);end)→�〉;end
Γ;∅;∆ ` s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0 | x (a,m, s2) .�

(11)

Result (11) ?(L);end dual !〈(U1,U2,?(L);end)→�〉;end
L = (U1,U2,?(L);end)→� implies
?(L);end = µt.?((U1,U2, t)→�);end
Γ;∅;∅ ` (ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0 | x (a,m, s2) .�)

(12)

Result (12)
Γ;∅;∅ ` a . 〈?(U2(�);end(�〉
Γ;∅;∅ ` λz.z?(x).(xm).?(U2(�);end(�

Γ;∅;∅ ` a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0 | x (a,m, s2)) .�
(13)

Result (13) Γ′ = Γ\x
Γ;∅;∅ ` x . (U1,U2,µt.?((U1,U2, t)→�);end)→�
Γ′;∅;∆ ` s1.?((U1,U2,µt.?((U1,U2, t)→�);end)→�);end

Γ′;∅;∆1 `

s1?(x).a!〈λz.z?(x).(xm)〉.(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0 | x (a,m, s2)) .�

(14)

V = λ(xa, xm,z).z?(x).xa!〈λz.z?(x).(x xm)〉.
(ν s2)(x (xa, xm, s2) | s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0)

Γ′;∅;∅ ` V . (U1,U2,µt.?((U1,U2, t)→�);end)→�
Γ′;∅;∆2 ` s1.!〈(U1,U2,µt.?((U1,U2, t)→�);end)→�〉;end

Γ′;∅;∆2 ` s1!〈V〉.0 .�
(15)

Result (14) Result (15)
Γ;∅;∆1 ·∆2 ` s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.

(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2) .�

Γ;∅;∅ ` (ν s1)(s1!〈V〉.0 | s1?(x).a!〈λz.z?(x).(xm)〉.
(ν s2)(s2!〈λ(xa, xm,z). x (xa, xm,z)〉.0) | x (a,m, s2)) .�

ut

6.2 From HOπ to π

We now discuss the encodability of HO into π where we essentially follow the repre-
sentability result put forward by Sangiorgi [45,50], but casted in the setting of session-
typed communications. Intuitively, the strategy represents the exchange of a process
with the exchange of a freshly generated trigger name. Trigger names are used to acti-
vate copies of the process, which now becomes a persistent resource represented by an
input-guarded replication. In our calculi, a session name is a linear resource and can-
not be replicated. Consider the following (naive) adaptation of Sangiorgi’s strategy in
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Fig. 9 Typed encoding of HOπ to π (Definition 6.4). Mappings [[·]]3, (〈·〉)3, and {{·}}3 are
homomorphisms for the other processes/types/labels.

[[u!〈λx.Q〉.P]]2 def=

{
(ν a)(u!〈a〉.([[P]]2 | ∗ a?(y).y?(x).[[Q]]2) ) s < fn(Q)
(ν s)(u!〈s〉.([[P]]2 | s?(y).y?(x).[[Q]]2) ) otherwise

[[u?(x).P]]2 def= u?(x).[[P]]2

[[xu]]2 def= (ν s)(x!〈s〉.s!〈u〉.0)

[[(λx.P)u]]2 def= (ν s)(s?(x).[[P]]2 | s!〈u〉.0)

(〈!〈S→�〉;S 1〉)2 def= !
〈
〈?((〈S 〉)2);end〉

〉
; (〈S 1〉)2

(〈?(S→�);S 1〉)2 def= ?
(
〈?((〈S 〉)2);end〉

)
; (〈S 1〉)2

(〈!〈S(�〉;S 1〉)2 def= !
〈
?((〈S 〉)2);end

〉
; (〈S 1〉)2

(〈?(S(�);S 1〉)2 def= ?
(
?((〈S 〉)2);end

)
; (〈S 1〉)2

{{(ν m̃′)n!〈λx.P〉}}2 def= (ν m)n!〈m〉

{{n?〈λx.P〉}}2 def= n?〈m〉 m fresh

which session names are used are triggers and exchanged processes would be have to
used exactly once:

[[u!〈λx.Q〉.P]]n def= (ν s)(u!〈s〉.([[P]]n | s?(x).[[Q]]n))

[[u?(x).P]]n def
= u?(x).[[P]]n

[[xu]]n def
= x!〈u〉.0

with the remaining HOπ constructs being mapped homomorphically. Although [[·]]n cap-
tures the correct semantics when dealing with systems that allow only linear abstrac-
tions, it suffers from non-typability in the presence of shared abstractions. For instance,
mapping for P = n!〈λx. x!〈m〉.0〉.0 | n?(x).(x s1 | x s2) would be:

[[P]]n def= (ν s)(n!〈s〉.s?(x).x!〈m〉.0 | n?(x).(x!〈s1〉.0 | x!〈s2〉.0))

The above process is non typable since processes (x!〈s1〉.0 and x!〈s2〉.0) cannot be put
in parallel because they do not have disjoint session environments.

The correct approach would be to use replicated shared names as triggers instead of
session names, when dealing with shared abstractions. Below we write ∗P as a short-
hand notation for µX.(P | X).

Definition 6.4 (Encoding HOπ to π). Define encoding
〈
[[·]]2, (〈·〉)2, {{·}}2

〉
: LHOπ → Lπ

with mappings [[·]]2, (〈·〉)2, {{·}}2 as in Figure 9.

Proposition 6.7 (Type Preservation, HOπ into π). Let P be a HOπ process. If Γ;∅;∆ `
P .� then (〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2 .�.

Proof. By induction on the inference Γ;∅;∆ ` P.�. Details in Proposition C.4 (Page 79).
ut
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Remark 6.2. As stated in [48, Lem. 5.2.2], due to the replicated trigger, operational
correspondence in Definition 5.4 is refined to prove full abstraction: e.g., completeness
of the case `1 , τ, is changed as follows. Suppose:

Γ;∆ ` P
`1
7−→ ∆′ ` P′

If `1 = (ν m̃)n!〈λx.R〉, then

(〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2
7−→ (〈∆′〉)2 ` Q

where `2 = (νa)n!〈a〉 and Q = [[P′ | ∗ a?(y).y?(x).R]]2.
Similarly, if `1 = n?〈λx.R〉, then

(〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2
7−→ (〈∆′〉)2 ` Q

where `2 = n!〈a〉 and [[P′]]2 ≈H (ν a)(Q | ∗ a?(y).y?(x).[[R]]2). Soundness is stated in a
symmetric way.

This last remark is stated formally in the next proposition:

Proposition 6.8 (Operational Correspondence, HOπ into π). Let P be an HOπ pro-
cess such that Γ;∅;∆ ` P .�.

1. Suppose Γ;∆ ` P
`1
7−→ ∆′ ` P′. Then we have:

a) If `1 = (ν m̃)n!〈λx.Q〉, then ∃Γ′,∆′′,R where either:

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ Γ′ · (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 | ∗ a?(y).y?(x).[[Q]]2

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ (〈Γ〉)2; ∆′′ ` [[P′]]2 | s?(y).y?(x).[[Q]]2

b) If `1 = n?〈λy.Q〉 then ∃R where either

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ Γ′; (〈∆′′〉)2 ` R, for some Γ′ and
(〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′′〉)2 ` (ν a)(R | ∗ a?(y).y?(x).[[Q]]2)

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ (〈Γ〉)2; (〈∆′′〉)2 ` R, and
(〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′′〉)2 ` (ν s)(R | s?(y).y?(x).[[Q]]2)

c) If `1 = τ then either:
- ∃R such that

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2

τ
7−→ (〈∆′〉)2 ` (ν m̃)([[P1]]2 | (ν a)([[P2]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2))

- ∃R such that

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2

τ
7−→ (〈∆′〉)2 ` (ν m̃)([[P1]]2 | (ν s)([[P2]]2{s/x} | s?(y).y?(x).[[Q]]2))

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ
7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2

- `1 = τβ and (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τs
7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2
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d) If `1 ∈ {n⊕ l,n&l} then

∃`2 = {{`1}}
2 such that (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2

7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2.

2. Suppose (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2
7−→ (〈Γ〉)2; (〈∆′〉)2 ` R.

a) If `2 = (ν m)n!〈m〉 then either

- ∃P′ such that P
(ν m)n!〈m〉
7−→ P′ and R = [[P′]]2.

- ∃Q,P′ such that P
n!〈λx.Q〉
7−→ P′ and R = [[P′]]2 | ∗ a?(y).y?(x).[[Q]]2

- ∃Q,P′ such that P
n!〈λx.Q〉
7−→ P′ and R = [[P′]]2 | s?(y).y?(x).[[Q]]2

b) If `2 = n?〈m〉 then either

- ∃P′ such that P
n?〈m〉
7−→ P′ and R = [[P′]]2.

- ∃Q,P′ such that P
n?〈λx.Q〉
7−→ P′

and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` (ν a)(R | ∗ a?(y).y?(x).[[Q]]2)

- ∃Q,P′ such that P
n?〈λx.Q〉
7−→ P′

and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` (ν s)(R | s?(y).y?(x).[[Q]]2)
c) If `2 = τ then ∃P′ such that P

τ
7−→ P′ and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` R.

d) If `2 < {n!〈m〉,n⊕ l,n&l} then ∃`1 such that `1 = {{`2}}
2 and

Γ; ∆ ` P
`1
7−→ Γ; ∆ ` P′.

Proof. The proof is done by induction on the labelled transition system considering
Definition 6.4. The most demaning cases are Part 1b and Part 2b where we require a
further induction to proof bisimulation closure.

Details of the proof of the most demanding cases can be found in Proposition C.5
(page 34). ut

Proposition 6.9 (Full Abstraction, From HOπ to π). Let P1,Q1 be HOπ processes.
Γ;∆1 ` P1 ≈

H ∆2 ` Q1 if and only if (〈Γ〉)2; (〈∆1〉)2 ` [[P1]]2 ≈C (〈∆2〉)2 ` [[Q1]]2.

Proof. Proof follows directly from Proposition 6.8. The cases of Proposition 6.8 are
used to create a bisimulation closure to prove the the soundness direction and a bisim-
ulation up to determinate transition (Lemma 4.3) to prove the completeness direction.

ut

Proposition 6.10 (Precise encoding of HOπ into π). The encoding from LHOπ to Lπ
is precise.

Proof. Syntactic requirements are easily derivable from the definition of the mappings
in Figure 9. Semantic requirements are a consequence of Proposition 6.7, Proposi-
tion 6.8, and Proposition 6.9. ut

7 Negative Encodability Results

As most session calculi, HOπ includes communication on both shared and linear chan-
nels. The former enables non determinism and unrestricted behavior; the latter allows
to represent deterministic and linear communication structures. The expressive power
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of shared names is also illustrated by our encoding from HOπ into π (Definition 6.4).
Shared and linear channels are fundamentally different; still, to the best of our knowl-
edge, the status of shared communication, in terms of expressiveness, has not been
formalized for session calculi.

The above begs the question: can we represent shared name interaction using ses-
sion name interaction? In this section we prove that shared names actually add expres-
siveness to HOπ, for their behavior cannot be represented using purely deterministic
processes. To this end, we show the non existence of a minimal encoding (cf. Defi-
nition 5.5(ii)) of shared name communication into linear communication. Recall that
minimal encodings preserve barbs (Proposition 5.1).

Theorem 7.1. Let C1,C2 ∈ {HOπ,HO,π}. There is no typed, minimal encoding from
LC1 into LC−sh

2

Proof. Assume, towards a contradiction, that such a typed encoding indeed exists. Con-
sider the π process

P = a〈s〉.0 | a(x).n / l1.0 | a(x).m / l2.0 (with n , m)

such that Γ;∅;∆ ` P .�. From process P we have:

Γ;∆ ` P
τ
7−→ ∆′ ` n / l1.0 | a(x).m / l2.0 = P1 (16)

Γ;∆ ` P
τ
7−→ ∆′ ` m / l2.0 | a(x).n / l1.0 = P2 (17)

Thus, by definition of typed barb we have:

Γ;∆′ ` P1 ↓n ∧ Γ;∆′ ` P1 6↓m (18)
Γ;∆′ ` P2 ↓m ∧ Γ;∆′ ` P2 6↓n (19)

Consider now the HOπ−sh process [[P]]. By our assumption of operational completeness
(Definition 5.4-2(a)), from (16) with (17) we infer that there exist HOπ−sh processes S 1
and S 2 such that:

(〈Γ〉); (〈∆〉) ` [[P]]
τs
�=⇒ (〈∆′〉) ` S 1 ≈ [[P1]] (20)

(〈Γ〉); (〈∆〉) ` [[P]]
τs
�=⇒ (〈∆′〉) ` S 2 ≈ [[P2]] (21)

By our assumption of barb preservation, from (18) with (19) we infer:

(〈Γ〉); (〈∆′〉) ` [[P1]] ⇓n ∧ (〈Γ〉); (〈∆′〉) ` [[P1]] 6⇓m (22)
(〈Γ〉); (〈∆′〉) ` [[P2]] ⇓m ∧ (〈Γ〉); (〈∆′〉) ` [[P2]] 6⇓n (23)

By definition of ≈, by combining (20) with (22) and (21) with (23), we infer barbs for
S 1 and S 2:

(〈Γ〉); (〈∆′〉) ` S 1 ⇓n ∧ (〈Γ〉); (〈∆′〉) ` S 1 6⇓m (24)
(〈Γ〉); (〈∆′〉) ` S 2 ⇓m ∧ (〈Γ〉); (〈∆′〉) ` S 2 6⇓n (25)
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That is, S 1 and [[P1]] (resp. S 2 and [[P2]]) have the same barbs. Now, by τ-inertness
(Proposition 4.3), we have both

(〈Γ〉); (〈∆〉) ` S 1 ≈ (〈∆′〉) ` [[P]] (26)
(〈Γ〉); (〈∆〉) ` S 2 ≈ (〈∆′〉) ` [[P]] (27)

Combining (26) with (27), by transitivity of ≈, we have

(〈Γ〉); (〈∆′〉) ` S 1 ≈ (〈∆′〉) ` S 2 (28)

In turn, from (28) we infer that it must be the case that:

(〈Γ〉); (〈∆′〉) ` [[P1]] ⇓n ∧ (〈Γ〉); (〈∆′〉) ` [[P1]] ⇓m

(〈Γ〉); (〈∆′〉) ` [[P2]] ⇓m ∧ (〈Γ〉); (〈∆′〉) ` [[P2]] ⇓n

which clearly contradict (22) and (23) above. ut

8 Extensions of HOπ

This section studies (i) the extension of HOπwith higher-order applications/abstractions
(denoted HOπ+), and (ii) the extension of HOπwith polyadicity (denoted HO~π). In both
cases, we detail required modifications in the syntax and types, and describe further
encodability results.

8.1 Encoding HOπ+ into HOπ

The HOπ calculus is purposefully minimal and allows only name applications/abstrac-
tions (also referred to as first-order applications/abstractions). We now introduce HOπ+,
the extension of HOπ with higher-order applications. We show that HOπ+ has a precise
encoding into HOπ (Proposition 8.4). Therefore, since typed encodings are composable
(Proposition 5.2), HOπ+ has a precise encoding to HO and π. In turn, this latter result
implies that HO is powerful enough to express full higher-order semantics.

Modifications in Syntax, Reduction Semantics, and Types. The syntax of HOπ+

processes is obtained from the syntax for processes given in Figure 2 by replacing V u
with W V . Reduction is then defined by the rules in Figure 3, excepting rule [App],
which is replaced by the following rule

[App+] (λx.P)V −→ P{V/x}

The syntax of types in Figure 3.1 is generalized by including

L ::= U→� | U(�

instead of L ::= C→� | C(�. Definitions of type equivalence/duality and typing envi-
ronments (Γ and Λ) are straightforward extensions of Definition 3.2, Definition 3.3, and
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Definition 3.4, respectively. The typing rules of Figure 4 are then modified accordingly:
most significant changes are required in rules [Abs] and [App] (for typing abstractions
and applications, respectively), which for HOπ+ processes are modified as follows:

[Abs+]
Γ;Λ;∆1 ` P .� Γ;∅;∆2 ` x .U
Γ;Λ;∆1\∆2 ` λx.P .U(�

[App+]
U = U′(�∨U′→� Γ;Λ;∆1 ` V .U Γ;∅;∆2 `W .U′

Γ;Λ;∆1 ·∆2 ` V W .�

With these modifications we can now state the extension of Theorem 3.1:

Theorem 8.1 (Type Soundness for HOπ+).

1. (Subject Congruence) Γ;∅;∆ ` P .� and P ≡ P′ implies Γ;∅;∆ ` P′ .�.
2. (Subject Reduction) Γ;∅;∆ ` P . � with balanced ∆ and P −→ P′ implies Γ;∅;∆′ `

P′ .� and either (i) ∆ = ∆′ or (ii) ∆ −→ ∆′ with ∆′ balanced.

Proof. Part (1) is as for HOπ processes. Part (2) is also as before, but requires the
expected generalization of parts (3) and (4) of the substitution lemma (Lemma 3.1). We
describe the analysis when the reduction is inferred by rule [App+]. We have

P = (λx.Q)V −→ Q{V/x} = P′

Suppose Γ; ∅; ∆ ` (λx.Q)V .�. We examine one possible way in which this assumption
can be derived; other cases are similar or simpler:

Γ, x : L1(�; ∅; ∆ ` Q .� Γ, x : L1(�; ∅; ∅ ` x .L1(�

Γ; ∅; ∆ ` λx.Q . (L1→�)→� Γ; ∅; ∅ ` V .L1→�

Γ; ∅; ∆ ` (λx.Q)V .�

Then, by combining premise Γ, x : L1(�; ∅; ∆ ` Q .� with the extended formulation of
Lemma 3.1(4), we obtain Γ; ∅; ∆ ` Q{V/x} .�, as desired. ut

As for the behavioural semantics of HOπ+, modifications are as expected. The set of
action labels remains the same. In the untyped LTS, rule 〈App〉 is replaced with rule
λx.PV

τ
−→ P{V/x}. Definition 4.8 (characteristic processes) now includes

[(U→�)]x def= [(U(�)]x def= x [(U)]c

[(U→�)]c
def
= [(U(�)]c

def
= λx. [(U)]x

instead of [(C→�)]x def= [(C(�)]x def= x [(C)]c and [(C→�)]c
def
= [(C(�)]c

def
= λx. [(C)]x,

respectively. The rest of the definitions for the behavioural semantics is kept unchanged.

Encoding HOπ+ into HOπ. We now present an encoding from HOπ+ to HOπ.

Definition 8.1 (Encoding from HOπ+ to HOπ). Let LHOπ+ = 〈HOπ+,T4,
`
7−→,≈H ,`〉

where T4 is a set of types of HOπ+; the typing ` is defined in Figure 4 with extended
rules [Abs] and [App]. Then, mapping

〈
[[·]]3, (〈·〉)3, {{·}}3

〉
: LHOπ

+ → LHOπ is defined in
Figure 10.
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Fig. 10 Encoding of HOπ+ into HOπ (cf. Definition 8.1). We assume that the rest of the
encoding is homomorphic on the syntax of processes, types and labels, respectively.

[[x (λy.P)]]3 def= (ν s)(x s | s!〈λy. [[P]]3〉.0)

[[(λx.P) (λy.Q)]]3 def= (ν s)(s?(x).[[P]]3 | s!〈λy. [[Q]]3〉.0)

[[u!〈λx.Q〉.P]]3 def= u!〈λz.z?(x).[[Q]]3〉.[[P]]3

[[u!〈λk.Q〉.P]]3 def= u!〈λk. [[Q]]3〉.[[P]]3

(〈L→�〉)3 def=
(
?((〈L〉)3);end

)
→�

(〈L(�〉)3 def=
(
?((〈L〉)3);end

)
(�

(〈!〈L→�〉;S 〉)3 def= !〈(〈L→�〉)3〉; (〈S 〉)3

(〈!〈L(�〉;S 〉)3 def= !〈(〈L(�〉)3〉; (〈S 〉)3

(〈?(L→�);S 〉)3 def= ?((〈L→�〉)3); (〈S 〉)3

(〈?(L(�);S 〉)3 def= ?((〈L(�〉)3); (〈S 〉)3

{{(ν m̃)n!〈λk.P〉}}3 def= (ν m̃)n!〈λx. [[P]]3〉

{{n?〈λk.P〉}}3 def= n?〈λx. [[P]]3〉

{{(ν m̃)n!〈λx.P〉}}3 def= (ν m̃)n!〈λz.z?(x).[[P]]3〉

{{n?〈λx.P〉}}3 def= n?〈λz.z?(x).[[P]]3〉

Proposition 8.1 (Type Preservation. From HOπ+ to HOπ). Let P be a HOπ+ process.
If Γ;∅;∆ ` P .� then (〈Γ〉)3;∅; (〈∆〉)3 ` [[P]]3 .�.

Proof. The proof is a mechanical induction on the structure of P. Details of the proof
in Proposition C.6 (page 84). ut

Proposition 8.2 (Operational Correspondence. From HOπ+ to HOπ).

1. Let Γ;∅;∆ ` P. Γ;∆ ` P
`
7−→ ∆′ ` P′ implies

a) If ` ∈ {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉} then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `′

7−→ (〈∆′〉)3 ` [[P′]]3 with
{{`}}3 = `′.

b) If ` < {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉, τ} then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `
7−→ (〈∆′〉)3 ` [[P′]]3.

c) If ` = τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ ∆′′ ` R and (〈Γ〉)3(〈∆′〉)3[[P′]]3≈H∆′′R.

d) If ` = τ and ` , τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ (〈∆′〉)3 ` [[P′]]3.

2. Let Γ;∅;∆ ` P. (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `
7−→ (〈∆′′〉)3 ` Q implies

a) If ` ∈ {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉, τ} then Γ;∆ ` P
`′

7−→ ∆′ ` P′ with {{`′}}3 = ` and
Q ≡ [[P′]]3.

b) If ` < {(ν m̃)n!〈λx.R〉,n?〈λx.R〉, τ} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and Q ≡ [[P′]]3.

c) If ` = τ then either Γ;∆ ` ∆
τ
7−→ ∆′ ` P′ with Q ≡ [[P′]]3

or Γ;∆ ` ∆
τβ
7−→ ∆′ ` P′ and (〈Γ〉)3; (〈∆′′〉)3 ` Q

τβ
7−→ (〈∆′′〉)3 ` [[P′]]3.
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Proof. The proof is an induction on the labelled transition system. The most interesting
cases can be found in Proposition C.7 (page 85). ut

Proposition 8.3 (Full Abstraction. From HOπ+ to HOπ). Let P,Q HOπ+ processes
with Γ;∅;∆1 ` P .� and Γ;∅;∆2 ` Q .�.
Then Γ;∆1 ` P ≈H ∆2 ` Q if and only if (〈Γ〉)3; (〈∆1〉)3 ` [[P]]3 ≈H (〈∆2〉)3 ` [[Q]]3

Proof. Soundness Direction.
We create the closure

< = {Γ;∆1 ` P , ∆2 ` Q | (〈Γ〉)3; (〈∆1〉)3 ` [[P]]3 ≈H (〈∆2〉)3 ` [[Q]]3}

It is straightforward to show that < is a bisimulation if we follow Part 2 of Proposi-
tion 8.2 for subcases a and b. In subcase c we make use of Proposition 4.3.
Completeness Direction.
We create the closure

< = {(〈Γ〉)3; (〈∆1〉)3 ` [[P]]3 , (〈∆2〉)3 ` [[Q]]3 | Γ;∆1 ` P ≈H ∆2 ` Q}

We show that< is a bisimulation up to deterministic transitions by following Part 1 of
Proposition 8.2. The proof is straightforward for subcases a), b) and d). In subcase c)
we make use of Lemma 4.3. ut

Proposition 8.4 (Precise encoding of HOπ+ into HOπ). The encoding from LHOπ+ to
LHOπ is precise.

Proof. Syntactic requirements are easily derivable from the definition of the mappings
in Figure 10. Semantic requirements are a consequence of Proposition 8.1, Proposi-
tion 8.2, and Proposition 8.3. ut

8.2 Polyadic HOπ

Embedding polyadic name passing into the monadic name passing is well-studied in
the literature. Using the linear typing, the preciseness (full abstraction) can be ob-
tained [57]. Here we describe an encoding of HO~π into HOπ.

Modifications in Syntax, Reduction Semantics, and Types. The syntax of HO~π pro-
cesses is obtained from the syntax for processes given in Figure 2 by considering values

V ::= ũ | λx̃.P

and input prefixes n?(x̃).P. Thus, polyadicity arises both in (session) communications
and abstractions. Reduction is then defined by the rules in Figure 3, excepting rules
[App] and [Pass] which are replaced by rules

[Appp] (λx̃.P) ũ −→ P{ũ/x̃} |x̃| = |ũ|

[Passp] n!〈V〉.P1 | n?(x̃).P2 −→ P1 | P2{V/x̃} |V | = |x̃|
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The syntax of types in Figure 3.1 is modified to include

L ::= C̃→� | C̃(�

U ::= C̃ | L

instead of L ::= C→� | C(� and U ::= C | L, respectively.
Definitions of type equivalence/duality and typing environments (Γ andΛ) are straight-

forward extensions of Definition 3.2, Definition 3.3, and Definition 3.4, respectively.
Following [33,35] the type system for HO~π disallows polyadicity along shared names.
Based on these modifications, the typing rules of Figure 4 are adapted in the expected
way. In order to type polyadic values, we rely on the following rule:

[Pol]
V = ai . . .an Γ;Λi;∆i ` ui .Ci U = C1 . . .Cn

Γ;
⋃

i∈I Λi;
⋃

i∈I ∆i ` V .U

Other rules are adjusted in the expected way, in order to accommodate polyadic values.
Notice, however, that rules [Req] and [Acc] are kept unchanged, as they are used to
type monadic exchanges along shared name prefixes. We now state type soundness for
HO~π; the proof is straightforward and omitted, for it follows closely the proof detailed
in Appendix A.

Theorem 8.2 (Type Soundness for HO~π).

1. (Subject Congruence) Γ;∅;∆ ` P .� and P ≡ P′ implies Γ;∅;∆ ` P′ .�.
2. (Subject Reduction) Γ;∅;∆ ` P . � with balanced ∆ and P −→ P′ implies Γ;∅;∆′ `

P′ .� and either (i) ∆ = ∆′ or (ii) ∆ −→ ∆′ with ∆′ balanced.

As for the behavioral semantics for HO~π, the set of action labels is kept unchanged.
In fact, as V now stands for ũ and λx̃.P, labels (ν m̃)n!〈V〉 and n?〈V〉 require no modifi-
cation. The LTS for HO~π is as for HOπ, excepting rule 〈App〉 which is replaced with the
rule:

(λx̃.P) ũ
τ
−→ P{ũ/x̃}

The characteristic process and characteristic value definition (Definition 4.8) is ex-
tended to include the cases:

[(C1 . . .Cn)]u1···un def= [(C1)]x1 | . . . | [(Cn)]xn

[(U1 . . .Un)]c
def
= [(U1)]c, . . . , [(Un)]c

Thus, a polyadic type is inhabited by process whose parallel components inhabit type
the individual components of the polyadic type. A polyadic value type is inhabited by
a list of values which inhabit the individual components of the polyadic value. The rest
of the behavioural semantics remains unchanged.

Encoding HO~π into HOπ. We slightly modify Definition 5.4 to capture that a label `
may be mapped into a sequence of labels ˜̀. Also, Definition 5.4 stays as the same as-

suming that if P
`
7−→ P′ and {{`}}= {`1, `2, · · · , `m} then [[P]]

{{`}}
�=⇒ [[P′]] should be understood

as [[P]]
`1
�=⇒ P1

`2
�=⇒ P2 · · ·

`m
�=⇒ Pm = [[P′]], for some P1,P2, . . . ,Pm.
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Fig. 11 Encoding of HO~π into HOπ (cf. Definition 8.2). We assume that the rest of the
encoding is homomorphic on the syntax of processes, types and labels, respectively.

Terms
[[n!〈u1, . . . ,un〉.P]]4 def= n!〈u1〉. . . . ;n!〈un〉.[[P]]4

[[n?(x1, . . . , xn).P]]4 def= n?(x1). . . . ;n?(xn).[[P]]4

[[n!〈λx1, . . . , xn.Q〉.P]]4 def= n!〈λz.z?(x1). . . . ;z?(xn).[[Q]]4〉.[[P]]4

[[x (u1, . . . ,un)]]4 def= (ν s)(x s | s!〈u1〉. . . . ; s!〈u1〉.0)

[[(λx.P) (u1, . . . ,un)]]4 def= (ν s)((λx. [[P]]4) s | s!〈u1〉. . . . ; s!〈u1〉.0)

Types
(〈(C1, . . . ,Cn)(�〉)4 def= (?(C1); . . . ; ?(Cn);end)(�

(〈(C1, . . . ,Cn)→�〉)4 def= (?(C1); . . . ; ?(Cn);end)→�

(〈!〈L〉;S 〉)4 def= !〈(〈L〉)4〉; (〈S 〉)4

(〈?(L);S 〉)4 def= ?((〈L〉)4); (〈S 〉)4

(〈!〈C1, . . . ,Cn〉;S 〉)4 def= !〈C1〉; . . . ; !〈Cn〉; (〈S 〉)4

(〈?(C1, . . . ,Cn);S 〉)4 def= ?(C1); . . . ; !〈Cn〉; (〈S 〉)4

Labels

{{(ν m̃′)n!〈m1, . . . ,mn〉}}
4 def= (ν m̃1

′)n!〈m1〉 . . . (ν m̃n
′)n!〈mn〉

m̃i
′ = mi⇔ mi ∈ m̃′∧

m̃i
′ = ∅ ⇔ mi < m̃′

{{n?〈m1, . . . ,mn〉}}
4 def= n?〈m1〉 . . .n?〈mn〉

{{(ν m̃)n!〈λx1, . . . , xn.P〉}}4
def
= (ν m̃)n!〈λz.z?(x1). . . . ;z?(xn).[[P]]4〉

{{n?〈λx1, . . . , xn.P〉}}4
def
= n?〈λz.z?(x1). . . . ;z?(xn).[[P]]4〉

{{τβ}}
4 def= τβ, τs, . . . , τs

{{τ}}4
def
= τ, . . . , τ

Let LHO~π = 〈HO~π,T5,
`
7−→,≈H ,`〉 where T5 is a set of types of HOπ+; the typing `

is defined in Figure 4 with polyadic types.

Definition 8.2 (Encoding from HO~π to HOπ). Encoding
〈
[[·]]4, (〈·〉)4, {{·}}4

〉
: LHO~π →

LHOπ to be defined as in Figure 11.

Proposition 8.5 (Type Preservation. From HO~π to HOπ). Let P be a HO~π process. If
Γ;∅;∆ ` P .� then (〈Γ〉)4;∅; (〈∆〉)4 ` [[P]]4 .�.

Proof. By induction on the inference Γ;∅;∆ ` P .�. See Proposition C.8 (Page 87) for
details. ut

Proposition 8.6 (Operational Correspondence. From HO~π to HOπ).

1. Let Γ;∅;∆ ` P. Then Γ;∆ ` P
`
7−→ ∆′ ` P′ implies
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a) If ` = (ν m̃′)n!〈m̃〉 then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ . . .

`n
7−→ (〈∆′〉)4 ` [[P]]4 with {{`}}4 =

`1 . . . `n.

b) If ` = n?〈m̃〉 then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ . . .

`n
7−→ (〈∆′〉)4 ` [[P]]4 with {{`}}4 = `1 . . . `n.

c) If ` ∈ {(ν m̃)n!〈λx̃.R〉,n?〈λx̃.R〉} then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `′

7−→ (〈∆′〉)4 ` [[P′]]4 with
{{`}}4 = `′.

d) If ` ∈ {n⊕ l,n&l} then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `
7−→ (〈∆′〉)4 ` [[P′]]4.

e) If ` = τβ then either (〈Γ〉)4; (〈∆〉)4 ` [[P]]4
τβ
7−→

τs
7−→ . . .

τs
7−→ (〈∆′〉)4 ` [[P′]]4 with {{`}} =

τβ, τs . . . τs.

f) If ` = τ then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 τ
7−→ . . .

τ
7−→ (〈∆′〉)4 ` [[P′]]4 with {{`}}4 = τ . . .τ.

2. Let Γ;∅;∆ ` P. (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ (〈∆1〉)4 ` P1 implies

a) If ` ∈ {n?〈m〉,n!〈m〉, (ν m)n!〈m〉} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and

(〈Γ〉)4; (〈∆1〉)4 ` P1
`2
7−→ . . .

`n
7−→ (〈∆′〉)4 ` (〈P′〉)4 with {{`}}4 = `1 . . . `n.

b) If ` ∈ {(ν m̃)n!〈λx.R〉,n?〈λx.R〉} then Γ;∆ ` P
`′

7−→ ∆′ ` P′ with {{`′}}4 = ` and
P1 ≡ [[P′]]4.

c) If ` ∈ {n⊕ l,n&l} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and P1 ≡ [[P′]]4.

d) If ` = τβ then Γ;∆ ` P
τβ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τs
7−→ . . .

τs
7−→ (〈∆′〉)4 ` (〈P′〉)4

with {{`}}4 = τβ, τs . . . τs.

e) If ` = τ then Γ;∆ ` P
τ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τ
7−→ . . .

τ
7−→ (〈∆′〉)4 ` (〈P′〉)4

with {{`}}4 = τ . . .τ.

Proof. We present the proof for the dyadic case in Proposition C.9 (Page 88). The
polyadic case proof is an generalisation of the dyadic case proof. ut

Proposition 8.7 (Full Abstraction. From HOπ+ to HOπ). Let P,Q HO~π process with
Γ;∅;∆1 ` P . � and Γ;∅;∆2 ` Q . �. Γ;∆1 ` P ≈H ∆2 ` Q if and only if (〈Γ〉)4; (〈∆1〉)4 `

[[P]]4 ≈H (〈∆2〉)4 ` [[Q]]4

Proof. The proof for both direction is a consequence of Operational Correspondence,
Proposition 8.6.
Soundness Direction.
We create the closure

< = {Γ;∆1 ` P , ∆2 ` Q | (〈Γ〉)4; (〈∆1〉)4 ` [[P]]4 ≈H (〈∆2〉)4 ` [[Q]]4}

It is straightforward to show that < is a bisimulation if we follow Part 2 of Proposi-
tion 8.6.
Completeness Direction.
We create the closure

< = {(〈Γ〉)4; (〈∆1〉)4 ` [[P]]4 , (〈∆2〉)4 ` [[Q]]4 | Γ;∆1 ` P ≈H ∆2 ` Q}

We show that< is a bisimulation up to deterministic transitions by following Part 1 of
Proposition 8.6. ut
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Proposition 8.8 (Precise encoding of HOπ+ into HOπ). The encoding from LHO~π to
LHOπ is precise.

Proof. Syntactic requirements are easily derivable from the definition of the mappings
in Figure 11. Semantic requirements are a consequence of Proposition 8.5, Proposi-
tion 8.6, and Proposition 8.7. ut

9 Related Work

Expressiveness in Concurrency. There is a vast literature on expressiveness studies
for process calculi; we refer to [39] for a survey (see also [40, § 2.3]). In particular,
the expressive power of the π-calculus has received much attention. Studies cover, e.g.,
relationships between first-order and higher-order concurrency (see, e.g., [48,47]), com-
parisons between synchronous and asynchronous communication (see, e.g., [7,37,2]),
and (non)encodability issues for different choice operators (see, e.g., [36,42]). To sub-
stantiate claims related to (relative) expressive power, early works appealed to different
definitions of encoding. Later on, proposals of abstract frameworks which formalise
the notion of encoding and state associated syntactic and semantic criteria were put
forward; recent proposals are [16,12,54]. These frameworks are applicable to different
calculi, and have shown useful to clarify known results and to derive new ones. Our
formulation of (precise) typed encoding (Definition 5.5) builds upon existing proposals
(including [37,16,28]) in order to account for the session type systems associated to the
process languages under comparison.

Expressiveness of Higher-Order Process Calculi. Early expressiveness studies for
higher-order calculi are [52,48]; more recent works include [8,28,29,55,56]. Due to the
close relationship between higher-order process calculi and functional calculi, works
devoted to encoding (variants of) the λ-calculus into (variants of) the π-calculus (see,
e.g., [45,11,58,3,51]) are also worth mentioning. The work [48] gives an encoding of
the higher-order π-calculus into the first-order π-calculus which is fully abstract with
respect to reduction-closed, barbed congruence. A basic form of input/output types is
used in [49], where the encoding in [48] is casted in the asynchronous setting, with
output and applications coalesced in a single construct. Building upon [49], a sim-
ply typed encoding for synchronous processes is given in [50]; the reverse encoding
(i.e., first-order communication into higher-order processes) is also studied there for
an asynchronous, localised π-calculus (only the output capability of names can be sent
around). The work [47] studies hierarchies for calculi with internal first-order mobil-
ity and with higher-order mobility without name-passing (similarly as the subcalculus
HO). The hierarchies are based on expressivity: formally defined according to the or-
der of types needed in typing, they describe different “degrees of mobility”. Via fully
abstract encodings, it is shown that that name- and process-passing calculi with equal
order of types have the same expressiveness. With respect to these previous results, our
approach based on session types has several important consequences and allows us to
derive new results. Our study reinforces the intuitive view of “encodings as protocols”,
namely session protocols which enforce precise linear and shared disciplines for names,
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a distinction not investigated in [48,49]. In turn, the linear/shared distinction is central in
proper definitions of trigger processes, which are essential to encodings and behavioural
equivalences. More interestingly, we showed that HO, a minimal higher-order session
calculus (no name passing, only first-order application) suffices to encode π (the ses-
sion calculus with name passing) but also HOπ and its extension with higher-order
applications (denoted HOπ+). Thus, using session types all these calculi are shown to
be equally expressive with fully abstract encodings. To our knowledge, these are the
first expressiveness results of this kind.

Other related works are [8,55,29]. The paper [8] proposes a fully abstract, continu-
ation-passing style encoding of the π-calculus into Homer, a rich higher-order process
calculus with explicit locations, local names, and nested locations. The work [55] stud-
ies the encodability of the higher-order π-calculus (extended with a relabelling opera-
tor) into the first-order π-calculus; encodings in the reverse direction are also proposed,
following [52]. A minimal calculus of higher-order concurrency is studied in [29]: it
lacks restriction, name passing, output prefix (so communication is asynchronous), and
constructs for infinite behaviour. Nevertheless, this calculus (a sublanguage of HO) is
shown to be Turing complete. Moreover, strong bisimilarity is decidable and coincides
with reduction-closed, barbed congruence.

Building upon [53], the work [55] studies the (non)encodability of the π-calculus
into a higher-order π-calculus with a powerful name relabelling operator, which is
shown to be essential in encoding name-passing. A core higher-order calculus is stud-
ied in [29]: it lacks restriction, name passing, output prefix and constructs for infi-
nite behaviour. This calculus has a simple notion of bisimilarity which coincides with
reduction-closed, barbed congruence. The absence of restriction plays a key role in the
characterisations in [29]; hence, our characterisation of contextual equivalence for HO
(which has restriction) cannot be derived from that in [29].

In [28] the core calculus in [29] is extended with restriction, synchronous com-
munication, and polyadicity. It is shown that synchronous communication can encode
asynchronous communication, and that process passing polyadicity induces a hierarchy
in expressive power. The paper [56] complements [28] by studying the expressivity of
second-order process abstractions. Polyadicity is shown to induce an expressiveness hi-
erarchy; also, by adapting the encoding in [48], process abstractions are encoded into
name abstractions. In contrast, we give a fully abstract encoding of HO~π+ into HO that
preserves session types; this improves [28,56] by enforcing linearity disciplines on pro-
cess behaviour. The focus of [28,56] is on the expressiveness of untyped, higher-order
processes; they do not address tractable equivalences for processes (such as higher-
order and characteristic bisimulations) which only require observation of finite higher-
order values, whose formulations rely on session types.

Session Typed Processes. The works [10,9] study encodings of binary session calculi
into a linearly typed π-calculus. While [10] gives a precise encoding of π into a linear
calculus (an extension of [3]), the work [9] gives the operational correspondence (with-
out full abstraction, cf. Definition 5.3-4) for the first- and higher-order π-calculi into
[23]. They investigate an embeddability of two different typing systems; by the result
of [10], HOπ+ is encodable into the linearly typed π-calculi.
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The syntax of HOπ is a subset of that in [33,35]. The work [33] develops a full
higher-order session calculus with process abstractions and applications; it admits the
type U = U1 → U2 . . .Un → � and its linear type U1 which corresponds to Ũ→� and
Ũ(� in a super-calculus of HOπ+ and HO~π. Our results show that the calculus in [33] is
not only expressed but also reasoned in HO (with limited form of arrow types, C→� and
C(�), via precise encodings. None of the above works proposes tractable bisimulations
for higher-order processes.

Other Works on Typed Behavioural Equivalences. Since types can limit contexts (en-
vironments) where processes can interact, typed equivalences usually offer coarse se-
mantics than untyped semantics. The work [43] demonstrated the IO-subtyping can
equate the optimal encoding of the λ-calculus by Milner which was not i n the untyped
polyadic π-calculus [31]. After [43], many works on typed π-calculi have investigated
correctness of encodings of known concurrent and sequential calculi in order to exam-
ine semantic effects of proposed typing systems.

The type discipline closely related to session types is a family of linear typing sys-
tems. The work [23] first proposed a linearly typed reduction-closed, barbed congru-
ence and reasoned a tail-call optimisation of higher-order functions which are encoded
as processes. The work [57] had used a bisimulation of graph-based types to prove the
full abstraction of encodings of the polyadic synchronous π-calculus into the monadic
synchronous π-calculus. Later typed equivalences of a family of linear and affine cal-
culi [3,58,4] were used to encode PCF [44,30], the simply typed λ-calculi with sums and
products, and system F [15] fully abstractly (a fully abstract encoding of the λ-calculi
was an open problem in [31]). The work [59] proposed a new bisimilarity method as-
sociated with linear type structure and strong normalisation. It presented applications
to reason secrecy in programming languages. A subsequent work [20] adapted these
results to a practical direction. It proposes new typing systems for secure higher-order
and multi-threaded programming languages. In these works, typed properties, linearity
and liveness, play a fundamental role in the analysis. In general, linear types are suitable
to encode “sequentiality” in the sense of [21,1].

Typed Behavioural Equivalences. This work follows the principles for session type
behavioural semantics in [27,26,41] where a bisimulation is defined on a LTS that as-
sumes a session typed observer. Our theory for higher-order session types differentiates
from the work in [27,26], which considers the first-order binary and multiparty session
types, respectively. The work [41] gives a behavioural theory for a logically motivated
language of binary sessions without shared names.

Our approach for the higher-order builds upon techniques by Sangiorgi [48,46]
and Jeffrey and Rathke [22]. The work [48] introduced the first fully-abstract encod-
ing from the higher-order π-calculus into the π-calculus. Sangiorgi’s encoding is based
on the idea of a replicated input-guarded process (called a trigger process). We use
a similar replicated triggered process to encode HOπ into π (Definition 6.4). Opera-
tional correspondence for the triggered encoding is shown using a context bisimulation
with first-order labels. To deal with the issue of context bisimilarity, Sangiorgi proposes
normal bisimilarity, a tractable equivalence without universal quantification. To prove
that context and normal bisimilarities coincide, [48] uses triggered processes. Triggered
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bisimulation is also defined on first-order labels where the contextual bisimulation is
restricted to arbitrary trigger substitution. This characterisation of context bisimilarity
was refined in [22] for calculi with recursive types, not addressed in [46,48] and rele-
vant in our work. The bisimulation in [22] is based on an LTS which is extended with
trigger meta-notation. As in [46,48], the LTS in [22] observes first-order triggered val-
ues instead of higher-order values, offering a more direct characterisation of contextual
equivalence and lifting the restriction to finite types.

We contrast the approach in [22] and our approach based on higher-order and char-
acteristic bisimilarities. Below we use the notations adopted in [22].

i) The work [22] extends the first-order LTS for a trigger interaction whereas our
work uses the higher-order LTS.

ii) The output of a higher-order value λx.Q on name n in [22] requires the output of
a fresh trigger name t (notation τt) on channel n and then the introduction of a
replicated triggered process (notation (t⇐ (x)Q)). Hence we have:

P
(ν t)n!〈τt〉
−→ P′ | (t⇐ (x)Q)

t?〈v〉
−→ P′ | (x)Qv | (t⇐ (x)Q)

In our characteristic bisimulation, we only observe an output of a value that can be
either first- or higher-order as follows:

P
n!〈V〉
7−→ P′

with V ≡ λx.Q or V = m.
A non-replicated triggered process (t⇐ V) appears in the parallel context of the
acting process when we compare two processes for behavioural equality (cf. Defi-
nition 4.13). Using the LTS in Definition 4.1 we can obtain:

P′ | t⇐ λx.Q
λz.z?(y).∗ t?(x).(y x)

−→ P′ | (ν s)(s?(y).∗ t?(x).(y x) | s!〈λx.Q〉.0)
τ
−→ P′ | ∗ t?(y).((λx.Q)y)

that simulates the approach in [22].
In addition, the output of the characteristic bisimulation differentiates from the
approach in [22] as listed below:

– The typed LTS predicts the case of linear output values and will never allow
replication of such a value; if V is linear the input action would have no repli-
cation operator, as λz.z?(y).t?(x).(y x).

– The characteristic bisimulation introduces a uniform approach not only for
higher-order values but for first-order values as well, i.e. triggered process can
accept any process that can substitute a first-order value as well. This is derived
from the fact that the HOπ-calculus makes no use of a matching operator, in
contrast to the calculus defined in [22]) where name matching is crucial to
prove completeness of the bisimilarity relation. Instead of a matching operator,
we use types: a characteristic value inhabiting a type enables the simplest form
of interactions with the environment.
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– Our HOπ-calculus requires only first-order applications. Higher-order applica-
tions, as in [22], are presented as an extension in the HOπ+ calculus.

– Our trigger process is non-replicated. It guards the output value with a higher-
order input prefix. The functionality of the input is then used to simulate the
contextual bisimilarity that subsumes the replicated trigger approach (cf. Sec-
tion 4.5). The transformation of an output action as an input action allows for
treating an output using the restricted LTS (Definition 4.10):

P′ | t⇐ λx.Q
t?〈λx. [(U)]x〉
7−→ P′ | (ν s)([(U)]x s | s!〈λx.Q〉.0)

iii) The input of a higher-order value in the [22] requires the input of a meta-syntactic
fresh trigger, which then substituted on the application variable, thus the meta-
syntax is extended to represent applications, e.g.:

n?(x).P
n?〈τk〉
−→ ((λx.P)τk)

τ
−→ P{τk/x}

Every instance of process variable x in P being substituted with trigger value τk to
give an application of the form (τk x). In contrast the approach in the characteristic
bisimulation observes the triggered value λz. t?(x).(xz) as an input instead of the
meta-syntactic trigger:

n?(x).P
n?〈λz. t?(x).(xz)〉
7−→ P{λz. t?(x).(xz)/x}

Every instance of process variable x in P is substituted to give application of the
form (λz. t?(x).(xz))v Note that in the characteristic bisimulation, we can also ob-
serve a characteristic process as an input.

iv) Triggered applications in [22] are observed as an output of the application value
over the fresh trigger name:

τk v
k!〈v〉
−→ 0

In contrast in the characteristic bisimulation we have two kind of applications: i)
the trigger value application allows us to simulate an application on a fresh trigger
name. ii) the characteristic value application allows us to inhabit an application
value and observe the interaction its interaction with the environment as below:

(λz. t?(x).(xz))v
τ
−→ t?(x).(xv)

t?〈λx. [(U)]x〉
−→ (λx. [(U)]x)v

τ
−→ [(U)]x{v/x}
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A Type Soundness

We state type soundness of our system. As our typed process framework is a sub-
calculus of that considered by Mostrous and Yoshida, the proof of type soundness
requires notions and properties which are specific instances of those already shown
in [35]. We begin by stating weakening and strengthening lemmas, which have stan-
dard proofs.

Lemma A.1 (Weakening - Lemma C.2 in [35]).

− If Γ;Λ;∆ ` P .� and x < dom(Γ,Λ,∆) then Γ · x : S→�;Λ;∆ ` P .�

Lemma A.2 (Strengthening - Lemmas C.3 and C.4 in [35]).

− If Γ · x : S→�;Λ;∆ ` P .� and x < fpv(P) then Γ;Λ;∆ ` P .�
− If Γ;Λ;∆ · s : end ` P .� and s < fn(P) then Γ;Λ;∆ ` P .�

Lemma A.3 (Substitution Lemma - Lemma C.10 in [35]).

1. Suppose Γ;Λ;∆ · x : S ` P .� and s < dom(Γ,Λ,∆). Then Γ;Λ;∆ · s : S ` P{s/x} .�.
2. Suppose Γ · x : 〈U〉;Λ;∆ ` P.� and a < dom(Γ,Λ,∆). Then Γ ·a : 〈U〉;Λ;∆ ` P{a/x}.�.
3. Suppose Γ;Λ1 · x : C(�;∆1 ` P . � and Γ;Λ2;∆2 ` V .C(� with Λ1,Λ2 and ∆1,∆2

defined. Then Γ;Λ1 ·Λ2;∆1 ·∆2 ` P{V/x} .�.
4. Suppose Γ · x : C→�;Λ;∆ ` P .� and Γ;∅;∅ ` V .C→�. Then Γ;Λ;∆ ` P{V/x} .�.

Proof. In all four parts, we proceed by induction on the typing for P, with a case anal-
ysis on the last applied rule. ut

We now state the instance of type soundness that we can derive from [35]. It is worth
noticing the definition of structural congruence in [35] is richer. Also, their statement
for subject reduction relies on an ordering on typings associated to queues and other
runtime elements (such extended typings are denoted ∆ in [35]). Since we are working
with synchronous communication we can omit such an ordering.

We now repeat the statement of Theorem 3.1 in Page 12:

Theorem A.1 (Type Soundness - Theorem 3.1).

1. (Subject Congruence) Suppose Γ;Λ;∆ ` P .�. Then P ≡ P′ implies Γ;Λ;∆ ` P′ .�.
2. (Subject Reduction) Suppose Γ;∅;∆ ` P .� with balanced ∆.

Then P −→ P′ implies Γ;∅;∆′ ` P′ .� and ∆ = ∆′ or ∆ −→ ∆′.

Proof. Part (1) is standard, using weakening and strengthening lemmas. Part (2) pro-
ceeds by induction on the last reduction rule used. Below, we give some details:

1. Case [App]: Then we have

P = (λx.Q)u −→ Q{u/x} = P′
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Suppose Γ; ∅; ∆ ` (λx.Q)u .�. We examine one possible way in which this assump-
tion can be derived; other cases are similar or simpler:

Γ; ∅; ∆ · {x : S } ` Q .� Γ′; ∅; {x : S } ` x .S
Γ; ∅; ∆ ` λx.Q .S(� Γ; ∅; {u : S } ` u .S

Γ; ∅; ∆ ·u : S ` (λx.Q)u .�

Then, by combining premise Γ; ∅; ∆ · {x : S } ` Q . � with the substitution lemma
(Lemma 3.1(1)), we obtain Γ; ∅; ∆ ·u : S ` Q{u/x} .�, as desired.

2. Case [Pass]: There are several sub-cases, depending on the type of the communication
subject n and the type of the object V . We analyze two representative sub-cases:
(a) n is a shared name and V is a name v. Then we have the following reduction:

P = n!〈v〉.Q1 | n?(x).Q2 −→ Q1 | Q2{v/x} = P′

By assumption, we have the following typing derivation:

(29) (30)
Γ; ∅; ∆1 · {v : S } ·∆3 ` n!〈v〉.Q1 | n?(x).Q2 .�

where (29) and (30) are as follows:

Γ′ ·n : 〈S 〉; ∅; ∅ ` n . 〈S 〉 Γ; ∅; ∆1 ` Q1 .� Γ; ∅; {v : S } ` v .S
Γ; ∅; ∆1 · {v : S } ` n!〈v〉.Q1 .�

(29)

Γ′ ·n : 〈S 〉; ∅; ∅ ` n . 〈S 〉 Γ; ∅; ∆3 · x : S ` Q2 .�

Γ; ∅; ∆3 ` n?(x).Q2 .�
(30)

Now, by applying Lemma 3.1(1) on Γ; ∅; ∆3 · x : S ` Q2 .� we obtain

Γ; ∅; ∆3 · v : S ` Q2{v/x} .�

and the case is completed by using rule [Par] with this judgment:

Γ;∅;∆1 ` Q1 .� Γ; ∅; ∆3 · v : S ` Q2{v/x} .�

Γ;∅;∆1 ·∆3 · v : S ` Q1 | Q2{v/x} .�

Observe how in this case the session environment does not reduce.

(b) n is a shared name and V is a higher-order value. Then we have the following
reduction:

P = n!〈V〉.Q1 | n?(x).Q2 −→ Q1 | Q2{V/x} = P′

By assumption, we have the following typing derivation (below, we write L to
stand for C→� and Γ to stand for Γ′ \ {x : L}).

(31) (32)
Γ; ∅; ∆1 ·∆3 ` n!〈v〉.Q1 | n?(x).Q2 .�

where (31) and (32) are as follows:

Γ; ∅; ∅ ` n . 〈L〉 Γ; ∅; ∆1 ` Q1 .� Γ; ∅; ∅ ` V .L
Γ; ∅; ∆1 ` n!〈V〉.Q1 .�

(31)

Γ′; ∅; ∅ ` n . 〈L〉 Γ′; ∅; ∆3 ` Q2 .� Γ′; ∅; ∅ ` x .L
Γ; ∅; ∆3 ` n?(x).Q2 .�

(32)
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Now, by applying Lemma 3.1(4) on Γ′ \ {x : L}; ∅; ∆3 ` Q2 .� and Γ; ∅; ∅ ` V .L
we obtain

Γ; ∅; ∆3 ` Q2{V/x} .�

and the case is completed by using rule [Par] with this judgment:

Γ;∅;∆1 ` Q1 .� Γ; ∅; ∆3 ` Q2{V/x} .�

Γ;∅;∆1 ·∆3 ` Q1 | Q2{V/x} .�

Observe how in this case the session environment does not reduce.

3. Case [Sel]: The proof is standard, the session environment reduces.
4. Cases [Par] and [Res]: The proof is standard, exploiting induction hypothesis.
5. Case [Cong]: follows from Theorem 3.1 (1).

ut

B Behavioural Semantics

We present the proofs for the theorems in Section 4.

B.1 Proof of Theorem 4.1

We split the proof of Theorem 4.1 (Page 22) into several lemmas:

− Lemma B.1 establishes ≈H = ≈C .s
− Lemma B.4 exploits the process substitution result (Lemma 4.2) to prove that ≈H⊆≈.
− Lemma B.5 shows that ≈ is a congruence which implies ≈⊆�.
− Lemma B.8 shows that �⊆≈H .

We now proceed to state and proof these lemmas, together with some auxiliary results.

Lemma B.1. ≈H=≈C .

Proof. We only prove the direction ≈H⊆≈C . The direction ≈C⊆≈H is similar.
Consider

< = {Γ;∆1 ` P , ∆2 ` Q | Γ;∆1 ` P ≈H ∆2 ` Q}

We show that< is a characteristic bisimulation. The proof does a case analysis on the
transition label `.
- Case ` = (ν m̃1)n!〈V1〉 is the non-trivial case.
If

Γ;∆1 ` P
(ν m̃1)n!〈V1〉
7−→ ∆′1 ` P′ (33)

then ∃Q,V2 such that

Γ;∆2 ` Q
(ν m̃2)n!〈V2〉
�=⇒ ∆′2 ` Q′ (34)
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and for fresh t:

Γ;∅; ∆′1 ` (ν m̃1)(P′ | t?(x).(ν s)(x s | s!〈V1〉.0))
≈H ∆2 ` (ν m̃2)(Q′ | t?(x).(ν s)(x s | s!〈V2〉.0))

From the last typed pair we can derive that for Γ;∅;∆ ` V1 .U:

Γ;∅; ∆′1 ` (ν m̃1)(P′ | t?(x).(ν s)(x s | s!〈V1〉.0))
t?〈[[?(U);end]]x〉
7−→ ∆′′1 ` (ν m̃1)(P′ | (ν s)([[?(U);end]]s | s!〈V1〉.0))

implies
Γ;∅; ∆′2 ` (ν m̃2)(Q′ | t?(x).(ν s)(x s | s!〈V2〉.0))

t?〈[[?(U);end]]x〉
7−→ ∆′′2 ` (ν m̃2)(Q′ | (ν s)([[?(U);end]]s | s!〈V2〉.0))

and Γ;∅;∆′ ` V2 .U.
Transition (33) implies transition (34). It remains to show that for fresh t:

Γ;∅; ∆′1 ` (ν m̃1)(P′ | t?(x).(ν s)([(?(U);end)]s | s!〈V1〉.0))
≈H ∆2 ` (ν m̃2)(Q′ | t?(x).(ν s)([(?(U);end)]s | s!〈V2〉.0))

The freshness of t implies that

Γ;∅; ∆′1 ` (ν m̃1)(P′ | t?(x).(ν s)([(?(U);end)]s | s!〈V1〉.0))
t?〈m′〉
7−→ ∆′′1 ` (ν m̃1)(P′ | (ν s)([[?(U);end]]s | s!〈V1〉.0))

and
Γ;∅; ∆′2 ` (ν m̃2)(Q′ | t?(x).(ν s)([(?(U);end)]s | s!〈V2〉.0))
t?〈m′〉
7−→ ∆′′2 ` (ν m̃2)(Q′ | (ν s)([[?(U);end]]s | s!〈V2〉.0))

which coincides with the transitions for ≈H .
- The rest of the cases are trivial.
The direction ≈C⊆≈H is very similar to the direction ≈H⊆≈C : it requires a case analysis
on the transition label `. Again the non-trivial case is ` = (ν m̃1)n!〈V1〉. ut

The next lemma implies a process substitution lemma as a corollary. Given two
processes that are bisimilar under trigerred substitution and characteristic process sub-
stitution, we can prove that they are bisimilar under every process substitution. This
result is the key result for proving the soundness of the bisimulation.

Lemma B.2 (Linear Process Substitution). If

1. fpv(P2) = fpv(Q2) = {x}.
2. Γ; x : U;∆′′′1 ` P2 .� and Γ; x : U;∆′′′2 ` Q2 .�.
3. Γ;∆′1 ` (ν m̃1)(P1 | P2{λx̃. t?(y).(y x̃)/x}) ≈H ∆′2 ` (ν m̃2)(Q1 | Q2{λx̃. t?(y).(y x̃)/x}),

for some fresh t.
4. Γ;∆′′1 ` (ν m̃1)(P1 | P2{[(U)]c/x}) ≈H ∆′′2 ` (ν m̃2)(Q1 | Q2{[(U)]c/x}),

for some U.
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then ∀R such that fv(R) = x̃

Γ;∆1 ` (ν m̃1)(P1 | P2{λx̃.R/x}) ≈H ∆2 ` (ν m̃2)(Q1 | Q2{λx̃.R/x})

Proof. We create a bisimulation closure:

< = {Γ;∆1 ` (ν m̃1)(P1 | P2{λx̃.R/x}),∆2 ` (ν m̃2)(Q1 | Q2{λx̃.R/x}) |
∀R such that fv(R) = x̃,fpv(P2) = fpv(Q2) = {x}

Γ; x : U;∆′′′1 ` P2 .�,Γ; x : U;∆′′′2 ` Q2 .�

for fresh t,

Γ;∆′1 ` (ν m̃1)(P1 | P2{λx̃. t?(y).(y x̃)/x}) ≈H ∆2 ` (ν m̃2)(Q1 | Q2{λx̃. t?(y).(y x̃)/x}),

Γ;∆′′1 ` (ν m̃1)(P1 | P2{[(U)]c/x}) ≈H ∆′′2 ` (ν m̃2)(Q1 | Q2{[(U)]c/x}) for some U

}

We show that< is a bisimulation up-to β−transition (Lemma 4.3).
We do a case analysis on the transition:

Γ;∆1 ` (ν m̃1)(P1{λx̃.R/x} | P2{λx̃.R/x})
`1
−→ ∆′1 ` P′1

- Case: P2 , x ñ for some ñ.

Γ;∆1 ` (ν m̃1)(P1 | P2{λx̃.R/x})
`1
7−→ ∆′1 ` (ν m̃′1)(P1 | P′2{λx̃.R/x})

From the latter transition we obtain that

Γ;∅; ∆1 ` (ν m̃1)(P1 | P2{λx̃. t?(y).(y x̃)/x})
`1
7−→ ∆′1 ` P′ ≡ (ν m̃1)(P′1 | P

′
2{
λx̃. t?(y).(y x̃)/x})

which implies

Γ;∅; ∆2 ` (ν m̃2)(Q1 | Q2{λx̃. t?(y).(y x̃)/x})
`2
�=⇒ ∆′2 ` Q′ ≡ (ν m̃2)(Q′1 | Q

′
2{
λx̃. t?(y).(y x̃)/x}) (35)

Γ;∆′1 ` P′ |C1 ≈
H ∆′2 ` Q′ |C2 (36)

Furthermore, we have:

Γ;∆1 ` (ν m̃1)(P1 | P2{[(U)]c/x})
`1
7−→ ∆′1 ` P′′ ≡ (ν m̃′1)(P′1 | P

′
2{

[(U)]c/x})

which implies

Γ;∅; ∆2 ` (ν m̃2)(Q1 | Q2{[(U)]c/x})
`2
�=⇒ ∆′2 ` Q′′ ≡ (ν m̃2

′)(Q′1 | Q
′
2{

[(U)]c/x}) (37)

Γ;∆′1 ` P′′ |C1 ≈
H ∆′2 ` Q′′ |C2 (38)
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From (35) and (37) we obtain that ∀R with fv(R) = x̃:

Γ;∆2 ` (ν m̃2)(Q1 | Q2{λx̃.R/x})
`2
�=⇒ ∆′2 ` (ν m̃2

′)(Q′1 | Q
′
2{
λx̃.R/x})

The case concludes if we combine (36) and (38), to obtain that ∀R with fv(R) = x̃

Γ′;∆′′1 ` (ν m̃1
′)(P′1 | P

′
2{
λx̃.R/x}) |C1 < ∆′′2 ` (ν m̃2

′)(Q1 | Q′2{λx̃.R/x}) |C2

- Case: P2 = x ñ for some ñ.
∀R with fv(R) = x̃

Γ;∅; ∆1 ` (ν m̃1)(P1 | (x ñ){λx̃.R/x})
τβ
7−→ ∆′1 ` (ν m̃′1)(P1 | R{ñ/x̃})

From the latter transition we get that:

Γ;∅; ∆1 ` (ν m̃1)(P1 | x ñ{λx̃. t?(y).(y x̃)/x})
τβ
7−→

t?〈λx̃. t′?(y).(y x̃)〉
7−→ ∆′1 ` (ν m̃′1)(P1 | x ñ{λx̃. t′?(y).(y x̃)/x}) (39)

and t′ a fresh name. From the freshness of t, the determinacy of the application transition
and the fact that x is linear in Q2 it has to be the case that:

Γ;∅;∆′2 ` (ν m̃′2)(Q1 | Q2{λx̃. t?(y).(y x̃)/x})
�=⇒ (ν m̃′2)(Q′′1 | Q3 | xm̃{λx̃. t?(y).(y x̃)/x})

τβ
7−→

t?〈λx̃. t′?(y).(y x̃)〉
7−→ ∆′′2 ` (ν m̃′2)(Q′1 | xm̃{λx̃. t′?(y).(y x̃)/x})

and

Γ;∅; ∆′1 ` (ν m̃′1)(P1 | x ñ{λx̃. t′?(y).(y x̃)/x})

≈H ∆′2 ` (ν m̃2
′)(Q′1 | xm̃{λx̃. t′?(y).(y x̃)/x}) (40)

From the latter transition we can conclude that ∀R with fv(R) = {x}:

Γ;∅;∆′2 ` (ν m̃′2)(Q1 | Q2{λx̃.R/x})
�=⇒ (ν m̃′2)(Q′1 | xm̃{λx̃.R/x})
τβ
7−→ ∆′′2 ` (ν m̃′2)(Q′1 | R{m̃/x̃})

From the definition of S and (40), we also conclude that

Γ;∆′1 ` (ν m̃′1)(P1 | R{ñ/x̃})
τβ
7−→ <

τβ
←− ∆′2 ` (ν m̃2

′)(Q′1 | R{m̃/x̃})

ut

We can generalise the result of the linear process substitution lemma to prove pro-
cess substitution (Lemma 4.2). Intuitively, we can subsequently apply linear process
substitution to achieve process substitution.

Lemma B.3 (Process Substitution). If



February 9, 2015 59

1. Γ;∆′1 ` P{λx̃. t?(y).(y x̃)/x} ≈H ∆2 ` Q{λx̃. t?(y).(y x̃)/x} for some fresh t.
2. Γ;∆′′1 ` P{[(U)]c/x} ≈H ∆′′2 ` Q{[(U)]c/x} for some U.

then ∀R such that fv(R) = x̃

Γ;∆1 ` P{λx̃.R/x} ≈H ∆2 ` Q{λx̃.R/x}

Proof. We define a closure< using the normal form of P and Q

< = {Γ;∆1 ` (ν m̃1)(P1{λx̃.R/x} | P2{λx̃.R/x}),∆2 ` (ν m̃2)(Q1{λx̃.R/x} | Q2{λx̃.R/x}) |
∀R such that fv(R) = x̃,

for fresh t,
Γ;∅; ∆′1 ` (ν m̃1)(P1{λx̃. t?(y).(y x̃)/x} | P2{λx̃. t?(y).(y x̃)/x})
≈H ∆′2 ` (ν m̃2)(Q1{λx̃. t?(y).(y x̃)/x} | Q2{λx̃. t?(y).(y x̃)/x})

for some U,
Γ;∅; ∆′′1 ` (ν m̃1)(P1{[(U)]c/x} | P2{[(U)]c/x})
≈H ∆′′2 ` (ν m̃2)(Q1{[(U)]c/x} | Q2{[(U)]c/x})

}

We show that< is a bisimulation up to β−transition (Lemma 4.3).
- Case: P2 , x ñ for some ñ.

Γ;∅; ∆1 ` (ν m̃1)(P1{λx̃.R/x} | P2{λx̃.R/x})
`1
7−→ ∆′1 ` (ν m̃′1)(P1{λx̃.R/x} | P′2{λx̃.R/x}) (41)

The case is similar to the first case of Lemma B.2.
- Case: P2 = x ñ for some ñ.

Γ;∅; ∆1 ` (ν m̃1)(P1{λx̃.R/x} | x ñ{λx̃.R/x})
τβ
7−→ ∆′1 ` (ν m̃′1)(P1{λx̃.R/x} | R{ñ/x̃})

From the latter transition we get that:

Γ;∅; ∆1 ` (ν m̃1)(P1{λx̃. t?(y).(y x̃)/x} | x ñ{λx̃. t?(y).(y x̃)/x})
τβ
7−→

t?〈λx̃. t′?(y).(y x̃)〉
7−→ ∆′1 ` (ν m̃1

′)(P1{λx̃. t?(y).(y x̃)/x} | y ñ{λx̃. t′?(y).(y x̃)/y}) (42)

and t′ a fresh name. From the freshness of t and the determinacy of the application
transition it has to be the case that:

Γ;∅;∆′2 ` (ν m̃2
′)(Q1{λx̃. t?(y).(y x̃)/x} | Q2{λx̃. t?(y).(y x̃)/x})

�=⇒ (ν m̃2
′)(Q′1{λx̃. t?(y).(y x̃)/x} | Q′2{λx̃. t?(y).(y x̃)/x} | xm̃{λx̃. t?(y).(y x̃)/x})

τβ
7−→

t?〈λx̃. t′?(y).(y x̃)〉
7−→ ∆′′2 ` (ν m̃2

′)((Q′1 | Q
′
2){λx̃. t?(y).(y x̃)/x} | ym̃{λx̃. t′?(y).(y x̃)/y})

Let Q3 such that

Γ;∅; ∆ ` (ν m̃2
′)(Q1 | Q3){λx̃. t?(y).(y x̃)/x}{λx̃. t′?(y).(y x̃)/y}

�=⇒ ∆′ ` (ν m̃2
′)((Q′1 | Q

′
2){λx̃. t?(y).(y x̃)/x} | ym̃{λx̃. t′?(y).(y x̃)/y})
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From Lemma B.2 we get that ∀R with fv(R) = x̃

Γ;∅; ∆′′′1 ` (ν m̃1
′)(P1{λx̃. t?(y).(y x̃)/x} | y ñ{λx̃.R/y})

≈H ∆′ ` (ν m̃2
′)((Q1 | Q3){λx̃. t?(y).(y x̃)/x}{λx̃.R/y})

From (41) we get that

Γ;∅; ∆′ ` (ν m̃1
′)((Q1 | Q3){λx̃. t?(y).(y x̃)/x}{λx̃.R/y})

�=⇒
τβ
7−→ ∆′′ ` (ν m̃2

′)((Q′1 | Q
′
2){λx̃. t?(y).(y x̃)/x} | R{m̃/x̃})

and from the definition of<

Γ;∅; ∆′′1 ` (ν m̃1
′)(P1{λx̃.R/x} | y ñ{λx̃.R/y})

τβ
7−→ <

τβ
←− ∆′′2 ` (ν m̃2

′)((Q′1 | Q
′
2){λx̃.R/x} | ym̃{λx̃.R/y})

as required. ut

Lemma B.4. ≈H ⊆ ≈

Proof. Let
Γ;∆1 ` P1 ≈

H ∆2 ` Q1

The proof is divided on cases on the label ` for the transition:

Γ;∆1 ` P1
`
7−→ ∆′1 ` P2 (43)

- Case: ` < {(ν m̃1)n!〈λx̃.P〉, (ν m̃1
′)n!〈m̃1〉,n?〈λx̃.P〉}

For the latter ` and transition in (43) we conclude that:

Γ;∆2 ` Q1
`
�=⇒ ∆′2 ` Q2

and
Γ;∆′1 ` P2 ≈

H ∆′2 ` Q2

The above premise and conclusion coincides with defining cases for ` in ≈.
- Case: ` = n?〈λx̃.P〉
Transition in (43) concludes:

Γ;∆1 ` P1
n?〈λx̃. [(U)]x̃〉
7−→ ∆′1 ` P2{λx̃. [(U)]x̃

/x}

Γ;∆1 ` P1
n?〈λx̃. t?(y).(y x̃)〉
7−→ ∆′′1 ` P2{λx̃. t?(y).(y x̃)/x}

The last two transitions imply:

Γ;∆2 ` Q1
n?〈λx̃. [(U)]x̃〉
�=⇒ ∆′2 ` Q2{λx̃. [(U)]x̃

/x}

Γ;∆2 ` Q1
n?〈λx̃. t?(y).(y x̃)〉

�=⇒ ∆′′2 ` Q2{λx̃. t?(y).(y x̃)/x}

and
Γ;∆′1 ` P2{λx̃. [(U)]x̃

/x} ≈H ∆′2 ` Q2{λx̃. [(U)]x̃
/x}

Γ;∆′′1 ` P2{λx̃. t?(y).(y x̃)/x} ≈H ∆′′2 ` Q2{λx̃. t?(y).(y x̃)/x}
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To conlude from (4.2) that ∀R with fv(R) = x̃

Γ;∆′1 ` P2{λx̃.R/x} ≈H ∆′2 ` Q2{λx̃.R/x}

as required.
- Case: ` = (ν m̃1)n!〈λx̃.P〉
From transition (43) we conclude:

Γ;∆2 ` Q1
(ν m̃2)n!〈λx̃.Q〉

�=⇒ ∆′2 ` Q2

and for fresh t

Γ;∅; ∆′1 ` (ν m̃1)(P2 | t?(x).(ν s)(x s | s!〈λx̃.P〉.0))
≈H ∆′2 ` (ν m̃2)(Q2 | t?(x).(ν s)(x s | s!〈λx̃.Q〉.0))

From the previous case we can conclude that ∀R with fpv(R) = {x}:

Γ;∅; ∆′1 ` (ν m̃1)(P2 | t?(x).(ν s)(x s | s!〈λx̃.P〉.0))
t?〈λz.z?(x).R〉
−→ (ν m̃1)(P2 | (ν s)(s?(x).R | s!〈λx̃.P〉.0))
τ
−→ ∆′′1 ` (ν m̃1)(P2 | R{λx̃.P/x})

and
Γ;∅; ∆′2 ` (ν m̃2)(Q2 | t?(x).(ν s)(x s | s!〈λx̃.Q〉.0))

t?〈λz.z?(x).R〉
−→ (ν m̃2)(Q2 | (ν s)(s?(x).R | s!〈x̃Q〉.0))

τ
−→ ∆′′2 ` (ν m̃2)(Q2 | R{λx̃.Q/x})

and furthermore it is easy to see that ∀R with fpv(R) = X:

Γ;∆′′1 ` (ν m̃1)(P2 | R{λx̃.P/x}) ≈H ∆2 ` (ν m̃2)(Q2 | R{λx̃.Q/x})

as required by the definition of ≈.
- Case: ` = (ν m̃1

′)n!〈m̃1〉

The last case shares a similar argumentation with the previous case. ut

Lemma B.5. ≈⊆�.

Proof. We prove that ≈ satisfies the defining properties of �. Let

Γ;∆1 ` P1 ≈ ∆2 ` P2

Reduction Closed:
Γ;∆1 ` P1 −→ ∆′1 ` P′1

implies that ∃P′2 such that

Γ;∆2 ` P2 =⇒ ∆′2 ` P′2
Γ;∆1 ` P′1 ≈ ∆

′
2 ` P′2

Same argument hold for the symmetric case, thus ≈ is reduction closed.
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Barb Preservation:

Γ;∅;∆1 ` P1 .� ↓n

implies that

P � (ν m̃)(n!〈V1〉.P3 | P4)
n < ∆1

From the definition of ≈ we get that

Γ;∆1 ` (ν m̃)(n!〈V1〉.P3 | P4)
(ν s1)m!〈V1〉
−→ ∆′1 ` (ν m̃′)(P3 | P4)

implies

Γ;∆2 ` P2
(ν m2)n!〈V2〉

=⇒ ∆′2 ` P′2

From the last result we get that

Γ;∅;∆2 ` P2 .� ⇓n

as required.
Congruence:
The congruence property requires that we check that ≈ is preserved under any context.
The most interesting context case is parallel composition.
We construct a congruence relation. Let

S = {(Γ;∅;∆1 ·∆3 ` (ν ñ1)(P1 | R) .�,Γ;∅;∆2 ·∆3 ` (ν ñ2)(P2 | R)) |
Γ;∆1 ` P1 ≈ ∆2 ` P2,∀Γ;∅;∆3 ` R .�
}

We need to show that the above congruence is a bisimulation. To show that S is a

bisimulation we do a case analysis on the structure of the
`
−→ transition.

- Case:
Γ;∆1 ·∆3 ` (ν ñ1)(P1 | R)

`
−→ ∆′1 ·∆3 ` (ν ñ′1)(P′1 | R)

The case is divided into three subcases:
Subcase i: ` < {(ν m̃)n!〈λx̃.Q〉, (ν ˜mm1)n!〈m̃1〉}

From the definition of typed transition we get:

Γ;∆1 ` P1
`
−→ ∆′1 ` P′1

which implies that

Γ;∆1 ` P2
`

=⇒ ∆′2 ` P′2 (44)
Γ;∆′1 ` P′1 ≈ ∆

′′
2 ` P′2 (45)
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From transition in (44) we conclude that

Γ;∆2 ·∆3 ` (ν ñ2)(P2 | R)
`

=⇒ ∆′2 ·∆3 ` (ν ñ2
′)(P′2 | R)

Furthermore from (45) and the definition of S we conlude that

Γ;∆′1 ·∆3 ` (ν ñ1
′)(P′1 | R) S ∆′2 ·∆3 ` (ν ñ2

′)(P′2 | R)

Subcase ii: ` = (ν m̃1)n!〈λx̃.Q1〉

From the definition of typed transition we get

Γ;∆1 ` P1
(ν m̃1)n!〈λx̃.Q1〉
−→ ∆′1 ` P′1

which implies that

Γ;∆1 ` P2
(ν m̃2)n!〈λx̃.Q2〉

=⇒ ∆′2 ` P′2 (46)
∀Q, {x} ∈ fpv(Q)
Γ;∆′′1 ` (ν ñ1

′′)(P′1 | Q{λx̃.Q1/x}) ≈ ∆′′2 ` (ν ñ2
′′)(P′2 | Q{λx̃.Q2/x}) (47)

From transition (46) conclude that

Γ;∆2 ·∆3 ` (ν ñ2)(P2 | R)
(ν m̃2)n!〈λx̃.Q2〉

=⇒ ∆′2 ·∆3 ` (ν ñ2
′)(P′2 | R)

Furthermore from (47) we conlude that ∀Q with {x} = fpv(Q)

Γ;∆′′1 ·∆3 ` (ν ñ1
′′)(P′1 | Q{(x̃)Q1/x} | R) S ∆′′2 ·∆3 ` (ν ñ2

′′)(P′2 | Q{λx̃.Q2/x} | R)

- Subcase iii: ` = (ν ˜mm1)n!〈m̃1〉

From the definition of typed transition we get that

Γ;∆1 ` P1
(ν ˜mm1)n!〈m̃1〉
−→ ∆′1 ` P′1

which implies that ∃P′2, s2 such that

Γ;∆1 ` P2
(ν ˜mm2)n!〈m̃2〉

=⇒ ∆′2 ` P′2 (48)
∀Q, x = fn(Q),
Γ;∆′′1 ` (ν ñ1)(P′1 | Q{m̃1/x̃}) ≈ ∆′′2 ` (ν ñ2)(P′2 | Q{m̃2/x̃}) (49)

From transition (48) conclude that

Γ;∆2 ·∆3 ` (ν ñ2
′)(P2 | R)

(ν ˜mm2)n!〈m̃2〉
=⇒ ∆′2 ·∆3 ` (ν ñ2

′′′)(P′2 | R)

Furthermore from (49) we conlude that ∀Q, x = fn(Q)

Γ;∆′′1 ·∆3 ` (ν ñ1
′′)(P′1 | Q{m̃1/x̃} | R) S ∆′′2 ·∆3 ` (ν ñ2

′′)(P′2 | Q{m̃2/x̃} | R)
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- Case:
Γ;∆1 ·∆3 ` (ν m̃1)(P1 | R)

`
−→ ∆1 ·∆

′
3 ` (ν m̃1

′)(P1 | R′)

This case is divided into three subcases:
Subcase i: ` < {(ν m̃)n!〈λx̃.Q〉, (ν ˜mm1)n!〈m̃1〉}

From the LTS we get that:

Γ;∆3 ` R
`
−→ ∆′3 ` R′

Which in turn implies

Γ;∆2 ·∆3 ` (ν m̃2)(P2 | R)
`
−→ ∆2 ·∆

′
3 ` (ν m̃2

′)(P2 | R′)

From the definition of S we conclude that

Γ;∆1 ·∆
′
3 ` (ν m̃1

′)(P1 | R′) S ∆2 ·∆
′′
3 ` (ν m̃2

′)(P2 | R′)

as required.
Subcase ii: ` = (ν m̃1)n!〈λx̃.Q〉
From the LTS we get that:

Γ;∆3 ` R
`
−→ ∆′3 ` R′ (50)

∀R1, {x} = fpv(R1),
Γ;∅;∆′′3 ` (ν m̃′)(R′ | R1{λx̃.Q/x}) .� (51)

From (50) we get that

Γ;∆2 ·∆3 ` (ν m̃2
′)(P2 | R)

`
−→ ∆2 ·∆

′
3 ` (ν m̃2)(P2 | R′)

Furthermore from (51) and the definition of S we conclude that ∀R1 with {x} ∈ fpv(R1)

Γ;∆1 ·∆
′′
3 ` (ν m̃1)(P1 | (ν m̃′)(R′ |R1{λx̃.Q/x}))S ∆2∪∆

′′
3 ` (ν m̃2)(P2 | (ν m̃′)(R′ |R1{λx̃.Q/x}))

as required.
Subcase iii: ` = (ν m̃m)n!〈m̃〉
From the typed LTS we get that:

Γ;∆3 ` R
`
−→ ∆′3 ` R′ (52)

∀Q, x̃ = fn(Q),
Γ;∅;∆′′3 ` (ν m̃′)(R′ | Q{m̃/x̃}) .� (53)

From (52), we obtain that

Γ;∆2 ·∆3 ` (ν m̃2)(P2 | R)
`
−→ ∆2 ·∆

′
3 ` (ν m̃2)(P2 | R′)

Furthermore from (53) and the definition of S we conclude that ∀Q, x̃ = fn(Q)

Γ;∆1 ·∆
′′
3 ` (ν m̃1)(P1 | (ν m̃)(R′ | Q{m̃′/x̃})) S ∆2 ·∆

′′
3 ` (ν m̃2)(P2 | (ν m̃′)(R′ | Q{m̃/x̃}))
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as required.
- Case:

Γ;∆1 ·∆3 ` (ν m̃1)(P1 | R) −→ ∆′1 ·∆
′
3 ` (ν m̃1

′)(P′1 | R
′)

This case is divided into three subcases:
Subcase i: Γ;∆1 ` P1

`
−→ ∆′1 ` P′1 and ` < {(ν m̃)n!〈λx̃.Q〉, (ν ˜mm1)n!〈m̃1〉} implies

Γ;∆3 ` R
`
−→ ∆3 ` R′ (54)

Γ;∆2 ` P2
ˆ̀

=⇒ ∆′2 ` P′2 (55)
Γ;∆′1 ` P′1 ≈ ∆

′
2 ` P′2 (56)

From (54) and (55) we get

Γ;∆2 ·∆3 ` (ν m̃2)(P2 | R) =⇒ ∆′2 ·∆
′
3 ` (ν m̃2

′)(P′2 | R
′)

From (56) and the definition of (S) we get that

Γ;∆′1 ·∆
′
3 ` (ν m̃1

′)(P′1 | R
′) S ∆′2 ·∆3 ` (ν m̃2

′)(P′2 | R
′)

as required.

Subcase ii: Γ;∆1 ` P1
(ν m̃1)n!〈λx̃.Q1〉
−→ ∆′1 ` P′1 implies

Γ;∆3 ` R
n?〈λx̃.Q1〉
−→ ∆′3 ` R′{λx̃.Q1/x} (57)

Γ;∆1 ·∆3 ` (ν m̃1)(P1 | R) −→ ∆′1 ·∆
′
3 ` (ν m̃1

′′)(P′1 | R
′{λx̃.Q1/x})

Γ;∆2 ` P2
(ν m̃2)n!〈λx̃.Q2〉

=⇒ ∆′2 ` P′2 (58)
∀Q, {x} = fpv(Q),
Γ;∆′′1 ` (ν m̃1

′)(P′1 | Q{λx̃.Q1/x}) ≈ ∆′′2 ` (ν m̃2
′)(P′2 | Q{λx̃.Q2/x}) (59)

From (57) and the Substitution Lemma (Lemma 3.1) we obtain that

Γ;∆3 ` R
n?〈λx̃.Q2〉
−→ ∆′′3 ` R′{λx̃.Q2/x}

to combine with (58) and get

Γ;∆2 ·∆3 ` (ν m̃2)(P2 | R) =⇒ ∆′2 ·∆
′′
3 ` (ν m̃2

′′)(P′2 | R
′{λx̃.Q2/X})

In result in (59), set Q as R′ to obtain:

Γ;∆′′1 ` (ν m̃1
′)(P′1 | R

′{λx̃.Q1/x}) S ∆′′2 (ν m̃2
′)(P′2 | R

′{λx̃.Q2/x}) `

Subcase iii: Γ;∆1 ` P1
(ν ˜mm1)n!〈m̃1〉
−→ ∆′1 ` P′1

Γ;∆3 ` R
n?〈m̃1〉
−→ ∆′3 ` R′{m̃1/x̃} (60)

Γ;∆1∪∆3 ` (ν m̃1)(P1 | R) −→ ∆′1∪∆
′
3 ` (ν m̃1

′′)(P′1 | R
′{s1/x})

Γ;∆2 ` P2
(ν ˜mm2)n!〈m̃2〉

=⇒ ∆′2 ` P′2 (61)
∀Q, {x} = fpv(Q),
Γ;∆′′1 ` (ν m̃1

′)(P′1 | Q{m̃1/x̃}) ≈ ∆′′2 ` (ν m̃2
′)(P′2 | Q{m̃2/x̃}) (62)
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From (60) and the Substitution Lemma (Lemma 3.1) we get that

Γ;∆3 ` R
n?〈m̃2〉
−→ ∆′′3 ` R′{m̃2/x̃}

to combine with (61) and get

Γ;∆2 ·∆3 ` (ν m̃2)(P2 | R) =⇒ ∆′2 ·∆
′′
3 ` (ν m̃2

′′)(P′2 | R
′{m̃2/x̃})

Set Q as R′ in result in (62) to obtain

Γ;∆′′1 ` (ν m̃1
′)(P′1 | R

′{m̃1/x̃}) S ∆′′2 ` (ν m̃2
′)(P′2 | R

′{m̃2/x̃})

ut

We prove the result �⊆≈H following the technique developed in [18] and refined
for session types in [27,26].

Definition B.1 (Definibility). Let Γ;∅;∆1 ` P .�. A visible action ` is definable when-
ever there exists (testing) process Γ;∅;∆2 ` T 〈`,succ〉 . � with succ fresh name such
that:

– If Γ;∆1 ` P
`
−→ ∆′1 ` P′ and ` ∈ {n⊕ `,n&`,n?〈m̃〉,n?〈λx̃.Q〉} then:

P | T 〈`,succ〉 −→ P′ | succ!〈m〉.0 and Γ;∅;∆′1 ·∆
′
2 ` P′ | succ!〈m〉.0

– If Γ;∆1 ` P
(ν m̃)n!〈V〉
−→ ∆′1 ` P′, t fresh and m̃′ ⊆ m̃ then:

P | T 〈(ν m̃)n!〈V〉,succ〉 −→ (ν m̃)(P′ | t?(x).(ν s)(x s | s!〈V〉.0) | succ!〈n, m̃′〉.0)
Γ;∅;∆′1 ·∆

′
2 ` (ν m̃)(P′ | t?(x).(ν s)(x s | s!〈V〉.0) | succ!〈n, m̃′〉.0) .�

– Let ` ∈ {n⊕ `,n&`,n?〈m̃〉,n?〈(x̃)Q〉}. If P | T 〈`,succ〉 −→ Q with Γ;∅;∆ ` Q .� ↓succ

then Γ;∆1 ` P
`

=⇒ ∆′1 ` P′ and Q ≡ P′ | succ!〈n〉.0.

– If P | T 〈(ν m̃)n!〈V〉,succ〉 −→ Q with Γ;∅;∆ ` Q . � ↓succ then Γ;∆1 ` P
(ν m̃)n!〈V〉

=⇒

∆′1 ` P′ and Q ≡ (ν m̃)(P′ | t?(x).(ν s)(x s | s!〈V〉.0) | succ!〈n, m̃′〉.0) with t fresh and
m̃′ ⊆ m̃.

We first show that every visible action ` is definable.

Lemma B.6 (Definibility). Every action ` is definable.

Proof. We define T 〈`,succ〉:

– T 〈n?〈V〉,succ〉 = n!〈V〉.succ!〈n〉.0.
– T 〈n&l,succ〉 = n / l.succ!〈n〉.0.
– T 〈(ν m̃′)n!〈m̃〉,succ〉 = n?(x̃).(t?(x).(ν s)(x s | s!〈x̃〉.0) | succ!〈n, m̃′′〉.0) with m̃′′ ⊆

m̃′.
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– T 〈(ν m̃)n!〈λx̃.Q〉,succ〉 = n?(y).(t?(x).(ν s)(x s | s!〈λx̃. (y x̃)〉.0) | succ!〈n, m̃′〉.0) with
m̃′ ⊆ m̃.

– T 〈n⊕ l,succ〉 = n . {l : succ!〈n〉.0), li : (ν a)(a?(y).succ!〈n〉.0)}i∈I .

Assuming a process
Γ;∅;∆ ` P .�

it is straightforward to verify that ∀`, ` is definable. ut

Lemma B.7 (Extrusion). If

Γ;∆′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) � ∆2 ` (ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0)

then
Γ;∆1 ` P � ∆2 ` Q

Proof. Let

S = {Γ;∅;∆1 ` P .�,Γ;∅;∆2 ` Q .� |

Γ;∆′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) � ∆2 ` (ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0)
}

We show that S is a congruence.
Reduction closed:
P −→ P′ implies (ν m̃1

′)(P | succ!〈n, m̃1
′′〉.0) −→ (ν m̃1

′)(P′ | succ!〈n, m̃1
′′〉.0) implies

from the freshness of succ (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0)→→ (ν m̃1
′)(Q′ | succ!〈n, m̃2

′′〉.0).
which implies Q→→ Q′ as required.
Barb Preserving:
Let Γ;∅;∆1 ` P ↓s. We analyse two cases.
- Case: s , n.
Γ;∅;∆1 ` P ↓s implies

Γ;∅;∆′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) ↓s

implies Γ;∅;∆′2 ` (ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0) ⇓s implies from the freshness of succ that
Γ;∅;∆2 ` Q ⇓s as required.
- Case: s = n and Γ;∅;∆1 ` P ↓n
We compose with succ?(x, ỹ).T 〈`,succ′〉 with subj(`) = x to get

Γ;∅;∆′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) | succ?(x, ỹ).T 〈`,succ′〉

Which implies from the fact that Γ;∅;∆1 ` P ↓n that

(ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) | succ?(x, ỹ).T 〈`,succ′〉 →→ (ν m̃1
′)(P′ | succ′!〈n, m̃1

′′〉.0)

and furthermore

(ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0) | succ?(x, ỹ).T 〈`,succ′〉 →→ (ν m̃2
′)(Q′ | succ′!〈n, m̃2

′′〉.0)
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The last reduction implies that Γ;∅;∆2 ` Q ⇓n as required.
Congruence: The key case of congruence is parallel composition. We define relation C
as

C = {Γ;∅;∆1 ·∆3 ` P | R .�,Γ;∅;∆2 ·∆3 ` Q | R .� |

∀R,

Γ;∆′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) � ∆′2 ` (ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0)}

We show that C is a congruence.
We distinguish two cases:
- Case: n, m̃1

′′, m̃2
′′ < fn(R)

From the definition of C we can deduce that ∀R:

Γ;∆′′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) | R � ∆′′2 ` (ν m̃2
′)(Q | succ!〈n, m̃2

′′〉.0) | R

The conclusion is then trivial.
- Case: s̃ = {n, m̃1

′′}∩ {n, m̃2
′′} ∈ fn(R)

From the definition of Cwe can deduce that ∀Ry1 such that R = Ry1 {s̃/ỹ1} and succ′ fresh
and {ỹ} = {ỹ1}∪ {ỹ2}:

Γ;∅; ∆′′1 ` (ν m̃1
′)(P | succ!〈n, m̃1

′′〉.0) | succ?(ỹ).(Ry1 | succ′!〈ỹ2〉.0)
� ∆′′2 ` (ν m̃2

′)(Q | succ!〈n, m̃2
′′〉.0) | succ?(ỹ).(Ry1 | succ′!〈ỹ2〉.0)

Applying reduction closeness to the above pair we get:

Γ;∆′′1 ` (ν m̃1
′)(P | R | succ′!〈s̃2〉.0) � ∆′′2 ` (ν m̃2

′)(Q | R | succ′!〈s̃2〉.0)

The conclusion then follows. ut

Lemma B.8. �⊆≈H .

Proof. Let
Γ;∆1 ` P1 � ∆2 ` P2

We distinguish two cases:
- Case:

Γ;∆1 ` P1
τ
−→ ∆′1 ` P′1

The result follows the reduction closeness property of � since

Γ;∆2 ` P2
τ

=⇒ ∆′2 ` P′2

and
Γ;∆′1 ` P′1 � ∆

′
2 ` P′2

- Case:

Γ;∆1 ` P1
`
−→ ∆′1 ` P′1 (63)
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We choose test T 〈`,succ〉 to get

Γ;∆1 ·∆3 ` P1 | T 〈`,succ〉 � ∆2 ·∆3 ` P2 | T 〈`,succ〉 (64)

From this point we distinguish three subcases:
Subcase i: ` ∈ {n?〈m̃〉,n?〈λx̃.Q〉,n⊕ l,n&l}
By reducing (63), we obtain

P1 | T 〈`,succ〉 −→ P′1 | succ!〈n〉.0
Γ;∅;∆′1 ·∆

′
3 ` P′1 | succ!〈n〉.0 ↓succ

implies from (64)

Γ;∅;∆2 ·∆3 ` P2 | T 〈`,succ〉 ⇓succ

implies from Lemma B.6,

Γ;∆2 ` P2
`

=⇒ ∆′2 ` P′2
P2 | T 〈`,succ〉 →→ P′2 | succ!〈n〉.0

and
Γ;∆′1 ·∆

′
3 ` P′1 | succ!〈n〉. � ∆′2 ·∆

′
3 ` P′2 | succ!〈n〉.0

We then apply Lemma B.7 to get

Γ;∆′1 ` P′1 � ∆
′
2 ` P′2

as required.
Subcase ii: ` = (ν m̃1)n!〈λx̃.Q1〉

Note that T 〈(ν m̃1)n!〈(x̃)Q1〉,succ〉 = T 〈(ν m̃2)n!〈λx̃.Q2〉,succ〉
Transition in (63) becomes

Γ;∆1 ` P1
(ν m̃1)n!〈λx̃.Q1〉
−→ ∆′1 ` P′1 (65)

If we use the test process T 〈(ν m̃1)n!〈(x̃)Q1〉,succ〉 we reduce to:

P1 | T 〈(ν m̃1)n!〈λx̃.Q1〉,succ〉 −→ (ν m1)(P′1 | t?(x).(ν s)(x s | s!〈λx̃.Q1〉.0)) | succ!〈n, m̃1
′〉.0

Γ;∅;∆′1 ·∆
′
3 ` (ν m1)(P′1 | t?(x).(ν s)(x s | s!〈λx̃.Q1〉.0)) | succ!〈n, m̃1

′〉.0 ↓succ

implies from (64)

Γ;∅;∆2 ·∆3 ` P2 | T 〈(ν m̃2)n!〈λx̃.Q2〉,succ〉 ⇓succ

implies from Lemma B.6

Γ;∆2 ` P2
(ν m̃2)n!〈λx̃.Q2〉

=⇒ ∆′2 ` P′2 (66)
P2 | T 〈`,succ〉 →→ (ν m2)(P′2 | t?(x).(ν s)(x s | s!〈λx̃.Q2〉.0)) | succ!〈n, m̃2

′〉.0
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and

Γ;∅; ∆′1 ·∆
′
3 ` (ν m1)(P′1 | t?(x).(ν s)(x s | s!〈λx̃.Q1〉.0)) | succ!〈n, m̃1

′〉.0
� ∆′2 ·∆

′
3 ` (ν m2)(P′2 | t?(x).(ν s)(x s | s!〈λx̃.Q2〉.0)) | succ!〈n, m̃2

′〉.0

We then apply Lemma B.7 to get

Γ;∅; ∆′1 ` (ν m1)(P′1 | t?(x).(ν s)(x s | s!〈λx̃.Q1〉.0))
� ∆′2 ` (ν m2)(P′2 | t?(x).(ν s)(x s | s!〈λx̃.Q2〉.0))

as required.
-Case: ` = (ν s̃)n!〈m̃〉
Follows similar arguments as the previous case. ut

Theorem B.1 (Concidence).

1. ≈ = ≈H .
2. ≈ = �.

Proof. Lemma B.1 proves ≈H = ≈C . Lemma B.8 proves � ⊆ ≈H . Lemma B.4 proves
≈H ⊆ ≈. Lemma B.5 proves ≈ ⊆ �.
From the above results, we conclude � ⊆ ≈H = ≈C ⊆ ≈ ⊆ �. ut

B.2 τ-inertness

We prove Part 1 of Proposition 4.3.

Proposition B.1 (τ-inertness). Let balanced HOπ process Γ;∅;∆ ` P .�. Γ;∆ ` P
τd
7−→

∆′ ` P′ implies Γ;∆ ` P ≈H ∆′ ` P′.

Proof. The proof is done by induction on the structure of
τ
−→ which coincides the

reduction −→.
Basic step:
- Case: P = (λx.P)n:

Γ;∆ ` (λx.P)n
τβ
7−→ ∆′ ` P{n/x}

Bisimulation requirements hold since, there is no other transition to observe than
τβ
7−→.

- Case: P = s!〈V〉.P1 | s?(x).P2:

Γ;∆ ` s!〈V〉.P1 | s?(x).P2
τs
7−→ ∆′ ` P1 | P2

The proof follows from the fact that we can only observe a τ action on typed process
Γ;∅;∆ ` P.�. Actions s!〈V〉 and s?〈V〉 are forbiden by the LTS for typed environments.
It is easy to conclude then that Γ;∆ ` P ≈H ∆′ ` P′.
- Case: P = s / l.P1 | s . {li : Pi}i∈I
Similar arguments as the previous case.
Induction hypothesis:
If P1 −→ P2 then Γ1;∆1 ` P1 ≈

H ∆2 ` P2.
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Induction Step:
- Case: P = (ν s)P1

Γ;∆ ` (ν s)P1
τs
7−→ ∆′ ` (ν s)P2

From the induction hypothesis and the fact that bisimulation is a congruence we get that
Γ;∆ ` P ≈H ∆′ ` P′.
- Case: P = P1 | P3

Γ;∆ ` P1 | P3
τs
7−→ ∆′ ` P2 | P3

From the induction hypothesis and the fact that bisimulation is a congruence we get that
Γ;∆ ` P ≈H ∆′ ` P′.
- Case: P ≡ P1

From the induction hypothesis and the fact that bisimulation is a congruence and
structural congruence preserves ≈H we get that Γ;∆ ` P ≈H ∆′ ` P′.

ut

C Expressiveness Results

C.1 Properties for
〈
[[·]]1

f , (〈·〉)
1, {{·}}1

〉
: HOπ→ HO

We repeat the statement of Proposition 6.2, as in Page 29:

Proposition C.1 (Type Preservation, HOπ into HO). Let P be a HOπ process. If
Γ;∅;∆ ` P .� then (〈Γ〉)1;∅; (〈∆〉)1 ` [[P]]1

f .�.

Proof. By induction on the inference of Γ;∅;∆ ` P .�.

1. Case P = k!〈n〉.P′. There are two sub-cases. In the first sub-case n = k′ (output of a
linear channel). Then we have the following typing in the source language:

Γ;∅;∆ · k : S ` P′ .� Γ;∅; {k′ : S 1} ` k′ .S 1

Γ;∅;∆ · k′ : S 1 · k :!〈S 1〉;S ` k!〈k′〉.P′ .�

Thus, by IH we have

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 ` [[P′]]1 .�

Let us write U1 to stand for ?((〈S 1〉)1(�);end(�. The corresponding typing in the
target language is as follows:

(〈Γ〉)1; {x : (〈S 1〉)1(�};∅ ` x . (〈S 1〉)1(� (〈Γ〉)1;∅; {k′ : (〈S 1〉)1} ` k′ . (〈S 1〉)1

(〈Γ〉)1; {x : (〈S 1〉)1(�};k′ : (〈S 1〉)1 ` xk′ .�
(〈Γ〉)1; {x : (〈S 1〉)1(�};k′ : (〈S 1〉)1 · z : end ` xk′ .�

(〈Γ〉)1;∅;k′ : (〈S 1〉)1 · z :?((〈S 1〉)1(�);end ` z?(x).(xk′) .�
(〈Γ〉)1;∅;k′ : (〈S 1〉)1 ` λz.z?(x).(xk′) .U1

(67)

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 ` [[P′]]1 .� (〈Γ〉)1;∅;k′ : (〈S 1〉)1 ` λz.z?(x).(xk′) .U1 (67)
(〈Γ〉)1;∅; (〈∆〉)1 · k′ : (〈S 1〉)1 · k :!〈U1〉; (〈S 〉)1 ` k!

〈
λz.z?(x).(xk′)

〉
.[[P′]]1 .�
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In the second sub-case, we have n = a (output of a shared name). Then we have the
following typing in the source language:

Γ ·a : 〈S 1〉;∅;∆ · k : S ` P′ .� Γ ·a : 〈S 1〉;∅;∅ ` a .S 1

Γ ·a : 〈S 1〉;∅;∆ · k :!
〈
〈S 1〉

〉
;S ` k!〈a〉.P′ .�

The typing in the target language is derived similarly as in the first sub-case.

2. Case P = k?(x).Q. We have two sub-cases, depending on the type of x. In the first
case, x stands for a linear channel. Then we have the following typing in the source
language:

Γ;∅;∆ · k : S · x : S 1 ` Q .�

Γ;∅;∆ · k :?(S 1);S ` k?(x).Q .�

Thus, by IH we have

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 · x : (〈S 1〉)1 ` [[Q]]1 .�

Let us write U1 to stand for ?((〈S 1〉)1(�);end(�. The corresponding typing in the
target language is as follows:

(〈Γ〉)1; {X : U1};∅ ` X .U1 (〈Γ〉)1;∅; ·s :?((〈S 1〉)1(�);end ` s.?((〈S 1〉)1(�);end
(〈Γ〉)1; {X : U1}; ·s :?((〈S 1〉)1(�);end ` x s .�

(68)

(〈Γ〉)1;∅;∅ ` 0 .�
(〈Γ〉)1;∅; s : end ` 0 .�

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1x : (〈S 1〉)1 ` [[Q]]1 .�

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 ` λx. [[Q]]1 . (〈S 1〉)1(�

(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 · s :!〈(〈S 1〉)1(�〉;end ` s!
〈
λx. [[Q]]1〉.0 .� (69)

(〈Γ〉)1; {X : U1}; ·s :?((〈S 1〉)1(�);end ` x s .� (68)
(〈Γ〉)1;∅; (〈∆〉)1 · k : (〈S 〉)1 · s :!〈(〈S 1〉)1(�〉;end ` s!

〈
λx. [[Q]]1〉.0 .� (69)

(〈Γ〉)1; {X : U1}; (〈∆〉)1 · k : (〈S 〉)1 · s :?((〈S 1〉)1(�);end · s :!〈(〈S 1〉)1(�〉;end ` x s | s!
〈
λx. [[Q]]1〉.0 .�(70)

(〈Γ〉)1; {X : U1}; (〈∆〉)1 · k : (〈S 〉)1 · s :?((〈S 1〉)1(�);end · s :!〈(〈S 1〉)1(�〉;end ` x s | s!
〈
λx. [[Q]]1〉.0 .� (70)

(〈Γ〉)1; {X : U1}; (〈∆〉)1 · k : (〈S 〉)1 ` (ν s)(x s | s!
〈
λx. [[Q]]1〉.0) .�

(〈Γ〉)1;∅; (〈∆〉)1 · k :?(U1); (〈S 〉)1 ` k?(x).(ν s)(x s | s!
〈
λx. [[Q]]1〉.0) .�

In the second sub-case, x stands for a shared name. Then we have the following
typing in the source language:

Γ · x : 〈S 1〉;∅;∆ · k : S ` Q .�

Γ;∅;∆ · k :?(〈S 1〉);S ` k?(x).Q .�

The typing in the target language is derived similarly as in the first sub-case.
3. Case P0 = X. Then we have the following typing in the source language:

Γ ·X : ∆; ∅; ∅ ` X .�
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Then the typing of [[X]]1
f is as follows, assuming f (X) = ñ and x̃ = (||ñ||). Also, we

write ∆ñ and ∆x̃ to stand for n1 : S 1, . . . ,nm : S m and x1 : S 1, . . . , xm : S m, respectively.
Below, we assume that Γ = Γ′ ·X : T̃→�, where

T̃ =
(
S̃ ,S ∗

)
S ∗ =?

(
A
)
;end A = µt.(S̃ ,?(t);end)

Γ; ∅; ∅ ` zX . T̃→�
Γ; ∅; {ni : S i} ` ni .S i
Γ; ∅; {s : S ∗} ` s .S ∗

Γ; ∅; ∆ñ, s :?(T̃→�);end ` zX (ñ, s) .�
(71)

Γ; ∅; ∅ ` 0 .�
Γ; ∅; s : end ` 0 .�

Γ; ∅; {xi : S i} ` xi .S i
Γ; ∅; {z : S ∗} ` z .S ∗

Γ; ∅; ∅ ` zX . T̃→�

Γ; ∅; ∆x̃, z : S ∗ ` zX (x̃,z) .�
Γ; ∅; ∅ ` λ(x̃,z). zX (x̃,z) . T̃→�

Γ; ∅; s :!〈T̃→�〉;end ` s!
〈
λ(x̃,z). zX (x̃,z)

〉
.0 .�

(72)

Γ; ∅; ∆ñ, s :?(T̃→�);end ` zX (ñ, s) .� (71)
Γ; ∅; s :!〈T̃→�〉;end ` s!

〈
λ(x̃,z). zX (x̃,z)

〉
.0 .� (72)

Γ; ∅; ∆ñ, s :?(T̃→�);end, s :!〈T̃→�〉;end ` zX (ñ, s) | s!
〈
λ(x̃,z). x (x̃,z)

〉
.0 .�

Γ; ∅; ∆ñ ` (ν s)(zX (ñ, s) | s!
〈
λ(x̃,z). zX (x̃,z)

〉
.0) .�

4. Case P0 = µX.P. Then we have the following typing in the source language:

Γ ·X : ∆; ∅; ∆ ` P .�
Γ; ∅; ∆ ` µX.P .�

Then we have the following typing in the target language —we write R to stand for
[[P]]1

f ,{X→ñ} and x̃ to stand for (||ofn(P)||).

(〈Γ〉)1 · zX : T̃→�; ∅; (〈∆ñ〉)1 ` R .�
(〈Γ〉)1 · zX : T̃→�; ∅; (〈∆ñ〉)1, s : end ` R .�

(〈Γ〉)1; ∅; (〈∆ñ〉)1, s :?(T̃→�);end ` s?(zX).R .�
(73)

(〈Γ〉)1; ∅; ∅ ` 0 .�
(〈Γ〉)1; ∅; s : end ` 0 .�

(〈Γ〉)1 · zX : T̃→�; ∅; (〈∆x̃〉)1 `
⌊⌊

R
⌋⌋
∅ .�

(〈Γ〉)1 · zX : T̃→�; ∅; (〈∆x̃〉)1,y : end `
⌊⌊

R
⌋⌋
∅ .�

(〈Γ〉)1; ∅; (〈∆x̃〉)1, y :?(A);end ` y?(zX).
⌊⌊

R
⌋⌋
∅ .�

(〈Γ〉)1; ∅; ∅ ` λ(x̃,y). y?(zX).
⌊⌊

R
⌋⌋
∅ . T̃→�

(〈Γ〉)1; ∅; s :!〈T̃→�〉;end ` s!
〈
λ(x̃,y). y?(zX).

⌊⌊
R
⌋⌋
∅

〉
.0 .�

(74)

(〈Γ〉)1; ∅; (〈∆ñ〉)1, s :?(T̃→�);end ` s?(zX).R .� (73)
(〈Γ〉)1; ∅; s :!〈T̃→�〉;end ` s!

〈
λ(x̃,y). y?(zX).

⌊⌊
R
⌋⌋
∅

〉
.0 .� (74)

(〈Γ〉)1; ∅; (〈∆ñ〉)1, s :?(T̃→�);end, s :!〈T̃→�〉;end ` s?(zX).R | s!
〈
λ(x̃,y). y?(zX).

⌊⌊
R
⌋⌋
∅

〉
.0 .�

(〈Γ〉)1; ∅; (〈∆ñ〉)1 ` (ν s)(s?(zX).R | s!
〈
λ(x̃,y). y?(zX).

⌊⌊
R
⌋⌋
∅

〉
.0) .�
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ut

We repeat the statement of Proposition 6.4, as in Page 30:

Proposition C.2 (Operational Correspondence, HOπ into HO). Let P be a HOπ pro-
cess. If Γ;∅;∆ ` P .� then:

1. Suppose Γ;∆ ` P
`1
7−→ ∆′ ` P′. Then we have:

a) If `1 ∈ {(ν m̃)n!〈m〉, (ν m̃)n!〈λx.Q〉, s⊕ l, s&l} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P′]]1

f and `2 = {{`1}}
1.

b) If `1 = n?〈λy.Q〉 and P′ = P0{λy.Q/x} then ∃`2 s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` [[P0]]1

f {
λy. [[Q]]1

∅/x} and `2 = {{`1}}
1.

c) If `1 = n?〈m〉 and P′ = P0{m/x} then ∃`2, R s.t.

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` R, with `2 = {{`1}}

1,

and (〈Γ〉)1; (〈∆′〉)1 ` R
τβ
7−→

τs
7−→

τβ
7−→ (〈∆′〉)1 ` [[P0]]1

f {
m/x}.

d) If `1 = τ and P′ ≡ (ν m̃)(P1 | P2{m/x}) then ∃R s.t.
(〈Γ〉)1; (〈∆〉)1 ` [[P]]1

f
τ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | R), and

(〈Γ〉)1; (〈∆〉)1 ` (ν m̃)([[P1]]1
f | R)

τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {

m/x}).
e) If `1 = τ and P′ ≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆1〉)1 ` (ν m̃)([[P1]]1

f | [[P2]]1
f {
λy. [[Q]]1

∅/x}).
f) If `1 = τ and P′ 6≡ (ν m̃)(P1 | P2{m/x})∧P′ 6≡ (ν m̃)(P1 | P2{λy.Q/x}) then

(〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

τ
7−→ (〈∆′1〉)

1 ` [[P′]]1
f .

2. Suppose (〈Γ〉)1; (〈∆〉)1 ` [[P]]1
f

`2
7−→ (〈∆′〉)1 ` Q. Then we have:

a) If `2 ∈ {(ν m̃)n!〈λz. z?(x).(xm)〉, (ν m̃)n!〈λx.R〉, s⊕ l, s&l} then ∃`1,P′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′, `1 = {{`2}}

1, and Q = [[P′]]1
f .

b) If `2 = n?〈λy.R〉 then either:
(i) ∃`1, x,P′,P′′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′{λy.P′′/x}, `1 = {{`2}}

1, [[P′′]]1
∅

= R, and Q = [[P′]]1
f .

(ii) R ≡ y?(x).(xm) and ∃`1,z,P′ s.t.

Γ;∆ ` P
`1
7−→ ∆′ ` P′{m/z}, `1 = {{`2}}

1, and

(〈Γ〉)1; (〈∆′〉)1 ` Q
τβ
7−→

τs
7−→

τβ
7−→ (〈∆′′〉)1 ` [[P′{m/z}]]1

f
c) If `2 = τ then ∆′ = ∆ and either

(i) ∃P′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` P′, and Q = [[P′]]1

f .

(ii) ∃P1,P2, x,m,Q′ s.t. Γ;∆ ` P
τ
7−→ ∆ ` (ν m̃)(P1 | P2{m/x}), and

(〈Γ〉)1; (〈∆〉)1 ` Q
τβ
7−→

τs
7−→

τβ
7−→ (〈∆〉)1 ` [[P1]]1

f | [[P2{m/x}]]1
f

Proof. By transition induction. We consider parts (1) and (2) separately:
Part (1) - Completeness. We consider two representative cases, the rest is similar or
simpler:
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1. Subcase (a): P = s!〈n〉.P′ and `1 = s!〈n〉 (the case `1 = (ν n)s!〈n〉 is similar). By
assumption, P is well-typed. We may have:

Γ;∅;∆0 · s : S 1 ` P′ .� Γ;∅; {n:S } ` n .S
Γ;∅;∆0 ·n:S · s :!〈S 〉;S 1 ` s!〈n〉.P′ .�

for some S ,S 1,∆0. We may then have the following transition:

Γ;∆0 ·n:S · s :!〈S 〉;S 1 ` s!〈n〉.P′
`1
7−→ Γ;∆0 · s:S 1 ` P′

The encoding of the source judgment for P is as follows:

(〈Γ〉)1;∅; (〈∆0 ·n:S · s :!〈S 〉;S 1〉)1 ` [[s!〈n〉.P′]]1 .�

which, using Definition 6.3 can be expressed as

(〈Γ〉)p;∅; (〈∆0〉) ·n:(〈S 〉)1 · s :!〈?((〈S 〉)1(�);end(�〉; (〈S 1〉)1 ` s!
〈
λz. z?(x).(xn)

〉
.[[P′]]1 .�

Now, {{`1}}
1 = s!〈λz. z?(x).xn 〉. We may infer the following transition for [[P]]1:

(〈Γ〉)1;∅; (〈∆〉)1 ` s!
〈
λz. z?(x).(xn)

〉
.[[P′]]1 .�

{{`1}}
1

7−→ (〈Γ〉)1;∅; (〈∆0〉)1 · s : (〈S 1〉)1 ` [[P′]]1 .�

= (〈Γ〉)1;∅; (〈∆0 · s : S 1〉)1 ` [[P′]]1 .�

from which the thesis follows easily.
2. Subcase (c): P = n?(x).P′ and `1 = n?〈m〉. By assumption P is well-typed. We may

have:
Γ;∅;∆0 · x : S ·n : S 1 ` P′ .� Γ;∅; {x : S } ` x .S

Γ;∅;∆0 ·n :?(S );S 1 ` n?(x).P′ .�
for some S ,S 1,∆0. We may infer the following typed transition:

Γ;∅;∆0 ·n :?(S );S 1 ` n?(x).P′ .�
n?〈m〉
7−→ Γ;∅;∆0 ·n : S 1 ·m : S ` P′{m/x} .�

The encoding of the source judgment for P is as follows:

(〈Γ〉)1;∅; (〈∆0 ·n :?(S );S 1〉)1 ` [[P]]1 .�

= (〈Γ〉)1;∅; (〈∆0〉)1 ·n :?(?((〈S 〉)1(�);end(�); (〈S 1〉)1 ` n?(x).(ν s)((x s) | s!
〈
λx. [[P′]]1〉.0) .�

Now, {{`1}}
1 = n?〈λz. z?(x).(xm) 〉 and it is immediate to infer the following transition

for [[P]]1:

(〈Γ〉)1;∅; (〈∆0〉)1 ·n :?(?((〈S 〉)1(�);end(�); (〈S 1〉)1 ` n?(x).(ν s)((x s) | s!
〈
λx. [[P′]]1〉.0) .�

{{`1}}
1

7−→ (〈Γ〉)1;∅; (〈∆0〉)1 ·n : (〈S 1〉)1 ·m : (〈S 〉)1 ` (ν s)((x s) | s!
〈
λx. [[P′]]1〉.0){λz. z?(x).(xm)/x} .�

Let us write R to stand for process (ν s)((x s) | s!
〈
λx. [[P′]]1〉.0){λz. z?(x).(xm)/x}. We

then have:

R
τ
−→ (ν s)(s?(x).(xm) | s!

〈
λx. [[P′]]1〉.0)

τ
−→ (λx. [[P′]]1)m | 0
τ
−→ [[P′]]1{m/x}

and so the thesis follows.
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Part (2) - Soundness. We consider two representative cases, the rest is similar or sim-
pler:

1. Subcase (a): P = n!〈m〉.P′ and `2 = n!〈λz. z?(x).(xm)〉 (the case `2 = (νm)n!〈λz. z?(x).(xm)〉
is similar). Then we have:

(〈Γ〉)1; ∅; (〈∆0〉)1 ·n :!〈?((〈S 〉)1(�);end(�〉; (〈S 1〉)1 ` n!
〈
λz. z?(x).(xm)

〉
.[[P′]]1 .�

for some S ,S 1, and ∆0. We may infer the following typed transition for [[P]]1:

(〈Γ〉)1; (〈∆0〉)1 ·n :!〈?((〈S 〉)1(�);end(�〉; (〈S 1〉)1 ` n!
〈
λz. z?(x).(xm)

〉
.[[P′]]1

`2
7−→ (〈Γ〉)1; (〈∆0〉)1 ·n : (〈S 1〉)1 ` [[P′]]1

Now, in the source term P we can infer the following transition

Γ; ∆0 ·n :!〈S 〉;S 1 ` n!〈m〉.P′
n!〈m〉
7−→ Γ; ∆0 ·n : S 1 ` P′

and thus the thesis follows easily by noticing that {{n!〈m〉}}1 = n!〈λz. z?(x).(xm)〉.
2. Subcase (c): P = n?(x).P′ and `2 = n?〈λy.y?(x).(xm)〉. Then we have

(〈Γ〉)1; ∅; (〈∆0〉)1 ·n :?(?((〈S 〉)1(�);end(�); (〈S 1〉)1 ` n?(x).(ν s)((x s) | s!
〈
λx. [[P′]]1〉.0).�

for some S , S 1, ∆0. We may infer the following typed transitions for [[P]]1:

(〈Γ〉)1; (〈∆0〉)1 ·n :?(?((〈S 〉)1(�);end(�); (〈S 1〉)1 ` n?(x).(ν s)((x s) | s!
〈
λx. [[P′]]1〉.0)

`2
7−→ (〈Γ〉)1; (〈∆0〉)1 ·n : (〈S 1〉)1 ·m : (〈S 1〉)1 ` (ν s)((x s) | s!

〈
λx. [[P′]]1〉.0){λz.z?(x).xm/x}

= (〈Γ〉)1; (〈∆0〉)1 ·n : (〈S 1〉)1 ·m : (〈S 〉)1 ` (ν s)(s?(x).(xm) | s!
〈
λx. [[P′]]1〉.0)

τ
7−→ (〈Γ〉)1; (〈∆0〉)1 ·n : (〈S 1〉)1 ·m : (〈S 〉)1 ` (λx. [[P′]]1)m
τ
7−→ (〈Γ〉)1; (〈∆0〉)1 ·n : (〈S 1〉)1 ·m : (〈S 〉)1 ` [[P′]]1{m/x}

Now, in the source term P we can infer the following transition

Γ; ∆0 ·n :?(S );S 1 ` n?(x).P′
n?〈m〉
7−→ Γ; ∆0 ·n : S 1 ·m : S ` P′{m/x}

and the thesis follows.
ut

We repeat the statement of Proposition 6.5, as in Page 31:

Proposition C.3 (Full Abstraction, HOπ into HO). Γ;∆1 ` P1 ≈
H ∆2 ` Q1 if and only

if (〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f ≈

H (〈∆2〉)1 ` [[Q2]]1
f .

Proof. Proof of Soundness Direction.
Let

< = {Γ;∆1 ` P1 ≈
H ∆2 ` Q1 | (〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1

f ≈
H (〈∆2〉)1 ` [[Q1]]1

f }
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The proof considers a case analysis on the transition
`
7−→ and uses the soundness direc-

tion of operational correspondence (cf. Proposition 6.4). We give an interesting case.
The others are similar of easier.
- Case: ` = (ν m̃1

′)n!〈m1〉.
Proposition 6.4 implies that

Γ;∆1 ` P1
(ν m̃1

′)n!〈m1〉
7−→ ∆′1 ` P2

implies

(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f

(ν m̃1
′)n!〈λz.z?(x).(xm1)〉
7−→ (〈∆′1〉)

1 ` [[P2]]1
f

that in combination with the definition of< we get

(〈Γ〉)1; (〈∆2〉)1 ` [[Q1]]1
f

(ν m̃2
′)n!〈λz.z?(x).(xm2)〉

�=⇒ (〈∆′2〉)
1 ` [[Q2]]1

f (75)

and

(〈Γ〉)1;∅; (〈∆′1〉)
1 ` (ν m̃1

′)([[P2]]1
f | t?(x).(ν s)(x s | s!〈λz.z?(x).(xm1)〉.0))

≈H (〈∆′2〉)
1 ` (ν m̃2

′)([[Q2]]1
f | t?(x).(ν s)(x s | s!〈λz.z?(x).(xm2)〉.0))

We rewrite the last result as

(〈Γ〉)1;∅; (〈∆′1〉)
1 ` [[(ν m̃1

′)(P2 | t?(x).(ν s)(x s | s!〈m1〉.0))]]1
f

≈H (〈∆′2〉)
1 ` [[(ν m̃2

′)(Q2 | t?(x).(ν s)(x s | s!〈m2〉.0))]]1
f

to conclude that

Γ;∅; ∆′1 ` (ν m̃1
′)(P2 | t?(x).(ν s)(x s | s!〈m1〉.0))

< ∆′2 ` (ν m̃2
′)(Q2 | t?(x).(ν s)(x s | s!〈m2〉.0))

as required
Proof of Completeness Direction.
Let

< = {(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f , (〈∆2〉)1 ` [[Q1]]1

f | Γ;∆1 ` P1 ≈
H ∆2 ` Q1}

We show that<⊂≈H by a case analysis on the action `
- Case: ` < {(ν m̃)n!〈λx.P〉, n?〈λx.P〉}.
The proof of Proposition 6.4 implies that

(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f

`
7−→ (〈∆′1〉)

1 ` [[P2]]1
f

implies

Γ;∆1 ` P1
`
7−→ ∆′1 ` P2

From the latter transition and the definition of< we imply

Γ;∆2 ` Q1
`
�=⇒ ∆′2 ` Q2 (76)

Γ;∆′1 ` P2 ≈
H ∆′2 ` Q2 (77)
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From 76 and Proposition 6.4 we get

(〈Γ〉)1; (〈∆2〉)1 ` [[Q1]]1
f

`
�=⇒ (〈∆′2〉)

1 ` [[Q2]]1
f

Furthermore, from 77 and the definition of< we get

(〈Γ〉)1; (〈∆′1〉)
1 ` [[P2]]1

f < (〈∆′2〉)
1 ` [[Q2]]1

f

as required.
- Case: ` = (ν m̃)n!〈λx.P〉
There are two subcases:
-Subcase:
The proof of Proposition 6.4 implies that

(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f

`
7−→ (〈∆′1〉)

1 ` [[P2]]1
f

implies

Γ;∆1 ` P1
`
7−→ ∆′1 ` P2

where the proof is similar with the previous case.
- Subcase:
The proof of Proposition 6.4 implies that

(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f

(ν m̃1
′)n!〈λz.z?(x).(xm1)〉
7−→ (〈∆′1〉)

1 ` [[P2]]1
f

implies

Γ;∆1 ` P1
(ν m̃1

′)n!〈m1〉
7−→ ∆′1 ` P2

From the latter transition and the definition of< we imply

Γ;∆2 ` Q1
(ν m̃2

′)n!〈m2〉
�=⇒ ∆′2 ` Q2 (78)

and

Γ;∅;∆′1 ` (ν m̃1
′)(P2 | t?(x).(ν s)(x s | s!〈m1〉.0))

≈H ∆′2 ` (ν m̃2
′)(Q2 | t?(x).(ν s)(x s | s!〈m2〉.0)) (79)

From (78) and Proposition 6.4 we get

(〈Γ〉)1; (〈∆2〉)1 ` [[Q1]]1
f

(ν m̃2
′)n!〈λz.z?(x).(xm2)〉

�=⇒ (〈∆′2〉)
1 ` [[Q2]]1

f

Furthermore, from (79) and the definition of< we get

(〈Γ〉)1;∅; (〈∆′1〉)
1 ` [[(ν m̃1

′)(P2 | t?(x).(ν s)(x s | s!〈m1〉.0))]]1
f

< (〈∆′2〉)
1 ` [[(ν m̃2

′)(Q2 | t?(x).(ν s)(x s | s!〈m2〉.0))]]1
f

as required.
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- Case: ` = n?〈λx.P〉
We have two subcases.
- Subcase: Similar with the first subcase of the previous case.
- Subcase: The proof of Proposition 6.4 implies that

(〈Γ〉)1; (〈∆1〉)1 ` [[P1]]1
f

n?〈λz.z?(x).(x s)〉
7−→ (〈∆′′1 〉)

1 ` R

implies

Γ;∆1 ` P1
n?〈m1〉
7−→ ∆′1 ` P2 (80)

and

(〈Γ〉)1; (〈∆′′1 〉)
1 ` R

τs
7−→ (〈∆′1〉)

1 ` [[P2]]1
f (81)

From the transition (80) and the definition of< we imply

Γ;∆2 ` Q1
n?〈m2〉
�=⇒ ∆′2 ` Q2 (82)

Γ;∆′1 ` P2 ≈
H ∆′2 ` Q2 (83)

From (82) and Proposition 6.4 we get

(〈Γ〉)1; (〈∆2〉)1 ` [[Q1]]1
f

n?〈λz.z?(x).(x s)〉
�=⇒ (〈∆′2〉)

1 ` [[Q2]]1
f

Furthermore, from 83 and the definition of< we get

(〈Γ〉)1; (〈∆′1〉)
1 ` [[P2]]1

f < (〈∆′2〉)
1 ` [[Q2]]1

f

If we consider result (81) we get:

(〈Γ〉)1; (〈∆′′1 〉)
1 ` R

τs
7−→ < (〈∆′2〉)

1 ` [[Q2]]1
f

where following Lemma 4.3 we show that R is a bisimulation an up to
τs
�=⇒. ut

C.2 Properties for
〈
[[·]]2, (〈·〉)2, {{·}}2

〉
: HOπ→ π

We repeat the statement of Proposition 6.7, as in Page 34:

Proposition C.4 (Type Preservation, HOπ into π). Let P be a HOπ process.
If Γ;∅;∆ ` P .� then (〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2 .�.

Proof. By induction on the inference Γ;∅;∆ ` P .�.

1. Case P = k!
〈
λx.Q

〉
.P. Then we have two possibilities, depending on the typing for

λx.Q. The first case concerns a linear typing, and we have the following typing in
the source language:

Γ;∅;∆1 · k : S ` P .�
Γ;∅;∆2 · x : S 1 ` Q .�

Γ;∅;∆2 ` λx.Q .S 1(�

Γ;∅;∆1 ·∆2 · k :!〈S 1(�〉;S ` k!
〈
λx.Q

〉
.P .�
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This way, by IH we have

(〈Γ〉)2;∅; (〈∆2〉)2, x : (〈S 1〉)2 ` [[Q]]2 .�

Let us write U1 to stand for 〈?((〈S 1〉)2);end〉. The corresponding typing in the target
language is as follows:

(〈Γ1〉)2 = (〈Γ〉)2∪a : 〈?((〈S 1〉)2);end〉
(〈Γ2〉)2 = (〈Γ1〉)2∪X : (〈∆2〉)2

Also (∗) stands for (〈Γ1〉)2;∅;∅ ` a .U1; (∗∗) stands for (〈Γ2〉)2;∅;∅ ` a .U1; and (∗∗∗)
stands for (〈Γ2〉)2;∅;∅ ` X .�.

(∗∗∗)

(〈Γ2〉)2;∅; (〈∆2〉)2, x : (〈S 1〉)2 ` [[Q]]2 .�

(〈Γ2〉)2;∅; (〈∆2〉)2,y : end, x : (〈S 1〉)2 ` [[Q]]2 .�

(〈Γ2〉)2;∅; (〈∆2〉)2,y :?((〈S 1〉)2);end ` y?(x).[[Q]]2 .� (∗∗)
(〈Γ2〉)2;∅; (〈∆2〉)2 ` a?(y).y?(x).[[Q]]2 .�

(〈Γ2〉)2;∅; (〈∆2〉)2 ` a?(y).y?(x).[[Q]]2 | X .�
(〈Γ1〉)2;∅; (〈∆2〉)2 ` µX.(a?(y).y?(x).[[Q]]2 | X) .�

(84)

(〈Γ1〉)2;∅; (〈∆1〉)2,k : (〈S 〉)2 ` [[P]]2 .�
(〈Γ1〉)2;∅; (〈∆2〉)2 ` µX.(a?(y).y?(x).[[Q]]2 | X) .� (84)

(〈Γ1〉)2;∅; (〈∆1,∆2〉)2,k : (〈S 〉)2 ` [[P]]2 | µX.(a?(y).y?(x).[[Q]]2 | X) .�
(85)

(〈Γ1〉)2;∅;∅ ` a .U1
(〈Γ1〉)2;∅; (〈∆1,∆2〉)2,k : (〈S 〉)2 ` [[P]]2 | µX.(a?(y).y?(x).[[Q]]2 | X) .� (85)

(〈Γ1〉)2;∅; (〈∆1,∆2〉)2,k :!
〈
U1

〉
; (〈S 〉)2 ` k!〈a〉.([[P]]2 | µX.(a?(y).y?(x).[[Q]]2 | X)) .�

(〈Γ〉)2;∅; (〈∆1,∆2〉)2,k :!
〈
U1

〉
; (〈S 〉)2 ` (ν a)(k!〈a〉.([[P]]2 | µX.(a?(y).y?(x).[[Q]]2 | X))) .�

In the second case, λx.Q has a shared type. We have the following typing in the
source language:

Γ;∅;∆ · k : S ` P .�

Γ;∅; ·x : S 1 ` Q .�

Γ;∅;∅ ` λx.Q .S 1(�

Γ;∅;∅ ` λx.Q .S 1→�

Γ;∅;∆ · k :!〈S 1→�〉;S ` k!
〈
λx.Q

〉
.P .�

The corresponding typing in the target language can be derived similarly as in the
first case.

2. Case P = k?(x).P. Then there are two cases, depending on the type of X. In the first
case, we have the following typing in the source language:

Γ · x : S 1→�; ∅; ∆ · k : S ` P .�
Γ; ∅; ∆ · k :?(S 1→�);S ` k?(x).P .�

The corresponding typing in the target language is as follows:

(〈Γ〉)2 · x : 〈?((〈S 1〉)2);end〉; ∅; ∆ · k : (〈S 〉)2 ` (〈P〉)2 .�

(〈Γ〉)2; ∅; (〈∆〉)2 · k :?
(
〈?((〈S 1〉)2);end〉

)
; (〈S 〉)2 ` k?(x).[[P]]2 .�
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In the second case, we have the following typing in the source language:

Γ; {x : S 1(�}; ∅; ∆ · k : S ` P .�
Γ; ∅; ∆ · k :?(S 1(�);S ` k?(x).P .�

The corresponding typing in the target language is as follows:

(〈Γ〉)2 · x : 〈?((〈S 1〉)2);end〉; ∅; ∆ · k : (〈S 〉)2 ` (〈P〉)2 .�

(〈Γ〉)2; ∅; (〈∆〉)2 · k :?
(
〈?((〈S 1〉)2);end〉

)
; (〈S 〉)2 ` k?(x).[[P]]2 .�

3. Case P = xk. Also here we have two cases, depending on whether X has linear or
shared type. In the first case, x is linear and we have the following typing in the
source language:

Γ; {x : S 1(�}; ∅ ` X .S 1(� Γ;∅; {k : S 1} ` k .S 1

Γ; {x : S 1(�}; k : S 1 ` xk .�

Let us write (〈Γ1〉)2 to stand for (〈Γ〉)2 · x : 〈!〈(〈S 1〉)2〉;end〉. The corresponding typing
in the target language is as follows:

(〈Γ1〉)2; ∅; ∅ ` 0 .�
(〈Γ1〉)2; ∅; s : end ` 0 .�

(〈Γ1〉)2; ∅; {k : (〈S 1〉)2} ` k . (〈S 1〉)2

(〈Γ1〉)2; ∅; k : (〈S 1〉)2, s :!〈(〈S 1〉)2〉;end ` s!〈k〉.0 .�
(86)

(〈Γ1〉)2; ∅; k : (〈S 1〉)2, s :!〈(〈S 1〉)2〉;end ` s!〈k〉.0 .� (86)
(〈Γ1〉)2; ∅; ∅ ` x . 〈!〈(〈S 1〉)2〉;end〉

(〈Γ1〉)2; ∅; k : (〈S 1〉)2, s :?((〈S 1〉)2);end, s :!〈(〈S 1〉)2〉;end ` x!〈s〉.s!〈k〉.0 .�
(〈Γ1〉)2; ∅; k : (〈S 1〉)2 ` (ν s)(x!〈s〉.s!〈k〉.0) .�

In the second case, x is shared, and we have the following typing in the source
language:

Γ · x : S 1(�; ∅; ∅ ` x .S 1→� Γ;∅;k : S 1 ` k .S 1

Γ · x : S 1→�; ∅; k : S 1 ` xk .�

The associated typing in the target language is obtained similarly as in the first case.
ut

We repeat the statement of Proposition 6.8, as in Page 35:

Proposition C.5 (Operational Correspondence, HOπ into π). Let P be an HOπ pro-
cess such that Γ;∅;∆ ` P .�.

1. Suppose Γ;∆ ` P
`1
7−→ ∆′ ` P′. Then we have:

a) If `1 = (ν m̃)n!〈λx.Q〉, then ∃Γ′,∆′′,R where either:

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ Γ′ · (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 | ∗ a?(y).y?(x).[[Q]]2

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ (〈Γ〉)2; ∆′′ ` [[P′]]2 | s?(y).y?(x).[[Q]]2

b) If `1 = n?〈λy.Q〉 then ∃R where either
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- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ Γ′; (〈∆′′〉)2 ` R, for some Γ′ and
(〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′′〉)2 ` (ν a)(R | ∗ a?(y).y?(x).[[Q]]2)

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 {{`1}}
2

7−→ (〈Γ〉)2; (〈∆′′〉)2 ` R, and
(〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′′〉)2 ` (ν s)(R | s?(y).y?(x).[[Q]]2)

c) If `1 = τ then either:
- ∃R such that

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2

τ
7−→ (〈∆′〉)2 ` (ν m̃)([[P1]]2 | (ν a)([[P2]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2))

- ∃R such that

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2

τ
7−→ (〈∆′〉)2 ` (ν m̃)([[P1]]2 | (ν s)([[P2]]2{s/x} | s?(y).y?(x).[[Q]]2))

- (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τ
7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2

- `1 = τβ and (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 τs
7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2

d) If `1 ∈ {n⊕ l,n&l} then

∃`2 = {{`1}}
2 such that (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2

7−→ (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2.

2. Suppose (〈Γ〉)2; (〈∆〉)2 ` [[P]]2 `2
7−→ (〈Γ〉)2; (〈∆′〉)2 ` R.

a) If `2 = (ν m)n!〈m〉 then either

- ∃P′ such that P
(ν m)n!〈m〉
7−→ P′ and R = [[P′]]2.

- ∃Q,P′ such that P
n!〈λx.Q〉
7−→ P′ and R = [[P′]]2 | ∗ a?(y).y?(x).[[Q]]2

- ∃Q,P′ such that P
n!〈λx.Q〉
7−→ P′ and R = [[P′]]2 | s?(y).y?(x).[[Q]]2

b) If `2 = n?〈m〉 then either

- ∃P′ such that P
n?〈m〉
7−→ P′ and R = [[P′]]2.

- ∃Q,P′ such that P
n?〈λx.Q〉
7−→ P′

and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` (ν a)(R | ∗ a?(y).y?(x).[[Q]]2)

- ∃Q,P′ such that P
n?〈λx.Q〉
7−→ P′

and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` (ν s)(R | s?(y).y?(x).[[Q]]2)
c) If `2 = τ then ∃P′ such that P

τ
7−→ P′ and (〈Γ〉)2; (〈∆′〉)2 ` [[P′]]2 ≈H (〈∆′〉)2 ` R.

d) If `2 < {n!〈m〉,n⊕ l,n&l} then ∃`1 such that `1 = {{`2}}
2 and

Γ; ∆ ` P
`1
7−→ Γ; ∆ ` P′.

Proof. The proof is done by transition induction. We conside the two parts separately.
- Part 1
- Basic Step:
- Subcase: P = n!〈λx.Q〉.P′ and also from Definition 6.4 we have that
[[P]]2 = (ν a)(n!〈a〉.[[P′]]2 | ∗ a?(y).y?(x).[[Q]]2)
Then

Γ;∅;∆ ` P
n!〈λx.Q〉
7−→ ∆′ ` P′

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2 (ν a)n!〈a〉
7−→ (〈∆〉)2 ` [[P′]]2 | ∗ a?(y).y?(x).[[Q]]2
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and from Definition 6.4

{{n!〈λx.Q〉}} = (ν a)n!〈a〉

as required.
- Subcase: P = n!〈λx.Q〉.P′ and also from Definition 6.4 we have that
[[P]]2 = (ν s)(n!〈s〉.[[P′]]2 | s?(y).y?(x).[[Q]]2) is similar as above.
- Subcase P = n?(x).P′.
- From Definition 6.4 we have that [[P]]2 = n?(x).[[P′]]2

Then

Γ;∅;∆ ` P
n?〈λx.Q〉
7−→ ∆′ ` P′{λx.Q/x}

(〈Γ〉)2;∅; (〈∆〉)2 ` [[P]]2 n?〈a〉
−→ (〈∆′′〉)2 ` R{a/x}

with

{{n?〈λx.Q〉}}2 = n?〈a〉

It remains to show that

(〈Γ〉)2;∅; (〈∆′〉)2 ` [[P′{λx.Q/x}]]2 ≈H (〈∆′′〉)2 ` (ν a)(R{a/x} | ∗ a?(y).y?(x).[[Q]]2)

The proof is an induction on the syntax structure of P′. Suppose P′ = xm, then:

[[xm{λx.Q/x}]]2 = [[Q{m/x}]]2

(ν a)(R{a/x} | ∗ a?(y).y?(x).[[Q]]2) = (ν a)((ν s)(x!〈s〉.s!〈m〉.0){a/x} | ∗ a?(y).y?(x).[[Q]]2)

The second term can be deterministically reduced as:

(〈Γ〉)2;∅; (〈∆′′〉)2 ` (ν a)((ν s)(x!〈s〉.s!〈m〉.0){a/x} | ∗ a?(y).y?(x).[[Q]]2)
τ
7−→

τs
7−→ (〈∆′′〉)2 ` (ν a)([[Q{m/x}]]2 | ∗ a?(y).y?(x).[[Q]]2)

which is bisimilar with:

[[Q{m/x}]]2

because a is fresh and cannot interact anymore.
An interesting inductive step case is parallel composition. Suppose P′ = P1 | P2. We
need to show that:

(〈Γ〉)2;∅; (〈∆′〉)2 ` [[(P1 | P2){λx.Q/x}]]2 ≈H (〈∆′′〉)2 ` (ν a)([[P1 | P2]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2)

We know that

(〈Γ〉)2; (〈∆1〉)2 ` [[P1{λx.Q/x}]]2 ≈H (〈∆′′1 〉)
2 ` (ν a)([[P1]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2)

(〈Γ〉)2; (〈∆2〉)2 ` [[P2{λx.Q/x}]]2 ≈H (〈∆′′1 〉)
2 ` (ν a)([[P2]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2)

We conclude from the congruence of ≈H .
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- The rest of the cases for Part 1 are easy to follow using Definition 6.4.
- Part 2.
The proof for Part 2 is straightforward following Definition 6.4. We give some distinc-
tive cases:
- Case P = n!〈λx.Q〉.P′

Γ;∆ ` P
n!〈λx.Q〉
7−→ ∆′ ` P′

(〈Γ〉)2; (〈∆〉)2 ` [[P]]2 (ν a)n!〈a〉
7−→ (〈∆′〉)2 ` [[P′]]2 | ∗ a?(y).y?(s).[[Q]]2

as required.
- Case P = n?(x).P′

Γ;∆ ` P
n?〈λx.Q〉
7−→ ∆′ ` P′{λx./Q}x

(〈Γ〉)2; (〈∆〉)2 ` [[P]]2 n?〈a〉
7−→ (〈∆′′〉)2 ` [[P′]]2{a/x}

We now use a similar argumentation as the input case in Part 1 to prove that:

Γ;∆′ ` P′{λx.Q/x} ≈H (〈∆′′〉)2 ` (ν a)([[P′]]2{a/x} | ∗ a?(y).y?(x).[[Q]]2)

ut

C.3 Properties for
〈
[[·]]3, (〈·〉)3, {{·}}3

〉
: HOπ+→ HOπ

We study the properties of the typed encoding in Definition 8.1 (Page 39).
We repeat the statement of Proposition 8.1, as in Page 40:

Proposition C.6 (Type Preservation. From HOπ+ to HOπ). Let P be a HOπ+ process.
If Γ;∅;∆ ` P .� then (〈Γ〉)3;∅; (〈∆〉)3 ` [[P]]3 .�.

Proof. By induction on the inference of Γ;∅;∆ ` P . �. We detail some representative
cases:

1. Case P = u!〈λx.Q〉.P′. Then we may have the following typing in HOπ+:

Γ;Λ1;∆1 ·u : S ` P′ .�
Γ · x : L;Λ2;∆2 ` Q .� Γ · x : L;∅;∅ ` x .L

Γ;Λ2;∆2 ` λx : L.Q .L(�
Γ;Λ1 ·Λ2;∆1 ·∆2 ·u :!〈L(�〉;S ` u!〈λx.Q〉.P′ .�

Thus, by IH we have:

(〈Γ〉)3; (〈Λ1〉)3; (〈∆1〉)3 ·u : (〈S 〉)3 ` [[P′]]3 .� (87)
(〈Γ〉)3 · x : (〈L〉)3; (〈Λ2〉)3; (〈∆2〉)3 ` [[Q]]3 .� (88)

(〈Γ〉)3 · x : (〈L〉)3;∅;∅ ` x . (〈L〉)3 (89)



February 9, 2015 85

The corresponding typing in HOπ is as follows:

(88)
(〈Γ〉)3 · x : (〈L〉)3; (〈Λ2〉)3; (〈∆2〉)3 · z : end ` [[Q]]3 .� (89)

(〈Γ〉)3; (〈Λ2〉)3; (〈∆2〉)3 · z :?((〈L〉)3);end ` z?(x).[[Q]]3 .�
(90)

(87)

(90)
(〈Γ〉)3;∅;z :?((〈L〉)3);end ` z.?((〈L〉)3);end

(〈Γ〉)3; (〈Λ2〉)3; (〈∆2〉)3 ` λz.z?(x).[[Q]]3 . (?((〈L〉)3);end)(�
(〈Γ〉)3; (〈Λ1〉)3 · (〈Λ2〉)3; (〈∆1〉)3 · (〈∆2〉)3 ·u :!〈?((〈L〉)3);end(�〉; (〈S 〉)3 ` u!〈λz.z?(x).[[Q]]3〉.[[P′]]3 .�

2. Case P = (λx.P) (λy.Q). We may have different possibilities for the types of each
abstraction. We consider only one of them, as the rest are similar:

Γ · x : C→�;Λ;∆1 ` P .�
Γ;Λ;∆1 ` λx.P . (C(�)(�

Γ;∅;∆2,y : C ` Q .�

Γ;∅;∆2 ` λy.Q .C(�
Γ;Λ;∆1 ·∆2 ` (λx.P) (λy.Q) .�

Thus, by IH we have:

(〈Γ〉)3 · x : (〈C→�〉)3; (〈Λ〉)3; (〈∆1〉)3 ` [[P]]3 .� (91)
(〈Γ〉)3;∅; (〈∆1〉)3,y : (〈C〉)3 ` [[Q]]3 .� (92)

The corresponding typing in HOπ is as follows — recall that (〈C(�〉)3 = (〈C〉)3(�.

(91)
(〈Γ〉)3 · x : (〈C→�〉)3; (〈Λ〉)3; (〈∆1〉)3 · s : end ` [[P]]3 .�

(〈Γ〉)3; (〈Λ〉)3; (〈∆1〉)3 · s :?((〈C(�〉)3);end ` s?(x).[[P]]3 .�
(93)

(93)

(92)
(〈Γ〉)3;∅; (〈∆2〉)3 · y : (〈C〉)3 ` [[Q]]3 .�

(〈Γ〉)3;∅; (〈∆2〉)3 ` λy. [[Q]]3 . (〈C(�〉)3

(〈Γ〉)3;∅; (〈∆2〉)3 · s : end ` λy. [[Q]]3 . (〈C(�〉)3

(〈Γ〉)3;∅; (〈∆2〉)3 · s :!〈(〈C(�〉)3〉;end ` s!〈λy. [[Q]]3〉.0 .�
(〈Γ〉)3; (〈Λ〉)3; (〈∆1〉)3 · (〈∆2〉)3 · s :?((〈C(�〉)3);end · s :!〈(〈C(�〉)3〉;end ` s?(x).[[P]]3 | s!〈λy. [[Q]]3〉.0 .�

(〈Γ〉)3; (〈Λ〉)3; (〈∆1〉)3 · (〈∆2〉)3 ` (ν s)(s?(x).[[P]]3 | s!〈λy. [[Q]]3〉.0) .�

ut

We repeat the statement of Proposition 8.2, as in Page 40:

Proposition C.7 (Operational Correspondence. From HOπ+ to HOπ).

1. Let Γ;∅;∆ ` P. Γ;∆ ` P
`
7−→ ∆′ ` P′ implies

a) If ` ∈ {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉} then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `′

7−→ (〈∆′〉)3 ` [[P′]]3 with
{{`}}3 = `′.
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b) If ` < {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉, τ} then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `
7−→ (〈∆′〉)3 ` [[P′]]3.

c) If ` = τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ ∆′′ ` R and (〈Γ〉)3(〈∆′〉)3[[P′]]3≈H∆′′R.

d) If ` = τ and ` , τβ then (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 τ
7−→ (〈∆′〉)3 ` [[P′]]3.

2. Let Γ;∅;∆ ` P. (〈Γ〉)3; (〈∆〉)3 ` [[P]]3 `
7−→ (〈∆′′〉)3 ` Q implies

a) If ` ∈ {(ν m̃)n!〈λx.Q〉,n?〈λx.Q〉, τ} then Γ;∆ ` P
`′

7−→ ∆′ ` P′ with {{`′}}3 = ` and
Q ≡ [[P′]]3.

b) If ` < {(ν m̃)n!〈λx.R〉,n?〈λx.R〉, τ} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and Q ≡ [[P′]]3.

c) If ` = τ then either Γ;∆ ` ∆
τ
7−→ ∆′ ` P′ with Q ≡ [[P′]]3

or Γ;∆ ` ∆
τβ
7−→ ∆′ ` P′ and (〈Γ〉)3; (〈∆′′〉)3 ` Q

τβ
7−→ (〈∆′′〉)3 ` [[P′]]3.

Proof. 1. The proof of Part 1 does a transition induction and considers the mapping
as defined in Definition 8.1. We give the most interesting cases.

– Case: P = (λx.Q1)λx.Q2.

Γ;∆ ` (λx.Q1)λx.Q2
τβ
7−→ ∆ ` Q1{λx.Q2/x} implies

(〈Γ〉)3; (〈∆〉)3 ` (ν s)(s?(x).[[Q1]]3 | s!〈λx. [[Q2]]3〉.0)
τs
7−→ (〈∆′〉)3 ` [[Q1]]3{λx. [[Q2]]3

/x}

– Case: P = n!〈λx.Q〉.P

Γ;∆ ` n!〈λx.Q〉.P
n!〈λx.Q〉
7−→ ∆ ` P implies

(〈Γ〉)3; (〈∆〉)3 ` n!〈λz.z?(x).[[Q]]3〉.[[P]]3 n!〈λz.z?(x).[[Q]]3〉
7−→ ∆ ` [[P]]3

– Other cases are similar.

2. The proof of Part 2 also does a transition induction and considers the mapping as
defined in Definition 8.1. We give the most interesting cases.

– Case: P = (λx.Q1)λx.Q2.

(〈Γ〉)3;∅; (〈∆〉)3 ` (ν s)((λz.z?(x).[[Q]]3) s | s!〈λx.Q2〉.0)
τβ
7−→ (〈∆′〉)3 ` (ν s)(s?(x).[[Q]]3 | s!〈λx.Q2〉.0)

implies Γ;∆ ` (λx.Q1)λx.Q2
τβ
7−→ ∆ ` Q1{λx.Q2/x} and

(〈Γ〉)3;∅; (〈∆〉)3 ` (ν s)(s?(x).[[Q]]3 | s!〈λx.Q2〉.0)
τs
7−→ (〈∆′〉)3 ` [[Q1]]3{λx. [[Q2]]3

/x}

– Case: P = n!〈λx.Q〉.P

(〈Γ〉)3; (〈∆〉)3 ` n!〈λz.z?(x).[[Q]]3〉.[[P]]3 n!〈λz.z?(x).[[Q]]3〉
7−→ ∆ ` [[P]]3 and

Γ;∆ ` n!〈λx.Q〉.P
n!〈λx.Q〉
7−→ ∆ ` P

– Other cases are similar.
ut
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C.4 Properties for
〈
[[·]]4, (〈·〉)4, {{·}}4

〉
: HO~π→ HOπ

We study the properties of the typed encoding in Definition 8.2 (Page 43).
We repeat the statement of Proposition 8.5, as in Page 43:

Proposition C.8 (Type Preservation. From HO~π to HOπ). Let P be a HO~π process.
If Γ;∅;∆ ` P .� then (〈Γ〉)4;∅; (〈∆〉)4 ` [[P]]4 .�.

Proof. By induction on the inference Γ;∅;∆ ` P . �. We examine two representative
cases, using biadic communications.

1. Case P = n!〈V〉.P′ and Γ;∅;∆1 ·∆2 · n :!〈(C1,C2)(�〉;S ` n!〈V〉.P′ . �. Then either
V = y or V = λ(x1, x2).Q, for some Q. The case V = y is immediate; we give details
for the case V = λ(x1, x2).Q, for which we have the following typing:

Γ;∅;∆1 ·n : S ` P′ .�
Γ;∅;∆2 · x1 : C1 · x2 : C2 ` Q .�

Γ;∅;∆2 ` λ(x1, x2).Q . (C1,C2)(�
Γ;∅;∆1 ·∆2 ·n :!〈(C1,C2)(�〉;S ` k!〈λ(x1, x2).Q〉.P .�

We now show the typing for [[P]]4. By IH we have both:

(〈Γ〉)4;∅; (〈∆1〉)4 ·n : (〈S 〉)4 ` [[P′]]4 .� (〈Γ〉)4;∅; (〈∆2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 ` [[Q]]4 .�

Let L = (C1,C2)(�. By Definition 8.2 we have (〈L〉)4 =
(
?((〈C1〉)4);?((〈C2〉)4);end

)
(�

and [[P]]4 = n!
〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4. We can now infer the following typing

derivation:

(〈Γ〉)4;∅; (〈∆2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 ` [[Q]]4 .�

(〈Γ〉)4;∅; (〈∆2〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 · z : end ` [[Q]]4 .�

(〈Γ〉)4;∅; (〈∆2〉)4 · x1 : (〈C1〉)4 · z :?((〈C2〉)4);end ` z?(x2).[[Q]]4 .�

(〈Γ〉)4;∅; (〈∆2〉)4 · z :?((〈C1〉)4);?((〈C2〉)4);end ` z?(x1).z?(x2).[[Q]]4 .�

(〈Γ〉)4;∅; (〈∆2〉)4 ` λz.z?(x1).z?(x2).[[Q]]4 . ((〈C1〉)4, (〈C2〉)4)(�
(94)

(〈Γ〉)p;∅; (〈∆1〉)p · k : (〈S 〉)p ` [[P′]]p .�
(94)

(〈Γ〉)4;∅; (〈∆1〉)4 · (〈∆2〉)4 ·n :!〈(〈L〉)4〉; (〈S 〉)4 ` [[P]]4 .�

2. Case P = n?(x1, x2).P′ and Γ;∅;∆1 ·n :?((C1,C2));S ` n?(x1, x2).P′ .�. We have the
following typing derivation:

Γ;∅;∆1 ·n : S · x1 : C1 · x2 : C2 ` P′ .� Γ;∅;` x1, x2 .C1,C2

Γ;∅;∆1 ·n :?((C1,C2));S ` n?(x1, x2).P′ .�

By Definition 8.2 we have [[P]]4 = n?(x1).k?(x2).[[P′]]4. By IH we have

(〈Γ〉)4;∅; (〈∆1〉)4 ·n : (〈S 〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 ` [[P′]]4 .�

and the following type derivation:

(〈Γ〉)4;∅; (〈∆1〉)4 · x1 : (〈C1〉)4 · x2 : (〈C2〉)4 ·n : (〈S 〉)4 ` [[P′]]4 .�

(〈Γ〉)4;∅; (〈∆1〉)4 · x1 : (〈C1〉)4 ·n :?((〈C2〉)4); (〈S 〉)4 ` n?(x2).[[P′]]4 .�

(〈Γ〉)4;∅; (〈∆1〉)4 ·n :?((〈C1〉)4);?((〈C2〉)4); (〈S 〉)4 ` [[P]]4 .�
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ut

We repeat the statement of Proposition 8.6, as in Page 43:

Proposition C.9 (Operational Correspondence. From HO~π to HOπ).

1. Let Γ;∅;∆ ` P. Then Γ;∆ ` P
`
7−→ ∆′ ` P′ implies

a) If ` = (ν m̃′)n!〈m̃〉 then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ . . .

`n
7−→ (〈∆′〉)4 ` [[P]]4 with {{`}}4 =

`1 . . . `n.

b) If ` = n?〈m̃〉 then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ . . .

`n
7−→ (〈∆′〉)4 ` [[P]]4 with {{`}}4 = `1 . . . `n.

c) If ` ∈ {(ν m̃)n!〈λx̃.R〉,n?〈λx̃.R〉} then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `′

7−→ (〈∆′〉)4 ` [[P′]]4 with
{{`}}4 = `′.

d) If ` ∈ {n⊕ l,n&l} then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `
7−→ (〈∆′〉)4 ` [[P′]]4.

e) If ` = τβ then either (〈Γ〉)4; (〈∆〉)4 ` [[P]]4
τβ
7−→

τs
7−→ . . .

τs
7−→ (〈∆′〉)4 ` [[P′]]4 with {{`}} =

τβ, τs . . . τs.

f) If ` = τ then (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 τ
7−→ . . .

τ
7−→ (〈∆′〉)4 ` [[P′]]4 with {{`}}4 = τ . . .τ.

2. Let Γ;∅;∆ ` P. (〈Γ〉)4; (〈∆〉)4 ` [[P]]4 `1
7−→ (〈∆1〉)4 ` P1 implies

a) If ` ∈ {n?〈m〉,n!〈m〉, (ν m)n!〈m〉} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and

(〈Γ〉)4; (〈∆1〉)4 ` P1
`2
7−→ . . .

`n
7−→ (〈∆′〉)4 ` (〈P′〉)4 with {{`}}4 = `1 . . . `n.

b) If ` ∈ {(ν m̃)n!〈λx.R〉,n?〈λx.R〉} then Γ;∆ ` P
`′

7−→ ∆′ ` P′ with {{`′}}4 = ` and
P1 ≡ [[P′]]4.

c) If ` ∈ {n⊕ l,n&l} then Γ;∆ ` P
`
7−→ ∆′ ` P′ and P1 ≡ [[P′]]4.

d) If ` = τβ then Γ;∆ ` P
τβ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τs
7−→ . . .

τs
7−→ (〈∆′〉)4 ` (〈P′〉)4

with {{`}}4 = τβ, τs . . . τs.

e) If ` = τ then Γ;∆ ` P
τ
7−→ ∆′ ` P′ and (〈Γ〉)4; (〈∆1〉)4 ` P1

τ
7−→ . . .

τ
7−→ (〈∆′〉)4 ` (〈P′〉)4

with {{`}}4 = τ . . .τ.

Proof. The proof of both parts is by transition induction, following the mapping defined
in Definition 8.1. We consider some representative cases, using biadic communication:

• Case (1(a)), with P = n!〈m1,m2〉.P′ and `1 = n!〈m1,m2〉. By assumption, P is well-
typed. As one particular possibility, we may have:

Γ;∅;∆0 ·n : S ` P′ .� Γ;∅;m1:S 1 ·m2:S 2 ` m1,m2 .S 1,S 2

Γ;∅;∆0 ·m1:S 1 ·m2:S 2 ·n :!〈S 1,S 2〉;S ` n!〈m1,m2〉.P′ .�

for some Γ,S ,S 1,S 2,∆0, such that ∆= ∆0 ·m1:S 1 ·m2:S 2 ·n :!〈S 1,S 2〉;S . We may then
have the following typed transition

Γ;∆0 ·m1:S 1 ·m2:S 2 ·n :!〈S 1,S 2〉;S ` n!〈m1,m2〉.P′
`1
7−→ Γ;∆0 ·n:S ` P′

The encoding of the source judgment for P is as follows:

(〈Γ〉)4;∅; (〈∆0 ·m1:S 1 ·m2:S 2 ·n :!〈S 1,S 2〉;S 〉)4 ` [[n!〈m1,m2〉.P′]]4 .�
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which, using Definition 8.1, can be expressed as

(〈Γ〉)4;∅; (〈∆0〉) ·m1:(〈S 1〉)4 ·m2:(〈S 2〉)4 ·n :!〈(〈S 1〉)4〉; !〈(〈S 2〉)4〉; (〈S 〉)4 ` n!〈m1〉.n!〈m2〉.[[P′]]4 .�

Now, {{`1}}
4 = n!〈m1〉,n!〈m2〉. It is immediate to infer the following typed transitions

for [[P]]4 = n!〈m1〉.n!〈m2〉.[[P′]]4:

(〈Γ〉)4; (〈∆0〉) ·m1:(〈S 1〉)4 ·m2:(〈S 2〉)4 ·n :!〈(〈S 1〉)4〉; !〈(〈S 2〉)4〉; (〈S 〉)4 ` n!〈m1〉.n!〈m2〉.[[P′]]4

n!〈m1〉
7−→ (〈Γ〉)4; (〈∆0〉) ·m2:(〈S 2〉)4 ·n :!〈(〈S 2〉)4〉; (〈S 〉)4 ` n!〈m2〉.[[P′]]4

n!〈m2〉
7−→ (〈Γ〉)4; (〈∆0〉) ·n:(〈S 〉)4 ` [[P′]]4

= (〈Γ〉)4; (〈∆0 ·n : S 〉)4 ` [[P′]]4

which concludes the proof for this case.
• Case (1(c)) with P = n!

〈
λ(x1, x2).Q

〉
.P′ and `1 = n!〈λ(x1, x2).Q〉. By assumption, P

is well-typed. We may have:

Γ;∅;∆0 ·n : S ` P′ .� Γ;∅;∆1 ` λ(x1, x2).Q . (C1,C2)(�
Γ;∅;∆0 ·∆1 ·n :!〈(C1,C2)(�〉;S ` n!〈λ(x1, x2).Q〉.P′ .�

for some Γ, S , C1, C2, ∆0, ∆1, such that ∆ = ∆0 ·∆1 · n :!〈(C1,C2)(�〉;S . (For sim-
plicity, we consider only the case of a linear function.) We may have the following
typed transition:

Γ;∆0 ·∆1 ·n :!
〈
(C1,C2)(�

〉
;S ` n!

〈
λ(x1, x2).Q

〉
.P′

`1
7−→ Γ;∆0 ·n:S ` P′

The encoding of the source judgment is

(〈Γ〉)4;∅; (〈∆0 ·∆1 ·n :!
〈
(C1,C2)(�

〉
;S 〉)4 ` [[n!

〈
λ(x1, x2).Q

〉
.P′]]4 .�

which, using Definition 8.1, can be equivalently expressed as

(〈Γ〉)4;∅; (〈∆0 ·∆1〉) ·n :!
〈(

?((〈C1〉)4);?((〈C2〉)4);end
)
(�

〉
; (〈S 〉)4 ` n!

〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4 .�

Now, {{`1}}
4 = n!〈λz.z?(x1).z?(x2).[[Q]]4〉. It is immediate to infer the following typed

transition for [[P]]4 = n!
〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4:

(〈Γ〉)4; (〈∆0 ·∆1〉) ·n :!
〈(

?((〈C1〉)4);?((〈C2〉)4);end
)
(�

〉
; (〈S 〉)4 ` n!

〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4

{{`1}}
4

7−→ (〈Γ〉)4; (〈∆0〉) ·n : (〈S 〉)4, ` [[P′]]4

= (〈Γ〉)4; (〈∆0 ·n : S 〉)4 ` [[P′]]4

which concludes the proof for this case.
• Case (2(a)), with P = n?(x1, x2).P′, [[P]]4 = n?(x1).n?(x2).[[P′]]4. We have the follow-

ing typed transitions for [[P]]4, for some S , S 1, S 2, and ∆:

(〈Γ〉)4; (〈∆〉)4 ·n :?((〈S 1〉)4);?((〈S 2〉)4); (〈S 〉)4· ` n?(x1).n?(x2).[[P′]]4

n?〈m1〉
7−→ (〈Γ〉)4; (〈∆〉)4 ·n :?((〈S 2〉)4); (〈S 〉)4 ·m1 : (〈S 1〉)4 ` n?(x2).[[P′]]4{m1/x1}

n?〈m2〉
7−→ (〈Γ〉)4; (〈∆〉)4 ·n : (〈S 〉)4 ·m1 : (〈S 1〉)4 ·m2 : (〈S 2〉)4 ` [[P′]]4{m1/x1}{m2/x2} = Q
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Observe that the substitution lemma (Lemma 3.1(1)) has been used twice. It is then
immediate to infer the label for the source transition: `1 = n?〈m1,m2〉. Indeed, {{`1}}

4 =

n?〈m1〉,n?〈m2〉. Now, in the source term P we can infer the following transition:

Γ;∆ ·n :?(S 1,S 2);S ` n?(x1, x2).P′
`1
7−→ Γ;∆ ·n:S ·m1 : S 1 ·m2 : S 2 ` P′{m1,m2/x1, x2}

which concludes the proof for this case.
• Case (2(b)), with P = n!

〈
λ(x1, x2).Q

〉
.P′, [[P]]4 = n!

〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4. We

have the following typed transition, for some S , C1, C2, and ∆:

(〈Γ〉)4; (〈∆〉)4 ·n : (〈!
〈
(C1,C2)(�

〉
;S 〉)4 ` n!

〈
λz.z?(x1).z?(x2).[[Q]]4〉.[[P′]]4

`′1
7−→ (〈Γ〉)4; (〈∆〉)4 ·n : (〈S 〉)4 ` [[P′]]4 = Q

where `′1 = n!〈λz.z?(x1).z?(x2).[[Q]]4〉. For simplicity, we consider only the case of
linear functions. It is then immediate to infer the label for the source transition: `1 =

n!〈λ(x1, x2).Q〉. Now, in the source term P we can infer the following transition:

Γ;∆ ·n :!
〈
(C1,C2)(�

〉
;S ` n!

〈
λx1, x2.Q

〉
.P′

`1
7−→ Γ;∆ ·n:S ` P′

which concludes the proof for this case.
ut
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